WorldWideScience

Sample records for electrode heat effects

  1. Single Electrode Heat Effects

    DEFF Research Database (Denmark)

    Jacobsen, Torben; Broers, G. H. J.

    1977-01-01

    The heat evolution at a single irreversibly working electrode is treated onthe basis of the Brønsted heat principle. The resulting equation is analogous to the expression for the total heat evolution in a galvanic cellwith the exception that –DeltaS is substituted by the Peltier entropy, Delta......SP, of theelectrode reaction. eta is the overvoltage at the electrode. This equation is appliedto a high temperature carbonate fuel cell. It is shown that the Peltier entropyterm by far exceeds the heat production due to the irreversible losses, and thatthe main part of heat evolved at the cathode is reabsorbed...

  2. Effect of microwave heat-treatment time on the properties of activated carbons as electrode materials for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    He, X.; Wang, T.; Long, S.; Zhang, X.; Zheng, M. [Anhui Univ. of Technology, Ma' aushan (China). School of Chemistry and Chemical Engineering, Anhui Key Lab of Coal Clean Conversion and Utilization

    2010-07-01

    A microwave-assisted heating technique was used to prepare activated carbons (ACs) from petroleum coke with potassium hydroxide (KOH) as an activating agent. The aim of the study was to investigate the effect of heat treatment time on AC properties at 3, 5, and 7 minutes with a microwave power rate of 700 W. The structure and electrochemical performance of the microwave ACs were then compared with commercially prepared ACs. The study showed that the specific capacitance, equivalent series resistance and energy density of the AC electrodes decreased, while the cycle performance of the AC electrodes was improved. The specific capacitance and energy density of the ACs treated with microwave heat at 3 and 7 minutes was higher than rates observed in commercially-prepared ACs. Results showed that the microwave heat treatment method is an efficient means of obtaining stable ACs for use in supercapacitors. 3 refs., 1 tab., 1 fig.

  3. The heating of plasma focus electrodes

    International Nuclear Information System (INIS)

    Angeli, E; Frignani, M; Mannucci, S; Rocchi, F; Sumini, M; Tartari, A

    2006-01-01

    Plasma focus (PF) technology development today is strictly related to the possibility of a high frequency repetitive working regime. One of the more relevant obstacles to this goal is the heating of structural components due to direct interaction with plasma. In this paper, temperature decay measurements of the inner electrode of a 7 kJ Mather type PF are presented. Data from several series of shots at different bank energies are analysed and compared with theoretical and numerical models. Two possible scale laws are derived from the experimental data to correlate thermal deposition with bank energy. It is found that a fraction of about 10% of total energy is released to the inner electrode. Finally, after some considerations about the cooling and heating mechanisms, an analysis on maximum temperature sustained by materials is presented

  4. Single Electrode Heat Effects

    DEFF Research Database (Denmark)

    Jacobsen, Torben; Broers, G. H. J.

    1977-01-01

    Standard Peltier entropies for the reactions in molten carbonate paste electrolytes at 1000°K have been determined fromthermogalvanic measurements. The results are –217 and –118 J/mole°K,respectively. No dependence on electrolyte composition is observed. The reversiblepart of the Peltier entropy ...

  5. Enhancement of condensation heat transfer using electric field. Effects of wire-electrode coating; Denba ni yoru gyoshuku netsu dentatsu no sokushin ni kansuru kenkyu. Wire denkyoku no hifuku koka

    Energy Technology Data Exchange (ETDEWEB)

    Chu, R. [Gifu University, Gifu (Japan). Faculty of Enginering; Nishio, S. [The University of Tokyo, Tokyo (Japan). Institute of Industrial Science; Tanasawa, I. [Nihon University, Fukushima (Japan). College of Engineering

    2000-08-25

    In the present paper, an attempt is made to develop an effective EHD enhancement technique for condensation heat transfer of steam around a horizontal finned tube. The main idea in the present study is to reduce the power consumption by using a partially coated electrode, and the experimental data of heat transfer coefficients and flooding angles are presented. The result indicates that, by using such an electrode, the enhancement ratio keeps almost the same level with that of a bare electrode but the power consumption can be markedly decreased. Within the present experimental range, the condensation heat transfer coefficient on the finned tube with the partially coated electrode reaches a value about 3 times larger than that without electrode. In addition, a model in presented for the EHD effect on the flooding angle and it is confirmed that the prediction from the model is in good agreement with the experimental data. (author)

  6. Electrode design for soil decontamination with Radio-Frequency heating

    Energy Technology Data Exchange (ETDEWEB)

    Roland, U.; Holzer, F.; Kraus, M.; Trommler, U.; Kopinke, F.D. [Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Engineering, Leipzig (Germany)

    2011-10-15

    Radio-frequency heating to enhance soil decontamination requires adjusted solutions for the electrode design depending on scale and remediation technique. Parallel plate electrodes provide widely homogeneous field and temperature distributions and are, therefore, most suitable for supporting biodegradation processes. For thermally enhanced soil vapor extraction, certain temperature gradients can be accepted and, therefore, the less-demanding geometry of rod-shaped electrodes is usually applied. For electrode lengths of some meters, a design with an air gap has to be used in order to focus heating to the desired depth. Perforated rod electrodes may be simultaneously employed as extraction wells. Placing an oxidation catalyst in situ within the electrodes is an option for handling of highly loaded air flows. Coaxial antenna may be utilized to selectively heat soil compartments far from the surface of the soil. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Electrode phenomena, tensor conductivity and electrode heating in seeded argon

    Energy Technology Data Exchange (ETDEWEB)

    Croitoru, Z.; de Montardy, A.

    1963-04-15

    Contact potential drops along the electrodes often prevent measurements of ionized gas conductivity. In order to avoid such potential drops, a measurement cell using double probe technique was realized. By adding a third probe, it is also possible to measure the conductivity tensor components. Formulas commonly used are shown to be incorrect. In order to evaluate non- equilibrium conductivity, the excitation temperature of the seed is to be considered, rather than electron temperature, especially in small scale experiments, where charged particle losses by ambipolar diffusion are to be expected. (auth)

  8. The Joule heating problem in silver nanowire transparent electrodes

    Science.gov (United States)

    Khaligh, H. H.; Xu, L.; Khosropour, A.; Madeira, A.; Romano, M.; Pradére, C.; Tréguer-Delapierre, M.; Servant, L.; Pope, M. A.; Goldthorpe, I. A.

    2017-10-01

    Silver nanowire transparent electrodes have shown considerable potential to replace conventional transparent conductive materials. However, in this report we show that Joule heating is a unique and serious problem with these electrodes. When conducting current densities encountered in organic solar cells, the average surface temperature of indium tin oxide (ITO) and silver nanowire electrodes, both with sheet resistances of 60 ohms/square, remains below 35 °C. However, in contrast to ITO, the temperature in the nanowire electrode is very non-uniform, with some localized points reaching temperatures above 250 °C. These hotspots accelerate nanowire degradation, leading to electrode failure after 5 days of continuous current flow. We show that graphene, a commonly used passivation layer for these electrodes, slows nanowire degradation and creates a more uniform surface temperature under current flow. However, the graphene does not prevent Joule heating in the nanowires and local points of high temperature ultimately shift the failure mechanism from nanowire degradation to melting of the underlying plastic substrate. In this paper, surface temperature mapping, lifetime testing under current flow, post-mortem analysis, and modelling illuminate the behaviour and failure mechanisms of nanowires under extended current flow and provide guidelines for managing Joule heating.

  9. Programming voltage reduction in phase change memory cells with tungsten trioxide bottom heating layer/electrode

    International Nuclear Information System (INIS)

    Rao Feng; Song Zhitang; Gong Yuefeng; Wu Liangcai; Feng Songlin; Chen, Bomy

    2008-01-01

    A phase change memory cell with tungsten trioxide bottom heating layer/electrode is investigated. The crystalline tungsten trioxide heating layer promotes the temperature rise in the Ge 2 Sb 2 Te 5 layer which causes the reduction in the reset voltage compared to a conventional phase change memory cell. Theoretical thermal simulation and calculation for the reset process are applied to understand the thermal effect of the tungsten trioxide heating layer/electrode. The improvement in thermal efficiency of the PCM cell mainly originates from the low thermal conductivity of the crystalline tungsten trioxide material.

  10. The electrochemical Peltier heat of the standard hydrogen electrode reaction

    International Nuclear Information System (INIS)

    Fang Zheng; Wang Shaofen; Zhang Zhenghua; Qiu Guanzhou

    2008-01-01

    A method for measuring the electrochemical Peltier heat (EPH) of a single electrode reaction has been developed and an absolute scale is suggested to obtain EPH of the standard hydrogen electrode. The scale is based on φ 0 * = 0 and ΔS 0 * = 0 for any electrode reaction at zero Kelvin, in accord with the third law of thermodynamics. The relationships between entropy, enthalpy and free energy changes on this scale and on the conventional scale are derived. Calorimetric experiments were made on the Fe(CN) 6 3- /Fe(CN) 6 4- system at five different concentrations at 298.15 K, and EPH for the standard hydrogen electrode reaction is obtained. EPHs and the entropy change on the absolute scale for the studied redox are linearly related to concentration of electrolyte. The reversible electric work is almost concentration independent in the range of concentration studied

  11. Nanomechanical Optical Fiber with Embedded Electrodes Actuated by Joule Heating.

    Science.gov (United States)

    Lian, Zhenggang; Segura, Martha; Podoliak, Nina; Feng, Xian; White, Nicholas; Horak, Peter

    2014-07-31

    Nanomechanical optical fibers with metal electrodes embedded in the jacket were fabricated by a multi-material co-draw technique. At the center of the fibers, two glass cores suspended by thin membranes and surrounded by air form a directional coupler that is highly temperature-dependent. We demonstrate optical switching between the two fiber cores by Joule heating of the electrodes with as little as 0.4 W electrical power, thereby demonstrating an electrically actuated all-fiber microelectromechanical system (MEMS). Simulations show that the main mechanism for optical switching is the transverse thermal expansion of the fiber structure.

  12. Nanomechanical Optical Fiber with Embedded Electrodes Actuated by Joule Heating

    Science.gov (United States)

    Lian, Zhenggang; Segura, Martha; Podoliak, Nina; Feng, Xian; White, Nicholas; Horak, Peter

    2014-01-01

    Nanomechanical optical fibers with metal electrodes embedded in the jacket were fabricated by a multi-material co-draw technique. At the center of the fibers, two glass cores suspended by thin membranes and surrounded by air form a directional coupler that is highly temperature-dependent. We demonstrate optical switching between the two fiber cores by Joule heating of the electrodes with as little as 0.4 W electrical power, thereby demonstrating an electrically actuated all-fiber microelectromechanical system (MEMS). Simulations show that the main mechanism for optical switching is the transverse thermal expansion of the fiber structure. PMID:28788148

  13. In-situ thermoelectrochemistry working with heated electrodes

    CERN Document Server

    Gründler, Peter

    2015-01-01

    This book represents the first rigorous treatment of thermoelectrochemistry, providing an overview that will stimulate electrochemists to develop and apply modern thermoelectrochemical methods. While classical static approaches are also covered, the emphasis lies on methods that make it possible to independently vary temperature such as in-situ heating of electrodes by means of electric current, microwaves or lasers. For the first time, "hot-wire electrochemistry" is examined in detail. The theoretical background presented addresses all aspects of temperature impacts in the context of electroc

  14. Numerical analysis of the heat source characteristics of a two-electrode TIG arc

    International Nuclear Information System (INIS)

    Ogino, Y; Hirata, Y; Nomura, K

    2011-01-01

    Various kinds of multi-electrode welding processes are used to ensure high productivity in industrial fields such as shipbuilding, automotive manufacturing and pipe fabrication. However, it is difficult to obtain the optimum welding conditions for a specific product, because there are many operating parameters, and because welding phenomena are very complicated. In the present research, the heat source characteristics of a two-electrode TIG arc were numerically investigated using a 3D arc plasma model with a focus on the distance between the two electrodes. The arc plasma shape changed significantly, depending on the electrode spacing. The heat source characteristics, such as the heat input density and the arc pressure distribution, changed significantly when the electrode separation was varied. The maximum arc pressure of the two-electrode TIG arc was much lower than that of a single-electrode TIG. However, the total heat input of the two-electrode TIG arc was nearly constant and was independent of the electrode spacing. These heat source characteristics of the two-electrode TIG arc are useful for controlling the heat input distribution at a low arc pressure. Therefore, these results indicate the possibility of a heat source based on a two-electrode TIG arc that is capable of high heat input at low pressures.

  15. EFFECTS OF ELECTRODE DEFORMATION OF RESISTANCE SPOT WELDING ON 304 AUSTENITIC STAINLESS STEEL WELD GEOMETRY

    Directory of Open Access Journals (Sweden)

    Nachimani Charde

    2012-12-01

    Full Text Available The resistance spot welding process is accomplished by forcing huge amounts of current flow from the upper electrode tip through the base metals to the lower electrode tip, or vice versa or in both directions. A weld joint is established between the metal sheets through fusion, resulting in a strong bond between the sheets without occupying additional space. The growth of the weld nugget (bond between sheets is therefore determined from the welding current density; sufficient time for current delivery; reasonable electrode pressing force; and the area provided for current delivery (electrode tip. The welding current and weld time control the root penetration, while the electrode pressing force and electrode tips successfully accomplish the connection during the welding process. Although the welding current and weld time cause the heat generation at the areas concerned (electrode tip area, the electrode tips’ diameter and electrode pressing forces also directly influence the welding process. In this research truncated-electrode deformation and mushrooming effects are observed, which result in the welded areas being inconsistent due to the expulsion. The copper to chromium ratio is varied from the tip to the end of the electrode whilst the welding process is repeated. The welding heat affects the electrode and the electrode itself influences the shape of the weld geometry.

  16. Investigation of Heat Transfer and Magnetohydrodynamic Flow in Electroslag Remelting Furnace Using Vibrating Electrode

    Science.gov (United States)

    Wang, Fang; Wang, Qiang; Lou, Yanchun; Chen, Rui; Song, Zhaowei; Li, Baokuan

    2016-01-01

    A transient three-dimensional (3D) coupled mathematical model has been developed to understand the effect of a vibrating electrode on the electromagnetic, two-phase flow and temperature fields as well as the solidification in the electroslag remelting (ESR) process. With the magnetohydrodynamic model, the Joule heating and Lorentz force, which are the source terms in the energy and momentum equations, are recalculated at each iteration as a function of the phase distribution. The influence of the vibrating electrode on the formation of the metal droplet is demonstrated by the volume of fluid approach. Additionally, the solidification of the metal is modeled by an enthalpy-based technique, in which the mushy zone is treated as a porous medium with porosity equal to the liquid fraction. The present work is the first attempt to investigate the innovative technology of the ESR process with a vibrating electrode by a transient 3D comprehensive model. A reasonable agreement between the experiment and simulation is obtained. The results indicate that the whole process is presented as a periodic activity. When the metal droplets fall from the tip of the electrode, the horizontal component of velocity will generate electrode vibration. This will lead to the distribution variation of the flow field in the slag layer. The variation of temperature distribution occurs regularly and is periodically accompanied by the behavior of the falling metal droplets. With the decreasing vibrating frequency and amplitude, the relative velocity of the electrode and molten slag increase accordingly. The diameter of the molten droplets, the maximum temperature and the depth of the molten pool gradually become smaller, lower and shallower.

  17. Specific power reduction of an ion source due to heating and cathode sputtering of electrodes

    International Nuclear Information System (INIS)

    Hamilton, G.U.; Semashko, N.N.

    The potentialities and limitations of the water-cooled ion-optical system of the ion source designed for continuous operation of the high-power neutral beam injector are determined. The following problems are analyzed: thermal expansion and deformation of electrodes, electrode sputtering as a result of bombardment, and heat transfer to turbulent flow of water

  18. The relative effects of fuel concentration, residual-gas fraction, gas motion, spark energy and heat losses to the electrodes on flame-kernel development in a lean-burn spark ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Aleiferis, P.G.; Taylor, A.M.K.P. [Imperial College of Science, Technology and Medicine, London (United Kingdom). Dept. of Mechanical Engineering; Ishii, K. [Honda International Technical School, Saitama (Japan); Urata, Y. [Honda R and D Co., Ltd., Tochigi (Japan). Tochigi R and D Centre

    2004-04-01

    The potential of lean combustion for the reduction in exhaust emissions and fuel consumption in spark ignition engines has long been established. However, the operating range of lean-burn spark ignition engines is limited by the level of cyclic variability in the early-flame development stage that typically corresponds to the 0-5 per cent mass fraction burned duration. In the current study, the cyclic variations in early flame development were investigated in an optical stratified-charge spark ignition engine at conditions close to stoichiometry [air-to-fuel ratio (A/F) = 15] and to the lean limit of stable operation (A/F = 22). Flame images were acquired through either a pentroof window ('tumble plane' of view) or the piston crown ('swirl plane' of view) and these were processed to calculate the intra-cycle flame-kernel radius evolution. In order to quantify the relative effects of local fuel concentration, gas motion, spark-energy release and heat losses to the electrodes on the flame-kernel growth rate, a zero-dimensional flame-kernel growth model, in conjunction with a one-dimensional spark ignition model, was employed. Comparison of the calculated flame-radius evolutions with the experimental data suggested that a variation in A/F around the spark plug of {delta}(A/F) {approx} 4 or, in terms of equivalence ratio {phi}, a variation in {delta}{phi} {approx} 0.15 at most was large enough to account for 100 per cent of the observed cyclic variability in flame-kernel radius. A variation in the residual-gas fraction of about 20 per cent around the mean was found to account for up to 30 per cent of the variability in flame-kernel radius at the timing of 5 per cent mass fraction burned. The individual effect of 20 per cent variations in the 'mean' in-cylinder velocity at the spark plug at ignition timing was found to account for no more than 20 per cent of the measured cyclic variability in flame kernel radius. An individual effect of

  19. Modeling of electrodes and implantable pulse generator cases for the analysis of implant tip heating under MR imaging

    International Nuclear Information System (INIS)

    Acikel, Volkan; Atalar, Ergin; Uslubas, Ali

    2015-01-01

    Purpose: The authors’ purpose is to model the case of an implantable pulse generator (IPG) and the electrode of an active implantable medical device using lumped circuit elements in order to analyze their effect on radio frequency induced tissue heating problem during a magnetic resonance imaging (MRI) examination. Methods: In this study, IPG case and electrode are modeled with a voltage source and impedance. Values of these parameters are found using the modified transmission line method (MoTLiM) and the method of moments (MoM) simulations. Once the parameter values of an electrode/IPG case model are determined, they can be connected to any lead, and tip heating can be analyzed. To validate these models, both MoM simulations and MR experiments were used. The induced currents on the leads with the IPG case or electrode connections were solved using the proposed models and the MoTLiM. These results were compared with the MoM simulations. In addition, an electrode was connected to a lead via an inductor. The dissipated power on the electrode was calculated using the MoTLiM by changing the inductance and the results were compared with the specific absorption rate results that were obtained using MoM. Then, MRI experiments were conducted to test the IPG case and the electrode models. To test the IPG case, a bare lead was connected to the case and placed inside a uniform phantom. During a MRI scan, the temperature rise at the lead was measured by changing the lead length. The power at the lead tip for the same scenario was also calculated using the IPG case model and MoTLiM. Then, an electrode was connected to a lead via an inductor and placed inside a uniform phantom. During a MRI scan, the temperature rise at the electrode was measured by changing the inductance and compared with the dissipated power on the electrode resistance. Results: The induced currents on leads with the IPG case or electrode connection were solved for using the combination of the MoTLiM and

  20. Isothermal calorimeter for measurements of time-dependent heat generation rate in individual supercapacitor electrodes

    Science.gov (United States)

    Munteshari, Obaidallah; Lau, Jonathan; Krishnan, Atindra; Dunn, Bruce; Pilon, Laurent

    2018-01-01

    Heat generation in electric double layer capacitors (EDLCs) may lead to temperature rise and reduce their lifetime and performance. This study aims to measure the time-dependent heat generation rate in individual carbon electrode of EDLCs under various charging conditions. First, the design, fabrication, and validation of an isothermal calorimeter are presented. The calorimeter consisted of two thermoelectric heat flux sensors connected to a data acquisition system, two identical and cold plates fed with a circulating coolant, and an electrochemical test section connected to a potentiostat/galvanostat system. The EDLC cells consisted of two identical activated carbon electrodes and a separator immersed in an electrolyte. Measurements were performed on three cells with different electrolytes under galvanostatic cycling for different current density and polarity. The measured time-averaged irreversible heat generation rate was in excellent agreement with predictions for Joule heating. The reversible heat generation rate in the positive electrode was exothermic during charging and endothermic during discharging. By contrast, the negative electrode featured both exothermic and endothermic heat generation during both charging and discharging. The results of this study can be used to validate existing thermal models, to develop thermal management strategies, and to gain insight into physicochemical phenomena taking place during operation.

  1. Temperature control at DBS electrodes using a heat sink: experimentally validated FEM model of DBS lead architecture

    Science.gov (United States)

    Elwassif, Maged M.; Datta, Abhishek; Rahman, Asif; Bikson, Marom

    2012-08-01

    There is a growing interest in the use of deep brain stimulation (DBS) for the treatment of medically refractory movement disorders and other neurological and psychiatric conditions. The extent of temperature increases around DBS electrodes during normal operation (joule heating and increased metabolic activity) or coupling with an external source (e.g. magnetic resonance imaging) remains poorly understood and methods to mitigate temperature increases are being actively investigated. We developed a heat transfer finite element method (FEM) simulation of DBS incorporating the realistic architecture of Medtronic 3389 leads. The temperature changes were analyzed considering different electrode configurations, stimulation protocols and tissue properties. The heat-transfer model results were then validated using micro-thermocouple measurements during DBS lead stimulation in a saline bath. FEM results indicate that lead design (materials and geometry) may have a central role in controlling temperature rise by conducting heat. We show how modifying lead design can effectively control temperature increases. The robustness of this heat-sink approach over complimentary heat-mitigation technologies follows from several features: (1) it is insensitive to the mechanisms of heating (e.g. nature of magnetic coupling); (2) it does not interfere with device efficacy; and (3) can be practically implemented in a broad range of implanted devices without modifying the normal device operations or the implant procedure.

  2. Effect of Particle Size on Electrode Potential and Thermodynamics of Nanoparticles Electrode in Theory and Experiment

    International Nuclear Information System (INIS)

    Yunfeng, Yang; Yongqiang, Xue; Zixiang, Cui; Miaozhi, Zhao

    2014-01-01

    The particle size of electrode materials has a significant influence on the standard electrode potential and the thermodynamic properties of electrode reactions. In this paper, the size-dependent electrochemical thermodynamics has been theoretically investigated and successfully deduced electrochemical thermodynamics equations for nanoparticles electrode. At the same time, the electrode potential and thermodynamical properties of Ag 2 O/Ag nanoparticles electrode constructed by the solid and spherical Ag 2 O nanoparticles with different sizes further testified that the particle size of nanoparticles has a significant effect on electrochemical thermodynamics. The results show that the electrode potential depends on that of the smallest nanoparticle in a nanoparticles electrode which consisted of different particle sizes of nano-Ag 2 O. When the size of Ag 2 O nanoparticles reduces, the standard electrode potentials and the equilibrium constants of the corresponding electrode reactions increase, and the temperature coefficient, the mole Gibbs energy change, the mole enthalpy change and the mole entropy change decrease. Moreover, these physical quantities are all linearly related with the reciprocal of average particle size (r > 10 nm). The experimental regularities coincide with the theoretical equations

  3. Electrode Conduction Processes Segmented Electrode-Insulator Ratio Effects in MHD Power Generation Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Pain, H. J.; Fearn, D. G.; Distefano, E. [Imperial College. London (United Kingdom)

    1966-10-15

    (a) Electrode conduction processes have been investigated using a plasma produced in an electromagnetic shock tube operating with argon at 70 {mu}mHg pressure. Complete voltage-current characteristics were obtained by the variation of load and applied voltage. These indicated the existence of two conduction regimes with a complex transition region. In the first regime the current, controlled by ion mobility, rose linearly with voltage to saturate between 10 mA and 1 A depending on conditions. Electrode contamination was significant. The second regime involved large currents controlled by electron mobility and emission from the cathode. The current again increased linearly with voltage and reached 200 A. Observation of induced voltages in transverse magnetic fields and of plasma deceleration in non-uniform fields showed that in the electromagnetic shock tube the plasma was heated predominantly by the driver discharge. Its conductivity was calculated using properties measured by a Langmuir double probe. In both regimes the plasma conductivity was also found from the gradient of the voltage current characteristics using experimental electric field fringing factors and the experimental values were compared with theory. (b) Larger-scale experiments used a combustion-driven shock tube where argon plasma flow, magnetic field and induced current flow were mutually orthogonal. The supersonic flow velocity and thermodynamic parameters of the plasma were accurately known. The electrode channel consisted of a segmented system of 12 electrode pairs with an electrode insulator ratio ranging from 1 to 21, with electrode plus insulator length remaining constant, and with maximum Hall parameter values of unity. Different electrode load combinations (Faraday and Hall generators) have been studied in measuring the power generated and the flow of longitudinal currents between adjacent electrodes. A maximum power of 0,8 MW was obtained, the power output decreasing inversely with the

  4. Electrode Conduction Processes Segmented Electrode-Insulator Ratio Effects in MHD Power Generation Experiments

    International Nuclear Information System (INIS)

    Pain, H.J.; Fearn, D.G.; Distefano, E.

    1966-01-01

    (a) Electrode conduction processes have been investigated using a plasma produced in an electromagnetic shock tube operating with argon at 70 μmHg pressure. Complete voltage-current characteristics were obtained by the variation of load and applied voltage. These indicated the existence of two conduction regimes with a complex transition region. In the first regime the current, controlled by ion mobility, rose linearly with voltage to saturate between 10 mA and 1 A depending on conditions. Electrode contamination was significant. The second regime involved large currents controlled by electron mobility and emission from the cathode. The current again increased linearly with voltage and reached 200 A. Observation of induced voltages in transverse magnetic fields and of plasma deceleration in non-uniform fields showed that in the electromagnetic shock tube the plasma was heated predominantly by the driver discharge. Its conductivity was calculated using properties measured by a Langmuir double probe. In both regimes the plasma conductivity was also found from the gradient of the voltage current characteristics using experimental electric field fringing factors and the experimental values were compared with theory. (b) Larger-scale experiments used a combustion-driven shock tube where argon plasma flow, magnetic field and induced current flow were mutually orthogonal. The supersonic flow velocity and thermodynamic parameters of the plasma were accurately known. The electrode channel consisted of a segmented system of 12 electrode pairs with an electrode insulator ratio ranging from 1 to 21, with electrode plus insulator length remaining constant, and with maximum Hall parameter values of unity. Different electrode load combinations (Faraday and Hall generators) have been studied in measuring the power generated and the flow of longitudinal currents between adjacent electrodes. A maximum power of 0,8 MW was obtained, the power output decreasing inversely with the

  5. Optimal thermionic energy conversion with established electrodes for high-temperature topping and process heating. [coal combustion product environments

    Science.gov (United States)

    Morris, J. F.

    1980-01-01

    Applied research-and-technology (ART) work reveals that optimal thermionic energy conversion (TEC) with approximately 1000 K to approximately 1100 K collectors is possible using well established tungsten electrodes. Such TEC with 1800 K emitters could approach 26.6% efficiency at 27.4 W/sq cm with approximately 1000 K collectors and 21.7% at 22.6 W/sq cm with approximately 1100 K collectors. These performances require 1.5 and 1.7 eV collector work functions (not the 1 eV ultimate) with nearly negligible interelectrode losses. Such collectors correspond to tungsten electrode systems in approximately 0.9 to approximately 6 torr cesium pressures with 1600 K to 1900 K emitters. Because higher heat-rejection temperatures for TEC allow greater collector work functions, interelectrode loss reduction becomes an increasingly important target for applications aimed at elevated temperatures. Studies of intragap modifications and new electrodes that will allow better electron emission and collection with lower cesium pressures are among the TEC-ART approaches to reduced interelectrode losses. These solutions will provide very effective TEC to serve directly in coal-combustion products for high-temperature topping and process heating. In turn this will help to use coal and to use it well.

  6. Effective geothermal heat

    International Nuclear Information System (INIS)

    Abelsen, Atle

    2006-01-01

    Scandinavia's currently largest geothermal heating project: the New Ahus hospital, is briefly presented. 300-400 wells on a field outside the hospital are constructed to store energy for both heating and cooling purposes

  7. Effect of oxidation of carbon material on suspension electrodes for flow electrode capacitive deionization.

    Science.gov (United States)

    Hatzell, Kelsey B; Hatzell, Marta C; Cook, Kevin M; Boota, Muhammad; Housel, Gabrielle M; McBride, Alexander; Kumbur, E Caglan; Gogotsi, Yury

    2015-03-03

    Flow electrode deionization (FCDI) is an emerging area for continuous and scalable deionization, but the electrochemical and flow properties of the flow electrode need to be improved to minimize energy consumption. Chemical oxidation of granular activated carbon (AC) was examined here to study the role of surface heteroatoms on rheology and electrochemical performance of a flow electrode (carbon slurry) for deionization processes. Moreover, it was demonstrated that higher mass densities could be used without increasing energy for pumping when using oxidized active material. High mass-loaded flow electrodes (28% carbon content) based on oxidized AC displayed similar viscosities (∼21 Pa s) to lower mass-loaded flow electrodes (20% carbon content) based on nonoxidized AC. The 40% increased mass loading (from 20% to 28%) resulted in a 25% increase in flow electrode gravimetric capacitance (from 65 to 83 F g(-1)) without sacrificing flowability (viscosity). The electrical energy required to remove ∼18% of the ions (desalt) from of the feed solution was observed to be significantly dependent on the mass loading and decreased (∼60%) from 92 ± 7 to 28 ± 2.7 J with increased mass densities from 5 to 23 wt %. It is shown that the surface chemistry of the active material in a flow electrode effects the electrical and pumping energy requirements of a FCDI system.

  8. Effective Area and Charge Density of Iridium Oxide Neural Electrodes

    International Nuclear Information System (INIS)

    Harris, Alexander R.; Paolini, Antonio G.; Wallace, Gordon G.

    2017-01-01

    The effective electrode area and charge density of iridium metal and anodically activated iridium has been measured by optical and electrochemical techniques. The degree of electrode activation could be assessed by changes in electrode colour. The reduction charge, activation charge, number of activation pulses and charge density were all strongly correlated. Activated iridium showed slow electron transfer kinetics for reduction of a dissolved redox species. At fast voltammetric scan rates the linear diffusion electroactive area was unaffected by iridium activation. At slow voltammetric scan rates, the steady state diffusion electroactive area was reduced by iridium activation. The steady state current was consistent with a ring electrode geometry, with lateral resistance reducing the electrode area. Slow electron transfer on activated iridium would require a larger overpotential to reduce or oxidise dissolved species in tissue, limiting the electrodes charge capacity but also reducing the likelihood of generating toxic species in vivo.

  9. A model for electrode effects using percolation theory

    International Nuclear Information System (INIS)

    Wuethrich, R.; Bleuler, H.

    2004-01-01

    Electrode effects are known for more than 150 years. These effects, with undesirable consequences in industrial aluminium electrolysis, can be used to micro-machine glass with Spark Assisted Chemical Engraving (SACE). In this paper, a novel approach for theoretical analysis of the phenomenon is proposed by considering the bubble growth and bubble departure from electrodes as a stochastic process. The critical conditions (critical voltage and current density) are predicted in function of electrode geometry and electrolyte concentration as well as the static mean current-voltage characteristics prior to the onset of the effects. The different regions of the current-voltage characteristics, as identified by previous authors, are described and explained. It is shown that all relevant processes for the onset of the electrodes effects happen in the adherence region of the bubble layer. The model is applied for vertical cylindrical electrodes and compared with experimental data

  10. Electrochemical reversibility of reticulated vitreous carbon electrodes heat treated at different carbonization temperatures

    Directory of Open Access Journals (Sweden)

    Emerson Sarmento Gonçalves

    2006-06-01

    Full Text Available Electrochemical response of ferri/ferrocyanide redox couple is discussed for a system that uses reticulated vitreous carbon (RVC three dimensional electrodes prepared at five different Heat Treatment Temperatures (HTT in the range of 700 °C to 1100 °C. Electrical resistivity, scanning electron microscopy and X ray Diffraction analyses were performed for all prepared samples. It was observed that the HTT increasing promotes an electrical conductivity increasing while the Bragg distance d002 decreases. The correlation between reversibility behavior of ferri/ferrocyanide redox couple and both surface morphology and chemical properties of the RVC electrodes demonstrated a strong dependence on the HTT used to prepare the RVC.

  11. Nanomolar detection of rutin based on adsorptive stripping analysis at single-sided heated graphite cylindrical electrodes with direct current heating

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Shao-Hua; Sun, Jian-Jun; Zhang, De-Feng; Lin, Zhi-Bin; Nie, Fa-Hui; Qiu, He-Yuan; Chen, Guo-Nan [Key Laboratory of Analysis and Detection Technology for Food Safety, Ministry of Education, College of Chemistry and Chemical Engineering, Fuzhou University, 523 Gong Ye Road, Fuzhou 350002 (China)

    2008-09-20

    A single-sided heated graphite cylindrical electrode (ss-HGCE) was designed. Compared to previous alternative current (AC) heating, much simpler and cheaper direct current (DC) heating supplier was adopted for the first time to perform adsorptive accumulation of rutin at ss-HGCE at elevated electrode temperature. This offers great promise for low cost, miniaturization and high compatibility with portability. The square wave voltammetry (SWV) stripping peak current was enhanced with increasing the electrode temperature only during preconcentration step. This enhancement was contributed to the forced thermal convection induced by heating the electrode rather than the bulk solution, which is able to improve mass transfer and facilitate adsorption hence enhance stripping response. A detection limit of 1.0 x 10{sup -9} M (S/N = 3) could be obtained at an electrode temperature of 48 C during 5 min accumulation, one magnitude lower than that at 28 C (room temperature). This is the lowest value at carbon-based electrodes for rutin determination as we know. Such novel method was also successfully used to determine rutin in pharmaceutical tablets. (author)

  12. Radiation effects on heat transfer in heat exchangers, (2)

    International Nuclear Information System (INIS)

    Mori, Yasuo; Watanabe, Kenji; Taira, Tatsuji.

    1980-01-01

    In a high temperature gas-cooled reactor system, in which the working fluid exchanges heat at high temperature near 1000 deg C, the heat transfer acceleration by positively utilizing the radiation heat transfer between solid surfaces should be considered. This paper reports on the results of experiment and analysis for the effects of radiant heat on the heat transfer performance at elevated temperature by applying the heat transfer-accelerating method using radiators to the heat exchanger with tube bundle composed of two channels of heating and heated sides. As the test heat exchangers, a parallel counter flow exchanger and the cross flow exchanger simulating helical tubes were employed, and the results studied on the characteristics of each heat exchanger are described. The plates placed in parallel to flow in every space of the tube bundle arranged in a matrix were used as the heat transfer accelerator. The effects of acceleration with the plates were the increase of heat transmission from 12 to 24% and 12 to 38% in the parallel flow and cross flow heat exchangers, respectively. Also, it was clarified that the theoretical analysis, in which it was assumed that the region within pitch S and two radiator plates, with a heat-transferring tube placed at the center, is the minimum domain for calculation, and that the heat exchange by radiation occurs only between the domain and the adjacent domains, can estimate the heat transfer-accelerating effect and the temperature distribution in a heat exchanger with sufficient accuracy. (Wakatsuki, Y.)

  13. Effect of Calendering on Electrode Wettability in Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Yangping eSheng

    2014-12-01

    Full Text Available Controlling the wettability between the porous electrode and the electrolyte in lithium ion batteries can improve both the manufacturing process and the electrochemical performance of the cell. The wetting rate, which is the electrolyte transport rate in the porous electrode, can be quantified using the wetting balance. The effect of the calendering process on the wettability of anode electrodes was investigated. A graphite anode film with an as-coated thickness of 59 μm was used as baseline electrode film and was calendered to produce films with thickness ranging from 55 to 41 µm. Results show that wettability is improved by light calendering from an initial thickness of 59 μm to a calendered thickness of 53 μm where the wetting rate increased from 0.375 to 0.589 mm/s0.5. Further calendering below 53 µm resulted in a decrease in wetting rates to a minimum observed value of 0.206 mm/s0.5 at a calendered thickness of 41 μm. Under the same electrolyte, wettability of the electrode is controlled to a great extent by the pore structure in the electrode film which includes parameters such as porosity, pore size distribution, pore geometry and topology. Relations between the wetting behavior and the pore structure as characterized by mercury intrusion and electron microscopy exist and can be used to manipulate the wetting behavior of electrodes.

  14. Effects of Cable Sway, Electrode Surface Area, and Electrode Mass on Electroencephalography Signal Quality during Motion.

    Science.gov (United States)

    Symeonidou, Evangelia-Regkina; Nordin, Andrew D; Hairston, W David; Ferris, Daniel P

    2018-04-03

    More neuroscience researchers are using scalp electroencephalography (EEG) to measure electrocortical dynamics during human locomotion and other types of movement. Motion artifacts corrupt the EEG and mask underlying neural signals of interest. The cause of motion artifacts in EEG is often attributed to electrode motion relative to the skin, but few studies have examined EEG signals under head motion. In the current study, we tested how motion artifacts are affected by the overall mass and surface area of commercially available electrodes, as well as how cable sway contributes to motion artifacts. To provide a ground-truth signal, we used a gelatin head phantom with embedded antennas broadcasting electrical signals, and recorded EEG with a commercially available electrode system. A robotic platform moved the phantom head through sinusoidal displacements at different frequencies (0-2 Hz). Results showed that a larger electrode surface area can have a small but significant effect on improving EEG signal quality during motion and that cable sway is a major contributor to motion artifacts. These results have implications in the development of future hardware for mobile brain imaging with EEG.

  15. Percolation effects in supercapacitors with thin, transparent carbon nanotube electrodes.

    Science.gov (United States)

    King, Paul J; Higgins, Thomas M; De, Sukanta; Nicoloso, Norbert; Coleman, Jonathan N

    2012-02-28

    We have explored the effects of percolation on the properties of supercapacitors with thin nanotube networks as electrodes. We find the equivalent series resistance, R(ESR), and volumetric capacitance, C(V), to be thickness independent for relatively thick electrodes. However, once the electrode thickness falls below a threshold thickness (∼100 nm for R(ESR) and ∼20 nm for C(V)), the properties of the electrode become thickness dependent. We show the thickness dependence of both R(ESR) and C(V) to be consistent with percolation theory. While this is expected for R(ESR), that the capacitance follows a percolation scaling law is not. This occurs because, for sparse networks, the capacitance is proportional to the fraction of nanotubes connected to the main network. This fraction, in turn, follows a percolation scaling law. This allows us to understand and quantify the limitations on the achievable capacitance for transparent supercapacitors. We find that supercapacitors with thickness independent R(ESR) and C(V) occupy a well-defined region of the Ragone plot. However, supercapacitors whose electrodes are limited by percolation occupy a long tail to lower values of energy and power density. For example, replacing electrodes with transparency of T = 80% with thinner networks displaying T = 97% will result in a 20-fold reduction of both power and energy density.

  16. Destruction of Bacillus cereus spores in a thick soy bean paste (doenjang) by continuous ohmic heating with five sequential electrodes.

    Science.gov (United States)

    Ryang, J H; Kim, N H; Lee, B S; Kim, C T; Rhee, M S

    2016-07-01

    This study selected spores from Bacillus cereus FSP-2 strain (the isolate from a commercial doenjang processing line) as the test strain which showed significantly higher thermal resistance (P 1·5 National Bureau of Standards units), treatment at 105°C for 60 s was selected and applied on a large scale (500 kg of product). Reliable and reproducible destruction of B. cereus spores occurred; the reductions achieved (to < 4 log CFU g(-1) ) met the Korean national standards. Scanning electron microscopy revealed microstructural alterations in the spores (shrinkage and a distorted outer spore coat). OH is an effective method for destroying B. cereus spores to ensure the microbiological quality and safety of a thick, highly viscous sauce. This study shows that an ohmic heating (OH) using a five sequential electrode system can effectively destroy highly heat-resistant Bacillus cereus spores which have been frequently found in a commercial doenjang processing line without perceivable quality change in the product. In addition, it may demonstrate high potential of the unique OH system used in this study that will further contribute to ensure microbiological quality and safety of crude sauces containing high levels of electrolyte other than doenjang as well. © 2016 The Society for Applied Microbiology.

  17. Giant electrode effect on tunnelling electroresistance in ferroelectric tunnel junctions.

    Science.gov (United States)

    Soni, Rohit; Petraru, Adrian; Meuffels, Paul; Vavra, Ondrej; Ziegler, Martin; Kim, Seong Keun; Jeong, Doo Seok; Pertsev, Nikolay A; Kohlstedt, Hermann

    2014-11-17

    Among recently discovered ferroelectricity-related phenomena, the tunnelling electroresistance (TER) effect in ferroelectric tunnel junctions (FTJs) has been attracting rapidly increasing attention owing to the emerging possibilities of non-volatile memory, logic and neuromorphic computing applications of these quantum nanostructures. Despite recent advances in experimental and theoretical studies of FTJs, many questions concerning their electrical behaviour still remain open. In particular, the role of ferroelectric/electrode interfaces and the separation of the ferroelectric-driven TER effect from electrochemical ('redox'-based) resistance-switching effects have to be clarified. Here we report the results of a comprehensive study of epitaxial junctions comprising BaTiO(3) barrier, La(0.7)Sr(0.3)MnO(3) bottom electrode and Au or Cu top electrodes. Our results demonstrate a giant electrode effect on the TER of these asymmetric FTJs. The revealed phenomena are attributed to the microscopic interfacial effect of ferroelectric origin, which is supported by the observation of redox-based resistance switching at much higher voltages.

  18. Effect of electrode shape on grounding resistances - Part 2

    DEFF Research Database (Denmark)

    Tomaskovicova, Sonia; Ingeman-Nielsen, Thomas; Christiansen, Anders V.

    2016-01-01

    Although electric resistivity tomography (ERT) is now regarded as a standard tool in permafrost monitoring, high grounding resistances continue to limit the acquisition of time series over complete freeze-thaw cycles. In an attempt to alleviate the grounding resistance problem, we have tested three...... electrode designs featuring increasing sizes and surface area, in the laboratory and at three different field sites in Greenland. Grounding resistance measurements showed that changing the electrode shape (using plates instead of rods) reduced the grounding resistances at all sites by 28%-69% during...... unfrozen and frozen ground conditions. Using meshes instead of plates (the same rectangular shape and a larger effective surface area) further improved the grounding resistances by 29%-37% in winter. Replacement of rod electrodes of one entire permanent permafrost monitoring array by meshes resulted...

  19. Exploring the electrodes alignment and mushrooming effects on ...

    Indian Academy of Sciences (India)

    effects on weld geometry of dissimilar steels during the spot welding ... purpose for the welding of steels and withstand for high thermal application on ... the electrode alignment during welding process plays a significant role on the formation of weld ... experiment using Ansys 14 (figure 3). .... Materials and Design 68–77.

  20. Demonstration of electron clearing effect by means of a clearing electrode in high-intensity positron ring

    International Nuclear Information System (INIS)

    Suetsugu, Y.; Fukuma, H.; Wang, L.; Pivi, M.; Morishige, A.; Suzuki, Y.; Tsukamoto, M.; Tsuchiya, M.

    2009-01-01

    In the beam pipe of high-intensity positron/proton storage rings, undesired electron clouds may be first produced by photoelectrons and the ionization of residual gases; then the clouds increase by the secondary electron emission. In this study, a strip-line clearing electrode has been developed to mitigate the electron-cloud effect in high-intensity positron/proton storage rings. The electrode is composed of a thin tungsten layer with a thickness of 0.1 mm formed on a thin alumina ceramic layer with a thickness of 0.2 mm. The narrow alumina gap between the electrode and the beam pipe decreases the beam impedance and also enhances the heat transfer from the electrode to the beam pipe. A test model has been installed in the KEK B-factory (KEKB) positron ring, along with an electron monitor with a retarding grid. The electron density in a field free region decreased by one order of magnitude was observed on the application of ±500 V to the electrode at a beam current of 1.6 A with 1585 bunches. The reduction in the electron density was more drastic in a vertical magnetic field of 0.77 T, that is, the electron density decreased by several orders by applying +500 V to the electrode at the same beam current. This experiment is the first experiment demonstrating the principle of the clearing electrode that is used to mitigate the electron-cloud effect in a positron ring.

  1. The cataphoretic emitter effect exhibited in high intensity discharge lamp electrodes

    Science.gov (United States)

    Mentel, Juergen

    2018-01-01

    A mono-layer of atoms, electropositive with respect to the substrate atoms, forms a dipole layer, reducing its work function. Such a layer is generated by diffusion of emitter material from the interior of the substrate, by vapour deposition or by deposition of emitter material onto arc electrodes by cataphoresis. This cataphoretic emitter effect is investigated within metal halide lamps with transparent YAG ceramic burners, and within model lamps. Within the YAG lamps, arcs are operated with switched-dc current between rod shaped tungsten electrodes in high pressure Hg vapour seeded with metal iodides. Within the model lamps, dc arcs are operated between rod-shaped tungsten electrodes—one doped—in atmospheric pressure Ar. Electrode temperatures are determined by 1λ -pyrometry, combined with simulation of the electrode heat balance. Plasma temperatures, atom and ion densities of emitter material are determined by emission and absorption spectroscopy. Phase resolved measurements in YAG lamps seeded with CeI3, CsI, DyI3, TmI3 and LaI3 show, within the cathodic half period, a reduction of the electrode temperature and an enhanced metal ion density in front of the electrode, and an opposite behavior after phase reversal. With increasing operating frequency, the state of the cathode overlaps onto the anodic phase—except for Cs, being low in adsorption energy. Generally, the phase averaged electrode tip temperature is reduced by seeding a lamp with emitter material; its height depends on admixtures. Measurements at tungsten electrodes doped with ThO2, La2O3 and Ce2O3 within the model lamp show that evaporated emitter material is redeposited by an emitter ion current onto the electrode surface. It reduces the work function of tungsten cathodes above the evaporation temperature of the emitter material, too; and also of cold anodes, indicating a field reversal in front of them. The formation of an emitter spot at low cathode temperature and high emitter material

  2. Surface properties tuning of welding electrode-deposited hardfacings by laser heat treatment

    Science.gov (United States)

    Oláh, Arthur; Croitoru, Catalin; Tierean, Mircea Horia

    2018-04-01

    In this paper, several Cr-Mn-rich hardfacings have been open-arc deposited on S275JR carbon quality structural steel and further submitted to laser treatment at different powers. An overall increase with 34-98% in the average microhardness and wear resistance of the coatings has been obtained, due to the formation of martensite, silicides, as well as simple and complex carbides on the surface of the hardfacings, in comparison with the reference, not submitted to laser thermal treatment. Surface laser treatment of electrode-deposited hardfacings improves their chemical resistance under corrosive saline environments, as determined by the 43% lower amount of leached iron and respectively, 28% lower amount of manganese ions leached in a 10% wt. NaCl aqueous solution, comparing with the reference hardfacings. Laser heat treatment also promotes better compatibility of the hardfacings with water-based paints and oil-based paints and primers, through the relative increasing in the polar component of the surface energy (with up to 65%) which aids both water and filler spreading on the metallic surface.

  3. On the Mass and Heat Transfer in the Porous Electrode of a Fuel Cell

    Energy Technology Data Exchange (ETDEWEB)

    Revuelta Bayod, A.

    2004-07-01

    In the first part of this report a reduced model of the mass transport in the PEMFC cathode gas diffusion layer is formulated ro an interrogated flow field design of the cathode bipolar plate. The non-dimensional formulation of the problem allows to identify the leading parameters which determines the fundamental species distribution and flow field structure. The effect of the forced convection of the gases into the porous electrode, caused by the interrogated flow field, is quantified through the Peclet numbers of the active species, and the non-dimensional polarization curves are obtained. In the second part, the diffusion-thermal instability is analyzed in a porous gas diffusion layer (GDL) of a fuel cell. The investigation presented provides an initial guideline to future theoretical and experimental investigations on one aspect of the fuel cell performance not previously considered, with impact on the fuel cell life-time. Starting from the simples possible 1D-model of the flow into the porous electrode, the steady solution of the model is presented an analyzed depending on a minimum number of non-dimensional parameters. From this steady solution, a linear stability analysis is formulated, taking into account the temporal-spatial perturbations transversal to the gas flow direction, and the marginal stability regions are determined from the corresponding dispersion relation. (Author) 33 refs.

  4. A thermally regenerative ammonia battery with carbon-silver electrodes for converting low-grade waste heat to electricity

    Science.gov (United States)

    Rahimi, Mohammad; Kim, Taeyoung; Gorski, Christopher A.; Logan, Bruce E.

    2018-01-01

    Thermally regenerative ammonia batteries (TRABs) have shown great promise as a method to convert low-grade waste heat into electrical power, with power densities an order of magnitude higher than other approaches. However, previous TRABs based on copper electrodes suffered from unbalanced anode dissolution and cathode deposition rates during discharging cycles, limiting practical applications. To produce a TRAB with stable and reversible electrode reactions over many cycles, inert carbon electrodes were used with silver salts. In continuous flow tests, power production was stable over 100 discharging cycles, demonstrating excellent reversibility. Power densities were 23 W m-2-electrode area in batch tests, which was 64% higher than that produced in parallel tests using copper electrodes, and 30 W m-2 (net energy density of 490 Wh m-3-anolyte) in continuous flow tests. While this battery requires the use a precious metal, an initial economic analysis of the system showed that the cost of the materials relative to energy production was 220 per MWh, which is competitive with energy production from other non-fossil fuel sources. A substantial reduction in costs could be obtained by developing less expensive anion exchange membranes.

  5. Additional magnetoelectric effect in electrode-arrayed magnetoelectric composite

    Directory of Open Access Journals (Sweden)

    D. A. Pan

    2014-11-01

    Full Text Available An electrode-arrayed magnetoelectric (ME composite was proposed, in which the positive and negative electrodes of the PZT-5H plate (Pb(Zr0.52Ti0.48O3 were equally divided into a 2 × 5 array, while the PZT plate remained intact. The ME voltage coefficients of these 10 sections were measured individually and in parallel/series modes. The magnetoelectric coefficient is doubled compared with un-arrayed condition, when the 10 sections are connected in parallel/series using an optimized connecting sequence derived from the charge matching rule. This scheme can also be applied to other types of layered magnetoelectric composites to obtain additional magnetoelectric effect from the original composite structure.

  6. The Seebeck coefficient and the Peltier effect in a polymer electrolyte membrane cell with two hydrogen electrodes

    International Nuclear Information System (INIS)

    Kjelstrup, S.; Vie, P.J.S.; Akyalcin, L.; Zefaniya, P.; Pharoah, J.G.; Burheim, O.S.

    2013-01-01

    Highlights: • The heat change associated with the hydrogen electrode in a polymer electrolyte cell is determined from Seebeck coefficient measurements. • When electric current is passed from left to right in the outer circuit, the anode becomes warmer, while the cathode becomes colder in a thermoelectric cell with hydrogen electrodes. • At Soret equilibrium for water in the fuel cell, most of the entropy of the fuel cell reaction is generated at the anode. -- Abstract: We report that the Seebeck coefficient of a Nafion membrane cell with hydrogen electrodes saturated with water vapour, at 1 bar hydrogen pressure and 340 K, is equal to 670 ± 50 μV/K, meaning that the entropy change of the anode reaction at reversible conditions (67 J/(K mol)) corresponds to a reversible heat release of 22 kJ/mol. The transported entropy of protons across the membrane at Soret equilibrium was estimated from this value to 1 ± 5 J/(K mol). The results were supported by the expected variation in the Seebeck coefficient with the hydrogen pressure. We report also the temperature difference of the electrodes, when passing electric current through the cell, and find that the anode is heated (a Peltier heat effect), giving qualitative support to the result for the Seebeck coefficient. The Seebeck and Peltier effects are related by non-equilibrium thermodynamics theory, and the Peltier heat of the cathode in the fuel cell is calculated for steady state conditions to 6 ± 2 kJ/mol at 340 K. The division of the reversible heat release between the anode and the cathode, can be expected to vary with the current density, as the magnitude of the current density can have a big impact on water transport and water concentration profile

  7. Effect of process parameters on temperature distribution in twin-electrode TIG coupling arc

    Science.gov (United States)

    Zhang, Guangjun; Xiong, Jun; Gao, Hongming; Wu, Lin

    2012-10-01

    The twin-electrode TIG coupling arc is a new type of welding heat source, which is generated in a single welding torch that has two tungsten electrodes insulated from each other. This paper aims at determining the distribution of temperature for the coupling arc using the Fowler-Milne method under the assumption of local thermodynamic equilibrium. The influences of welding current, arc length, and distance between both electrode tips on temperature distribution of the coupling arc were analyzed. Based on the results, a better understanding of the twin-electrode TIG welding process was obtained.

  8. Modeling the electrode-neuron interface of cochlear implants: effects of neural survival, electrode placement, and the partial tripolar configuration.

    Science.gov (United States)

    Goldwyn, Joshua H; Bierer, Steven M; Bierer, Julie Arenberg

    2010-09-01

    The partial tripolar electrode configuration is a relatively novel stimulation strategy that can generate more spatially focused electric fields than the commonly used monopolar configuration. Focused stimulation strategies should improve spectral resolution in cochlear implant users, but may also be more sensitive to local irregularities in the electrode-neuron interface. In this study, we develop a practical computer model of cochlear implant stimulation that can simulate neural activation in a simplified cochlear geometry and we relate the resulting patterns of neural activity to basic psychophysical measures. We examine how two types of local irregularities in the electrode-neuron interface, variations in spiral ganglion nerve density and electrode position within the scala tympani, affect the simulated neural activation patterns and how these patterns change with electrode configuration. The model shows that higher partial tripolar fractions activate more spatially restricted populations of neurons at all current levels and require higher current levels to excite a given number of neurons. We find that threshold levels are more sensitive at high partial tripolar fractions to both types of irregularities, but these effects are not independent. In particular, at close electrode-neuron distances, activation is typically more spatially localized which leads to a greater influence of neural dead regions. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  9. Urban Heat Island Effect Actions - Neighborhood Data

    Data.gov (United States)

    Louisville Metro Government — The urban heat island effect — defined as the difference in temperature between the core of Louisville and its suburbs — contributes to heat-related illnesses and...

  10. Heat dissipation computations of a HVDC ground electrode using a supercomputer

    International Nuclear Information System (INIS)

    Greiss, H.; Mukhedkar, D.; Lagace, P.J.

    1990-01-01

    This paper reports on the temperature, of soil surrounding a High Voltage Direct Current (HVDC) toroidal ground electrode of practical dimensions, in both homogeneous and non-homogeneous soils that was computed at incremental points in time using finite difference methods on a supercomputer. Curves of the response were computed and plotted at several locations within the soil in the vicinity of the ground electrode for various values of the soil parameters

  11. Effect of annealing over optoelectronic properties of graphene based transparent electrodes

    Science.gov (United States)

    Yadav, Shriniwas; Kaur, Inderpreet

    2016-04-01

    Graphene, an atom-thick two dimensional graphitic material have led various fundamental breakthroughs in the field of science and technology. Due to their exceptional optical, physical and electrical properties, graphene based transparent electrodes have shown several applications in organic light emitting diodes, solar cells and thin film transistors. Here, we are presenting effect of annealing over optoelectronic properties of graphene based transparent electrodes. Graphene based transparent electrodes have been prepared by wet chemical approach over glass substrates. After fabrication, these electrodes tested for optical transmittance in visible region. Sheet resistance was measured using four probe method. Effect of thermal annealing at 200 °C was studied over optical and electrical performance of these electrodes. Optoelectronic performance was judged from ratio of direct current conductivity to optical conductivity (σdc/σopt) as a figure of merit for transparent conductors. The fabricated electrodes display good optical and electrical properties. Such electrodes can be alternatives for doped metal oxide based transparent electrodes.

  12. Determination of skin blood flow by 133Xe washout and by heat flux from a heated tc-Po2 electrode

    International Nuclear Information System (INIS)

    Jaszczak, P.; Sejrsen, P.

    1984-01-01

    133 Xe washout measurements were used to determine cutaneous and subcutaneous blood flow beneath a specially designed double-thermostated tc-Po 2 electrode. The skin blood flow was determined using thermal methods based on reduced heat dissipation during blood flow cessation. A total of 20 measurements were performed on two healthy volunteers, using the volar side of the right forearm as the experimental area. Cutaneous as well as subcutaneous blood flow increased with increasing electrode temperature. The cutaneous blood flow increased from 12.3 +- 1.3 ml (100 g) -1 . min -1 (37degC) to 49.1 +- 5.4 ml (100g) -1 . min -1 (45degC) and the subcutaneous values from 20.9 +- 0.2 ml (100 g) -1 . min -1 to 57.3 +- 0.5 ml(100 g) -1 . min -1 . Preheating of the measuring area or injection of papaverine as blood flow accelerator did not increase the maximum blood flow values. A considerable inter-individual difference between cutaneous and subcutaneous blood flow was observed, but in spite of that a good overall correlation between the 133 Xe washout measurements and the two thermal flow measurements was found (r = 0.932 and 0.945, respectively). It is concluded that in some cases, but not always, measurements of tc-Po 2 at electrode temperatures of 45degC take place on a maximally perfused skin and that it is possible to determine skin blood flow by means of determinations of the heat dissipated from the tc-Po 2 electrode to the underlying skin. (author)

  13. Effects of electrode geometry on transient plasma induced ignition

    International Nuclear Information System (INIS)

    Shukla, B; Gururajan, V; Eisazadeh-Far, K; Windom, B; Egolfopoulos, F N; Singleton, D; Gundersen, M A

    2013-01-01

    Achieving effective ignition of reacting mixtures using nanosecond pulsed discharge non-equilibrium transient plasma (TP), requires that the effects of several experimental parameters be quantified and understood. Among them are the electrode geometry, the discharge location especially in non-premixed systems, and the relative ignition performance by spark and TP under the same experimental conditions. In the present investigation, such issues were addressed experimentally using a cylindrical constant volume combustion chamber and a counterflow flame configuration coupled with optical shadowgraph that enables observation of how and where the ignition process starts. Results were obtained under atmospheric pressure and showed that the electrode geometry has a notable influence on ignition, with the needle-to-semicircle exhibiting the best ignition performance. Furthermore, it was determined that under non-premixed conditions discharging TP in the reactants mixing layer was most effective in achieving ignition. It was also determined that in the cases considered, the TP induced ignition initiates from the needle head where the electric field and electron densities are the highest. In the case of a spark, however, ignition was found to initiate always from the hot region between the two electrodes. Comparison of spark and TP discharges in only air (i.e. without fuel) and ignition phenomena induced by them also suggest that in the case of TP ignition is at least partly non-thermal and instead driven by the production of active species. Finally, it was determined that single pulsed TP discharges are sufficient to ignite both premixed and non-premixed flames of a variety of fuels ranging from hydrogen to heavy fuels including F-76 diesel and IFO380 bunker fuel even at room temperature. (paper)

  14. Effect of electrode shape on grounding resistances - Part 1

    DEFF Research Database (Denmark)

    Ingeman-Nielsen, Thomas; Tomaskovicova, Sonia; Dahlin, Torleif

    2016-01-01

    Electrode grounding resistance is a major factor affecting measurement quality in electric resistivity tomography (ERT) measurements for cryospheric applications. Still, little information is available on grounding resistances in the geophysical literature, mainly because it is difficult to measure....... The focus-one protocol is a new method for estimating single electrode grounding resistances by measuring the resistance between a single electrode in an ERT array and all the remaining electrodes connected in parallel. For large arrays, the measured resistance is dominated by the grounding resistance...... of the electrode under test, the focus electrode. We have developed an equivalent circuit model formulation for the resistance measured when applying the focus-one protocol. Our model depends on the individual grounding resistances of the electrodes of the array, the mutual resistances between electrodes...

  15. Effect of electrode geometry on photovoltaic performance of polymer solar cells

    International Nuclear Information System (INIS)

    Li, Meng; Ma, Heng; Liu, Hairui; Wu, Dongge; Niu, Heying; Cai, Wenjun

    2014-01-01

    This paper investigates the impact of electrode geometry on the performance of polymer solar cells (PSCs). The negative electrodes with equal area (0.09 cm 2 ) but different shape (round, oval, square and triangular) are evaluated with respect to short-circuit current density, open-circuit voltage, fill factor and power conversion efficiency of PSCs. The results show that the device with round electrodes gives the best photovoltaic performance; in contrast, the device with triangular electrodes reveals the worst properties. A maximum of almost a 19% increase in power conversion efficiency with a round electrode is obtained in the devices compared with that of the triangular electrode. To conclude, the electrode boundary curvature has a significant impact on the performance of PSCs. The larger curvature, i.e. sharper electrodes edges, perhaps has a negative effect on exciton separation and carrier transport in photoelectric conversion processes. (paper)

  16. The effects of electrode materials on the conversion efficiency of a direct converter used in neutral beam injection systems

    International Nuclear Information System (INIS)

    Noda, Shunichi; Nagae, Hiroshi; Yano, Hidenobu; Masuda, Mitsuharu; Akazaki, Masanori

    1986-01-01

    The injection of fast neutral beams into plasmas is thought to be the most promising way for the fusion plasma heating. Fast neutral beams are obtained by injecting fast ions into a neutralizer cell, in which ions are neutralized through charge exchange collisions with the ambient gas. However, the neutralization efficiency in the neutralizer cell is so low that the net power may not be extracted from a fusion reactor unless the energy of the ions being not neutralized in the cell is recovered. The present paper describes some problems associated with the electrostatic direct energy recovery of fast ion beams for this purpose. The titanium and molybdenum were tested as the direct converter electrode materials, and it was found that the conversion efficiency and the conditioning process of the converter electrode depended strongly on the electrode material. The effect of secondary electrons emitted from the electron repeller on the conversion efficiency was also made clear in the present experiments. (author)

  17. The effects of electrode thickness on the electrochemical and thermal characteristics of lithium ion battery

    International Nuclear Information System (INIS)

    Zhao, Rui; Liu, Jie; Gu, Junjie

    2015-01-01

    Highlights: • A coupling model is developed to study the behaviors of Li-ion batteries. • Thick electrode battery (CEB) has high temperature response during discharge. • Thin electrode battery has a relative lower capacity fading rate. • Less heat is generated in thin electrode battery with even heat distribution. • CEBs underutilize active materials and stop discharge early at high rates. - Abstract: Lithium ion (Li-ion) battery, consisting of multiple electrochemical cells, is a complex system whose high electrochemical and thermal stability is often critical to the well-being and functional capabilities of electric devices. Considering any change in the specifications may significantly affect the overall performance and life of a battery, an investigation on the impacts of electrode thickness on the electrochemical and thermal properties of lithium-ion battery cells based on experiments and a coupling model composed of a 1D electrochemical model and a 3D thermal model is conducted in this work. In-depth analyses on the basis of the experimental and simulated results are carried out for one cell of different depths of discharge as well as for a set of cells with different electrode thicknesses. Pertinent results have demonstrated that the electrode thickness can significantly influence the battery from many key aspects such as energy density, temperature response, capacity fading rate, overall heat generation, distribution and proportion of heat sources

  18. Hofmeister effects on the glucose oxidase hydrogel-modified electrode

    International Nuclear Information System (INIS)

    Suzuki, Aimi; Tsujimura, Seiya

    2016-01-01

    We describe the consistent effect of salts in the electrolyte solution on glucose oxidation current production in the redox hydrogel-modified electrode containing glucose oxidase as an electrocatalyst and Os complex mediator. The ions affect not only on the electron transfer between the enzyme and the Os complex, but also on the hydrogel structure. This study found that the degree of the effect can be characterized by Hofmeister series. The relative decrease in oxidization current is the lowest in the middle of the Hofmeister series, and increases monotonically on either side. An increase of ionic strength inhibits the electron transfer from the active site of glucose oxidase to Os complex. In addition to this, the kosmotropic anions, which are strongly hydrated, caused hydrogel deswelling (shrinking). The more chaotropic an ion is, the more it adsorbs to uncharged parts of polymer/enzyme with dispersion force, and the swelling of the hydrogel decreases the catalytic current. This study impacts the design of hydrogel electrode and selection of electrolyte ions for bioelectronic applications.

  19. Investigating the possible effect of electrode support structure on motion artifact in wearable bioelectric signal monitoring.

    Science.gov (United States)

    Cömert, Alper; Hyttinen, Jari

    2015-05-15

    With advances in technology and increasing demand, wearable biosignal monitoring is developing and new applications are emerging. One of the main challenges facing the widespread use of wearable monitoring systems is the motion artifact. The sources of the motion artifact lie in the skin-electrode interface. Reducing the motion and deformation at this interface should have positive effects on signal quality. In this study, we aim to investigate whether the structure supporting the electrode can be designed to reduce the motion artifact with the hypothesis that this can be achieved by stabilizing the skin deformations around the electrode. We compare four textile electrodes with different support structure designs: a soft padding larger than the electrode area, a soft padding larger than the electrode area with a novel skin deformation restricting design, a soft padding the same size as the electrode area, and a rigid support the same size as the electrode. With five subjects and two electrode locations placed over different kinds of tissue at various mounting forces, we simultaneously measured the motion artifact, a motion affected ECG, and the real-time skin-electrode impedance during the application of controlled motion to the electrodes. The design of the electrode support structure has an effect on the generated motion artifact; good design with a skin stabilizing structure makes the electrodes physically more motion artifact resilient, directly affecting signal quality. Increasing the applied mounting force shows a positive effect up to 1,000 gr applied force. The properties of tissue under the electrode are an important factor in the generation of the motion artifact and the functioning of the electrodes. The relationship of motion artifact amplitude to the electrode movement magnitude is seen to be linear for smaller movements. For larger movements, the increase of motion generated a disproportionally larger artifact. The motion artifact and the induced

  20. The effect of gamma radiation on reference electrodes and platinum and carbon steel bare metal electrodes in a simulated waste solution

    International Nuclear Information System (INIS)

    Danielson, M.J.

    1993-09-01

    Electrochemical potential measurements of materials in waste tanks are important in determining if the materials have a propensity for stress corrosion cracking and pitting. Potential measurement requires a reference electrode, but the effect of radiation on the potential generated by the reference electrode has been an unknown quantity. To determine the significance of the radiation effect, Pacific Northwest Laboratory conducted studies of five types of electrodes under gamma radiation at room temperature. The subjects were two types of silver/silver chloride reference electrodes (Fisher and Lazaran), a mercury/calomel reference electrode, a platinum ''flag,'' and a piece of A-537 carbon steel; the electrodes were exposed to a simulated caustic tank environment. The Fisher silver/silver chloride and mercury/calomel reference electrodes showed essentially no radiation effects up to a flux of 2.1E6 R/h and fluence of 9.4E8 R, indicating they would be useful reference electrodes for in-tank studies. The Lazaran reg-sign silver/silver chloride electrode showed serious potential deviations at fluences of 2.E8 R, but it would be the electrode of choice in many situations because it is simple to maintain. Radiation affected the open circuit potential of both the platinum and carbon steel electrodes. This effect indicates that corrosion studies without radiation may not duplicate the corrosion processes expected in a waste tank. Mixed-potential theory was used to explain the radiation effects

  1. Analysis of heating effect on the process of high deposition rate microcrystalline silicon

    International Nuclear Information System (INIS)

    Xiao-Dan, Zhang; He, Zhang; Chang-Chun, Wei; Jian, Sun; Guo-Fu, Hou; Shao-Zhen, Xiong; Xin-Hua, Geng; Ying, Zhao

    2010-01-01

    A possible heating effect on the process of high deposition rate microcrystalline silicon has been studied. It includes the discharge time-accumulating heating effect, discharge power, inter-electrode distance, and total gas flow rate induced heating effect. It is found that the heating effects mentioned above are in some ways quite similar to and in other ways very different from each other. However, all of them will directly or indirectly cause the increase of the substrate surface temperature during the process of depositing microcrystalline silicon thin films, which will affect the properties of the materials with increasing time. This phenomenon is very serious for the high deposition rate of microcrystalline silicon thin films because of the high input power and the relatively small inter-electrode distance needed. Through analysis of the heating effects occurring in the process of depositing microcrystalline silicon, it is proposed that the discharge power and the heating temperature should be as low as possible, and the total gas flow rate and the inter-electrode distance should be suitable so that device-grade high quality deposition rate microcrystalline silicon thin films can be fabricated

  2. The effect of different electrodes on the electronic transmission of benzene junctions: Analytical approach

    Energy Technology Data Exchange (ETDEWEB)

    Mohebbi, Razie; Seyed-Yazdi, Jamileh, E-mail: j.seyedyazdi@vru.ac.ir

    2016-06-01

    In this paper we have investigated the electronic transmission of systems electrode–benzene–electrode using the Landauer approach. The effect of different electrodes made of metal (Au) and semiconductors (Si, TiO{sub 2}) is investigated. These three electrodes are compared between them and the results show that the electronic transmission of benzene junctions, when using semiconductor electrodes, is associated to a gap in transmission which is due to the electrodes band gap. As a consequence, a threshold voltage is necessary to obtain conducting channels.

  3. Effect of heated length on the Critical Heat Flux of subcooled flow boiling. 2. Effective heated length under axially nonuniform heating condition

    International Nuclear Information System (INIS)

    Kinoshita, Hidetaka; Yoshida, Takuya; Nariai, Hideki; Inasaka, Fujio

    1998-01-01

    Effect of heated length on the Critical Heat Flux (CHF) of subcooled flow boiling with water was experimentally investigated by using direct current heated tube made of stainless steel a part of whose wall thickness was axially cut for realizing nonuniform heat flux condition. The higher enhancement of the CHF was derived for shorter tube length. The effective heated length was determined for the tube under axially nonuniform heat flux condition. When the lower heat flux part below the Net Vapor Generation (NVG) heat flux exists at the middle of tube length, then the effective heated length becomes the tube length downstream the lower heat flux parts. However, when the lower heat flux part is above the NVG, then the effective heated length is full tube length. (author)

  4. Converse flexoelectric effect in comb electrode piezoelectric microbeam

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Zhiyuan, E-mail: shenyuan675603@gmail.com [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore); Chen, Wei [Microelectronics Centre, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore)

    2012-04-09

    We demonstrate the converse flexoelectric effect in a lead zirconate titanate microbeam. The fringe electric field of a comb electrode induces converse flexoelectric responses in uniformly poled and depoled beams. The simulated electric field distribution shows that bending of the beam is induced by piezoelectric and μ{sub 11}, μ{sub 12} flexoelectric coefficients. Simulations indicate that piezoelectric displacement occurs in different directions in the two opposite poled samples while flexoelectric displacement remains the same. This finding is verified by the displacement measurement results. -- Highlights: ► We demonstrate the converse flexoelectric effect in a PZT microbeam. ► Beams with upward and downward poling states are fabricated by MEMS technique. ► Converse flexoelectric deformation is induced by the fringe field. ► Electric field distribution is calculated by finite element analysis. ► The simulation results are verified by impedance and displacement measurements.

  5. Investigations of Effect of Rotary EDM Electrode on Machining Performance of Al6061 Alloy

    Science.gov (United States)

    Robinson Smart, D. S.; Jenish Smart, Joses; Periasamy, C.; Ratna Kumar, P. S. Samuel

    2018-04-01

    Electric Discharge Machining is an essential process which is being used for machining desired shape using electrical discharges which creates sparks. There will be electrodes subjected to electric voltage and which are separated by a dielectric liquid. Removing of material will be due to the continuous and rapid current discharges between two electrodes.. The spark is very carefully controlled and localized so that it only affects the surface of the material. Usually in order to prevent the defects which are arising due to the conventional machining, the Electric Discharge Machining (EDM) machining is preferred. Also intricate and complicated shapes can be machined effectively by use of Electric Discharge Machining (EDM). The EDM process usually does not affect the heat treat below the surface. This research work focus on the design and fabrication of rotary EDM tool for machining Al6061alloy and investigation of effect of rotary tool on surface finish, material removal rate and tool wear rate. Also the effect of machining parameters of EDM such as pulse on & off time, current on material Removal Rate (MRR), Surface Roughness (SR) and Electrode wear rate (EWR) have studied. Al6061 alloy can be used for marine and offshore applications by reinforcing some other elements. The investigations have revealed that MRR (material removal rate), surface roughness (Ra) have been improved with the reduction in the tool wear rate (TWR) when the tool is rotating instead of stationary. It was clear that as rotary speed of the tool is increasing the material removal rate is increasing with the reduction of surface finish and tool wear rate.

  6. Computing anode heating voltage in high-pressure arc discharges and modelling rod electrodes in dc and ac regimes

    International Nuclear Information System (INIS)

    Almeida, N A; Cunha, M D; Benilov, M S

    2017-01-01

    Numerical modelling of near-anode layers in arc discharges in several gases (Ar, Xe and Hg) is performed in a wide range of current densities, anode surface temperatures, and plasma pressures. It is shown that the density of energy flux to the anode is only weakly affected by the anode surface temperature and varies linearly with the current density. This allows one to interpret the results in terms of anode heating voltage (volt equivalent of the heat flux to the anode). The computed data may be useful in different ways. An example considered in this work concerns the evaluation of thermal regime of anodes in the shape of a thin rod operating in the diffuse mode. Invoking the model of nonlinear surface heating for cathodes, one obtains a simple and free of empirical parameters model of thin rod electrodes applicable to dc and ac high-pressure arcs provided that no anode spots are present. The model is applied to a variety of experiments reported in the literature and a good agreement with the experimental data found. (paper)

  7. Effects of Electrode Material on the Voltage of a Tree-Based Energy Generator.

    Science.gov (United States)

    Hao, Zhibin; Wang, Guozhu; Li, Wenbin; Zhang, Junguo; Kan, Jiangming

    2015-01-01

    The voltage between a standing tree and its surrounding soil is regarded as an innovative renewable energy source. This source is expected to provide a new power generation system for the low-power electrical equipment used in forestry. However, the voltage is weak, which has caused great difficulty in application. Consequently, the development of a method to increase the voltage is a key issue that must be addressed in this area of applied research. As the front-end component for energy harvesting, a metal electrode has a material effect on the level and stability of the voltage obtained. This study aimed to preliminarily ascertain the rules and mechanisms that underlie the effects of electrode material on voltage. Electrodes of different materials were used to measure the tree-source voltage, and the data were employed in a comparative analysis. The results indicate that the conductivity of the metal electrode significantly affects the contact resistance of the electrode-soil and electrode-trunk contact surfaces, thereby influencing the voltage level. The metal reactivity of the electrode has no significant effect on the voltage. However, passivation of the electrode materials markedly reduces the voltage. Suitable electrode materials are demonstrated and recommended.

  8. Effects of Electrode Material on the Voltage of a Tree-Based Energy Generator.

    Directory of Open Access Journals (Sweden)

    Zhibin Hao

    Full Text Available The voltage between a standing tree and its surrounding soil is regarded as an innovative renewable energy source. This source is expected to provide a new power generation system for the low-power electrical equipment used in forestry. However, the voltage is weak, which has caused great difficulty in application. Consequently, the development of a method to increase the voltage is a key issue that must be addressed in this area of applied research. As the front-end component for energy harvesting, a metal electrode has a material effect on the level and stability of the voltage obtained. This study aimed to preliminarily ascertain the rules and mechanisms that underlie the effects of electrode material on voltage. Electrodes of different materials were used to measure the tree-source voltage, and the data were employed in a comparative analysis. The results indicate that the conductivity of the metal electrode significantly affects the contact resistance of the electrode-soil and electrode-trunk contact surfaces, thereby influencing the voltage level. The metal reactivity of the electrode has no significant effect on the voltage. However, passivation of the electrode materials markedly reduces the voltage. Suitable electrode materials are demonstrated and recommended.

  9. Effect of electrodes in the radiation induced conductivity for polymers

    International Nuclear Information System (INIS)

    Gregorio Filho, R.; Gross, B.

    1988-01-01

    Samples of PET with 23 μm thickness were exposed to continuous X-rays and the radiation-induced conductivity (RIC) as a function of time were measured, using electrodes of evaporated aluminum and gold. The results showed that the use of higher atomic number metal electrodes increase the received dose rate by sample, without almost modifying the time evolution of the RIC or its dependence with the applied electric field intensity. It is also showed that this increase is caused by the electrode placed in the face of the sample where the radiation strikes, as well as by the one placed in the oposite face. (author) [pt

  10. Effect of process parameters on temperature distribution in twin-electrode TIG coupling arc

    International Nuclear Information System (INIS)

    Zhang, Guangjun; Xiong, Jun; Gao, Hongming; Wu, Lin

    2012-01-01

    The twin-electrode TIG coupling arc is a new type of welding heat source, which is generated in a single welding torch that has two tungsten electrodes insulated from each other. This paper aims at determining the distribution of temperature for the coupling arc using the Fowler–Milne method under the assumption of local thermodynamic equilibrium. The influences of welding current, arc length, and distance between both electrode tips on temperature distribution of the coupling arc were analyzed. Based on the results, a better understanding of the twin-electrode TIG welding process was obtained. -- Highlights: ► Increasing arc current will increase the coupling arc temperature. ► Arc length seldom affects the peak temperature of the coupling arc. ► Increasing arc length will increase the extension of temperature near the anode. ► Increasing distance will decrease temperatures in the central part of the arc.

  11. Effects of Pretreatment Methods on Electrodes and SOFC Performance

    Directory of Open Access Journals (Sweden)

    Guo-Bin Jung

    2014-06-01

    Full Text Available Commercially available tapes (anode, electrolyte and paste (cathode were choosen to prepare anode-supported cells for solid oxide fuel cell applications. For both anode-supported cells or electrolyte-supported cells, the anode needs pretreatment to reduce NiO/YSZ to Ni/YSZ to increase its conductivity as well as its catalytic characteristics. In this study, the effects of different pretreatments (open-circuit, closed-circuit on cathode and anodes as well as SOFC performance are investigated. To investigate the influence of closed-circuit pretreatment on the NiO/YSZ anode alone, a Pt cathode is utilized as reference for comparison with the LSM cathode. The characterization of the electrical resistance, AC impedance, and SOFC performance of the resulting electrodes and/or anode-supported cell were carried out. It’s found that the influence of open-circuit pretreatment on the LSM cathode is limited. However, the influence of closed-circuit pretreatment on both the LSM cathode and NiO/YSZ anode and the resulting SOFC performance is profound. The effect of closed-circuit pretreatment on the NiO/YSZ anode is attributed to its change of electronic/pore structure as well as catalytic characteristics. With closed-circuit pretreatment, the SOFC performance improved greatly from the change of LSM cathode (and Pt reference compared to the Ni/YSZ anode.

  12. Effect of top electrode material on radiation-induced degradation of ferroelectric thin film structures

    Energy Technology Data Exchange (ETDEWEB)

    Brewer, Steven J.; Bassiri-Gharb, Nazanin [G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Deng, Carmen Z.; Callaway, Connor P. [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Paul, McKinley K. [G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Woodward Academy, College Park, Georgia 30337 (United States); Fisher, Kenzie J. [G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Riverwood International Charter School, Atlanta, Georgia 30328 (United States); Guerrier, Jonathon E.; Jones, Jacob L. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Rudy, Ryan Q.; Polcawich, Ronald G. [Army Research Laboratory, Adelphi, Maryland 20783 (United States); Glaser, Evan R.; Cress, Cory D. [Naval Research Laboratory, Washington, DC 20375 (United States)

    2016-07-14

    The effects of gamma irradiation on the dielectric and piezoelectric responses of Pb[Zr{sub 0.52}Ti{sub 0.48}]O{sub 3} (PZT) thin film stacks were investigated for structures with conductive oxide (IrO{sub 2}) and metallic (Pt) top electrodes. The samples showed, generally, degradation of various key dielectric, ferroelectric, and electromechanical responses when exposed to 2.5 Mrad (Si) {sup 60}Co gamma radiation. However, the low-field, relative dielectric permittivity, ε{sub r}, remained largely unaffected by irradiation in samples with both types of electrodes. Samples with Pt top electrodes showed substantial degradation of the remanent polarization and overall piezoelectric response, as well as pinching of the polarization hysteresis curves and creation of multiple peaks in the permittivity-electric field curves post irradiation. The samples with oxide electrodes, however, were largely impervious to the same radiation dose, with less than 5% change in any of the functional characteristics. The results suggest a radiation-induced change in the defect population or defect energy in PZT with metallic top electrodes, which substantially affects motion of internal interfaces such as domain walls. Additionally, the differences observed for stacks with different electrode materials implicate the ferroelectric–electrode interface as either the predominant source of radiation-induced effects (Pt electrodes) or the site of healing for radiation-induced defects (IrO{sub 2} electrodes).

  13. Effect of acrylonitrile on the electrode processes ivolving copper cations

    Directory of Open Access Journals (Sweden)

    Viktor F. Vargalyuk

    2016-03-01

    Full Text Available Based on the results of cyclic voltammetry and study of deposits morphology, it has been shown that acrylonitrile does not have significant effect on the mechanism of Cu2+ + 2ē → Cu0 reaction. This distinguishes acrylonitrile from the unsaturated polyfunctional organic substances (acrylic acid, acrylamide which forms stable complexes with Cu2+ ions. Acrylonitrile just inhibits cathodic process by adsorbing on the surface of electrode thus blocking its active sites. But the presence of acrylonitrile significantly changes the mechanism of the anodic process. It has been found that acrylonitrile interacts with surface copper atoms thus forming thermodynamically stable [Cu π-AN]0 π‑complexes. Ionization potential of these π‑complexes is more negative if compare to copper atoms. As the result acceleration of anodic process takes place in the low polarization area. However, since the chemisorption is a slow process the presence of acrylonitrile mainly affects dissolution of the first surface layers of copper atoms. Further ionization of copper atoms runs out directly and requires higher polarization.

  14. Single-Layer Pentacene Field-Effect Transistors Using Electrodes Modified With Self-assembled Monolayers

    NARCIS (Netherlands)

    Asadi, Kamal; Wu, Yu; Gholamrezaie, Fatemeh; Rudolf, Petra; Blom, Paul W. M.

    2009-01-01

    Pentacene field-effect transistor performance can be improved by modifying metal electrodes with self-assembled monolayers. The dominant role in performance is played by pentacene morphology rather than the work function of the modified electrodes. With optimized processing conditions,

  15. Transport phenomena in solid oxide fuel cell electrodes focusing on heat transfer related to chemical reactions

    International Nuclear Information System (INIS)

    Navasa, M; Andersson, M; Yuan, J; Sundén, B

    2012-01-01

    Solid oxide fuel cells (SOFCs) are widely studied for their advantages especially at high temperatures. However, operating at high temperatures represents a high cost due to the strict requirements the materials are expected to fulfill. Thus, the main goal in SOFC research has been to decrease the operating temperature so that the range of available materials is widened and hence, the operating cost can be reduced. In this paper, the different heat sources that contribute to the cell energy balance are presented with strong emphasis on the chemical reactions that take place in SOFCs. The knowledge of which heat sources or sinks taking place and their locations within the SOFC can provide useful information for further design and efficiency improvements.

  16. Effect of shape and resistivity of electrodes in a Faraday MHD duct

    International Nuclear Information System (INIS)

    Jayakumar, R.; Ghosh, S.

    1976-01-01

    The object of achieving uniform current distribution in the presence of high axial fields has prompted the use of resistive electrodes in flat and wedge geometries. In the case of flat geometry the technique involves the generation of voltage drop along the surface of the electrodes in the axial direction, due to the Faraday current collected by the electrode and flowing into a lead wire, to reduce or eliminate the discontinuity in the axial electrical field that would otherwise occur, say in case of metal electrodes. In the case of wedge shapes, higher resistance path is provided for the regions where current is likely to concentrate. In the case of flat geometry, the effect of the position of lead wire also influences the current distribution in the plasma and on the electrode surface. The resistive electrodes have been investigated for the actual current distribution by numerically solving the Laplace's equation for current stream function, arising out of Maxwell's equation and generalised Ohm's law. In the case of wedge electrode, the solution has been sought by numerical analysis of both plasma and electrode zones. It is shown that both geometries, the flat geometry with a lead wire shifted optimally from one edge and the wedge electrode can almost eliminate current concentration. (author)

  17. Effects of Flexible Dry Electrode Design on Electrodermal Activity Stimulus Response Detection.

    Science.gov (United States)

    Haddad, Peter A; Servati, Amir; Soltanian, Saeid; Ko, Frank; Servati, Peyman

    2017-12-01

    The focus of this research is to evaluate the effects of design parameters including surface area, distance between and geometry of dry flexible electrodes on electrodermal activity (EDA) stimulus response detection. EDA is a result of the autonomic nervous system being stimulated, which causes sweat and changes the electrical characteristics of the skin. Standard silver/silver chloride (Ag/AgCl) EDA electrodes are rigid and lack conformability in contact with skin. In this study, flexible dry Ag/AgCl EDA electrodes were fabricated on a compliant substrate, used to monitor EDA stimulus responses and compared to results simultaneously collected by rigid dry Ag/AgCl electrodes. A repeatable fabrication process for flexible Ag/AgCl electrodes has been established. Surface area, distance between and geometry of electrodes are shown to affect the detectability of the EDA response and the minimum number of sweat glands to be covered by the electrodes has been estimated at 140, or more, in order to maintain functionality. The optimal flexible EDA electrode is a serpentine design with a 0.15 cm 2 surface area and a 0.20 cm distance with an average Pearson correlation coefficient of . Fabrication of flexible electrodes is described and an understanding of the effects of electrode designs on the EDA stimulus response detection has been established and is potentially related to the coverage of sweat glands. This work presents a novel systematic approach to understand the effects of electrode designs on monitoring EDA which is of importance for the design of wearable EDA monitoring devices.

  18. New Supercapacitors Based on the Synergetic Redox Effect between Electrode and Electrolyte

    Directory of Open Access Journals (Sweden)

    You Zhang

    2016-08-01

    Full Text Available Redox electrolytes can provide significant enhancement of capacitance for supercapacitors. However, more important promotion comes from the synergetic effect and matching between the electrode and electrolyte. Herein, we report a novel electrochemical system consisted of a polyanilline/carbon nanotube composite redox electrode and a hydroquinone (HQ redox electrolyte, which exhibits a specific capacitance of 7926 F/g in a three-electrode system when the concentration of HQ in H2SO4 aqueous electrolyte is 2 mol/L, and the maximum energy density of 114 Wh/kg in two-electrode symmetric configuration. Moreover, the specific capacitance retention of 96% after 1000 galvanostatic charge/discharge cycles proves an excellent cyclic stability. These ultrahigh performances of the supercapacitor are attributed to the synergistic effect both in redox polyanilline-based electrolyte and the redox hydroquinone electrode.

  19. Electrode Cooling Effect on Out-Of-Phase Electrothermal Streaming in Rotating Electric Fields

    Directory of Open Access Journals (Sweden)

    Weiyu Liu

    2017-11-01

    Full Text Available In this work, we focus on investigating electrothermal flow in rotating electric fields (ROT-ETF, with primary attention paid to the horizontal traveling-wave electrothermal (TWET vortex induced at the center of the electric field. The frequency-dependent flow profiles in the microdevice are analyzed using different heat transfer models. Accordingly, we address in particular the importance of electrode cooling in ROT-ETF as metal electrodes of high thermal conductivity, while substrate material of low heat dissipation capability is employed to develop such microfluidic chips. Under this circumstance, cooling of electrode array due to external natural convection on millimeter-scale electrode pads for external wire connection occurs and makes the internal temperature maxima shift from the electrode plane to a bit of distance right above the cross-shaped interelectrode gaps, giving rise to reversal of flow rotation from a typical repulsion-type to attraction-type induction vortex, which is in good accordance with our experimental observations of co-field TWET streaming at frequencies in the order of reciprocal charge relaxation time of the bulk fluid. These results point out a way to make a correct interpretation of out-of-phase electrothermal streaming behavior, which holds great potential for handing high-conductivity analytes in modern microfluidic systems.

  20. Effect of multipactor conditioning on technical electrode surfaces

    International Nuclear Information System (INIS)

    Graves, T. P.; Spektor, R.; Stout, P.

    2009-01-01

    Historically, multipactor conditioning has been utilized to remove surface contaminants from rf electrodes by electron-stimulated gas desorption, and such conditioning has been shown to reduce multipactor susceptibility. Multipactor threshold improvements are due to increasing E 1 , the minimum energy for the secondary electron coefficient, δ>1, such that resonant electrons are incapable of producing discharge-sustaining secondary emission. Using an rf amplitude sweep technique, the evolution of the multipactor threshold is measured as a function of multipactor conditioning time for a series of technical electrode surfaces. Results show over +3 dB of threshold improvement in copper and gold electrodes, while the aluminum threshold actually decreases with conditioning exposure. Additionally, these conditioning results indicate the possible voltage region for transient-mode multipaction (TMM), which can cause significant risk to rf systems such as space satellite components for which in-situ conditioning is generally not possible. Experimental results and supporting Monte Carlo particle tracking simulation results are presented.

  1. Effect of annealing over optoelectronic properties of graphene based transparent electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Shriniwas, E-mail: sniwas89@gmail.com; Kaur, Inderpreet, E-mail: inderpreety@yahoo.co.in [Academy of Scientific and Innovative Research- Central Scientific Instruments Organisation (AcSIR-CSIO), Sector-30C, Chandigarh (India); Council of Scientific and Industrial Research- Central Scientific Instruments Organisation (CSIR-CSIO), Sector-30C, Chandigarh (India)

    2016-04-13

    Graphene, an atom–thick two dimensional graphitic material have led various fundamental breakthroughs in the field of science and technology. Due to their exceptional optical, physical and electrical properties, graphene based transparent electrodes have shown several applications in organic light emitting diodes, solar cells and thin film transistors. Here, we are presenting effect of annealing over optoelectronic properties of graphene based transparent electrodes. Graphene based transparent electrodes have been prepared by wet chemical approach over glass substrates. After fabrication, these electrodes tested for optical transmittance in visible region. Sheet resistance was measured using four probe method. Effect of thermal annealing at 200 °C was studied over optical and electrical performance of these electrodes. Optoelectronic performance was judged from ratio of direct current conductivity to optical conductivity (σ{sub dc}/σ{sub opt}) as a figure of merit for transparent conductors. The fabricated electrodes display good optical and electrical properties. Such electrodes can be alternatives for doped metal oxide based transparent electrodes.

  2. Diameter effect on critical heat flux

    International Nuclear Information System (INIS)

    Tanase, A.; Cheng, S.C.; Groeneveld, D.C.; Shan, J.Q.

    2009-01-01

    The critical heat flux look-up table (CHF LUT) is widely used to predict CHF for various applications, including design and safety analysis of nuclear reactors. Using the CHF LUT for round tubes having inside diameters different from the reference 8 mm involves conversion of CHF to 8 mm. Different authors [Becker, K.M., 1965. An Analytical and Experimental Study of Burnout Conditions in Vertical Round Ducts, Aktiebolaget Atomenergie Report AE 177, Sweden; Boltenko, E.A., et al., 1989. Effect of tube diameter on CHF at various two phase flow regimes, Report IPE-1989; Biasi, L., Clerici, G.C., Garriba, S., Sala, R., Tozzi, A., 1967. Studies on Burnout, Part 3, Energia Nucleare, vol. 14, pp. 530-536; Groeneveld, D.C., Cheng, S.C., Doan, T., 1986. AECL-UO critical heat flux look-up table. Heat Transfer Eng., 7, 46-62; Groeneveld et al., 1996; Hall, D.D., Mudawar, I., 2000. Critical heat flux for water flow in tubes - II subcooled CHF correlations. Int. J. Heat Mass Transfer, 43, 2605-2640; Wong, W.C., 1996. Effect of tube diameter on critical heat flux, MaSC dissertation, Ottawa Carleton Institute for Mechanical and Aeronautical Engineering, University of Ottawa] have proposed several types of correlations or factors to describe the diameter effect on CHF. The present work describes the derivation of new diameter correction factor and compares it with several existing prediction methods

  3. Cermet electrode

    Science.gov (United States)

    Maskalick, Nicholas J.

    1988-08-30

    Disclosed is a cermet electrode consisting of metal particles of nickel, cobalt, iron, or alloys or mixtures thereof immobilized by zirconia stabilized in cubic form which contains discrete deposits of about 0.1 to about 5% by weight of praseodymium, dysprosium, terbium, or a mixture thereof. The solid oxide electrode can be made by covering a substrate with particles of nickel, cobalt, iron, or mixtures thereof, growing a stabilized zirconia solid oxide skeleton around the particles thereby immobilizing them, contacting the skeleton with a compound of praseodymium, dysprosium, terbium, or a mixture thereof, and heating the skeleton to a temperature of at least 500.degree. C. The electrode can also be made by preparing a slurry of nickel, cobalt, iron, or mixture and a compound of praseodymium, dysprosium, terbium, or a mixture thereof, depositing the slurry on a substrate, heating the slurry to dryness, and growing a stabilized zirconia skeleton around the metal particles.

  4. Surface effects of electrode-dependent switching behavior of resistive random-access memory

    KAUST Repository

    Ke, Jr Jian

    2016-09-26

    The surface effects of ZnO-based resistive random-access memory (ReRAM) were investigated using various electrodes. Pt electrodes were found to have better performance in terms of the device\\'s switching functionality. A thermodynamic model of the oxygen chemisorption process was proposed to explain this electrode-dependent switching behavior. The temperature-dependent switching voltage demonstrates that the ReRAM devices fabricated with Pt electrodes have a lower activation energy for the chemisorption process, resulting in a better resistive switching performance. These findings provide an in-depth understanding of electrode-dependent switching behaviors and can serve as design guidelines for future ReRAM devices.

  5. Effects of carbon additives on the performance of negative electrode of lead-carbon battery

    International Nuclear Information System (INIS)

    Zou, Xianping; Kang, Zongxuan; Shu, Dong; Liao, Yuqing; Gong, Yibin; He, Chun; Hao, Junnan; Zhong, Yayun

    2015-01-01

    Highlights: • The negative electrode sheets are prepared by simulating manufacture condition of negative plates. • The effect of carbon additives on negative electrode sheets is studied by electrochemical method. • Carbon additives in NAM enhance electrochemical properties of the negative sheets. • The negative sheets with 0.5 wt% carbon additive exhibit better electrochemical performance. • The charge-discharge mechanism is discussed in detail according to the experimental results. - Abstract: In this study, carbon additives such as activated carbon (AC) and carbon black (CB) are introduced to the negative electrode to improve its electrochemical performance, the negative electrode sheets are prepared by simulating the negative plate manufacturing process of lead-acid battery, the types and contents of carbon additives in the negative electrode sheets are investigated in detail for the application of lead-carbon battery. The electrochemical performance of negative electrode sheets are measured by chronopotentiometry, galvanostatic charge-discharge and electrochemical impedance spectroscopy, the crystal structure and morphology are characterized by X-ray diffraction and scanning electron microscopy, respectively. The experimental results indicate that the appropriate addition of AC or CB can enhance the discharge capacity and prolong the cycle life of negative electrode sheets under high-rate partial-state-of-charge conditions, AC additive exerts more obvious effect than CB additive, the optimum contents for the best electrochemical performance of the negative electrode sheets are determined as 0.5wt% for both AC and CB. The reaction mechanism of the electrochemical process is also discussed in this paper, the appropriate addition of AC or CB in negative electrode can promote the conversion of PbSO 4 to Pb, suppress the sulfation of negative electrode sheets and reduce the electrochemical reaction resistance

  6. Effect of welding process, type of electrode and electrode core diameter on the tensile property of 304L austenitic stainless steel

    Directory of Open Access Journals (Sweden)

    Akinlabi OYETUNJI

    2014-11-01

    Full Text Available The effect of welding process, type of electrode and electrode core diameter on the tensile property of AISI 304L Austenitic Stainless Steel (ASS was studied. The tensile strength property of ASS welded samples was evaluated. Prepared samples of the ASS were welded under these three various variables. Tensile test was then carried out on the welded samples. It was found that the reduction in ultimate tensile strength (UTS of the butt joint samples increases with increase in core diameter of the electrode. Also, the best electrode for welding 304L ASS is 308L stainless steel-core electrode of 3.2 mm core diameter. It is recommended that the findings of this work can be applied in the chemical, food and oil industries where 304L ASS are predominantly used.

  7. Effects of electrode material and configuration on the characteristics of planar resistive switching devices

    KAUST Repository

    Peng, H.Y.; Pu, L.; Wu, J.C.; Cha, Dong Kyu; Hong, J.H.; Lin, W.N.; Li, Yangyang; Ding, Junfeng; David, A.; Li, K.; Wu, Tao

    2013-01-01

    We report that electrode engineering, particularly tailoring the metal work function, measurement configuration and geometric shape, has significant effects on the bipolar resistive switching (RS) in lateral memory devices based on self-doped SrTiO3

  8. Effects of Symmetrically Arranged Heat Sources on the Heat Release Performance of Extruded-Type Heat Sinks

    Energy Technology Data Exchange (ETDEWEB)

    Ku, Min Ye [Chonbuk National Univ., Chonju (Korea, Republic of)

    2016-02-15

    In this study we investigated the effects of symmetrically arranged heat sources on the heat release performances of extruded-type heat sinks through experiments and thermal fluid simulations. Also, based on the results we suggested a high-efficiency and cost-effective heat sink for a solar inverter cooling system. In this parametric study, the temperatures between heaters on the base plate and the heat release rates were investigated with respect to the arrangements of heat sources and amounts of heat input. Based on the results we believe that the use of both sides of the heat sink is the preferred method for releasing the heat from the heat source to the ambient environment rather than the use of a single side of the heat sink. Also from the results, it is believed that the symmetric arrangement of the heat sources is recommended to achieve a higher rate of heat transfer. From the results of the thermal fluid simulation, it was possible to confirm the qualitative agreement with the experimental results. Finally, quantitative comparison with respect to mass flow rates, heat inputs, and arrangements of the heat source was also performed.

  9. Skin denervation does not alter cortical potentials to surface concentric electrode stimulation: A comparison with laser evoked potentials and contact heat evoked potentials.

    Science.gov (United States)

    La Cesa, S; Di Stefano, G; Leone, C; Pepe, A; Galosi, E; Alu, F; Fasolino, A; Cruccu, G; Valeriani, M; Truini, A

    2018-01-01

    In the neurophysiological assessment of patients with neuropathic pain, laser evoked potentials (LEPs), contact heat evoked potentials (CHEPs) and the evoked potentials by the intraepidermal electrical stimulation via concentric needle electrode are widely agreed as nociceptive specific responses; conversely, the nociceptive specificity of evoked potentials by surface concentric electrode (SE-PREPs) is still debated. In this neurophysiological study we aimed at verifying the nociceptive specificity of SE-PREPs. We recorded LEPs, CHEPs and SE-PREPs in eleven healthy participants, before and after epidermal denervation produced by prolonged capsaicin application. We also used skin biopsy to verify the capsaicin-induced nociceptive nerve fibre loss in the epidermis. We found that whereas LEPs and CHEPs were suppressed after capsaicin-induced epidermal denervation, the surface concentric electrode stimulation of the same denervated skin area yielded unchanged SE-PREPs. The suppression of LEPs and CHEPs after nociceptive nerve fibre loss in the epidermis indicates that these techniques are selectively mediated by nociceptive system. Conversely, the lack of SE-PREP changes suggests that SE-PREPs do not provide selective information on nociceptive system function. Capsaicin-induced epidermal denervation abolishes laser evoked potentials (LEPs) and contact heat evoked potentials (CHEPs), but leaves unaffected pain-related evoked potentials by surface concentric electrode (SE-PREPs). These findings suggest that unlike LEPs and CHEPs, SE-PREPs are not selectively mediated by nociceptive system. © 2017 European Pain Federation - EFIC®.

  10. Effect of porosity and tortuosity of electrodes on carbon polymer soft actuators

    Science.gov (United States)

    S, Sunjai Nakshatharan; Punning, Andres; Johanson, Urmas; Aabloo, Alvo

    2018-01-01

    This work presents an electro-mechanical model and simulation of ionic electroactive polymer soft actuators with a porous carbon electrode, polymer membrane, and ionic liquid electrolyte. An attempt is made to understand the effects of specific properties of the porous electrodes such as porosity and tortuosity on the charge dynamics and mechanical performance of the actuator. The model uses porous electrode theory to study the electrochemical response of the system. The mechanical response of the whole laminate is attributed to the evolution of local stresses caused by diffusion of ions (diffusion-induced stresses or chemical stresses). The model indicates that in actuators with porous electrode, the diffusion coefficient of ions, conductivity of the electrodes, and ionic conductivity in both electrodes and separator are altered significantly. In addition, the model leads to an obvious deduction that the ions that are highly active in terms of mobility will dominate the whole system in terms of resulting mechanical deformation direction and rate of deformation. Finally, to validate the model, simulations are conducted using the finite element method, and the outcomes are compared with the experimental data. Significant effort has been put forward to experimentally measure the key parameters essential for the validation of the model. The results show that the model developed is able to well predict the behavior of the actuator, providing a comprehensive understanding of charge dynamics in ionic polymer actuator with porous electrodes.

  11. The effect of electrodes on 11 acene molecular spin valve: Semi-empirical study

    Science.gov (United States)

    Aadhityan, A.; Preferencial Kala, C.; John Thiruvadigal, D.

    2017-10-01

    A new revolution in electronics is molecular spintronics, with the contemporary evolution of the two novel disciplines of spintronics and molecular electronics. The key point is the creation of molecular spin valve which consists of a diamagnetic molecule in between two magnetic leads. In this paper, non-equilibrium Green's function (NEGF) combined with Extended Huckel Theory (EHT); a semi-empirical approach is used to analyse the electron transport characteristics of 11 acene molecular spin valve. We examine the spin-dependence transport on 11 acene molecular junction with various semi-infinite electrodes as Iron, Cobalt and Nickel. To analyse the spin-dependence transport properties the left and right electrodes are joined to the central region in parallel and anti-parallel configurations. We computed spin polarised device density of states, projected device density of states of carbon and the electrode element, and transmission of these devices. The results demonstrate that the effect of electrodes modifying the spin-dependence behaviours of these systems in a controlled way. In Parallel and anti-parallel configuration the separation of spin up and spin down is lager in the case of iron electrode than nickel and cobalt electrodes. It shows that iron is the best electrode for 11 acene spin valve device. Our theoretical results are reasonably impressive and trigger our motivation for comprehending the transport properties of these molecular-sized contacts.

  12. High performance cermet electrodes

    Science.gov (United States)

    Isenberg, Arnold O.; Zymboly, Gregory E.

    1986-01-01

    Disclosed is a method of increasing the operating cell voltage of a solid oxide electrochemical cell having metal electrode particles in contact with an oxygen-transporting ceramic electrolyte. The metal electrode is heated with the cell, and oxygen is passed through the oxygen-transporting ceramic electrolyte to the surface of the metal electrode particles so that the metal electrode particles are oxidized to form a metal oxide layer between the metal electrode particles and the electrolyte. The metal oxide layer is then reduced to form porous metal between the metal electrode particles and the ceramic electrolyte.

  13. Design of Perovskite Oxides as Anion-Intercalation-Type Electrodes for Supercapacitors: Cation Leaching Effect.

    Science.gov (United States)

    Liu, Yu; Dinh, Jim; Tade, Moses O; Shao, Zongping

    2016-09-14

    Oxygen ions can be exploited as a charge carrier to effectively realize a new type of anion-intercalation supercapacitor. In this study, to get some useful guidelines for future materials development, we comparatively studied SrCoO3-δ (SC), Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF), and Co3O4 as electrodes in supercapacitors with aqueous alkaline electrolyte. The effect of interaction between the electrode materials with the alkaline solution was focused on the structure and specific surface area of the electrode material, and ultimately the electrochemical performance was emphasized. Both BSCF and SC were found to experience cation leaching in alkaline solution, resulting in an increase in the specific surface area of the material, but overleaching caused the damage of perovskite structure of BSCF. Barium leaching was more serious than strontium, and the cation leaching was component dependent. Although high initial capacitance was achieved for BSCF, it was not a good candidate as intercalation-type electrode for supercapacitor because of poor cycling stability from serious Ba(2+) and Sr(2+) leaching. Instead, SC was a favorable electrode candidate for practical use in supercapacitors due to its high capacity and proper cation leaching capacity, which brought beneficial effect on cycling stability. It is suggested that cation leaching effect should be seriously considered in the development of new perovskite materials as electrodes for supercapacitors.

  14. Numerical study of the effects of carbon felt electrode compression in all-vanadium redox flow batteries

    International Nuclear Information System (INIS)

    Oh, Kyeongmin; Won, Seongyeon; Ju, Hyunchul

    2015-01-01

    Highlights: • The effects of electrode compression on VRFB are examined. • The electronic conductivity is improved when the compression is increased. • The kinetic losses are similar regardless of the electrode compression level. • The vanadium distribution is more uniform within highly compressed electrode. - Abstract: The porous carbon felt electrode is one of the major components of all-vanadium redox flow batteries (VRFBs). These electrodes are necessarily compressed during stack assembly to prevent liquid electrolyte leakage and diminish the interfacial contact resistance among VRFB stack components. The porous structure and properties of carbon felt electrodes have a considerable influence on the electrochemical reactions, transport features, and cell performance. Thus, a numerical study was performed herein to investigate the effects of electrode compression on the charge and discharge behavior of VRFBs. A three-dimensional, transient VRFB model developed in a previous study was employed to simulate VRFBs under two degrees of electrode compression (10% vs. 20%). The effects of electrode compression were precisely evaluated by analysis of the solid/electrolyte potential profiles, transfer current density, and vanadium concentration distributions, as well as the overall charge and discharge performance. The model predictions highlight the beneficial impact of electrode compression; the electronic conductivity of the carbon felt electrode is the main parameter improved by electrode compression, leading to reduction in ohmic loss through the electrodes. In contrast, the kinetics of the redox reactions and transport of vanadium species are not significantly altered by the degree of electrode compression (10% to 20%). This study enhances the understanding of electrode compression effects and demonstrates that the present VRFB model is a valuable tool for determining the optimal design and compression of carbon felt electrodes in VRFBs.

  15. Effects of the transcutaneous electrode temperature on the accuracy of transcutaneous carbon dioxide tension

    DEFF Research Database (Denmark)

    Sørensen, Line C; Brage-Andersen, Lene; Greisen, Gorm

    2011-01-01

    The harmful effect of hypocapnia on the neonatal brain emphasizes the importance of monitoring arterial carbon dioxide tension (PaCO2). Transcutaneous monitoring of carbon dioxide (tcPCO2) reduces the need for arterial blood sampling. Drawbacks are high electrode temperature causing risks of skin...... burning. The aim was to determine the accuracy and precision of tcPCO2 at reduced electrode temperature....

  16. Effects of ion implantation on the electrochemical characteristics of carbon electrodes

    International Nuclear Information System (INIS)

    Takahashi, Katsuo; Iwaki, Masaya

    1994-01-01

    Various carbon materials are important electrode materials for electrochemical field. By ion implantation, the surface layer reforming of carbon materials (mainly galssy carbon) was carried out, and the effect that it exerts to their electrode characteristics was investigated. As the results of the ion implantation of Li, N, O, K, Ti, Zn, Cd and others performed so far, it was found that mainly by the change of the surface layer to amorphous state, there were the effects of the lowering of base current and the lowering of electrode reaction rate, and it was known that the surface layers of carbon materials doped with various kinds of ions showed high chemical stability. The use of carbon materials as electrodes in electrochemistry is roughly divided into the electrodes for electrolytic industry and fuel cells for large current and those for the measurement in electrochemical reaction for small current. The structure of carbon materials and electrode characteristics, and the reforming effect by ion implantation are reported. (K.I.)

  17. Effect of electrode design on crosstalk between neighboring organic field-effect transistors based on one single crystal

    Science.gov (United States)

    Li, Mengjie; Tang, Qingxin; Tong, Yanhong; Zhao, Xiaoli; Zhou, Shujun; Liu, Yichun

    2018-03-01

    The design of high-integration organic circuits must be such that the interference between neighboring devices is eliminated. Here, rubrene crystals were used to study the effect of the electrode design on crosstalk between neighboring organic field-effect transistors (OFETs). Results show that a decreased source/drain interval and gate electrode width can decrease the diffraction distance of the current, and therefore can weaken the crosstalk. In addition, the inherent low carrier concentration in organic semiconductors can create a high-resistance barrier at the space between gate electrodes of neighboring devices, limiting or even eliminating the crosstalk as a result of the gate electrode width being smaller than the source/drain electrode width.

  18. Characterization of Fast-Scan Cyclic Voltammetric Electrodes Using Paraffin as an Effective Sealant with In Vitro and In Vivo Applications.

    Science.gov (United States)

    Ramsson, Eric S; Cholger, Daniel; Dionise, Albert; Poirier, Nicholas; Andrus, Avery; Curtiss, Randi

    2015-01-01

    Fast-scan cyclic voltammetry (FSCV) is a powerful technique for measuring sub-second changes in neurotransmitter levels. A great time-limiting factor in the use of FSCV is the production of high-quality recording electrodes; common recording electrodes consist of cylindrical carbon fiber encased in borosilicate glass. When the borosilicate is heated and pulled, the molten glass ideally forms a tight seal around the carbon fiber cylinder. It is often difficult, however, to guarantee a perfect seal between the glass and carbon. Indeed, much of the time spent creating electrodes is in an effort to find a good seal. Even though epoxy resins can be useful in this regard, they are irreversible (seals are permanent), wasteful (epoxy cannot be reused once hardener is added), hazardous (hardeners are often caustic), and require curing. Herein we characterize paraffin as an electrode sealant for FSCV microelectrodes. Paraffin boasts the advantages of near-immediate curing times, simplicity in use, long shelf-life and stable waterproof seals capable of withstanding extended cycling. Borosilicate electrode tips were left intact or broken and dipped in paraffin embedding wax. Excess wax was removed from the carbon surface with xyelenes or by repeated cycling at an extended waveform (-0.4 to 1.4V, 400 V/s, 60 Hz). Then, the waveform was switched to a standard waveform (-0.4 to 1.3V, 400 V/s, 10 Hz) and cycled until stable. Wax-sealing does not inhibit electrode sensitivity, as electrodes detected linear changes in dopamine before and after wax (then xylenes) exposure. Paraffin seals are intact after 11 days of implantation in the mouse, and still capable of measuring transient changes in in vivo dopamine. From this it is clear that paraffin wax is an effective sealant for FSCV electrodes that provides a convenient substitute to epoxy sealants.

  19. Effect of electrode mass ratio on aging of activated carbon based supercapacitors utilizing organic electrolytes

    Science.gov (United States)

    Cericola, D.; Kötz, R.; Wokaun, A.

    2011-03-01

    The accelerated degradation of carbon based supercapacitors utilizing 1 M Et4NBF4 in acetonitrile and in propylene carbonate as electrolyte is investigated for a constant cell voltage of 3.5 V as a function of the positive over total electrode mass ratio. The degradation rate of the supercapacitor using acetonitrile as a solvent can be decreased by increasing the mass of the positive electrode. With a mass ratio (positive electrode mass/total electrode mass) of 0.65 the degradation rate is minimum. For the capacitor utilizing propylene carbonate as a solvent a similar effect was observed. The degradation rate was smallest for a mass ratio above 0.5.

  20. Reversible Decomposition of Secondary Phases in BaO Infiltrated LSM Electrodes-Polarization Effects

    DEFF Research Database (Denmark)

    Traulsen, Marie Lund; McIntyre, Melissa D.; Norrman, Kion

    2016-01-01

    and Raman spectroscopy reveal the formation of a secondary phase, Ba3Mn2O8, on the electrode. During the in operando Raman investigation of the BaO-infiltrated La0.85Sr0.15MnO3±δ electrodes, experiments are performed at 300 and 500 °C with oxygen partial pressure 0.1 atm and with −1 or +1 V Applied...... for the reduced polarization resistance observed at open Circuit voltage (OCV) in an oxygen containing atmosphere. Furthermore, the results illustrate the dramatic differences between the electrode surface composition at OCV and during cathodic polarization. Overall, the results highlight the dynamic interactions...... between minor secondary phases and applied potential, a general effect that may be important for the high-performance frequently observed with ceramic electrodes prepared by infiltration....

  1. Influence of heat input on weld bead geometry using duplex stainless steel wire electrode on low alloy steel specimens

    Directory of Open Access Journals (Sweden)

    Ajit Mondal

    2016-12-01

    Full Text Available Gas metal arc welding cladding becomes a popular surfacing technique in many modern industries as it enhances effectively corrosion resistance property and wear resistance property of structural members. Quality of weld cladding may be enhanced by controlling process parameters. If bead formation is found acceptable, cladding is also expected to be good. Weld bead characteristics are often assessed by bead geometry, and it is mainly influenced by heat input. In this paper, duplex stainless steel E2209 T01 is deposited on E250 low alloy steel specimens with 100% CO2 gas as shielding medium with different heats. Weld bead width, height of reinforcement and depth of penetration are measured. Regression analysis is done on the basis of experimental data. Results reveal that within the range of bead-on-plate welding experiments done, parameters of welding geometry are on the whole linearly related with heat input. A condition corresponding to 0.744 kJ/mm heat input is recommended to be used for weld cladding in practice.

  2. Can Aerosol Offset Urban Heat Island Effect?

    Science.gov (United States)

    Jin, M. S.; Shepherd, J. M.

    2009-12-01

    The Urban Heat Island effect (UHI) refers to urban skin or air temperature exceeding the temperatures in surrounding non-urban regions. In a warming climate, the UHI may intensify extreme heat waves and consequently cause significant health and energy problems. Aerosols reduce surface insolation via the direct effect, namely, scattering and absorbing sunlight in the atmosphere. Combining the National Aeronautics and Space Administration (NASA) AERONET (AErosol RObotic NETwork) observations over large cities together with Weather Research and Forecasting Model (WRF) simulations, we find that the aerosol direct reduction of surface insolation range from 40-100 Wm-2, depending on seasonality and aerosol loads. As a result, surface skin temperature can be reduced by 1-2C while 2-m surface air temperature by 0.5-1C. This study suggests that the aerosol direct effect is a competing mechanism for the urban heat island effect (UHI). More importantly, both aerosol and urban land cover effects must be adequately represented in meteorological and climate modeling systems in order to properly characterize urban surface energy budgets and UHI.

  3. Effects of electrode settings on chlorine generation efficiency of electrolyzing seawater.

    Science.gov (United States)

    Hsu, Guoo-Shyng Wang; Hsia, Chih-Wei; Hsu, Shun-Yao

    2015-12-01

    Electrolyzed water has significant disinfection effects, can comply with food safety regulations, and is environmental friendly. We investigated the effects of immersion depth of electrodes, stirring, electrode size, and electrode gap on the properties and chlorine generation efficiency of electrolyzing seawater and its storage stability. Results indicated that temperature and oxidation-reduction potential (ORP) of the seawater increased gradually, whereas electrical conductivity decreased steadily in electrolysis. During the electrolysis process, pH values and electric currents also decreased slightly within small ranges. Additional stirring or immersing the electrodes deep under the seawater significantly increased current density without affecting its electric efficiency and current efficiency. Decreasing electrode size or increasing electrode gap decreased chlorine production and electric current of the process without affecting its electric efficiency and current efficiency. Less than 35% of chlorine in the electrolyzed seawater was lost in a 3-week storage period. The decrement trend leveled off after the 1 st week of storage. The electrolyzing system is a convenient and economical method for producing high-chlorine seawater, which will have high potential applications in agriculture, aquaculture, or food processing. Copyright © 2015. Published by Elsevier B.V.

  4. Effects of electrode settings on chlorine generation efficiency of electrolyzing seawater

    Directory of Open Access Journals (Sweden)

    Guoo-Shyng Wang Hsu

    2015-12-01

    Full Text Available Electrolyzed water has significant disinfection effects, can comply with food safety regulations, and is environmental friendly. We investigated the effects of immersion depth of electrodes, stirring, electrode size, and electrode gap on the properties and chlorine generation efficiency of electrolyzing seawater and its storage stability. Results indicated that temperature and oxidation-reduction potential (ORP of the seawater increased gradually, whereas electrical conductivity decreased steadily in electrolysis. During the electrolysis process, pH values and electric currents also decreased slightly within small ranges. Additional stirring or immersing the electrodes deep under the seawater significantly increased current density without affecting its electric efficiency and current efficiency. Decreasing electrode size or increasing electrode gap decreased chlorine production and electric current of the process without affecting its electric efficiency and current efficiency. Less than 35% of chlorine in the electrolyzed seawater was lost in a 3-week storage period. The decrement trend leveled off after the 1st week of storage. The electrolyzing system is a convenient and economical method for producing high-chlorine seawater, which will have high potential applications in agriculture, aquaculture, or food processing.

  5. Investigations on effects of the hole size to fix electrodes and interconnection lines in polydimethylsiloxane

    Science.gov (United States)

    Behkami, Saber; Frounchi, Javad; Ghaderi Pakdel, Firouz; Stieglitz, Thomas

    2017-11-01

    Translational research in bioelectronics medicine and neural implants often relies on established material assemblies made of silicone rubber (polydimethylsiloxane-PDMS) and precious metals. Longevity of the compound is of utmost importance for implantable devices in therapeutic and rehabilitation applications. Therefore, secure mechanical fixation can be used in addition to chemical bonding mechanisms to interlock PDMS substrate and insulation layers with metal sheets for interconnection lines and electrodes. One of the best ways to fix metal lines and electrodes in PDMS is to design holes in electrode rims to allow for direct interconnection between top to bottom layer silicone. Hence, the best layouts and sizes of holes (up to 6) which provide sufficient stability against lateral and vertical forces have been investigated with a variety of numbers of hole in line electrodes, which are simulated and fabricated with different layouts, sizes and materials. Best stability was obtained with radii of 100, 72 and 62 µm, respectively, and a single central hole in aluminum, platinum and MP35N foil line electrodes of 400  ×  500 µm2 size and of thickness 20 µm. The study showed that the best hole size which provides line electrode immobility (of thickness less than 30 µm) within a central hole is proportional to reverse value of Young’s Modulus of the material used. Thus, an array of line electrodes was designed and fabricated to study this effect. Experimental results were compared with simulation data. Subsequently, an approximation curve was generated as design rule to propose the best radius to fix line electrodes according to the material thickness between 10 and 200 µm using PDMS as substrate material.

  6. Morphology Effect of Vertical Graphene on the High Performance of Supercapacitor Electrode.

    Science.gov (United States)

    Zhang, Yu; Zou, Qionghui; Hsu, Hua Shao; Raina, Supil; Xu, Yuxi; Kang, Joyce B; Chen, Jun; Deng, Shaozhi; Xu, Ningsheng; Kang, Weng P

    2016-03-23

    Graphene and its composites are widely investigated as supercapacitor electrodes due to their large specific surface area. However, the severe aggregation and disordered alignment of graphene sheets hamper the maximum utilization of its surface area. Here we report an optimized structure for supercapacitor electrode, i.e., the vertical graphene sheets, which have a vertical structure and open architecture for ion transport pathway. The effect of morphology and orientation of vertical graphene on the performance of supercapacitor is examined using a combination of model calculation and experimental study. Both results consistently demonstrate that the vertical graphene electrode has a much superior performance than that of lateral graphene electrode. Typically, the areal capacitances of a vertical graphene electrode reach 8.4 mF/cm(2) at scan rate of 100 mV/s; this is about 38% higher than that of a lateral graphene electrode and about 6 times higher than that of graphite paper. To further improve its performance, a MnO2 nanoflake layer is coated on the surface of graphene to provide a high pseudocapacitive contribution to the overall areal capacitance which increases to 500 mF/cm(2) at scan rate of 5 mV/s. The reasons for these significant improvements are studied in detail and are attributed to the fast ion diffusion and enhanced charge storage capacity. The microscopic manipulation of graphene electrode configuration could greatly improve its specific capacitance, and furthermore, boost the energy density of supercapacitor. Our results demonstrate that the vertical graphene electrode is more efficient and practical for the high performance energy storage device with high power and energy densities.

  7. Amperometric Detection in Microchip Electrophoresis Devices: Effect of Electrode Material and Alignment on Analytical Performance

    Science.gov (United States)

    Fischer, David J.; Hulvey, Matthew K.; Regel, Anne R.; Lunte, Susan M.

    2012-01-01

    The fabrication and evaluation of different electrode materials and electrode alignments for microchip electrophoresis with electrochemical (EC) detection is described. The influences of electrode material, both metal and carbon-based, on sensitivity and limits of detection (LOD) were examined. In addition, the effects of working electrode alignment on analytical performance (in terms of peak shape, resolution, sensitivity, and LOD) were directly compared. Using dopamine (DA), norepinephrine (NE), and catechol (CAT) as test analytes, it was found that pyrolyzed photoresist electrodes with end-channel alignment yielded the lowest limit of detection (35 nM for DA). In addition to being easier to implement, end-channel alignment also offered better analytical performance than off-channel alignment for the detection of all three analytes. In-channel electrode alignment resulted in a 3.6-fold reduction in peak skew and reduced peak tailing by a factor of 2.1 for catechol in comparison to end-channel alignment. PMID:19802847

  8. The effect of the configuration of a single electrode corona discharge on its acoustic characteristics

    Science.gov (United States)

    Zhu, Xinlei; Zhang, Liancheng; Huang, Yifan; Wang, Jin; Liu, Zhen; Yan, Keping

    2017-07-01

    A new sparker system based on pulsed spark discharge with a single electrode has already been utilized for oceanic seismic exploration. However, the electro-acoustic energy efficiency of this system is lower than that of arc discharge based systems. A simple electrode structure was investigated in order to improve the electro-acoustic energy efficiency of the spark discharge. Experiments were carried out on an experimental setup with discharge in water driven by a pulsed power source. The voltage-current waveform, acoustic signal and bubble oscillation were recorded when the relative position of the electrode varied. The electro-acoustic energy efficiency was also calculated. The load voltage had a saltation for the invaginated electrode tip, namely an obvious voltage remnant. The more the electrode tip was invaginated, the larger the pressure peaks and first period became. The results show that electrode recessing into the insulating layer is a simple and effective way to improve the electro-acoustic energy efficiency from 2% to about 4%.

  9. The effect of SiC powder mixing electrical discharge machining on white layer thickness, heat flux and fatigue life of AISI D2 die steel

    Directory of Open Access Journals (Sweden)

    Ahmed Al-Khazraji

    2016-09-01

    Full Text Available This paper deals with studying the effect of powder mixing electrical discharge machining (PMEDM parameters using copper and graphite electrodes on the white layer thickness (WLT, the total heat flux generated and the fatigue life. Response surface methodology (RSM was used to plan and design the experimental work matrices for two groups of experiments: for the first EDM group, kerosene dielectric was used alone, whereas the second was treated by adding the SiC micro powders mixing to dielectric fluid (PMEDM. The total heat flux generated and fatigue lives after EDM and PMEDM models were developed by FEM using ANSYS 15.0 software. The graphite electrodes gave a total heat flux higher than copper electrodes by 82.4%, while using the SiC powder and graphite electrodes gave a higher total heat flux than copper electrodes by 91.5%. The lowest WLT values of 5.0 µm and 5.57 µm are reached at a high current and low current with low pulse on time using the copper and graphite electrodes and the SiC powder, respectively. This means that there is an improvement in WLT by 134% and 110%, respectively, when compared with the use of same electrodes and kerosene dielectric alone. The graphite electrodes with PMEDM and SiC powder improved the experimental fatigue safety factor by 7.30% compared with the use of copper electrodes and by 14.61% and 18.61% compared with results using the kerosene dielectric alone with copper and graphite electrodes, respectively.

  10. Effect of Start-Up Strategies and Electrode Materials on Carbon Dioxide Reduction on Biocathodes.

    Science.gov (United States)

    Saheb-Alam, Soroush; Singh, Abhijeet; Hermansson, Malte; Persson, Frank; Schnürer, Anna; Wilén, Britt-Marie; Modin, Oskar

    2018-02-15

    The enrichment of CO 2 -reducing microbial biocathodes is challenging. Previous research has shown that a promising approach could be to first enrich bioanodes and then lower the potential so the electrodes are converted into biocathodes. However, the effect of such a transition on the microbial community on the electrode has not been studied. The goal of this study was thus to compare the start-up of biocathodes from preenriched anodes with direct start-up from bare electrodes and to investigate changes in microbial community composition. The effect of three electrode materials on the long-term performance of the biocathodes was also investigated. In this study, preenrichment of acetate-oxidizing bioanodes did not facilitate the start-up of biocathodes. It took about 170 days for the preenriched electrodes to generate substantial cathodic current, compared to 83 days for the bare electrodes. Graphite foil and carbon felt cathodes produced higher current at the beginning of the experiment than did graphite rods. However, all electrodes produced similar current densities at the end of the over 1-year-long study (2.5 A/m 2 ). Methane was the only product detected during operation of the biocathodes. Acetate was the only product detected after inhibition of the methanogens. Microbial community analysis showed that Geobacter sp. dominated the bioanodes. On the biocathodes, the Geobacter sp. was succeeded by Methanobacterium spp., which made up more than 80% of the population. After inhibition of the methanogens, Acetobacterium sp. became dominant on the electrodes (40% relative abundance). The results suggested that bioelectrochemically generated H 2 acted as an electron donor for CO 2 reduction. IMPORTANCE In microbial electrochemical systems, living microorganisms function as catalysts for reactions on the anode and/or the cathode. There is a variety of potential applications, ranging from wastewater treatment and biogas generation to production of chemicals. Systems

  11. Effects of electrode polarization and particle deposition profile on TJ-I plasma confinement

    International Nuclear Information System (INIS)

    Zurro, B.; Tabares, F.; Pardo, C.; Tafalla, D.; Cal, E. de la; Garcia-Castaner, B.; Pedrosa, M.A.; Sanchez, J.; Rodriguez-Yunta, A.

    1991-01-01

    The role of self-created radial electric field on particle confinement in TJ-I plasmas was addressed using plasma rotation data in conjunction with particle confinement times measured by laser ablation. In this paper following the pioneer work of Taylor, we have started to study the influence of a polarized electrode inserted into the plasma on particle confinement and plasma rotation in this ohmically heated tokamak. To have a supportive frame of reference, the confinement time of background particles and their transport into plasma without electrode, has been studied by measuring with space-time resolution the H α emission on varying plasma conditions. These experiments have been carried out in ohmically heated discharges of the TJ-I tokamak (R 0 =30 cm, a=10 cm) which was operated with plasma currents between 20 and 45 kA and a toroidal field ranging from 0.8 to 1.5 T. In this paper, firstly the experimental plasma and specific diagnostics are described, secondly, the parametric dependence of the particle confinement time and radial transport of background plasma is presented and finally, the influence of polarizing an inserted electrode on a particular discharge is given and discussed in the context of other polarization experiments. (author) 7 refs., 4 figs

  12. Osmotic and Heat Stress Effects on Segmentation.

    Directory of Open Access Journals (Sweden)

    Julian Weiss

    Full Text Available During vertebrate embryonic development, early skin, muscle, and bone progenitor populations organize into segments known as somites. Defects in this conserved process of segmentation lead to skeletal and muscular deformities, such as congenital scoliosis, a curvature of the spine caused by vertebral defects. Environmental stresses such as hypoxia or heat shock produce segmentation defects, and significantly increase the penetrance and severity of vertebral defects in genetically susceptible individuals. Here we show that a brief exposure to a high osmolarity solution causes reproducible segmentation defects in developing zebrafish (Danio rerio embryos. Both osmotic shock and heat shock produce border defects in a dose-dependent manner, with an increase in both frequency and severity of defects. We also show that osmotic treatment has a delayed effect on somite development, similar to that observed in heat shocked embryos. Our results establish osmotic shock as an alternate experimental model for stress, affecting segmentation in a manner comparable to other known environmental stressors. The similar effects of these two distinct environmental stressors support a model in which a variety of cellular stresses act through a related response pathway that leads to disturbances in the segmentation process.

  13. Effectiveness of a heat exchanger in a heat pump clothes dryer

    Science.gov (United States)

    Nasution, A. H.; Sembiring, P. G.; Ambarita, H.

    2018-02-01

    This paper deals with study on a heat pump clothes dryer coupled with a heat exchanger. The objective is to explore the effects of the heat exchanger on the performance of the heat pump dryer. The heat pump dryer consists of a vapor compression cycle and integrated with a drying room with volume 1 m3. The power of compressor is 800 Watt and the refrigerant of the cycle is R22. The heat exchanger is a flat plate type with dimensions of 400 mm × 400 mm × 400 mm. The results show the present of the heat exchanger increase the performance of the heat pump dryer. In the present experiment the COP, TP and SMER increase 15.11%, 4.81% and 58.62%, respectively. This is because the heat exchanger provides a better drying condition in the drying room with higher temperature and lower relative humidity in comparison with heat pump dryer without heat exchanger. The effectiveness of the heat exchanger is also high, it is above 50%. It is suggested to install a heat exchanger in a heat pump dryer.

  14. Effect of Graphite Electrode to Surface’s Characteristic of EDM

    Directory of Open Access Journals (Sweden)

    Muttamara Apiwat

    2016-01-01

    Full Text Available Electrical discharge machining process (EDM is a process for removing material by the thermal of electrical discharge. Some of the melted and all of the evaporated material is then quenched and flushed away by dielectric liquid and the remaining melt recast on the finished surface. The recast layer is called as white layer. Beneath the recast layer, a heat affected zone is formed. The quality of an EDM product is usually evaluated in terms of its surface integrity, which is characterized by the surface roughness, existence of surface cracks and residual stresses. This paper presents a study of surface’s characteristics by EDM in de-ionized water due to decarbonisation. The machining tests were conducted on mild steel JIS grade SS400 with copper and graphite electrodes. The workpiece surfaces are analyzed by scanning electron microscope and XRD technique. The carbon transfers from graphite electrode to the white layer relating to martensitic phrase of recast layer.

  15. Study on the Effect of the Three-Dimensional Electrode in Degradation of Methylene Blue by Lithium Modified Rectorite

    Directory of Open Access Journals (Sweden)

    Jian Huang

    2016-01-01

    Full Text Available This study presents the electrochemical degradation of methylene blue (MB wastewater in a synthetic solution using three-dimensional particle electrodes. The novel particle electrodes were fabricated in this work using the lithium modified rectorite (Li-REC. The adsorption property of the fabricated particle electrodes was studied in a series of experiments. The optimum electrochemical operating conditions of plate distance, cell voltage, and concentration of electrolyte were 2 cm, 9 V, and 0.06 mol L−1, respectively. It was also found that microwave irradiation can effectively improve the adsorption property and electrical property of the fabricated electrodes. In addition, the scanning electron microscope (SEM of the fabricated electrodes was investigated. The experimental results revealed the order of adsorption property and electrical property of the fabricated electrodes. So, fabricated electrodes are not only of low cost and mass produced, but also efficient to achieve decolorization of MB solution.

  16. Derivation of effectiveness-NTU method for heat exchangers with heat leak; TOPICAL

    International Nuclear Information System (INIS)

    William M. Soyars

    2001-01-01

    A powerful and useful method for heat exchanger analysis is the effectiveness-NTU method. The equations for this technique presented in textbooks, however, are limited to the case where all of the heat transfer occurs between the two fluid streams. In an application of interest to us, cryogenic heat exchangers, we wish to consider a heat leak term. Thus, we have derived equations for the(var e psilon)-NTU method with heat leak involved. The cases to be studied include evaporators, condensers, and counter-flow, with heat leak both in and out

  17. A Review of Wettability Effect on Boiling Heat Transfer Enhancement

    International Nuclear Information System (INIS)

    Seo, Gwang Hyeok; Jeun, Gyoo Dong; Kim, Sung Joong

    2012-01-01

    Critical heat flux (CHF) and nucleate boiling heat transfer coefficient (NBHTC) are the key parameters characterizing pool boiling heat transfer. These variables are complicatedly related to thermal-hydraulic parameters of surface wettability, nucleation site density, bubble departure diameter and frequency, to mention a few. In essence, wettability effect on pool boiling heat transfer has been a major fuel to enhance the CHF. Often, however, the improved wettability effect hinders the nucleate boiling. Thus a comprehensive review of such wettability effect may enlighten a further study in this boiling heat transfer area. Phan et al. described surface wettability effects on boiling heat transfer

  18. Effects of Pulse Width and Electrode Placement on the Efficacy and Cognitive Effects of Electroconvulsive Therapy

    Science.gov (United States)

    Sackeim, Harold A.; Prudic, Joan; Nobler, Mitchell S.; Fitzsimons, Linda; Lisanby, Sarah H.; Payne, Nancy; Berman, Robert M.; Brakemeier, Eva-Lotta; Perera, Tarique; Devanand, D. P.

    2009-01-01

    BACKGROUND While electroconvulsive therapy (ECT) in major depression is effective, cognitive effects limit its use. Reducing the width of the electrical pulse and using the right unilateral electrode placement may decrease adverse cognitive effects, while preserving efficacy. METHODS In a double-masked study, we randomly assigned 90 depressed patients to right unilateral ECT at 6 times seizure threshold or bilateral ECT at 2.5 times seizure threshold, using either a traditional brief pulse (1.5 ms) or an ultrabrief pulse (0.3 ms). Depressive symptoms and cognition were assessed before, during, and immediately, two, and six months after therapy. Patients who responded were followed for a one-year period. RESULTS The final remission rate for ultrabrief bilateral ECT was 35 percent, compared with 73 percent for ultrabrief unilateral ECT, 65 percent for standard pulse width bilateral ECT, and 59 percent for standard pulse width unilateral ECT (all P’stherapy. Both the ultrabrief stimulus and right unilateral electrode placement produced less short- and long-term retrograde amnesia. Patients rated their memory deficits as less severe following ultrabrief right unilateral ECT compared to each of the other three conditions (P<0.001). CONCLUSIONS The use of an ultrabrief stimulus markedly reduces adverse cognitive effects, and when coupled with markedly suprathreshold right unilateral ECT, also preserves efficacy. (ClinicalTrials.gov number, NCT00487500.) PMID:19756236

  19. Role of heat on the development of electrochemical sensors on bare and modified Co3O4/CuO composite nanopowder carbon paste electrodes.

    Science.gov (United States)

    Kumar, Mohan; Kumara Swamy, B E

    2016-01-01

    The Co3O4/CuO composite nanopowder (NP) was synthesized by a mechanochemical method and characterized by using powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS). The synthesized Co3O4/CuO NP was used as a modified carbon paste electrode (MCPE) and further the bare carbon paste and Co3O4/CuO NP modified carbon paste was heated at different temperatures (100, 150, 200 and 250 °C) for 10 min. The Co3O4/CuO NP MCPE was used to study the consequences of scan rate and dopamine concentration. Furthermore the preheated modified electrodes were used to study the electrochemical response to dopamine (DA), ascorbic acid (AA) and uric acid (UA). Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Effects of heat treatment on the radiosensitivity of Salmonellae

    International Nuclear Information System (INIS)

    Choi, E.H.; Yang, J.S.; Lee, S.R.

    1978-01-01

    When the food poisoning bacteria Salmonella enteritidis and S. typhimurium were treated with radiation (cobalt-60 γ-rays) and heat (10 minutes at 45 0 C or 50 0 C), their sterilizing effect was revealed differently depending on the order of treatments. Post-irradiation heating showed a synergistic effect whereas pre-irradiation heating revealed the opposite effect and the effects differed slightly with heating temperature. (author)

  1. A new approach for the evaluation of the effective electrode spacing in spherical ion chambers

    Energy Technology Data Exchange (ETDEWEB)

    Maghraby, Ahmed M., E-mail: maghrabism@yahoo.com [National Institute of Standards (NIS), Ionizing Radiation Metrology Laboratory, Tersa Street 12211, Giza P.O. Box: 136 (Egypt); Shqair, Mohammed [Physics Department, Faculty of Science and Humanities, Sattam Bin Abdul Aziz University, Alkharj (Saudi Arabia)

    2016-10-21

    Proper determination of the effective electrode spacing (d{sub eff}) of an ion chamber ensures proper determination of its collection efficiency either in continuous or in pulsed radiation in addition to the proper evaluation of the transit time. Boag's method for the determination of d{sub eff} assumes the spherical shape of the internal electrode of the spherical ion chambers which is not always true, except for some cases, its common shape is cylindrical. Current work provides a new approach for the evaluation of the effective electrode spacing in spherical ion chambers considering the cylindrical shape of the internal electrode. Results indicated that d{sub eff} values obtained through current work are less than those obtained using Boag's method by factors ranging from 12.1% to 26.9%. Current method also impacts the numerically evaluated collection efficiency (f) where values obtained differ by factors up to 3% at low potential (V) values while at high V values minor differences were noticed. Additionally, impacts on the evaluation of the transit time (τ{sub i}) were obtained. It is concluded that approximating the internal electrode as a sphere may result in false values of d{sub eff}, f, and τ{sub i}.

  2. Tongue motion variability with changes of upper airway stimulation electrode configuration and effects on treatment outcomes.

    Science.gov (United States)

    Steffen, Armin; Kilic, Ayse; König, Inke R; Suurna, Maria V; Hofauer, Benedikt; Heiser, Clemens

    2017-12-27

    Upper airway stimulation (UAS) is an effective treatment for obstructive sleep apnea (OSA). Previous data have demonstrated a correlation between the phenotype of tongue motion and therapy response. Closed loop hypoglossal nerve stimulation implant offers five different electrode configuration settings which may result in different tongue motion. Two-center, prospective consecutive trial in a university hospital setting. Clinical outcomes of 35 patients were analyzed after at least 12 months of device use. Tongue motion was assessed at various electrode configuration settings. Correlation between the tongue motion and treatment response was evaluated. OSA severity was significantly reduced with the use of UAS therapy (P < .001). Changes in tongue motion patterns were frequently observed (58.8%) with different electrode configuration settings. Most of the patients alternated between right and bilateral protrusion (73.5%), which are considered to be the optimal phenotypes for selective UAS responses. Different voltage settings were required to achieve functional stimulation levels when changing between the electrode settings. UAS is highly effective for OSA treatment in selected patients with an apnea-hypopnea index between 15 and 65 events per hour and higher body mass index. Attention should be given to patients with shifting tongue movement in response to change of electrode configuration. The intraoperative cuff placement should be reassessed when tongue movement shifting is observed. 4 Laryngoscope, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  3. Effects of electrode material and configuration on the characteristics of planar resistive switching devices

    KAUST Repository

    Peng, H.Y.

    2013-11-13

    We report that electrode engineering, particularly tailoring the metal work function, measurement configuration and geometric shape, has significant effects on the bipolar resistive switching (RS) in lateral memory devices based on self-doped SrTiO3 (STO) single crystals. Metals with different work functions (Ti and Pt) and their combinations are used to control the junction transport (either ohmic or Schottky-like). We find that the electric bias is effective in manipulating the concentration of oxygen vacancies at the metal/STO interface, influencing the RS characteristics. Furthermore, we show that the geometric shapes of electrodes (e.g., rectangular, circular, or triangular) affect the electric field distribution at the metal/oxide interface, thus plays an important role in RS. These systematic results suggest that electrode engineering should be deemed as a powerful approach toward controlling and improving the characteristics of RS memories. 2013 Author(s).

  4. Effective Electrochemistry of Human Sulfite Oxidase Immobilized on Quantum-Dots-Modified Indium Tin Oxide Electrode.

    Science.gov (United States)

    Zeng, Ting; Leimkühler, Silke; Koetz, Joachim; Wollenberger, Ulla

    2015-09-30

    The bioelectrocatalytic sulfite oxidation by human sulfite oxidase (hSO) on indium tin oxide (ITO) is reported, which is facilitated by functionalizing of the electrode surface with polyethylenimine (PEI)-entrapped CdS nanoparticles and enzyme. hSO was assembled onto the electrode with a high surface loading of electroactive enzyme. In the presence of sulfite but without additional mediators, a high bioelectrocatalytic current was generated. Reference experiments with only PEI showed direct electron transfer and catalytic activity of hSO, but these were less pronounced. The application of the polyelectrolyte-entrapped quantum dots (QDs) on ITO electrodes provides a compatible surface for enzyme binding with promotion of electron transfer. Variations of the buffer solution conditions, e.g., ionic strength, pH, viscosity, and the effect of oxygen, were studied in order to understand intramolecular and heterogeneous electron transfer from hSO to the electrode. The results are consistent with a model derived for the enzyme by using flash photolysis in solution and spectroelectrochemistry and molecular dynamic simulations of hSO on monolayer-modified gold electrodes. Moreover, for the first time a photoelectrochemical electrode involving immobilized hSO is demonstrated where photoexcitation of the CdS/hSO-modified electrode lead to an enhanced generation of bioelectrocatalytic currents upon sulfite addition. Oxidation starts already at the redox potential of the electron transfer domain of hSO and is greatly increased by application of a small overpotential to the CdS/hSO-modified ITO.

  5. Effect of fractal silver electrodes on charge collection and light distribution in semiconducting organic polymer films

    Energy Technology Data Exchange (ETDEWEB)

    Chamousis, RL; Chang, LL; Watterson, WJ; Montgomery, RD; Taylor, RP; Moule, AJ; Shaheen, SE; Ilan, B; van de Lagemaat, J; Osterloh, FE

    2014-08-21

    Living organisms use fractal structures to optimize material and energy transport across regions of differing size scales. Here we test the effect of fractal silver electrodes on light distribution and charge collection in organic semiconducting polymer films made of P3HT and PCBM. The semiconducting polymers were deposited onto electrochemically grown fractal silver structures (5000 nm x 500 nm; fractal dimension of 1.71) with PEDOT:PSS as hole-selective interlayer. The fractal silver electrodes appear black due to increased horizontal light scattering, which is shown to improve light absorption in the polymer. According to surface photovoltage spectroscopy, fractal silver electrodes outperform the flat electrodes when the BHJ film thickness is large (>400 nm, 0.4 V photovoltage). Photocurrents of up to 200 microamperes cm(-2) are generated from the bulk heterojunction (BHJ) photoelectrodes under 435 nm LED (10-20 mW cm(-2)) illumination in acetonitrile solution containing 0.005 M ferrocenium hexafluorophosphate as the electron acceptor. The low IPCE values (0.3-0.7%) are due to slow electron transfer to ferrocenium ion and due to shunting along the large metal-polymer interface. Overall, this work provides an initial assessment of the potential of fractal electrodes for organic photovoltaic cells.

  6. Effects of floating electrodes on the reliability of electrostrictive ceramic multilayer actuators

    International Nuclear Information System (INIS)

    Kim, Y H; Beom, H G

    2010-01-01

    To investigate the toughness enhancing effect of a floating electrode on an actuator, a conventional actuator and an actuator with a floating electrode are numerically analyzed using the finite element method. Electrostatic analysis is performed for both types of actuators based on an assumption of the mathematical equivalence between out-of-plane deformation and electrostatics. The electric behavior of a ceramic is idealized by the electric displacement saturation model. The numerical results of electric fields and electric displacement fields are obtained from the electrostatic analysis. For both types of actuators, the self-equilibrating stress fields induced by a non-uniform distribution of the electric displacement fields are computed using the finite element method. The stress intensity factors for a flaw-like crack nucleated from the edge of an internal electrode are evaluated for each case. We found that the stress intensity factor for the actuator with a floating electrode is smaller than the factor for the conventional actuator when the length of the flaw-like crack is approximately equal to the grain size. Thus, we conclude that actuators with floating electrodes have higher reliability than conventional actuators

  7. The effects of surface modification on carbon felt electrodes for use in vanadium redox flow batteries

    International Nuclear Information System (INIS)

    Kim, Ki Jae; Kim, Young-Jun; Kim, Jae-Hun; Park, Min-Sik

    2011-01-01

    Highlights: ► We observed the physical and chemical changes on the surface of carbon felts after various surface modifications. ► The surface area and chemistry of functional groups formed on the surface of carbon felt are critical to determine the kinetics of the redox reactions of vanadium ions. ► By incorporation of the surface modifications into the electrode preparation, the electrochemical activity of carbon felts could be notably enhanced. - Abstract: The surface of carbon felt electrodes has been modified for improving energy efficiency of vanadium redox flow batteries. For comparative purposes, the effects of various surface modifications such as mild oxidation, plasma treatment, and gamma-ray irradiation on the electrochemical properties of carbon felt electrodes were investigated at optimized conditions. The cell energy efficiency was improved from 68 to 75% after the mild oxidation of the carbon felt at 500 °C for 5 h. This efficiency improvement could be attributed to the increased surface area of the carbon felt electrode and the formation of functional groups on its surface as a result of the modification. On the basis of various structural and electrochemical characterizations, a relationship between the surface nature and electrochemical activity of the carbon felt electrodes is discussed.

  8. Electrochemical Sensing of Neurotoxic Agents Based on Their Electron Transfer Promotion Effect on an Au Electrode.

    Science.gov (United States)

    Shimada, Hiroshi; Noguchi, Shiori; Yamamoto, Masahiro; Nishiyama, Katsuhiko; Kitamura, Yusuke; Ihara, Toshihiro

    2017-06-06

    An electrochemical molecular sensor based on a new principle is reported. Nereistoxin (NRT, 4-N,N-dimethylamino-1,2-dithiolane), a naturally occurring neurotoxin (nicotinic acetylcholine receptor agonist), was adsorbed on an Au electrode via Au-S covalent bonding and accelerated the electron transfer between the electrode and the marker, ferricyanide anion. The contrast between the electrochemical responses obtained with the bare and NRT-modified Au electrodes was more pronounced at a low ionic strength of the supporting electrolyte, KCl. In the presence of 1 mM KCl, almost a 0/1 contrast between the signals was obtained through electrostatic interaction between the protonated tertiary amino group of NRT and the anionic ferricyanide ion. No current was observed with an electrode modified with mercaptopropionic acid. An unusually low ionic strength thickened the electric double layer to the degree where current was not observed with the bare electrode. The effect of the electrostatic concentration of the marker ion becomes obvious under such conditions. Commercially available NRT-related pesticides such as Cartap and Bensultap were also detected using the same format after pretreatments by hydrolysis/reduction. The present sensing method was successfully applied to human serum with satisfactory sensitivity.

  9. Effect of two dimensional heat conduction within the wall on heat transfer of a tube partially heated on its circumference

    International Nuclear Information System (INIS)

    Satoh, Isao; Kurosaki, Yasuo

    1987-01-01

    This paper dealt with the numerical calculations of the heat transfer of a tube partially heated on its circumference, considering two-dimensional heat conduction within the wall. The contribution of the unheated region of the tube wall to heat tranfer of the heated region was explained by the term of 'fin efficiency of psuedo-fin', it was clarified that the fin efficiency of the unheated region was little affected by the temperature difference between the inner and outer surfaces of the wall, and could be approximated by the fin efficency of a rectangular fin. Both the circumferential and radial heat conductions within the wall affected the temperature difference between the inner and outer surfaces of the heated region; however, the effect of the temperature difference on the circumferentially average Nusselt number could be obtained by using the analytical solution of radially one-dimensional heat conduction. Using these results, a diagram showing the effect of wall conduction on heat transfer, which is useful for designing the circumferentially nonuniformly heated coolant passages, was obtained. (author)

  10. Evaluation of the Scaffolding Effect of Pt Nanowires Supported on Reduced Graphene Oxide in PEMFC Electrodes

    Directory of Open Access Journals (Sweden)

    Peter Mardle

    2018-01-01

    Full Text Available The stacking and overlapping effect of two-dimensional (2D graphene nanosheets in the catalyst coating layer is a big challenge for their practical application in proton exchange membrane fuel cells (PEMFCs. These effects hinder the effective transfer of reactant gases to reach the active catalytic sites on catalysts supported on the graphene surface and the removal of the produced water, finally leading to large mass transfer resistances in practical electrodes and poor power performance. In this work, we evaluate the catalytic power performance of aligned Pt nanowires grown on reduced graphene oxide (rGO (PtNW/rGO as cathodes in 16-cm2 single PEMFCs. The results are compared to Pt nanoparticles deposited on rGO (Pt/rGO and commercial Pt/C nanoparticle catalysts. It is found that the scaffolding effect from the aligned Pt nanowire structure reduces the mass transfer resistance in rGO-based catalyst electrodes, and a nearly double power performance is achieved as compared with the Pt/rGO electrodes. However, although a higher mass activity was observed for PtNW/rGO in membrane electrode assembly (MEA measurement, the power performance obtained at a large current density region is still lower than the Pt/C in PEMFCs because of the stacking effect of rGO.

  11. The effect of direct heating and cooling of heat regulation centers on body temperature

    Science.gov (United States)

    Barbour, H. G.

    1978-01-01

    Experiments were done on 28 rabbits in which puncture instruments were left in the brain for 1-2 days until the calori-puncture hyperthermia had passed and the body temperature was again normal. The instrument remaining in the brain was then used as a galvanic electrode and a second fever was produced, this time due to the electrical stimulus. It was concluded that heat is a centrally acting antipyretic and that cold is a centrally acting stimulus which produces hyperpyrexia cold-induced fever.

  12. Effects of cadmium electrode properties on nickel-cadmium cell performance

    International Nuclear Information System (INIS)

    Zimmerman, A.H.

    1986-01-01

    Tests have been conducted on a number of nickel-cadmium cells that have exhibited a variety of performance problems, ranging from high voltages and pressures during overcharge to low capacity. The performance problems that have been specifically linked to the cadmium electrode are primarily related to two areas, poor sinter and the buildup of excessive pressure during overcharge. A number of specific nickel-cadmium cell and cadmium electrode characterists have been studied in this work to determine what the effects of poor sinter are, and to determine what factors are important in causing excessive pressures during overcharge in cells that otherwise appear normal. Several of the tests appear suitable for screening cells and electrodes for such problems

  13. The effect of illumination and electrode adjustment on the carrier behavior in special multilayer devices

    Science.gov (United States)

    Deng, Yanhong; Ou, Qingdong; Wang, Jinjiang; Zhang, Dengyu; Chen, Liezun; Li, Yanqing

    2017-08-01

    Intermediate connectors play an important role in semiconductor devices, especially in tandem devices. In this paper, four types of different intermediate connectors (e.g. Mg:Alq3/MoO3, MoO3, Mg:Alq3, and none) and two kinds of modified electrode materials (LiF and MoO3) integrated into the special multilayer devices are proposed, with the aim of studying the impact of light illumination and electrode adjustment on the carrier behavior of intermediate connectors through the current density-voltage characteristics, interfacial electronic structures, and capacitance-voltage characteristics. The results show that the illumination enhances the charge generation and separation in intermediate connectors, and further electrode interface modifications enhance the functionality of intermediate connectors. In addition, the device with an efficient intermediate connector structure shows a photoelectric effect, which paves the way for organic photovoltaic devices to realize optical-electrical integration transformation.

  14. Effects of the transcutaneous electrode temperature on the accuracy of transcutaneous carbon dioxide tension

    DEFF Research Database (Denmark)

    Sørensen, Line C; Brage-Andersen, Lene; Greisen, Gorm

    2011-01-01

    The harmful effect of hypocapnia on the neonatal brain emphasizes the importance of monitoring arterial carbon dioxide tension (PaCO2). Transcutaneous monitoring of carbon dioxide (tcPCO2) reduces the need for arterial blood sampling. Drawbacks are high electrode temperature causing risks of skin...

  15. Physiological effects after exposure to heat : A brief literature review

    NARCIS (Netherlands)

    Bogerd, C.P.; Daanen, H.A.M.

    2011-01-01

    Many employees are exposed to heat stress during their work. Although the direct effects of heat are well reported, the long term physiological effects occurring after heat exposure are hardly described. The present manuscript addresses these issues in the form of a brief literature review. Repeated

  16. Empirical Analysis for the Heat Exchange Effectiveness of a Thermoelectric Liquid Cooling and Heating Unit

    Directory of Open Access Journals (Sweden)

    Hansol Lim

    2018-03-01

    Full Text Available This study aims to estimate the performance of thermoelectric module (TEM heat pump for simultaneous liquid cooling and heating and propose empirical models for predicting the heat exchange effectiveness. The experiments were conducted to investigate and collect the performance data of TEM heat pump where the working fluid was water. A total of 57 sets of experimental data were statistically analyzed to estimate the effects of each independent variable on the heat exchange effectiveness using analysis of variance (ANOVA. To develop the empirical model, the six design parameters were measured: the number of transfer units (NTU of the heat exchangers (i.e., water blocks, the inlet water temperatures and temperatures of water blocks at the cold and hot sides of the TEM. As a result, two polynomial equations predicting heat exchange effectiveness at the cold and hot sides of the TEM heat pump were derived as a function of the six selected design parameters. Also, the proposed models and theoretical model of conventional condenser and evaporator for heat exchange effectiveness were compared with the additional measurement data to validate the reliability of the proposed models. Consequently, two conclusions have been made: (1 the possibility of using the TEM heat pump for simultaneous cooling and heating was examined with the maximum temperature difference of 30 °C between cold and hot side of TEM, and (2 it is revealed that TEM heat pump has difference with the conventional evaporator and condenser from the comparison results between the proposed models and theoretical model due to the heat conduction and Joule effect in TEM.

  17. Microstructural Analysis of the Effects of Thermal Runaway on Li-Ion and Na-Ion Battery Electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Finegan, Donal [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Robinson, James B. [University College London; Heenan, Thomas M. M. [University College London; Smith, Katherine [Sharp Laboratories of Europe; Kendrick, Emma [Sharp Laboratories of Europe; University College London; Brett, Daniel J. L. [University College London; Shearing, Paul R. [University College London

    2017-12-06

    Thermal runaway is a phenomenon that occurs due to self-sustaining reactions within batteries at elevated temperatures resulting in catastrophic failure. Here, the thermal runaway process is studied for a Li-ion and Na-ion pouch cells of similar energy density (10.5 Wh, 12 Wh, respectively) using accelerating rate calorimetry (ARC). Both cells were constructed with a z-fold configuration, with a standard shutdown separator in the Li-ion and a low-cost polypropylene (PP) separator in the Na-ion. Even with the shutdown separator, it is shown that the self-heating rate and rate of thermal runaway in Na-ion cells is significantly slower than that observed in Li-ion systems. The thermal runaway event initiates at a higher temperature in Na-ion cells. The effect of thermal runaway on the architecture of the cells is examined using X-ray microcomputed tomography, and scanning electron microscopy (SEM) is used to examine the failed electrodes of both cells. Finally, from examination of the respective electrodes, likely due to the carbonate solvent containing electrolyte, it is suggested that thermal runaway in Na-ion batteries (NIBs) occurs via a similar mechanism to that reported for Li-ion cells.

  18. Effect of finite heat input on the power performance of micro heat engines

    International Nuclear Information System (INIS)

    Khu, Kerwin; Jiang, Liudi; Markvart, Tom

    2011-01-01

    Micro heat engines have attracted considerable interest in recent years for their potential exploitation as micro power sources in microsystems and portable devices. Thermodynamic modeling can predict the theoretical performance that can be potentially achieved by micro heat engine designs. An appropriate model can not only provide key information at the design stage but also indicate the potential room for improvement in existing micro heat engines. However, there are few models reported to date which are suitable for evaluating the power performance of micro heat engines. This paper presents a new thermodynamic model for determining the theoretical limit of power performance of micro heat engines with consideration to finite heat input and heat leakage. By matching the model components to those of a representative heat engine layout, the theoretical power, power density, and thermal efficiency achievable for a micro heat engine can be obtained for a given set of design parameters. The effects of key design parameters such as length and thermal conductivity of the engine material on these theoretical outputs are also investigated. Possible trade-offs among these performance objectives are discussed. Performance results derived from the developed model are compared with those of a working micro heat engine (P3) as an example. -- Highlights: → Thermodynamic model for micro heat engines. → Effect of different parameters on potential performance. → Tradeoffs for determining optimal size of micro engines.

  19. Effect of electrode intrusion on pressure drop and electrochemical performance of an all-vanadium redox flow battery

    Science.gov (United States)

    Kumar, S.; Jayanti, S.

    2017-08-01

    In this paper, we present a study of the effect of electrode intrusion into the flow channel in an all-vanadium redox flow battery. Permeability, pressure drop and electrochemical performance have been measured in a cell with active area 100 cm2and 414 cm2 fitted with a carbon felt electrode of thickness of 3, 6 or 9 mm compressed to 1.5, 2.5 or 4 mm, respectively, during assembly. Results show that the pressure drop is significantly higher than what can be expected in the thick electrode case while its electrochemical performance is lower. Detailed flow analysis using computational fluid dynamics simulations in two different flow fields shows that both these results can be attributed to electrode intrusion into the flow channel leading to increased resistance to electrolyte flow through the electrode. A correlation is proposed to evaluate electrode intrusion depth as a function of compression.

  20. Biological effects of intracorporeal radioisotope heat sources

    International Nuclear Information System (INIS)

    Gillis, M.F.; Decker, J.R.; Karagianes, M.T.

    1976-01-01

    A surface heat flux of 0.04 watts/cm 2 from a retroperitoneal implant with healthy surface ingrowth of tissue prior to generation of heat is intolerable, producing gross tissue necrosis. Percutaneous cooling of hot implants during the post-operative healing period is a feasible technique, but our current plutonium heat source implant design has been proven of inadequate size and a new design is described. Rough calculations based on tissue conductivity and conductance values suggest that even with this larger device, added heat to proximate tissues may produce long-term changes even though the heat burden may be tolerable over relatively short periods

  1. On the ''memory'' effect and its relation to the mechanism of formation of mercury-graphite electrode in inversion voltammetry

    International Nuclear Information System (INIS)

    Nejman, E.Ya.; Petrova, L.G.; Dolgopolova, G.M.; Ignatov, V.I.

    1977-01-01

    Simultaneous discharge ionization of lead-copper and cadmium-copper systems on the surface of mercury-plated graphite and graphite electrodes has been studied. A model is suggested of the preparation process of a mercury-plated graphite electrode obtained in simultaneous electroposition of mercury and elements determined as microimpurities. Processes, which occur on the electrode during relaxation time between electrolysis beginning and formation of the mercury phase, may be probable reasons for mutual effects of elements of the mercury-plated graphite electrode

  2. Cost-effective disposable thiourea film modified copper electrode for capacitive immunosensor

    International Nuclear Information System (INIS)

    Limbut, Warakorn; Thavarungkul, Panote; Kanatharana, Proespichaya; Wongkittisuksa, Booncharoen; Asawatreratanakul, Punnee; Limsakul, Chusak

    2010-01-01

    Cost-effective disposable electrodes were fabricated from copper clad laminate, usually used for printed circuit board (PCB) in electronic industries, by using dry film photoresist. Electro-oxidation (anodisation) was employed to obtain a good formation of thiourea film on the electrode surface. The affinity binding pair of carcinoembryonic antigen (CEA) and anti-carcinoembryonic antigen (anti-CEA) was used as a model system. Anti-CEA was immobilized on thiourea film via covalent coupling. This modified electrode was incorporated with a capacitive system for CEA analysis. This capacitive immunosensor provided a linear range between 0.01 and 10 ng ml -1 with a detection limit of 10 pg ml -1 . When applied to analyze CEA in serum samples, the results agreed well with the enzyme linked fluorescent assay (ELFA) technique (P > 0.05). The proposed strategy for the preparation of disposable modified copper electrode is very cost effective and simple. Moreover, it provides good reproducibility. This technique can easily be applied to immobilize other biological sensing elements for biosensors development.

  3. Effects of electrode size and spacing on sensory modalities in the phantom thumb perception area for the forearm amputees.

    Science.gov (United States)

    Li, P; Chai, G H; Zhu, K H; Lan, N; Sui, X H

    2015-01-01

    Tactile sensory feedback plays a key role in accomplishing the dexterous manipulation of prosthetic hands for the amputees, and the non-invasive transcutaneous electrical nerve stimulation (TENS) of the phantom finger perception (PFP) area would be an effective way to realize sensory feedback clinically. In order to realize the high-spatial-resolution tactile sensory feedback in the PFP region, we investigated the effects of electrode size and spacing on the tactile sensations for potentially optimizing the surface electrode array configuration. Six forearm-amputated subjects were recruited in the psychophysical studies. With the diameter of the circular electrode increasing from 3 mm to 12 mm, the threshold current intensity was enhanced correspondingly under different sensory modalities. The smaller electrode could potentially lead to high sensation spatial resolution. Whereas, the smaller the electrode, the less the number of sensory modalities. For an Φ-3 mm electrode, it is even hard for the subject to perceive any perception modalities under normal stimulating current. In addition, the two-electrode discrimination distance (TEDD) in the phantom thumb perception area decreased with electrode size decreasing in two directions of parallel or perpendicular to the forearm. No significant difference of TEDD existed along the two directions. Studies in this paper would guide the configuration optimization of the TENS electrode array for potential high spatial-resolution sensory feedback.

  4. Effect of nanofluids on thermal performance of heat pipes

    OpenAIRE

    Ferizaj, Drilon; Kassem, Mohamad

    2014-01-01

    A relatively new way for utilizing the thermal performance of heat pipes is to use nanofluids as working fluids in the heat pipes. Heat pipes are effective heat transfer devices in which the nanofluid operates in the two phases, evaporation and condensation. The heat pipe transfers the heat supplied in e.g. a laptop, from the evaporator to condenser part. Nanofluids are mixtures consisting of nanoparticles (e.g. nano-sized silver particles) and a base fluid (e.g. water). The aim of this bache...

  5. Effect of different electrode tip angles with tilted torch in stationary gas tungsten arc welding: A 3D simulation

    International Nuclear Information System (INIS)

    Abid, M.; Parvez, S.; Nash, D.H.

    2013-01-01

    In this study, the effect of different tip angles (30°, 60°, 90° and 120°) on the arc and weld pool behavior is analyzed in 2 mm and 5 mm arc lengths with tilted (70°) torch. Arc temperature, velocity, current density, heat flux and gas shear are investigated in the arc region and pool convection and puddle shapes are studied in the weld pool region. The arc temperature at the tungsten electrode is found the maximum with sharp tip and decreases as the tip angle increases. The arc temperature on the anode (workpiece) surface becomes concentrated with increase in tip angle. The arc velocity and gas shear stress are observed large with sharp tip and decreasing as the tip angle increases. Current density on the anode surface does not change with tip angle and observed almost the same in all the tip angles in both 2 mm and 5 mm arc lengths. Heat flux due to conduction and convection is observed more sensitive to the tip angle and decreases as the tip angle increases. The electromagnetic force is slightly observed increasing and the buoyancy force is observed slightly decreasing with increase in tip angle. Analyzing each driving force in the weld pool individually shows that the gas drag and Marangoni forces are much stronger than the electromagnetic and buoyancy forces. The weld pool shape is observed wide and shallow in sharp and narrow and deep in large tip angle. Increasing the arc length does not change the weld pool width; however, the weld pool depth significantly changes with arc length and is observed deep in short arc length. The arc properties and weld pool shapes are observed wide ahead of the electrode tip in the weld direction due to 70° torch angle. Good agreement is observed between the numerical and experimental weld pool shapes

  6. Temporal variation in the effect of heat and the role of the Italian heat prevention plan.

    Science.gov (United States)

    de'Donato, F; Scortichini, M; De Sario, M; de Martino, A; Michelozzi, P

    2018-05-08

    The aim of the article is to evaluate the temporal change in the effect of heat on mortality in Italy in the last 12 years after the introduction of the national heat plan. Time series analysis. Distributed lag non-linear models were used to estimate the association between maximum apparent temperature and mortality in 23 Italian cities included in the national heat plan in four study periods (before the introduction of the heat plan and three periods after the plan was in place between 2005 and 2016). The effect (relative risks) and impact (attributable fraction [AF] and number of heat-related deaths) were estimated for mild summer temperatures (20th and 75th percentile maximum apparent temperature [Tappmax]) and extreme summer temperatures (75th and 99th percentile Tappmax) in each study period. A survey of the heat preventive measures adopted over time in the cities included in the Italian heat plan was carried out to better describe adaptation measures and response. Although heat still has an impact on mortality in Italian cities, a reduction in heat-related mortality is observed progressively over time. In terms of the impact, the heat AF related to extreme temperatures declined from 6.3% in the period 1999-2002 to 4.1% in 2013-2016. Considering the entire temperature range (20th vs 99th percentile), the total number of heat-related deaths spared over the entire study period was 1900. Considering future climate change and the health burden associated to heat waves, it is important to promote adaptation measures by showing the potential effectiveness of heat prevention plans. Copyright © 2018 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  7. Aerodynamic heating of ballistic missile including the effects of gravity

    Indian Academy of Sciences (India)

    Abstract. The aerodynamic heating of a ballistic missile due to only convection is analysed taking into consideration the effects of gravity. The amount of heat transferred to the wetted area and to the nose region has been separately determined, unlike A Miele's treatise without consideration of gravity. The peak heating rates ...

  8. Aerodynamic heating of ballistic missile including the effects of gravity

    Indian Academy of Sciences (India)

    The aerodynamic heating of a ballistic missile due to only convection is analysed taking into consideration the effects of gravity. The amount of heat transferred to the wetted area and to the nose region has been separately determined, unlike A Miele's treatise without consideration of gravity. The peak heating ratesto the ...

  9. The effect of electrode contact resistance and capacitive coupling on Complex Resistivity measurements

    DEFF Research Database (Denmark)

    Ingeman-Nielsen, Thomas

    2006-01-01

    The effect of electrode contact resistance and capacitive coupling on complex resistivity (CR) measurements is studied in this paper. An equivalent circuit model for the receiver is developed to describe the effects. The model shows that CR measurements are severely affected even at relatively lo...... with the contact resistance artificially increased by resistors. The results emphasize the importance of keeping contact resistance low in CR measurements....

  10. Self-heating, gamma heating and heat loss effects on resistance temperature detector (RTD) accuracy

    International Nuclear Information System (INIS)

    Qian, T.; Hinds, H.W.; Tonner, P.

    1997-01-01

    Resistance temperature detectors (RTDs) are extensively used in CANDU nuclear power stations for measuring various process and equipment temperatures. Accuracy of measurement is an important performance parameter of RTDs and has great impact on the thermal power efficiency and safety of the plant. There are a number of factors that contribute to some extent to RTD measurement error. Self-heating, gamma heating and the heat-loss throughout conduction of the thermowell are three of these factors. The degree to which these three affect accuracy of RTDs used for the measurement of reactor inlet header temperature (RIHT) has been analyzed and is presented in this paper. (author)

  11. Comparison of clinical efficacy and side effects for bitemporal and bifrontal electrode placement in electroconvulsive therapy.

    Science.gov (United States)

    Bakewell, Catherine J; Russo, Joan; Tanner, Craig; Avery, David H; Neumaier, John F

    2004-09-01

    Bifrontal (BF) placement of electrodes in electroconvulsive therapy (ECT) has become a popular alternative to bitemporal (BT) placement. This study compares the clinical efficacy, side effects, and rehospitalization rates of BT and BF electrode placement in a community hospital setting. Charts from 76 patients receiving ECT treatments at Harborview Medical Center from 1994 to 2000 were reviewed to extract data on the characteristics of the course of ECT, clinical response, total headaches, narcotic and nonsteroidal anti-inflammatory drug doses, as well as documentation of confusion, disorientation, memory loss, and treatment emergent need for assistance with activities of daily living. The BT patients experienced more clinical improvement during their stay (a 7-point greater change in Psychiatric Symptom Assessment Scale score, P < 0.05) and were significantly less likely to be rehospitalized within a 1-year time frame (odds ratio = 4.9, P = <0.05), even after controlling for relevant covariates. Although the two patient groups had equal rates of headache and analgesic administration, the BT placement caused significantly more cognitive impairment. This study suggests that BT electrode placement offers better efficacy but modestly greater cognitive impairment than BF electrode placement.

  12. Er Effect of Low Molecular Liquid Crystal on One-Sided Patterned Electrodes

    Science.gov (United States)

    Kikuchi, Takehito; Inoue, Akio; Furusho, Junji; Kawamuki, Ryohei

    Several kinds of ER fluids (ERF) have been developed and have been applied to some mechatronics devices and processing technologies. In many conventional applications of ERFs, these devices consist of bilateral electrodes to apply electric field in ERF. However, the electric field of several kV/mm may be necessary to generate an ER effect sufficiently for practical purposes. The gap between a pair of electrodes should be, therefore, maintained narrowly and exactly for fears of short-circuit. At the same time, this electrode system also requires an interconnection on driving parts. To improve these disadvantages, we proposed "one-sided patterned electrode" (OSPE) systems in previous works. In this report, we confirmed the flow characteristics of low molecular liquid crystal (LMLC) on OSPE. Next, we also confirmed the different characteristics depending on the pattern type. Depending on results of electro-static analysis, we conclude that such a difference may results from the directors of LC molecules derived by electric field.

  13. Effects of atmospheric pressure plasma jet with floating electrode on murine melanoma and fibroblast cells

    Science.gov (United States)

    Xu, G.; Liu, J.; Yao, C.; Chen, S.; Lin, F.; Li, P.; Shi, X.; Zhang, Guan-Jun

    2017-08-01

    Atmospheric pressure cold plasma jets have been recently shown as a highly promising tool in certain cancer therapies. In this paper, an atmospheric pressure plasma jet (APPJ) with a one inner floating and two outer electrode configuration using helium gas for medical applications is developed. Subjected to a range of applied voltages with a frequency of 19.8 kHz at a fixed rate of gas flow (i.e., 3 l/min), electrical and optical characteristics of the APPJ are investigated. Compared with the device only with two outer electrodes, higher discharge current, longer jet, and more active species in the plasma plume at the same applied voltage together with the lower gas breakdown voltage can be achieved through embedding a floating inner electrode. Employing the APPJ with a floating electrode, the effects of identical plasma treatment time durations on murine melanoma cancer and normal fibroblast cells cultured in vitro are evaluated. The results of cell viability, cell apoptosis, and DNA damage detection show that the plasma can inactivate melanoma cells in a time-dependent manner from 10 s to 60 s compared with the control group (p cells compared with their control group, the plasma with treatment time from 30 s to 60 s can induce significant changes (p cells at the same treatment time. The different basal reactive oxygen species level and antioxidant superoxide dismutase level of two kinds of cells may account for their different responses towards the identical plasma exposure.

  14. Effective dose in the manufacturing process of rutile covered welding electrodes.

    Science.gov (United States)

    Herranz, M; Rozas, S; Pérez, C; Idoeta, R; Núñez-Lagos, R; Legarda, F

    2013-03-01

    Shielded metal arc welding using covered electrodes is the most common welding process. Sometimes the covering contains naturally occurring radioactive materials (NORMs). In Spain the most used electrodes are those covered with rutile mixed with other materials. Rutile contains some detectable natural radionuclides, so it can be considered a NORM. This paper mainly focuses on the use of MCNP (Monte Carlo N-Particle Transport Code) as a predictive tool to obtain doses in a factory which produces this type of electrode and assess the radiological impact in a specific facility after estimating the internal dose.To do this, in the facility, areas of highest radiation and positions of workers were identified, radioactive content of rutile and rutile covered electrodes was measured, and, considering a worst possible scenario, external dose at working points has been calculated using MCNP. This procedure has been validated comparing the results obtained with those from a pressurised ionisation chamber and TLD dosimeters. The internal dose has been calculated using DCAL (dose and risk calculation). The doses range between 8.8 and 394 μSv yr(-1), always lower than the effective dose limit for the public, 1 mSv yr(-1). The highest dose corresponds to the mixing area.

  15. Modelling the effect of electrode displacement on transcranial direct current stimulation (tDCS)

    Science.gov (United States)

    Ramaraju, Sriharsha; Roula, Mohammed A.; McCarthy, Peter W.

    2018-02-01

    Objective. Transcranial direct current stimulation (tDCS) is a neuromodulatory technique that delivers a low-intensity, direct current to cortical areas with the purpose of modulating underlying brain activity. Recent studies have reported inconsistencies in tDCS outcomes. The underlying assumption of many tDCS studies has been that replication of electrode montage equates to replicating stimulation conditions. It is possible however that anatomical difference between subjects, as well as inherent inaccuracies in montage placement, could affect current flow to targeted areas. The hypothesis that stimulation of a defined brain region will be stable under small displacements was tested. Approach. Initially, we compared the total simulated current flowing through ten specific brain areas for four commonly used tDCS montages: F3-Fp2, C3-Fp2, Fp1-F4, and P3-P4 using the software tool COMETS. The effect of a slight (~1 cm in each of four directions) anode displacement on the simulated regional current density for each of the four tDCS montages was then determined. Current flow was calculated and compared through ten segmented brain areas to determine the effect of montage type and displacement. The regional currents, as well as the localised current densities, were compared with the original electrode location, for each of these new positions. Main results. Recommendations for montages that maximise stimulation current for the ten brain regions are considered. We noted that the extent to which stimulation is affected by electrode displacement varies depending on both area and montage type. The F3-Fp2 montage was found to be the least stable with up to 38% change in average current density in the left frontal lobe while the Fp1-F4 montage was found to the most stable exhibiting only 1% change when electrodes were displaced. Significance. These results indicate that even relatively small changes in stimulation electrode placement appear to result in surprisingly large

  16. A study of effects of electrode contacts on performance of organic-based light-emitting field-effect transistors

    Science.gov (United States)

    Kim, Dae-Kyu; Choi, Jong-Ho

    2018-02-01

    Herein is presented a comparative performance analysis of heterojunction organic-based light-emitting field-effect transistors (OLEFETs) with symmetric (Au only) and asymmetric (Au and LiF/Al) electrode contacts. The devices had a top source-drain contact with long-channel geometry and were produced by sequentially depositing p-type pentacene and n-type N,N‧-ditridecylperylene-3,4,9,10-tetracarboxylic diimide (P13) using a neutral cluster beam deposition apparatus. The spectroscopic, structural and morphological properties of the organic thin films were examined using photoluminescence (PL) spectroscopy, X-ray diffraction (XRD) method, laser scanning confocal and atomic force microscopy (LSCM, AFM). Based upon the growth of high-quality, well-packed crystalline thin films, the devices demonstrated ambipolar field-effect characteristics, stress-free operational stability, and light emission under ambient conditions. Various device parameters were derived from the fits of the observed characteristics. The hole mobilities were nearly equal irrespective of the electrode contacts, whereas the electron mobilities of the transistors with LiF/Al drain electrodes were higher due to the low injection barrier. For the OLEFETs with symmetric electrodes, electroluminescence (EL) occurred only in the vicinity of the hole-injecting electrode, whereas for the OLEFETs with asymmetric electrodes, the emission occurred in the vicinity of both hole- and electron-injecting electrodes. By tuning the carrier injection and transport through high- and low-work function metals, the hole-electron recombination sites could be controlled. The operating conduction and light emission mechanism are discussed with the aid of EL images obtained using a charge-coupled device (CCD) camera.

  17. Evaluation study of an ion selective field effect transistor electrode for measuring quality parameters of fuel ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Gonzaga, Fabiano B.; Sobral, Sidney P.; Ribeiro, Carla M.; Goncalves, Mary A., E-mail: fbgonzaga@inmetro.gov.br [Instituto Nacional de Metrologia, Qualidade e Tecnologia(INMETRO), Duque de Caxias, RJ (Brazil). Div. de Metrologia Quimica

    2013-01-15

    An ion selective field effect transistor (ISFET) electrode was evaluated for measuring pH and acid number (AN) of fuel ethanol and compared to two glass electrodes with different reference filling solutions: KCl aqueous solution (glass-KCl electrode)and LiCl ethanolic solution (glass-LiCl electrode). pH was determined at different measurement times and AN was determined using automatic potentiometric titration. For pH, the glass-KCl electrode showed the best precision and stability, with an average repeatability about four times better when compared to the ISFET electrode for the measurement time of 30 s (as indicated in the ASTM D6423 standard). For AN, the glass-KCl and glass-LiCl electrodes showed similar repeatabilities, which were about three times better than that of the ISFET electrode. In addition, the results from a recovery study demonstrated better accuracy of the glass-LiCl electrode, with a recovery value of 100.1% (author)

  18. Effects of electrodes on the properties of sol-gel PZT based capacitors in FeRAM

    Science.gov (United States)

    Zhang, Ming-Ming; Jia, Ze; Ren, Tian-Ling

    2009-05-01

    The effects of electrodes on the properties of capacitors applied in ferroelectric random access memories (FeRAM) are investigated in this work. Pt and Ir are used as bottom and top electrodes (BE and TE), respectively, in sol-gel Pb(Zr xTi 1-x)O 3 (PZT) based capacitors. Bottom electrodes are found to play a dominant role in the properties of PZT films and capacitors. Capacitors using Pt as bottom electrode have larger remnant polarization (2Pr) than those using Ir which may result from the different orientations of PZT films. The higher Schottky barrier, more dense film and smaller roughness are believed to be the reasons for the better leakage performance of capacitors using Pt as bottom electrodes. Different vacancies types and interface conditions are believed to be the main reasons for the better fatigue (less than 10% initial 2Pr loss after 10 11 fatigue cycles) and better imprint properties of TE/PZT/Ir capacitors. Top electrodes are found to have smaller impact on the properties of capacitors compared with bottom electrodes. A decrease in 2Pr is found when Ir is used as top electrode instead of Pt for PZT/Pt, which is believed to be caused by the stress resulting from lattice mismatch. The different thermal processes that top and bottom electrodes suffered are believed to be the reason for the different impacts they have on capacitors.

  19. Means to remove electrode contamination effect of Langmuir probe measurement in space

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, K.-I.; Lee, C. H.; Fang, H. K.; Cheng, C. Z. [Plasma and Space Science Center, National Cheng Kung University, No.1 Ta-Hsueh Rd., Tainan 70101, Taiwan (China)

    2012-05-15

    Precaution to remove the serious effect of electrode contamination in Langmuir probe experiments has not been taken in many space measurements because the effect is either not understood or ignored. We stress here that one should pay extra attention to the electrode contamination effect to get accurate and reliable plasma measurements so that the long time effort for sounding rocket/satellite missions does not end in vain or becomes less fruitful. In this paper, we describe two main features of voltage-current characteristic curves associated with the contaminated Langmuir probe, which are predicted from the equivalent circuit model, which we proposed in 1970's. We then show that fast sweeping dc Langmuir probes can give reliable results in the steady state regime. The fast sweeping probe can also give reliable results in transient situations such as satellite moves through plasma bubble in the ionosphere where the electron density drastically changes. This fact was first confirmed in our laboratory experiment.

  20. Analysis of dispersed frequency response for ionic glasses: influence of electrode and nearly constant loss effects

    International Nuclear Information System (INIS)

    Macdonald, J Ross

    2005-01-01

    Analysis by D L Sidebottom of the dispersive frequency response of the real-part of the conductivity, σ'(ω), for many alkali phosphate and metaphosphate glasses, using a fitting model involving a 'universal dynamic response' power law with an exponent n and a constant-loss term, led to anomalous n behaviour that he explained as arising from variable constriction of the local cation conduction space. In order to obtain adequate fits, he eliminated from the data all low-frequency decreases of σ'(ω) below the dc plateau, ones actually associated with electrode effects. Such a cut-off does not, however, eliminate electrode effects possibly present in the high-frequency part of the data range. The results of the present detailed analysis and fitting of both synthetic data and several of his experimental data sets show unequivocally that his anomalous n behaviour arose from neglecting electrode effects. Their inclusion, with or without data cut-off in the fitting model, leads to the expected high-frequency slope value of n = 2/3 associated with bulk conduction, as required by recently published topological effective-dimension considerations for dielectric relaxation in conductive systems. Further, the effects of the inclusion in a full fitting model of series and possibly parallel complex constant-phase-element contributions, representing electrode and nearly constant loss effects, respectively, have been investigated in detail. Such composite models usually lead to best fitting of either the full or cut-off complex data when they include the semi-universal, topologically based K1 bulk model, one indirectly derived from the assumption of stretched-exponential temporal behaviour

  1. Charge transport properties of graphene: Effects of Cu-based gate electrode

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Qide [School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105 (China); Zhang, C. X., E-mail: zhangchunxiao@xtu.edu.cn; Tang, Chao, E-mail: tang-chao@xtu.edu.cn; Zhong, Jianxin [School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105 (China); Hunan Provincial Key Laboratory of Micro-Nano Energy Materials and Devices, Xiangtan University, Hunan 411105 (China); He, Chaoyu [Hunan Provincial Key Laboratory of Micro-Nano Energy Materials and Devices, Xiangtan University, Hunan 411105 (China)

    2016-07-21

    Using the first-principles nonequilibrium Green's function method, we study effects of Cu and Ni@Cu used as the Cu-based gate electrode on the charge transport of graphene in the field effect transistors (FET). We find that the transmission of graphene decreases with both Cu and Ni@Cu absorbed in the scatter region. Especially, noticeable transmission gaps are present around the Femi level. The transmission gaps are still effective, and considerable cut-off regions are found under the non-equilibrium environment. The Ni@Cu depresses the transmission of graphene more seriously than the Cu and enlarges the transmission gap in armchair direction. The effects on the charge transport are attributed to the redistribution of electronic states of graphene. Both Cu and Ni@Cu induce the localization of states, so as to block the electronic transport. The Ni@Cu transforms the interaction between graphene and gate electrode from the physisorption to the chemisorption, and then induces more localized states, so that the transmission decreases further. Our results suggest that besides being used to impose gate voltage, the Cu-based gate electrode itself will have a considerable effect on the charge transport of graphene and induces noticeable transmission gap in the FET.

  2. Hyperbolic heat conduction, effective temperature, and third law for nonequilibrium systems with heat flux

    Science.gov (United States)

    Sobolev, S. L.

    2018-02-01

    Some analogies between different nonequilibrium heat conduction models, particularly random walk, the discrete variable model, and the Boltzmann transport equation with the single relaxation time approximation, have been discussed. We show that, under an assumption of a finite value of the heat carrier velocity, these models lead to the hyperbolic heat conduction equation and the modified Fourier law with relaxation term. Corresponding effective temperature and entropy have been introduced and analyzed. It has been demonstrated that the effective temperature, defined as a geometric mean of the kinetic temperatures of the heat carriers moving in opposite directions, acts as a criterion for thermalization and is a nonlinear function of the kinetic temperature and heat flux. It is shown that, under highly nonequilibrium conditions when the heat flux tends to its maximum possible value, the effective temperature, heat capacity, and local entropy go to zero even at a nonzero equilibrium temperature. This provides a possible generalization of the third law to nonequilibrium situations. Analogies and differences between the proposed effective temperature and some other definitions of a temperature in nonequilibrium state, particularly for active systems, disordered semiconductors under electric field, and adiabatic gas flow, have been shown and discussed. Illustrative examples of the behavior of the effective temperature and entropy during nonequilibrium heat conduction in a monatomic gas and a strong shockwave have been analyzed.

  3. Heat Damaged Forages: Effects on Forage Quality

    Science.gov (United States)

    Traditionally, heat damage in forages has been associated with alterations in forage protein quality as a result of Maillard reactions, and most producers and nutritionists are familiar with this concept. However, this is not necessarily the most important negative consequence of spontaneous heating...

  4. Effects of the operational conditions on the membrane and electrode properties of a polymer electrolyte fuel cell

    Directory of Open Access Journals (Sweden)

    Passos Raimundo R.

    2002-01-01

    Full Text Available The effects of the operational conditions on the membrane and electrode properties on a polymer electrolyte fuel cell (PEFC were investigated as a function of the cell and the gas humidifiers temperatures, the thickness of the membrane, the impregnation with phosphotungstic acid (PWA, and the variation of the Nafion and Teflon contents in the gas diffusion electrodes. An increase of the membrane resistance was observed when the PEFC is operated at temperatures equal or higher than those of the gas humidifiers, and this is more apparent for thicker electrolyte films. In the presence of PWA, the physicochemical properties of the membrane do not appreciably change with temperature. However, in this case, a lower humidification temperature affects the electrode performance. Changes on the Nafion loading in the electrodes do not lead to any significant effect in the electrode and membrane properties. For high Teflon contents there is a small lowering of the membrane conductivity.

  5. Substituting natural gas heating for electric heating: assessment of the energy and environmental effects in Ontario

    International Nuclear Information System (INIS)

    Rosen, M.A.; Sy, E.; Gharghouri, P.

    1996-01-01

    A study was conducted to find practical ways to reduce Ontario's energy consumption and environmental emissions. A major portion of the study focused on the advantages of cogeneration in certain regions and sectors of Ontario. Substituting direct fuel heating with natural gas for electric heating was the principal recommendation. Results of a technical analysis of the effects of substituting electric heating with natural gas heating were described. One of the benefits of this substitution would be reduced fuel energy requirements for direct heating, relative to the two-step process of electricity generation followed by electric heating. It was suggested that natural gas should still be used for electricity generation because natural gas has many advantages as an electricity supply option including reductions in coal and uranium use and related emissions. It was recommended that developers and designers of energy systems seriously consider this option. 33 refs., 2 tabs., 4 figs

  6. Effects of stimulation parameters and electrode location on thresholds for epidural stimulation of cat motor cortex

    Science.gov (United States)

    Wongsarnpigoon, Amorn; Grill, Warren M.

    2011-12-01

    Epidural electrical stimulation (ECS) of the motor cortex is a developing therapy for neurological disorders. Both placement and programming of ECS systems may affect the therapeutic outcome, but the treatment parameters that will maximize therapeutic outcomes and minimize side effects are not known. We delivered ECS to the motor cortex of anesthetized cats and investigated the effects of electrode placement and stimulation parameters on thresholds for evoking motor responses in the contralateral forelimb. Thresholds were inversely related to stimulation frequency and the number of pulses per stimulus train. Thresholds were lower over the forelimb representation in motor cortex (primary site) than surrounding sites (secondary sites), and thresholds at sites 4 mm away. Electrode location and montage influenced the effects of polarity on thresholds: monopolar anodic and cathodic thresholds were not significantly different over the primary site, cathodic thresholds were significantly lower than anodic thresholds over secondary sites and bipolar thresholds were significantly lower with the anode over the primary site than with the cathode over the primary site. A majority of bipolar thresholds were either between or equal to the respective monopolar thresholds, but several bipolar thresholds were greater than or less than the monopolar thresholds of both the anode and cathode. During bipolar stimulation, thresholds were influenced by both electric field superposition and indirect, synaptically mediated interactions. These results demonstrate the influence of stimulation parameters and electrode location during cortical stimulation, and these effects should be considered during the programming of systems for therapeutic cortical stimulation.

  7. Effect of radiant heat transfer on the performance of high temperature heat exchanger

    International Nuclear Information System (INIS)

    Mori, Yasuo; Hijikata, Kunio; Yamada, Yukio

    1975-01-01

    The development of high temperature gas-cooled reactors is motivated by the consideration of the application of nuclear heat for industrial uses or direct steelmaking and chemical processes. For these purposes, reliable and efficient heat exchangers should be developed. This report analyzes the effect of radiant heat transfer on the performance of high temperature heat exchangers. The heat transfer model is as follows: the channel composed with two parallel adiabatic walls is divided with one parallel plate between the walls. Non-radiative fluid flows in the two separated channels in opposite direction. Heat transfer equations for this system were obtained, and these equations were solved by some approximate method and numerical analysis. The effect of radiation on heat transfer became larger as the radiant heat transfer between two walls was larger. In the heat exchangers of counter flow type, the thermal efficiency is controlled with three parameters, namely radiation-convection parameter, Stanton number and temperature difference. The thermal efficiency was larger with the increase of these parameters. (Iwase, T.)

  8. The effect of heat generation in inclined slats on the natural convective heat transfer from an isothermal heated vertical plate

    International Nuclear Information System (INIS)

    Oosthuizen, P.H.; Sun, L.; Naylor, D.

    2003-01-01

    Natural convective heat transfer from a wide heated vertical isothermal plate with adiabatic surfaces above and below the heated surface has been considered. There are a series of equally spaced vertical thin, flat surfaces (termed 'slats') near the heated surface, these surfaces being, in general, inclined to the heated surface. There is, in general, a uniform heat generation in the slats. The slats are pivoted about their centre-point and thus as their angle is changed, the distance of the tip of the slat from the plate changes. The situation considered is an approximate model of a window with a vertical blind, the particular case where the window is hotter than the room air being considered. The heat generation in the slats in this situation is the result of solar radiation passing through the window and falling on and being absorbed by the slats of the blind. The flow has been assumed to be laminar and steady. Fluid properties have been assumed constant except for the density change with temperature that gives rise to the buoyancy forces. The governing equations have been written in dimensionless form and the resulting dimensionless equations have been solved using a commercial finite-element package. The solution has the following parameters: (1) the Rayleigh number (2) the Prandtl number (3) the dimensionless heat generation rate in the slats per unit frontal area (4) the dimensionless distance of the slat center point (the pivot point) from the surface (5) the dimensionless slat size (6) the dimensionless slat spacing (7) the angle of inclination of the slats. Because of the application that motivated the study, results have only been obtained for a Prandtl number of 0.7. The effect of the other dimensionless variables on the mean dimensionless heat transfer rate from the heated vertical surface has been examined. (author)

  9. Performance of Solution Processed Carbon Nanotube Field Effect Transistors with Graphene Electrodes

    OpenAIRE

    Gangavarapu, P R Yasasvi; Lokesh, Punith Chikkahalli; Bhat, K N; Naik, A K

    2016-01-01

    This work evaluates the performance of carbon nanotube field effect transistors (CNTFET) using few layer graphene as the contact electrode material. We present the experimental results obtained on the barrier height at CNT graphene junction using temperature dependent IV measurements. The estimated barrier height in our devices for both holes and electrons is close to zero or slightly negative indicating the Ohmic contact of graphene with the valence and conduction bands of CNTs. In addition,...

  10. The effects of changing the electrodes temperature on the tunnel magnetoresistance in the ferromagnetic single electron transistor

    Science.gov (United States)

    Ahmadi, N.; Pourali, N.; Kavaz, E.

    2018-01-01

    Ferromagnetic single electron transistor with electrodes having different temperatures is investigated and the effects of changing electrodes temperature on TMR of system are studied. A modified orthodox theory is used to study the system and to calculate the electron tunneling transition rate. The results show that the temperature of electrodes can be an effective tool to control and tune the tunnel magnetoresistance of FM-SET. Also, the effects of parameters such as resistance ratio of junctions, magnetic polarization and spin relaxation time on the behaviour of the system are studied.

  11. On dual nature of effect of adsorbed polymeric hydroxide films on rate of different electrode processes

    International Nuclear Information System (INIS)

    Zakharkina, P.S.; Korshunov, V.N.

    1985-01-01

    The effect of cation Er 3+ hydrolysis products on the electrochemical behaviour of Zn and Na amalgams is studied. The i, t-curves are presented which are moasUred from a film Hg-electrode in 1M LiCl- and 1MNaCl solUtions both with and without the 10 -3 MErCl 3 addition, along with the I, t-dependences obtained from a rotation disk Zn-electrode at E=-1.45 B against the background of 0.1 MLi 2 SO 4 with the 1.5x10 -3 M Er 2 (SO 4 ) 3 addition. Polymeric films of REE oxohydroxo compounds exhibit a distinct dualism in the effect on the rate of different electrode reactions; provided a proton donor is the depolarizator, the films being considered confirm their name of catalytically active matrices accelerating hydrogen evolution by a modified bridge mechanism variant. In case of metal charge-ionization process these films become inhibitors and the more effective, the more hydrated is the corresponding REE ion

  12. Implementation of a symmetric surface-electrode ion trap with field compensation using a modulated Raman effect

    International Nuclear Information System (INIS)

    Allcock, D T C; Sherman, J A; Stacey, D N; Burrell, A H; Curtis, M J; Imreh, G; Linke, N M; Szwer, D J; Webster, S C; Steane, A M; Lucas, D M

    2010-01-01

    We describe a new electrode design for a surface-electrode Paul trap, which allows rotation of the normal modes out of the trap plane, and a technique for micromotion compensation in all directions using a two-photon process, which avoids the need for an ultraviolet laser directed to the trap plane. The fabrication and characterization of the trap are described, as well as its implementation for the trapping and cooling of single Ca + ions. We also propose a repumping scheme that increases ion fluorescence and simplifies heating rate measurements obtained by time-resolved ion fluorescence during Doppler cooling.

  13. Implementation of a symmetric surface-electrode ion trap with field compensation using a modulated Raman effect

    Science.gov (United States)

    Allcock, D. T. C.; Sherman, J. A.; Stacey, D. N.; Burrell, A. H.; Curtis, M. J.; Imreh, G.; Linke, N. M.; Szwer, D. J.; Webster, S. C.; Steane, A. M.; Lucas, D. M.

    2010-05-01

    We describe a new electrode design for a surface-electrode Paul trap, which allows rotation of the normal modes out of the trap plane, and a technique for micromotion compensation in all directions using a two-photon process, which avoids the need for an ultraviolet laser directed to the trap plane. The fabrication and characterization of the trap are described, as well as its implementation for the trapping and cooling of single Ca+ ions. We also propose a repumping scheme that increases ion fluorescence and simplifies heating rate measurements obtained by time-resolved ion fluorescence during Doppler cooling.

  14. Heat waves in the United States: mortality risk during heat waves and effect modification by heat wave characteristics in 43 U.S. communities.

    Science.gov (United States)

    Anderson, G Brooke; Bell, Michelle L

    2011-02-01

    Devastating health effects from recent heat waves, and projected increases in frequency, duration, and severity of heat waves from climate change, highlight the importance of understanding health consequences of heat waves. We analyzed mortality risk for heat waves in 43 U.S. cities (1987-2005) and investigated how effects relate to heat waves' intensity, duration, or timing in season. Heat waves were defined as ≥ 2 days with temperature ≥ 95th percentile for the community for 1 May through 30 September. Heat waves were characterized by their intensity, duration, and timing in season. Within each community, we estimated mortality risk during each heat wave compared with non-heat wave days, controlling for potential confounders. We combined individual heat wave effect estimates using Bayesian hierarchical modeling to generate overall effects at the community, regional, and national levels. We estimated how heat wave mortality effects were modified by heat wave characteristics (intensity, duration, timing in season). Nationally, mortality increased 3.74% [95% posterior interval (PI), 2.29-5.22%] during heat waves compared with non-heat wave days. Heat wave mortality risk increased 2.49% for every 1°F increase in heat wave intensity and 0.38% for every 1-day increase in heat wave duration. Mortality increased 5.04% (95% PI, 3.06-7.06%) during the first heat wave of the summer versus 2.65% (95% PI, 1.14-4.18%) during later heat waves, compared with non-heat wave days. Heat wave mortality impacts and effect modification by heat wave characteristics were more pronounced in the Northeast and Midwest compared with the South. We found higher mortality risk from heat waves that were more intense or longer, or those occurring earlier in summer. These findings have implications for decision makers and researchers estimating health effects from climate change.

  15. Unilateral brief-pulse electroconvulsive therapy and cognition: effects of electrode placement, stimulus dosage and time.

    Science.gov (United States)

    Semkovska, Maria; Keane, Deborah; Babalola, Oyemi; McLoughlin, Declan M

    2011-06-01

    To clarify advantages of unilateral electrode placement as an optimisation technique for electroconvulsive therapy (ECT) for depression, aims were to meta-analyse unilateral ECT effects on cognitive performance relative to: (1) bitemporal electrode placement, (2) electrical dosage, and (3) time interval between final treatment and cognitive reassessment. Relevant electronic databases were systematically searched through May 2009, using the terms: "electroconvulsive therapy" and ["cogniti∗", "neuropsycholog∗", "memory", "attention", "executive", "spatial", or "intellectual"]. Inclusion criteria were: independent study of depressed patients receiving unilateral or bitemporal brief-pulse ECT; within-subjects design; use of objective cognitive assessments; available mean electrical dosage for unilateral samples. Standardized pre-post ECT weighted effect sizes were computed and pooled within 16 cognitive domains by a mixed-effects model. Thirty-nine studies (1415 patients) were meta-analysed. Up to three days after final treatment, unilateral ECT was associated with significantly smaller decreases in global cognition, delayed verbal memory retrieval, and autobiographical memory, compared to bitemporal ECT. Significant publication bias was found for autobiographical memory, favouring reporting of larger percentage loss. Higher unilateral ECT electrical dosage predicted larger decreases in verbal learning, delayed verbal memory retrieval, visual recognition, and semantic memory retrieval. When retested more than three days after completing ECT, no significant differences remained between the two electrode placements; for unilateral ECT, electrical dosage no longer predicted cognitive performance whereas increasing interval between final treatment and retesting predicted growing improvement in some variables. This interval is a more useful long-term predictor of cognitive function than electrode placement or electrical dosage following unilateral ECT. Copyright © 2010

  16. Unilateral brief-pulse electroconvulsive therapy and cognition: Effects of electrode placement, stimulus dosage and time.

    LENUS (Irish Health Repository)

    Semkovska, Maria

    2010-11-23

    To clarify advantages of unilateral electrode placement as an optimisation technique for electroconvulsive therapy (ECT) for depression, aims were to meta-analyse unilateral ECT effects on cognitive performance relative to: (1) bitemporal electrode placement, (2) electrical dosage, and (3) time interval between final treatment and cognitive reassessment. Relevant electronic databases were systematically searched through May 2009, using the terms: "electroconvulsive therapy" and ["cogniti∗", "neuropsycholog∗", "memory", "attention", "executive", "spatial", or "intellectual"]. Inclusion criteria were: independent study of depressed patients receiving unilateral or bitemporal brief-pulse ECT; within-subjects design; use of objective cognitive assessments; available mean electrical dosage for unilateral samples. Standardized pre-post ECT weighted effect sizes were computed and pooled within 16 cognitive domains by a mixed-effects model. Thirty-nine studies (1415 patients) were meta-analysed. Up to three days after final treatment, unilateral ECT was associated with significantly smaller decreases in global cognition, delayed verbal memory retrieval, and autobiographical memory, compared to bitemporal ECT. Significant publication bias was found for autobiographical memory, favouring reporting of larger percentage loss. Higher unilateral ECT electrical dosage predicted larger decreases in verbal learning, delayed verbal memory retrieval, visual recognition, and semantic memory retrieval. When retested more than three days after completing ECT, no significant differences remained between the two electrode placements; for unilateral ECT, electrical dosage no longer predicted cognitive performance whereas increasing interval between final treatment and retesting predicted growing improvement in some variables. This interval is a more useful long-term predictor of cognitive function than electrode placement or electrical dosage following unilateral ECT.

  17. Bio-heat transfer model of electroconvulsive therapy: Effect of biological properties on induced temperature variation.

    Science.gov (United States)

    de Oliveira, Marilia M; Wen, Paul; Ahfock, Tony

    2016-08-01

    A realistic human head model consisting of six tissue layers was modelled to investigate the behavior of temperature profile and magnitude when applying electroconvulsive therapy stimulation and different biological properties. The thermo-electrical model was constructed with the use of bio-heat transfer equation and Laplace equation. Three different electrode montages were analyzed as well as the influence of blood perfusion, metabolic heat and electric and thermal conductivity in the scalp. Also, the effect of including the fat layer was investigated. The results showed that temperature increase is inversely proportional to electrical and thermal conductivity increase. Furthermore, the inclusion of blood perfusion slightly drops the peak temperature. Finally, the inclusion of fat is highly recommended in order to acquire more realistic results from the thermo-electrical models.

  18. Effect of heat treatment on the corrosion behaviour of Al-Zn alloys in seawater

    International Nuclear Information System (INIS)

    Siti Radiah Mohd Kamarudin; Muhamad Daud; Nur Ubaidah Saidin; Zaifol Samsu

    2010-01-01

    A study has been carried out to investigate the effect of heat treatment on the corrosion behaviour of Al-Zn alloys in seawater environment. The microstructure, potential and current capacity of the samples were studied. Open circuit potential (OCP) of 96 hours was measured against saturated calomel electrode (SCE) and estimating current capacity of the alloys were calculated by using protective current generated from the capacity test. For the microstructure study, optical microscope is used to examine the surface morphology before and after test. The results show that the heat treated samples of 2 hours at 550 degree Celsius and variation in alloys composition affected the values of alloys OCP, current capacity and microstructure. (author)

  19. Heating effects in Rio Blanco rock

    International Nuclear Information System (INIS)

    Taylor, R.W.; Bowen, D.W.; Rossler, P.E.

    1975-01-01

    Samples of ''sandstone'' from near the site of the upper Rio Blanco nuclear explosion were heated in the laboratory at temperatures between 600 and 900 0 C. The composition and amount of noncondensable (dry) gas released were measured and compared to the amount and composition of gas found underground following the explosion. The gas released from the rock heated in the laboratory contained approximately 80 percent CO 2 and 10 percent H 2 ; the balance was CO and CH 4 . With increasing temperature, the amounts of CO 2 , CO, and H 2 released increased. The composition of gas released by heating Rio Blanco rock in the laboratory is similar to the composition of gas found after the nuclear explosion except that it contains less natural gas (CH 4 , C 2 H 6 . . .). The amount of noncondensable gas released by heating the rock increases from approximately 0.1 mole/kg of rock at 600 0 C to 0.9 mole/kg at 900 0 C. Over 90 percent of the volatile components of the rock are released in less than 10 h at 900 0 C. A comparison of the amount of gas released by heating rock in the laboratory to the amount of gas released by the heat of the Rio Blanco nuclear explosion suggests that the explosion released the volatile material from about 0.42 mg of rock per joule of explosive energy (1700 to 1800 tonnes per kt). (auth)

  20. Effects of electrode distance and nature of electrolyte on the diameter of titanium dioxide nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Abbasi, S., E-mail: sum.abbasi@gmail.com; Mohamed, N. M., E-mail: noranimuti-mohamed@petronas.com.my; Singh, B. S. M., E-mail: balbir@petronas.com.my [Department of Fundamental and Applied Sciences Unviersiti Teknologi PETRONAS, 31750, Bandar Seri Iskandar (Malaysia); Abbasi, S. H., E-mail: sarfrazabbasi@gmail.com [SABIC Plastic Application Development Center, Riyadh Technovalley, Riyadh (Saudi Arabia)

    2015-07-22

    The titanium nanotubes were synthesized using viscous electrolytes consisting of ethylene glycol and non-viscous electrolytes consisting of aqueous solution of hydrofluoric acid. Sodium fluoride and ammonium fluoride were utilized as the source of fluorine ions. The samples were then characterized by field emission scanning electron microscope (FE-SEM). Their morphologies were investigated under different anodic potentials and various electrolyte compositions. It was found out that nanotubes can be obtained in fluoride ions and morphology is dependent on various parameters like anodic potential, time, electrolyte composition and the effects by varying the distance between the electrodes on the morphology was also investigated. It was found that by altering the distance between the electrodes, change in the diameter and the porosity was observed.

  1. Kondo effect in a deformed molecule coupled asymmetrically to ferromagnetic electrodes

    International Nuclear Information System (INIS)

    Rui-Qiang, Wang; Kai-Ming, Jiang

    2009-01-01

    The nonequilibrium Kondo effect is studied in a molecule quantum dot coupled asymmetrically to two ferromagnetic electrodes by employing the nonequilibrium Green function technique. The current-induced deformation of the molecule is taken into account, modeled as interactions with a phonon system, and phonon-assisted Kondo satellites arise on both sides of the usual main Kondo peak. In the antiparallel electrode configuration, the Kondo satellites can be split only for the asymmetric dot-lead couplings, distinguished from the parallel configuration where splitting also exists, even though it is for symmetric case. We also analyze how to compensate the splitting and restore the suppressed zero-bias Kondo resonance. It is shown that one can change the TMR ratio significantly from a negative dip to a positive peak only by slightly modulating a local external magnetic field, whose value is greatly dependent on the electron–phonon coupling strength. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  2. Effects of grid potentials and geometric dimensions on the multi-electrode probe measurements

    International Nuclear Information System (INIS)

    Elakshar, F.F.; Abdul El-Raoof, W.S.

    1986-01-01

    A hollow anode plasma source is used to produce low temperature plasma which is injected into a magnetic field. The effects of the grid potentials, collector potential and geometric dimensions on multi-electrode probe measurements, in the presence of a magnetic field, are investigated. It is found that the collector potential plays a substantial role in the measurement of temperatures and densities. The finite-size of the geometric dimensions of the probe influences the data and high values of temperature are obtained when a small ratio of the discriminator grid radius to the separation distance is used, providing that the repeller grid potentials is low. Reliable measurements can only be obtained if the multi-electrode probe is used in the presence of a magnetic field strong enough to reduce electron Larmor radii to less than the grid mesh radius. (author)

  3. Multimode delta-E effect magnetic field sensors with adapted electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Zabel, Sebastian; Fichtner, Simon; Kirchhof, Christine; Quandt, Eckhard; Faupel, Franz, E-mail: ff@tf.uni-kiel.de [Faculty of Engineering, Institute for Materials Science, Kiel University, Kaiserstraße 2, 24143 Kiel (Germany); Reermann, Jens; Schmidt, Gerhard [Faculty of Engineering, Institute for Electrical Engineering, Kiel University, Kaiserstraße 2, 24143 Kiel (Germany); Wagner, Bernhard [Fraunhofer Institute for Silicon Technology ISIT, Fraunhoferstraße 1, 25524 Itzehoe (Germany)

    2016-05-30

    We present an analytical and experimental study on low-noise piezoelectric thin film resonators that utilize the delta-E effect of a magnetostrictive layer to measure magnetic fields at low frequencies. Calculations from a physical model of the electromechanical resonator enable electrode designs to efficiently operate in the first and second transversal bending modes. As predicted by our calculations, the adapted electrode design improves the sensitivity by a factor of 6 and reduces the dynamic range of the sensor output by 16 dB, which significantly eases the requirements on readout electronics. Magnetic measurements show a bandwidth of 100 Hz at a noise level of about 100 pTHz{sup −0.5}.

  4. The Effect of Subcutaneous Fat on Electrical Impedance Myography: Electrode Configuration and Multi-Frequency Analyses.

    Directory of Open Access Journals (Sweden)

    Le Li

    Full Text Available This study investigates the impact of the subcutaneous fat layer (SFL thickness on localized electrical impedance myography (EIM, as well as the effects of different current electrodes, varying in distance and direction, on EIM output. Twenty-three healthy subjects underwent localized multi-frequency EIM on their biceps brachii muscles with a hand-held electrode array. The EIM measurements were recorded under three different configurations: wide (or outer longitudinal configuration 6.8 cm, narrow (or inner longitudinal configuration 4.5 cm, and narrow transverse configuration 4.5 cm. Ultrasound was applied to measure the SFL thickness. Coefficients of determination (R2 of three EIM variables (resistance, reactance, and phase and SFL thickness were calculated. For the longitudinal configuration, the wide distance could reduce the effects of the subcutaneous fat when compared with the narrow distance, but a significant correlation still remained for all three EIM parameters. However, there was no significant correlation between SFL thickness and reactance in the transverse configuration (R2 = 0.0294, p = 0.434. Utilizing a ratio of 50kHz/100kHz phase was found to be able to help reduce the correlation with SFL thickness for all the three configurations. The findings indicate that the appropriate selection of the current electrode distance, direction and the multi-frequency phase ratio can reduce the impact of subcutaneous fat on EIM. These settings should be evaluated for future clinical studies using hand-held localized arrays to perform EIM.

  5. Effects of electrode geometry on the performance of dielectric barrier/packed-bed discharge plasmas in benzene degradation

    International Nuclear Information System (INIS)

    Jiang, Nan; Lu, Na; Shang, Kefeng; Li, Jie; Wu, Yan

    2013-01-01

    Highlights: • Benzene was successfully degraded by dielectric barrier/packed-bed discharge plasmas. • Different electrode geometry has distinct effect on plasmas oxidation performance. • Benzene degradation and energy performance were enhanced when using the coil electrode. • The reaction products were well determined by online FTIR analysis. -- Abstract: In this study, the effects of electrode geometry on benzene degradation in a dielectric barrier/packed-bed discharge plasma reactor with different electrodes were systematically investigated. Three electrodes were employed in the experiments, these were coil, bolt, and rod geometries. The reactor using the coil electrode showed better performance in reducing the dielectric loss in the barrier compared to that using the bolt or rod electrodes. In the case of the coil electrode, both the benzene degradation efficiency and energy yield were higher than those for the other electrodes, which can be attributed to the increased role of surface mediated reactions. Irrespective of the electrode geometry, the packed-bed discharge plasma was superior to the dielectric barrier discharge plasma in benzene degradation at any specific applied voltage. The main gaseous products of benzene degradation were CO, CO 2 , H 2 O, and formic acid. Discharge products such as O 3 , N 2 O, N 2 O 5 , and HNO 3 were also detected in the outlet gas. Moreover, the presence of benzene inhibited the formation of ozone because of the competing reaction of oxygen atoms with benzene. This study is expected to offer an optimized approach combining dielectric barrier discharge and packed-bed discharge to improve the degradation of gaseous pollutants

  6. Surface wettability effects on critical heat flux of boiling heat transfer using nanoparticle coatings

    KAUST Repository

    Hsu, Chin-Chi; Chen, Ping-Hei

    2012-01-01

    This study investigates the effects of surface wettability on pool boiling heat transfer. Nano-silica particle coatings were used to vary the wettability of the copper surface from superhydrophilic to superhydrophobic by modifying surface topography

  7. Effect of heating method on stress-rupture life

    Science.gov (United States)

    Bizon, P. T.; Calfo, F. D.

    1977-01-01

    The effect of radiant(furnace), resistance(electric current), burner(hot gas stream), and a combination of resistance and burner heating on intermediate time (100 to 300 hr) stress-rupture life and reduction of area was evaluated. All heating methods were studied using the nickel-based alloy Udimet 700 while all but burner heating were evaluated with the cobalt-based alloy Mar-M 509. Limited test results of eight other superalloys were also included in this study. Resistance heated specimens had about 20 to 30 percent of the stress-rupture life of radiant heated specimens. The limited burner heating data showed about a 50 percent life reduction as compared to the radiant heated tests. A metallurgical examination gave no explanation for these reductions.

  8. Effect of cold cap boundary conditions on Joule-heating flow in the sloping bottom cavity

    International Nuclear Information System (INIS)

    Zhou, Jiaju; Tanaka, Hiromasa; Tsuzuki, Nobuyoshi; Kikura, Hiroshige

    2015-01-01

    Flow behavior in a sloping bottom cavity is observed to study the effect of cavity shape on flow behavior for Joule-heating flow. In the former study, a simple cubic cavity is applied to study the chaotic flow behavior of Joule-heating convection due to simplification as the real melter case is complicated. In this study, a sloping bottom cavity of the dimension one-fifth of the actual melter is applied to study the detail flow behavior. Carbon electrodes and top cooling surface are placed to make Joule-heating and the chaotic flow behavior. The working fluid is 80%wt Glycerol-water solution with LiCl as electrolyte. To observe the chaotic flow behavior spatio-temporally, Ultrasonic Velocity Profiler (UVP) is applied in this experiment to obtain the one-dimensional continuous velocity profiles in the center line of cavity. Particle Image Velocity (PIV) method is also applied to observe the two-dimensional flow behavior and to examine the cross-check between UVP and PIV for the chaotic flow behavior with temperature distribution. The flow profiles of the former cubic cavity and the sloping bottom cavity are compared changing voltage magnitude and cooling temperature of the electrodes side to analyze the effect of cavity shape under Joule-heating condition. The flow behavior in the upper part of the sloping bottom cavity is similar to that in the cubic cavity in the experiment in whole cavity, the range down-flow achieved is larger than the cubic cavity. (author)

  9. Nickel Alloy, Corrosion and Heat-Resistant, Sheet, Strip, and Plate 72Ni - 15.5Cr - 0.95 (Cb (Nb) + Ta) - 2.5Ti - 0.70Al - 7.0Fe Consumable Electrode, Remelted or Vacuum Induction Melted, Solution Heat Treated, Precipitation-Hardenable

    CERN Document Server

    SAE Aerospace Standards. London

    2012-01-01

    Nickel Alloy, Corrosion and Heat-Resistant, Sheet, Strip, and Plate 72Ni - 15.5Cr - 0.95 (Cb (Nb) + Ta) - 2.5Ti - 0.70Al - 7.0Fe Consumable Electrode, Remelted or Vacuum Induction Melted, Solution Heat Treated, Precipitation-Hardenable

  10. Effective Induction Heating around Strongly Magnetized Stars

    Science.gov (United States)

    Kislyakova, K. G.; Fossati, L.; Johnstone, C. P.; Noack, L.; Lüftinger, T.; Zaitsev, V. V.; Lammer, H.

    2018-05-01

    Planets that are embedded in the changing magnetic fields of their host stars can experience significant induction heating in their interiors caused by the planet’s orbital motion. For induction heating to be substantial, the planetary orbit has to be inclined with respect to the stellar rotation and dipole axes. Using WX UMa, for which the rotation and magnetic axes are aligned, as an example, we show that for close-in planets on inclined orbits, induction heating can be stronger than the tidal heating occurring inside Jupiter’s satellite Io; namely, it can generate a surface heat flux exceeding 2 W m‑2. An internal heating source of such magnitude can lead to extreme volcanic activity on the planet’s surface, possibly also to internal local magma oceans, and to the formation of a plasma torus around the star aligned with the planetary orbit. A strongly volcanically active planet would eject into space mostly SO2, which would then dissociate into oxygen and sulphur atoms. Young planets would also eject CO2. Oxygen would therefore be the major component of the torus. If the O I column density of the torus exceeds ≈1012 cm‑2, the torus could be revealed by detecting absorption signatures at the position of the strong far-ultraviolet O I triplet at about 1304 Å. We estimate that this condition is satisfied if the O I atoms in the torus escape the system at a velocity smaller than 1–10 km s‑1. These estimates are valid also for a tidally heated planet.

  11. Effective thermal conductivity of a heat generating rod bundle dissipating heat by natural convection and radiation

    International Nuclear Information System (INIS)

    Senve, Vinay; Narasimham, G.S.V.L.

    2011-01-01

    Highlights: → Transport processes in isothermal hexagonal sheath with 19 heat generating rods is studied. → Correlation is given to predict the maximum temperature considering all transport processes. → Effective thermal conductivity of rod bundle can be obtained using max temperature. → Data on the critical Rayleigh numbers for p/d ratios of 1.1-2.0 is presented. → Radiative heat transfer contributes to heat dissipation of 38-65% of total heat. - Abstract: A numerical study of conjugate natural convection and surface radiation in a horizontal hexagonal sheath housing 19 solid heat generating rods with cladding and argon as the fill gas, is performed. The natural convection in the sheath is driven by the volumetric heat generation in the solid rods. The problem is solved using the FLUENT CFD code. A correlation is obtained to predict the maximum temperature in the rod bundle for different pitch-to-diameter ratios and heat generating rates. The effective thermal conductivity is related to the heat generation rate, maximum temperature and the sheath temperature. Results are presented for the dimensionless maximum temperature, Rayleigh number and the contribution of radiation with changing emissivity, total wattage and the pitch-to-diameter ratio. In the simulation of a larger system that contains a rod bundle, the effective thermal conductivity facilitates simplified modelling of the rod bundle by treating it as a solid of effective thermal conductivity. The parametric studies revealed that the contribution of radiation can be 38-65% of the total heat generation, for the parameter ranges chosen. Data for critical Rayleigh number above which natural convection comes into effect is also presented.

  12. Measurement of heat transfer effectiveness during collision of a Leidenfrost droplet with a heated wall - 15447

    International Nuclear Information System (INIS)

    Park, J.S.; Kim, H.; Bae, S.W.; Kim, K.D.

    2015-01-01

    Droplet-wall collision heat transfer during dispersed flow film boiling plays a role in predicting cooling rate and peak cladding temperature of overheated fuels during reflood following a LOCA accident in nuclear power plants. This study aims at experimentally studying effects of collision velocity and angle, as dynamic characteristics of the colliding droplet, on heat transfer. The experiments were performed by varying collision velocity from 0.2 to 1.5 m/s and collision angle between the droplet path and the wall in the range from 30 to 90 degrees under atmosphere condition. A single droplet was impinged on an infrared-opaque Pt film deposited on an infrared-transparent sapphire plate, which combination permits to measure temperature distribution of the collision surface using a high-speed infrared camera from below. The instantaneous local surface heat flux was obtained by solving transient heat conduction equation for the heated substrate using the measured surface temperature data as the boundary condition of the collision surface. Total heat transfer amount of a single droplet collision was calculated by integrating the local heat flux distribution on the effective heat transfer area during the collision time. The obtained results confirmed the finding from the previous studies that with increasing collision velocity, the heat transfer effectiveness increases due to the increase of the heat transfer area and the local heat flux value. Interestingly, it was found that as collision angle of a droplet with a constant collision velocity decreases from 90 to 50 degrees and thus the vertical velocity component of the collision decreases, the total heat transfer amount per a collision increases. It was observed that the droplet colliding with an angle less than 90 degrees slides on the surface during the collision and the resulting collision area is larger than that in the normal collision. On the other hand, further decrease of collision angle below 40 degrees

  13. Effect of transient heating loads on beryllium

    International Nuclear Information System (INIS)

    Kupriyanov, Igor B.; Porezanov, Nicolay P.; Nikolaev, Georgyi N.; Kurbatova, Liudmila A.; Podkovyrov, Vyacheslav L.; Muzichenko, Anatoliy D.; Zhitlukhin, Anatoliy M.; Khimchenko, Leonid N.; Gervash, Alexander A.

    2014-01-01

    Highlights: • We study the effect of transient plasma loads on beryllium erosion and surface microstructure. • Beryllium targets were irradiated by plasma streams with energy of 0.5–1 MJ/m 2 at ∼250 °C. • Under plasma loads 0.5–1 MJ/m 2 cracking of beryllium surface is rather slight. • Under 0.5 MJ/m 2 the mass loss of Be is no more than 0.2 g/m 2 shot and decreasing with shots number. • Under 1 MJ/m 2 maximum mass loss of beryllium was 3.7 g/m 2 shot and decreasing with shots number. - Abstract: Beryllium will be used as a plasma facing material for ITER first wall. It is expected that erosion of beryllium under transient plasma loads such as the edge-localized modes (ELMs) and disruptions will mainly determine a lifetime of ITER first wall. The results of recent experiments with the Russian beryllium of TGP-56FW ITER grade on QSPA-Be plasma gun facility are presented. The Be/CuCrZr mock-ups were exposed to upto 100 shots by deuterium plasma streams with pulse duration of 0.5 ms at ∼250 °C and average heat loads of 0.5 and 1 MJ/m 2 . Experiments were performed at 250 °C. The evolution of surface microstructure and cracks morphology as well as beryllium mass loss are investigated under erosion process

  14. Effect of Microwave Heating on Phytosterol Oxidation.

    Science.gov (United States)

    Leal-Castañeda, Everth Jimena; Inchingolo, Raffaella; Cardenia, Vladimiro; Hernandez-Becerra, Josafat Alberto; Romani, Santina; Rodriguez-Estrada, María Teresa; Galindo, Hugo Sergio García

    2015-06-10

    The oxidative stability of phytosterols during microwave heating was evaluated. Two different model systems (a solid film made with a phytosterol mixture (PSF) and a liquid mixture of phytosterols and triolein (1:100, PS + TAG (triacylglycerol))) were heated for 1.5, 3, 6, 12, 20, and 30 min at 1000 W. PS degraded faster when they were microwaved alone than in the presence of TAG, following a first-order kinetic model. Up to 6 min, no phytosterol oxidation products (POPs) were generated in both systems. At 12 min of heating, the POP content reached a higher level in PSF (90.96 μg/mg of phytosterols) than in PS + TAG (22.66 μg/mg of phytosterols), but after 30 min of treatment, the opposite trend was observed. 7-Keto derivates were the most abundant POPs in both systems. The extent of phytosterol degradation depends on both the heating time and the surrounding medium, which can impact the quality and safety of the food product destined to microwave heating/cooking.

  15. Effect of Tin Electrode (Sn, Electrode Distance and Thin Layer Size of Zinc Phthalocyanine (ZnPc to Resistance Changes With Ozone Exposure

    Directory of Open Access Journals (Sweden)

    Agustina Mogi

    2018-01-01

    Full Text Available This study was aimed to determine the effect of tin electrode distances and the thickness of a thin layer of ZnPc (Zinc phtyalocyanine toward changes in resistance with ozone exposure. Tin deposition on the glass surface was conducted using spraying method. The reaction between ozone and ZnPc produces electrical properties that can be read through the resistance value of the multimeter. Based on this study, it was investigated that the smaller a distance between the electrode and the thicker deposition of ZnPc lead to the less resistance. This showed that a thin layer of the conductivity increases along with the longer exposure to ozone gas. The movement of electrons with the hole was free.

  16. Electrolyte effects in a model of proton discharge on charged electrodes

    Science.gov (United States)

    Wiebe, Johannes; Kravchenko, Kateryna; Spohr, Eckhard

    2015-01-01

    We report results on the influence of NaCl electrolyte dissolved in water on proton discharge reactions from aqueous solution to charged platinum electrodes. We have extended a recently developed combined proton transfer/proton discharge model on the basis of empirical valence bond theory to include NaCl solutions with several different concentrations of cations and anions, both stoichiometric (1:1) compositions and non-stoichiometric ones with an excess of cations. The latter solutions partially screen the electrostatic potential from the surface charge of the negatively charged electrode. 500-1000 trajectories of a discharging proton were integrated by molecular dynamics simulations until discharge occurred, or for at most 1.5 ns. The results show a strong dependence on ionic strength, but only a weak dependence on the screening behavior, when comparing stoichiometric and non-stoichiometric solutions. Overall, the Na+ cations exert a more dominant effect on the discharge reaction, which we argue is likely due to the very rigid arrangements of the cations on the negatively polarized electrode surface. Thus, our model predicts, for the given and very high negative surface charge densities, the fastest discharge reaction for pure water, but obviously cannot take into account the fact that such high charge densities are even more out of reach experimentally than for higher electrolyte concentrations.

  17. Effects of heat stress on baroreflex function in humans

    Science.gov (United States)

    Crandall, Craig G.; Cui, Jian; Wilson, Thad E.

    2003-01-01

    INTRODUCTION: Heat stress significantly reduces orthostatic tolerance in humans. The mechanism(s) causing this response remain unknown. The purpose of this review article is to present data pertaining to the hypothesis that reduced orthostatic tolerance in heat stressed individuals is a result of heat stress induced alterations in baroflex function. METHODS: In both normothermic and heat stressed conditions baroreflex responsiveness was assessed via pharmacological and non-pharmacological methods. In addition, the effects of heat stress on post-synaptic vasoconstrictor responsiveness were assessed. RESULTS: Generally, whole body heating did not alter baroreflex sensitivity defined as the gain of the linear portion of the baroreflex curve around the operating point. However, whole body heating shifted the baroreflex curve to the prevailing (i.e. elevated) heart rate and muscle sympathetic nerve activity. Finally, the heat stress impaired vasoconstrictor responses to exogenous administration of adrenergic agonists. CONCLUSION: Current data do not support the hypothesis that reduced orthostatic tolerance associated with heat stress in humans is due to impaired baroreflex responsiveness. This phenomenon may be partially due to the effects of heat stress on reducing vasoconstrictor responsiveness.

  18. Nickel-cadmium batteries: effect of electrode phase composition on acid leaching process.

    Science.gov (United States)

    Nogueira, C A; Margarido, F

    2012-01-01

    At the end of their life, Ni-Cd batteries cause a number of environmental problems because of the heavy metals they contain. Because of this, recycling of Ni-Cd batteries has been carried out by dedicated companies using, normally, pyrometallurgical technologies. As an alternative, hydrometallurgical processes have been developed based on leaching operations using several types of leachants. The effect of factors like temperature, acid concentration, reaction time, stirring speed and grinding of material on the leaching yields of metals contained in anodic and cathodic materials (nickel, cadmium and cobalt) using sulphuric acid, is herein explained based on the structural composition of the electrode materials. The nickel, cobalt and cadmium hydroxide phases, even with a small reaction time (less than 15 minutes) and low temperature (50 degrees C) and acid concentration (1.1 M H2SO4), were efficiently leached. However, leaching of the nickel metallic phase was more difficult, requiring higher values of temperature, acid concentration and reaction time (e.g. 85 degrees C, 1.1 M H2SO4 and 5 h, respectively) in order to obtain a good leaching efficiency for anodic and cathodic materials (70% and 93% respectively). The stirring speed was not significant, whereas the grinding of electrode materials seems to promote the compaction of particles, which appears to be critical in the leaching of Ni degrees. These results allowed the identification and understanding of the relationship between the structural composition of electrode materials and the most important factors that affect the H2SO4 leaching of spent Ni-Cd battery electrodes, in order to obtain better metal-recovery efficiency.

  19. Effect of ionic conductivity of zirconia electrolytes on polarization properties of various electrodes in SOFC

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Masahiro; Uchida, Hiroyuki; Yoshida, Manabu [Yamanashi Univ., Kofu (Japan)

    1996-12-31

    Solid oxide fuel cells (SOFCs) have been intensively investigated because, in principle, their energy conversion efficiency is fairly high. Lowering the operating temperature of SOFCs from 1000{degrees}C to around 800{degrees}C is desirable for reducing serious problems such as physical and chemical degradation of the constructing materials. The object of a series of the studies is to find a clue for achieving higher electrode performances at a low operating temperature than those of the present level. Although the polarization loss at electrodes can be reduced by using mixed-conducting ceria electrolytes, or introducing the mixed-conducting (reduced zirconia or ceria) laver on the conventional zirconia electrolyte surface, no reports are available on the effect of such an ionic conductivity of electrolytes on electrode polarizations. High ionic conductivity of the electrolyte, of course, reduces the ohmic loss. However, we have found that the IR-free polarization of a platinum anode attached to zirconia electrolytes is greatly influenced by the ionic conductivity, {sigma}{sub ion}, of the electrolytes used. The higher the {sigma}{sub ion}, the higher the exchange current density, j{sub 0}, for the Pt anode in H{sub 2} at 800 {approximately} 1000{degrees}C. It was indicated that the H{sub 2} oxidation reaction rate was controlled by the supply rate of oxide ions through the Pt/zirconia interface which is proportional to the {sigma}{sub ion}. Recently, we have proposed a new concept of the catalyzed-reaction layers which realizes both high-performances of anodes and cathodes for medium-temperature operating SOFCs. We present the interesting dependence of the polarization properties of various electrodes (the SDC anodes with and without Ru microcatalysts, Pt cathode, La(Sr)MnO{sub 3} cathodes with and without Pt microcatalysts) on the {sigma}{sub ion} of various zirconia electrolytes at 800 {approximately} 1000{degrees}C.

  20. Effect of pH and Water Structure on the Oxygen Reduction Reaction on platinum electrodes

    International Nuclear Information System (INIS)

    Briega-Martos, Valentín; Herrero, Enrique; Feliu, Juan M.

    2017-01-01

    The oxygen reduction reaction (ORR) at different pH values has been studied at platinum single crystal electrodes using the hanging meniscus rotating disk electrode (HMRDE) configuration. The use of NaF/HClO 4 mixtures allows investigating the reaction up to pH = 6 in solutions with enough buffering capacity and in the absence of anion specific adsorption. The analysis of the currents shows that the kinetic current density measured at 0.85 V for the Pt(111) electrode follows a volcano curve with the maximum located around pH = 9. This maximum activity for pH = 9 can be related to the effects of the electrode charge and/or water structure in the ORR. On the other hand, the catalytic activity for the other basal planes shows a monotonic behavior with a small dependence of the activity with pH. For stepped surfaces with (111) terraces, the behavior with pH changes gets closer to that of the Pt(111) surface as the terrace length increases. Additionally, the ORR curves show a dependence of the limiting diffusion current with pH. It is observed that the limiting current density diminishes as the pH increases in a potential region where hydrogen peroxide is readily reduced. These results suggest the existence of a bifurcation point in the mechanism previous to peroxide formation, in which OOH • is proposed as the bifurcation intermediate. The reduction of OOH • requires proton addition and would be more difficult at neutral pH values, justifying the diminution of the limiting currents.

  1. Effects of heat and electricity saving measures in district-heated multistory residential buildings

    International Nuclear Information System (INIS)

    Truong, Nguyen Le; Dodoo, Ambrose; Gustavsson, Leif

    2014-01-01

    Highlights: • We analyzed the potential for energy savings in district heated buildings. • Measures that reduce more peak load production give higher primary energy savings. • Efficient appliances increase heat demand but give net primary energy savings. • Efficient appliances give the largest net primary energy savings. - Abstract: The effects of heat and electricity saving measures in district-heated buildings can be complex because these depend not only on how energy is used on the demand side but also on how energy is provided from the supply side. In this study, we analyze the effects of heat and electricity saving measures in multistory concrete-framed and wood-framed versions of an existing district-heated building and examine the impacts of the reduced energy demand on different district heat (DH) production configurations. The energy saving measures considered are for domestic hot water reduction, building thermal envelope improvement, ventilation heat recovery (VHR), and household electricity savings. Our analysis is based on a measured heat load profile of an existing DH production system in Växjö, Sweden. Based on the measured heat load profile, we model three minimum-cost DH production system using plausible environmental and socio-political scenarios. Then, we investigate the primary energy implications of the energy saving measures applied to the two versions of the existing building, taking into account the changed DH demand, changed cogenerated electricity, and changed electricity use due to heat and electricity saving measures. Our results show that the difference between the final and primary energy savings of the concrete-framed and wood-framed versions of the case-study building is minor. The primary energy efficiency of the energy saving measures depends on the type of measure and on the composition of the DH production system. Of the various energy saving measures explored, electricity savings give the highest primary energy savings

  2. Perceived heat stress and health effects on construction workers.

    Science.gov (United States)

    Dutta, Priya; Rajiva, Ajit; Andhare, Dileep; Azhar, Gulrez Shah; Tiwari, Abhiyant; Sheffield, Perry

    2015-01-01

    Increasing heat waves-particularly in urban areas where construction is most prevalent, highlight a need for heat exposure assessment of construction workers. This study aims to characterize the effects of heat on construction workers from a site in Gandhinagar. This study involved a mixed methods approach consisting of a cross sectional survey with anthropometric measurements (n = 219) and four focus groups with construction workers, as well as environmental measurements of heat stress exposure at a construction site. Survey data was collected in two seasons i.e., summer and winter months, and heat illness and symptoms were compared between the two time periods. Thematic coding of focus group data was used to identify vulnerability factors and coping mechanisms of the workers. Heat stress, recorded using a wet bulb globe temperature monitor, was compared to international safety standards. The survey findings suggest that heat-related symptoms increased in summer; 59% of all reports in summer were positive for symptoms (from Mild to Severe) as compared to 41% in winter. Focus groups revealed four dominant themes: (1) Non-occupational stressors compound work stressors; (2) workers were particularly attuned to the impact of heat on their health; (3) workers were aware of heat-related preventive measures; and (4) few resources were currently available to protect workers from heat stress. Working conditions often exceed international heat stress safety thresholds. Female workers and new employees might be at increased risk of illness or injury. This study suggests significant health impacts on construction workers from heat stress exposure in the workplace, showed that heat stress levels were higher than those prescribed by international standards and highlights the need for revision of work practices, increased protective measures, and possible development of indigenous work safety standards for heat exposure.

  3. The effect of electrode vertex angle on automatic tungsten-inert-gas welds for stainless steel 304L plates

    International Nuclear Information System (INIS)

    Maarek, V.; Sharir, Y.; Stern, A.

    1980-03-01

    The effect of electrode vertex angle on penetration depth and weld bead width, in automatic tungsten-inert-gas (TIG) dcsp bead-on-plate welding with different currents, has been studied for stainless steel 304L plates 1.5 mm and 8 mm thick. It has been found that for thin plates, wider and deeper welds are obtained when using sharper electrodes while, for thick plates, narrower and deeper welds are produced when blunt electrodes (vertex angle 180 deg) are used. An explanation of the results, based on a literature survey, is included

  4. Effect of heat treatment temperature on microstructure

    Indian Academy of Sciences (India)

    The results of electrochemical performance measurements for the HCSs as anode material for lithium ion batteries indicate that the discharge capacity of the HCSs is improved after heat treatment at 800°C compared with the as-prepared HCSs and have a maximum value of 357 mAh/g and still retains 303 mAh/g after 40 ...

  5. SHORT COMMUNICATION EFFECT OF HEATING METHOD ON ...

    African Journals Online (AJOL)

    Preferred Customer

    employed or not: catalytic reduction and catalytic decomposition. The latter method has ... attention owing to their acidity, redox properties, and pseudo-liquid phase [6]. HPAs, in ... Reactor set-up and gas composition. .... min) was obtained, where it should be noted that by virtue of the design, this heating method will never ...

  6. Surface wettability effects on critical heat flux of boiling heat transfer using nanoparticle coatings

    KAUST Repository

    Hsu, Chin-Chi

    2012-06-01

    This study investigates the effects of surface wettability on pool boiling heat transfer. Nano-silica particle coatings were used to vary the wettability of the copper surface from superhydrophilic to superhydrophobic by modifying surface topography and chemistry. Experimental results show that critical heat flux (CHF) values are higher in the hydrophilic region. Conversely, CHF values are lower in the hydrophobic region. The experimental CHF data of the modified surface do not fit the classical models. Therefore, this study proposes a simple model to build the nexus between the surface wettability and the growth of bubbles on the heating surface. © 2012 Elsevier Ltd. All rights reserved.

  7. Effect of local heat flux spikes on DNB in non-uniformly heated rod bundles

    International Nuclear Information System (INIS)

    Cadek, F.F.; Hill, K.W.; Motley, F.E.

    1975-02-01

    High pressure water tests were carried out to measure the DNB heat flux using an electrically heated rod bundle in which three adjacent rods had 20 percent heat flux spikes at the axial location where DNB is most likely to occur. This test series was run at the same conditions as those of two earlier test series which had unspiked rods, so that spiked and unspiked runs could be paired and spike effects could thus be isolated. Results are described. 7 references. (U.S.)

  8. Performance analyses of helical coil heat exchangers. The effect of external coil surface modification on heat exchanger effectiveness

    Science.gov (United States)

    Andrzejczyk, Rafał; Muszyński, Tomasz

    2016-12-01

    The shell and coil heat exchangers are commonly used in heating, ventilation, nuclear industry, process plant, heat recovery and air conditioning systems. This type of recuperators benefits from simple construction, the low value of pressure drops and high heat transfer. In helical coil, centrifugal force is acting on the moving fluid due to the curvature of the tube results in the development. It has been long recognized that the heat transfer in the helical tube is much better than in the straight ones because of the occurrence of secondary flow in planes normal to the main flow inside the helical structure. Helical tubes show good performance in heat transfer enhancement, while the uniform curvature of spiral structure is inconvenient in pipe installation in heat exchangers. Authors have presented their own construction of shell and tube heat exchanger with intensified heat transfer. The purpose of this article is to assess the influence of the surface modification over the performance coefficient and effectiveness. The experiments have been performed for the steady-state heat transfer. Experimental data points were gathered for both laminar and turbulent flow, both for co current- and countercurrent flow arrangement. To find optimal heat transfer intensification on the shell-side authors applied the number of transfer units analysis.

  9. Modeling of heat transfer in a horizontal heat-generating layer by an effective diffusivity approach

    International Nuclear Information System (INIS)

    Cheung, F.B.; Shiah, S.W.

    1994-01-01

    The concept of effective diffusivity is employed to model various processes of heat transfer in a volumetrically heated fluid layer subjected to different initial and boundary conditions. The approach, which involves the solution of only heat diffusion equations, is found to give rather accurate predictions of the transient response of an initially stagnant fluid layer to a step input of power as well as the developing and decaying nature of the flow following a step change in the internal Rayleigh number from one state of steady convection to another. The approach is also found to be applicable to various flow regions of a heat-generating fluid layer, and is not limited to the case in which the entire layer is in turbulent motion. The simplicity and accuracy of the method are clearly illustrated in the analysis. Validity of the effective diffusivity approach is demonstrated by comparing the predicted results with corresponding experimental data

  10. Simulation of High-current Pulse Effect on the Electrode with Nonlinear Material Characteristics and Phase Transitions Taken into Account

    Directory of Open Access Journals (Sweden)

    R. V. Arutjunjan

    2016-01-01

    Full Text Available The article investigates the thermal and electrical processes when heating the metal electrode by a high current pulse. The aim is to understand an impact nature of the nonlinearities of thermal parameters, the phase transitions of melting and evaporation, and the type of boundary conditions in the current spot. To solve the problem was formulated a mathematical model, and were also developed a finite-difference method and computer programmes which allow an effective computer simulations of thermal and electrical processes under the high current pulse impact on the metal electrodes. The Stefan problem is solved by the through "enthalpy" method. Calculation of the electric field is performed by Seidel iteration. Thermal and current balance and comparison with solution results of model problems allow computer error monitoring.The work involved a series of calculations for an informative case of iron. It enabled to find a significant influence of the nonlinearities of thermal parameters, the phase transitions of melting and evaporation, the type of boundary conditions on the values of the temperature and electric fields, especially in the vicinity of the current spot. The presence of high current density and temperature, respectively, in the vicinity of the current spot edge confirms the well-known hypothesis about the causes of contact welding on the edges of the contact area. It has been found that the impact of losses on radiation and convection cooling is negligible. The article continues and complements the well-known research in the theory of electrical contacts and welding processes based on detailed consideration of the electrode material properties, the nonlinearities, and a type of boundary conditions for temperature and electric fields.The results can be used in the practice in research and design of electrical machines and other electrical devices.The study has revealed the need to improve the enthalpy finite- difference method for

  11. The effect of preparation parameters i thermal decomposition of ruthenium dioxide electrodes on chlorine elctro-catalytic activity

    International Nuclear Information System (INIS)

    Luu, Tran Le; Kim, Choon Soo; Kim, Ji Ye; Kim, Seong Hwan; Yoon, Je Yong

    2015-01-01

    When fabricating a RuO_2 electrode, the high electro-catalytic activity in chlorine evolution is considered as one of the most important factors. Thermal decomposition method carried out under various fabrication conditions including the types of solvents, precursors, and calcination times have led to the enhancement electro-catalytic activity of RuO_2 electrode in chlorine evolution. Nevertheless, it has not been fully investigated how these parameters directly affect to the chlorine evolution efficiency in the RuO_2 electrode. Therefore, the aim of this study was to investigate the effect on the chlorine evolution in RuO_2 electrodes, depending upon the preparation parameters including solvents, precursors, and calcination times. As major results, the chlorine evolution efficiency was dominantly affected by these three major preparation parameters. The RuO_2 electrode fabricated with ethanol as the solvent showed highest chlorine evolution efficiency. The choice of Ru(AcAc)_3 as precursor and the increase of the calcination time up to 3 h are also the good choices for increasing chlorine electrocatalytic activities. The chlorine evolution efficiency was not significantly related to the total voltammetric charge but to the outer voltammetric charge, which is affected by the morphology of the RuO_2 electrode surface. The size and number of cracks on the electrode surfaces or the outer voltammetric charges increased with easily evaporated solvents, decomposed precursors, and tensile stress from longer thermal treatments

  12. The effect of preparation parameters i thermal decomposition of ruthenium dioxide electrodes on chlorine elctro-catalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Luu, Tran Le; Kim, Choon Soo; Kim, Ji Ye; Kim, Seong Hwan; Yoon, Je Yong [Dept. of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University,Seoul (Korea, Republic of)

    2015-05-15

    When fabricating a RuO{sub 2} electrode, the high electro-catalytic activity in chlorine evolution is considered as one of the most important factors. Thermal decomposition method carried out under various fabrication conditions including the types of solvents, precursors, and calcination times have led to the enhancement electro-catalytic activity of RuO{sub 2} electrode in chlorine evolution. Nevertheless, it has not been fully investigated how these parameters directly affect to the chlorine evolution efficiency in the RuO{sub 2} electrode. Therefore, the aim of this study was to investigate the effect on the chlorine evolution in RuO{sub 2} electrodes, depending upon the preparation parameters including solvents, precursors, and calcination times. As major results, the chlorine evolution efficiency was dominantly affected by these three major preparation parameters. The RuO{sub 2} electrode fabricated with ethanol as the solvent showed highest chlorine evolution efficiency. The choice of Ru(AcAc){sub 3} as precursor and the increase of the calcination time up to 3 h are also the good choices for increasing chlorine electrocatalytic activities. The chlorine evolution efficiency was not significantly related to the total voltammetric charge but to the outer voltammetric charge, which is affected by the morphology of the RuO{sub 2} electrode surface. The size and number of cracks on the electrode surfaces or the outer voltammetric charges increased with easily evaporated solvents, decomposed precursors, and tensile stress from longer thermal treatments.

  13. Effect of frequency and waveform on inactivation of Escherichia coli O157:H7 and Salmonella enterica Serovar Typhimurium in salsa by ohmic heating.

    Science.gov (United States)

    Lee, Su-Yeon; Ryu, Sangryeol; Kang, Dong-Hyun

    2013-01-01

    The effect of frequency of alternating current during ohmic heating on electrode corrosion, heating rate, inactivation of food-borne pathogens, and quality of salsa was investigated. The impact of waveform on heating rate was also investigated. Salsa was treated with various frequencies (60 Hz to 20 kHz) and waveforms (sine, square, and sawtooth) at a constant electric field strength of 12.5 V/cm. Electrode corrosion did not occur when the frequency exceeded 1 kHz. The heating rate of the sample was dependent on frequency up to 500 Hz, but there was no significant difference (P > 0.05) in the heating rate when the frequency was increased above 1 kHz. The electrical conductivity of the sample increased with a rise in the frequency. At a frequency of 60 Hz, the square wave produced a lower heating rate than that of sine and sawtooth waves. The heating rate between waveforms was not significantly (P > 0.05) different when the frequency was >500 Hz. As the frequency increased, the treatment time required to reduce Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium to below the detection limit (1 log CFU/g) decreased without affecting product quality. These results suggest that ohmic heating can be effectively used to pasteurize salsa and that the effect of inactivation is dependent on frequency and electrical conductivity rather than waveform.

  14. Finite-size effect on optimal efficiency of heat engines.

    Science.gov (United States)

    Tajima, Hiroyasu; Hayashi, Masahito

    2017-07-01

    The optimal efficiency of quantum (or classical) heat engines whose heat baths are n-particle systems is given by the strong large deviation. We give the optimal work extraction process as a concrete energy-preserving unitary time evolution among the heat baths and the work storage. We show that our optimal work extraction turns the disordered energy of the heat baths to the ordered energy of the work storage, by evaluating the ratio of the entropy difference to the energy difference in the heat baths and the work storage, respectively. By comparing the statistical mechanical optimal efficiency with the macroscopic thermodynamic bound, we evaluate the accuracy of the macroscopic thermodynamics with finite-size heat baths from the statistical mechanical viewpoint. We also evaluate the quantum coherence effect on the optimal efficiency of the cycle processes without restricting their cycle time by comparing the classical and quantum optimal efficiencies.

  15. Effects of electrolytic composition on the electric double-layer capacitance at smooth-surface carbon electrodes in organic media

    International Nuclear Information System (INIS)

    Kim, In-Tae; Egashira, Minato; Yoshimoto, Nobuko; Morita, Masayuki

    2010-01-01

    As a fundamental research on the optimization of electrolyte composition in practical electrochemical capacitor device, double-layer capacitance at Glassy Carbon (GC) and Boron-doped Diamond (BDD), as typical smooth-surface carbon electrodes, has been studied as a function of the electrolyte composition in organic media. Specific capacitance (differential capacitance: F cm -2 ) determined by an AC impedance method, in which no contribution of mass-transport effects is included, corresponded well to integrated capacitance evaluated by conventional cyclic voltammetry. The specific capacitance at the GC electrode varied with polarized potential and showed clear PZC (potential of zero charge), while the potential dependence of the capacitance at BDD was very small. The effects of the solvent and the electrolytic salt on the capacitance behavior were common for both electrodes. That is, the sizes of the solvent molecule and the electrolytic ion (cation) strongly affected the capacitance at these smooth-surface carbon electrodes.

  16. Nonlinear throughflow and internal heating effects on vibrating porous medium

    Directory of Open Access Journals (Sweden)

    Palle Kiran

    2016-06-01

    Full Text Available The effect of vertical throughflow and internal heating effects on fluid saturated porous medium under gravity modulation is investigated. The amplitude of modulation is considered to be very small and the disturbances are expanded in terms of power series of amplitude of convection. A weakly nonlinear stability analysis is proposed to study stationary convection. The Nusselt number is obtained numerically to present the results of heat transfer while using Ginzburg–Landau equation. The vertical throughflow has dual effect either to destabilize or to stabilize the system for downward or upward directions. The effect of internal heat source (Ri>0 enhances or sink (Ri<0 diminishes heat transfer in the system. The amplitude and frequency of modulation have the effects of increasing or diminishing heat transport. For linear model Venezian approach suggested that throughflow and internal heating have both destabilizing and stabilizing effects for suitable ranges of Ω. Further, the study establishes that heat transport can be controlled effectively by a mechanism that is external to the system throughflow and gravity modulation.

  17. Effect of heat loss in a geothermal reservoir

    NARCIS (Netherlands)

    Ganguly, Sayantan; Tan, Lippong; Date, Abhijit; Mohan Kumar, Mandalagiri Subbarayappa

    This paper reports a three-dimensional (3D) numerical study to determine the effect of heat loss on the transient heat transport and temperature distribution in a geothermal reservoir. The operation of a geothermal power plant, which is essentially an injection-production process, involves

  18. Free convection effects and radiative heat transfer in MHD Stokes ...

    Indian Academy of Sciences (India)

    The present note deals with the effects of radiative heat transfer and free convection in MHD for a flow of an electrically conducting, incompressible, dusty viscous fluid past an impulsively started vertical non-conducting plate, under the influence of transversely applied magnetic field. The heat due to viscous dissipation and ...

  19. Effect of sintering temperature and heating mode on consolidation of ...

    Indian Academy of Sciences (India)

    ratures ranging from 570–630 ◦C. Microwave sintering at a heating rate of as high as 22◦. C/min resulted in ... The effect of heating mode and sintering temperature are discussed .... the compacts. This is attributed to the Zn evaporated from the.

  20. Effect of heat treatment on structure and magnetic properties

    Indian Academy of Sciences (India)

    Fe46Co35Ni19/CNTs nanocomposites have been prepared by an easy two-step route including adsorption and heat treatment processes. We investigated the effect of heat treatment conditions on structure, morphology, nanoparticle sizes and magnetic properties of the Fe46Co35Ni19 alloy nanoparticles attached on the ...

  1. Effect of heat treatment temperature on binder thermal conductivities

    International Nuclear Information System (INIS)

    Wagner, P.

    1975-12-01

    The effect of heat treatment on the thermal conductivities of a pitch and a polyfurfuryl alcohol binder residue was investigated. Graphites specially prepared with these two binders were used for the experiments. Measured thermal conductivities were treated in terms of a two-component system, and the binder thermal conductivities were calculated. Both binder residues showed increased thermal conductivity with increased heat treatment temperature

  2. Numerical investigation of heat transfer effects in small wave rotor

    International Nuclear Information System (INIS)

    Deng, Shi; Okamoto, Koji; Teramoto, Susumu

    2015-01-01

    Although a wave rotor is expected to enhance the performance of the ultra-micro gas turbine, the device itself may be affected by downsizing. Apart from the immediate effect of viscosity on flow dynamics when downscaled, the effects of heat transfer on flow field increase at such small scales. To gain an insight into the effects of heat transfer on the internal flow dynamics, numerical investigations were carried out with adiabatic, isothermal and conjugate heat transfer boundary treatments at the wall, and the results compared and discussed in the present study. With the light shed by the discussion of adiabatic and conjugate heat transfer boundary treatments, this work presents investigations of the heat flux distributions, as well as the effects of heat transfer on the internal flow dynamics and the consequent charging and discharging processes for various sizes. When heat transfer is taken into account, states of fluid in the cell before compression process varies, shock waves in compression process are found to be weaker, and changes in the charging and discharging processes are observed. Heat transfer differences between conjugate heat transfer boundary treatment and isothermal boundary treatment are addressed through comparisons of local wall temperature and heat flux. As a result, the difference in discharging temperature of high pressure fluid is noticeable in all sizes investigated, and the rapid increase of differences between results of isothermal and conjugate heat transfer boundary treatment in small size reveals that for certain small sizes (length of cell < 23 mm) the thermal boundary treatment should be taken care of.

  3. Effects of nonuniform surface heat flux and uniform volumetric heating on blanket design for fusion reactors

    International Nuclear Information System (INIS)

    Hasan, M.Z.

    1988-05-01

    An analytical solution for the temperature profile and film temperature drop for fully-developed, laminar flow in a circular tube is provided. The surface heat flux varies circcimferentally but is constant along the axis of the tube. The volulmetric heat generation is uniform in the fluid. The fully developed laminar velocity profile is approximated by a power velocity profile to represent the flattening effect of a perpendicular magnetic field when the coolant is electrivally conductive. The presence of volumetric heat generation in the fluid adds another component to the film temperature drop to that due to the surface heat flux. The reduction of the boundary layer thickness by a perpendicular magnetic field reduces both of these two film temperature drops. A strong perpendicular magnetic field can reduce the film termperatiure drop by a factor of two if the fluid is electrically conducting. The effect of perpendicualr magnetic field )or the flatness of the velocity profile) is less pronounced on teh film termperature drop due to nonuniform surfacae heat flux than on that due to uniform surface heat flux. An example is provided to show the relative effects on these two film temperd

  4. Measurement of effective piezoelectric coefficients of PZT thin films for energy harvesting application with interdigitated electrodes.

    Science.gov (United States)

    Chidambaram, Nachiappan; Mazzalai, Andrea; Muralt, Paul

    2012-08-01

    Interdigitated electrode (IDE) systems with lead zirconate titanate (PZT) thin films play an increasingly important role for two reasons: first, such a configuration generates higher voltages than parallel plate capacitor-type electrode (PPE) structures, and second, the application of an electric field leads to a compressive stress component in addition to the overall stress state, unlike a PPE structure, which results in tensile stress component. Because ceramics tend to crack at relatively moderate tensile stresses, this means that IDEs have a lower risk of cracking than PPEs. For these reasons, IDE systems are ideal for energy harvesting of vibration energy, and for actuators. Systematic investigations of PZT films with IDE systems have not yet been undertaken. In this work, we present results on the evaluation of the in-plane piezoelectric coefficients with IDE systems. Additionally, we also propose a simple and measurable figure of merit (FOM) to analyze and evaluate the relevant piezoelectric parameter for harvesting efficiency without the need to fabricate the energy harvesting device. Idealized effective coefficients e(IDE) and h(IDE) are derived, showing its composite nature with about one-third contribution of the transverse effect, and about two-thirds contribution of the longitudinal effect in the case of a PZT film deposited on a (100)-oriented silicon wafer with the in-plane electric field along one of the Si directions. Randomly oriented 1-μm-thick PZT 53/47 film deposited by a sol-gel technique, was evaluated and yielded an effective coefficient e(IDE) of 15 C·m(-2). Our FOM is the product between effective e and h coefficient representing twice the electrical energy density stored in the piezoelectric film per unit strain deformation (both for IDE and PPE systems). Assuming homogeneous fields between the fingers, and neglecting the contribution from below the electrode fingers, the FOM for IDE structures with larger electrode gap is derived to be

  5. Climate Change Effects on Heat Waves and Future Heat Wave-Associated IHD Mortality in Germany

    Directory of Open Access Journals (Sweden)

    Stefan Zacharias

    2014-12-01

    Full Text Available The influence of future climate change on the occurrence of heat waves and its implications for heat wave-related mortality due to ischemic heart diseases (IHD in Germany is studied. Simulations of 19 regional climate models with a spatial resolution of 0.25° × 0.25° forced by the moderate climate change scenario A1B are analyzed. Three model time periods of 30 years are evaluated, representing present climate (1971–2000, near future climate (2021–2050, and remote future climate (2069–2098. Heat waves are defined as periods of at least three consecutive days with daily mean air temperature above the 97.5th percentile of the all-season temperature distribution. Based on the model simulations, future heat waves in Germany will be significantly more frequent, longer lasting and more intense. By the end of the 21st century, the number of heat waves will be tripled compared to present climate. Additionally, the average duration of heat waves will increase by 25%, accompanied by an increase of the average temperature during heat waves by about 1 K. Regional analyses show that stronger than average climate change effects are observed particularly in the southern regions of Germany. Furthermore, we investigated climate change impacts on IHD mortality in Germany applying temperature projections from 19 regional climate models to heat wave mortality relationships identified in a previous study. Future IHD excess deaths were calculated both in the absence and presence of some acclimatization (i.e., that people are able to physiologically acclimatize to enhanced temperature levels in the future time periods by 0% and 50%, respectively. In addition to changes in heat wave frequency, we incorporated also changes in heat wave intensity and duration into the future mortality evaluations. The results indicate that by the end of the 21st century the annual number of IHD excess deaths in Germany attributable to heat waves is expected to rise by factor 2

  6. Conventional Physics can Explain Excess Heat in the Fleischmann-Pons Cold Fusion Effect

    Science.gov (United States)

    Chubb, Scott

    2011-03-01

    In 1989, when Fleischmann and Pons (FP) claimed they had created room temperature, nuclear fusion in a solid, a firestorm of controversy erupted. Beginning in 1991, the Office of Naval Research began a decade-long study of the FP excess heat effect. This effort documented the fact that the excess heat that FP observed is the result of a form of nuclear fusion that can occur in solids at reduced temperature, dynamically, through a deuteron (d)+d?helium-4 reaction, without high-energy particles or ? rays. This fact has been confirmed at SRI and at a number of other laboratories (most notably in the laboratory of Y. Arata, located at Osaka University, Japan). A key reason this fact has not been accepted is the lack of a cogent argument, based on fundamental physical ideas, justifying it. In the paper, this question is re-examined, based on a generalization of conventional energy band theory that applies to finite, periodic solids, in which d's are allowed to occupy wave-like, ion band states, similar to the kinds of states that electrons occupy in ordinary metals. Prior to being experimentally observed, the Ion Band State Theory of cold fusion predicted a potential d+d?helium-4 reaction, without high energy particles, would explain the excess heat, the helium-4 would be found in an unexpected place (outside heat- producing electrodes), and high-loading, x?1, in PdDx, would be required.

  7. Evaluation of the performance degradation at PAFC effect of electrolyte fill-level on electrode performance

    Energy Technology Data Exchange (ETDEWEB)

    Kitai, Takashi; Uchida, Hiroyuki; Watanabe, Masahiro [Yamanashi Univ., Kofu (Japan)] [and others

    1996-12-31

    As a complimentary research project to the demonstration project of 5MW and 1MW PAFC plants, the mechanism and rate of deterioration of the cells and stacks have been studied from 1995 FY, with the objective of establishing an estimation method for the service life-time of the cell stacks. This work has been performed in the Basic Research Project, as part of that project on PAFC`s, selecting four subjects (Electrocatalysts degradation, Electrolyte fill-level, Cell material corrosion, Electrolyte loss) as the essential factors relating to the life-time. In this report, we will exhibit the effect of the electrolyte fill-level on the electrode performances.

  8. Current distribution effects in AC impedance spectroscopy of electroceramic point contact and thin film model electrodes

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Jacobsen, Torben

    2010-01-01

    the primary current distribution to the DC current distribution restricted to the Three-Phase-Boundary (TPB) zone introduces an error in the determination of the reaction resistance, Rreac = Z(freq. → 0) − Z(freq. → ∞). The error is estimated for different width of the effective TPB zone and a rule of thumb...... regarding its significance is provided. The associated characteristic impedance spectrum shape change is simulated and its origin discussed. Furthermore, the characteristic shape of impedance spectra of thin electroceramic film electrodes with lateral ohmic resistance is studied as a function...

  9. Effectiveness of diaphragmatic stimulation with single-channel electrodes in rabbits

    Directory of Open Access Journals (Sweden)

    Rodrigo Guellner Ghedini

    2013-06-01

    Full Text Available Every year, a large number of individuals become dependent on mechanical ventilation because of a loss of diaphragm function. The most common causes are cervical spinal trauma and neuromuscular diseases. We have developed an experimental model to evaluate the performance of electrical stimulation of the diaphragm in rabbits using single-channel electrodes implanted directly into the muscle. Various current intensities (10, 16, 20, and 26 mA produced tidal volumes above the baseline value, showing that this model is effective for the study of diaphragm performance at different levels of electrical stimulation

  10. Annealing Effect on the Photoelectrochemical Properties of BiVO_4 Thin Film Electrodes

    International Nuclear Information System (INIS)

    Siti Nur Farhana Mohd Nasir; Mohd Asri Mat Teridi; Mehdi Ebadi; Sagu, J.S.

    2015-01-01

    Monoclinic bismuth vanadate (BiVO_4) thin film electrodes were fabricated on fluorine-doped tin oxide via aerosol-assisted chemical vapour deposition (AACVD). Annealing and without annealing effect of thin films were analysed by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), ultraviolet-visible spectrophotometry (UV-Vis) and current voltage measurement. All BiVO_4 thin films showed an anodic photocurrent. The sample of BiVO_4 annealed at 400 degree Celsius exhibited the highest photocurrent density of 0.44 mAcm"-"2 vs. Ag/ AgCl at 1.23 V. (author)

  11. Study of the effect of water vapor on a resistive plate chamber with glass electrodes

    CERN Document Server

    Sakai, H H; Teramoto, Y; Nakano, E E; Takahashi, T T

    2002-01-01

    We studied the effects of water vapor on the efficiencies of resistive plate chambers with glass electrodes, operated in the streamer mode. With moisture in the chamber gas that has freon as a component (water vapor approx 1000 ppm), a decrease in the efficiency (approx 20%) has been observed after operating for a period of several weeks to a few months. From our study, the cause of the efficiency decrease was identified as a change on the cathode surface. In addition, a recovery method was found: flushing for 1 day with argon bubbled through water containing >=3% ammonia, followed by a few weeks of training with dry gas.

  12. Surface effects of electrode-dependent switching behavior of resistive random-access memory

    KAUST Repository

    Ke, Jr Jian; Wei, Tzu Chiao; Tsai, Dung Sheng; Lin, Chun-Ho; He, Jr-Hau

    2016-01-01

    of the oxygen chemisorption process was proposed to explain this electrode-dependent switching behavior. The temperature-dependent switching voltage demonstrates that the ReRAM devices fabricated with Pt electrodes have a lower activation energy

  13. Heat treatment of whole milk by the direct joule effect--experimental and numerical approaches to fouling mechanisms.

    Science.gov (United States)

    Fillaudeau, L; Winterton, P; Leuliet, J C; Tissier, J P; Maury, V; Semet, F; Debreyne, P; Berthou, M; Chopard, F

    2006-12-01

    The development of alternative technologies such as the direct Joule effect to pasteurize and sterilize food products is of great scientific and industrial interest. Our objective was 1) to gain insight into the ability to ensure ultra-high-temperature treatment of milk and 2) to investigate the links among thermal, hydraulic, and electrical phenomena in relation to fouling in a direct Joule effect heater. The ohmic heater [OH; E perpendicular to v (where E is the electrical field and v is the velocity); P (power) = 15 kW] was composed of 5 flat rectangular cells [e (space between the plate and electrode) = 15 mm, w (wall) = 76 mm, and L (length of the plate in plate heat exchanger or electrode) = 246 mm]--3 active cells to ensure heating and 2 (at the extremities) for electrical insulation and the recovery of leakage currents. In the first step, the thermal performance of the OH was investigated vs. the flow regimen [50 conductivity of fluids (0.1 thermal approach (thermal and electrical balance, modeling of the temperature profile of a fluid) and local analysis of the wall temperature of the electrode. An empirical correlation was established to estimate the temperature gradient, T(w)-T(b) (where T(w) is the wall temperature and T(b) is the product temperature) under clean conditions (without fouling) and was used to define operating conditions for pure-volume and direct-resistance heating. In the second step, the ability of OH to ensure the ultra-high-temperature treatment of whole milk was investigated and compared with a plate heat exchanger. Special care was taken to investigate the heat transfer phenomena occurring over a range of temperatures from 105 to 138 degrees C. This temperature range corresponds to the part of the process made critical by protein and mineral fouling. The objectives were 1) to demonstrate the ability of an OH to ensure heat treatment of milk, 2) to study the thermal and hydraulic performance with an increasing power and temperature

  14. Effect of surface roughness and surface modification of indium tin oxide electrode on its potential response to tryptophan

    International Nuclear Information System (INIS)

    Khan, Md. Zaved Hossain; Nakanishi, Takuya; Kuroiwa, Shigeki; Hoshi, Yoichi; Osaka, Tetsuya

    2011-01-01

    Highlights: → We examine factors affecting potential response of ITO electrode to tryptophan. → Surface roughness of ITO electrode affects the stability of its rest potential. → Surface modification is effective for ITO electrode with a certain roughness. → Optimum values of work function exist for potential response of ITO to tryptophan. - Abstract: The effect of surface modification of indium tin oxide (ITO) electrode on its potential response to tryptophan was investigated for ITO substrates with different surface roughness. It was found that a small difference in surface roughness, between ∼1 and ∼2 nm of R a evaluated by atomic force microscopy, affects the rest potential of ITO electrode in the electrolyte. A slight difference in In:Sn ratio at the near surface of the ITO substrates, measured by angle-resolved X-ray photoelectron spectrometry and Auger electron spectroscopy is remarkable, and considered to relate with surface roughness. Interestingly, successive modification of the ITO surface with aminopropylsilane and disuccinimidyl suberate, of which essentiality to the potential response to indole compounds we previously reported, improved the stability of the rest potential and enabled the electrodes to respond to tryptophan in case of specimens with R a values ranging between ∼2 and ∼3 nm but not for those with R a of ∼1 nm. It was suggested that there are optimum values of effective work function of ITO for specific potential response to tryptophan, which can be obtained by the successive modification of ITO surface.

  15. Solar-assisted heat pump system for cost-effective space heating and cooling

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, J W; Kush, E A; Metz, P D

    1978-03-01

    The use of heat pumps for the utilization of solar energy is studied. Two requirements for a cost-effective system are identified: (1) a special heat pump whose coefficient of performance continues to rise with source temperature over the entire range appropriate for solar assist, and (2) a low-cost collection and storage subsystem able to supply solar energy to the heat pump efficiently at low temperatures. Programs leading to the development of these components are discussed. A solar assisted heat pump system using these components is simulated via a computer, and the results of the simulation are used as the basis for a cost comparison of the proposed system with other solar and conventional systems.

  16. Effect of radiation heat transfer on the performance of high temperature heat exchanger, (2)

    International Nuclear Information System (INIS)

    Yamada, Yukio; Mori, Yasuo; Hijikata, Kunio.

    1977-01-01

    In high temperature helium gas-cooled reactors, the nuclear energy can be utilized effectively, and the safety is excellent as compared with conventional reactors. They are advantageous also in view of environmental problems. In this report, the high temperature heat exchanger used for heating steam with the helium from a high temperature gas reactor is modeled, and the case that radiating gas flow between parallel plates is considered. Analysis was made on the case of one channel and constant heat flux and on the model for a counter-flow type heat exchanger with two channels, and the effect of radiation on the heat transfer in laminar flow and turbulent flow regions was clarified theoretically. The basic equations, the method of approximate solution and the results of calculation are explained. When one dimensional radiation was considered, the representative temperature Tr regarding fluid radiation was introduced, and its relation to mean mixing temperature Tm was determined. It was clarified that the large error in the result did not arise even if Tr was taken equally to Tm, especially in case of turbulent flow. The error was practically negligible when the rate of forced convection heat transfer in case of radiating medium flow was taken same as that in the case without radiation. (Kako, I.)

  17. Heat effects on drug delivery across human skin

    Science.gov (United States)

    Hao, Jinsong; Ghosh, Priyanka; Li, S. Kevin; Newman, Bryan; Kasting, Gerald B.; Raney, Sam G.

    2016-01-01

    Introduction Exposure to heat can impact the clinical efficacy and/or safety of transdermal and topical drug products. Understanding these heat effects and designing meaningful in vitro and in vivo methods to study them are of significant value to the development and evaluation of drug products dosed to the skin. Areas covered This review provides an overview of the underlying mechanisms and the observed effects of heat on the skin and on transdermal/topical drug delivery, thermoregulation and heat tolerability. The designs of several in vitro and in vivo heat effect studies and their results are reviewed. Expert opinion There is substantial evidence that elevated temperature can increase transdermal/topical drug delivery. However, in vitro and in vivo methods reported in the literature to study heat effects of transdermal/topical drug products have utilized inconsistent study conditions, and in vitro models require better characterization. Appropriate study designs and controls remain to be identified, and further research is warranted to evaluate in vitro-in vivo correlations and the ability of in vitro models to predict in vivo effects. The physicochemical and pharmacological properties of the drug(s) and the drug product, as well as dermal clearance and heat gradients may require careful consideration. PMID:26808472

  18. Extraction of network topology from multi-electrode recordings: Is there a small-world effect?

    Directory of Open Access Journals (Sweden)

    Felipe eGerhard

    2011-02-01

    Full Text Available The simultaneous recording of the activity of many neurons poses challenges for multivariate data analysis. Here, we propose a general scheme of reconstruction of the functional network from spike train recordings. Effective, causal interactions are estimated by fitting Generalized Linear Models (GLMs on the neural responses, incorporating effects of the neurons' self-history, of input from other neurons in the recorded network and of modulation by an external stimulus. The coupling terms arising from synaptic input can be transformed by thresholding into a binary connectivity matrix which is directed. Each link between two neurons represents a causal influence from one neuron to the other, given the observation of all other neurons from the population. The resulting graph is analyzed with respect to small-world and scale-free properties using quantitative measures for directed networks. Such graph-theoretic analyses have been performed on many complex dynamic networks, including the connectivity structure between different brain areas. Only few studies have attempted to look at the structure of cortical neural networks on the level of individual neurons. Here, using multi-electrode recordings from the visual system of the awake monkey, we find that cortical networks lack scale-free behavior, but show a small, but significant small-world structure. Assuming a simple distance-dependent probabilistic wiring between neurons, we find that this connectivity structure can account for all of the networks' observed small-world-ness. Moreover, for multi-electrode recordings the sampling of neurons is not uniform across the population. We show that the small-world-ness obtained by such a localized sub-sampling overestimates the strength of the true small-world-structure of the network. This bias is likely to be present in all previous experiments based on multi-electrode recordings.

  19. Effect of surface etching on condensing heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Seok, Sung Chul; Park, Jae Won; Jung, Jiyeon; Choi, Chonggun; Choi, Gyu Hong; Hwang, Seung Sik; Chung, Tae Yong; Shin, Donghoon [Kookmin University, Seoul (Korea, Republic of); Kim, Jin Jun [Hoseo University, Asan (Korea, Republic of)

    2016-02-15

    This study conducted experiments on humid air condensation during heat transfer in an air preheating exchanger attached to a home condensing boiler to improve thermal efficiency. An etchant composed of sulfuric acid and sodium nitrate was used to create roughness on the heat exchanger surface made from STS430J1L. A counter flow heat exchanger was fabricated to test the performance of heat transfer. Results showed that the overall heat transfer coefficients of all specimens treated with etchant improved with respect to the original specimens (not treated with etchant), and the overall heat transfer coefficient of the 60 s etching specimen increased by up to 15%. However, the increasing rate of the heat transfer coefficient was disproportional to the etching time. When the etching time specifically increased above 60 s, the heat transfer coefficient decreased. This effect was assumed to be caused by surface characteristics such as contact angle. Furthermore, a smaller contact angle or higher hydrophilicity leads to higher heat transfer coefficient.

  20. Double-effect absorption heat pump, phase 3

    Science.gov (United States)

    Cook, F. B.; Cremean, S. P.; Jatana, S. C.; Johnson, R. A.; Malcosky, N. D.

    1987-06-01

    The RD&D program has resulted in design, development and testing of a packaged prototype double-effect generator cycle absorption gas heat pump for the residential and small commercial markets. The 3RT heat pump prototype has demonstrated a COPc of 0.82 and a COPh of 1.65 at ARI rating conditions. The heat pump prototype includes a solid state control system with built-in diagnostics. The absorbent/refrigerant solution thermophysical properties were completely characterized. Commercially available materials of construction were identified for all heat pump components. A corrosion inhibitor was identified and tested in both static and dynamic environments. The safety of the heat pump was analyzed by using two analytical approaches. Pioneer Engineering estimated the factory standard cost to produce the 3RT heat pump at $1,700 at a quantity of 50,000 units/year. One United States patent was allowed covering the heat pump technology, and two divisional applications and three Continuation-in-Park Applications were filed with the U.S.P.T.O. Corresponding patent coverage was applied for in Canada, the EEC, Australia, and Japan. Testing of the prototype heat pump is continuing, as are life tests of multiple pump concepts amd long-term dynamic corrosion tests. Continued development and commercialization of gas absorption heat pumps based on the technology are recommended.

  1. Beneficial effects of microwave-assisted heating versus conventional heating in noble metal nanoparticle synthesis.

    Science.gov (United States)

    Dahal, Naween; García, Stephany; Zhou, Jiping; Humphrey, Simon M

    2012-11-27

    An extensive comparative study of the effects of microwave versus conventional heating on the nucleation and growth of near-monodisperse Rh, Pd, and Pt nanoparticles has revealed distinct and preferential effects of the microwave heating method. A one-pot synthetic method has been investigated, which combines nucleation and growth in a single reaction via precise control over the precursor addition rate. Using this method, microwave-assisted heating enables the convenient preparation of polymer-capped nanoparticles with improved monodispersity, morphological control, and higher crystallinity, compared with samples heated conventionally under otherwise identical conditions. Extensive studies of Rh nanoparticle formation reveal fundamental differences during the nucleation phase that is directly dependent on the heating method; microwave irradiation was found to provide more uniform seeds for the subsequent growth of larger nanostructures of desired size and surface structure. Nanoparticle growth kinetics are also markedly different under microwave heating. While conventional heating generally yields particles with mixed morphologies, microwave synthesis consistently provides a majority of tetrahedral particles at intermediate sizes (5-7 nm) or larger cubes (8+ nm) upon further growth. High-resolution transmission electron microscopy indicates that Rh seeds and larger nanoparticles obtained from microwave-assisted synthesis are more highly crystalline and faceted versus their conventionally prepared counterparts. Microwave-prepared Rh nanoparticles also show approximately twice the catalytic activity of similar-sized conventionally prepared particles, as demonstrated in the vapor-phase hydrogenation of cyclohexene. Ligand exchange reactions to replace polymer capping agents with molecular stabilizing agents are also easily facilitated under microwave heating, due to the excitation of polar organic moieties; the ligand exchange proceeds with excellent retention of

  2. The effect of the presence of fine YSZ particles on the performance of porous nickel electrodes

    NARCIS (Netherlands)

    de Boer, B.; de Boer, B.; Gonzalez, M.; Gonzalez Cuenca, M.M.; Bouwmeester, Henricus J.M.; Verweij, H.

    2000-01-01

    The electrochemical performance of a porous nickel electrode with its surface modified by deposition with fine yttria-stabilised zirconia (YSZ) powder is compared with that of the ‘bare’ electrode. Image analysis of the electrode microstructure yields values for the triple phase boundary (TPB)

  3. Radiation effects on the electrode and electrolyte of a lithium-ion battery

    Science.gov (United States)

    Tan, Chuting; Lyons, Daniel J.; Pan, Ke; Leung, Kwan Yee; Chuirazzi, William C.; Canova, Marcello; Co, Anne C.; Cao, Lei R.

    2016-06-01

    The performance degradation and durability of a Li-ion battery is a major concern when it is operated under radiation conditions, for instance, in deep space exploration, in high radiation field, or rescuing or sampling equipment in a post-nuclear accident scenario. This paper examines the radiation effects on the electrode and electrolyte materials separately and their effects on a battery's capacity loss and resistance increase. A60Co irradiator (34.3 krad/h) was used to provide 0.8, 4.1, and 9.8 Mrad dose to LiFePO4 electrodes and 0.8, 1.6, and 5.7 Mrad to 1 M LiPF6 in 1:1 wt% EC:DMC electrolytes. This study shows that the coin cells assembled with irradiated components have higher failure rate (ca. 70%) than that of control group (ca. 14%). A significant battery capacity fade post irradiation was observed. The electrolyte also shows a darkened color a few weeks or months after irradiation. The discovery of this latent effect may be significant because a battery may degrade significantly even showing no sign of degradation immediately after exposure. We investigated electrolyte composition by Fourier transform infrared spectroscopy, ultraviolet-visible spectroscopy, and nuclear magnetic resonance spectroscopy prior and post irradiation. Polymerization reactions and HF formation are considered as the cause of the discoloration.

  4. Effect of electrolyte concentration on performance of supercapacitor carbon electrode from fibers of oil palm empty fruit bunches

    International Nuclear Information System (INIS)

    Farma, R.; Awitdrus,; Taer, E.; Deraman, M.; Talib, I. A.; Omar, R.; Ishak, M. M.; Basri, N. H.; Dolah, B. N. M.

    2015-01-01

    Fibers of oil palm empty fruit bunches were used to produce self-adhesive carbon grains (SACG). The SACG green monoliths were carbonized in N 2 environment at 800°C to produce carbon monoliths (CM) and the CM was CO 2 activated at 800°C for 4 hour to produce activated carbon monolith electrodes (ACM). The physical properties of the CMs and ACMs were investigated using X-ray diffraction, field emission scanning electron microscopy and nitrogen adsorption-desorption. ACMs were used as electrode to fabricate symmetry supercapacitor cells and the cells which used H 2 SO 4 electrolyte at 0.5, 1.0 and 1.5 M were investigated using electrochemical impedance spectroscopy, cyclic voltammetry and galvanostatic charge-discharge standard techniques. In this paper we report the physical properties of the ACM electrodes and the effect of electrolyte concentration on the electrochemical properties the ACM electrodes

  5. Effect of high heating rate on thermal decomposition behaviour of ...

    Indian Academy of Sciences (India)

    Effect of high heating rate on thermal decomposition behaviour of titanium hydride ... hydride powder, while switching it from internal diffusion to chemical reaction. ... TiH phase and oxides form on the powder surface, controlling the process.

  6. Numerical study of the conjugate heat transfer in a horizontal pipe heated by Joulean effect

    Directory of Open Access Journals (Sweden)

    Touahri Sofiane

    2012-01-01

    Full Text Available The three dimensional mixed convection heat transfer in a electrically heated horizontal pipe conjugated to a thermal conduction through the entire solid thickness is investigated by taking into account the thermal dependence of the physical properties of the fluid and the outer heat losses. The model equations of continuity, momentum and energy are numerically solved by the finite volume method. The pipe thickness, the Prandtl and the Reynolds numbers are fixed while the Grashof number is varied from 104to107. The results obtained show that the dynamic and thermal fields for mixed convection are qualitatively and quantitatively different from those of forced convection, and the local Nusselt number at the interface solid-fluid is not uniform: it has considerable axial and azimuthally variations. The effect of physical variables of the fluid depending on temperature is significant, which justifies its inclusion. The heat transfer is quantified by the local and average Nusselt numbers. We found that the average Nusselt number of solid-fluid interface of the duct increases with the increase of Grashof number. We have equally found out that the heat transfer is improved thanks to the consideration of the thermo dependence of the physical properties. We have tried modelling the average Nusselt number as a function of Richardson number. With the parameters used, the heat transfer is quantified by the correlation: NuA=12.0753 Ri0.156

  7. Physicochemical effects on uncontaminated kaolinite due to electrokinetic treatment using inert electrodes.

    Science.gov (United States)

    Liaki, Christina; Rogers, Christopher D F; Boardman, David I

    2008-07-01

    To determine the consequences of applying electrokinetics to clay soils, in terms of mechanisms acting and resulting effects on the clay, tests were conducted in which an electrical gradient was applied across controlled specimens of English China Clay (ECC) using 'inert' electrodes and a 'Reverse Osmosis' water feed to the electrodes (i.e., to mimic electrokinetic stabilisation without the stabiliser added or electrokinetic remediation without the contaminant being present). The specimens in which electromigration was induced over time periods of 3, 7, 14 and 28 days were subsequently tested for Atterberg Limits, undrained shear strength using a hand shear vane, water content, pH, conductivity and zeta potential. Water flowed through the system from anode to cathode and directly affected the undrained shear strength of the clay. Acid and alkali fronts were created around the anode and cathode, respectively, causing changes in the pH, conductivity and zeta potential of the soil. Variations in zeta potential were linked to flocculation and dispersion of the soil particles, thus raising or depressing the Liquid Limit and Plastic Limit, and influencing the undrained shear strength. Initial weakening around the anode and cathode was replaced by a regain of strength at the anode once acidic conditions had been created, while highly alkaline conditions at the cathode induced a marked improvement in strength. A novel means of indicating strength improvement by chemical means, i.e., free from water content effects, is presented to assist in interpretation of the results.

  8. Overview PWR-Blowdown Heat Transfer Separate-Effects Program

    International Nuclear Information System (INIS)

    White, J.D.

    1978-01-01

    The ORNL Pressurized Water Reactor Blowdown Heat Transfer Program (PWR-BDHT) is a separate-effects experimental study of thermal-hydraulic phenomena occurring during the first 20 sec of a hypothetical LOCA. Specific objectives include the determination, for a wide range of parameters, of time to CHF and the following variables for both pre- and post-CHF: heat fluxes, ΔT (temperature difference between pin surface and fluid), heat transfer coefficients, and local fluid properties. A summary of the most interesting results from the program obtained during the past year is presented. These results are in the area of: (1) RELAP verification, (2) electric pin calibration, (3) time to critical heat flux (CHF), (4) heat transfer coefficient comparisons, and (5) nuclear fuel pin simulation

  9. Effect of mineral matter on coal self-heating rate

    Energy Technology Data Exchange (ETDEWEB)

    B. Basil Beamish; Ahmet Arisoy [University of Queensland, Brisbane, Qld. (Australia). School of Engineering

    2008-01-15

    Adiabatic self-heating tests have been conducted on subbituminous coal cores from the same seam profile, which cover a mineral matter content range of 11.2-71.1%. In all cases the heat release rate does not conform to an Arrhenius kinetic model, but can best be described by a third order polynomial. Assessment of the theoretical heat sink effect of the mineral matter in each of the tests reveals that the coal is less reactive than predicted using a simple energy conservation equation. There is an additional effect of the mineral matter in these cases that cannot be explained by heat sink alone. The disseminated mineral matter in the coal is therefore inhibiting the oxidation reaction due to physicochemical effects. 14 refs., 5 figs., 5 tabs.

  10. Effect of axial heat flux distribution on CHF

    Energy Technology Data Exchange (ETDEWEB)

    Park, Cheol

    2000-10-01

    Previous investigations for the effect of axial heat flux distributions on CHF and the prediction methods are reviewed and summarized. A total of 856 CHF data in a tube with a non-uniform axial heat flux distribution has been compiled from the articles and analyzed using the 1995 Groeneveld look-up table. The results showed that two representative correction factors, K5 of the look-up table and Tongs F factor, can be applied to describe the axial heat flux distribution effect on CHF. However, they overpredict slightly the measured CHF, depending on the quality and flux peak shape. Hence, a corrected K5 factor, which accounts for the axial heat flux distribution effect is suggested to correct these trends. It predicted the CHF power for the compiled data with an average error of 1.5% and a standard deviation of 10.3%, and also provides a reasonable prediction of CHF locations.

  11. Nanostructuring effect of multi-walled carbon nanotubes on electrochemical properties of carbon foam as constructive electrode for lead acid battery

    Science.gov (United States)

    Kumar, Rajeev; Kumari, Saroj; Mathur, Rakesh B.; Dhakate, Sanjay R.

    2015-01-01

    In the present study, nanostructuring effect of multi-walled carbon nanotubes (MWCNTs) on electrochemical properties of coal tar pitch (CTP) based carbon foam (CFoam) was investigated. The different weight fractions of MWCNTs were mixed with CTP and foam was developed from the mixture of CTP and MWCNTs by sacrificial template technique and heat treated at 1,400 and 2,500 °C in inert atmosphere. These foams were characterized by scanning electron microscopy, X-ray diffraction, and potentiostat PARSTAT for cyclic voltammetry. It was observed that, bulk density of CFoam increases with increasing MWCNTs content and decreases after certain amount. The MWCNTs influence the morphology of CFoam and increase the width of ligaments as well as surface area. During the heat treatment, stresses exerting at MWCNTs/carbon interface accelerate ordering of the graphene layer which have positive effect on the electrochemical properties of CFoam. The current density increases from 475 to 675 mA/cm2 of 1,400 °C heat treated and 95 to 210 mA/cm2 of 2,500 °C heat-treated CFoam with 1 wt% MWCNTs. The specific capacitance was decreases with increasing the scan rate from 100 to 1,000 mV/s. In case of 1 % MWCNTs content CFoam the specific capacitance at the scan rate 100 mV/s was increased from 850 to 1,250 μF/cm2 and 48 to 340 μF/cm2 of CFoam heat treated at 1,400 °C and 2,500 °C respectively. Thus, the higher value surface area and current density of MWCNTs-incorporated CFoam heat treated to 1,400 °C can be suitable for lead acid battery electrode with improved charging capability.

  12. Conversion to biofuel based heating systems - local environmental effects

    International Nuclear Information System (INIS)

    Jonsson, Anna

    2003-01-01

    One of the most serious environmental problems today is the global warming, i.e.climate changes caused by emissions of greenhouse gases. The greenhouse gases originate from combustion of fossil fuels and changes the atmospheric composition. As a result of the climate change, the Swedish government has decided to make a changeover of the Swedish energy system. This involves an increase of the supply of electricity and heating from renewable energy sources and a decrease in the amount electricity used for heating, as well as a more efficient use of the existing electricity system. Today, a rather large amount electricity is used for heating in Sweden. Furthermore, nuclear power will be phased out by the year 2010 in Sweden. Bio fuels are a renewable energy source and a conceivable alternative to the use of fossil fuels. Therefore, an increase of bio fuels will be seen the coming years. Bio fuels have a lot of environmental advantages, mainly for the global environment, but might also cause negative impacts such as depletion of the soils where the biomass is grown and local deterioration of the air quality where the bio fuels are combusted. These negative impacts are a result of the use of wrong techniques and a lack of knowledge and these factors have to be improved if the increase of the use of bio fuels is to be made effectively. The aim of this master thesis is to evaluate the possibilities for heating with bio fuel based systems in housing areas in the municipalities of Trollhaettan, Ulricehamn and Goetene in Vaestra Goetalands County in the South West of Sweden and to investigate which environmental and health effects are caused by the conversion of heating systems. The objective is to use the case studies as examples on preferable bio fuel based heating systems in different areas, and to what environmental impact this conversion of heating systems might cause. The housing areas for this study have been chosen on the basis of present heating system, one area

  13. Diamond electrophoretic microchips-Joule heating effects

    International Nuclear Information System (INIS)

    Karczemska, Anna T.; Witkowski, Dariusz; Ralchenko, Victor; Bolshakov, Andrey; Sovyk, Dmitry; Lysko, Jan M.; Fijalkowski, Mateusz; Bodzenta, Jerzy; Hassard, John

    2011-01-01

    Microchip electrophoresis (MCE) has become a mature separation technique in the recent years. In the presented research, a polycrystalline diamond electrophoretic microchip was manufactured with a microwave plasma chemical vapour deposition (MPCVD) method. A replica technique (mould method) was used to manufacture microstructures in diamond. A numerical analysis with CoventorWare TM was used to compare thermal properties during chip electrophoresis of diamond and glass microchips of the same geometries. Temperature distributions in microchips were demonstrated. Thermal, electrical, optical, chemical and mechanical parameters of the polycrystalline diamond layers are advantageous over traditionally used materials for microfluidic devices. Especially, a very high thermal conductivity coefficient gives a possibility of very efficient dissipation of Joule heat from the diamond electrophoretic microchip. This enables manufacturing of a new generation of microdevices.

  14. Diamond electrophoretic microchips-Joule heating effects

    Energy Technology Data Exchange (ETDEWEB)

    Karczemska, Anna T., E-mail: anna.karczemska@p.lodz.pl [Technical University of Lodz, Institute of Turbomachinery, 219/223 Wolczanska str., Lodz (Poland); Witkowski, Dariusz [Technical University of Lodz, Institute of Turbomachinery, 219/223 Wolczanska str., Lodz (Poland); Ralchenko, Victor, E-mail: ralchenko@nsc.gpi.ru [General Physics Institute, Russian Academy of Science, 38 Vavilov str., Moscow (Russian Federation); Bolshakov, Andrey; Sovyk, Dmitry [General Physics Institute, Russian Academy of Science, 38 Vavilov str., Moscow (Russian Federation); Lysko, Jan M., E-mail: jmlysko@ite.waw.pl [Institute of Electron Technology, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Fijalkowski, Mateusz, E-mail: petr.louda@vslib.cz [Technical University of Liberec, Faculty of Mechanical Engineering (Czech Republic); Bodzenta, Jerzy, E-mail: jerzy.bodzenta@polsl.pl [Silesian University of Technology, Institute of Physics, 2 Krzywoustego str., 44-100 Gliwice (Poland); Hassard, John, E-mail: j.hassard@imperial.ac.uk [Imperial College of Science, Technology and Medicine, London (United Kingdom)

    2011-03-15

    Microchip electrophoresis (MCE) has become a mature separation technique in the recent years. In the presented research, a polycrystalline diamond electrophoretic microchip was manufactured with a microwave plasma chemical vapour deposition (MPCVD) method. A replica technique (mould method) was used to manufacture microstructures in diamond. A numerical analysis with CoventorWare{sup TM} was used to compare thermal properties during chip electrophoresis of diamond and glass microchips of the same geometries. Temperature distributions in microchips were demonstrated. Thermal, electrical, optical, chemical and mechanical parameters of the polycrystalline diamond layers are advantageous over traditionally used materials for microfluidic devices. Especially, a very high thermal conductivity coefficient gives a possibility of very efficient dissipation of Joule heat from the diamond electrophoretic microchip. This enables manufacturing of a new generation of microdevices.

  15. The Effects of Different Electrode Types for Obtaining Surface Machining Shape on Shape Memory Alloy Using Electrochemical Machining

    Science.gov (United States)

    Choi, S. G.; Kim, S. H.; Choi, W. K.; Moon, G. C.; Lee, E. S.

    2017-06-01

    Shape memory alloy (SMA) is important material used for the medicine and aerospace industry due to its characteristics called the shape memory effect, which involves the recovery of deformed alloy to its original state through the application of temperature or stress. Consumers in modern society demand stability in parts. Electrochemical machining is one of the methods for obtained these stabilities in parts requirements. These parts of shape memory alloy require fine patterns in some applications. In order to machine a fine pattern, the electrochemical machining method is suitable. For precision electrochemical machining using different shape electrodes, the current density should be controlled precisely. And electrode shape is required for precise electrochemical machining. It is possible to obtain precise square holes on the SMA if the insulation layer controlled the unnecessary current between electrode and workpiece. If it is adjusting the unnecessary current to obtain the desired shape, it will be a great contribution to the medical industry and the aerospace industry. It is possible to process a desired shape to the shape memory alloy by micro controlling the unnecessary current. In case of the square electrode without insulation layer, it derives inexact square holes due to the unnecessary current. The results using the insulated electrode in only side show precise square holes. The removal rate improved in case of insulated electrode than others because insulation layer concentrate the applied current to the machining zone.

  16. Determination of kojic acid based on the interface enhancement effects of carbon nanotube/alizarin red S modified electrode.

    Science.gov (United States)

    Liu, Jieshu; Zhou, Dazhai; Liu, Xiaopeng; Wu, Kangbing; Wan, Chidan

    2009-04-01

    Based on non-covalent interactions such as pi-pi stacking, van der Waals interactions and strong adsorption, alizarin red S (ARS) interacts with multi-walled carbon nanotubes (MWNT), improving the solubility of MWNT in water and resulting in a stable MWNT/ARS solution. By successive cyclic sweeps between 0.0 and 2.2V in the MWNT/ARS solution, a MWNT/ARS composite film was fabricated on an electrode surface. The electrochemical behaviors of kojic acid at the bare electrode, the ARS film-modified electrode and the MWNT/ARS film-modified electrode were investigated. It was found that the oxidation signal of kojic acid significantly increased at the MWNT/ARS film-modified electrode, which was attributed to the unique properties of MWNT such as large surface area, strong adsorptive ability and subtle electronic character. The effects of pH and cyclic number of electropolymerization were examined. A rapid, sensitive and simple electrochemical method was then developed for the determination of kojic acid. This method exhibits good linearity over the range from 4.0 x 10(-7) to 6.0 x 10(-5)mol L(-1), and the limit of detection is as low as 1.0 x 10(-7)mol L(-1). In order to validate feasibility, the MWNT/ARS film-modified electrode was used for quantitative analysis of kojic acid in food samples.

  17. Effects of mesoscopic poly(3,4-ethylenedioxythiophene) films as counter electrodes for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Lee, Kun-Mu; Chiu, Wei-Hao; Wei, Hung-Yu; Hu, Chih-Wei; Suryanarayanan, Vembu; Hsieh, Weng-Feng; Ho, Kuo-Chuan

    2010-01-01

    Counter electrode coated with chemically polymerized poly(3,4-ethylenedioxythiophene) (PEDOT) in a dye-sensitized solar cell (DSSC) was studied. The surface morphology and the nature of I - /I 3 - redox reaction based on PEDOT film were investigated using Atomic Force Microscopy and Cyclic Voltammetry, respectively. The performance of the DSSCs containing the PEDOT coated electrode was compared with sputtered-Pt electrode. We found that the root mean square roughness decreases and conductivity increases as the molar ratio of imidazole (Im)/EDOT in the PEDOT film increases. The DSSC containing the PEDOT coated on fluorine doped tin oxide glass with Im/EDOT molar ratio of 2.0, showed a conversion efficiency of 7.44% compared to that with sputtered-Pt electrode (7.77%). The high photocurrents were attributed to the large effective surface area of the electrode material resulting in good catalytic properties for I 3 - reduction. Therefore, the incorporation of a multi-walled carbon nanotube (MWCNT) in the PEDOT film, coated on various substrates was also investigated. The DSSC containing the PEDOT films with 0.6 wt.% of MWCNT on stainless steel as counter electrode had the best cell performance of 8.08% with short-circuit current density, open-circuit voltage and fill factor of 17.00 mA cm -2 , 720 mV and 0.66, respectively.

  18. Effects of mesoscopic poly(3,4-ethylenedioxythiophene) films as counter electrodes for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kun-Mu, E-mail: d93549007@ntu.edu.t [Photovoltaics Technology Center, Industrial Technology Research Institute, Chutung, Hsinchu 31040, Taiwan (China); Chiu, Wei-Hao [Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, 1001 Tahsueh Road, Hsinchu 30050, Taiwan (China); Wei, Hung-Yu; Hu, Chih-Wei [Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Suryanarayanan, Vembu [Electro Organic Division, Central Electrochemical Research Institute, Karaikudi 630 006 (India); Hsieh, Weng-Feng [Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, 1001 Tahsueh Road, Hsinchu 30050, Taiwan (China); Ho, Kuo-Chuan [Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan (China)

    2010-01-01

    Counter electrode coated with chemically polymerized poly(3,4-ethylenedioxythiophene) (PEDOT) in a dye-sensitized solar cell (DSSC) was studied. The surface morphology and the nature of I{sup -}/I{sub 3}{sup -} redox reaction based on PEDOT film were investigated using Atomic Force Microscopy and Cyclic Voltammetry, respectively. The performance of the DSSCs containing the PEDOT coated electrode was compared with sputtered-Pt electrode. We found that the root mean square roughness decreases and conductivity increases as the molar ratio of imidazole (Im)/EDOT in the PEDOT film increases. The DSSC containing the PEDOT coated on fluorine doped tin oxide glass with Im/EDOT molar ratio of 2.0, showed a conversion efficiency of 7.44% compared to that with sputtered-Pt electrode (7.77%). The high photocurrents were attributed to the large effective surface area of the electrode material resulting in good catalytic properties for I{sub 3}{sup -} reduction. Therefore, the incorporation of a multi-walled carbon nanotube (MWCNT) in the PEDOT film, coated on various substrates was also investigated. The DSSC containing the PEDOT films with 0.6 wt.% of MWCNT on stainless steel as counter electrode had the best cell performance of 8.08% with short-circuit current density, open-circuit voltage and fill factor of 17.00 mA cm{sup -2}, 720 mV and 0.66, respectively.

  19. The effect of transcranial direct current stimulation on experimentally induced heat pain.

    Science.gov (United States)

    Aslaksen, Per M; Vasylenko, Olena; Fagerlund, Asbjørn J

    2014-06-01

    Transcranial direct current stimulation (tDCS) is a non-invasive neuromodulatory technique that can affect human pain perception. Placebo effects are present in most treatments and could therefore also interact with treatment effects in tDCS. The present study investigated whether short-term tDCS reduced heat pain intensity, stress, blood pressure and increased heat pain thresholds in healthy volunteers when controlling for placebo effects. Seventy-five (37 females) participants were randomized into three groups: (1) active tDCS group receiving anodal tDCS (2 mA) for 7 min to the primary motor cortex (M1), (2) placebo group receiving the tDCS electrode montage but only active tDCS stimulation for 30 s and (3) natural history group that got no tDCS montage but the same pain stimulation as the active tDCS and the placebo group. Heat pain was induced by a PC-controlled thermode attached to the left forearm. Pain intensity was significantly lower in the active tDCS group when examining change scores (pretest-posttest) for the 47 °C condition. The placebo group displayed lower pain compared with the natural history group, displaying a significant placebo effect. In the 43 and 45 °C conditions, the effect of tDCS could not be separated from placebo effects. The results revealed no effects on pain thresholds. There was a tendency that active tDCS reduced stress and systolic blood pressure, however, not significant. In sum, tDCS had an analgesic effect on high-intensity pain, but the effect of tDCS could not be separated from placebo effects for medium and low pain.

  20. Added effect of heat wave on mortality in Seoul, Korea.

    Science.gov (United States)

    Lee, Won Kyung; Lee, Hye Ah; Lim, Youn Hee; Park, Hyesook

    2016-05-01

    A heat wave could increase mortality owing to high temperature. However, little is known about the added (duration) effect of heat wave from the prolonged period of high temperature on mortality and different effect sizes depending on the definition of heat waves and models. A distributed lag non-linear model with a quasi-Poisson distribution was used to evaluate the added effect of heat wave on mortality after adjusting for long-term and intra-seasonal trends and apparent temperature. We evaluated the cumulative relative risk of the added wave effect on mortality on lag days 0-30. The models were constructed using nine definitions of heat wave and two relationships (cubic spline and linear threshold model) between temperature and mortality to leave out the high temperature effect. Further, we performed sensitivity analysis to evaluate the changes in the effect of heat wave on mortality according to the different degrees of freedom for time trend and cubic spline of temperature. We found that heat wave had the added effect from the prolonged period of high temperature on mortality and it was considerable in the aspect of cumulative risk because of the lagged influence. When heat wave was defined with a threshold of 98th percentile temperature and ≥2, 3, and 4 consecutive days, mortality increased by 14.8 % (7.5-22.6, 95 % confidence interval (CI)), 18.1 % (10.8-26.0, 95 % CI), 18.1 % (10.7-25.9, 95 % CI), respectively, in cubic spline model. When it came to the definitions of 90th and 95th percentile, the risk increase in mortality declined to 3.7-5.8 % and 8.6-11.3 %, respectively. This effect was robust to the flexibility of the model for temperature and time trend, while the definitions of a heat wave were critical in estimating its relationship with mortality. This finding could help deepen our understanding and quantifying of the relationship between heat wave and mortality and select an appropriate definition of heat wave and temperature model in the future

  1. Effects of aqueous humor hydrodynamics on human eye heat transfer under external heat sources.

    Science.gov (United States)

    Tiang, Kor L; Ooi, Ean H

    2016-08-01

    The majority of the eye models developed in the late 90s and early 00s considers only heat conduction inside the eye. This assumption is not entirely correct, since the anterior and posterior chambers are filled aqueous humor (AH) that is constantly in motion due to thermally-induced buoyancy. In this paper, a three-dimensional model of the human eye is developed to investigate the effects AH hydrodynamics have on the human eye temperature under exposure to external heat sources. If the effects of AH flow are negligible, then future models can be developed without taking them into account, thus simplifying the modeling process. Two types of external thermal loads are considered; volumetric and surface irradiation. Results showed that heat convection due to AH flow contributes to nearly 95% of the total heat flow inside the anterior chamber. Moreover, the circulation inside the anterior chamber can cause an upward shift of the location of hotspot. This can have significant consequences to our understanding of heat-induced cataractogenesis. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  2. Calendering effect on the electrochemical performances of the thick Li-ion battery electrodes using a three dimensional Ni alloy foam current collector

    International Nuclear Information System (INIS)

    Yang, Gui-Fu; Joo, Seung-Ki

    2015-01-01

    High surface area and a three dimensional NiCrAl alloy foam current collector was used for two kinds of thick lithium iron phosphate electrodes. One kind of electrodes were compressed after the slurry of active material in the metal foam was dried and then annealed at 140 °C for half a day whereas the other kind of electrodes were prepared without pressing. When the addition of carbon black was 4 wt% for the two kinds of electrodes, a charge-discharge test revealed that the capacity of the cell using the pressed electrode faded much more although the voltage-drop was much smaller at the plateau region. For example, the capacity of the pressed electrode exhibited 85 mA h g −1 , while it was 135 mA h g −1 for the unpressed electrode although the voltage-drop at the plateau region was 250 mV higher at 0.5C-rate for the unpressed electrode. The AC impedance analysis showed that the charge transfer resistance of the pressed electrode was only 15 Ω whereas it was 4 times higher for the unpressed electrode. The results illustrated that the effective redox area was much larger for the unpressed electrode since the cell using the unpressed electrode exhibited much higher capacity even at the condition of poor electronic conductivity. To solve the low electronic conductivity issue for the unpressed electrode, the addition of carbon black was further increased to 14 wt% and as a result, there was almost no difference in voltage drop at plateau region or charge transfer resistance between the two kinds of electrodes. Obviously, the capacity of unpressed electrode exhibited much higher at higher current rate due to the larger effective redox area

  3. Alkaline anion exchange membrane water electrolysis: Effects of electrolyte feed method and electrode binder content

    Science.gov (United States)

    Cho, Min Kyung; Park, Hee-Young; Lee, Hye Jin; Kim, Hyoung-Juhn; Lim, Ahyoun; Henkensmeier, Dirk; Yoo, Sung Jong; Kim, Jin Young; Lee, So Young; Park, Hyun S.; Jang, Jong Hyun

    2018-04-01

    Herein, we investigate the effects of catholyte feed method and anode binder content on the characteristics of anion exchange membrane water electrolysis (AEMWE) to construct a high-performance electrolyzer, revealing that the initial AEMWE performance is significantly improved by pre-feeding 0.5 M aqueous KOH to the cathode. The highest long-term activity during repeated voltage cycling is observed for AEMWE operation in the dry cathode mode, for which the best long-term performance among membrane electrode assemblies (MEAs) featuring polytetrafluoroethylene (PTFE) binder-impregnated (5-20 wt%) anodes is detected for a PTFE content of 20 wt%. MEAs with low PTFE content (5 and 9 wt%) demonstrate high initial performance, rapid performance decay, and significant catalyst loss from the electrode during long-term operation, whereas the MEA with 20 wt% PTFE allows stable water electrolysis for over 1600 voltage cycles. Optimization of cell operating conditions (i.e., operation in dry cathode mode at an optimum anode binder content following an initial solution feed) achieves an enhanced water splitting current density (1.07 A cm-2 at 1.8 V) and stable long-term AEMWE performance (0.01% current density reduction per voltage cycle).

  4. Physical degradation of membrane electrode assemblies undergoing freeze/thaw cycling: Micro-structure effects

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. [Fuel Cell Dynamics and Diagnostics Laboratory, Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Research and Development Division, Hyundai Motor Company, Yongin 446-912 (Korea); Mench, M.M. [Fuel Cell Dynamics and Diagnostics Laboratory, Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802 (United States)

    2007-11-22

    The objective of this work is to investigate physical damage of polymer electrolyte fuel cell (PEFC) materials subjected to freeze/thaw cycling. Effects of membrane electrode assembly micro-structures (catalyst layer cracking, membrane thickness, and membrane reinforcement) and diffusion media with micro-porous layers were analyzed by comparing scanning electron microscopy images of freeze/thaw cycled samples (-40 C/70 C) with those of virgin material and thermal cycled samples without freezing (5 C/70 C). Ex situ testing performed in this study has revealed a strong direction for the material choices in the PEFC and confirmed the previous computational model in the literature [S. He, M.M. Mench, J. Electrochem. Soc., 153 (2006) A1724-A1731; S. He, S.H. Kim, M.M. Mench, J. Electrochem. Soc., in press]. Specifically, the membrane electrode assemblies were found to be a source of water that can damage the catalyst layers under freeze/thaw conditions. Damage was found to occur almost exclusively under the channel, and not under the land (the graphite that touches the diffusion media). Conceptually, the best material to mitigate freeze-damage is a crack free virgin catalyst layer on a reinforced membrane that is as thin as possible, protected by a stiff diffusion media. (author)

  5. Thin-film electroencephalographic electrodes using multi-walled carbon nanotubes are effective for neurosurgery.

    Science.gov (United States)

    Awara, Kousuke; Kitai, Ryuhei; Isozaki, Makoto; Neishi, Hiroyuki; Kikuta, Kenichiro; Fushisato, Naoki; Kawamoto, Akira

    2014-12-15

    Intraoperative morphological and functional monitoring is essential for safe neurosurgery. Functional monitoring is based on electroencephalography (EEG), which uses silver electrodes. However, these electrodes generate metal artifacts as silver blocks X-rays, creating white radial lines on computed tomography (CT) images during surgery. Thick electrodes interfere with surgical procedures. Thus, thinner and lighter electrodes are ideal for intraoperative use. The authors developed thin brain electrodes using carbon nanotubes that were formed into thin sheets and connected to electrical wires. The nanotube sheets were soft and fitted the curve of the head very well. When attached to the head using paste, the impedance of the newly developed electrodes was 5 kΩ or lower, which was similar to that of conventional metal electrodes. These electrodes can be used in combination with intraoperative CT, magnetic resonance imaging (MRI), or cerebral angiography. Somatosensory-evoked potentials, auditory brainstem responses, and visually evoked potentials were clearly identified in ten volunteers. The electrodes, without any artifacts that distort images, did not interfere with X-rays, CT, or MR images. They also did not cause skin damage. Carbon nanotube electrodes may be ideal for neurosurgery.

  6. Optimizing the fabrication of carbon nanotube electrode for effective capacitive deionization via electrophoretic deposition strategy

    Directory of Open Access Journals (Sweden)

    Simeng Zhang

    2018-04-01

    Full Text Available In order to obtain superior electrode performances in capacitive deionization (CDI, the electrophoretic deposition (EPD was introduced as a novel strategy for the fabrication of carbon nanotube (CNT electrode. Preparation parameters, including the concentration of slurry components, deposition time and electric field intensity, were mainly investigated and optimized in terms of electrochemical characteristic and desalination performance of the deposited CNT electrode. The SEM image shows that the CNT material was deposited homogeneously on the current collector and a non-crack surface of the electrode was obtained. An optimal preparation condition of the deposited CNT electrode was obtained and specified as the Al (NO33 M concentration of 1.3 × 10−2 mol/L, the deposition time of 30 min and the electric field intensity of 15 V/cm. The obtained electrode performs an increasing specific mass capacitance of 33.36 F/g and specific adsorption capacity of 23.93 mg/g, which are 1.62 and 1.85 times those of the coated electrode respectively. The good performance of the deposited CNT electrode indicates the promising application of the EPD methodology in subsequent research and fabrication of the CDI electrodes for CDI process. Keywords: Carbon nanotube, Water treatment, Desalination, Capacitive deionization, Electrode fabrication, Electrophoretic deposition

  7. Maldistribution in airewater heat pump evaporators. Part 1: Effects on evaporator, heat pump and system level

    DEFF Research Database (Denmark)

    Mader, Gunda; Palm, Björn; Elmegaard, Brian

    2015-01-01

    This paper presents an approach to quantify the effect of evaporator maldistribution onoperating costs of air-water heat pumps. In the proposed simulation model maldistributionis induced by two parameters describing refrigerant phase and air flow distribution.Annual operating costs are calculated...

  8. The effects of radiogenic heat on groundwater flow

    International Nuclear Information System (INIS)

    Beddoes, R.J.; Tammemagi, H.Y.

    1986-03-01

    The effects of radiogenic heat released by a nuclear waste repository on the groundwater flow in the neighbouring rock mass is reviewed. The report presents an overview of the hydrogeologic properties of crystalline rocks in the Canadian Shield and also describes the mathematical theory of groundwater flow and heat transfer in both porous media and fractured rock. Numerical methods for the solution of the governing equations are described. A number of case histories are described where analyses of flow systems have been performed both with and without radiogenic heat sources. A number of relevant topics are reviewed such as the role of the porous medium model, boundary conditions and, most importantly, the role of complex coupled processes where the effects of heat and water flow are intertwined with geochemical and mechanical processes. The implications to radioactive waste disposal are discussed

  9. Viscous dissipation and Joule heating effects in MHD 3D flow with heat and mass fluxes

    Science.gov (United States)

    Muhammad, Taseer; Hayat, Tasawar; Shehzad, Sabir Ali; Alsaedi, Ahmed

    2018-03-01

    The present research explores the three-dimensional stretched flow of viscous fluid in the presence of prescribed heat (PHF) and concentration (PCF) fluxes. Mathematical formulation is developed in the presence of chemical reaction, viscous dissipation and Joule heating effects. Fluid is electrically conducting in the presence of an applied magnetic field. Appropriate transformations yield the nonlinear ordinary differential systems. The resulting nonlinear system has been solved. Graphs are plotted to examine the impacts of physical parameters on the temperature and concentration distributions. Skin friction coefficients and local Nusselt and Sherwood numbers are computed and analyzed.

  10. A study of the heated length to diameter effects

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Ho; Baek, Won Pil; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1997-12-31

    An analytical and experimental investigation has been performed on the heated length-to-diameter effect on critical heat flux exit conditions. A L/D correction factor is developed by applying artificial neural network and conventional regression techniques to the KAIST CHF data base. In addition, experiment is being performed to validate the developed L/D correction factor with independent data. Assessment shows that the developed correction factor is promising for practical applications. 6 refs., 8 figs. (Author)

  11. A study of the heated length to diameter effects

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Ho; Baek, Won Pil; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1998-12-31

    An analytical and experimental investigation has been performed on the heated length-to-diameter effect on critical heat flux exit conditions. A L/D correction factor is developed by applying artificial neural network and conventional regression techniques to the KAIST CHF data base. In addition, experiment is being performed to validate the developed L/D correction factor with independent data. Assessment shows that the developed correction factor is promising for practical applications. 6 refs., 8 figs. (Author)

  12. Effect of Pt coverage in Pt-deposited Pd nanostructure electrodes on electrochemical properties

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ah-Reum; Lee, Young-Woo; Kwak, Da-Hee; Park, Kyung-Won [Soongsil University, Seoul (Korea, Republic of)

    2015-06-15

    We have fabricated Pt-deposited Pd electrodes via a two-gun sputtering deposition system by separately operating Pd and Pt target as a function of sputtering time of Pt target. For Pt-deposited Pd electrodes (Pd/Pt-X), Pd were first deposited on the substrates at 20 W for 5min, followed by depositing Pt on the Pd-only electrodes as a function of sputtering time (X=1, 3, 5, 7, and 10min) at 20W on the Pt target. As the sputtering time of Pt target increased, the portion of Pt on the Pd electrodes increased, representing an increased coverage of Pt on the Pd electrodes. The Pd/Pt-7 electrode having an optimized Pt coverage exhibits an excellent electrocatalytic activity for methanol oxidation reaction.

  13. Ozone generation by negative corona discharge: the effect of Joule heating

    Energy Technology Data Exchange (ETDEWEB)

    Yanallah, K; Castellanos, A [Departamento de Electronica y Electromagnetismo, Universidad de Sevilla (Spain); Pontiga, F; Fernandez-Rueda, A [Departamento de Fisica Aplicada II, Universidad de Sevilla (Spain); Belasri, A [Laboratoire de Physique des Plasmas, des Materiaux Conducteur et Leurs Applications, Universite d' Oran (Algeria)

    2008-10-07

    Ozone generation in pure oxygen using a wire-to-cylinder corona discharge reactor is experimentally and numerically investigated. Ozone concentration is determined by means of direct UV spectroscopy and the effects of Joule heating and ozone decomposition on the electrodes are analysed for different discharge gaps. The numerical model combines the physical processes in the corona discharge with the chemistry of ozone formation and destruction. The chemical kinetics model and the electrical model are coupled through Poisson's equation, and the current-voltage (CV) characteristic measured in experiments is used as input data to the numerical simulation. The numerical model is able to predict the radial distributions of electrons, ions, atoms and molecules for each applied voltage of the CV characteristic. In particular, the evolution of ozone density inside the discharge cell has been investigated as a function of current intensity and applied voltage.

  14. Ozone generation by negative corona discharge: the effect of Joule heating

    International Nuclear Information System (INIS)

    Yanallah, K; Castellanos, A; Pontiga, F; Fernandez-Rueda, A; Belasri, A

    2008-01-01

    Ozone generation in pure oxygen using a wire-to-cylinder corona discharge reactor is experimentally and numerically investigated. Ozone concentration is determined by means of direct UV spectroscopy and the effects of Joule heating and ozone decomposition on the electrodes are analysed for different discharge gaps. The numerical model combines the physical processes in the corona discharge with the chemistry of ozone formation and destruction. The chemical kinetics model and the electrical model are coupled through Poisson's equation, and the current-voltage (CV) characteristic measured in experiments is used as input data to the numerical simulation. The numerical model is able to predict the radial distributions of electrons, ions, atoms and molecules for each applied voltage of the CV characteristic. In particular, the evolution of ozone density inside the discharge cell has been investigated as a function of current intensity and applied voltage

  15. Ozone generation by negative corona discharge: the effect of Joule heating

    Science.gov (United States)

    Yanallah, K.; Pontiga, F.; Fernández-Rueda, A.; Castellanos, A.; Belasri, A.

    2008-10-01

    Ozone generation in pure oxygen using a wire-to-cylinder corona discharge reactor is experimentally and numerically investigated. Ozone concentration is determined by means of direct UV spectroscopy and the effects of Joule heating and ozone decomposition on the electrodes are analysed for different discharge gaps. The numerical model combines the physical processes in the corona discharge with the chemistry of ozone formation and destruction. The chemical kinetics model and the electrical model are coupled through Poisson's equation, and the current-voltage (CV) characteristic measured in experiments is used as input data to the numerical simulation. The numerical model is able to predict the radial distributions of electrons, ions, atoms and molecules for each applied voltage of the CV characteristic. In particular, the evolution of ozone density inside the discharge cell has been investigated as a function of current intensity and applied voltage.

  16. Effect of three-dimensional deformations on local heat transfer to a nonuniformly heated falling film of liquid

    International Nuclear Information System (INIS)

    Chinnov, E.A.; Kabov, O.A.

    2004-01-01

    The experimental study on the heat transfer by the water film heated vertical flow is studied within the Reynolds number values from 1 to 45. The chart of the liquid film flow modes is plotted and the heat exchange areas are separated. The data on the dependence of the temperature of the heater walls and local heat flux at the heater symmetry axis on the longitudinal coordinate are obtained. The local heat exchange coefficients are measured. The comparison of the experimental data with the numerical calculations for the smooth film is carried out. The effect of the jet flow formation on the heat transfer to the liquid film is analyzed [ru

  17. An analysis of heat effects in different subpopulations of Bangladesh

    Science.gov (United States)

    Burkart, Katrin; Breitner, Susanne; Schneider, Alexandra; Khan, Md. Mobarak Hossain; Krämer, Alexander; Endlicher, Wilfried

    2014-03-01

    A substantial number of epidemiological studies have demonstrated an association between atmospheric conditions and human all-cause as well as cause-specific mortality. However, most research has been performed in industrialised countries, whereas little is known about the atmosphere-mortality relationship in developing countries. Especially with regard to modifications from non-atmospheric conditions and intra-population differences, there is a substantial research deficit. Within the scope of this study, we aimed to investigate the effects of heat in a multi-stratified manner, distinguishing by the cause of death, age, gender, location and socio-economic status. We examined 22,840 death counts using semi-parametric Poisson regression models, adjusting for a multitude of potential confounders. Although Bangladesh is dominated by an increase of mortality with decreasing (equivalent) temperatures over a wide range of values, the findings demonstrated the existence of partly strong heat effects at the upper end of the temperature distribution. Moreover, the study demonstrated that the strength of these heat effects varied considerably over the investigated subgroups. The adverse effects of heat were particularly pronounced for males and the elderly above 65 years. Moreover, we found increased adverse effects of heat for urban areas and for areas with a high socio-economic status. The increase in, and acceleration of, urbanisation in Bangladesh, as well as the rapid aging of the population and the increase in non-communicable diseases, suggest that the relevance of heat-related mortality might increase further. Considering rising global temperatures, the adverse effects of heat might be further aggravated.

  18. Geothermal energy - effective solutions for heating and cooling of buildings

    International Nuclear Information System (INIS)

    Veleska, Viktorija

    2014-01-01

    Energy and natural resources are essential prerequisites for the maintenance of the life and the development of human civilization. With the advancement of technology is more emphasis on energy efficiency and reducing carbon dioxide emissions. Energy efficiency is using less power without reducing the quality of life. Almost half of the energy used is devoted to buildings, including heating and cooling. Buildings are a major source of CO_2 emissions in the atmosphere. Reducing the impact of buildings on the environment and the development of renewable energy, energy solutions are key factor in terms of sustainable development. Energy and geothermal pumps posts represent effective solutions for large facilities for heating and cooling. Geothermal energy piles represent a system of pipes that circulate thermal fluid and embedded in earth, thus extracting heat from the bearing to satisfy the needs for heating and cooling. Experience has shown that this type of energy piles can save up to two thirds of the cost of conventional heating, while geothermal pump has the ability to low temperature resources (such as groundwater and earth) to extract energy and raise the higher level needed for heating buildings. Their implementation is supported by an active group of researchers working with industry to demonstrate the benefits of dual benefit performance at the foundations. Initiative for renewable heat and potential for further adoption of solutions with these technologies is rapidly expanding. The use of this source of energy has great potential due to environmental, economic and social benefits. (author)

  19. Effect of preparation method of metal hydride electrode on efficiency of hydrogen electrosorption process

    Energy Technology Data Exchange (ETDEWEB)

    Giza, Krystyna [Czestochowa University of Technology (Poland). Faculty of Production Engineering and Materials Technology; Drulis, Henryk [Trzebiatowski Institute of Low Temperatures and Structure Research PAS, Wroclaw (Poland)

    2016-02-15

    The preparation of negative electrodes for nickel-metal hydride batteries using LaNi{sub 4.3}Co{sub 0.4}Al{sub 0.3} alloy is presented. The constant current discharge technique is employed to determine the discharge capacity, the exchange current density and the hydrogen diffusion coefficient of the studied electrodes. The electrochemical performance of metal hydride electrode is strongly affected by preparation conditions. The results are compared and the advantages and disadvantages of preparation methods of the electrodes are also discussed.

  20. Magnetic field effects on the open circuit potential of ferromagnetic electrodes in corroding solutions.

    Science.gov (United States)

    Dass, Amala; Counsil, Joseph A; Gao, Xuerong; Leventis, Nicholas

    2005-06-02

    Magnetic fields shift the open circuit potential (OCP) of ferromagnetic electrodes (Fe, Co, and Ni) in corroding solutions. The OCP changes we observe (a) follow the series Fe>Co>Ni; (b) increase with the magnetic flux density; (c) reach a maximum with disk electrodes approximately 1 mm in diameter; and (d) depend on the orientation of the electrode. We report that when the surface of the electrode is oriented parallel (theta = 90 degrees) or perpendicular (theta = 0 degrees) to the magnetic field, the open circuit potential moves in opposite directions (positive and negative, respectively) with the largest changes occurring when the electrode surface is parallel to the magnetic field. Nonconvective sleeve electrodes produce the same behavior. The overall experimental evidence suggests that the magnetic field changes the OCP by modifying the surface concentrations of the paramagnetic participants in the corrosion process of the ferromagnetic electrode by species in solution; this in turn is accomplished by imposing a field-gradient driven mode of mass transfer upon paramagnetic species in solution (magnetophoresis). Simulations of the magnetic field around the ferromagnetic electrode at the two extreme orientations considered here show that in one case (theta = 90 degrees) field gradients actually repel, while in the other case (theta = 0 degrees) they attract paramagnetic species in the vicinity of the electrode.

  1. Pseudocapacitive Effects of N-Doped Carbon Nanotube Electrodes in Supercapacitors

    Directory of Open Access Journals (Sweden)

    Hyun Ho Park

    2012-07-01

    Full Text Available Nitrogen- and micropore-containing carbon nanotubes (NMCNTs were prepared by carbonization of nitrogen-enriched, polymer-coated carbon nanotubes (CNTs, and the electrochemical performances of the NMCNTs with different heteroatom contents were investigated. NMCNTs-700 containing 9.1 wt% nitrogen atoms had a capacitance of 190.8 F/g, which was much higher than that of pristine CNTs (48.4 F/g, despite the similar surface area of the two CNTs, and was also higher than that of activated CNTs (151.7 F/g with a surface area of 778 m2/g and a nitrogen atom content of 1.2 wt%. These results showed that pseudocapacitive effects play an important role in the electrochemical performance of supercapacitor electrodes.

  2. EFFECT OF HEAT TREATMENT ON SOYBEAN PROTEIN SOLUBILITY

    Directory of Open Access Journals (Sweden)

    RODICA CĂPRIŢĂ

    2007-05-01

    Full Text Available The use of soybean products in animal feeds is limited due to the presence of antinutritional factors (ANF. Proper heat processing is required to destroy ANF naturally present in raw soybeans and to remove solvent remaining from the oil extraction process. Over and under toasting of soybean causes lower nutritional value. Excessive heat treatment causes Maillard reaction which affects the availability of lysine in particular and produces changes to the chemical structure of proteins resulting in a decrease of the nutritive value. The objective of this study was to evaluate the effect of heating time on the protein solubility. The investigation of the heating time on protein solubility in soybean meal (SBM revealed a negative correlation (r = -0.9596. Since the urease index is suitable only for detecting under processed SBM, the protein solubility is an important index for monitoring SBM quality.

  3. Effect of Pyrodextrinization, Crosslinking and Heat- Moisture ...

    African Journals Online (AJOL)

    than HMT starch which was irregularly-shaped formed. Conclusion: Native parkia ... properties of the native modified starches were ... oven, then ground into powder using a mortar and pestle .... Figure 1: Effect of pyrodextrinization (PD), cross-.

  4. Effects of polarization-charge shielding in microwave heating

    Energy Technology Data Exchange (ETDEWEB)

    Lin, M. S.; Lin, S. M.; Chiang, W. Y.; Barnett, L. R.; Chu, K. R., E-mail: krchu@yahoo.com.tw [Department of Physics, National Taiwan University, Taipei 106, Taiwan (China)

    2015-08-15

    Heating of dielectric objects by radio frequency (RF) and microwaves has long been a method widely employed in scientific research and industrial applications. However, RF and microwave heating are often susceptible to an excessive temperature spread due to uneven energy deposition. The current study elucidates an important physical reason for this difficulty and proposes an effective remedy. Non-spherical samples are placed in an anechoic chamber, where it is irradiated by a traveling microwave wave with 99% intensity uniformity. Polarization charges induced on the samples tend to partially cancel the incident electric field and hence reduce the heating rate. The polarization-charge shielded heating rate is shown to be highly dependent on the sample's shape and its orientation relative to the wave electric field. For samples with a relatively high permittivity, the resultant uneven heating can become a major cause for the excessive temperature spread. It is also demonstrated that a circularly polarized wave, with its rapidly rotating electric field, can effectively even out the heating rate and hence the temperature spread.

  5. Modeling terahertz heating effects on water

    DEFF Research Database (Denmark)

    Kristensen, Torben T.L.; Withayachumnankul, Withawat; Jepsen, Peter Uhd

    2010-01-01

    down to a spot with a diameter of 0.5 mm, we find that the steadystate temperature increase per milliwatt of transmitted power is 1.8◦C/mW. A quantum cascade laser can produce a CW beam in the order of several milliwatts and this motivates the need to estimate the effect of beam power on the sample...

  6. AC field effect flow control of EOF in complex microfluidic systems with integrated electrodes

    NARCIS (Netherlands)

    van der Wouden, E.J.; Pennathur, S.; van den Berg, Albert; Locascio, L.E.; Gaitan, M.; Paegel, B.M.; Ross, D.J.; Vreeland, W.N.

    2008-01-01

    In this work, we demonstrate that positive net flow can be induced and controlled with relatively low potential due to the parallel alignment of the integrated channel electrodes. Therefore, we present a novel method to exquisitely control Electro Osmotic Flow (EOF) by using integrated electrodes

  7. Electrochemical Effect of Different Modified Glassy Carbon Electrodes on the Values of Diffusion Coefficient for Some Heavy Metal Ions

    International Nuclear Information System (INIS)

    Radhi, M M; Alwan, S H; Amir, Y K A; Tee, T W

    2013-01-01

    Glassy carbon electrode (GCE) was modified with carbon nanotubes (CNT), C 60 and activated carbon (AC) by mechanical attachment method and solution evaporation technique to preparation CNT/GCE, C 60 /GCE and AC/GCE, these electrodes were modified in Li + solution via cyclic voltammetry (CV) potential cycling to preparing CNT/Li + /GCE, C 60 /Li + /GCE and AC/Li + /GCE. The sensing characteristics of the modified film electrodes, demonstrated in the application study for different heavy metal ions such as Hg 2+ , Cd 2+ , and Mn 2+ . Cyclic voltammetric effect by chronoamperometry (CA) technique was investigated to determination the diffusion coefficient (D f ) values from Cottrell equation at these ions. Based on Cottrell equation (diffusion coefficient) of the redox current peaks of different heavy metal ions at different modified electrodes were studied to evaluate the sensing of these electrodes by the diffusion coefficient values. The modification of GCE with nano materials and Li + act an enhancement for the redox current peaks to observe that the diffusion process are high at CNT/Li + /GCE, C 60 /Li + /GCE and AC/Li+/GCE, but it has low values at unmodified GCE.

  8. On electrostatic acceleration of plasmas with the Hall effect using electrode shaping

    International Nuclear Information System (INIS)

    Wang, Zhehui; Barnes, Cris W.

    2001-01-01

    Resistive magnetohydrodynamics (MHD) is used to model the electromagnetic acceleration of plasmas in coaxial channels. When the Hall effect is considered, the inclusion of resistivity is necessary to obtain physically meaningful solutions. In resistive MHD with the Hall effect, if and only if the electric current and the plasma flow are orthogonal (J·U=0), then there is a conserved quantity, in the form of U 2 /2+w+eΦ/M, along the flow, where U is the flow velocity, Φ is the electric potential, w is the enthalpy, and M is the ion mass. New solutions suggest that in coaxial geometry the Hall effect along the axial plasma flow can be balanced by proper shaping of conducting electrodes, with acceleration then caused by an electrostatic potential drop along the streamlines of the flow. The Hall effect separation of ion and electron flow then just cancels the electrostatic charge separation. Assuming particle ionization increases with energy density in the system, the resulting particle flow rates (J p ) scales with accelerator bias (V bias ) as J p ∝V bias 2 , exceeding the Child--Langmuir limit. The magnitude of the Hall effect (as determined by the Morozov Hall parameter, Ξ, which is defined as the ratio of electric current to particle current) is related to the energy needed for the creation of each ion--electron pair

  9. Memory effect in uniformly heated granular gases

    Science.gov (United States)

    Trizac, E.; Prados, A.

    2014-07-01

    We evidence a Kovacs-like memory effect in a uniformly driven granular gas. A system of inelastic hard particles, in the low density limit, can reach a nonequilibrium steady state when properly forced. By following a certain protocol for the drive time dependence, we prepare the gas in a state where the granular temperature coincides with its long time value. The temperature subsequently does not remain constant but exhibits a nonmonotonic evolution with either a maximum or a minimum, depending on the dissipation and on the protocol. We present a theoretical analysis of this memory effect at Boltzmann-Fokker-Planck equation level and show that when dissipation exceeds a threshold, the response can be called anomalous. We find excellent agreement between the analytical predictions and direct Monte Carlo simulations.

  10. The effect of gamma radiation on the stability of miniature reference electrodes

    International Nuclear Information System (INIS)

    Galuszka-Muga, B.; Muga, M.L.; Hanrahan, R.J.

    2006-01-01

    The design and fabrication of four types of miniature reference electrodes and their long term stability in a radiation field are described. Miniature versions of a saturated calomel electrode (MSCE), a silver/silver chloride electrode (MAG), a tungsten/tungsten oxide (MWO) and a copper/copper ion (MCU) electrode were tested in a 10 kGy/h (1 Mrad/h) radiation field for up to 30 days total at 25 and 40 o C. The latter two (MWO and MCU) varied appreciably over time periods of several hours whereas the former two (MSCE and MAG) varied less than 1 mV over periods of 6-8 h and are deemed suitable as reference electrodes for corrosion studies of systems immersed in a radiation field at elevated temperature

  11. Effect of the number of electrodes on the reconstructed lung shape in electrical impedance tomography

    Directory of Open Access Journals (Sweden)

    Schullcke Benjamin

    2016-09-01

    Full Text Available Electrical impedance tomography (EIT is used to monitor the regional distribution of ventilation in a transversal plane of the thorax. In this manuscript we evaluate the impact of different quantities of electrodes used for current injection and voltage measurement on the reconstructed shape of the lungs. Results indicate that the shape of reconstructed impedance changes in the body depends on the number of electrodes. In this manuscript, we demonstrate that a higher number of electrodes do not necessarily increase the image quality. For the used stimulation pattern, utilizing neighboring electrodes for current injection and voltage measurement, we conclude that the shape of the lungs is best reconstructed if 16 electrodes are used.

  12. Sonochemical assisted synthesis MnO2/RGO nanohybrid as effective electrode material for supercapacitor.

    Science.gov (United States)

    Ghasemi, Shahram; Hosseini, Sayed Reza; Boore-Talari, Omid

    2018-01-01

    Manganese dioxide (MnO 2 ) needle-like nanostructures are successfully synthesized by a sonochemical method from an aqueous solution of potassium bromate and manganese sulfate. Also, hybride of MnO 2 nanoparticles wrapped with graphene oxide (GO) nanosheets are fabricated through an electrostatic coprecipitation procedure. With adjusting pH at 3.5, positive and negative charges are created on MnO 2 and on GO, respectively which can electrostatically attract to each other and coprecipitate. Then, MnO 2 /GO pasted on stainless steel mesh is electrochemically reduced by applying -1.1V to obtain MnO 2 /RGO nanohybrid. The structure and morphology of the MnO 2 and MnO 2 /RGO nanohybrid are examined by Raman spectroscopy, X-ray diffraction (XRD), atomic force microscopy (AFM), field emission-scanning electron microscopy (FE-SEM), energy dispersive spectroscopy (EDX), and thermal gravimetric analysis (TGA). The capacitive behaviors of MnO 2 and MnO 2 /RGO active materials on stainless steel meshes are investigated by cyclic voltammetry (CV), galvanostatic charge/discharge test and electrochemical impedance spectroscopy (EIS) by a three-electrode experimental setup in an aqueous solution of 0.5M sodium sulfate in the potential window of 0.0-1.0V. The electrochemical investigations reveal that MnO 2 /RGO exhibits high specific capacitance (C s ) of 375Fg -1 at current density of 1Ag -1 and good cycle stability (93% capacitance retention after 500 cycles at a scan rate of 200mVs -1 ). The obtained results give good prospect about the application of electrostatic coprecipitation method to prepare graphene/metal oxides nanohybrids as effective electrode materials for supercapacitors. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Effect of tDCS with an extracephalic reference electrode on cardio-respiratory and autonomic functions

    Directory of Open Access Journals (Sweden)

    Jamart Jacques

    2010-03-01

    Full Text Available Abstract Background Transcranial direct current stimulation (tDCS is used in human physiological studies and for therapeutic trials in patients with abnormalities of cortical excitability. Its safety profile places tDCS in the pole-position for translating in real-world therapeutic application. However, an episode of transient respiratory depression in a subject receiving tDCS with an extracephalic electrode led to the suggestion that such an electrode montage could modulate the brainstem autonomic centres. We investigated whether tDCS applied over the midline frontal cortex in 30 healthy volunteers (sham n = 10, cathodal n = 10, anodal n = 10 with an extracephalic reference electrode would modulate brainstem activity as reflected by the monitoring and stringent analysis of vital parameters: heart rate (variability, respiratory rate, blood pressure and sympatho-vagal balance. We reasoned that this study could lead to two opposite but equally interesting outcomes: 1 If tDCS with an extracephalic electrode modulated vital parameters, it could be used as a new tool to explore the autonomic nervous system and, even, to modulate its activity for therapeutic purposes. 2 On the opposite, if applying tDCS with an extracephalic electrode had no effect, it could thus be used safely in healthy human subjects. This outcome would significantly impact the field of non-invasive brain stimulation with tDCS. Indeed, on the one hand, using an extracephalic electrode as a genuine neutral reference (as opposed to the classical "bi-cephalic" tDCS montages which deliver bi-polar stimulation of the brain would help to comfort the conclusions of several modern studies regarding the spatial location and polarity of tDCS. On the other hand, using an extracephalic reference electrode may impact differently on a given cortical target due to the change of direct current flow direction; this may enlarge the potential interventions with tDCS. Results Whereas the respiratory

  14. Preparation of MnO2 electrodes coated by Sb-doped SnO2 and their effect on electrochemical performance for supercapacitor

    International Nuclear Information System (INIS)

    Zhang, Yuqing; Mo, Yan

    2014-01-01

    Highlights: • Sb-doped SnO 2 coated MnO 2 electrodes (SS-MnO 2 electrodes) are prepared. • The capacitive property and stability of SS-MnO 2 electrode is superior to uncoated MnO 2 electrode and SnO 2 coated MnO 2 electrode. • Sb-doped SnO 2 coating enhances electrochemical performance of MnO 2 effectively. • SS-MnO 2 electrodes are desirable to become a novel electrode material for supercapacitor. - Abstract: To enhance the specific capacity and cycling stability of manganese binoxide (MnO 2 ) for supercapacitor, antimony (Sb) doped tin dioxide (SnO 2 ) is coated on MnO 2 through a sol-gel method to prepare MnO 2 electrodes, enhancing the electrochemical performance of MnO 2 electrode in sodium sulfate electrolytes. The structure and composition of SS-MnO 2 electrode are characterized by using scanning electron microscope (SEM), transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FT-IR) and X-Ray diffraction spectroscopy (XRD). The electrochemical performances are evaluated and researched by galvanostatic charge-discharge test, cyclic voltammogram (CV) and electrochemical impedance spectroscopy (EIS). The results show that SS-MnO 2 electrodes hold porous structure, displaying superior cycling stability at large current work condition in charge-discharge tests and good capacity performance at high scanning rate in CV tests. The results of EIS show that SS-MnO 2 electrodes have small internal resistance. Therefore, the electrochemical performances of MnO 2 electrodes are enhanced effectively by Sb-doped SnO 2 coating

  15. Effects of Solar Photovoltaic Panels on Roof Heat Transfer

    Science.gov (United States)

    Dominguez, A.; Klessl, J.; Samady, M.; Luvall, J. C.

    2010-01-01

    Building Heating, Ventilation and Air Conditioning (HVAC) is a major contributor to urban energy use. In single story buildings with large surface area such as warehouses most of the heat enters through the roof. A rooftop modification that has not been examined experimentally is solar photovoltaic (PV) arrays. In California alone, several GW in residential and commercial rooftop PV are approved or in the planning stages. With the PV solar conversion efficiency ranging from 5-20% and a typical installed PV solar reflectance of 16-27%, 53-79% of the solar energy heats the panel. Most of this heat is then either transferred to the atmosphere or the building underneath. Consequently solar PV has indirect effects on roof heat transfer. The effect of rooftop PV systems on the building roof and indoor energy balance as well as their economic impacts on building HVAC costs have not been investigated. Roof calculator models currently do not account for rooftop modifications such as PV arrays. In this study, we report extensive measurements of a building containing a flush mount and a tilted solar PV array as well as exposed reference roof. Exterior air and surface temperature, wind speed, and solar radiation were measured and thermal infrared (TIR) images of the interior ceiling were taken. We found that in daytime the ceiling surface temperature under the PV arrays was significantly cooler than under the exposed roof. The maximum difference of 2.5 C was observed at around 1800h, close to typical time of peak energy demand. Conversely at night, the ceiling temperature under the PV arrays was warmer, especially for the array mounted flat onto the roof. A one dimensional conductive heat flux model was used to calculate the temperature profile through the roof. The heat flux into the bottom layer was used as an estimate of the heat flux into the building. The mean daytime heat flux (1200-2000 PST) under the exposed roof in the model was 14.0 Watts per square meter larger than

  16. THE EFFECTS OF SWIRL GENERATOR HAVING WINGS WITH HOLES ON HEAT TRANSFER AND PRESSURE DROP IN TUBE HEAT EXCHANGER

    Directory of Open Access Journals (Sweden)

    Zeki ARGUNHAN

    2006-02-01

    Full Text Available This paper examines the effect of turbulance creators on heat transfer and pressure drop used in concentric heat exchanger experimentaly. Heat exchanger has an inlet tube with 60 mm in diameter. The angle of swirl generators wings is 55º with each wing which has single, double, three and four holes. Swirl generators is designed to easily set to heat exchanger entrance. Air is passing through inner tube of heat exhanger as hot fluid and water is passing outer of inner tube as cool fluid.

  17. Thermoelectric energy recovery at ionic-liquid/electrode interface

    Energy Technology Data Exchange (ETDEWEB)

    Bonetti, Marco; Nakamae, Sawako; Huang, Bo Tao; Wiertel-Gasquet, Cécile; Roger, Michel [Service de Physique de l’Etat Condensé, CEA-IRAMIS-SPEC, CNRS-UMR 3680, CEA Saclay, F-91191 Gif-sur-Yvette Cedex (France); Salez, Thomas J. [Service de Physique de l’Etat Condensé, CEA-IRAMIS-SPEC, CNRS-UMR 3680, CEA Saclay, F-91191 Gif-sur-Yvette Cedex (France); École des Ponts ParisTech, 6 et 8 avenue Blaise Pascal, Champs-sur-Marne, F-77455 Marne-la-Vallée (France)

    2015-06-28

    A thermally chargeable capacitor containing a binary solution of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)-imide in acetonitrile is electrically charged by applying a temperature gradient to two ideally polarisable electrodes. The corresponding thermoelectric coefficient is −1.7 mV/K for platinum foil electrodes and −0.3 mV/K for nanoporous carbon electrodes. Stored electrical energy is extracted by discharging the capacitor through a resistor. The measured capacitance of the electrode/ionic-liquid interface is 5 μF for each platinum electrode while it becomes four orders of magnitude larger, ≈36 mF, for a single nanoporous carbon electrode. Reproducibility of the effect through repeated charging-discharging cycles under a steady-state temperature gradient demonstrates the robustness of the electrical charging process at the liquid/electrode interface. The acceleration of the charging by convective flows is also observed. This offers the possibility to convert waste-heat into electric energy without exchanging electrons between ions and electrodes, in contrast to what occurs in most thermogalvanic cells.

  18. The effects of heat stress in Italian Holstein dairy cattle.

    Science.gov (United States)

    Bernabucci, U; Biffani, S; Buggiotti, L; Vitali, A; Lacetera, N; Nardone, A

    2014-01-01

    The data set for this study comprised 1,488,474 test-day records for milk, fat, and protein yields and fat and protein percentages from 191,012 first-, second-, and third-parity Holstein cows from 484 farms. Data were collected from 2001 through 2007 and merged with meteorological data from 35 weather stations. A linear model (M1) was used to estimate the effects of the temperature-humidity index (THI) on production traits. Least squares means from M1 were used to detect the THI thresholds for milk production in all parities by using a 2-phase linear regression procedure (M2). A multiple-trait repeatability test-model (M3) was used to estimate variance components for all traits and a dummy regression variable (t) was defined to estimate the production decline caused by heat stress. Additionally, the estimated variance components and M3 were used to estimate traditional and heat-tolerance breeding values (estimated breeding values, EBV) for milk yield and protein percentages at parity 1. An analysis of data (M2) indicated that the daily THI at which milk production started to decline for the 3 parities and traits ranged from 65 to 76. These THI values can be achieved with different temperature/humidity combinations with a range of temperatures from 21 to 36°C and relative humidity values from 5 to 95%. The highest negative effect of THI was observed 4 d before test day over the 3 parities for all traits. The negative effect of THI on production traits indicates that first-parity cows are less sensitive to heat stress than multiparous cows. Over the parities, the general additive genetic variance decreased for protein content and increased for milk yield and fat and protein yield. Additive genetic variance for heat tolerance showed an increase from the first to third parity for milk, protein, and fat yield, and for protein percentage. Genetic correlations between general and heat stress effects were all unfavorable (from -0.24 to -0.56). Three EBV per trait were

  19. Effect of post-etch annealing gas composition on the structural and electrochemical properties of Ti2CTx MXene electrodes for supercapacitor applications

    KAUST Repository

    Rakhi, R. B.

    2015-07-08

    Two-dimensional Ti2CTx MXene nanosheets were prepared by the selective etching of Al layer from Ti2AlC MAX phase using HF treatment. The MXene sheets retained the hexagonal symmetry of the parent Ti2AlC MAX phase. Effect of the post-etch annealing ambient (Ar, N2, N2/H2 and Air) on the structure and electrochemical properties of the MXene nanosheets was investigated in detail. After annealing in Air, the MXene sheets exhibited variations in structure, morphology and electrochemical properties as compared to HF treated MAX phase. In contrast, samples annealed in Ar, N2 and N2/H2 ambient retained their original morphology. However, a significant improvement in the supercapacitor performance is observed upon heat treatment in Ar, N2 and N2/H2 ambients. When used in symmetric two-electrode configuration, the MXene sample annealed in N2/H2 atmosphere exhibited the best capacitive performance with specific capacitance value (51 F/g at 1A/g) and high rate performance (86%). This improvement in the electrochemical performance of annealed samples is attributed to highest carbon content, and lowest fluorine content on the surface of the sample upon annealing, while retaining the original 2D layered morphology, and providing maximum access of aqueous electrolyte to the electrodes.

  20. Electrode size and boundary condition independent measurement of the effective piezoelectric coefficient of thin films

    Directory of Open Access Journals (Sweden)

    M. Stewart

    2015-02-01

    Full Text Available The determination of the piezoelectric coefficient of thin films using interferometry is hindered by bending contributions. Using finite element analysis (FEA simulations, we show that the Lefki and Dormans approximations using either single or double-beam measurements cannot be used with finite top electrode sizes. We introduce a novel method for characterising piezoelectric thin films which uses a differential measurement over the discontinuity at the electrode edge as an internal reference, thereby eliminating bending contributions. This step height is shown to be electrode size and boundary condition independent. An analytical expression is derived which gives good agreement with FEA predictions of the step height.

  1. Effect of arc behaviour on the temperature fluctuation of carbon electrode in DC arc discharge

    International Nuclear Information System (INIS)

    Liang, F; Tanaka, M; Choi, S; Watanabe, T

    2014-01-01

    Diffuse and multiple arc-anode attachment modes were observed in a DC arc discharge with a carbon electrode. During the arc discharge, the surface temperature of the electrode was successfully measured by two-colour pyrometry combined with a high-speed camera which employs appropriate band-pass filters. The relationship between the arc-anode attachment mode and the temperature fluctuation of electrode surface was investigated. The diffuse arc-anode attachment mode leads to relatively large temperature fluctuation on anode surface due to the rotation of the arc spot. In the case of diffuse mode, the purity of synthesized multi-wall carbon nanotube was deteriorated with temperature fluctuation

  2. Effects of sulphuric acid, mechanical scarification and wet heat ...

    African Journals Online (AJOL)

    Effects of different treatment methods on the germination of seeds of Parkia biglobosa (mimosaceae) were carried out. Prior treatment of seeds with sulphuric acid, wet heat and mechanical scarification were found to induce germination of the dormant seeds. These methods could be applied to raise seedlings of the plant for ...

  3. Heat treatment effect on impact strength of 40Kh steel

    International Nuclear Information System (INIS)

    Golubev, V.K.; Novikov, S.A.; Sobolev, Yu.S.; Yukina, N.A.

    1984-01-01

    The paper presents results of studies on the effect of heat treatment on strength and pattern of 40Kh steel impact failure. Loading levels corresponding to macroscopic spalling microdamage initiation in the material are determined for three initial states. Metallographic study on the spalling failure pattern for 40Kh steel in different initial states and data on microhardness measurement are presented

  4. Variable viscosity effects on mixed convection heat and mass ...

    African Journals Online (AJOL)

    DR OKE

    the effects of viscous dissipation and variable viscosity on the flow of heat and mass transfer characteristics in a viscous fluid over a semi-infinite vertical porous plate in the ..... been solved by Gauss-. Seidel iteration method and numerical values are carried out after executing the computer program for it. In order to prove.

  5. The effects of heat treatment on physical and technological ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-19

    Oct 19, 2009 ... ween 450 and 660 m altitudes in Cide-Sehdagi (Gercek et al., 1998; Dogu ... changes continue as the temperature is increased in ... Heat treatment slows water uptake and wood cell wall absorbs ...... The Effect of Boiling Time.

  6. Variable viscosity effects on mixed convection heat and mass ...

    African Journals Online (AJOL)

    An analysis is carried out to study the viscous dissipation and variable viscosity effects on the flow, heat and mass transfer characteristics in a viscous fluid over a semi-infinite vertical porous plate in the presence of chemical reaction. The governing boundary layer equations are written into a dimensionless form by similarity ...

  7. The effects of heat treatment on physical and technological ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-19

    Oct 19, 2009 ... surface of wood were used to evaluate the effect of heat treatment on the surface characteristics of ... Some of the products developed by thermal treat- .... boards were stored uncontrolled condition in an unheated room for .... These results can be explained with material loses in ...... Finland-state of the art.

  8. THE EFFECTS OF INTERCRITICAL HEAT TREATMENTS ON THE ...

    African Journals Online (AJOL)

    Effect of intercritical heat treatment on 0.14wt%C 0.56wt%Mn 0.13wt%Si struc- ... Table 1: Chemical composition of the steel used (wt. %) with its critical temperature (calculated). C. Mn. Si. Ni. S ... primary austenitic grain size hardening and.

  9. Effect of heat treatment on polyphenol oxidase and peroxidase ...

    African Journals Online (AJOL)

    Effect of heat treatment (55°C/20 min) on polyphenol oxidase (PPO) and peroxidase (POD) activities and total phenolic compounds was investigated in Algerian dates (Deglet Nour variety) at Tamar (fully ripe) stage and in dates stored for 5 months at ambient temperature and in cold storage (10°C). Results obtained ...

  10. Heat damaged forages: effects on forage energy content

    Science.gov (United States)

    Traditionally, educational materials describing the effects of heat damage within baled hays have focused on reduced bioavailability of crude protein as a result of Maillard reactions. These reactions are not simple, but actually occur in complex, multi-step pathways. Typically, the initial step inv...

  11. Effects of heat treatment on density, dimensional stability and color ...

    African Journals Online (AJOL)

    The purpose of this study was to evaluate the effect of heat treatment on some physical properties and color change of Pinus nigra wood which has high industrial use potential and large growing stocks in Turkey. Wood samples which comprised the material of the study were obtained from an industrial plant. Samples were ...

  12. Experimental Investigation of the Combined Effects of Heat Exchanger Geometries on Nucleate Pool Boiling Heat Transfer in a Scaled IRWST

    International Nuclear Information System (INIS)

    Kang, Myeong Gie; Chun, Moon Hyun

    1996-01-01

    In an effort to determine the combined effects of major parameters of heat exchanger tubes on the nucleate pool boiling heat transfer in the scaled in-containment refueling water storage tank (IRWST), a total of 1,966 data for q v ersus ΔT has been obtained using various combinations of tube diameters, surface roughness, and tube orientations. The experimental results show that (1) increased surface roughness enhances heat transfer for both horizontal and vertical tubes, (2) the two heat transfer mechanisms, i.e.,enhanced heat transfer for both horizontal and vertical tubes, (2) the two heat transfer mechanisms, i.e., enhanced heat transfer due to liquid agitation by bubbles generated and reduced heat transfer by the formation of large vapor slugs and bubble coalescence are different in two regions of low heat fluxes (q ≤ 50kW/m 2 ) and high heat fluxes (q > 50kW/m 2 ) depending on the orientation of tubes and the degree of surface roughness, and (3) the heat transfer rate decreases as the tube diameter is increased for both horizontal and vertical tubes, but the effect of tube diameter on the nucleate pool boiling heat transfer for vertical tubes is greater than that for horizontal tubes. Two empirical heat transfer correlations for q , one for horizontal tubes and the other for vertical tubes, are obtained in terms of surface roughness (ε) and tube diameter (D). In addition, a simple empirical correlation for nucleate pool boiling heat transfer coefficient (h b ) is obtained as a function of heat flux (q ) only. 9 figs., 4 tabs., 15 refs. (Author)

  13. Effects of Fluid Directions on Heat Exchange in Thermoelectric Generators

    DEFF Research Database (Denmark)

    Suzuki, Ryosuke; Sasaki, Yuto; Fujisaka, Takeyuki

    2012-01-01

    Thermal fluids can transport heat to the large surface of a thermoelectric (TE) panel from hot and/or cold sources. The TE power thus obtainable was precisely evaluated using numerical calculations based on fluid dynamics and heat transfer. The commercial software FLUENT was coupled with a TE model...... for this purpose. The fluid velocity distribution and the temperature profiles in the fluids and TE modules were calculated in two-dimensional space. The electromotive force was then evaluated for counter-flow and split-flow models to show the effect of a stagnation point. Friction along the fluid surface along...

  14. Heat treatment effect on ductility of nickel-base alloys

    International Nuclear Information System (INIS)

    Burnakov, K.K.; Khasin, G.A.; Danilov, V.F.; Oshchepkov, B.V.; Listkova, A.I.

    1979-01-01

    Causes of low ductility of the KhN75MBTYu and KhN78T alloys were studied along with the heat treatment effects. Samples were tested at 20, 900, 1100, 1200 deg C. Large amount of inclusions was found in intercrystalline fractures of the above low-ductile alloys. The inclusions of two types took place: (α-Al 2 O 3 , FeO(Cr 2 O 3 xAl 2 O 3 )) dendrite-like ones and large-size laminated SiO 2 , FeO,(CrFe) 2 O 3 inclusions situated as separate colonies. Heat treatment of the alloys does not increase high-temperature impact strength and steel ductility. The heating above 1000 deg C leads to a partial dissolution and coagulation of film inclusions which results in an impact strength increase at room temperature

  15. Effect of re-heating on the hot electron temperature

    International Nuclear Information System (INIS)

    Estabrook, K.; Rosen, M.

    1980-01-01

    Resonant absorption is the direct conversion of the transverse laser light to longitudinal electron plasma waves (epw) at the critical density [10 21 (1.06 μm/lambda 0 ) 2 cm -3 ]. The oscillating longitudinal electric field of the epw heats the electrons by accelerating them down the density gradient to a temperature of approximately 21T/sub e/ 0 25 ([I(W/cm 2 )/10 16 ](lambda 0 /1.06 μm) 2 ) 0 4 . This section extends the previous work by studying the effects of magnetic fields and collisions (albedo) which return the heated electrons for further heating. A magnetic field increases their temperature and collisions do not

  16. Spectral Effects on Fast Wave Core Heating and Current Drive

    International Nuclear Information System (INIS)

    Phillips, C.K.; Bell, R.E.; Berry, L.A.; Bonoli, P.T.; Harvey, R.W.; Hosea, J.C.; Jaeger, E.F.; LeBlanc, B.P.; Ryan, P.M.; Taylor, G.; Valeo, E.J.; Wilson, J.R.; Wright, J.C.; Yuh, H. and the NSTX Team

    2009-01-01

    Recent results obtained with high harmonic fast wave (HHFW) heating and current drive (CD) on NSTX strongly support the hypothesis that the onset of perpendicular fast wave propagation right at or very near the launcher is a primary cause for a reduction in core heating efficiency at long wavelengths that is also observed in ICRF heating experiments in numerous tokamaks. A dramatic increase in core heating efficiency was first achieved in NSTX L-mode helium majority plasmas when the onset for perpendicular wave propagation was moved away from the antenna and nearby vessel structures. Efficient core heating in deuterium majority L mode and H mode discharges, in which the edge density is typically higher than in comparable helium majority plasmas, was then accomplished by reducing the edge density in front of the launcher with lithium conditioning and avoiding operational points prone to instabilities. These results indicate that careful tailoring of the edge density profiles in ITER should be considered to limit rf power losses to the antenna and plasma facing materials. Finally, in plasmas with reduced rf power losses in the edge regions, the first direct measurements of high harmonic fast wave current drive were obtained with the motional Stark effect (MSE) diagnostic. The location and radial dependence of HHFW CD measured by MSE are in reasonable agreement with predictions from both full wave and ray tracing simulations

  17. Effects of Ohmic Heating on Microbial Counts and Denaturatiuon of Proteins in Milk

    OpenAIRE

    SUN, Huixian; KAWAMURA, Shuso; HIMOTO, Jun-ichi; ITOH, Kazuhiko; WADA, Tatsuhiko; KIMURA, Toshinori

    2008-01-01

    The aim of this study was to compare the inactivation effects of ohmic heating (internal heating by electric current) and conventional heating (external heating by hot water) on viable aerobes and Streptococcus thermophilus 2646 in milk under identical temperature history conditions. The effects of the two treatments on quality of milk were also compared by assessing degrees of protein denaturation in raw and sterilized milk (raw milk being sterilized by ohmic heating or conventional heating)...

  18. Role of heat on the development of electrochemical sensors on bare and modified Co{sub 3}O{sub 4}/CuO composite nanopowder carbon paste electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Mohan; Kumara Swamy, B.E., E-mail: kumaraswamy21@yahoo.com

    2016-01-01

    The Co{sub 3}O{sub 4}/CuO composite nanopowder (NP) was synthesized by a mechanochemical method and characterized by using powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS). The synthesized Co{sub 3}O{sub 4}/CuO NP was used as a modified carbon paste electrode (MCPE) and further the bare carbon paste and Co{sub 3}O{sub 4}/CuO NP modified carbon paste was heated at different temperatures (100, 150, 200 and 250 °C) for 10 min. The Co{sub 3}O{sub 4}/CuO NP MCPE was used to study the consequences of scan rate and dopamine concentration. Furthermore the preheated modified electrodes were used to study the electrochemical response to dopamine (DA), ascorbic acid (AA) and uric acid (UA). - Highlights: • Co{sub 3}O{sub 4}/CuO composite nanopowders (NPs) are prepared by the mechanochemical method. • Co{sub 3}O{sub 4}/CuO was used as a modified electrode for detection of DA, AA and UA. • The role of temperature on the sensor development was studied. • The modified carbon paste electrode shows good sensitivity to DA and UA.

  19. Comparison of effectiveness between cork-screw and peg-screw electrodes for transcranial motor evoked potential monitoring using the finite element method.

    Science.gov (United States)

    Tomio, Ryosuke; Akiyama, Takenori; Ohira, Takayuki; Yoshida, Kazunari

    2016-01-01

    Intraoperative monitoring of motor evoked potentials by transcranial electric stimulation is popular in neurosurgery for monitoring motor function preservation. Some authors have reported that the peg-screw electrodes screwed into the skull can more effectively conduct current to the brain compared to subdermal cork-screw electrodes screwed into the skin. The aim of this study was to investigate the influence of electrode design on transcranial motor evoked potential monitoring. We estimated differences in effectiveness between the cork-screw electrode, peg-screw electrode, and cortical electrode to produce electric fields in the brain. We used the finite element method to visualize electric fields in the brain generated by transcranial electric stimulation using realistic three-dimensional head models developed from T1-weighted images. Surfaces from five layers of the head were separated as accurately as possible. We created the "cork-screws model," "1 peg-screw model," "peg-screws model," and "cortical electrode model". Electric fields in the brain radially diffused from the brain surface at a maximum just below the electrodes in coronal sections. The coronal sections and surface views of the brain showed higher electric field distributions under the peg-screw compared to the cork-screw. An extremely high electric field was observed under cortical electrodes. Our main finding was that the intensity of electric fields in the brain are higher in the peg-screw model than the cork-screw model.

  20. Process and device for determining the effect of river water heating by waste heat on its temperature characteristics

    International Nuclear Information System (INIS)

    Pietzsch, L.; Kauer, H.; Lautersack, K.

    1979-01-01

    It is proposed to use measurements for determining the effect of heating river water by introducing waste heat from industrial plants or power-stations, instead of deriving the effect from calculations. A suitable method of measurement is proposed and discussed. (UWI) 891 HP/UWI 892 CKA [de

  1. The footprint of urban heat island effect in China

    Science.gov (United States)

    Decheng Zhou; Shuqing Zhao; Liangxia Zhang; Ge Sun; Yongqiang Liu

    2015-01-01

    Urban heat island (UHI) is one major anthropogenic modification to the Earth system that transcends its physical boundary. Using MODIS data from 2003 to 2012, we showed that the UHI effect decayed exponentially toward rural areas for majority of the 32 Chinese cities. We found an obvious urban/ rural temperature “cliff”, and estimated that the footprint of UHI effect (...

  2. Electrode configuration effects on the electrification and voltage variation in an electrostatic inkjet printing head

    International Nuclear Information System (INIS)

    Choi, Kyung Hyun; Ali, Adnan; Rahman, Ahsan; Malik Mohammad, Nauman; Rahman, Khalid; Khan, Arshad; Khan, Saleem; Kim, D S

    2010-01-01

    The electrode configuration of an electrostatic inkjet printing head is under study. This paper introduces the development of a new electrostatic inkjet head with an improved electrode configuration as compared to the conventional configuration. Two tungsten electrodes, connected in parallel, are inserted into the electrostatic print head at a certain angle from opposite sides. The aim of this double-side inserted angular electrodes (DSIAEs) head is to intensify the electrification of the fluid inside the head at minimum suitable exposure of the electrode, which results in maximizing surface charge density. The main advantage of the DSIAEs head is to get a very stable meniscus at low applied voltage for printing. This stable meniscus is transformed to a very stable jet by increasing the applied voltage. Therefore, printed patterns obtained with this DSIAEs head are more uniform because of a more stable meniscus and jet as compared to a conventional electrostatic vertically inserted single electrode head. Also, with this DSIAEs configuration, the life of the electrostatic inkjet printing head is increased.

  3. Electrode effects of a cellulose-based electro-active paper energy harvester

    International Nuclear Information System (INIS)

    Abas, Zafar; Kim, Heung Soo; Zhai, Lindong; Kim, Jaehwan; Kim, Joo-Hyung

    2014-01-01

    The possibility of cellulose-based electro-active paper (EAPap) as a vibrational energy transducer was investigated in this paper. Thin cellulose EAPap film specimens were prepared by the regenerating process. Three different metal electrodes of gold, silver and aluminum were deposited on a 50 × 50 mm 2 cellulose film using a thermal evaporator. An aluminum cantilever beam was used as a vibrational bender and EAPap was attached close to the root of the cantilever beam. The voltage output of the EAPap was measured under harmonic base excitation of the cantilever beam. The EAPap with aluminum electrode provided the largest open circuit voltage output compared to those with gold or silver electrodes. The output voltages of the EAPap increased linearly with increase of the area of the electrodes. The output voltages also increased with increasing input acceleration but became saturated at a certain magnitude. From the experimental results, we conclude that EAPap with metal electrodes can be used as a flexible energy harvesting transducer by external mechanical stress, and the output voltage is related to the electrode material due to its work function. (paper)

  4. An effect of the electrode material on space charge relaxation in ferroelectric copolymers of vinylidene fluoride

    Energy Technology Data Exchange (ETDEWEB)

    Kochervinskii, Valentin, E-mail: kochval@mail.ru; Pavlov, Alexey; Pakuro, Natalia; Bessonova, Natalia; Shmakova, Nina [State Research Center of the Russian Federation Karpov Institute of Physical Chemistry, Vorontsovo Pole 10, Moscow 103064 (Russian Federation); Malyshkina, Inna [M.V. Lomonosov Moscow State University, Faculty of Physics, Leninskie Gory, Moscow 119991 (Russian Federation); Bedin, Sergey [Moscow State Pedagogical University, 1/1 M. Pirogovskaya Str., Moscow 119991 (Russian Federation); Chubunova, Elena; Lebedinskii, Yuri [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe Highway, 31, Moscow 115409 (Russian Federation)

    2015-12-28

    Processes of relaxation of space charges formed by impurities carriers in isotropic films of vinylidene fluoride and tetrafluoroethylene copolymers of the composition 71/29 and 94/6 were studied. Al and Au symmetric electrodes deposited by evaporation in vacuum have been used. In the case of Al electrodes at temperatures above 100 °C, giant low frequency dielectric dispersion was observed, while it is absent in films with Au electrodes. Causes of this phenomenon were studied by the X-ray photoelectron spectroscopy. It was shown that at Al deposition, new functional groups, such as Al-C, Al-F, and Al{sub 2}O{sub 3}, which are not characteristic of the copolymer film surface, formed. They were supposed to be traps for impurity carriers and because of this the electrode became partially blocked. This led to appearance of the giant electrode polarization on the metal-polymer boundary, which did not take place in the case of Au electrodes. Parameters of the Au4f line for the copolymer with different contents of fluorine atoms in the chain were analyzed. An increase in the number of these atoms was shown to result in the line shift to higher energies. This phenomenon was associated with an increase in the shift of the electron density from Au atoms to the F ones which has a high affinity to electrons.

  5. Effect of Heat Input on Inclusion Evolution Behavior in Heat-Affected Zone of EH36 Shipbuilding Steel

    Science.gov (United States)

    Sun, Jincheng; Zou, Xiaodong; Matsuura, Hiroyuki; Wang, Cong

    2018-03-01

    The effects of heat input parameters on inclusion and microstructure characteristics have been investigated using welding thermal simulations. Inclusion features from heat-affected zones (HAZs) were profiled. It was found that, under heat input of 120 kJ/cm, Al-Mg-Ti-O-(Mn-S) composite inclusions can act effectively as nucleation sites for acicular ferrites. However, this ability disappears when the heat input is increased to 210 kJ/cm. In addition, confocal scanning laser microscopy (CSLM) was used to document possible inclusion-microstructure interactions, shedding light on how inclusions assist beneficial transformations toward property enhancement.

  6. Effect of heat input on the microstructure, residual stresses and corrosion resistance of 304L austenitic stainless steel weldments

    Energy Technology Data Exchange (ETDEWEB)

    Unnikrishnan, Rahul, E-mail: rahulunnikrishnannair@gmail.com [Department of Metallurgical and Materials Engineering, Visvesvaraya National Institute of Technology (VNIT), South Ambazari Road, Nagpur 440010, Maharashtra (India); Idury, K.S.N. Satish, E-mail: satishidury@gmail.com [Department of Metallurgical and Materials Engineering, Visvesvaraya National Institute of Technology (VNIT), South Ambazari Road, Nagpur 440010, Maharashtra (India); Ismail, T.P., E-mail: tpisma@gmail.com [Department of Metallurgical and Materials Engineering, Visvesvaraya National Institute of Technology (VNIT), South Ambazari Road, Nagpur 440010, Maharashtra (India); Bhadauria, Alok, E-mail: alokbhadauria1@gmail.com [Department of Metallurgical and Materials Engineering, Visvesvaraya National Institute of Technology (VNIT), South Ambazari Road, Nagpur 440010, Maharashtra (India); Shekhawat, S.K., E-mail: satishshekhawat@gmail.com [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay (IITB), Powai, Mumbai 400076, Maharashtra (India); Khatirkar, Rajesh K., E-mail: rajesh.khatirkar@gmail.com [Department of Metallurgical and Materials Engineering, Visvesvaraya National Institute of Technology (VNIT), South Ambazari Road, Nagpur 440010, Maharashtra (India); Sapate, Sanjay G., E-mail: sgsapate@yahoo.com [Department of Metallurgical and Materials Engineering, Visvesvaraya National Institute of Technology (VNIT), South Ambazari Road, Nagpur 440010, Maharashtra (India)

    2014-07-01

    Austenitic stainless steels are widely used in high performance pressure vessels, nuclear, chemical, process and medical industry due to their very good corrosion resistance and superior mechanical properties. However, austenitic stainless steels are prone to sensitization when subjected to higher temperatures (673 K to 1173 K) during the manufacturing process (e.g. welding) and/or certain applications (e.g. pressure vessels). During sensitization, chromium in the matrix precipitates out as carbides and intermetallic compounds (sigma, chi and Laves phases) decreasing the corrosion resistance and mechanical properties. In the present investigation, 304L austenitic stainless steel was subjected to different heat inputs by shielded metal arc welding process using a standard 308L electrode. The microstructural developments were characterized by using optical microscopy and electron backscattered diffraction, while the residual stresses were measured by X-ray diffraction using the sin{sup 2}ψ method. It was observed that even at the highest heat input, shielded metal arc welding process does not result in significant precipitation of carbides or intermetallic phases. The ferrite content and grain size increased with increase in heat input. The grain size variation in the fusion zone/heat affected zone was not effectively captured by optical microscopy. This study shows that electron backscattered diffraction is necessary to bring out changes in the grain size quantitatively in the fusion zone/heat affected zone as it can consider twin boundaries as a part of grain in the calculation of grain size. The residual stresses were compressive in nature for the lowest heat input, while they were tensile at the highest heat input near the weld bead. The significant feature of the welded region and the base metal was the presence of a very strong texture. The texture in the heat affected zone was almost random. - Highlights: • Effect of heat input on microstructure, residual

  7. Effects of Environmental Factors and Metallic Electrodes on AC Electrical Conduction Through DNA Molecule.

    Science.gov (United States)

    Abdalla, S; Obaid, A; Al-Marzouki, F M

    2017-12-01

    Deoxyribonucleic acid (DNA) is one of the best candidate materials for various device applications such as in electrodes for rechargeable batteries, biosensors, molecular electronics, medical- and biomedical-applications etc. Hence, it is worthwhile to examine the mechanism of charge transport in the DNA molecule, however, still a question without a clear answer is DNA a molecular conducting material (wire), semiconductor, or insulator? The answer, after the published data, is still ambiguous without any confirmed and clear scientific answer. DNA is found to be always surrounded with different electric charges, ions, and dipoles. These surrounding charges and electric barrier(s) due to metallic electrodes (as environmental factors (EFs)) play a substantial role when measuring the electrical conductivity through λ-double helix (DNA) molecule suspended between metallic electrodes. We found that strong frequency dependence of AC-complex conductivity comes from the electrical conduction of EFs. This leads to superimposing serious incorrect experimental data to measured ones. At 1 MHz, we carried out a first control experiment on electrical conductivity with and without the presence of DNA molecule. If there are possible electrical conduction due to stray ions and contribution of substrate, we will detected them. This control experiment revealed that there is an important role played by the environmental-charges around DNA molecule and any experiment should consider this role. We have succeeded to measure both electrical conductivity due to EFs (σ ENV ) and electrical conductivity due to DNA molecule (σ DNA ) independently by carrying the measurements at different DNA-lengths and subtracting the data. We carried out measurements as a function of frequency (f) and temperature (T) in the ranges 0.1 Hz molecule from all EFs effects that surround the molecule, but also to present accurate values of σ DNA and the dielectric constant of the molecule ε' DNA as a

  8. Effect of some operational parameters on the arsenic removal by electrocoagulation using iron electrodes

    Science.gov (United States)

    2014-01-01

    Arsenic contamination of drinking water is a global problem that will likely become more apparent in future years as scientists and engineers measure the true extent of the problem. Arsenic poisoning is preventable though as there are several methods for easily removing even trace amounts of arsenic from drinking water. In the present study, electrocoagulation was evaluated as a treatment technology for arsenic removal from aqueous solutions. The effects of parameters such as initial pH, current density, initial concentration, supporting electrolyte type and stirring speed on removal efficiency were investigated. It has been observed that initial pH was highly effective on the arsenic removal efficiency. The highest removal efficiency was observed at initial pH = 4. The obtained experimental results showed that the efficiency of arsenic removal increased with increasing current density and decreased with increasing arsenic concentration in the solution. Supporting electrolyte had not significant effects on removal, adding supporting electrolyte decreased energy consumption. The effect of stirring speed on removal efficiency was investigated and the best removal efficiency was at the 150 rpm. Under the optimum conditions of initial pH 4, current density of 0.54 mA/cm2, stirring speed of 150 rpm, electrolysis time of 30 minutes, removal was obtained as 99.50%. Energy consumption in the above conditions was calculated as 0.33 kWh/m3. Electrocoagulation with iron electrodes was able to bring down 50 mg/L arsenic concentration to less than 10 μg/L at the end of electrolysis time of 45 minutes with low electrical energy consumption as 0.52 kWh/m3. PMID:24991426

  9. Self-Heating Effects In Polysilicon Source Gated Transistors

    Science.gov (United States)

    Sporea, R. A.; Burridge, T.; Silva, S. R. P.

    2015-01-01

    Source-gated transistors (SGTs) are thin-film devices which rely on a potential barrier at the source to achieve high gain, tolerance to fabrication variability, and low series voltage drop, relevant to a multitude of energy-efficient, large-area, cost effective applications. The current through the reverse-biased source barrier has a potentially high positive temperature coefficient, which may lead to undesirable thermal runaway effects and even device failure through self-heating. Using numerical simulations we show that, even in highly thermally-confined scenarios and at high current levels, self-heating is insufficient to compromise device integrity. Performance is minimally affected through a modest increase in output conductance, which may limit the maximum attainable gain. Measurements on polysilicon devices confirm the simulated results, with even smaller penalties in performance, largely due to improved heat dissipation through metal contacts. We conclude that SGTs can be reliably used for high gain, power efficient analog and digital circuits without significant performance impact due to self-heating. This further demonstrates the robustness of SGTs. PMID:26351099

  10. Multiplied effect of heat and radiation in chemical stress relaxation

    International Nuclear Information System (INIS)

    Ito, Masayuki

    1981-01-01

    About the deterioration of rubber due to radiation, useful knowledge can be obtained by the measurement of chemical stress relaxation. As an example, the rubber coating of cables in a reactor containment vessel is estimated to be irradiated by weak radiation at the temperature between 60 and 90 deg C for about 40 years. In such case, it is desirable to establish the method of accelerated test of the deterioration. The author showed previously that the law of time-dose rate conversion holds in the case of radiation. In this study, the chemical stress relaxation to rubber was measured by the simultaneous application of heat and radiation, and it was found that there was the multiplied effect of heat and radiation in the stress relaxation speed. Therefore the factor of multiplication of heat and radiation was proposed to describe quantitatively the degree of the multiplied effect. The chloroprene rubber used was offered by Hitachi Cable Co., Ltd. The experimental method and the results are reported. The multiplication of heat and radiation is not caused by the direct cut of molecular chains by radiation, instead, it is based on the temperature dependence of various reaction rates at which the activated species reached the cut of molecular chains through complex reaction mechanism and the temperature dependence of the diffusion rate of oxygen in rubber. (Kako, I.)

  11. Mass transport at rotating disk electrodes: effects of synthetic particles and nerve endings.

    Science.gov (United States)

    Chiu, Veronica M; Lukus, Peter A; Doyle, Jamie L; Schenk, James O

    2011-11-01

    An unstirred layer (USL) exists at the interface of solids with solutions. Thus, the particles in brain tissue preparations possess a USL as well as at the surface of a rotating disk electrode (RDE) used to measure chemical fluxes. Time constraints for observing biological kinetics based on estimated thicknesses of USLs at the membrane surface in real samples of nerve endings were estimated. Liposomes, silica, and Sephadex were used separately to model the tissue preparation particles. Within a solution stirred by the RDE, both diffusion and hydrodynamic boundary layers are formed. It was observed that the number and size of particles decreased the following: the apparent diffusion coefficient excluding Sephadex, boundary layer thicknesses excluding silica, sensitivity excluding diluted liposomes (in agreement with results from other laboratories), limiting current potentially due to an increase in the path distance, and mixing time. They have no effect on the detection limit (6 ± 2 nM). The RDE kinetically resolves transmembrane transport with a timing of approximately 30 ms. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Hydrogen-bonding effects on film structure and photoelectrochemical properties of porphyrin and fullerene composites on nanostructured TiO 2 electrodes

    NARCIS (Netherlands)

    Kira, Aiko; Tanaka, Masanobu; Umeyama, Tomokazu; Matano, Yoshihiro; Yoshimoto, Naoki; Zhang, Yi; Ye, Shen; Lehtivuori, Heli; Tkachenko, Nikolai V.; Lemmetyinen, Helge; Imahori, Hiroshi

    2007-01-01

    Hydrogen-bonding effects on film structures and photophysical, photoelectrochemical, and photovoltaic properties have been examined in mixed films of porphyrin and fullerene composites with and without hydrogen bonding on nanostructured TiO2 electrodes. The nanostructured TiO2 electrodes modified

  13. Effect of electrolyte concentration on performance of supercapacitor carbon electrode from fibers of oil palm empty fruit bunches

    Energy Technology Data Exchange (ETDEWEB)

    Farma, R.; Awitdrus,; Taer, E. [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Departement of Physics, Faculty of Mathematics and Natural Sciences, University of Riau, 28293 Pekanbaru, Riau (Indonesia); Deraman, M., E-mail: madra@ukm.my; Talib, I. A.; Omar, R.; Ishak, M. M.; Basri, N. H.; Dolah, B. N. M. [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2015-04-16

    Fibers of oil palm empty fruit bunches were used to produce self-adhesive carbon grains (SACG). The SACG green monoliths were carbonized in N{sub 2} environment at 800°C to produce carbon monoliths (CM) and the CM was CO{sub 2} activated at 800°C for 4 hour to produce activated carbon monolith electrodes (ACM). The physical properties of the CMs and ACMs were investigated using X-ray diffraction, field emission scanning electron microscopy and nitrogen adsorption-desorption. ACMs were used as electrode to fabricate symmetry supercapacitor cells and the cells which used H{sub 2}SO{sub 4} electrolyte at 0.5, 1.0 and 1.5 M were investigated using electrochemical impedance spectroscopy, cyclic voltammetry and galvanostatic charge-discharge standard techniques. In this paper we report the physical properties of the ACM electrodes and the effect of electrolyte concentration on the electrochemical properties the ACM electrodes.

  14. Effect of nanostructured electrode architecture and semiconductor deposition strategy on the photovoltaic performance of quantum dot sensitized solar cells

    International Nuclear Information System (INIS)

    Samadpour, Mahmoud; Giménez, Sixto; Boix, Pablo P.; Shen, Qing; Calvo, Mauricio E.; Taghavinia, Nima; Azam Iraji zad; Toyoda, Taro; Míguez, Hernán

    2012-01-01

    Highlights: ► Electrode nanostructure and quantum dot growth method have a clear influence in the final quantum dot solar cell performance. ► Higher V oc values are systematically obtained for TiO 2 morphologies with decreasing surface area. ► Higher V oc values are systematically obtained for cells using CBD growth method in comparison with SILAR method. - Abstract: Here we analyze the effect of two relevant aspects related to cell preparation on quantum dot sensitized solar cells (QDSCs) performance: the architecture of the TiO 2 nanostructured electrode and the growth method of quantum dots (QD). Particular attention is given to the effect on the photovoltage, V oc , since this parameter conveys the main current limitation of QDSCs. We have analyzed electrodes directly sensitized with CdSe QDs grown by chemical bath deposition (CBD) and successive ionic layer adsorption and reaction (SILAR). We have carried out a systematic study comprising structural, optical, photophysical and photoelectrochemical characterization in order to correlate the material properties of the photoanodes with the functional performance of the manufactured QDSCs. The results show that the correspondence between photovoltaic conversion efficiency and the surface area of TiO 2 depends on the QDs deposition method. Higher V oc values are systematically obtained for TiO 2 morphologies with decreasing surface area and for cells using CBD growth method. This is systematically correlated to a higher recombination resistance of CBD sensitized electrodes. Electron injection kinetics from QDs into TiO 2 also depends on both the TiO 2 structure and the QDs deposition method, being systematically faster for CBD. Only for electrodes prepared with small TiO 2 nanoparticles SILAR method presents better performance than CBD, indicating that the small pore size disturb the CBD growth method. These results have important implications for the optimization of QDSCs.

  15. Surface roughness effects on heat transfer in Couette flow

    International Nuclear Information System (INIS)

    Elia, G.G.

    1981-01-01

    A cell theory for viscous flow with rough surfaces is applied to two basic illustrative heat transfer problems which occur in Couette flow. Couette flow between one adiabatic surface and one isothermal surface exhibits roughness effects on the adiabatic wall temperature. Two types of rough cell adiabatic surfaces are studied: (1) perfectly insulating (the temperature gradient vanishes at the boundary of each cell); (2) average insulating (each cell may gain or lose heat but the total heat flow at the wall is zero). The results for the roughness on a surface in motion are postulated to occur because of fluid entrainment in the asperities on the moving surface. The symmetry of the roughness effects on thermal-viscous dissipation is discussed in detail. Explicit effects of the roughness on each surface, including combinations of roughness values, are presented to enable the case where the two surfaces may be from different materials to be studied. The fluid bulk temperature rise is also calculated for Couette flow with two ideal adiabatic surfaces. The effect of roughness on thermal-viscous dissipation concurs with the viscous hydrodynamic effect. The results are illustrated by an application to lubrication. (Auth.)

  16. Designing a miniaturised heated stage for in situ optical measurements of solid oxide fuel cell electrode surfaces, and probing the oxidation of solid oxide fuel cell anodes using in situ Raman spectroscopy

    KAUST Repository

    Brightman, E.; Maher, R.; Offer, G. J.; Duboviks, V.; Heck, C.; Cohen, L. F.; Brandon, N. P.

    2012-01-01

    A novel miniaturised heated stage for in operando optical measurements on solid oxide fuel cell electrode surfaces is described. The design combines the advantages of previously reported designs, namely, (i) fully controllable dual atmosphere operation enabling fuel cell pellets to be tested in operando with either electrode in any atmosphere being the focus of study, and (ii) combined electrochemical measurements with optical spectroscopy measurements with the potential for highly detailed study of electrochemical processes; with the following advances, (iii) integrated fitting for mounting on a mapping stage enabling 2-D spatial characterisation of the surface, (iv) a compact profile that is externally cooled, enabling operation on an existing microscope without the need for specialized lenses, (v) the ability to cool very rapidly, from 600 °C to 300 °C in less than 5 min without damaging the experimental apparatus, and (vi) the ability to accommodate a range of pellet sizes and thicknesses. © 2012 American Institute of Physics.

  17. Dynamical effects of vegetation on the 2003 summer heat waves

    Science.gov (United States)

    Stéfanon, M.

    2012-04-01

    Dynamical effects of vegetation on the 2003 summer heat waves Marc Stéfanon(1), Philippe Drobinski(1), Fabio D'Andrea(1), Nathalie de Noblet(2) (1) IPSL/LMD, France; (2) IPSL/LSCE, France The land surface model (LSM) in regional climate models (RCMs) plays a key role in energy and water exchanges between land and atmosphere. The vegetation can affect these exchanges through physical, biophysical and bio-geophysical mechanisms. It participates to evapo-transpiration process which determines the partitioning of net radiation between sensible and latent heat flux, through water evaporation from soil throughout the entire root system. For seasonal timescale leaf cover change induced leaf-area index (LAI) and albedo changes, impacting the Earth's radiative balance. In addition, atmospheric chemistry and carbon concentration has a direct effect on plant stomatal structure, the main exchange interface with the atmosphere. Therefore the surface energy balance is intimately linked to the carbon cycle and vegetation conditions and an accurate representation of the Earth's surface is required to improve the performance of RCMs. It is even more crucial for extreme events as heat waves and droughts which display highly nonlinear behaviour. If triggering of heat waves is determined by the large scale, local coupled processes over land can amplify or inhibit heat trough several feedback mechanism. One set of two simulation has been conducted with WRF, using different LSMs. They aim to study drought and vegetation effect on the dynamical and hydrological processes controlling the occurrence and life cycle of heat waves In the MORCE plateform, the dynamical global vegetation model (DGVM) ORCHIDEE is implemented in the atmospheric module WRF. ORCHIDEE is based on three different modules. The first module, called SECHIBA, describes the fast processes such as exchanges of energy and water between the atmosphere and the biosphere, and the soil water budget. The phenology and carbon

  18. The combined effects of wall longitudinal heat conduction and inlet fluid flow maldistribution in crossflow plate-fin heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Ranganayakulu, C. [Aeronautical Development Agency, Bangalore (India); Seetharamu, K.N. [School of Mechanical Engineering, Univ. of Southern Malaysia (KCP), Tronoh (Malaysia)

    2000-05-01

    An analysis of a crossflow plate-fin compact heat exchanger, accounting for the combined effect of two-dimensional longitudinal heat conduction through the exchanger wall and nonuniform inlet fluid flow distribution on both hot and cold fluid sides is carried out using a finite element method. Using the fluid flow maldistribution models, the exchanger effectiveness and its deterioration due to the combined effects of longitudinal heat conduction and flow nonuniformity are calculated for various design and operating conditions of the exchanger. It was found that the performance deteriorations are quite significant in some typical applications due to the combined effects of wall longitudinal heat conduction and inlet fluid flow nonuniformity on crossflow plate-fin heat exchanger. (orig.)

  19. Effect of Surface Treatment on Performance of Electrode Material Based on Carbon Fiber Cloth

    Directory of Open Access Journals (Sweden)

    XU Jian

    2018-01-01

    Full Text Available The carbon fiber cloth was treated by surface treatment, and then it was used as the electrode substrate. The electrode material based on carbon fibers was synthesized by a galvanostatic electrodeposition method. The interface resistivity, electrochemical property and corrosion resistance of the CF/β-PbO2 electrode were characterized by four-probe method and electrochemical workstation, respectively. The results show that the surface roughness and chemical activity of the carbon fibers can be significantly improved through surface treatment. The carbon fibers possess the best chemical activity on the surface at the hot-air oxidation temperature of 400℃. Joint hot-air and liquid-phase oxidations show that the chemical activity of the carbon fibers on the surface is further improved, the grooves and pits on the surface of the carbon fibers are more obvious, after this treatment, the interface resistivity of the CF/β-PbO2 electrode reaches the minimum value of 6.19×10-5Ω·m, meanwhile, the conductivity and the electrochemical property of the CF/β-PbO2 electrode reaches the best, and with the best corrosion resistance, the corrosion rate is only 1.44×10-3g·cm-2·h-1.Thus, the interface resistivity, electrochemical property and corrosion resistance of the CF/β-PbO2 electrode depend on the the interface structure of the CF/β-PbO2 electrode obtained under different surface treatments.

  20. Characterization of hierarchical α-MoO3 plates toward resistive heating synthesis: electrochemical activity of α-MoO3/Pt modified electrode toward methanol oxidation at neutral pH

    Science.gov (United States)

    Filippo, Emanuela; Baldassarre, Francesca; Tepore, Marco; Guascito, Maria Rachele; Chirizzi, Daniela; Tepore, Antonio

    2017-05-01

    The growth of MoO3 hierarchical plates was obtained by direct resistive heating of molybdenum foils at ambient pressure in the absence of any catalysts and templates. Plates synthesized after 60 min resistive heating typically grow in an single-crystalline orthorhombic structure that develop preferentially in the [001] direction, and are characterized by high resolution transmission electron microscopy, selected area diffraction pattern and Raman-scattering measurements. They are about 100-200 nm in thickness and a few tens of micrometers in length. As heating time proceeds to 80 min, plates of α-MoO3 form a branched structure. A more attentive look shows that primary plates formed at until 60 min could serve as substrates for the subsequent growth of secondary belts. Moreover, a full electrochemical characterization of α-MoO3 plates on platinum electrodes was done by cyclic voltammetric experiments, at pH 7 in phosphate buffer, to probe the activity of the proposed composite material as anode to methanol electro-oxidation. Reported results indicate that Pt MoO3 modified electrodes are appropriate to develop new an amperometric non-enzymatic sensor for methanol as well as to make anodes suitable to be used in direct methanol fuel cells working at neutral pH.

  1. The effect of phase difference between powered electrodes on RF plasmas

    International Nuclear Information System (INIS)

    Proschek, M; Yin, Y; Charles, C; Aanesland, A; McKenzie, D R; Bilek, M M; Boswell, R W

    2005-01-01

    This paper presents the results of measurements carried out on plasmas created in five different RF discharge systems. These systems all have two separately powered RF (13.56 MHz) electrodes, but differ in overall size and in the geometry of both vacuum chambers and RF electrodes or antennae. The two power supplies were synchronized with a phase-shift controller. We investigated the influence of the phase difference between the two RF electrodes on plasma parameters and compared the different system geometries. Single Langmuir probes were used to measure the plasma parameters in a region between the electrodes. Floating potential and ion density were affected by the phase difference and we found a strong influence of the system geometry on the observed phase difference dependence. Both ion density and floating potential curves show asymmetries around maxima and minima. These asymmetries can be explained by a phase dependence of the time evolution of the electrode-wall coupling within an RF-cycle resulting from the asymmetric system geometry

  2. Electrotonic potentials in Aloe vera L.: Effects of intercellular and external electrodes arrangement.

    Science.gov (United States)

    Volkov, Alexander G; Nyasani, Eunice K; Tuckett, Clayton; Scott, Jessenia M; Jackson, Mariah M Z; Greeman, Esther A; Greenidge, Ariane S; Cohen, Devin O; Volkova, Maia I; Shtessel, Yuri B

    2017-02-01

    Electrostimulation of plants can induce plant movements, activation of ion channels, ion transport, gene expression, enzymatic systems activation, electrical signaling, plant-cell damage, enhanced wound healing, and influence plant growth. Here we found that electrical networks in plant tissues have electrical differentiators. The amplitude of electrical responses decreases along a leaf and increases by decreasing the distance between polarizing Pt-electrodes. Intercellular Ag/AgCl electrodes inserted in a leaf and extracellular Ag/AgCl electrodes attached to the leaf surface were used to detect the electrotonic potential propagation along a leaf of Aloe vera. There is a difference in duration and amplitude of electrical potentials measured by electrodes inserted in a leaf and those attached to a leaf's surface. If the external reference electrode is located in the soil near the root, it changes the amplitude and duration of electrotonic potentials due to existence of additional resistance, capacitance, ion channels and ion pumps in the root. The information gained from this study can be used to elucidate extracellular and intercellular communication in the form of electrical signals within plants. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Effect of mediator added to modified paste carbon electrodes with immobilized laccase from Aspergillus oryzae

    Directory of Open Access Journals (Sweden)

    Marcelo Silva Ferreira

    2015-05-01

    Full Text Available Carbon paste electrodes based on the immobilization of laccase from Aspergillus oryzae were developed and voltammetric measurements were performed to evaluate the amperometric response. The 2,2′-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid diammonium salt  (ABTS functions as substrate and mediator for the laccase enzyme. Electrodes were modified  in two different conditions: without mediator (EPC/laccase and with mediator (EPC/laccase/ABTS. The addition of ABTS as a mediator increased eight-fold the amperometric response. The electrode was sensitive to pH variation with best response at pH 4.0. Studies on different concentrations of laccase and ABTS at different pH rates revealed that the composition 187 U mL-1 in laccase and 200 µL of ABTS obtained the highest amperometric response. The carbon paste electrode modified with ABTS proved to be a good base for the immobilization of the laccase enzyme. Moreover, it is easy to manufacture and inexpensive to produce a modified electrode with potential application in biosensors.

  4. Shape Effect on the Temperature Field during Microwave Heating Process

    Directory of Open Access Journals (Sweden)

    Zhijun Zhang

    2018-01-01

    Full Text Available Aiming at improving the food quality during microwave process, this article mainly focused on the numerical simulation of shape effect, which was evaluated by microwave power absorption capability and temperature distribution uniformity in a single sample heated in a domestic microwave oven. This article only took the electromagnetic field and heat conduction in solid into consideration. The Maxwell equations were used to calculate the distribution of microwave electromagnetic field distribution in the microwave cavity and samples; then the electromagnetic energy was coupled as the heat source in the heat conduction process in samples. Quantitatively, the power absorption capability and temperature distribution uniformity were, respectively, described by power absorption efficiency (PAE and the statistical variation of coefficient (COV. In addition, we defined the comprehensive evaluation coefficient (CEC to describe the usability of a specific sample. In accordance with volume or the wave numbers and penetration numbers in the radial and axial directions of samples, they can be classified into different groups. And according to the PAE, COV, and CEC value and the specific need of microwave process, an optimal sample shape and orientation could be decided.

  5. Heating temperature effect on ferritic grain size of rotor steel

    International Nuclear Information System (INIS)

    Cheremnykh, V.G.; Derevyankin, E.V.; Sakulin, A.A.

    1983-01-01

    The heating temperature effect on ferritic grain size of two steels 13Kh1M1FA and 25Kh1M1FA is evaluated. It is shown that exposure time increase at heating temperatures below 1000 deg C up to 10h changes but slightly the size of the Cr-Mo-V ferritic grain of rotor steel cooled with 25 deg C/h rate. Heating up to 1000 deg C and above leads to substantial ferritic grain growth. The kinetics of ferritic grain growth is determined by the behaviour of phases controlling the austenitic grain growth, such as carbonitrides VCsub(0.14)Nsub(0.78) in 13Kh1M1FA steel and VCsub(0.18)Nsub(0.72) in 25Kh1M1FA steel. Reduction of carbon and alloying elements content in steel composition observed at the liquation over rotor length leads to a certain decrease of ferritic grain resistance to super heating

  6. Effect of heating system using a geothermal heat pump on the production performance and housing environment of broiler chickens.

    Science.gov (United States)

    Choi, H C; Salim, H M; Akter, N; Na, J C; Kang, H K; Kim, M J; Kim, D W; Bang, H T; Chae, H S; Suh, O S

    2012-02-01

    A geothermal heat pump (GHP) is a potential heat source for the economic heating of broiler houses with optimum production performance. An investigation was conducted to evaluate the effect of a heating system using a GHP on production performance and housing environment of broiler chickens. A comparative analysis was also performed between the GHP system and a conventional heating system that used diesel for fuel. In total, 34,000 one-day-old straight run broiler chicks were assigned to 2 broiler houses with 5 replicates in each (3,400 birds/replicate pen) for 35 d. Oxygen(,) CO(2), and NH(3) concentrations in the broiler house, energy consumption and cost of heating, and production performance of broilers were evaluated. Results showed that the final BW gain significantly (P heating system did not affect the mortality of chicks during the first 4 wk of the experimental period, but the mortality markedly increased in the conventional broiler house during the last wk of the experiment. Oxygen content in the broiler house during the experimental period was not affected by the heating system, but the CO(2) and NH(3) contents significantly increased (P heating the GHP house was significantly lower (P heating system for broiler chickens.

  7. Effect of heating rate on caustic stress corrosion cracking

    International Nuclear Information System (INIS)

    Indig, M.E.; Hoffman, N.J.

    1977-01-01

    To evaluate effects of a large water leak into the sodium side of a steam generator in a Liquid Metal Fast Breeder Reactor the Liquid Metal Engineering Center (LMEC) at Canoga Park, California, is performing a series of tests in a Large Leak Test Rig (LLTR). This test series involves heating a large steam generator that possibly contains localized pockets of aqueous caustic retained from a previous sodium-water reaction. Such pockets of caustic solution could be in contact with welds and other components that contain residual stresses up to the yield point. The LMEC and General Electric (GE) ran a series of tests to evaluate the effect of heating rate on caustic stress corrosion cracking (SCC) for alloys either used or considered for the LLTR. A summary of the temperatures and caustic concentration ranges that can result in caustic SCC for carbon steel and Type-304 stainless steel is given

  8. The effect of compressibility on the Alfven spatial resonance heating

    International Nuclear Information System (INIS)

    Azevedo, C.A.

    1984-01-01

    The effect of compressibility of magnetic field line on the damping rate of Alfven spatial resonance heating for a high beta plasma (Kinetic pressure/magnetic pressure) was analysed, using the ideal MHD (Magnetohydrodynamic) model in cylindrical geometry for a diffuse θ-pinch with conducting wall. The dispersion relation was obtained solving the equation of motion in the plasma and vacuum regions together with boundary conditions. (Author) [pt

  9. Effect of High Pressure and Heat on Bacterial Toxins

    Directory of Open Access Journals (Sweden)

    Dirk Margosch

    2005-01-01

    Full Text Available Even though the inactivation of microorganisms by high pressure treatment is a subject of intense investigations, the effect of high pressure on bacterial toxins has not been studied so far. In this study, the influence of combined pressure/temperature treatment (0.1 to 800 MPa and 5 to 121 °C on bacterial enterotoxins was determined. Therefore, heat-stable enterotoxin (STa of cholera toxin (CT from Vibrio cholerae, staphylococcal enterotoxins A-E, haemolysin BL (HBL from Bacillus cereus, and Escherichia coli (STa were subjected to different treatment schemes. Structural alterations were monitored in enzyme immunoassays (EIAs. Cytotoxicity of the pressure treated supernatant of toxigenic B. cereus DSM 4384 was investigated with Vero cells. High pressure of 200 to 800 MPa at 5 °C leads to a slight increase of the reactivity of the STa of E. coli. However, reactivity decreased at 800 MPa and 80 °C to (66±21 % after 30 min and to (44±0.3 % after 128 min. At ambient pressure no decrease in EIA reactivity could be observed after 128 min. Pressurization (0.1 to 800 MPa of heat stable monomeric staphylococcal toxins at 5 and 20 °C showed no effect. A combined heat (80 °C and pressure (0.1 to 800 MPa treatment lead to a decrease in the immuno-reactivity to 20 % of its maximum. For cholera toxin a significant loss in latex agglutination was observable only at 80 °C and 800 MPa for holding times higher than 20 min. Interestingly, the immuno-reactivity of B. cereus HBL toxin increased with the increase of pressure (182 % at 800 MPa, 30 °C, and high pressure showed only minor effects on cytotoxicity to Vero cells. Our results indicate that pressurization can increase inactivation observed by heat treatment, and combined treatments may be effective at lower temperatures and/or shorter incubation time.

  10. The effective neutron temperature in heated graphite sleeves

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, J A; Small, V G [General Reactor Physics Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)

    1963-08-15

    In a series of oscillator measurements carried out in the reactor NERO the variation of the relative reaction rates of cadmium and boron absorbers has been used to determine the effective neutron temperature inside heated graphite sleeves. This work extends the scope of similar oscillator measurements previously carried out in DIMPLE, in that the bulk moderator is now graphite as opposed to D{sub 2}O in the former case. (author)

  11. Average Natural Convective Heat Transfer of Air-cooled Condensing Heat Exchanger of Emergency Cooldown Tank - Effect of Tube Banks

    Energy Technology Data Exchange (ETDEWEB)

    Huh, Seon Jeong; Lee, Hee Joon [Kookmin University, Seoul (Korea, Republic of); Kim, Myoung Jun; Moon, Joo Hyung; Bae, Youngmin; Kim, Young-In [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Recently emergency cooldown tank(ECT) is a great concern of passive cooling system for the safety of nuclear reactor. After the operation of a conventional passive cooling system for an extended period, however, the water level falls as a result of the evaporation from the ECT, as steam is emitted from the open top of the tank. In this study, the effect of heat transfer area at the air cooled condensing heat exchanger was investigated by changing 5×5 tube banks into 4×4 and 3×3. Moreover, each of air-side natural convective heat transfer coefficient of tube banks was compared to existing correlations. This study presents the effect of heat transfer area at air-cooled condensing heat exchanger. As heat transfer area decreased, the temperature of outlet increased. In other words, the cooling performance got lower with the decrease of heat transfer area. In addition, the average natural convective heat transfer coefficient was 15.3 W/m{sup 2}/K from the 4×4 tube banks, and 4.92 W/m{sup 2}/K from the 3×3 tube banks, which had quite a large error more than 46% especially with the value of 4×4 tube banks compared to the value from correlation equation. Therefore, according to this result, it is needed to measure the local heat transfer coefficient of vertical cylinder more elaborately in further study.

  12. Average Natural Convective Heat Transfer of Air-cooled Condensing Heat Exchanger of Emergency Cooldown Tank - Effect of Tube Banks

    International Nuclear Information System (INIS)

    Huh, Seon Jeong; Lee, Hee Joon; Kim, Myoung Jun; Moon, Joo Hyung; Bae, Youngmin; Kim, Young-In

    2016-01-01

    Recently emergency cooldown tank(ECT) is a great concern of passive cooling system for the safety of nuclear reactor. After the operation of a conventional passive cooling system for an extended period, however, the water level falls as a result of the evaporation from the ECT, as steam is emitted from the open top of the tank. In this study, the effect of heat transfer area at the air cooled condensing heat exchanger was investigated by changing 5×5 tube banks into 4×4 and 3×3. Moreover, each of air-side natural convective heat transfer coefficient of tube banks was compared to existing correlations. This study presents the effect of heat transfer area at air-cooled condensing heat exchanger. As heat transfer area decreased, the temperature of outlet increased. In other words, the cooling performance got lower with the decrease of heat transfer area. In addition, the average natural convective heat transfer coefficient was 15.3 W/m"2/K from the 4×4 tube banks, and 4.92 W/m"2/K from the 3×3 tube banks, which had quite a large error more than 46% especially with the value of 4×4 tube banks compared to the value from correlation equation. Therefore, according to this result, it is needed to measure the local heat transfer coefficient of vertical cylinder more elaborately in further study

  13. Liquid electrode

    Science.gov (United States)

    Ekechukwu, A.A.

    1994-07-05

    A dropping electrolyte electrode is described for use in electrochemical analysis of non-polar sample solutions, such as benzene or cyclohexane. The liquid electrode, preferably an aqueous salt solution immiscible in the sample solution, is introduced into the solution in dropwise fashion from a capillary. The electrolyte is introduced at a known rate, thus, the droplets each have the same volume and surface area. The electrode is used in making standard electrochemical measurements in order to determine properties of non-polar sample solutions. 2 figures.

  14. A canonical correlation analysis based EMG classification algorithm for eliminating electrode shift effect.

    Science.gov (United States)

    Zhe Fan; Zhong Wang; Guanglin Li; Ruomei Wang

    2016-08-01

    Motion classification system based on surface Electromyography (sEMG) pattern recognition has achieved good results in experimental condition. But it is still a challenge for clinical implement and practical application. Many factors contribute to the difficulty of clinical use of the EMG based dexterous control. The most obvious and important is the noise in the EMG signal caused by electrode shift, muscle fatigue, motion artifact, inherent instability of signal and biological signals such as Electrocardiogram. In this paper, a novel method based on Canonical Correlation Analysis (CCA) was developed to eliminate the reduction of classification accuracy caused by electrode shift. The average classification accuracy of our method were above 95% for the healthy subjects. In the process, we validated the influence of electrode shift on motion classification accuracy and discovered the strong correlation with correlation coefficient of >0.9 between shift position data and normal position data.

  15. Effect of Tungsten Nanolayer Coating on Si Electrode in Lithium-ion Battery

    Science.gov (United States)

    Son, Byung Dae; Lee, Jun Kyu; Yoon, Woo Young

    2018-02-01

    Tungsten (W) was coated onto a silicon (Si) anode at the nanoscale via the physical vaporization deposition method (PVD) to enhance its electrochemical properties. The characteristics of the electrode were identified by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray analysis, and electron probe X-ray microanalysis. With the electrochemical property analysis, the first charge capacities of the W-coated and uncoated electrode cells were 2558 mAh g- 1 and 1912 mAh g- 1, respectively. By the 50th cycle, the capacity ratios were 61.1 and 25.5%, respectively. Morphology changes in the W-coated Si anode during cycling were observed using SEM and TEM, and electrochemical characteristics were examined through impedance analysis. Owing to its conductivity and mechanical properties from the atomic W layer coating through PVD, the electrode improved its cyclability and preserved its structure from volumetric demolition.

  16. Effect of heat input on dilution and heat affected zone in submerged ...

    Indian Academy of Sciences (India)

    Proper management of heat input in weld- ing is important .... total nugget area, heat transfer boundary length, and nugget parameter. 3. ... Predominant parameters that had greater influence on welding quality were identified as wire feed rate ...

  17. Ion-selective electrode reviews

    CERN Document Server

    Thomas, J D R

    1983-01-01

    Ion-Selective Electrode Reviews, Volume 5 is a collection of articles that covers ion-speciation. The book aims to present the advancements of the range and capabilities of selective ion-sensors. The topics covered in the selection are neutral carrier based ion-selective electrodes; reference electrodes and liquid junction effects in ion-selective electrode potentiometry; ion transfer across water/organic phase boundaries and analytical; and carbon substrate ion-selective electrodes. The text will be of great use to chemists and chemical engineers.

  18. Transient heating effects in high pressure Diesel injector nozzles

    International Nuclear Information System (INIS)

    Strotos, George; Koukouvinis, Phoevos; Theodorakakos, Andreas; Gavaises, Manolis; Bergeles, George

    2015-01-01

    Highlights: • Simulation of friction-induced heating in high pressure Diesel fuel injectors. • Injection pressures up to 3000 bar. • Simulations with variable fuel properties significantly affect predictions. • Needle motion affects flow and temperature fields. • Possible heterogeneous boiling as injection pressures increase above 2000 bar. - Abstract: The tendency of today’s fuel injection systems to reach injection pressures up to 3000 bar in order to meet forthcoming emission regulations may significantly increase liquid temperatures due to friction heating; this paper identifies numerically the importance of fuel pressurization, phase-change due to cavitation, wall heat transfer and needle valve motion on the fluid heating induced in high pressure Diesel fuel injectors. These parameters affect the nozzle discharge coefficient (C d ), fuel exit temperature, cavitation volume fraction and temperature distribution within the nozzle. Variable fuel properties, being a function of the local pressure and temperature are found necessary in order to simulate accurately the effects of depressurization and heating induced by friction forces. Comparison of CFD predictions against a 0-D thermodynamic model, indicates that although the mean exit temperature increase relative to the initial fuel temperature is proportional to (1 − C d 2 ) at fixed needle positions, it can significantly deviate from this value when the motion of the needle valve, controlling the opening and closing of the injection process, is taken into consideration. Increasing the inlet pressure from 2000 bar, which is the pressure utilized in today’s fuel systems to 3000 bar, results to significantly increased fluid temperatures above the boiling point of the Diesel fuel components and therefore regions of potential heterogeneous fuel boiling are identified

  19. The effect of plate heat exchanger’s geometry on heat transfer

    Directory of Open Access Journals (Sweden)

    Oana GIURGIU

    2014-11-01

    Full Text Available The study presents further Computational Fluid Dynamics (CFD numerical analysis for two models of plate heat exchangers. Comparatively was studied the influence of geometric characteristics of plates on the intensification process of heat exchange. For this purpose, it was examined the distribution of velocity and temperatures fields on active plate height. Heat transfer characteristics were analysed through the variation of mass flow on the primary heat agent.

  20. Electrostatic Levitator Electrode Layout

    Science.gov (United States)

    1998-01-01

    Schematic of Electrostatic Levitator (ESL) electrodes and controls system. The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials science program.

  1. Mitigating the Urban Heat Island Effect in Megacity Tehran

    Directory of Open Access Journals (Sweden)

    Sahar Sodoudi

    2014-01-01

    Full Text Available Cities demonstrate higher nocturnal temperatures than surrounding rural areas, which is called “urban heat island” (UHI effect. Climate change projections also indicate increase in the frequency and intensity of heat waves, which will intensify the UHI effect. As megacity Tehran is affected by severe heatwaves in summer, this study investigates its UHI characteristics and suggests some feasible mitigation strategies in order to reduce the air temperature and save energy. Temperature monitoring in Tehran shows clear evidence of the occurrence of the UHI effect, with a peak in July, where the urban area is circa 6 K warmer than the surrounding areas. The mobile measurements show a park cool island of 6-7 K in 2 central parks, which is also confirmed by satellite images. The effectiveness of three UHI mitigation strategies high albedo material (HAM, greenery on the surface and on the roofs (VEG, and a combination of them (HYBRID has been studied using simulation with the microscale model ENVI-met. All three strategies show higher cooling effect in the daytime. The average nocturnal cooling effect of VEG and HYBRID (0.92, 1.10 K is much higher than HAM (0.16 K, although high-density trees show a negative effect on nocturnal cooling.

  2. Responding to the Effects of Extreme Heat: Baltimore City's Code Red Program.

    Science.gov (United States)

    Martin, Jennifer L

    2016-01-01

    Heat response plans are becoming increasingly more common as US cities prepare for heat waves and other effects of climate change. Standard elements of heat response plans exist, but plans vary depending on geographic location and distribution of vulnerable populations. Because heat events vary over time and affect populations differently based on vulnerability, it is difficult to compare heat response plans and evaluate responses to heat events. This article provides an overview of the Baltimore City heat response plan, the Code Red program, and discusses the city's response to the 2012 Ohio Valley/Mid Atlantic Derecho, a complex heat event. Challenges with and strategies for evaluating the program are reviewed and shared.

  3. The effect of external boundary conditions on condensation heat transfer in rotating heat pipes

    Science.gov (United States)

    Daniels, T. C.; Williams, R. J.

    1979-01-01

    Experimental evidence shows the importance of external boundary conditions on the overall performance of a rotating heat pipe condenser. Data are presented for the boundary conditions of constant heat flux and constant wall temperature for rotating heat pipes containing either pure vapor or a mixture of vapor and noncondensable gas as working fluid.

  4. electrode array

    African Journals Online (AJOL)

    PROF EKWUEME

    A geoelectric investigation employing vertical electrical soundings (VES) using the Ajayi - Makinde Two-Electrode array and the ... arrangements used in electrical D.C. resistivity survey. These include ..... Refraction Tomography to Study the.

  5. The effects of electrode cleaning and conditioning on the performance of high-energy, pulsed-power devices

    Energy Technology Data Exchange (ETDEWEB)

    Cuneo, M.E.

    1998-09-01

    High-energy pulsed-power devices routinely access field strengths above those at which broad-area, cathode-initiated, high-voltage vacuum-breakdown occur (> 1e7--3e7 V/m). Examples include magnetically-insulated-transmission-lines and current convolutes, high-current-density electron and ion diodes, high-power microwave devices, and cavities and other structures for electrostatic and RF accelerators. Energy deposited in anode surfaces may exceed anode plasma thermal-desorption creation thresholds on the time-scale of the pulse. Stimulated desorption by electron or photon bombardment can also lead to plasma formation on electrode or insulator surfaces. Device performance is limited above these thresholds, particularly in pulse length and energy, by the formation and expansion of plasmas formed primarily from electrode contaminants. In-situ conditioning techniques to modify and eliminate the contaminants through multiple high-voltage pulses, low base pressures, RF discharge cleaning, heating, surface coatings, and ion- and electron-beam surface treatment allow access to new regimes of performance through control of plasma formation and modification of the plasma properties. Experimental and theoretical progress from a variety of devices and small scale experiments with a variety of treatment methods will be reviewed and recommendations given for future work.

  6. Heat Islands

    Science.gov (United States)

    EPA's Heat Island Effect Site provides information on heat islands, their impacts, mitigation strategies, related research, a directory of heat island reduction initiatives in U.S. communities, and EPA's Heat Island Reduction Program.

  7. Understanding the effect of morphology on the photocatalytic activity of TiO2 nanotube array electrodes

    International Nuclear Information System (INIS)

    Adán, C.; Marugán, J.; Sánchez, E.; Pablos, C.; Grieken, R. van

    2016-01-01

    A comprehensive report on the correlation between the morphology and the photocatalytic (PC) and photoelectrocatalytic (PEC) activity of TiO 2 nanotubes (NTs) electrodes is presented. New insights are provided to support the effect of the anodization conditions on the photon-to-current efficiency of the electrodes based on the dimensional characteristics of the TiO 2 -NTs. Electrodes with promising properties based on the characterization data were scaled-up to test their activity on the PC and PEC oxidation of methanol. Results indicate that the length of the nanotubes significantly influences the photodegradation efficiency. The enhancement achieved in both PC and PEC processes with longer nanotubes can be explained by the higher surface area in contact with the electrolyte and the increase in the light absorption as the TiO 2 layer becomes thicker. However, as the length of the nanotubes increases, a reduction in the enhancement achieved by the application of a potential bias is observed. Kinetic constants of both reactions (PC and PEC) tend to get closer and the charge separation effect diminishes. In relative terms, the effect of the electric potential is more pronounced for electrodes with the shorter NTs. The reason is that once the TiO 2 layer is thick enough to absorb the available radiation, a further increase in the NTs length increases the resistance of the electrons to reach the back contact and the diffusional restrictions to the mass transport of the reactants/products along the tubes. Consequently, the existence of a compromise between reactivity and transport properties lead to the existence of an optimal NTs length.

  8. Cone-beam computed tomography in children with cochlear implants: The effect of electrode array position on ECAP.

    Science.gov (United States)

    Lathuillière, Marine; Merklen, Fanny; Piron, Jean-Pierre; Sicard, Marielle; Villemus, Françoise; Menjot de Champfleur, Nicolas; Venail, Frédéric; Uziel, Alain; Mondain, Michel

    2017-01-01

    To assess the feasibility of using cone-beam computed tomography (CBCT) in young children with cochlear implants (CIs) and study the effect of intracochlear position on electrophysiological and behavioral measurements. A total of 40 children with either unilateral or bilateral cochlear implants were prospectively included in the study. Electrode placement and insertion angles were studied in 55 Cochlear ® implants (16 straight arrays and 39 perimodiolar arrays), using either CBCT or X-ray imaging. CBCT or X-ray imaging were scheduled when the children were leaving the recovery room. We recorded intraoperative and postoperative neural response telemetry threshold (T-NRT) values, intraoperative and postoperative electrode impedance values, as well as behavioral T (threshold) and C (comfort) levels on electrodes 1, 5, 10, 15 and 20. CBCT imaging was feasible without any sedation in 24 children (60%). Accidental scala vestibuli insertion was observed in 3 out of 24 implants as assessed by CBCT. The mean insertion angle was 339.7°±35.8°. The use of a perimodiolar array led to higher angles of insertion, lower postoperative T-NRT, as well as decreased behavioral T and C levels. We found no significant effect of either electrode array position or angle of insertion on electrophysiological data. CBCT appears to be a reliable tool for anatomical assessment of young children with CIs. Intracochlear position had no significant effect on the electrically evoked compound action potential (ECAP) threshold. Our CBCT protocol must be improved to increase the rate of successful investigations. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. The effects of air leaks on solar air heating systems

    Science.gov (United States)

    Elkin, R.; Cash, M.

    1979-01-01

    This paper presents the results of an investigation to determine the effects of leakages in collector and duct work on the system performance of a typical single-family residence solar air heating system. Positive (leakage out) and negative (leakage in) pressure systems were examined. Collector and duct leakage rates were varied from 10 to 30 percent of the system flow rate. Within the range of leakage rates investigated, solar contribution to heated space and domestic hot water loads was found to be reduced up to 30 percent from the no-leak system contribution with duct leakage equally divided between supply and return duct; with supply duct leakage greater than return leakage a reduction of up to 35 percent was noted. The negative pressure system exhibited a reduction in solar contribution somewhat larger than the positive pressure system for the same leakage rates.

  10. PWR-blowdown heat transfer separate effects program

    International Nuclear Information System (INIS)

    Thomas, D.G.

    1976-01-01

    The ORNL Pressurized-Water Reactor Blowdown Heat Transfer (PWR-BDHT) Program is an experimental separate-effects study of the relations among the principal variables that can alter the rate of blowdown, the presence of flow reversal and rereversal, time delay to critical heat flux, the rate at which dryout progresses, and similar time-related functions that are important to LOCA analysis. Primary test results are obtained from the Thermal-Hydraulic Test Facility (THTF). Supporting experiments are carried out in several additional test loops - the Forced Convection Test Facility (FCTF), an air-water loop, a transient steam-water loop, and a low-temperature water mockup of the THTF heater rod bundle. The studies to date are described

  11. Electron Bernstein wave heating and current drive effects in QUEST

    International Nuclear Information System (INIS)

    Idei, H.; Zushi, H.; Hanada, K.; Nakamura, K.; Fujisawa, A.; Nagashima, Y.; Hasegawa, M.; Matsuoka, K.; Watanabe, H.; Yoshida, N.; Tokunaga, K.; Kawasaki, S.; Nakashima, H.; Higashijima, A.; Kalinnikova, E.; Sakaguchi, M.; Itado, T.; Tashima, S.; Fukuyama, A.; Ejiri, A.; Takase, Y.; Igami, H.; Kubo, S.; Toi, K.; Isobe, M.; Nagaoka, K.; Nakanishi, H.; Nishino, N.; Ueda, Y.; Kikuchi, Mitsuru; Fujita, Takaaki; Mitarai, O.; Maekawa, T.

    2012-11-01

    Electron Bernstein Wave Heating and Current Drive (EBWH/CD) effects have been first observed in over dense plasmas using the developed phased-array antenna (PAA) system in QUEST. Good focusing and steering properties tested in the low power facilities were confirmed with a high power level in the QUEST device. The new operational window to sustain the plasma current was observed in the RF-sustained high-density plasmas at the higher incident RF power. Increment and decrement of the plasma current and the loop voltage were observed in the over dense ohmic plasma by the RF injection respectively, indicating the EBWH/CD effects. (author)

  12. Effects of face/head and whole body cooling during passive heat stress on human somatosensory processing.

    Science.gov (United States)

    Nakata, Hiroki; Namba, Mari; Kakigi, Ryusuke; Shibasaki, Manabu

    2017-06-01

    We herein investigated the effects of face/head and whole body cooling during passive heat stress on human somatosensory processing recorded by somatosensory-evoked potentials (SEPs) at C4' and Fz electrodes. Fourteen healthy subjects received a median nerve stimulation at the left wrist. SEPs were recorded at normothermic baseline (Rest), when esophageal temperature had increased by ~1.2°C (heat stress: HS) during passive heating, face/head cooling during passive heating (face/head cooling: FHC), and after HS (whole body cooling: WBC). The latencies and amplitudes of P14, N20, P25, N35, P45, and N60 at C4' and P14, N18, P22, and N30 at Fz were evaluated. Latency indicated speed of the subcortical and cortical somatosensory processing, while amplitude reflected the strength of neural activity. Blood flow in the internal and common carotid arteries (ICA and CCA, respectively) and psychological comfort were recorded in each session. Increases in esophageal temperature due to HS significantly decreased the amplitude of N60, psychological comfort, and ICA blood flow in the HS session, and also shortened the latencies of SEPs (all, P body temperature. Copyright © 2017 the American Physiological Society.

  13. The effect of hydrogen on the morphology of n-type silicon electrodes under electrochemical conditions

    DEFF Research Database (Denmark)

    Goldar, A.; Roser, S.J.; Caruana, D.

    2001-01-01

    the changes in the shape of the total reflection feature. We assume that the change in the morphology of the surface is due to the diffusion of hydrogen in the silicon electrode. This assumption allow us to model the changes in the reflected intensity at two different angles and find the diffusion exponent...

  14. Graphene electrodes for n-type organic field-effect transistors

    DEFF Research Database (Denmark)

    Henrichsen, Henrik Hartmann; Boggild, P.

    2010-01-01

    This work presents a convenient and contamination safe E-beam lithography process for microstructuring of graphene flakes. Exfoliated graphene flakes were deposited on oxidized silicon wafers and subsequently patterned by E-beam lithography, to be used as source and drain electrodes in an organic...

  15. The effect of loading and particle size on the oxygen reaction in CGO impregnated Pt electrodes

    DEFF Research Database (Denmark)

    Lund, Anders; Hansen, Karin Vels; Jacobsen, Torben

    2012-01-01

    Porous platinum electrodes impregnated with Gd x Ce1−x O2−δ (CGO) are investigated to characterise how nano-sized CGO grains affect the oxygen reaction. Impedance measurements were performed at temperatures between 450 and 750 °C and at oxygen partial pressures of 0.2 and 5 × 10−5 bar for electro......Porous platinum electrodes impregnated with Gd x Ce1−x O2−δ (CGO) are investigated to characterise how nano-sized CGO grains affect the oxygen reaction. Impedance measurements were performed at temperatures between 450 and 750 °C and at oxygen partial pressures of 0.2 and 5 × 10−5 bar...... for electrodes with various CGO loadings and electrodes annealed at various temperatures. The morphology was characterised by scanning electron microscopy and the CGO grain size was determined from X-ray diffraction peak broadening. The results showed that the polarisation resistance decreased with increasing...

  16. The ohmic resistance effect for characterisation of carbon nanotube paste electrodes (CNTPEs)

    Czech Academy of Sciences Publication Activity Database

    Mikysek, T.; Stočes, M.; Švancara, I.; Ludvík, Jiří

    2012-01-01

    Roč. 2, č. 9 (2012), s. 3684-3690 ISSN 2046-2069 R&D Projects: GA MŠk LC510 Institutional research plan: CEZ:AV0Z40400503 Keywords : voltammetry * nanotubes * paste electrodes Subject RIV: CG - Electrochemistry Impact factor: 2.562, year: 2012

  17. Effect of humic acid on the underpotential deposition-stripping voltammetry of copper in acetic acid soil extract solutions at mercaptoacetic acid-modified gold electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Herzog, Gregoire; Beni, Valerio; Dillon, Patrick H.; Barry, Thomas; Arrigan, Damien W.M

    2004-05-24

    Electrochemical measurements were undertaken for the investigation of the underpotential deposition-stripping process of copper at bare and modified gold electrodes in 0.11 M acetic acid, the first fraction of the European Union's Bureau Communautaire de References (BCR) sequential extraction procedure for fractionating metals within soils and sediments. Gold electrodes modified with mercaptoacetic acid showed higher sensitivity for the detection of copper than bare gold electrodes, both in the absence and in the presence of humic acid in acetic acid solutions, using the underpotential deposition-stripping voltammetry (UPD-SV) method. In the presence of 50 mg l{sup -1} of humic acid, the mercaptoacetic acid modified electrode proved to be 1.5 times more sensitive than the bare gold electrode. The mercaptoacetic acid monolayer formed on the gold surface provided efficient protection against the adsorption of humic acid onto the gold electrode surface. Variation of the humic acid concentration in the solution showed little effect on the copper stripping signal at the modified electrode. UPD-SV at the modified electrode was applied to the analysis of soil extract samples. Linear correlation of the electrochemical results with atomic spectroscopic results yielded the straight-line equation y ({mu}g l{sup -1}) = 1.10x - 44 (ppb) (R=0.992, n=6), indicating good agreement between the two methods.

  18. Effect of carbon nano tube working electrode thickness on charge transport kinetics and photo-electrochemical characteristics of dye-sensitized solar cells

    Science.gov (United States)

    Gacemi, Yahia; Cheknane, Ali; Hilal, Hikmat S.

    2018-02-01

    Physiochemical processes at the photo-electrode and the counter electrode of dye sensitized solar cells (DSSCs) involving having carbon nanotubes (CNTs) instead of the TiO2 layer, within the working electrode, are simulated in this work. Attention is paid to find the effect of CNT layer thickness on photo-electrochemical (PEC) characteristics of the CNT-DSSCs. Comparison with other conventional TiO2-DSSC systems, taking into account the working electrode film thickness, is also described here. To achieve these goals, a model is presented to explain charge transport and electron recombination which involve electron photo-excitation in dye molecules, injection of electrons from the excited dye to CNT working electrode conduction band, diffusion of electrons inside the CNT electrode, charge transfer between oxidized dye and (I-) and recombination of electrons. The simulation is based on solving non-linear equations using the Newton-Raphson numerical method. This concept is proposed for modelling numerical Faradaic impedance at the photo-electrode and the platinum counter electrode. It then simulates the cell impedance spectrum describing the locus of the three semicircles in the Nyquist diagram. The transient equivalent circuit model is also presented based on optimizing current-voltage curves of CNT-DSSCs so as to optimize the fill factor (FF) and conversion efficiency (η). The results show that the simulated characteristics of CNT-DSSCs, with different active CNT layer thicknesses, are superior to conventional TiO2-DSSCs.

  19. Effect of non-uniform Hall parameter on the electrode voltage drop in Faraday-type combustion MHD generators

    International Nuclear Information System (INIS)

    Gupta, G.P.; Rohatgi, V.K.

    1982-01-01

    Following a simplified approach, an expression is derived for the gas-dynamic voltage drop in a finitely segmented Faraday-type combustion MHD generator, taking into account the non-uniform Hall parameter across the channel. Combining the electrical sheath voltage drop, discussed briefly, with the gas-dynamic voltage drop, the effect of a non-uniform Hall parameter on the electrode voltage drop is studied using the theoretical and experimental input parameters of the Indian MHD channel test. The condition for the validity of the usual assumption of uniform Hall parameter across the channel is pointed out. Analysis of the measured electrode voltage drop predicts the real gas conductivity in the core to be in the range of 60 to 75 per cent of the theoretically calculated core conductivity. (author)

  20. Effective Chemical Route to 2D Nanostructured Silicon Electrode Material: Phase Transition from Exfoliated Clay Nanosheet to Porous Si Nanoplate

    International Nuclear Information System (INIS)

    Adpakpang, Kanyaporn; Patil, Sharad B.; Oh, Seung Mi; Kang, Joo-Hee; Lacroix, Marc; Hwang, Seong-Ju

    2016-01-01

    Graphical abstract: Effective morphological control of porous silicon 2D nanoplate can be achieved by the magnesiothermically-induced phase transition of exfoliated silicate clay nanosheets. The promising lithium storage performance of the obtained silicon materials with huge capacity and excellent rate characteristics underscores the prime importance of porously 2D nanostructured morphology of silicon. - Highlights: • 2D nanostructured silicon electrode materials are successfully synthesized via the magnesiothermically-induced phase transition of exfoliated clay 2D nanosheets. • High discharge capacity and rate capability are achieved from the 2D nanoplates of silicon. • Silicon 2D nanoplates can enhance both Li"+ diffusion and charge-transfer kinetics. • 2D nanostructured silicon is beneficial for the cycling stability by minimizing the volume change during lithiation-delithiation. - Abstract: An efficient and economical route for the synthesis of porous two-dimensional (2D) nanoplates of silicon is developed via the magnesiothermically-induced phase transition of exfoliated clay 2D nanosheets. The magnesiothermic reaction of precursor clay nanosheets prepared by the exfoliation and restacking with Mg"2"+ cations yields porous 2D nanoplates of elemental silicon. The variation in the Mg:SiO_2 ratio has a significant effect on the porosity and connectivity of silicon nanoplates. The porous silicon nanoplates show a high discharge capacity of 2000 mAh g"−"1 after 50 cycles. Of prime importance is that this electrode material still retains a large discharge capacity at higher C-rates, which is unusual for the elemental silicon electrode. This is mainly attributed to the improved diffusion of lithium ions, charge-transfer kinetics, and the preservation of the electrical connection of the porous 2D plate-shaped morphology. This study highlights the usefulness of clay mineral as an economical and scalable precursor of high-performance silicon electrodes with

  1. The effect of heat waves on dairy cow mortality.

    Science.gov (United States)

    Vitali, A; Felici, A; Esposito, S; Bernabucci, U; Bertocchi, L; Maresca, C; Nardone, A; Lacetera, N

    2015-07-01

    This study investigated the mortality of dairy cows during heat waves. Mortality data (46,610 cases) referred to dairy cows older than 24mo that died on a farm from all causes from May 1 to September 30 during a 6-yr period (2002-2007). Weather data were obtained from 12 weather stations located in different areas of Italy. Heat waves were defined for each weather station as a period of at least 3 consecutive days, from May 1 to September 30 (2002-2007), when the daily maximum temperature exceeded the 90th percentile of the reference distribution (1971-2000). Summer days were classified as days in heat wave (HW) or not in heat wave (nHW). Days in HW were numbered to evaluate the relationship between mortality and length of the wave. Finally, the first 3 nHW days after the end of a heat wave were also considered to account for potential prolonged effects. The mortality risk was evaluated using a case-crossover design. A conditional logistic regression model was used to calculate odds ratio and 95% confidence interval for mortality recorded in HW compared with that recorded in nHW days pooled and stratified by duration of exposure, age of cows, and month of occurrence. Dairy cows mortality was greater during HW compared with nHW days. Furthermore, compared with nHW days, the risk of mortality continued to be higher during the 3 d after the end of HW. Mortality increased with the length of the HW. Considering deaths stratified by age, cows up to 28mo were not affected by HW, whereas all the other age categories of older cows (29-60, 61-96, and >96mo) showed a greater mortality when exposed to HW. The risk of death during HW was higher in early summer months. In particular, the highest risk of mortality was observed during June HW. Present results strongly support the implementation of adaptation strategies which may limit heat stress-related impairment of animal welfare and economic losses in dairy cow farm during HW. Copyright © 2015 American Dairy Science

  2. Radiation Heat Transfer Effect on Thermal Sizing of Air-Cooling Heat Exchanger of Emergency Cooldown Tank

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Joo Hyung; Kim, Young In; Kim, Keung Koo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Myoung Jun; Lee, Hee Joon [School of Mechanical Eng., Kookmin University, Seoul (Korea, Republic of)

    2014-10-15

    An attempt has begun to extend the life time of emergency cooldown tank (ECT) by Korea Atomic Energy Research Institute (KAERI) researchers. Moon et al. recently reported a basic concept upon how to keep the ECT in operation beyond 72 hours after an accident occurs without any active corrective actions for the postulated design basis accidents. When the SMART (System-integrated Modular Advanced Reac-Tor) received its Standard Design Approval (SDA) for the first time in the world, hybrid safety systems are applied. However, the passive safety systems of SMART are being enforced in response to the public concern for much safer reactors since the Fukushima accident occurred. The ECT is a major component of a passive residual heat removal system (PRHRS), which is one of the most important systems to enhance the safety of SMART. It is being developed in a SMART safety enhancement project to contain enough cooling water to remove a sensible heat and a decay heat from reactor core for 72 hours since an accident occurs. Moon et al. offered to install another heat exchanger above the ECT and to recirculate an evaporated steam into water, which enables the ECT to be in operation, theoretically, indefinitely. An investigation was made to determine how long and how many tubes were required to meet the purpose of the study. In their calculation, however, a radiation heat transfer effect was neglected. The present study is to consider the radiation heat transfer for the design of air-cooling heat exchanger. Radiation heat transfer is normally ignored in many situations, but this is not the case for the present study. Kim et al. conducted thermal sizing of scaled-down ECT heat exchanger, which will be used to validate experimentally the basic concept of the present study. Their calculation is also examined to see if a radiation heat transfer effect was taken into consideration. The thermal sizing of an air-cooling heat exchanger was conducted including radiation heat transfer

  3. The effect of metal-buffer bilayer drain/source electrodes on the operational stability of the organic field effect transistors

    International Nuclear Information System (INIS)

    Karimi-Alavijeh, H.R.; Ehsani, A.

    2015-01-01

    In this paper, we have investigated experimentally the effect of different drain/source (D/S) electrodes and charge injection buffer layers on the electrical properties and operational stability of a stilbene organic field effect transistor (OFET). The results show that the organic buffer layer of copper phthalocyanine (CuPc) considerably improves the electrical properties of the transistors, but has a negligible effect on their temporal behavior. On the other hand, inorganic metal-oxide buffer layer of molybdenum oxide (MoO 3 ) drastically changes both the electrical properties and operational stability. The functionalities of this metal-oxide tightly depend on the properties of the D/S metallic electrodes. OFETs with Al/MoO 3 as the bilayer D/S electrodes have the best electrical properties: field effect mobility μ eff = 0.32 cm 2 V −1 s −1 and threshold voltage V TH = − 5 V and the transistors with Ag/MoO 3 have the longest operational stability. It was concluded that the chemical stability of the metal/metal-oxide or metal/organic interfaces of the bilayer D/S electrodes determine the operational stability of the OFETs. - Highlights: • The effect of buffer layers on the performance of the stilbene OFETs has been investigated. • Inorganic buffer layer improved the electrical and temporal behaviors simultaneously. • Organic buffer layer only changes the electrical properties. • Chemical stability of the interfaces determines the operational stability of the transistor

  4. Heat Stress Effects on Growing-Finishing Swine

    Science.gov (United States)

    Understanding the factors that create heat stress, the response of the animals while under heat stress, and the signs of heat-stressed swine are essential to making rational decisions for the selection, design, and management of their environments. Heat stressors include combinations of environment...

  5. Effect of heating cast kafirin films on their functional properties

    CSIR Research Space (South Africa)

    Byaruhanga, YB

    2007-01-01

    Full Text Available of heated plasticized films showed more wrinkled structures compared to non-heated films, whereas the non-plasticized films appeared more brittle with heating. The results indicate that heat-induced intermolecular disulfide cross-linking was involved...

  6. The effect of heat exchanger parameters on performance predictions for nonazeotropic refrigerant mixtures in liquid-liquid heat pumps

    International Nuclear Information System (INIS)

    Stanger, S.; Den Braven, K.R.; Owre, T.A.S.

    1990-01-01

    The effects of constant heat exchanger area on the coefficient of performance (COP) for liquid-liquid heat pumps were analyzed for systems which use nonazeotropic mixtures as the working fluid. For this analysis, two different computer models were compared. In the first, the log mean temperature differences (LMTDs) through the heat exchangers were specified, and were held constant for all refrigerant compositions. The second method was constructed so that the heat exchanger UA product was held constant, thus approximating constant heat exchanger area over a range of refrigerant compositions. Results from these models show only a one percent difference in COP prediction between holding LMTD constant and holding UA constant over the range of mixture composition. This paper reports the models compared using mixtures of R-22/R-11 and R-22/R-114. It is also shown that changes in glide and lift temperatures have little influence on the differences between the two models

  7. Fabrication of low temperature cofired ceramic (LTCC) chip couplers for high frequencies : I. Effect of binder burnout process on the formation of electrode line

    Energy Technology Data Exchange (ETDEWEB)

    Cho, N.T.; Shim, K.B.; Lee, S.W. [Hanyang University, Seoul (Korea); Koo, K.D. [K-Cera Inc., Yongin (Korea)

    1999-06-01

    In the fabrication of ceramic chip couplers for high frequency applications such as the mobile communication equipment, the formation of electrode lines and Ag diffusion were investigated with heat treatment conditions for removing organic binders. The deformation and densification of the electrode line greatly depended on the binder burnout process due to the overlapped temperature zone near 400{sup o} C of the binder dissociation and the solid phase sintering of the silver electrode. Ag ions were diffused into the glass ceramic substrate. The Ag diffusion was led by the glassy phase containing Pb ions rather than by the crystalline phase containing Ca ions. The fact suggests that the Ag diffusion could be controlled by managing the composition of the glass ceramic substrate. 9 refs., 10 figs., 1 tab.

  8. Relaxation-Induced Memory Effect of LiFePO4 Electrodes in Li-Ion Batteries.

    Science.gov (United States)

    Jia, Jianfeng; Tan, Chuhao; Liu, Mengchuang; Li, De; Chen, Yong

    2017-07-26

    In Li-ion batteries, memory effect has been found in several commercial two-phase materials as a voltage bump and a step in the (dis)charging plateau, which delays the two-phase transition and influences the estimation of the state of charge. Although memory effect has been first discovered in olivine LiFePO 4 , the origination and dependence are still not clear and are critical for regulating the memory effect of LiFePO 4 . Herein, LiFePO 4 has been synthesized by a home-built spray drying instrument, of which the memory effect has been investigated in Li-ion batteries. For as-synthesized LiFePO 4 , the memory effect is significantly dependent on the relaxation time after phase transition. Besides, the voltage bump of memory effect is actually a delayed voltage overshooting that is overlaid at the edge of stepped (dis)charging plateau. Furthermore, we studied the kinetics of LiFePO 4 electrode with electrochemical impedance spectroscopy (EIS), which shows that the memory effect is related to the electrochemical kinetics. Thereby, the underlying mechanism has been revealed in memory effect, which would guide us to optimize two-phase electrode materials and improve Li-ion battery management systems.

  9. Effect of thymol in heating and recovery media on the isothermal and non-isothermal heat resistance of Bacillus spores.

    Science.gov (United States)

    Esteban, Maria-Dolores; Conesa, Raquel; Huertas, Juan-Pablo; Palop, Alfredo

    2015-06-01

    Members of the genus Bacillus include important food-borne pathogen and spoilage microorganisms for food industry. Essential oils are natural products extracted from herbs and spices, which can be used as natural preservatives in many foods because of their antibacterial, antifungal, antioxidant and anti-carcinogenic properties. The aim of this research was to explore the effect of the addition of different concentrations of thymol to the heating and recovery media on the thermal resistance of spores of Bacillus cereus, Bacillus licheniformis and Bacillus subtilis at different temperatures. While the heat resistance was hardly reduced when thymol was present in the heating medium, the effect in the recovery medium was greater, reducing the D100 °C values down to one third for B. subtilis and B. cereus when 0.5 mM thymol was added. This effect was dose dependent and was also observed at other heating temperatures. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Effective electrochemical method for investigation of hemoglobin unfolding based on the redox property of heme groups at glassy carbon electrodes.

    Science.gov (United States)

    Li, Xianchan; Zheng, Wei; Zhang, Limin; Yu, Ping; Lin, Yuqing; Su, Lei; Mao, Lanqun

    2009-10-15

    This study demonstrates a facile and effective electrochemical method for investigation of hemoglobin (Hb) unfolding based on the electrochemical redox property of heme groups in Hb at bare glassy carbon (GC) electrodes. In the native state, the heme groups are deeply buried in the hydrophobic pockets of Hb with a five-coordinate high-spin complex and thus show a poor electrochemical property at bare GC electrodes. Upon the unfolding of Hb induced by the denaturant of guanidine hydrochloride (GdnHCl), the fifth coordinative bond between the heme groups and the residue of the polypeptides (His-F8) is broken, and as a result, the heme groups initially buried deeply in the hydrophobic pockets dissociate from the polypeptide chains and are reduced electrochemically at GC electrodes, which can be used to probe the unfolding of Hb. The results on the GdnHCl-induced Hb unfolding obtained with the electrochemical method described here well coincide with those studied with other methods, such as UV-vis spectroscopy, fluorescence, and circular dichroism. The application of the as-established electrochemical method is illustrated to study the kinetics of GdnHCl-induced Hb unfolding, the GdnHCl-induced unfolding of another kind of hemoprotein, catalase, and the pH-induced Hb unfolding/refolding.

  11. Effect of multi-layered bottom electrodes on the orientation of strontium-doped lead zirconate titanate thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bhaskaran, M. [Microelectronics and Materials Technology Centre, School of Electrical and Computer Engineering, RMIT University, GPO Box 2476V, Melbourne, Victoria 3001 (Australia)], E-mail: madhu.bhaskaran@gmail.com; Sriram, S. [Microelectronics and Materials Technology Centre, School of Electrical and Computer Engineering, RMIT University, GPO Box 2476V, Melbourne, Victoria 3001 (Australia); Mitchell, D.R.G.; Short, K.T. [Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation (ANSTO), PMB 1, Menai, New South Wales 2234 (Australia); Holland, A.S. [Microelectronics and Materials Technology Centre, School of Electrical and Computer Engineering, RMIT University, GPO Box 2476V, Melbourne, Victoria 3001 (Australia)

    2008-09-30

    This article discusses the results from X-ray diffraction (XRD) analysis of piezoelectric strontium-doped lead zirconate titanate (PSZT) thin films deposited on multi-layer coatings on silicon. The films were deposited by RF magnetron sputtering on a metal coated substrate. The aim was to exploit the pronounced piezoelectric effect that is theoretically expected normal to the substrate. This work highlighted the influence that the bottom electrode architecture exerts on the final crystalline orientation of the deposited thin films. A number of bottom electrode architectures were used, with the uppermost metal layer on which PSZT was deposited being gold or platinum. The XRD analysis revealed that the unit cell of the PSZT thin films deposited on gold and on platinum were deformed, relative to expected unit cell dimensions. Experimental results have been used to estimate the unit cell parameters. The XRD results were then indexed based on these unit cell parameters. The choice and the thickness of the intermediate adhesion layers influenced the relative intensity, and in some cases, the presence of perovskite peaks. In some cases, undesirable reactions between the bottom electrode layers were observed, and layer architectures to overcome these reactions are also discussed.

  12. The effects of electron and hole transport layer with the electrode work function on perovskite solar cells

    Science.gov (United States)

    Deng, Quanrong; Li, Yiqi; Chen, Lian; Wang, Shenggao; Wang, Geming; Sheng, Yonglong; Shao, Guosheng

    2016-09-01

    The effects of electron and hole transport layer with the electrode work function on perovskite solar cells with the interface defects were simulated by using analysis of microelectronic and photonic structures-one-dimensional (AMPS-1D) software. The simulation results suggest that TiO2 electron transport layer provides best device performance with conversion efficiency of 25.9% compared with ZnO and CdS. The threshold value of back electrode work function for Spiro-OMeTAD, NiO, CuI and Cu2O hole transport layer are calculated to be 4.9, 4.8, 4.7 and 4.9 eV, respectively, to reach the highest conversion efficiency. The mechanisms of device physics with various electron and hole transport materials are discussed in details. The device performance deteriorates gradually as the increased density of interface defects located at ETM/absorber or absorber/HTM. This research results can provide helpful guidance for materials and metal electrode choice for perovskite solar cells.

  13. Heart rate variability during exertional heat stress: effects of heat production and treatment.

    Science.gov (United States)

    Flouris, Andreas D; Bravi, Andrea; Wright-Beatty, Heather E; Green, Geoffrey; Seely, Andrew J; Kenny, Glen P

    2014-04-01

    We assessed the efficacy of different treatments (i.e., treatment with ice water immersion vs. natural recovery) and the effect of exercise intensities (i.e., low vs. high) for restoring heart rate variability (HRV) indices during recovery from exertional heat stress (EHS). Nine healthy adults (26 ± 3 years, 174.2 ± 3.8 cm, 74.6 ± 4.3 kg, 17.9 ± 2.8 % body fat, 57 ± 2 mL·kg·(-1) min(-1) peak oxygen uptake) completed four EHS sessions incorporating either walking (4.0-4.5 km·h(-1), 2 % incline) or jogging (~7.0 km·h(-1), 2 % incline) on a treadmill in a hot-dry environment (40 °C, 20-30 % relative humidity) while wearing a non-permeable rain poncho for a slow or fast rate of rectal temperature (T re) increase, respectively. Upon reaching a T re of 39.5 °C, participants recovered until T re returned to 38 °C either passively or with whole-body immersion in 2 °C water. A comprehensive panel of 93 HRV measures were computed from the time, frequency, time-frequency, scale-invariant, entropy and non-linear domains. Exertional heat stress significantly affected 60/93 HRV measures analysed. Analyses during recovery demonstrated that there were no significant differences between HRV measures that had been influenced by EHS at the end of passive recovery vs. whole-body cooling treatment (p > 0.05). Nevertheless, the cooling treatment required statistically significantly less time to reduce T re (p whole-body immersion in 2 °C water results in faster cooling, there were no observed differences in restoration of autonomic heart rate modulation as measured by HRV indices with whole-body cold-water immersion compared to passive recovery in thermoneutral conditions.

  14. Thermoporoelastic effects during heat extraction from low-permeability reservoirs

    DEFF Research Database (Denmark)

    Salimzadeh, Saeed; Nick, Hamidreza M.; Zimmerman, R. W.

    2018-01-01

    Thermoporoelastic effects during heat extraction from low permeability geothermal reservoirs are investigated numerically, based on the model of a horizontal penny-shaped fracture intersected by an injection well and a production well. A coupled formulation for thermo-hydraulic (TH) processes...... in EGS projects. Therefore, using the undrained thermal expansion coefficient for the matrix may overestimate the volumetric strain of the rock in low-permeability enhanced geothermal systems, whereas using a drained thermal expansion coefficient for the matrix may underestimate the volumetric strain...

  15. Effect of Fe2O3 and Binder on the Electrochemical Properties of Fe2O3/AB (Acetylene Black) Composite Electrodes

    Science.gov (United States)

    Anh, Trinh Tuan; Thuan, Vu Manh; Thang, Doan Ha; Hang, Bui Thi

    2017-06-01

    In an effort to find the best anode material for Fe/air batteries, a Fe2O3/AB (Acetylene Black) composite was prepared by dry-type ball milling using Fe2O3 nanoparticles and AB as the active and additive materials, respectively. The effects of various binders and Fe2O3 content on the electrochemical properties of Fe2O3/AB electrodes in alkaline solution were investigated. It was found that the content of Fe2O3 strongly affected the electrochemical behavior of Fe2O3/AB electrodes; with Fe2O3 nanopowder content reaching 70 wt.% for the electrode and showing improvement of the cyclability. When the electrode binder polytetrafluoroethylene (PTFE) was used, clear redox peaks were observed via cyclic voltammetry (CV), while polyvinylidene fluoride-containing electrodes provided CV curves with unobservable redox peaks. Increasing either binder content in the electrode showed a negative effect in terms of the cyclability of the Fe2O3/AB electrode.

  16. Heat effect of pulsed Er:YAG laser radiation

    Science.gov (United States)

    Hibst, Raimund; Keller, Ulrich

    1990-06-01

    Pulsed Er:YAG laser radiation has been found to be effective for dental enamel and dentin removal. Damage to the surrounding hard tissue is little, but before testing the Er:YAG laser clinically for the preparation of cavities, possible effects on the soft tissue of the pulp must be known. In order to estimate pulp damage , temperature rise in dentin caused by the laser radiation was measured by a thermocouple. Additionally, temperature distributions were observed by means of a thermal imaging system. The heat effect of a single Er:YAG laser pulse is little and limited to the vicinity of the impact side. Because heat energy is added with each additional pulse , the temperature distribution depends not only on the radiant energy, but also on the number of pulses and the repetition rate. Both irradiation conditions can be found , making irreversible pulp damage either likely or unlikely. The experimental observations can be explained qualitatively by a simple model of the ablation process.

  17. Inertial effects on heat transfer in superhydrophobic microchannels

    Science.gov (United States)

    Cowley, Adam; Maynes, Daniel; Crockett, Julie; Iverson, Brian; BYU Fluids Team

    2015-11-01

    This work numerically studies the effects of inertia on thermal transport in superhydrophbic microchannels. An infinite parallel plate channel comprised of structured superhydrophbic walls is considered. The structure of the superhydrophobic surfaces consists of square pillars organized in a square array aligned with the flow direction. Laminar, fully developed flow is explored. The flow is assumed to be non-wetting and have an idealized flat meniscus. A shear-free, adiabatic boundary condition is used at the liquid/gas interface, while a no-slip, constant heat flux condition is used at the liquid/solid interface. A wide range of Peclet numbers, relative channel spacing distances, and relative pillar sizes are considered. Results are presented in terms of Poiseuille number, Nusselt number, hydrodynamic slip length, and temperature jump length. Interestingly, the thermal transport is varied only slightly by inertial effects for a wide range of parameters explored and compares well with other analytical and numerical work that assumed Stokes flow. It is only for very small relative channel spacing and large Peclet number that inertial effects exert significant influence. Overall, the heat transfer is reduced for the superhydrophbic channels in comparison to classic smooth walled channels. This research was supported by the National Science Foundation (NSF) - United States (Grant No. CBET-1235881).

  18. The effect of the electrode material on the electrodeposition of zinc from deep eutectic solvents

    International Nuclear Information System (INIS)

    Vieira, L.; Schennach, R.; Gollas, B.

    2016-01-01

    Highlights: • Mechanistic insight into zinc electrodeposition from deep eutectic solvents. • Overpotential for hydrogen evolution affects the electrodeposition of zinc. • Electrodeposited zinc forms surface alloys on Cu, Au, and Pt. • In situ PM-IRRAS of a ZnCl_2 containing deep eutectic solvent on glassy carbon. - Abstract: The voltammetric behaviour of the ZnCl_2 containing deep eutectic solvent choline chloride/ethylene glycol 1:2 was investigated on glassy carbon, stainless steel, Au, Pt, Cu, and Zn electrodes. While cyclic voltammetry on glassy carbon and stainless steel showed a cathodic peak for zinc electrodeposition only in the anodic reverse sweep, a cathodic peak was found also in the cathodic forward sweep on Au, Pt, Cu, and Zn. This behaviour is in agreement with the proposed mechanism of zinc deposition from an intermediate species Z, whose formation depends on the cathodic reduction potential of the solvent. The voltammetric reduction of the electrolyte involves hydrogen evolution and as a result the formation of Z and its reduction to zinc depend on the hydrogen overpotential for each electrode material. On Au, Pt, and Cu also the anodic stripping was different from that on glassy carbon and steel due to the formation of surface zinc alloys with the three former metals. The morphology of the zinc layers on Cu has been characterised by scanning electron microscopy and focussed ion beam. X-ray diffraction confirmed the presence of crystalline zinc and a Cu_4Zn phase. Spectroelectrochemistry by means of polarization modulation reflection-absorption spectroscopy (PM-IRRAS) on a glassy carbon electrode in the ZnCl_2 containing deep eutectic solvent showed characteristic potential dependent changes. The variation of band intensities at different applied potentials correlate with the voltammetry and suggest the formation of a compact blocking layer on the electrode surface, which inhibits the electrodeposition of zinc at sufficiently negative

  19. Proof mass effects on spiral electrode d33 mode piezoelectric diaphragm-based energy harvester

    KAUST Repository

    Shen, Zhiyuan; Liu, Shuwei; Miao, Jianmin; Woh, Lye Sun; Wang, Zhihong

    2013-01-01

    This paper presents the characterization of an energy harvester using a piezoelectric diaphragm as the vibration energy conversion microstructure. The diaphragm containing the spiral electrode operates in the d33 mode. The energy harvesting performance of the diaphragm was characterized. The optimal resistance load and the working frequency were characterized. The resonance tuning and the energy harvesting enhancement due to a proof mass were verified. © 2013 IEEE.

  20. Sensitivities Affecting Heat and Urban Heat Island Effect on Local Scale Projected to Neighborhood Scale in Baltimore, Maryland

    Science.gov (United States)

    Sze, C.; Zaitchik, B. F.; Scott, A.

    2015-12-01

    Urban regions are often impacted more by heat than adjacent rural areas, which is a phenomenon known as the urban heat island (UHI) effect. Urban areas are also highly heterogeneous and notoriously difficult to monitor using standard meteorological protocols—the hottest microclimates within a city often occur in locations that lack open, representative installation sites that are an adequate distance from buildings and direct heat sources. To investigate the challenges of monitoring urban heat, this study examines the sensitivity of temperature and humidity sensors currently used in a Baltimore UHI monitoring network to differences in sun exposure, material on which the data collecting instrument is attached, and land cover class of the vicinity. Sensitivity to sun exposure and attachment site can be interpreted as sources of uncertainty for urban heat monitoring, while sensitivity to land cover may reflect a true source of local temperature and humidity variability. In this study, we present results from a test deployment designed to assess the sensitivity of heat measurements to each of these three factors. We then apply these results to interpret measurements taken across the entire Baltimore UHI monitoring network. These results can then be used to improve heat measurements and more accurately represent and quantify the UHI effect on a broader scale, such as in neighborhoods or urban centers.

  1. Effect of contacts configuration and location on selective stimulation of cuff electrode.

    Science.gov (United States)

    Taghipour-Farshi, Hamed; Frounchi, Javad; Ahmadiasl, Nasser; Shahabi, Parviz; Salekzamani, Yaghoub

    2015-01-01

    Cuff electrodes have been widely used chronically in different clinical applications. Advancements have been made in selective stimulation by using multi-contact cuff electrodes. Steering anodic current is a strategy to increase selectivity by reshaping and localizing electric fields. There are two configurations for contacts to be implemented in cuff, monopolar and tripolar. A cuff electrode with tripolar configuration can restrict the activation to a more localized region within a nerve trunk compared to a cuff with monopolar configuration and improve the selectivity. Anode contacts in tripolar configuration can be made in two structures, "ring" and "dot". In this study, the stimulation capabilities of these two structures were evaluated. The recruitment properties and the selectivity of stimulation were examined by measuring the electric potential produced by stimulation currents. The results of the present study indicated that using dot configuration, the current needed to stimulate fascicles in tripolar topologies would be reduced by 10%. It was also shown that stimulation threshold was increased by moving anode contacts inward the cuff. On the other hand, stimulation threshold was decreased by moving the anode contacts outward the cuff which would decrease selectivity, too. We conclude that dot configuration is a better choice for stimulation. Also, a cuff inward placement of 10% relative to the cuff length was near optimal.

  2. Intensity coding in electric hearing: effects of electrode configurations and stimulation waveforms.

    Science.gov (United States)

    Chua, Tiffany Elise H; Bachman, Mark; Zeng, Fan-Gang

    2011-01-01

    Current cochlear implants typically stimulate the auditory nerve with biphasic pulses and monopolar electrode configurations. Tripolar stimulation can increase spatial selectivity and potentially improve place pitch related perception but requires higher current levels to elicit the same loudness as monopolar stimulation. The present study combined delayed pseudomonophonasic pulses, which produce lower thresholds, with tripolar stimulation in an attempt to solve the power-performance tradeoff problem. The present study systematically measured thresholds, dynamic range, loudness growth, and intensity discrimination using either biphasic or delayed pseudomonophonasic pulses under both monopolar and tripolar stimulation. Participants were five Clarion cochlear implant users. For each subject, data from apical, middle, and basal electrode positions were collected when possible. Compared with biphasic pulses, delayed pseudomonophonasic pulses increased the dynamic range by lowering thresholds while maintaining comparable maximum allowable levels under both electrode configurations. However, delayed pseudomonophonasic pulses did not change the shape of loudness growth function and actually increased intensity discrimination limens, especially at lower current levels. The present results indicate that delayed pseudomonophonasic pulses coupled with tripolar stimulation cannot provide significant power savings nor can it increase the functional dynamic range. Whether this combined stimulation could improve functional spectral resolution remains to be seen.

  3. Self-assembled gold nanoparticles modified ITO electrodes: The monolayer binder molecule effect

    Energy Technology Data Exchange (ETDEWEB)

    Ballarin, Barbara; Cassani, Maria Cristina; Scavetta, Erika; Tonelli, Domenica [Dipartimento di Chimica Fisica ed Inorganica, Universita di Bologna, V.le Risorgimento 4, 40136 Bologna, INSTM, UdR Bologna (Italy)

    2008-11-15

    The fabrication of gold attached organosilane-coated indium tin oxide Au{sub NPs}-MPTMS/ITO and Au{sub NPs}-APTES/ITO electrodes [MPTMS 3-(mercaptopropyl)-trimethoxysilane, APTES = 3-(aminopropyl)-triethoxysilane, ITO = indium tin oxide] was carried out making use of a well-known two-step procedure and the role played by the -SH and -NH{sub 2} functional groups in the two electrodes has been examined and compared using different techniques. Information about particle coverage and inter-particle spacing has been obtained using transmission electron microscopy (TEM), scanning electron microscopy (SEM) and atomic force microscopy (AFM) whereas, bulk surface properties have been probed with UV-vis spectroscopy, CV and electrochemical impedance spectroscopy (EIS). The catalytic activity of the two electrodes has been evaluated studying the electrooxidation of methanol in alkaline conditions. The results obtained show that the NH{sub 2} functionality in the APTES binder molecule favours the formation of isle-like Au nanoparticle aggregates that lead to both a higher electron transfer and electrocatalytic activity. (author)

  4. Effect of electrode type in the resistive switching behaviour of TiO2 thin films

    International Nuclear Information System (INIS)

    Hernández-Rodríguez, E; Zapata-Torres, M; Márquez-Herrera, A; Zaleta-Alejandre, E; Meléndez-Lira, M; Cruz, W de la

    2013-01-01

    The influence of the electrode/active layer on the electric-field-induced resistance-switching phenomena of TiO 2 -based metal-oxide-metal devices (MOM) is studied. TiO 2 active layers were fabricated by the reactive rf-sputtering technique and devices were made by sandwiching between several metal electrodes. Three different MOM devices were made, according with the junction type formed between the electrode and the TiO 2 active layer, those where Ohmic-Ohmic, Ohmic-Schottky and Schottky-Schottky. The junction type was tested by electrical I-V measurements. It was found that MOM devices made with the Ohmic-Ohmic combination did not show any resistive switching behaviour in contrast with devices made with Ohmic-Schottky and Schottky-Schottky combinations. From a detailed analysis of the I-V curves it was found that transport characteristics are Ohmic for the low-resistance state for all the contacts combinations of the MOM devices, whereas in the high-resistance state it depends on contact combinations and can be identified as Ohmic, Schottky and Poole-Frenkel type. These conduction mechanisms in the low- and high-resistance states suggest that formation and rupture of conducting filaments through the film oxide is the mechanism responsible for the resistance switching.

  5. Field-Effect-Transistor Behavior of a Multiwall Carbon Nano Fiber Directly Grown on Nickel Electrodes

    Directory of Open Access Journals (Sweden)

    L. W. Chang

    2009-01-01

    Full Text Available Multiwall carbon nanofibers (MWCNFs were directly grown across the catalyst electrodes fabricated through photolithography by a microwave plasma-enhanced chemical vapor deposition (MPECVD method. The conductivities were measured repeatedly at various ranges of the drain-source voltage VDS at low temperatures which shows clearly the nonlinear behavior in electrical conductance. The electric-charging energy increases as the length and diameter of the floated carbon nanowire increases in accord with the theoretical estimation for capacitive charging as further verified from the experimentally nonlinear I-V characterization. The oscillation of the I-V curves is tacitly assumed to be embodied in the irregular variation of conductance rewarding the tremendous applications of single-electron devices for MWCNFs. The directly lateral growth of MWCNFs across electrodes allows a high contact current in spite of the existence of tunneling barriers between the wire and electrodes. The high absorption capacity of environment gases of this device is expecting it to have a pragmatic use in gas sensing.

  6. The effect of thermal conductivity of the tool electrode in spark-assisted chemical engraving gravity-feed micro-drilling

    International Nuclear Information System (INIS)

    Mousa, M; Allagui, A; Ng, H D; Wüthrich, R

    2009-01-01

    Spark-assisted chemical engraving (SACE) is a non-traditional micro-machining technology based on electrochemical discharge phenomena. In SACE gravity-feed micro-drilling, various parameters including the thermal properties of the tool electrode play a significant role in the process. Based on a series of experiments using tool electrodes with different thermal properties, the effect in SACE gravity-feed micro-drilling is discussed. It is demonstrated that machining with higher thermal conductivity tool electrodes results in faster machining during the discharge regime and slower machining during the hydrodynamic regime of SACE gravity-feed micro-drilling

  7. Positive effects of vegetation: Urban heat island and green roofs

    International Nuclear Information System (INIS)

    Susca, T.; Gaffin, S.R.; Dell'Osso, G.R.

    2011-01-01

    This paper attempts to evaluate the positive effects of vegetation with a multi-scale approach: an urban and a building scale. Monitoring the urban heat island in four areas of New York City, we have found an average of 2 deg. C difference of temperatures between the most and the least vegetated areas, ascribable to the substitution of vegetation with man-made building materials. At micro-scale, we have assessed the effect of surface albedo on climate through the use of a climatological model. Then, using the CO 2 equivalents as indicators of the impact on climate, we have compared the surface albedo, and the construction, replacement and use phase of a black, a white and a green roof. By our analyses, we found that both the white and the green roofs are less impactive than the black one; with the thermal resistance, the biological activity of plants and the surface albedo playing a crucial role. - Highlights: → The local morphology and the scarcity of vegetation in NYC core determines its UHI. → We introduce the evaluation of the effects of the surface albedo on climate change. → We use it to compare a black roof with a white and a green one. → Surface albedo has a crucial role in the evaluation of the environmental loads of the roofs. → Vegetation has positive effects on both the urban and the building scale. - Vegetation has positive effects both on an urban scale, mitigating the urban heat island effect; and on a building scale, where albedo, thermal insulation and biological activity of plants play a crucial role.

  8. Effects of Moist Heat and Dry Heat on the Nutritional Value of Velvet ...

    African Journals Online (AJOL)

    constitute lOand 20 perc~nt of the experimental diets andfed to laying hens. The results revealed an over- ... was ci better method of heat treatment than roasting, for velvet bfans fed to the laying hens. Keywords: Heat .... 'Vegetable oil was added to make up the required amount of energy in the diets. bProvide per kg diet: Vit ...

  9. Effects of heat transfer, friction and variable specific heats of working fluid on performance of an irreversible dual cycle

    International Nuclear Information System (INIS)

    Chen Lingen; Ge Yanlin; Sun Fengrui; Wu Chih

    2006-01-01

    The thermodynamic performance of an air standard dual cycle with heat transfer loss, friction like term loss and variable specific heats of working fluid is analyzed. The relations between the power output and the compression ratio, between the thermal efficiency and the compression ratio, as well as the optimal relation between power output and the efficiency of the cycle, are derived by detailed numerical examples. Moreover, the effects of variable specific heats of the working fluid and the friction like term loss on the irreversible cycle performance are analyzed. The results show that the effects of variable specific heats of working fluid and friction like term loss on the cycle performance are obvious, and they should be considered in practical cycle analysis. The results obtained in this paper may provide guidance for the design of practical internal combustion engines

  10. Analysis of creep effective stress in austenitic heat resistant steel

    International Nuclear Information System (INIS)

    Park, In Duck; Nam, Ki Woo

    2002-01-01

    This paper describes the comparison of calculated effective stress with experimental one in austenitic heat resistant steels, STS310J1TB and STS310S with and without a small amount of Nb and N. Based on a solute atoms diffusion model, contribution from soluble nitrogen to the high-temperature strength was numerically examined for austenitic heat-resisting Fe-Cr-Ni-N(STS310J1TB) and Fe-Cr-Ni(STS310S) alloys. The solute atmosphere dragging stress of dislocation was calculated in optional dislocation velocity of STS310J1TB and STS310S at 650 degree C, 675 degree C and 700 degree C. As a result of the numerical calculation, the solute atmosphere dragging stress of STS310J1TB was about 50 times larger than that of STS310S. When the temperature became high, the maximum value of solute atmosphere dragging stress was small and the velocity of moving dislocation was fast. From the relationship between the dislocation rate and the solute atmosphere dragging stress, the relation of both was proportional and the inclination is about 1 in the level with low velocity of moving dislocation. From above results, the mechanism of dislocation movement in STS310J1TB was the solute atmosphere dragging stress. The solute atmosphere dragging stress, which was calculated from the numerical calculation was close to the effect stress in stress relaxation tests

  11. EFFECT OF VIBRATION AND HEAT COMBINATION ON PRIMARY DYSMENORRHEA

    Directory of Open Access Journals (Sweden)

    M. Hoseini

    2015-03-01

    Full Text Available Background: Primary dysmenorrhoea is a common, idiopathic, chronic pelvic pain syndrome, with unknown aetiology which ‎about 50% of women with regular menstrual period suffer. This study was designed to determine the effect of vibration and heat on primary dysmenorrhea. Materials and Methods: In this clinical trial, 75 female students aged 18-22 years old were evaluated for two menstrual cycles. At the first cycle the participants received the routine pain-relief method (synthetic or herbal medicine and traditional remedies. At the second cycle for each participant combined vibration-heat device was applied for ten minutes during ‎menstrual pain. The average of perceived leg pain, lumbar pain and abdominal pain scores at two cycles were determined. The data were analyzed based on Wilcoxon and T tests by using SPSS (v 16.0 for Windows. Results: The average of all perceived pain scores at two cycles were significantly different before pain relief and after both routine methods and using the device (p<0.001. Those were more significantly reduced after using the device in comparison of using routine methods (p<0.001. Conclusion: Since “vibration-heat” is an effective pain relief method, it can be used as a complementary alternative medicine in primary dysmenorrhea reduction.

  12. Effects of radiation and thermal diffusivity on heat transfer over a stretching surface with variable heat flux

    International Nuclear Information System (INIS)

    Seddeek, M.A.; Abdelmeguid, M.S.

    2006-01-01

    The effect of radiation and thermal diffusivity on heat transfer over a stretching surface with variable heat flux has been studied. The thermal diffusivity is assumed to vary as a linear function of temperature. The governing partial differential equations have been transformed to ordinary differential equations. The exact analytical solution for the velocity and the numerical solution for the temperature field are given. Numerical solutions are obtained for different values of variable thermal diffusivity, radiation, temperature parameter and Prandtl number

  13. Effect of rotational speed modulation on heat transport in a fluid layer with temperature dependent viscosity and internal heat source

    Directory of Open Access Journals (Sweden)

    B.S. Bhadauria

    2014-12-01

    Full Text Available In this paper, a theoretical investigation has been carried out to study the combined effect of rotation speed modulation and internal heating on thermal instability in a temperature dependent viscous horizontal fluid layer. Rayleigh–Bénard momentum equation with Coriolis term has been considered to describe the convective flow. The system is rotating about it is own axis with non-uniform rotational speed. In particular, a time-periodic and sinusoidally varying rotational speed has been considered. A weak nonlinear stability analysis is performed to find the effect of modulation on heat transport. Nusselt number is obtained in terms of amplitude of convection and internal Rayleigh number, and depicted graphically for showing the effects of various parameters of the system. The effect of modulated rotation speed is found to have a stabilizing effect for different values of modulation frequency. Further, internal heating and thermo-rheological parameters are found to destabilize the system.

  14. The effect of linker of electrodes prepared from sol–gel ionic liquid precursor and carbon nanoparticles on dioxygen electroreduction bioelectrocatalysis

    International Nuclear Information System (INIS)

    Szot, Katarzyna; Lynch, Robert P.; Lesniewski, Adam; Majewska, Ewa; Sirieix-Plenet, Juliette; Gaillon, Laurent; Opallo, Marcin

    2011-01-01

    The effect of linker of three-dimensional, hydrophilic-carbon-nanoparticle film-electrodes prepared by layer-by-layer method on redox probe accumulation and bioelectrocatalytic dioxygen reduction was studied and compared for two different electrode scaffolds. The linker in both of these scaffolds was based on the same ionic liquid sol–gel precursor, 1-methyl-3-(3-trimethoxysilylpropyl) imidazolium bis(trifluoromethyl-sulfonyl)imide. The first electrode type was prepared by alternative immersion of tin doped indium oxide substrate in an aqueous suspension of carbon nanoparticles modified with phenyl sulphonic groups and a sol composed of ionic liquid sol–gel precursor and tetramethoxysilane. For the second electrode type sol was replaced by a methanolic suspension of silicate submicroparticles with appended imidazolium functional groups. In both films 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonate) anions accumulate irreversibly. In the case of the first electrode electrostatic attraction plays the more important role in comparison to the case of the second where stable adsorption of the redox probe takes place. After adsorption of bilirubin oxidase, electrodes obtained from sol and carbon nanoparticles exhibit modest bioelectrocatalytic activity towards dioxygen reduction at pH 4.8, however those obtained from oppositely charged particles are much more efficient. The magnitude of the associated catalytic current in both cases depends on the number of immersion and withdrawal steps. Interestingly, mediatorless catalysis at electrodes obtained from oppositely charged particles is more efficient than mediated catalysis.

  15. Linking potential heat source and sink to urban heat island: Heterogeneous effects of landscape pattern on land surface temperature.

    Science.gov (United States)

    Li, Weifeng; Cao, Qiwen; Lang, Kun; Wu, Jiansheng

    2017-05-15

    Rapid urbanization has significantly contributed to the development of urban heat island (UHI). Regulating landscape composition and configuration would help mitigate the UHI in megacities. Taking Shenzhen, China, as a case study area, we defined heat source and heat sink and identified strong and weak sources as well as strong and weak sinks according to the natural and socioeconomic factors influencing land surface temperature (LST). Thus, the potential thermal contributions of heat source and heat sink patches were differentiated. Then, the heterogeneous effects of landscape pattern on LST were examined by using semiparametric geographically weighted regression (SGWR) models. The results showed that landscape composition has more significant effects on thermal environment than configuration. For a strong source, the percentage of patches has a positive impact on LST. Additionally, when mosaicked with some heat sink, even a small improvement in the degree of dispersion of a strong source helps to alleviate UHI. For a weak source, the percentage and density of patches have positive impacts on LST. For a strong sink, the percentage, density, and degree of aggregation of patches have negative impacts on LST. The effects of edge density and patch shape complexity vary spatially with the fragmentation of a strong sink. Similarly, the impacts of a weak sink are mainly exerted via the characteristics of percent, density, and shape complexity of patches. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Fundamental Study of a Combined Hyperthermia System with RF Capacitive Heating and Interstitial Heating

    OpenAIRE

    Saitoh, Yoshiaki; Hori, Junichi; 斉藤, 義明; 堀, 潤一

    2001-01-01

    Interstitial RF heating with an inserted electrode allows the heating position selection in a subject, but the narrow heating region is problematic. This study elucidates development of new interstitial RF heating methods, combining with external RF heating using paired electrodes, heating the subject broadly in advance in order to selectively extend the heating region. Two kinds of heating system were developed by controlling a differential mode and a common mode of RF currents. Heating expe...

  17. Effects of Propylene Carbonate Content in CsPF 6 -Containing Electrolytes on the Enhanced Performances of Graphite Electrode for Lithium-Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jianming; Yan, Pengfei; Cao, Ruiguo; Xiang, Hongfa [School of; Engelhard, Mark H.; Polzin, Bryant J. [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States; Wang, Chongmin; Zhang, Ji-Guang; Xu, Wu

    2016-02-15

    The effects Of propylene carbonate (PC) content in CsPF6-containing electrolytes on the performances of graphite electrode in lithium half cells and in graphite parallel to LiNi0.80Co0.15Al0.05O2 (NCA) full cells are investigated. It is found that the performance of graphite electrode is significantly-affected by PC content in the CsPF6-containing electrolytes. An optimal PC content of 20% by weight in the solvent mixtures is identified. The enhanced electrochemical performance of graphite electrode can be attributed to the synergistic effects of the PC solvent and the Cs+ additive. The synergistic effects of Cs+ additive and appropriate amount of PC enable the formation of a robust, ultrathin, and compact solid electrolyte interphase (SEI) layer on the surface of graphite electrode, which is only permeable for desolvated Li+ ions and allows fast Li+ ion transport through it. Therefore, this SEI layer effectively suppresses the PC cointercalation and largely alleviates the Li dendrite formation on graphite electrode during lithiation even at relatively high current densities. The presence of low-melting-point PC solvent improves the sustainable operation of graphite parallel to NCA full cells under a wide temperature range. The fundamental findings also shed light On the importance of manipulating/maintaining the electrode/electrolyte interphasial stability in various energy-storage devices.

  18. Hovering in the heat: effects of environmental temperature on heat regulation in foraging hummingbirds.

    Science.gov (United States)

    Powers, Donald R; Langland, Kathleen M; Wethington, Susan M; Powers, Sean D; Graham, Catherine H; Tobalske, Bret W

    2017-12-01

    At high temperature (greater than 40°C) endotherms experience reduced passive heat dissipation (radiation, conduction and convection) and increased reliance on evaporative heat loss. High temperatures challenge flying birds due to heat produced by wing muscles. Hummingbirds depend on flight for foraging, yet inhabit hot regions. We used infrared thermography to explore how lower passive heat dissipation during flight impacts body-heat management in broad-billed ( Cynanthus latirostris , 3.0 g), black-chinned ( Archilochus alexandri , 3.0 g), Rivoli's ( Eugenes fulgens , 7.5 g) and blue-throated ( Lampornis clemenciae , 8.0 g) hummingbirds in southeastern Arizona and calliope hummingbirds ( Selasphorus calliope , 2.6 g) in Montana. Thermal gradients driving passive heat dissipation through eye, shoulder and feet dissipation areas are eliminated between 36 and 40°C. Thermal gradients persisted at higher temperatures in smaller species, possibly allowing them to inhabit warmer sites. All species experienced extended daytime periods lacking thermal gradients. Broad-billed hummingbirds lacking thermal gradients regulated the mean total-body surface temperature at approximately 38°C, suggesting behavioural thermoregulation. Blue-throated hummingbirds were inactive when lacking passive heat dissipation and hence might have the lowest temperature tolerance of the four species. Use of thermal refugia permitted hummingbirds to tolerate higher temperatures, but climate change could eliminate refugia, forcing distributional shifts in hummingbird populations.

  19. Effect of variable heat input on the heat transfer characteristics in an Organic Rankine Cycle system

    Directory of Open Access Journals (Sweden)

    Aboaltabooq Mahdi Hatf Kadhum

    2016-01-01

    Full Text Available This paper analyzes the heat transfer characteristics of an ORC evaporator applied on a diesel engine using measured data from experimental work such as flue gas mass flow rate and flue gas temperature. A mathematical model was developed with regard to the preheater, boiler and the superheater zones of a counter flow evaporator. Each of these zones has been subdivided into a number of cells. The hot source of the ORC cycle was modeled. The study involves the variable heat input's dependence on the ORC system's heat transfer characteristics, with especial emphasis on the evaporator. The results show that the refrigerant's heat transfer coefficient has a higher value for a 100% load from the diesel engine, and decreases with the load decrease. Also, on the exhaust gas side, the heat transfer coefficient decreases with the decrease of the load. The refrigerant's heat transfer coefficient increased normally with the evaporator's tube length in the preheater zone, and then increases rapidly in the boiler zone, followed by a decrease in the superheater zone. The exhaust gases’ heat transfer coefficient increased with the evaporator’ tube length in all zones. The results were compared with result by other authors and were found to be in agreement.

  20. Effect of Twisted-Tape Turbulators and Nanofluid on Heat Transfer in a Double Pipe Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Heydar Maddah

    2014-01-01

    Full Text Available Heat transfer and overall heat transfer in a double pipe heat exchanger fitted with twisted-tape elements and titanium dioxide nanofluid were studied experimentally. The inner and outer diameters of the inner tube were 8 and 16 mm, respectively, and cold and hot water were used as working fluids in shell side and tube side. The twisted tapes were made from aluminum sheet with tape thickness (d of 1 mm, width (W of 5 mm, and length of 120 cm. Titanium dioxide nanoparticles with a diameter of 30 nm and a volume concentration of 0.01% (v/v were prepared. The effects of temperature, mass flow rate, and concentration of nanoparticles on the overall heat transfer coefficient, heat transfer changes in the turbulent flow regime Re≥2300, and counter current flow were investigated. When using twisted tape and nanofluid, heat transfer coefficient was about 10 to 25 percent higher than when they were not used. It was also observed that the heat transfer coefficient increases with operating temperature and mass flow rate. The experimental results also showed that 0.01% TiO2/water nanofluid with twisted tape has slightly higher friction factor and pressure drop when compared to 0.01% TiO2/water nanofluid without twisted tape. The empirical correlations proposed for friction factor are in good agreement with the experimental data.

  1. Brain mediators of the effects of noxious heat on pain.

    Science.gov (United States)

    Atlas, Lauren Y; Lindquist, Martin A; Bolger, Niall; Wager, Tor D

    2014-08-01

    Recent human neuroimaging studies have investigated the neural correlates of either noxious stimulus intensity or reported pain. Although useful, analyzing brain relationships with stimulus intensity and behavior separately does not address how sensation and pain are linked in the central nervous system. In this study, we used multi-level mediation analysis to identify brain mediators of pain--regions in which trial-by-trial responses to heat explained variability in the relationship between noxious stimulus intensity (across 4 levels) and pain. This approach has the potential to identify multiple circuits with complementary roles in pain genesis. Brain mediators of noxious heat effects on pain included targets of ascending nociceptive pathways (anterior cingulate, insula, SII, and medial thalamus) and also prefrontal and subcortical regions not associated with nociceptive pathways per se. Cluster analysis revealed that mediators were grouped into several distinct functional networks, including the following: somatosensory, paralimbic, and striatal-cerebellar networks that increased with stimulus intensity; and 2 networks co-localized with "default mode" regions in which stimulus intensity-related decreases mediated increased pain. We also identified "thermosensory" regions that responded to increasing noxious heat but did not predict pain reports. Finally, several regions did not respond to noxious input, but their activity predicted pain; these included ventromedial prefrontal cortex, dorsolateral prefrontal cortex, cerebellar regions, and supplementary motor cortices. These regions likely underlie both nociceptive and non-nociceptive processes that contribute to pain, such as attention and decision-making processes. Overall, these results elucidate how multiple distinct brain systems jointly contribute to the central generation of pain. Copyright © 2014 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  2. Heat transfers and related effects in supercritical fluids

    CERN Document Server

    Zappoli, Bernard; Garrabos, Yves

    2015-01-01

    This book investigates the unique hydrodynamics and heat transfer problems that are encountered in the vicinity of the critical point of fluids. Emphasis is given on weightlessness conditions, gravity effects and thermovibrational phenomena. Near their critical point, fluids indeed obey universal behavior and become very compressible and expandable. Their comportment, when gravity effects are suppressed, becomes quite unusual. The problems that are treated in this book are of interest to students and researchers interested in the original behavior of near-critical fluids as well as to engineers that have to manage supercritical fluids. A special chapter is dedicated to the present knowledge of critical point phenomena. Specific data for many fluids are provided, ranging from cryogenics (hydrogen) to high temperature (water). Basic information in statistical mechanics, mathematics and measurement techniques is also included. The basic concepts of fluid mechanics are given for the non-specialists to be able to ...

  3. Magnetohydrodynamic electrode

    International Nuclear Information System (INIS)

    1980-01-01

    The object of the invention is the provision of a material capable of withstanding a high-temperature, corrosive and erosive environment for use as a ceramic-metal composite electrode current collector in the channel of a magnetohydrodynamic generator. (U.K.)

  4. Comparison of the effects of millimeter wave irradiation, general bath heating, and localized heating on neuronal activity in the leech ganglion

    Science.gov (United States)

    Romanenko, Sergii; Siegel, Peter H.; Wagenaar, Daniel A.; Pikov, Victor

    2013-02-01

    The use of electrically-induced neuromodulation has grown in importance in the treatment of multiple neurological disorders such as Parkinson's disease, dystonia, epilepsy, chronic pain, cluster headaches and others. While electrical current can be applied locally, it requires placing stimulation electrodes in direct contact with the neural tissue. Our goal is to develop a method for localized application of electromagnetic energy to the brain without direct tissue contact. Toward this goal, we are experimenting with the wireless transmission of millimeter wave (MMW) energy in the 10-100 GHz frequency range, where penetration and focusing can be traded off to provide non-contact irradiation of the cerebral cortex. Initial experiments have been conducted on freshly-isolated leech ganglia to evaluate the real-time changes in the activity of individual neurons upon exposure to the MMW radiation. The initial results indicate that low-intensity MMWs can partially suppress the neuronal activity. This is in contrast to general bath heating, which had an excitatory effect on the neuronal activity. Further studies are underway to determine the changes in the state of the membrane channels that might be responsible for the observed neuromodulatory effects.

  5. The Effect of Transcranial Direct Current Stimulation (tDCS) Electrode Size and Current Intensity on Motor Cortical Excitability: Evidence From Single and Repeated Sessions.

    Science.gov (United States)

    Ho, Kerrie-Anne; Taylor, Janet L; Chew, Taariq; Gálvez, Verònica; Alonzo, Angelo; Bai, Siwei; Dokos, Socrates; Loo, Colleen K

    2016-01-01

    Current density is considered an important factor in determining the outcomes of tDCS, and is determined by the current intensity and electrode size. Previous studies examining the effect of these parameters on motor cortical excitability with small sample sizes reported mixed results. This study examined the effect of current intensity (1 mA, 2 mA) and electrode size (16 cm(2), 35 cm(2)) on motor cortical excitability over single and repeated tDCS sessions. Data from seven studies in 89 healthy participants were pooled for analysis. Single-session data were analyzed using mixed effects models and repeated-session data were analyzed using mixed design analyses of variance. Computational modeling was used to examine the electric field generated. The magnitude of increases in excitability after anodal tDCS was modest. For single-session tDCS, the 35 cm(2) electrodes produced greater increases in cortical excitability compared to the 16 cm(2) electrodes. There were no differences in the magnitude of cortical excitation produced by 1 mA and 2 mA tDCS. The repeated-sessions data also showed that there were greater increases in excitability with the 35 cm(2) electrodes. Further, repeated sessions of tDCS with the 35 cm(2) electrodes resulted in a cumulative increase in cortical excitability. Computational modeling predicted higher electric field at the motor hotspot for the 35 cm(2) electrodes. 2 mA tDCS does not necessarily produce larger effects than 1 mA tDCS in healthy participants. Careful consideration should be given to the exact positioning, size and orientation of tDCS electrodes relative to cortical regions. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. The Silver Oxide-Zinc Alkaline Primary Cell. Part 2. Effects of Various Types of Negative Electrodes on Cell Characteristics

    National Research Council Canada - National Science Library

    Shepherd, C. M

    1951-01-01

    ... (generally a potassium hydroxide solution). During discharge, the silver peroxide in the positive electrode is reduced to metallic silver and the metallic zinc in the negative electrode is oxidized either to zinc oxide or to a complex zincate ion...

  7. Thermodynamic analysis of the effect of channel geometry on heat transfer in double-layered microchannel heat sinks

    International Nuclear Information System (INIS)

    Zhai, Yuling; Li, Zhouhang; Wang, Hua; Xu, Jianxin

    2017-01-01

    Highlights: • A novel geometry with rectangular and complex channels in each layer is presented. • It shows lower pressure drop and more uniform temperature distribution. • The essence of enhanced heat transfer is analyzed from thermodynamics. - Abstract: Novel double-layered microchannel heat sinks with different channel geometries in each layer (Structure 2 for short) are designed to reduce pressure drop and maintain good heat transfer performance, which is compared with structure 1 (the same of complex channel geometry in each layer). The effect of parallel flow, counter flow and different channel geometries on heat transfer is studied numerically. Moreover, the essence of heat transfer enhancement is analyzed by thermodynamics. On one hand, the synergy relationship between flow field and temperature field is analyzed by field synergy principle. On the other hand, the irreversibility of heat transfer is studied by transport efficiency of thermal energy. The results show that the temperature distribution of counter flow is more uniform than that of parallel flow. Furthermore, heat dissipation and pressure drop of structure 2 are both better and lower than that of structure 1. Form the viewpoint of temperature distribution, structure C2 (i.e., counter flow with rectangular channels in upper layer and complex channels in bottom layer) presents the most uniform bottom temperature for microelectronic cooling. However, comprehensive heat transfer performance of structure P2 (i.e., parallel flow with rectangular channels in upper layer and complex channels in bottom layer) shows the best from the viewpoint of thermodynamics. The reasons can be ascribed to the channel geometry of structure P2 can obviously improve the synergy relationship between temperature and velocity fields, reduce fluid temperature gradient and heat transfer irreversibility.

  8. Study on effect of tool electrodes on surface finish during electrical discharge machining of Nitinol

    Science.gov (United States)

    Sahu, Anshuman Kumar; Chatterjee, Suman; Nayak, Praveen Kumar; Sankar Mahapatra, Siba

    2018-03-01

    Electrical discharge machining (EDM) is a non-traditional machining process which is widely used in machining of difficult-to-machine materials. EDM process can produce complex and intrinsic shaped component made of difficult-to-machine materials, largely applied in aerospace, biomedical, die and mold making industries. To meet the required applications, the EDMed components need to possess high accuracy and excellent surface finish. In this work, EDM process is performed using Nitinol as work piece material and AlSiMg prepared by selective laser sintering (SLS) as tool electrode along with conventional copper and graphite electrodes. The SLS is a rapid prototyping (RP) method to produce complex metallic parts by additive manufacturing (AM) process. Experiments have been carried out varying different process parameters like open circuit voltage (V), discharge current (Ip), duty cycle (τ), pulse-on-time (Ton) and tool material. The surface roughness parameter like average roughness (Ra), maximum height of the profile (Rt) and average height of the profile (Rz) are measured using surface roughness measuring instrument (Talysurf). To reduce the number of experiments, design of experiment (DOE) approach like Taguchi’s L27 orthogonal array has been chosen. The surface properties of the EDM specimen are optimized by desirability function approach and the best parametric setting is reported for the EDM process. Type of tool happens to be the most significant parameter followed by interaction of tool type and duty cycle, duty cycle, discharge current and voltage. Better surface finish of EDMed specimen can be obtained with low value of voltage (V), discharge current (Ip), duty cycle (τ) and pulse on time (Ton) along with the use of AlSiMg RP electrode.

  9. Improving the effectiveness of heat use in ferrous metallurgy

    Energy Technology Data Exchange (ETDEWEB)

    Yegorichev, A P; Lisiyenko, V G; Rozin, S Ye; Shchelokov, Ya M

    1980-01-01

    Ferrous metallurgy of the USSR consumes about 10% of the total consumption of fuel in the country. The specific consumption of fuel in 100-150-T open-hearth furnaces in the scrap-process flucuate (in kilograms of conventional fuel/T of metal) from 199-206 to 244-249, in 450-T open-hearth furnaces with scrap-ore process from 108 to 135, in method furnaces with step-like beams from 70 to 123, in heating furnaces of low-grade machines ''250'' through 55.4 to 79, and on heating pits of bloomings from 32.5 to 55.3. In openhearth production, the percentage of outlays for fuel is 2.5-4.5%, in rolling 0.6-2% of the net cost of conversion. The overconsumption of fuel up to 5% will increase the net cost of conversion by 0.030.23%. In order to increase the effectiveness of conservation of fuel in ferrous metallurgy, a new method has been proposed for evaluating the energy intensity of the final product of ferrous metallurgy which makes it possible to determine comprehensive energy outlays for the manufactured product. A new system has been developed for stimulating the enterprises of ferrous metallurgy in the struggle for conservation and reduction in the specific consumption norms of fuel. It is based on the establishment of average-sector and progressive standards for single-type units of equal output.

  10. Atmospheric effects of heat release at large power plants

    International Nuclear Information System (INIS)

    Kikuchi, Yukio

    1979-01-01

    In power plants, the thermal efficiency of generating electricity is generally 1/3, the rest 2/3 being carried away by cooling water. To release the heat, there are three alternative methods; i.e. cooling water released into sea, cooling water released into a cooling pond, and cooling of such water with a cooling tower. In the third method, cooling towers are stacks of 10m -- 80m bore, and warm cooling water flowing on the side wall is cooled with atmospheric air. The resultant heated air is discharged as plume from their top. Upon condensation, it becomes visible and then leads to the formation of clouds. In this manner, the weather around the sites of power plants is affected, such as reduction of insolation reaching ground and increase in precipitation. The following matters are described: cooling towers; phenomena and prediction methods of visible plume, cloud formation, increase of precipitation and deposition of drifting waterdrops; and effects of the group of power plants. (J.P.N.)

  11. Effect of reactor heat transfer limitations on CO preferential oxidation

    Science.gov (United States)

    Ouyang, X.; Besser, R. S.

    Our recent studies of CO preferential oxidation (PrOx) identified systematic differences between the characteristic curves of CO conversion for a microchannel reactor with thin-film wall catalyst and conventional mini packed-bed lab reactors (m-PBR's). Strong evidence has suggested that the reverse water-gas-shift (r-WGS) side reaction activated by temperature gradients in m-PBR's is the source of these differences. In the present work, a quasi-3D tubular non-isothermal reactor model based on the finite difference method was constructed to quantitatively study the effect of heat transport resistance on PrOx reaction behavior. First, the kinetic expressions for the three principal reactions involved were formed based on the combination of experimental data and literature reports and their parameters were evaluated with a non-linear regression method. Based on the resulting kinetic model and an energy balance derived for PrOx, the finite difference method was then adopted for the quasi-3D model. This model was then used to simulate both the microreactor and m-PBR's and to gain insights into their different conversion behavior. Simulation showed that the temperature gradients in m-PBR's favor the reverse water-gas-shift (r-WGS) reaction, thus causing a much narrower range of permissible operating temperature compared to the microreactor. Accordingly, the extremely efficient heat removal of the microchannel/thin-film catalyst system eliminates temperature gradients and efficiently prevents the onset of the r-WGS reaction.

  12. EFFECTS OF TEMPERATURE AND CONTAMINATION ON MPCMS ELECTRODES IN 241-AY-101 AND 241-AN-107 TANK WASTE SIMULANTS

    Energy Technology Data Exchange (ETDEWEB)

    CATO DM; DAHL MM; PHILO GL; EDGEMON GL; BELL DR.JLS; MOORE CG

    2010-03-26

    This report documents the results of tests designed to characterize the relationship between temperature and the measured potential of electrodes installed on multi-probe corrosion monitoring systems in waste tanks. This report also documents the results of tests designed to demonstrate the impact of liquid in-leakage into electrode bodies as well as the contamination of primary reference electrodes by diffusion through the electrode tip.

  13. EFFECTS OF TEMPERATURE AND CONTAMINATION ON MPCMS ELECTRODES IN 241-AY-101 AND 241-AN-107 TANK WASTE SIMULANTS

    International Nuclear Information System (INIS)

    Cato, D.M.; Dahl, M.M.; Philo, G.L.; Edgemon, G.L.; Bell, J.L.S.; Moore, C.G.

    2010-01-01

    This report documents the results of tests designed to characterize the relationship between temperature and the measured potential of electrodes installed on multi-probe corrosion monitoring systems in waste tanks. This report also documents the results of tests designed to demonstrate the impact of liquid in-leakage into electrode bodies as well as the contamination of primary reference electrodes by diffusion through the electrode tip.

  14. Effect of platinum-nanodendrite modification on the glucose-sensing properties of a zinc-oxide-nanorod electrode

    Energy Technology Data Exchange (ETDEWEB)

    Abdul Razak, Khairunisak, E-mail: khairunisak@usm.my [School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia); NanoBiotechnology Research & Innovation (NanoBRI), INFORMM, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Neoh, Soo Huan; Ridhuan, N.S.; Mohamad Nor, Noorhashimah [School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia)

    2016-09-01

    Highlights: • Effect of PtNDs on ZnONRs/ITO glucose sensor was studied. • Well-defined PtNDs synthesis using 20 mM K{sub 2}PtCl{sub 4} produced good dispersion between nanodendrites with uniform particle size. • Nafion coating significantly improved the catalytic oxidation of glucose sensor. • Nafion/GO{sub x}/PtNDs/ZnONRs/ITO demonstrated better properties compared with Nafion/GO{sub x}/PtNDs/ITO and Nafion/GO{sub x}/ZnONRs/ITO electrodes. - Abstract: The properties of ZnO nanorods (ZnONRs) decorated with platinum nanodendrites (PtNDs) were studied. Various sizes of PtNDs were synthesized and spin coated onto ZnONRs, which were grown on indium–titanium–oxide (ITO) substrates through a low-temperature hydrothermal method. Scanning electron microscopy and X-ray diffraction analyses were conducted to analyze the morphology and structural properties of the electrodes. The effects of PtND size, glucose concentration, and Nafion amount on glucose-sensing properties were investigated. The glucose-sensing properties of electrodes with immobilized glucose oxidase (GO{sub x}) were measured using cyclic voltammetry. The bio-electrochemical properties of Nafion/GO{sub x}/42 nm PtNDs/ZnONRs/ITO glucose sensor was observed with linear range within 1–18 mM, with a sensitivity value of 5.85 μA/mM and a limit of detection of 1.56 mM. The results of this study indicate that PtNDs/ZnONRs/ITO has potential in glucose sensor applications.

  15. Performance Optimization of Irreversible Air Heat Pumps Considering Size Effect

    Science.gov (United States)

    Bi, Yuehong; Chen, Lingen; Ding, Zemin; Sun, Fengrui

    2018-06-01

    Considering the size of an irreversible air heat pump (AHP), heating load density (HLD) is taken as thermodynamic optimization objective by using finite-time thermodynamics. Based on an irreversible AHP with infinite reservoir thermal-capacitance rate model, the expression of HLD of AHP is put forward. The HLD optimization processes are studied analytically and numerically, which consist of two aspects: (1) to choose pressure ratio; (2) to distribute heat-exchanger inventory. Heat reservoir temperatures, heat transfer performance of heat exchangers as well as irreversibility during compression and expansion processes are important factors influencing on the performance of an irreversible AHP, which are characterized with temperature ratio, heat exchanger inventory as well as isentropic efficiencies, respectively. Those impacts of parameters on the maximum HLD are thoroughly studied. The research results show that HLD optimization can make the size of the AHP system smaller and improve the compactness of system.

  16. Improvement of patient return electrodes in electrosurgery by experimental investigations and numerical field calculations.

    Science.gov (United States)

    Golombeck, M A; Dössel, O; Raiser, J

    2003-09-01

    Numerical field calculations and experimental investigations were performed to examine the heating of the surface of human skin during the application of a new electrode design for the patient return electrode. The new electrode is characterised by an equipotential ring around the central electrode pads. A multi-layer thigh model was used, to which the patient return electrode and the active electrode were connected. The simulation geometry and the dielectric tissue parameters were set according to the frequency of the current. The temperature rise at the skin surface due to the flow of current was evaluated using a two-step numerical solving procedure. The results were compared with experimental thermographical measurements that yielded a mean value of maximum temperature increase of 3.4 degrees C and a maximum of 4.5 degrees C in one test case. The calculated heating patterns agreed closely with the experimental results. However, the calculated mean value in ten different numerical models of the maximum temperature increase of 12.5 K (using a thermodynamic solver) exceeded the experimental value owing to neglect of heat transport by blood flow and also because of the injection of a higher test current, as in the clinical tests. The implementation of a simple worst-case formula that could significantly simplify the numerical process led to a substantial overestimation of the mean value of the maximum skin temperature of 22.4 K and showed only restricted applicability. The application of numerical methods confirmed the experimental assertions and led to a general understanding of the observed heating effects and hotspots. Furthermore, it was possible to demonstrate the beneficial effects of the new electrode design with an equipotential ring. These include a balanced heating pattern and the absence of hotspots.

  17. Magnetoresistance effect of heat generation in a single-molecular spin-valve

    International Nuclear Information System (INIS)

    Jiang, Feng; Yan, Yonghong; Wang, Shikuan; Yan, Yijing

    2016-01-01

    Based on non-equilibrium Green's functions' theory and small polaron transformation's technology, we study the heat generation by current through a single-molecular spin-valve. Numerical results indicate that the variation of spin polarization degree can change heat generation effectively, the spin-valve effect happens not only in electrical current but also in heat generation when Coulomb repulsion in quantum dot is smaller than phonon frequency and interestingly, when Coulomb repulsion is larger than phonon frequency, the inverse spin-valve effect appears by sweeping gate voltage and is enlarged with bias increasing. The inverse spin-valve effect will induce the unique heat magnetoresistance effect, which can be modulated from heat-resistance to heat-gain by gate voltage easily. - Highlights: • Spin-valve effect of heat generation happens when Coulomb repulsion in quantum dot is less than phonon frequency. • When Coulomb repulsion is larger than phonon frequency, inverse spin-valve effect appears and is enlarged with bias increasing. • The variation of spin polarization degree can change heat generation effectively. • The heat magnetoresistance can be modulated from heat-resistance to heat-gain by gate voltage easily.

  18. Ion-selective electrode reviews

    CERN Document Server

    Thomas, J D R

    1982-01-01

    Ion-Selective Electrode Reviews, Volume 3, provides a review of articles on ion-selective electrodes (ISEs). The volume begins with an article on methods based on titration procedures for surfactant analysis, which have been developed for discrete batch operation and for continuous AutoAnalyser use. Separate chapters deal with detection limits of ion-selective electrodes; the possibility of using inorganic ion-exchange materials as ion-sensors; and the effect of solvent on potentials of cells with ion-selective electrodes. Also included is a chapter on advances in calibration procedures, the d

  19. Electrode Processes in Porous Electrodes.

    Science.gov (United States)

    1985-11-26

    F104470 2.0 MASS SPECTROMETRY One part of activity for this year is an investigation of the behavior of silver electrodes through the distribution of...al. (2)). These, in some cases, involve tedious and time comsuming procedures and discrepencies of as much as 15% have been observed in the results. As

  20. Effect of high content nano-thoria addition on the properties of tungsten electrode

    International Nuclear Information System (INIS)

    Wang Fazhan; Zhuge Fei; Zhang Hui; Ding Bingjun

    2003-01-01

    By hot swaging, the nano-composite W-4.5%ThO 2 cathode was fabricated. A comparative investigation has been made on the operation characteristics for a conventional W-2%ThO 2 cathode, a conventional W-4%ThO 2 cathode and a nano-composite W-4.5%ThO 2 cathode. The results showed that the arc starting and arc voltage-current characteristic of the nano-composite W-4.5%ThO 2 electrode was the best among the three cathodes. These operating characteristics depended on the content and the size of thoria. The anti-erosion ability of the nano-composite W-4.5%ThO 2 cathode was slightly better than that of conventional W-4%ThO 2 cathode, but was obviously improved as compared to W-2%ThO 2 cathode, indicating that the content of thoria governs the resistance to arc erosion of the electrodes

  1. The study of concentration effects of target hybridization on cervical cancer detection using interdigitated electrodes (IDE)

    Science.gov (United States)

    Noriani, C.; Hashim, U.; Azizah, N.

    2016-07-01

    Human Papilloma Virus (HPV) is a virus from the Papilloma virus family that affects human skin and the moist membranes that line the body, such as the throat, mouth, feet, fingers, nails, anus and cervix [1]. There are over 100 types, of which 40 can affect the genital area. Most known HPV types cause no symptoms to humans. Some, however, can cause verrucae (warts), while a small number can increase the risk of developing several cancers, such as that of the cervix, penis, vagina, anus and oropharynx (oral part of the pharynx - throat cancer). HPV strand 16 and 18 are well known for causing the advanced of Cervical Cancer (CC). Currently, integrated electrodes (IDEs) are implemented in various sensing devices including surface acoustic wave (SAW) sensors, chemical sensors as well as current MEMS biosensors. IDEs have been optimized for a variety of sensing applications including biosensors sensors, acoustic sensors, and chemical sensors. However, optimization for cancer cell detection has yet to be reported. The output signal strength of IDEs is controlled through careful design of the active area, width, and spacing of the electrode fingers the efficiency of DNA nanochip depends mainly on the sequence of the capture probes and the way they are attached to the support [2]. This strategy presented a simple, rapid and sensitive platform for HPV detection and would become a powerful tool for pathogenic microorganisms screening in clinical diagnosis. The coupling procedure must be quick, covalent, and reproducible.

  2. Effect of surface transport properties on the performance of carbon plastic electrodes for flow battery applications

    International Nuclear Information System (INIS)

    Sun, Xihe; Souier, Tewfik; Chiesa, Matteo; Vassallo, Anthony

    2014-01-01

    Due to their high electrical conductivity and corrosion resistance, carbon nanotube (MWNT)-high density polyethylene (HDPE) composites are potential candidates to replace traditional activated carbon electrodes for the next generation of fuel-cells, super capacitors and flow batteries. Electrochemical impedance spectroscopy (EIS) is employed to separate the surface conduction from bulk conduction in 15% HDPE-MWNT and 19% carbon black (CB)-HDPE composites for zinc-bromine flow battery electrodes. While exhibiting superior bulk conductivity, the interfacial conductivity of MWNT-filled composites is lower than that of CB-filled composites. High resolution conductive atomic force microscopy (C-AFM) imaging and current-voltage (I-V) spectroscopy were employed to investigate the sub-surface electronic transport of the composite. Unlike the CB-composite, the fraction of conducting MWNTs near the surface is very low compared to their volume fraction. In addition, the non-linear I-V curves reveal the presence of a tunneling junction between the tip and the polymer-coated MWNTs. The tunneling resistance is as high as 1 GΩ, which strongly affects the electronic/electrochemical transfer at the interface of the electrolyte and the surface of the composite, which is evident in the voltammetric and EIS observations

  3. Cost–effective Polythiophene Counter Electrodes for Dye Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Tolu Merve Celik

    2016-01-01

    Full Text Available Dye sensitized solar cells (DSSCs are most promising devices among third–generation solar cells because of low cost, easy production, environmental friendliness, and relatively high conversion efficiency. Counter electrode (CE, which is an important component in DSSCs, functions as an electron transfer agent as well as the regenerator of redox couple. Hitherto, various methods and materials were used to prepare different counter electrodes.Among these materials, conducting polymers have been widely investigated and employed in various applications such as sensors, supercapacitors, energy storage devices, DSSCs and others. In this study, Polythiophene (PTh conducting polymer was successfully synthesized by electrochemical deposition method, and employed as an alternative to expensive platinum (Pt CE for DSSC. Besides, PTh conducting polymer was electrochemically deposited via cyclic voltammetry method on FTO substrates. The morphology of the PTh film was characterized by SEM and AFM. Finally, the photovoltaic performance of PTh CE based DSSC was compared with PEDOT CE based device. This new concept—along with promising electrocatalytic activity and facile electron transfer—provides a new approach to enhance the photovoltaic performances of Pt–free DSSCs.

  4. Effect of Nanoparticles on Modified Screen Printed Inhibition Superoxide Dismutase Electrodes for Aluminum

    Directory of Open Access Journals (Sweden)

    Miriam Barquero-Quirós

    2016-09-01

    Full Text Available A novel amperometric biosensor for the determination of Al(III based on the inhibition of the enzyme superoxide dismutase has been developed. The oxidation signal of epinephrine substrate was affected by the presence of Al(III ions leading to a decrease in its amperometric current. The immobilization of the enzyme was performed with glutaraldehyde on screen-printed carbon electrodes modifiedwith tetrathiofulvalene (TTF and different types ofnanoparticles. Nanoparticles of gold, platinum, rhodium and palladium were deposited on screen printed carbon electrodes by means of two electrochemical procedures. Nanoparticles were characterized trough scanning electronic microscopy, X-rays fluorescence, and atomic force microscopy. Palladium nanoparticles showed lower atomic force microscopy parameters and higher slope of aluminum calibration curves and were selected to perform sensor validation. The developed biosensor has a detection limit of 2.0 ± 0.2 μM for Al(III, with a reproducibility of 7.9% (n = 5. Recovery of standard reference material spiked to buffer solution was 103.8% with a relative standard deviation of 4.8% (n = 5. Recovery of tap water spiked with the standard reference material was 100.5 with a relative standard deviation of 3.4% (n = 3. The study of interfering ions has also been carried out.

  5. Mass transfer effects on vertical oscillating plate with heat flux

    Directory of Open Access Journals (Sweden)

    Muthucumaraswamy R.

    2007-01-01

    Full Text Available Theoretical solution of unsteady viscous incompressible flow past an infinite vertical oscillating plate with uniform heat flux and mass diffusion is presented here, taking into account of the homogeneous chemical reaction of first-order. The temperature from the plate to the fluid at an uniform rate and the mass is diffused uniformly. The dimensionless governing equations has been obtained by the Laplace transform method, when the plate is oscillating harmonically in its own plane. The effects of velocity and concentration are studied for different parameters like phase angle chemical reaction parameter, thermal Grashof number, mass Grashof number Schmidt number and time are studied. The so­lutions are valid only for small values of time t. It is observed that the velocity increases with decreasing phase angle ωt or chemical reaction parameter.

  6. Effects of preionization by electron cyclotron heating in INTOR

    International Nuclear Information System (INIS)

    England, A.C.; Eldridge, D.C.

    1984-01-01

    A model has been developed for the electron cyclotron heating (ECH) preionization and startup effects on the ISX-B tokamak. This model has satisfactory agreement with most of the observed phenomena on ISX-B. The model has been applied to INTOR under the assumption that sufficient power at a frequency commensurate with this device will be on hand. We have assumed the following parameters for INTOR: R = 5.3 m,a = 1.52 m, B/sub t/ = 6 T, and a maximum applied loop voltage of 35 V. The results suggest that moderate amounts of preionization will aid in the start up by allowing a reduction in the applied loop voltage, V/sub l/, will save some transformer flux, and will permit a more rapid current ramp. Massive preionization (greater than or equal to 1 MW) does not appear to be necessary

  7. Vanadium and heat treatments effect on elastic characteristics of niobium

    International Nuclear Information System (INIS)

    Vasil'eva, E.V.; Tret'yakov, V.I.; Prokoshkin, D.A.; Pustovalov, V.A.

    1975-01-01

    The effect of vanadium content and of heat treatment conditions on the elastic properties of niobium at temperatures of 20 to 800 deg C was studied. Nb-V alloys were produced by binary vacuum remelting. The Nb-V alloys have been then subjected to thermal treatment. The total degree of deformation amounts to about 95%. The specimens were tested with a view to determine their microhardness, specific electric resistance, elasticity limit and modulus of elasticity. The elastic limit of niobium rises when alloyed with vanadium. With the increase of vanadium content the elastic limit of the alloy becomes greater. Pre-crystallization annealing at 600 - 700 deg C considerably increases the elastic limit, which is explained by development of the thermally activated processes leading to a decrease of dislocation mobility and thereby to a strengthening of the alloy

  8. Effect of N,C-ITO on Composite N,C-Ti/N,C-ITO/ITO Electrode Used for Photoelectrochemical Degradation of Aqueous Pollutant with Simultaneous Hydrogen Production

    Directory of Open Access Journals (Sweden)

    Kee-Rong Wu

    2012-01-01

    Full Text Available This study reports the effect of N,C-ITO (indium tin oxide layer on composite N,C-TiO2/N,C-ITO/ITO (Ti/TO electrode used for efficient photoelectrocatalytic (PEC degradation of aqueous pollutant with simultaneous hydrogen production. The structural properties of the composite Ti/TO electrode that determined by X-ray diffraction and Raman scattering, show primarily the crystallized anatase TiO2 phase and distinct diffraction patterns of polycrystalline In2O3 phase. Under solar light illumination, the composite Ti/TO electrode yields simultaneously a hydrogen production rate of 12.0 μmol cm−2 h−1 and degradation rate constant of  cm−2 h−1 in organic pollutant. It implies that the overlaid N,C-TiO2 layer enhances not only the photocurrent response of the composite Ti/TO electrode at entire applied potentials, but also the flat band potential; a shift of about 0.1 V toward cathode, which is desperately beneficial in the PEC process. In light of the X-ray photoelectron spectroscopy findings, these results are attributable partly to the synergetic effect of N,C-codoping into the TiO2 and ITO lattices on their band gap narrowing and photosensitizing as well. Thus, the Ti/TO electrode can potentially serve an efficient PEC electrode for simultaneous pollutant degradation and hydrogen production.

  9. Design of distributed JT (Joule-Thomson) effect heat exchanger for superfluid 2 K cooling device

    Science.gov (United States)

    Jeong, S.; Park, C.; Kim, K.

    2018-03-01

    Superfluid at 2 K or below is readily obtained from liquid helium at 4.2 K by reducing its vapour pressure. For better cooling performance, however, the cold energy of vaporized helium at 2 K chamber can be effectively utilized in a recuperator which is specially designed in this paper for accomplishing so-called the distributed Joule-Thomson (JT) expansion effect. This paper describes the design methodology of distributed JT effect heat exchanger for 2 K JT cooling device. The newly developed heat exchanger allows continuous significant pressure drop at high-pressure part of the recuperative heat exchanger by using a capillary tube. Being different from conventional recuperative heat exchangers, the efficient JT effect HX must consider the pressure drop effect as well as the heat transfer characteristic. The heat exchanger for the distributed JT effect actively utilizes continuous pressure loss at the hot stream of the heat exchanger by using an OD of 0.64 mm and an ID of 0.4 mm capillary tube. The analysis is performed by dividing the heat exchanger into the multiple sub-units of the heat exchange part and JT valve. For more accurate estimation of the pressure drop of spirally wound capillary tube, preliminary experiments are carried out to investigate the friction factor at high Reynolds number. By using the developed pressure drop correlation and the heat transfer correlation, the specification of the heat exchanger with distributed JT effect for 2 K JT refrigerator is determined.

  10. An experimental observation of the effect of flow direction for evaporation heat transfer in plate heat exchanger

    International Nuclear Information System (INIS)

    Lin, Yueh-Hung; Li, Guang-Cheng; Yang, Chien-Yuh

    2015-01-01

    This study provides an Infrared Thermal Image observation on the evaporation heat transfer of refrigerant R-410A in plate heat exchanger with various flow arrangement and exit superheat conditions. An experimental method was derived for estimating the superheat region area of two-phase refrigerant evaporation in plate heat exchanger. The experimental results show that the superheat region area for parallel flow is much larger than that for counter flow as that estimated by Yang et al. [9]. There is an early superheated region at the central part of the plate heat exchanger for parallel flow arrangement. This effect is not significant for counter flow arrangement. The Yang et al. [9] method under estimated the superheat area approximately 40%–53% at various flow rates and degree of exit superheat. Even though the flow inside a plate heat exchanger is extremely turbulent because of the chevron flow passages, the assumption of uniform temperature distribution in the cross section normal to the bulk flow direction will cause significant uncertainties for estimating the superheat area for refrigerant evaporating in a plate heat exchanger

  11. Effect of an electrolyte salt dissolving in polysiloxane-based electrolyte on passive film formation on a graphite electrode

    Science.gov (United States)

    Nakahara, Hiroshi; Nutt, Steven

    Electrochemical impedance spectroscopy (EIS) was performed during the first charge of a graphite/lithium metal test cell to determine the effect of an electrolyte salt on passive film formation in a polysiloxane-based electrolyte. The graphite electrode was separated from the lithium metal electrode by a porous polyethylene membrane immersed in a polysiloxane-based electrolyte with the dissolved lithium bis(oxalato) borate (LiBOB) or lithium bis(trifluoromethanesulfonyl) imide (LiTFSI). In case of LiTFSI, the conductivity of system decreased at 1.2 V. In contrast, for the case of LiBOB, the conductivity decreased at 1.7 V. The magnitudes of charge transfer resistance and film resistance for LiTFSI were smaller than that for LiBOB. Passive films on highly oriented pyrolytic graphite (HOPG) after charging (lithiating) in polysiloxane-based electrolyte were inspected microscopically. Gel-like film and island-like films were observed for LiBOB [H. Nakahara, A. Masias, S.Y. Yoon, T. Koike, K. Takeya, Proceedings of the 41st Power Sources Conference, vol. 165, Philadelphia, June 14-17, 2004; H. Nakahara, S.Y. Yoon, T. Piao, S. Nutt, F. Mansfeld, J. Power Sources, in press; H. Nakahara, S.Y. Yoon, S. Nutt, J. Power Sources, in press]. However, for LiTFSI, there was sludge accumulation on the HOPG surface. Compositional analysis revealed the presence of silicon on both HOPG specimens with LiBOB and with LiTFSI. The electrolyte salt dissolved in the polysiloxane-based electrolyte changed the electrochemical and morphological nature of passive films on graphite electrode.

  12. Effect of swift heavy ion (SHI) irradiation on transparent conducting oxide electrodes for dye-sensitized solar cell applications

    Science.gov (United States)

    Singh, Hemant Kr.; Avasthi, D. K.; Aggarwal, Shruti

    2015-06-01

    Transparent conducting oxides (TCOs) are used as electrodes in dye-sensitized solar cells (DSSCs) because of their properties such as high transmittance and low resistivity. In the present work, the effects of swift heavy ion (SHI) irradiation on various types of TCOs are presented. The objective of this study is to investigate the effect of SHI on TCOs. For the present study, three different types of TCOs are considered, namely, (a) FTO (fluorine-doped tin oxide, SnO2:F) on a Nippon glass substrate, (b) ITO (indium tin oxide, In2O3:Sn) coated on polyethylene terephthalate (PET) on a Corning glass substrate, and (c) ITO on a Corning glass substrate. These films are irradiated with 120 MeV Ag+9 ions at fluences ranging from 3.0 × 1011 ions/cm2 to 3.0 × 1013 ions/cm2. The structural, morphological, optical and electrical properties are studied via X-ray diffraction (XRD), atomic force microscopy (AFM), UV-Vis absorption spectroscopy and four-probe resistivity measurements, respectively. The ITO-PET electrode is found to exhibit superior conductivity and transmittance properties in comparison with the others after irradiation and, therefore, to be the most suitable for solar cell applications.

  13. Electrocoagulation treatment of raw landfill leachate using iron-based electrodes: Effects of process parameters and optimization.

    Science.gov (United States)

    Huda, N; Raman, A A A; Bello, M M; Ramesh, S

    2017-12-15

    The main problem of landfill leachate is its diverse composition comprising many persistent organic pollutants which must be removed before being discharge into the environment. This study investigated the treatment of raw landfill leachate using electrocoagulation process. An electrocoagulation system was designed with iron as both the anode and cathode. The effects of inter-electrode distance, initial pH and electrolyte concentration on colour and COD removals were investigated. All these factors were found to have significant effects on the colour removal. On the other hand, electrolyte concentration was the most significant parameter affecting the COD removal. Numerical optimization was also conducted to obtain the optimum process performance. Under optimum conditions (initial pH: 7.73, inter-electrode distance: 1.16 cm, and electrolyte concentration (NaCl): 2.00 g/L), the process could remove up to 82.7% colour and 45.1% COD. The process can be applied as a pre-treatment for raw leachates before applying other appropriate treatment technologies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Effects of Heat Acclimation on Photosynthesis, Antioxidant Enzyme Activities, and Gene Expression in Orchardgrass under Heat Stress

    Directory of Open Access Journals (Sweden)

    Xin Xin Zhao

    2014-09-01

    Full Text Available The present study was designed to examine the effects of heat acclimation on enzymatic activity, transcription levels, the photosynthesis processes associated with thermostability in orchardgrass (Dactylis glomerata L..The stomatal conductance (Gs, net photosynthetic rate (Pn, and transpiration rates (Tr of both heat-acclimated (HA and non-acclimated (NA plants were drastically reduced during heat treatment [using a 5-day heat stress treatment (38/30 °C ‒ day/night followed by a 3-day recovery under control conditions (25/20 °C ‒ day/night, in order to consolidate the second cycle was permitted]. Water use efficiency increased more steeply in the HA (4.9 times versus the NA (1.8 times plants, and the intercellular CO2 concentration decreased gently in NA (10.9% and HA (25.3% plants after 20 d of treatments compared to 0 days’. Furthermore, heat-acclimated plants were able to maintain significant activity levels of superoxide disumutase (SOD, catalase (CAT, guaiacol peroxidase (POD, and transcription levels of genes encoding these enzymes; in addition, HA plants displayed lower malondialdehyde content and lower electrolyte leakage than NA plants. These results suggest that maintenance of activity and transcription levels of antioxidant enzymes as well as photosynthesis are associated with variable thermostability in HA and NA plants. This likely occurs through cellular membrane stabilization and improvements in water use efficiency in the photosynthetic process during heat stress. The association between antioxidant enzyme activity and gene expression, both of which may vary with genetic variation in heat tolerance, is important to further understand the molecular mechanisms that contribute to heat tolerance.

  15. Ultrasensitive multi-analyte electrochemical immunoassay based on GNR-modified heated screen-printed carbon electrodes and PS@PDA-metal labels for rapid detection of MMP-9 and IL-6.

    Science.gov (United States)

    Shi, Jian-Jun; He, Ting-Ting; Jiang, Fang; Abdel-Halim, E S; Zhu, Jun-Jie

    2014-05-15

    An ultrasensitive electrochemical immunoassay was developed for rapid detection of interleukin-6 (IL-6) and matrix metallopeptidase-9 (MMP-9); the method utilized PS@PDA-metal nanocomposites based on graphene nanoribbon (GNR)-modified heated screen-printed carbon electrode (HSPCE). Because of the good hydrophilicity and low toxicity, GNRs were used to immobilize antibodies (Ab) and amplify the electrochemical signal. PS@PDA-metal was used to label antibodies and generate a strong electrochemical signal in acetic buffer. A sandwich strategy was adopted to achieve simultaneous detection of MMP-9 and IL-6 based on HSPCE without cross-talk between adjacent electrodes in the range of 10(-5) to 10(3) ng mL(-1) with detection limits of 5 fg mL(-1) and 0.1 pg mL(-1) (S/N=3), respectively. The proposed method showed wide detection range, low detection limit, acceptable stability and good reproducibility. Satisfactory results were also obtained in the practical samples, thus showing this is a promising technique for simultaneous clinical detection of biocomponent proteins. © 2013 Elsevier B.V. All rights reserved.

  16. The effectiveness of heat pumps as part of CCGT-190/220 Tyumen CHP-1

    Directory of Open Access Journals (Sweden)

    Tretyakova Polina

    2017-01-01

    Full Text Available The article considers the possibility of increasing the energy efficiency of CCGT-190/220 Tyumen CHP-1 due to the utilization of low-grade heat given off in the condenser unit of the steam turbine. To assess the effectiveness of the proposed system, the indexes of thermal efficiency are given. As a result of a research the following conclusions are received: The heat-transfer agent heat pump, when heated uses low-grade heat TPP and increases heat output, but consumes the electricity. Using a heat pump is effective for a small temperature difference between the condenser and the evaporator. Good example is heating water before chemical treatment. This method is more efficient than using a replacement boiler and it is used in steam selection.

  17. Effect of dry-heating with pectin on gelatinization properties of sweet ...

    African Journals Online (AJOL)

    Purpose: To evaluate the effect of dry-heating with pectin at different dry heating temperatures, heating times and pH on the gelatinization properties of sweet potato starch. Methods: The gelatinization properties of sweet potato starch - pectin blend were analyzed using a rapid viscosity analyzer (RVA), differential scanning ...

  18. Effects of heat treatment on some physical properties of Douglas fir (Pseudotsuga menziesii) wood

    Science.gov (United States)

    Xianjun Li; Zhiyong Cai; Qunying Mou; Yiqiang Wu; Yuan Liu

    2011-01-01

    In this study the effect of heat treatment on some physical properties of Douglas fir (Pseudotsuga menziesii) was investigated. Wood specimens were subjected to heat treatment at 160, 180, 200 and 220°C for 1, 2, 3 and 4h. The results show that heat treatment resulted in a darkened color, decreased moisture performance and increased dimensional stability of...

  19. Effect of pre-cooling and heat treatment on antioxidant enzymes ...

    African Journals Online (AJOL)

    Effect of pre-cooling and heat treatment on antioxidant enzymes profile of mango and banana. ... In banana, pre-cooling treatment (8 ºC) and heat treatment followed by cooling reduced CAT activity in peel and pulp, whereas POX activity increased. Pre-cooling and heat treatments altered normal homeostasis of these fruits, ...

  20. Electrodes for 24 hours pH monitoring--a comparative study.

    OpenAIRE

    McLauchlan, G; Rawlings, J M; Lucas, M L; McCloy, R F; Crean, G P; McColl, K E

    1987-01-01

    Three pH electrodes in clinical use were examined--(1) antimony electrode with remote reference electrode (Synectics 0011), (2) glass electrode with remote reference electrode (Microelectrodes Inc. MI 506) and (3) combined glass electrode with integral reference electrode (Radiometer GK2801C). In vitro studies showed that both glass electrodes were similar and superior to the antimony electrode with respect to response time, drift, and sensitivity. The effect of the siting of the reference el...

  1. The application of dual-electrode through vial impedance spectroscopy for the determination of ice interface temperatures, primary drying rate and vial heat transfer coefficient in lyophilization process development.

    Science.gov (United States)

    Smith, Geoff; Jeeraruangrattana, Yowwares; Ermolina, Irina

    2018-06-22

    Through vial impedance spectroscopy (TVIS) is a product non-invasive process analytical technology which exploits the frequency dependence of the complex impedance spectrum of a composite object (i.e. the freeze-drying vial and its contents) in order to track the progression of the freeze-drying cycle. This work demonstrates the use of a dual electrode system, attached to the external surface of a type I glass tubing vial (nominal capacity 10 mL) in the prediction of (i) the ice interface temperatures at the sublimation front and at the base of the vial, and (ii) the primary drying rate. A value for the heat transfer coefficient (for a chamber pressure of 270 µbar) was then calculated from these parameters and shown to be comparable to that published by Tchessalov[1]. Copyright © 2018. Published by Elsevier B.V.

  2. The effect of gold nanoparticles modified electrode on the glucose sensing performance

    Science.gov (United States)

    Zulkifli, Zulfa Aiza; Ridhuan, Nur Syafinaz; Nor, Noorhashimah Mohamad; Zakaria, Nor Dyana; Razak, Khairunisak Abdul

    2017-07-01

    In this work, 20 nm, 30 nm, 40 nm, 50 nm and 60 nm colloidal gold nanoparticles (AuNPs) were synthesized using the seeding growth method. AuNPs produced had spherical shape with uniform size. The AuNPs also are well dispersed in colloidal form that was proven by low polydispersity index. The produced AuNPs were used to modify electrode for glucose sensor. The produced AuNPs were deposited on indium tin oxide substrate (ITO), followed by immobilization of glucose oxidase (GOx) on it. After that, Nafion was deposited on the GOx/AuNPs/ITO. Electrooxidation of glucose with AuNPs-modified electrode was examined by cyclic voltammeter (CV) in 15 mM glucose mixed with 0.01 M PBS. The optimum size of AuNPs was 30 nm with optical density 3.0. AuNPs were successfully immobilized with glucose oxidase (GOx) and proved to work well as a glucose sensor. Based on the high electrocatalytic activity of Nafion/GOx/AuNPs/ITO, the sensitivity of the glucose sensors was further examined by varying the concentration of glucose solution from 2 mM to 20 mM in 0.01 M phosphate buffer solution (PBS) solution. Good linear relationship was observed between the catalytic current and glucose concentration in the range of 2 mM to 20 mM. The sensitivity of the Nafion/GOx/AuNPs/ITO electrode calculated from the slope of linear square calibration was 0.909 µA mM-1 cm-2 that is comparable with other published work. The linear fitting to the experimental data gives R-square of 0.991 at 0.9 V and a detection limit of 2.03 mM. This detection range is sufficient to be medically useful in monitoring human blood glucose level in which the normal blood glucose level is in the range of 4.4 to 6.6 mM and diabetic blood glucose level is above 7 mM.

  3. Effect of Tube Pitch on Pool Boiling Heat Transfer of Vertical Tube Bundle

    International Nuclear Information System (INIS)

    Kang, Myeong Gie

    2016-01-01

    Summarizing the previous results it can be stated that heat transfer coefficients are highly dependent on the tube pitch and the heat flux of the relevant tube. The published results are mostly about the horizontal tubes. However, there are many heat exchangers consisting of vertical tubes like AP600. Therefore, the focus of the present study is an identification of the effects of a tube pitch as well as the heat flux of a relevant tube on the heat transfer of a tube bundle installed vertically. When the heat flux is increased many bubbles are generating due to the increase of the nucleation sites. The bubbles become coalescing with the nearby bubbles and generates big bunches of bubbles on the tube surface. This prevents the access of the liquid to the surface and deteriorates heat transfer. The bubble coalescence is competing with the mechanisms enhancing heat transfer. The pitch was varied from 28.5 mm to 95 mm and the heat flux of the nearby tube was changed from 0 to 90kW/m"2. The enhancement of the heat transfer is clearly observed when the heat flux of the nearby tube becomes larger and the heat flux of the upper tube is less than 40kW/m"2. The effect of the tube pitch on heat transfer is negligible as the value of DP/ is increased more than 4.

  4. Effects of Heat and Moisture Transfer Properties of Fabric on Heat Strain in Chemical Protective Ensembles

    Science.gov (United States)

    2017-06-01

    Space Environ Med. 2004;75(12):1065-9. 25. Xu X, Hexamer M, Werner J. Multi-loop control of liquid cooling garment systems. Ergonomics . 1999;42(2...TITLE AND SUBTITLE 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 6...storage, M is the rate of metabolic heat production, W is the rate of the mechanical work , R is the rate of radiative heat loss, C is the rate of

  5. Analysis of an effective solution to excessive heat supply in a city primary heating network using gas-fired boilers for peak-load compensation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hai-Chao; Jiao, Wen-Ling; Zou, Ping-Hua; Liu, Jing-Cheng [School of Municipal and Environmental Engineering, Harbin Institute of Technology, mail box 2645, 202 Haihe Road, Nangang District, Harbin 150090 (China)

    2010-11-15

    Through investigation of the Dengfeng heating network in the city of Daqing, China, for the 2007-2008 heating season, we found serious problems of excessive heat supply in the primary heating network. Therefore, we propose the application of gas-fired boilers in underperforming heating substations as peak-load heat sources to effectively adapt to the regulation demands of seasonal heat-load fluctuations and reduce the excessive heat supply. First, we calculated the excessive heat supply rates (EHSRs) of five substations using detailed investigative data. We then discussed the feasibility of the proposed scheme providing energy savings from both energetic and exergetic points of view. The results showed that the average EHSR of the five substations between January and March was 20.57% of the gross heat production but consequently reduced to 6.24% with the installation of the gas-fired boilers. Therefore, the combined heating scheme with coal as the basic heat-source and gas-fired boilers as peak-load heat sources is energy-efficient to some extent, although requires the use of natural gas. Meanwhile, the exergy decreased by 10.97%, which indicates that the combined heating scheme effectively reduces the primary energy consumption and pollutant emission of the heating systems. (author)

  6. Elucidating effects of cell architecture, electrode material, and solution composition on overpotentials in redox flow batteries

    Energy Technology Data Exchange (ETDEWEB)

    Pezeshki, Alan M. [Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sacci, Robert L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Delnick, Frank M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Aaron, Douglas S. [Univ. of Tennessee, Knoxville, TN (United States); Mench, Matthew M. [Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-01-16

    Here, an improved method for quantitative measurement of the charge transfer, finite diffusion, and ohmic overpotentials in redox flow batteries using electrochemical impedance spectroscopy is presented. The use of a pulse dampener in the hydraulic circuit enables the collection of impedance spectra at low frequencies with a peristaltic pump, allowing the measurement of finite diffusion resistances at operationally relevant flow rates. This method is used to resolve the rate-limiting processes for the V2+/V3+ redox couple on carbon felt and carbon paper electrodes in the vanadium redox flow battery. Carbon felt was limited by both charge transfer and ohmic resistance, while carbon paper was limited by charge transfer, finite diffusion, and ohmic resistances. The influences of vanadium concentration and flow field design also are quantified.

  7. Elucidating effects of cell architecture, electrode material, and solution composition on overpotentials in redox flow batteries

    International Nuclear Information System (INIS)

    Pezeshki, Alan M.; Sacci, Robert L.; Delnick, Frank M.; Aaron, Douglas S.; Mench, Matthew M.

    2017-01-01

    An improved method for quantitative measurement of the charge transfer, finite diffusion, and ohmic overpotentials in redox flow batteries using electrochemical impedance spectroscopy is presented. The use of a pulse dampener in the hydraulic circuit enables the collection of impedance spectra at low frequencies with a peristaltic pump, allowing the measurement of finite diffusion resistances at operationally relevant flow rates. This method is used to resolve the rate-limiting processes for the V 2+ /V 3+ redox couple on carbon felt and carbon paper electrodes in the vanadium redox flow battery. Carbon felt was limited by both charge transfer and ohmic resistance, while carbon paper was limited by charge transfer, finite diffusion, and ohmic resistances. The influences of vanadium concentration and flow field design also are quantified.

  8. Effect of wick configuration of the heat pipe performance

    International Nuclear Information System (INIS)

    Kim, Seong Won; Kang, Shin Hyung; Lee, Jin Ho

    1990-01-01

    Experimental investigation is made to study the dependence of performance characteristics of heat pipe on the types of wick shapes. Types of wick shapes adoped are open groove wick, screen wick, closed groove wick and no wick.(thermo-syphone). The dependence of heat pipe performance on the wick shape is turned out in the following order ; open groove wick, closed groove wick, screen wick and no wick. This shows that the heat transfer efficiency of heat pipe depends more upon the returning capacity of liquid from condenser to evaporator, implying that the wick which has low capillary pressure but good permeability is better than those which has higher capillary pressure. (Author)

  9. Source effects on impurity and heat transport in a tokamak

    International Nuclear Information System (INIS)

    Bennett, R.B.

    1980-12-01

    A recently developed generalization of neoclassical theory is extended here to study heat flux contributions to impurity transport, as well as the heat fluxes themselves. The theory accounts for the first four source moments, with external drags, which has been studied previously with either fewer moments or restricted to a collisional plasma. Conditions are established for which a momentum source may be used to modify the particle and heat transport. In the course of this work, the particle and heat transport is evaluated for a two species plasma with arbitrary plasma geometry, beta, and collisionality

  10. A cost-effective nanoporous ultrathin film electrode based on nanoporous gold/IrO2 composite for proton exchange membrane water electrolysis

    Science.gov (United States)

    Zeng, Yachao; Guo, Xiaoqian; Shao, Zhigang; Yu, Hongmei; Song, Wei; Wang, Zhiqiang; Zhang, Hongjie; Yi, Baolian

    2017-02-01

    A cost-effective nanoporous ultrathin film (NPUF) electrode based on nanoporous gold (NPG)/IrO2 composite has been constructed for proton exchange membrane (PEM) water electrolysis. The electrode was fabricated by integrating IrO2 nanoparticles into NPG through a facile dealloying and thermal decomposition method. The NPUF electrode is featured in its 3D interconnected nanoporosity and ultrathin thickness. The nanoporous ultrathin architecture is binder-free and beneficial for improving electrochemical active surface area, enhancing mass transport and facilitating releasing of oxygen produced during water electrolysis. Serving as anode, a single cell performance of 1.728 V (@ 2 A cm-2) has been achieved by NPUF electrode with a loading of IrO2 and Au at 86.43 and 100.0 μg cm-2 respectively, the electrolysis voltage is 58 mV lower than that of conventional electrode with an Ir loading an order of magnitude higher. The electrolysis voltage kept relatively constant up to 300 h (@250 mA cm-2) during the course of durability test, manifesting that NPUF electrode is promising for gas evolution.

  11. Effects of the use of a flat wire electrode in gas metal arc welding and fuzzy logic model for the prediction of weldment shape profile

    Energy Technology Data Exchange (ETDEWEB)

    Karuthapandi, Sripriyan; Thyla, P. R. [PSG College of Technology, Coimbatore (India); Ramu, Murugan [Amrita University, Ettimadai (India)

    2017-05-15

    This paper describes the relationships between the macrostructural characteristics of weld beads and the welding parameters in Gas metal arc welding (GMAW) using a flat wire electrode. Bead-on-plate welds were produced with a flat wire electrode and different combinations of input parameters (i.e., welding current, welding speed, and flat wire electrode orientation). The macrostructural characteristics of the weld beads, namely, deposition, bead width, total bead width, reinforcement height, penetration depth, and depth of HAZ were investigated. A mapping technique was employed to measure these characteristics in various segments of the weldment zones. Results show that the use of a flat wire electrode improves the depth-to-width (D/W) ratio by 16.5 % on average compared with the D/W ratio when a regular electrode is used in GMAW. Furthermore, a fuzzy logic model was established to predict the effects of the use of a flat electrode on the weldment shape profile with varying input parameters. The predictions of the model were compared with the experimental results.

  12. Electrochemical polymerization of an aniline-terminated self-assembled monolayer on indium tin oxide electrodes and its effect on polyaniline electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Cruz-Silva, Rodolfo [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, UAEM. Av. Universidad 1001Col. Chamilpa, CP 62210, Cuernavaca, Mor. (Mexico)], E-mail: rcruzsilva@uaem.mx; Nicho, Maria E.; Resendiz, Mary C.; Agarwal, Vivechana [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, UAEM. Av. Universidad 1001Col. Chamilpa, CP 62210, Cuernavaca, Mor. (Mexico); Castillon, Felipe F.; Farias, Mario H. [Centro de Ciencias de la Materia Condensada de la UNAM, Apdo. Postal 2681 C.P. 22800 Ensenada, B.C. (Mexico)

    2008-06-02

    Indium tin oxide (ITO) transparent electrodes were surface modified by a self-assembled monolayer of N-phenyl-{gamma}-aminopropyl-trimethoxysilane (PAPTS). Cyclic voltammetry of the PAPTS monolayer in aniline-free aqueous electrolyte showed the typical shape of a surface-confined monomer, due to the oxidation of the aniline moieties. This process resulted in a two-dimensional polyaniline film with uniform thickness of 1.3 nm, as measured by atomic force microscopy. X-ray photoelectron and UV-visible spectroscopic techniques confirm the formation of a conjugated polymer film. The influence of the surface modification of ITO electrodes on polyaniline electrochemical deposition was also studied. The initial oxidation rate of aniline increased in the PAPTS-modified ITO electrodes, although the overall film formation rate was lower than that of unmodified ITO electrodes. The morphology of the electrodeposited polyaniline films on PAPTS-modified and unmodified ITO electrodes was studied by atomic force microscopy. Films of smaller grain were grown in the PAPTS-modified ITO as compared to films grown on unmodified ITO. A blocking effect due to the propyl spacer is proposed to explain the reduced electron transfer in PAPTS-modified electrodes.

  13. Effect of Electrode Belt and Body Positions on Regional Pulmonary Ventilation- and Perfusion-Related Impedance Changes Measured by Electric Impedance Tomography.

    Directory of Open Access Journals (Sweden)

    Elin Ericsson

    Full Text Available Ventilator-induced or ventilator-associated lung injury (VILI/VALI is common and there is an increasing demand for a tool that can optimize ventilator settings. Electrical impedance tomography (EIT can detect changes in impedance caused by pulmonary ventilation and perfusion, but the effect of changes in the position of the body and in the placing of the electrode belt on the impedance signal have not to our knowledge been thoroughly evaluated. We therefore studied ventilation-related and perfusion-related changes in impedance during spontaneous breathing in 10 healthy subjects in five different body positions and with the electrode belt placed at three different thoracic positions using a 32-electrode EIT system. We found differences between regions of interest that could be attributed to changes in the position of the body, and differences in impedance amplitudes when the position of the electrode belt was changed. Ventilation-related changes in impedance could therefore be related to changes in the position of both the body and the electrode belt. Perfusion-related changes in impedance were probably related to the interference of major vessels. While these findings give us some insight into the sources of variation in impedance signals as a result of changes in the positions of both the body and the electrode belt, further studies on the origin of the perfusion-related impedance signal are needed to improve EIT further as a tool for the monitoring of pulmonary ventilation and perfusion.

  14. Effects of the distribution density of a biomass combined heat and power plant network on heat utilisation efficiency in village-town systems.

    Science.gov (United States)

    Zhang, Yifei; Kang, Jian

    2017-11-01

    The building of biomass combined heat and power (CHP) plants is an effective means of developing biomass energy because they can satisfy demands for winter heating and electricity consumption. The purpose of this study was to analyse the effect of the distribution density of a biomass CHP plant network on heat utilisation efficiency in a village-town system. The distribution density is determined based on the heat transmission threshold, and the heat utilisation efficiency is determined based on the heat demand distribution, heat output efficiency, and heat transmission loss. The objective of this study was to ascertain the optimal value for the heat transmission threshold using a multi-scheme comparison based on an analysis of these factors. To this end, a model of a biomass CHP plant network was built using geographic information system tools to simulate and generate three planning schemes with different heat transmission thresholds (6, 8, and 10 km) according to the heat demand distribution. The heat utilisation efficiencies of these planning schemes were then compared by calculating the gross power, heat output efficiency, and heat transmission loss of the biomass CHP plant for each scenario. This multi-scheme comparison yielded the following results: when the heat transmission threshold was low, the distribution density of the biomass CHP plant network was high and the biomass CHP plants tended to be relatively small. In contrast, when the heat transmission threshold was high, the distribution density of the network was low and the biomass CHP plants tended to be relatively large. When the heat transmission threshold was 8 km, the distribution density of the biomass CHP plant network was optimised for efficient heat utilisation. To promote the development of renewable energy sources, a planning scheme for a biomass CHP plant network that maximises heat utilisation efficiency can be obtained using the optimal heat transmission threshold and the nonlinearity

  15. Effect of variable heat transfer coefficient on tissue temperature next to a large vessel during radiofrequency tumor ablation

    Directory of Open Access Journals (Sweden)

    Pinheiro Cleber

    2008-07-01

    Full Text Available Abstract Background One of the current shortcomings of radiofrequency (RF tumor ablation is its limited performance in regions close to large blood vessels, resulting in high recurrence rates at these locations. Computer models have been used to determine tissue temperatures during tumor ablation procedures. To simulate large vessels, either constant wall temperature or constant convective heat transfer coefficient (h have been assumed at the vessel surface to simulate convection. However, the actual distribution of the temperature on the vessel wall is non-uniform and time-varying, and this feature makes the convective coefficient variable. Methods This paper presents a realistic time-varying model in which h is a function of the temperature distribution at the vessel wall. The finite-element method (FEM was employed in order to model RF hepatic ablation. Two geometrical configurations were investigated. The RF electrode was placed at distances of 1 and 5 mm from a large vessel (10 mm diameter. Results When the ablation procedure takes longer than 1–2 min, the attained coagulation zone obtained with both time-varying h and constant h does not differ significantly. However, for short duration ablation (5–10 s and when the electrode is 1 mm away from the vessel, the use of constant h can lead to errors as high as 20% in the estimation of the coagulation zone. Conclusion For tumor ablation procedures typically lasting at least 5 min, this study shows that modeling the heat sink effect of large vessels by applying constant h as a boundary condition will yield precise results while reducing computational complexity. However, for other thermal therapies with shorter treatment using a time-varying h may be necessary.

  16. Heat transfer from internally heated hemispherical pools

    International Nuclear Information System (INIS)

    Gabor, J.D.; Ellsion, P.G.; Cassulo, J.C.

    1980-01-01

    Experiments were conducted on heat transfer from internally heated ZnSO 4 -H 2 O pools to the walls of hemispherical containers. This experimental technique provides data for a heat transfer system that has to date been only theoretically treated. Three different sizes of copper hemispherical containers were used: 240, 280, 320 mm in diameter. The pool container served both as a heat transfer surface and as an electrode. The opposing electrode was a copper disk, 50 mm in diameter located at the top of the pool in the center. The top surface of the pool was open to the atmosphere

  17. Performance analysis on a new multi-effect distillation combined with an open absorption heat transformer driven by waste heat

    International Nuclear Information System (INIS)

    Zhang, Xiaodong; Hu, Dapeng; Li, Zhiyi

    2014-01-01

    In this paper, a new water distillation system, which consists of either a single- or multi-effect distiller combined with an open absorption heat transformer (OAHT), has been proposed. The new integrated system can be used for distilling waste water with high amounts of SiO 2 from heavy oil production, and the resultant distilled water can be supplied to steam boilers to produce high quality steam which in turn is injected into oil reservoirs to assist with heavy oil recovery. The thermodynamic cycle performances for these new integrated distillation systems were simulated based on the thermodynamic properties of the aqueous solution of LiBr as well as the mass and energy balance of the system. The results indicate that combined with OAHT, the waste heat at 70 °C can be elevated to 125 °C and thereby produce steam at 120 °C in the absorber, which is able to drive a four-effect distiller to produce distilled water. For a single-effect and four-effect distiller, the coefficients of performance (COP) are approximately 1.02 while the performance ratios are 2.19 and 5.72, respectively. Therefore, the four-effect distillation system combined with an OAHT is more thermally effective and is an ideal option to process the waste water in oilfields. -- Highlights: • A new absorption vapor compression distillation was proposed in present research. • An open absorption heat transformer has a coupled thermally evaporator and absorber. • Distillation of waste water with high content of SiO 2 from heavy oil production. • The waste heat of 70 °C can be elevated up to 125 °C and generate steam of 120 °C. • The waste heat is able to drive four-effect distillation to produce distilled water

  18. Effects of thermal property variations on the liquid flow and heat transfer in microchannel heat sinks

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhigang [Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100080 (China); Graduate School of Chinese Academy of Sciences, Beijing 100080 (China); Huai, Xiulan; Tao, Yujia; Chen, Huanzhuo [Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100080 (China)

    2007-12-15

    Three-dimensional conjugate numerical simulations using the inlet, average and variable thermal properties respectively were performed for the laminar water flow and heat transfer in rectangular microchannels with D{sub h} of 0.333 mm at Re of 101-1775. Both average and variable properties are adopted in data reduction. The calculated local and average characteristics of flow and heat transfer are compared among different methods, and with the experiments, correlations and simplified theoretical solution data from published literatures. Compared with the inlet property method, both average and variable property methods have significantly lower f{sub app}, but higher convective heat transfer coefficient h{sub z} and Nu{sub z}. Compared with the average property method, the variable property method has higher f{sub app}Re{sub ave} and lower h{sub z} at the beginning, but lower f{sub app}Re{sub ave} and higher h{sub z} at the later section of the channel. The calculated Nu{sub ave} agree well with the Sieder-Tate correlation and the recently reported experiment, validating the traditional macroscale theory in predicting the flow and heat transfer characteristics in the dimension and Re range of the present work. (author)

  19. High-performance PbS quantum dot vertical field-effect phototransistor using graphene as a transparent electrode

    Science.gov (United States)

    Che, Yongli; Zhang, Yating; Cao, Xiaolong; Song, Xiaoxian; Zhang, Haiting; Cao, Mingxuan; Dai, Haitao; Yang, Junbo; Zhang, Guizhong; Yao, Jianquan

    2016-12-01

    Solution processed photoactive PbS quantum dots (QDs) were used as channel in high-performance near-infrared vertical field-effect phototransistor (VFEpT) where monolayer graphene embedded as transparent electrode. In this vertical architecture, the PbS QD channel was sandwiched and naturally protected between the drain and source electrodes, which made the device ultrashort channel length (110 nm) simply the thickness of the channel layer. The VFEpT exhibited ambipolar operation with high mobilities of μe = 3.5 cm2/V s in n-channel operation and μh = 3.3 cm2/V s in p-channel operation at low operation voltages. By using the photoactive PbS QDs as channel material, the VFEpT exhibited good photoresponse properties with a responsivity of 4.2 × 102 A/W, an external quantum efficiency of 6.4 × 104% and a photodetectivity of 2.1 × 109 Jones at the light irradiance of 36 mW/cm2. Additionally, the VFEpT showed excellent on/off switching with good stability and reproducibility and fast response speed with a short rise time of 12 ms in n-channel operation and 10.6 ms in p-channel operation. These high mobilities, good photoresponse properties and simplistic fabrication of our VFEpTs provided a facile route to the high-performance inorganic photodetectors.

  20. Effect of Austenitic and Austeno-Ferritic Electrodes on 2205 Duplex and 316L Austenitic Stainless Steel Dissimilar Welds

    Science.gov (United States)

    Verma, Jagesvar; Taiwade, Ravindra V.

    2016-11-01

    This study addresses the effect of different types of austenitic and austeno-ferritic electrodes (E309L, E309LMo and E2209) on the relationship between weldability, microstructure, mechanical properties and corrosion resistance of shielded metal arc welded duplex/austenitic (2205/316L) stainless steel dissimilar joints using the combined techniques of optical, scanning electron microscope, energy-dispersive spectrometer and electrochemical. The results indicated that the change in electrode composition led to microstructural variations in the welds with the development of different complex phases such as vermicular ferrite, lathy ferrite, widmanstatten and intragranular austenite. Mechanical properties of welded joints were diverged based on compositions and solidification modes; it was observed that ferritic mode solidified weld dominated property wise. However, the pitting corrosion resistance of all welds showed different behavior in chloride solution; moreover, weld with E2209 was superior, whereas E309L exhibited lower resistance. Higher degree of sensitization was observed in E2209 weld, while lesser in E309L weld. Optimum ferrite content was achieved in all welds.

  1. Flexible ambipolar organic field-effect transistors with reverse-offset-printed silver electrodes for a complementary inverter.

    Science.gov (United States)

    Park, Junsu; Kim, Minseok; Yeom, Seung-Won; Ha, Hyeon Jun; Song, Hyenggun; Min Jhon, Young; Kim, Yun-Hi; Ju, Byeong-Kwon

    2016-06-03

    We report ambipolar organic field-effect transistors and complementary inverter circuits with reverse-offset-printed (ROP) Ag electrodes fabricated on a flexible substrate. A diketopyrrolopyrrole-based co-polymer (PDPP-TAT) was used as the semiconductor and poly(methyl methacrylate) was used as the gate insulator. Considerable improvement is observed in the n-channel electrical characteristics by inserting a cesium carbonate (Cs2CO3) as the electron-injection/hole-blocking layer at the interface between the semiconductors and the electrodes. The saturation mobility values are 0.35 cm(2) V(-1) s(-1) for the p-channel and 0.027 cm(2) V(-1) s(-1) for the n-channel. A complementary inverter is demonstrated based on the ROP process, and it is selectively controlled by the insertion of Cs2CO3 onto the n-channel region via thermal evaporation. Moreover, the devices show stable operation during the mechanical bending test using tensile strains ranging from 0.05% to 0.5%. The results confirm that these devices have great potential for use in flexible and inexpensive integrated circuits over a large area.

  2. A study on the effect of tool electrode thickness on MRR, and TWR in electrical discharge turning process

    Science.gov (United States)

    Gohil, Vikas; Puri, YM

    2018-04-01

    Turning by electrical discharge machining (EDM) is an emerging area of research. Generally, wire-EDM is used in EDM turning because it is not concerned with electrode tooling cost. In EDM turning wire electrode leaves cusps on the machined surface because of its small diameters and wire breakage which greatly affect the surface finish of the machined part. Moreover, one of the limitations of the process is low machining speed as compared to constituent processes. In this study, conventional EDM was employed for turning purpose in order to generate free-form cylindrical geometries on difficult-to-cut materials. Therefore, a specially designed turning spindle was mounted on a conventional die-sinking EDM machine to rotate the work piece. A conductive preshaped strip of copper as a forming tool is fed (reciprocate) continuously against the rotating work piece; thus, a mirror image of the tool is formed on the circumference of the work piece. In this way, an axisymmetric work piece can be made with small tools. The developed process is termed as the electrical discharge turning (EDT). In the experiments, the effect of machining parameters, such as pulse-on time, peak current, gap voltage and tool thickness on the MRR, and TWR were investigated and practical machining was carried out by turning of SS-304 stainless steel work piece.

  3. Convective heat transfer for a gaseous slip flow in micropipe and parallel-plate microchannel with uniform wall heat flux: effect of axial heat conduction

    Science.gov (United States)

    Haddout, Y.; Essaghir, E.; Oubarra, A.; Lahjomri, J.

    2018-06-01

    Thermally developing laminar slip flow through a micropipe and a parallel plate microchannel, with axial heat conduction and uniform wall heat flux, is studied analytically by using a powerful method of self-adjoint formalism. This method results from a decomposition of the elliptic energy equation into a system of two first-order partial differential equations. The advantage of this method over other methods, resides in the fact that the decomposition procedure leads to a selfadjoint problem although the initial problem is apparently not a self-adjoint one. The solution is an extension of prior studies and considers a first order slip model boundary conditions at the fluid-wall interface. The analytical expressions for the developing temperature and local Nusselt number in the thermal entrance region are obtained in the general case. Therefore, the solution obtained could be extended easily to any hydrodynamically developed flow and arbitrary heat flux distribution. The analytical results obtained are compared for select simplified cases with available numerical calculations and they both agree. The results show that the heat transfer characteristics of flow in the thermal entrance region are strongly influenced by the axial heat conduction and rarefaction effects which are respectively characterized by Péclet and Knudsen numbers.

  4. Effect of swift heavy ion (SHI) irradiation on transparent conducting oxide electrodes for dye-sensitized solar cell applications

    International Nuclear Information System (INIS)

    Singh, Hemant Kr.; Avasthi, D.K.; Aggarwal, Shruti

    2015-01-01

    Highlights: •The objective is to study the effect of swift heavy ion (SHI) irradiation on photoanode of DSSC for better efficiency. •This work presents the effect of SHI irradiation on various Transparent conducting oxides (TCOs). •Effects are studied in terms of conductivity and transmittance of TCOs. •ITO-PET gives best results in comparison to ITO and FTO for DSSC application under SHI irradiation. -- Abstract: Transparent conducting oxides (TCOs) are used as electrodes in dye-sensitized solar cells (DSSCs) because of their properties such as high transmittance and low resistivity. In the present work, the effects of swift heavy ion (SHI) irradiation on various types of TCOs are presented. The objective of this study is to investigate the effect of SHI on TCOs. For the present study, three different types of TCOs are considered, namely, (a) FTO (fluorine-doped tin oxide, SnO 2 :F) on a Nippon glass substrate, (b) ITO (indium tin oxide, In 2 O 3 :Sn) coated on polyethylene terephthalate (PET) on a Corning glass substrate, and (c) ITO on a Corning glass substrate. These films are irradiated with 120 MeV Ag +9 ions at fluences ranging from 3.0 × 10 11 ions/cm 2 to 3.0 × 10 13 ions/cm 2 . The structural, morphological, optical and electrical properties are studied via X-ray diffraction (XRD), atomic force microscopy (AFM), UV–Vis absorption spectroscopy and four-probe resistivity measurements, respectively. The ITO-PET electrode is found to exhibit superior conductivity and transmittance properties in comparison with the others after irradiation and, therefore, to be the most suitable for solar cell applications

  5. Effect of swift heavy ion (SHI) irradiation on transparent conducting oxide electrodes for dye-sensitized solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Hemant Kr. [University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi (India); Avasthi, D.K. [Inter University Accelerator Center, Post Box 10502, New Delhi (India); Aggarwal, Shruti, E-mail: shruti.al@gmail.com [University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi (India)

    2015-06-15

    Highlights: •The objective is to study the effect of swift heavy ion (SHI) irradiation on photoanode of DSSC for better efficiency. •This work presents the effect of SHI irradiation on various Transparent conducting oxides (TCOs). •Effects are studied in terms of conductivity and transmittance of TCOs. •ITO-PET gives best results in comparison to ITO and FTO for DSSC application under SHI irradiation. -- Abstract: Transparent conducting oxides (TCOs) are used as electrodes in dye-sensitized solar cells (DSSCs) because of their properties such as high transmittance and low resistivity. In the present work, the effects of swift heavy ion (SHI) irradiation on various types of TCOs are presented. The objective of this study is to investigate the effect of SHI on TCOs. For the present study, three different types of TCOs are considered, namely, (a) FTO (fluorine-doped tin oxide, SnO{sub 2}:F) on a Nippon glass substrate, (b) ITO (indium tin oxide, In{sub 2}O{sub 3}:Sn) coated on polyethylene terephthalate (PET) on a Corning glass substrate, and (c) ITO on a Corning glass substrate. These films are irradiated with 120 MeV Ag{sup +9} ions at fluences ranging from 3.0 × 10{sup 11} ions/cm{sup 2} to 3.0 × 10{sup 13} ions/cm{sup 2}. The structural, morphological, optical and electrical properties are studied via X-ray diffraction (XRD), atomic force microscopy (AFM), UV–Vis absorption spectroscopy and four-probe resistivity measurements, respectively. The ITO-PET electrode is found to exhibit superior conductivity and transmittance properties in comparison with the others after irradiation and, therefore, to be the most suitable for solar cell applications.

  6. The effects of titanium dioxide coatings on light-derived heating and transdermal heat transfer in bovine skin

    NARCIS (Netherlands)

    Bartle, S J; Thomson, D U; Gehring, R; van der Merwe, B. D.

    2017-01-01

    The effects of titanium dioxide coatings of bovine hides on light absorption and transdermal transfer of light-derived heat were investigated. Four hair-on rug hides from Holstein cattle were purchased. Twelve samples about 20 cm on a side were cut from each hide; nine from the black-colored areas,

  7. Effect of whole cottonseed, plus lanolin heat-treated whole ...

    African Journals Online (AJOL)

    Milk protein content or yield was not affected by any of the treatments. ... The higher (P < 0.01) C18:2 content of milk fat on the HWCS Eeatment indicated that heat fteatment ... where heat-treated soybeans were compared with raw soy- beans ...

  8. Radius ratio effects on natural heat transfer in concentric annulus

    DEFF Research Database (Denmark)

    Alipour, M.; Hosseini, R.; Kolaei, Alireza Rezania

    2013-01-01

    This paper studies natural convection heat transfer in vertical and electrically heated annulus. The metallic cylinders mounted concentrically in a parallel tube. Measurements are carried out for four input electric powers and three radius ratios with an apparatus immersed in stagnant air...

  9. Free convection effects and radiative heat transfer in MHD Stokes ...

    Indian Academy of Sciences (India)

    ... radiative heat transfer is useful for predicting the heat feedback to the burning surface ... petroleum technology, to study the movement of natural gas, oil and water ... (e.g. sea water, rain water, and sewage) past an impulsively started infinite ...

  10. Electrochemical approach for monitoring the effect of anti tubulin drugs on breast cancer cells based on silicon nanograss electrodes

    International Nuclear Information System (INIS)

    Zanganeh, Somayeh; Khosravi, Safoora; Namdar, Naser; Amiri, Morteza Hassanpour; Gharooni, Milad; Abdolahad, Mohammad

    2016-01-01

    One of the most interested molecular research in the field of cancer detection is the mechanism of drug effect on cancer cells. Translating molecular evidence into electrochemical profiles would open new opportunities in cancer research. In this manner, applying nanostructures with anomalous physical and chemical properties as well as biocompatibility would be a suitable choice for the cell based electrochemical sensing. Silicon based nanostructure are the most interested nanomaterials used in electrochemical biosensors because of their compatibility with electronic fabrication process and well engineering in size and electrical properties. Here we apply silicon nanograss (SiNG) probing electrodes produced by reactive ion etching (RIE) on silicon wafer to electrochemically diagnose the effect of anticancer drugs on breast tumor cells. Paclitaxel (PTX) and mebendazole (MBZ) drugs have been used as polymerizing and depolymerizing agents of microtubules. PTX would perturb the anodic/cathodic responses of the cell-covered biosensor by binding phosphate groups to deformed proteins due to extracellular signal-regulated kinase (ERK"1"/"2) pathway. MBZ induces accumulation of Cytochrome C in cytoplasm. Reduction of the mentioned agents in cytosol would change the ionic state of the cells monitored by silicon nanograss working electrodes (SiNGWEs). By extending the contacts with cancer cells, SiNGWEs can detect minor signal transduction and bio recognition events, resulting in precise biosensing. Effects of MBZ and PTX drugs, (with the concentrations of 2 nM and 0.1 nM, respectively) on electrochemical activity of MCF-7 cells are successfully recorded which are corroborated by confocal and flow cytometry assays. - Highlights: • Electrochemical effect of MBZ and PTX (anti tubulin drugs) on breast cancer cells was detected. • Detection was carried by silicon nanograss electrodes(SiNGEs). • Signaling pathways activated in the cells by drug treatment, change the anodic

  11. Electrochemical approach for monitoring the effect of anti tubulin drugs on breast cancer cells based on silicon nanograss electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Zanganeh, Somayeh; Khosravi, Safoora; Namdar, Naser; Amiri, Morteza Hassanpour; Gharooni, Milad [Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Eng, University of Tehran, P.O. Box 14395/515, Tehran (Iran, Islamic Republic of); Nano Electronic Center of Excellence, Thin Film and Nanoelectronic Lab, School of Electrical and Computer Eng, University of Tehran, P.O. Box 14395/515, Tehran (Iran, Islamic Republic of); Abdolahad, Mohammad, E-mail: m.abdolahad@ut.ac.ir [Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Eng, University of Tehran, P.O. Box 14395/515, Tehran (Iran, Islamic Republic of); Nano Electronic Center of Excellence, Thin Film and Nanoelectronic Lab, School of Electrical and Computer Eng, University of Tehran, P.O. Box 14395/515, Tehran (Iran, Islamic Republic of)

    2016-09-28

    One of the most interested molecular research in the field of cancer detection is the mechanism of drug effect on cancer cells. Translating molecular evidence into electrochemical profiles would open new opportunities in cancer research. In this manner, applying nanostructures with anomalous physical and chemical properties as well as biocompatibility would be a suitable choice for the cell based electrochemical sensing. Silicon based nanostructure are the most interested nanomaterials used in electrochemical biosensors because of their compatibility with electronic fabrication process and well engineering in size and electrical properties. Here we apply silicon nanograss (SiNG) probing electrodes produced by reactive ion etching (RIE) on silicon wafer to electrochemically diagnose the effect of anticancer drugs on breast tumor cells. Paclitaxel (PTX) and mebendazole (MBZ) drugs have been used as polymerizing and depolymerizing agents of microtubules. PTX would perturb the anodic/cathodic responses of the cell-covered biosensor by binding phosphate groups to deformed proteins due to extracellular signal-regulated kinase (ERK{sup 1/2}) pathway. MBZ induces accumulation of Cytochrome C in cytoplasm. Reduction of the mentioned agents in cytosol would change the ionic state of the cells monitored by silicon nanograss working electrodes (SiNGWEs). By extending the contacts with cancer cells, SiNGWEs can detect minor signal transduction and bio recognition events, resulting in precise biosensing. Effects of MBZ and PTX drugs, (with the concentrations of 2 nM and 0.1 nM, respectively) on electrochemical activity of MCF-7 cells are successfully recorded which are corroborated by confocal and flow cytometry assays. - Highlights: • Electrochemical effect of MBZ and PTX (anti tubulin drugs) on breast cancer cells was detected. • Detection was carried by silicon nanograss electrodes(SiNGEs). • Signaling pathways activated in the cells by drug treatment, change the

  12. The effect of inclined vertical slats on natural convective heat transfer from an isothermal heated vertical plate

    International Nuclear Information System (INIS)

    Oosthuizen, P.H.; Sun, L.; Naylor, D.

    2002-01-01

    Natural convective heat transfer from a wide heated vertical isothermal plate with adiabatic surfaces above and below the heated surface has been considered. There are a series of equally spaced vertical thin, flat adiabatic surfaces (termed 'slats') near the heated surface, these surfaces being, in general, inclined to the heated surface. The slats are pivoted about their center-point and thus as their angle is changed, the distance of the tip of the slat from the plate changes. The situation considered is an approximate model of a window with a vertical blind, the particular case where the window is hotter than the room air, i.e. where air-conditioning is being used, being considered. The flow has been assumed to be laminar and steady. Fluid properties have been assumed constant except for the density change with temperature that gives rise to the buoyancy forces, this being treated by means of the Biuniqueness type approximation. Although the flow is in general three-dimensional, the flow over each slat is assumed to be the same and attention can therefore be restricted to flow over a single slat by using repeating boundary conditions. The governing equations have been written in dimensionless form and the resulting dimensionless equations have been solved using a commercial finite-element package. The solution has the following parameters: (1) the Rayleigh number (2) the Prandtl number (3) the dimensionless distance of the slat center point (the pivot point) from the surface (4) the dimensionless slat size (5) the dimensionless slat spacing (6) the angle of inclination of the slats. Because of the application that motivated the study, results have only been obtained for a Prandtl number of 0.7. The effect of the other dimensionless variables on the mean dimensionless heat transfer rate from the heated surface has been examined. (author)

  13. Effect of different heat transfer models on HCCI engine simulation

    International Nuclear Information System (INIS)

    Neshat, Elaheh; Saray, Rahim Khoshbakhti

    2014-01-01

    Highlights: • A new multi zone model is developed for HCCI combustion modeling. • New heat transfer model is used for prediction of heat transfer in HCCI engines. • Model can predict engine combustion, performance and emission characteristics well. • Appropriate mass and heat transfer models cause to accurate prediction of CO, UHC and NOx. - Abstract: Heat transfer from engine walls has an important role on engine combustion, performance and emission characteristics. The main focus of this study is offering a new relation for calculation of convective heat transfer from in-cylinder charge to combustion chamber walls of HCCI engines and providing the ability of new model in comparison with the previous models. Therefore, a multi zone model is developed for homogeneous charge compression ignition engine simulation. Model consists of four different types of zones including core zone, boundary layer zone, outer zones, which are between core and boundary layer, and crevice zone. Conductive heat transfer and mass transfer are considered between neighboring zones. For accurate calculation of initial conditions at inlet valve closing, multi zone model is coupled with a single zone model, which simulates gas exchange process. Various correlations are used as convective heat transfer correlations. Woschni, modified Woschni, Hohenberg and Annand correlations are used as convective heat transfer models. The new convection model, developed by authors, is used, too. Comparative analyses are done to recognize the accurate correlation for prediction of engine combustion, performance and emission characteristics in a wide range of operating conditions. The results indicate that utilization of various heat transfer models, except for new convective heat transfer model, leads to significant differences in prediction of in-cylinder pressure and exhaust emissions. Using Woschni, Chang and new model, convective heat transfer coefficient increases near top dead center, sharply

  14. The effect of substrate conduction on boiling data on pin-fin heat sinks

    International Nuclear Information System (INIS)

    McNeil, D.A.; Raeisi, A.H.; Kew, P.A.; Hamed, R.S.

    2015-01-01

    Heat-transfer experiments for a copper heat sink containing pin-fins with a cross section of 1 mm by 1 mm and a height of 1 mm have been reported previously. The pin-fins were manufactured on a 5 mm thick, 50 mm square base plate in a square, in-line arrangement with a pitch of 2 mm. Data were produced while boiling R113 and water at atmospheric pressure. The heat sink was heated from below through a 5 mm thick aluminium wall by an electrical heating method that is normally associated with the uniform heat flux boundary condition. However, variations in the heat-transfer coefficient and the liquid subcooling interacted with the high thermal conductivity of the aluminium and copper materials to produce a near isothermal wall boundary condition. Thus, heat conduction effects had to be taken into account when determining the heat-flux distribution required in the analysis of the data. Many experiments like these have used the uniform heat-flux assumption to analyse the data. The discrepancies produced from this approach are explored. Single-phase flows across a pin-fin surface produce a reasonably uniform distribution of heat-transfer coefficient. However, the liquid temperature increases as it moves across the heat sink. This produces a non-uniform heat flux distribution at the solid–fluid interface. The uniform heat-flux assumption is shown to lead to errors of ±17% in the estimation of the heat-transfer coefficient. The original boiling flow experiments found that the water data were confined and that the majority of the R113 data were not. The confined and unconfined data are processed with the thermal conduction in the walls taken into account and by assuming a uniform heat flux at the solid–fluid interface. The uniform heat-flux distribution analysis for unconfined flows shows errors in the heat-transfer coefficient to be typically ±17%. Confined flows produce smaller errors, typically ±12%, close to the onset of nucleation. However, these damp out

  15. Suppression of the self-heating effect in GaN HEMT by few-layer graphene heat spreading elements

    Science.gov (United States)

    Volcheck, V. S.; Stempitsky, V. R.

    2017-11-01

    Self-heating has an adverse effect on characteristics of gallium nitride (GaN) high electron mobility transistors (HEMTs). Various solutions to the problem have been proposed, however, a temperature rise due to dissipated electrical power still hinders the production of high power and high speed GaN devices. In this paper, thermal management of GaN HEMT via few-layer graphene (FLG) heat spreading elements is investigated. It is shown that integration of the FLG elements on top of the device structure considerably reduces the maximum temperature and improves the DC and small signal AC performance.

  16. Heating effects in a liquid metal ion source

    International Nuclear Information System (INIS)

    Mair, G.L.R.; Aitken, K.L.

    1984-01-01

    A reassessment is made of the heating occurring at the anode of a liquid metal ion source, in the light of new microscopic observations. The apex region of the cones is in the form of a cusp, or jet, even at very low currents. The calculation for ohmic heating is conclusive for low currents; no heating occurs at the anode; for high currents (approx. 50-100 μA), substantial heating is conceivable, if a long, very thin, cylindrical jet exists at the apex of the anode. The answer to the problem of external heating, in the form of electrons bombarding the anode, is not quite conclusive; this is because of the impossibility of correctly assessing the electron flux entering the anode. However, it would appear to be a definite conclusion that for reasons of self-consistency field-ionisation of thermally released atoms cannot be a significant ion emission mechanism. (author)

  17. Effects of Angle of Rotation on Pool Boiling Heat Transfer of V-shape Tube Bundle

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Myeong-Gie [Andong National University, Andong (Korea, Republic of)

    2016-10-15

    The most important facility for the systems is a passive heat exchanger that transfers core decay heat to the cold water in a water storage tank under atmospheric pressure. Since the space for the installation of the heat exchanger is usually limited, developing more efficient heat exchangers is important. In general, pool boiling is generated on the surface of the heat exchanging tube. The major design parameter of the heat exchanger is a tube arrangement. The upper tube is affected by the lower tube and the enhancement of the heat transfer on the upper tube is estimated by the bundle effect. Since heat transfer is related to the conditions of a tube surface, bundle geometries, and a liquid type, lots of studies have been carried out for the combinations of those parameters. An experimental study was performed to investigate the effects of the angle of rotation on pool boiling heat transfer of a V-shape tube bundle. For the test, two smooth stainless steel tubes of 19 mm outside diameter and the water at atmospheric pressure were used. The enhancement of the heat transfer is clearly observed when the angle becomes to 90° where the upper tube has the maximum region of influence by the lower tube. The convective flow and liquid agitation enhance heat transfer while the coalescence of the bubbles deteriorates heat transfer.

  18. Investigations on the effects of electrode materials on the device characteristics of ferroelectric memory thin film transistors fabricated on flexible substrates

    Science.gov (United States)

    Yang, Ji-Hee; Yun, Da-Jeong; Seo, Gi-Ho; Kim, Seong-Min; Yoon, Myung-Han; Yoon, Sung-Min

    2018-03-01

    For flexible memory device applications, we propose memory thin-film transistors using an organic ferroelectric poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] gate insulator and an amorphous In-Ga-Zn-O (a-IGZO) active channel. The effects of electrode materials and their deposition methods on the characteristics of memory devices exploiting the ferroelectric field effect were investigated for the proposed ferroelectric memory thin-film transistors (Fe-MTFTs) at flat and bending states. It was found that the plasma-induced sputtering deposition and mechanical brittleness of the indium-tin oxide (ITO) markedly degraded the ferroelectric-field-effect-driven memory window and bending characteristics of the Fe-MTFTs. The replacement of ITO electrodes with metal aluminum (Al) electrodes prepared by plasma-free thermal evaporation greatly enhanced the memory device characteristics even under bending conditions owing to their mechanical ductility. Furthermore, poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) (PEDOT:PSS) was introduced to achieve robust bending performance under extreme mechanical stress. The Fe-MTFTs using PEDOT:PSS source/drain electrodes were successfully fabricated and showed the potential for use as flexible memory devices. The suitable choice of electrode materials employed for the Fe-MTFTs is concluded to be one of the most important control parameters for highly functional flexible Fe-MTFTs.