WorldWideScience

Sample records for electrode morphology quarterly

  1. Diversity in cochlear morphology and its influence on cochlear implant electrode position

    NARCIS (Netherlands)

    Marel, K.S. van der; Briaire, J.J.; Wolterbeek, R..; Snel-Bongers, J.; Verbist, B.M.; Frijns, J.H.

    2014-01-01

    To define a minimal set of descriptive parameters for cochlear morphology and study its influence on the cochlear implant electrode position in relation to surgical insertion distance.Cochlear morphology and electrode position were analyzed using multiplanar reconstructions of the pre- and

  2. Morphological and electrochemical studies of spherical boron doped diamond electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Mendes de Barros, R.C. [IQ/USP, Av. Lineu Prestes, 748, Bloco 2 Superior, Cidade Universitaria, Sao Paulo/SP, 05508-900 (Brazil); Ferreira, N.G. [LAS/INPE, Av. dos Astronautas, 1758, Jardim da Granja, Sao Jose dos Campos/SP, 12245-970 (Brazil); Azevedo, A.F. [LAS/INPE, Av. dos Astronautas, 1758, Jardim da Granja, Sao Jose dos Campos/SP, 12245-970 (Brazil); Corat, E.J. [LAS/INPE, Av. dos Astronautas, 1758, Jardim da Granja, Sao Jose dos Campos/SP, 12245-970 (Brazil); Sumodjo, P.T.A. [IQ/USP, Av. Lineu Prestes, 748, Bloco 2 Superior, Cidade Universitaria, Sao Paulo/SP, 05508-900 (Brazil); Serrano, S.H.P. [IQ/USP, Av. Lineu Prestes, 748, Bloco 2 Superior, Cidade Universitaria, Sao Paulo/SP, 05508-900 (Brazil)]. E-mail: shps@iq.usp.br

    2006-08-14

    Morphological and electrochemical characteristics of boron doped diamond electrode in new geometric shape are presented. The main purpose of this study is a comparison among voltammetric behavior of planar glassy carbon electrode (GCE), planar boron doped diamond electrode (PDDE) and spherical boron doped diamond electrode (SDDE), obtained from similar experimental parameters. SDDE was obtained by the growth of boron doped film on textured molybdenum tip. This electrode does not present microelectrode characteristics. However, its voltammetric peak current, determined at low scan rates, is largest associated to the smallest {delta}E {sub p} values for ferrocyanide system when compared with PDDE or GCE. In addition, the capacitance is about 200 times smaller than that for GCE. These results show that the analytical performance of boron doped diamond electrodes can be implemented just by the change of sensor geometry, from plane to spherical shape.

  3. Morphology engineering of high performance binary oxide electrodes.

    Science.gov (United States)

    Chen, Kunfeng; Sun, Congting; Xue, Dongfeng

    2015-01-14

    Advances in materials have preceded almost every major technological leap since the beginning of civilization. On the nanoscale and microscale, mastery over the morphology, size, and structure of a material enables control of its properties and enhancement of its usefulness for a given application, such as energy storage. In this review paper, our aim is to present a review of morphology engineering of high performance oxide electrode materials for electrochemical energy storage. We begin with the chemical bonding theory of single crystal growth to direct the growth of morphology-controllable materials. We then focus on the growth of various morphologies of binary oxides and their electrochemical performances for lithium ion batteries and supercapacitors. The morphology-performance relationships are elaborated by selecting examples in which there is already reasonable understanding for this relationship. Based on these comprehensive analyses, we proposed colloidal supercapacitor systems beyond morphology control on the basis of system- and ion-level design. We conclude this article with personal perspectives on the directions toward which future research in this field might take.

  4. Ultrahigh PEMFC performance of a thin-film, dual-electrode assembly with tailored electrode morphology.

    Science.gov (United States)

    Jung, Chi-Young; Kim, Tae-Hyun; Yi, Sung-Chul

    2014-02-01

    A dual-electrode membrane electrode assembly (MEA) for proton exchange membrane fuel cells with enhanced polarization under zero relative humidity (RH) is fabricated by introducing a phase-separated morphology in an agglomerated catalyst layer of Pt/C (platinum on carbon black) and Nafion. In the catalyst layer, a sufficient level of phase separation is achieved by dispersing the Pt catalyst and the Nafion dispersion in a mixed-solvent system (propane-1,2,3-triol/1-methyl-2-pyrrolidinone).The high polymer chain mobility results in improved water uptake and regular pore-size distribution with small pore diameters. The electrochemical performance of the dual-film electrode assembly with different levels of phase separation is compared to conventional electrode assemblies. As a result, good performance at 0 % RH is obtained because self-humidification is dramatically improved by attaching this dense and phase-separated catalytic overlayer onto the conventional catalyst layer. A MEA prepared using the thin-film, dual-layered electrode exhibits 39-fold increased RH stability and 28-fold improved start-up recovery time during the on-off operation relative to the conventional device. We demonstrate the successful operation of the dual-layered electrode comprised of discriminatively phase-separated agglomerates with an ultrahigh zero RH fuel-cell performance reaching over 95 % performance of a fully humidified MEA. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Nanostructured cobalt sulfide-on-fiber with tunable morphology as electrodes for asymmetric hybrid supercapacitors

    KAUST Repository

    Baby, Rakhi Raghavan; Alhebshi, Nuha; Anjum, Dalaver H.; Alshareef, Husam N.

    2014-01-01

    Porous cobalt sulfide (Co9S8) nanostructures with tunable morphology, but identical crystal phase and composition, have been directly nucleated over carbon fiber and evaluated as electrodes for asymmetric hybrid supercapacitors. As the morphology is changed from two-dimensional (2D) nanoflakes to 3D octahedra, dramatic changes in supercapacitor performance are observed. In three-electrode configuration, the binder-free Co9S82D nanoflake electrodes show a high specific capacitance of 1056 F g-1at 5 mV s-1vs. 88 F g-1for the 3D electrodes. As sulfides are known to have low operating potential, for the first time, asymmetric hybrid supercapacitors are constructed from Co9S8nanostructures and activated carbon (AC), providing an operation potential from 0 to 1.6 V. At a constant current density of 1 A g-1, the 2D Co9S8, nanoflake//AC asymmetric hybrid supercapacitor exhibits a gravimetric cell capacitance of 82.9 F g-1, which is much higher than that of an AC//AC symmetric capacitor (44.8 F g-1). Moreover, the asymmetric hybrid supercapacitor shows an excellent energy density of 31.4 W h kg-1at a power density of 200 W Kg-1and an excellent cycling stability with a capacitance retention of ∼90% after 5000 cycles. This journal is

  6. Laser synthesized super-hydrophobic conducting carbon with broccoli-type morphology as a counter-electrode for dye sensitized solar cells

    Science.gov (United States)

    Gokhale, Rohan; Agarkar, Shruti; Debgupta, Joyashish; Shinde, Deodatta; Lefez, Benoit; Banerjee, Abhik; Jog, Jyoti; More, Mahendra; Hannoyer, Beatrice; Ogale, Satishchandra

    2012-10-01

    A laser photochemical process is introduced to realize superhydrophobic conducting carbon coatings with broccoli-type hierarchical morphology for use as a metal-free counter electrode in a dye sensitized solar cell. The process involves pulsed excimer laser irradiation of a thin layer of liquid haloaromatic organic solvent o-dichlorobenzene (DCB). The coating reflects a carbon nanoparticle-self assembled and process-controlled morphology that yields solar to electric power conversion efficiency of 5.1% as opposed to 6.2% obtained with the conventional Pt-based electrode.A laser photochemical process is introduced to realize superhydrophobic conducting carbon coatings with broccoli-type hierarchical morphology for use as a metal-free counter electrode in a dye sensitized solar cell. The process involves pulsed excimer laser irradiation of a thin layer of liquid haloaromatic organic solvent o-dichlorobenzene (DCB). The coating reflects a carbon nanoparticle-self assembled and process-controlled morphology that yields solar to electric power conversion efficiency of 5.1% as opposed to 6.2% obtained with the conventional Pt-based electrode. Electronic supplementary information (ESI) available: Materials and equipment details, solar cell fabrication protocol, electrolyte spreading time measurement details, XPS spectra, electronic study, film adhesion test detailed analysis and field emission results. See DOI: 10.1039/c2nr32082g

  7. Optical absorption of CdSe quantum dots on electrodes with different morphology

    Directory of Open Access Journals (Sweden)

    Witoon Yindeesuk

    2013-10-01

    Full Text Available We have studied the optical absorption of CdSe quantum dots (QDs adsorbed on inverse opal TiO2 (IO-TiO2 and nanoparticulate TiO2 (NP-TiO2 electrodes using photoacoustic (PA measurements. The CdSe QDs were grown directly on IO-TiO2 and NP-TiO2 electrodes by a successive ionic layer adsorption and reaction (SILAR method with different numbers of cycles. The average diameter of the QDs was estimated by applying an effective mass approximation to the PA spectra. The increasing size of the QDs with increasing number of cycles was confirmed by a redshift in the optical absorption spectrum. The average diameter of the CdSe QDs on the IO-TiO2 electrodes was similar to that on the NP-TiO2 ones, indicating that growth is independent of morphology. However, there were more CdSe QDs on the NP-TiO2 electrodes than on the IO-TiO2 ones, indicating that there were different amounts of active sites on each type of electrode. In addition, the Urbach parameter of the exponential optical absorption tail was also estimated from the PA spectrum. The Urbach parameter of CdSe QDs on IO-TiO2 electrodes was higher than that on NP-TiO2 ones, indicating that CdSe QDs on IO-TiO2 electrodes are more disordered states than those on NP-TiO2 electrodes. The Urbach parameter decreases in both cases with the increase of SILAR cycles, and it tended to move toward a constant value.

  8. Morphology Effect of Vertical Graphene on the High Performance of Supercapacitor Electrode.

    Science.gov (United States)

    Zhang, Yu; Zou, Qionghui; Hsu, Hua Shao; Raina, Supil; Xu, Yuxi; Kang, Joyce B; Chen, Jun; Deng, Shaozhi; Xu, Ningsheng; Kang, Weng P

    2016-03-23

    Graphene and its composites are widely investigated as supercapacitor electrodes due to their large specific surface area. However, the severe aggregation and disordered alignment of graphene sheets hamper the maximum utilization of its surface area. Here we report an optimized structure for supercapacitor electrode, i.e., the vertical graphene sheets, which have a vertical structure and open architecture for ion transport pathway. The effect of morphology and orientation of vertical graphene on the performance of supercapacitor is examined using a combination of model calculation and experimental study. Both results consistently demonstrate that the vertical graphene electrode has a much superior performance than that of lateral graphene electrode. Typically, the areal capacitances of a vertical graphene electrode reach 8.4 mF/cm(2) at scan rate of 100 mV/s; this is about 38% higher than that of a lateral graphene electrode and about 6 times higher than that of graphite paper. To further improve its performance, a MnO2 nanoflake layer is coated on the surface of graphene to provide a high pseudocapacitive contribution to the overall areal capacitance which increases to 500 mF/cm(2) at scan rate of 5 mV/s. The reasons for these significant improvements are studied in detail and are attributed to the fast ion diffusion and enhanced charge storage capacity. The microscopic manipulation of graphene electrode configuration could greatly improve its specific capacitance, and furthermore, boost the energy density of supercapacitor. Our results demonstrate that the vertical graphene electrode is more efficient and practical for the high performance energy storage device with high power and energy densities.

  9. Enhanced Output Power of PZT Nanogenerator by Controlling Surface Morphology of Electrode.

    Science.gov (United States)

    Jung, Woo-Suk; Lee, Won-Hee; Ju, Byeong-Kwon; Yoon, Seok-Jin; Kang, Chong-Yun

    2015-11-01

    Piezoelectric power generation using Pb(Zr,Ti)O3(PZT) nanowires grown on Nb-doped SrTiO3(nb:STO) substrate has been demonstrated. The epitaxial PZT nanowires prepared by a hydrothermal method, with a diameter and length of approximately 300 nm and 7 μm, respecively, were vertically aligned on the substrate. An embossed Au top electrode was applied to maximize the effective power generation area for non-uniform PZT nanowires. The PZT nanogenerator produced output power density of 0.56 μW/cm2 with a voltage of 0.9 V and current of 75 nA. This research suggests that the morphology control of top electrode can be useful to improve the efficiency of piezoelectric power generation.

  10. Internal Morphologies of Cycled Li-Metal Electrodes Investigated by Nano-Scale Resolution X-ray Computed Tomography.

    Science.gov (United States)

    Frisco, Sarah; Liu, Danny X; Kumar, Arjun; Whitacre, Jay F; Love, Corey T; Swider-Lyons, Karen E; Litster, Shawn

    2017-06-07

    While some commercially available primary batteries have lithium metal anodes, there has yet to be a commercially viable secondary battery with this type of electrode. Research prototypes of these cells typically exhibit a limited cycle life before dendrites form and cause internal cell shorting, an occurrence that is more pronounced during high-rate cycling. To better understand the effects of high-rate cycling that can lead to cell failure, we use ex situ nanoscale-resolution X-ray computed tomography (nano-CT) with the aid of Zernike phase contrast to image the internal morphologies of lithium metal electrodes on copper wire current collectors that have been cycled at low and high current densities. The Li that is deposited on a Cu wire and then stripped and deposited at low current density appears uniform in morphology. Those cycled at high current density undergo short voltage transients to >3 V during Li-stripping from the electrode, during which electrolyte oxidation and Cu dissolution from the current collector may occur. The effect of temperature is also explored with separate cycling experiments performed at 5 and 33 °C. The resulting morphologies are nonuniform films filled with voids that are semispherical in shape with diameters ranging from hundreds of nanometers to tens of micrometers, where the void size distributions are temperature-dependent. Low-temperature cycling elicits a high proportion of submicrometer voids, while the higher-temperature sample morphology is dominated by voids larger than 2 μm. In evaluating these morphologies, we consider the importance of nonidealities during extreme charging, such as electrolyte decomposition. We conclude that nano-CT is an effective tool for resolving features and aggressive cycling-induced anomalies in Li films in the range of 100 nm to 100 μm.

  11. A computation study on the interplay between surface morphology and electrochemical performance of patterned thin film electrodes for Li-ion batteries

    Science.gov (United States)

    Gur, Sourav; Frantziskonis, George N.; Aifantis, Katerina E.

    2017-08-01

    Recent experiments illustrate that the morphology of the electrode surface impacts the voltage - capacity curves and long term cycling performance of Li-ion batteries. The present study systematically explores the role of the electrode surface morphology and uncertainties in the reactions that occur during electrochemical cycling, by performing kinetic Monte Carlo (kMC) simulations using the lattice Boltzmann method (LBM). This allows encoding of the inherent stochasticity at discrete microscale reaction events over the deterministic mean field reaction dynamics that occur in Li-ion cells. The electrodes are taken to be dense thin films whose surfaces are patterned with conical, trapezoidal, dome-shaped, or pillar-shaped structures. It is shown that the inherent perturbations in the reactions together with the characteristics of the electrode surface configuration can significantly improve battery performance, mainly because patterned surfaces, as opposed to flat surfaces, result in a smaller voltage drop. The most efficient pattern was the trapezoidal, which is consistent with experimental evidence on Si patterned electrodes.

  12. Screen-printed carbon electrode modified on its surface with amorphous carbon nitride thin film: Electrochemical and morphological study

    Energy Technology Data Exchange (ETDEWEB)

    Ghamouss, F. [Universite de Nantes, UMR 6006-CNRS, FR-2465-CNRS, Laboratoire d' Analyse isotopique et Electrochimique de Metabolismes (LAIEM) (France); Tessier, P.-Y. [Universite de Nantes, UMR CNRS 6502, Institut des Materiaux Jean Rouxel - IMN Faculte des Sciences and des Techniques de Nantes, 2 rue de la Houssiniere, 44322 Nantes Cedex 3 (France); Djouadi, A. [Universite de Nantes, UMR CNRS 6502, Institut des Materiaux Jean Rouxel - IMN Faculte des Sciences and des Techniques de Nantes, 2 rue de la Houssiniere, 44322 Nantes Cedex 3 (France); Besland, M.-P. [Universite de Nantes, UMR CNRS 6502, Institut des Materiaux Jean Rouxel - IMN Faculte des Sciences and des Techniques de Nantes, 2 rue de la Houssiniere, 44322 Nantes Cedex 3 (France); Boujtita, M. [Universite de Nantes, UMR 6006-CNRS, FR-2465-CNRS, Laboratoire d' Analyse isotopique et Electrochimique de Metabolismes (LAIEM) (France)]. E-mail: mohammed.boujtita@univ-nantes.fr

    2007-04-20

    The surface of a screen-printed carbon electrode (SPCE) was modified by using amorphous carbon nitride (a-CN {sub x}) thin film deposited by reactive magnetron sputtering. Scanning electron microscopy and photoelectron spectroscopy measurements were used to characterise respectively the morphology and the chemical structure of the a-CN {sub x} modified electrodes. The incorporation of nitrogen in the amorphous carbon network was demonstrated by X ray photoelectron spectroscopy. The a-CN {sub x} layers were deposited on both carbon screen-printed electrode (SPCE) and silicon (Si) substrates. A comparative study showed that the nature of substrate, i.e. SPCE and Si, has a significant effect on both the surface morphology of deposited a-CN {sub x} film and their electrochemical properties. The improvement of the electrochemical reactivity of SPCE after a-CN {sub x} film deposition was highlighted both by comparing the shapes of voltammograms and calculating the apparent heterogeneous electron transfer rate constant.

  13. The effect of hydrogen on the morphology of n-type silicon electrodes under electrochemical conditions

    DEFF Research Database (Denmark)

    Goldar, A.; Roser, S.J.; Caruana, D.

    2001-01-01

    the changes in the shape of the total reflection feature. We assume that the change in the morphology of the surface is due to the diffusion of hydrogen in the silicon electrode. This assumption allow us to model the changes in the reflected intensity at two different angles and find the diffusion exponent...

  14. Electrochemical, morphological and microstructural characterization of carbon film resistor electrodes for application in electrochemical sensors

    International Nuclear Information System (INIS)

    Gouveia-Caridade, Carla; Soares, David M.; Liess, Hans-Dieter; Brett, Christopher M.A.

    2008-01-01

    The electrochemical and microstructural properties of carbon film electrodes made from carbon film electrical resistors of 1.5, 15, 140 Ω and 2.0 kΩ nominal resistance have been investigated before and after electrochemical pre-treatment at +0.9 V vs SCE, in order to assess the potential use of these carbon film electrodes as electrochemical sensors and as substrates for sensors and biosensors. The results obtained are compared with those at electrodes made from previously investigated 2 Ω carbon film resistors. Cyclic voltammetry was performed in acetate buffer and phosphate buffer saline electrolytes and the kinetic parameters of the model redox system Fe(CN) 6 3-/4- obtained. The 1.5 Ω resistor electrodes show the best properties for sensor development with wide potential windows, similar electrochemical behaviour to those of 2 Ω and close-to-reversible kinetic parameters after electrochemical pre-treatment. The 15 and 140 Ω resistor electrodes show wide potential windows although with slower kinetics, whereas the 2.0 kΩ resistor electrodes show poor cyclic voltammetric profiles even after pre-treatment. Electrochemical impedance spectroscopy related these findings to the interfacial properties of the electrodes. Microstructural and morphological studies were carried out using contact mode Atomic Force Microscopy (AFM), Confocal Raman spectroscopy and X-ray diffraction. AFM showed more homogeneity of the films with lower nominal resistances, related to better electrochemical characteristics. X-ray diffraction and Confocal Raman spectroscopy indicate the existence of a graphitic structure in the carbon films

  15. Surface morphological structures and electrochemical activity properties of iridium–niobium binary alloy electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Toru, E-mail: matsumoto.t@jemai.or.jp [Green Innovation Research Laboratories, NEC Corporation, 34 Miyukigaoka, Tsukuba, Ibaraki 305-8501 (Japan); Sata, Naoaki [Green Innovation Research Laboratories, NEC Corporation, 34 Miyukigaoka, Tsukuba, Ibaraki 305-8501 (Japan); Kobayashi, Kiyoshi [Advanced Ceramic Group, Advanced Materials Processing Unit, National Institute for Materials Science, Sengen 1-2-1, Tsukuba, Ibaraki 305-0047 (Japan); Yamabe-Mitarai, Yoko [High Temperature Materials Unit Functional Structure Materials Group, National Institute for Materials Science, Sengen 1-2-1, Tsukuba, Ibaraki 305-0047 (Japan)

    2013-10-01

    Highlights: • An Ir–23Nb alloy has the best oxidation capability among other Nb concentrations. • The reason is the Ir–23Nb has a large surface area which results from Ir + Ir{sub 3}Nb. • An Ir–23Nb glucose sensor detects glucose much better than an Ir glucose sensor. -- Abstract: The electrochemical activities of Ir–Nb binary alloys were investigated as functions of the alloy compositions, crystal structures, and surface morphologies for a hydrogen peroxide and ascorbic acid redox reaction. High activities for the redox reaction of hydrogen peroxide were observed when pure Ir and an alloy with a composition of 77 at% Ir–23 at% Nb (Ir–23Nb) were used. Tests on eight electrodes—Ir, Ir–13Nb, Ir–17Nb, Ir–23Nb, Ir–30Nb, Ir–43Nb, Ir–62Nb, and Nb—showed that at a constant potential difference of 0.7 V vs. Ag/AgCl, the Ir–23Nb electrode had the best hydrogen peroxide oxidation capability: 9.2 μA/mm{sup 2} for 2 mM hydrogen peroxide. Apart from Nb, Ir–23Nb gave the best performance in terms of preferential hydrogen peroxide oxidation against ascorbic acid. Subsequently, the Ir and Ir–23Nb electrodes were used for the fabrication of amperometric glucose sensors. We first coated the two electrodes with a γ-aminopropyltriethoxysilane membrane and then with a glucose oxidase membrane. Tests on the Ir and Ir–23Nb electrode glucose sensors showed that the latter had better glucose detection capability than the former: 0.226 μA/(mm{sup 2} mM) for the Ir–23Nb sensor with 1.67 mM glucose. We investigated the relationship between the electrode responses to both hydrogen peroxide and ascorbic acid and the electrode surface structures.

  16. Manufacturing process and electrode properties of palladium-electroded ionic polymer–metal composite

    International Nuclear Information System (INIS)

    Chang, Longfei; Chen, Hualing; Zhu, Zicai; Li, Bo

    2012-01-01

    This paper primarily focuses on the manufacturing process of palladium-electroded ionic polymer–metal composite (IPMC). First, according to the special properties of Pd, many experiments were done to determine several specific procedures, including the addition of a reducing agent and the time consumed. Subsequently, the effects of the core manufacturing steps on the electrode morphology were revealed by scanning electron microscopy studies of 22 IPMC samples treated with different combinations of manufacturing steps. Finally, the effects of electrode characteristics on the electromechanical properties, including the sheet resistivity, the elastic modulus and the electro-active performance, of IPMCs were evaluated experimentally and analyzed according to the electrode morphology. (paper)

  17. Relating the 3D electrode morphology to Li-ion battery performance; a case for LiFePO4

    Science.gov (United States)

    Liu, Zhao; Verhallen, Tomas W.; Singh, Deepak P.; Wang, Hongqian; Wagemaker, Marnix; Barnett, Scott

    2016-08-01

    One of the main goals in lithium ion battery electrode design is to increase the power density. This requires insight in the relation between the complex heterogeneous microstructure existing of active material, conductive additive and electrolyte providing the required electronic and Li-ion transport. FIB-SEM is used to determine the three phase 3D morphology, and Li-ion concentration profiles obtained with Neutron Depth Profiling (NDP) are compared for two cases, conventional LiFePO4 electrodes and better performing carbonate templated LiFePO4 electrodes. This provides detailed understanding of the impact of key parameters such as the tortuosity for electron and Li-ion transport though the electrodes. The created hierarchical pore network of the templated electrodes, containing micron sized pores, appears to be effective only at high rate charge where electrolyte depletion is hindering fast discharge. Surprisingly the carbonate templating method results in a better electronic conductive CB network, enhancing the activity of LiFePO4 near the electrolyte-electrode interface as directly observed with NDP, which in a large part is responsible for the improved rate performance both during charge and discharge. The results demonstrate that standard electrodes have a far from optimal charge transport network and that significantly improved electrode performance should be possible by engineering the microstructure.

  18. The Effect of Scala Tympani Morphology on Basilar Membrane Contact With a Straight Electrode Array: A Human Temporal Bone Study.

    Science.gov (United States)

    Verberne, Juul; Risi, Frank; Campbell, Luke; Chambers, Scott; O'Leary, Stephen

    2017-01-01

    Scala tympani morphology influences the insertion dynamics and intra-scalar position of straight electrode arrays. Hearing preservation is the goal of cochlear implantation with current thin straight electrode arrays. These hug the lateral wall, facilitating full, atraumatic insertions. However, most studies still report some postoperative hearing loss. This study explores the influence of scala tympani morphology on array position relative to the basilar membrane and its possible contribution to postoperative hearing loss. Twenty-six fresh-frozen human temporal bones implanted with a straight electrode array were three-dimensionally reconstructed from micro-photographic histological sections. Insertion depth and the proximity between the array and basilar membrane were recorded. Lateral wall shape was quantified as a curvature ratio. Insertion depths ranged from 233 to 470 degrees. The mean first point of contact between the array and basilar membrane was 185 degrees; arrays tended to remain in contact with the membrane after first contacting it. Eighty-nine and 93% of arrays that reached the upper basal (>240-360 degrees) and second (>360-720 degrees) turns respectively contacted the basilar membrane in these regions. Scalar wall curvature ratio decreased significantly (the wall became steeper) from the basal to second turns. This shift correlated with a reduced distance between the array and basilar membrane. Scala tympani morphology influences the insertion dynamics and intra-scalar position of a straight electrode array. In addition to gross trauma of cochlear structures, contact between the array and basilar membrane and how this impacts membrane function should be considered in hearing preservation cases.

  19. Particle size analysis on density, surface morphology and specific capacitance of carbon electrode from rubber wood sawdust

    Science.gov (United States)

    Taer, E.; Kurniasih, B.; Sari, F. P.; Zulkifli, Taslim, R.; Sugianto, Purnama, A.; Apriwandi, Susanti, Y.

    2018-02-01

    The particle size analysis for supercapacitor carbon electrodes from rubber wood sawdust (SGKK) has been done successfully. The electrode particle size was reviewed against the properties such as density, degree of crystallinity, surface morphology and specific capacitance. The variations in particle size were made by different treatment on the grinding and sieving process. The sample particle size was distinguished as 53-100 µm for 20 h (SA), 38-53 µm for 20 h (SB) and < 38 µm with variations of grinding time for 40 h (SC) and 80 h (SD) respectively. All of the samples were activated by 0.4 M KOH solution. Carbon electrodes were carbonized at temperature of 600oC in N2 gas environment and then followed by CO2 gas activation at a temperature of 900oC for 2 h. The densities for each variation in the particle size were 1.034 g cm-3, 0.849 g cm-3, 0.892 g cm-3 and 0.982 g cm-3 respectively. The morphological study identified the distance between the particles more closely at 38-53 µm (SB) particle size. The electrochemical properties of supercapacitor cells have been investigated using electrochemical methods such as impedance spectroscopy and charge-discharge at constant current using Solatron 1280 tools. Electrochemical properties testing results have shown SB samples with a particle size of 38-53 µm produce supercapacitor cells with optimum capacitive performance.

  20. Slotted coax as a beam electrode

    International Nuclear Information System (INIS)

    Lambertson, G.R.; Kim, K.J.; Voelker, F.V.

    1983-03-01

    The slot coupled TEM line has been employed at CERN as a pick up electrode in the GHz range. It is a compact and broad band device, and will be quite attractive if the coupling efficiency is competitive with an array of quarter wave loops. In this paper, we study various properties of such a structure

  1. Quarterly environmental data summary for third quarter 1999

    Energy Technology Data Exchange (ETDEWEB)

    McCracken, Stephen H. [Weldon Spring Site, St. Charles, MO (United States)

    1999-11-05

    A copy of the quarterly Environmental Data Summary (QEDS) for the third quarter of 1999 is enclosed. The data, except for air monitoring data and site KPA generated data (uranium analyses), were received from the contract laboratories, verified by the WSSRAP verification group and merged into the data base during the third quarter of 1999. Selected KPA results for on-site total uranium analyses performed during the quarter are also included. Air monitoring data presented are the most recent complete sets of quarterly data.

  2. quarters

    Directory of Open Access Journals (Sweden)

    Elena Grigoryeva

    2016-10-01

    Full Text Available Are there many words combining both space and time? A quarter is one of such rare words: it means both a part of the city space and a period of the year. A regular city has parts bordered by four streets. For example, Chita is a city with an absolutely orthogonal historical center. This Utopian city was designed by Decembrists in the depth of Siberian ore-mines (120. The 130 Quarter in Irkutsk is irregular from its inception because of its triangular form. Located between two roads, the forked quarter was initially bordered by flows along the west-east axis – the main direction of the country. That is why it appreciated the gift for the 350 anniversary of its transit existence – a promenade for an unhurried flow of pedestrians. The quarter manages this flow quite well, while overcoming the difficulties of new existence and gathering myths (102. Arousing many expectations, the “Irkutsk’s Quarters” project continues the theme that was begun by the 130 Quarter and involved regeneration, revival and search for Genius Loci and the key to each single quarter (74. Beaded on the trading axis, these shabby and unfriendly quarters full of rubbish should be transformed for the good of inhabitants, guests and the small business. The triptych by Lidin, Rappaport and Nevlyutov is about happiness of urbanship and cities for people, too (58. The City Community Forum was also devoted to the urban theme (114. Going through the last quarter of the year, we hope that Irkutsk will keep to the right policy, so that in the near future the wooden downtown quarters will become its pride, and the design, construction and investment complexes will join in desire to increase the number of comfortable and lively quarters in our city. The Baikal Beam will get one more landmark: the Smart School (22 for Irkutsk’s children, including orphans, will be built in several years on the bank of Chertugeevsky Bay.

  3. Understanding the effect of morphology on the photocatalytic activity of TiO2 nanotube array electrodes

    International Nuclear Information System (INIS)

    Adán, C.; Marugán, J.; Sánchez, E.; Pablos, C.; Grieken, R. van

    2016-01-01

    A comprehensive report on the correlation between the morphology and the photocatalytic (PC) and photoelectrocatalytic (PEC) activity of TiO 2 nanotubes (NTs) electrodes is presented. New insights are provided to support the effect of the anodization conditions on the photon-to-current efficiency of the electrodes based on the dimensional characteristics of the TiO 2 -NTs. Electrodes with promising properties based on the characterization data were scaled-up to test their activity on the PC and PEC oxidation of methanol. Results indicate that the length of the nanotubes significantly influences the photodegradation efficiency. The enhancement achieved in both PC and PEC processes with longer nanotubes can be explained by the higher surface area in contact with the electrolyte and the increase in the light absorption as the TiO 2 layer becomes thicker. However, as the length of the nanotubes increases, a reduction in the enhancement achieved by the application of a potential bias is observed. Kinetic constants of both reactions (PC and PEC) tend to get closer and the charge separation effect diminishes. In relative terms, the effect of the electric potential is more pronounced for electrodes with the shorter NTs. The reason is that once the TiO 2 layer is thick enough to absorb the available radiation, a further increase in the NTs length increases the resistance of the electrons to reach the back contact and the diffusional restrictions to the mass transport of the reactants/products along the tubes. Consequently, the existence of a compromise between reactivity and transport properties lead to the existence of an optimal NTs length.

  4. ELECTROCHEMICAL OXIDATION OF ETHANOL USING Ni-Co-PVC COMPOSITE ELECTRODE

    Directory of Open Access Journals (Sweden)

    Riyanto Riyanto

    2011-07-01

    Full Text Available The morphological characteristics and electrochemical behavior of nickel metal foil (Ni, nickel-polyvinyl chloride (Ni-PVC and nickel-cobalt-polyvinyl chloride (Ni-Co-PVC electrodes in alkaline solution has been investigated. The morphological characteristics of the electrode surface were studied using SEM and EDS, while the electrochemical behavior of the electrodes was studied using cyclic voltammetry (CV. It was found that composite electrodes (Ni-PVC and Ni-Co-PVC have a porous, irregular and rough surface. In situ studies using electrochemical technique using those three electrodes exhibited electrochemical activity for redox system, as well as selectivity in the electrooxidation of ethanol to acetic acid. The studies also found that an electrokinetics and electrocatalytic activity behaviors of the electrodes prepared were Ni metal foil

  5. Dermatological and morphological findings in quarter horses with hereditary equine regional dermal asthenia.

    Science.gov (United States)

    Badial, Peres R; Oliveira-Filho, José P; Pantoja, José Carlos F; Moreira, José C L; Conceição, Lissandro G; Borges, Alexandre S

    2014-12-01

    Hereditary equine regional dermal asthenia (HERDA) is an autosomal recessive disorder affecting quarter horses (QHs); affected horses exhibit characteristic skin abnormalities related to abnormal collagen biosynthesis. To characterize the thickness and morphological abnormalities of the skin of HERDA-affected horses and to determine the interobserver agreement and the diagnostic accuracy of histopathological examination of skin biopsies from horses with HERDA. Six affected QHs, confirmed by DNA testing, from a research herd and five unaffected QHs from a stud farm. The skin thickness in 25 distinct body regions was measured on both sides in all affected and unaffected horses. Histopathological and ultrastructural evaluation of skin biopsies was performed. The average skin thickness in all of the evaluated regions was thinner in the affected horses. A statistically significant difference between skin thickness of the affected and unaffected animals was observed only when the average magnitude of difference was ≥38.7% (P = 0.038). The interobserver agreement for the histopathological evaluation was fair to substantial. The histopathological sensitivity for the diagnosis of HERDA was dependent on the evaluator and ranged from 73 to 88%, whereas the specificity was affected by the region sampled and ranged from 35 to 75%. Despite the regional pattern of the cutaneous signs, skin with decreased thickness was not regionally distributed in the HERDA-affected horses. Histopathological evaluation is informative but not conclusive for establishing the diagnosis. Samples of skin from the neck, croup or back are useful for diagnosis of HERDA. However, the final diagnosis must be confirmed using molecular testing. © 2014 ESVD and ACVD.

  6. Passerine morphology: external measurements of approximately one-quarter of passerine bird species.

    Science.gov (United States)

    Ricklefs, Robert E

    2017-05-01

    Studies of community organization and clade diversification that include functional traits have become an important component of the analysis of ecological and evolved systems. Such studies frequently are limited by availability of consistently collected data. Here, I present a data set including eight measurements of the external morphology of 1642 species, roughly one-quarter of all passerine birds (Aves: Order Passeriformes), from all parts of the world, characterizing the relative proportions of the wing, tail, legs, and beak. Specimens were measured opportunistically over the past 40 years in museums in the United States and Europe. Numbers of individuals measured per species vary from one to dozens in some cases. Measurements for males and females of sexually size-dimorphic species are presented separately. The measurements include total length, the lengths of the wing, tail, tarsus, and middle toe, and the length, breadth, and depth of the beak. Particular attention was paid to obtaining a broad representation of passerine higher taxa, with special interest in small families and subfamilies of passerines, as well as species produced by evolutionary radiations of birds in archipelagoes, including the Galapagos, Hawaii, and the Lesser Antilles. Taxonomy follows the Taxonomy in Flux (TIF) checklist as well as the World Bird List of the International Ornithological Council. Geographic distributions are summarized from Edwards's Coded List of Birds of the World. Coverage of taxa and geographic regions varies and reflects the changing interests of the author over the past four decades. North American and South American species are particularly well represented in the sample, as well as species belonging to the families Tyrannidae, Furnariidae, Thamnophilidae, Mimidae, Sturnidae, Fringillidae, Parulidae, Icteridae, Cardinalidae, and Thraupidae. © 2017 by the Ecological Society of America.

  7. Titanyl phthalocyanine ambipolar thin film transistors making use of carbon nanotube electrodes

    Science.gov (United States)

    Coppedè, Nicola; Valitova, Irina; Mahvash, Farzaneh; Tarabella, Giuseppe; Ranzieri, Paolo; Iannotta, Salvatore; Santato, Clara; Martel, Richard; Cicoira, Fabio

    2014-12-01

    The capability of efficiently injecting charge carriers into organic films and finely tuning their morphology and structure is crucial to improve the performance of organic thin film transistors (OTFTs). In this work, we investigate OTFTs employing carbon nanotubes (CNTs) as the source-drain electrodes and, as the organic semiconductor, thin films of titanyl phthalocyanine (TiOPc) grown by supersonic molecular beam deposition (SuMBD). While CNT electrodes have shown an unprecedented ability to improve charge injection in OTFTs, SuMBD is an effective technique to tune film morphology and structure. Varying the substrate temperature during deposition, we were able to grow both amorphous (low substrate temperature) and polycrystalline (high substrate temperature) films of TiOPc. Regardless of the film morphology and structure, CNT electrodes led to superior charge injection and transport performance with respect to benchmark Au electrodes. Vacuum annealing of polycrystalline TiOPc films with CNT electrodes yielded ambipolar OTFTs.

  8. Fractal morphological analysis of Bacteriorhodopsin (bR) layers deposited onto Indium Tin Oxide (ITO) electrodes

    International Nuclear Information System (INIS)

    Vengadesh, P.; Muniandy, S.V.; Majid, W.H. Abd.

    2009-01-01

    Uniform Bacteriorhodopsin layers for the purpose of fabricating Bacteriorhodopsin-based biosensors were prepared by allowing drying of the layers under a constant electric field. To properly observe and understand the 'electric field effect' on the protein Bacteriorhodopsin, the electric and non-electric field influenced Bacteriorhodopsin layers prepared using a manual syringe-deposition method applied onto Indium Tin Oxide electrodes were structurally investigated using Scanning Electron Microscopy and Atomic Force Microscopy. The results yield obvious morphological differences between the electric and non-electric field assisted Bacteriorhodopsin layers and brings to attention the occurrence of the so-called 'coffee-ring' effect in the latter case. We applied stochastic fractal method based on the generalized Cauchy process to describe the morphological features surrounding the void. Fractal dimension is used to characterize the local regularity of the Bacteriorhodopsin clusters and the correlation exponent is used to describe the long-range correlation between the clusters. It is found that the Bacteriorhodopsin protein tends to exhibit with strong spatial correlation in the presence of external electric field compared to in absence of the electric field. Long-range correlation in the morphological feature may be associated to the enhancement of aggregation process of Bacteriorhodopsin protein in the presence of electric field, thereby inhibiting the formation of the so-called 'coffee-ring' effect. As such, the observations discussed in this work suggest some amount of control of surface uniformity when forming layers.

  9. Screen printed silver top electrode for efficient inverted organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Junwoo [Department of Printed Electronics, Korea Institute of Machinery & Materials (KIMM), Daejeon (Korea, Republic of); Duraisamy, Navaneethan [Department of Mechatronics Engineering, Jeju National University, Jeju (Korea, Republic of); Lee, Taik-Min [Department of Printed Electronics, Korea Institute of Machinery & Materials (KIMM), Daejeon (Korea, Republic of); Kim, Inyoung, E-mail: ikim@kimm.re.kr [Department of Printed Electronics, Korea Institute of Machinery & Materials (KIMM), Daejeon (Korea, Republic of); Choi, Kyung-Hyun, E-mail: amm@jejunu.ac.kr [Department of Mechatronics Engineering, Jeju National University, Jeju (Korea, Republic of)

    2015-10-15

    Highlights: • Screen printing of silver pattern. • X-ray diffraction pattern confirmed the face centered cubic structure of silver. • Uniform surface morphology of silver pattern with sheet resistance of 0.06 Ω/sq. • The power conversion efficiency of fabricated solar cell is found to be 2.58%. - Abstract: The present work is mainly focused on replacement of the vacuum process for top electrode fabrication in organic solar cells. Silver top electrode deposited through solution based screen printing on pre-deposited polymeric thin film. The solution based printing technology provides uniform top electrode without damaging the underlying organic layers. The surface crystallinity and surface morphology of silver top electrode are examined through X-ray diffraction, field-emission scanning electron microscope and atomic force microscope. The purity of silver is examined through X-ray energy dispersive spectroscopy. The top electrode exhibits face centered cubic structure with homogeneous morphology. The sheet resistance of top electrode is found to be 0.06 Ω/sq and an average pattern thickness of ∼15 μm. The power conversion efficiency is 2.58%. Our work demonstrates that the solution based screen printing is a significant role in the replacement of vacuum process for the fabrication of top electrode in organic solar cells.

  10. Screen printed silver top electrode for efficient inverted organic solar cells

    International Nuclear Information System (INIS)

    Kim, Junwoo; Duraisamy, Navaneethan; Lee, Taik-Min; Kim, Inyoung; Choi, Kyung-Hyun

    2015-01-01

    Highlights: • Screen printing of silver pattern. • X-ray diffraction pattern confirmed the face centered cubic structure of silver. • Uniform surface morphology of silver pattern with sheet resistance of 0.06 Ω/sq. • The power conversion efficiency of fabricated solar cell is found to be 2.58%. - Abstract: The present work is mainly focused on replacement of the vacuum process for top electrode fabrication in organic solar cells. Silver top electrode deposited through solution based screen printing on pre-deposited polymeric thin film. The solution based printing technology provides uniform top electrode without damaging the underlying organic layers. The surface crystallinity and surface morphology of silver top electrode are examined through X-ray diffraction, field-emission scanning electron microscope and atomic force microscope. The purity of silver is examined through X-ray energy dispersive spectroscopy. The top electrode exhibits face centered cubic structure with homogeneous morphology. The sheet resistance of top electrode is found to be 0.06 Ω/sq and an average pattern thickness of ∼15 μm. The power conversion efficiency is 2.58%. Our work demonstrates that the solution based screen printing is a significant role in the replacement of vacuum process for the fabrication of top electrode in organic solar cells

  11. (Shippingport Atomic Power Station). Quarterly operating report, fourth quarter 1980

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    At the beginning of the fourth quarter of 1980, the Shippingport Atomic Power Station remained shutdown for the normally planned semiannual maintenance and testing program, initiated September 12, 1980. Operational testing began on November 7. Maximum power was achieved November 28 and was maintained throughout the remainder of the quarter except as noted. The LWBR Core has generated 19,046.07 EFPH from start-up through the end of the quarter. During this quarter, approximately 0.000025 curies of Xe 133 activity were released from the station. During the fourth quarter of 1980, 1081 cubic feet of radioactive solid waste was shipped out of state for burial. These shipments contained 0.037 curies of radioactivity.

  12. Titanyl phthalocyanine ambipolar thin film transistors making use of carbon nanotube electrodes

    International Nuclear Information System (INIS)

    Coppedè, Nicola; Tarabella, Giuseppe; Ranzieri, Paolo; Iannotta, Salvatore; Valitova, Irina; Cicoira, Fabio; Mahvash, Farzaneh; Santato, Clara; Martel, Richard

    2014-01-01

    The capability of efficiently injecting charge carriers into organic films and finely tuning their morphology and structure is crucial to improve the performance of organic thin film transistors (OTFTs). In this work, we investigate OTFTs employing carbon nanotubes (CNTs) as the source-drain electrodes and, as the organic semiconductor, thin films of titanyl phthalocyanine (TiOPc) grown by supersonic molecular beam deposition (SuMBD). While CNT electrodes have shown an unprecedented ability to improve charge injection in OTFTs, SuMBD is an effective technique to tune film morphology and structure. Varying the substrate temperature during deposition, we were able to grow both amorphous (low substrate temperature) and polycrystalline (high substrate temperature) films of TiOPc. Regardless of the film morphology and structure, CNT electrodes led to superior charge injection and transport performance with respect to benchmark Au electrodes. Vacuum annealing of polycrystalline TiOPc films with CNT electrodes yielded ambipolar OTFTs. (paper)

  13. Idaho National Laboratory Quarterly Occurrence Analysis 4th Quarter FY 2016

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Lisbeth Ann [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-11-01

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System, as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of 84 reportable events (29 from the 4th quarter fiscal year 2016 and 55 from the prior three reporting quarters), as well as 39 other issue reports (including events found to be not reportable and Significant Category A and B conditions) identified at INL during the past 12 months (two from this quarter and 37 from the prior three quarters).

  14. Quarterly environmental data summary for fourth quarter 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The Quarterly Environmental Data Summary (QEDS) for the fourth quarter of 1997 is prepared in support of the Weldon Spring Site Remedial Action Project Federal Facilities Agreement. The data presented constitute the QEDS. The data were received from the contract laboratories, verified by the Weldon Spring Site verification group and, except for air monitoring data and site KPA generated data (uranium analyses), merged into the data base during the fourth quarter of 1997. Air monitoring data presented are the most recent complete sets of quarterly data. Air data are not stored in the data base and KPA data are not merged into the regular data base. Significant data, defined as data values that have exceeded defined ``above normal`` level 2 values, are discussed in this letter for Environmental Monitoring Plan (EMP) generated data only. Above normal level 2 values are based, in ES and H procedures, on historical high values, DOE Derived Concentration Guides (DCGs), NPDES limits and other guidelines. The procedures also establish actions to be taken in response to such data. Data received and verified during the fourth quarter were within a permissible range of variability except for those which are detailed.

  15. (Shippingport Atomic Power Station). Quarterly operating report, third quarter 1980

    Energy Technology Data Exchange (ETDEWEB)

    Zagorski, J. F.

    1980-01-01

    At the beginning of the third quarter of 1980, the Shippingport Atomic Power Station was operating with the 1A, 1B, 1C, and 1D reactor coolant loops and the 1AC and 1BD purification loops in service. During the quarter, the Station was operated for Duquesne Light Company System grid including base load and swing load operation. Twelve (12) planned swing load operations were performed on the LWBR Core this quarter to complete the LWBR operating plan of fifty (50) during this operating phase. The Station was shutdown on September 12 for the Fall 1980 Shutdown and remained in this mode through the end of the quarter. The LWBR Core has generated 18,297.98 EFPH from start-up through the end of the quarter. There were no radioactive liquid discharges from the Radioactive Waste Processing System to the river this quarter. The radioactive liquid waste effluent line to the river remained blanked off to prevent inadvertent radioactive liquid waste discharges. During the quarter, approximately 0.001 curies of Xe 133 activity were released from the station. The radioactivity released from Shippingport Station is far too small to have any measurable effect on the general background environmental radioactivity outside the plant.

  16. Organic photosensitive cells grown on rough electrode with nano-scale morphology control

    Science.gov (United States)

    Yang, Fan [Piscataway, NJ; Forrest, Stephen R [Ann Arbor, MI

    2011-06-07

    An optoelectronic device and a method for fabricating the optoelectronic device includes a first electrode disposed on a substrate, an exposed surface of the first electrode having a root mean square roughness of at least 30 nm and a height variation of at least 200 nm, the first electrode being transparent. A conformal layer of a first organic semiconductor material is deposited onto the first electrode by organic vapor phase deposition, the first organic semiconductor material being a small molecule material. A layer of a second organic semiconductor material is deposited over the conformal layer. At least some of the layer of the second organic semiconductor material directly contacts the conformal layer. A second electrode is deposited over the layer of the second organic semiconductor material. The first organic semiconductor material is of a donor-type or an acceptor-type relative to the second organic semiconductor material, which is of the other material type.

  17. EMSL Quarterly Highlights Report: FY 2008, 3rd Quarter

    Energy Technology Data Exchange (ETDEWEB)

    Showalter, Mary Ann

    2008-09-16

    The EMSL Quarterly Highlights Report covers the science, staff and user recognition, and publication activities that occurred during the 1st quarter (October 2007 - December 2007) of Fiscal Year 2008.

  18. EMSL Quarterly Highlights Report: 1st Quarter, FY08

    Energy Technology Data Exchange (ETDEWEB)

    Showalter, Mary Ann

    2008-01-28

    The EMSL Quarterly Highlights Report covers the science, staff and user recognition, and publication activities that occurred during the 1st quarter (October 2007 - December 2007) of Fiscal Year 2008.

  19. Tuning the Morphology of Li2O2 by Noble and 3d metals: A Planar Model Electrode Study for Li-O2 Battery.

    Science.gov (United States)

    Yang, Yao; Liu, Wei; Wu, Nian; Wang, Xiaochen; Zhang, Tao; Chen, Linfeng; Zeng, Rui; Wang, Yingming; Lu, Juntao; Fu, Lei; Xiao, Li; Zhuang, Lin

    2017-06-14

    In this work, a planar model electrode method has been used to investigate the structure-activity relationship of multiple noble and 3d metal catalysts for the cathode reaction of Li-O 2 battery. The result shows that the battery performance (discharge/charge overpotential) strongly depends not only on the type of catalysts but also on the morphology of the discharge product (Li 2 O 2 ). Specifically, according to electrochemical characterization and scanning electron microscopy (SEM) observation, noble metals (Pd, Pt, Ru, Ir, and Au) show excellent battery performance (smaller discharge/charge overpotential), with wormlike Li 2 O 2 particles with size less than 200 nm on their surfaces. On the other hand, 3d metals (Fe, Co, Ni, and Mn) offered poor battery performance (larger discharge/charge overpotential), with much larger Li 2 O 2 particles (1 μm to a few microns) on their surfaces after discharging. Further research shows that a "volcano plot" is found by correlating the discharging/charging plateau voltage with the adsorption energy of LiO 2 on different metals. The metals with better battery performance and worm-like-shaped Li 2 O 2 are closer to the top of the "volcano", indicating adsorption energy of LiO 2 is one of the key characters for the catalyst to reach a good performance for the oxygen electrode of Li-O 2 battery, and it has a strong influence on the morphology of the discharge product on the electrode surface.

  20. Idaho National Laboratory Quarterly Occurrence Analysis - 3rd Quarter FY-2016

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Lisbeth Ann [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of 73 reportable events (23 from the 3rd Qtr FY-16 and 50 from the prior three reporting quarters), as well as 45 other issue reports (including events found to be not reportable and Significant Category A and B conditions) identified at INL during the past 12 months (16 from this quarter and 29 from the prior three quarters).

  1. Idaho National Laboratory Quarterly Occurrence Analysis - 1st Quarter FY 2016

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Lisbeth Ann [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-03-01

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of 74 reportable events (16 from the 1st Qtr FY-16 and 58 from the prior three reporting quarters), as well as 35 other issue reports (including events found to be not reportable and Significant Category A and B conditions) identified at INL during the past 12 months (15 from this quarter and 20 from the prior three quarters).

  2. Electrochemical and morphological characterization of gold nanoparticles deposited on boron-doped diamond electrode

    Energy Technology Data Exchange (ETDEWEB)

    Limat, Meriadec; El Roustom, Bahaa [Ecole Polytechnique Federale de Lausanne (EPFL), Institute of Chemical Sciences and Engineering, CH-1015 Lausanne (Switzerland); Jotterand, Henri [Ecole Polytechnique Federale de Lausanne (EPFL), Institute of Physics of the Complex Matter, CH-1015 Lausanne (Switzerland); Foti, Gyoergy [Ecole Polytechnique Federale de Lausanne (EPFL), Institute of Chemical Sciences and Engineering, CH-1015 Lausanne (Switzerland)], E-mail: gyorgy.foti@epfl.ch; Comninellis, Christos [Ecole Polytechnique Federale de Lausanne (EPFL), Institute of Chemical Sciences and Engineering, CH-1015 Lausanne (Switzerland)

    2009-03-30

    A novel two-step method was employed to synthesize gold nanoparticles dispersed on boron-doped diamond (BDD) electrode. It consisted of sputter deposition at ambient temperature of maximum 15 equivalent monolayers of gold, followed by a heat treatment in air at 600 deg. C. Gold nanoparticles with an average diameter between 7 and 30 nm could be prepared by this method on polycrystalline BDD film electrode. The obtained Au/BDD composite electrode appeared stable under conditions of electrochemical characterization performed using ferri-/ferrocyanide and benzoquinone/hydroquinone redox couples in acidic medium. The electrochemical behavior of Au/BDD was compared to that of bulk Au and BDD electrodes. Finally, the Au/BDD composite electrode was regarded as an array of Au microelectrodes dispersed on BDD substrate.

  3. Electrochemical and morphological characterization of gold nanoparticles deposited on boron-doped diamond electrode

    International Nuclear Information System (INIS)

    Limat, Meriadec; El Roustom, Bahaa; Jotterand, Henri; Foti, Gyoergy; Comninellis, Christos

    2009-01-01

    A novel two-step method was employed to synthesize gold nanoparticles dispersed on boron-doped diamond (BDD) electrode. It consisted of sputter deposition at ambient temperature of maximum 15 equivalent monolayers of gold, followed by a heat treatment in air at 600 deg. C. Gold nanoparticles with an average diameter between 7 and 30 nm could be prepared by this method on polycrystalline BDD film electrode. The obtained Au/BDD composite electrode appeared stable under conditions of electrochemical characterization performed using ferri-/ferrocyanide and benzoquinone/hydroquinone redox couples in acidic medium. The electrochemical behavior of Au/BDD was compared to that of bulk Au and BDD electrodes. Finally, the Au/BDD composite electrode was regarded as an array of Au microelectrodes dispersed on BDD substrate

  4. Recent progress in hollow sphere-based electrodes for high-performance supercapacitors

    Science.gov (United States)

    Zhao, Yan; Chen, Min; Wu, Limin

    2016-08-01

    Hollow spheres have drawn much attention in the area of energy storage and conversion, especially in high-performance supercapacitors owing to their well-defined morphologies, uniform size, low density and large surface area. And quite some significant breakthroughs have been made in advanced supercapacitor electrode materials with hollow sphere structures. In this review, we summarize and discuss the synthesis and application of hollow spheres with controllable structure and morphology as electrode materials for supercapacitors. First, we briefly introduce the fabrication strategies of hollow spheres for electrode materials. Then, we discuss in detail the recent advances in various hollow sphere-based electrode materials for supercapacitors, including single-shelled, yolk-shelled, urchin-like, double-shelled, multi-shelled, and mesoporous hollow structure-based symmetric and asymmetric supercapacitor devices. We conclude this review with some perspectives on the future research and development of the hollow sphere-based electrode materials.

  5. Recent progress in hollow sphere-based electrodes for high-performance supercapacitors.

    Science.gov (United States)

    Zhao, Yan; Chen, Min; Wu, Limin

    2016-08-26

    Hollow spheres have drawn much attention in the area of energy storage and conversion, especially in high-performance supercapacitors owing to their well-defined morphologies, uniform size, low density and large surface area. And quite some significant breakthroughs have been made in advanced supercapacitor electrode materials with hollow sphere structures. In this review, we summarize and discuss the synthesis and application of hollow spheres with controllable structure and morphology as electrode materials for supercapacitors. First, we briefly introduce the fabrication strategies of hollow spheres for electrode materials. Then, we discuss in detail the recent advances in various hollow sphere-based electrode materials for supercapacitors, including single-shelled, yolk-shelled, urchin-like, double-shelled, multi-shelled, and mesoporous hollow structure-based symmetric and asymmetric supercapacitor devices. We conclude this review with some perspectives on the future research and development of the hollow sphere-based electrode materials.

  6. Performance evaluation of carbon black based electrodes for underwater ECG monitoring.

    Science.gov (United States)

    Reyes, Bersain A; Posada-Quintero, Hugo F; Bales, Justin R; Chon, Ki H

    2014-01-01

    Underwater electrocardiogram (ECG) monitoring currently uses Ag/AgCl electrodes and requires sealing of the electrodes to avoid water intrusion, but this procedure is time consuming and often results in severe irritations or even tearing of the skin. To alleviate these problems, our research team developed hydrophobic electrodes comprised of a mixture of carbon black powder (CB) and polydimethylsiloxane (PDMS) that provide all morphological waveforms without distortion of an ECG signal for dry and water-immersed conditions. Performance comparison of CB/PDMS electrodes to adhesive Ag/AgCl hydrogel electrodes was carried out in three different scenarios which included recordings from a dry surface, water immersion, and post-water immersion conditions. CB/PDMS electrodes were able to acquire ECG signals highly correlated with those from adhesive Ag/AgCl electrodes during all conditions. Statistical reduction in ECG amplitude (pelectrodes when compared to Ag/AgCl electrodes sealed with their waterproof adhesive tape. Besides this reduction readability of the recordings was not obscured and all morphological waveforms of the ECG signal were discernible. The advantages of our CB/PDMS electrodes are that they are reusable, can be fabricated economically, and most importantly, high-fidelity underwater ECG signals can be acquired without relying on the heavy use of waterproof sealing.

  7. EMSL Quarterly Highlights Report: 1st Quarter, Fiscal Year 2009

    Energy Technology Data Exchange (ETDEWEB)

    Showalter, Mary Ann; Kathmann, Loel E.; Manke, Kristin L.

    2009-02-02

    The EMSL Quarterly Highlights Report covers the science, staff and user recognition, and publication activities that occurred during the 1st quarter (October 2008 - December 2008) of Fiscal Year 2009.

  8. Short-term energy outlook. Quarterly projections, first quarter 1995

    International Nuclear Information System (INIS)

    1995-02-01

    The Energy Information Administration (EIA) prepares quarterly, short-term energy supply, demand, and price projections for publication in February, May, August, and November in the Short-Term Energy Outlook (Outlook). The forecast period for this issue of the Outlook extends from the first quarter of 1995 through the fourth quarter of 1996. Values for the fourth quarter of 1994, however, are preliminary EIA estimates or are calculated from model simulations using the latest exogenous information available (for example, electricity sales and generation are simulated using actual weather data). The historical energy data, compiled into the first quarter 1995 version of the Short-Term Integrated Forecasting System (STIFS) database, are mostly EIA data regularly published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding. The STIFS database is archived quarterly and is available from the National Technical Information Service. The cases are produced using the Short-Term Integrated Forecasting System (STIFS). The STIFS model is driven principally by three sets of assumptions or inputs: estimates of key macroeconomic variables, world oil price assumptions, and assumptions about the severity of weather. Macroeconomic estimates are produced by DRI/McGraw-Hill but are adjusted by EIA to reflect EIA assumptions about the world price of crude oil, energy product prices, and other assumptions which may affect the macroeconomic outlook. The EIA model is available on computer tape from the National Technical Information Service

  9. New insights on laser-induced graphene electrodes for flexible supercapacitors: tunable morphology and physical properties.

    Science.gov (United States)

    Lamberti, Andrea; Perrucci, Francesco; Caprioli, Matteo; Serrapede, Mara; Fontana, Marco; Bianco, Stefano; Ferrero, Sergio; Tresso, Elena

    2017-04-28

    In certain polymers the graphenization of carbon atoms can be obtained by laser writing owing to the easy absorption of long-wavelength radiation, which generates photo-thermal effects. On a polyimide surface this process allows the formation of a nanostructured and porous carbon network known as laser-induced graphene (LIG). Herein we report on the effect of the process parameters on the morphology and physical properties of LIG nanostructures. We show that the scan speed and the frequency of the incident radiation affect the gas evolution, inducing different structure rearrangements, an interesting nitrogen self-doping phenomenon and consequently different conduction properties. The materials were characterized by infrared and Raman spectroscopy, XPS elemental analysis, electron microscopy and electrical/electrochemical measurements. In particular the samples were tested as interdigitated electrodes into electrochemical supercapacitors and the optimized LIG arrangement was tested in parallel and series supercapacitor configurations to allow power exploitation.

  10. Morphology-Tuned Synthesis of Nickel Cobalt Selenides as Highly Efficient Pt-Free Counter Electrode Catalysts for Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Qian, Xing; Li, Hongmei; Shao, Li; Jiang, Xiancai; Hou, Linxi

    2016-11-02

    In this work, morphology-tuned ternary nickel cobalt selenides based on different Ni/Co molar ratios have been synthesized via a simple precursor conversion method and used as counter electrode (CE) materials for dye-sensitized solar cells (DSSCs). The experimental facts and mechanism analysis clarified the possible growth process of product. It can be found that the electrochemical performance and structures of ternary nickel cobalt selenides can be optimized by tuning the Ni/Co molar ratio. Benefiting from the unique morphology and tunable composition, among the as-prepared metal selenides, the electrochemical measurements showed that the ternary nickel cobalt selenides exhibited a more superior electrocatalytic activity in comparison with binary Ni and Co selenides. In particular, the three-dimensional dandelion-like Ni 0.33 Co 0.67 Se microspheres delivered much higher power conversion efficiency (9.01%) than that of Pt catalyst (8.30%) under AM 1.5G irradiation.

  11. Idaho National Laboratory Quarterly Occurrence Analysis for the 1st Quarter FY2017

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Lisbeth Ann [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-01-01

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of 82 reportable events (13 from the 1st quarter (Qtr) of fiscal year (FY) 2017 and 68 from the prior three reporting quarters), as well as 31 other issue reports (including events found to be not reportable and Significant Category A and B conditions) identified at INL during the past 12 months (seven from this quarter and 24 from the prior three quarters).

  12. Activated graphene nanoplatelets as a counter electrode for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Jiawei [Center for Advanced Photovoltaics, Department of Electrical Engineering, South Dakota State University, Brookings, South Dakota 57007 (United States); Department of Mechanical Engineering, North Dakota State University, Fargo, North Dakota 58102 (United States); Zhou, Zhengping; Qiao, Qiquan, E-mail: qiquan.qiao@sdstate.edu [Center for Advanced Photovoltaics, Department of Electrical Engineering, South Dakota State University, Brookings, South Dakota 57007 (United States); Sumathy, K. [Department of Mechanical Engineering, North Dakota State University, Fargo, North Dakota 58102 (United States); Yang, Huojun [Department of Construction Management and Engineering, North Dakota State University, Fargo, North Dakota 58102 (United States)

    2016-04-07

    Activated graphene nanoplatelets (aGNPs) prepared by a hydrothermal method using KOH as activating agent were used as counter electrode for high efficiency dye-sensitized solar cells (DSSCs). After the KOH activation, the scanning electron microscopy image shows that aGNPs demonstrate a more curled, rough, and porous morphology which could contain both micro- and mesopores. The KOH activation changed the stacked layers of GNPs to a more crumpled and curved morphology. The microstructure of large pores significantly increased the electrode surface area and roughness, leading to the high electrocatalytic activity for triiodide reduction at the counter electrode. The DSSCs fabricated using aGNP as counter electrodes were tested under standard AM 1.5 illumination with an intensity of 91.5 mW/cm{sup 2}. The device achieved an overall power conversion efficiency of 7.7%, which is comparable to the conventional platinum counter electrode (8%). Therefore, the low cost and high performance aGNP based counter electrode is a promising alternative to conventional Pt counter electrode in DSSCs.

  13. Shippingport Atomic Power Station. Quarterly operating report, third quarter 1978

    Energy Technology Data Exchange (ETDEWEB)

    Jones, T. D.

    1978-01-01

    A loss of ac power to the station occurred on July 28, 1978 caused by an interaction between Beaver Valley Power Station and Shippingport Atomic Power Station when the main transformer of Unit No. 1 of the Beaver Valley Power Station developed an internal failure and tripped the BVPS. Two environmental studies were continued this quarter. The first involves reduction of main unit condenser chlorination and the second, river intake screen fish impingement sampling. There were no radioactive liquid discharges from the Radioactive Waste Processing System to the river this quarter. During the third quarter of 1978, 874 cubic feet of radioactive solid waste was shipped out of state for burial. At the end of the quarter, the Fall shutdown continued with the plant heated up, the main turbine on turning gear and plant testing in progress prior to Station startup.

  14. Short-Term Energy Outlook: Quarterly projections. Fourth quarter 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-05

    The Energy Information Administration (EIA) prepares quarterly, short-term energy supply, demand, and price projections for publication in February, May, August, and November in the Short-Term Energy Outlook (Outlook). An annual supplement analyzes the performance of previous forecasts, compares recent cases with those of other forecasting services, and discusses current topics related to the short-term energy markets. (See Short-Term Energy Outlook Annual Supplement, DOE/EIA-0202.) The forecast period for this issue of the Outlook extends from the fourth quarter of 1993 through the fourth quarter of 1994. Values for the third quarter of 1993, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in the Weekly Petroleum Status Report) or are calculated from model simulations using the latest exogenous information available (for example, electricity sales and generation are simulated using actual weather data). The historical energy data are EIA data published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications.

  15. Nanofabrication strategies for advanced electrode materials

    Directory of Open Access Journals (Sweden)

    Chen Kunfeng

    2017-09-01

    Full Text Available The development of advanced electrode materials for high-performance energy storage devices becomes more and more important for growing demand of portable electronics and electrical vehicles. To speed up this process, rapid screening of exceptional materials among various morphologies, structures and sizes of materials is urgently needed. Benefitting from the advance of nanotechnology, tremendous efforts have been devoted to the development of various nanofabrication strategies for advanced electrode materials. This review focuses on the analysis of novel nanofabrication strategies and progress in the field of fast screening advanced electrode materials. The basic design principles for chemical reaction, crystallization, electrochemical reaction to control the composition and nanostructure of final electrodes are reviewed. Novel fast nanofabrication strategies, such as burning, electrochemical exfoliation, and their basic principles are also summarized. More importantly, colloid system served as one up-front design can skip over the materials synthesis, accelerating the screening rate of highperformance electrode. This work encourages us to create innovative design ideas for rapid screening high-active electrode materials for applications in energy-related fields and beyond.

  16. Doped polymer electrodes for high performance ferroelectric capacitors on plastic substrates

    KAUST Repository

    Khan, M. A.

    2012-10-03

    Flexible ferroelectric capacitors with doped polymer electrodes have been fabricated on plastic substrates with performance as good as metal electrodes. The effect of doping on the morphology of polymer electrodes and its impact on device performance have been studied. Improved fatigue characteristics using doped and undoped poly (3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) electrodes versus metal electrodes are observed. It is shown that the polymer electrodes follow classical ferroelectric and dielectric responses, including series resistance effects. The improved device characteristics obtained using highly conducting doped PEDOT:PSS suggest that it may be used both as an electrode and as global interconnect for all-polymer transparent circuits on flexible substrates.

  17. Short-term energy outlook: Quarterly projections, fourth quarter 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-14

    The Energy Information Administration (EIA) prepares quarterly short-term energy supply, demand, and price projections for printed publication in January, April, July, and October in the Short-Term Energy Outlook. The details of these projections, as well as monthly updates on or about the 6th of each interim month, are available on the internet at: www.eia.doe.gov/emeu/steo/pub/contents.html. The forecast period for this issue of the Outlook extends from the fourth quarter of 1997 through the fourth quarter of 1998. Values for the fourth quarter of 1997, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in EIA`s Weekly Petroleum Status Report) or are calculated from model simulations that use the latest exogenous information available (for example, electricity sales and generation are simulated by using actual weather data). The historical energy data, compiled in the fourth quarter 1997 version of the Short-Term Integrated Forecasting System (STIFS) database, are mostly EIA data regularly published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding. The STIFS model is driven principally by three sets of assumptions or inputs: estimates of key macroeconomic variables, world oil price assumptions, and assumptions about the severity of weather. 19 tabs.

  18. Low Impedance Carbon Adhesive Electrodes with Long Shelf Life.

    Science.gov (United States)

    Posada-Quintero, Hugo F; Reyes, Bersaín A; Burnham, Ken; Pennace, John; Chon, Ki H

    2015-10-01

    A novel electrocardiogram (ECG) electrode film is developed by mixing carbon black powder and a quaternary salt with a visco-elastic polymeric adhesive. Unlike traditional wet gel-based electrodes, carbon/salt/adhesive (CSA) electrodes should theoretically have an infinite shelf life as they do not dehydrate even after a prolonged period of storage. The CSA electrodes are electrically activated for use through the process of electrophoresis. Specifically, the activation procedure involves sending a high voltage and current through the electrode, which results in significant reduction of impedance so that high fidelity ECG signals can be obtained. Using the activation procedure, the ideal concentration of carbon black powder in the mixture with the adhesive was examined. It was determined that the optimum concentration of carbon black which minimized post-activation impedance was 10%. Once the optimal carbon black powder concentration was determined, extensive signal analysis was performed to compare the performance of the CSA electrodes to the standard silver-silver chloride (Ag/AgCl) electrodes. As a part of data analysis, electrode-skin contact impedance of the CSA was measured and compared to the standard Ag/AgCl electrodes; we found consistently lower impedance for CSA electrodes. For quantitative data analysis, we simultaneously collected ECG data with CSA and Ag/AgCl electrodes from 17 healthy subjects. Heart rate variability (HRV) indices and ECG morphological waveforms were calculated to compare CSA and Ag/AgCl electrodes. Non-significant differences for most of the HRV indices between CSA and Ag/AgCl electrodes were found. Of the morphological waveform metrics consisting of R-wave peak amplitude, ST-segment elevation and QT interval, only the first index was found to be significantly different between the two media. The response of CSA electrodes to motion artifacts was also tested, and we found in general no difference in the quality of the ECG signal

  19. Improvement in Electrode Performance of Novel SWCNT Loaded Three-Dimensional Porous RVC Composite Electrodes by Electrochemical Deposition Method

    Science.gov (United States)

    Almoigli, Mohammed; Meriey, Al Yahya; Alharbi, Khalid N.

    2018-01-01

    The three-dimensional (3D) composite electrodes were prepared by depositing different amounts of acid-functionalized single-walled carbon nanotubes (a-SWCNTs) on porous reticulated vitreous carbon (RVC) through the electrochemical deposition method. The SWCNT was functionalized by the reflux method in nitric acid and was proven by Raman and visible spectra. The optimum time for sonication to disperse the functionalized SWCNT (a-SWCNT) in dimethyl formamide (DMF) well was determined by UV spectra. The average pore size of RVC electrodes was calculated from scanning electron microscopy (SEM) images. Moreover, the surface morphology of composite electrodes was also examined by SEM study. All 3D electrodes were evaluated for their electrochemical properties by cyclic voltammetry. The result showed that the value of specific capacitance of the electrode increases with the increase in the amount of a-SWCNT in geometric volume. However, the value of specific capacitance per gram decreases with the increase in scan rate as well as the amount of a-SWCNT. The stability of the electrodes was also tested. This revealed that all the electrodes were stable; however, lower a-SWCNT-loaded electrodes had excellent cyclic stability. These results suggest that the a-SWCNT-coated RVC electrodes have promise as an effective technology for desalination. PMID:29301258

  20. Weldon Spring Site Remedial Action Project quarterly environmental data summary (QEDS) for fourth quarter 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-01

    This report contains the Quarterly Environmental Data Summary (QEDS) for the fourth quarter of 1998 in support of the Weldon Spring Site Remedial Action Project Federal Facilities Agreement. The data, except for air monitoring data and site KPA generated data (uranium analyses) were received from the contract laboratories, verified by the Weldon Spring Site verification group, and merged into the database during the fourth quarter of 1998. KPA results for on-site total uranium analyses performed during fourth quarter 1998 are included. Air monitoring data presented are the most recent complete sets of quarterly data.

  1. Characterization of Platinum Electrodes and In-situ Cell Confluency Measurement Based on Current Changes of Cell-Electrodes

    Directory of Open Access Journals (Sweden)

    Chin Fhong SOON

    2015-04-01

    Full Text Available This study aimed at the development of a biosensor to examine the growth confluency of human derived keratinocytes (HaCaT cell lines in-situ. The biosensor consists of a sputter- coated glass substrate with platinum patterns. Cells were grown on the conductive substrates and the confluency of the cells were monitored in-situ based on the conductivity changes of the substrates. Characterization of the cell proliferation and confluency were interrogated using electrical cell-substrate impedance sensing (ECIS techniques and current change of cells using a pico-ammeter. The investigation was followed by the electrical characterization of the platinum electrode (PE using a two probe I-V measurement system. The surface morphology of platinum electrodes were studied using an atomic force microscopy (AFM and the HaCaT cell morphology was studied using Field-Emission Scanning Electron Microscopy (FE-SEM. The microscopy results showed that the cells coupled and proliferated on the platinum electrodes. For monitoring the conductivity and impedance changes of the cell-electrode in-situ, the cover of a Petri dish was inserted with pogo pins to be in contact with the platinum electrodes. The impedance was sampled using the ECIS technique at a twenty-four hour interval. In our findings, the cell proliferation rate can be measured by observing the changes in capacitance or impedance measured at low ac frequencies ranged from 10 - 1 kHz. In good agreement, the current measured at micro-ampere range by the biosensor decreased as the cell coverage area increased over the time. Thus, the percent of cell confluence was shown inversely proportional to the current changes.

  2. Short-term energy outlook. Quarterly projections, 2nd quarter 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    The Energy Information Administration (EIA) prepares quarterly, short-term energy supply, demand, and price projections for publication in February, May, August, and November in the Short-Term Energy Outlook (Outlook). An annual supplement analyzes the performance of previous forecasts, compares recent cases with those of other forecasting services, and discusses current topics related to the short-term energy markets. The forecast period for this issue of the Outlook extends from the second quarter of 1994 through the fourth quarter of 1995. Values for the first quarter of 1994, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in the Weekly Petroleum Status Report) or are calculated from model simulations using the latest exogenous information available. The historical energy data, compiled into the second quarter 1994 version of the Short-Term Integrated Forecasting System (STIFS) database, are mostly EIA data regularly published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding. The STIFS database is archived quarterly and is available from the National Technical Information Service. The cases are produced using the STIFS. The STIFS model is driven principally by three sets of assumptions or inputs: estimates of key macroeconomic variables, world oil price assumptions, and assumptions about the severity of weather. Macroeconomic estimates are produced by DRI/McGraw-Hill but are adjusted by EIA to reflect EIA assumptions about the world price of crude oil, energy product prices, and other assumptions which may affect the macroeconomic outlook. The EIA model is available on computer tape from the National Technical Information Service.

  3. Modification of Patterned Nanoporous Gold Thin Film Electrodes via Electro-annealing and Electrochemical Etching

    Science.gov (United States)

    Dorofeeva, Tatiana

    Nanostructured materials have had a major impact on various fields, including medicine, catalysis, and energy storage, for the major part due to unique phenomena that arise at nanoscale. For this reason, there is a sustained need for new nanostructured materials, techniques to pattern them, and methods to precisely control their nanostructure. To that end, the primary focus of this dissertation is to demonstrate novel techniques to fabricate and tailor the morphology of a class of nanoporous metals, obtained by a process known as dealloying. In this process, while the less noble constituent of an alloy is chemically dissolved, surface-diffusion of the more noble constituent leads to self-assembly of a bicontinuous ligament network with characteristic porosity of ˜70% and ligament diameter of 10s of nanometers. As a model material produced by dealloying, this work employ nanoporous gold (np-Au), which has attracted significant attention of desirable features, such as high effective surface area, electrical conductivity, well-defined thiol-based surface modification strategies, microfabrication-compatibility, and biocompatibility. The most commonly method used to modify the morphology of np-Au is thermal treatment, where the enhanced diffusivity of the surface atoms leads to ligament (and consequently pore) coarsening. This method, however, is not conducive to modifying the morphology of thin films at specific locations on the film, which is necessary for creating devices that may need to contain different morphologies on a single device. In addition, coarsening attained by thermal treatment also leads to an undesirable reduction in effective surface area. In response to these challenges, this work demonstrates two different techniques that enables in situ modification of np-Au thin film electrodes obtained by sputter-deposition of a precursors silver-rich gold-silver alloy. The first method, referred to as electro-annealing, is achieved by injecting electrical

  4. Quantitative roughness characterization and 3D reconstruction of electrode surface using cyclic voltammetry and SEM image

    Energy Technology Data Exchange (ETDEWEB)

    Dhillon, Shweta; Kant, Rama, E-mail: rkant@chemistry.du.ac.in

    2013-10-01

    Area measurements from cyclic voltammetry (CV) and image from scanning electron microscopy (SEM) are used to characterize electrode statistical morphology, 3D surface reconstruction and its electroactivity. SEM images of single phased materials correspond to two-dimensional (2D) projections of 3D structures, leading to an incomplete characterization. Lack of third dimension information in SEM image is circumvented using equivalence between denoised SEM image and CV area measurements. This CV-SEM method can be used to estimate power spectral density (PSD), width, gradient, finite fractal nature of roughness and local morphology of the electrode. We show that the surface morphological statistical property like distribution function of gradient can be related to local electro-activity. Electrode surface gradient micrographs generated here can provide map of electro-activity sites. Finally, the densely and uniformly packed small gradient over the Pt-surface is the determining criterion for high intrinsic electrode activity.

  5. Quantitative roughness characterization and 3D reconstruction of electrode surface using cyclic voltammetry and SEM image

    International Nuclear Information System (INIS)

    Dhillon, Shweta; Kant, Rama

    2013-01-01

    Area measurements from cyclic voltammetry (CV) and image from scanning electron microscopy (SEM) are used to characterize electrode statistical morphology, 3D surface reconstruction and its electroactivity. SEM images of single phased materials correspond to two-dimensional (2D) projections of 3D structures, leading to an incomplete characterization. Lack of third dimension information in SEM image is circumvented using equivalence between denoised SEM image and CV area measurements. This CV-SEM method can be used to estimate power spectral density (PSD), width, gradient, finite fractal nature of roughness and local morphology of the electrode. We show that the surface morphological statistical property like distribution function of gradient can be related to local electro-activity. Electrode surface gradient micrographs generated here can provide map of electro-activity sites. Finally, the densely and uniformly packed small gradient over the Pt-surface is the determining criterion for high intrinsic electrode activity.

  6. Short-term energy outlook: Quarterly projections, Third quarter 1992

    International Nuclear Information System (INIS)

    1992-08-01

    The Energy Information Administration (EIA) prepares quarterly, short-term energy supply, demand, and price projections for publication in February, May, August, and November in the Short-Term Energy Outlook (Outlook). An annual supplement analyzes the performance of previous forecasts, compares recent cases with those of other forecasting services, and discusses current topics related to the short-term energy markets. (See Short-Term Energy Outlook Annual Supplement, DOE/EIA-0202.) The principal users of the Outlook are managers and energy analysts in private industry and government. The forecast period for this issue of the Outlook extends from the third quarter of 1992 through the fourth quarter of 1993. Values for the second quarter of 1992, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in the Weekly Petroleum Status Report) or are calculated from model simulations using the latest exogenous information available (for example, electricity sales and generation are simulated using actual weather data). The historical energy data are EIA data published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding

  7. Short-term energy outlook, quarterly projections, first quarter 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    The forecast period for this issue of the Outlook extends from the first quarter of 1998 through the fourth quarter of 1999. Values for the fourth quarter of 1997, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in EIA`s Weekly Petroleum Status Report) or are calculated from model simulations that use the latest exogenous information available (for example, electricity sales and generation are simulated by using actual weather data). The historical energy data, compiled in the first quarter 1998 version of the Short-Term Integrated Forecasting System (STIFS) database, are mostly EIA data regularly published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding. The STIFS model is driven principally by three sets of assumptions or inputs: estimates of key macroeconomic variables, world oil price assumptions, and assumptions about the severity of weather. Macroeconomic estimates are adjusted by EIA to reflect EIA assumptions which may affect the macroeconomic outlook. By varying the assumptions, alternative cases are produced by using the STIFS model. 24 figs., 19 tabs.

  8. Quarterly coal report, July--September 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-01

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks. Coke production consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for July through September 1997 and aggregated quarterly historical data for 1991 through the second quarter of 1997. Appendix A displays, from 1991 on, detailed quarterly historical coal imports data. 72 tabs.

  9. Nanostructure selenium compounds as pseudocapacitive electrodes for high-performance asymmetric supercapacitor.

    Science.gov (United States)

    Ma, Guofu; Hua, Fengting; Sun, Kanjun; Fenga, Enke; Peng, Hui; Zhang, Zhiguo; Lei, Ziqiang

    2018-01-01

    The electrochemical performance of an energy conversion and storage device like the supercapacitor mainly depends on the microstructure and morphology of the electrodes. In this paper, to improve the capacitance performance of the supercapacitor, the all-pseudocapacitive electrodes of lamella-like Bi 18 SeO 29 /BiSe as the negative electrode and flower-like Co 0.85 Se nanosheets as the positive electrode are synthesized by using a facile low-temperature one-step hydrothermal method. The microstructures and morphology of the electrode materials are carefully characterized, and the capacitance performances are also tested. The Bi 18 SeO 29 /BiSe and Co 0.85 Se have high specific capacitance (471.3 F g -1 and 255 F g -1 at 0.5 A g -1 ), high conductivity, outstanding cycling stability, as well as good rate capability. The assembled asymmetric supercapacitor completely based on the pseudocapacitive electrodes exhibits outstanding cycling stability (about 93% capacitance retention after 5000 cycles). Moreover, the devices exhibit high energy density of 24.2 Wh kg -1 at a power density of 871.2 W kg -1 in the voltage window of 0-1.6 V with 2 M KOH solution.

  10. On the interplay of morphology and electronic conductivity of rotationally spun carbon fiber mats

    Science.gov (United States)

    Opitz, Martin; Go, Dennis; Lott, Philipp; Müller, Sandra; Stollenwerk, Jochen; Kuehne, Alexander J. C.; Roling, Bernhard

    2017-09-01

    Carbon-based materials are used as electrode materials in a wide range of electrochemical applications, e.g., in batteries, supercapacitors, and fuel cells. For these applications, the electronic conductivity of the materials plays an important role. Currently, porous carbon materials with complex morphologies and hierarchical pore structures are in the focus of research. The complex morphologies influence the electronic transport and may lead to an anisotropic electronic conductivity. In this paper, we unravel the influence of the morphology of rotationally spun carbon fiber mats on their electronic conductivity. By combining experiments with finite-element simulations, we compare and evaluate different electrode setups for conductivity measurements. While the "bar-type method" with two parallel electrodes on the same face of the sample yields information about the intrinsic conductivity of the carbon fibers, the "parallel-plate method" with two electrodes on opposite faces gives information about the electronic transport orthogonal to the faces. Results obtained for the van-der-Pauw method suggest that this method is not well suited for understanding morphology-transport relations in these materials.

  11. Preparation and characterization of PbO2–ZrO2 nanocomposite electrodes

    International Nuclear Information System (INIS)

    Yao Yingwu; Zhao Chunmei; Zhu Jin

    2012-01-01

    PbO 2 –ZrO 2 nanocomposite electrodes were prepared by the anodic codeposition in the lead nitrate plating bath containing ZrO 2 nanoparticles. The influences of the ZrO 2 nanoparticles concentration, current density, temperature and stirring rate of the plating bath on the composition of the nanocomposite electrodes were investigated. The surface morphology and the structure of the nanocomposite electrodes were characterized by scanning electronic microscopy (SEM) and X-ray diffraction (XRD), respectively. The experimental results show that the addition of ZrO 2 nanoparticles in the electrodeposition process of lead dioxide significantly increases the lifetime of nanocomposite electrodes. The PbO 2 –ZrO 2 nanocomposite electrodes have a service life of 141 h which is almost four times longer than that of the pure PbO 2 electrodes. The morphology of PbO 2 –ZrO 2 nanocomposite electrodes is more compact and finer than that of PbO 2 electrodes. The relative surface area of the composite electrodes is approximately 2 times that of the pure PbO 2 electrodes. The structure test shows that the addition of ZrO 2 nanoparticles into the plating bath decreases the grain size of the PbO 2 –ZrO 2 nanocomposite electrodes. The anodic polarization curves show that the oxygen evolution overpotential of PbO 2 –ZrO 2 nanocomposite electrodes is higher than PbO 2 electrodes. The pollutant anodic oxidation experiment show that the PbO 2 –ZrO 2 nanocomposite electrode exhibited the better performance for the degradation of 4-chlorophenol than PbO 2 electrode, the removal ratio of COD reached 96.2%.

  12. Single-Layer Pentacene Field-Effect Transistors Using Electrodes Modified With Self-assembled Monolayers

    NARCIS (Netherlands)

    Asadi, Kamal; Wu, Yu; Gholamrezaie, Fatemeh; Rudolf, Petra; Blom, Paul W. M.

    2009-01-01

    Pentacene field-effect transistor performance can be improved by modifying metal electrodes with self-assembled monolayers. The dominant role in performance is played by pentacene morphology rather than the work function of the modified electrodes. With optimized processing conditions,

  13. Electrochemical properties of polypyrrole/polyfuran polymer composite electrode

    International Nuclear Information System (INIS)

    Cha, Seong Keuck

    1998-01-01

    Poly pyrrole polymer(ppy) has an excellent electrical conductivity and can be easily polymerized on anode to give various morphology according to doped anion on electroactive sites. To improve the properties of brittleness, ageing and hydrophobicity, poly furan polymer(pfu) having a high initiation potential was anodically implanted in this porous ppy film matrix to get the Pt/ppy/pfu(x)type of polymer campsite electrode. Cyclic voltammetry and electrochemical impedance methods were used to these electrode, where PF 6 - , BF 4 - , and ClO 4 - ions were employed as dopants. The composition of the pfu(x) at the electrode was changed from 0 to 1.10, but the range was useful only at 0.1 to 0.2 as the redox electrode. The polymer composite electrode doped with PF 6 - was better in charge transfer resistance by a factor of 40 times and in double layer capacitance by a factor of 20 times than others. The charge transfer in the polymer film of the electrode was influenced on frequency change and equivalent circuit of this electrode had Warburg impedance including mass transfer

  14. Quarterly coal report, April--June 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience. Coke production, consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for April through June 1997 and aggregated quarterly historical data for 1991 through the first quarter of 1997. Appendix A displays, from 1991 on, detailed quarterly historical coal imports data. Appendix B gives selected quarterly tables converted to metric tons. To provide a complete picture of coal supply and demand in the US, historical information has been integrated in this report. 8 figs., 73 tabs.

  15. 32 CFR 643.127 - Quarters.

    Science.gov (United States)

    2010-07-01

    ... Additional Authority of Commanders § 643.127 Quarters. The assignment and rental of quarters to civilian employees and other nonmilitary personnel will be accomplished in accordance with AR 210-50. Responsibility of the Corps of Engineers for the establishment of rental rates for quarters rented to civilian and...

  16. Effect of mass density on surface morphology of electrodeposited manganese oxide films

    Science.gov (United States)

    Singh, Avtar; Kumar, Davinder; Thakur, Anup; Kaur, Raminder

    2018-05-01

    This work focus on high surface area morphology of manganese oxide films which are currently required for electrochemical capacitor electrode to enhance their performance. Electrodeposition of manganese oxide films was carried out using Chronoamperometry for different deposition time ranging from 30 to 120 sec. Cronoamperomertic I-T integrated data have been used to analyze active mass of all electrodeposited films. Morphological study of the deposited films with different mass was carried out through scanning electron microscopy. Film deposited for 30 sec time show highest porous morphology than others. Manganese oxide films with high porosity are suitable for electrochemical capacitor electrode.

  17. Quarter 9 Mercury information clearinghouse final report

    Energy Technology Data Exchange (ETDEWEB)

    Laudal, D.L.; Miller, S.; Pflughoeft-Hassett, D.; Ralston, N.; Dunham, G.; Weber, G.

    2005-12-15

    The Canadian Electricity Association (CEA) identified a need and contracted the Energy & Environmental Research Center (EERC) to create and maintain an information clearinghouse on global research and development activities related to mercury emissions from coal-fired electric utilities. A total of eight reports were completed and are summarized and updated in this final CEA quarterly report. Selected topics were discussed in detail in each quarterly report. Issues related to mercury from coal-fired utilities include the general areas of measurement, control, policy, and transformations. Specific topics that have been addressed in previous quarterly reports include the following: Quarterly 1 - Sorbent Control Technologies for Mercury Control; Quarterly 2 - Mercury Measurement; Quarterly 3 - Advanced and Developmental Mercury Control Technologies; Quarterly 4 - Prerelease of Mercury from Coal Combustion By-Products; Quarterly 5 - Mercury Fundamentals; Quarterly 6 - Mercury Control Field Demonstrations; Quarterly 7 - Mercury Regulations in the United States: Federal and State; and Quarterly 8 - Commercialization Aspects of Sorbent Injection Technologies in Canada. In this last of nine quarterly reports, an update of these mercury issues is presented that includes a summary of each topic, with recent information pertinent to advances made since the quarterly reports were originally presented. In addition to a comprehensive update of previous mercury-related topics, a review of results from the CEA Mercury Program is provided. 86 refs., 11 figs., 8 tabs.

  18. Quarterly coal report, April--June, 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for April through June 1998 and aggregated quarterly historical data for 1992 through the first quarter of 1998. Appendix A displays, from 1992 on, detailed quarterly historical coal imports data. 58 tabs.

  19. Quarterly coal report, October--December 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for October through December 1998 and aggregated quarterly historical data for 1992 through the third quarter of 1998. Appendix A displays, from 1992 on, detailed quarterly historical coal imports data. 58 tabs.

  20. Influence of e-Beam Irradiation on the Performance of Energy Storage and Conversion Electrode

    Energy Technology Data Exchange (ETDEWEB)

    Baeok, Sung Hyeon; Jo, Won Jun; Lee, Duwon; Lee, Myung An [Inha Univ., Incheon (Korea, Republic of); Shin, Joong Hyeok; Lee, Byung Cheol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-07-01

    Electron beam irradiation was known as an effective method to improve the stability and performance of electrodes by varying the chemical and physical properties. It has been reported that surface morphology, oxidation state, optical properties, and electrochemical properties can be modified by e-beam irradiation. In this work, influence of electron beam irradiation on the performance of electrode was studied for the applications in energy storage and conversion, such as secondary battery, supercapacitor, and fuel cell. Changes in physical and chemical properties of electrodes before and after e-beam irradiation were investigated. The crystallinity of the synthesized materials was investigated by X-ray diffraction, and the oxidation states were determined by X-ray photoelectron spectroscopy. Scanning electron microscopy was utilized to examine surface morphology. Crystallinity, surface morphology, and oxidation state were significantly changed by electron beam irradiation, and were found to be strongly dependent on irradiation time.

  1. Idaho National Laboratory Quarterly Performance Analysis - 1st Quarter FY2015

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Lisbeth A. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of 73 reportable events (27 from the 1St Qtr FY-15 and 46 from the prior three reporting quarters), as well as 38 other issue reports (including nine not reportable events and Significant Category A and B conditions reported during the1st Qtr FY-15) identified at INL during the past 12 months.

  2. Enhanced charging kinetics of porous electrodes: surface conduction as a short-circuit mechanism.

    Science.gov (United States)

    Mirzadeh, Mohammad; Gibou, Frederic; Squires, Todd M

    2014-08-29

    We use direct numerical simulations of the Poisson-Nernst-Planck equations to study the charging kinetics of porous electrodes and to evaluate the predictive capabilities of effective circuit models, both linear and nonlinear. The classic transmission line theory of de Levie holds for general electrode morphologies, but only at low applied potentials. Charging dynamics are slowed appreciably at high potentials, yet not as significantly as predicted by the nonlinear transmission line model of Biesheuvel and Bazant. We identify surface conduction as a mechanism which can effectively "short circuit" the high-resistance electrolyte in the bulk of the pores, thus accelerating the charging dynamics and boosting power densities. Notably, the boost in power density holds only for electrode morphologies with continuous conducting surfaces in the charging direction.

  3. Phosphate-bonded composite electrodes for hydrogen evolution

    Energy Technology Data Exchange (ETDEWEB)

    Potvin, E.; Menard, H.; Lalancette, J.M. (Sherbrooke Univ., PQ (Canada). Dept. de Chimie); Brossard, L. (Institut de Recherche d' Hydro-Quebec, Varennes, PQ (Canada))

    1990-03-01

    A new process of cementing metallic powders to produce high surface area cathodes for alkaline water electrolysis is described. The binding compound is a tridimensional polymer of aluminium phosphate (AlPO{sub 4}). Phosphate-bonded composite electrodes give a low-polarization performance for hydrogen evolution in 1 M KOH aqueous solution in the case of 95wt% Pt and 98wt%Ni. When electrode materials are prepared with nickel powder, the electrocatalytic activity for the hydrogen evolution reaction, the chemical stability and the electrical conductivity depend on the Ni content and morphology of the electrode. The best performance and chemical stability with Ni as the starting material are obtained for spiky filamentary particles produced by the decomposition of nickel carbonyl. (author).

  4. Conducting polymers based counter electrodes for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Veerender, P., E-mail: veeru1009@gmail.com, E-mail: veeru1009@gmail.com; Saxena, Vibha, E-mail: veeru1009@gmail.com, E-mail: veeru1009@gmail.com; Gusain, Abhay, E-mail: veeru1009@gmail.com, E-mail: veeru1009@gmail.com; Jha, P., E-mail: veeru1009@gmail.com, E-mail: veeru1009@gmail.com; Koiry, S. P., E-mail: veeru1009@gmail.com, E-mail: veeru1009@gmail.com; Chauhan, A. K., E-mail: veeru1009@gmail.com, E-mail: veeru1009@gmail.com; Aswal, D. K., E-mail: veeru1009@gmail.com, E-mail: veeru1009@gmail.com; Gupta, S. K., E-mail: veeru1009@gmail.com, E-mail: veeru1009@gmail.com [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai - 400085 (India)

    2014-04-24

    Conducting polymer films were synthesized and employed as an alternative to expensive platinum counter electrodes for dye-sensitized solar cells. poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) thin films were spin-coated and polypyrrole films were electrochemically deposited via cyclic voltammetry method on ITO substrates. The morphology of the films were imaged by SEM and AFM. These films show good catalytic activity towards triiodide reduction as compared to Pt/FTO electrodes. Finally the photovoltaic performance of DSSC fabricated using N3 dye were compared with PT/FTO, PEDOT/ITO, and e-PPy counter electrodes.

  5. Electrochemical Oxidation of Glycerol Using Gold Electrode

    International Nuclear Information System (INIS)

    Mohamed Rozali Othman; Amirah Ahmad

    2015-01-01

    Cyclic voltammetry, potential linear V and chronocuolometry methods were carried out to gain electrochemical behavior of glycerol at a gold electrode. Potassium hydroxide and sulfuric acid were chosen to be the electrolyte for the electro-oxidation of this organic compound. Besides gold plate electrode, gold composite electrode (Au-PVC) was also used as the working electrode. The Au-PVC composite electrode was characterized by Scanning Electron Microscopy (SEM) to determine its morphological aspects before and after used in electrochemical oxidation of glycerol. In alkaline solution, the adsorption of hydroxide species onto the surface of both gold plate and composite Au-PVC electrodes occurs at potential around 500 mV vs SCE. However, at gold plate electrode, there was a small, broad peak before the drastic escalation of current densities which indicates the charge transfer of the chemisorbed OH - anion. In acidic media, the gold oxide was formed after potential 1.0 V. From the cyclic voltammogram glycerol undergo oxidation twice in potassium hydroxide at gold plate and Au-PVC composite electrodes, while in sulfuric acid, oxidation reaction happened once for glycerol on the gold plate electrode. Overall, electrochemical oxidation of glycerol was more effective in alkaline media. Tafel graph which plotted from potential linear V method shows that Au-PVC composite electrode is better than gold plate electrode for the electro-oxidation of glycerol in alkaline solution. Electrochemical oxidation of glycerol products as analyzed by Gas Chromatography-Mass Spectrometry (GC-MS) produced several carboxylic acids and phenolic compounds. (author)

  6. Gold leaf counter electrodes for dye-sensitized solar cells

    Science.gov (United States)

    Shimada, Kazuhiro; Toyoda, Takeshi

    2018-03-01

    In this study, a gold leaf 100 nm thin film is used as the counter electrode in dye-sensitized solar cells. The traditional method of hammering gold foil to obtain a thin gold leaf, which requires only small amounts of gold, was employed. The gold leaf was then attached to the substrate using an adhesive to produce the gold electrode. The proposed approach for fabricating counter electrodes is demonstrated to be facile and cost-effective, as opposed to existing techniques. Compared with electrodes prepared with gold foil and sputtered gold, the gold leaf counter electrode demonstrates higher catalytic activity with a cobalt-complex electrolyte and higher cell efficiency. The origin of the improved performance was investigated by surface morphology examination (scanning electron microscopy), various electrochemical analyses (cyclic voltammetry, linear sweep voltammetry, and electrochemical impedance spectroscopy), and crystalline analysis (X-ray diffractometry).

  7. Quarterly coal report, January--March 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-20

    The United States produced 242 million short tons of coal in the first quarter of 1993, a decrease of 6 percent (14 million short tons) from the amount produced during the first quarter of 1992. The decrease was due to a decline in production east of the Mississippi River. All major coal-producing States in this region had lower coal production levels led by West Virginia, which produced 5 million short tons less coal. The principal reasons for the overall drop in coal output compared to a year earlier were: A decrease in demand for US coal in foreign markets; a slower rate of producer/distributor stock build-up; and a drawn-down of electric utility coal stocks. Distribution of US coal in the first quarter of 1993 was 10 million short tons lower than in the first quarter of 1992, with 5 million short tons less distributed to both electric utilities and overseas markets. The average price of coal delivered to electric utilities during the first quarter of 1993 was $28.65 per short ton, the lowest value since the first quarter of 1980. Coal consumption in the first quarter of 1993 was 230 million short tons, 4 percent higher than in the first quarter of 1992, due primarily to a 5-percent increase in consumption at electric utility plants. Total consumer stocks, at 153 million short tons, and electric utility stocks, at 144 million short tons, were at their lowest quarterly level since the end of 1989. US. coal exports totaled 19 million short tons, 6 million short tons less than in the first quarter of 1992, and the lowest quarterly level since 1988. The decline was primarily due to a 1-million-short-ton drop in exports to each of the following destinations: Italy, France, Belgium and Luxembourg, and Canada.

  8. Quarterly coal report, January--March 1993

    International Nuclear Information System (INIS)

    1993-01-01

    The United States produced 242 million short tons of coal in the first quarter of 1993, a decrease of 6 percent (14 million short tons) from the amount produced during the first quarter of 1992. The decrease was due to a decline in production east of the Mississippi River. All major coal-producing States in this region had lower coal production levels led by West Virginia, which produced 5 million short tons less coal. The principal reasons for the overall drop in coal output compared to a year earlier were: A decrease in demand for US coal in foreign markets; a slower rate of producer/distributor stock build-up; and a drawn-down of electric utility coal stocks. Distribution of US coal in the first quarter of 1993 was 10 million short tons lower than in the first quarter of 1992, with 5 million short tons less distributed to both electric utilities and overseas markets. The average price of coal delivered to electric utilities during the first quarter of 1993 was $28.65 per short ton, the lowest value since the first quarter of 1980. Coal consumption in the first quarter of 1993 was 230 million short tons, 4 percent higher than in the first quarter of 1992, due primarily to a 5-percent increase in consumption at electric utility plants. Total consumer stocks, at 153 million short tons, and electric utility stocks, at 144 million short tons, were at their lowest quarterly level since the end of 1989. US. coal exports totaled 19 million short tons, 6 million short tons less than in the first quarter of 1992, and the lowest quarterly level since 1988. The decline was primarily due to a 1-million-short-ton drop in exports to each of the following destinations: Italy, France, Belgium and Luxembourg, and Canada

  9. Quarterly report for the electricity market. 2. quarter of 2012; Kvartalsrapport for kraftmarknaden. 2. kvartal 2012

    Energy Technology Data Exchange (ETDEWEB)

    Pettersen, Finn Erik Ljaastad; Eliston, Anton Jayanand; Vaeringstad, Thomas; Lund, Per Tore Jensen; Magnussen, Ingrid; Langseth, Benedicte; Willumsen, Mats Oeivind; Rasmussen, Kristian; Guren, Ingri

    2012-07-01

    Second quarter of 2012 was cold. Total inflow was 47.0 TWh, 8.8 TWh less than normal. At the end of the quarter, the reservoir level 68.4 percent. It is 1.8 percentage points above normal for time of year and 1.2 percentage points higher than the same time last year. Norway had a power consumption of 28.2 TWh in the second quarter, which is 4.2 percent higher than in the same quarter last year. The last 12 months the consumption have been 125.7 TWh, compared with 128.7 TWh the preceding 12 months. The power production in Norway was 33.3 TWh in the second quarter - an increase of 26.1 percent compared with the same quarter last year. The last 12 months the Norwegian production has been 145.8 TWh, compared with 120.9 TWh the preceding 12 months. The production increase is due to that the last year has been much wetter than the preceding. This has also given high export abroad. In the second quarter Norway had a net export of 5.1 TWh, compared with a net import of 0.6 TWh in the second quarter last year. The good resource gave a low price level in the wholesale market for electricity. On average for the second quarter was the average spot price in West, Southwest and Eastern Norway, 201, 202 and 203 Nok / MWh. In Central and Northern Norway, the average price 218 and 213 Nok/ MWh. (eb)

  10. Electrochemical characterization of screen-printed and conventional carbon paste electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Fanjul-Bolado, Pablo; Hernandez-Santos, David; Lamas-Ardisana, Pedro Jose [Departamento de Quimica Fisica y Analitica, Universidad de Oviedo, 33006 Oviedo, Asturias (Spain); Martin-Pernia, Alberto [Departamento de Ingenieria Electrica, Electronica de Computadores y Sistemas, Universidad de Oviedo, 33204 Gijon, Asturias (Spain); Costa-Garcia, Agustin [Departamento de Quimica Fisica y Analitica, Universidad de Oviedo, 33006 Oviedo, Asturias (Spain)], E-mail: costa@fq.uniovi.es

    2008-04-01

    This work compares the electroactivity of a conventional carbon paste electrode and non-pretreated commercially available screen-printed carbon electrodes (from Alderon Biosciences, University of Florence and DropSens) towards some benchmark redox couples like hexaammineruthenium (III), ferricyanide, p-aminophenol and hydroquinone. While cyclic voltammograms of Ru{sup 3+} did not show significative electron transfer reactivity differences between the electrodes tested, the other redox systems exhibited higher reversible behaviours on DropSens electrodes. Scanning electron microscopy and roughness analysis with a profilometer were applied to detect the surface morphology of the working electrodes. The roughness evaluated of the screen-printed carbon working electrodes increased in this order Alderon < University of Florence < DropSens. Finally, the most electrochemically active and rough unpretreated electrode (DropSens commercial screen-printed electrode) was used to study the electrochemical-chemical reaction mechanism of indigo carmine oxidation in 0.1 M sulphuric acid. This study showed that the adsorption of the oxidation product of indigo carmine is stabilized when it is adsorbed on the surface of the electrode.

  11. Electrochemical characterization of screen-printed and conventional carbon paste electrodes

    International Nuclear Information System (INIS)

    Fanjul-Bolado, Pablo; Hernandez-Santos, David; Lamas-Ardisana, Pedro Jose; Martin-Pernia, Alberto; Costa-Garcia, Agustin

    2008-01-01

    This work compares the electroactivity of a conventional carbon paste electrode and non-pretreated commercially available screen-printed carbon electrodes (from Alderon Biosciences, University of Florence and DropSens) towards some benchmark redox couples like hexaammineruthenium (III), ferricyanide, p-aminophenol and hydroquinone. While cyclic voltammograms of Ru 3+ did not show significative electron transfer reactivity differences between the electrodes tested, the other redox systems exhibited higher reversible behaviours on DropSens electrodes. Scanning electron microscopy and roughness analysis with a profilometer were applied to detect the surface morphology of the working electrodes. The roughness evaluated of the screen-printed carbon working electrodes increased in this order Alderon < University of Florence < DropSens. Finally, the most electrochemically active and rough unpretreated electrode (DropSens commercial screen-printed electrode) was used to study the electrochemical-chemical reaction mechanism of indigo carmine oxidation in 0.1 M sulphuric acid. This study showed that the adsorption of the oxidation product of indigo carmine is stabilized when it is adsorbed on the surface of the electrode

  12. Microstructure and pseudocapacitive properties of electrodes constructed of oriented NiO-TiO2 nanotube arrays.

    Science.gov (United States)

    Kim, Jae-Hun; Zhu, Kai; Yan, Yanfa; Perkins, Craig L; Frank, Arthur J

    2010-10-13

    We report on the synthesis and electrochemical properties of oriented NiO-TiO(2) nanotube (NT) arrays as electrodes for supercapacitors. The morphology of the films prepared by electrochemically anodizing Ni-Ti alloy foils was characterized by scanning and transmission electron microscopies, X-ray diffraction, and photoelectron spectroscopies. The morphology, crystal structure, and composition of the NT films were found to depend on the preparation conditions (anodization voltage and postgrowth annealing temperature). Annealing the as-grown NT arrays to a temperature of 600 °C transformed them from an amorphous phase to a mixture of crystalline rock salt NiO and rutile TiO(2). Changes in the morphology and crystal structure strongly influenced the electrochemical properties of the NT electrodes. Electrodes composed of NT films annealed at 600 °C displayed pseudocapacitor (redox-capacitor) behavior, including rapid charge/discharge kinetics and stable long-term cycling performance. At similar film thicknesses and surface areas, the NT-based electrodes showed a higher rate capability than the randomly packed nanoparticle-based electrodes. Even at the highest scan rate (500 mV/s), the capacitance of the NT electrodes was not much smaller (within 12%) than the capacitance measured at the slowest scan rate (5 mV/s). The faster charge/discharge kinetics of NT electrodes at high scan rates is attributed to the more ordered NT film architecture, which is expected to facilitate electron and ion transport during the charge-discharge reactions.

  13. Joint Force Quarterly. Issue 41, 2nd Quarter, April 2006

    Science.gov (United States)

    2006-04-01

    companies participated, a million more people would be actively looking for threats. Aguas de Amazonas, a subsidiary of Suez Environnement, a...9 Richard B. Myers, “A Word from the Chair- man,” Joint Force Quarterly 37 (2d Quarter 2005), 5. 10 Wald, 26. 11 “Suez— Aguas de Amazonas Water for...humanitarian duties. They have overseen over 130 humani- tarian projects worth in excess of $7.6 million and ranging from a medical center, to potable

  14. Different methods to alter surface morphology of high aspect ratio structures

    Energy Technology Data Exchange (ETDEWEB)

    Leber, M., E-mail: moritz.leber@utah.edu [Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT (United States); Shandhi, M.M.H. [Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT (United States); Hogan, A. [Blackrock Microsystems, Salt Lake City, UT (United States); Solzbacher, F. [Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT (United States); Bhandari, R.; Negi, S. [Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT (United States); Blackrock Microsystems, Salt Lake City, UT (United States)

    2016-03-01

    Graphical abstract: Surface engineering of high aspect ratio silicon structures. - Highlights: • Multiple roughening techniques for high aspect ratio devices were investigated. • Modification of surface morphology of high aspect ratio silicon devices (1:15). • Decrease of 76% in impedance proves significant increase in surface area. - Abstract: In various applications such as neural prostheses or solar cells, there is a need to alter the surface morphology of high aspect ratio structures so that the real surface area is greater than geometrical area. The change in surface morphology enhances the devices functionality. One of the applications of altering the surface morphology is of neural implants such as the Utah electrode array (UEA) that communicate with single neurons by charge injection induced stimulation or by recording electrical neural signals. For high selectivity between single cells of the nervous system, the electrode surface area is required to be as small as possible, while the impedance is required to be as low as possible for good signal to noise ratios (SNR) during neural recording. For stimulation, high charge injection and charge transfer capacities of the electrodes are required, which increase with the electrode surface. Traditionally, researchers have worked with either increasing the roughness of the existing metallization (platinum grey, black) or other materials such as Iridium Oxide and PEDOT. All of these previously investigated methods lead to more complicated metal deposition processes that are difficult to control and often have a critical impact on the mechanical properties of the metal films. Therefore, a modification of the surface underneath the electrode's coating will increase its surface area while maintaining the standard and well controlled metal deposition process. In this work, the surfaces of the silicon micro-needles were engineered by creating a defined microstructure on the electrodes surface using several

  15. Quarterly coal report, January--March 1998

    Energy Technology Data Exchange (ETDEWEB)

    Young, P.

    1998-08-01

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for January through March 1998 and aggregated quarterly historical data for 1992 through the fourth quarter of 1997. Appendix A displays, from 1992 on, detailed quarterly historical coal imports data. To provide a complete picture of coal supply and demand in the United States, historical information has been integrated in this report. 58 tabs.

  16. Quarterly coal report, October--December 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for October through December 1996 and aggregated quarterly historical data for 1990 through the third quarter of 1996. Appendix A displays, from 1988 on, detailed quarterly historical coal imports data. To provide a complete picture of coal supply and demand in the US, historical information has been integrated in this report. 8 figs., 72 tabs.

  17. Quarterly coal report, July--September 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-01

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for July through September 1998 and aggregated quarterly historical data for 1992 through the second quarter of 1998. 58 tabs.

  18. Quarterly report for the electricity market. 2. quarter of 2012; Kvartalsrapport for kraftmarknaden. 2. kvartal 2012

    Energy Technology Data Exchange (ETDEWEB)

    Eliston, Anton Jaynand; Holmqvist, Erik; Lund, Per Tore Jensen; Magnussen, Ingrid; Viggen, Kjerstin Dahl; Willumsen, Mats Oeivind; Guren, Ingrid; Ulriksen, Margit Iren

    2012-07-01

    Fourth quarter of 2011 was unusually mild and wet, resulting in high energy inflow to the Norwegian reservoirs. Total inflow for the year was 149.2 TWh, 26.7 TWh more than normal. This ensured record-high 80.3 percent load factor at the end of the quarter.The stored energy amount in the reservoirs was thus 29.5 TWh greater than at the end of 2010/2011. Norway had a power consumption of 34.1 TWh in the fourth quarter. Compared with the same quarter of 2010, a decrease of 4.2 TWh, which can be connected to the mild weather development. The total Norwegian electricity consumption in 2011 was 125.1 TWh, or 6.9 TWh less than in 2010. Electricity production in the fourth quarter of 2011 was 38.3 GWh, an increase of 3.7 TWh from the same quarter the year before. The production increase were a result of the large volume of water in the system. Power production for the year 2011 was 128.1 TWh, an increase of 3.7 TWh from 2010. Kraft surplus was therefore large, and it was Norwegian net export of 4.2 TWh in the fourth quarter, and 3.0 TWh total for the year. In comparison, in the fourth quarter of 2010 Norwegian net import of 0.8 TWh and 7.5 TWh annually. The good resource combined with the low consumption gave a unusually low price levels in the wholesale market for electricity. On average for fourth quarter, the price of power in the East and South-East Norway Nok 264 / MWh, in western Norway Nok 260 / MWh, in Central Norway Nok 270 / MWh (eb)

  19. Quarterly report for the electricity market. 1. quarter of 2012; Kvartalsrapport for kraftmarknaden. 1. kvartal 2012

    Energy Technology Data Exchange (ETDEWEB)

    Pettersen, Finn Erik Ljaastad; Eliston, Anton Jaynanand; Guren, Ingri; Homqvist, Erik; Lund, Per Tore Jensen; Magnussen, Ingrid; Rasmussen, Kristian; Ulriksen, Margit Iren

    2012-07-01

    The first quarter of 2012 was unusually mild and wetter than normal. Total inflow was 16.8 TWh, 7.5 TWh more than normal. This ensured a high reservoir levels and at the end of the quarter the filling was 50.5 percent. It is 12.5 percentage points over the normal for the time of year and 32.4 percentage points higher than the same time last year. Norway had a power consumption of 37.5 TWh in the first quarter, which is 2.3 percent less than in the same quarter last year. the past 12 months, consumption has been 124.2 TWh, compared with 129.7 TWh the preceding 12 months. Power production in Norway was 42.3 TWh in the first quarter - an increase of 32.3 percent compared with the same quarter last year. The last 12 months have the Norwegian production been 138.5 TWh compared to 117.7 TWh the the previous 12 months. The production increase is due to milder and wetter weather than normal over the past year. This involvement also high the exports abroad. In the first quarter, Norway had a net export of 4.8 TWh, compared with a net import of 6.4 TWh in the first quarter last year. The good resource, combined with a low consumption gave a low price level in wholesale market for electricity. On average for the fourth quarter was the average spot price in the South and West Norway, Nok 272 and 275 / MWh. In Eastern Norway, the average price of Nok 283 / MWh, while it was Nok 285 / MWh in the Middle and Northern Norway. (Author)

  20. Study on Carbon Nano composite Counter electrode for Dye-Sensitized Solar Cells

    International Nuclear Information System (INIS)

    Chen, Y.; Zhang, H.; Lin, J.

    2012-01-01

    Carbon nano composite electrodes were prepared by adding carbon nano tubes (CNTs) into carbon black as counter electrodes of dye-sensitized solar cells (DSSCs). The morphology and structure of carbon nano composite electrodes were studied by scanning electron microscopy. The influence of CNTs on the electrochemical performance of carbon nano composite electrodes is investigated by cyclic voltammetry and electrochemical impedance spectroscopy. Carbon nano composite electrodes with CNTs exhibit a highly interconnected network structure with high electrical conductivity and good catalytic activity. The influence of different CNTs content in carbon nano composite electrodes on the open-circuit voltage, short-circuit current, and filling factor of DSSCs is also investigated. DSSCs with 10% CNTs content exhibit the best photovoltaic performance in our experiments.

  1. Electrode erosion properties of gas spark switches for fast linear transformer drivers

    Science.gov (United States)

    Li, Xiaoang; Pei, Zhehao; Zhang, Yuzhao; Liu, Xuandong; Li, Yongdong; Zhang, Qiaogen

    2017-12-01

    Fast linear transformer drivers (FLTDs) are a popular and potential route for high-power devices employing multiple "bricks" in series and parallel, but they put extremely stringent demands on gas switches. Electrode erosion of FLTD gas switches is a restrictive and unavoidable factor that degrades performance and limits stability. In this paper, we systematically investigated the electrode erosion characteristics of a three-electrode field distortion gas switch under the typical working conditions of FLTD switches, and the discharge current was 7-46 kA with 46-300 ns rise time. A high speed frame camera and a spectrograph were used to capture the expansion process and the spectral emission of the spark channel was used to estimate the current density and the spark temperature, and then the energy fluxes and the external forces on the electrode surface were calculated. A tens of kilo-ampere nanosecond pulse could generate a 1011 W/m2 energy flux injection and 1.3-3.5 MPa external pressure on the electrode surface, resulting in a millimeter-sized erosion crater with the maximum peak height Rz reaching 100 μm magnitude. According to the morphological images by a laser scanning confocal microscope, the erosion crater of a FLTD switch contained three kinds of local morphologies, namely a center boiling region, an overflow region and a sputtering region. In addition, the crater size, the surface roughness, and the mass loss were highly dependent on the current amplitude and the transferred charge. We also observed Morphology Type I and Type II, respectively, with different pulse parameters, which had an obvious influence on surface roughness and mass loss. Finally, the quantitative relationship between the electrode mass loss and the pulse parameter was clarified. The transferred charge and the current amplitude were proved to be the main factors determining the electrode mass loss of a FLTD switch, and a least squares fitting expression for mass loss was also obtained.

  2. Quarterly coal report, January--March 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-24

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. The data presented in the QCR are collected and published by the Energy Information Administration (EIA) to fulfill data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275), as amended. This report presents detailed quarterly data for January through March 1994 and aggregated quarterly historical data for 1986 through the fourth quarter of 1993. Appendix A displays, from 1986 on, detailed quarterly historical coal imports data, as specified in Section 202 of the Energy Policy and Conservation Amendments Act of 1985 (Public Law 99-58). Appendix B gives selected quarterly tables converted to metric tons.

  3. Quarterly coal report, October--December 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. The data presented in the QCR are collected and published by the Energy Information Administration (EIA) to fulfill data collection and dissemination responsibilities. This report presents detailed quarterly data for october through December 1997 and aggregated quarterly historical data for 1991 through the third quarter of 1997. Appendix A displays, from 1991 on, detailed quarterly historical coal imports data, as specified in Section 202 of the energy Policy and Conservation Amendments Act of 1985 (Public Law 99-58). Appendix B gives selected quarterly tables converted to metric tons. To provide a complete picture of coal supply and demand in the US, historical information has been integrated in this report. 8 figs., 73 tabs.

  4. Quarterly coal report, January--March 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-08-01

    This Quarterly Coal Report (QCR) provides comprehensive information about U.S. coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience,including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. The data presented in the QCR are collected and published by the Energy Information Administration (EIA) to fulfill data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275), as amended. This report presents detailed quarterly data for January through March 1997 and aggregated quarterly historical data for 1991 through the fourth quarter of 1996. Appendix A displays, from 1988 on, detailed quarterly historical coal imports data, as specified in Section 202 of the Energy Policy and Conservation Amendments Act of 1985 (Public Law 99-58). Appendix B gives selected quarterly tables converted to metric tons.

  5. 10 CFR 34.29 - Quarterly inventory.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Quarterly inventory. 34.29 Section 34.29 Energy NUCLEAR... RADIOGRAPHIC OPERATIONS Equipment § 34.29 Quarterly inventory. (a) Each licensee shall conduct a quarterly physical inventory to account for all sealed sources and for devices containing depleted uranium received...

  6. Idaho National Laboratory Quarterly Occurrence Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Lisbeth Ann [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-11-01

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of 85 reportable events (18 from the 4th Qtr FY-15 and 67 from the prior three reporting quarters), as well as 25 other issue reports (including events found to be not reportable and Significant Category A and B conditions) identified at INL during the past 12 months (8 from this quarter and 17 from the prior three quarters).

  7. Direct reform of graphite oxide electrodes by using ambient plasma for supercapacitor applications

    Science.gov (United States)

    Kim, Ho Jun; Jeong, Hae Kyung

    2017-10-01

    Ambient plasma is applied to graphite oxide electrodes directly to improve electrochemical properties for supercapacitor applications. Surface morphology of the electrodes after the plasma treatment changes dramatically and amount of oxygen reduced significantly, demonstrating a reduction effect on the graphite oxide electrode by the ambient plasma. Equivalent series resistance of the electrode also reduced from 108 Ω to 84 Ω after the plasma treatment. Corresponding specific capacitance, therefore, increases from 0.45 F cm-2 to 0.85 F cm-2, proving that the ambient plasma treatment is very efficient, clean, economic, and environment-friendly method to reform the graphite oxide electrodes directly for the supercapacitor applications.

  8. Quarterly financial reports | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Quarterly Financial Report for the period ending 31 December 2011 · Quarterly Financial Report for the period ending 30 September 2011 · Quarterly Financial Report for the period ending 30 June 2011 · Summary of Expense Reductions to Accommodate Budget 2012 Appropriation Reduction (PDF) · What we do · Funding ...

  9. Electrode Materials, Thermal Annealing Sequences, and Lateral/Vertical Phase Separation of Polymer Solar Cells from Multiscale Molecular Simulations

    KAUST Repository

    Lee, Cheng-Kuang

    2014-12-10

    © 2014 American Chemical Society. The nanomorphologies of the bulk heterojunction (BHJ) layer of polymer solar cells are extremely sensitive to the electrode materials and thermal annealing conditions. In this work, the correlations of electrode materials, thermal annealing sequences, and resultant BHJ nanomorphological details of P3HT:PCBM BHJ polymer solar cell are studied by a series of large-scale, coarse-grained (CG) molecular simulations of system comprised of PEDOT:PSS/P3HT:PCBM/Al layers. Simulations are performed for various configurations of electrode materials as well as processing temperature. The complex CG molecular data are characterized using a novel extension of our graph-based framework to quantify morphology and establish a link between morphology and processing conditions. Our analysis indicates that vertical phase segregation of P3HT:PCBM blend strongly depends on the electrode material and thermal annealing schedule. A thin P3HT-rich film is formed on the top, regardless of bottom electrode material, when the BHJ layer is exposed to the free surface during thermal annealing. In addition, preferential segregation of P3HT chains and PCBM molecules toward PEDOT:PSS and Al electrodes, respectively, is observed. Detailed morphology analysis indicated that, surprisingly, vertical phase segregation does not affect the connectivity of donor/acceptor domains with respective electrodes. However, the formation of P3HT/PCBM depletion zones next to the P3HT/PCBM-rich zones can be a potential bottleneck for electron/hole transport due to increase in transport pathway length. Analysis in terms of fraction of intra- and interchain charge transports revealed that processing schedule affects the average vertical orientation of polymer chains, which may be crucial for enhanced charge transport, nongeminate recombination, and charge collection. The present study establishes a more detailed link between processing and morphology by combining multiscale molecular

  10. Effects of morphological control on the characteristics of vertical-type OTFTs using Alq3.

    Science.gov (United States)

    Kim, Young Do; Park, Jong Wook; Kang, In Nam; Oh, Se Young

    2008-09-01

    We have fabricated vertical-type organic thin-film transistors (OTFTs) using tris-(8-hydroxyquinoline) aluminum (Alq(3)) as an n-type active material. Vertical-type OTFT using Alq(3) has a layered structure of Al(source electrode)/Alq(3)(active layer)/Al(gate electrode)/Alq(3)(active layer)/ITO glass(drain electrode). Alq(3) thin films containing various surface morphologies could be obtained by the control of evaporation rate and substrate temperature. The effects of the morphological control of Alq(3) thin layer on the grain size and the flatness of film surface were investigated. The characteristics of vertical-type OTFT significantly influenced the growth condition of Alq(3) layer.

  11. Amygdala Kindling Alters Estrus Cycle and Ovarian Morphology in the Rat

    OpenAIRE

    Pan, Juan; Zhang, Lingwu; Wang, Feng; Liu, Dan; Li, P. Andy; Sun, Tao

    2013-01-01

    The objective of this study is to explore the effects of amygdala kindling on estrus cycle and ovarian morphology. Thirty-five female rats at the age of 8 weeks were randomly designated to electrode kindled, sham-kindled, and normal controls. Kindled rats were implanted with kindling electrodes in the left basolateral amygdala and kindled by brief suprathreshold stimulations with a bipolar electrode. Estrous cycles were daily monitored through vaginal smears. Electrographic and behavioral sei...

  12. Textile Electrodes for EEG Recording — A Pilot Study

    Directory of Open Access Journals (Sweden)

    Johan Löfhede

    2012-12-01

    Full Text Available The overall aim of our research is to develop a monitoring system for neonatal intensive care units. Long-term EEG monitoring in newborns require that the electrodes don’t harm the sensitive skin of the baby, an especially relevant feature for premature babies. Our approach to EEG monitoring is based on several electrodes distributed over the head of the baby, and since the weight of the head always will be on some of them, any type of hard electrode will inevitably cause a pressure-point that can irritate the skin. Therefore, we propose the use of soft conductive textiles as EEG electrodes, primarily for neonates, but also for other kinds of unobtrusive long-term monitoring. In this paper we have tested two types of textile electrodes on five healthy adults and compared them to standard high quality electrodes. The acquired signals were compared with respect to morphology, frequency distribution, spectral coherence, correlation and power line interference sensitivity, and the signals were found to be similar in most respects. The good measurement performance exhibited by the textile electrodes indicates that they are feasible candidates for EEG recording, opening the door for long-term EEG monitoring applications.

  13. Idaho National Laboratory Quarterly Performance Analysis - 3rd Quarter FY2014

    Energy Technology Data Exchange (ETDEWEB)

    Lisbeth A. Mitchell

    2014-09-01

    This report is published quarterly by the Idaho National Laboratory (INL) Performance Assurance Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of occurrence reports and other non-reportable issues identified at INL from July 2013 through June 2014.

  14. Electrochemical supercapacitors of cobalt hydroxide nanoplates grown on conducting cadmium oxide base-electrodes

    Directory of Open Access Journals (Sweden)

    Kailas K. Tehare

    2017-05-01

    Full Text Available Dopant-free and cost-effective sprayed cadmium oxide (CdO conducting base-electrodes, obtained at different concentrations (0.5, 1 and 1.5 M, characterized for their structures, morphologies and conductivities by using X-ray diffraction, scanning electron microscopy and electrical conductivity measurements, respectively, are employed as base-electrodes for growing cobalt hydroxide (Co(OH2 nanoplates using a simple electrodeposition method which further are envisaged for electrochemical supercapacitor application. Polycrystalline nature and mushroom-like plane-views are confirmed from the structure and morphology analyses. Both CdO and CdO–Co(OH2 electrodes reveal specific capacitances as high as 312 F g−1 and 1119 F g−1, respectively, in 0.1 M KOH electrolyte at 10 mV s−1 sweep rate. Optimized Co(OH2–CdO configuration electrode demonstrates energy density of 98.83 W h kg−1 and power density of 0.75 kW kg−1. In order to investigate the charge transfer kinematics electrochemical impedance measurements are carried out and explored.

  15. Surface modification of recording electrodes

    Directory of Open Access Journals (Sweden)

    Iaci Miranda Pereira

    2013-01-01

    Full Text Available Waterborne Polyurethanes (PUs are a family of polymers that contains urethane linkages synthesized in an aqueous environment and are thus free of organic solvents. Recently, waterborne PUs have been extensively studied for biomedical applications because of their biocompatibility. The present work investigates the following: (1 the impact on electrical performance of electrode materials (platinum and silicon modified chemically by a layer of waterborne PU, and (2 the behavior of rat cardiac fibroblasts and rat cardiomyocytes when in contact with an electrode surface. Diisocyanate and poly(caprolactone diol were the main reagents for producing PUs. The electrochemical impedance of the electrode/electrolyte interface was accessed by electrochemical impedance spectroscopy. The cellular viability, proliferation, and morphology changes were investigated using an MTT assay. Cardiomyocyte adherence was observed by scanning electron microscopy. The obtained surface was uniform, flat, and transparent. The film showed good adhesion, and no peeling was detected. The electrochemical impedance decreased over time and was influenced by the ionic permeability of the PU layer. The five samples did not show cytotoxicity when in contact with neonatal rat cells.

  16. Idaho National Laboratory Quarterly Performance Analysis - 2nd Quarter FY2014

    Energy Technology Data Exchange (ETDEWEB)

    Lisbeth A. Mitchell

    2014-06-01

    This report is published quarterly by the Idaho National Laboratory (INL) Performance Assurance Organization. The Department of Energy Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of occurrence reports and other deficiency reports (including not reportable events) identified at INL from January 2014 through March 2014.

  17. Electro-chemical deposition of zinc oxide nanostructures by using two electrodes

    Directory of Open Access Journals (Sweden)

    B. A. Taleatu

    2011-09-01

    Full Text Available One of the most viable ways to grow nanostructures is electro deposition. However, most electrodeposited samples are obtained by three-electrode electrochemical cell. We successfully use a much simpler two-electrode cell to grow different ZnO nanostructures from common chemical reagents. Concentration, pH of the electrolytes and growth parameters like potentials at the electrodes, are tailored to allow fast growth without complexity. Morphology and surface roughness are investigated by Scanning Electron and Air Force Microscopy (SEM and AFM respectively, crystal structure by X-Ray Diffraction measurements (XRD and ZnO stoichiometry by core level photoemission spectroscopy (XPS.

  18. Ultra-high density aligned Carbon-nanotube with controled nano-morphology for supercapacitors

    Science.gov (United States)

    Ghaffari, Mehdi; Zhao, Ran; Liu, Yang; Zhou, Yue; Cheng, Jiping; Guzman de Villoria, Roberto; Wardle, B. L.; Zhang, Q. M.

    2012-02-01

    Recent advances in fabricating controlled-morphology vertically aligned carbon nanotubes (VA-CNTs) with ultrahigh volume fractioncreate unique opportunities for developing unconventional supercapacitors with ultra-high energy density, power density, and long charge/discharge cycle life.Continuous paths through inter-VA-CNT channels allow fast ion transport, and high electrical conduction of the aligned CNTs in the composite electrodes lead to fast discharge speed. We investigate the charge-discharge characteristics of VA-CNTs with >20 vol% of CNT and ionic liquids as electrolytes. By employing both the electric and electromechanical spectroscopes, as well as nanostructured materials characterization, the ion transport and storage behaviors in porous electrodes are studied. The results suggest pathways for optimizing the electrode morphology in supercapacitorsusing ultra-high volume fraction VA-CNTs to further enhance performance.

  19. Comparison of electrocatalytic characterization of boron-doped diamond and SnO2 electrodes

    International Nuclear Information System (INIS)

    Lv, Jiangwei; Feng, Yujie; Liu, Junfeng; Qu, Youpeng; Cui, Fuyi

    2013-01-01

    Boron-doped diamond (BDD) and SnO 2 electrodes were prepared by direct current plasma chemical vapor deposition (DC-PCVD) and sol–gel method, respectively. Electrochemical characterization of the two electrodes were investigated by phenol electrochemical degradation, accelerated service life test, cyclic voltammetry (CV) in phenol solution, polarization curves in H 2 SO 4 . The surface morphology and crystal structure of two electrodes were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analysis. The results showed a considerable difference between the two electrodes in their electrocatalytic activity, electrochemical stability and surface properties. Phenol was readily mineralized to CO 2 at BDD electrode, favoring electrochemical combustion, but its degradation was much slower at SnO 2 electrode. The service life of BDD electrode was 10 times longer than that of SnO 2 . Higher electrocatalytic activity and electrochemical stability of BDD electrode arise from its high oxygen evolution potential and the physically absorbed hydroxyl radicals (·OH) on electrode surface.

  20. Operation of Finnish nuclear power plants. Quarterly report, 2nd quarter 1999

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1999-12-01

    Quarterly reports on the operation of Finnish NPPs describe events and observations relating to nuclear and radiation safety that the Finnish Radiation and Nuclear Safety Authority (STUK) considers safety significant. Safety improvements at the plants are also described. The report includes a summary of the radiation safety of plant personnel and the environment and tabulated data on the plants' production and load factors. All Finnish NPP units were in power operation for the whole second quarter of 1999, with the exception of the annual maintenance outages of the Olkiluoto plant units. The load factor average of the plant units in this quarter was 93.1%. Two events in this quarter were classified Level 1 on the INKS Scale. At Olkiluoto 1, a valve of the containment gas treatment system had been in an incorrect position for almost a month, owing to which the system would not have been available as planned in an accident. At Olkiluoto 2, main circulation pump work was done during the annual maintenance outage and a containment personnel air lock was briefly open in violation of the Technical Specifications. Water leaking out of the reactor in an accident could not have been directed to the emergency cooling system because it would have leaked out from the containment via the open personnel air lock. Other events in this quarter had no bearing on the nuclear or radiation safety of the plant units. The individual doses of NPP personnel and also radioactive releases off-site were well below authorised limits. Radioactive substances were measurable in samples collected around the plants in such quantities only as have no bearing on the radiation exposure of the population. (orig.)

  1. Electrolyte influence on the Cu nanoparticles electrodeposition onto boron doped diamond electrode

    International Nuclear Information System (INIS)

    Matsushima, Jorge Tadao; Santos, Laura Camila Diniz; Couto, Andrea Boldarini; Baldan, Mauricio Ribeiro; Ferreira, Neidenei Gomes

    2012-01-01

    This paper presents the electrolyte influence on deposition and dissolution processes of Cu nanoparticles on boron doped diamond electrodes (DDB). Morphological, structural and electrochemical analysis showed BDD films with good reproducibility, quality and reversible in a specific redox system. Electrodeposition of Cu nanoparticles on DDB electrodes in three different solutions was influenced by pH and ionic strength of the electrolytic medium. Analyzing the process as function of the scan rate, it was verified a better efficiency in 0,5 mol L -1 Na 2 SO 4 solution. Under the influence of the pH and ionic strength, Cu nanoparticles on DDB may be obtained with different morphologies and it was important for defining the desired properties. (author)

  2. Operation of Finnish nuclear power plants. Quarterly report, 3rd quarter 1996

    International Nuclear Information System (INIS)

    Sillanpaeae, T.

    1997-02-01

    Quarterly Reports on the operation of Finnish nuclear power plants describe events and observations relating to nuclear and radiation safety which the Finnish Centre for Radiation and Nuclear Safety (STUK) considers safety significant. Safety improvements at the plants are also described. The Report also includes a summary of the radiation safety of plant personnel and of the environment and tabulated data on the plants' production and load factors. In the third quarter of 1996, the Finnish nuclear power plant units were in power operation except for the annual maintenance outages of Loviisa plant units and a shutdown at Olkiluoto 1 to identify and repair malfunctions of a high pressure turbine control valve. The load factor average of all plant units was 77.2%. Events in the third quarter of 1996 were classified level 0 on the International Nuclear Event Scale. Occupational doses and radioactive releases off-site were below authorised limits. Radioactive substances were measurable in samples collected around the plants in such quantities only as have no bearing on the radiation exposure of the population. The names of Teollisuuden Voima Oy's plant units have changed. Olkiluoto 1 and Olkiluoto 2 now replace the names TVO I and TVO II previously used in quarterly reports. (orig.)

  3. Operation of Finnish nuclear power plants. Quarterly report, 2nd quarter 1996

    International Nuclear Information System (INIS)

    Sillanpaeae, T.

    1996-11-01

    Quarterly Reports on the operation of Finnish nuclear power plants describe events and observations relating to nuclear and radiation safety which the Finnish Centre for Radiation and Nuclear Safety (STUK) considers safety significant. Safety improvements at the plants are also described. The report also includes a summary of the radiation safety of plant personnel and of the environment and tabulated data on the plants' production and load factors. In the second quarter of 1996, the Finnish nuclear power plant units were in power operation except for the annual maintenance outages of TVO plant units and the Midsummer shutdown at TVO II which was due to low electricity demand, a turbine generator inspection and repairs. The load factor average of all plant units was 88.9 %. Events in the second quarter of 1996 were classified level 0 on the International Nuclear Event Scale (INES)

  4. Third-quarter 1989 electric utility financial results

    International Nuclear Information System (INIS)

    Studness, C.M.

    1990-01-01

    Utility earnings per share before write-offs fell 6.9% in the third quarter of 1989 from the year-earlier level. Write-offs reduced third-quarter earnings of a sample of 83 utilities that account for 95% of investor-owned utility revenue by $792 million, compared with $183 million in the year-earlier quarter. With larger write-offs in 1989 than in 1988, third-quarter earnings per share after write-offs plunged 16.9% from the year-earlier level

  5. Effects of electrode distance and nature of electrolyte on the diameter of titanium dioxide nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Abbasi, S., E-mail: sum.abbasi@gmail.com; Mohamed, N. M., E-mail: noranimuti-mohamed@petronas.com.my; Singh, B. S. M., E-mail: balbir@petronas.com.my [Department of Fundamental and Applied Sciences Unviersiti Teknologi PETRONAS, 31750, Bandar Seri Iskandar (Malaysia); Abbasi, S. H., E-mail: sarfrazabbasi@gmail.com [SABIC Plastic Application Development Center, Riyadh Technovalley, Riyadh (Saudi Arabia)

    2015-07-22

    The titanium nanotubes were synthesized using viscous electrolytes consisting of ethylene glycol and non-viscous electrolytes consisting of aqueous solution of hydrofluoric acid. Sodium fluoride and ammonium fluoride were utilized as the source of fluorine ions. The samples were then characterized by field emission scanning electron microscope (FE-SEM). Their morphologies were investigated under different anodic potentials and various electrolyte compositions. It was found out that nanotubes can be obtained in fluoride ions and morphology is dependent on various parameters like anodic potential, time, electrolyte composition and the effects by varying the distance between the electrodes on the morphology was also investigated. It was found that by altering the distance between the electrodes, change in the diameter and the porosity was observed.

  6. The Pore Structure of Direct Methanol Fuel Cell Electrodes

    DEFF Research Database (Denmark)

    Lund, Peter Brilner

    2005-01-01

    The pore structure and morphology of direct methanol fuel cell electrodes are characterized using mercury intrusion porosimetry and scanning electron microscopy. It is found that the pore size distributions of printed primer and catalyst layers are largely dictated by the powders used to make...

  7. Study on conventional carbon characteristics as counter electrode for dye sensitized solar cells

    International Nuclear Information System (INIS)

    Fajar, Muhammad Noer; Endarko

    2017-01-01

    Activated carbon (AC), black carbon (BC), and graphite were deposited onto ITO (Indium Tin Oxide) glass for counter electrode application in Dye-Sensitized Solar Cells. SEM-EDX was used to observe and analyse the morphology and composition of electrodes. The results showed that the particle distribution of the graphite electrode observed was approximately 34% with a size of 1 to 2 µm and BC electrode about 20% have a size of 0.5 to 1 µm, while AC electrode has a size of 0 – 0.5 µm observed around 20%. AC electrode has a more porous and uniform particle aggregates compared to BC and graphite electrodes. The efficiency of the counter electrode was measured using the solar simulator. The highest efficiency was at 0.011516% for the counter electrode that was fabricated by AC. Meanwhile, black carbon and graphite electrodes were achieved at 0.008744% and 0.010561%, respectively. The results proved that the porosity and the uniform aggregate of the particles were the most significant factors to improve the performance of DSSC. (paper)

  8. Operation of Finnish nuclear power plants. Quarterly report, 2nd quarter 1997

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1997-12-01

    Quarterly Reports on the operation of Finnish nuclear power plants describe events and observations relating to nuclear and radiation safety which STUK - Radiation and Nuclear Safety Authority considers safety significant. Safety improvements at the plants are also described. The Report also includes a summary of the radiation safety of plant personnel and of the environment and tabulated data on the plants' production and load factors. The Finnish nuclear power plant units were in power operation in the second quarter of 1997, except for the annual maintenance outages of Olkiluoto plant units and the Midsummer outage at Olkiluoto 2 due to reduced demand for electricity. There were also brief interruptions in power operation at the Olkiluoto plant units due to three reactor scrams. All plant units are undergoing long-term test operation at upgraded reactor power level which has been approved by STUK The load factor average of all plant units was 88.7 %. One event in the second quarter of 1997 was classified level 1 on the INES. The event in question was a scram at Olkiluoto 1 which was caused by erroneous opening of switches. Other events in this quarter were level 0. Occupational doses and radioactive releases off-site were below authorized limits. Radioactive substances were measurable in samples collected around the plants in such quantities only as have no bearing on the radiation exposure of the population. (orig.)

  9. Ionic polymer metal composites with polypyrrole-silver electrodes

    Science.gov (United States)

    Cellini, F.; Grillo, A.; Porfiri, M.

    2015-03-01

    Ionic polymer metal composites (IPMCs) are a class of soft active materials that are finding increasing application in robotics, environmental sensing, and energy harvesting. In this letter, we demonstrate the fabrication of IPMCs via in-situ photoinduced polymerization of polypyrrole-silver electrodes on an ionomeric membrane. The composition, morphology, and sheet resistance of the electrodes are extensively characterized through a range of experimental techniques. We experimentally investigate IPMC electrochemistry through electrochemical impedance spectroscopy, and we propose a modified Randle's model to interpret the impedance spectrum. Finally, we demonstrate in-air dynamic actuation and sensing and assess IPMC performance against more established fabrication methods. Given the simplicity of the process and the short time required for the formation of the electrodes, we envision the application of our technique in the development of a rapid prototyping technology for IPMCs.

  10. Graphite electrode DC arc furnace system for treatment of environmentally undesirable solid waste

    International Nuclear Information System (INIS)

    Titus, C.H.

    1993-01-01

    A gas tight DC arc furnace system using graphite electrodes is ideally suited for destruction of organic materials, compaction of metallic materials, and vitrification of inorganic waste materials. A graphite electrode DC arc furnace system which was developed by Electro-Pyrolysis, Inc. has been used to demonstrate that iron basalt soil containing various surrogate nonradioactive materials found on Department of Energy's Atomic Energy Sites and hospital waste can be reduced to a compact, vitrified, solid material which is environmentally acceptable and will pass TCLP leachate tests. A second graphite electrode DC arc furnace system is presently under construction and will be in operation at MIT during the second quarter of 1993. This furnace system is designed for demonstration of waste treatment and stabilization at a rate of 500 pounds per hour and will also be used for development and performance evaluation of diagnostic techniques and equipment for measuring and understanding internal furnace temperature profiles, gas entrained particulate composition, and particulate size distribution in various locations in the furnace during operation

  11. Quarterly coal report July--September 1996, February 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for July through September 1996 and aggregated quarterly historical data for 1990 through the second quarter of 1996. Appendix A displays, from 1988 on, detailed quarterly historical coal imports data. 8 figs., 72 tabs.

  12. Operation of Finnish nuclear power plants. Quarterly report 3rd, quarter 1995

    International Nuclear Information System (INIS)

    Sillanpaeae, T.

    1996-05-01

    Quarterly Reports on the operation of Finnish nuclear power plants describe events and observations relating to nuclear and radiation safety which the Finnish Centre for Radiation and Nuclear Safety (STUK) considers safety significant. Safety improvements at the plants are also described. The Report includes a summary of the radiation safety of plant personnel and of the environment and tabulated data on the plants' production and load factors. Except for the annual maintenance outages of Loviisa plant units and for TVO II's brief outage to repair a failed component, Finnish nuclear power plant units were in power operation in the third quarter of 1995. The load factor average of all plant units was 90.4 %. Events in this quarter were level 0 on the INES scale. Occupational doses and radioactive releases off-site were below authorised limits. Radioactive substances were measurable in samples collected around the plants in such quantities only as have no bearing on the radiation exposure of the population. (orig.) (4 figs., 4 tabs.)

  13. Operation of Finnish nuclear power plants. Quarterly report 3rd, quarter 1995

    Energy Technology Data Exchange (ETDEWEB)

    Sillanpaeae, T [ed.

    1996-05-01

    Quarterly Reports on the operation of Finnish nuclear power plants describe events and observations relating to nuclear and radiation safety which the Finnish Centre for Radiation and Nuclear Safety (STUK) considers safety significant. Safety improvements at the plants are also described. The Report includes a summary of the radiation safety of plant personnel and of the environment and tabulated data on the plants` production and load factors. Except for the annual maintenance outages of Loviisa plant units and for TVO II`s brief outage to repair a failed component, Finnish nuclear power plant units were in power operation in the third quarter of 1995. The load factor average of all plant units was 90.4 %. Events in this quarter were level 0 on the INES scale. Occupational doses and radioactive releases off-site were below authorised limits. Radioactive substances were measurable in samples collected around the plants in such quantities only as have no bearing on the radiation exposure of the population. (orig.) (4 figs., 4 tabs.).

  14. The electrochemical behavior of Co(TPTZ)2 complex on different carbon based electrodes modified with TiO2 nanoparticles

    International Nuclear Information System (INIS)

    Ortaboy, Sinem; Atun, Gülten

    2015-01-01

    Electrochemical behavior of cobalt (II) complex with the N-donor ligand 2,2′-bipyridyl-1,3,5-tripyridyl-s-triazine (TPTZ) was investigated to elucidate the electron-proton transfer mechanisms. The electrochemical response of the complex was studied using square-wave voltammetry (SWV) and electrochemical impedance spectroscopy (EIS) techniques. A conventional three-electrode system, consisting of glassy carbon (GCE), TiO 2 modified glassy carbon (T/GCE), carbon paste (CPE) and TiO 2 modified carbon paste (T/CPE) working electrodes were employed. The ligand/metal ratio and stability constant of the complex as well as the mechanisms of the electrode processes were elucidated by examining the effects of pH, ligand concentration and frequency on the voltammograms. The EIS results indicated that the samples modified with TiO 2 had the higher charge transfer resistance than that of the bare electrodes and also suggested that the electroactivity of the electrode surfaces increased in the following order, T/CPE > CPE > T/GCE > GCE. The surface morphology of the working electrodes was also characterized by atomic force microscopy (AFM). The values of surface roughness parameters were found to be consistent with the results obtained by EIS experiments. - Graphical abstract: Schematic illustration of the experimental process. - Highlights: • Electrochemical behavior of Co(TPTZ) 2 complex studied by SWV and EIS techniques. • GCE, CPE T/GCE and T/CPE were used as working electrodes for comparative studies. • The surface morphologies of the electrodes were characterized by AFM. • Mechanisms were proposed from the effects of pH, ligand concentration and frequency. • EIS and morphologic relationships of the surfaces were established successfully

  15. Idaho National Laboratory Quarterly Event Performance Analysis FY 2013 4th Quarter

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Lisbeth A. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2013-11-01

    This report is published quarterly by the Idaho National Laboratory (INL) Performance Assurance Organization. The Department of Energy Occurrence Reporting and Processing System (ORPS) as prescribed in DOE Order 232.2 “Occurrence Reporting and Processing of Operations Information” requires a quarterly analysis of events, both reportable and not reportable for the previous twelve months. This report is the analysis of occurrence reports and deficiency reports (including not reportable events) identified at the Idaho National Laboratory (INL) during the period of October 2012 through September 2013.

  16. Idaho National Laboratory Quarterly Performance Analysis for the 2nd Quarter FY 2015

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Lisbeth A. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-04-01

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of events for the 2nd Qtr FY-15.

  17. Nanostructured MnO₂ as Electrode Materials for Energy Storage.

    Science.gov (United States)

    Julien, Christian M; Mauger, Alain

    2017-11-17

    Manganese dioxides, inorganic materials which have been used in industry for more than a century, now find great renewal of interest for storage and conversion of energy applications. In this review article, we report the properties of MnO₂ nanomaterials with different morphologies. Techniques used for the synthesis, structural, physical properties, and electrochemical performances of periodic and aperiodic frameworks are discussed. The effect of the morphology of nanosized MnO₂ particles on their fundamental features is evidenced. Applications as electrodes in lithium batteries and supercapacitors are examined.

  18. Note: Erosion of W-Ni-Fe and W-Cu alloy electrodes in repetitive spark gaps.

    Science.gov (United States)

    Wu, Jiawei; Han, Ruoyu; Ding, Weidong; Qiu, Aici; Tang, Junping

    2018-02-01

    A pair of W-Ni-Fe and W-Cu electrodes were tested under 100 kA level pulsed currents for 10 000 shots, respectively. Surface roughness and morphology characteristics of the two pairs of electrodes were obtained and compared. Experimental results indicated cracks divided the W-Cu electrode surface to polygons while the W-Ni-Fe electrode surface remained as a whole with pits and protrusions. Accordingly, the surface roughness of W-Ni-Fe electrodes increased to ∼3 μm while that of W-Cu electrodes reached ∼7 μm at the end of the test. The results reveal that the W-Ni-Fe alloy has a better erosion resistance and potential to be further applied in spark gaps.

  19. Sputter deposition on gas diffusion electrodes of Pt-Au nanoclusters for methanol oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Giorgi, L.; Giorgi, R.; Gagliardi, S.; Serra, E. [ENEA Casaccia Research Center, Rome (Italy). Physics Technologies and New Materials; Alvisi, M.; Signore, M.A. [ENEA Brindisi Research Center, Brindisi (Italy). Physics Technologies and New Materials

    2008-07-01

    Polymer electrolyte fuel cells (PEFCs) are suited for use in commercial electrical vehicle and electric power applications. The gas diffusion electrodes of PEFCs are catalyzed by the deposition of platinum (Pt) nanoparticles on carbon powder. The particles must be localized on the electrode surface in order to achieve high electrocatalyst utilization. This study discussed a method of preparing PEFC electrodes using sputter deposition of a Pt-gold (Au) alloy nanoparticles on carbon powders. The method was designed to improve electrode performance and catalyst utilization. The nano-sized alloy clusters were deposited on a gas diffusion electrode at room temperature. The deposits were then characterized using field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) in order to examine the effect of the deposition technique on the nano-morphology and electrocatalytic performance of the electrode. Results of the study showed that the technique can be used in the large-scale manufacture of fuel cell electrodes. 3 refs., 1 fig.

  20. Understanding the function and performance of carbon-enhanced lead-acid batteries : milestone report for the DOE Energy Storage Systems program (FY11 Quarter 2: January through March 2011).

    Energy Technology Data Exchange (ETDEWEB)

    Shane, R. (East Penn Manufacturing, Lyon Station, PA); Enos, David George; Hund, Thomas D.

    2011-05-01

    This report describes the status of research being performed under CRADA No. SC10/01771.00 (Lead/Carbon Functionality in VRLA Batteries) between Sandia National Laboratories and East Penn Manufacturing, conducted for the U.S. Department of Energy's Energy Storage Systems Program. The Quarter 2 Milestone was completed on time. The milestone entails an ex situ analysis of the four carbons that have been added to the negative active material of valve-regulated lead-acid (VRLA) batteries for the purposes of this study. The four carbons selected for this study were a graphitic carbon, a carbon black, an activated carbon, and acetylene black. The morphology, crystallinity, and impurity contents of each of the four carbons were analyzed; results were consistent with previous data. Cycling on a subset of the received East Penn cells containing different carbons (and a control) has been initiated. Carbon has been explored as an addition to lead-acid battery electrodes in a number of ways. Perhaps the most notable to date has been the hybrid 'Ultrabattery' developed by CSIRO where an asymmetric carbon-based electrochemical capacitor is combined with a lead-acid battery into a single cell, dramatically improving high-rate partial-state-of-charge (HRPSoC) operation. As illustrated below, the 'Ultrabattery' is a hybrid device constructed using a traditional lead-acid battery positive plate (i.e., PbO{sub 2}) and a negative electrode consisting of a carbon electrode in parallel with a lead-acid negative plate. This device exhibits a dramatically improved cycle life over traditional VRLA batteries, as well as increased charge power and charge acceptance. The 'Ultrabattery' has been produced successfully by both The Furukawa Battery Co. and East Penn Manufacturing. An example illustrating the dramatic improvement in cycle life of the Ultrabattery over a conventional VRLA battery is shown.

  1. Quarterly, Bi-annual and Annual Reports

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Quarterly, Bi-annual and Annual Reports are periodic reports issued for public release. For the deep set fishery these reports are issued quarterly and anually....

  2. Operation of Finnish nuclear power plants. Quarterly report, 3rd quarter 1997

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1998-04-01

    Quarterly reports on the operation of Finnish nuclear power plants describe events and observations relating to nuclear and radiation safety that the Radiation and Nuclear Safety Authority of Finland (STUK) considers safety significant. Safety improvements at the plants are also described. The Report also includes a summary of the radiation safety of plant personnel and of the environment and tabulated data on the plants' production and load factors. The Finnish nuclear power plant units were in power operation in the third quarter of 1997, except for the annual maintenance outages of Loviisa plant units which lasted well over a month in all. There was also a brief interruption in electricity generation at Olkiluoto 1 for repairs and at Olkiluoto 2 due to a disturbance at the turbine plant. All plant units were in long-term test operation at upgraded reactor power level approved by STUK. The load factor average of all plant units was 87.6 %. One event in the third quarter was classified level 1 on the International Nuclear Event Scale (INES). It was noted at Loviisa 2 that one of four pressurized water tanks in the plant unit's emergency cooling system had been inoperable for a year. Other events in this quarter were INES level 0. Occupational doses and radioactive releases off-site were below authorized limits. Radioactive substances were measurable in samples collected around the plants in such quantities only as have no bearing on the radiation exposure of the population. (orig.)

  3. Nitrogen-doped graphene forests as electrodes for high-performance wearable supercapacitors

    International Nuclear Information System (INIS)

    Wang, Mei; Ma, Yifei

    2017-01-01

    Highlights: •N-doped graphene forest (GF) is successfully synthesized by in-situ PECVD process. •Morphology of N-doped GF electrode realizes a better in-plane electron transfer. •Areal and volumetric capacitances increase 26% and 89% by the N-doping of GF. •Energy and power densities increase 87% and 50% by the N-doping of GF. •The N-doped GF-based EDLC shows excellent bendability and reliable durability. -- Abstract: Recently, a graphene forest (GF) is synthesized by a plasma enhanced chemical vapor deposition (PECVD) process, which subverts the stereotyped morphology of vertical graphene. The GF is demonstrated to possess excellent performance in flexible and bendable electrical double-layer capacitors (EDLCs). In this work, synthesis process of the GF has been optimized and N-doped GF is successfully achieved by introducing NH 3 as the nitrogen precursor during the PECVD process. The N-doping obviously affects the morphology of the GF and the in-plane conductivity of GF is desirably enhanced. The specific area capacitances and volumetric capacitances of N-doped GF-based EDLC increases 26% and 89% in average, respectively, at different current densities compared with the non-doped GF-based EDLC. In addition, both the energy and power densities are improved, and impressively, the energy densities improve 87% by the N-doping of GF electrodes. The GF-based EDLC also provides the desirable stability that no degradation can be observed within 10,000 cycles. Finally, the flexible N-doped GF-based EDLC is also tested as a wearable supercapacitor, exhibiting no capacitance decrease under the dynamic bending situation. Our approach to synthesize the N-doped GF electrodes can achieve the fine-scale nano-structured GF electrodes and provide a new way forward for improved energy storage devices.

  4. WO3 Nanowires on Graphene Sheets as Negative Electrode for Supercapacitors

    Directory of Open Access Journals (Sweden)

    Bo Liu

    2017-01-01

    Full Text Available WO3 nanowires directly grown on graphene sheets have been fabricated by using a seed-mediated hydrothermal method. The morphologies and electrochemical performance of WO3 films prepared by different process were studied. The results show that the precoated nanoseeds and graphene sheets on graphite electrode provide more reactive centers for the nucleation and formation of uniform WO3 nanowires. The WO3 nanowires electrode exhibits a high area specific capacitance of 800 mF cm−2 over negative potential range from −1.0 V to 0 V versus SCE in 1 M Li2SO4 solution. A high performance electrochemical supercapacitor assembled with WO3 nanowires as negative electrode and PANI/MnO2 as positive electrodes over voltage range of 1.6 V displays a high volumetric capacitance of 2.5 F cm−3, which indicate great potential applications of WO3 nanowires on graphene sheets as negative electrode for energy storage devices.

  5. NST Quarterly

    International Nuclear Information System (INIS)

    1995-01-01

    NST Quarterly reports current development in nuclear science and technology in Malaysia. It keeps readers informed on the progress of research, services, application of nuclear science and technology, and other technical news. It highlights MINT activities and also announces coming events

  6. NST Quarterly

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-01-01

    NST Quarterly reports current development in nuclear science and technology in Malaysia. It keeps readers informed on the progress of research, services, application of nuclear science and technology, and other technical news. It highlights MINT activities and also announces coming events.

  7. Highly crumpled solar reduced graphene oxide electrode for supercapacitor application

    Science.gov (United States)

    Mohanapriya, K.; Ahirrao, Dinesh J.; Jha, Neetu

    2018-04-01

    Highly crumpled solar reduced graphene oxide (CSRGO) was synthesized by simple and rapid method through freezing the solar reduced graphene oxide aqueous suspension using liquid nitrogen and used as electrode material for supercapacitor application. This electrode material was characterized by transmission electron microscope (TEM), X-Ray diffractometer (XRD) and Raman Spectroscopy techniques to understand the morphology and structure. The electrochemical performance was studied by cyclic voltammetry (CV), galvanostatic charge/discharge (CD) and electrochemical impedance spectroscopy (EIS) using 6M KOH electrolyte. The CSRGO exhibit high specifc capacitance of 210.1 F g-1 at the current density of 0.5 A g-1 and shows excellent rate capability. These features make the CSRGO material as promising electrode for high-performance supercapacitors.

  8. In situ electrochemical atomic force microscope study on graphite electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Hirasawa, K.A.; Sato, Tomohiro; Asahina, Hitoshi; Yamaguchi, Shoji; Mori, Shoichiro [Mitsubishi Chemical Corp., Inashiki, Ibaraki (Japan). Tsukuba Research Center

    1997-04-01

    Interest in the formation of the solid electrolyte interphase (SEI) film on graphite electrodes has increased recently in the quest to improve the performance of lithium-ion batteries. Topographic and frictional changes on the surface of a highly oriented pyrolytic graphite electrode in 1 M LiCiO{sub 4} ethylene carbonate/ethylmethyl carbonate (1:1) electrolyte were examined during charge and discharge by in situ electrochemical atomic force microscopy and friction force microscopy simultaneously in real-time. Solid electrolyte interphase film formation commenced at approximately 2 V vs. Li/Li{sup +} and stable film formation with an island-like morphology was observed below approximately 0.9 V vs. Li/Li{sup +}. Further experiments on a KS-44 graphite/polyvinylidene difluoride binder composite electrode showed similar phenomena.

  9. Thin-film electroencephalographic electrodes using multi-walled carbon nanotubes are effective for neurosurgery.

    Science.gov (United States)

    Awara, Kousuke; Kitai, Ryuhei; Isozaki, Makoto; Neishi, Hiroyuki; Kikuta, Kenichiro; Fushisato, Naoki; Kawamoto, Akira

    2014-12-15

    Intraoperative morphological and functional monitoring is essential for safe neurosurgery. Functional monitoring is based on electroencephalography (EEG), which uses silver electrodes. However, these electrodes generate metal artifacts as silver blocks X-rays, creating white radial lines on computed tomography (CT) images during surgery. Thick electrodes interfere with surgical procedures. Thus, thinner and lighter electrodes are ideal for intraoperative use. The authors developed thin brain electrodes using carbon nanotubes that were formed into thin sheets and connected to electrical wires. The nanotube sheets were soft and fitted the curve of the head very well. When attached to the head using paste, the impedance of the newly developed electrodes was 5 kΩ or lower, which was similar to that of conventional metal electrodes. These electrodes can be used in combination with intraoperative CT, magnetic resonance imaging (MRI), or cerebral angiography. Somatosensory-evoked potentials, auditory brainstem responses, and visually evoked potentials were clearly identified in ten volunteers. The electrodes, without any artifacts that distort images, did not interfere with X-rays, CT, or MR images. They also did not cause skin damage. Carbon nanotube electrodes may be ideal for neurosurgery.

  10. Preparation, electrochemical characterization and charge-discharge of reticulated vitreous carbon/polyaniline composite electrodes

    International Nuclear Information System (INIS)

    Dalmolin, Carla; Biaggio, Sonia R.; Rocha-Filho, Romeu C.; Bocchi, Nerilso

    2009-01-01

    Polyaniline was electrodeposited onto reticulated vitreous carbon - RVC - in order to obtain a tridimensional composite electrode. Three variations of these electrodes were analysed: a small-anion-doped polyaniline (RVC/Pani), a polyanion-doped polyaniline (RVC/PaniPSS) and a bi-layer type formed by an inner layer of the first electrode and an outer layer of the second one (RVC/Pani/PaniPSS). These composites were characterized by cyclic voltammetry, scanning electronic microscopy and electrochemical impedance spectroscopy. Photomicrographies, voltammetric profiles and impedance data pointed to different morphological and electrochemical characteristics for polyaniline doped with small or large anions, and a mixed behavior for the bi-layer electrodes. Charge-discharge tests for these tridimensional (3D) electrodes, employed as the cathode in lithium batteries, indicated better performance for the RVC/Pani electrode. These RVC composites presented higher specific capacities when compared with those obtained for Pani deposited onto bidimensional substrates.

  11. Electrochemical Supercapacitive Performance of Spray-Deposited NiO Electrodes

    Science.gov (United States)

    Yadav, Abhijit A.; Chavan, U. J.

    2018-04-01

    Transition-metal oxides with porous structure are considered for use as promising electrodes for high-performance supercapacitors. Nanocrystalline nickel oxide (NiO) thin films have been prepared as active material for supercapacitors by spray pyrolysis. In this study, the effects of the film thickness on its structural, morphological, optical, electrical, and electrochemical properties were studied. X-ray diffraction analysis revealed cubic structure with average crystalline size of around 21 nm. Scanning electron microscopy showed porous morphology. The optical bandgap decreased from 3.04 eV to 2.97 eV with increase in the film thickness. Electrical resistivity measurements indicated semiconducting behavior. Cyclic voltammetry and galvanostatic charge/discharge study revealed good pseudocapacitive behavior. Specific capacitance of 564 F g-1 at scan rate of 5 mV s-1 and 553 F g-1 at current density of 1 A g-1 was observed. An NiO-based supercapacitor delivered specific energy of 22.8 W h kg-1 at specific power of 2.16 kW kg-1, and retained 93.01% specific capacitance at current density of 1 A g-1 after 1000 cycles. Therefore, taking advantage of the porous morphology that exists in the nanostructure, such NiO materials can be considered for use as promising electrodes for high-performance supercapacitors.

  12. Operation of Finnish nuclear power plants. Quarterly report 4th quarter, 1994 and annual summary

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1995-05-01

    The Loviisa NPP units were in power operation the whole last quarter, with the exception of a reactor scram at Loviisa 1. The load factor average of all Finnish plant units was 100.2 %. The annual average was 90.0 %. All events in the fourth annual quarter were assigned level 0 (no safety significance) on the international INES scale. Four events in 1994 were classified level 1 (an anomaly). The Finnish Centre for Radiation and Nuclear Safety in December approved Imatran Voima Oy's application to extend the operation of the reactor pressure vessel of Loviisa 2 until the annual maintenance outage of 2010. During this quarter, a batch of spent fuel from Loviisa power plant was transported to Russia. Occupational doses and radioactive releases off-site were below authorised limits. Only such quantities of plant-based radioactive materials were measurable in samples collected around the plants as have no bearing on the radiation exposure of the population. The report includes a summary of all the items described in the Quarterly Reports of 1994. (8 figs., 4 tabs.)

  13. Operation of Finnish nuclear power plants. Quarterly report 4th quarter, 1994 and annual summary

    Energy Technology Data Exchange (ETDEWEB)

    Tossavainen, K [ed.

    1995-05-01

    The Loviisa NPP units were in power operation the whole last quarter, with the exception of a reactor scram at Loviisa 1. The load factor average of all Finnish plant units was 100.2 %. The annual average was 90.0 %. All events in the fourth annual quarter were assigned level 0 (no safety significance) on the international INES scale. Four events in 1994 were classified level 1 (an anomaly). The Finnish Centre for Radiation and Nuclear Safety in December approved Imatran Voima Oy`s application to extend the operation of the reactor pressure vessel of Loviisa 2 until the annual maintenance outage of 2010. During this quarter, a batch of spent fuel from Loviisa power plant was transported to Russia. Occupational doses and radioactive releases off-site were below authorised limits. Only such quantities of plant-based radioactive materials were measurable in samples collected around the plants as have no bearing on the radiation exposure of the population. The report includes a summary of all the items described in the Quarterly Reports of 1994. (8 figs., 4 tabs.).

  14. Study and Fabrication of Super Low-Cost Solar Cell (SLC-SC) Based on Counter Electrode from Animal’s Bone

    Science.gov (United States)

    Fadlilah, D. R.; Fajar, M. N.; Aini, A. N.; Haqqiqi, R. I.; Wirawan, P. R.; Endarko

    2018-04-01

    The synthesized carbon from bones of chicken, cow, and fish with the calcination temperature at 450 and 600°C have been successfully fabricated for counter electrode in the Super Low-Cost Solar Cell (SLC-LC) based the structure of Dye-Sensitized Solar Cells (DSSC). The main proposed study was to fabricate SLC-SC and investigate the influence of the synthesized carbon from animal’s bone for counter electrode towards to photovoltaic performance of SLC-SC. X-Ray Diffraction and UV-Vis was used to characterize the phase and the optical properties of TiO2 as photoanode in SLC-SC. Meanwhile, the morphology and particle size distribution of the synthesized carbon in counter electrodes were investigated by Scanning Electron Microscopy (SEM) and Particle Size Analyzer (PSA). The results showed that the TiO2 has anatase phase with the absorption wavelength of 300 to 550 nm. The calcination temperature for synthesizing of carbon could affect morphology and particle size distribution. The increasing temperature gave the effect more dense in morphology and increased the particle size of carbon in the counter electrode. Changes in morphology and particle size of carbon give effect to the performance of the SLC-SC where the increased morphology’s compact and particle size make decreased in the performance of the SLC-SC.

  15. Direct electrodeposition of metal nanowires on electrode surface

    International Nuclear Information System (INIS)

    Gambirasi, Arianna; Cattarin, Sandro; Musiani, Marco; Vazquez-Gomez, Lourdes; Verlato, Enrico

    2011-01-01

    A method for decorating the surface of disk electrodes with metal nanowires is presented. Cu and Ni nanowires with diameters from 1.0 μm to 0.2 μm are directly deposited on the electrode surface using a polycarbonate membrane filter template maintained in contact with the metal substrate by the soft homogeneous pressure of a sponge soaked with electrolyte. The morphologic and structural properties of the deposit are characterized by scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD). The latter shows that the head of nanowires with diameter of 0.4 μm is ordinarily polycrystalline, and that of nanowires with diameter of 0.2 μm is almost always monocrystalline for Cu and frequently also for Ni. Cyclic voltammetries and impedance investigations recorded in alkaline solutions at representative Ni electrodes decorated with nanowires provide consistent values of roughness factor, in the range 20-25.

  16. Controllably annealed CuO-nanoparticle modified ITO electrodes: Characterisation and electrochemical studies

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Tong; Su, Wen; Fu, Yingyi [College of Chemistry, Beijing Normal University, Beijing 100875 (China); Hu, Jingbo, E-mail: hujingbo@bnu.edu.cn [College of Chemistry, Beijing Normal University, Beijing 100875 (China); Key Laboratory of Beam Technology and Material Modification of Ministry of Education, Beijing Normal University, Beijing 100875 (China)

    2016-12-30

    Graphical abstract: We report a simple and controllable synthesis of CuO-nanoparticle-modified ITO by employing a combination of ion-implantation and annealing methods for the first time. The optimum CuO/ITO electrode shows uniform morphology, highly accessible surface area, long-term stability and excellent electrochemical performance towards biomolecules such as glucose in alkaline solution. - Highlights: • Controllably annealed CuO/ITO electrode was synthesized for the first time. • The generation mechanism of CuO nanoparticles is revealed. • The optimum CuO/ITO electrode shows excellent electrochemical performance. • A reference for the controllable preparation of other metal oxide nanoparticles. - Abstract: In this paper, we report a facile and controllable two-step approach to produce indium tin oxide electrodes modified by copper(II) oxide nanoparticles (CuO/ITO) through ion implantation and annealing methods. After annealing treatment, the surface morphology of the CuO/ITO substrate changed remarkably and exhibited highly electroactive sites and a high specific surface area. The effects of annealing treatment on the synthesis of CuO/ITO were discussed based on various instruments’ characterisations, and the possible mechanism by which CuO nanoparticles were generated was also proposed in this work. Cyclic voltammetric results indicated that CuO/ITO electrodes exhibited effective catalytic responses toward glucose in alkaline solution. Under optimal experimental conditions, the proposed CuO/ITO electrode showed sensitivity of 450.2 μA cm{sup −2} mM{sup −1} with a linear range of up to ∼4.4 mM and a detection limit of 0.7 μM (S/N = 3). Moreover, CuO/ITO exhibited good poison resistance, reproducibility, and stability properties.

  17. Synthesis and Microstructural Characterization of Manganese Oxide Electrodes for Application as Electrochemical Supercapacitors

    Science.gov (United States)

    Babakhani, Banafsheh

    The aim of this thesis work was to synthesize Mn-based oxide electrodes with high surface area structures by anodic electrodeposition for application as electrochemical capacitors. Rod-like structures provide large surface areas leading to high specific capacitances. Since templated electrosynthesis of rods is not easy to use in practical applications, it is more desirable to form rod-like structures without using any templates. In this work, Mn oxide electrodes with rod-like structures (˜1.5 µm in diameter) were synthesized from a solution of 0.01 M Mn acetate under galvanostatic control without any templates, on Au coated Si substrates. The electrochemical properties of the synthesized nanocrystalline electrodes were investigated to determine the effect of morphology, chemistry and crystal structure on the corresponding electrochemical behavior of Mn oxide electrodes. Mn oxides prepared at different current densities showed a defective antifluoritetype crystal structure. The rod-like Mn oxide electrodes synthesized at low current densities (5 mAcm.2) exhibited a high specific capacitance due to their large surface areas. Also, specific capacity retention after 250 cycles in an aqueous solution of 0.5 M Na2SO4 at 100 mVs -1 was about 78% of the initial capacity (203 Fg-1 ). To improve the electrochemical capacitive behavior of Mn oxide electrodes, a sequential approach and a one-step method were adopted to synthesize Mn oxide/PEDOT electrodes through anodic deposition on Au coated Si substrates from aqueous solutions. In the former case, free standing Mn oxide rods (about 10 µm long and less than 1.5 µm in diameter) were first synthesized, then coated by electro-polymerization of a conducting polymer (PEDOT) giving coaxial rods. The one-step, co-electrodeposition method produced agglomerated Mn oxide/PEDOT particles. The electrochemical behavior of the deposits depended on the morphology and crystal structure of the fabricated electrodes, which were affected

  18. Carbon Black-Modified Electrodes Screen-Printed onto Paper Towel, Waxed Paper and Parafilm M®.

    Science.gov (United States)

    Cinti, Stefano; Mazzaracchio, Vincenzo; Cacciotti, Ilaria; Moscone, Danila; Arduini, Fabiana

    2017-10-03

    Herein, we evaluated the use of paper towel, waxed paper, and Parafilm M ® (Heathrow Scientific, Vernon Hills, IL, USA) as alternative substrates for screen-printed sensor manufacturing. Morphological study was performed to evaluate the adhesion of the ink on these uncommon substrates, as well as the morphology of the working electrode. The electrochemical characterization was carried out using ferricyanide/ferrocyanide as redox couple. To enhance the electrochemical properties of the developed sensors, the nanomaterial carbon black was used as nanomodifier. The modification by drop casting of the working electrode surface, using a stable dispersion of carbon black, allows to obtain a sensor with improved electrochemical behavior in terms of peak-to-peak separation, current intensity, and the resistance of charge transfer. The results achieved confirm the possibility of printing the electrode on several cost-effective paper-based materials and the improvement of the electrochemical behavior by using carbon black as sustainable nanomaterial.

  19. Carbon Black-Modified Electrodes Screen-Printed onto Paper Towel, Waxed Paper and Parafilm M®

    Directory of Open Access Journals (Sweden)

    Stefano Cinti

    2017-10-01

    Full Text Available Herein, we evaluated the use of paper towel, waxed paper, and Parafilm M® (Heathrow Scientific, Vernon Hills, IL, USA as alternative substrates for screen-printed sensor manufacturing. Morphological study was performed to evaluate the adhesion of the ink on these uncommon substrates, as well as the morphology of the working electrode. The electrochemical characterization was carried out using ferricyanide/ferrocyanide as redox couple. To enhance the electrochemical properties of the developed sensors, the nanomaterial carbon black was used as nanomodifier. The modification by drop casting of the working electrode surface, using a stable dispersion of carbon black, allows to obtain a sensor with improved electrochemical behavior in terms of peak-to-peak separation, current intensity, and the resistance of charge transfer. The results achieved confirm the possibility of printing the electrode on several cost-effective paper-based materials and the improvement of the electrochemical behavior by using carbon black as sustainable nanomaterial.

  20. Operation of Finnish nuclear power plants. Quarterly report, 4th quarter 1996

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1997-05-01

    Quarterly reports on the operation of Finnish nuclear power plants describe events and observations relating to nuclear and radiation safety which the Finnish Centre for Radiation and Nuclear Safety (STUK) considers safety significant. Safety improvements at the plants are also described. The report also includes a summary of the radiation safety of plant personnel and of the environment and tabulated data on the plants's production and load factors. In the fourth quarter of 1996, the Finnish nuclear power plant units were in power operation except for the annual maintenance outage of Loviisa 2 and a shutdown at Olkiluoto 1 to repair a condensate system stop valve. The load factor average of all plant units was 96.5%. Events in the fourth quarter of 1996 were level 0 on the International Nuclear Event Scale. Occupational doses and radioactive releases off-site were below authorised limits. Radioactive substances were measurable in samples collected around the plants in such quantities only as have no bearing on the radiation exposure of the population. (orig.)

  1. Operation of Finnish nuclear power plants. Quarterly report, 2nd quarter, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Tossavainen, K. [ed.

    1995-10-01

    Quarterly reports on the operation of Finnish nuclear power plants describe events and observations relating to nuclear and radiation safety which the Finnish Centre for Radiation and Nuclear Safety (STUK) considers safety significant. Fasety improvements at the plants are also described. The report includes a summary of the radiation safety of plant personnel and of the evironment and tabulated data on the plants` production and load factors. Except for the annual maintenance outages of the TVO plant units and for TVO II`s Midsummer outage which was due to low electricity demand, the Finnish nuclear power plants were in power operation during the second quarter of 1995. The load factor average of all four plant units was 91.2 %. Events during the second annual quarter were level 0 on the INES scale. Occupational doses and radioactive releases off-site were below authorized limits. Radioactive substances were measurable in samples collected around the plants in such quantities only as have no bearing on the radiation exposure of the population. (4 figs., 4 tabs.).

  2. Electrode-electrolyte interface model of tripolar concentric ring electrode and electrode paste.

    Science.gov (United States)

    Nasrollaholhosseini, Seyed Hadi; Steele, Preston; Besio, Walter G

    2016-08-01

    Electrodes are used to transform ionic currents to electrical currents in biological systems. Modeling the electrode-electrolyte interface could help to optimize the performance of the electrode interface to achieve higher signal to noise ratios. There are previous reports of accurate models for single-element biomedical electrodes. In this paper we develop a model for the electrode-electrolyte interface for tripolar concentric ring electrodes (TCRE) that are used to record brain signals.

  3. CT findings of normal pancreatic tail: variety of morphology and location

    Energy Technology Data Exchange (ETDEWEB)

    Han, Hye Seung; Son, San Hoo; Moon, Gae Hyuk; Kim, Hu Ho; Gong Jae Chul; Yang Jae Boum [Inchon Christian Hospital, Inchon (Korea, Republic of); Park, Mee Sook [Jaesung Hospital. (Korea, Republic of)

    1998-02-01

    To determine the morphology and location of normal pancreatic tail, as seen on abdominal CT. A hundred and one patients without pancreatic disease underwent CT scanning. We then determined how to relate the location of the pancreatic tail with the splenic hilum, left kidney, and pancreatic body. We compared the thickness of the tail with that of the body and analysed of the morphology of the tail. Seventy-seven percent of all pancreatic tails were located below the splenic hilum, with 59% of this proportion located 1 to 2 cm below. Fifty percent of tails were located at the level of the uppermost quarter of the left kidney, and a further 27% at the level of the second quarter; 75 % were located in the ventrolateral portion of this kidney and 23% in the ventral portion. In 48% of patients, the pancreatic tail and body were the same thickness, and in a further 48 %, the tail was thicker than the body. In 34% of patients, the tail showed focal bulging, and in another 32%, it tapered smoothly. Forty seven percent of tails were located below the pancreatic body and a further 37% were found at the same level as the body. Abdominal CT scans showed differing morphology and location of the pancreatic tail. The recognition of these variations will diminish speculation as to their true nature. (author). 12 refs., 4 figs.

  4. Non-enzymatic hydrogen peroxide sensor using an electrode modified with iron pentacyanonitrosylferrate nanoparticles

    International Nuclear Information System (INIS)

    Razmi, H.; Mohammad-Rezaei, R.

    2010-01-01

    An electrochemical sensor was developed for determination of hydrogen peroxide (HP) based on a carbon ceramic electrode modified with iron pentacyanonitrosylferrate (FePCNF). The surface of an iron-doped CCE was derivatized in a solution of PCNF by cycling the electrode potential between -0. 2 and +1. 3 V for about 60 times. The morphology and the composition of the resulting electrode were characterized by scanning electron microscopy and Fourier transform infrared techniques. The electrode displayed excellent response to the electro-oxidation of HP which is linearly related to its concentration in the range from 0. 5 μM to 1300 μM. The detection limit is 0. 4 μM, and the sensitivity is 849 A M -1 cm -2 . The modified electrode was used to determination of HP in hair coloring creams as real samples. (author)

  5. Quarterly environmental radiological survey summary: Third quarter 1994--100, 200, 300, and 600 Areas

    International Nuclear Information System (INIS)

    McKinney, S.M.

    1994-11-01

    This report provides a summary of the radiological surveys performed on waste disposal sites located at the Hanford Site. The Third Quarter 1994 survey results and the status of actions required from current and past reports and are summarized below: (1) All the routine environmental radiological surveys scheduled during July, August, and September 1994 were completed except for the D Island vent riser area. The surveys for the 200-W railways, spurs, and sidings were completed during this period after being delayed by equipment problems during the second quarter. (2) No Compliance Assessment Reports (CARs) were issued for sites found out of compliance with standards identified in WHC-CM-7-5, Environmental Compliance. (3) Two Surveillance Compliance/Inspection Reports (SCIRs) were closed during the Third Quarter of 1994. (4) Eleven open SCIRs had not been resolved

  6. A new method synthesis polyaniline/multi-walled carbon nanotube composites for supercapacitor electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Pan, J.; Wei, X.; Zhou, S.P. [Shandong Univ. of Technology, Zibo (China). School of Chemical Engineering

    2010-07-01

    A series of polyaniline multi-walled nanotube (PANIMWNT) composite films were prepared using an in situ polymerization technique. Scanning electron microscopy (SEM) was used to characterize the morphology and microstructure of the samples. Cyclic voltammetry (CV), impedance spectroscopy, and galvanostatic charge/discharge analyses were used to determine the electrochemical properties of the PANIMWNT films in a 3-electrode system. The electrochemical performance of PANI, PANIMWNT, and MWNT film performances was then compared. Results of the study showed that the PANI electrodes showed a much higher capacitance than the MWNT and PANIMWNT electrodes. Both the PANI and PANIMWNT nanocomposites showed good electrochemical capacitance. The improved performance of the electrodes was attributed to the presence of sodium hypochlorite (NaClO). 5 refs.

  7. 10 CFR 34.69 - Records of quarterly inventory.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Records of quarterly inventory. 34.69 Section 34.69 Energy... INDUSTRIAL RADIOGRAPHIC OPERATIONS Recordkeeping Requirements § 34.69 Records of quarterly inventory. (a) Each licensee shall maintain records of the quarterly inventory of sealed sources and of devices...

  8. Electrospun carbon nanofibers surface-grafted with vapor-grown carbon nanotubes as hierarchical electrodes for supercapacitors

    Science.gov (United States)

    Zhou, Zhengping; Wu, Xiang-Fa; Fong, Hao

    2012-01-01

    This letter reports the fabrication and electrochemical properties of electrospun carbon nanofibers surface-grafted with vapor-grown carbon nanotubes (CNTs) as hierarchical electrodes for supercapacitors. The specific capacitance of the fabricated electrodes was measured up to 185 F/g at the low discharge current density of 625 mA/g; a decrease of 38% was detected at the high discharge current density of 2.5 A/g. The morphology and microstructure of the electrodes were examined by electron microscopy, and the unique connectivity of the hybrid nanomaterials was responsible for the high specific capacitance and low intrinsic contact electric resistance of the hierarchical electrodes.

  9. Mixed Waste Management Facility groundwater monitoring report: Third quarter 1994

    International Nuclear Information System (INIS)

    1994-12-01

    Currently, 125 wells monitor groundwater quality in the uppermost aquifer beneath the Mixed Waste Management Facility (MWMF) at the Savannah River Site. Samples from the wells are analyzed for selected heavy metals, herbicides/pesticides, indicator parameters, radionuclides, volatile organic compounds, and other constituents. As in previous quarters, tritium and trichloroethylene were the most widespread elevated constituents during third quarter 1994. Sixty-four (51%) of the 125 monitoring wells contained elevated tritium activities. Trichloroethylene concentrations exceeded the final PDWS in 22 (18%) wells. Chloroethene, 1,1-dichloroethylene, and tetrachloroethylene, elevated in one or more wells during third quarter 1994, also occurred in elevated levels during second quarter 1994. These constituents generally were elevated in the same wells during both quarters. Gross alpha, which was elevated in only one well during second quarter 1994, was elevated again during third quarter. Mercury, which was elevated during first quarter 1994, was elevated again in one well. Dichloromethane was elevated in two wells for the first time in several quarters

  10. The electrochemical behavior of Co(TPTZ){sub 2} complex on different carbon based electrodes modified with TiO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ortaboy, Sinem, E-mail: ortaboy@istanbul.edu.tr; Atun, Gülten, E-mail: gatun@istanbul.edu.tr

    2015-04-15

    Electrochemical behavior of cobalt (II) complex with the N-donor ligand 2,2′-bipyridyl-1,3,5-tripyridyl-s-triazine (TPTZ) was investigated to elucidate the electron-proton transfer mechanisms. The electrochemical response of the complex was studied using square-wave voltammetry (SWV) and electrochemical impedance spectroscopy (EIS) techniques. A conventional three-electrode system, consisting of glassy carbon (GCE), TiO{sub 2} modified glassy carbon (T/GCE), carbon paste (CPE) and TiO{sub 2} modified carbon paste (T/CPE) working electrodes were employed. The ligand/metal ratio and stability constant of the complex as well as the mechanisms of the electrode processes were elucidated by examining the effects of pH, ligand concentration and frequency on the voltammograms. The EIS results indicated that the samples modified with TiO{sub 2} had the higher charge transfer resistance than that of the bare electrodes and also suggested that the electroactivity of the electrode surfaces increased in the following order, T/CPE > CPE > T/GCE > GCE. The surface morphology of the working electrodes was also characterized by atomic force microscopy (AFM). The values of surface roughness parameters were found to be consistent with the results obtained by EIS experiments. - Graphical abstract: Schematic illustration of the experimental process. - Highlights: • Electrochemical behavior of Co(TPTZ){sub 2} complex studied by SWV and EIS techniques. • GCE, CPE T/GCE and T/CPE were used as working electrodes for comparative studies. • The surface morphologies of the electrodes were characterized by AFM. • Mechanisms were proposed from the effects of pH, ligand concentration and frequency. • EIS and morphologic relationships of the surfaces were established successfully.

  11. Morphology-controllable synthesis of 3D CoNiO_2 nano-networks as a high-performance positive electrode material for supercapacitors

    International Nuclear Information System (INIS)

    Zhang, Jijun; Chen, Zexiang; Wang, Yan; Li, Hai

    2016-01-01

    Here, we report a novel three-dimensional (3D) assembly of CoNiO_2 nanowire networks using a facile and scalable hydrothermal method followed by an annealing process for supercapacitor applications. The X-ray diffraction (XRD) results revealed the formation of highly-crystalline CoNiO_2 nano-networks. Scanning electron microscope (SEM) analysis showed the formation of a 3D interconnected network of CoNiO_2 nanowires during the synthesis. In addition, a formation mechanism for 3D CoNiO_2 nano-networks was proposed. Electrochemical analysis showed a typical pseudocapacitive behavior for the CoNiO_2 nanowire networks. The as-prepared CoNiO_2 electrode exhibited a high specific capacitance of 1462 F g"−"1 (45.32 F cm"−"2) at a current density of 1 A g"−"1 (31 mA cm"−"2) and an excellent rate capability of 1000 F g"−"1 (31 F cm"−"2) at 32 A g"−"1 (992 mA cm"−"2). Moreover, a good cycle stability was achieved at 4 A g"−"1 with no degradation over 800 cycles, indicating the stable 3D structure of CoNiO_2 after the redox reactions. The high rate capability and the good cycle stability indicated that the as-prepared 3D CoNiO_2 electrode could satisfy the needs of supercapacitors with both high power and energy densities. - Highlights: • A three-dimensional (3D) assembly of CoNiO_2 nanowire networks was prepared. • Sodium-p-styrenesulfonate (PSS) plays a key role in forming the structure. • The as-prepared 3D CoNiO_2 electrode exhibits high power and energy densities. • The proposed method is easy to provide an industrial mass production. • The method can be used to fabricate different morphologies of nanomaterials.

  12. Quarterly coal report, January--March 1992

    International Nuclear Information System (INIS)

    Young, P.

    1992-01-01

    The United States produced 257 million short tons of coal in the first quarter of 1992. This was the second highest quarterly production level ever recorded. US coal exports in January through March of 1992 were 25 million short tons, the highest first quarter since 1982. The leading destinations for US coal exports were Japan, Italy, France, and the Netherlands, together receiving 46 percent of the total. Coal exports for the first quarter of 1992 were valued at $1 billion, based on an average price of $42.28 per short ton. Steam coal exports totaled 10 million short tons, an increase of 34 percent over the level a year earlier. Metallurgical coal exports amounted to 15 million short tons, about the same as a year earlier. US coal consumption for January through March 1992 was 221 million short tons, 2 million short tons more than a year earlier (Table 45). All sectors but the residential and commercial sector reported increased coal consumption

  13. Dual Approach to Amplify Anodic Stripping Voltammetric Signals Recorded Using Screen Printed Electrodes

    Directory of Open Access Journals (Sweden)

    Agnieszka KRÓLICKA

    2016-12-01

    Full Text Available Screen printed electrodes plated with bismuth were used to record anodic stripping voltammograms of Pb(II, In(III and Cd(II. Using two bismuth precursors: Bi2O3 dispersed in the electrode body and Bi(III ions spiked into the tested solution it was possible to deposit bismuth layers, demonstrating exceptional ability to accumulate metals forming alloys with bismuth. The voltammetric signals were amplified by adjusting the electrode location with respect to rotating magnetic field. The electrode response was influenced by vertical and horizontal distance between the magnet center and the sensing area of screen printed electrode as well as the angle between the magnet surface and the electrode. When the electrode was moved away from the magnet center the recorded peaks were increasingly smaller and almost not affected by the presence of bismuth ions. It was shown that to obtain well-shaped signals a favourable morphology of bismuth deposits is of key importance. Hypotheses explaining processes responsible for the amplification of voltammetric signals were proposed.

  14. Observatory of electricity and gas markets, data from the 3. quarter 2004 to the 1. quarter 2013

    International Nuclear Information System (INIS)

    2013-04-01

    This document gathers those published for each quarter since the 3. quarter 2004 and until the 1. quarter 2013. Each of them proposes and comments figures and tables of data regarding the electricity retail market (customer segments, evolution, price on the retail market), the electricity gross market (French market activity and European comparison, prices on the French market and European comparison, import and export volumes, market evolution), the gas retail market (customer segments, evolution, switch rate of providers, price, bill evolution...) and the gas gross market (price formation in France and in Europe, gross market activity in France, highlights)

  15. Nigerian Quarterly Journal of Hospital Medicine: Submissions

    African Journals Online (AJOL)

    Nigerian Quarterly Journal of Hospital Medicine: Submissions. Journal Home > About the Journal > Nigerian Quarterly Journal of Hospital Medicine: Submissions. Log in or Register to get access to full text downloads.

  16. Natural gas imports and exports. Second quarter report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The Office of Natural Gas and Petroleum Import and Export Activities prepares quarterly reports summarizing the data provided by companies authorized to import or export natural gas. Companies are required, as a condition of their authorizations, to file quarterly reports. This report is for the second quarter of 1997 (April through June).

  17. Quarterly Financial Report

    International Development Research Centre (IDRC) Digital Library (Canada)

    acray

    2011-06-30

    Jun 30, 2011 ... 2 IDRC QUARTERLY FINANCIAL REPORT JUNE 2011. Consolidated .... spending on capacity-building projects as well as to management's decision to restrict capacity- building ...... The investments in financial institutions.

  18. Operation of Finnish nuclear power plants. Quarterly report, 1st quarter 1998

    International Nuclear Information System (INIS)

    Tossavainen, K.

    1998-11-01

    Quarterly reports on the operation of Finnish NPPs describe events and observations relating to nuclear and radiation safety that the Radiation and Nuclear Safety Authority (STUK) considers safety significant. Safety improvements at the plants are also described. The report includes a summary of the radiation safety of plant personnel and the environment and tabulated data on the plants' production and load factors. The Finnish NPP units were in power operation for the whole first quarter of 1998. All the units were in long-term test operation at uprated power level authorised by STUK. The load factor average of the plant units was 100.8%. An oil leak at Olkiluoto NPP Unit 2 caused an ignition that was promptly extinguished. A subsequent appraisal of the event disclosed deficiencies in the functioning of the plant unit's operating organization and the event was classified INES level 1. Other events in this quarter had no bearing on nuclear or radiation safety. Occupational doses and radioactive releases off-site were below authorized limits. Radioactive substances were measurable in samples collected around the plants in such quantities only as have no bearing on the radiation exposure of the population. (orig.)

  19. Preparation and characterization of RuO2/polypyrrole electrodes for supercapacitors

    Science.gov (United States)

    Li, Xiang; Wu, Yujiao; Zheng, Feng; Ling, Min; Lu, Fanghai

    2014-11-01

    Polypyrrole (PPy) embedded RuO2 electrodes were prepared by the composite method. Precursor solution of RuO2 was coated on tantalum sheet and annealed at 260 °C for 2.5 h to develop a thin film. PPy particles were deposited on RuO2 films and dried at 80 °C for 12 h to form composite electrode. Microstructure and morphology of RuO2/PPy electrode were characterized using Fourier transform infrared spectrometer, X-ray diffraction and scanning electron microscopy, respectively. Our results confirmed that counter ions are incorporated into RuO2 matrix. Structure of the composite with amorphous phase was verified by X-ray diffraction. Analysis by scanning electron microscopy reveals that during grain growth of RuO2/PPy, PPy particle size sharply increases as deposition time is over 20 min. Electrochemical properties of RuO2/PPy electrode were calculated using cyclic voltammetry. As deposition times of PPy are 10, 20, 25 and 30 min, specific capacitances of composite electrodes reach 657, 553, 471 and 396 F g-1, respectively. Cyclic behaviors of RuO2/PPy composite electrodes are stable.

  20. Amygdala Kindling Alters Estrus Cycle and Ovarian Morphology in the Rat.

    Science.gov (United States)

    Pan, Juan; Zhang, Lingwu; Wang, Feng; Liu, Dan; Li, P Andy; Sun, Tao

    2013-11-01

    The objective of this study is to explore the effects of amygdala kindling on estrus cycle and ovarian morphology. Thirty-five female rats at the age of 8 weeks were randomly designated to electrode kindled, sham-kindled, and normal controls. Kindled rats were implanted with kindling electrodes in the left basolateral amygdala and kindled by brief suprathreshold stimulations with a bipolar electrode. Estrous cycles were daily monitored through vaginal smears. Electrographic and behavioral seizures were recorded and ovarian morphology was evaluated by light and electron microscopies. Our results showed that the kindled rats lost their ovarian periodicity displayed significant ovarian enlargement. H&E staining revealed increased number of growing follicles and total follicles, as well as polycysts in the ovaries of the kindled animals compared to sham and control animals. Ultrastructural study detected numerous apoptotic granulosa cells in growing follicles and thecal cell hyperplasia with secretary granules in the thecal cells in the kindled rats. The results suggest that amygdala kindling is a risk factor for the development of polycystic ovary syndrome.

  1. Weldon Spring Site Remedial Action Project Federal Facilities Agreement: Quarterly environmental data summary for third quarter 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-06

    In support of the Weldon Spring Site Remedial Action Project Federal Facilities Agreement, a copy of the Quarterly Environmental Data Summary (QEDS) for the third quarter of 1998 is enclosed. The data presented in this letter and attachment constitute the QEDS. The data, except for air monitoring data and site KPA generated data (uranium analyses), were received from the contract laboratories, verified by the Weldon Spring Site verification group, and merged into the database during the third quarter of 1998. Air monitoring data presented are the most recent complete sets of quarterly data. Significant data, defined as data values that have exceeded defined above normal Level 2 values, are discussed in this letter for Environmental Monitoring Plan (EMP) generated data only. Above normal Level 2 values are based, in ES and H procedures, on historical high values, DOE Derived Concentration Guides (DCGs), NPDES limits, and other guidelines. The procedures also establish actions to be taken in the event that above normal data occur.

  2. ER Consolidated Quarterly Report October 2014

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, John R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-01

    This Environmental Restoration Operations (ER) Consolidated Quarterly Report (ER Quarterly Report) provides the status of ongoing corrective actions and related Long- Term Stewardship (LTS) activities being implemented by Sandia National Laboratories, New Mexico (SNL/NM) ER for the April, May, and June 2014 quarterly reporting period. Section 2.0 provides the status of ER Operations activities including closure activities for the Mixed Waste Landfill (MWL), project management and site closure, and hydrogeologic characterizations. Section 3.0 provides the status of LTS activities that relate to the Chemical Waste Landfill (CWL) and the associated Corrective Action Management Unit (CAMU). Section 4.0 provides the references noted in Section I of this report.

  3. Sex and Electrode Configuration in Transcranial Electrical Stimulation

    Directory of Open Access Journals (Sweden)

    Michael J. Russell

    2017-08-01

    Full Text Available Transcranial electrical stimulation (tES can be an effective non-invasive neuromodulation procedure. Unfortunately, the considerable variation in reported treatment outcomes, both within and between studies, has made the procedure unreliable for many applications. To determine if individual differences in cranium morphology and tissue conductivity can account for some of this variation, the electrical density at two cortical locations (temporal and frontal directly under scalp electrodes was modeled using a validated MRI modeling procedure in 23 subjects (12 males and 11 females. Three different electrode configurations (non-cephalic, bi-cranial, and ring commonly used in tES were modeled at three current intensities (0.5, 1.0, and 2.0 mA. The aims were to assess the effects of configuration and current intensity on relative current received at a cortical brain target directly under the stimulating electrode and to characterize individual variation. The different electrode configurations resulted in up to a ninefold difference in mean current densities delivered to the brains. The ring configuration delivered the least current and the non-cephalic the most. Female subjects showed much less current to the brain than male subjects. Individual differences in the current received and differences in electrode configurations may account for significant variability in current delivered and, thus, potentially a significant portion of reported variation in clinical outcomes at two commonly targeted regions of the brain.

  4. Virtual electrodes for high-density electrode arrays

    Science.gov (United States)

    Cela, Carlos J.; Lazzi, Gianluca

    2015-10-13

    The present embodiments are directed to implantable electrode arrays having virtual electrodes. The virtual electrodes may improve the resolution of the implantable electrode array without the burden of corresponding complexity of electronic circuitry and wiring. In a particular embodiment, a virtual electrode may include one or more passive elements to help steer current to a specific location between the active electrodes. For example, a passive element may be a metalized layer on a substrate that is adjacent to, but not directly connected to an active electrode. In certain embodiments, an active electrode may be directly coupled to a power source via a conductive connection. Beneficially, the passive elements may help to increase the overall resolution of the implantable array by providing additional stimulation points without requiring additional wiring or driver circuitry for the passive elements.

  5. Nanostructured MnO2 as Electrode Materials for Energy Storage

    Science.gov (United States)

    Mauger, Alain

    2017-01-01

    Manganese dioxides, inorganic materials which have been used in industry for more than a century, now find great renewal of interest for storage and conversion of energy applications. In this review article, we report the properties of MnO2 nanomaterials with different morphologies. Techniques used for the synthesis, structural, physical properties, and electrochemical performances of periodic and aperiodic frameworks are discussed. The effect of the morphology of nanosized MnO2 particles on their fundamental features is evidenced. Applications as electrodes in lithium batteries and supercapacitors are examined. PMID:29149066

  6. Nanostructured MnO2 as Electrode Materials for Energy Storage

    Directory of Open Access Journals (Sweden)

    Christian M. Julien

    2017-11-01

    Full Text Available Manganese dioxides, inorganic materials which have been used in industry for more than a century, now find great renewal of interest for storage and conversion of energy applications. In this review article, we report the properties of MnO2 nanomaterials with different morphologies. Techniques used for the synthesis, structural, physical properties, and electrochemical performances of periodic and aperiodic frameworks are discussed. The effect of the morphology of nanosized MnO2 particles on their fundamental features is evidenced. Applications as electrodes in lithium batteries and supercapacitors are examined.

  7. Occupants' satisfaction on building maintenance of government quarters

    Science.gov (United States)

    Ismail, Nur'Ain; Ali, Siti Noor Asmiza Md; Othman, Nor A'aini; Jaffar, Nooraidawati

    2017-10-01

    The satisfaction level of occupants toward the maintenance is very important to know the occupants comfortable with maintenance that was provided at the government quarters. The objective of the research is to determine the level of occupants satisfaction perceived of the maintenance in government quarter and also the level of quality of the maintenance of the government quarters. Data have been collected by using questionnaire in order to achieve the objective of the research. The questionnaires distributed among the occupants government quarters at Hospital Kota Bharu Kelantan. In the end of the research, the result are expected that to show the results on this satisfaction level of the occupants toward the maintenance at government quarters can be solve and the occupants can live more comfortable and get the good quality for maintenance and facilities in their houses.

  8. The fabrication, characterisation and electrochemical investigation of screen-printed graphene electrodes.

    Science.gov (United States)

    Randviir, Edward P; Brownson, Dale A C; Metters, Jonathan P; Kadara, Rashid O; Banks, Craig E

    2014-03-14

    We report the fabrication, characterisation (SEM, Raman spectroscopy, XPS and ATR) and electrochemical implementation of novel screen-printed graphene electrodes. Electrochemical characterisation of the fabricated graphene electrodes is undertaken using an array of electroactive redox probes and biologically relevant analytes, namely: potassium ferrocyanide(II), hexaammine-ruthenium(III) chloride, N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD), β-nicotinamide adenine dinucleotide (NADH), L-ascorbic acid (AA), uric acid (UA) and dopamine hydrochloride (DA). The electroanalytical capabilities of the fabricated electrodes are also considered towards the sensing of AA and DA. The electrochemical and (electro)analytical performances of the fabricated screen-printed graphene electrodes are considered with respect to the relative surface morphologies and material compositions (elucidated via SEM, Raman, XPS and ATR spectroscopy), the density of electronic states (% global coverage of edge-plane like sites/defects) and the specific fabrication conditions utilised. Comparisons are made between two screen-printed graphene electrodes and alternative graphite based screen-printed electrodes. The graphene electrodes are fabricated utilising two different commercially prepared 'graphene' inks, which have long screen ink lifetimes (>3 hours), thus this is the first report of a true mass-reproducible screen-printable graphene ink. Through employment of appropriate controls/comparisons we are able to report a critical assessment of these screen-printed graphene electrodes. This work is of high importance and demonstrates a proof-of-concept approach to screen-printed graphene electrodes that are highly reproducible, paving the way for mass-producible graphene sensing platforms in the future.

  9. Redox Response of Reduced Graphene Oxide-Modified Glassy Carbon Electrodes to Hydrogen Peroxide and Hydrazine

    Directory of Open Access Journals (Sweden)

    Jun-ichi Anzai

    2013-05-01

    Full Text Available The surface of a glassy carbon (GC electrode was modified with reduced graphene oxide (rGO to evaluate the electrochemical response of the modified GC electrodes to hydrogen peroxide (H2O2 and hydrazine. The electrode potential of the GC electrode was repeatedly scanned from −1.5 to 0.6 V in an aqueous dispersion of graphene oxide (GO to deposit rGO on the surface of the GC electrode. The surface morphology of the modified GC electrode was characterized by scanning electron microscopy (SEM and atomic force microscopy (AFM. SEM and AFM observations revealed that aggregated rGO was deposited on the GC electrode, forming a rather rough surface. The rGO-modified electrodes exhibited significantly higher responses in redox reactions of H2O2 as compared with the response of an unmodified GC electrode. In addition, the electrocatalytic activity of the rGO-modified electrode to hydrazine oxidation was also higher than that of the unmodified GC electrode. The response of the rGO-modified electrode was rationalized based on the higher catalytic activity of rGO to the redox reactions of H2O2 and hydrazine. The results suggest that rGO-modified electrodes are useful for constructing electrochemical sensors.

  10. Fourth-quarter Economic Growth and Time-varying Expected Returns

    DEFF Research Database (Denmark)

    Møller, Stig V.; Rangvid, Jesper

    not predict returns. Fourth-quarter economic growth rates contain considerably more information about expected returns than standard variables used in the literature, are robust to the choice of macro variable, and work in-sample, out-of-sample, and in subsamples. To help explain these results, we show...... that economic growth and growth in consumer confidence are correlated during the fourth quarter, but not during the other quarters: When economic growth is low during the fourth quarter, confidence in the economy is also low such that investors require higher future returns. We discuss rational and behavioral...... reasons why fourth-quarter economic growth, growth in consumer confidence, and expected returns are related....

  11. Preparation of Electrospun Polymer Fibers Using a Copper Wire Electrode in a Capillary Tube

    Science.gov (United States)

    Shinbo, Kazunari; Onozuka, Shintaro; Hoshino, Rikiya; Mizuno, Yoshinori; Ohdaira, Yasuo; Baba, Akira; Kato, Keizo; Kaneko, Futao

    2010-04-01

    Polymer fibers were prepared by an electrospinning method utilizing a copper wire electrode in a capillary tube. The morphology of electrospun poly(vinyl alcohol) (PVA) fibers was observed, and was found to be dependent on the wire electrode tip position in the capillary tube, the concentration of the polymer solution, the distance between the electrodes, and the applied voltage. By using the wire electrode, the experimental setup is simple and the distance between the electrodes and the applied voltage can be easily reduced. Furthermore, the preparation of poly(3-hexylthiophene) (P3HT) fibers was carried out. P3HT fibers were successfully prepared by mixing poly(ethylene oxide) (PEO) in P3HT solution. Orientation control was also carried out by depositing the fibers on a rotating collector electrode, and the alignment of the P3HT:PEO fibers was confirmed. Anisotropy of the optical absorption spectra was also observed for the aligned fibers.

  12. Counterbalancing of morphology and conductivity of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate based flexible devices.

    Science.gov (United States)

    Jang, Woongsik; Ahn, Sunyong; Park, Soyun; Park, Jong Hyeok; Wang, Dong Hwan

    2016-12-01

    The importance of conductive polymer electrodes with a balance between the morphology and electrical conductivity for flexible organic photovoltaic properties has been demonstrated. Highly transparent PEDOT:PSS anodes with controlled conductivity and surface properties were realized by insertion of dimethyl sulfoxide (DMSO) and a fluorosurfactant (Zonyl) as efficient additives and used for flexible organic photovoltaic cells (OPVs) which are based on a bulk-heterojunction of polythieno[3,4-b]-thiophene-co-benzodithiophene (PTB7):[6,6]phenyl-C 71 -butyric acid methyl ester (PC 71 BM). We investigated the correlation between the electrical properties of PEDOT:PSS electrodes and their influences on the surface morphology of the active materials (PTB7:PC 71 BM). When the device was prepared from the PEDOT:PSS layer functioning as an anode of OPV through an optimized ratio of 5 vol% of DMSO and 0.1 wt% of fluorosurfactant, the devices exhibited improved fill factor (FF) due to the enhanced coverage of PEDOT:PSS films. These results correlate with reduced photoluminescence and increased charge extraction as seen through Raman spectroscopy and electrical analysis, respectively. The conductive polymer electrode with the balance between the morphology and electrical conductivity can be a useful replacement for brittle electrodes such as those made of indium tin oxide (ITO) as they are more resistant to cracking and bending conditions, which will contribute to the long-term operation of flexible devices.

  13. A pH sensor based on the TiO{sub 2} nanotube array modified Ti electrode

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Rongrong; Xu Meizhu [Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Department of Chemistry, Fuzhou University, 523 Gongye Road, Fuzhou 350002, Fujian (China); Wang Jian, E-mail: jwang@fzu.edu.c [Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Department of Chemistry, Fuzhou University, 523 Gongye Road, Fuzhou 350002, Fujian (China); Chen Guonan, E-mail: guonanchen@126.co [Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Department of Chemistry, Fuzhou University, 523 Gongye Road, Fuzhou 350002, Fujian (China)

    2010-08-01

    In this paper, a novel solid state pH sensor was fabricated by anodization of titanium substrate electrode. The relationship between pH sensitivity and hydrophilicity or surface morphology of TiO{sub 2} film was investigated. Amorphous TiO{sub 2} nanotube has better pH response than anatase TiO{sub 2} nanotube. After being irradiated by ultraviolet light (UV), the potential response of the electrode modified by amorphous TiO{sub 2} nanotube was close to Nernst equation (59 mV/pH). SEM, XRD, and XPS were used to characterize electrodes. Possible mechanism was discussed by analyzing surface hydroxyl groups, crystal structure and hydrophilicity of the electrodes. The electrode has been used to detect some kinds of soft drinks and shows good response.

  14. Environmental Restoration Operations: Consolidated Quarterly Report January -March 2017

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, John R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-07-01

    This Environmental Restoration Operations (ER) Consolidated Quarterly Report (ER Quarterly Report) provides the status of ongoing corrective action activities being implemented at Sandia National Laboratories, New Mexico (SNL/NM) during the January, February, and March 2017 quarterly reporting period. Table I-1 lists the Solid Waste Management Units (SWMUs) and Areas of Concern (AOCs) identified for corrective action at SNL/NM. Sections I.2.1 and I.2.2 summarize the work completed during this quarter. Section I.2.1 summarizes the quarterly activities at sites undergoing corrective action field activities. Field activities are conducted at the three groundwater AOCs (Burn Site Groundwater [BSG AOC], Technical Area [TA]-V Groundwater [TAVG AOC], and Tijeras Arroyo Groundwater [TAG AOC]). Section I.2.2 summarizes quarterly activities at sites where the New Mexico Environment Department (NMED) Hazardous Waste Bureau (HWB) issued a certificate of completion and the sites are in the corrective action complete (CAC) regulatory process. Currently, SWMUs 8 and 58, 68, 149, 154, and 502 are in the CAC regulatory process. Corrective action activities are deferred at the Long Sled Track (SWMU 83), the Gun Facilities (SWMU 84), and the Short Sled Track (SWMU 240) because these three sites are active mission facilities. These three active mission sites are located in TA-III. This Sandia National Laboratories, New Mexico Environmental Restoration Operations (ER) Consolidated Quarterly Report (ER Quarterly Report) fulfills all quarterly reporting requirements set forth in the Resource Conservation and Recovery Act Facility Operating Permit and the Compliance Order on Consent.

  15. Contribution of tin in electrochemical properties of zinc antimonate nanostructures: An electrode material for supercapacitors

    Science.gov (United States)

    Balasubramaniam, M.; Balakumar, S.

    2018-04-01

    Tin (Sn) doped ZnSb2O6 nanostructures was synthesized by chemical precipitation method and was used as an electrode material for supercapacitors to explore its electrochemical stability and potentiality as energy storage materials. Their characteristic structural, morphological and compositional features were investigated through XRD, FESEM and XPS analysis. Results showed that the nanostructures have well ordered crystalline features with spherical particle morphology. As the size and morphology are the vital parameters in exhibiting better electrochemical properties, the prepared nanostructures exhibited a significant specific capacitance of 222 F/g at a current density of 0.5 A/g respectively. While charging and discharging for 1000 cycles, the capacitance retention was enhanced to 105.0% which depicts the stability and activeness of electrochemical sites present in the Sn doped ZnSb2O6 nanostructures even after cycling. Hence, the inclusion of Sn into ZnSb2O6 has contributed in improving the electrochemical properties thereby it represents itself as a potential electrode material for supercapacitors.

  16. Econometric Methods within Romanian Quarterly National Accounts

    Directory of Open Access Journals (Sweden)

    Livia Marineta Drăguşin

    2013-04-01

    Full Text Available The aim of the present paper is to synthesise the main econometric methods (including the mathematical and statistical ones used in the Romanian Quarterly National Accounts compilation, irrespectively of Quarterly Gross Domestic Product (QGDP. These methods are adapted for a fast manner to operatively provide information about the country macroeconomic evolution to interested users. In this context, the mathematical and econometric methods play an important role in obtaining quarterly accounts valued in current prices and in constant prices, in seasonal adjustments and flash estimates of QGDP.

  17. 77 FR 51705 - Rescission of Quarterly Financial Reporting Requirements

    Science.gov (United States)

    2012-08-27

    ... No. FMCSA-2012-0020] RIN-2126-AB48 Rescission of Quarterly Financial Reporting Requirements AGENCY...: FMCSA withdraws its June 27, 2012, direct final rule eliminating the quarterly financial reporting... future proposing the elimination of the quarterly financial reporting requirements for Form QFR and Form...

  18. Morphological changes at the interface of the nickel-yttria stabilized zirconia point electrode

    DEFF Research Database (Denmark)

    Aaberg, Rolf Jarle; Tunold, Reidar; Mogensen, Mogens Bjerg

    1998-01-01

    and the cathodic current decreased significantly with a time constant of about 20 h. Redistribution of material in the reaction zone is suggested to control most of the changes in electrode activity. At anodic overpotentials it was observed that Ni was transported to the electrolyte surface, forming a "necklace...

  19. The quarter wave resonator as a superconducting linac element

    International Nuclear Information System (INIS)

    Ben-Zvi, I.; Brennan, J.M.

    1983-01-01

    The electrical and mechanical properties of quarter wave resonators are derived. A procedure for optimal design of a quarter wave resonator for use in a superconducting heavy ion linac is given. It is concluded that a quarter wave resonator has significant advantages for this application. (orig.)

  20. Single-wall carbon nanotube chemical attachment at platinum electrodes

    International Nuclear Information System (INIS)

    Rosario-Castro, Belinda I.; Contes-de-Jesus, Enid J.; Lebron-Colon, Marisabel; Meador, Michael A.; Scibioh, M. Aulice; Cabrera, Carlos R.

    2010-01-01

    Self-assembled monolayer (SAM) techniques were used to adsorb 4-aminothiophenol (4-ATP) on platinum electrodes in order to obtain an amino-terminated SAM as the base for the chemical attachment of single-wall carbon nanotubes (SWCNTs). A physico-chemical, morphological and electrochemical characterizations of SWCNTs attached onto the modified Pt electrodes was done by using reflection-absorption infrared spectroscopy (RAIR), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), and cyclic voltammetry (CV) techniques. The SWNTs/4-ATP/Pt surface had regions of small, medium, and large thickness of carbon nanotubes with heights of 100-200 nm, 700 nm to 1.5 μm, and 1.0-3.0 μm, respectively. Cyclic voltammetries (CVs) in sulfuric acid demonstrated that attachment of SWNTs on 4-ATP/Pt is markedly stable, even after 30 potential cycles. CV in ruthenium hexamine was similar to bare Pt electrodes, suggesting that SWNTs assembly is similar to a closely packed microelectrode array.

  1. United States housing, second quarter 2013

    Science.gov (United States)

    Delton Alderman

    2017-01-01

    The U.S. housing market’s quarter two results were disap¬pointing compared with the first quarter. Although overall expected gains did not materialize, certain sectors improved slightly. Housing under construction, completions, and new and existing home sales exhibited slight increases. Overall permit data declined, and the decrease in starts was due primarily to a...

  2. Trend chart: biogas. Forth quarter 2016

    International Nuclear Information System (INIS)

    Cavaud, Denis

    2017-02-01

    This publication presents the biogas industry situation of continental France and overseas territories during the forth quarter 2016: total connected load of biogas power plants, new connected facilities, regional distribution of facilities, evolution of quarterly production, distribution of facilities versus power and type, evolution forecasts of biogas power generation, detailed regional results, biomethane injection in natural gas distribution systems, methodology used

  3. Trend chart: biogas. Second quarter 2016

    International Nuclear Information System (INIS)

    Cavaud, Denis

    2016-08-01

    This publication presents the biogas industry situation of continental France and overseas territories during the Second quarter 2016: total connected load of biogas power plants, new connected facilities, regional distribution of facilities, evolution of quarterly production, distribution of facilities versus power and type, evolution forecasts of biogas power generation, detailed regional results, biomethane injection in natural gas distribution systems, methodology used

  4. Trend chart: biogas. Third quarter 2016

    International Nuclear Information System (INIS)

    Cavaud, Denis

    2016-11-01

    This publication presents the biogas industry situation of continental France and overseas territories during the third quarter 2016: total connected load of biogas power plants, new connected facilities, regional distribution of facilities, evolution of quarterly production, distribution of facilities versus power and type, evolution forecasts of biogas power generation, detailed regional results, biomethane injection in natural gas distribution systems, methodology used

  5. Trend chart: biogas. First quarter 2016

    International Nuclear Information System (INIS)

    Cavaud, Denis

    2016-05-01

    This publication presents the biogas industry situation of continental France and overseas territories during the first quarter 2016: total connected load of biogas power plants, new connected facilities, regional distribution of facilities, evolution of quarterly production, distribution of facilities versus power and type, evolution forecasts of biogas power generation, detailed regional results, biomethane injection in natural gas distribution systems, methodology used

  6. Characterization of azo dyes on Pt and Pt/polyaniline/dispersed Pt electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Molina, J.; Fernandez, J.; Rio, A.I. del; Bonastre, J. [Departamento de Ingenieria Textil y Papelera, EPS de Alcoy, Universitat Politecnica de Valencia, Plaza Ferrandiz y Carbonell s/n, 03801 Alcoy (Spain); Cases, F., E-mail: fjcases@txp.upv.es [Departamento de Ingenieria Textil y Papelera, EPS de Alcoy, Universitat Politecnica de Valencia, Plaza Ferrandiz y Carbonell s/n, 03801 Alcoy (Spain)

    2012-06-15

    The electrochemical characterization of two organic dyes (amaranth and procion orange MX-2R) has been performed on Pt electrodes and Pt electrodes coated with polyaniline and dispersed Pt. Electrodes with different Pt loads have been synthesized and characterized obtaining that a load of 300 {mu}g cm{sup -2} was the optimum one. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) was employed to observe the distribution and morphology of the Pt nanoparticles. The electroactivity of the electrodes has also been characterized by means of scanning electrochemical microscopy (SECM). The chemical characterization of Pt dispersed Pani coated Pt electrodes (Pt-Pani-Pt) was performed by means of X-ray photoelectron spectroscopy (XPS). The electrochemical characterization of the dyes has been performed by means of cyclic voltammetry. Voltammograms have shown that the presence of the dyes diminishes characteristic Pt oxidation and reduction peaks. However, redox processes due to the dyes, appeared in the voltammograms. The different species responsible of these redox processes were generated in the vicinity of the electrode and were not adsorbed on the electrode surface since after stirring, the different redox processes disappeared. Characterization with different scan rates showed that redox processes of both dyes were controlled by diffusion.

  7. Idaho National Laboratory Quarterly Performance Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Lisbeth [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-11-01

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of 60 reportable events (23 from the 4th Qtr FY14 and 37 from the prior three reporting quarters) as well as 58 other issue reports (including not reportable events and Significant Category A and B conditions) identified at INL from July 2013 through October 2014. Battelle Energy Alliance (BEA) operates the INL under contract DE AC07 051D14517.

  8. Helium Ion Microscopy of proton exchange membrane fuel cell electrode structures

    Directory of Open Access Journals (Sweden)

    Serguei Chiriaev

    2017-12-01

    Full Text Available Characterization of composite materials with microscopy techniques is an essential route to understanding their properties and degradation mechanisms, though the observation with a suitable type of microscopy is not always possible. In this work, we present proton exchange membrane fuel cell electrode interface structure dependence on ionomer content, systematically studied by Helium Ion Microscopy (HIM. A special focus was on acquiring high resolution images of the electrode structure and avoiding interface damage from irradiation and tedious sample preparation. HIM demonstrated its advantages in surface imaging, which is paramount in studies of the interface morphology of ionomer covered or absorbed catalyst structures in a combination with electrochemical characterization and accelerated stress test. The electrode porosity was found to depend on the ionomer content. The stressed electrodes demonstrated higher porosity in comparison to the unstressed ones on the condition of no external mechanical pressure. Moreover, formation of additional small grains was observed for the electrodes with the low ionomer content, indicating Pt redeposition through Ostwald ripening. Polymer nanofiber structures were found in the crack regions of the catalyst layer, which appear due to the internal stress originated from the solvent evaporation. These fibers have fairly uniform diameters of a few tens of nanometers, and their density increases with the increasing ionomer content in the electrodes. In the hot-pressed electrodes, we found more closed contact between the electrode components, reduced particle size, polymer coalescence and formation of nano-sized polymer fiber architecture between the particles.

  9. Investigation of the electrochemical behaviour of thermally prepared Pt-IrO2 electrodes

    Directory of Open Access Journals (Sweden)

    Konan Honoré Kondro

    2008-04-01

    Full Text Available Different IrO2 electrodes in which the molar percentage of platinum (Pt varies from 0 %mol Pt to 100 %mol Pt were prepared on titanium (Ti substrate by thermal decomposition techniques. The electrodes were characterized physically (SEM, XPS and electrochemically and then applied to methanol oxidation. The SEM micrographs indicated that the electrodes present different morphologies depending on the amount of platinum in the deposit and the cracks observed on the 0 %mol Pt electrode diminish in size tending to a compact and rough surface for 70 %mol Pt electrode. XPS results indicate good quality of the coating layer deposited on the titanium substrate. The voltammetric investigations in the supporting electrolyte indicate that the electrodes with low amount of platinum (less than 10 %mol Pt behave as pure IrO2. But in the case of electrodes containing more than 40 %mol Pt, the voltammograms are like that of platinum. Electrocatalytic activity towards methanol oxidation was observed with the electrodes containing high amount of platinum. Its oxidation begins at a potential of about 210 mV lower on such electrodes than the pure platinum electrode (100 %mol Pt. But for electrode containing low quantity of Pt, the surface of the coating is essentially composed of IrO2 and methanol oxidation occurs in the domain of water decomposition solely. The increase of the electrocatalytic behaviour of the electrodes containing high amount of Pt towards methanol oxidation is due to the bifunctional behaviour of the electrodes.

  10. (Shippingport Atomic Power Station). Quarterly operating report, third quarter 1979

    Energy Technology Data Exchange (ETDEWEB)

    Jones, T. D.

    1979-01-01

    At the beginning of the third quarter of 1979, the Shippingport Atomic Power Station remained shutdown to complete repairs of the turbine generator hydrogen circulation fan following discovery of a rubbing noise on May 24, 1979. The Station was in a cooldown condition at approximately 180/sup 0/F and 300 psig with a steam bubble in the pressurizer and the reactor coolant pumps in slow speed. The reactor plant cooldown heat exchanger was in service to maintain coolant temperature. The 1A, 1B, 1C, and 1D reactor coolant loops and the 1AC and 1BD purification loops remained in service. All expended PWR Core 2 fuel elements have previously been shipped off-site. The remaining irradiated PWR Core 2 core barrel and miscellaneous refueling tools were in storage under shielding water in the deep pit of the Fuel Handling Building. The LWBR Core has generated 12,111.00 EFPH from startup through the end of the quarter.

  11. Nondestructive analysis of the gold quarter liras

    International Nuclear Information System (INIS)

    Cakir, C.; Guerol, A.; Demir, L.; Sahin, Y.

    2009-01-01

    In this study, we have prepared seven Au-Cu standards in the concentration range of 18-24 (as carat) for nondestructive control of gold quarter liras. Some calibration curves for quantitative analysis of Au in the gold quarter liras that commercially present in Turkey have been plotted using these standard samples. The characteristic X-rays of Au and Cu emitted from these standard samples and the test sample with known composition are recorded by using a Ge(Li) detector. These calibration curves provide a nondestructive analysis of gold quarter liras with the uncertainties about 1.18%. (author)

  12. Quarterly environmental radiological survey summary - second quarter 1997 100, 200, 300, and 600 areas

    International Nuclear Information System (INIS)

    McKinney, S.M.; Marks, B.M.

    1997-01-01

    This report provides a summary of the radiological surveys performed in support of near-facility environmental monitoring at the Hanford Site. The Second Quarter 1997 survey results and the status of actions required are summarized below: All of the routine environmental radiological surveys scheduled during April, May, and June 1997, were performed as planned with the exception of UN-216-E-9. This site was not surveyed as stabilization activities were in progress. The sites scheduled for the Environmental Restorations Contractor (ERC) team were switched with those identified for the third quarter as there was a conflict with vegetation management activities

  13. Quarterly coal statistics of OECD countries

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-27

    These quarterly statistics contain data from the fourth quarter 1990 to the fourth quarter 1991. The first set of tables (A1 to A30) show trends in production, trade, stock change and apparent consumption data for OECD countries. Tables B1 to B12 show detailed statistics for some major coal trade flows to and from OECD countries and average value in US dollars. A third set of tables, C1 to C12, show average import values and indices. The trade data have been extracted or derived from national and EEC customs statistics. An introductory section summarizes trends in coal supply and consumption, deliveries to thermal power stations; electricity production and final consumption of coal and tabulates EEC and Japanese steam coal and coking coal imports to major countries.

  14. Quarterly oil statistics. First quarter 1978

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    The aim of this report is to provide rapid, accurate and detailed statistics on oil supply and demand in the OECD area. Main components of the system are: complete balances of production, trade, refinery intake and output, final consumption, stock levels and changes; separate data for crude oil, NGL, feedstocks and nine product groups; separate trade data for main product groups, LPG and naphtha; imports for 41 origins; exports for 29 destinations; marine bunkers and deliveries to international civil aviation by product group; aggregates of quarterly data to annual totals; and natural gas supply and consumption.

  15. Aerosol jet printed silver nanowire transparent electrode for flexible electronic application

    Science.gov (United States)

    Tu, Li; Yuan, Sijian; Zhang, Huotian; Wang, Pengfei; Cui, Xiaolei; Wang, Jiao; Zhan, Yi-Qiang; Zheng, Li-Rong

    2018-05-01

    Aerosol jet printing technology enables fine feature deposition of electronic materials onto low-temperature, non-planar substrates without masks. In this work, silver nanowires (AgNWs) are proposed to be printed into transparent flexible electrodes using a Maskless Mesoscale Material Deposition Aerosol Jet® printing system on a glass substrate. The influence of the most significant process parameters, including printing cycles, printing speed, and nozzle size, on the performance of AgNW electrodes was systematically studied. The morphologies of printed patterns were characterized by scanning electron microscopy, and the transmittance was evaluated using an ultraviolet-visible spectrophotometer. Under optimum conditions, high transparent AgNW electrodes with a sheet resistance of 57.68 Ω/sq and a linewidth of 50.9 μm were obtained, which is an important step towards a higher performance goal for flexible electronic applications.

  16. Electrode impedance analysis of chronic tungsten microwire neural implants: understanding abiotic vs. biotic contributions

    Directory of Open Access Journals (Sweden)

    Viswanath eSankar

    2014-05-01

    Full Text Available Changes in biotic and abiotic factors can be reflected in the complex impedance spectrum of the microelectrodes chronically implanted into the neural tissue. The recording surface of the tungsten electrode in vivo undergoes abiotic changes due to recording site corrosion and insulation delamination as well as biotic changes due to tissue encapsulation as a result of the foreign body immune response. We reported earlier that large changes in electrode impedance measured at 1 kHz were correlated with poor electrode functional performance, quantified through electrophysiological recordings during the chronic lifetime of the electrode. There is a need to identity the factors that contribute to the chronic impedance variation. In this work, we use numerical simulation and regression to equivalent circuit models to evaluate both the abiotic and biotic contributions to the impedance response over chronic implant duration. COMSOL® simulation of abiotic electrode morphology changes provide a possible explanation for the decrease in the electrode impedance at long implant duration while biotic changes play an important role in the large increase in impedance observed initially.

  17. Silver incorporated polypyrrole/polyacrylic acid electrode for electrochemical supercapacitor

    Science.gov (United States)

    Patil, Dipali S.; Pawar, Sachin A.; Kamble, Archana S.; Patil, Pramod S.

    2013-06-01

    In the present work, we study Ag doping effect on the specific capacitance of Polypyrrole/Polyacrylic Acid (PPy/PAA). Ag incorporated films were prepared by simple chemical route. Fourier transform-infrared and Fourier transform-Raman techniques were used for the phase identification. Surface morphology of the films was examined by Field Emission scanning electron microscopy and revealed granular structure for PPY, attached granules for PPy/PAA and granules with bright spots of Ag particles for the PPy/PAA/Ag films. The supercapacitive behavior of the electrodes was tested in three electrode system with 0.1 M H2SO4 electrolyte by using cyclic voltammetry. The highest specific capacitance value 226 Fg-1 was observed for the PPy/PAA/Ag film.

  18. Improvement of Amperometric Sensor Used for Determination of Nitrate with Polypyrrole Nanowires Modified Electrode

    Directory of Open Access Journals (Sweden)

    Shi-chang Wang

    2005-12-01

    Full Text Available Polypyrrole(PPy nanowire modified electrodes were developed by template-freeelectrochemical method based on graphite electrode. The modified electrode wascharacterized by their amperometric response towards nitrate ions. Before reduction ofnitrate ions, electrochemical solid-phase extraction (EC-SPE of nitrate in/on modifiedelectrodes was conducted. It is found that the unusual nanowired structure of polypyrrolelayer (instead of well known cauliflower structure allows us to increase the effectivesurface area of the electrode and subsequently the sensitivity. And the effects ofelectrochemical preparation parameters of PPy nanowire modified electrodes on theircorresponding characters were evaluated. The experimental results show that theelectrochemical preparation parameters of the modified electrodes such as scan rate,polymerization potential, temperature of polymerization solution and polymerization timehave significantly effects on the morphology of PPy nanowires and subsequently effectivesurface area of the electrode and electroreduction current density of nitrate. Thedetermination sensitivity may be varied according to the modification parameters. Under acertain polymerization conditions, the corresponding sensitivity reaches 336.28 mA/M cm2 and the detection limit is 1.52×10-6 M. The proposed method was successfully applied in thedetection of nitrate in the real samples.

  19. Surface structure and morphology of Cu-free and Cu-covered Au(100) and Au(111) electrodes in alkaline solution

    Energy Technology Data Exchange (ETDEWEB)

    Schlaup, Christian [Technical University of Denmark, Department of Physics, Fysikvey, DK-2800 Kongens Lyngby (Denmark); Friebel, Daniel [Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd, Menlo Park, CA 94025 (United States); Wandelt, Klaus [University of Bonn, Institute for Physical und Theoretical Chemistry, Wegelerstr. 12, D-53115 Bonn (Germany)

    2011-07-01

    For both Cu-free Au-electrodes three different phases were observed as a function of the applied electrode potential. While at low potentials the onset of surface reconstruction points towards an apparently adsorbate free surface and, thus, a weak interaction with species from the electrolyte, a Au-hydroxide and a Au-oxide phase are formed subsequently during potential increase. A similar phase behavior was also found for Cu-covered Au-electrodes, while at low potentials an apparently adsorbate free Cu layer is observed, a Cu-hydroxide coadsorbate phase and a Cu-oxide phase are formed under increased potential conditions. In addition the apparently adsorbate free Cu-film tends to form a Cu-Au alloy phase while keeping the electrode for a sufficient long time at low potential conditions.

  20. 12 CFR 630.40 - Contents of the quarterly report to investors.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 6 2010-01-01 2010-01-01 false Contents of the quarterly report to investors... INVESTORS IN SYSTEMWIDE AND CONSOLIDATED BANK DEBT OBLIGATIONS OF THE FARM CREDIT SYSTEM Quarterly Reports to Investors § 630.40 Contents of the quarterly report to investors. (a) General. The quarterly...

  1. Vertically aligned cobalt hydroxide nano-flake coated electro-etched carbon fiber cloth electrodes for supercapacitors

    Science.gov (United States)

    Cheng, Qian; Tang, Jie; Zhang, Han; Qin, Lu-Chang

    2014-11-01

    We describe preparation and characterization of nanostructured electrodes using Co(OH)2 nano-flakes and carbon fiber cloth for supercapacitors. Nanostructured Co(OH)2 flakes are produced by electrodeposition and they are coated onto the electro-etched carbon fiber cloth. A highest specific capacitance of 3404.8 F g-1 and an area-normalized specific capacitance of 3.3 F cm-2 have been obtained from such electrodes. Morphology and structure of the nanostructured electrodes have been characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The electrochemical properties have been studied by cyclic voltammetry (CV), constant-current charge and discharge, electrochemical impedance spectroscopy (EIS), and long-time cycling.

  2. RuO2/MnO2 composite materials for high-performance supercapacitor electrodes

    Science.gov (United States)

    Jianming, Lei; Xiaomei, Chen

    2015-08-01

    Ruthenium oxide and manganese oxide nanomaterials were respectively prepared by a sol-gel process and hydrothermal synthesis method. The morphologies and microstructures of the composite nanomaterials were characterized by SEM and XRD. Based on the cyclic voltammetry, electrochemical impedance spectroscopy and constant current charge-discharge techniques, the performances of the electrodes were investigated. The results show that the composite of manganese oxide and ruthenium oxide is beneficial to improve the impedance characteristic. The electrode with 60% (mass ratio) manganese oxide has a high specific capacitance of 438 F/g and a lower inner resistance of 0.304 Ω using 38% (mass ratio) H2SO4 solution. The capacitance retention of RuO2/MnO2 composite electrode was 92.5% after 300 cycles.

  3. RuO2/MnO2 composite materials for high-performance supercapacitor electrodes

    International Nuclear Information System (INIS)

    Lei Jianming; Chen Xiaomei

    2015-01-01

    Ruthenium oxide and manganese oxide nanomaterials were respectively prepared by a sol–gel process and hydrothermal synthesis method. The morphologies and microstructures of the composite nanomaterials were characterized by SEM and XRD. Based on the cyclic voltammetry, electrochemical impedance spectroscopy and constant current charge–discharge techniques, the performances of the electrodes were investigated. The results show that the composite of manganese oxide and ruthenium oxide is beneficial to improve the impedance characteristic. The electrode with 60% (mass ratio) manganese oxide has a high specific capacitance of 438 F/g and a lower inner resistance of 0.304 Ω using 38% (mass ratio) H 2 SO 4 solution. The capacitance retention of RuO 2 /MnO 2 composite electrode was 92.5% after 300 cycles. (paper)

  4. Arsenic removal from groundwater using low-cost carbon composite electrodes for capacitive deionization.

    Science.gov (United States)

    Lee, Ju-Young; Chaimongkalayon, Nantanee; Lim, Jinho; Ha, Heung Yong; Moon, Seung-Hyeon

    2016-01-01

    Affordable carbon composite electrodes were developed to treat low-concentrated groundwater using capacitive deionization (CDI). A carbon slurry prepared using activated carbon powder (ACP), poly(vinylidene fluoride), and N-methyl-2-pyrrolidone was employed as a casting solution to soak in a low-cost porous substrate. The surface morphology of the carbon composite electrodes was investigated using a video microscope and scanning electron microscopy. The capacitance and electrical conductivity of the carbon composite electrodes were then examined using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), respectively. According to the CV and EIS measurements, the capacitances and electrical conductivities of the carbon composite electrodes were in the range of 8.35-63.41 F g(-1) and 0.298-0.401 S cm(-1), respectively, depending on ACP contents. A CDI cell was assembled with the carbon composite electrodes instead of with electrodes and current collectors. The arsenate removal test included an investigation of the optimization of several important operating parameters, such as applied voltage and solution pH, and it achieved 98.8% removal efficiency using a 1 mg L(-1) arsenate solution at a voltage of 2 V and under a pH 9 condition.

  5. Fabrication of Nickel/nanodiamond/boron-doped diamond electrode for non-enzymatic glucose biosensor

    International Nuclear Information System (INIS)

    Dai, Wei; Li, Mingji; Gao, Sumei; Li, Hongji; Li, Cuiping; Xu, Sheng; Wu, Xiaoguo; Yang, Baohe

    2016-01-01

    Highlights: • Nanodiamonds (NDs) were electrophoretically deposited on the BDD film. • The NDs significantly extended the potential window. • Ni/NDs/BDD electrode was prepared by electrodeposition. • The electrode shows good catalytic activity for glucose oxidation. - Abstract: A stable and sensitive non-enzymatic glucose sensor was prepared by modifying a boron-doped diamond (BDD) electrode with nickel (Ni) nanosheets and nanodiamonds (NDs). The NDs were electrophoretically deposited on the BDD surface, and acted as nucleation sites for the subsequent electrodeposition of Ni. The morphology and composition of the modified BDD electrodes were characterized by field-emission scanning electron microscopy and energy-dispersive X-ray spectroscopy, respectively. The Ni nanosheet-ND modified BDD electrode exhibited good current response towards the non-enzymatic oxidation of glucose in alkaline media. The NDs significantly extended the potential window. The response to glucose was linear over the 0.2–1055.4-μM range. The limit of detection was 0.05 μM, at a signal-to-noise ratio of 3. The Ni nanosheet-ND/BDD electrode exhibited good selectivity, reproducibility and stability. Its electrochemical performance, low cost and simple preparation make it a promising non-enzymatic glucose sensor.

  6. Quarterly fiscal policy

    NARCIS (Netherlands)

    Kendrick, D.A.; Amman, H.M.

    2014-01-01

    Monetary policy is altered once a month. Fiscal policy is altered once a year. As a potential improvement this article examines the use of feedback control rules for fiscal policy that is altered quarterly. Following the work of Blinder and Orszag, modifications are discussed in Congressional

  7. Invisible Base Electrode Coordinates Approximation for Simultaneous SPECT and EEG Data Visualization

    Science.gov (United States)

    Kowalczyk, L.; Goszczynska, H.; Zalewska, E.; Bajera, A.; Krolicki, L.

    2014-04-01

    This work was performed as part of a larger research concerning the feasibility of improving the localization of epileptic foci, as compared to the standard SPECT examination, by applying the technique of EEG mapping. The presented study extends our previous work on the development of a method for superposition of SPECT images and EEG 3D maps when these two examinations are performed simultaneously. Due to the lack of anatomical data in SPECT images it is a much more difficult task than in the case of MRI/EEG study where electrodes are visible in morphological images. Using the appropriate dose of radioisotope we mark five base electrodes to make them visible in the SPECT image and then approximate the coordinates of the remaining electrodes using properties of the 10-20 electrode placement system and the proposed nine-ellipses model. This allows computing a sequence of 3D EEG maps spanning on all electrodes. It happens, however, that not all five base electrodes can be reliably identified in SPECT data. The aim of the current study was to develop a method for determining the coordinates of base electrode(s) missing in the SPECT image. The algorithm for coordinates approximation has been developed and was tested on data collected for three subjects with all visible electrodes. To increase the accuracy of the approximation we used head surface models. Freely available model from Oostenveld research based on data from SPM package and our own model based on data from our EEG/SPECT studies were used. For data collected in four cases with one electrode not visible we compared the invisible base electrode coordinates approximation for Oostenveld and our models. The results vary depending on the missing electrode placement, but application of the realistic head model significantly increases the accuracy of the approximation.

  8. Invisible Base Electrode Coordinates Approximation for Simultaneous SPECT and EEG Data Visualization

    Directory of Open Access Journals (Sweden)

    Kowalczyk L.

    2014-04-01

    Full Text Available This work was performed as part of a larger research concerning the feasibility of improving the localization of epileptic foci, as compared to the standard SPECT examination, by applying the technique of EEG mapping. The presented study extends our previous work on the development of a method for superposition of SPECT images and EEG 3D maps when these two examinations are performed simultaneously. Due to the lack of anatomical data in SPECT images it is a much more difficult task than in the case of MRI/EEG study where electrodes are visible in morphological images. Using the appropriate dose of radioisotope we mark five base electrodes to make them visible in the SPECT image and then approximate the coordinates of the remaining electrodes using properties of the 10-20 electrode placement system and the proposed nine-ellipses model. This allows computing a sequence of 3D EEG maps spanning on all electrodes. It happens, however, that not all five base electrodes can be reliably identified in SPECT data. The aim of the current study was to develop a method for determining the coordinates of base electrode(s missing in the SPECT image. The algorithm for coordinates approximation has been developed and was tested on data collected for three subjects with all visible electrodes. To increase the accuracy of the approximation we used head surface models. Freely available model from Oostenveld research based on data from SPM package and our own model based on data from our EEG/SPECT studies were used. For data collected in four cases with one electrode not visible we compared the invisible base electrode coordinates approximation for Oostenveld and our models. The results vary depending on the missing electrode placement, but application of the realistic head model significantly increases the accuracy of the approximation.

  9. Study on Electrochemical Performance of Carbonnanotubes/Fey 04 Composite Electrode Material

    Directory of Open Access Journals (Sweden)

    WANG Fang--yong

    2017-02-01

    Full Text Available For single super capacitor materials,each material has its own unique advantages and defects. In this paper, the synthesis of complex multi walled carbon nanotubes with Fe304 nanoparticles by simple hydrothermal method. Composite performance for Fe3 OQ nanoparticles adsorbed on carbon nano tube wall composed of reticular structure morphology. Synergy of two component,provides the binary nanometer compound larger specific capacity, excellent properties and good cycle stability. The experimental results proved that the improvement effects of CNT carbon materials on the electrochemical properties of pseudocapacitive electrode material,and CNT/Fe3 OQ nano- composites applied to supercapacitor electrode material.

  10. Quarterly report for the electricity market; Kvartalsrapport for kraftmarknaden

    Energy Technology Data Exchange (ETDEWEB)

    Eliston, Anton Jaynand; Waeringstad, Thomas; Holmqvist, Erik; Lund Per Tore Jensen; Magnussen, Ingrid; Willumsen, Mats Oivind; Vik, Martin Andreas; Rasmussen, Kristian; Pettersen, Finn Erik Ljaastad; Weir, David Edward; Thorsen, Kjell; Langseth, Benedicte; Skau, Seming Haakon

    2013-02-01

    In the fourth quarter of 2012 the total inflow was 20.4 TWh, 2.8 TWh less than normal and 11.3 TWh less than in the same quarter than in 2011. Meanwhile the weather was slightly colder than normal, which contributed to high production and normalization of reservoir fillings. At the end of the quarter, the reservoir level was 0.8 percentage points below normal for the season, while it was 4.5 percentage points over the beginning of the quarter. At the end of 2012 it was 9.9 percent landfill units lower than the same time in 2011. Norway had a power consumption of 37.2 TWh in the fourth quarter, an increase of 9 percent from last year. In 2012, consumption was 130.0 TWh, an increase of around 5 TWh from 2011. Power production in Norway was 39.2 TWh in the fourth quarter - an increase of 2.4 percent from last year. In 2012, production was 147.9 TWh, compared to 128.1 TWh in 2011. The production increase is due to high reservoir levels at the beginning of 2012, and more than normal inflow. This gave high exports abroad. In the quarter, Norway had a net export of 2 TWh of electricity and was 17.9 TWh in 2012. It is the highest since 2000. The good resource gave a relatively low price level in the wholesale market for electricity. The average spot price in the Norwegian market areas were NOK 268-277 / MWh in the fourth quarter. In 2012 the price was 217-236 NOK/ MWh.(eb)

  11. Enhanced electrochemical oxidation of methanol on copper electrodes modified by electrocorrosion and electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Carugno, Sofía [INQUIMAE – DQIAQF, Facultad de Ciencias, Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, 1428 Buenos Aires (Argentina); Chassaing, Elisabeth [IRDEP (UMR7174), EDF R and D, 6 Quai Watier, 78401 Chatou (France); Rosso, Michel [LPMC (UMR7643), CNRS, Ecole Polytechnique, F91128 Palaiseau Cedex (France); González, Graciela A., E-mail: graciela@qi.fcen.uba.ar [INQUIMAE – DQIAQF, Facultad de Ciencias, Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, 1428 Buenos Aires (Argentina)

    2014-02-14

    In this paper, we report a study of electrocatalytic oxidation of methanol on copper electrodes subjected to different surface treatments, either electrocorrosion or electrodeposition in the absence of strong hydrogen co-deposition. The surface morphology of treated electrodes was examined by Field Emission Scanning Electron Microscopy (FE-SEM). The effect of different treatment conditions and the methanol concentration dependence were evaluated by cyclic voltammetric technique. The results indicate that the oxidation of methanol can be enhanced by a suitable micro and nano structure generated by these treatments. This enhanced electrode activity is related to an increase of the effective surface area and/or to an increase of the surface concentration of electroactive molecules or intermediates. - Highlights: • We presented simple treatments to increase the response of copper electrodes. • Copper electrodes were modified by electrocorrosion and electrodeposition. • Scanning Electron Microscopy images reveal the effects of the different treatments. • The response is enhanced by an area increase and/or intermediates concentration. • For each treatment the concentration range of the diffusion control is analyzed.

  12. Synthesis of In2O3 nanostructures with different morphologies as potential supercapacitor electrode materials

    Science.gov (United States)

    Tuzluca, Fatma Nur; Yesilbag, Yasar Ozkan; Ertugrul, Mehmet

    2018-01-01

    In this study performed using a chemical vapor deposition (CVD) system, one-dimensional (1-D) single crystal indium oxide (In2O3) nanotowers, nanobouqets, nanocones, and nanowires were investigated as a candidate for a supercapacitor electrode material. These nanostructures were grown via Vapor-Liquid-Solid (VLS) and Vapor-Solid (VS) mechanisms according to temperature differences (1000-600 °C). The morphologies, growth mechanisms and crystal structures of these 1-D single crystal In2O3 nanostructures were defined by Field Emission Scanning Electron Microscopy (FESEM), High Resolution Transmission Electron Microscopy (HR-TEM), X-Ray Diffraction (XRD) and Raman Spectroscopy analyses. The elemental analyses of the nanostructures were carried out by energy dispersive X-Ray Spectroscopy (EDS); they gave photoluminescence (PL) spectra with 3.39, 2.65, and 1.95 eV band gap values, corresponding to 365 nm, 467 nm, and 633 wavelengths, respectively. The electrochemical performances of these 1-D single crystal In2O3 nanostructures in an aqueous electrolyte solution (1 M Na2SO4) were determined by Cyclic Voltammetry (CV), Galvanostatic Charge Discharge (GCD) and Electrochemical Impedance Spectroscopy (EIS) analyses. According to GCD measurements at 0.04 mA cm-2 current density, areal capacitance values were 10.1 mF cm-2 and 6.7 mF cm-2 for nanotowers, 12.5 mF cm-2 for nanobouquets, 4.9 mF cm-2 for nanocones, and 16.6 mF cm-2 for nanowires. The highest areal capacitance value was observed in In2O3 nanowires, which retained 66.8% of their initial areal capacitance after a 10000 charge-discharge cycle, indicating excellent cycle stability.

  13. Metallurgical Laboratory Hazardous Waste Management Facility groundwater monitoring report. First quarter 1995

    International Nuclear Information System (INIS)

    1995-06-01

    During first quarter 1995, samples from AMB groundwater monitoring wells at the Metallurgical Laboratory Hazardous Waste Management Facility (Met Lab HWMF) were analyzed for selected heavy metals, field measurements, radionuclides, volatile organic compounds, and other constituents. Six parameters exceeded standards during the quarter. As in previous quarters, tetrachloroethylene and trichloroethylene exceeded final Primary Drinking Water Standards (PDWS). Total organic halogens exceeded its Savannah River Site (SRS) Flag 2 criterion during first quarter 1995 as in fourth quarter 1994. Aluminum, iron, and manganese, which were not analyzed for during fourth quarter 1994, exceeded the Flag 2 criteria in at least two wells each during first quarter 1995. Groundwater flow direction and rate in the M-Area Aquifer Zone were similar to previous quarters. Conditions affecting the determination of groundwater flow directions and rates in the Upper Lost Lake Aquifer Zone, Lower Lost Lake Aquifer Zone, and the Middle Sand Aquifer Zone of the Crouch Branch Confining Unit were also similar to previous quarters

  14. Natural gas imports and exports: First quarter report 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    The Office of Fuels Programs prepares quarterly reports summarizing the data provided by companies authorized to import or export natural gas. Companies are required, as a condition of their authorizations, to file quarterly reports with the OFP. This quarter`s focus is market penetration of gas imports into New England. Attachments show the following: % takes to maximum firm contract levels and weighted average per unit price for the long-term importers, volumes and prices of gas purchased by long-term importers and exporters, volumes and prices for gas imported on short-term or spot market basis, and gas exported short-term to Canada and Mexico.

  15. Trend chart: wind power. Third quarter 2015

    International Nuclear Information System (INIS)

    Reynaud, Didier

    2015-11-01

    This publication presents the wind energy situation of continental France and overseas territories during the third quarter 2015: total connected load, new connected facilities, regional distribution of wind power production, evolution of quarterly production, distribution of facilities versus power, evolution forecasts of the French wind power park, projects in progress, detailed regional results, methodology used

  16. Trend chart: wind power. Forth quarter 2016

    International Nuclear Information System (INIS)

    Coltier, Yves

    2017-02-01

    This publication presents the wind energy situation of continental France and overseas territories during the forth quarter 2016: total connected load, new connected facilities, regional distribution of wind power production, evolution of quarterly production, distribution of facilities versus power, evolution forecasts of the French wind power park, projects in progress, detailed regional results, methodology used

  17. Trend chart: wind power. First quarter 2016

    International Nuclear Information System (INIS)

    Reynaud, Didier

    2016-05-01

    This publication presents the wind energy situation of continental France and overseas territories during the first quarter 2016: total connected load, new connected facilities, regional distribution of wind power production, evolution of quarterly production, distribution of facilities versus power, evolution forecasts of the French wind power park, projects in progress, detailed regional results, methodology used

  18. Trend chart: wind power. Third quarter 2016

    International Nuclear Information System (INIS)

    Reynaud, Didier

    2016-11-01

    This publication presents the wind energy situation of continental France and overseas territories during the third quarter 2016: total connected load, new connected facilities, regional distribution of wind power production, evolution of quarterly production, distribution of facilities versus power, evolution forecasts of the French wind power park, projects in progress, detailed regional results, methodology used

  19. Trend chart: wind power. Second quarter 2016

    International Nuclear Information System (INIS)

    Reynaud, Didier

    2016-08-01

    This publication presents the wind energy situation of continental France and overseas territories during the second quarter 2016: total connected load, new connected facilities, regional distribution of wind power production, evolution of quarterly production, distribution of facilities versus power, evolution forecasts of the French wind power park, projects in progress, detailed regional results, methodology used

  20. Trend chart: wind power. First quarter 2017

    International Nuclear Information System (INIS)

    2017-05-01

    This publication presents the wind energy situation of continental France and overseas territories during the first quarter 2017: total connected load, new connected facilities, regional distribution of wind power production, evolution of quarterly production, distribution of facilities versus power, evolution forecasts of the French wind power park, projects in progress, detailed regional results, methodology used

  1. Trend chart: wind power. Forth quarter 2015

    International Nuclear Information System (INIS)

    Reynaud, Didier

    2016-02-01

    This publication presents the wind energy situation of continental France and overseas territories during the forth quarter 2015: total connected load, new connected facilities, regional distribution of wind power production, evolution of quarterly production, distribution of facilities versus power, evolution forecasts of the French wind power park, projects in progress, detailed regional results, methodology used

  2. First quarter 2005 sales data

    International Nuclear Information System (INIS)

    2005-04-01

    This press release brings information on the AREVA group sales data. First quarter 2005 sales for the group were 2,496 millions of euros, up 3,6% year-on-year from 2,41 millions. The change in foreign exchange rates between the two periods show a negative impact of 22 millions euros, which is much lower than in the first quarter of 2004. It analyzes also in more details the situation of the front end, the reactors and service division, the back end division, the transmission and distribution division and the connectors division. (A.L.B.)

  3. Parachute Creek Shale Oil Program Environmental Monitoring Program. Quarterly report, fourth quarter, October 1-December 31, 1991

    International Nuclear Information System (INIS)

    1992-01-01

    The Energy Security Act of 1980 established a program to provide financial assistance to private industry in the construction and operation of commercial-scale synthetic fuels plants. The Parachute Creek Shale Oil Program is one of four projects awarded financial assistance. The Program agreed to comply with existing environmental monitoring regulations and to develop an Environmental Monitoring Plan (EMP) incorporating supplemental monitoring in the areas of water, air, solid waste, and worker health and safety during the period 1985-1992. These activities are described in a series of quarterly and annual reports. The document contains environmental compliance data collected in the fourth quarter of 1991, contents of reports on compliance data submitted to regulatory agencies, and supplemental analytical results from retorted shale pile runoff water collected following a storm event during the third quarter of 1991

  4. Spiraling Light with Magnetic Metamaterial Quarter-Wave Turbines.

    Science.gov (United States)

    Zeng, Jinwei; Luk, Ting S; Gao, Jie; Yang, Xiaodong

    2017-09-19

    Miniaturized quarter-wave plate devices empower spin to orbital angular momentum conversion and vector polarization formation, which serve as bridges connecting conventional optical beam and structured light. Enabling the manipulability of additional dimensions as the complex polarization and phase of light, quarter-wave plate devices are essential for exploring a plethora of applications based on orbital angular momentum or vector polarization, such as optical sensing, holography, and communication. Here we propose and demonstrate the magnetic metamaterial quarter-wave turbines at visible wavelength to produce radially and azimuthally polarized vector vortices from circularly polarized incident beam. The magnetic metamaterials function excellently as quarter-wave plates at single wavelength and maintain the quarter-wave phase retardation in broadband, while the turbine blades consist of multiple polar sections, each of which contains homogeneously oriented magnetic metamaterial gratings near azimuthal or radial directions to effectively convert circular polarization to linear polarization and induce phase shift under Pancharatnum-Berry's phase principle. The perspective concept of multiple polar sections of magnetic metamaterials can extend to other analogous designs in the strongly coupled nanostructures to accomplish many types of light phase-polarization manipulation and structured light conversion in the desired manner.

  5. Simulation of diffusion-induced stress using reconstructed electrodes particle structures generated by micro/nano-CT

    International Nuclear Information System (INIS)

    Lim, Cheolwoong; Yan Bo; Yin Leilei; Zhu Likun

    2012-01-01

    Highlights: ► The microstructure of LIB electrodes was obtained by X-ray micro/nano-CT. ► We studied diffusion-induced stresses based on realistic 3D microstructures. ► Stresses depend on geometric characteristics of electrode particle. ► Stresses in a real particle are much higher than those in a spherical particle. - Abstract: Lithium ion batteries experience diffusion-induced stresses during charge and discharge processes which can cause electrode failure in the form of fracture. Previous diffusion-induced stress models and simulations are mainly based on simple active material particle structures, such as spheres and ellipsoids. However, the simple structure model cannot reveal the stress development in a real complex lithium ion battery electrode. In this paper, we studied the diffusion-induced stresses numerically based on a realistic morphology of reconstructed particles during the lithium ion intercalation process. The morphology of negative and positive active materials of a lithium ion battery was determined using X-ray micro/nano computed tomography technology. Diffusion-induced stresses were simulated at different C rates under galvonostatic conditions and compared with spherical particles. The simulation results show that the intercalation stresses of particles depend on their geometric characteristics. The highest von Mises stress and Tresca stress in a real particle are several times higher than the stresses in a spherical particle with the same volume.

  6. EDF - Quarterly Financial Information

    International Nuclear Information System (INIS)

    Trivi, Carole; Boissezon, Carine de; Hidra, Kader

    2014-01-01

    EDF's sales in the first quarter of 2014 were euro 21.2 billion, down 3.9% from the first quarter of 2013. At constant scope and exchange rates, sales were down 4.2% due to mild weather conditions, which impacted sales of electricity in France, gas sales abroad and trading activities in Europe. UK sales were nonetheless sustained by B2B sales due to higher realised wholesale market prices. In Italy, sales growth was driven by an increase in electricity volumes sold. The first quarter of 2014 also saw the strengthening of the Group's financial structure with the second phase of its multi-annual hybrid funding programme (nearly euro 4 billion equivalent) as well as the issue of two 100-year bonds in dollars and sterling aimed at significantly lengthening average debt maturity. 2014 outlook and 2014-2018 vision: - EDF Group has confirmed its financial objectives for 2014; - Group EBITDA excluding Edison: organic growth of at least 3%; - Edison EBITDA: recurring EBITDA target of euro 1 billion and at least euro 600 million in 2014 before effects of gas contract re-negotiations; - Net financial debt / EBITDA: between 2x and 2.5x; - Pay-out ratio of net income excluding non-recurring items post-hybrid: 55% to 65%. The Group has reaffirmed its goal of achieving positive cash flow after dividends, excluding Linky, in 2018

  7. Quarterly report on program cost and schedule: Fourth quarter FY 1988

    International Nuclear Information System (INIS)

    1988-01-01

    Major program milestones completed in the fourth quarter of FY 1988 include completed preliminary draft NWPAA Section 175 Impacts Report, completed Title I ESF design, completed site reclamation in Texas, distributed review draft of the Dry Cask Storage Study, completed draft and final FY 1990 OMB budget, issued FY 1987 Annual Report to Congress, issued four draft Environmental Field Activity Plans, issued draft Environmental Program Overview, and made grant payments to local governments under Section 116 of NWPA, as amended. Major accomplishments during the fourth quarter of FY 1988 are listed. The Water Appropriation Permit Application was filed with the Nevada State Engineer on July 21, 1988. Installation and checkout of the Prototype Engineered Barrier Test equipment in G-tunnel is continuing with an expected early September test initiation data. The Configuration Management Plan was sent to DOE/HQ for approval. The prototype facility for testing the horizontal waste package emplacement configuration was completed in the G-tunnel

  8. Morphological and magnetic properties of cobalt nanoclusters electrodeposited onto HOPG

    International Nuclear Information System (INIS)

    Rivera, M.; Rios-Reyes, C.H.; Mendoza-Huizar, L.H.

    2008-01-01

    In this work, the morphological and magnetic properties of cobalt nanoclusters obtained from two different sulphate electrolyte solutions were studied. The aggregates were electrodeposited onto highly oriented pyrolytic graphite electrodes in overpotential conditions, in order to investigate the cationic influence on the final properties of the aggregates. In both cases, scanning electron microscopy and atomic force microscopy showed random isolated clusters on the electrode surface, where size variations were determined by the electrolyte solution. By using magnetic force microscopy, the distribution of the electrodeposited magnetic material was more clearly observed which gave some insights on the growth mechanism of these aggregates.

  9. Anodic oxidation of wastewater containing the Reactive Orange 16 Dye using heavily boron-doped diamond electrodes

    International Nuclear Information System (INIS)

    Migliorini, F.L.; Braga, N.A.; Alves, S.A.; Lanza, M.R.V.; Baldan, M.R.; Ferreira, N.G.

    2011-01-01

    Highlights: → Electrochemical advanced oxidation process was studied using BDD based anodes with different boron concentrations. → The difference between the non-active and active anodes for organics degradation. → The influence of morphologic and structural properties of BDD electrodes on the RO-16 dye degradation. - Abstract: Boron-doped diamond (BDD) films grown on the titanium substrate were used to study the electrochemical degradation of Reactive Orange (RO) 16 Dye. The films were produced by hot filament chemical vapor deposition (HFCVD) technique using two different boron concentrations. The growth parameters were controlled to obtain heavily doped diamond films. They were named as E1 and E2 electrodes, with acceptor concentrations of 4.0 and 8.0 x 10 21 atoms cm -3 , respectively. The boron levels were evaluated from Mott-Schottky plots also corroborated by Raman's spectra, which characterized the film quality as well as its physical property. Scanning Electron Microscopy showed well-defined microcrystalline grain morphologies with crystal orientation mixtures of (1 1 1) and (1 0 0). The electrode efficiencies were studied from the advanced oxidation process (AOP) to degrade electrochemically the Reactive Orange 16 azo-dye (RO16). The results were analyzed by UV/VIS spectroscopy, total organic carbon (TOC) and high-performance liquid chromatography (HPLC) techniques. From UV/VIS spectra the highest doped electrode (E2) showed the best efficiency for both, the aromaticity reduction and the azo group fracture. These tendencies were confirmed by the TOC and chromatographic measurements. Besides, the results showed a direct relationship among the BDD morphology, physical property, and its performance during the degradation process.

  10. Electrocatalytic reduction of nitrite on tetraruthenated metalloporphyrins/Nafion glassy carbon modified electrode

    Energy Technology Data Exchange (ETDEWEB)

    Calfuman, Karla [Facultad de Ciencias, Departamento de Quimica, Universidad de Chile, Las Palmeras 3425, Casilla 653, Nunoa, Santiago (Chile); Aguirre, Maria Jesus [Facultad de Quimica y Biologia, Departamento de Quimica de los Materiales, Universidad de Santiago de Chile, Santiago (Chile); Canete-Rosales, Paulina; Bollo, Soledad [Facultad de Ciencias Quimicas y Farmaceuticas, Departamento de Quimica Farmacologica y Toxicologica, Universidad de Chile, Santiago (Chile); Llusar, Rosa [Departamento de Quimica Fisica y Analitica, Universidad de Jaume I, Castellon (Spain); Isaacs, Mauricio, E-mail: misaacs@uchile.cl [Facultad de Ciencias, Departamento de Quimica, Universidad de Chile, Las Palmeras 3425, Casilla 653, Nunoa, Santiago (Chile)

    2011-10-01

    Highlights: > Preparation and characterization of modified electrodes with M(II) Tetraruthenated porphyrins onto a Nafion film. > The electrodes were characterized by SEM, TEM, AFM and SECM techniques. > The modified electrodes are active in the electrochemical reduction of nitrite at -660 mV vs Ag/AgCl. > GC/Nf/CoTRP modified electrode is more electrochemically active than their Ni and Zn analogues. - Abstract: This paper describes the electrochemical reduction of nitrite ion in neutral aqueous solution mediated by tetraruthenated metalloporphyrins (Co(II), Ni(II) and Zn(II)) electrostatically assembled onto a Nafion film previously adsorbed on glassy carbon or ITO electrodes. Scanning electron microscope (SEM-EDX) and transmission electron microscopy (TEM) results have shown that on ITO electrodes the macrocycles forms multiple layers with a disordered stacking orientation over the Nafion film occupying hydrophobic and hydrophilic sites in the polyelectrolyte. Atomic force microscopy (AFM) results demonstrated that the Nafion film is 35 nm thick and tetraruthenated metalloporphyrins layers 190 nm thick presenting a thin but compacted morphology. Scanning electrochemical microscopy (SECM) images shows that the Co(II) tetraruthenated porphyrins/Nf/GC modified electrode is more electrochemically active than their Ni and Zn analogues. These modified electrodes are able to reduce nitrite at -660 mV showing enhanced reduction current and a decrease in the required overpotential compared to bare glassy carbon electrode. Controlled potential electrolysis experiments verify the production of ammonia, hydrazine and hydroxylamine at potentials where reduction of solvent is plausible demonstrating some selectivity toward the nitrite ion. Rotating disc electrode voltammetry shows that the factor that governs the kinetics of nitrite reduction is the charge propagation in the film.

  11. Wind/photovoltaic power indicators. Third quarter 2010

    International Nuclear Information System (INIS)

    2010-01-01

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly connected load during the last years, power generated since the beginning of the year, progress trend of wind and photovoltaic power in France, regional status. (J.S.)

  12. Trend chart: wind power. Second quarter 2017

    International Nuclear Information System (INIS)

    2017-08-01

    This publication presents the wind energy situation of continental France and overseas territories during the second quarter 2017: total connected load, new connected facilities, regional distribution of wind power production, evolution of quarterly production, distribution of facilities versus power, evolution forecasts of the French wind power park, projects in progress, detailed regional results, revision of results

  13. Wind/photovoltaic power indicators. Second quarter 2009

    International Nuclear Information System (INIS)

    2009-09-01

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly connected load during the last years, power generated since the beginning of the year, progress trend of wind and photovoltaic power in France, regional status. (J.S.)

  14. Trend chart: wind power. Fourth quarter 2017

    International Nuclear Information System (INIS)

    Moreau, Sylvain

    2018-02-01

    This publication presents the wind energy situation of continental France and overseas territories during the fourth quarter 2017: total connected load, new connected facilities, regional distribution of wind power production, evolution of quarterly production, distribution of facilities versus power, evolution forecasts of the French wind power park, projects in progress, detailed regional results, revision of results

  15. Wind/photovoltaic power indicators. Second quarter 2011

    International Nuclear Information System (INIS)

    2011-01-01

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly connected load during the last years, power generated since the beginning of the year, progress trend of wind and photovoltaic power in France, regional status. (J.S.)

  16. Wind/photovoltaic power indicators. First quarter 2010

    International Nuclear Information System (INIS)

    2010-01-01

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly connected load during the last years, power generated since the beginning of the year, progress trend of wind and photovoltaic power in France, regional status. (J.S.)

  17. Trend chart: wind power. Third quarter 2017

    International Nuclear Information System (INIS)

    2017-11-01

    This publication presents the wind energy situation of continental France and overseas territories during the third quarter 2017: total connected load, new connected facilities, regional distribution of wind power production, evolution of quarterly production, distribution of facilities versus power, evolution forecasts of the French wind power park, projects in progress, detailed regional results, revision of results

  18. Wind/photovoltaic power indicators. Second quarter 2010

    International Nuclear Information System (INIS)

    2010-01-01

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly connected load during the last years, power generated since the beginning of the year, progress trend of wind and photovoltaic power in France, regional status. (J.S.)

  19. Wind/photovoltaic power indicators. Fourth quarter 2010

    International Nuclear Information System (INIS)

    2011-01-01

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly connected load during the last years, power generated since the beginning of the year, progress trend of wind and photovoltaic power in France, regional status. (J.S.)

  20. Wind/photovoltaic power indicators. First quarter 2011

    International Nuclear Information System (INIS)

    2011-01-01

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly connected load during the last years, power generated since the beginning of the year, progress trend of wind and photovoltaic power in France, regional status. (J.S.)

  1. Wind/photovoltaic power indicators. Third quarter 2009

    International Nuclear Information System (INIS)

    2009-11-01

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly connected load during the last years, power generated since the beginning of the year, progress trend of wind and photovoltaic power in France, regional status. (J.S.)

  2. Wind/photovoltaic power indicators. Fourth quarter 2009

    International Nuclear Information System (INIS)

    2010-02-01

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly connected load during the last years, power generated since the beginning of the year, progress trend of wind and photovoltaic power in France, regional status. (J.S.)

  3. Polyethylenedioxythiophene and molybdenum disulfide nanocomposite electrodes for supercapacitor applications

    International Nuclear Information System (INIS)

    Alamro, Turki; Ram, Manoj K.

    2017-01-01

    Highlights: • MoS_2-PEDOT nanocomposite electrode material was synthesized using polyanion ‘PSS’ and surfactant CTAB in an aqueous media. • The supercapacitor based on composite MoS_2-PEDOT electrode revealed higher energy density than graphene composite electrodes. • The specific capacitance of 361 Farad/gram (F/g) was obtained for 1:2 weight ratio of MoS2 to the EDOT monomer in MoS_2-PEDOT nanocomposite based electrodes. - Abstract: An innovative nanocomposite electrode was chemically synthesized using molybdenum disulphide (MoS_2)- polyethylenedioxythiophene (PEDOT) to understand the charge mechanism in a symmetric supercapacitor. The MoS_2-PEDOT nanocomposite was produced at various ratios of MoS_2 to ethylenedioxythiophene (EDOT) in an aqueous medium of polyanions polystyrene sulfonate (PSS) and cetyltrimethylammonium bromide (CTAB) at controlled conditions. The morphology, crystallinity, and optical properties of MoS_2-PEDOT nanocomposite materials were characterized using scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, particle size analyzer, Raman spectroscopy, X-ray-diffraction, and transmission electron microscopy (TEM) techniques, respectively. The electrochemical properties of the supercapacitor were investigated using cyclic voltammetry, charging–discharging at constant current and electrochemical impedance spectroscopy (EIS) techniques. The specific capacitance, power and energy densities of the supercapacitor were estimated using cyclic voltammetry (CV), charging–discharging, Nyquist and Bode plots. The specific capacitance was estimated to be 361 Farad/gram (F/g) for the 1:2 weight ratio of MoS_2 to the EDOT monomer in the MoS_2-PEDOT nanocomposite based electrodes. Nevertheless, this study provides a fundamental aspect of synthesis of nanocomposite material for optimum attainment supercapacitive properties based on the MoS_2-PEDOT nanocomposite electrode for practical energy storage applications.

  4. Electroadsorption desalination with carbon nanotube/PAN-based carbon fiber felt composites as electrodes.

    Science.gov (United States)

    Liu, Yang; Zhou, Junbo

    2014-01-01

    The chemical vapor deposition method is used to prepare CNT (carbon nanotube)/PCF (PAN-based carbon fiber felt) composite electrodes in this paper, with the surface morphology of CNT/PCF composites and electroadsorption desalination performance being studied. Results show such electrode materials with three-dimensional network nanostructures having a larger specific surface area and narrower micropore distribution, with a huge number of reactive groups covering the surface. Compared with PCF electrodes, CNT/PCF can allow for a higher adsorption and desorption rate but lower energy consumption; meanwhile, under the condition of the same voltage change, the CNT/PCF electrodes are provided with a better desalination effect. The study also found that the higher the original concentration of the solution, the greater the adsorption capacity and the lower the adsorption rate. At the same time, the higher the solution's pH, the better the desalting; the smaller the ions' radius, the greater the amount of adsorption.

  5. Quarterly report of the Swedish Nuclear Power Inspectorate. 4th quarter 1984

    International Nuclear Information System (INIS)

    1985-01-01

    During the fourth quarter of 1984 ten power reactors were in operation in Sweden. Two new reactors, Oskarshamn 3 and Forsmark 3, got loading authorization and started the test operation. No serious fault has occurred during the period. (K.A.E.)

  6. Behavioral and cellular consequences of high-electrode count Utah Arrays chronically implanted in rat sciatic nerve

    Science.gov (United States)

    Wark, H. A. C.; Mathews, K. S.; Normann, R. A.; Fernandez, E.

    2014-08-01

    Objective. Before peripheral nerve electrodes can be used for the restoration of sensory and motor functions in patients with neurological disorders, the behavioral and histological consequences of these devices must be investigated. These indices of biocompatibility can be defined in terms of desired functional outcomes; for example, a device may be considered for use as a therapeutic intervention if the implanted subject retains functional neurons post-implantation even in the presence of a foreign body response. The consequences of an indwelling device may remain localized to cellular responses at the device-tissue interface, such as fibrotic encapsulation of the device, or they may affect the animal more globally, such as impacting behavioral or sensorimotor functions. The objective of this study was to investigate the overall consequences of implantation of high-electrode count intrafascicular peripheral nerve arrays, High Density Utah Slanted Electrode Arrays (HD-USEAs; 25 electrodes mm-2). Approach. HD-USEAs were implanted in rat sciatic nerves for one and two month periods. We monitored wheel running, noxious sensory paw withdrawal reflexes, footprints, nerve morphology and macrophage presence at the tissue-device interface. In addition, we used a novel approach to contain the arrays in actively behaving animals that consisted of an organic nerve wrap. A total of 500 electrodes were implanted across all ten animals. Main results. The results demonstrated that chronic implantation (⩽8 weeks) of HD-USEAs into peripheral nerves can evoke behavioral deficits that recover over time. Morphology of the nerve distal to the implantation site showed variable signs of nerve fiber degeneration and regeneration. Cytology adjacent to the device-tissue interface also showed a variable response, with some electrodes having many macrophages surrounding the electrodes, while other electrodes had few or no macrophages present. This variability was also seen along the length

  7. Joint Force Quarterly. Issue 64, 1st Quarter 2012

    Science.gov (United States)

    2012-01-01

    ndupress .ndu.edu issue 64, 1 st quarter 2012 / JFQ 43 experienced in cultural relativism belie the great commonality of moral solidarity in...Politics of Civil-Military Relations (Cambridge: Harvard University Press, 1957), 11. 12 Many people equate cultural relativism and moral relativism ...perhaps reluctantly, his muse was Platonic (the concept of the human for strategy to work in our age, it must possess solid moral and political

  8. 75 FR 17462 - Quarterly Rail Cost Adjustment Factor

    Science.gov (United States)

    2010-04-06

    ... decision may be purchased by contacting the office of Public Assistance, Governmental Affairs, and...-2)] Quarterly Rail Cost Adjustment Factor AGENCY: Surface Transportation Board. ACTION: Approval of rail cost adjustment factor. SUMMARY: The Board has approved the second quarter 2010 Rail Cost...

  9. Environmental Restoration Operations Consolidated Quarterly Report: July-September 2016

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, John R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-01-01

    This Environmental Restoration Operations (ER) Consolidated Quarterly Report (ER Quarterly Report) provides the status of ongoing corrective action activities being implemented at Sandia National Laboratories, New Mexico (SNL/NM) during the July, August, and September 2016 quarterly reporting period. The Solid Waste Management Units (SWMUs) and Areas of Concern (AOCs) identified for corrective action at SNL/NM are listed in Table I-1. Sections I.2.1 and I.2.2 summarize the work completed during this quarter. Section I.2.1 summarizes the quarterly activities at sites undergoing corrective action field activities. Field activities are conducted at the three groundwater AOCs (Burn Site Groundwater [BSG AOC], Technical Area [TA]-V Groundwater [TAVG AOC], and Tijeras Arroyo Groundwater [TAG AOC]). Section I.2.2 summarizes quarterly activities at sites where the New Mexico Environment Department (NMED) issued a certificate of completion and the sites are in the corrective action complete (CAC) regulatory process. Currently, SWMUs 8 and 58, 68, 149, 154, and 502 are in the CAC regulatory process. Corrective action activities are deferred at the Long Sled Track (SWMU 83), the Gun Facilities (SWMU 84), and the Short Sled Track (SWMU 240) because these three sites are active mission facilities. These three active sites are located in TA-III.

  10. Strategies for enhancing electrochemical activity of carbon-based electrodes for all-vanadium redox flow batteries

    International Nuclear Information System (INIS)

    Flox, Cristina; Skoumal, Marcel; Rubio-Garcia, Javier; Andreu, Teresa; Morante, Juan Ramón

    2013-01-01

    Highlights: ► Improved reactions at the positive electrode in all-vanadium redox flow batteries. ► Graphene-derived and PAN-modified electrodes have been successfully prepared. ► Modification with bimetallic CuPt 3 nanocubes yielded the best catalytic behavior. ► N and O-containing groups enhances the vanadium flow battery performance. - Abstract: Two strategies for improving the electroactivity towards VO 2+ /VO 2 + redox pair, the limiting process in all-vanadium redox flow batteries (VFBs), were presented. CuPt 3 nanoparticles supported onto graphene substrate and nitrogen and oxygen polyacrylonitrile (PAN)-functionalized electrodes materials have been evaluated. The morphology, composition, electrochemical properties of all electrodes prepared was characterized with field emission-scanning electrode microscopy, X-ray photoelectron spectroscopy, cyclic voltammetry, electrochemical impedance spectroscopy and cell charge–discharge test. The presence of the CuPt 3 nanocubes and nitrogen and oxygen functionalities enhance the electrocatalytic activity of the electrodes materials accelerating the oxygen and electron transfer processes. The battery performance was also evaluated using PAN-functionalized electrodes exhibiting a high of energy efficiency of 84% (at current density 20 mA cm −2 ) up to 30th cycle, indicating a promising alternative for improving the VFB

  11. Flexible electrode belt for EIT using nanofiber web dry electrodes.

    Science.gov (United States)

    Oh, Tong In; Kim, Tae Eui; Yoon, Sun; Kim, Kap Jin; Woo, Eung Je; Sadleir, Rosalind J

    2012-10-01

    Efficient connection of multiple electrodes to the body for impedance measurement and voltage monitoring applications is of critical importance to measurement quality and practicality. Electrical impedance tomography (EIT) experiments have generally required a cumbersome procedure to attach the multiple electrodes needed in EIT. Once placed, these electrodes must then maintain good contact with the skin during measurements that may last several hours. There is usually also the need to manage the wires that run between the electrodes and the EIT system. These problems become more severe as the number of electrodes increases, and may limit the practicality and portability of this imaging method. There have been several trials describing human-electrode interfaces using configurations such as electrode belts, helmets or rings. In this paper, we describe an electrode belt we developed for long-term EIT monitoring of human lung ventilation. The belt included 16 embossed electrodes that were designed to make good contact with the skin. The electrodes were fabricated using an Ag-plated PVDF nanofiber web and metallic threads. A large contact area and padding were used behind each electrode to improve subject comfort and reduce contact impedances. The electrodes were incorporated, equally spaced, into an elasticated fabric belt. We tested the electrode belt in conjunction with the KHU Mark1 multi-frequency EIT system, and demonstrate time-difference images of phantoms and human subjects during normal breathing and running. We found that the Ag-plated PVDF nanofiber web electrodes were suitable for long-term measurement because of their flexibility and durability. Moreover, the contact impedance and stability of the Ag-plated PVDF nanofiber web electrodes were found to be comparable to similarly tested Ag/AgCl electrodes.

  12. Wind/photovoltaic power indicators. First quarter 2012

    International Nuclear Information System (INIS)

    Thienard, Helene

    2012-06-01

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly connected load during the last years, power generated since the beginning of the year, progress trend of wind and photovoltaic power in France, projects in progress, regional status. (J.S.)

  13. Wind/photovoltaic power indicators. Second quarter 2015

    International Nuclear Information System (INIS)

    Reynaud, Didier

    2015-08-01

    This document presents a quarterly review of power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly distribution of new connections, progress of connected power during the last years, power generated since the beginning of the year and comparison with previous years, projects in progress, regional balance sheet

  14. Wind/photovoltaic power indicators. Third quarter 2011

    International Nuclear Information System (INIS)

    Thienard, Helene

    2011-11-01

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly connected load during the last years, power generated since the beginning of the year, progress trend of wind and photovoltaic power in France, projects in progress, regional status. (J.S.)

  15. Wind/photovoltaic power indicators. Third quarter 2014

    International Nuclear Information System (INIS)

    Reynaud, Didier

    2014-11-01

    This document presents a quarterly review of power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly distribution of new connections, progress of connected power during the last years, power generated since the beginning of the year and comparison with previous years, projects in progress, regional balance sheet

  16. Wind/photovoltaic power indicators. Fourth quarter 2012

    International Nuclear Information System (INIS)

    Reynaud, Didier; Thienard, Helene

    2013-02-01

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly distribution of new connections, progress of connected power during the last years, power generated since the beginning of the year and comparison with previous years, projects in progress, regional status. (J.S.)

  17. Wind/photovoltaic power indicators. Third quarter 2010

    International Nuclear Information System (INIS)

    Thienard, Helene

    2010-11-01

    This document presents a quarterly review of power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly distribution of new connections, progress of connected power during the last years, power generated since the beginning of the year and comparison with previous years, projects in progress, regional balance sheet

  18. Wind/photovoltaic power indicators. Fourth quarter 2013

    International Nuclear Information System (INIS)

    Reynaud, Didier

    2014-02-01

    This document presents a quarterly review of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly distribution of new connections, progress of connected power during the last years, power generated since the beginning of the year and comparison with previous years, projects in progress, regional status

  19. Wind/photovoltaic power indicators. Third quarter 2013

    International Nuclear Information System (INIS)

    Reynaud, Didier

    2013-11-01

    This document presents a quarterly review of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly distribution of new connections, progress of connected power during the last years, power generated since the beginning of the year and comparison with previous years, projects in progress, regional status

  20. Wind/photovoltaic power indicators. Fourth quarter 2011

    International Nuclear Information System (INIS)

    Thienard, Helene

    2012-02-01

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly connected load during the last years, power generated since the beginning of the year, progress trend of wind and photovoltaic power in France, projects in progress, regional status. (J.S.)

  1. Wind/photovoltaic power indicators. Third quarter 2012

    International Nuclear Information System (INIS)

    Thienard, Helene

    2012-11-01

    This document presents a quarterly review of power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly distribution of new connections, progress of connected power during the last years, power generated since the beginning of the year and comparison with previous years, projects in progress, regional balance sheet

  2. Wind/photovoltaic power indicators. First quarter 2014

    International Nuclear Information System (INIS)

    Reynaud, Didier

    2014-05-01

    This document presents a quarterly review of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly distribution of new connections, progress of connected power during the last years, power generated since the beginning of the year and comparison with previous years, projects in progress, regional status

  3. Wind/photovoltaic power indicators. Second quarter 2012

    International Nuclear Information System (INIS)

    Thienard, Helene

    2012-09-01

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly connected load during the last years, power generated since the beginning of the year, progress trend of wind and photovoltaic power in France, projects in progress, regional status. (J.S.)

  4. Wind/photovoltaic power indicators. First quarter 2013

    International Nuclear Information System (INIS)

    Reynaud, Didier; Thienard, Helene

    2013-06-01

    This document makes a quarterly status of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly distribution of new connections, progress of connected power during the last years, power generated since the beginning of the year and comparison with previous years, projects in progress, regional status. (J.S.)

  5. Wind/photovoltaic power indicators. Forth quarter 2014

    International Nuclear Information System (INIS)

    Reynaud, Didier

    2015-02-01

    This document presents a quarterly review of power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly distribution of new connections, progress of connected power during the last years, power generated since the beginning of the year and comparison with previous years, projects in progress, regional balance sheet

  6. Wind/photovoltaic power indicators. Second quarter 2014

    International Nuclear Information System (INIS)

    Reynaud, Didier

    2014-08-01

    This document presents a quarterly review of the power generation from wind and photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly distribution of new connections, progress of connected power during the last years, power generated since the beginning of the year and comparison with previous years, projects in progress, regional balance sheet

  7. Impact of the spatial distribution of morphological pattern on the efficiency of electrocatalytic gas evolving reactions

    Directory of Open Access Journals (Sweden)

    Žerađanin Aleksandar R.

    2014-01-01

    Full Text Available The efficiency of electrocatalytic gas evolving reactions (hydrogen, chlorine and oxygen evolution is a key challenge for the important industrial processes, such as chlor-alkali electrolysis or water electrolysis. Central issue for the aforementioned electrocatalytic processes is huge power consumption. Experimental results accumulated in the past, as well as some predictive models ("volcano" plots indicate that altering the nature of the electrode material cannot significantly increase the activity of mentioned reactions. Consequently, it is necessary to find a qualitatively different strategy for improving the energy efficiency of electrocatalytic gas evolving reactions. Usually disregarded fact is that the gas evolution is an oscillatory phenomenon. Given the oscillatory behavior, a key parameter of macrokinetics of gas electrode is the frequency of gas-bubble detachment. Bearing in mind that the gas evolution greatly depends on the surface morphology, a methodology is proposed that establishes a rational link between the morphological pattern of electrode with electrode activity and stability. Characterization was performed using advanced analytical tools. Frequency of gas-bubble detachment is obtained in the configuration of scanning electrochemical microscopy (SECM while the corrosion stability is analyzed using miniaturized scanning flow electrochemical cell connected to the mass spectrometer (SFC-ICPMS.

  8. A freeze-dried graphene counter electrode enhances the performance of dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Kai-Hsiang; Wang, Hong-Wen, E-mail: hongwen@cycu.edu.tw

    2014-01-01

    A flexible graphene/polyimide (PI) counter electrode without a fluorine-doped tin oxide (FTO) layer has been fabricated for dye-sensitized solar cell (DSSCs) applications. The flexible counter electrode consists of polyimide double-sided tape as a substrate beneath a graphene film acting as the conductive and catalytic layer. Chemically reduced graphene oxide (rGO) on the PI electrode (rGO-PI) shows comparable catalytic activity to that of the reference sputtered platinum/FTO counter electrodes (Sputter-Pt/FTO). A DSSC with a freeze-dried rGO-PI (FD-rGO-PI) counter electrode shows an overall conversion efficiency (η) of 5.45%, while that of the conventional Sputter-Pt/FTO electrode is 5.52%. The DSSC with a thermally dried rGO-PI (Gel-rGO-PI) counter electrode (not freeze-dried) exhibits a smooth morphology and much poorer performance (η = 1.61%). Field emission scanning electron microscopy, electrochemical impedance spectroscopy, and cyclic voltammetry measurements demonstrate that the FD-rGO-PI electrode possesses a porous structure, numerous edges, minimum charge-transfer resistance and a higher electrocatalytic activity toward the I{sub 3}{sup −}/I{sup −} redox couple than that of the Gel-rGO-PI electrode. The high electrocatalytic activity, facile preparation procedure, absence of FTO, and material flexibility render the FD-rGO-PI electrode an ideal alternative to conventional DSSC counter electrodes. - Highlights: • Highly rough and conductive graphene-based counter electrode is synthesized. • The characteristics of graphene surface by freeze drying are different. • The graphene counter electrode exhibits comparable performance to that of sputtered Pt one.

  9. 3,5-Diamino-1,2,4-triazole@electrochemically reduced graphene oxide film modified electrode for the electrochemical determination of 4-nitrophenol

    International Nuclear Information System (INIS)

    Kumar, Deivasigamani Ranjith; Kesavan, Srinivasan; Baynosa, Marjorie Lara; Shim, Jae-Jin

    2017-01-01

    Highlights: •Triazole film was formed on electrochemically reduced graphene oxide. •pDAT@ERGO/GC was utilized for the electrochemical determination of 4-nitrophenol. •pDAT@ERGO/GC electrode offered wide concentration and nanomolar detection limit. •The fabricated electrode was employed in water sample analyses. -- Abstract: In this study, an eco-friendly benign method for the modification of electrochemically reduced graphene oxide (ERGO) on glassy carbon (GC) surface and electrochemical polymerized 3,5-diamino-1,2,4-triazole (DAT) film composite (pDAT@ERGO/GC) electrode was developed. The surface morphologies of the pDAT@ERGO/GC modified electrode were analyzed by field emission scanning electron microscopy (FESEM). FESEM images indicated that the ERGO supported pDAT has an almost homogeneous morphology structure with a size of 70 to 80 nm. It is due to the water oxidation reaction occurred while pDAT@ERGO/GC fabrication peak at +1.4 V leads to O 2 evolution and oxygen functional group functionalization on ERGO, which confirmed by X-ray photoelectron spectroscopy (XPS). In contrast, the bare GC modified with pDAT showed randomly arranged irregular bulky morphology structure compared to those of pDAT@ERGO/GC. Electrochemical reduction of graphene oxide was confirmed by Raman spectroscopy, XPS, and electrochemical impedance spectroscopy (EIS). The pDAT@ERGO/GC modified electrode was used for the electrochemical determination of 4-nitrophenol (4-NP). The 4-NP oxidation peak was observed at +0.25 V, and the differential pulse voltammetry demonstrated wide concentration range (5–1500 μM), high sensitivity (0.7113 μA μM −1 ), and low limit of detection (37 nM). Moreover, the pDAT@ERGO/GC electrode was applied to real water sample analysis by standard addition method, where in good recoveries (97.8% to 102.4%) were obtained.

  10. 76 FR 80448 - Quarterly Rail Cost Adjustment Factor

    Science.gov (United States)

    2011-12-23

    ... DEPARTMENT OF TRANSPORTATION Surface Transportation Board [Docket No. EP 290 (Sub-No. 5) (2012-1)] Quarterly Rail Cost Adjustment Factor AGENCY: Surface Transportation Board. ACTION: Approval of rail cost adjustment factor. SUMMARY: The Board has approved the first quarter 2012 rail cost adjustment factor (RCAF...

  11. 76 FR 59483 - Quarterly Rail Cost Adjustment Factor

    Science.gov (United States)

    2011-09-26

    ... the decision may be purchased by contacting the Office of Public Assistance, Governmental Affairs, and...)] Quarterly Rail Cost Adjustment Factor AGENCY: Surface Transportation Board, DOT. ACTION: Approval of rail cost adjustment factor. SUMMARY: The Board has approved the fourth quarter 2011 Rail Cost Adjustment...

  12. Effects of solvent on the morphology of nanostructured Co3O4 and its application for high-performance supercapacitors

    International Nuclear Information System (INIS)

    Yang, Wanlu; Gao, Zan; Ma, Jing; Wang, Jun; Wang, Bin; Liu, Lianhe

    2013-01-01

    Graphical abstract: - Highlights: • Nano-structured cobalt oxides (Co 3 O 4 ) with various morphologies (sheet-like, herbs-like and net-like) synthesized on the surfaces of nickel foam via a facile solvothermal method. • Ethanol, ethylene glycol (EG) and glycerol (GR) were used to investigate the effects of solvent on the size and morphology of nanocrystals in detail. • The open structure improves the contact between the electrode and the electrolyte. • Results showed that net-like Co 3 O 4 have good electrochemical property. - Abstract: Nano-structured cobalt oxides (Co 3 O 4 ) with various morphologies (sheet-like, herbs-like and net-like) have been in situ synthesized on the surface of nickel foam via a facile solvothermal method. Ethanol, ethylene glycol (EG) and glycerol (GR) were used to investigate the effects of solvent on the size and morphology of nanocrystals in detail. The possible formation mechanisms have been proposed that the dielectric constants and viscosity of solvents is speculated to be the main factor to determine the morphology of Co 3 O 4 crystal. Applied for supercapacitor, the fabricated Co 3 O 4 electrodes show the desired properties of macroporosity, allowing facile electrolyte flow and fast electrochemical reaction kinetics. Results show that the nanonet-like Co 3 O 4 electrode synthesized in glycerol solvothermal condition has the highest capacitance (1063 F/g at a discharge current density of 10 mA/cm 2 ), and good rate capability, excellent electrochemical stability (90.8% retention after 1000 cycles). The enhanced electrochemical performance is attributed to the open and ultrathin nanostructure of net-like Co 3 O 4 electrode, which facilitates the electron transport. The findings in this work demonstrate the importance of solvents used for solvothermal reaction, and are meaningful in understanding the self-assembly process of various Co 3 O 4 nanostructures

  13. Dashboard: biogas for electricity production - Forth quarter 2015

    International Nuclear Information System (INIS)

    Cavaud, Denis; Reynaud, Didier

    2016-02-01

    This publication describes the situation of biogas-based electricity production in France and its evolution over the first quarters of 2015. A map indicates the level of connected power per district. Graphs illustrate the evolution of the number of new connections per quarter since 2009, the evolution of electricity quarterly production since 2011. Tables indicate the number of installations per power level (less than 0.5 MW, between 0.5 and 1.0 MW, more than 1 MW) and per installation type. Regional data are given in terms of number of installations, installed power in December 2015, regional share and evolution

  14. Pathogen group specific risk factors for clinical mastitis, intramammary infection and blind quarters at the herd, cow and quarter level in smallholder dairy farms in Jimma, Ethiopia.

    Science.gov (United States)

    Tolosa, T; Verbeke, J; Ayana, Z; Piepers, S; Supré, K; De Vliegher, S

    2015-07-01

    A cross-sectional study on clinical mastitis, intramammary infection (IMI) and blind quarters was conducted on 50 smallholder dairy farms in Jimma, Ethiopia. A questionnaire was performed, and quarters of 211 cows were sampled and bacteriologically cultured. Risk factors at the herd, cow, and quarter level for clinical mastitis and (pathogen-specific) intramammary infection were studied using multilevel modeling. As well, factors associated with quarters being blind were studied. Eleven percent of the cows and 4% of the quarters had clinical mastitis whereas 85% of the cows and 51% of the quarters were infected. Eighteen percent of the cows had one or more blind quarter(s), whereas 6% of the quarters was blind. Non-aureus staphylococci were the most frequently isolated pathogens in both clinical mastitis cases and IMI. The odds of clinical mastitis was lower in herds where heifers were purchased in the last year [odds ratio (OR) with 95% confidence interval: 0.11 (0.01-0.90)], old cows (>4 years) [OR: 0.45 (0.18-1.14)], and quarters not showing teat injury [OR: 0.23 (0.07-0.77)]. The odds of IMI caused by any pathogen was higher in herds not practicing teat drying before milking (opposed to drying teats with 1 towel per cow) [OR: 1.68 (1.05-2.69)], cows in later lactation (>180 DIM opposed to ≤90 DIM) [OR: 1.81 (1.14-2.88)], cows with a high (>3) body condition score (BCS) [OR: 1.57 (1.06-2.31)], right quarters (opposed to a left quarter position) [OR: 1.47 (1.10-1.98)], and quarters showing teat injury [OR: 2.30 (0.97-5.43)]. Quarters of cows in herds practicing bucket-fed calf feeding (opposed to suckling) had higher odds of IMI caused by Staphylococcus aureus [OR: 6.05 (1.31-27.90)]. Except for BCS, IMI caused by non-aureus staphylococci was associated with the same risk factors as IMI caused by any pathogen. No access to feed and water immediately after milking [OR: 2.41 (1.26-4.60)], higher parity [OR: 3.60 (1.20-10.82)] and tick infestation [OR: 2.42 (1

  15. High-performance NiO/Ag/NiO transparent electrodes for flexible organic photovoltaic cells.

    Science.gov (United States)

    Xue, Zhichao; Liu, Xingyuan; Zhang, Nan; Chen, Hong; Zheng, Xuanming; Wang, Haiyu; Guo, Xiaoyang

    2014-09-24

    Transparent electrodes with a dielectric-metal-dielectric (DMD) structure can be implemented in a simple manufacturing process and have good optical and electrical properties. In this study, nickel oxide (NiO) is introduced into the DMD structure as a more appropriate dielectric material that has a high conduction band for electron blocking and a low valence band for efficient hole transport. The indium-free NiO/Ag/NiO (NAN) transparent electrode exhibits an adjustable high transmittance of ∼82% combined with a low sheet resistance of ∼7.6 Ω·s·q(-1) and a work function of 5.3 eV after UVO treatment. The NAN electrode shows excellent surface morphology and good thermal, humidity, and environmental stabilities. Only a small change in sheet resistance can be found after NAN electrode is preserved in air for 1 year. The power conversion efficiencies of organic photovoltaic cells with NAN electrodes deposited on glass and polyethylene terephthalate (PET) substrates are 6.07 and 5.55%, respectively, which are competitive with those of indium tin oxide (ITO)-based devices. Good photoelectric properties, the low-cost material, and the room-temperature deposition process imply that NAN electrode is a striking candidate for low-cost and flexible transparent electrode for efficient flexible optoelectronic devices.

  16. Production and characterization of TI/PbO2 electrodes by a thermal-electrochemical method

    Directory of Open Access Journals (Sweden)

    Laurindo Edison A.

    2000-01-01

    Full Text Available Looking for electrodes with a high overpotential for the oxygen evolution reaction (OER, useful for the oxidation of organic pollutants, Ti/PbO2 electrodes were prepared by a thermal-electrochemical method and their performance was compared with that of electrodeposited electrodes. The open-circuit potential for these electrodes in 0.5 mol L-1 H2SO4 presented quite stable similar values. X-ray diffraction analyses showed the thermal-electrochemical oxide to be a mixture of ort-PbO, tetr-PbO and ort-PbO2. On the other hand, the electrodes obtained by electrodeposition were in the tetr-PbO2 form. Analyses by scanning electron microscopy showed that the basic morphology of the thermal-electrochemical PbO2 is determined in the thermal step, being quite distinct from that of the electrodeposited electrodes. Polarization curves in 0.5 mol L-1 H2SO4 showed that in the case of the thermal-electrochemical PbO2 electrodes the OER was shifted to more positive potentials. However, the values of the Tafel slopes, quite high, indicate that passivating films were possibly formed on the Ti substrates, which could eventually explain the somewhat low current values for OER.

  17. Zinc deposition and dissolution in methanesulfonic acid onto a carbon composite electrode as the negative electrode reactions in a hybrid redox flow battery

    International Nuclear Information System (INIS)

    Leung, P.K.; Ponce-de-Leon, C.; Low, C.T.J.; Walsh, F.C.

    2011-01-01

    Highlights: → Use methanesulfonic acid to avoid dendrite formation during a long (>4 h) zinc electrodeposition. → Electrochemical characterization of Zn(II) deposition and its morphology using methanesulfonic acid solutions. → Use of additives to improve the efficiency of zinc deposition and dissolution as the half cell reaction of a redox flow battery. - Abstract: Electrodeposition and dissolution of zinc in methanesulfonic acid were studied as the negative electrode reactions in a hybrid redox flow battery. Cyclic voltammetry at a rotating disk electrode was used to characterize the electrochemistry and the effect of process conditions on the deposition and dissolution rate of zinc in aqueous methanesulfonic acid. At a sufficiently high current density, the deposition process became a mass transport controlled reaction. The diffusion coefficient of Zn 2+ ions was 7.5 x 10 -6 cm 2 s -1 . The performance of the zinc negative electrode in a parallel plate flow cell was also studied as a function of Zn 2+ ion concentration, methanesulfonic acid concentration, current density, electrolyte flow rate, operating temperature and the addition of electrolytic additives, including potassium sodium tartarate, tetrabutylammonium hydroxide, and indium oxide. The current-, voltage- and energy efficiencies of the zinc-half cell reaction and the morphologies of the zinc deposits are also discussed. The energy efficiency improved from 62% in the absence of additives to 73% upon the addition of 2 x 10 -3 mol dm -3 of indium oxide as a hydrogen suppressant. In aqueous methanesulfonic acid with or without additives, there was no significant dendrite formation after zinc electrodeposition for 4 h at 50 mA cm -2 .

  18. Electrochemical and morphological properties of Ti/Ru0.3Pb(0.7-x)TixO2-coated electrodes

    International Nuclear Information System (INIS)

    Cestarolli, D.T.; Andrade, A.R. de

    2003-01-01

    In this work, a ternary coating with the nominal composition Ti/Ru 0.3 Pb (0.7-x) Ti x O 2 (0≤x≤0.7) deposited on Ti has been prepared through thermal decomposition of ruthenium, titanium and lead inorganic salts dissolved in isopropanol. To find out coatings with reasonable service life for application in electrolysis devices, changes in the firing temperature, heating time and supporting electrolyte have been investigated. Surface morphology and microstructure have been investigated by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). SEM data show that the mud-crack structure is progressively lost with the substitution of titanium by lead oxides. EDS results suggest that lead segregates, forming islands with a high content of Pb. Changes in crystallinity have been obtained with an increase in the lead content. Electrochemical analyses have been carried out in acid medium (HClO 4 1.0 mol dm -3 and H 2 SO 4 0.5 mol dm -3 ). Cyclic voltammetric data and quasi-steady-state polarization curves have been recorded and accelerated life tests have been performed with an anodic current of 400 mA cm -2 . High coating stability has been obtained with the electrode fired at 550 deg. C. Replacing Ti with Pb extends the service life and improves the catalytic activity for oxygen evolution reaction (OER)

  19. Electrochemically fabricated polyaniline nanowire-modified electrode for voltammetric detection of DNA hybridization

    International Nuclear Information System (INIS)

    Zhu Ningning; Chang Zhu; He Pingang; Fang Yuzhi

    2006-01-01

    A novel and sensitive electrochemical DNA biosensor based on electrochemically fabricated polyaniline nanowire and methylene blue for DNA hybridization detection is presented. Nanowires of conducting polymers were directly synthesized through a three-step electrochemical deposition procedure in an aniline-containing electrolyte solution, by using the glassy carbon electrode (GCE) as the working electrode. The morphology of the polyaniline films was examined using a field emission scanning electron microscope (SEM). The diameters of the nanowires range from 80 to 100 nm. The polyaniline nanowires-coated electrode exhibited very good electrochemical conductivity. Oligonucleotides with phosphate groups at the 5' end were covalently linked onto the amino groups of polyaniline nanowires on the electrode. The hybridization events were monitored with differential pulse voltammetry (DPV) measurement using methylene blue (MB) as an indicator. The approach described here can effectively discriminate complementary from non-complementary DNA sequence, with a detection limit of 1.0 x 10 -12 mol l -1 of complementary target, suggesting that the polyaniline nanowires hold great promises for sensitive electrochemical biosensor applications

  20. 75 FR 35877 - Quarterly Rail Cost Adjustment Factor

    Science.gov (United States)

    2010-06-23

    ... available on our Web site, http://www.stb.dot.gov . Copies of the decision may be purchased by contacting...-3)] Quarterly Rail Cost Adjustment Factor AGENCY: Surface Transportation Board. ACTION: Approval of rail cost adjustment factor. SUMMARY: The Board has approved the third quarter 2010 rail cost...

  1. 76 FR 37191 - Quarterly Rail Cost Adjustment Factor

    Science.gov (United States)

    2011-06-24

    ... our Web site, http://www.stb.dot.gov . Copies of the decision may be purchased by contacting the...)] Quarterly Rail Cost Adjustment Factor AGENCY: Surface Transportation Board, DOT. ACTION: Approval of rail cost adjustment factor. SUMMARY: The Board has approved the third quarter 2011 Rail Cost Adjustment...

  2. 75 FR 80895 - Quarterly Rail Cost Adjustment Factor

    Science.gov (United States)

    2010-12-23

    ..., http://www.stb.dot.gov . Copies of the decision may be purchased by contacting the Office of Public...)] Quarterly Rail Cost Adjustment Factor AGENCY: Surface Transportation Board, DOT. ACTION: Approval of rail cost adjustment factor. SUMMARY: The Board has approved the first quarter 2011 Rail Cost Adjustment...

  3. 77 FR 37958 - Quarterly Rail Cost Adjustment Factor

    Science.gov (United States)

    2012-06-25

    ..., http://www.stb.dot.gov . Copies of the decision may be purchased by contacting the Office of Public...)] Quarterly Rail Cost Adjustment Factor AGENCY: Surface Transportation Board, DOT. ACTION: Approval of rail cost adjustment factor. SUMMARY: The Board has approved the third quarter 2012 rail cost adjustment...

  4. 78 FR 37660 - Quarterly Rail Cost Adjustment Factor

    Science.gov (United States)

    2013-06-21

    ..., http://www.stb.dot.gov . Copies of the decision may be purchased by contacting the Office of Public...)] Quarterly Rail Cost Adjustment Factor AGENCY: Surface Transportation Board, DOT. ACTION: Approval of rail cost adjustment factor. SUMMARY: The Board approves the third quarter 2013 Rail Cost Adjustment Factor...

  5. 78 FR 17764 - Quarterly Rail Cost Adjustment Factor

    Science.gov (United States)

    2013-03-22

    ..., http://www.stb.dot.gov . Copies of the decision may be purchased by contacting the Office of Public...)] Quarterly Rail Cost Adjustment Factor AGENCY: Surface Transportation Board, DOT. ACTION: Approval of rail cost adjustment factor. SUMMARY: The Board has approved the second quarter 2013 Rail Cost Adjustment...

  6. 76 FR 16037 - Quarterly Rail Cost Adjustment Factor

    Science.gov (United States)

    2011-03-22

    ..., http://www.stb.dot.gov . Copies of the decision may be purchased by contacting the Office of Public...)] Quarterly Rail Cost Adjustment Factor AGENCY: Surface Transportation Board, DOT. ACTION: Approval of rail cost adjustment factor. SUMMARY: The Board has approved the second quarter 2011 Rail Cost Adjustment...

  7. 75 FR 58019 - Quarterly Rail Cost Adjustment Factor

    Science.gov (United States)

    2010-09-23

    ..., http://www.stb.dot.gov . Copies of the decision may be purchased by contacting the office of Public...)] Quarterly Rail Cost Adjustment Factor AGENCY: Surface Transportation Board, DOT. ACTION: Approval of rail cost adjustment factor. SUMMARY: The Board has approved the fourth quarter 2010 Rail Cost Adjustment...

  8. Is the Microdistrict Dead? Long Live the Quarter!

    Directory of Open Access Journals (Sweden)

    Elena Bagina

    2016-10-01

    Full Text Available Social ideas of the 20th century, that had an impact on town-planning concepts, have lost their relevance. We have inherited huge urban territories built up in the form of microdistricts, which do not currently correspond to the idea of safe and decent life. Transition from building microdistricts to quarter site development has become the most radical change in the Russian urban policy. At the same time, there are certain problems of designing modern quarters both in the historical environment and in new territories. Unbuilt sites will likely house hybrids of microdistrict and quarter planning. In the historical centers of cities, building of quarters requires solution of transport problems, provision of pedestrian areas and creation of new architecture of high quality, which never copies buildings of previous epochs. Designing buildings ‘in the styles’, which is typical of the historical center development, does more harm to the cities than brand new architectural decisions of built-in structures.

  9. Scalable Coating and Properties of Transparent, Flexible, Silver Nanowire Electrodes

    KAUST Repository

    Hu, Liangbing

    2010-05-25

    We report a comprehensive study of transparent and conductive silver nanowire (Ag NW) electrodes, including a scalable fabrication process, morphologies, and optical, mechanical adhesion, and flexibility properties, and various routes to improve the performance. We utilized a synthesis specifically designed for long and thin wires for improved performance in terms of sheet resistance and optical transmittance. Twenty Ω/sq and ∼ 80% specular transmittance, and 8 ohms/sq and 80% diffusive transmittance in the visible range are achieved, which fall in the same range as the best indium tin oxide (ITO) samples on plastic substrates for flexible electronics and solar cells. The Ag NW electrodes show optical transparencies superior to ITO for near-infrared wavelengths (2-fold higher transmission). Owing to light scattering effects, the Ag NW network has the largest difference between diffusive transmittance and specular transmittance when compared with ITO and carbon nanotube electrodes, a property which could greatly enhance solar cell performance. A mechanical study shows that Ag NW electrodes on flexible substrates show excellent robustness when subjected to bending. We also study the electrical conductance of Ag nanowires and their junctions and report a facile electrochemical method for a Au coating to reduce the wire-to-wire junction resistance for better overall film conductance. Simple mechanical pressing was also found to increase the NW film conductance due to the reduction of junction resistance. The overall properties of transparent Ag NW electrodes meet the requirements of transparent electrodes for many applications and could be an immediate ITO replacement for flexible electronics and solar cells. © 2010 American Chemical Society.

  10. Scalable Coating and Properties of Transparent, Flexible, Silver Nanowire Electrodes

    KAUST Repository

    Hu, Liangbing; Kim, Han Sun; Lee, Jung-Yong; Peumans, Peter; Cui, Yi

    2010-01-01

    We report a comprehensive study of transparent and conductive silver nanowire (Ag NW) electrodes, including a scalable fabrication process, morphologies, and optical, mechanical adhesion, and flexibility properties, and various routes to improve the performance. We utilized a synthesis specifically designed for long and thin wires for improved performance in terms of sheet resistance and optical transmittance. Twenty Ω/sq and ∼ 80% specular transmittance, and 8 ohms/sq and 80% diffusive transmittance in the visible range are achieved, which fall in the same range as the best indium tin oxide (ITO) samples on plastic substrates for flexible electronics and solar cells. The Ag NW electrodes show optical transparencies superior to ITO for near-infrared wavelengths (2-fold higher transmission). Owing to light scattering effects, the Ag NW network has the largest difference between diffusive transmittance and specular transmittance when compared with ITO and carbon nanotube electrodes, a property which could greatly enhance solar cell performance. A mechanical study shows that Ag NW electrodes on flexible substrates show excellent robustness when subjected to bending. We also study the electrical conductance of Ag nanowires and their junctions and report a facile electrochemical method for a Au coating to reduce the wire-to-wire junction resistance for better overall film conductance. Simple mechanical pressing was also found to increase the NW film conductance due to the reduction of junction resistance. The overall properties of transparent Ag NW electrodes meet the requirements of transparent electrodes for many applications and could be an immediate ITO replacement for flexible electronics and solar cells. © 2010 American Chemical Society.

  11. Morphology-Controlled Synthesis of Hematite Nanocrystals and Their Optical, Magnetic and Electrochemical Performance

    Science.gov (United States)

    Li, Bangquan; Sun, Qian; Fan, Hongsheng; Cheng, Ming; Shan, Aixian; Cui, Yimin; Wang, Rongming

    2018-01-01

    A series of α-Fe2O3 nanocrystals (NCs) with fascinating morphologies, such as hollow nanoolives, nanotubes, nanospindles, and nanoplates, were prepared through a simple template-free hydrothermal synthesis process. The results showed that the morphologies could be easily controlled by SO42− and H2PO4−. Physical property analysis showed that the α-Fe2O3 NCs exhibited shape- and size-dependent ferromagnetic and optical behaviors. The absorption band peak of the α-Fe2O3 NCs could be tuned from 320 to 610 nm. Furthermore, when applied as electrode material for supercapacitor, the hollow olive-structure exhibited the highest capacitance (285.9 F·g−1) and an excellent long-term cycling stability (93% after 3000 cycles), indicating that it could serve as a candidate electrode material for a supercapacitor. PMID:29342929

  12. Evaluation of the point-centred-quarter method of sampling ...

    African Journals Online (AJOL)

    -quarter method.The parameter which was most efficiently sampled was species composition relativedensity) with 90% replicate similarity being achieved with 100 point-centred-quarters. However, this technique cannot be recommended, even ...

  13. Reaction and nucleation mechanisms of copper electrodeposition on disposable pencil graphite electrode

    Energy Technology Data Exchange (ETDEWEB)

    Majidi, M.R. [Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, 29th Bahman Bolvard, Tabriz 51664 (Iran, Islamic Republic of)], E-mail: sr.majidi@gmail.com; Asadpour-Zeynali, K.; Hafezi, B. [Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, 29th Bahman Bolvard, Tabriz 51664 (Iran, Islamic Republic of)

    2009-01-01

    The reaction and nucleation mechanism of copper electrodeposition on disposable pencil graphite electrode (PGE) in acidic sulphate solution were investigated using cyclic voltammetry (CV) and chronoamperometry (CA) techniques, respectively. Electrochemical experiments were followed by morphological studies with scanning electron microscopy (SEM). The effect of some experimental parameters, namely copper concentration, pH, scan rate, background electrolyte, deposition potential, and conditioning surface of the electrode were described. At the surface of PGE, Cu{sup 2+} ions were reduced at -250 mV vs. SCE. It was found that electrodeposition of copper is affected by rough surface of PGE. The nucleation mechanisms were examined by fitting the experimental CA data into Scharifker-Hills nucleation models. The nuclei population densities were also determined by means of two common fitting models developed for three-dimensional nucleation and growth (Scharifker-Mostany and Mirkin-Nilov-Herrman-Tarallo). It was found that deposition potential and background electrolyte affect the distribution of the deposited copper. The morphology of the deposited copper is affected by background electrolyte.

  14. Synthesis, structure and photoelectrochemical performance of micro/nano-textured ZnO/eosin Y electrodes

    International Nuclear Information System (INIS)

    Hosono, Eiji; Fujihara, Shinobu; Kimura, Toshio

    2004-01-01

    Micro/nano-textured ZnO thick films were synthesized through deposition and pyrolysis of layered hydroxide zinc acetate (LHZA), Zn 5 (OH) 8 (CH 3 COO) 2 ·2H 2 O. LHZA films having a unique, rose-like morphology were initially deposited on conducting glass sheets in a chemical bath composed of methanol and zinc acetate dihydrate at 60 deg. C under neutral conditions. Pyrolysis of the LHZA films resulted in formation of ZnO without destroying the original morphology. Pyrolysis temperatures were found to greatly influence grain sizes and specific surface areas of the ZnO films. Photoelectrochemical performance of the films as ZnO/eosin Y electrodes was investigated in dye-sensitized solar cells using an I - /I 3 - redox electrolyte solution. The cell using the ZnO film pyrolyzed at 150 deg. C exhibited overall light to electricity conversion efficiencies of 2.0 and 3.3% under an AM-1.5 illumination at 100 and 10 mW cm -2 , respectively. While microscale pores in the electrodes facilitated mass transfer of fluid electrolytes in the depth direction, nanoscale pores contributed to an increase in the amount of adsorbed dye. The maximum incident photon-to-current conversion efficiency (IPCE) of the electrode reached 84.9% at a wavelength of 530 nm

  15. 77 FR 58910 - Quarterly Rail Cost Adjustment Factor

    Science.gov (United States)

    2012-09-24

    ..., http://www.stb.dot.gov . Copies of the decision may be purchased by contacting the Office of Public...)] Quarterly Rail Cost Adjustment Factor AGENCY: Surface Transportation Board. ACTION: Approval of rail cost adjustment factor. SUMMARY: The Board has approved the fourth quarter 2012 rail cost adjustment factor (RCAF...

  16. Nanoporous carbon derived from agro-waste pineapple leaves for supercapacitor electrode

    Science.gov (United States)

    Sodtipinta, Jedsada; Amornsakchai, Taweechai; Pakawatpanurut, Pasit

    2017-09-01

    By using KOH as the chemical activating agent in the synthesis, the activated carbon derived from pineapple leaf fiber (PALF) was prepared. The structure, morphology, and the surface functional groups of the as-prepared activated carbon were investigated using x-ray diffraction, field emission scanning electron microscope equipped with energy dispersive x-ray spectroscopy, and x-ray photoelectron spectroscopy. The electrochemical behavior and performance of the as-synthesized activated carbon electrode were measured using the cyclic voltammetry and the electrochemical impedance spectroscopy in 1 M Na2SO4 electrolyte solution in three-electrode setup. The activated carbon electrode exhibited the specific capacitance of 131.3 F g-1 at a scan rate of 5 mV s-1 with excellent cycling stability. The capacitance retention after 1000 cycles was about 97% of the initial capacitance at a scan rate of 30 mV s-1. Given these good electrochemical properties along with the high abundance of PALF, this activated carbon electrode has the potential to be one of the materials for future large-scale production of the electrochemical capacitors. Invited talk at 5th Thailand International Nanotechnology Conference (Nano Thailand-2016), 27-29 November 2016, Nakhon Ratchasima, Thailand.

  17. ARM Operations Quarterly Report October 1-December 31, 2013

    Energy Technology Data Exchange (ETDEWEB)

    Voyles, Jimmy W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-12-31

    The U.S. Department of Energy requires national user facilities to report time-based operating data. This quarterly report is written to comply with this requirement. This reports on the first quarter facility statistics.

  18. Dashboard: biogas for electricity production - Third quarter 2015

    International Nuclear Information System (INIS)

    Cavaud, Denis

    2015-12-01

    This publication describes the situation of biogas-based electricity production in France and its evolution over the first quarters of 2015. A map indicates the level of connected power per district. Graphs illustrate the evolution of the number of new connections per quarter since 2009, the evolution of electricity quarterly production since 2011. Tables indicate the number of installations per power level (less than 0.5 MW, between 0.5 and 1.0 MW, more than 1 MW) and per installation type. Regional data are given in terms of number of installations, installed power in September 2015 and in December 2015, regional share and evolution

  19. Preparation of CuInS{sub 2}/TiO{sub 2} nanotube heterojunction arrays electrode and investigation of its photoelectrochemical properties

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tingting [School of Environmental Science and Technology, State Key Laboratory of Fine Chemical, Key Laboratory of Industrial Ecology and Environmental Engineering of Ministry of Education, Dalian University of Technology, Dalian 116024, Liaoning (China); College of Civil Engineering and Architecture, Liaoning Technical University, Fuxin 123000 (China); Li, Xinyong, E-mail: xyli@dlut.edu.cn [School of Environmental Science and Technology, State Key Laboratory of Fine Chemical, Key Laboratory of Industrial Ecology and Environmental Engineering of Ministry of Education, Dalian University of Technology, Dalian 116024, Liaoning (China); Zhao, Qidong; Teng, Wei [School of Environmental Science and Technology, State Key Laboratory of Fine Chemical, Key Laboratory of Industrial Ecology and Environmental Engineering of Ministry of Education, Dalian University of Technology, Dalian 116024, Liaoning (China)

    2014-11-15

    Graphical abstract: Schematic illustration of the synthesis steps of CuInS{sub 2}/TiO{sub 2} heterojunction arrays electrode. - Highlights: • CuInS{sub 2}/TiO{sub 2} nanotube heterojunction arrays electrode was successfully fabricated via a modified SILAR method. • Morphology, chemical compositions and the photoelectrochemical properties were studied. • The formed heterojunction structure is demonstrated as n–n type heterojunction. - Abstract: CuInS{sub 2}/TiO{sub 2} nanotube heterojunction arrays electrode was synthesized via a modified successive ionic layer adsorption and reaction (SILAR) method. The morphology, crystalline structure and chemical composition of the composite electrode were characterized with field-emission scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectra (XPS), respectively. The optical properties were investigated by UV–vis diffusion reflection spectra (DRS) and photoluminescence (PL) spectra as well as the photoelectrochemical measurements. Significantly enhanced photoelectrochemical properties of CuInS{sub 2}/TiO{sub 2} NTs electrode were observed under visible light irradiation, which could be attributed to the high absorption coefficient of CuInS{sub 2} in visible region and the heterostructure formed between CuInS{sub 2} and TiO{sub 2}.

  20. Detection of mercury ions using L-cysteine modified electrodes by anodic stripping voltammetric method

    Science.gov (United States)

    Vanitha, M.; Balasubramanian, N.; Joni, I. Made; Panatarani, Camellia

    2018-02-01

    The detection of contaminants in wastewater is of massive importance in today's situation as they pose a serious threat to the environment as well as humans. One such vital contaminants is mercury and its compound, the reported mercury detectors grieve from low sensitivity, high cost and slow response. In the present work graphene based electrode material is developed for sensing mercury contaminants in wastewater using electrochemical technique. The synthesized material graphene oxide (GO) modified with L-Cysteine in presence of polyvinylpyrrolidone (PVP) as capping agent was characterized using SEM, TEM and Raman Spectroscopic analysis. It is ascertained from the morphological characterization that the nanocomposite exhibits a spherical morphology. The L-cysteine modified graphene oxide electrode is electrochemically characterized using redox couple [Fe(CN)63-/4-] and electrochemical impedance spectroscopic (EIS) analysis. Electrochemical sensing of Hg (II) ions in solution was done using Square wave anodic stripping voltammetry (SWASV). The incorporation of graphene significantly increases the sensitivity and selectivity towards mercury sensing.

  1. Catoptric electrodes: transparent metal electrodes using shaped surfaces.

    Science.gov (United States)

    Kik, Pieter G

    2014-09-01

    An optical electrode design is presented that theoretically allows 100% optical transmission through an interdigitated metallic electrode at 50% metal areal coverage. This is achieved by redirection of light incident on embedded metal electrode lines to an angle beyond that required for total internal reflection. Full-field electromagnetic simulations using realistic material parameters demonstrate 84% frequency-averaged transmission for unpolarized illumination across the entire visible spectral range using a silver interdigitated electrode at 50% areal coverage. The redirection is achieved through specular reflection, making it nonresonant and arbitrarily broadband, provided the electrode width exceeds the optical wavelength. These findings could significantly improve the performance of photovoltaic devices and optical detectors that require high-conductivity top contacts.

  2. Effect of Tungsten Nanolayer Coating on Si Electrode in Lithium-ion Battery

    Science.gov (United States)

    Son, Byung Dae; Lee, Jun Kyu; Yoon, Woo Young

    2018-02-01

    Tungsten (W) was coated onto a silicon (Si) anode at the nanoscale via the physical vaporization deposition method (PVD) to enhance its electrochemical properties. The characteristics of the electrode were identified by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray analysis, and electron probe X-ray microanalysis. With the electrochemical property analysis, the first charge capacities of the W-coated and uncoated electrode cells were 2558 mAh g- 1 and 1912 mAh g- 1, respectively. By the 50th cycle, the capacity ratios were 61.1 and 25.5%, respectively. Morphology changes in the W-coated Si anode during cycling were observed using SEM and TEM, and electrochemical characteristics were examined through impedance analysis. Owing to its conductivity and mechanical properties from the atomic W layer coating through PVD, the electrode improved its cyclability and preserved its structure from volumetric demolition.

  3. Brief review: Preparation techniques of biomass based activated carbon monolith electrode for supercapacitor applications

    Science.gov (United States)

    Taer, Erman; Taslim, Rika

    2018-02-01

    The synthesis of activated carbon monolith electrode made from a biomass material using the hydrolytic pressure or the pelletization technique of pre-carbonized materials is one of standard reported methods. Several steps such as pre-carbonization, milling, chemical activation, hydraulic press, carbonization, physical activation, polishing and washing need to be accomplished in the production of electrodes by this method. This is relatively a long process that need to be simplified. In this paper we present the standard method and proceed with the introduction to several alternative methods in the synthesis of activated carbon monolith electrodes. The alternative methods were emphasized on the selection of suitable biomass materials. All of carbon electrodes prepared by different methods will be analyzed for physical and electrochemical properties. The density, degree of crystallinity, surface morphology are examples for physical study and specific capacitance was an electrochemical properties that has been analysed. This alternative method has offered a specific capacitance in the range of 10 to 171 F/g.

  4. Growth of highly mesoporous CuCo2O4@C core-shell arrays as advanced electrodes for high-performance supercapacitors

    Science.gov (United States)

    Yan, Hailong; Lu, Yang; Zhu, Kejia; Peng, Tao; Liu, Xianming; Liu, Yunxin; Luo, Yongsong

    2018-05-01

    A series of CuCo2O4 nanostructures with different morphologies were prepared by a hydrothermal method in combination with thermal treatment. The morphology, structure and composition were investigated by scanning electron microscopy, transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. As the electrode materials for supercapacitors, CuCo2O4 nanoneedles delivered the highest specific capacitance compared with other CuCo2O4 nanostructures. Electrochemical performance measurements demonstrate that the carbon layer can improve the electrochemical stability of CuCo2O4 nanoneedles. The CuCo2O4@C electrode exhibits a high specific capacitance of 1432.4 F g-1 at a current density of 1 A g-1, with capacitance retention of 98.2% after 3000 circles. These characteristics of CuCo2O4@C composite are mainly due to the unique one dimensional needle-liked architecture and the conducting carbon, which provide a faster ion/electron transfer rate. These excellent performances of the CuCo2O4@C electrode confirmed the material as a positive electrode for hybrid supercapacitor application.

  5. Streamer knotwilg branching: sudden transition in morphology of positive streamers in high-purity nitrogen

    International Nuclear Information System (INIS)

    Heijmans, L C J; Clevis, T T J; Nijdam, S; Van Veldhuizen, E M; Ebert, U

    2015-01-01

    We describe a peculiar branching phenomenon in positive repetitive streamer discharges in high purity nitrogen. We name it knotwilg branching after the Dutch word for a pollard willow tree. In a knotwilg branching a thick streamer suddenly splits into many thin streamers. Under some conditions this happens for all streamers in a discharge at about the same distance from the high-voltage electrode tip. At this distance, the thick streamers suddenly bend sharply and appear to propagate over a virtual surface surrounding the high-voltage electrode, rather than following the background electric field lines. From these bent thick streamers many, much thinner, streamers emerge that roughly follow the background electric field lines, creating the characteristic knotwilg branching. We have only found this particular morphology in high purity nitrogen at pressures in the range 50 to 200 mbar and for pulse repetition rates above 1 Hz; the experiments were performed for an electrode distance of 16 cm and for fast voltage pulses of 20 or 30 kV. These observations clearly disagree with common knowledge on streamer propagation. We have analyzed the data of several tens of thousands of discharges to clarify the phenomena. We also present some thoughts on how the ionization of the previous discharges could concentrate into some pre-ionization region near the needle electrode and create the knotwilg morphology, but we present no final explanation. (paper)

  6. Laser patterned carbon–polyethylene mesh electrodes for wound diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Phair, Jolene; Joshi, Mayank; Benson, John; McDonald, Damian; Davis, James, E-mail: james.davis@ulster.ac.uk

    2014-02-14

    Carbon loaded polyethylene films were selected as the base substrate for a mechanically flexible and conductive sensing material for use wound monitoring technologies. The films were processed using laser ablation of the surface to increase the effective surface area of the electrode and then subject to an oxidative electrochemical etch to improve the electron transfer kinetics. The surface morphology of the resulting films was analysed and the electrode performance in relation to monitoring uric acid, a key wound biomarker, was optimized. A prototype smart bandage was designed, based on interfacing the mesh to a portable potentiostat, and the response to urate and potential interferences assessed. - Highlights: • Innovative use of a carbon–polyethylene mesh for wound sensing applications. • Electroanalytical characterisation of a mechanically flexible conductive film. • Design and preliminary characterisation of an integrated smart bandage.

  7. Laser patterned carbon–polyethylene mesh electrodes for wound diagnostics

    International Nuclear Information System (INIS)

    Phair, Jolene; Joshi, Mayank; Benson, John; McDonald, Damian; Davis, James

    2014-01-01

    Carbon loaded polyethylene films were selected as the base substrate for a mechanically flexible and conductive sensing material for use wound monitoring technologies. The films were processed using laser ablation of the surface to increase the effective surface area of the electrode and then subject to an oxidative electrochemical etch to improve the electron transfer kinetics. The surface morphology of the resulting films was analysed and the electrode performance in relation to monitoring uric acid, a key wound biomarker, was optimized. A prototype smart bandage was designed, based on interfacing the mesh to a portable potentiostat, and the response to urate and potential interferences assessed. - Highlights: • Innovative use of a carbon–polyethylene mesh for wound sensing applications. • Electroanalytical characterisation of a mechanically flexible conductive film. • Design and preliminary characterisation of an integrated smart bandage

  8. Prussian blue-modified nanoporous gold film electrode for amperometric determination of hydrogen peroxide.

    Science.gov (United States)

    Ghaderi, Seyran; Mehrgardi, Masoud Ayatollahi

    2014-08-01

    In this manuscript, the electrocatalytic reduction of hydrogen peroxides on Prussian blue (PB) modified nanoporous gold film (NPGF) electrode is described. The PB/NPGF is prepared by simple anodizing of a smooth gold film followed by PB film electrodeposition method. The morphology of the PB/NPGF electrode is characterized using scanning electron microscopy (SEM). The effect of solution pH and the scan rates on the voltammetric responses of hydrogen peroxide have also been examined. The amperometric determination of H2O2 shows two linear dynamic responses over the concentration range of 1μM-10μM and 10μM-100μM with a detection limit of 3.6×10(-7)M. Furthermore, this electrode demonstrated good stability, repeatability and selectivity remarkably. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Microscopy studies on pronton exchange membrane fuel cell electrodes with different ionomer contents

    DEFF Research Database (Denmark)

    Ma, Shuang; Solterbeck, Claus Henning; Odgaard, Madeleine

    2009-01-01

    of the electrode was well displayed in the topography and phase images. The particle and pore size (Z) distributions showed the most frequent values at 30-40 nm and 20-30 nm, respectively. The particle size corresponds to the size of the carbon support for the platinum catalyst. Catalyst agglomeration was observed......Proton Exchange Membrane (PEM) fuel cell electrodes with different ionomer contents were studied with various microscopic techniques. The morphology and surface potential were examined by Atomic Force Microscopy (AFM) and Kelvin Probe Microscopy (KPM), respectively. The particulate nature...... in high ionomer content electrodes. The surface potential images showed distinct difference to the topography images. The overall grain size was seen to increase, the pore volume to decrease, the surface roughness to decrease, and the surface potential variation to increase with the increase of ionomer...

  10. Environmental surveillance program. Quarterly progress report, July--September, 1993

    International Nuclear Information System (INIS)

    Walker, D.W.; Hall, L.F.; Downs, J.

    1996-01-01

    This report contains data developed from monitoring site measurements and laboratory analyses of environmental samples that were collected during the period of July-September, 1993. Because some laboratory procedures are lengthy and could adversely affect the desired timeliness of reports, results of some analyses from this time period will be included in the next quarterly report. Quarterly reports, then, will be routine periodic documents that present continually updated information concerning the potential presence of environmental contaminants in the vicinity of the Idaho National Engineering Laboratory (INEL). During the third calendar quarter of 1993, Environmental Surveillance Program (ESP) measurements did not reveal unexpected levels of contaminants in any environmental samples measured or analyzed. Most of the results reported in this document are related to off-site air and ground water measurements. Future reports will include results of monitoring at additional locations and for additional environmental materials. Annual reports from the ESP will contain data generated during the previous four calendar quarters, and will display measurement trends for various combinations of locations, contaminants and environmental media. The annual report will also include more interpretive material and discussions than will normally be found in quarterly reports

  11. Quarterly environmental radiological survey summary - first quarter 1997 100, 200, 300, and 600 areas

    International Nuclear Information System (INIS)

    Mckinney, S.M.

    1997-01-01

    This report provides a summary of the radiological surveys performed in support of near-facility environmental monitoring at the Hanford Site. The First Quarter 1997 survey results and the status of actions required are summarized below: (1) All of the routine environmental radiological surveys scheduled during January, February, and March 1997, were performed as planned. (2) One hundred four environmental radiological surveys were performed during the first quarter 1997, twenty-nine at the active waste sites and seventy-five at the inactive waste sites. Contamination above background levels was found at eight of the active waste sites and seven of the inactive waste sites. Contamination levels as high as >1,000,000 disintegrations per minute (dpm) were reported. Of these contaminated surveys twelve were in Underground Radioactive Material (URM) areas and three were in contamination areas. The contamination found within ten of the URM areas was immediately cleaned up and no further action was required. In the remaining five sites the areas were posted and will require decontamination. Radiological Problem Reports (RPR's) were issued and the sites were turned over to the landlord for further action if required. (3) During the first quarter of 1997, 5.6 hectares (13.8 acres) were stabilized and radiologically down posted from Contamination Area (CA)/Soil Contamination (SC) to URM. (4) During the first quarter of 1997, the size of 216-A-25 Gable Mountain Pond was increased from 30.4 to 34.5 hectares (75.0 to 85.2 acres). This increase in size was due to the correction of the original boundary area by using the advanced technology of a global positioning system (GPS). An area, 1.6 hectares (4.0 acres), east of and adjacent to the 241-S/SX/SY tank farm complex was posted as a contamination/soil contamination area. (5) Five open Surveillance Compliance Inspection Reports (SCIRs) had not been resolved

  12. Natural gas imports and exports. First quarter report, 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-08-01

    The Office of Natural Gas and Petroleum Import and Export Activities prepares quarterly reports summarizing the data provided by companies authorized to import or export natural gas. Companies are required, as a condition of their authorizations, to file quarterly reports. This report is for the first quarter of 1998 (January through March). Attachment A shows the percentage of takes to maximum firm contract levels and the weighted average per unit price for each of the long-term importers during the five most recent reporting quarters. Attachment B shows volumes and prices of gas purchased by long-term importers and exporters during the past 12 months. Attachment C shows volume and price information pertaining to gas imported on a short-term or spot market basis. Attachment D shows the gas exported on a short-term or spot market basis to Canada and Mexico.

  13. Natural gas imports and exports: Third quarter report, 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    The Office of Natural Gas and Petroleum Import and Export Activities prepares quarterly reports summarizing the data provided by companies authorized to import or export natural gas. Companies are required, as a condition of their authorizations, to file quarterly reports. This report is for the third quarter of 1998 (July--September). Attachment A shows the percentage of takes to maximum firm contract levels and the weighted average per unit price for each of the long-term importers during the five most recent calendar quarters. Attachment B shows volumes and prices of gas purchased by long-term importers and exporters during the past 12 months. Attachment C shows volume and price information pertaining to gas imported on a short-term or spot market basis. Attachment D shows the gas exported on a short-term or spot market basis to Canada and Mexico.

  14. Natural gas imports and exports. Fourth quarter report, 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    The Office of Natural Gas and Petroleum Import and Export Activities prepares quarterly reports summarizing the data provided by companies authorized to import or export natural gas. Companies are required, as a condition of their authorizations, to file quarterly reports. This report is for the fourth quarter of 1998 (October through December). Attachment A shows the percentage of takes to maximum firm contract levels and the weighted average per unit price for each of the long-term importers during the five most recent reporting quarters. Attachment B shows volumes and prices of gas purchased by long-term importers and exporters during the past 12 months. Attachment C shows volume and price information pertaining to gas imported on a short-term or spot market basis. Attachment D shows the gas exported on a short-term or spot market basis to Canada and Mexico.

  15. Natural gas: Imports and exports third quarter report 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    The Office of Fuels Programs prepares quarterly reports summarizing the data provided by companies with authorizations to import or export natural gas. Companies are required, as a condition of their authorizations, to file quarterly reports with the OFP. This report is for the third quarter of 1993 (July--September). Attachment A shows the percentage of takes to maximum firm contract levels and the weighted average per unit price for each of the long-term importers during the five most recent reporting quarters. Attachment B shows volumes and prices of gas purchased by long-term importers and exporters during the past twelve months (October 1992--September 1993). Attachment C shows volume and price information pertaining to gas imported on a short-term or spot market basis. Attachment D shows the gas exported on a short-term or spot market basis to Canada and Mexico.

  16. Natural gas imports and exports. Second quarter report, 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    The Office of Natural Gas and Petroleum Import and Export Activities prepared quarterly reports summarizing the data provided by companies authorized to import or export natural gas. Companies are required, as a condition of their authorizations, to file quarterly reports. This report is for the second quarter of 1998 (April through June). Attachment A shows the percentage of takes to maximum firm contract levels and the weighted average per unit price for each of the long-term importers during the five most recent reporting quarters. Attachment B shows volumes and prices of gas purchased by long-term importers and exporters during the past 12 months. Attachment C shows volume and price information pertaining to gas imported on a short-term or spot market basis. Attachment D shows the gas exported on a short-term or spot market basis to Canada and Mexico.

  17. Quarter Dates Location(s) Purpose Transportation and Travel ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Chantal Taylor

    Transportation and Travel. Accommodation, Meals and Other. Hospitality. Total Expenses. Quarter 1. April 4 to 12. Alexandria, Egypt. Meetings. 15,761.81. 4,596.60. 77.24. 20,435.65. May 22. Toronto, ON. Meeting. May 23 to June 5. Jakarta, Bangkok and Delhi. Meetings. Quarter 2. September 22 to 26. New York, NY.

  18. Lithium secondary batteries: Role of polymer cathode morphology

    Science.gov (United States)

    Naoi, Katsuhiko; Osaka, Tetsuya; Owens, Boone B.

    1988-06-01

    Electrically conducting polymers have been utilized both as the cathode and as the electrolyte element of Li secondary cells. Polymer cathodes were limited in their suitability for batteries because of the low energy content associated with low levels of doping and the inclusion of complex ionic species in the cathode. Recent studies have indicated that doping levels up to 100 percent can be achieved in polyanilene. High doping levels in combination with controlled morphologies have been found to improve the energy and rate capabilities of polymer cathodes. A morphology-modifying technique was utilized to enhance the charge/discharge characteristics of Li/liquid electrolyte polypyrrole cells. The polymer is electropolymerized in a preferred orientation morphology when the substrate is first precoated with an insulating film of nitrile butadiene rubber (NBR). Modification of the kinetic behavior of the electrode results from variations in the chemical composition of the NBR.

  19. Cobalt phthalocyanine modified electrodes utilised in electroanalysis: nano-structured modified electrodes vs. bulk modified screen-printed electrodes.

    Science.gov (United States)

    Foster, Christopher W; Pillay, Jeseelan; Metters, Jonathan P; Banks, Craig E

    2014-11-19

    Cobalt phthalocyanine (CoPC) compounds have been reported to provide electrocatalytic performances towards a substantial number of analytes. In these configurations, electrodes are typically constructed via drop casting the CoPC onto a supporting electrode substrate, while in other cases the CoPC complex is incorporated within the ink of a screen-printed sensor, providing a one-shot economical and disposable electrode configuration. In this paper we critically compare CoPC modified electrodes prepared by drop casting CoPC nanoparticles (nano-CoPC) onto a range of carbon based electrode substrates with that of CoPC bulk modified screen-printed electrodes in the sensing of the model analytes L-ascorbic acid, oxygen and hydrazine. It is found that no "electrocatalysis" is observed towards L-ascorbic acid using either of these CoPC modified electrode configurations and that the bare underlying carbon electrode is the origin of the obtained voltammetric signal, which gives rise to useful electroanalytical signatures, providing new insights into literature reports where "electrocatalysis" has been reported with no clear control experiments undertaken. On the other hand true electrocatalysis is observed towards hydrazine, where no such voltammetric features are witnessed on the bare underlying electrode substrate.

  20. Cyclic voltammetry response of an undoped CVD diamond electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Fabisiak, K., E-mail: kfab@ukw.edu.pl [Institute of Physics, Kazimierz Wielki University, Powstancow Wielkopolskich 2, 85-090 Bydgoszcz (Poland); Torz-Piotrowska, R. [Faculty of Chemical Technology and Engineering, UTLS Seminaryjna 3, 85-326 Bydgoszcz (Poland); Staryga, E. [Institute of Physics, Technical University of Lodz, Wolczanska 219, 90-924 Lodz (Poland); Szybowicz, M. [Faculty of Technical Physics, Poznan University of Technology, Nieszawska 13A, 60-965 Poznan (Poland); Paprocki, K.; Popielarski, P.; Bylicki, F. [Institute of Physics, Kazimierz Wielki University, Powstancow Wielkopolskich 2, 85-090 Bydgoszcz (Poland); Wrzyszczynski, A. [Institute of Physics, Technical University of Lodz, Wolczanska 219, 90-924 Lodz (Poland)

    2012-09-01

    Highlights: Black-Right-Pointing-Pointer Correlation was found between diamond quality and its electrochemical performance. Black-Right-Pointing-Pointer The electrode sensitivity depends on the content of sp{sup 2} carbon phase in diamond layer. Black-Right-Pointing-Pointer The sp{sup 2} carbon phase content has little influence on the CV peak separation ({Delta}E{sub p}). - Abstract: The polycrystalline undoped diamond layers were deposited on tungsten wire substrates by using hot filament chemical vapor deposition (HFCVD) technique. As a working gas the mixture of methanol in excess of hydrogen was used. The morphologies and quality of as-deposited films were monitored by means of scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman spectroscopy respectively. The electrochemical activity of the obtained diamond layers was monitored by using cyclic voltammetry measurements. Analysis of the ferrocyanide-ferricyanide couple at undoped diamond electrode suggests that electrochemical reaction at diamond electrode has a quasireversibile character. The ratio of the anodic and cathodic peak currents was always close to unity. In this work we showed that the amorphous carbon admixture in the CVD diamond layer has a crucial influence on its electrochemical performance.

  1. English Leadership Quarterly, 1993.

    Science.gov (United States)

    Strickland, James, Ed.

    1993-01-01

    These four issues of the English Leadership Quarterly represent those published during 1993. Articles in number 1 deal with parent involvement and participation, and include: "Opening the Doors to Open House" (Jolene A. Borgese); "Parent/Teacher Conferences: Avoiding the Collision Course" (Robert Perrin); "Expanding Human…

  2. 77 FR 38211 - Rescission of Quarterly Financial Reporting Requirements

    Science.gov (United States)

    2012-06-27

    ... No. FMCSA-2012-0020] RIN-2126-AB48 Rescission of Quarterly Financial Reporting Requirements AGENCY..., the Federal Motor Carrier Safety Administration (FMCSA) eliminates the quarterly financial reporting... would be ineffective or unacceptable without a change. III. Background Annual Financial Reporting...

  3. 78 FR 31475 - Rescission of Quarterly Financial Reporting Requirements

    Science.gov (United States)

    2013-05-24

    ... No. FMCSA-2012-0020] RIN-2126-AB48 Rescission of Quarterly Financial Reporting Requirements AGENCY...); request for comments. SUMMARY: FMCSA proposes to eliminate the quarterly financial reporting requirements... person argued that the financial reporting requirements transferred from the Interstate Commerce...

  4. 78 FR 76241 - Rescission of Quarterly Financial Reporting Requirements

    Science.gov (United States)

    2013-12-17

    .... SUMMARY: FMCSA eliminates the quarterly financial reporting requirements for certain for-hire motor... prepare plans for reviewing existing rules. The rule eliminates the quarterly financial reporting... Federal Register (73 FR 3316). Background Annual Financial Reporting Requirements Section 14123 of title...

  5. NST Quarterly - January 1998 issue

    International Nuclear Information System (INIS)

    1998-01-01

    NST Quarterly reports current development in Nuclear Science and Technology in Malaysia. In this issue it highlights MINT activities in proposal of national networking for biotechnology culture collection centre (NNBCCC)

  6. Kinetic investigation of vanadium (V)/(IV) redox couple on electrochemically oxidized graphite electrodes

    International Nuclear Information System (INIS)

    Wang, Wenjun; Wei, Zengfu; Su, Wei; Fan, Xinzhuang; Liu, Jianguo; Yan, Chuanwei; Zeng, Chaoliu

    2016-01-01

    Highlights: • The VO_2"+/VO"2"+ redox reaction of the electrode could be facilitated to some extent with the increasing anodic corrosion. • A real reaction kinetic equation for the oxidation of VO"2"+ on the electrochemically oxidized electrode has been firstly obtained. • The establishment of the kinetic equation is conducive to predict polarization behaviors of the electrodes in engineering application. - Abstract: The morphology, surface composition, wettability and the kinetic parameters of the electrochemically oxidized graphite electrodes obtained under different anodic polarization conditions have been examined by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), contact angle measurements, steady-state polarization and cyclic voltammetry (CV) tests, with an attempt to investigate the inherent correlation between the physicochemical properties and the kinetic characteristics for carbon electrodes used in an all-vanadium redox flow battery (VRFB). When the anodic polarization potential raises up to 1.8 V vs. SCE, the anodic corrosion of the graphite might happen and a large number of oxygen-containing functional groups generate. The VO_2"+/VO"2"+ redox reaction can be facilitated and the reaction reversibility tends to become better with the increasing anodic potential, possibly owing to the increased surface oxides and the resulting improved wettability of the electrode. Based on this, a real reaction kinetic equation for the oxidation of VO"2"+ has been obtained on the electrode polarized at 1.8 V vs. SCE and it can be also well used to predict the polarization behavior of the oxidized electrode in vanadium (IV) acidic solutions.

  7. Fuel management study on quarter core refueling for Ling Ao NPP

    International Nuclear Information System (INIS)

    Zhang Hong; Li Jinggang

    2012-01-01

    The fuel management study on quarter core refueling is introduced for Ling Ao NPP. Starting from the selection of the objective of fuel management for quarter core refueling, the code and method used and the analysis carried out are explained in details to reach the final loading pattern chosen. The start-up physics test results are listed to demonstrate the realized quarter core fuel management. In the end, the advantage and disadvantage after turning to quarter core refueling has been given for the power plant from the fuel management point of view. (authors)

  8. Department of Veterans Affairs Quarterly Notice to Congress on Data Breaches First Quarter of Fiscal Year 2014 October 1, 2013 through December 31, 2013

    Data.gov (United States)

    Department of Veterans Affairs — This is a quarterly notice to congress containing statistics on data breeches for fiscal year 2014 for the first quarter (2014 October 1, 2013 through December 31,...

  9. Electrochemical reversibility of reticulated vitreous carbon electrodes heat treated at different carbonization temperatures

    Directory of Open Access Journals (Sweden)

    Emerson Sarmento Gonçalves

    2006-06-01

    Full Text Available Electrochemical response of ferri/ferrocyanide redox couple is discussed for a system that uses reticulated vitreous carbon (RVC three dimensional electrodes prepared at five different Heat Treatment Temperatures (HTT in the range of 700 °C to 1100 °C. Electrical resistivity, scanning electron microscopy and X ray Diffraction analyses were performed for all prepared samples. It was observed that the HTT increasing promotes an electrical conductivity increasing while the Bragg distance d002 decreases. The correlation between reversibility behavior of ferri/ferrocyanide redox couple and both surface morphology and chemical properties of the RVC electrodes demonstrated a strong dependence on the HTT used to prepare the RVC.

  10. Synthesis and loading-dependent characteristics of nitrogen-doped graphene foam/carbon nanotube/manganese oxide ternary composite electrodes for high performance supercapacitors.

    Science.gov (United States)

    Cheng, Tao; Yu, Baozhi; Cao, Linli; Tan, Huiyun; Li, Xinghua; Zheng, Xinliang; Li, Weilong; Ren, Zhaoyu; Bai, Jinbo

    2017-09-01

    The ternary composite electrodes, nitrogen-doped graphene foam/carbon nanotube/manganese dioxide (NGF/CNT/MnO 2 ), have been successfully fabricated via chemical vapor deposition (CVD) and facile hydrothermal method. The morphologies of the MnO 2 nanoflakes presented the loading-dependent characteristics and the nanoflake thickness could also be tuned by MnO 2 mass loading in the fabrication process. The correlation between their morphology and electrochemical performance was systematically investigated by controlling MnO 2 mass loading in the ternary composite electrodes. The electrochemical properties of the flexible ternary electrode (MnO 2 mass loading of 70%) exhibited a high areal capacitance of 3.03F/cm 2 and a high specific capacitance of 284F/g at the scan rate of 2mV/s. Moreover, it was interesting to find that the capacitance of the NGF/CNT/MnO 2 composite electrodes showed a 51.6% increase after 15,000 cycles. The gradual increase in specific capacitance was due to the formation of defective regions in the MnO 2 nanostructures during the electrochemical cycles of the electrodes, which further resulted in increased porosity, surface area, and consequently increased electrochemical capacity. This work demonstrates a rarely reported conclusion about loading-dependent characteristics for the NGF/CNT/MnO 2 ternary composite electrodes. It will bring new perspectives on designing novel ternary or multi-structure for various energy storage applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Ni-Zn electrodes for hydrogen production by acid electrolysis; Eletrodos de Ni-Zn para producao de hidrogenio por eletrolise acida

    Energy Technology Data Exchange (ETDEWEB)

    Torres, C.S.; Malfatti, C.F., E-mail: camilator@gmail.com [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre (Brazil). Departamento de Metalurgia. Lab. de Pesquisa em Corrosao

    2014-07-01

    Hydrogen production by electrolysis of water, have an important role in countries that have great renewable potential for electricity production. The electrolysis of water has been proposed to use the excess capacity of hydroelectric plants. However, to improve process efficiency, research has been undertaken to improve the catalytic reduction reaction of hydrogen from the development of electrodes with better performance. Thus, the selection of low cost electrode materials with good electrocatalytic activity is required. In this work, the hydrogen evolution reaction (HER) employing electrodes of Ni-Zn and Ni was investigated. Morphological characterization of the electrodes was performed using SEM/ EDX and profilometry and electrochemical behavior was evaluated by cathodic polarization curves. The results showed that the addition of Zn promotes the increase the electrocatalytic activity of HER compared to nickel electrode. (author)

  12. Flexible powder electroluminescent device on silver nanowire electrode

    International Nuclear Information System (INIS)

    Park, K.W.; Jeong, H.S.; Park, J.H.; Deressa, G.; Jeong, Y.T.; Lim, K.T.; Park, J.H.; Lee, S.H.; Kim, J.S.

    2015-01-01

    We have demonstrated the flexible AC powder electroluminescent device based on Ag nanowire electrode. The Ag nanowire electrode showed the nanowire morphology of 20 nm in diameter and 15 μm in length, the transmittance of 87%, and the sheet resistance of 50 Ω/sq, and the higher flexibility than the conventional ITO substrate. The electroluminescence spectra of the Ag nanowire-based device in all frequency and voltage ranges were almost similar with the ITO-based device. In comparison with the ITO-based device, the luminous efficiency of the Ag nanowire-based device was almost same as 1.53 lm/W. - Highlights: • Flexibility of Ag NW substrate was higher than ITO substrate. • EL intensity of Ag NW-based EL device was almost similar with ITO-based EL device. • Charge density and turn-on voltage of Ag NW-based EL device were a little larger than ITO-based EL device

  13. Flexible powder electroluminescent device on silver nanowire electrode

    Energy Technology Data Exchange (ETDEWEB)

    Park, K.W.; Jeong, H.S.; Park, J.H.; Deressa, G.; Jeong, Y.T.; Lim, K.T. [Department of Display Science and Engineering, Pukyong National University, Busan 608-737 (Korea, Republic of); Park, J.H. [AIDEN company, Cheongju-si 361-911 (Korea, Republic of); Lee, S.H. [R& D Business Lab, Hyosung Corporation, Anyang 431-080 (Korea, Republic of); Kim, J.S., E-mail: jsukim@pknu.ac.kr [Department of Display Science and Engineering, Pukyong National University, Busan 608-737 (Korea, Republic of)

    2015-09-15

    We have demonstrated the flexible AC powder electroluminescent device based on Ag nanowire electrode. The Ag nanowire electrode showed the nanowire morphology of 20 nm in diameter and 15 μm in length, the transmittance of 87%, and the sheet resistance of 50 Ω/sq, and the higher flexibility than the conventional ITO substrate. The electroluminescence spectra of the Ag nanowire-based device in all frequency and voltage ranges were almost similar with the ITO-based device. In comparison with the ITO-based device, the luminous efficiency of the Ag nanowire-based device was almost same as 1.53 lm/W. - Highlights: • Flexibility of Ag NW substrate was higher than ITO substrate. • EL intensity of Ag NW-based EL device was almost similar with ITO-based EL device. • Charge density and turn-on voltage of Ag NW-based EL device were a little larger than ITO-based EL device.

  14. A uric acid sensor based on electrodeposition of nickel hexacyanoferrate nanoparticles on an electrode modified with multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Fang, B.; Feng, Y.; Wang, G.; Zhang, C.; Gu, A.; Liu, M.

    2011-01-01

    An electrode sensitive to uric acid was prepared by electrodeposition of nickel(II) hexacyanoferrate(III) on the surface of a glassy carbon electrode modified with multi-walled carbon nanotubes. The morphology of the material was characterized by scanning electron microscopy and Fourier transform infrared spectrometry. The modified electrode were characterized via cyclic voltammetry and amperometry (i - t). It exhibited efficient electron transfer ability and a strong and fast (< 3 s) response towards uric acid which is linear in the range from 0.1 μM to 18 μM, with a lower detection limit of 50 nM (at an S/N ratio of 3). In addition, the electrode exhibited good reproducibility and long-term stability. (author)

  15. Modulating indium doped tin oxide electrode properties for laccase electron transfer enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Diaconu, Mirela [National Institute for Biological Sciences, Centre of Bioanalysis, 296 Spl. Independentei, Bucharest 060031 (Romania); Chira, Ana [National Institute for Biological Sciences, Centre of Bioanalysis, 296 Spl. Independentei, Bucharest 060031 (Romania); Politehnica University of Bucharest, Faculty of Applied Chemistry and Materials Science, 1-7 Polizu Str., 011061 (Romania); Radu, Lucian, E-mail: gl_radu@chim.upb.ro [Politehnica University of Bucharest, Faculty of Applied Chemistry and Materials Science, 1-7 Polizu Str., 011061 (Romania)

    2014-08-28

    Indium doped tin oxide (ITO) electrodes were functionalized with gold nanoparticles (GNPs) and cysteamine monolayer to enhance the heterogeneous electron transfer process of laccase from Trametes versicolor. The assembly of GNP on ITO support was performed through generation of H{sup +} species at the electrode surface by hydroquinone electrooxidation at 0.9 V vs Ag/AgCl. Uniform distribution of gold nanoparticle aggregates on electrode surfaces was confirmed by atomic force microscopy. The size of GNP aggregates was in the range of 200–500 nm. The enhanced charge transfer at the GNP functionalized ITO electrodes was observed by cyclic voltammetry (CV) and electrochemical impedance spectroscopy. Electrocatalytic behavior of laccase immobilized on ITO modified electrode toward oxygen reduction reaction was evaluated using CV in the presence of 2,2′-azino-bis 3-ethylbenzothiazoline-6-sulfuric acid (ABTS). The obtained sigmoidal-shaped voltammograms for ABTS reduction in oxygen saturated buffer solution are characteristic for a catalytic process. The intensity of catalytic current increased linearly with mediator concentration up to 6.2 × 10{sup −4} M. The registered voltammogram in the absence of ABTS mediator clearly showed a significant faradaic current which is the evidence of the interfacial oxygen reduction. - Highlights: • Assembly of gold nanoparticles on indium tin oxide support at positive potentials • Electrochemical and morphological evaluation of the gold nanoparticle layer assembly • Bioelectrocatalytic oxygen reduction on laccase modified electrode.

  16. Cobalt Phthalocyanine Modified Electrodes Utilised in Electroanalysis: Nano-Structured Modified Electrodes vs. Bulk Modified Screen-Printed Electrodes

    Directory of Open Access Journals (Sweden)

    Christopher W. Foster

    2014-11-01

    Full Text Available Cobalt phthalocyanine (CoPC compounds have been reported to provide electrocatalytic performances towards a substantial number of analytes. In these configurations, electrodes are typically constructed via drop casting the CoPC onto a supporting electrode substrate, while in other cases the CoPC complex is incorporated within the ink of a screen-printed sensor, providing a one-shot economical and disposable electrode configuration. In this paper we critically compare CoPC modified electrodes prepared by drop casting CoPC nanoparticles (nano-CoPC onto a range of carbon based electrode substrates with that of CoPC bulk modified screen-printed electrodes in the sensing of the model analytes L-ascorbic acid, oxygen and hydrazine. It is found that no “electrocatalysis” is observed towards L-ascorbic acid using either of these CoPC modified electrode configurations and that the bare underlying carbon electrode is the origin of the obtained voltammetric signal, which gives rise to useful electroanalytical signatures, providing new insights into literature reports where “electrocatalysis” has been reported with no clear control experiments undertaken. On the other hand true electrocatalysis is observed towards hydrazine, where no such voltammetric features are witnessed on the bare underlying electrode substrate.

  17. NST Quarterly - April 1998 issue

    International Nuclear Information System (INIS)

    1998-01-01

    NST Quarterly reports current development in Nuclear Science and Technology in Malaysia. In this issue it highlights MINT activities in ionizing radiation as an alternative method for sanitization of herbs and spices

  18. Microstructural modification of NiAl layered double hydroxide electrodes by adding graphene nanosheets and their capacitative property

    International Nuclear Information System (INIS)

    Kim, Yuna; Kim, Seok

    2015-01-01

    NiAl layered double hydroxide (LDH) composite electrodes containing various contents of graphene nanosheets (GNS) were prepared by a hydrothermal method. The microstructure and morphological properties were examined by FE-SEM, FE-TEM, XRD, and FTIR. Electrochemical analysis was also carried out by cyclic voltammetry, impedance, and cycle life measurement. The as-prepared composite that contained 500 mg of graphene (denoted as NiAl/G-50) achieved the highest specific capacitance of 1147 F/g among the various NiAl LDH/GNS composites. Besides, the NiAl LDH/GNS composite exhibited the lower diffusion resistance, improved rate capability, and good cyclic stability (83% of initial capacitance after 2000 cycles). Considering the morphological data and the improved capacitative properties together, we concluded the synthesized NiAl LDH/GNS composites would be a promising electrode material for supercapacitors

  19. Microstructural modification of NiAl layered double hydroxide electrodes by adding graphene nanosheets and their capacitative property

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yuna; Kim, Seok [School of Chemical and Biomolecular Engineering, Pusan National University, Busan (Korea, Republic of)

    2015-02-15

    NiAl layered double hydroxide (LDH) composite electrodes containing various contents of graphene nanosheets (GNS) were prepared by a hydrothermal method. The microstructure and morphological properties were examined by FE-SEM, FE-TEM, XRD, and FTIR. Electrochemical analysis was also carried out by cyclic voltammetry, impedance, and cycle life measurement. The as-prepared composite that contained 500 mg of graphene (denoted as NiAl/G-50) achieved the highest specific capacitance of 1147 F/g among the various NiAl LDH/GNS composites. Besides, the NiAl LDH/GNS composite exhibited the lower diffusion resistance, improved rate capability, and good cyclic stability (83% of initial capacitance after 2000 cycles). Considering the morphological data and the improved capacitative properties together, we concluded the synthesized NiAl LDH/GNS composites would be a promising electrode material for supercapacitors.

  20. Mechanical measurements on lithium phosphorous oxynitride coated silicon thin film electrodes for lithium-ion batteries during lithiation and delithiation

    Energy Technology Data Exchange (ETDEWEB)

    Al-Obeidi, Ahmed, E-mail: alobeidi@mit.edu; Thompson, Carl V., E-mail: reiner.moenig@kit.edu, E-mail: cthomp@mit.edu [Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139 (United States); Kramer, Dominik, E-mail: dominik.kramer@kit.edu; Mönig, Reiner, E-mail: reiner.moenig@kit.edu, E-mail: cthomp@mit.edu [Institute for Applied Materials, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Helmholtz Institute Ulm for Electrochemical Energy Storage (HIU), Helmholtzstraße 11, 89081 Ulm (Germany); Boles, Steven T., E-mail: steven.t.boles@polyu.edu.hk [Institute for Applied Materials, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hung Hom (Hong Kong)

    2016-08-15

    The development of large stresses during lithiation and delithiation drives mechanical and chemical degradation processes (cracking and electrolyte decomposition) in thin film silicon anodes that complicate the study of normal electrochemical and mechanical processes. To reduce these effects, lithium phosphorous oxynitride (LiPON) coatings were applied to silicon thin film electrodes. Applying a LiPON coating has two purposes. First, the coating acts as a stable artificial solid electrolyte interphase. Second, it limits mechanical degradation by retaining the electrode's planar morphology during cycling. The development of stress in LiPON-coated electrodes was monitored using substrate curvature measurements. LiPON-coated electrodes displayed highly reproducible cycle-to-cycle behavior, unlike uncoated electrodes which had poorer coulombic efficiency and exhibited a continual loss in stress magnitude with continued cycling due to film fracture. The improved mechanical stability of the coated silicon electrodes allowed for a better investigation of rate effects and variations of mechanical properties during electrochemical cycling.

  1. Trend chart: photovoltaic solar energy. Forth quarter 2016

    International Nuclear Information System (INIS)

    Coltier, Yves

    2017-02-01

    This publication presents a quarterly review of power generation from photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly distribution of new connections, progress of connected power during the last years, power generated since the beginning of the year and comparison with previous years, projects in progress, detailed regional results, methodology used

  2. Trend chart: photovoltaic solar energy. Third quarter 2016

    International Nuclear Information System (INIS)

    Coltier, Yves

    2016-11-01

    This publication presents a quarterly review of power generation from photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly distribution of new connections, progress of connected power during the last years, power generated since the beginning of the year and comparison with previous years, projects in progress, detailed regional results, methodology used

  3. Trend chart: photovoltaic solar energy. Forth quarter 2015

    International Nuclear Information System (INIS)

    Reynaud, Didier

    2016-02-01

    This publication presents a quarterly review of power generation from photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly distribution of new connections, progress of connected power during the last years, power generated since the beginning of the year and comparison with previous years, projects in progress, detailed regional results, methodology used

  4. Trend chart: photovoltaic solar energy. First quarter 2017

    International Nuclear Information System (INIS)

    2017-05-01

    This publication presents a quarterly review of power generation from photovoltaic power plants connected to the French grid (continental France, Corsica and overseas territories): total connected load, quarterly distribution of new connections, progress of connected power during the last years, power generated since the beginning of the year and comparison with previous years, projects in progress, detailed regional results, methodology used

  5. Immobilization of Glucose Oxidase on Modified-Carbon-Paste-Electrodes for Microfuel Cell

    Directory of Open Access Journals (Sweden)

    Laksmi Ambarsari

    2016-03-01

    Full Text Available Glucose oxidase (GOx is being developed for many applications such as an implantable fuel cell, due to its attractive property of operating under physiological conditions. This study reports the functional immobilization of glucose oxidase onto polyaniline-nanofiber-modified-carbon-paste-electrodes (GOx/MCPE as bioanodes in fuel cell applications. In particular, GOx is immobilized onto the electrode surface via a linker molecule (glutaraldehyde. Polyaniline, synthesized by the interfacial polymerization method, produces a morphological form of nanofibers (100-120 nm which have good conductivity. The performance of the polyaniline-modified-carbon-paste-electrode (MCPE was better than the carbon- paste-electrode (CPE alone. The optimal pH and temperature of the GOx/MCPE were 4.5 (in 100 mM acetate buffer and 65 °C, respectively. The GOx/MCPE exhibit high catalytic performances (activation energy 16.4 kJ mol-1, have a high affinity for glucose (Km value 37.79 µM and can have a maximum current (Imax of 3.95 mA. The sensitivity of the bioelectrode also was high at 57.79 mA mM-1 cm-2.

  6. Determination of hydrogen peroxide using a Prussian Blue modified macroporous gold electrode

    International Nuclear Information System (INIS)

    Yang, Jiao; Lin, Meng; Cho, MiSuk; Lee, Youngkwan

    2015-01-01

    We describe an electrochemical sensor for hydrogen peroxide (H 2 O 2 ) that is making use of Prussian Blue (PB) electrodeposited on a macroporous (mp) gold skeleton electrode. An mp-Cu film was first prepared as a template and the converted into an mp-Au film through a replacement reaction without destructing the structure. Next, a layer of PB was electrochemically deposited on the surface of the mp-Au film. The surface morphology of the electrode was characterized by scanning electron microscopy. Attenuated total reflection infrared spectroscopy and X-ray photoelectron spectroscopy were applied to confirm the structural features. The mp-PB/Au film electrode displays high electro-catalytic activity for the reduction of H 2 O 2 at a working potential of −50 mV (vs. Ag/AgCl) and is very stable. It has a linear response to H 2 O 2 in the 50 μM to 11.3 mM concentration range and a sensitivity of 767 μA∙mM −1 cm −2 . The electrode also revealed good selectivity in the presence of electro-active species such as ascorbic acid and uric acid. (author)

  7. Polyaniline modified graphene and carbon nanotube composite electrode for asymmetric supercapacitors of high energy density

    Science.gov (United States)

    Cheng, Qian; Tang, Jie; Shinya, Norio; Qin, Lu-Chang

    2013-11-01

    Graphene and single-walled carbon nanotube (CNT) composites are explored as the electrodes for supercapacitors by coating polyaniline (PANI) nano-cones onto the graphene/CNT composite to obtain graphene/CNT-PANI composite electrode. The graphene/CNT-PANI electrode is assembled with a graphene/CNT electrode into an asymmetric pseudocapacitor and a highest energy density of 188 Wh kg-1 and maximum power density of 200 kW kg-1 are achieved. The structure and morphology of the graphene/CNT composite and the PANI nano-cone coatings are characterized by both scanning electron microscopy and transmission electron microscopy. The excellent performance of the assembled supercapacitors is also discussed and it is attributed to (i) effective utilization of the large surface area of the three-dimensional network structure of graphene-based composite, (ii) the presence of CNT in the composite preventing graphene from re-stacking, and (ii) uniform and vertically aligned PANI coating on graphene offering increased electrical conductivity.

  8. Quarterly environmental radiological survey summary: 100, 200, 300 and 600 Areas. Fourth quarter 1994

    International Nuclear Information System (INIS)

    McKinney, S.M.

    1995-01-01

    This report provides a summary of the radiological surveys performed on waste disposal sites located at the Hanford Site. The Fourth Quarter 1994 survey results and the status of actions required from current and past reports are summarized

  9. Natural gas imports and exports. First quarter report 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    The Office of Fuels Programs Prepares quarterly reports Summarizing the data provided by companies authorized to import or export natural gas. Companies are required, as a condition of their authorizations, to file quarterly reports with the OFP. This report is for the first quarter of 1994 (January--March). Attachment A shows the percentage of takes to maximum firm contract levels and the weighted average per unit price for each of the long-term importers during the five most recent reporting quarters. Attachment B shows volumes and prices of gas purchased by long-term importers and exporters during the past twelve months. Attachment C shows volume and price information for gas imported on a short-term basis. Attachment D shows the gas exported on a short-term basis to Canada and Mexico. During the first three months of 1994, data indicates that gas imports grew by about 14 percent over the level of the first quarter of 1993 (668 vs. 586 Bcf), with Canadian and Algerian imports increasing by 12 and 53 percent, respectively. During the same time period, exports declined by 15 percent (41 vs. 48 Bcf). Exports to Canada increased by 10 percent from the 1993 level (22 vs. 20 Bcf) and exports to Mexico decreased by 64 percent (5 vs. 14 Bcf).

  10. Synthesis, structure and photoelectrochemical performance of micro/nano-textured ZnO/eosin Y electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Hosono, Eiji; Fujihara, Shinobu; Kimura, Toshio

    2004-06-15

    Micro/nano-textured ZnO thick films were synthesized through deposition and pyrolysis of layered hydroxide zinc acetate (LHZA), Zn{sub 5}(OH){sub 8}(CH{sub 3}COO){sub 2}{center_dot}2H{sub 2}O. LHZA films having a unique, rose-like morphology were initially deposited on conducting glass sheets in a chemical bath composed of methanol and zinc acetate dihydrate at 60 deg. C under neutral conditions. Pyrolysis of the LHZA films resulted in formation of ZnO without destroying the original morphology. Pyrolysis temperatures were found to greatly influence grain sizes and specific surface areas of the ZnO films. Photoelectrochemical performance of the films as ZnO/eosin Y electrodes was investigated in dye-sensitized solar cells using an I{sup -}/I{sub 3}{sup -} redox electrolyte solution. The cell using the ZnO film pyrolyzed at 150 deg. C exhibited overall light to electricity conversion efficiencies of 2.0 and 3.3% under an AM-1.5 illumination at 100 and 10 mW cm{sup -2}, respectively. While microscale pores in the electrodes facilitated mass transfer of fluid electrolytes in the depth direction, nanoscale pores contributed to an increase in the amount of adsorbed dye. The maximum incident photon-to-current conversion efficiency (IPCE) of the electrode reached 84.9% at a wavelength of 530 nm.

  11. Electricity and gas market observatory. 4. Quarter 2007

    International Nuclear Information System (INIS)

    2007-01-01

    The purpose of the observatory is to provide the general public with indicators for monitoring market deregulation. It both covers the wholesale and retail electricity and gas markets in Metropolitan France. This observatory is updated every three months and data are available on CRE web site (www.cre.fr). Since the 1. of July 2007, all customers can choose their gas and electricity suppliers. Content: A - The electricity market: The retail electricity market (Introduction, Customer segments and their respective weight, Status at December 31, 2007, Dynamic analysis: 4. Quarter 2007); The wholesale electricity market (Introduction, Wholesale market activity in France, Prices on the French wholesale market and European comparison, Import and export volumes, Concentration of the French electricity market, Striking fact of the fourth quarter 2007); B - The gas market: The retail gas market (Introduction, Customer segments and their respective weight, Status on December 31. 2007, Dynamic analysis: 4. Quarter 2007); The wholesale gas market (Gas pricing and gas markets in Europe, The wholesale market in France, Striking fact of the fourth quarter 2007); C - Appendices: Electricity and gas market observatories combined glossary, Specific electricity market observatory glossary, Specific gas market observatory glossary

  12. Quarterly 90Sr deposition at world land sites: Appendix A

    International Nuclear Information System (INIS)

    Toonkel, L.E.

    1981-01-01

    The results of quarterly 90 Sr fallout sampling data at 75 sites beginning in 1976 are presented. Of the 75 sites for which data are reported, the monthly collections at 67 sites are composited and analyzed quarterly starting with the July 1976 samples. Data reported for the first half of 1976 at these sites as well as for the whole year at New York City and through June 1977 at the Australian sites, are quarterly results obtained by summing the monthly data. As of July 1977, the Australian sites have changed over to quarterly collection. The collections are made using either high-walled stainless steel pots with exposed areas of 0.076 square meters or plastic funnels with exposed areas of 0.072 square meters to which are attached ion-exchange columns. A few sites which were established as part of a precipitation chemistry network use plastic pots with an area of 0.064 square meters for collection. As an example of deposition patterns in the Northern Hemisphere, the quarterly 90 Sr data for New York City are shown in graph form. Calculated values of concentrations of 90 Sr in precipitation are given in units of pCi of 90 Sr per liter. The precipitation in centimeters and the 90 Sr deposition in millicuries per square kilometer is given for each quarter where data are available

  13. Quarterly 90Sr deposition at world land sites. Appendix A

    International Nuclear Information System (INIS)

    Toonkel, L.E.

    1981-01-01

    The results of quarterly 90 Sr fallout sampling data at 75 sites beginning in 1976 are presented. Of the 75 sites for which data are reported, the monthly collections at 67 sites are composited and analyzed quarterly starting with the July 1976 samples. Data reported for the first half of 1976 at these sites as well as for the whole year at New York City and through June 1977 at the Australian sites, are quarterly results obtained by summing the monthly data. As of July 1977, the Australian sites have changed over to quarterly collection. The collections are made using either high-walled stainless steel pots with exposed areas of 0.076 square meters or plastic funnels with exposed areas of 0.072 square meters to which are attached ion-exchange columns. A few sites which were established as part of a precipitation chemistry network use plastic pots with an area of 0.064 square meters for collection. As an example of deposition patterns in the northern hemisphere, the quarterly 90 Sr data for New York City are shown in graph form. Calculated values of concentrations of 90 Sr in precipitation are given in units of pCi of 90 Sr deposition in millicuries per square kilometer is given for each quarter where data are available

  14. Quarterly environmental radiological survey summary: Second Quarter 1995 100, 200, 300, and 600 Areas

    International Nuclear Information System (INIS)

    McKinney, S.M.

    1995-01-01

    This report provides a summary of the radiological surveys performed in support of the operational environmental monitoring program at the Hanford Site. The Second Quarter 1995 survey results and the status of actions required from current and past reports are summarized

  15. Quarterly environmental radiological survey summary. Fourth quarter, 1995 100, 200, 300, and 600 Areas

    International Nuclear Information System (INIS)

    McKinney, S.M.; Markes, B.M.

    1996-01-01

    This report provides a summary of the radiological surveys performed in support of the operational environmental monitoring program at the Hanford Site. The Fourth Quarter 1995 survey results and the status of actions required from current and past reports are described

  16. Synthesis of CuO nanocrystalline and their application as electrode materials for capacitors

    International Nuclear Information System (INIS)

    Zhang Hongxia; Zhang Milin

    2008-01-01

    Cauliflower-like, nanobelt-shaped and feather-like CuO nanocrystallines were synthesized by the chemical deposition method. The microstructure and morphology of CuO were characterized by X-ray diffraction (XRD), energy-dispersive spectrum (EDS) and field emission scanning electron microscopy (FESEM). Results showed that the morphology of CuO was affected by property of alkali added into system. The probable mechanisms of the formation of CuO with different morphologies were discussed. The electrochemical properties of CuO as electrode material were enhanced by the improving of morphology. Cauliflower-like CuO exhibited a higher specific capacitance (116.9 F g -1 ) than nanobelt-shaped and feather-like CuO, and also showed good reversibility. Specific capacitance of cauliflower-like CuO (115.3 F g -1 ) was 343.5% higher than CuO bought (26 F g -1 ) at 5 mA cm -2

  17. Synthesis of CuO nanocrystalline and their application as electrode materials for capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Hongxia [Department of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China)], E-mail: zhanghongxia.412@163.com; Zhang Milin [Department of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China)], E-mail: zhangmilin@hrbeu.edu.cn

    2008-04-15

    Cauliflower-like, nanobelt-shaped and feather-like CuO nanocrystallines were synthesized by the chemical deposition method. The microstructure and morphology of CuO were characterized by X-ray diffraction (XRD), energy-dispersive spectrum (EDS) and field emission scanning electron microscopy (FESEM). Results showed that the morphology of CuO was affected by property of alkali added into system. The probable mechanisms of the formation of CuO with different morphologies were discussed. The electrochemical properties of CuO as electrode material were enhanced by the improving of morphology. Cauliflower-like CuO exhibited a higher specific capacitance (116.9 F g{sup -1}) than nanobelt-shaped and feather-like CuO, and also showed good reversibility. Specific capacitance of cauliflower-like CuO (115.3 F g{sup -1}) was 343.5% higher than CuO bought (26 F g{sup -1}) at 5 mA cm{sup -2}.

  18. High performance lithium insertion negative electrode materials for electrochemical devices

    Energy Technology Data Exchange (ETDEWEB)

    Channu, V.S. Reddy, E-mail: chinares02@gmail.com [SMC Corporation, College Station, TX 77845 (United States); Rambabu, B. [Solid State Ionics and Surface Sciences Lab, Department of Physics, Southern University and A& M College, Baton Rouge, LA 70813 (United States); Kumari, Kusum [Department of Physics, National Institute of Technology, Warangal (India); Kalluru, Rajmohan R. [The University of Southern Mississippi, College of Science and Technology, 730 E Beach Blvd, Long Beach, MS 39560 (United States); Holze, Rudolf [Institut für Chemie, AG Elektrochemie, Technische Universität Chemnitz, D-09107 Chemnitz (Germany)

    2016-11-30

    Highlights: • LiCrTiO{sub 4} nanostructures were synthesized for electrochemical applications by soft chemical synthesis followed by annealing. • The presence of Cr and Ti elements are confirmed from the EDS spectrum. • Oxalic acid assisted LiCrTiO{sub 4} electrode shows higher specific capacity (mAh/g). - Abstract: Spinel LiCrTiO{sub 4} oxides to be used as electrode materials for a lithium ion battery and an asymmetric supercapacitor were synthesized using a soft-chemical method with and without chelating agents followed by calcination at 700 °C for 10 h. Structural and morphological properties were studied with powder X-ray diffraction, scanning electron and transmission electron microscopy. Particles of 50–10 nm in size are observed in the microscopic images. The presence of Cr and Ti is confirmed from the EDS spectrum. Electrochemical properties of LiCrTiO{sub 4} electrode were examined in a lithium ion battery. The electrode prepared with oxalic acid-assisted LiCrTiO{sub 4} shows higher specific capacity.This LiCrTiO{sub 4} is also used as anode material for an asymmetric hybrid supercapacitor. The cell exhibits a specific capacity of 65 mAh/g at 1 mA/cm{sup 2}. The specific capacity decreases with increasing current densities.

  19. South African Crime Quarterly

    African Journals Online (AJOL)

    South African Crime Quarterly is an inter-disciplinary peer-reviewed journal that promotes professional discourse and the publication of research on the subjects of crime, criminal justice, crime prevention, and related matters including state and non-state responses to crime and violence. South Africa is the primary focus for ...

  20. Electrode Materials, Thermal Annealing Sequences, and Lateral/Vertical Phase Separation of Polymer Solar Cells from Multiscale Molecular Simulations

    KAUST Repository

    Lee, Cheng-Kuang; Wodo, Olga; Ganapathysubramanian, Baskar; Pao, Chun-Wei

    2014-01-01

    . Simulations are performed for various configurations of electrode materials as well as processing temperature. The complex CG molecular data are characterized using a novel extension of our graph-based framework to quantify morphology and establish a link

  1. Oriented Polyaniline Nanowire Arrays Grown on Dendrimer (PAMAM) Functionalized Multiwalled Carbon Nanotubes as Supercapacitor Electrode Materials.

    Science.gov (United States)

    Jin, Lin; Jiang, Yu; Zhang, Mengjie; Li, Honglong; Xiao, Linghan; Li, Ming; Ao, Yuhui

    2018-04-19

    At present, PANI/MWNT composites have been paid more attention as promising electrode materials in supercapacitors. Yet some shortcomings still limit the widely application of PANI/MWNT electrolytes. In this work, in order to improve capacitance ability and long-term stability of electrode, a multi-amino dendrimer (PAMAM) had been covalently linked onto multi-walled carbon nanotubes (MWNT) as a bridge to facilitating covalent graft of polyaniline (PANI), affording P-MWNT/PANI electrode composites for supercapacitor. Surprisingly, ordered arrays of PANI nanowires on MWNT (setaria-like morphology) had been observed by scanning electron microscopy (SEM). Electrochemical properties of P-MWNT/PANI electrode had been characterized by cyclic voltammetry (CV) and galvanostatic charge-discharge technique. The specific capacitance and long cycle life of P-MWNT-PANI electrode material were both much higher than MWNT/PANI. These interesting results indicate that multi-amino dendrimer, PAMAM, covalently linked on MWNT provides more reaction sites for in-situ polymerization of ordered PANI, which could efficiently shorten the ion diffusion length in electrolytes and lead to making fully use of conducting materials.

  2. Electrodeposited reduced-graphene oxide/cobalt oxide electrodes for charge storage applications

    Energy Technology Data Exchange (ETDEWEB)

    García-Gómez, A. [CQE, Instituto Superior Técnico, Universidade de Lisboa, Lisboa (Portugal); Eugénio, S., E-mail: s.eugenio@tecnico.ulisboa.pt [CQE, Instituto Superior Técnico, Universidade de Lisboa, Lisboa (Portugal); Duarte, R.G. [CQE, Instituto Superior Técnico, Universidade de Lisboa, Lisboa (Portugal); ESTBarreiro, Instituto Politécnico de Setúbal, Setúbal (Portugal); Silva, T.M. [CQE, Instituto Superior Técnico, Universidade de Lisboa, Lisboa (Portugal); ADEM, GI-MOSM, ISEL-Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Lisboa (Portugal); Carmezim, M.J. [CQE, Instituto Superior Técnico, Universidade de Lisboa, Lisboa (Portugal); ESTSetúbal, Instituto Politécnico de Setúbal, Setúbal (Portugal); Montemor, M.F. [CQE, Instituto Superior Técnico, Universidade de Lisboa, Lisboa (Portugal)

    2016-09-30

    Highlights: • Electrochemically reduced graphene/CoOx composites were successfully produced by electrodeposition. • The composite material presents a specific capacitance of about 430 F g{sup −1}. • After heat treatment, the capacitance retention of the composite was 76% after 3500 cycles. - Abstract: In the present work, electrochemically reduced-graphene oxide/cobalt oxide composites for charge storage electrodes were prepared by a one-step pulsed electrodeposition route on stainless steel current collectors and after that submitted to a thermal treatment at 200 °C. A detailed physico-chemical characterization was performed by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and Raman spectroscopy. The electrochemical response of the composite electrodes was studied by cyclic voltammetry and charge-discharge curves and related to the morphological and phase composition changes induced by the thermal treatment. The results revealed that the composites were promising materials for charge storage electrodes for application in redox supercapacitors, attaining specific capacitances around 430 F g{sup −1} at 1 A g{sup −1} and presenting long-term cycling stability.

  3. Detection of nicotine based on molecularly imprinted TiO{sub 2}-modified electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Wu, C.-T.; Chen, P.-Y.; Chen, J.-G.; Suryanarayanan, Vembu [Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Ho, K.-C. [Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan (China)], E-mail: kcho@ntu.edu.tw

    2009-02-02

    Amperometric detection of nicotine (NIC) was carried out on a titanium dioxide (TiO{sub 2})/poly(3,4-ethylenedioxythiophene) (PEDOT)-modified electrode by a molecular imprinting technique. In order to improve the conductivity of the substrate, PEDOT was coated onto the sintered electrode by in situ electrochemical polymerization of the monomer. The sensing potential of the NIC-imprinted TiO{sub 2} electrode (ITO/TiO{sub 2}[NIC]/PEDOT) in a phosphate-buffered saline (PBS) solution (pH 7.4) containing 0.1 M KCl was determined to be 0.88 V (vs. Ag/AgCl/saturated KCl). The linear detection range for NIC oxidation on the so-called ITO/TiO{sub 2}[NIC]/PEDOT electrode was 0-5 mM, with a sensitivity and limit of detection of 31.35 {mu}A mM{sup -1} cm{sup -2} and 4.9 {mu}M, respectively. When comparing with the performance of the non-imprinted one, the sensitivity ratio was about 1.24. The sensitivity enhancement was attributed to the increase in the electroactive area of the imprinted electrode. The at-rest stability of the ITO/TiO{sub 2}[NIC]/PEDOT electrode was tested over a period of 3 days. The current response remained about 85% of its initial value at the end of 2 days. The ITO/TiO{sub 2}[NIC]/PEDOT electrode showed reasonably good selectivity in distinguishing NIC from its major interferent, (-)-cotinine (COT). Moreover, scanning electrochemical microscopy (SECM) was employed to elucidate the surface morphology of the imprinted and non-imprinted electrodes using Fe(CN){sub 6}{sup 3-}/Fe(CN){sub 6}{sup 4-} as a redox probe on a platinum tip. The imprinted electrode was further characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR)

  4. NST Quarterly. July 1996 issue

    International Nuclear Information System (INIS)

    1996-01-01

    NST Quarterly reports current development in Nuclear Science and Technology in Malaysia. In this issue it highlights MINT activities in in-vitro mutagenesis of ornamental plants, soil erosion studies and animal feed production from agricultural waste

  5. Nanostructured cerium oxide catalyst support: Effects of morphology on the electro activity of gold toward oxidative sensing of glucose

    International Nuclear Information System (INIS)

    Gougis, Maxime; Tabet-Aoul, Amel; Ma, Dongling; Mohamedi, Mohamed

    2014-01-01

    We report on the fabrication of nanostructured CeO 2 -gold electrodes by means of laser ablation. The synthetic conditions were varied in order to obtain different morphologies of CeO 2 . The physical and chemical properties of the samples were studied by scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The effect of the morphology of CeO 2 on the electrocatalytic oxidation of glucose were studied by cyclic voltammetry and square-wave voltammetry. Among the various electrodes fabricated, the CeO 2 coating produced under 10 mTorr of oxygen showed the best supporting catalytic properties for gold by displaying 44 μA cm −2 mM −1 sensitivity for glucose oxidation at near neutral pH values. The detection limit is as low as 10 μM. This electrochemical activity makes the optimized nanostructured electrode potentially useful for non-enzymatic sensing of glucose. (author)

  6. All-Solid-State Sodium-Selective Electrode with a Solid Contact of Chitosan/Prussian Blue Nanocomposite

    Directory of Open Access Journals (Sweden)

    Tanushree Ghosh

    2017-11-01

    Full Text Available Conventional ion-selective electrodes with a liquid junction have the disadvantage of potential drift. All-solid-state ion-selective electrodes with solid contact in between the metal electrode and the ion-selective membrane offer high capacitance or conductance to enhance potential stability. Solution-casted chitosan/Prussian blue nanocomposite (ChPBN was employed as the solid contact layer for an all-solid-state sodium ion-selective electrode in a potentiometric sodium ion sensor. Morphological and chemical analyses confirmed that the ChPBN is a macroporous network of chitosan that contains abundant Prussian blue nanoparticles. Situated between a screen-printed carbon electrode and a sodium-ionophore-filled polyvinylchloride ion-selective membrane, the ChPBN layer exhibited high redox capacitance and fast charge transfer capability, which significantly enhanced the performance of the sodium ion-selective electrode. A good Nernstian response with a slope of 52.4 mV/decade in the linear range from 10−4–1 M of NaCl was observed. The stability of the electrical potential of the new solid contact was tested by chronopotentiometry, and the capacitance of the electrode was 154 ± 4 µF. The response stability in terms of potential drift was excellent (1.3 µV/h for 20 h of continuous measurement. The ChPBN proved to be an efficient solid contact to enhance the potential stability of the all-solid-state ion-selective electrode.

  7. Correlation between quarter-point angle and nuclear radius

    Science.gov (United States)

    Ma, Wei-Hu; Wang, Jian-Song; Mukherjee, S.; Wang, Qi; Patel, D.; Yang, Yan-Yun; Ma, Jun-Bing; Ma, Peng; Jin, Shi-Lun; Bai, Zhen; Liu, Xing-Quan

    2017-04-01

    The correlation between quarter-point angle of elastic scattering and nuclear matter radius is studied systematically. Various phenomenological formulae with parameters for nuclear radius are adopted and compared by fitting the experimental data of quarter point angle extracted from nuclear elastic scattering reaction systems. A parameterized formula related to binding energy is recommended, which gives a good reproduction of nuclear matter radii of halo nuclei. It indicates that the quarter-point angle of elastic scattering is quite sensitive to the nuclear matter radius and can be used to extract the nuclear matter radius. Supported by National Natural Science Foundation of China (U1432247, 11575256), National Basic Research Program of China (973 Program)(2014CB845405 and 2013CB83440x) and (SM) Chinese Academy of Sciences President’s International Fellowship Initiative (2015-FX-04)

  8. Metallurgical Laboratory (HWMF) Groundwater Monitoring Report, Fourth Quarter 1994

    International Nuclear Information System (INIS)

    Chase, J.A.

    1995-03-01

    Groundwater flow direction and rate in the M-Area Aquifer Zone were similar to previous quarters. Conditions affecting determination of groundwater flow directions and rates in the Upper Lost Lake Aquifer Zone, Lower Lost Lake Aquifer Zone, and the Middle Sand Aquifer Zone of the Crouch Branch Confining Units were also similar to previous quarters. During second quarter 1994, SRS received South Carolina Department of Health and Environmental Control approval for constructing five point-of-compliance wells and two plume definition wells near the Met Lab Hazardous Waste Management Facility. This project began in July 1994 and is complete; however, analytical data from these wells are not yet available

  9. Natural gas imports and exports, first quarter report 2000

    Energy Technology Data Exchange (ETDEWEB)

    None

    2000-06-01

    The Office of Natural Gas and Petroleum Import and Export Activities prepares quarterly reports showing natural gas import and export activity. Companies are required to file quarterly reports. Attachments show the percentage of takes to maximum firm contract levels and the weighted average per unit price for each of the long-term importers during the 5 most recent reporting quarters, volumes and prices of gas purchased by long-term importers and exporters during the past 12 months, volume and price data for gas imported on a short-term or spot market basis, and the gas exported on a short-term or spot market basis to Canada and Mexico.

  10. Natural gas imports and exports, third quarter report 2000

    Energy Technology Data Exchange (ETDEWEB)

    None

    2000-12-01

    The Office of Natural Gas and Petroleum Import and Export Activities prepares quarterly reports showing natural gas import and export activity. Companies are required to file quarterly reports. Attachments show the percentage of takes to maximum firm contract levels and the weighted average per unit price for each of the long-term importers during the 5 most recent quarters, volumes and prices of gas purchased by long-term importers and exporters during the past 12 months, volume and price data for gas imported on a short-term or spot market basis, and the gas exported on a short-term or spot market basis to Canada and Mexico.

  11. Natural gas imports and exports, fourth quarter report 1999

    International Nuclear Information System (INIS)

    None

    2000-01-01

    The Office of Natural Gas and Petroleum Import and Export Activities prepares quarterly reports showing natural gas import and export activity. Companies are required to file quarterly reports. Attachments show the percentage of takes to maximum firm contract levels and the weighted average per unit price for each of the long-term importers during the five most recent quarters, volumes and prices of gas purchased by long-term importers and exporters during the past 12 months, volume and price data for gas imported on a short-term or spot market basis, and the gas exported on a short-term or spot market basis to Canada and Mexico

  12. Natural gas imports and exports, fourth quarter report 1999

    Energy Technology Data Exchange (ETDEWEB)

    None

    2000-03-01

    The Office of Natural Gas and Petroleum Import and Export Activities prepares quarterly reports showing natural gas import and export activity. Companies are required to file quarterly reports. Attachments show the percentage of takes to maximum firm contract levels and the weighted average per unit price for each of the long-term importers during the five most recent quarters, volumes and prices of gas purchased by long-term importers and exporters during the past 12 months, volume and price data for gas imported on a short-term or spot market basis, and the gas exported on a short-term or spot market basis to Canada and Mexico.

  13. Natural gas imports and exports, third quarter report 2000

    International Nuclear Information System (INIS)

    None

    2000-01-01

    The Office of Natural Gas and Petroleum Import and Export Activities prepares quarterly reports showing natural gas import and export activity. Companies are required to file quarterly reports. Attachments show the percentage of takes to maximum firm contract levels and the weighted average per unit price for each of the long-term importers during the 5 most recent quarters, volumes and prices of gas purchased by long-term importers and exporters during the past 12 months, volume and price data for gas imported on a short-term or spot market basis, and the gas exported on a short-term or spot market basis to Canada and Mexico

  14. Highly efficient and stable dye-sensitized solar cells based on nanographite/polypyrrole counter electrode

    International Nuclear Information System (INIS)

    Yue, Gentian; Zhang, Xin’an; Wang, Lei; Tan, Furui; Wu, Jihuai; Jiang, Qiwei; Lin, Jianming; Huang, Miaoliang; Lan, Zhang

    2014-01-01

    Graphical abstract: Much higher photovoltaic performance of dye-sensitized solar cell with nanographite/PPy counter electrode as well as that of Pt configuration device. - Highlights: • Pt-free dye-sensitized solar cells. • The nanographite/PPy composite film showed high catalytic activity as well as Pt electrode. • The enhanced catalytic activity was attributed to increased active sites. • The DSSC based on the nanographite/PPy electrode showed a high photovoltaic performance. - Abstract: Nanographite/polypyrrole (NG/PPy) composite film was successfully prepared via in situ polymerization on rigid fluorine-doped tin oxide substrate and served as counter electrode (CE) for dye-sensitized solar cells (DSSCs). The surface morphology and composition of the composite film were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectra and Fourier transform infrared spectroscopy (FTIR). The electrochemical performance of the NG/PPy electrode was evaluated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The results of CV and EIS revealed that the NG/PPy electrode possessed excellent electrocatalytic activity for the reduction reaction of triiodide to iodide and low charge transfer resistance at the interface between electrolyte and CE, respectively. The DSSC assembled with the novel NG/PPy CE exhibited an enhanced power conversion efficiency of 7.40% under full sunlight illumination as comparing to that of the DSSC based on sputtered-Pt electrode. Thus, the NG/PPy CE could be premeditated as a promising alternative CE for low-cost and high- efficient DSSCs

  15. Lithium battery using sulfur infiltrated in three-dimensional flower-like hierarchical porous carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, Noelia; Caballero, Alvaro [Dpto.Química Inorgánica, Instituto Universitario de Investigación en Química Fina y Nanoquímica, Universidad de Córdoba, Campus de Rabanales (Spain); Morales, Julián, E-mail: iq1mopaj@uco.es [Dpto.Química Inorgánica, Instituto Universitario de Investigación en Química Fina y Nanoquímica, Universidad de Córdoba, Campus de Rabanales (Spain); Agostini, Marco [Department of Chemistry, SapienzaUniversity, P.zzale Aldo Moro 5, 00185, Rome (Italy); Hassoun, Jusef, E-mail: jusef.hassoun@unife.it [Università di Ferrara, Dipartimento di Scienze Chimiche e Farmaceutiche, Via Fossato di Mortara 17, Ferrara (Italy)

    2016-09-01

    Three dimensional, flower-like hierarchical porous carbon (FPC) and its CO{sub 2}-activation (AFPC) are reported as sulfur-hosting matrixes in Li/S battery. The composites are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), nitrogen adsorption-desorption isotherms as well as by galvanostatic cycling and electrochemical impedance spectroscopy (EIS) in lithium-cell. Both samples show well defined micrometric morphology and a sulfur content as high as 66% expected to reflect into rather high practical energy density of the electrode in lithium-sulfur battery. The lithium sulfur cell using the FPC-S composite exhibits at 25 °C a moderate cycling stability with delivered capacity ranging from 1000 to about 610 mAh g{sup −1} upon 50 cycles at 100 mA g{sup −1}. The AFPC-S composite reveals increased cycling stability and delivers a capacity ranging from 1000 to 680 mAh g{sup −1}. Improved capacity is achieved by slightly increasing the temperature, as demonstrated by cycling the FPC-S at 35 °C using a current as high as 500 mA g{sup −1}. The excellent rate capability of the electrode is associated to the carbon texture and morphology that significantly lower the cell resistance, as indeed demonstrated by EIS measurement upon cycling. - Highlights: • Sulfur electrode basing on activated, flower-like hierarchical porous carbon is reported. • Defined micrometric morphology and a sulfur content as high as 66% are obtained. • Lithium sulfur cell using the composite exhibits remarkable performances. • A specific capacity of about 1000 mAh g{sup −1} is obtained at high current rate. • The resulting Li/S battery has relevant energy content.

  16. Enhanced electrochemical performances with a copper/xylose-based carbon composite electrode

    Science.gov (United States)

    Sirisomboonchai, Suchada; Kongparakul, Suwadee; Nueangnoraj, Khanin; Zhang, Haibo; Wei, Lu; Reubroycharoen, Prasert; Guan, Guoqing; Samart, Chanatip

    2018-04-01

    Copper/carbon (Cu/C) composites were prepared through the simple and environmentally benign hydrothermal carbonization of xylose in the presence of Cu2+ ions. The morphology, specific surface area, phase structure and chemical composition were investigated. Using a three-electrode system in 0.1 M H2SO4 aqueous electrolyte, the Cu/C composite (10 wt% Cu) heat-treated at 600 °C gave the highest specific capacitance (316.2 and 350.1 F g-1 at 0.5 A g-1 and 20 mV s-1, respectively). The addition of Cu was the major factor in improving the electrochemical performance, enhancing the specific capacitance more than 30 times that of the C without Cu. Therefore, the Cu/C composite presented promising results in improving biomass-based C electrodes for supercapacitors.

  17. Nanoscale Morphology of Doctor Bladed versus Spin-Coated Organic Photovoltaic Films

    KAUST Repository

    Pokuri, Balaji Sesha Sarath

    2017-08-17

    Recent advances in efficiency of organic photovoltaics are driven by judicious selection of processing conditions that result in a “desired” morphology. An important theme of morphology research is quantifying the effect of processing conditions on morphology and relating it to device efficiency. State-of-the-art morphology quantification methods provide film-averaged or 2D-projected features that only indirectly correlate with performance, making causal reasoning nontrivial. Accessing the 3D distribution of material, however, provides a means of directly mapping processing to performance. In this paper, two recently developed techniques are integrated—reconstruction of 3D morphology and subsequent conversion into intuitive morphology descriptors —to comprehensively image and quantify morphology. These techniques are applied on films generated by doctor blading and spin coating, additionally investigating the effect of thermal annealing. It is found that morphology of all samples exhibits very high connectivity to electrodes. Not surprisingly, thermal annealing consistently increases the average domain size in the samples, aiding exciton generation. Furthermore, annealing also improves the balance of interfaces, enhancing exciton dissociation. A comparison of morphology descriptors impacting each stage of photophysics (exciton generation, dissociation, and charge transport) reveals that spin-annealed sample exhibits superior morphology-based performance indicators. This suggests substantial room for improvement of blade-based methods (process optimization) for morphology tuning to enhance performance of large area devices.

  18. In situ–Directed Growth of Organic Nanofibers and Nanoflakes: Electrical and Morphological Properties

    DEFF Research Database (Denmark)

    Oliveira Hansen, Roana Melina de; Madsen, Morten; Kjelstrup-Hansen, Jakob

    2010-01-01

    Organic nanostructures made from organic molecules such as para-hexaphenylene (p-6P) could form nanoscale components in future electronic and optoelectronic devices. However, the integration of such fragile nanostructures with the necessary interface circuitry such as metal electrodes for electri......Organic nanostructures made from organic molecules such as para-hexaphenylene (p-6P) could form nanoscale components in future electronic and optoelectronic devices. However, the integration of such fragile nanostructures with the necessary interface circuitry such as metal electrodes...... patterned by a combination of optical lithography and electron beam lithography. The dimensions of the gold electrodes strongly influence the morphology of the resulting structures leading to notably different electrical properties. The ability to control such nanofiber or nanoflake growth opens...... the possibility for large-scale optoelectronic device fabrication....

  19. Effects of carbon additives on the performance of negative electrode of lead-carbon battery

    International Nuclear Information System (INIS)

    Zou, Xianping; Kang, Zongxuan; Shu, Dong; Liao, Yuqing; Gong, Yibin; He, Chun; Hao, Junnan; Zhong, Yayun

    2015-01-01

    Highlights: • The negative electrode sheets are prepared by simulating manufacture condition of negative plates. • The effect of carbon additives on negative electrode sheets is studied by electrochemical method. • Carbon additives in NAM enhance electrochemical properties of the negative sheets. • The negative sheets with 0.5 wt% carbon additive exhibit better electrochemical performance. • The charge-discharge mechanism is discussed in detail according to the experimental results. - Abstract: In this study, carbon additives such as activated carbon (AC) and carbon black (CB) are introduced to the negative electrode to improve its electrochemical performance, the negative electrode sheets are prepared by simulating the negative plate manufacturing process of lead-acid battery, the types and contents of carbon additives in the negative electrode sheets are investigated in detail for the application of lead-carbon battery. The electrochemical performance of negative electrode sheets are measured by chronopotentiometry, galvanostatic charge-discharge and electrochemical impedance spectroscopy, the crystal structure and morphology are characterized by X-ray diffraction and scanning electron microscopy, respectively. The experimental results indicate that the appropriate addition of AC or CB can enhance the discharge capacity and prolong the cycle life of negative electrode sheets under high-rate partial-state-of-charge conditions, AC additive exerts more obvious effect than CB additive, the optimum contents for the best electrochemical performance of the negative electrode sheets are determined as 0.5wt% for both AC and CB. The reaction mechanism of the electrochemical process is also discussed in this paper, the appropriate addition of AC or CB in negative electrode can promote the conversion of PbSO 4 to Pb, suppress the sulfation of negative electrode sheets and reduce the electrochemical reaction resistance

  20. One-step facile hydrothermal synthesis of Fe2O3@LiCoO2 composite as excellent supercapacitor electrode materials

    Science.gov (United States)

    Gopi, Chandu V. V. Muralee; Somasekha, A.; Reddy, Araveeti Eswar; Kim, Soo-Kyoung; Kim, Hee-Je

    2018-03-01

    Herein, for the first time, we demonstrate the fabrication of Fe2O3@LiCoO2 hybrid nanostructures on Ni foam substrate by facile one-step hydrothermal technique. Morphological studies reveal that aggregated Fe2O3 nanoflakes anchored on the surface of sphere-like LiCoO2 nanoflakes. Electrochemical studies are used to examine the performance of the supercapacitor electrodes. The composite Fe2O3@LiCoO2 electrode exhibited excellent electrochemical performance than Fe2O3 and LiCoO2 electrodes, such as a low charge transfer resistance, a high specific capacitance of 489 F g-1 at 5 mA cm-2 and an enhanced capacity retention of 108% over 3000 cycles at 15 mA cm-2. The composite Fe2O3@LiCoO2 holds great promise for electrochemical applications due to well-defined hierarchical morphology, synergetic effect of Fe2O3 and LiCoO2, enhanced electrical conductivity, efficient electrolyte penetration and fast electron transfer.

  1. Synthesis of Nano-Ilmenite (FeTiO3) doped TiO2/Ti Electrode for Photoelectrocatalytic System

    Science.gov (United States)

    Hikmawati; Watoni, A. H.; Wibowo, D.; Maulidiyah; Nurdin, M.

    2017-11-01

    Ilmenite (FeTiO3) doped on Ti and TiO2/Ti electrodes were successfully prepared by using the sol-gel method. The structure, morphology, and optical properties of FeTiO3 are characterized by XRD, UV-Vis DRS, and SEM. The FeTiO3 and TiO2 greatly affect the photoelectrocatalysis performance characterized by Linear Sweep Voltammetry (LSV) and Cyclic Voltammetry (CV). The characterization result shows a band gap of FeTiO3 is 2.94 eV. XRD data showed that FeTiO3 formed at 2θ were 35.1° (110), 49.9° (024), and 61.2° (214). The morphology of FeTiO3/Ti and FeTiO3.TiO2/Ti using SEM shows that the formation of FeTiO3 thin layer signifies the Liquid Phase Deposition method effectively in the coating process. Photoelectrochemical (PEC) test showed that FeTiO3.TiO2/Ti electrode was highly oxidation responsive under visible light compared to the FeTiO3/Ti electrodes i.e. 7.87×10-4 A and 9.87×10-5 A. Degradation test of FeTiO3/Ti and FeTiO3.TiO2/Ti electrodes on titan yellow showed that the percentages of degradation with photoelectrocatalysis at 0.5 mg/L were 41% and 43%, respectively.

  2. FABRICATION AND CHARACTERIZATION OF POLYANILINE-GRAPHENE COMPOSITE AS ELECTRODE IN ELECTROCHEMICAL CAPACITOR

    Directory of Open Access Journals (Sweden)

    H. Adelkhani

    2016-06-01

    Full Text Available In this study, polyaniline-graphene composites with different nano-structures are synthesized and the behaviour of the obtained composites serving as electrode materials in electrochemical capacitors is studied. The morphology, crystal structure, and thermal stability of the composites are examined using scanning electron microscopy (SEM, X-ray diffraction (XRD, and Thermal gravimetric analysis (TGA. Electrochemical properties are characterized by cyclic voltammetry (CV. According to the results, the obtained composites show different crystal structures and different thermal stabilities, and consequently different electrochemical capacities, when used as electrodes in electrochemical capacitors. A nano-fibre composite is shown to have a good degree of crystallization, 5.17% water content, 637oC degradation onset temperature, and 379 Fg-1 electrochemical capacity.

  3. Single-step fabrication of electrodes with controlled nanostructured surface roughness using optically-induced electrodeposition

    Science.gov (United States)

    Liu, N.; Li, M.; Liu, L.; Yang, Y.; Mai, J.; Pu, H.; Sun, Y.; Li, W. J.

    2018-02-01

    The customized fabrication of microelectrodes from gold nanoparticles (AuNPs) has attracted much attention due to their numerous applications in chemistry and biomedical engineering, such as for surface-enhanced Raman spectroscopy (SERS) and as catalyst sites for electrochemistry. Herein, we present a novel optically-induced electrodeposition (OED) method for rapidly fabricating gold electrodes which are also surface-modified with nanoparticles in one single step. The electrodeposition mechanism, with respect to the applied AC voltage signal and the elapsed deposition time, on the resulting morphology and particle sizes was investigated. The results from SEM and AFM analysis demonstrated that 80-200 nm gold particles can be formed on the surface of the gold electrodes. Simultaneously, both the size of the nanoparticles and the roughness of the fabricated electrodes can be regulated by the deposition time. Compared to state-of-the-art methods for fabricating microelectrodes with AuNPs, such as nano-seed-mediated growth and conventional electrodeposition, this OED technique has several advantages including: (1) electrode fabrication and surface modification using nanoparticles are completed in a single step, eliminating the need for prefabricating micro electrodes; (2) the patterning of electrodes is defined using a digitally-customized, projected optical image rather than using fixed physical masks; and (3) both the fabrication and surface modification processes are rapid, and the entire fabrication process only requires less than 6 s.

  4. Oil, Gas, Coal and Electricity - Quarterly statistics. Second Quarter 2012

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-15

    This publication provides up-to-date and detailed quarterly statistics on oil, coal, natural gas and electricity for the OECD countries. Oil statistics cover production, trade, refinery intake and output, stock changes and consumption for crude oil, NGL and nine selected oil product groups. Statistics for electricity, natural gas, hard coal and brown coal show supply and trade. Import and export data are reported by origin and destination. Moreover, oil and hard coal production are reported on a worldwide basis.

  5. Electrochemical growth of high-aspect ratio nanostructured silver chloride on silver and its application to miniaturized reference electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Safari, S; Selvaganapathy, P R [Department of Mechanical Engineering, McMaster University, Hamilton, ON, L8S 4L7 (Canada); Derardja, A [Faculty of Science and Engineering, University of Batna (Algeria); Deen, M J, E-mail: selvaga@mcmaster.ca, E-mail: jamal@mcmaster.ca [Electrical and Computer Engineering, McMaster University, Hamilton, ON, L8S 4L8 (Canada)

    2011-08-05

    The sensitivity of many biological and chemical sensors is critically dependent on the stability of the potential of the reference electrode being used. The stability of a reference electrode's potential is highly influenced by the properties of its surface. In this paper, for the first time, the formation of nanosheets of silver chloride on silver wire is observed and controlled using high anodic constant potential (>0.5 V) and pulsed electrodeposition. The resulting nanostructured morphology substantially improves the electrode's potential stability in comparison with the conventional globular surface structure. The increased stability is attributed to the increase in the surface area of the silver chloride produced by the nanosheet formation.

  6. Improvement of the Performance of Graphite Felt Electrodes for Vanadium-Redox-Flow-Batteries by Plasma Treatment

    Directory of Open Access Journals (Sweden)

    Eva-Maria Hammer

    2014-02-01

    Full Text Available In the frame of the present contribution oxidizing plasma pretreatment is used for the improvement of the electrocatalytic activity of graphite felt electrodes for Vanadium-Redox-Flow-Batteries (VRB. The influence of the working gas media on the catalytic activity and the surface morphology is demonstrated. The electrocatalytical properties of the graphite felt electrodes were examined by cyclic voltammetry and electrochemical impedance spectroscopy. The obtained results show that a significant improvement of the redox reaction kinetics can be achieved for all plasma modified samples using different working gasses (Ar, N2 and compressed air in an oxidizing environment. Nitrogen plasma treatment leads to the highest catalytical activities at the same operational conditions. Through a variation of the nitrogen plasma treatment duration a maximum performance at about 14 min cm-2 was observed, which is also represented by a minimum of 90 Ω in the charge transfer resistance obtained by EIS measurements. The morphology changes of the graphitized surface were followed using SEM.

  7. An environmental friendly electrode and extended cathodic potential window for anodic stripping voltammetry of zinc detection

    International Nuclear Information System (INIS)

    Dueraning, Anisah; Kanatharana, Proespichaya; Thavarungkul, Panote; Limbut, Warakorn

    2016-01-01

    This work reports on a novel polyeriochrome black T (poly(EBT) modified electrode for use as an environmentally-friendly electrode material that extends the cathodic potential window and improves the sensitivity and repeatability to detect zinc in industrial wastewater. The poly(EBT) film on the GCE surface was fabricated by electropolymerization. The surface morphology and electrochemical behavior of the modified electrode were characterized by scanning electron microscopy, fourier transform infrared spectroscopy and anodic stripping voltammetry. Under optimal conditions, the poly(EBT)/GCE exhibited a high hydrogen overvoltage (extended cathodic potential window). It provided a high sensitivity, a wide linear range (1.0 to 400.0 μg L −1 ), a low detection limit (0.9 μg L −1 ), had excellent repeatability and good recoveries (95% to 105%). This proposed modified electrode was applied to the determination of zinc in wastewater samples, and the results were consistent with those of an inductively coupled plasma atomic emission spectroscopy analysis.

  8. Enhanced electrochemical performance of LiVPO4F/f-graphene composite electrode prepared via ionothermal process

    KAUST Repository

    Rangaswamy, Puttaswamy

    2016-10-13

    Abstract: In this article, we report the synthesis of 1,2-dimethyl-3-(3-hydroxypropyl) imidazolium dicyanamide ionic liquid and its used as a reaction medium for low-temperature synthesis of triclinic LiVPOF electrode material. Structural and morphological features of LiVPOF were characterized using X-ray diffraction and scanning electron microscopy techniques. The electrochemical studies have been investigated using cyclic voltammetry, galvanostatic charge/discharge studies, and electrochemical impedance spectroscopic techniques. The ionothermally obtained LiVPOF is modified to LiVPOF/f-graphene composite electrode to obtain high specific capacity, better rate performance, and longer cycle life. Even after 250 cycles, the LiVPOF/f-graphene composite electrode exhibited a specific capacity more than 84 % with good reversible de-intercalation/intercalation of Li-ions. This article also provides the comparative electrochemical performances of LiVPOF/f-graphene composite, LiVPOF/carbon, and LiVPOF/graphene composite electrodes in a nonaqueous rechargeable Li-ion battery system. Graphical Abstract: [Figure not available: see fulltext.

  9. Enhanced electrochemical performance of LiVPO4F/f-graphene composite electrode prepared via ionothermal process

    KAUST Repository

    Rangaswamy, Puttaswamy; Shetty, Vijeth Rajshekar; Suresh, Gurukar Shivappa; Mahadevan, Kittappa Malavalli; Nagaraju, Doddahalli H.

    2016-01-01

    Abstract: In this article, we report the synthesis of 1,2-dimethyl-3-(3-hydroxypropyl) imidazolium dicyanamide ionic liquid and its used as a reaction medium for low-temperature synthesis of triclinic LiVPOF electrode material. Structural and morphological features of LiVPOF were characterized using X-ray diffraction and scanning electron microscopy techniques. The electrochemical studies have been investigated using cyclic voltammetry, galvanostatic charge/discharge studies, and electrochemical impedance spectroscopic techniques. The ionothermally obtained LiVPOF is modified to LiVPOF/f-graphene composite electrode to obtain high specific capacity, better rate performance, and longer cycle life. Even after 250 cycles, the LiVPOF/f-graphene composite electrode exhibited a specific capacity more than 84 % with good reversible de-intercalation/intercalation of Li-ions. This article also provides the comparative electrochemical performances of LiVPOF/f-graphene composite, LiVPOF/carbon, and LiVPOF/graphene composite electrodes in a nonaqueous rechargeable Li-ion battery system. Graphical Abstract: [Figure not available: see fulltext.

  10. Electrochemical determination of bisphenol A at ordered mesoporous carbon modified nano-carbon ionic liquid paste electrode.

    Science.gov (United States)

    Li, Yonghong; Zhai, Xiurong; Liu, Xinsheng; Wang, Ling; Liu, Herong; Wang, Haibo

    2016-02-01

    A simple bisphenol A (BPA) sensor was successfully fabricated based on ordered mesoporous carbon CMK-3 modified nano-carbon ionic liquid paste electrode (CMK-3/nano-CILPE). The nanostructure of CMK-3 and the surface morphologies of modified electrodes were characterized by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Electrochemical properties of the fabricated electrodes were investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The fabricated sensor displayed excellent electroactivity towards bisphenol A using linear sweep voltammetry (LSV). Experimental conditions influencing the analytical performance of the modified electrode were optimized. Under optimal conditions, the oxidation peak current was proportional to BPA concentration in the range from 0.2 μM to 150 μM with a detection limit of 0.05 μM (S/N=3). This method was successfully used for determination of BPA leached from drinking bottle and plastic bag with good recoveries. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. The effect of loading and particle size on the oxygen reaction in CGO impregnated Pt electrodes

    DEFF Research Database (Denmark)

    Lund, Anders; Hansen, Karin Vels; Jacobsen, Torben

    2012-01-01

    Porous platinum electrodes impregnated with Gd x Ce1−x O2−δ (CGO) are investigated to characterise how nano-sized CGO grains affect the oxygen reaction. Impedance measurements were performed at temperatures between 450 and 750 °C and at oxygen partial pressures of 0.2 and 5 × 10−5 bar for electro......Porous platinum electrodes impregnated with Gd x Ce1−x O2−δ (CGO) are investigated to characterise how nano-sized CGO grains affect the oxygen reaction. Impedance measurements were performed at temperatures between 450 and 750 °C and at oxygen partial pressures of 0.2 and 5 × 10−5 bar...... for electrodes with various CGO loadings and electrodes annealed at various temperatures. The morphology was characterised by scanning electron microscopy and the CGO grain size was determined from X-ray diffraction peak broadening. The results showed that the polarisation resistance decreased with increasing...

  12. Metallurgical Laboratory Hazardous Waste Management Facility groundwater monitoring report: Third quarter 1993

    International Nuclear Information System (INIS)

    1993-12-01

    During third quarter 1993, samples from AMB groundwater monitoring wells at the Metallurgical Laboratory Hazardous Waste Management Facility were analyzed for certain heavy metals, indicator parameters, radionuclides, volatile organic compounds, and other constituents. Eight parameters exceeded standards during the quarter. As in previous quarters, tetrachloroethylene and trichloroethylene exceeded final Primary Drinking Water Standards; and aluminum, iron, lead, manganese, pH, and total organic halogens exceeded the Savannah River Site Flag 2 criteria in one or more of the wells. Groundwater flow direction and rate in the water-table unit were similar to previous quarters

  13. Anisotropic D-EAP Electrodes and their Application in Spring Roll Actuators

    Science.gov (United States)

    Fang, Xiaomeng

    Electroactive polymers (EAPs) exhibit shape change when subjected to an electric field. They are lightweight, soft, and inexpensive, while they are easy to process, shape, and tune to offer a broad range of mechanical and electrical properties. Dielectric electroactive polymers (DEAP) constitute a class of EAPs with great potential. D-EAPs consist of physically or chemically cross-linked macromolecular networks and are mechanically isotopic. Therefore, in most actuator applications that require directional electromechanical response, it is necessary to use other complex means to direct the stress/strain in the preferred direction. In this work, a simple carbon nanotube (CNT) based electrode for D-EAP actuators is demonstrated that vastly improves directional strain response originating from the mechanical anisotropy of the electrode material. Using this novel approach, the mechanical anisotropy, defined as the ratio of initial modulus in fiber direction and that in cross-fiber direction, of the CNT electroded VHB actuators, ranges from 7.9 to 11.2. Hence, the CNT-VHB flat film actuators show high directed linear actuation strain in cross-fiber direction of greater than 25% meanwhile almost no strain in fiber direction at a relatively low electric field (120 V mum-1). The morphology of the CNT sheets has critical influence on their mechanical properties and resultant actuator performance. The results demonstrate the efficacy of microcombing and selective laser etching processes to improve the CNT fiber alignment to produce pure unidirectional strain of 33% at a relatively moderate electric field. Unidirectional D-EAP composite laminates using polyurethane and polyamide monofilaments are also employed in spring roll actuators to investigate their directional mechanical and electromechanical properties. While CNT electroded D-EAP spring roll actuators were found to have about the same performance as actuators with carbon grease electrodes (6.5% strain in CNT

  14. NST Quarterly. October 1996 issue

    International Nuclear Information System (INIS)

    1996-01-01

    NST Quarterly reports current development in Nuclear Science and Technology in Malaysia. In this issue it highlights MINT activities in latex vulcanization (first RVNRL-based rubber gloves produced in Malaysia), tank floor scanning system (TAFLOSS), incineration and radiotherapeutic agent

  15. Graphene/MnO2 hybrid nanosheets as high performance electrode materials for supercapacitors

    International Nuclear Information System (INIS)

    Mondal, Anjon Kumar; Wang, Bei; Su, Dawei; Wang, Ying; Chen, Shuangqiang; Zhang, Xiaogang; Wang, Guoxiu

    2014-01-01

    Graphene/MnO 2 hybrid nanosheets were prepared by incorporating graphene and MnO 2 nanosheets in ethylene glycol. Scanning electron microscopy and transmission electron microscopy analyses confirmed nanosheet morphology of the hybrid materials. Graphene/MnO 2 hybrid nanosheets with different ratios were investigated as electrode materials for supercapacitors by cyclic voltammetry (CV) and galvanostatic charge–discharge in 1 M Na 2 SO 4 electrolyte. We found that the graphene/MnO 2 hybrid nanosheets with a weight ratio of 1:4 (graphene:MnO 2 ) delivered the highest specific capacitance of 320 F g −1 . Graphene/MnO 2 hybrid nanosheets also exhibited good capacitance retention on 2000 cycles. - Highlights: • Graphene/MnO 2 hybrid nanosheets with different ratios were fabricated. • The specific capacitance is strongly dependent on graphene/MnO 2 ratios. • The graphene/MnO 2 hybrid electrode (1:4) exhibited high specific capacitance. • The electrode retained 84% of the initial specific capacitance after 2000 cycles

  16. Dendritic surface morphology of palladium hydride produced by electrolytic deposition

    International Nuclear Information System (INIS)

    Julin, Peng; Bursill, L.A.

    1990-01-01

    Conventional and high-resolution electron microscopic studies of electrolytically-deposited palladium hydride reveal a fascinating variety of surface profile morphologies. The observations provide direct information concerning the surface structure of palladium electrodes and the mechanism of electrolytic deposition of palladium black. Both classical electrochemical mechanisms and recent 'modified diffusion-limited-aggregation' computer simulations are discussed in comparison with the experimental results. 13 refs., 9 figs

  17. Electrostatic Assembly of Nanomaterials for Hybrid Electrodes and Supercapacitors

    Science.gov (United States)

    Hammond, Paula

    2015-03-01

    Electrostatic assembly methods have been used to generate a range of new materials systems of interest for electrochemical energy and storage applications. Over the past several years, it has been demonstrated that carbon nanotubes, metals, metal oxides, polymeric nanomaterials, and biotemplated materials systems can be incorporated into ultrathin films to generate supercapacitors and battery electrodes that illustrate significant energy density and power. The unique ability to control the incorporation of such a broad range of materials at the nanometer length scale allows tailoring of the final properties of these unique composite systems, as well as the capability of creating complex micron-scale to nanoporous morphologies based on the scale of the nanomaterial that is absorbed within the structure, or the conditions of self-assembly. Recently we have expanded these capabilities to achieve new electrodes that are templated atop electrospun polmer fiber scaffolds, in which the polymer can be selectively removed to achieve highly porous materials. Spray-layer-by-layer and filtration methods of functionalized multiwall carbon nanotubes and polyaniline nanofibers enable the generation of electrode systems with unusually high surface. Incorporation of psuedocapacitive nanoparticles can enhance capacitive properties, and other catalytic or metallic nanoparticles can be implemented to enhance electrochemical or catalytic function.

  18. Investigations on silver/polyaniline electrodes for electrochemical supercapacitors.

    Science.gov (United States)

    Patil, Dipali S; Shaikh, J S; Pawar, S A; Devan, R S; Ma, Y R; Moholkar, A V; Kim, J H; Kalubarme, R S; Park, C J; Patil, P S

    2012-09-14

    Polyaniline (PANI) and silver doped polyaniline (Ag/PANI) thin films were deposited on stainless steel substrates by a dip coating technique. To study the effect of doping concentration of Ag on the specific capacitance of PANI the concentration of Ag was varied from 0.3 to 1.2 weight percent. Fourier transform-infrared and Fourier transform-Raman spectroscopy, and energy dispersion X-ray techniques were used for the phase identification and determination of the doping content in the PANI films, respectively. The surface morphology of the films was examined by Field Emission Scanning Electron Microscopy, which revealed a nanofiber like structure for PANI and nanofibers with bright spots of Ag particles for the Ag/PANI films. There was decrease in the room temperature electrical resistivity of the Ag/PANI films of the order of 10(2) with increasing Ag concentration. The supercapacitive behavior of the electrodes was tested in a three electrode system using 1.0 M H(2)SO(4) electrolyte. The specific capacitance increased from 285 F g(-1) (for PANI) to 512 F g(-1) for Ag/PANI at 0.9 weight percent doping of Ag, owing to the synergic effect of PANI and silver nanoparticles. This work demonstrates a simple strategy of improving the specific capacitance of polymer electrodes and may also be easily adopted for other dopants.

  19. Consolidated Quarterly Report: Number of potential release sites subject to corrective action

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, John R.; Cochran, John R.

    2017-04-01

    This Sandia National Laboratories, New Mexico Environmental Restoration Operations (ER) Consolidated Quarterly Report (ER Quarterly Report) fulfills all quarterly reporting requirements set forth in the Resource Conservation and Recovery Act Facility Operating Permit and the Compliance Order on Consent. The 12 sites in the corrective action process are listed in Table I-1.

  20. H-Area Acid/Caustic Basin groundwater monitoring report. Second quarter 1994

    International Nuclear Information System (INIS)

    1994-09-01

    During second quarter 1994, samples collected from the four HAC monitoring wells at the H-Area Acid/Caustic Basin received comprehensive analyses (exclusive of boron and lithium) and turbidity measurements. Monitoring results that exceeded the final Primary Drinking Water Standards (PDWS) or the Savannah River Site (SRS) flagging criteria or turbidity standard during the quarter are the focus of this report. Tritium exceeded the final PDWS in all four HAC wells during second quarter 1994. Carbon tetrachloride exceeded the final PDWS in well HAC 4. Aluminum exceeded its Flag 2 criterion in wells HAC 2, 3, and 4. Iron was elevated in wells HAC 1, 2, and 3. Manganese exceeded its Flag 2 criterion in well HAC 3. Specific conductance and total organic halogens were elevated in well HAC 2. No well samples exceeded the SRS turbidity standard. Groundwater flow direction in the water stable beneath the H-Area Acid/Caustic Basin was to the west during second quarter 1994. During previous quarters, the groundwater flow direction has been consistently to the northwest or the north-northwest. This apparent change in flow direction may be attributed to the lack of water elevations for wells HTF 16 and 17 and the anomalous water elevations for well HAC 2 during second quarter

  1. Application of vertical micro-disk MHD electrode to the analysis of heterogeneous magneto-convection

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, A. [Saitama Industrial Technology Center, Japan Society for the Promotion of Science, Kawaguchi (Japan). Domestic Research Fellowship; Hashiride, M.; Morimoto, R.; Nagai, Y. [Saitama Industrial Technology Center, Kawaguchi (Japan). Materials Engineering Division; Aogaki, R. [Polytechnic University, Sagamihara (Japan). Department of Product Design

    2004-11-01

    With a micro-disk electrode in vertical magnetic fields, heterogeneous magneto-convection in vertical magnetic fields was quantitatively examined for the redox reaction of ferrocyanide-ferricyanide ions. It was concluded that the current density controlled by the magneto-convection is in proportion to the 1/3rd power of the product of the magnetic flux density and its gradient. Then, by using the same electrode system, the diffusion current induced by the vertical MHD (magnetohydrodynamic) flow was measured for the reduction of cuprous ions to copper atoms. The current density in this case was, as theoretically predicted, a function of the 1st power of the magnetic flux density. Finally, to visualize this characteristic flow pattern of the vertical MHD flow, copper electrodeposition onto the micro-disk electrode in a vertical magnetic field was performed; a typical morphological pattern of the deposit (single micro-mystery circle) was observed, as expected. (author)

  2. Application of vertical micro-disk MHD electrode to the analysis of heterogeneous magneto-convection

    International Nuclear Information System (INIS)

    Sugiyama, Atsushi; Hashiride, Makoto; Morimoto, Ryoichi; Nagai, Yutaka; Aogaki, Ryoichi

    2004-01-01

    With a micro-disk electrode in vertical magnetic fields, heterogeneous magneto-convection in vertical magnetic fields was quantitatively examined for the redox reaction of ferrocyanide-ferricyanide ions. It was concluded that the current density controlled by the magneto-convection is in proportion to the 1/3rd power of the product of the magnetic flux density and its gradient. Then, by using the same electrode system, the diffusion current induced by the vertical MHD (magnetohydrodynamic) flow was measured for the reduction of cuprous ions to copper atoms. The current density in this case was, as theoretically predicted, a function of the 1st power of the magnetic flux density. Finally, to visualize this characteristic flow pattern of the vertical MHD flow, copper electrodeposition onto the micro-disk electrode in a vertical magnetic field was performed; a typical morphological pattern of the deposit (single micro-mystery circle) was observed, as expected

  3. NST Quarterly - issue January 2002

    International Nuclear Information System (INIS)

    2002-01-01

    NST Quarterly reports current development in Nuclear Science and Technology in Malaysia. The subjects discussed are i. food and drinking water which are the major pathways of radionuclides to man and ii. nuclear techniques help to monitor sedimentation in reservoir

  4. US energy industry financial developments, 1991 third quarter

    International Nuclear Information System (INIS)

    1991-01-01

    Net income for the 218 energy companies included in this report was 15 percent lower in the third quarter of 1991 than in the third quarter of 1990. Declining income from oil and natural gas production, chemical operations, and coal operations resulted in a 33-percent fall in income for fossil fuel companies. The other category of energy companies included in this report, rate-regulated utilities, recorded essentially no change in income

  5. Long Life Nickel Electrodes for Nickel-Hydrogen Cells: Fiber Substrates Nickel Electrodes

    Science.gov (United States)

    Rogers, Howard H.

    2000-01-01

    Samples of nickel fiber mat electrodes were investigated over a wide range of fiber diameters, electrode thickness, porosity and active material loading levels. Thickness' were 0.040, 0.060 and 0.080 inches for the plaque: fiber diameters were primarily 2, 4, and 8 micron and porosity was 85, 90, and 95%. Capacities of 3.5 in. diameter electrodes were determined in the flooded condition with both 26 and 31% potassium hydroxide solution. These capacity tests indicated that the highest capacities per unit weight were obtained at the 90% porosity level with a 4 micron diameter fiber plaque. It appeared that the thinner electrodes had somewhat better performance, consistent with sintered electrode history. Limited testing with two-positive-electrode boiler plate cells was also carried out. Considerable difficulty with constructing the cells was encountered with short circuits the major problem. Nevertheless, four cells were tested. The cell with 95% porosity electrodes failed during conditioning cycling due to high voltage during charge. Discharge showed that this cell had lost nearly all of its capacity. The other three cells after 20 conditioning cycles showed capacities consistent with the flooded capacities of the electrodes. Positive electrodes made from fiber substrates may well show a weight advantage of standard sintered electrodes, but need considerably more work to prove this statement. A major problem to be investigated is the lower strength of the substrate compared to standard sintered electrodes. Problems with welding of leads were significant and implications that the electrodes would expand more than sintered electrodes need to be investigated. Loading levels were lower than had been expected based on sintered electrode experiences and the lower loading led to lower capacity values. However, lower loading causes less expansion and contraction during cycling so that stress on the substrate is reduced.

  6. Photoelectrocatalytic activity of a hydrothermally grown branched Zno nanorod-array electrode for paracetamol degradation.

    Science.gov (United States)

    Lin, Chin Jung; Liao, Shu-Jun; Kao, Li-Cheng; Liou, Sofia Ya Hsuan

    2015-06-30

    Hierarchical branched ZnO nanorod (B-ZnR) arrays as an electrode for efficient photoelectrocatalytic degradation of paracetamol were grown on fluorine-doped tin oxide substrates using a solution route. The morphologic and structural studies show the ZnO trunks are single-crystalline hexagonal wurtzite ZnO with a [0001] growth direction and are densely covered by c-axis-oriented ZnO branches. The obvious enhancement in photocurrent response of the B-ZnR electrode was obtained than that in the ZnO nanoparticle (ZnO NP) electrode. For the photoelectrocatalytic degradation of paracetamol in 20 h, the conversion fraction of the drug increased from 32% over ZnO NP electrode to 62% over B-ZnR arrays with about 3-fold increase in initial reaction rate. The light intensity-dependent photoelectrocatalytic experiment indicated that the superior performance over the B-ZnR electrode was mainly ascribed to the increased specific surface area without significantly sacrificing the charge transport and pollutant diffusion efficiencies. Two aromatic intermediate compounds were observed and eventually converted into harmless carboxylic acids and ammonia. Hierarchical tree-like ZnO arrays can be considered effective alternatives to improve photoelectro degradation rates without the need for expensive additives. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Modified glassy carbon electrodes based on carbon nanostructures for ultrasensitive electrochemical determination of furazolidone

    Energy Technology Data Exchange (ETDEWEB)

    Shahrokhian, Saeed, E-mail: shahrokhian@sharif.edu [Department of Chemistry, Sharif University of Technology, Tehran 11155-9516 (Iran, Islamic Republic of); Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Naderi, Leila [Department of Chemistry, Sharif University of Technology, Tehran 11155-9516 (Iran, Islamic Republic of); Ghalkhani, Masoumeh [Department of Chemistry, Faculty of Science, Shahid Rajaee Teacher Training University, Lavizan, Tehran (Iran, Islamic Republic of); Institute for advanced technology, Shahid Rajaee Teacher Training University, Lavizan, Tehran, 16788 (Iran, Islamic Republic of)

    2016-04-01

    The electrochemical behavior of Furazolidone (Fu) was investigated on the surface of the glassy carbon electrode modified with different carbon nanomaterials, including carbon nanotubes (CNTs), carbon nanoparticles (CNPs), nanodiamond-graphite (NDG), graphene oxide (GO), reduced graphene oxide (RGO) and RGO-CNT hybrids (various ratios) using linear sweep voltammetry (LSV). The results of voltammetric studies exhibited a considerable increase in the cathodic peak current of Fu at the RGO modified GCE, compared to other modified electrodes and also bare GCE. The surface morphology and nature of the RGO film was thoroughly characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) techniques. The modified electrode showed two linear dynamic ranges of 0.001–2.0 μM and 2.0–10.0 μM with a detection limit of 0.3 nM for the voltammetric determination of Fu. This sensor was used successfully for Fu determination in pharmaceutical and clinical preparations. - Highlights: • The electrochemical behavior of Furazolidone (Fu) was investigated on the surface of the modified electrode with different carbon nanomaterials by Linear sweep voltammetry. • Two linear dynamic ranges and a low detection limit were obtained. • The modified electrode was applied for the detection of Fu in pharmaceutical and clinical preparations.

  8. Applied Meteorology Unit (AMU) Quarterly Report - Fourth Quarter FY-09

    Science.gov (United States)

    Bauman, William; Crawford, Winifred; Barrett, Joe; Watson, Leela; Wheeler, Mark

    2009-01-01

    This report summarizes the Applied Meteorology Unit (AMU) activities for the fourth quarter of Fiscal Year 2009 (July - September 2009). Tasks reports include: (1) Peak Wind Tool for User Launch Commit Criteria (LCC), (2) Objective Lightning Probability Tool. Phase III, (3) Peak Wind Tool for General Forecasting. Phase II, (4) Update and Maintain Advanced Regional Prediction System (ARPS) Data Analysis System (ADAS), (5) Verify MesoNAM Performance (6) develop a Graphical User Interface to update selected parameters for the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLlT)

  9. The electrocatalytic oxidation of carbohydrates at a nickel/carbon paper electrode fabricated by the filtered cathodic vacuum arc technique

    International Nuclear Information System (INIS)

    Fu, Yingyi; Wang, Tong; Su, Wen; Yu, Yanan; Hu, Jingbo

    2015-01-01

    The direct electrochemical behaviour of carbohydrates at a nickel/carbon paper electrode with a novel fabrication method is investigated. The investigation is used for verification the feasibility of using monosaccharides and disaccharides in the application of fuel cell. The selected monosaccharides are glucose, fructose and galactose; the disaccharides are sucrose, maltose and lactose. The modified nickel/carbon paper electrode was prepared using a filtered cathodic vacuum arc technique. The morphology image of the nickel thin film on the carbon paper surface was characterized by scanning electron microscopy (SEM). The existence of nickel was verified by X-ray photoelectron spectroscopy (XPS). The contact angle measurement was also used to characterize the modified electrode. Cyclic voltammetry (CV) was employed to evaluate the electrochemical behaviour of monosaccharides and disaccharides in an alkaline aqueous solution. The modified electrode exhibits good electrocatalytic activities towards carbohydrates. In addition, the stability of the nickel/carbon paper electrode with six sugars was also investigated. The good catalytic effects of the nickel/carbon paper electrode allow for the use of carbohydrates as fuels in fuel cell applications

  10. Electrodeposited Porous Mn1.5Co1.5O₄/Ni Composite Electrodes for High-Voltage Asymmetric Supercapacitors.

    Science.gov (United States)

    Pan, Guan-Ting; Chong, Siewhui; Yang, Thomas C-K; Huang, Chao-Ming

    2017-03-31

    Mesoporous Mn 1.5 Co 1.5 O₄ (MCO) spinel films were prepared directly on a conductive nickel (Ni) foam substrate via electrodeposition and an annealing treatment as supercapacitor electrodes. The electrodeposition time markedly influenced the surface morphological, textural, and supercapacitive properties of MCO/Ni electrodes. The (MCO/Ni)-15 min electrode (electrodeposition time: 15 min) exhibited the highest capacitance among three electrodes (electrodeposition times of 7.5, 15, and 30 min, respectively). Further, an asymmetric supercapacitor that utilizes (MCO/Ni)-15 min as a positive electrode, a plasma-treated activated carbon (PAC)/Ni electrode as a negative electrode, and carboxymethyl cellulose-lithium nitrate (LiNO₃) gel electrolyte (denoted as (PAC/Ni)//(MCO/Ni)-15 min) was fabricated. In a stable operation window of 2.0 V, the device exhibited an energy density of 27.6 Wh·kg -1 and a power density of 1.01 kW·kg -1 at 1 A·g -1 . After 5000 cycles, the specific energy density retention and power density retention were 96% and 92%, respectively, demonstrating exceptional cycling stability. The good supercapacitive performance and excellent stability of the (PAC/Ni)//(MCO/Ni)-15 min device can be ascribed to the hierarchical structure and high surface area of the (MCO/Ni)-15 min electrode, which facilitate lithium ion intercalation and deintercalation at the electrode/electrolyte interface and mitigate volume change during long-term charge/discharge cycling.

  11. P-Area Acid/Caustic Basin groundwater monitoring report. First quarter 1995

    International Nuclear Information System (INIS)

    Chase, J.A.

    1995-06-01

    During first quarter 1995, groundwater from the six PAC monitoring wells at the P-Area Acid/Caustic Basin was analyzed for herbicides/pesticides, indicator parameters, metals, nitrate, adionuclide indicators, and other constituents. Monitoring results that exceeded the final Primary Drinking Water Standards (PDWS) or the Savannah River Site (SRS) flagging criteria or turbidity standard during the quarter are discussed in this report. During first quarter 1995, no constituents exceeded the final PDWS. Aluminum exceeded its SRS Flag 2 criterion in all six PAC wells. Iron and manganese exceeded Flag 2 criteria in three wells, while turbidity was elevated in one well. Groundwater flow direction and rate in the water table beneath the P-Area Acid/Caustic Basin were similar to past quarters

  12. Cobalt nano-sheet supported on graphite modified paper as a binder free electrode for peroxide electrooxidation

    International Nuclear Information System (INIS)

    Zhang, Dongming; Cao, Dianxue; Ye, Ke; Yin, Jinling; Cheng, Kui; Wang, Guiling

    2014-01-01

    Graphical abstract: - Highlights: • A novel and binder free Co@graphite/paper electrode is employed for H 2 O 2 electrooxidation. • The obtained Co@graphite/paper electrode exhibits remarkably high catalytic activity and good stability for the electrooxidation of H 2 O 2 . • The high catalytic activity, low cost and environment-friendly make the Co@graphite/paper electrode as a promising anode material in DPPFC. - Abstract: A novel and binder free Co@graphite/paper electrode is prepared by electrodeposition Co nano-sheet on the surface of a graphite layer modified paper substrate. The morphology and phase structure of the Co@graphite/paper electrode are characterized by scanning electron microscopy equipped with energy dispersive X-ray spectrometer, transmission electron microscope and X-ray diffractometer. The catalytic activity of the Co@graphite/paper electrode for H 2 O 2 electrooxidation is investigated by means of cyclic voltammetry and chronoamperometry. The catalyst combines tightly with the paper and exhibits a good stability. The oxidation current density reaches to 580 mA cm −2 in 2 mol dm −3 NaOH and 0.5 mol dm −3 H 2 O 2 at 0.5 V. Besides, we illustrate the reaction mechanization of the H 2 O 2 electrooxidation on the Co film

  13. Electrocatalytic Study of Paracetamol at a Single-Walled Carbon Nanotube/Nickel Nanocomposite Modified Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Koh Sing Ngai

    2015-01-01

    Full Text Available A rapid, simple, and sensitive method for the electrochemical determination of paracetamol was developed. A single-walled carbon nanotube/nickel (SWCNT/Ni nanocomposite was prepared and immobilized on a glassy carbon electrode (GCE surface via mechanical attachment. This paper reports the voltammetry study on the effect of paracetamol concentration, scan rate, pH, and temperature at a SWCNT/Ni-modified electrode in the determination of paracetamol. The characterization of the SWCNT/Ni/GCE was performed by cyclic voltammetry. Variable pressure scanning electron microscopy (VPSEM and energy dispersive X-ray (EDX spectrometer were used to examine the surface morphology and elemental profile of the modified electrode, respectively. Cyclic voltammetry showed significant enhancement in peak current for the determination of paracetamol at the SWCNT/Ni-modified electrode. A linear calibration curve was obtained for the paracetamol concentration between 0.05 and 0.50 mM. The SWCNT/Ni/GCE displayed a sensitivity of 64 mA M−1 and a detection limit of 1.17 × 10−7 M in paracetamol detection. The proposed electrode can be applied for the determination of paracetamol in real pharmaceutical samples with satisfactory performance. Results indicate that electrodes modified with SWCNT and nickel nanoparticles exhibit better electrocatalytic activity towards paracetamol.

  14. Enhanced performance of electrospun carbon fibers modified with carbon nanotubes: promising electrodes for enzymatic biofuel cells.

    Science.gov (United States)

    Engel, A Both; Cherifi, A; Tingry, S; Cornu, D; Peigney, A; Laurent, Ch

    2013-06-21

    New nanostructured electrodes, promising for the production of clean and renewable energy in biofuel cells, were developed with success. For this purpose, carbon nanofibers were produced by the electrospinning of polyacrylonitrile solution followed by convenient thermal treatments (stabilization followed by carbonization at 1000, 1200 and 1400° C), and carbon nanotubes were adsorbed on the surfaces of the fibers by a dipping method. The morphology of the developed electrodes was characterized by several techniques (SEM, Raman spectroscopy, electrical conductivity measurement). The electrochemical properties were evaluated through cyclic voltammetry, where the influence of the carbonization temperature of the fibers and the beneficial contribution of the carbon nanotubes were observed through the reversibility and size of the redox peaks of K3Fe(CN)6 versus Ag/AgCl. Subsequently, redox enzymes were immobilized on the electrodes and the electroreduction of oxygen to water was realized as a test of their efficiency as biocathodes. Due to the fibrous and porous structure of these new electrodes, and to the fact that carbon nanotubes may have the ability to promote electron transfer reactions of redox biomolecules, the new electrodes developed were capable of producing higher current densities than an electrode composed only of electrospun carbon fibers.

  15. Electrospinning of aligned fibers with adjustable orientation using auxiliary electrodes

    International Nuclear Information System (INIS)

    Arras, Matthias M L; Grasl, Christian; Schima, Heinrich; Bergmeister, Helga

    2012-01-01

    A conventional electrospinning setup was upgraded by two turnable plate-like auxiliary high-voltage electrodes that allowed aligned fiber deposition in adjustable directions. Fiber morphology was analyzed by scanning electron microscopy and attenuated total reflection Fourier transform infrared spectroscopy (FTIR-ATR). The auxiliary electric field constrained the jet bending instability and the fiber deposition became controllable. At target speeds of 0.9 m s −1 90% of the fibers had aligned within 2°, whereas the angular spread was 70° without the use of auxiliary electrodes. It was even possible to orient fibers perpendicular to the rotational direction of the target. The fiber diameter became smaller and its distribution narrower, while according to the FTIR-ATR measurement the molecular orientation of the polymer was unaltered. This study comprehensively documents the feasibility of directed fiber deposition and offers an easy upgrade to existing electrospinning setups. (paper)

  16. 77 FR 71288 - Revisions to Electric Quarterly Report Filing Process

    Science.gov (United States)

    2012-11-30

    ... its regulations to change the process for filing Electric Quarterly Reports (EQR). Due to technology... Quarterly Reports (EQR). Due to technology changes that will render the current filing process outmoded... the current EQR software to the web interface minimally disruptive. We direct Commission staff to...

  17. The study of hydrogen electrosorption in layered nickel foam/palladium/carbon nanofibers composite electrodes

    International Nuclear Information System (INIS)

    Skowronski, J.M.; Czerwinski, A.; Rozmanowski, T.; Rogulski, Z.; Krawczyk, P.

    2007-01-01

    In the present work, the process of hydrogen electrosorption occurring in alkaline KOH solution on the nickel foam/palladium/carbon nanofibers (Ni/Pd/CNF) composite electrodes is examined. The layered Ni/Pd/CNF electrodes were prepared by a two-step method consisting of chemical deposition of a thin layer of palladium on the nickel foam support to form Ni/Pd electrode followed by coating the palladium layer with carbon nanofibers layer by means of the CVD method. The scanning electron microscope was used for studying the morphology of both the palladium and carbon layer. The process of hydrogen sorption/desorption into/from Ni/Pd as well as Ni/Pd/CNF electrode was examined using the cyclic voltammetry method. The amount of hydrogen stored in both types of composite electrodes was shown to increase on lowering the potential of hydrogen sorption. The mechanism of the anodic desorption of hydrogen changes depending on whether or not CNF layer is present on the Pd surface. The anodic peak corresponding to the removal of hydrogen from palladium is lower for Ni/Pd/CNF electrode as compared to that measured for Ni/Pd one due to a partial screening of the Pd surface area by CNF layer. The important feature of Ni/Pd/CNF electrode is anodic peak appearing on voltammetric curves at potential ca. 0.4 V more positive than the peak corresponding to hydrogen desorption from palladium. The obtained results showed that upon storing the hydrogen saturated Ni/Pd/CNF electrode at open circuit potential, diffusion of hydrogen from carbon to palladium phase occurs due to interaction between carbon fibers and Pd sites on the nickel foam support

  18. Processing nanoparticle–nanocarbon composites as binder-free electrodes for lithium-based batteries

    Directory of Open Access Journals (Sweden)

    Marya Baloch

    2017-09-01

    Full Text Available Abstract The processing of battery materials into functional electrodes traditionally requires the preparation of slurries using binders, organic solvents, and additives, all of which present economic and environmental challenges. These are amplified in the production of nanostructured carbon electrodes which are often more difficult to disperse in slurries and require more energy-intensive and longer processing. In this study we demonstrate a new process for preparing binder-free nanocarbon/nanoparticle (Fe–C composite electrodes and study the effect of processing on the nanocomposite’s cycling performance in lithium cells. The binder-free electrodes were prepared by a two-step method: pulsed-electrodeposition of iron-based catalyst followed by chemical vapor deposition of a carbon film. SEM and TEM of the Fe–C showed that the active materials have a fibrous and tortuous morphology with disordered nanocrystalline domains characteristic of an amorphous carbon. The Fe–C electrodes showed good mechanical stability and an excellent cycle performance with an average stable capacity of 221 mAhg−1, and 85% capacity retention for up to 50 cycles. By reducing the number of processing steps and eliminating the use of binders and other chemicals this new method offers a “greener” alternative than current processing methods. Graphical abstract Synopsis: gains in sustainability can be achieved by eliminating use of binders, chemicals, and the number of electrode’s processing steps in this new method.

  19. Natural gas consumption for GRTgaz areas: 1. Quarter of 2015, 2. Quarter of 2015, 3. Quarter of 2015, 4. Quarter of 2015

    International Nuclear Information System (INIS)

    2016-01-01

    GRTgaz is a European leader in natural gas transmission, a world expert in gas transmission networks and systems, and an operator firmly committed to the energy transition. It owns and operates the gas transmission network throughout most of France and it manages the transmission network in Germany, thereby helping to ensure correct operation of the French and European gas market. It contributes to the energy security of regional supply systems and performs a public service mission to ensure the continuity of consumer supply. This document presents the quarterly key figures of GRTgaz activity in 2015: gross consumption, climate corrected consumption, quantities of natural gas transported

  20. Natural gas consumption for GRTgaz areas: 1. Quarter of 2014, 2. Quarter of 2014, 3. Quarter of 2014, 4. Quarter of 2014

    International Nuclear Information System (INIS)

    2015-01-01

    GRTgaz is a European leader in natural gas transmission, a world expert in gas transmission networks and systems, and an operator firmly committed to the energy transition. It owns and operates the gas transmission network throughout most of France and it manages the transmission network in Germany, thereby helping to ensure correct operation of the French and European gas market. It contributes to the energy security of regional supply systems and performs a public service mission to ensure the continuity of consumer supply. This document presents the quarterly key figures of GRTgaz activity in 2014: gross consumption, climate corrected consumption, quantities of natural gas transported

  1. Natural gas consumption for GRTgaz areas: 1. Quarter of 2011, 2. Quarter of 2011, 3. Quarter of 2011, 4. Quarter of 2011

    International Nuclear Information System (INIS)

    2012-01-01

    GRTgaz is a European leader in natural gas transmission, a world expert in gas transmission networks and systems, and an operator firmly committed to the energy transition. It owns and operates the gas transmission network throughout most of France and it manages the transmission network in Germany, thereby helping to ensure correct operation of the French and European gas market. It contributes to the energy security of regional supply systems and performs a public service mission to ensure the continuity of consumer supply. This document presents the quarterly key figures of GRTgaz activity in 2011: gross consumption, climate corrected consumption, quantities of natural gas transported

  2. 77 FR 27021 - Proposed Information Collection; Comment Request; Quarterly Survey of Financial Services...

    Science.gov (United States)

    2012-05-08

    ... Request; Quarterly Survey of Financial Services Transactions Between U.S. Financial Services Providers [email protected] . SUPPLEMENTARY INFORMATION: I. Abstract Form BE-185, Quarterly Survey of Financial Services Transactions between U.S. Financial Services Providers and Foreign Persons, obtains quarterly data from U.S...

  3. In situ–Directed Growth of Organic Nanofibers and Nanoflakes: Electrical and Morphological Properties

    Directory of Open Access Journals (Sweden)

    de Oliveira Hansen Roana

    2011-01-01

    Full Text Available Abstract Organic nanostructures made from organic molecules such as para-hexaphenylene (p-6P could form nanoscale components in future electronic and optoelectronic devices. However, the integration of such fragile nanostructures with the necessary interface circuitry such as metal electrodes for electrical connection continues to be a significant hindrance toward their large-scale implementation. Here, we demonstrate in situ–directed growth of such organic nanostructures between pre-fabricated contacts, which are source–drain gold electrodes on a transistor platform (bottom-gate on silicon dioxide patterned by a combination of optical lithography and electron beam lithography. The dimensions of the gold electrodes strongly influence the morphology of the resulting structures leading to notably different electrical properties. The ability to control such nanofiber or nanoflake growth opens the possibility for large-scale optoelectronic device fabrication.

  4. Sulfur based electrode materials for secondary batteries

    Science.gov (United States)

    Hao, Yong

    Developing next generation secondary batteries has attracted much attention in recent years due to the increasing demand of high energy and high power density energy storage for portable electronics, electric vehicles and renewable sources of energy. This dissertation investigates sulfur based advanced electrode materials in Lithium/Sodium batteries. The electrochemical performances of the electrode materials have been enhanced due to their unique nano structures as well as the formation of novel composites. First, a nitrogen-doped graphene nanosheets/sulfur (NGNSs/S) composite was synthesized via a facile chemical reaction deposition. In this composite, NGNSs were employed as a conductive host to entrap S/polysulfides in the cathode part. The NGNSs/S composite delivered an initial discharge capacity of 856.7 mAh g-1 and a reversible capacity of 319.3 mAh g-1 at 0.1C with good recoverable rate capability. Second, NGNS/S nanocomposites, synthesized using chemical reaction-deposition method and low temperature heat treatment, were further studied as active cathode materials for room temperature Na-S batteries. Both high loading composite with 86% gamma-S8 and low loading composite with 25% gamma-S8 have been electrochemically evaluated and compared with both NGNS and S control electrodes. It was found that low loading NGNS/S composite exhibited better electrochemical performance with specific capacity of 110 and 48 mAh g-1 at 0.1C at the 1st and 300th cycle, respectively. The Coulombic efficiency of 100% was obtained at the 300th cycle. Third, high purity rock-salt (RS), zinc-blende (ZB) and wurtzite (WZ) MnS nanocrystals with different morphologies were successfully synthesized via a facile solvothermal method. RS-, ZB- and WZ-MnS electrodes showed the capacities of 232.5 mAh g-1, 287.9 mAh g-1 and 79.8 mAh g-1 at the 600th cycle, respectively. ZB-MnS displayed the best performance in terms of specific capacity and cyclability. Interestingly, MnS electrodes

  5. The importance of surface morphology in controlling the selectivity of polycrystalline copper for CO(2) electroreduction

    DEFF Research Database (Denmark)

    Tang, Wei; Peterson, Andrew A; Varela Gasque, Ana Sofia

    2012-01-01

    This communication examines the effect of the surface morphology of polycrystalline copper on electroreduction of CO(2). We find that a copper nanoparticle covered electrode shows better selectivity towards hydrocarbons compared with the two other studied surfaces, an electropolished copper elect...

  6. NST Quarterly. January 1996 issue

    International Nuclear Information System (INIS)

    1996-01-01

    NST Quarterly reports current development in Nuclear Science and Technology in Malaysia. In this issue it highlights MINT activities in nuclear medicine, healthcare products sterilization, industrial irradiation dosimetry and heavy metals determination in food. The Malaysian standard for food irradiation was discussed in this issue

  7. Morphology and interdiffusion control to improve adhesion and cohesion properties in inverted polymer solar cells

    KAUST Repository

    Dupont, Stephanie R.; Voroshazi, Eszter; Nordlund, Dennis; Dauskardt, Reinhold H.

    2015-01-01

    © 2014 Elsevier B.V. All rights reserved. The role of pre-electrode deposition annealing on the morphology and the fracture properties of polymer solar cells is discussed. We found an increase in adhesion at the weak P3HT:PCBM/PEDOT:PSS interface

  8. Morphology and Structure of ZnO Nanoparticles Produced by Electrochemical Method

    Directory of Open Access Journals (Sweden)

    Barbara STYPUŁA

    2014-04-01

    Full Text Available This article presents studies of the morphology and structure of ZnO nanoparticles synthesized by the electrochemical method. Colloidal solutions of the nanoparticles are obtained by an anodic dissolution of metallic zinc in alcohol solutions of lithium chloride containing a small amount of water (5 % vol.. The parameters chosen for the synthesis are based on Zn polarization curves(obtained using the the potentiokinetic (Linear Sweep Voltammetry – LSV and the chronoamperometric method. The synthesis of zinc oxide nanoparticles is carried out in 0.05m LiCl + 5 % H2O alcohol (methanol or propanol solutions during galvanostatic polarization of Zn at 3 mA/cm2 current density. The process is performed in a two-electrode system, where both electrodes (the working anode and cathode are made of zinc. Optical properties, morphology and structure of the colloidal solutions and powders (obtained after evaporating the solvent were studied using the following spectroscopic and microscopic techniques: UltraViolet and Visible Spectroscopy (UV-VIS, Fourier Transform Infrared Spectroscopy (FTIR, Scanning Electron Microscopy (SEM and Transmission Electron Microscopy (TEM.DOI: http://dx.doi.org/10.5755/j01.ms.20.1.4417

  9. Metallurgical Laboratory Hazardous Waste Management Facility groundwater monitoring report. Third quarter, 1994

    International Nuclear Information System (INIS)

    1994-12-01

    During third quarter 1994, samples from AMB groundwater monitoring wells at the Metallurgical Laboratory Hazardous Waste Management Facility (Met Lab HWMF) were analyzed for selected heavy metals, indicator parameters, radionuclides, volatile organic compounds, and other constituents. Eight parameters exceeded standards during the quarter. As in previous quarters, tetrachloroethylene and trichloroethylene exceeded final Primary Drinking Water Standards (PDWS). Bis(2-ethylhexyl) phthalate exceeded final PDWS in one well. Aluminum, iron, manganese, tin, and total organic halogens exceeded the Savannah River Site (SRS) Flag 2 criteria. Groundwater flow direction and rate in the M-Area Aquifer Zone were similar to previous quarters. Conditions affecting determination of groundwater flow directions and rates in the Upper Lost Lake Aquifer Zone, Lower Lost Lake Aquifer Zone, and the Middle Sand Aquifer Zone of the Crouch Branch Confining Unit were also similar to previous quarters. During second quarter 1994, SRS received South Carolina Department of Health and Environmental Control approval for constructing five point-of-compliance wells and two plume definition wells near the Met Lab HWMF. This project began in July 1994 and is complete; however, analytical data from these wells is not available yet

  10. In Situ Real-Time Mechanical and Morphological Characterization of Electrodes for Electrochemical Energy Storage and Conversion by Electrochemical Quartz Crystal Microbalance with Dissipation Monitoring.

    Science.gov (United States)

    Shpigel, Netanel; Levi, Mikhael D; Sigalov, Sergey; Daikhin, Leonid; Aurbach, Doron

    2018-01-16

    Quartz crystal microbalance with dissipation monitoring (QCM-D) generates surface-acoustic waves in quartz crystal plates that can effectively probe the structure of films, particulate composite electrodes of complex geometry rigidly attached to quartz crystal surface on one side and contacting a gas or liquid phase on the other side. The output QCM-D characteristics consist of the resonance frequency (MHz frequency range) and resonance bandwidth measured with extra-ordinary precision of a few tenths of Hz. Depending on the electrodes stiffness/softness, QCM-D operates either as a gravimetric or complex mechanical probe of their intrinsic structure. For at least 20 years, QCM-D has been successfully used in biochemical and environmental science and technology for its ability to probe the structure of soft solvated interfaces. Practical battery and supercapacitor electrodes appear frequently as porous solids with their stiffness changing due to interactions with electrolyte solutions or as a result of ion intercalation/adsorption and long-term electrode cycling. Unfortunately, most QCM measurements with electrochemical systems are carried out based on a single (fundamental) frequency and, as such, provided that the resonance bandwidth remains constant, are suitable for only gravimetric sensing. The multiharmonic measurements have been carried out mainly on conducting/redox polymer films rather than on typical composite battery/supercapacitor electrodes. Here, we summarize the most recent publications devoted to the development of electrochemical QCM-D (EQCM-D)-based methodology for systematic characterization of mechanical properties of operating battery/supercapacitor electrodes. By varying the electrodes' composition and structure (thin/thick layers, small/large particles, binders with different mechanical properties, etc.), nature of the electrolyte solutions and charging/cycling conditions, the method is shown to be operated in different application modes. A

  11. Electroplating of CdTe Thin Films from Cadmium Sulphate Precursor and Comparison of Layers Grown by 3-Electrode and 2-Electrode Systems

    Directory of Open Access Journals (Sweden)

    Imyhamy M. Dharmadasa

    2017-01-01

    Full Text Available Electrodeposition of CdTe thin films was carried out from the late 1970s using the cadmium sulphate precursor. The solar energy group at Sheffield Hallam University has carried out a comprehensive study of CdTe thin films electroplated using cadmium sulfate, cadmium nitrate and cadmium chloride precursors, in order to select the best electrolyte. Some of these results have been published elsewhere, and this manuscript presents the summary of the results obtained on CdTe layers grown from cadmium sulphate precursor. In addition, this research program has been exploring the ways of eliminating the reference electrode, since this is a possible source of detrimental impurities, such as K+ and Ag+ for CdS/CdTe solar cells. This paper compares the results obtained from CdTe layers grown by three-electrode (3E and two-electrode (2E systems for their material properties and performance in CdS/CdTe devices. Thin films were characterized using a wide range of analytical techniques for their structural, morphological, optical and electrical properties. These layers have also been used in device structures; glass/FTO/CdS/CdTe/Au and CdTe from both methods have produced solar cells to date with efficiencies in the region of 5%–13%. Comprehensive work carried out to date produced comparable and superior devices fabricated from materials grown using 2E system.

  12. Highly stable palladium-loaded TiO{sub 2} nanotube array electrode for the electrocatalytic hydrodehalogenation of polychlorinated biphenyls

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Chunyue; Wu, Juan; Xin, Yanjun [Qingdao Agricultural University, Qingdao (China); Han, Yanhe [Beijing Institute of Petrochemical Technology, Beijing (China)

    2015-06-15

    Palladized TiO{sub 2} nanotube array electrode was prepared for the electrocatalytic hydrodehalogenation (HDH) of 2,4,5-trichlorobiphenyl (2,4,5-PCB). The TiO{sub 2} nanotube array electrode was successfully fabricated by anodic oxidation method, and Pd was loaded onto the TiO{sub 2} nanotubes by electrochemical deposition. The morphology and structure of the nanotube array electrodes with and without Pd catalysts were evaluated by scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The results showed that the diameters and lengths of the TiO{sub 2} nanotubes were 30-50 nm and 200-400 nm, respectively. The particle size of the Pd was about 12 nm. Electrocatalytic HDH of 2,4,5-PCB with the Pd/TiO{sub 2} nanotube array electrode was performed in H-cell reactor. Under a constant potential of -1.0 V, the HDH efficiency of 2,4,5-PCB was 90% and the biphenyl yield was 83% (15% current efficiency) within 180min at the Pd/TiO{sub 2} nanotube array electrode. Compared with the Pd/Ti electrode, the Pd/TiO{sub 2} nanotube array electrode exhibited higher HDH efficiency and stability. Additionally, the effect of the primary HDH factors was also investigated.

  13. The WSTIAC Quarterly. Volume 9, Number 2, 2009

    Science.gov (United States)

    2009-01-01

    Services Robert Fitzgibbon Bruce Dudley Product Sales Gina Nash http://wstiac.alionscience.com/quarterly http://wstiac.alionscience.com/quarterly http... B2b =45 deg B2b =50 deg B2b =35 deg B2b =25 deg B2b =0 1.00 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.60 0.55 0.50 To ta l-t o- St at ic Po ly tro pi c ef fic en

  14. Public Land Survey System (PLSS) Quarter Section Polygons, Arizona, 2014, Bureau of Land Management

    Data.gov (United States)

    U.S. Environmental Protection Agency — The second division of the PLSS is quarter, quarter-quarter, sixteenth or government lot division of the PLSS. The second and third divisions are combined into this...

  15. 39 CFR 243.2 - Quarters.

    Science.gov (United States)

    2010-07-01

    ... UNITED STATES POSTAL SERVICE ORGANIZATION AND ADMINISTRATION CONDUCT OF OFFICES § 243.2 Quarters. (a.... Postal Service, General Accounting Office Building, Washington, DC 20260, with a memorandum of... depositing mail in front of or next to the post office. Show collection time schedules on letterboxes. At...

  16. Effective Chemical Route to 2D Nanostructured Silicon Electrode Material: Phase Transition from Exfoliated Clay Nanosheet to Porous Si Nanoplate

    International Nuclear Information System (INIS)

    Adpakpang, Kanyaporn; Patil, Sharad B.; Oh, Seung Mi; Kang, Joo-Hee; Lacroix, Marc; Hwang, Seong-Ju

    2016-01-01

    Graphical abstract: Effective morphological control of porous silicon 2D nanoplate can be achieved by the magnesiothermically-induced phase transition of exfoliated silicate clay nanosheets. The promising lithium storage performance of the obtained silicon materials with huge capacity and excellent rate characteristics underscores the prime importance of porously 2D nanostructured morphology of silicon. - Highlights: • 2D nanostructured silicon electrode materials are successfully synthesized via the magnesiothermically-induced phase transition of exfoliated clay 2D nanosheets. • High discharge capacity and rate capability are achieved from the 2D nanoplates of silicon. • Silicon 2D nanoplates can enhance both Li"+ diffusion and charge-transfer kinetics. • 2D nanostructured silicon is beneficial for the cycling stability by minimizing the volume change during lithiation-delithiation. - Abstract: An efficient and economical route for the synthesis of porous two-dimensional (2D) nanoplates of silicon is developed via the magnesiothermically-induced phase transition of exfoliated clay 2D nanosheets. The magnesiothermic reaction of precursor clay nanosheets prepared by the exfoliation and restacking with Mg"2"+ cations yields porous 2D nanoplates of elemental silicon. The variation in the Mg:SiO_2 ratio has a significant effect on the porosity and connectivity of silicon nanoplates. The porous silicon nanoplates show a high discharge capacity of 2000 mAh g"−"1 after 50 cycles. Of prime importance is that this electrode material still retains a large discharge capacity at higher C-rates, which is unusual for the elemental silicon electrode. This is mainly attributed to the improved diffusion of lithium ions, charge-transfer kinetics, and the preservation of the electrical connection of the porous 2D plate-shaped morphology. This study highlights the usefulness of clay mineral as an economical and scalable precursor of high-performance silicon electrodes with

  17. Ordered macroporous platinum electrode and enhanced mass transfer in fuel cells using inverse opal structure.

    Science.gov (United States)

    Kim, Ok-Hee; Cho, Yong-Hun; Kang, Soon Hyung; Park, Hee-Young; Kim, Minhyoung; Lim, Ju Wan; Chung, Dong Young; Lee, Myeong Jae; Choe, Heeman; Sung, Yung-Eun

    2013-01-01

    Three-dimensional, ordered macroporous materials such as inverse opal structures are attractive materials for various applications in electrochemical devices because of the benefits derived from their periodic structures: relatively large surface areas, large voidage, low tortuosity and interconnected macropores. However, a direct application of an inverse opal structure in membrane electrode assemblies has been considered impractical because of the limitations in fabrication routes including an unsuitable substrate. Here we report the demonstration of a single cell that maintains an inverse opal structure entirely within a membrane electrode assembly. Compared with the conventional catalyst slurry, an ink-based assembly, this modified assembly has a robust and integrated configuration of catalyst layers; therefore, the loss of catalyst particles can be minimized. Furthermore, the inverse-opal-structure electrode maintains an effective porosity, an enhanced performance, as well as an improved mass transfer and more effective water management, owing to its morphological advantages.

  18. Sales revenue and data for the first quarter of 2007

    International Nuclear Information System (INIS)

    2007-04-01

    This document presents the Areva Group sales revenue and data for the first quarter of 2007: sales revenue stable at 2.47 billion Euro and anticipation of a significant increase in sales revenue for 2007. Other information concerns: the business trends (reform of the nuclear sector in Russia, Toshiba's acquisition of Westinghouse, reopening of the debate on the need to build new nuclear reactors by more than 60 countries), key events concerning Areva's operations during the first quarter (major marketing events, contracts and agreements, strategic developments), and detailed first quarter 2007 sales revenues (front-end division, reactors and services, back-end division, transmission and distribution division). (J.S.)

  19. Short-term energy outlook, quarterly projections, second quarter 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    The Energy Information Administration (EIA) prepares quarterly short-term energy supply, demand, and price projections. The details of these projections, as well as monthly updates, are available on the Internet at: www.eia.doe.gov/emeu/steo/pub/contents.html. The paper discusses outlook assumptions; US energy prices; world oil supply and the oil production cutback agreement of March 1998; international oil demand and supply; world oil stocks, capacity, and net trade; US oil demand and supply; US natural gas demand and supply; US coal demand and supply; US electricity demand and supply; US renewable energy demand; and US energy demand and supply sensitivities. 29 figs., 19 tabs.

  20. Electrochemical behavior of an anticancer drug 5-fluorouracil at methylene blue modified carbon paste electrode

    International Nuclear Information System (INIS)

    Bukkitgar, Shikandar D.; Shetti, Nagaraj P.

    2016-01-01

    A novel sensor for the determination of 5-fluorouracil was constructed by electrochemical deposition of methylene blue on surface of carbon paste electrode. The electrode surface morphology was studied using Atomic force microscopy and XRD. The electrochemical activity of modified electrode was characterized using cyclic voltammetry and differential pulse method. The developed sensor shows impressive enlargement in sensitivity of 5-fluorouracil determination. The peak currents obtained from differential pulse voltammetry was linear with concentration of 5-fluorouracil in the range 4 × 10 −5 –1 × 10 −7 M and detection limit and quantification limit were calculated to be 2.04 nM and 6.18 nM respectively. Further, the sensor was successfully applied in pharmaceutical and biological fluid sample analysis. - Highlights: • Electrochemical oxidation of 5-fluorouracil has been investigated for first time at methylene blue modified carbon paste electrode • The electrode process was irreversible and diffusion controlled • Probable electrochemical mechanism was proposed which involved two proton and two electron transfer reaction • The LOD and LOQ values were calculated to be 2.04 nM and 6.18 nM, respectively, with good selectivity and sensitivity. • Proposed method was applied to 5-Fluorouracil determination in pharmaceutical and spiked human urine samples

  1. Design, fabrication and skin-electrode contact analysis of polymer microneedle-based ECG electrodes

    Science.gov (United States)

    O'Mahony, Conor; Grygoryev, Konstantin; Ciarlone, Antonio; Giannoni, Giuseppe; Kenthao, Anan; Galvin, Paul

    2016-08-01

    Microneedle-based ‘dry’ electrodes have immense potential for use in diagnostic procedures such as electrocardiography (ECG) analysis, as they eliminate several of the drawbacks associated with the conventional ‘wet’ electrodes currently used for physiological signal recording. To be commercially successful in such a competitive market, it is essential that dry electrodes are manufacturable in high volumes and at low cost. In addition, the topographical nature of these emerging devices means that electrode performance is likely to be highly dependent on the quality of the skin-electrode contact. This paper presents a low-cost, wafer-level micromoulding technology for the fabrication of polymeric ECG electrodes that use microneedle structures to make a direct electrical contact to the body. The double-sided moulding process can be used to eliminate post-process via creation and wafer dicing steps. In addition, measurement techniques have been developed to characterize the skin-electrode contact force. We perform the first analysis of signal-to-noise ratio dependency on contact force, and show that although microneedle-based electrodes can outperform conventional gel electrodes, the quality of ECG recordings is significantly dependent on temporal and mechanical aspects of the skin-electrode interface.

  2. Design, fabrication and skin-electrode contact analysis of polymer microneedle-based ECG electrodes

    International Nuclear Information System (INIS)

    O’Mahony, Conor; Grygoryev, Konstantin; Ciarlone, Antonio; Giannoni, Giuseppe; Kenthao, Anan; Galvin, Paul

    2016-01-01

    Microneedle-based ‘dry’ electrodes have immense potential for use in diagnostic procedures such as electrocardiography (ECG) analysis, as they eliminate several of the drawbacks associated with the conventional ‘wet’ electrodes currently used for physiological signal recording. To be commercially successful in such a competitive market, it is essential that dry electrodes are manufacturable in high volumes and at low cost. In addition, the topographical nature of these emerging devices means that electrode performance is likely to be highly dependent on the quality of the skin-electrode contact.This paper presents a low-cost, wafer-level micromoulding technology for the fabrication of polymeric ECG electrodes that use microneedle structures to make a direct electrical contact to the body. The double-sided moulding process can be used to eliminate post-process via creation and wafer dicing steps. In addition, measurement techniques have been developed to characterize the skin-electrode contact force. We perform the first analysis of signal-to-noise ratio dependency on contact force, and show that although microneedle-based electrodes can outperform conventional gel electrodes, the quality of ECG recordings is significantly dependent on temporal and mechanical aspects of the skin-electrode interface. (paper)

  3. Activation and discharge kinetics of metal hydride electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Johnsen, Stein Egil

    2003-07-01

    this activation procedure. Studies of the activity of single metal hydride particles show that each particle has different properties after activation, by hot polarisation, in a porous electrode. The differences in activation among single particles may be due to differences in contact resistance between the individual metal hydride particle and the current collector in the porous electrode, which would result in a current distribution. Annealing of the gas atomised AB{sub 5} type alloy increases the discharge capacity but does not otherwise affect the activation. The corrosion and passivation of metal hydride electrodes of AB{sub 5} type alloys was studied. A high depth of discharge (DOD) decreases the discharge rate capability of the metal hydride electrodes and this is explained by passivation. A surface passivation may enhance particle cracking, which would make the electrode more susceptible to corrosion. The passivation of metal hydride electrodes increases for increasing cut-off-potential (COP) during discharging. This can be explained by an increasing corrosion of the particle surfaces. A corrosion phenomenon was measured at high DOD and correlated to the passivation of the metal hydride particle surface. Lowering the COP can reduce the negative effect of this phenomenon. The cycle life of the gas-atomised material is slightly improved by decreasing the COP but is independent of hot-polarisation activation treatment. Annealing this material significantly improves both discharge capacity and cycle life. A change of surface morphology due to the annealing has been identified and may contribute to the decreased electrode degradation. The formation of hydroxides on the particle surfaces is in general regarded to be negative for the electrode kinetics and is probably responsible for the long time degradation of metal hydride electrodes.

  4. Differential pulse voltammetric determination of nanomolar concentrations of antiviral drug acyclovir at polymer film modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Dorraji, Parisa S.; Jalali, Fahimeh, E-mail: fjalali@razi.ac.ir

    2016-04-01

    An electrochemical sensor for the sensitive detection of acyclovir was developed by the electropolymerization of Eriochrome black T at a pretreated glassy carbon electrode. The surface morphology of the modified electrode was characterized by field emission scanning electron microscopy. Under the optimized conditions, a significant electrochemical improvement was observed toward the electrooxidation of acyclovir on the modified electrode surface relative to the unmodified electrode. The detection limit of 12 nM and two linear calibration ranges of 0.03–0.3 μM and 0.3–1.5 μM were obtained for acyclovir determination using a differential pulse voltammetric method in acetate buffer (0.1 M, pH 4.0). Real sample studies were carried out in human blood serum and pharmaceutical formulations, which offered good recovery (98–102%). The electrode showed excellent reproducibility, selectivity and antifouling effects. - Graphical abstract: Eriochrome black T (EBT) was electropolymerized at the surface of a pretreated glassy carbon electrode. The modified electrode enhanced the oxidation current of acyclovir, significantly. The sensor was used in the determination of acyclovir in human blood serum samples and pharmaceutical dosages. - Highlights: • Construction of a voltammetric sensor for acyclovir is described. • Eriochrome black T was electropolymerized at the electrode surface. • The sensor improved the sensitivity of the electrode for monitoring acyclovir. • The recoveries and standard deviations were acceptable in spiked human blood serum. • The proposed sensor had good lifetime to be used in biological matrices.

  5. Differential pulse voltammetric determination of nanomolar concentrations of antiviral drug acyclovir at polymer film modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Dorraji, Parisa S.; Jalali, Fahimeh

    2016-01-01

    An electrochemical sensor for the sensitive detection of acyclovir was developed by the electropolymerization of Eriochrome black T at a pretreated glassy carbon electrode. The surface morphology of the modified electrode was characterized by field emission scanning electron microscopy. Under the optimized conditions, a significant electrochemical improvement was observed toward the electrooxidation of acyclovir on the modified electrode surface relative to the unmodified electrode. The detection limit of 12 nM and two linear calibration ranges of 0.03–0.3 μM and 0.3–1.5 μM were obtained for acyclovir determination using a differential pulse voltammetric method in acetate buffer (0.1 M, pH 4.0). Real sample studies were carried out in human blood serum and pharmaceutical formulations, which offered good recovery (98–102%). The electrode showed excellent reproducibility, selectivity and antifouling effects. - Graphical abstract: Eriochrome black T (EBT) was electropolymerized at the surface of a pretreated glassy carbon electrode. The modified electrode enhanced the oxidation current of acyclovir, significantly. The sensor was used in the determination of acyclovir in human blood serum samples and pharmaceutical dosages. - Highlights: • Construction of a voltammetric sensor for acyclovir is described. • Eriochrome black T was electropolymerized at the electrode surface. • The sensor improved the sensitivity of the electrode for monitoring acyclovir. • The recoveries and standard deviations were acceptable in spiked human blood serum. • The proposed sensor had good lifetime to be used in biological matrices.

  6. Electrodeposited Porous Mn1.5Co1.5O4/Ni Composite Electrodes for High-Voltage Asymmetric Supercapacitors

    Directory of Open Access Journals (Sweden)

    Guan-Ting Pan

    2017-03-01

    Full Text Available Mesoporous Mn1.5Co1.5O4 (MCO spinel films were prepared directly on a conductive nickel (Ni foam substrate via electrodeposition and an annealing treatment as supercapacitor electrodes. The electrodeposition time markedly influenced the surface morphological, textural, and supercapacitive properties of MCO/Ni electrodes. The (MCO/Ni-15 min electrode (electrodeposition time: 15 min exhibited the highest capacitance among three electrodes (electrodeposition times of 7.5, 15, and 30 min, respectively. Further, an asymmetric supercapacitor that utilizes (MCO/Ni-15 min as a positive electrode, a plasma-treated activated carbon (PAC/Ni electrode as a negative electrode, and carboxymethyl cellulose-lithium nitrate (LiNO3 gel electrolyte (denoted as (PAC/Ni//(MCO/Ni-15 min was fabricated. In a stable operation window of 2.0 V, the device exhibited an energy density of 27.6 Wh·kg−1 and a power density of 1.01 kW·kg−1 at 1 A·g−1. After 5000 cycles, the specific energy density retention and power density retention were 96% and 92%, respectively, demonstrating exceptional cycling stability. The good supercapacitive performance and excellent stability of the (PAC/Ni//(MCO/Ni-15 min device can be ascribed to the hierarchical structure and high surface area of the (MCO/Ni-15 min electrode, which facilitate lithium ion intercalation and deintercalation at the electrode/electrolyte interface and mitigate volume change during long-term charge/discharge cycling.

  7. Electrodeposited Porous Mn1.5Co1.5O4/Ni Composite Electrodes for High-Voltage Asymmetric Supercapacitors

    Science.gov (United States)

    Pan, Guan-Ting; Chong, Siewhui; Yang, Thomas C.-K.; Huang, Chao-Ming

    2017-01-01

    Mesoporous Mn1.5Co1.5O4 (MCO) spinel films were prepared directly on a conductive nickel (Ni) foam substrate via electrodeposition and an annealing treatment as supercapacitor electrodes. The electrodeposition time markedly influenced the surface morphological, textural, and supercapacitive properties of MCO/Ni electrodes. The (MCO/Ni)-15 min electrode (electrodeposition time: 15 min) exhibited the highest capacitance among three electrodes (electrodeposition times of 7.5, 15, and 30 min, respectively). Further, an asymmetric supercapacitor that utilizes (MCO/Ni)-15 min as a positive electrode, a plasma-treated activated carbon (PAC)/Ni electrode as a negative electrode, and carboxymethyl cellulose-lithium nitrate (LiNO3) gel electrolyte (denoted as (PAC/Ni)//(MCO/Ni)-15 min) was fabricated. In a stable operation window of 2.0 V, the device exhibited an energy density of 27.6 Wh·kg−1 and a power density of 1.01 kW·kg−1 at 1 A·g−1. After 5000 cycles, the specific energy density retention and power density retention were 96% and 92%, respectively, demonstrating exceptional cycling stability. The good supercapacitive performance and excellent stability of the (PAC/Ni)//(MCO/Ni)-15 min device can be ascribed to the hierarchical structure and high surface area of the (MCO/Ni)-15 min electrode, which facilitate lithium ion intercalation and deintercalation at the electrode/electrolyte interface and mitigate volume change during long-term charge/discharge cycling. PMID:28772727

  8. PV Working with Industry, 2nd Quarter, 2000

    Energy Technology Data Exchange (ETDEWEB)

    Poole, L.; Moon, S.

    2000-06-29

    NREL PV Working With Industry is a quarterly newsletter devoted to the research, development, and deployment performed by NREL staff in concert with their industry and university partners. The Second Quarter, 2000, issue is titled ``Our Shared PV Future''. It contains a review of several important PV-related meetings held in the prior three months: the NCPV Program Review, the 16 European PV Conference, and year-2000 Earth Day activities in Denver, CO. The editorialist is Paul Maycock, Publisher of PV News.

  9. Annealing effect on the performance of RuO{sub 2}-Ta{sub 2}O{sub 5}/Ti electrodes for use in supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ho-Rei; Lai, Huen-Hua [Department of Chemical and Materials Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung, 80782 Taiwan (China); Jow, Jiin-Jiang, E-mail: jjjow@cc.kuas.edu.tw [Department of Chemical and Materials Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung, 80782 Taiwan (China)

    2011-02-15

    The preparation of RuO{sub 2}-Ta{sub 2}O{sub 5}/Ti electrodes, by dip-coating, for use in supercapacitors was investigated. The stability and specific capacitance of the electrodes annealed at various temperatures was examined. The results show that highly stable electrodes with a specific capacitance of 170 F g RuO{sub 2}{sup -1} were obtained at approximately 250 deg. C, while electrodes with a lower capacitance (130 F g RuO{sub 2}{sup -1}) were obtained at 300 deg. C. The annealing time needed to obtain a stable RuO{sub 2}-Ta{sub 2}O{sub 5}/Ti electrode at various temperatures correlates well with the Arrhenius' law: with the activation energy (E) of the annealing reactions for the electrodes being estimated as 73.5 kJ mol{sup -1}. SEM images of the electrodes show the coating films to have rough surface morphology with cracks 2-6 {mu}m in width. XRD data indicate that the coating films obtained are composed of crystalline RuO{sub 2} and amorphous tantalum oxide.

  10. High performance cermet electrodes

    Science.gov (United States)

    Isenberg, Arnold O.; Zymboly, Gregory E.

    1986-01-01

    Disclosed is a method of increasing the operating cell voltage of a solid oxide electrochemical cell having metal electrode particles in contact with an oxygen-transporting ceramic electrolyte. The metal electrode is heated with the cell, and oxygen is passed through the oxygen-transporting ceramic electrolyte to the surface of the metal electrode particles so that the metal electrode particles are oxidized to form a metal oxide layer between the metal electrode particles and the electrolyte. The metal oxide layer is then reduced to form porous metal between the metal electrode particles and the ceramic electrolyte.

  11. The morphology of durability issues in PEM fuel cells

    International Nuclear Information System (INIS)

    Kundu, S.; Fowler, M.; Simon, L.; Grot, S.

    2004-01-01

    'Full text:' The work presented here examines durability issues in PEM fuel cell materials by examining material morphology and linking morphological features to performance. Scanning electron microscope (SEM) techniques have been able to identify a variety of features on the catalyst layer, each with their own implication to the overall performance and durability of the membrane electrode assembly (MEA). These features include cracking, delamination of the catalyst layer, catalyst clustering, electrolyte clustering, and thickness variations. Links between several of these features and catalyst dispersion conditions was also examined, showing that how the material was manufactured influences the type of morphological features present. The SEM has also been used with accelerated aging techniques to closely examine aging of the gas diffusion layer (GDL). It can be shown that over time the GDL will loose its hydrophobic character and hence become more susceptible to flooding in a fuel cell. The impact of morphological changes were determined using fuel cell models and experimental work. The ultimate aim of this work is to provide material developers with the tools and knowledge necessary to design better materials and therefore bring fuel cells closer to commercialization. (author)

  12. Quarterly Aggregate Capital Input and the Cost of Capital for the

    OpenAIRE

    Subhash C. Sharma; Yijian He

    1995-01-01

    It is the flow of capital services, instead of the capital stock, along with the flows of other inputs which is related to the flows of outputs in economic theory of cost and production. In applied research, quite often to capture the dynamic phenomena which occurs within a year, there is a need to use quarterly data which may not be captured by annual data. However, quarterly data on capital input and the cost of capital are not readily available. Thus, in this paper the quarterly real and n...

  13. Nanostructured MnO2/exfoliated graphite composite electrode as supercapacitors

    International Nuclear Information System (INIS)

    Yang Yanjing; Liu Enhui; Li Limin; Huang Zhengzheng; Shen Haijie; Xiang Xiaoxia

    2009-01-01

    Nanostructured manganese oxides/exfoliated graphite composite (MnO 2 /EG) were synthesized via a new sol-gel route. Scanning electron microscope (SEM) was employed for surface morphology and X-ray diffraction (XRD) was used for structure characterization. Cyclic voltammetry (CV), galvanostatic charge/discharge, and the electrochemical impedance measurements were applied to investigate the electrochemical performance of the MnO 2 /EG composite electrodes. When used for electrodes of supercapacitors, the as-prepared MnO 2 /EG and the pure MnO 2 exhibited excellent capacitance characteristics in 6 mol L -1 KOH electrolyte and showed high specific capacitance values of 398 F g -1 and 326 F g -1 ,respectively, at a scan rate of 10 mV s -1 . The galvanostatic charge-discharge measurements showed approximately 0.5% loss of capacitance after 500 cycles, and charge-discharge efficiency above 99%. In addition, the synthesized nanomaterial showed a good reversibility and cycling stability.

  14. Experimental and theoretical studies on electropolymerization of polar amino acids on platinum electrode

    Energy Technology Data Exchange (ETDEWEB)

    Alhedabi, Taleb [Nanomedicine Lab EA4662, Bat. E, Université de Bourgogne Franche-Comté, UFR Sciences & Techniques, 16 route de Gray, 25030 Besançon Cedex (France); Department of Chemistry, College of Science, University of Thi-qar, Thi-qar (Iraq); Cattey, Hélène [Institut ICMUB - CNRS 6302, Université de Bourgogne Franche-Comté, UFR Sciences et Techniques Mirande, 9 Avenue Alain Savary, 21000 Dijon (France); Roussel, Christophe [Ecole Polytechnique Fédérale de Lausanne, Section of Chemistry and Chemical Engineering, Station 6, CH-1015 Lausanne (Switzerland); Blondeau-Patissier, Virginie [Institut FEMTO-ST, UMR CNRS 6174, Department Time-Frequency, 26, Chemin de l' épitaphe, 25030 Besançon Cedex (France); Gharbi, Tijani [Nanomedicine Lab EA4662, Bat. E, Université de Bourgogne Franche-Comté, UFR Sciences & Techniques, 16 route de Gray, 25030 Besançon Cedex (France); Herlem, Guillaume, E-mail: guillaume.herlem@univ-fcomte.fr [Nanomedicine Lab EA4662, Bat. E, Université de Bourgogne Franche-Comté, UFR Sciences & Techniques, 16 route de Gray, 25030 Besançon Cedex (France)

    2017-01-01

    The anodic oxidation of polar amino acids (L-serine, L-threonine, L-asparagine, and L-glutamine) in aqueous electrolyte on smooth platinum electrode was carried out by cyclic voltammetry coupled to electrochemical quartz crystal microbalance (EQCM). pH (zwitterion, acidic and alkaline) effects on their electrochemical behavior were examined. The maximum current values are measured for zwitterion species. In addition, the current increases with increasing of concentration and scan rate, and decreases with increasing pH. The resulting passivation was studied by spectroscopic analysis such as attenuated total reflection FT infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and mass spectroscopy (MALDI-TOF). From thin film coatings observed on the electrode surface, peptide bonds are found, and are in favor of electropolymerization of these polar amino acids into poly-L-amino acids in an irreversible way. Scanning electronic microscopy was also used to study the morphology of these electrodeposited L-amino acids. The electrodeposited poly-L-amino acids on Pt electrode were tested as bioinspired transducer for pH sensing purposes. - Highlights: • Anodic oxidation of polar amino acids with uncharged R group on platinum electrode. • Polypeptide bonds revealed by ATR-IR and XPS spectroscopies. • The film growth depends on the chemistry of the polar amino acid.

  15. Environmental Restoration (ER) Consolidated Quarterly Report_April to June 2017_ October 2017

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, John R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-01

    This Environmental Restoration Operations (ER) Consolidated Quarterly Report (ER Quarterly Report) provides the status of ongoing corrective action activities being implemented at Sandia National Laboratories, New Mexico (SNL/NM) during the April, May, and June 2017 quarterly reporting period. Table I-1 lists the Solid Waste Management Units (SWMUs) and Areas of Concern (AOCs) identified for corrective action at SNL/NM. Sections I.2.1 and I.2.2 summarize the work completed during this quarter. Section I.2.1 summarizes the quarterly activities at sites undergoing corrective action field activities. Field activities are conducted at the three groundwater AOCs (Burn Site Groundwater [BSG AOC], Technical Area [TA]-V Groundwater [TAVG AOC], and Tijeras Arroyo Groundwater [TAG AOC]). Section I.2.2 summarizes quarterly activities at sites where the New Mexico Environment Department (NMED) Hazardous Waste Bureau (HWB) issued a certificate of completion and the sites are in the corrective action complete (CAC) regulatory process. Currently, SWMUs 8 and 58, 68, 149, 154, and 502 are in the CAC regulatory process. Corrective action activities are deferred at the Long Sled Track (SWMU 83), the Gun Facilities (SWMU 84), and the Short Sled Track (SWMU 240) because these three sites are active mission facilities. These three active mission sites are located in TA-III.

  16. A glucose biosensor based on glucose oxidase immobilized on three-dimensional porous carbon electrodes.

    Science.gov (United States)

    Chen, Jingyi; Zhu, Rong; Huang, Jia; Zhang, Man; Liu, Hongyu; Sun, Min; Wang, Li; Song, Yonghai

    2015-08-21

    A novel glucose biosensor was developed by immobilizing glucose oxidase (GOD) on a three-dimensional (3D) porous kenaf stem-derived carbon (3D-KSC) which was firstly proposed as a novel supporting material to load biomolecules for electrochemical biosensing. Here, an integrated 3D-KSC electrode was prepared by using a whole piece of 3D-KSC to load the GOD molecules for glucose biosensing. The morphologies of integrated 3D-KSC and 3D-KSC/GOD electrodes were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The SEM results revealed a 3D honeycomb macroporous structure of the integrated 3D-KSC electrode. The TEM results showed some microporosities and defects in the 3D-KSC electrode. The electrochemical behaviors and electrocatalytic performance of the integrated 3D-KSC/GOD electrode were evaluated by cyclic voltammetry and electrochemical impedance spectroscopy. The effects of pH and scan rates on the electrochemical response of the biosensor have been studied in detail. The glucose biosensor showed a wide linear range from 0.1 mM to 14.0 mM with a high sensitivity of 1.73 μA mM(-1) and a low detection limit of 50.75 μM. Furthermore, the glucose biosensor exhibited high selectivity, good repeatability and reproducibility, and good stability.

  17. Morphology engineering of ZnO nanostructures for high performance supercapacitors: enhanced electrochemistry of ZnO nanocones compared to ZnO nanowires

    Science.gov (United States)

    He, Xiaoli; Yoo, Joung Eun; Lee, Min Ho; Bae, Joonho

    2017-06-01

    In this work, the morphology of ZnO nanostructures is engineered to demonstrate enhanced supercapacitor characteristics of ZnO nanocones (NCs) compared to ZnO nanowires (NWs). ZnO NCs are obtained by chemically etching ZnO NWs. Electrochemical characteristics of ZnO NCs and NWs are extensively investigated to demonstrate morphology dependent capacitive performance of one dimensional ZnO nanostructures. Cyclic voltammetry measurements on these two kinds of electrodes in a three-electrode cell confirms that ZnO NCs exhibit a high specific capacitance of 378.5 F g-1 at a scan rate of 20 mV s-1, which is almost twice that of ZnO NWs (191.5 F g-1). The charge-discharge and electrochemical impedance spectroscopy measurements also clearly result in enhanced capacitive performance of NCs as evidenced by higher specific capacitances and lower internal resistance. Asymmetric supercapacitors are fabricated using activated carbon (AC) as the negative electrode and ZnO NWs and NCs as positive electrodes. The ZnO NC⫽AC can deliver a maximum specific capacitance of 126 F g-1 at a current density of 1.33 A g-1 with an energy density of 25.2 W h kg-1 at the power density of 896.44 W kg-1. In contrast, ZnO NW⫽AC displays 63% of the capacitance obtained from the ZnO NC⫽AC supercapacitor. The enhanced performance of NCs is attributed to the higher surface area of ZnO nanostructures after the morphology is altered from NWs to NCs.

  18. Liquid electrode

    Science.gov (United States)

    Ekechukwu, A.A.

    1994-07-05

    A dropping electrolyte electrode is described for use in electrochemical analysis of non-polar sample solutions, such as benzene or cyclohexane. The liquid electrode, preferably an aqueous salt solution immiscible in the sample solution, is introduced into the solution in dropwise fashion from a capillary. The electrolyte is introduced at a known rate, thus, the droplets each have the same volume and surface area. The electrode is used in making standard electrochemical measurements in order to determine properties of non-polar sample solutions. 2 figures.

  19. Microwave-assisted preparation of carbon nanofiber-functionalized graphite felts as electrodes for polymer-based redox-flow batteries

    Science.gov (United States)

    Schwenke, A. M.; Janoschka, T.; Stolze, C.; Martin, N.; Hoeppener, S.; Schubert, U. S.

    2016-12-01

    A simple and fast microwave-assisted protocol to functionalize commercially available graphite felts (GFs) with carbon nanofibers (CNFs) for the application as electrode materials in redox-flow batteries (RFB) is demonstrated. As catalyst for the CNF synthesis nickel acetate is applied and ethanol serves as the carbon source. By the in-situ growth of CNFs, the active surface of the electrodes is increased by a factor of 50, which is determined by the electrochemical double layer capacities of the obtained materials. Furthermore, the morphology of the CNF-coating is investigated by scanning electron microscopy. Subsequently, the functionalized electrodes are applied in a polymer-based redox-flow battery (pRFB) using a TEMPO- and a viologen polymer as active materials. Due to the increased surface area as compared to an untreated graphite felt electrode, the current rating is improved by about 45% at 80 mA cm-2 and, furthermore, a decrease in overpotentials is observed. Thus, using this microwave-assisted synthesis approach, CNF-functionalized composite electrodes are prepared with a very simple protocol suitable for real life applications and an improvement of the overall performance of the polymer-based redox-flow battery is demonstrated.

  20. NREL PV Working With Industry, Fourth Quarter 2000

    Energy Technology Data Exchange (ETDEWEB)

    Poole, L.

    2000-12-26

    NREL PV Working With Industry is a quarterly newsletter devoted to the research, development, and deployment performed by NREL staff in concert with their industry and university partners. The fourth quarter contains an article that is a followup to the IEEE PVSC conference held in Alaska in September 2000, an article about two new R and D initiatives, and an article on cooperative research efforts between the NCPV and the Solar Buildings and Concentrating Solar Power programs. The editorialist is Jim Rannels, Director of the Office of Power Technologies.

  1. Some curvature properties of quarter symmetric metric connections

    International Nuclear Information System (INIS)

    Rastogi, S.C.

    1986-08-01

    A linear connection Γ ji h with torsion tensor T j h P i -T i h P j , where T j h is an arbitrary (1,1) tensor field and P i is a 1-form, has been called a quarter-symmetric connection by Golab. Some properties of such connections have been studied by Rastogi, Mishra and Pandey, and Yano and Imai. In this paper based on the curvature tensor of quarter-symmetric metric connection we define a tensor analogous to conformal curvature tensor and study some properties of such a tensor. (author)

  2. Natural gas imports and exports; Fourth quarterly report, 1993

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    The Office of Fuels Programs prepares quarterly reports summarizing the data provided by companies authorized to import or export natural gas. Companies are required, as a condition of their authorizations, to file quarterly reports with the OFP. This report is for the fourth quarter of 1993 (October--December). Attachment A shows the percentage of takes to maximum firm contract levels and the weighted average per unit price for each of the long-term importers during the 5 most recent reporting quarters. Attachment B shows volumes and prices of gas purchased by long-term importers and exporters during the past 12 months. Attachment C shows volume and price information for gas imported on a short-term basis. Attachment D shows the gas exported on a short-term basis to Canada and Mexico. During 1993, data indicates gas imports grew by about 10 percent over the 1992 level (2328 vs. 2122 Bcf), with Canadian and Algerian imports increasing by 8 and 82 percent, respectively. During the same time period, exports declined by 41 percent (144 vs. 243 Bcf). Exports to Canada decreased 47 percent from the 1992 level (50 vs. 95 Bcf) and exports to Mexico decreased by 60 percent (38 vs. 95 Bcf).

  3. Effects of mesoscopic poly(3,4-ethylenedioxythiophene) films as counter electrodes for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Lee, Kun-Mu; Chiu, Wei-Hao; Wei, Hung-Yu; Hu, Chih-Wei; Suryanarayanan, Vembu; Hsieh, Weng-Feng; Ho, Kuo-Chuan

    2010-01-01

    Counter electrode coated with chemically polymerized poly(3,4-ethylenedioxythiophene) (PEDOT) in a dye-sensitized solar cell (DSSC) was studied. The surface morphology and the nature of I - /I 3 - redox reaction based on PEDOT film were investigated using Atomic Force Microscopy and Cyclic Voltammetry, respectively. The performance of the DSSCs containing the PEDOT coated electrode was compared with sputtered-Pt electrode. We found that the root mean square roughness decreases and conductivity increases as the molar ratio of imidazole (Im)/EDOT in the PEDOT film increases. The DSSC containing the PEDOT coated on fluorine doped tin oxide glass with Im/EDOT molar ratio of 2.0, showed a conversion efficiency of 7.44% compared to that with sputtered-Pt electrode (7.77%). The high photocurrents were attributed to the large effective surface area of the electrode material resulting in good catalytic properties for I 3 - reduction. Therefore, the incorporation of a multi-walled carbon nanotube (MWCNT) in the PEDOT film, coated on various substrates was also investigated. The DSSC containing the PEDOT films with 0.6 wt.% of MWCNT on stainless steel as counter electrode had the best cell performance of 8.08% with short-circuit current density, open-circuit voltage and fill factor of 17.00 mA cm -2 , 720 mV and 0.66, respectively.

  4. Effects of mesoscopic poly(3,4-ethylenedioxythiophene) films as counter electrodes for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kun-Mu, E-mail: d93549007@ntu.edu.t [Photovoltaics Technology Center, Industrial Technology Research Institute, Chutung, Hsinchu 31040, Taiwan (China); Chiu, Wei-Hao [Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, 1001 Tahsueh Road, Hsinchu 30050, Taiwan (China); Wei, Hung-Yu; Hu, Chih-Wei [Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Suryanarayanan, Vembu [Electro Organic Division, Central Electrochemical Research Institute, Karaikudi 630 006 (India); Hsieh, Weng-Feng [Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, 1001 Tahsueh Road, Hsinchu 30050, Taiwan (China); Ho, Kuo-Chuan [Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan (China)

    2010-01-01

    Counter electrode coated with chemically polymerized poly(3,4-ethylenedioxythiophene) (PEDOT) in a dye-sensitized solar cell (DSSC) was studied. The surface morphology and the nature of I{sup -}/I{sub 3}{sup -} redox reaction based on PEDOT film were investigated using Atomic Force Microscopy and Cyclic Voltammetry, respectively. The performance of the DSSCs containing the PEDOT coated electrode was compared with sputtered-Pt electrode. We found that the root mean square roughness decreases and conductivity increases as the molar ratio of imidazole (Im)/EDOT in the PEDOT film increases. The DSSC containing the PEDOT coated on fluorine doped tin oxide glass with Im/EDOT molar ratio of 2.0, showed a conversion efficiency of 7.44% compared to that with sputtered-Pt electrode (7.77%). The high photocurrents were attributed to the large effective surface area of the electrode material resulting in good catalytic properties for I{sub 3}{sup -} reduction. Therefore, the incorporation of a multi-walled carbon nanotube (MWCNT) in the PEDOT film, coated on various substrates was also investigated. The DSSC containing the PEDOT films with 0.6 wt.% of MWCNT on stainless steel as counter electrode had the best cell performance of 8.08% with short-circuit current density, open-circuit voltage and fill factor of 17.00 mA cm{sup -2}, 720 mV and 0.66, respectively.

  5. Features of Random Metal Nanowire Networks with Application in Transparent Conducting Electrodes

    KAUST Repository

    Maloth, Thirupathi

    2017-05-01

    Among the alternatives to conventional Indium Tin Oxide (ITO) used in making transparent conducting electrodes, the random metal nanowire (NW) networks are considered to be superior offering performance at par with ITO. The performance is measured in terms of sheet resistance and optical transmittance. However, as the electrical properties of such random networks are achieved thanks to a percolation network, a minimum size of the electrodes is needed so it actually exceeds the representative volume element (RVE) of the material and the macroscopic electrical properties are achieved. There is not much information about the compatibility of this minimum RVE size with the resolution actually needed in electronic devices. Furthermore, the efficiency of NWs in terms of electrical conduction is overlooked. In this work, we address the above industrially relevant questions - 1) The minimum size of electrodes that can be made based on the dimensions of NWs and the material coverage. For this, we propose a morphology based classification in defining the RVE size and we also compare the same with that is based on macroscopic electrical properties stabilization. 2) The amount of NWs that do not participate in electrical conduction, hence of no practical use. The results presented in this thesis are a design guide to experimentalists to design transparent electrodes with more optimal usage of the material.

  6. The Savannah River Site`s Groundwater Monitoring Program, third quarter 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-17

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site`s (SRS) Groundwater Monitoring Program. During third quarter 1991, EPD/EMS conducted extensive sampling of monitoring wells. Analytical results from third quarter 1991 are listed in this report.

  7. Ion-selective electrode reviews

    CERN Document Server

    Thomas, J D R

    1983-01-01

    Ion-Selective Electrode Reviews, Volume 5 is a collection of articles that covers ion-speciation. The book aims to present the advancements of the range and capabilities of selective ion-sensors. The topics covered in the selection are neutral carrier based ion-selective electrodes; reference electrodes and liquid junction effects in ion-selective electrode potentiometry; ion transfer across water/organic phase boundaries and analytical; and carbon substrate ion-selective electrodes. The text will be of great use to chemists and chemical engineers.

  8. Enhancement of the efficiency of dye-sensitized solar cell with multi-wall carbon nanotubes/polythiophene composite counter electrodes prepared by electrodeposition

    Science.gov (United States)

    Luo, Jun; Niu, Hai-jun; Wu, Wen-jun; Wang, Cheng; Bai, Xu-duo; Wang, Wen

    2012-01-01

    For the purpose of increasing the energy conversion efficiency of dye-sensitized solar cells (DSSCs), multi-wall carbon nanotube (MWCNT)/polythiophene (PTh) composite film counter electrode has been fabricated by electrophoresis and cyclic voltammetry (CV) in sequence. The morphology and chemical structure have been characterized by transmission electron microscopy (TEM), scanning electron microscope (SEM), and Raman spectroscopy respectively. The overall energy conversion efficiency of the DSSC employing the MWCNT/PTh composite film has reached 4.72%, which is close to that of the DSSC with a platinum (Pt) counter electrode (5.68%). Compared with a standard DSSC with MWCNT counter electrode whose efficiency is 2.68%, the energy conversion efficiency has been increased by 76.12% for the DSSC with MWCNT/PTh counter electrode. These results indicate that the composite film with high conductivity, high active surface area, and good catalytic properties for I 3- reduction can potentially be used as the counter electrode in a high-performance DSSC.

  9. Spray pyrolysed Ru:TiO2 thin film electrodes prepared for electrochemical supercapacitor

    Science.gov (United States)

    Fugare, B. Y.; Thakur, A. V.; Kore, R. M.; Lokhande, B. J.

    2018-04-01

    Ru doped TiO2 thin films are prepared by using 0.06 M aqueous solution of potassium titanium oxalate (pto), and 0.005 M aqueous solution of ruthenium tri chloride (RuCl3) precursors. The deposition was carried on stainless steel (SS) by using well known ultrasonic spray pyrolysis technique (USPT) at 723° K by maintaining the spray rate 12 cc/min and compressed air flow rate 10 Lmin-1. Prepared Ru:TiO2 thin films were characterized by structurally, morphologically and electrochemically. Deposited RuO2 shows amorphous structure and TiO2 shows tetragonal crystal structure with rutile as prominent phase at very low decomposition temperature. SEM micrographs of RuO2 exhibits porous, interconnected, spherical grains type morphology and TiO2 shows porous, nanorods and nanoplates like morphology and also Ru doped TiO2 shows porous, spherical, granular and nanorods type morphology. The electrochemical cyclic voltammetery shows mixed capacitive behavior. The achieved highest value of specific capacitance 2692 F/g was Ru doped TiO2 electrode in 0.5 M H2SO4.

  10. Characterisation of nano-interdigitated electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Skjolding, L H D; Ribayrol, A; Montelius, L [Division of Solid State Physics, Lund University, Box 118, SE-221 00 Lund (Sweden); Spegel, C [Department of Analytical Chemistry Lund University, Box 124, SE-221 00 Lund (Sweden); Emneus, J [MIC - Department of Micro and Nanotechnology, DTU - Building 345 East, DK-2800 Kgs. Lyngby (Denmark)], E-mail: lars_henrik.daehli_skjolding@ftf.lth.se

    2008-03-15

    Interdigitated electrodes made up of two individually addressable interdigitated comb-like electrode structures have frequently been suggested as ultra sensitive electrochemical biosensors. Since the signal enhancement effects due to cycling of the reduced and oxidized species are strongly dependent on the inter electrode distances, since the nature of the enhancement is due to overlying diffusion layers, interdigitated electrodes with an electrode separation of less then one micrometer are desired for maximum signal amplification. Fabrication of submicron structures can only be made by advanced lithography techniques. By use of electron beam lithography we have fabricated arrays of interdigitated electrodes with an electrode separation distance of 200 nm and an electrode finger width of likewise 200 nm. The entire electrode structure is 100 micrometre times 100 micrometre, and the active electrode area is dictated by the opening in the passivation layer, that is defined by UV lithography. Here we report measurements of redox cycling of ferrocyanide by coupled cyclic voltammograms, where the potential at one of the working electrodes are varied and either an oxidising or reducing potential is applied to the complimentary interdigitated electrode. The measurements show fast conversion and high collection efficiency round 87% as expected for nano-interdigitated electrodes.

  11. Evaluating and enhancing quantum capacitance in graphene-based electrodes from first principles

    Science.gov (United States)

    Ogitsu, Tadashi; Otani, Minoru; Lee, Jonathan; Bagge-Hansen, Michael; Biener, Juergen; Wood, Brandon

    2013-03-01

    Graphene derivatives are attractive as supercapacitor electrodes because they are lightweight, chemically inert, have high surface area and conductivity, and are stable in electrolyte solutions. Nevertheless, devising reliable strategies for improving energy density relies on an understanding of the specific factors that control electrode performance. We use density-functional theory calculations of pristine and defective graphene to extract quantum capacitance, as well as to identify specific limiting factors. The effect of structural point defects and strain-related morphological changes on the density of states is also evaluated. The results are combined with predicted and measured in situ X-ray absorption spectra in order to give insight into the structural and chemical features present in synthesized carbon aerogel samples. Performed under the auspices of the U.S. DOE by LLNL under Contract DE-AC52-07NA27344.

  12. Voltammetric and impedance behaviours of surface-treated nano-crystalline diamond film electrodes

    International Nuclear Information System (INIS)

    Liu, F. B.; Jing, B.; Cui, Y.; Di, J. J.; Qu, M.

    2015-01-01

    The electrochemical performances of hydrogen- and oxygen-terminated nano-crystalline diamond film electrodes were investigated by cyclic voltammetry and AC impedance spectroscopy. In addition, the surface morphologies, phase structures, and chemical states of the two diamond films were analysed by scanning probe microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy, respectively. The results indicated that the potential window is narrower for the hydrogen-terminated nano-crystalline diamond film than for the oxygen-terminated one. The diamond film resistance and capacitance of oxygen-terminated diamond film are much larger than those of the hydrogen-terminated diamond film, and the polarization resistances and double-layer capacitance corresponding to oxygen-terminated diamond film are both one order of magnitude larger than those corresponding to the hydrogen-terminated diamond film. The electrochemical behaviours of the two diamond film electrodes are discussed

  13. Yucca Mountain Site Characterization Project Technical Data Catalog (quarterly supplement)

    International Nuclear Information System (INIS)

    1993-01-01

    The June 1, 1985, Department of Energy (DOE)/Nuclear Regulatory Commission (NRC) Site-Specific Procedural Agreement for Geologic Repository Site Investigation and Characterization Program requires the DOE to develop and maintain a catalog of data which will be updated and provided to the NRC at least quarterly. This catalog is to include a description of the data; the time (date), place, and method of acquisition; and where it may be examined. The Yucca Mountain Site Characterization Project (YMP) Technical Data Catalog is published and distributed in accordance with the requirements of the Site-Specific Agreement. The YMP Technical Data Catalog is a report based on reference information contained in the YMP Automated Technical Data Tracking System (ATDT). The reference information is provided by Participants for data acquired or developed in support of the YMP. The Technical Data Catalog is updated quarterly and published in the month following the end of each quarter. A complete revision to the Catalog is published at the end of each fiscal year. Supplements to the end-of-year edition are published each quarter. These supplements provide information related to new data items not included in previous quarterly updates and data items affected by changes to previously published reference information. The Technical Data Catalog, dated December 31, 1992, should be retained as the baseline document for the supplements until the end-of-year revision is published and distributed in October 1993

  14. Yucca Mountain Site Characterization Project: Technical Data Catalog quarterly supplement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-31

    The March 21, 1993, Department of Energy (DOE)/Nuclear Regulatory Commission (NRC) Site-Specific Procedural Agreement for Geologic Repository Site Investigation and Characterization Program requires the DOE to develop and maintain a catalog of data which will be updated and provided to the NRC at least quarterly. This catalog is to include a description of the data; the time (date), place, and method of acquisition; and where it may be examined. The Yucca Mountain Site Characterization Project (YMP) Technical Data Catalog is published and distributed in accordance with the requirements of the Site-Specific Agreement. The YMP Technical Data Catalog is a report based on reference information contained in the YMP Automated Technical Data Tracking System (ATDT). The reference information is provided by Participants for data acquired or developed in support of the YMP. The Technical Data Catalog is updated quarterly and published in the month following the end of each quarter. A complete revision to the Catalog is published at the end of each fiscal year. Supplements to the end-of-year edition are published each quarter. These supplements provide information related to new data items not included in previous quarterly updates and data items affected by changes to previously published reference information. The Technical Data Catalog, dated September 30, 1993, should be retained as the baseline document for the supplements until the end-of-year revision is published and distributed in October 1994.

  15. Yucca Mountain Site Characterization Project technical data catalog: Quarterly supplement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The Department of Energy (DOE)/Nuclear Regulatory Commission (NRC) Site-Specific Procedural Agreement for Geologic Repository Site Investigation and Characterization Program requires the DOE to develop and maintain a catalog of data which will be updated and provided to the NRC at least quarterly. This catalog is to include a description of the data; the time (date), place, and method of acquisition; and where the data may be examined. The Yucca Mountain Site Characterization Project (YMP) Technical Data Catalog is published and distributed-in accordance with the requirements of the Site-Specific Agreement. The YMP Technical Data Catalog is a report based on reference information contained in the YMP Automated Technical Data Tracking System (ATDT). The reference information is provided by Participants for data acquired or developed in support of the YMP. The Technical Data Catalog is updated quarterly and distributed in the month following the end of each quarter. A complete revision to the catalog is published at the end of each fiscal year. Supplements to the end-of-year edition are published each quarter. These supplements provide information related to new data items not included in previous quarterly updates and data items affected by changes to previously published reference information. The Technical Data Catalog, dated September 30, 1994, should be retained as the baseline document for the supplements until the end-of-year revision is published and distributed in October 1995.

  16. New Transparent Laser-Drilled Fluorine-doped Tin Oxide covered Quartz Electrodes for Photo-Electrochemical Water Splitting

    International Nuclear Information System (INIS)

    Hernández, Simelys; Tortello, Mauro; Sacco, Adriano; Quaglio, Marzia; Meyer, Toby; Bianco, Stefano; Saracco, Guido; Pirri, C. Fabrizio; Tresso, Elena

    2014-01-01

    Graphical abstract: - Highlights: • A new transparent, conductive and porous electrode was developed. • It has a high effective surface area available for catalyst molecules attachment. • It is an ideal support for testing new anodic and cathodic photoactive materials. • The proof-of-concept was achieved in an appositely designed water photo-electrolyzer. • The EIS technique was used as a very powerful tool to characterize the new designed electrode. - Abstract: A new-designed transparent, conductive and porous electrode was developed for application in a compact laboratory-scale proton exchange membrane (PEM) photo-electrolyzer. The electrode is made of a thin transparent quartz sheet covered with fluorine-doped tin oxide (FTO), in which an array of holes is laser-drilled to allow water and gas permeation. The electrical, morphological, optical and electrochemical characterization of the drilled electrodes is presented in comparison with a non-drilled one. The drilled electrode exhibits, in the visible region, a good transmittance (average value of 62%), a noticeable reflectance due to the light scattering effect of the hole-drilled internal region, and a higher effective surface area than the non-drilled electrode. The proof-of-concept of the applicability of the drilled electrode was achieved by using it as a support for a traditional photocatalyst (i.e. commercial TiO 2 nanoparticles). The latter, coupled with a polymeric electrolyte membrane (i.e.Nafion 117) and a Pt counter electrode, forms a transparent membrane electrode assembly (MEA), with a good conductivity, wettability and porosity. Electrochemical impedance spectroscopy (EIS) was used as a very powerful tool to gain information on the real active surface of the new drilled electrode and the main electrochemical parameters driving the charge transfer reactions on it. This new electrode architecture is demonstrated to be an ideal support for testing new anodic and cathodic photoactive

  17. The preparation and performance of calcium carbide-derived carbon/polyaniline composite electrode material for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Liping; Wang, Xianyou; Li, Na; An, Hongfang; Chen, Huajie [School of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Minister of Education, Xiangtan University, Hunan 411105 (China); Wang, Ying; Guo, Jia [School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Hubei 430073 (China)

    2010-03-15

    Calcium carbide (CaC{sub 2})-derived carbon (CCDC)/polyaniline (PANI) composite materials are prepared by in situ chemical oxidation polymerization of an aniline solution containing well-dispersed CCDC. The structure and morphology of CCDC/PANI composite are characterized by Fourier infrared spectroscopy (FTIR), scanning electron microscope (SEM), transmission electron microscopy (TEM) and N{sub 2} sorption isotherms. It has been found that PANI was uniformly deposited on the surface and the inner pores of CCDC. The supercapacitive behaviors of the CCDC/PANI composite materials are investigated with cyclic voltammetry (CV), galvanostatic charge/discharge and cycle life measurements. The results show that the CCDC/PANI composite electrodes have higher specific capacitances than the as grown CCDC electrodes and higher stability than the conducting polymers. The capacitance of CCDC/PANI composite electrode is as high as 713.4 F g{sup -1} measured by cyclic voltammetry at 1 mV s{sup -1}. Besides, the capacitance retention of coin supercapacitor remained 80.1% after 1000 cycles. (author)

  18. Electrode assemblies, plasma apparatuses and systems including electrode assemblies, and methods for generating plasma

    Science.gov (United States)

    Kong, Peter C; Grandy, Jon D; Detering, Brent A; Zuck, Larry D

    2013-09-17

    Electrode assemblies for plasma reactors include a structure or device for constraining an arc endpoint to a selected area or region on an electrode. In some embodiments, the structure or device may comprise one or more insulating members covering a portion of an electrode. In additional embodiments, the structure or device may provide a magnetic field configured to control a location of an arc endpoint on the electrode. Plasma generating modules, apparatus, and systems include such electrode assemblies. Methods for generating a plasma include covering at least a portion of a surface of an electrode with an electrically insulating member to constrain a location of an arc endpoint on the electrode. Additional methods for generating a plasma include generating a magnetic field to constrain a location of an arc endpoint on an electrode.

  19. Near-Electrode Imager

    Energy Technology Data Exchange (ETDEWEB)

    Rathke, Jerome W.; Klingler, Robert J.; Woelk, Klaus; Gerald, Rex E.,II

    1999-05-01

    An apparatus, near-electrode imager, for employing nuclear magnetic resonance imaging to provide in situ measurements of electrochemical properties of a sample as a function of distance from a working electrode. The near-electrode imager use the radio frequency field gradient within a cylindrical toroid cavity resonator to provide high-resolution nuclear magnetic resonance spectral information on electrolyte materials.

  20. Natural gas consumption within GRTgaz's territory: 1. Quarter of 2008, 2. Quarter of 2008, 3. Quarter of 2008, 4. Quarter of 2008

    International Nuclear Information System (INIS)

    2009-01-01

    GRTgaz is a European leader in natural gas transmission, a world expert in gas transmission networks and systems, and an operator firmly committed to the energy transition. It owns and operates the gas transmission network throughout most of France and it manages the transmission network in Germany, thereby helping to ensure correct operation of the French and European gas market. It contributes to the energy security of regional supply systems and performs a public service mission to ensure the continuity of consumer supply. This document presents the quarterly key figures of GRTgaz activity in 2008: gross consumption, climate corrected consumption, quantities of natural gas transported