WorldWideScience

Sample records for electrode fabrication improved

  1. Photosensitive-polyimide based method for fabricating various neural electrode architectures

    Directory of Open Access Journals (Sweden)

    Yasuhiro X Kato

    2012-06-01

    Full Text Available An extensive photosensitive polyimide (PSPI-based method for designing and fabricating various neural electrode architectures was developed. The method aims to broaden the design flexibility and expand the fabrication capability for neural electrodes to improve the quality of recorded signals and integrate other functions. After characterizing PSPI’s properties for micromachining processes, we successfully designed and fabricated various neural electrodes even on a non-flat substrate using only one PSPI as an insulation material and without the time-consuming dry etching processes. The fabricated neural electrodes were an electrocorticogram electrode, a mesh intracortical electrode with a unique lattice-like mesh structure to fixate neural tissue, and a guide cannula electrode with recording microelectrodes placed on the curved surface of a guide cannula as a microdialysis probe. In vivo neural recordings using anesthetized rats demonstrated that these electrodes can be used to record neural activities repeatedly without any breakage and mechanical failures, which potentially promises stable recordings for long periods of time. These successes make us believe that this PSPI-based fabrication is a powerful method, permitting flexible design and easy optimization of electrode architectures for a variety of electrophysiological experimental research with improved neural recording performance.

  2. Improvements in purification of silver nanowires by decantation and fabrication of flexible transparent electrodes. Application to capacitive touch sensors

    International Nuclear Information System (INIS)

    Mayousse, Céline; Celle, Caroline; Moreau, Eléonore; Carella, Alexandre; Simonato, Jean-Pierre; Mainguet, Jean-François

    2013-01-01

    Transparent flexible electrodes made of metallic nanowires, and in particular silver nanowires (AgNWs), appear as an extremely promising alternative to transparent conductive oxides for future optoelectronic devices. Though significant progresses have been made the last few years, there is still some room for improvement regarding the synthesis of high quality silver nanowire solutions and fabrication process of high performance electrodes. We show that the commonly used purification process can be greatly simplified through decantation. Using this process it is possible to fabricate flexible electrodes by spray coating with sheet resistance lower than 25 Ω sq −1 at 90% transparency in the visible spectrum. These electrodes were used to fabricate an operative transparent flexible touch screen. To our knowledge this is the first reported AgNW based touch sensor relying on capacitive technology. (paper)

  3. Direct fabrication of nano-gap electrodes by focused ion beam etching

    International Nuclear Information System (INIS)

    Nagase, Takashi; Gamo, Kenji; Kubota, Tohru; Mashiko, Shinro

    2006-01-01

    A simple approach to increase the reliability of nano-gap electrode fabrication techniques is presented. The method is based on maskless sputter etching of Au electrodes using a focused ion beam (FIB) and in-situ monitoring of the etching steps by measuring a current fed to the Au electrodes. The in-situ monitoring is crucial to form nano-gaps much narrower than a FIB spot size. By using this approach, gaps of ∼3-6 nm are fabricated with the high yield of ∼90%, and most of the fabricated nano-gap electrodes showed high resistances of 10 GΩ-1 TΩ. The controllability of the fabrication steps is significantly improved by using triple-layered films consisting of top Ti, Au, and bottom adhesion Ti layers. The applicability of the fabricated nano-gap electrodes to electron transport studies of nano-sized objects is demonstrated by electrical measurement of Au colloidal nano-particles

  4. Electrochemically synthesized stretchable polypyrrole/fabric electrodes for supercapacitor

    International Nuclear Information System (INIS)

    Yue, Binbin; Wang, Caiyun; Ding, Xin; Wallace, Gordon G.

    2013-01-01

    Wearable electronics offer the combined advantages of both electronics and fabrics. Being an indispensable part of these electronics, lightweight, stretchable and wearable power sources are strongly demanded. Here we describe a daily-used cotton fabric coated with polypyrrole as electrode for stretchable supercapacitors. Polypyrrole was synthesized on the Au coated fabric via an electrochemical polymerization process with p-toluenesulfonic acid (p-TS) as dopant from acetonitrile solution. This material was characterized with FESEM, tensile stress, and studied as a supercapacitor electrode in 1.0 M NaCl. This conductive textile electrode can sustain up to 140% strain without electric failure. It delivers a high specific capacitance of 254.9 F g −1 at a scan rate of 10 mV s −1 , and keeps almost unchanged at an applied strain (i.e. 30% and 50%) but with an improved cycling stability

  5. Strategies for the fabrication of porous platinum electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Kloke, Arne; Stetten, Felix von; Kerzenmacher, Sven [Laboratory for MEMS Applications, Department of Microsystems Engineering-IMTEK, University of Freiburg, Freiburg (Germany); Zengerle, Roland [Laboratory for MEMS Applications, Department of Microsystems Engineering-IMTEK, University of Freiburg, Freiburg (Germany); BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-Universitaet Freiburg (Germany)

    2011-11-16

    Porous platinum is of high technological importance due to its various applications in fuel cells, sensors, stimulation electrodes, mechanical actuators and catalysis in general. Based on a discussion of the general principles behind the reduction of platinum salts and corresponding deposition processes this article discusses techniques available for platinum electrode fabrication. The numerous, different strategies available to fabricate platinum electrodes are reviewed and discussed in the context of their tuning parameters, strengths and weaknesses. These strategies comprise bottom-up approaches as well as top-down approaches. In bottom-up approaches nanoparticles are synthesized in a first step by chemical, photochemical or sonochemical means followed by an electrode formation step by e.g. thin film technology or network formation to create a contiguous and conducting solid electrode structure. In top-down approaches fabrication starts with an already conductive electrode substrate. Corresponding strategies enable the fabrication of substrate-based electrodes by e.g. electrodeposition or the fabrication of self-supporting electrodes by dealloying. As a further top-down strategy, this review describes methods to decorate porous metals other than platinum with a surface layer of platinum. This way, fabrication methods not performable with platinum can be applied to the fabrication of platinum electrodes with the special benefit of low platinum consumption. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Fabricating solid carbon porous electrodes from powders

    Science.gov (United States)

    Kaschmitter, James L.; Tran, Tri D.; Feikert, John H.; Mayer, Steven T.

    1997-01-01

    Fabrication of conductive solid porous carbon electrodes for use in batteries, double layer capacitors, fuel cells, capacitive dionization, and waste treatment. Electrodes fabricated from low surface area (Electrodes having a higher surface area, fabricated from powdered carbon blacks, such as carbon aerogel powder, carbon aerogel microspheres, activated carbons, etc. yield high conductivity carbon compositives with excellent double layer capacity, and can be used in double layer capacitors, or for capacitive deionization and/or waste treatment of liquid streams. By adding metallic catalysts to be high surface area carbons, fuel cell electrodes can be produced.

  7. Nanofiber membrane-electrode-assembly and method of fabricating same

    Energy Technology Data Exchange (ETDEWEB)

    Pintauro, Peter N.; Ballengee, Jason; Brodt, Matthew

    2018-01-23

    In one aspect of the present invention, a method of fabricating a fuel cell membrane-electrode-assembly (MEA) having an anode electrode, a cathode electrode, and a membrane disposed between the anode electrode and the cathode electrode, includes fabricating each of the anode electrode, the cathode electrode, and the membrane separately by electrospinning; and placing the membrane between the anode electrode and the cathode electrode, and pressing then together to form the fuel cell MEA.

  8. Fabrication and Characterisation of Membrane-Based Gold Electrodes

    DEFF Research Database (Denmark)

    Bakmand, Tanya; Kwasny, Dorota; Dimaki, Maria

    2015-01-01

    This work presents a versatile, membrane based electrochemical sensor with thin film electrodes fabricated through Ebeam evaporation directly on porous materials (membranes). Here, the fabrication of the electrodes is described along with possible methods for integration in fluidic systems...

  9. A wearable 12-lead ECG acquisition system with fabric electrodes.

    Science.gov (United States)

    Haoshi Zhang; Lan Tian; Huiyang Lu; Ming Zhou; Haiqing Zou; Peng Fang; Fuan Yao; Guanglin Li

    2017-07-01

    Continuous electrocardiogram (ECG) monitoring is significant for prevention of heart disease and is becoming an important part of personal and family health care. In most of the existing wearable solutions, conventional metal sensors and corresponding chips are simply integrated into clothes and usually could only collect few leads of ECG signals that could not provide enough information for diagnosis of cardiac diseases such as arrhythmia and myocardial ischemia. In this study, a wearable 12-lead ECG acquisition system with fabric electrodes was developed and could simultaneously process 12 leads of ECG signals. By integrating the fabric electrodes into a T-shirt, the wearable system would provide a comfortable and convenient user interface for ECG recording. For comparison, the proposed fabric electrode and the gelled traditional metal electrodes were used to collect ECG signals on a subject, respectively. The approximate entropy (ApEn) of ECG signals from both types of electrodes were calculated. The experimental results show that the fabric electrodes could achieve similar performance as the gelled metal electrodes. This preliminary work has demonstrated that the developed ECG system with fabric electrodes could be utilized for wearable health management and telemedicine applications.

  10. The fabrication, characterisation and electrochemical investigation of screen-printed graphene electrodes.

    Science.gov (United States)

    Randviir, Edward P; Brownson, Dale A C; Metters, Jonathan P; Kadara, Rashid O; Banks, Craig E

    2014-03-14

    We report the fabrication, characterisation (SEM, Raman spectroscopy, XPS and ATR) and electrochemical implementation of novel screen-printed graphene electrodes. Electrochemical characterisation of the fabricated graphene electrodes is undertaken using an array of electroactive redox probes and biologically relevant analytes, namely: potassium ferrocyanide(II), hexaammine-ruthenium(III) chloride, N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD), β-nicotinamide adenine dinucleotide (NADH), L-ascorbic acid (AA), uric acid (UA) and dopamine hydrochloride (DA). The electroanalytical capabilities of the fabricated electrodes are also considered towards the sensing of AA and DA. The electrochemical and (electro)analytical performances of the fabricated screen-printed graphene electrodes are considered with respect to the relative surface morphologies and material compositions (elucidated via SEM, Raman, XPS and ATR spectroscopy), the density of electronic states (% global coverage of edge-plane like sites/defects) and the specific fabrication conditions utilised. Comparisons are made between two screen-printed graphene electrodes and alternative graphite based screen-printed electrodes. The graphene electrodes are fabricated utilising two different commercially prepared 'graphene' inks, which have long screen ink lifetimes (>3 hours), thus this is the first report of a true mass-reproducible screen-printable graphene ink. Through employment of appropriate controls/comparisons we are able to report a critical assessment of these screen-printed graphene electrodes. This work is of high importance and demonstrates a proof-of-concept approach to screen-printed graphene electrodes that are highly reproducible, paving the way for mass-producible graphene sensing platforms in the future.

  11. High temperature SU-8 pyrolysis for fabrication of carbon electrodes

    DEFF Research Database (Denmark)

    Hassan, Yasmin Mohamed; Caviglia, Claudia; Hemanth, Suhith

    2017-01-01

    In this work, we present the investigation of the pyrolysis parameters at high temperature (1100 °C) for the fabrication of two-dimensional pyrolytic carbon electrodes. The electrodes were fabricated by pyrolysis of lithographically patterned negative epoxy based photoresist SU-8. A central...... composite experimental design was used to identify the influence of dwell time at the highest pyrolysis temperature and heating rate on electrical, electrochemical and structural properties of the pyrolytic carbon: Van der Pauw sheet resistance measurements, cyclic voltammetry, electrochemical impedance...... spectroscopy and Raman spectroscopy were used to characterize the pyrolytic carbon. The results show that the temperature increase from 900 °C to 1100 °C improves the electrical and electrochemical properties. At 1100 °C, longer dwell time leads to lower resistivity, while the variation of the pyrolysis...

  12. A novel method of fabricating carbon nanotubes-polydimethylsiloxane composite electrodes for electrocardiography.

    Science.gov (United States)

    Liu, Benyan; Chen, Yingmin; Luo, Zhangyuan; Zhang, Wenzan; Tu, Quan; Jin, Xun

    2015-01-01

    Polymer-based flexible electrodes are receiving much attention in medical applications due to their good wearing comfort. The current fabrication methods of such electrodes are not widely applied. In this study, polydimethylsiloxane (PDMS) and conductive additives of carbon nanotubes (CNTs) were employed to fabricate composite electrodes for electrocardiography (ECG). A three-step dispersion process consisting of ultrasonication, stirring, and in situ polymerization was developed to yield homogenous CNTs-PDMS mixtures. The CNTs-PDMS mixtures were used to fabricate CNTs-PDMS composite electrodes by replica technology. The influence of ultrasonication time and CNT concentration on polymer electrode performance was evaluated by impedance and ECG measurements. The signal amplitude of the electrodes prepared using an ultrasonication time of 12 h and CNT content of 5 wt% was comparable to that of commercial Ag/AgCl electrodes. The polymer electrodes were easily fabricated by conventional manufacturing techniques, indicating a potential advantage of reduced cost for mass production.

  13. Electrical performance of polymer ferroelectric capacitors fabricated on plastic substrate using transparent electrodes

    KAUST Repository

    Bhansali, Unnat Sampatraj

    2012-09-01

    Polymer-based flexible ferroelectric capacitors have been fabricated using a transparent conducting oxide (ITO) and a transparent conducting polymer (PEDOT:PSS). It is found that the polarization fatigue performance with transparent oxide electrodes exhibits a significant improvement over the polymer electrodes (20% vs 70% drop in polarization after 10 6 cycles). This result can be explained based on a charge injection model that is controlled by interfacial band-offsets, and subsequent pinning of ferroelectric domain walls by the injected carriers. Furthermore, the coercive field (E c) of devices with our polymer electrodes is nearly 40% lower than reported values with similar polymer electrodes. Surprisingly, this difference was found to be related to the dry etching process used to define the top electrodes, which is reported for the first time by this group. The temperature dependence of relative permittivity of both devices shows a typical first order ferroelectric-to-paraelectric phase transition, but with a reduced Curie temperature compared to reference devices fabricated on Pt. © 2012 Elsevier B.V. All rights reserved.

  14. Electrical performance of polymer ferroelectric capacitors fabricated on plastic substrate using transparent electrodes

    KAUST Repository

    Bhansali, Unnat Sampatraj; Khan, Yasser; Alshareef, Husam N.

    2012-01-01

    Polymer-based flexible ferroelectric capacitors have been fabricated using a transparent conducting oxide (ITO) and a transparent conducting polymer (PEDOT:PSS). It is found that the polarization fatigue performance with transparent oxide electrodes exhibits a significant improvement over the polymer electrodes (20% vs 70% drop in polarization after 10 6 cycles). This result can be explained based on a charge injection model that is controlled by interfacial band-offsets, and subsequent pinning of ferroelectric domain walls by the injected carriers. Furthermore, the coercive field (E c) of devices with our polymer electrodes is nearly 40% lower than reported values with similar polymer electrodes. Surprisingly, this difference was found to be related to the dry etching process used to define the top electrodes, which is reported for the first time by this group. The temperature dependence of relative permittivity of both devices shows a typical first order ferroelectric-to-paraelectric phase transition, but with a reduced Curie temperature compared to reference devices fabricated on Pt. © 2012 Elsevier B.V. All rights reserved.

  15. Controlled Fabrication of Metallic Electrodes with Atomic Separation

    DEFF Research Database (Denmark)

    Morpurgo, A.; Robinson, D.; M. Marcus, C.

    1998-01-01

    We report a new technique for fabricating metallic electrodes on insulating substrates with separations on the 1 nm scale. The fabrication technique, which combines lithographic and electrochemical methods, provides atomic resolution without requiring sophisticated instrumentation. The process is...

  16. Fabrication of high aspect ratio micro electrode by using EDM

    International Nuclear Information System (INIS)

    Elsiti, Nagwa Mejid; Noordin, M.Y.; Alkali, Adam Umar

    2016-01-01

    The electrical discharge machining (EDM) process inherits characteristics that make it a promising micro-machining technique. Micro electrical discharge machining (micro- EDM) is a derived form of EDM, which is commonly used to manufacture micro and miniature parts and components by using the conventional electrical discharge machining fundamentals. Moving block electro discharge grinding (Moving BEDG) is one of the processes that can be used to fabricate micro-electrode. In this study, a conventional die sinker EDM machine was used to fabricate the micro-electrode. Modifications are made to the moving BEDG, which include changing the direction of movements and control gap in one electrode. Consequently current was controlled due to the use of roughing, semi-finishing and finishing parameters. Finally, a high aspect ratio micro-electrode with a diameter of 110.49μm and length of 6000μm was fabricated. (paper)

  17. High Speed, Low Cost Fabrication of Gas Diffusion Electrodes for Membrane Electrode Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    DeCastro, Emory S.; Tsou, Yu-Min; Liu, Zhenyu

    2013-09-20

    Fabrication of membrane electrode assemblies (MEAs) depends on creating inks or pastes of catalyst and binder, and applying this suspension to either the membrane (catalyst coated membrane) or gas diffusion media (gas diffusion electrode) and respectively laminating either gas diffusion media or gas diffusion electrodes (GDEs) to the membrane. One barrier to cost effective fabrication for either of these approaches is the development of stable and consistent suspensions. This program investigated the fundamental forces that destabilize the suspensions and developed innovative approaches to create new, highly stable formulations. These more concentrated formulations needed fewer application passes, could be coated over longer and wider substrates, and resulted in significantly lower coating defects. In March of 2012 BASF Fuel Cell released a new high temperature product based on these advances, whereby our customers received higher performing, more uniform MEAs resulting in higher stack build yields. Furthermore, these new materials resulted in an “instant” increase in capacity due to higher product yields and material throughput. Although not part of the original scope of this program, these new formulations have also led us to materials that demonstrate equivalent performance with 30% less precious metal in the anode. This program has achieved two key milestones in DOE’s Manufacturing R&D program: demonstration of processes for direct coating of electrodes and continuous in-line measurement for component fabrication.

  18. A Fabrication Technique for Nano-gap Electrodes by Atomic Force Microscopy Nano lithography

    International Nuclear Information System (INIS)

    Jalal Rouhi; Shahrom Mahmud; Hutagalung, S.D.; Kakooei, S.

    2011-01-01

    A simple technique is introduced for fabrication of nano-gap electrodes by using nano-oxidation atomic force microscopy (AFM) lithography with a Cr/ Pt coated silicon tip. AFM local anodic oxidation was performed on silicon-on-insulator (SOI) surfaces by optimization of desired conditions to control process in contact mode. Silicon electrodes with gaps of sub 31 nm were fabricated by nano-oxidation method. This technique which is simple, controllable, inexpensive and fast is capable of fabricating nano-gap structures. The current-voltage measurements (I-V) of the electrodes demonstrated very good insulating characteristics. The results show that silicon electrodes have a great potential for fabrication of single molecule transistors (SMT), single electron transistors (SET) and the other nano electronic devices. (author)

  19. Spinal cord electrophysiology II: extracellular suction electrode fabrication.

    Science.gov (United States)

    Garudadri, Suresh; Gallarda, Benjamin; Pfaff, Samuel; Alaynick, William

    2011-02-20

    Development of neural circuitries and locomotion can be studied using neonatal rodent spinal cord central pattern generator (CPG) behavior. We demonstrate a method to fabricate suction electrodes that are used to examine CPG activity, or fictive locomotion, in dissected rodent spinal cords. The rodent spinal cords are placed in artificial cerebrospinal fluid and the ventral roots are drawn into the suction electrode. The electrode is constructed by modifying a commercially available suction electrode. A heavier silver wire is used instead of the standard wire given by the commercially available electrode. The glass tip on the commercial electrode is replaced with a plastic tip for increased durability. We prepare hand drawn electrodes and electrodes made from specific sizes of tubing, allowing consistency and reproducibility. Data is collected using an amplifier and neurogram acquisition software. Recordings are performed on an air table within a Faraday cage to prevent mechanical and electrical interference, respectively.

  20. Fabrication of Dry Electrode for Recording Bio-potentials

    International Nuclear Information System (INIS)

    Wang Yu; Yang Jian-Hong; Guo Kai; Pei Wei-Hua; Gui Qiang; Li Xiao-Qian; Chen Hong-Da

    2011-01-01

    Development of minimally invasive dry electrodes for recording biopotentials is presented. The detailed fabrication process is outlined. A dry electrode is formed by a number of microneedles. The lengths of the microneedles are about 150μm and the diameters are about 50μm. The tips of the microneedles are sharp enough to penetrate into the skin. The silver/silver chloride is grown on microneedle arrays and demonstrates good character. The electrocardiogram shows that the dry electrode is suitable for recording biopotentials. (general)

  1. Single-step fabrication of electrodes with controlled nanostructured surface roughness using optically-induced electrodeposition

    Science.gov (United States)

    Liu, N.; Li, M.; Liu, L.; Yang, Y.; Mai, J.; Pu, H.; Sun, Y.; Li, W. J.

    2018-02-01

    The customized fabrication of microelectrodes from gold nanoparticles (AuNPs) has attracted much attention due to their numerous applications in chemistry and biomedical engineering, such as for surface-enhanced Raman spectroscopy (SERS) and as catalyst sites for electrochemistry. Herein, we present a novel optically-induced electrodeposition (OED) method for rapidly fabricating gold electrodes which are also surface-modified with nanoparticles in one single step. The electrodeposition mechanism, with respect to the applied AC voltage signal and the elapsed deposition time, on the resulting morphology and particle sizes was investigated. The results from SEM and AFM analysis demonstrated that 80-200 nm gold particles can be formed on the surface of the gold electrodes. Simultaneously, both the size of the nanoparticles and the roughness of the fabricated electrodes can be regulated by the deposition time. Compared to state-of-the-art methods for fabricating microelectrodes with AuNPs, such as nano-seed-mediated growth and conventional electrodeposition, this OED technique has several advantages including: (1) electrode fabrication and surface modification using nanoparticles are completed in a single step, eliminating the need for prefabricating micro electrodes; (2) the patterning of electrodes is defined using a digitally-customized, projected optical image rather than using fixed physical masks; and (3) both the fabrication and surface modification processes are rapid, and the entire fabrication process only requires less than 6 s.

  2. Design, fabrication and skin-electrode contact analysis of polymer microneedle-based ECG electrodes

    Science.gov (United States)

    O'Mahony, Conor; Grygoryev, Konstantin; Ciarlone, Antonio; Giannoni, Giuseppe; Kenthao, Anan; Galvin, Paul

    2016-08-01

    Microneedle-based ‘dry’ electrodes have immense potential for use in diagnostic procedures such as electrocardiography (ECG) analysis, as they eliminate several of the drawbacks associated with the conventional ‘wet’ electrodes currently used for physiological signal recording. To be commercially successful in such a competitive market, it is essential that dry electrodes are manufacturable in high volumes and at low cost. In addition, the topographical nature of these emerging devices means that electrode performance is likely to be highly dependent on the quality of the skin-electrode contact. This paper presents a low-cost, wafer-level micromoulding technology for the fabrication of polymeric ECG electrodes that use microneedle structures to make a direct electrical contact to the body. The double-sided moulding process can be used to eliminate post-process via creation and wafer dicing steps. In addition, measurement techniques have been developed to characterize the skin-electrode contact force. We perform the first analysis of signal-to-noise ratio dependency on contact force, and show that although microneedle-based electrodes can outperform conventional gel electrodes, the quality of ECG recordings is significantly dependent on temporal and mechanical aspects of the skin-electrode interface.

  3. Design, fabrication and skin-electrode contact analysis of polymer microneedle-based ECG electrodes

    International Nuclear Information System (INIS)

    O’Mahony, Conor; Grygoryev, Konstantin; Ciarlone, Antonio; Giannoni, Giuseppe; Kenthao, Anan; Galvin, Paul

    2016-01-01

    Microneedle-based ‘dry’ electrodes have immense potential for use in diagnostic procedures such as electrocardiography (ECG) analysis, as they eliminate several of the drawbacks associated with the conventional ‘wet’ electrodes currently used for physiological signal recording. To be commercially successful in such a competitive market, it is essential that dry electrodes are manufacturable in high volumes and at low cost. In addition, the topographical nature of these emerging devices means that electrode performance is likely to be highly dependent on the quality of the skin-electrode contact.This paper presents a low-cost, wafer-level micromoulding technology for the fabrication of polymeric ECG electrodes that use microneedle structures to make a direct electrical contact to the body. The double-sided moulding process can be used to eliminate post-process via creation and wafer dicing steps. In addition, measurement techniques have been developed to characterize the skin-electrode contact force. We perform the first analysis of signal-to-noise ratio dependency on contact force, and show that although microneedle-based electrodes can outperform conventional gel electrodes, the quality of ECG recordings is significantly dependent on temporal and mechanical aspects of the skin-electrode interface. (paper)

  4. Fabrication of dissimilar metal electrodes with nanometer interelectrode distance for molecular electronic device characterization

    International Nuclear Information System (INIS)

    Guillorn, Michael A.; Carr, Dustin W.; Tiberio, Richard C.; Greenbaum, Elias; Simpson, Michael L.

    2000-01-01

    We report a versatile process for the fabrication of dissimilar metal electrodes with a minimum interelectrode distance of less than 6 nm using electron beam lithography and liftoff pattern transfer. This technique provides a controllable and reproducible method for creating structures suited for the electrical characterization of asymmetric molecules for molecular electronics applications. Electrode structures employing pairs of Au electrodes and non-Au electrodes were fabricated in three different patterns. Parallel electrode structures 300 μm long with interelectrode distances as low as 10 nm, 75 nm wide electrode pairs with interelectrode distances less than 6 nm, and a multiterminal electrode structure with reproducible interelectrode distances of 8 nm were realized using this technique. The processing issues associated with the fabrication of these structures are discussed along with the intended application of these devices. (c) 2000 American Vacuum Society

  5. 3D direct writing fabrication of electrodes for electrochemical storage devices

    Science.gov (United States)

    Wei, Min; Zhang, Feng; Wang, Wei; Alexandridis, Paschalis; Zhou, Chi; Wu, Gang

    2017-06-01

    Among different printing techniques, direct ink writing is commonly used to fabricate 3D battery and supercapacitor electrodes. The major advantages of using the direct ink writing include effectively building 3D structure for energy storage devices and providing higher power density and higher energy density than traditional techniques due to the increased surface area of electrode. Nevertheless, direct ink writing has high standards for the printing inks, which requires high viscosity, high yield stress under shear and compression, and well-controlled viscoelasticity. Recently, a number of 3D-printed energy storage devices have been reported, and it is very important to understand the printing process and the ink preparation process for further material design and technology development. We discussed current progress of direct ink writing technologies by using various electrode materials including carbon nanotube-based material, graphene-based material, LTO (Li4Ti5O12), LFP (LiFePO4), LiMn1-xFexPO4, and Zn-based metallic oxide. Based on achieve electrochemical performance, these 3D-printed devices deliver performance comparable to the energy storage device fabricated using traditional methods still leaving large room for further improvement. Finally, perspectives are provided on the potential future direction of 3D printing for all solid-state electrochemical energy storage devices.

  6. Fabrication of interdigitated electrodes by inkjet printing technology for apllication in ammonia sensing

    International Nuclear Information System (INIS)

    Le, Duy Dam; Nguyen, Thi Ngoc Nhien; Doan, Duc Chanh Tin; Dang, Thi My Dung; Dang, Mau Chien

    2016-01-01

    In this paper interdigitated electrodes for gas sensors were fabricated by inkjet printing technology. Silver electrodes were inkjet printed on Si/SiO 2 substrates instead of traditional photolithography method. The inkjet printing parameters to obtain desired dimensions, thickness of the electrodes and distance between the interdigitated electrodes were optimized in this study. The fabricated interdigitated silver electrodes were tested for application in ammonia gas sensors. Conductive polyaniline (PANI) layer was coated on the silver interdigitated electrodes by drop-coating. Ammonia detection of the PANI-coated chips was characterized with a gas measurement system in which humidity and ammonia concentrations were well-controlled. The electrical conductivity of the PANI films coated on the electrodes was measured when the PANI films were exposed to nitrogen and ammonia. The conductivity of the PANI films decreased significantly due to the deprotonation process of PANI upon ammonia expodure. The recovery time was about 15 min by heating up the polymer chip at 60 °C. The results showed that the silver electrodes fabricated by inkjet printing technique could be used as a sensor platform for ammonia detection. (paper)

  7. Corona Glow Discharge Plasma Treatment for Hidrophylicity Improvement of Polyester and Cotton Fabrics

    Science.gov (United States)

    Susan, A. I.; Widodo, M.; Nur, M.

    2017-07-01

    The effects of irradiation by a corona glow discharge plasma on hidrophylicity properties of polyester and cotton fabrics were investigated. We used a corona glow discharge plasma reactor with multiple points to plane electrodes, which was generated by a high voltage DC. Factors that affect the hidrophylicity properties were identified and evaluated as functions of irradiation parameters, which include duration of treatment, distance between electrodes, and bias voltage. It was readily observed from SEM examinations that plasma changed the surface morphology of both polyester and cotton fibers, giving result to an increased roughness to both of them. Results also showed that the hidrophylicityof polyester and cotton fabrics improved by the treatment, which is proportional to the time of treatment and voltage, but inversely proportional to the distance between electrodes. Time of treatment that provided the optimum enhancement of hidrophylicity for cotton is 15 minutes which improved the wetting time from 8.16 seconds to 1.26 seconds. For polyester, it took 15 minutes of irradiation time to improve the wetting time from 7340 seconds to 2905 seconds. The optimum distance between electrodes for both fabrics in this study was found to be 2 cm. Further analysis showed that the improved hidrophylicity properties is due to the creation of surface radicals by free radicals in the plasma leading to the formation of new water-attracting functional groups on the fiber surface.

  8. A Metal Matrix CNTS Modified Electrode Fabricated Using Micromachining-Based Implantation Method for Improving Sensitivity and Stability

    Directory of Open Access Journals (Sweden)

    Yan Wang

    2013-01-01

    Full Text Available The metal matrix carbon nanotubes modified electrode (MCME has been fabricated by a novel process involving preparation of carbon nanotubes (CNTs/polyimide (PI composite film, wet, etching, sputtering, electroplating, and wet-etch releasing. Pretreated CNTs are dispersed in PI by mechanical ball milling and then CNTs solution is spin-coated on the substrate. The CNTs/PI composite film is etched away a layer of PI to expose tips of CNTs using buffering solution. These exposed tips of CNTs are covered by metal particles in sputtering process as metal seed layer, followed by metal supporting film formed by electroplating. The MCME is obtained after releasing PI film from the metal supporting film. The MCME shows well morphology of uniform distributional protruding tips of CNTs and increased electron transfer efficiency with strong bonding connection between CNTs and metal matrix, which greatly improves sensitivity and stability of the MCME. The oxidation peak of the MCME in cyclic voltammeter (CV test is 1.7 times more than that of CNTs suspension spin-coated metal electrode (SCME. The decline of peak current of the MCME after fifty cycles is only 1.8% much less than 67% of the SCME. Better sensitivity and stability may be helpful for CNTs modified electrodes wide application for trace test of many special materials.

  9. Fabrication and performance of the Pt-Ru/Ni-P/FTO counter electrode for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Ma, Huanmei; Tian, Jianhua; Bai, Shuming; Liu, Xiaodong; Shan, Zhongqiang

    2014-01-01

    Highlights: • Pt-Ru alloy acts as the catalyst of counter electrodes in dye-sensitized solar cell. • Ni-P/FTO (fluorine-doped SnO 2 ) substrate is prepared by electroless plating method. • Pt-Ru/Ni-P/FTO counter electrode is fabricated by electrodeposition method. • The Ni-P sublayer improves the conductivity and light reflectance of FTO substrate. • The cell with Pt-Ru/Ni-P/FTO counter electrode exhibits an improved efficiency. - Abstract: In this paper, Pt-Ru/Ni-P/FTO has been designed and fabricated as the counter electrode for dye-sensitized solar cells. The Pt-Ru catalytic layer and Ni-P alloy sublayer are prepared by traditional electrodeposition method and a simple electroless plating method, respectively, and the preparation conditions have been optimized. The scanning electron microscopy (SEM) images show that the Pt-Ru particles are evenly distributed on FTO and Ni-P/FTO substrate. By X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), it is confirmed that the Ni-P amorphous alloy has been formed, and no other compounds involved Ni and P have been formed. The electrochemical measurement results reveal that the Pt-Ru electrode has higher catalytic activity and stability towards tri-iodine reduction reaction than Pt electrode in the organic medium. The Ni-P sublayer deposited on FTO glasses increases the conductivity and light-reflection ability of the counter electrode, and this contributes to lowering the inner resistance of the cell and improving the light utilization efficiency. Through the photovoltaic test, it is confirmed that the energy conversion efficiency of a single DSSC with the optimized Pt-Ru/Ni-P/FTO counter electrode is increased by 29% compared with that of the cell based on the Pt/FTO counter electrode under the same conditions

  10. Hydrothermally Activated Graphene Fiber Fabrics for Textile Electrodes of Supercapacitors.

    Science.gov (United States)

    Li, Zheng; Huang, Tieqi; Gao, Weiwei; Xu, Zhen; Chang, Dan; Zhang, Chunxiao; Gao, Chao

    2017-11-28

    Carbon textiles are promising electrode materials for wearable energy storage devices owing to their conductive, flexible, and lightweight features. However, there still lacks a perfect choice for high-performance carbon textile electrodes with sufficient electrochemical activity. Graphene fiber fabrics (GFFs) are newly discovered carbon textiles, exhibiting various attractive properties, especially a large variability on the microstructure. Here we report the fabrication of hierarchical GFFs with significantly enlarged specific surface area using a hydrothermal activation strategy. By carefully optimize the activation process, the hydrothermally activated graphene fiber fabrics (HAGFFs) could achieve an areal capacitance of 1060 mF cm -2 in a very thin thickness (150 μm) and the capacitance is easily magnified by overlaying several layers of HAGFFs, even up to a record value of 7398 mF cm -2 . Meanwhile, a good rate capability and a long cycle life are also attained. As compared with other carbon textiles, including the commercial carbon fiber cloths, our HAGFFs present much better capacitive performance. Therefore, the mechanically stable, flexible, conductive, and highly active HAGFFs have provided an option for high-performance textile electrodes.

  11. High-speed micro electrode tool fabrication by a twin-wire EDM system

    International Nuclear Information System (INIS)

    Sheu, Dong-Yea

    2008-01-01

    This paper describes a new machining process which combines twin-electro-wire together with two electro discharge circuits to rapidly fabricate micro electrode tools. The results show that transistor electro discharge and RC electro discharge circuits coexist to fabricate micro tools with rough and finish machining both on the same machine. Compared to conventional wire electro discharge grinding (WEDG) technology, a twin-wire EDM system that combines rough and finish machining into one process allows the efficient fabrication of micro tools. This high-speed micro tool fabrication process can be applied not only to micro electrode machining but also to micro punching tool and micro probing tips machining

  12. Fabrication and electrical properties of single wall carbon nanotube channel and graphene electrode based transistors arrays

    Energy Technology Data Exchange (ETDEWEB)

    Seo, M.; Kim, H.; Kim, Y. H.; Yun, H.; McAllister, K.; Lee, S. W., E-mail: leesw@konkuk.ac.kr [Division of Quantum Phases and Devices, School of Physics, Konkuk University, Seoul 143-701 (Korea, Republic of); Na, J.; Kim, G. T. [School of Electrical Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Lee, B. J.; Kim, J. J.; Jeong, G. H. [Department of Nano Applied Engineering, Kangwon National University, Kangwon-do 200-701 (Korea, Republic of); Lee, I.; Kim, K. S. [Department of Physics and Graphene Research Institute, Sejong University, Seoul 143-747 (Korea, Republic of)

    2015-07-20

    A transistor structure composed of an individual single-walled carbon nanotube (SWNT) channel with a graphene electrode was demonstrated. The integrated arrays of transistor devices were prepared by transferring patterned graphene electrode patterns on top of the aligned SWNT along one direction. Both single and multi layer graphene were used for the electrode materials; typical p-type transistor and Schottky diode behavior were observed, respectively. Based on our fabrication method and device performances, several issues are suggested and discussed to improve the device reliability and finally to realize all carbon based future electronic systems.

  13. Fabrication and properties of meso-macroporous electrodes screen-printed from mesoporous titania nanoparticles for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Ma Liang; Liu Min; Peng Tianyou; Fan Ke; Lu Lanlan; Dai Ke

    2009-01-01

    A meso-macroporous TiO 2 film electrode was fabricated by using mesoporous TiO 2 (m-TiO 2 ) nanoparticles through a screen-printing technique in order to efficiently control the main fabrication step of dye-sensitized solar cells (DSSCs). The qualities of the screen-printed m-TiO 2 films were characterized by means of spectroscopy, electron microscopy, nitrogen adsorption-desorption and photoelectrochemical measurements. Under the optimal paste composition and printing conditions, the DSSC based on the meso-macroporous m-TiO 2 film electrode exhibits an energy conversion efficiency of 4.14%, which is improved by 1.70% in comparison with DSSC made with commercially available nonporous TiO 2 nanoparticles (P25, Degussa) electrode printed with a similar paste composition. The meso-macroporous structure within the m-TiO 2 film is of great benefit to the dye adsorption, light absorption and the electrolyte transportation, and then to the improvement of the overall energy conversion efficiency of DSSC.

  14. Factors in electrode fabrication for performance enhancement of anion exchange membrane water electrolysis

    Science.gov (United States)

    Cho, Min Kyung; Park, Hee-Young; Choe, Seunghoe; Yoo, Sung Jong; Kim, Jin Young; Kim, Hyoung-Juhn; Henkensmeier, Dirk; Lee, So Young; Sung, Yung-Eun; Park, Hyun S.; Jang, Jong Hyun

    2017-04-01

    To improve the cell performance for alkaline anion exchange membrane water electrolysis (AEMWE), the effects of the amount of polytetrafluoroethylene (PTFE) non-ionomeric binder in the anode and the hot-pressing conditions during the fabrication of the membrane electrode assemblies (MEAs) on cell performances are studied. The electrochemical impedance data indicates that hot-pressing at 50 °C for 1 min during MEA construction can reduce the polarization resistance of AEMWE by ∼12%, and increase the initial water electrolysis current density at 1.8 V (from 195 to 243 mA cm-2). The electrochemical polarization and impedance results also suggest that the AEMWE performance is significantly affected by the content of PTFE binder in the anode electrode, and the optimal content is found to be 9 wt% between 5 and 20 wt%. The AEMWE device fabricated with the optimized parameters exhibits good water splitting performance (299 mA cm-2 at 1.8 V) without noticeable degradation in voltage cycling operations.

  15. Plasma assisted fabrication of multi-layer graphene/nickel hybrid film as enhanced micro-supercapacitor electrodes

    Science.gov (United States)

    Ding, Q.; Li, W. L.; Zhao, W. L.; Wang, J. Y.; Xing, Y. P.; Li, X.; Xue, T.; Qi, W.; Zhang, K. L.; Yang, Z. C.; Zhao, J. S.

    2017-03-01

    A facile synthesis strategy has been developed for fabricating multi-layer graphene/nickel hybrid film as micro-supercapacitor electrodes by using plasma enhanced chemical vapor deposition. The as-presented method is advantageous for rapid graphene growth at relatively low temperature of 650 °C. In addition, after pre-treating for the as-deposited nickel film by using argon plasma bombardment, the surface-to-volume ratio of graphene film on the treated nickel substrate is effectively increased by the increasing of surface roughness. This is demonstrated by the characterization results from transmission electron microscopy, scanning electron microscope and atomic force microscopy. Moreover, the electrochemical performance of the resultant graphene/nickel hybrid film as micro-supercapacitor working electrode was investigated by cyclic voltammetry and galvanostatic charge/discharge measurements. It was found that the increase of the surface-to-volume ratio of graphene/nickel hybrid film improved the specific capacitance of 10 times as the working electrode of micro-supercapacitor. Finally, by using comb columnar shadow mask pattern, the micro-supercapacitor full cell device was fabricated. The electrochemical performance measurements of the micro-supercapacitor devices indicate that the method presented in this study provides an effective way to fabricate micro-supercapacitor device with enhanced energy storage property.

  16. Fabrication of a three-electrode battery using hydrogen-storage materials

    Science.gov (United States)

    Roh, Chi-Woo; Seo, Jung-Yong; Moon, Hyung-Seok; Park, Hyun-Young; Nam, Na-Yun; Cho, Sung Min; Yoo, Pil J.; Chung, Chan-Hwa

    2015-04-01

    In this study, an energy storage device using a three-electrode battery is fabricated. The charging process takes place during electrolysis of the alkaline electrolyte where hydrogen is stored at the palladium bifunctional electrode. Upon discharging, power is generated by operating the alkaline fuel cell using hydrogen which is accumulated in the palladium hydride bifunctional electrode during the charging process. The bifunctional palladium electrode is prepared by electrodeposition using a hydrogen bubble template followed by a galvanic displacement reaction of platinum in order to functionalize the electrode to work not only as a hydrogen storage material but also as an anode in a fuel cell. This bifunctional electrode has a sufficiently high surface area and the platinum catalyst populates at the surface of electrode to operate the fuel cell. The charging and discharging performance of the three-electrode battery are characterized. In addition, the cycle stability is investigated.

  17. Fabrication of Dye-Sensitized Solar Cells with a 3D Nanostructured Electrode

    Directory of Open Access Journals (Sweden)

    Guo-Yang Chen

    2010-01-01

    Full Text Available A novel Dye-Sensitized Solar Cell (DSSC scheme for better solar conversion efficiency is proposed. The distinctive characteristic of this novel scheme is that the conventional thin film electrode is replaced by a 3D nanostructured indium tin oxide (ITO electrode, which was fabricated using RF magnetron sputtering with an anodic aluminum oxide (AAO template. The template was prepared by immersing the barrier-layer side of an AAO film into a 30 wt% phosphoric acid solution to produce a contrasting surface. RF magnetron sputtering was then used to deposit a 3D nanostructured ITO thin film on the template. The crystallinity and conductivity of the 3D ITO films were further enhanced by annealing. Titanium dioxide nanoparticles were electrophoretically deposited on the 3D ITO film after which the proposed DSSC was formed by filling vacant spaces in the 3D nanostructured ITO electrode with dye. The measured solar conversion efficiency of the device was 0.125%. It presents a 5-fold improvement over that of conventional spin-coated TiO2 film electrode DSSCs.

  18. Fabrication and Characterization of 3D-Printed Highly-Porous 3D LiFePO₄ Electrodes by Low Temperature Direct Writing Process.

    Science.gov (United States)

    Liu, Changyong; Cheng, Xingxing; Li, Bohan; Chen, Zhangwei; Mi, Shengli; Lao, Changshi

    2017-08-10

    LiFePO₄ (LFP) is a promising cathode material for lithium-ion batteries. In this study, low temperature direct writing (LTDW)-based 3D printing was used to fabricate three-dimensional (3D) LFP electrodes for the first time. LFP inks were deposited into a low temperature chamber and solidified to maintain the shape and mechanical integrity of the printed features. The printed LFP electrodes were then freeze-dried to remove the solvents so that highly-porous architectures in the electrodes were obtained. LFP inks capable of freezing at low temperature was developed by adding 1,4 dioxane as a freezing agent. The rheological behavior of the prepared LFP inks was measured and appropriate compositions and ratios were selected. A LTDW machine was developed to print the electrodes. The printing parameters were optimized and the printing accuracy was characterized. Results showed that LTDW can effectively maintain the shape and mechanical integrity during the printing process. The microstructure, pore size and distribution of the printed LFP electrodes was characterized. In comparison with conventional room temperature direct ink writing process, improved pore volume and porosity can be obtained using the LTDW process. The electrochemical performance of LTDW-fabricated LFP electrodes and conventional roller-coated electrodes were conducted and compared. Results showed that the porous structure that existed in the printed electrodes can greatly improve the rate performance of LFP electrodes.

  19. High-resolution and high-conductive electrode fabrication on a low thermal resistance flexible substrate

    International Nuclear Information System (INIS)

    Kang, Bongchul; Kno, Jinsung; Yang, Minyang

    2011-01-01

    Processes based on the liquid-state pattern transfer, like inkjet printing, have critical limitations including low resolution and low electrical conductivity when fabricating electrodes on low thermal resistance flexible substrates such as polyethylene terephthalate (PET). Those are due to the nonlinear transfer mechanism and the limit of the sintering temperature. Although the laser direct curing (LDC) of metallic inks is an alternative process to improve the resolution, it is also associated with the disadvantages of causing thermal damage to the polymer substrate. This paper suggests the laser induced pattern adhesion transfer method to fabricate electrodes of both high electrical conductivity and high resolution on a PET substrate. First, solid patterns are cost-effectively created by the LDC of the organometallic silver ink on a glass that is optically and thermally stable. The solid patterns sintered on the glass are transferred to the PET substrate by the photo-thermally generated adhesion force of the substrate. Therefore, we achieved electrodes with a minimum line width of 10 µm and a specific resistance of 3.6 μΩcm on the PET substrate. The patterns also showed high mechanical reliability

  20. High-resolution and high-conductive electrode fabrication on a low thermal resistance flexible substrate

    Science.gov (United States)

    Kang, Bongchul; Kno, Jinsung; Yang, Minyang

    2011-07-01

    Processes based on the liquid-state pattern transfer, like inkjet printing, have critical limitations including low resolution and low electrical conductivity when fabricating electrodes on low thermal resistance flexible substrates such as polyethylene terephthalate (PET). Those are due to the nonlinear transfer mechanism and the limit of the sintering temperature. Although the laser direct curing (LDC) of metallic inks is an alternative process to improve the resolution, it is also associated with the disadvantages of causing thermal damage to the polymer substrate. This paper suggests the laser induced pattern adhesion transfer method to fabricate electrodes of both high electrical conductivity and high resolution on a PET substrate. First, solid patterns are cost-effectively created by the LDC of the organometallic silver ink on a glass that is optically and thermally stable. The solid patterns sintered on the glass are transferred to the PET substrate by the photo-thermally generated adhesion force of the substrate. Therefore, we achieved electrodes with a minimum line width of 10 µm and a specific resistance of 3.6 μΩcm on the PET substrate. The patterns also showed high mechanical reliability.

  1. Fabrication of combinatorial nm-planar electrode array for high throughput evaluation of organic semiconductors

    International Nuclear Information System (INIS)

    Haemori, M.; Edura, T.; Tsutsui, K.; Itaka, K.; Wada, Y.; Koinuma, H.

    2006-01-01

    We have fabricated a combinatorial nm-planar electrode array by using photolithography and chemical mechanical polishing processes for high throughput electrical evaluation of organic devices. Sub-nm precision was achieved with respect to the average level difference between each pair of electrodes and a dielectric layer. The insulating property between the electrodes is high enough to measure I-V characteristics of organic semiconductors. Bottom-contact field-effect-transistors (FETs) of pentacene were fabricated on this electrode array by use of molecular beam epitaxy. It was demonstrated that the array could be used as a pre-patterned device substrate for high throughput screening of the electrical properties of organic semiconductors

  2. High performance fuel electrodes fabricated by electroless plating of copper on BaZr0.8Ce0.1Y0.1O3-δ proton-conducting ceramic

    Science.gov (United States)

    Patki, Neil S.; Way, J. Douglas; Ricote, Sandrine

    2017-10-01

    The stability of copper at high temperatures in reducing and hydrocarbon-containing atmospheres makes it a good candidate for fabricating fuel electrodes on proton-conducting ceramics, such as BaZr0.9-xCexY0.1O3-δ (BZCY). In this work, the electrochemical performance of Cu-based electrodes fabricated by electroless plating (ELP) on BaZr0.8Ce0.1Y0.1O3-δ is studied with impedance spectroscopy. Three activation catalysts (Pd, Ru, and Cu) are investigated and ELP is compared to a commercial Cu paste (ESL 2312-G) for electrode fabrication. The area specific resistances (ASR) for Pd, Ru, and Cu activations at 700 °C in moist 5% H2 in Ar are 2.1, 3.2, and 13.4 Ω cm2, respectively. That is a 1-2 orders of magnitude improvement over the commercial Cu paste (192 Ω cm2). Furthermore, the ASR has contributions from electrode processes and charge transfer at the electrode/electrolyte interface. Additionally, the morphology of the as-fabricated electrode is unaffected by the activation catalyst. However, heat treatment at 750 °C in H2 for 24 h leads to sintering and large reorganization of the electrode fabricated with Cu activation (micron sized pores seen in the tested sample), while Pd and Ru activations are immune to such reorganization. Thus, Pd and Ru are identified as candidates for future work with improvements to charge transfer required for the former, and better electrode processes required for the latter.

  3. Fabrication of 3D polypyrrole microstructures and their utilization as electrodes in supercapacitors

    Science.gov (United States)

    Ho, Vinh; Zhou, Cheng; Kulinsky, Lawrence; Madou, Marc

    2013-12-01

    We present a novel fabrication method for constructing three-dimensional (3D) conducting microstructures based on the controlled-growth of electrodeposited polypyrrole (PPy) within a lithographically patterned photoresist layer. PPy thin films, post arrays, suspended planes supported by post arrays and multi-layered PPy structures were fabricated. The performance of supercapacitors based on 3D PPy electrodes doped with dodecylbenzene sulfonate (DBS-) and perchlorate (ClO4-) anions was studied using cyclic voltammetry and galvanostatic charge/discharge tests. The highest specific capacitance obtained from the multi-layered PPy(ClO4) electrodes was 401 ± 18 mF cm-2, which is roughly twice as high as the highest specific capacitance of PPy-based supercapacitor reported thus far. The increase in capacitance is the result of higher surface area per unit footprint achieved through the fabrication of multi-layered 3D electrodes.

  4. Carbon nanofibers grown on activated carbon fiber fabrics as electrode of supercapacitors

    International Nuclear Information System (INIS)

    Ko, T-H; Hung, K-H; Tzeng, S-S; Shen, J-W; Hung, C-H

    2007-01-01

    Carbon nanofibers (CNFs) were grown directly on activated carbon fiber fabric (ACFF), which was then used as the electrode of supercapacitors. Cyclic voltammetry and ac impedance were used to characterize the electrochemical properties of ACFF and CNF/ACFF electrodes in both aqueous and organic electrolytes. ACFF electrodes show higher specific capacitance than CNF/ACFF electrodes due to larger specific surface area. However, the spaces formed between the CNFs in the CNF/ACFF electrodes are more easily accessed than the slit-type pores of ACFF, and much higher electrical-double layer capacitance was obtained for CNF/ACFF electrodes

  5. Optimizing the fabrication of carbon nanotube electrode for effective capacitive deionization via electrophoretic deposition strategy

    Directory of Open Access Journals (Sweden)

    Simeng Zhang

    2018-04-01

    Full Text Available In order to obtain superior electrode performances in capacitive deionization (CDI, the electrophoretic deposition (EPD was introduced as a novel strategy for the fabrication of carbon nanotube (CNT electrode. Preparation parameters, including the concentration of slurry components, deposition time and electric field intensity, were mainly investigated and optimized in terms of electrochemical characteristic and desalination performance of the deposited CNT electrode. The SEM image shows that the CNT material was deposited homogeneously on the current collector and a non-crack surface of the electrode was obtained. An optimal preparation condition of the deposited CNT electrode was obtained and specified as the Al (NO33 M concentration of 1.3 × 10−2 mol/L, the deposition time of 30 min and the electric field intensity of 15 V/cm. The obtained electrode performs an increasing specific mass capacitance of 33.36 F/g and specific adsorption capacity of 23.93 mg/g, which are 1.62 and 1.85 times those of the coated electrode respectively. The good performance of the deposited CNT electrode indicates the promising application of the EPD methodology in subsequent research and fabrication of the CDI electrodes for CDI process. Keywords: Carbon nanotube, Water treatment, Desalination, Capacitive deionization, Electrode fabrication, Electrophoretic deposition

  6. Simple approach for the fabrication of screen-printed carbon-based electrode for amperometric detection on microchip electrophoresis

    International Nuclear Information System (INIS)

    Petroni, Jacqueline Marques; Lucca, Bruno Gabriel; Ferreira, Valdir Souza

    2017-01-01

    This paper describes a simple method for the fabrication of screen-printed based electrodes for amperometric detection on microchip electrophoresis (ME) devices. The procedure developed is quite simple and does not require expensive instrumentation or sophisticated protocols commonly employed on the production of amperometric sensors, such as photolithography or sputtering steps. The electrodes were fabricated through manual deposition of home-made conductive carbon ink over patterned acrylic substrate. Morphological structure and electrochemical behavior of the carbon electrodes were investigated by scanning electron microscopy and cyclic voltammetry. The produced amperometric sensors were coupled to polydimethylsiloxane (PDMS) microchips at end-channel configuration in order to evaluate their analytical performance. For this purpose, electrophoretic experiments were carried out using nitrite and ascorbic acid as model analytes. Separation of these substances was successfully performed within 50s with good resolution (R = 1.2) and sensitivities (713.5 pA/μM for nitrite and 255.4 pA/μM for ascorbate). The reproducibility of the fabrication method was evaluated and revealed good values concerning the peak currents obtained (8.7% for nitrite and 9.3% for ascorbate). The electrodes obtained through this method exhibited satisfactory lifetime (ca. 400 runs) over low fabrication cost (less than $1 per piece). The feasibility of the proposed device for real analysis was demonstrated through the determination of nitrite concentration levels in drinking water samples. Based on the results achieved, the approach proposed here shows itself as an interesting alternative for simple fabrication of carbon-based electrodes. Furthermore, the devices indicate great promise for other kind of analytical applications involving ME devices. - Highlights: • A novel method to fabricate screen-printed electrodes for amperometric detection in ME is demonstrated. • No sophisticated

  7. Simple approach for the fabrication of screen-printed carbon-based electrode for amperometric detection on microchip electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Petroni, Jacqueline Marques [Instituto de Química, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, 79074-460 (Brazil); Lucca, Bruno Gabriel, E-mail: bruno.lucca@ufes.br [Departamento de Ciências Naturais, Universidade Federal do Espírito Santo, São Mateus, ES, 29932-540 (Brazil); Ferreira, Valdir Souza [Instituto de Química, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, 79074-460 (Brazil)

    2017-02-15

    This paper describes a simple method for the fabrication of screen-printed based electrodes for amperometric detection on microchip electrophoresis (ME) devices. The procedure developed is quite simple and does not require expensive instrumentation or sophisticated protocols commonly employed on the production of amperometric sensors, such as photolithography or sputtering steps. The electrodes were fabricated through manual deposition of home-made conductive carbon ink over patterned acrylic substrate. Morphological structure and electrochemical behavior of the carbon electrodes were investigated by scanning electron microscopy and cyclic voltammetry. The produced amperometric sensors were coupled to polydimethylsiloxane (PDMS) microchips at end-channel configuration in order to evaluate their analytical performance. For this purpose, electrophoretic experiments were carried out using nitrite and ascorbic acid as model analytes. Separation of these substances was successfully performed within 50s with good resolution (R = 1.2) and sensitivities (713.5 pA/μM for nitrite and 255.4 pA/μM for ascorbate). The reproducibility of the fabrication method was evaluated and revealed good values concerning the peak currents obtained (8.7% for nitrite and 9.3% for ascorbate). The electrodes obtained through this method exhibited satisfactory lifetime (ca. 400 runs) over low fabrication cost (less than $1 per piece). The feasibility of the proposed device for real analysis was demonstrated through the determination of nitrite concentration levels in drinking water samples. Based on the results achieved, the approach proposed here shows itself as an interesting alternative for simple fabrication of carbon-based electrodes. Furthermore, the devices indicate great promise for other kind of analytical applications involving ME devices. - Highlights: • A novel method to fabricate screen-printed electrodes for amperometric detection in ME is demonstrated. • No sophisticated

  8. Method of fabricating electrodes including high-capacity, binder-free anodes for lithium-ion batteries

    Science.gov (United States)

    Ban, Chunmei; Wu, Zhuangchun; Dillon, Anne C.

    2017-01-10

    An electrode (110) is provided that may be used in an electrochemical device (100) such as an energy storage/discharge device, e.g., a lithium-ion battery, or an electrochromic device, e.g., a smart window. Hydrothermal techniques and vacuum filtration methods were applied to fabricate the electrode (110). The electrode (110) includes an active portion (140) that is made up of electrochemically active nanoparticles, with one embodiment utilizing 3d-transition metal oxides to provide the electrochemical capacity of the electrode (110). The active material (140) may include other electrochemical materials, such as silicon, tin, lithium manganese oxide, and lithium iron phosphate. The electrode (110) also includes a matrix or net (170) of electrically conductive nanomaterial that acts to connect and/or bind the active nanoparticles (140) such that no binder material is required in the electrode (110), which allows more active materials (140) to be included to improve energy density and other desirable characteristics of the electrode. The matrix material (170) may take the form of carbon nanotubes, such as single-wall, double-wall, and/or multi-wall nanotubes, and be provided as about 2 to 30 percent weight of the electrode (110) with the rest being the active material (140).

  9. Fabrication of 3D polypyrrole microstructures and their utilization as electrodes in supercapacitors

    International Nuclear Information System (INIS)

    Ho, Vinh; Zhou, Cheng; Kulinsky, Lawrence; Madou, Marc

    2013-01-01

    We present a novel fabrication method for constructing three-dimensional (3D) conducting microstructures based on the controlled-growth of electrodeposited polypyrrole (PPy) within a lithographically patterned photoresist layer. PPy thin films, post arrays, suspended planes supported by post arrays and multi-layered PPy structures were fabricated. The performance of supercapacitors based on 3D PPy electrodes doped with dodecylbenzene sulfonate (DBS − ) and perchlorate (ClO 4 − ) anions was studied using cyclic voltammetry and galvanostatic charge/discharge tests. The highest specific capacitance obtained from the multi-layered PPy(ClO 4 ) electrodes was 401 ± 18 mF cm −2 , which is roughly twice as high as the highest specific capacitance of PPy-based supercapacitor reported thus far. The increase in capacitance is the result of higher surface area per unit footprint achieved through the fabrication of multi-layered 3D electrodes. (paper)

  10. Fabrication of a Microfluidic Device with Boron-doped Diamond Electrodes for Electrochemical Analysis

    International Nuclear Information System (INIS)

    Watanabe, Takeshi; Shibano, Shuhei; Maeda, Hideto; Sugitani, Ai; Katayama, Michinobu; Matsumoto, Yoshinori; Einaga, Yasuaki

    2016-01-01

    A prototype microfluidic device using boron-doped diamond (BDD) electrodes patterned on an alumina chip was designed and fabricated. Electrochemical microfluidic devices have advantages in that the amount of sample required is small, the measurement throughput is high, different functions can be integrated on a single device, and they are highly durable. In using the device for the flow injection analysis of oxalic acid, the application of a brief conditioning step ensured that the reproducibility of the current signal was excellent. Furthermore, the fabricated system also performed as a prototype of “elimination-detection flow system”, in which interfering species are eliminated using “elimination electrodes” prior to the species reaching the “detection electrode”. The fabricated device reduced the current due to interfering species by 78%. Designs of devices to improve this efficiency are also discussed.

  11. Fabrication and characterization of a multidirectional-sensitive contact-enhanced inertial microswitch with a electrophoretic flexible composite fixed electrode

    International Nuclear Information System (INIS)

    Yang, Zhuoqing; Zhu, Bin; Chen, Wenguo; Ding, Guifu; Wang, Hong; Zhao, Xiaolin

    2012-01-01

    A multidirectional-sensitive inertial microswitch with a polymer–metal composite fixed electrode has been designed and fabricated based on surface micromachining in this work. The microswitch mainly consists of a suspended proof mass as a movable electrode and a T-shaped structure on the substrate with maple leaf-like top and cantilevers around the central cylinder as vertical and lateral fixed electrodes. It can sense the applied shock accelerations from any radial direction in the xoy plane and z-axis. The new vertical composite fixed electrode of the switch is completed by electroplating and electrophoretic deposition, which can realize a flexible contact between the electrodes and reduce the bounces and prolong the contact time. As a result, the stability and reliability of the inertial switch could be greatly improved. The fabricated microswitches have been tested and characterized by a standard dropping hammer system. It is shown that the threshold acceleration of the prototype is generally uniform in different sensitive directions in the xoy plane and z-axis, which is about 70 g. The contact time of the microswitch with the composite fixed electrode is ∼110 µs in the vertical direction, which is longer than that (∼65 µs) without a polymer. The test data are in agreement with dynamic finite-element simulation results. (paper)

  12. Fabrication of Polymer Microneedle Electrodes Coated with Nanoporous Parylene

    Science.gov (United States)

    Nishinaka, Yuya; Jun, Rina; Setia Prihandana, Gunawan; Miki, Norihisa

    2013-06-01

    In this study, we demonstrate the fabrication of polymer microneedle electrodes covered with a nanoporous parylene film that can serve as flexible electrodes for a brain-machine interface. In brain wave measurement, the electric impedance of electrodes should be below 10 kΩ at 15 Hz, and the conductive layer needs to be protected to survive its insertion into the stratum corneum. Polymer microneedles can be used as substrates for flexible electrodes, which can compensate for the movement of the skin; however, the adhesion between a conductive metal film, such as a silver film, and a polymer, such as poly(dimethylsiloxane) (PDMS), is weak. Therefore, we coated the electrode surface with a nanoporous parylene film, following the vapor deposition of a silver film. When the porosity of the parylene film is appropriate, it protects the silver film while allowing the electrode to have sufficient conductivity. The porosity can be controlled by adjusting the amount of the parylene dimer used for the deposition or the parylene film thickness. We experimentally verified that a conductive membrane was successfully protected while maintaining a conductivity below 10 kΩ when the thickness of the parylene film was between 25 and 38 nm.

  13. Optimization and fabrication of porous carbon electrodes for Fe/Cr redox flow cells

    Science.gov (United States)

    Jalan, V.; Morriseau, B.; Swette, L.

    1982-01-01

    Negative electrode development for the NASA chromous/ferric Redox battery is reported. The effects of substrate material, gold/lead catalyst composition and loading, and catalyzation procedures on the performance of the chromium electrode were investigated. Three alternative catalyst systems were also examined, and 1/3 square foot size electrodes were fabricated and delivered to NASA at the conclusion of the program.

  14. Fabrication and electrochemical characterization of multi-walled carbon nanotube electrodes for applications to nano-electrochemical sensing

    International Nuclear Information System (INIS)

    Hwang, Sookhyun; Choi, Hyonkwang; Jeon, Minhyon; Vedala, Harindra; Kim, Taehyung; Choi, Wonbong

    2010-01-01

    In this study, we fabricated and electrochemically characterized two types of individual carbon nanotube electrodes: an as-produced multi-walled carbon nanotube (MWNT) electrode and a modified MWNT electrode. As-produced MWNTs were electrically contacted with Au/Ti layers by using nanolithography and RF magnetron sputtering. Open-ended modified MWNT electrodes were fabricated by using a reactive ion etching treatment under an oxygen atmosphere. We also performed cyclic voltammetry measurements to detect aqueous dopamine solutions with different concentrations. We found that an individual MWNT electrode, which had a small effective area, showed good electrochemical performance. The electrocatalytic behavior of the modified electrode, which had 'broken' open ends were better than that of the as-produced electrode with respect to sensitivity. The modified electrode was capable of detecting dopamine at the picomolar level. Therefore, an individual modified MWNT electrode has potential for applications to active components in nanobiosensors.

  15. Fabrication and Optimization of a Nanoporous Platinum Electrode and a Non-enzymatic Glucose Micro-sensor on Silicon

    Directory of Open Access Journals (Sweden)

    Younghun Kim

    2008-10-01

    Full Text Available In this paper, optimal conditions for fabrication of nanoporous platinum (Pt were investigated in order to use it as a sensitive sensing electrode for silicon CMOS integrable non-enzymatic glucose micro-sensor applications. Applied charges, voltages, and temperatures were varied during the electroplating of Pt into the formed nonionic surfactant C16EO8 nano-scaled molds in order to fabricate nanoporous Pt electrodes with large surface roughness factor (RF, uniformity, and reproducibility. The fabricated nanoporous Pt electrodes were characterized using atomic force microscopy (AFM and electrochemical cyclic voltammograms. Optimal electroplating conditions were determined to be an applied charge of 35 mC/mm2, a voltage of -0.12 V, and a temperature of 25 °C, respectively. The optimized nanoporous Pt electrode had an electrochemical RF of 375 and excellent reproducibility. The optimized nanoporous Pt electrode was applied to fabricate non-enzymatic glucose micro-sensor with three electrode systems. The fabricated sensor had a size of 3 mm x 3 mm, air gap of 10 µm, working electrode (WE area of 4.4 mm2, and sensitivity of 37.5 µA•L/mmol•cm2. In addition, it showed large detection range from 0.05 to 30 mmolL-1 and stable recovery responsive to the step changes in glucose concentration.

  16. Fabrication and Characterization of 3D-Printed Highly-Porous 3D LiFePO4 Electrodes by Low Temperature Direct Writing Process

    Directory of Open Access Journals (Sweden)

    Changyong Liu

    2017-08-01

    Full Text Available LiFePO4 (LFP is a promising cathode material for lithium-ion batteries. In this study, low temperature direct writing (LTDW-based 3D printing was used to fabricate three-dimensional (3D LFP electrodes for the first time. LFP inks were deposited into a low temperature chamber and solidified to maintain the shape and mechanical integrity of the printed features. The printed LFP electrodes were then freeze-dried to remove the solvents so that highly-porous architectures in the electrodes were obtained. LFP inks capable of freezing at low temperature was developed by adding 1,4 dioxane as a freezing agent. The rheological behavior of the prepared LFP inks was measured and appropriate compositions and ratios were selected. A LTDW machine was developed to print the electrodes. The printing parameters were optimized and the printing accuracy was characterized. Results showed that LTDW can effectively maintain the shape and mechanical integrity during the printing process. The microstructure, pore size and distribution of the printed LFP electrodes was characterized. In comparison with conventional room temperature direct ink writing process, improved pore volume and porosity can be obtained using the LTDW process. The electrochemical performance of LTDW-fabricated LFP electrodes and conventional roller-coated electrodes were conducted and compared. Results showed that the porous structure that existed in the printed electrodes can greatly improve the rate performance of LFP electrodes.

  17. New Fabrication Method of Three-Electrode System on Cylindrical Capillary Surface as a Flexible Implantable Microneedle

    Science.gov (United States)

    Yang, Zhuoqing; Zhang, Yi; Itoh, Toshihiro; Maeda, Ryutaro

    2013-04-01

    In this present paper, a three-electrode system has been fabricated and integrated on the cylindrical polymer capillary surface by micromachining technology, which could be used as a flexible and implantable microneedle for glucose sensor application in future. A UV lithography system is successfully developed for high resolution alignment on cylindrical substrates. The multilayer alignment exposure for cylindrical polymer capillary substrate is for the first time realized utilizing the lithography system. The ±1 μm alignment precision has been realized on the 330 μm-outer diameter polymer capillary surface, on which the three-electrode structure consisting of two platinum electrodes and one Ag/AgCl reference electrode has been fabricated. The fabricated whole device as microneedle for glucose sensor application has been also characterized in 1 mol/L KCl and 0.02 mol/L K3Fe(CN)6 mix solution. The measured cyclic voltammetry curve shows that the prepared three-electrode system has a good redox property.

  18. Servo scanning 3D micro EDM for array micro cavities using on-machine fabricated tool electrodes

    Science.gov (United States)

    Tong, Hao; Li, Yong; Zhang, Long

    2018-02-01

    Array micro cavities are useful in many fields including in micro molds, optical devices, biochips and so on. Array servo scanning micro electro discharge machining (EDM), using array micro electrodes with simple cross-sectional shape, has the advantage of machining complex 3D micro cavities in batches. In this paper, the machining errors caused by offline-fabricated array micro electrodes are analyzed in particular, and then a machining process of array servo scanning micro EDM is proposed by using on-machine fabricated array micro electrodes. The array micro electrodes are fabricated on-machine by combined procedures including wire electro discharge grinding, array reverse copying and electrode end trimming. Nine-array tool electrodes with Φ80 µm diameter and 600 µm length are obtained. Furthermore, the proposed process is verified by several machining experiments for achieving nine-array hexagonal micro cavities with top side length of 300 µm, bottom side length of 150 µm, and depth of 112 µm or 120 µm. In the experiments, a chip hump accumulates on the electrode tips like the built-up edge in mechanical machining under the conditions of brass workpieces, copper electrodes and the dielectric of deionized water. The accumulated hump can be avoided by replacing the water dielectric by an oil dielectric.

  19. Cochlear Dummy Electrodes for Insertion Training and Research Purposes: Fabrication, Mechanical Characterization, and Experimental Validation

    Directory of Open Access Journals (Sweden)

    Jan-Philipp Kobler

    2015-01-01

    Full Text Available To develop skills sufficient for hearing preservation cochlear implant surgery, surgeons need to perform several electrode insertion trials in ex vivo temporal bones, thereby consuming relatively expensive electrode carriers. The objectives of this study were to evaluate the insertion characteristics of cochlear electrodes in a plastic scala tympani model and to fabricate radio opaque polymer filament dummy electrodes of equivalent mechanical properties. In addition, this study should aid the design and development of new cochlear electrodes. Automated insertion force measurement is a new technique to reproducibly analyze and evaluate the insertion dynamics and mechanical characteristics of an electrode. Mechanical properties of MED-EL’s FLEX28, FLEX24, and FLEX20 electrodes were assessed with the help of an automated insertion tool. Statistical analysis of the overall mechanical behavior of the electrodes and factors influencing the insertion force are discussed. Radio opaque dummy electrodes of comparable characteristics were fabricated based on insertion force measurements. The platinum-iridium wires were replaced by polymer filament to provide sufficient stiffness to the electrodes and to eradicate the metallic artifacts in X-ray and computed tomography (CT images. These low-cost dummy electrodes are cheap alternatives for surgical training and for in vitro, ex vivo, and in vivo research purposes.

  20. Fabrication of lithium titanate/graphene composites with high rate capability as electrode materials for hybrid electrochemical supercapacitors

    International Nuclear Information System (INIS)

    Xue, Rong; Yan, Jingwang; Jiang, Liang; Yi, Baolian

    2015-01-01

    A lithium titanate (Li 4 Ti 5 O 12 )/graphene composite (LTO/graphene) is fabricated with a one-pot sol–gel method. Graphite oxide is dispersed in an aqueous solution of lithium acetate and tetrabutyl titanate followed by heat treatment in H 2 /Ar. The LTO/graphene composite with reduced aggregation and improved homogeneity is investigated as an anode material for electrochemical capacitors. Electron transport is improved by the conductive graphene network in the insulating Li 4 Ti 5 O 12 particles. The charge transfer resistance at the particle/electrolyte interface is reduced from 83.1 Ω to 55.4 Ω. The specific capacity of LTO/graphene composite is 126 mAh g −1 at 20C. The energy density and power density of a hybrid electrochemical supercapacitor with a LTO/graphene negative electrode and an activated carbon positive electrode are 120.8 Wh kg −1 and 1.5 kW kg −1 , respectively, which is comparable to that of conventional electrochemical double layer capacitors (EDLCs). The LTO/graphene composite fabricated by the one-pot sol–gel method is a promising anode material for hybrid electrochemical supercapacitors. - Highlights: • A Li 4 Ti 5 O 12 /graphene composite was fabricated with a one-pot sol–gel method. • The Li 4 Ti 5 O 12 /graphene composite showed a reduced aggregation and an improved homogeneity. • The Li 4 Ti 5 O 12 /graphene based hybrid supercapacitor exhibited higher energy and power densities

  1. Fabrication of gallium hexacyanoferrate modified carbon ionic liquid paste electrode for sensitive determination of hydrogen peroxide and glucose

    International Nuclear Information System (INIS)

    Haghighi, Behzad; Khosravi, Mehdi; Barati, Ali

    2014-01-01

    Gallium hexacyanoferrate (GaHCFe) and graphite powder were homogeneously dispersed into n-dodecylpyridinium hexafluorophosphate and paraffin to fabricate GaHCFe modified carbon ionic liquid paste electrode (CILPE). Mixture experimental design was employed to optimize the fabrication of GaHCFe modified CILPE (GaHCFe-CILPE). A pair of well-defined redox peaks due to the redox reaction of GaHCFe through one-electron process was observed for the fabricated electrode. The fabricated GaHCFe-CILPE exhibited good electrocatalytic activity towards reduction and oxidation of H 2 O 2 . The observed sensitivities for the electrocatalytic oxidation and reduction of H 2 O 2 at the operating potentials of + 0.8 and − 0.2 V were about 13.8 and 18.3 mA M −1 , respectively. The detection limit (S/N = 3) for H 2 O 2 was about 1 μM. Additionally, glucose oxidase (GOx) was immobilized on GaHCFe-CILPE using two methodology, entrapment into Nafion matrix and cross-linking with glutaraldehyde and bovine serum albumin, in order to fabricate glucose biosensor. Linear dynamic rage, sensitivity and detection limit for glucose obtained by the biosensor fabricated using cross-linking methodology were 0.1–6 mM, 0.87 mA M −1 and 30 μM, respectively and better than those obtained (0.2–6 mM, 0.12 mA M −1 and 50 μM) for the biosensor fabricated using entrapment methodology. - Highlights: • Gallium hexacyanoferrate modified carbon ionic liquid paste electrode was fabricated. • Mixture experimental design was used to optimize electrode fabrication. • Response trace plot was used to show the effect of electrode materials on response. • The sensor exhibited electrocatalytic activity towards H 2 O 2 reduction and oxidation. • Glucose biosensor was fabricated by immobilization of glucose oxidase on sensor

  2. Applying a foil queue micro-electrode in micro-EDM to fabricate a 3D micro-structure

    Science.gov (United States)

    Xu, Bin; Guo, Kang; Wu, Xiao-yu; Lei, Jian-guo; Liang, Xiong; Guo, Deng-ji; Ma, Jiang; Cheng, Rong

    2018-05-01

    Applying a 3D micro-electrode in a micro electrical discharge machining (micro-EDM) can fabricate a 3D micro-structure with an up and down reciprocating method. However, this processing method has some shortcomings, such as a low success rate and a complex process for fabrication of 3D micro-electrodes. By focusing on these shortcomings, this paper proposed a novel 3D micro-EDM process based on the foil queue micro-electrode. Firstly, a 3D micro-electrode was discretized into several foil micro-electrodes and these foil micro-electrodes constituted a foil queue micro-electrode. Then, based on the planned process path, foil micro-electrodes were applied in micro-EDM sequentially and the micro-EDM results of each foil micro-electrode were able to superimpose the 3D micro-structure. However, the step effect will occur on the 3D micro-structure surface, which has an adverse effect on the 3D micro-structure. To tackle this problem, this paper proposes to reduce this adverse effect by rounded corner wear at the end of the foil micro-electrode and studies the impact of machining parameters on rounded corner wear and the step effect on the micro-structure surface. Finally, using a wire cutting voltage of 80 V, a current of 0.5 A and a pulse width modulation ratio of 1:4, the foil queue micro-electrode was fabricated by wire electrical discharge machining. Also, using a pulse width of 100 ns, a pulse interval of 200 ns, a voltage of 100 V and workpiece material of 304# stainless steel, the foil queue micro-electrode was applied in micro-EDM for processing of a 3D micro-structure with hemispherical features, which verified the feasibility of this process.

  3. Low-cost optical fabrication of flexible copper electrode via laser-induced reductive sintering and adhesive transfer

    Science.gov (United States)

    Back, Seunghyun; Kang, Bongchul

    2018-02-01

    Fabricating copper electrodes on heat-sensitive polymer films in air is highly challenging owing to the need of expensive copper nanoparticles, rapid oxidation of precursor during sintering, and limitation of sintering temperature to prevent the thermal damage of the polymer film. A laser-induced hybrid process of reductive sintering and adhesive transfer is demonstrated to cost-effectively fabricate copper electrode on a polyethylene film with a thermal resistance below 100 °C. A laser-induced reductive sintering process directly fabricates a high-conductive copper electrode onto a glass donor from copper oxide nanoparticle solution via photo-thermochemical reduction and agglomeration of copper oxide nanoparticles. The sintered copper patterns were transferred in parallel to a heat-sensitive polyethylene film through self-selective surface adhesion of the film, which was generated by the selective laser absorption of the copper pattern. The method reported here could become one of the most important manufacturing technologies for fabricating low-cost wearable and disposable electronics.

  4. Fabrication of Pillar Shaped Electrode Arrays for Artificial Retinal Implants

    Directory of Open Access Journals (Sweden)

    Sung June Kim

    2008-09-01

    Full Text Available Polyimide has been widely applied to neural prosthetic devices, such as the retinal implants, due to its well-known biocompatibility and ability to be micropatterned. However, planar films of polyimide that are typically employed show a limited ability in reducing the distance between electrodes and targeting cell layers, which limits site resolution for effective multi-channel stimulation. In this paper, we report a newly designed device with a pillar structure that more effectively interfaces with the target. Electrode arrays were successfully fabricated and safely implanted inside the rabbit eye in suprachoroidal space. Optical Coherence Tomography (OCT showed well-preserved pillar structures of the electrode without damage. Bipolar stimulation was applied through paired sites (6:1 and the neural responses were successfully recorded from several regions in the visual cortex. Electrically evoked cortical potential by the pillar electrode array stimulation were compared to visual evoked potential under full-field light stimulation.

  5. Fabrication and Characterization of Ultrathin-ring Electrodes for Pseudo-steady-state Amperometric Detection.

    Science.gov (United States)

    Kitazumi, Yuki; Hamamoto, Katsumi; Noda, Tatsuo; Shirai, Osamu; Kano, Kenji

    2015-01-01

    The fabrication of ultrathin-ring electrodes with a diameter of 2 mm and a thickness of 100 nm is established. The ultrathin-ring electrodes provide a large density of pseudo-steady-state currents, and realize pseudo-steady-state amperometry under quiescent conditions without a Faraday cage. Under the limiting current conditions, the current response at the ultrathin-ring electrode can be well explained by the theory of the microband electrode response. Cyclic voltammograms at the ultrathin-ring electrode show sigmoidal characteristics with some hysteresis. Numerical simulation reveals that the hysteresis can be ascribed to the time-dependence of pseudo-steady-state current. The performance of amperometry with the ultrathin-ring electrode has been verified in its application to redox enzyme kinetic measurements.

  6. Fabrication of Flexible Microneedle Array Electrodes for Wearable Bio-Signal Recording.

    Science.gov (United States)

    Ren, Lei; Xu, Shujia; Gao, Jie; Lin, Zi; Chen, Zhipeng; Liu, Bin; Liang, Liang; Jiang, Lelun

    2018-04-13

    Laser-direct writing (LDW) and magneto-rheological drawing lithography (MRDL) have been proposed for the fabrication of a flexible microneedle array electrode (MAE) for wearable bio-signal monitoring. Conductive patterns were directly written onto the flexible polyethylene terephthalate (PET) substrate by LDW. The microneedle array was rapidly drawn and formed from the droplets of curable magnetorheological fluid with the assistance of an external magnetic field by MRDL. A flexible MAE can maintain a stable contact interface with curved human skin due to the flexibility of the PET substrate. Compared with Ag/AgCl electrodes and flexible dry electrodes (FDE), the electrode-skin interface impedance of flexible MAE was the minimum even after a 50-cycle bending test. Flexible MAE can record electromyography (EMG), electroencephalography (EEG) and static electrocardiography (ECG) signals with good fidelity. The main features of the dynamic ECG signal recorded by flexible MAE are the most distinguishable with the least moving artifacts. Flexible MAE is an attractive candidate electrode for wearable bio-signal monitoring.

  7. Selective and lithography-independent fabrication of 20 nm nano-gap electrodes and nano-channels for nanoelectrofluidics applications

    International Nuclear Information System (INIS)

    Zhang, J Y; Wang, X F; Wang, X D; Fan, Z C; Li, Y; Ji, An; Yang, F H

    2010-01-01

    A new method has been developed to selectively fabricate nano-gap electrodes and nano-channels by conventional lithography. Based on a sacrificial spacer process, we have successfully obtained sub-100-nm nano-gap electrodes and nano-channels and further reduced the dimensions to 20 nm by shrinking the sacrificial spacer size. Our method shows good selectivity between nano-gap electrodes and nano-channels due to different sacrificial spacer etch conditions. There is no length limit for the nano-gap electrode and the nano-channel. The method reported in this paper also allows for wafer scale fabrication, high throughput, low cost, and good compatibility with modern semiconductor technology.

  8. The fabrication and single electron transport of Au nano-particles placed between Nb nanogap electrodes

    International Nuclear Information System (INIS)

    Nishino, T; Negishi, R; Ishibashi, K; Kawao, M; Nagata, T; Ozawa, H

    2010-01-01

    We have fabricated Nb nanogap electrodes using a combination of molecular lithography and electron beam lithography. Au nano-particles with anchor molecules were placed in the gap, the width of which could be controlled on a molecular scale (∼2 nm). Three different anchor molecules which connect the Au nano-particles and the electrodes were tested to investigate their contact resistance, and a local gate was fabricated underneath the Au nano-particles. The electrical transport measurements at liquid helium temperatures indicated single electron transistor (SET) characteristics with a charging energy of about ∼ 5 meV, and a clear indication of the effect of superconducting electrodes was not observed, possibly due to the large tunnel resistance.

  9. Fabrication of flexible polymer dispersed liquid crystal films using conducting polymer thin films as the driving electrodes

    International Nuclear Information System (INIS)

    Kim, Yang-Bae; Park, Sucheol; Hong, Jin-Who

    2009-01-01

    Conducting polymers exhibit good mechanical and interfacial compatibility with plastic substrates. We prepared an optimized coating formulation based on poly(3,4-ethylenedioxythiophene) (PEDOT) and 3-(trimethoxysilyl)propyl acrylate and fabricated a transparent electrode on poly(ethylene terephthalate) (PET) substrate. The surface resistances and transmittance of the prepared thin films were 500-600 Ω/□ and 87% at 500 nm, respectively. To evaluate the performance of the conducting polymer electrode, we fabricated a five-layer flexible polymer-dispersed liquid crystal (PDLC) device as a PET-PEDOT-PDLC-PEDOT-PET flexible film. The prepared PDLC device exhibited a low driving voltage (15 VAC), high contrast ratio (60:1), and high transmittance in the ON state (60%), characteristics that are comparable with those of conventional PDLC film based on indium tin oxide electrodes. The fabrication of conducting polymer thin films as the driving electrodes in this study showed that such films can be used as a substitute for an indium tin oxide electrode, which further enhances the flexibility of PDLC film

  10. Improved Internal Reference Oxygen Sensors with Composite Ceramic Electrodes

    DEFF Research Database (Denmark)

    Hu, Qiang; Jacobsen, Torben; Hansen, Karin Vels

    2012-01-01

    Potentiometric oxygen sensors with an internal reference electrode, which uses the equilibrium pO2 of the binary mixture of Ni/NiO as the reference, are demonstrated. The cells employ Pt or composite ceramics as the sensing electrode. The cells are fabricated by a flexible and potentially low cost...... and performance are highly reproducible. The composite ceramics, based on strontium doped manganite and yttria doped zirconia, are proven superior over Pt to serve as the electrode material....

  11. Fabrication and Characterization of All-Polystyrene Microfluidic Devices with Integrated Electrodes and Tubing.

    Science.gov (United States)

    Pentecost, Amber M; Martin, R Scott

    2015-01-01

    A new method of fabricating all-polystyrene devices with integrated electrodes and fluidic tubing is described. As opposed to expensive polystyrene (PS) fabrication techniques that use hot embossing and bonding with a heated lab press, this approach involves solvent-based etching of channels and lamination-based bonding of a PS cover, all of which do not need to occur in a clean room. PS has been studied as an alternative microchip substrate to PDMS, as it is more hydrophilic, biologically compatible in terms of cell adhesion, and less prone to absorption of hydrophobic molecules. The etching/lamination-based method described here results in a variety of all-PS devices, with or without electrodes and tubing. To characterize the devices, micrographs of etched channels (straight and intersected channels) were taken using confocal and scanning electron microscopy. Microchip-based electrophoresis with repetitive injections of fluorescein was conducted using a three-sided PS (etched pinched, twin-tee channel) and one-sided PDMS device. Microchip-based flow injection analysis, with dopamine and NO as analytes, was used to characterize the performance of all-PS devices with embedded tubing and electrodes. Limits of detection for dopamine and NO were 130 nM and 1.8 μM, respectively. Cell immobilization studies were also conducted to assess all-PS devices for cellular analysis. This paper demonstrates that these easy to fabricate devices can be attractive alternative to other PS fabrication methods for a wide variety of analytical and cell culture applications.

  12. Fabrication of gallium hexacyanoferrate modified carbon ionic liquid paste electrode for sensitive determination of hydrogen peroxide and glucose

    Energy Technology Data Exchange (ETDEWEB)

    Haghighi, Behzad, E-mail: haghighi@iasbs.ac.ir; Khosravi, Mehdi; Barati, Ali

    2014-07-01

    Gallium hexacyanoferrate (GaHCFe) and graphite powder were homogeneously dispersed into n-dodecylpyridinium hexafluorophosphate and paraffin to fabricate GaHCFe modified carbon ionic liquid paste electrode (CILPE). Mixture experimental design was employed to optimize the fabrication of GaHCFe modified CILPE (GaHCFe-CILPE). A pair of well-defined redox peaks due to the redox reaction of GaHCFe through one-electron process was observed for the fabricated electrode. The fabricated GaHCFe-CILPE exhibited good electrocatalytic activity towards reduction and oxidation of H{sub 2}O{sub 2}. The observed sensitivities for the electrocatalytic oxidation and reduction of H{sub 2}O{sub 2} at the operating potentials of + 0.8 and − 0.2 V were about 13.8 and 18.3 mA M{sup −1}, respectively. The detection limit (S/N = 3) for H{sub 2}O{sub 2} was about 1 μM. Additionally, glucose oxidase (GOx) was immobilized on GaHCFe-CILPE using two methodology, entrapment into Nafion matrix and cross-linking with glutaraldehyde and bovine serum albumin, in order to fabricate glucose biosensor. Linear dynamic rage, sensitivity and detection limit for glucose obtained by the biosensor fabricated using cross-linking methodology were 0.1–6 mM, 0.87 mA M{sup −1} and 30 μM, respectively and better than those obtained (0.2–6 mM, 0.12 mA M{sup −1} and 50 μM) for the biosensor fabricated using entrapment methodology. - Highlights: • Gallium hexacyanoferrate modified carbon ionic liquid paste electrode was fabricated. • Mixture experimental design was used to optimize electrode fabrication. • Response trace plot was used to show the effect of electrode materials on response. • The sensor exhibited electrocatalytic activity towards H{sub 2}O{sub 2} reduction and oxidation. • Glucose biosensor was fabricated by immobilization of glucose oxidase on sensor.

  13. Development and fabrication of membrane electrode assembly for PEM fuel cell

    International Nuclear Information System (INIS)

    Anjum, M.A.R.; Arshad, M.; Hussain, S.; Saeed, M.M.

    2011-01-01

    The 10 cm x 10 cm active area membrane electrode assembly (MEA) has been fabricated by adopting two routes, i.e., catalyst-coated membrane (CCM) and catalyst-coated support (CCS). In CCM method, the catalyst is directly applied on the Nafion membrane while in CCS method, catalyst is applied on support (GDL). The catalyst layer was prepared by nano-sized platinum on carbon particle, the ionomer material of the membrane and a solvent that allows the catalyst to behave like ink. The catalyst slurry was applied on the membrane, hot-pressed the sandwich of GDL and catalyst-coated Nafion membrane to form a single unit which behaves as electrodes. The primary tests regarding the efficiency of indigenously-fabricated MEAs have been carried out successfully. The performance of MEA with respect to continuous operation for long hours from the standpoint of proper functioning was also checked. A maximum power of 13 watt was obtained. (author)

  14. Nanoscale Tapered Pt Bottom Electrode Fabricated by FIB for Low Power and Highly Stable Operations of Phase Change Memory

    International Nuclear Information System (INIS)

    Shi-Long, Lv; Zhi-Tang, Song; Yan, Liu; Song-Lin, Feng

    2010-01-01

    Phase change random access memory (PC-RAM) based on Si 2 Sb 2 Te 5 with a Pt tapered heating electrode (Pt-THE), which is fabricated using a focus ion beam (FIB), is investigated. Compared with the tungsten electrode, the Pt-THE facilitates the temperature rise in phase change material, which causes the decrease of reset voltage from 3.6 to 2.7 V. The programming region of the cell with the Pt-THE is smaller than that of the cell with a cylindrical tungsten heating electrode. The improved performance of the PC-RAM with a Pt-THE is attributed to the higher resistivity and lower thermal conductivity of the Pt electrode, and the reduction of the programming region, which is also verified by thermal simulation. (cross-disciplinary physics and related areas of science and technology)

  15. Fabrication of lithium titanate/graphene composites with high rate capability as electrode materials for hybrid electrochemical supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Rong, E-mail: xuerongsmile@qq.com; Yan, Jingwang, E-mail: yanjw@dicp.ac.cn; Jiang, Liang, E-mail: jiangliang@dicp.ac.cn; Yi, Baolian, E-mail: blyi@dicp.ac.cn

    2015-06-15

    A lithium titanate (Li{sub 4}Ti{sub 5}O{sub 12})/graphene composite (LTO/graphene) is fabricated with a one-pot sol–gel method. Graphite oxide is dispersed in an aqueous solution of lithium acetate and tetrabutyl titanate followed by heat treatment in H{sub 2}/Ar. The LTO/graphene composite with reduced aggregation and improved homogeneity is investigated as an anode material for electrochemical capacitors. Electron transport is improved by the conductive graphene network in the insulating Li{sub 4}Ti{sub 5}O{sub 12} particles. The charge transfer resistance at the particle/electrolyte interface is reduced from 83.1 Ω to 55.4 Ω. The specific capacity of LTO/graphene composite is 126 mAh g{sup −1} at 20C. The energy density and power density of a hybrid electrochemical supercapacitor with a LTO/graphene negative electrode and an activated carbon positive electrode are 120.8 Wh kg{sup −1} and 1.5 kW kg{sup −1}, respectively, which is comparable to that of conventional electrochemical double layer capacitors (EDLCs). The LTO/graphene composite fabricated by the one-pot sol–gel method is a promising anode material for hybrid electrochemical supercapacitors. - Highlights: • A Li{sub 4}Ti{sub 5}O{sub 12}/graphene composite was fabricated with a one-pot sol–gel method. • The Li{sub 4}Ti{sub 5}O{sub 12}/graphene composite showed a reduced aggregation and an improved homogeneity. • The Li{sub 4}Ti{sub 5}O{sub 12}/graphene based hybrid supercapacitor exhibited higher energy and power densities.

  16. Simple approach for the fabrication of screen-printed carbon-based electrode for amperometric detection on microchip electrophoresis.

    Science.gov (United States)

    Petroni, Jacqueline Marques; Lucca, Bruno Gabriel; Ferreira, Valdir Souza

    2017-02-15

    This paper describes a simple method for the fabrication of screen-printed based electrodes for amperometric detection on microchip electrophoresis (ME) devices. The procedure developed is quite simple and does not require expensive instrumentation or sophisticated protocols commonly employed on the production of amperometric sensors, such as photolithography or sputtering steps. The electrodes were fabricated through manual deposition of home-made conductive carbon ink over patterned acrylic substrate. Morphological structure and electrochemical behavior of the carbon electrodes were investigated by scanning electron microscopy and cyclic voltammetry. The produced amperometric sensors were coupled to polydimethylsiloxane (PDMS) microchips at end-channel configuration in order to evaluate their analytical performance. For this purpose, electrophoretic experiments were carried out using nitrite and ascorbic acid as model analytes. Separation of these substances was successfully performed within 50s with good resolution (R = 1.2) and sensitivities (713.5 pA/μM for nitrite and 255.4 pA/μM for ascorbate). The reproducibility of the fabrication method was evaluated and revealed good values concerning the peak currents obtained (8.7% for nitrite and 9.3% for ascorbate). The electrodes obtained through this method exhibited satisfactory lifetime (ca. 400 runs) over low fabrication cost (less than $1 per piece). The feasibility of the proposed device for real analysis was demonstrated through the determination of nitrite concentration levels in drinking water samples. Based on the results achieved, the approach proposed here shows itself as an interesting alternative for simple fabrication of carbon-based electrodes. Furthermore, the devices indicate great promise for other kind of analytical applications involving ME devices. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Structural Engineering of Metal-Mesh Structure Applicable for Transparent Electrodes Fabricated by Self-Formable Cracked Template

    Directory of Open Access Journals (Sweden)

    Yeong-gyu Kim

    2017-08-01

    Full Text Available Flexible and transparent conducting electrodes are essential for future electronic devices. In this study, we successfully fabricated a highly-interconnected metal-mesh structure (MMS using a self-formable cracked template. The template—fabricated from colloidal silica—can be easily formed and removed, presenting a simple and cost-effective way to construct a randomly and uniformly networked MMS. The structure of the MMS can be controlled by varying the spin-coating speed during the coating of the template solution or by stacking of metal-mesh layers. Through these techniques, the optical transparency and sheet resistance of the MMS can be designed for a specific purpose. A double-layered Al MMS showed high optical transparency (~80% in the visible region, low sheet resistance (~20 Ω/sq, and good flexibility under bending test compared with a single-layered MMS, because of its highly-interconnected wire structure. Additionally, we identified the applicability of the MMS in the case of practical devices by applying it to electrodes of thin-film transistors (TFTs. The TFTs with MMS electrodes showed comparable electrical characteristics to those with conventional film-type electrodes. The cracked template can be used for the fabrication of a mesh structure consisting of any material, so it can be used for not only transparent electrodes, but also various applications such as solar cells, sensors, etc.

  18. Design of micro, flexible light-emitting diode arrays and fabrication of flexible electrodes

    International Nuclear Information System (INIS)

    Gao, Dan; Wang, Weibiao; Liang, Zhongzhu; Liang, Jingqiu; Qin, Yuxin; Lv, Jinguang

    2016-01-01

    In this study, we design micro, flexible light-emitting diode (LED) array devices. Using theoretical calculations and finite element simulations, we analyze the deformation of the conventional single electrode bar. Through structure optimization, we obtain a three-dimensional (3D), chain-shaped electrode structure, which has a greater bending degree. The optimized electrodes not only have a bigger bend but can also be made to spin. When the supporting body is made of polydimethylsiloxane (PDMS), the maximum bending degree of the micro, flexible LED arrays (4  ×  1 arrays) was approximately 230 µ m; this was obtained using the finite element method. The device (4  ×  1 arrays) can stretch to 15%. This paper describes the fabrication of micro, flexible LED arrays using microelectromechancial (MEMS) technology combined with electroplating technology. Specifically, the isolated grooves are made by dry etching which can isolate and protect the light-emitting units. A combination of MEMS technology and wet etching is used to fabricate the large size spacing. (paper)

  19. Preparation of Janus Particles and Alternating Current Electrokinetic Measurements with a Rapidly Fabricated Indium Tin Oxide Electrode Array.

    Science.gov (United States)

    Chen, Yu-Liang; Jiang, Hong-Ren

    2017-06-23

    This article provides a simple method to prepare partially or fully coated metallic particles and to perform the rapid fabrication of electrode arrays, which can facilitate electrical experiments in microfluidic devices. Janus particles are asymmetric particles that contain two different surface properties on their two sides. To prepare Janus particles, a monolayer of silica particles is prepared by a drying process. Gold (Au) is deposited on one side of each particle using a sputtering device. The fully coated metallic particles are completed after the second coating process. To analyze the electrical surface properties of Janus particles, alternating current (AC) electrokinetic measurements, such as dielectrophoresis (DEP) and electrorotation (EROT)- which require specifically designed electrode arrays in the experimental device- are performed. However, traditional methods to fabricate electrode arrays, such as the photolithographic technique, require a series of complicated procedures. Here, we introduce a flexible method to fabricate a designed electrode array. An indium tin oxide (ITO) glass is patterned by a fiber laser marking machine (1,064 nm, 20 W, 90 to 120 ns pulse-width, and 20 to 80 kHz pulse repetition frequency) to create a four-phase electrode array. To generate the four-phase electric field, the electrodes are connected to a 2-channel function generator and to two invertors. The phase shift between the adjacent electrodes is set at either 90° (for EROT) or 180° (for DEP). Representative results of AC electrokinetic measurements with a four-phase ITO electrode array are presented.

  20. Adhesive PEG-based binder for aqueous fabrication of thick Li4Ti5O12 electrode

    International Nuclear Information System (INIS)

    Tran, Binh; Oladeji, Isaiah O.; Wang, Zedong; Calderon, Jean; Chai, Guangyu; Atherton, David; Zhai, Lei

    2013-01-01

    We report the first fully compressed Li 4 Ti 5 O 12 electrode designed by an aqueous process. An adhesive, elastomeric, and lithium ion conductive PEG-based copolymer is used as a binder for the aqueous fabrication thick, flexible, and densely packed Li 4 Ti 5 O 12 (LTO) electrodes. Self-adherent cathode films exceeding 200 μm in thickness and withholding high active mass loadings of 28 mg/cm 2 deliver 4.2 mAh/cm 2 at C/2 rate. Structurally defect-free electrodes are fabricated by casting aqueous cathode slurries onto nickel foam, dried, and hard-calendared at 10 tons/cm 2 . As a multifunctional material, the binder is synthesized by the copolymerization of poly(ethylene glycol) methyl ether methacrylate (PEGMA), methyl methacrylate (MMA), and isobutyl vinyl ether (IBVE) in optimal proportions. Furthermore, coordinating the binder with lithium salt is necessary for the electrode to function

  1. Low-Cost Facile Fabrication of Flexible Transparent Copper Electrodes by Nanosecond Laser Ablation

    KAUST Repository

    Paeng, Dongwoo

    2015-03-27

    © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Low-cost Cu flexible transparent conducting electrodes (FTCEs) are fabricated by facile nanosecond laser ablation. The fabricated Cu FTCEs show excellent opto-electrical properties (transmittance: 83%, sheet resistance: 17.48 Ω sq-1) with outstanding mechanical durability. Successful demonstration of a touch-screen panel confirms the potential applicability of Cu FTCEs to the flexible optoelectronic devices.

  2. Ready fabrication of thin-film electrodes from building nanocrystals for micro-supercapacitors.

    Science.gov (United States)

    Chen, Zheng; Weng, Ding; Wang, Xiaolei; Cheng, Yanhua; Wang, Ge; Lu, Yunfeng

    2012-04-18

    Thin-film pseudocapacitor electrodes with ultrafast lithium storage kinetics, high capacitance and excellent cycling stability were fabricated from monodispersed TiO(2) building nanocrystals, providing a novel approach towards next-generation micro-supercapacitor applications. This journal is © The Royal Society of Chemistry 2012

  3. Fabrication of graphene/polydopamine/copper foam composite material and its application as supercapacitor electrode

    Science.gov (United States)

    Zheng, Y.; Lu, S. X.; Xu, W. G.; He, G.; Cheng, Y. Y.; Xiao, F. Y.; Zhang, Y.

    2018-01-01

    In this work, a composite electrode was fabricated by chemical deposition of polydopamine (PDA) and graphene oxide (GO) on the copper foam (CF) surface, followed by annealing treatment. Owing to the cohesive effect of the PDA middle film, GO was coated on CF surface successfully, and then reduced simultaneously while annealing. The resulted rGO/PDA/CF composite electrode was directly used as a supercapacitor electrode and exhibited excellent electrochemical performance, with a high specific capacitance of 1250 F g-1 at 2 A g-1 and favorable cycle stability.

  4. Trial fabrication of Be12Ti electrode for pebble production by rotating electrode method

    International Nuclear Information System (INIS)

    Uda, M.; Iwadachi, T.; Uchida, M.; Nakamichi, M.; Kawamura, H.

    2004-01-01

    Be 12 Ti has been one of candidates for advanced neutron multipliers, due to its high melting points and good chemical stability. Although Be 12 Ti is too brittle to product pebbles for neutron multipliers with the rotating electrode method (REM), a preliminary production of the pebbles which was made of two phase material of α-beryllium (α-Be) and Be 12 Ti was successfully demonstrated with REM. In this study a trial fabrication of the Be-5at%Ti'' ingot (α-Be + Be 12 Ti) for the REM electrode was carried out with a vacuum casting process. Three kinds of refractory crucibles (MgO, CaO and BeO) were tested for the evaluation of durability to the melt of Be-5%Ti. The water-cooled copper mould was applied for the casting mold to assist a one-direction solidification. The appearance (crack(s), shrinkage, etc.), microstructure and chemical analysis of the ''Be-5at%Ti'' ingots were investigated. As for the results of the trial fabrication, it was made clear that BeO crucible is most useful for the melting of Be-5at%Ti. The ingot, which was a size of φ85 x h 150 mm, had h 40mm sound portion from the bottom. The microstructure of the ingots showed two phases (probably α-Be and Be 12 Ti). The chemical composition of the Ti in the ingot were 3.1 - 6.2at%. (author)

  5. Design and fabrication of capacitive interdigitated electrodes for smart gas sensors

    KAUST Repository

    Omran, Hesham

    2016-09-05

    In this paper, we study the design parameters of capacitive interdigitated electrodes (IDEs) and the effect of these parameters on the sensitivity of the IDEs when employed as a capacitive gas sensor. Finite element simulations using COMSOL Multiphysics were carried out to evaluate the sensitivity of the capacitive sensor. Simulations show that for permittivity-based sensing, the optimum thickness of the sensing film is slightly more than half the wavelength of the IDEs structure. On the other hand, sensing films that are thinner than half wavelength should be used if the required sensing mechanism is based on structural swelling. Increasing the IDEs metal thickness can increase the sensitivity by increasing the sidewall electric field, but this is only true if the sensing film is thick enough to completely fill the spacing between the electrodes. A simple and reliable IDEs structure and fabrication process are proposed. Physical dry etching provides good yield and fine resolution compared to liftoff technique. Fabricated and packaged prototype sensors are presented. © 2015 IEEE.

  6. Fabrication and characterization of three-dimensional carbon electrodes for lithium-ion batteries

    Science.gov (United States)

    Teixidor, Genis Turon; Zaouk, Rabih B.; Park, Benjamin Y.; Madou, Marc J.

    This paper presents fabrication and testing results of three-dimensional carbon anodes for lithium-ion batteries, which are fabricated through the pyrolysis of lithographically patterned epoxy resins. This technique, known as Carbon-MEMS, provides great flexibility and an unprecedented dimensional control in shaping carbon microstructures. Variations in the pattern density and in the pyrolysis conditions result in anodes with different specific and gravimetric capacities, with a three to six times increase in specific capacity with respect to the current thin-film battery technology. Newly designed cross-shaped Carbon-MEMS arrays have a much higher mechanical robustness (as given by their moment of inertia) than the traditionally used cylindrical posts, but the gravimetric analysis suggests that new designs with thinner features are required for better carbon utilization. Pyrolysis at higher temperatures and slower ramping up schedules reduces the irreversible capacity of the carbon electrodes. We also analyze the addition of Meso-Carbon Micro-Beads (MCMB) particles on the reversible and irreversible capacities of new three-dimensional, hybrid electrodes. This combination results in a slight increase in reversible capacity and a big increase in the irreversible capacity of the carbon electrodes, mostly due to the non-complete attachment of the MCMB particles.

  7. Hierarchical meso/macro-porous carbon fabricated from dual MgO templates for direct electron transfer enzymatic electrodes

    Science.gov (United States)

    Funabashi, Hiroto; Takeuchi, Satoshi; Tsujimura, Seiya

    2017-03-01

    We designed a three-dimensional (3D) hierarchical pore structure to improve the current production efficiency and stability of direct electron transfer-type biocathodes. The 3D hierarchical electrode structure was fabricated using a MgO-templated porous carbon framework produced from two MgO templates with sizes of 40 and 150 nm. The results revealed that the optimal pore composition for a bilirubin oxidase-catalysed oxygen reduction cathode was a mixture of 33% macropores and 67% mesopores (MgOC33). The macropores improve mass transfer inside the carbon material, and the mesopores improve the electron transfer efficiency of the enzyme by surrounding the enzyme with carbon.

  8. Fabrication of Flexible Microneedle Array Electrodes for Wearable Bio-Signal Recording

    Directory of Open Access Journals (Sweden)

    Lei Ren

    2018-04-01

    Full Text Available Laser-direct writing (LDW and magneto-rheological drawing lithography (MRDL have been proposed for the fabrication of a flexible microneedle array electrode (MAE for wearable bio-signal monitoring. Conductive patterns were directly written onto the flexible polyethylene terephthalate (PET substrate by LDW. The microneedle array was rapidly drawn and formed from the droplets of curable magnetorheological fluid with the assistance of an external magnetic field by MRDL. A flexible MAE can maintain a stable contact interface with curved human skin due to the flexibility of the PET substrate. Compared with Ag/AgCl electrodes and flexible dry electrodes (FDE, the electrode–skin interface impedance of flexible MAE was the minimum even after a 50-cycle bending test. Flexible MAE can record electromyography (EMG, electroencephalography (EEG and static electrocardiography (ECG signals with good fidelity. The main features of the dynamic ECG signal recorded by flexible MAE are the most distinguishable with the least moving artifacts. Flexible MAE is an attractive candidate electrode for wearable bio-signal monitoring.

  9. Flexible electrode belt for EIT using nanofiber web dry electrodes.

    Science.gov (United States)

    Oh, Tong In; Kim, Tae Eui; Yoon, Sun; Kim, Kap Jin; Woo, Eung Je; Sadleir, Rosalind J

    2012-10-01

    Efficient connection of multiple electrodes to the body for impedance measurement and voltage monitoring applications is of critical importance to measurement quality and practicality. Electrical impedance tomography (EIT) experiments have generally required a cumbersome procedure to attach the multiple electrodes needed in EIT. Once placed, these electrodes must then maintain good contact with the skin during measurements that may last several hours. There is usually also the need to manage the wires that run between the electrodes and the EIT system. These problems become more severe as the number of electrodes increases, and may limit the practicality and portability of this imaging method. There have been several trials describing human-electrode interfaces using configurations such as electrode belts, helmets or rings. In this paper, we describe an electrode belt we developed for long-term EIT monitoring of human lung ventilation. The belt included 16 embossed electrodes that were designed to make good contact with the skin. The electrodes were fabricated using an Ag-plated PVDF nanofiber web and metallic threads. A large contact area and padding were used behind each electrode to improve subject comfort and reduce contact impedances. The electrodes were incorporated, equally spaced, into an elasticated fabric belt. We tested the electrode belt in conjunction with the KHU Mark1 multi-frequency EIT system, and demonstrate time-difference images of phantoms and human subjects during normal breathing and running. We found that the Ag-plated PVDF nanofiber web electrodes were suitable for long-term measurement because of their flexibility and durability. Moreover, the contact impedance and stability of the Ag-plated PVDF nanofiber web electrodes were found to be comparable to similarly tested Ag/AgCl electrodes.

  10. The fabrication of front electrodes of Si solar cell by dispensing printing

    International Nuclear Information System (INIS)

    Kim, Do-Hyung; Ryu, Sung-Soo; Shin, Dongwook; Shin, Jung-Han; Jeong, Jwa-Jin; Kim, Hyeong-Jun; Chang, Hyo Sik

    2012-01-01

    Highlights: ► We propose the process for the front silver electrode by employing dispensing method. ► The dispensing method is a non-contact printing process. ► The electrode by dispensing method has more uniform and narrower shape. ► The dispensing method helped to enhance the efficiency of solar cell by 0.8% absolute. - Abstract: The dispensing printing was applied to fabricate the front electrodes of silicon solar cell. In this method, a micro channel nozzle and normal Ag paste were employed. The aspect ratio and line width of electrodes could be controlled by the process variables such as the inner diameter of nozzle, dispensing speed, discharge pressure, and the gap between wafer and nozzle. For the nozzle with the inner diameter of 50 μm, the line width and aspect ratio of electrode were under 90 μm and more than ∼0.2, respectively. When comparing the efficiency of solar cell prepared by conventional screen printing and the dispensing printing, the latter exhibited 19.1%, which is 0.8% absolute higher than the former even with the same Ag paste. This is because the electrode by dispensing printing has uniform aspect ratio and narrow line width over the length of electrode.

  11. Nitrogen-doped reduced graphene oxide electrodes for electrochemical supercapacitors.

    Science.gov (United States)

    Nolan, Hugo; Mendoza-Sanchez, Beatriz; Ashok Kumar, Nanjundan; McEvoy, Niall; O'Brien, Sean; Nicolosi, Valeria; Duesberg, Georg S

    2014-02-14

    Herein we use Nitrogen-doped reduced Graphene Oxide (N-rGO) as the active material in supercapacitor electrodes. Building on a previous work detailing the synthesis of this material, electrodes were fabricated via spray-deposition of aqueous dispersions and the electrochemical charge storage mechanism was investigated. Results indicate that the functionalised graphene displays improved performance compared to non-functionalised graphene. The simplicity of fabrication suggests ease of up-scaling of such electrodes for commercial applications.

  12. Improved photovoltaic cells and electrodes

    Science.gov (United States)

    Skotheim, T.A.

    1983-06-29

    Improved photovoltaic cells and electrodes for use therein, particularly electrodes employing amorphous silicon or polyacetylene coating are produced by a process which includes filling pinholes or porous openings in the coatings by electrochemical oxidation of selected monomers to deposit insulating polymer in the openings.

  13. Fabrication and characterization of a micromachined swirl-shaped ionic polymer metal composite actuator with electrodes exhibiting asymmetric resistance.

    Science.gov (United States)

    Feng, Guo-Hua; Liu, Kim-Min

    2014-05-12

    This paper presents a swirl-shaped microfeatured ionic polymer-metal composite (IPMC) actuator. A novel micromachining process was developed to fabricate an array of IPMC actuators on a glass substrate and to ensure that no shortcircuits occur between the electrodes of the actuator. We demonstrated a microfluidic scheme in which surface tension was used to construct swirl-shaped planar IPMC devices of microfeature size and investigated the flow velocity of Nafion solutions, which formed the backbone polymer of the actuator, within the microchannel. The unique fabrication process yielded top and bottom electrodes that exhibited asymmetric surface resistance. A tool for measuring surface resistance was developed and used to characterize the resistances of the electrodes for the fabricated IPMC device. The actuator, which featured asymmetric electrode resistance, caused a nonzero-bias current when the device was driven using a zero-bias square wave, and we propose a circuit model to describe this phenomenon. Moreover, we discovered and characterized a bending and rotating motion when the IPMC actuator was driven using a square wave. We observed a strain rate of 14.6% and a displacement of 700 μm in the direction perpendicular to the electrode surfaces during 4.5-V actuation.

  14. Fabrication and electrochemical properties of free-standing single-walled carbon nanotube film electrodes

    International Nuclear Information System (INIS)

    Niu Zhi-Qiang; Ma Wen-Jun; Dong Hai-Bo; Li Jin-Zhu; Zhou Wei-Ya

    2011-01-01

    An easily manipulative approach was presented to fabricate electrodes using free-standing single-walled carbon nanotube (SWCNT) films grown directly by chemical vapor deposition. Electrochemical properties of the electrodes were investigated. In comparison with the post-deposited SWCNT papers, the directly grown SWCNT film electrodes manifested enhanced electrochemical properties and sensitivity of sensors as well as excellent electrocatalytic activities. A transition from macroelectrode to nanoelectrode behaviours was observed with the increase of scan rate. The heat treatment of the SWCNT film electrodes increased the current signals of electrochemical analyser and background current, because the heat-treatment of the SWCNTs in air could create more oxide defects on the walls of the SWCNTs and make the surfaces of SWCNTs more hydrophilic. The excellent electrochemical properties of the directly grown and heat-treated free-standing SWCNT film electrodes show the potentials in biological and electrocatalytic applications. (cross-disciplinary physics and related areas of science and technology)

  15. Fabrication and characterization of energy storing supercapacitor devices using coconut shell based activated charcoal electrode

    International Nuclear Information System (INIS)

    Jain, Amrita; Tripathi, S.K.

    2014-01-01

    Highlights: • CST with specific surface area of 1640 m 2 g −1 was synthesized using impregnation method. • XRD studies of CST confirm the formation of graphite and amorphous C. • EDLC cell has been successfully fabricated using CST as an electrode material having good energy and power density. - Abstract: In the present studies coconut shell based treated activated charcoal (CST) was synthesized by chemical activation method using KOH (potassium hydroxide) as an activating agent. Surface area analysis shows that CST has mesopores of size 3 nm having specific surface area of 1640 m 2 g −1 . Electrochemical double layer capacitor (EDLC) was fabricated using CST as an electrode material with blend polymer electrolyte having specific capacitance of 534 mF cm −2 (equivalent to single electrode specific capacitance of 356.2 F g −1 ). The corresponding energy and power density of 88.8 Wh kg −1 and 1.63 kW kg −1 , respectively, were achieved for EDLC

  16. Materials and fabrication of electrode scaffolds for deposition of MnO2 and their true performance in supercapacitors

    Science.gov (United States)

    Cao, Jianyun; Li, Xiaohong; Wang, Yaming; Walsh, Frank C.; Ouyang, Jia-Hu; Jia, Dechang; Zhou, Yu

    2015-10-01

    MnO2 is a promising electrode material for high energy supercapacitors because of its large pseudo-capacitance. However, MnO2 suffers from low electronic conductivity and poor cation diffusivity, which results in poor utilization and limited rate performance of traditional MnO2 powder electrodes, obtained by pressing a mixed paste of MnO2 powder, conductive additive and polymer binder onto metallic current collectors. Developing binder-free MnO2 electrodes by loading nanoscale MnO2 deposits on pre-fabricated device-ready electrode scaffolds is an effective way to achieve both high power and energy performance. These electrode scaffolds, with interconnected skeletons and pore structures, will not only provide mechanical support and electron collection as traditional current collectors but also fast ion transfer tunnels, leading to high MnO2 utilization and rate performance. This review covers design strategies, materials and fabrication methods for the electrode scaffolds. Rational evaluation of the true performance of these electrodes is carried out, which clarifies that some of the electrodes with as-claimed exceptional performances lack potential in practical applications due to poor mass loading of MnO2 and large dead volume of inert scaffold materials/void spaces in the electrode structure. Possible ways to meet this challenge and bring MnO2 electrodes from laboratory studies to real-world applications are considered.

  17. Fabrication of 3D detectors with columnar electrodes of the same doping type

    International Nuclear Information System (INIS)

    Ronchin, Sabina; Boscardin, Maurizio; Piemonte, Claudio; Pozza, Alberto; Zorzi, Nicola; Dalla Betta, Gian-Franco; Bosisio, Luciano; Pellegrini, Giulio

    2007-01-01

    Recently, we presented a new 3D detector architecture aimed at simplifying the manufacturing process, making it more suitable for high-volume production. In particular, the proposed device features electrodes of one doping type only, e.g., n + columns in a p-type substrate. In this paper we report on the fabrication at ITC-irst of the first batch of prototypes. The main issues related to the fabrication process along with preliminary results from the electrical characterization of different detectors and test structures are discussed

  18. Facile 3D Metal Electrode Fabrication for Energy Applications via Inkjet Printing and Shape Memory Polymer

    International Nuclear Information System (INIS)

    Roberts, R C; Wu, J; Li, D C; Hau, N Y; Chang, Y H; Feng, S P

    2014-01-01

    This paper reports on a simple 3D metal electrode fabrication technique via inkjet printing onto a thermally contracting shape memory polymer (SMP) substrate. Inkjet printing allows for the direct patterning of structures from metal nanoparticle bearing liquid inks. After deposition, these inks require thermal curing steps to render a stable conductive film. By printing onto a SMP substrate, the metal nanoparticle ink can be cured and substrate shrunk simultaneously to create 3D metal microstructures, forming a large surface area topology well suited for energy applications. Polystyrene SMP shrinkage was characterized in a laboratory oven from 150-240°C, resulting in a size reduction of 1.97-2.58. Silver nanoparticle ink was patterned into electrodes, shrunk, and the topology characterized using scanning electron microscopy. Zinc-Silver Oxide microbatteries were fabricated to demonstrate the 3D electrodes compared to planar references. Characterization was performed using 10M potassium hydroxide electrolyte solution doped with zinc oxide (57g/L). After a 300s oxidation at 3Vdc, the 3D electrode battery demonstrated a 125% increased capacity over the reference cell. Reference cells degraded with longer oxidations, but the 3D electrodes were fully oxidized for 4 hours, and exhibited a capacity of 5.5mA-hr/cm 2 with stable metal performance

  19. Electrochemically fabricated polyaniline nanowire-modified electrode for voltammetric detection of DNA hybridization

    International Nuclear Information System (INIS)

    Zhu Ningning; Chang Zhu; He Pingang; Fang Yuzhi

    2006-01-01

    A novel and sensitive electrochemical DNA biosensor based on electrochemically fabricated polyaniline nanowire and methylene blue for DNA hybridization detection is presented. Nanowires of conducting polymers were directly synthesized through a three-step electrochemical deposition procedure in an aniline-containing electrolyte solution, by using the glassy carbon electrode (GCE) as the working electrode. The morphology of the polyaniline films was examined using a field emission scanning electron microscope (SEM). The diameters of the nanowires range from 80 to 100 nm. The polyaniline nanowires-coated electrode exhibited very good electrochemical conductivity. Oligonucleotides with phosphate groups at the 5' end were covalently linked onto the amino groups of polyaniline nanowires on the electrode. The hybridization events were monitored with differential pulse voltammetry (DPV) measurement using methylene blue (MB) as an indicator. The approach described here can effectively discriminate complementary from non-complementary DNA sequence, with a detection limit of 1.0 x 10 -12 mol l -1 of complementary target, suggesting that the polyaniline nanowires hold great promises for sensitive electrochemical biosensor applications

  20. Washable and Reliable Textile Electrodes Embedded into Underwear Fabric for Electrocardiography (ECG Monitoring

    Directory of Open Access Journals (Sweden)

    Amale Ankhili

    2018-02-01

    Full Text Available A medical quality electrocardiogram (ECG signal is necessary for permanent monitoring, and an accurate heart examination can be obtained from instrumented underwear only if it is equipped with high-quality, flexible, textile-based electrodes guaranteeing low contact resistance with the skin. The main objective of this article is to develop reliable and washable ECG monitoring underwear able to record and wirelessly send an ECG signal in real time to a smart phone and further to a cloud. The article focuses on textile electrode design and production guaranteeing optimal contact impedance. Therefore, different types of textile fabrics were coated with modified poly(3,4-ethylenedioxythiophene:poly(styrenesulfonate (PEDOT:PSS in order to develop and manufacture reliable and washable textile electrodes assembled to female underwear (bras, by sewing using commercially available conductive yarns. Washability tests of connected underwear containing textile electrodes and conductive threads were carried out up to 50 washing cycles. The influence of standardized washing cycles on the quality of ECG signals and the electrical properties of the textile electrodes were investigated and characterized.

  1. Washable and Reliable Textile Electrodes Embedded into Underwear Fabric for Electrocardiography (ECG) Monitoring.

    Science.gov (United States)

    Ankhili, Amale; Tao, Xuyuan; Cochrane, Cédric; Coulon, David; Koncar, Vladan

    2018-02-07

    A medical quality electrocardiogram (ECG) signal is necessary for permanent monitoring, and an accurate heart examination can be obtained from instrumented underwear only if it is equipped with high-quality, flexible, textile-based electrodes guaranteeing low contact resistance with the skin. The main objective of this article is to develop reliable and washable ECG monitoring underwear able to record and wirelessly send an ECG signal in real time to a smart phone and further to a cloud. The article focuses on textile electrode design and production guaranteeing optimal contact impedance. Therefore, different types of textile fabrics were coated with modified poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) in order to develop and manufacture reliable and washable textile electrodes assembled to female underwear (bras), by sewing using commercially available conductive yarns. Washability tests of connected underwear containing textile electrodes and conductive threads were carried out up to 50 washing cycles. The influence of standardized washing cycles on the quality of ECG signals and the electrical properties of the textile electrodes were investigated and characterized.

  2. Wearable Atmospheric Pressure Plasma Fabrics Produced by Knitting Flexible Wire Electrodes for the Decontamination of Chemical Warfare Agents

    Science.gov (United States)

    Jung, Heesoo; Seo, Jin Ah; Choi, Seungki

    2017-01-01

    One of the key reasons for the limited use of atmospheric pressure plasma (APP) is its inability to treat non-flat, three-dimensional (3D) surface structures, such as electronic devices and the human body, because of the rigid electrode structure required. In this study, a new APP system design—wearable APP (WAPP)—that utilizes a knitting technique to assemble flexible co-axial wire electrodes into a large-area plasma fabric is presented. The WAPP device operates in ambient air with a fully enclosed power electrode and grounded outer electrode. The plasma fabric is flexible and lightweight, and it can be scaled up for larger areas, making it attractive for wearable APP applications. Here, we report the various plasma properties of the WAPP device and successful test results showing the decontamination of toxic chemical warfare agents, namely, mustard (HD), soman (GD), and nerve (VX) agents.

  3. Structure of Polymer Fibers Fabricated by Electrospinning Method Utilizing a Metal Wire Electrode in a Capillary Tube

    Science.gov (United States)

    Onozuka, Shintaro; Hoshino, Rikiya; Mizuno, Yoshinori; Shinbo, Kazunari; Ohdaira, Yasuo; Baba, Akira; Kato, Keizo; Kaneko, Futao

    We fabricated electrospun poly (vinylalcohol) (PVA) fibers using a copper wire electrode in Teflon capillary tube, and the SEM images were observed. The apparatus in this method is reasonable, and needed volume of polymer solution and distance between the electrodes can be largely reduced compared to conventional method. The wire electrode tip position in the capillary tube is also important in this method and should be close to the polymer solution surface.

  4. Fabrication of Bi2O3||AC asymmetric supercapacitor with redox additive aqueous electrolyte and its improved electrochemical performances

    International Nuclear Information System (INIS)

    Senthilkumar, S.T.; Selvan, R. Kalai; Ulaganathan, M.; Melo, J.S.

    2014-01-01

    Graphical abstract: An asymmetric supercapacitor (ASC) has been fabricated using α-Bi 2 O 3 and bio-waste derived activated carbon (AC) as negative and positive electrodes respectively with Li 2 SO 4 as electrolyte. Interestingly, the addition of KI into the Li 2 SO 4 electrolyte can significantly enhances the ASC performance through the redox reaction between iodine/iodide ions. -- Highlights: •Flower like α-Bi 2 O 3 is prepared. •An asymmetric supercapacitor is fabricated using α-Bi 2 O 3 as negative electrode and bio-waste derived activated carbon as positive electrode. •Energy density is enhanced from 10.2 Wh kg −1 to 35.4 Wh kg −1 by using KI as redox additive in Li 2 SO 4 electrolyte. -- Abstract: A new asymmetric supercapacitor (ASC) was fabricated using flower like α-Bi2O3as negative and bio-waste derived activated carbon (AC) as positive electrodes with Li2SO4as electrolyte. Here, the fabricated ASC was operated over the potential range of 0-1.6 V and evaluated by cyclic voltammetry (CV), galvano static charge-discharge (GCD), electrochemical impedance spectroscopy (EIS) and cycle life. Further to improve the performance of ASC, KI was used as electrolyte redox additive with pristine (Li2SO4) electrolyte due to their possible redox reactions of iodine ions. Remarkably, a nearly threefold improved specific capacitance and energy density of 99.5 F g −1 and 35.4 Wh kg −1 respectively was achieved by adding of KI into Li 2 SO 4 electrolyte, while it was only 29 F g −1 and 10.2 Wh kg −1 for pristine (Li2SO4) electrolyte used ASC at 1.5 mA cm −2

  5. Investigation of the fabrication parameters of thick film metal oxide-polymer pH electrodes

    International Nuclear Information System (INIS)

    Gac, Arnaud

    2002-01-01

    This thesis describes a study into the development of an optimum material and fabrication process for the production of thick film pH electrodes. These devices consist of low cost, miniature and rugged pH sensors formed by screen printing a metal oxide bearing paste onto a high temperature (∼850 deg C) fired metal back contact supported on a standard alumina substrate. The pH sensitive metal oxide layer must be fabricated at relatively low temperatures (<300 deg C) in order to maintain the pH sensitivity of the layer and hence requires the use of a suitably stable low temperature curing binder. Bespoke fabricated inks are derived from a Taguchi style factorial experimental plans in which, different binder types, curing temperatures, hydration level and percentage mixtures of different metal oxides and layer thicknesses were investigated. The pH responses of 18 printed electrodes per batch were assessed in buffer solutions with respect to a commercial reference electrode forming a complete potentiometric circuit. The evaluation criteria used in the study included the device-to-device variation in sensitivity of the pH sensors and their sensitivity variation as a function of time. The results indicated the importance of the choice of binder type in particular on the performance characteristics. Reproducible device-to-device variation in sensitivity was determined for the best inks found, whatever the ink fabrication batch. A reduction in the sensitivity variation with time has been determined using the mathematical models derived from an experimental plan. The lack of reproducibility of the sensitivity magnitude, regardless of the ink manufacturing batch, seems to be a recurrent problem with prototype inks. Experimental sub-Nernstian responses are discussed in the light of possible pH mechanisms. (author)

  6. Deposition Time and Thermal Cycles of Fabricating Thin-wall Steel Parts by Double Electrode GMAW Based Additive Manufacturing

    Directory of Open Access Journals (Sweden)

    Yang Dongqing

    2017-01-01

    Full Text Available The deposition time for fabricating the thin-wall part as well as the peak temperature of the substrate during the process was analyzed in the double electrode gas metal arc welding (DE-GMAW based additive manufacturing (AM. The total deposition time and the interlayer idle time of the manufacturing process decreased with the increasing of the bypass current under the same interlayer temperature and the same deposition rate. The thermal cycling curves illustrated that the peak temperature of the substrate was lower in the DE-GMAW base AM under the same conditions. When depositing the thin-wall parts, the DE-GMAW based AM can reduce the heat input to the substrate and improve the fabrication efficiency, compared with the GMAW based AM.

  7. Fabrication and characterization of energy storing supercapacitor devices using coconut shell based activated charcoal electrode

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Amrita; Tripathi, S.K., E-mail: sktripathi16@yahoo.com

    2014-04-01

    Highlights: • CST with specific surface area of 1640 m{sup 2} g{sup −1} was synthesized using impregnation method. • XRD studies of CST confirm the formation of graphite and amorphous C. • EDLC cell has been successfully fabricated using CST as an electrode material having good energy and power density. - Abstract: In the present studies coconut shell based treated activated charcoal (CST) was synthesized by chemical activation method using KOH (potassium hydroxide) as an activating agent. Surface area analysis shows that CST has mesopores of size 3 nm having specific surface area of 1640 m{sup 2} g{sup −1}. Electrochemical double layer capacitor (EDLC) was fabricated using CST as an electrode material with blend polymer electrolyte having specific capacitance of 534 mF cm{sup −2} (equivalent to single electrode specific capacitance of 356.2 F g{sup −1}). The corresponding energy and power density of 88.8 Wh kg{sup −1} and 1.63 kW kg{sup −1}, respectively, were achieved for EDLC.

  8. Silver nanowire/polyaniline composite transparent electrode with improved surface properties

    International Nuclear Information System (INIS)

    Kumar, A.B.V. Kiran; Jiang, Jianwei; Bae, Chang Wan; Seo, Dong Min; Piao, Longhai; Kim, Sang-Ho

    2014-01-01

    Highlights: • AgNWs/PANI transparent electrode was prepared by layer-by-layer coating method. • The surface roughness of the electrode reached to 6.5 nm (root mean square). • The electrode had reasonable sheet resistance (25 Ω/□) and transmittance (83.5%). - Abstract: Silver nanowires (AgNWs) are as potential candidates to replace indium tin oxide (ITO) in transparent electrodes because of their preferred conducting and optical properties. However, their rough surface properties are not favorable for the fabrication of optoelectronic devices, such as displays and thin-film solar cells. In the present investigation, AgNWs/polyaniline composite transparent electrodes with better surface properties were successfully prepared. AgNWs were incorporated into polyaniline:polystyrene sulfonate (PANI:PSS) by layer-by-layer coating and mechanical pressing. PANI:PSS decreased the surface roughness of the AgNWs electrode by filling the gap of the random AgNWs network. The transparent composite electrode had decreased surface roughness (root mean square 6.5 nm) with reasonable sheet resistance (25 Ω/□) and transmittance (83.5%)

  9. Coplanar Electrode Layout Optimized for Increased Sensitivity for Electrical Impedance Spectroscopy

    DEFF Research Database (Denmark)

    Clausen, Casper Hyttel; Skands, Gustav Erik; Bertelsen, Christian Vinther

    2015-01-01

    This work describes an improvement in the layout of coplanar electrodes for electrical impedance spectroscopy. We have developed, fabricated, and tested an improved electrode layout, which improves the sensitivity of an impedance flow cytometry chip. The improved chip was experimentally tested...... and compared to a chip with a conventional electrode layout. The improved chip was able to discriminate 0.5 mu m beads from 1 mu m as opposed to the conventional chip. Furthermore, finite element modeling was used to simulate the improvements in electrical field density and uniformity between the electrodes...... of the new electrode layout. Good agreement was observed between the model and the obtained experimental results....

  10. A novel fabrication method of carbon electrodes using 3D printing and chemical modification process.

    Science.gov (United States)

    Tian, Pan; Chen, Chaoyang; Hu, Jie; Qi, Jin; Wang, Qianghua; Chen, Jimmy Ching-Ming; Cavanaugh, John; Peng, Yinghong; Cheng, Mark Ming-Cheng

    2017-11-23

    Three-dimensional (3D) printing is an emerging technique in the field of biomedical engineering and electronics. This paper presents a novel biofabrication method of implantable carbon electrodes with several advantages including fast prototyping, patient-specific and miniaturization without expensive cleanroom. The method combines stereolithography in additive manufacturing and chemical modification processes to fabricate electrically conductive carbon electrodes. The stereolithography allows the structures to be 3D printed with very fine resolution and desired shapes. The resin is then chemically modified to carbon using pyrolysis to enhance electrochemical performance. The electrochemical characteristics of 3D printing carbon electrodes are assessed by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The specific capacitance of 3D printing carbon electrodes is much higher than the same sized platinum (Pt) electrode. In-vivo electromyography (EMG) recording, 3D printing carbon electrodes exhibit much higher signal-to-noise ratio (40.63 ± 7.73) than Pt electrodes (14.26 ± 6.83). The proposed biofabrication method is envisioned to enable 3D printing in many emerging applications in biomedical engineering and electronics.

  11. A top-down approach for fabricating free-standing bio-carbon supercapacitor electrodes with a hierarchical structure

    OpenAIRE

    Yingzhi Li; Qinghua Zhang; Junxian Zhang; Lei Jin; Xin Zhao; Ting Xu

    2015-01-01

    Biomass has delicate hierarchical structures, which inspired us to develop a cost-effective route to prepare electrode materials with rational nanostructures for use in high-performance storage devices. Here, we demonstrate a novel top-down approach for fabricating bio-carbon materials with stable structures and excellent diffusion pathways; this approach is based on carbonization with controlled chemical activation. The developed free-standing bio-carbon electrode exhibits a high specific ca...

  12. Highly conductive alumina/NCN composites electrodes fabricated by gelcasting and reduction-sintering-An electrochemical behavior study in aggressive environments

    International Nuclear Information System (INIS)

    Liu Jingjun; Menchavez, Ruben L.; Watanabe, Hideo; Fuji, Masayoshi; Takahashi, Minoru

    2008-01-01

    A novel highly conductive alumina/nano-carbon network composites (alumina/NCN composites) was fabricated by gelcasting and reduction-sintering method under argon atmosphere. The electrochemical behaviors of the alumina/NCN composites were studied systematically in some aggressive solutions (HCl, H 2 SO 4 , HNO 3 , NaOH, and KOH), using potentiodynamic polarization and chronoamperometry and X-ray diffraction and SEM observations. The results showed that the electrochemical stability and reproducibility of the composite electrodes in these diluted acids and alkalis were very good and had, in some extent, an electro-catalytic activity toward formation of hydrogen evolution and reduction of dissolved oxygen in aqueous solutions in comparison with a commercial graphite electrode. In addition, the pyrolyzed nano-carbon contents, size, and shape in the alumina matrix, have greatly effects on the electrochemical performances and electrode reactions in these solutions. It is found that the minimal residual carbon content of 0.62 wt.% in the matrix is enough to improve electrochemical performances and avoid to loss the ceramics physical properties at the same time. When the additional potential in all the tested electrolytes was at +1700 mV (vs. SCE), alumina particles at the electrode surface were not observed to dissolve into solution in this case, indicating the material being suitable for electrodes in aggressive solutions

  13. Coplanar Electrode Layout Optimized for Increased Sensitivity for Electrical Impedance Spectroscopy

    Directory of Open Access Journals (Sweden)

    Casper Hyttel Clausen

    2014-12-01

    Full Text Available This work describes an improvement in the layout of coplanar electrodes for electrical impedance spectroscopy. We have developed, fabricated, and tested an improved electrode layout, which improves the sensitivity of an impedance flow cytometry chip. The improved chip was experimentally tested and compared to a chip with a conventional electrode layout. The improved chip was able to discriminate 0.5 μm beads from 1 μm as opposed to the conventional chip. Furthermore, finite element modeling was used to simulate the improvements in electrical field density and uniformity between the electrodes of the new electrode layout. Good agreement was observed between the model and the obtained experimental results.

  14. Fabrication of copper-selective PVC membrane electrode based on newly synthesized copper complex of Schiff base as carrier

    Directory of Open Access Journals (Sweden)

    Sulekh Chandra

    2016-09-01

    Full Text Available The newly synthesized copper(II complex of Schiff base p-hydroxyacetophenone semicarbazone was explored as neutral ionophore for the fabrication of poly(vinylchloride (PVC based membrane electrode selective to Cu(II ions. The electrode shows a Nernstian slope of 29.8 ± 0.3 mV/decade with improved linear range of 1.8 × 10−7 to 1.0 × 10−1 M, comparatively lower detection limit 5.7 × 10−8 M between pH range of 2.0–8.0, giving a relatively fast response within 5s and can be used for at least 16 weeks without any divergence in potential. The selectivity coefficient was calculated using the fixed interference method (FIM. The electrode can also be used in partially non-aqueous media having up to 25% (v/v methanol, ethanol or acetone content with no significant change in the value of slope or working concentration range. It was successfully applied for the direct determination of copper content in water and tea samples with satisfactory results. The electrode has been used in the potentiometric titration of Cu2+ with EDTA.

  15. Flexible Electrode Design: Fabrication of Freestanding Polyaniline-Based Composite Films for High-Performance Supercapacitors.

    Science.gov (United States)

    Khosrozadeh, Ali; Darabi, Mohammad Ali; Xing, Malcolm; Wang, Quan

    2016-05-11

    Polyaniline (PANI) is a promising pseudocapacitance electrode material. However, its structural instability leads to low cyclic stability and limited rate capability which hinders its practical applications. In view of the limitations, flexible PANI-based composite films are developed to improve the electrochemical performance of electrode materials. We report in the research a facile and cost-effective approach for fabrication of a high-performance supercapacitor (SC) with excellent cyclic stability and tunable energy and power densities. SC electrode containing a very high mass loading of active materials is a flexible film of PANI, tissue wiper-based cellulose, graphite-based exfoliated graphite (ExG), and silver nanoparticles with potential applications in wearable electronics. The optimum preparation weight ratios of silver nitrate/aniline and ExG/aniline used in the research are estimated to be 0.18 and 0.65 (or higher), respectively. Our results show that an ultrahigh capacitance of 3.84 F/cm(2) (240.10 F/g) at a discharge rate of 5 mA can be achieved. In addition, our study shows that the power density can be increased from 1531.3 to 3000 W/kg by selecting the weight ratio of ExG/aniline to be more than 0.65, with a sacrifice in the energy density. The obtained promising electrochemical properties are found to be mainly attributed to an effective combination of PANI, ExG, cushiony cellulose scaffold, and silver as well as the porosity of the composite.

  16. Study on the Effect of the Three-Dimensional Electrode in Degradation of Methylene Blue by Lithium Modified Rectorite

    Directory of Open Access Journals (Sweden)

    Jian Huang

    2016-01-01

    Full Text Available This study presents the electrochemical degradation of methylene blue (MB wastewater in a synthetic solution using three-dimensional particle electrodes. The novel particle electrodes were fabricated in this work using the lithium modified rectorite (Li-REC. The adsorption property of the fabricated particle electrodes was studied in a series of experiments. The optimum electrochemical operating conditions of plate distance, cell voltage, and concentration of electrolyte were 2 cm, 9 V, and 0.06 mol L−1, respectively. It was also found that microwave irradiation can effectively improve the adsorption property and electrical property of the fabricated electrodes. In addition, the scanning electron microscope (SEM of the fabricated electrodes was investigated. The experimental results revealed the order of adsorption property and electrical property of the fabricated electrodes. So, fabricated electrodes are not only of low cost and mass produced, but also efficient to achieve decolorization of MB solution.

  17. Fabrication and application of flexible graphene silk composite film electrodes decorated with spiky Pt nanospheres

    Science.gov (United States)

    Liang, Bo; Fang, Lu; Hu, Yichuan; Yang, Guang; Zhu, Qin; Ye, Xuesong

    2014-03-01

    A free-standing graphene silk composite (G/S) film was fabricated via vacuum filtration of a mixed suspension of graphene oxide and silk fibres, followed by chemical reduction. Spiky structured Pt nanospheres were grown on the film substrate by cyclic voltammetry electrodeposition. The electrical and mechanical performance of a single graphene coated silk fibre was investigated. The conductivity of a single graphene coated silk fibre is 57.9 S m-1. During 1000 bending measurements, the conductivity was stable and showed negligible variation. The G/S film has a sheet resistivity of 90 Ω □-1 with a porous and hierarchical structure. The spiky Pt nanosphere decorated G/S film was directly used as a H2O2 electrode with a sensitivity of 0.56 mA mM-1 cm-2, a linear range of 0-2.5 mM and an ultralow detection limit of 0.2 μM (S/N = 3). A glucose biosensor electrode was further fabricated by enzyme immobilization. The results show a sensitivity of 150.8 μA mM-1 cm-2 and a low detection limit of 1 μM (S/N = 3) for glucose detection. The strategy of coating graphene sheets on a silk fibre surface provides a new approach for developing electrically conductive biomaterials, tissue engineering scaffolds, bendable electrodes, and wearable biomedical devices.A free-standing graphene silk composite (G/S) film was fabricated via vacuum filtration of a mixed suspension of graphene oxide and silk fibres, followed by chemical reduction. Spiky structured Pt nanospheres were grown on the film substrate by cyclic voltammetry electrodeposition. The electrical and mechanical performance of a single graphene coated silk fibre was investigated. The conductivity of a single graphene coated silk fibre is 57.9 S m-1. During 1000 bending measurements, the conductivity was stable and showed negligible variation. The G/S film has a sheet resistivity of 90 Ω □-1 with a porous and hierarchical structure. The spiky Pt nanosphere decorated G/S film was directly used as a H2O2 electrode with a

  18. Fabrication and characterization of a nanometer-sized optical fiber electrode based on selective chemical etching for scanning electrochemical/optical microscopy.

    Science.gov (United States)

    Maruyama, Kenichi; Ohkawa, Hiroyuki; Ogawa, Sho; Ueda, Akio; Niwa, Osamu; Suzuki, Koji

    2006-03-15

    We have already reported a method for fabricating ultramicroelectrodes (Suzuki, K. JP Patent, 2004-45394, 2004). This method is based on the selective chemical etching of optical fibers. In this work, we undertake a detailed investigation involving a combination of etched optical fibers with various types of tapered tip (protruding-shape, double- (or pencil-) shape and triple-tapered electrode) and insulation with electrophoretic paint. Our goal is to establish a method for fabricating nanometer-sized optical fiber electrodes with high reproducibility. As a result, we realized pencil-shaped and triple-tapered electrodes that had radii in the nanometer range with high reproducibility. These nanometer-sized electrodes showed well-defined sigmoidal curves and stable diffusion-limited responses with cyclic voltammetry. The pencil-shaped optical fiber, which has a conical tip with a cone angle of 20 degrees , was effective for controlling the electrode radius. The pencil-shaped electrodes had higher reproducibility and smaller electrode radii (r(app) etched optical fiber electrodes. By using a pencil-shaped electrode with a 105-nm radius as a probe, we obtained simultaneous electrochemical and optical images of an implantable interdigitated array electrode. We achieved nanometer-scale resolution with a combination of scanning electrochemical microscopy SECM and optical microscopy. The resolution of the electrochemical and optical images indicated sizes of 300 and 930 nm, respectively. The neurites of living PC12 cells were also successfully imaged on a 1.6-microm scale by using the negative feedback mode of an SECM.

  19. Multiwalled carbon nanotube coated polyester fabric as textile based flexible counter electrode for dye sensitized solar cell.

    Science.gov (United States)

    Arbab, Alvira Ayoub; Sun, Kyung Chul; Sahito, Iftikhar Ali; Qadir, Muhammad Bilal; Jeong, Sung Hoon

    2015-05-21

    Textile wearable electronics offers the combined advantages of both electronics and textile characteristics. The essential properties of these flexible electronics such as lightweight, stretchable, and wearable power sources are in strong demand. Here, we have developed a facile route to fabricate multi walled carbon nanotube (MWCNT) coated polyester fabric as a flexible counter electrode (CE) for dye sensitized solar cells (DSSCs). A variety of MWCNT and enzymes with different structures were used to generate individual enzyme-dispersed MWCNT (E-MWCNT) suspensions by non-covalent functionalization. A highly concentrated colloidal suspension of E-MWCNT was deposited on polyester fabric via a simple tape casting method using an air drying technique. In view of the E-MWCNT coating, the surface structure is represented by topologically randomly assembled tubular graphene units. This surface morphology has a high density of colloidal edge states and oxygen-containing surface groups which execute multiple catalytic sites for iodide reduction. A highly conductive E-MWCNT coated fabric electrode with a surface resistance of 15 Ω sq(-1) demonstrated 5.69% power conversion efficiency (PCE) when used as a flexible CE for DSSCs. High photo voltaic performance of our suggested system of E-MWCNT fabric-based DSSCs is associated with high sheet conductivity, low charge transfer resistance (RCT), and excellent electro catalytic activity (ECA). Such a conductive fabric demonstrated stable conductivity against bending cycles and strong mechanical adhesion of E-MWCNT on polyester fabric. Moreover, the polyester fabric is hydrophobic and, therefore, has good sealing capacity and retains the polymer gel electrolyte without seepage. This facile E-MWCNT fabric CE configuration provides a concrete fundamental background towards the development of textile-integrated solar cells.

  20. Fabrication of GaAs nanowire devices with self-aligning W-gate electrodes using selective-area MOVPE

    International Nuclear Information System (INIS)

    Ooike, N.; Motohisa, J.; Fukui, T.

    2004-01-01

    We propose and demonstrate a novel self-aligning process for fabricating the tungsten (W) gate electrode of GaAs nanowire FETs by using selective-area metalorganic vapor phase epitaxy (SA-MOVPE) where SiO 2 /W composite films are used to mask the substrates. First, to study the growth process and its dependence on mask materials, GaAs wire structures were grown on masked substrates partially covered with a single W layer or SiO 2 /W composite films. We found that lateral growth over the masked regions could be suppressed when a wire along the [110] direction and a SiO 2 /W composite mask were used. Using this composite mask, we fabricated GaAs narrow channel FETs using W as a Schottky gate electrode, and we were able to observe FET characteristics at room temperature

  1. Doped polymer electrodes for high performance ferroelectric capacitors on plastic substrates

    KAUST Repository

    Khan, M. A.

    2012-10-03

    Flexible ferroelectric capacitors with doped polymer electrodes have been fabricated on plastic substrates with performance as good as metal electrodes. The effect of doping on the morphology of polymer electrodes and its impact on device performance have been studied. Improved fatigue characteristics using doped and undoped poly (3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) electrodes versus metal electrodes are observed. It is shown that the polymer electrodes follow classical ferroelectric and dielectric responses, including series resistance effects. The improved device characteristics obtained using highly conducting doped PEDOT:PSS suggest that it may be used both as an electrode and as global interconnect for all-polymer transparent circuits on flexible substrates.

  2. Complaint liquid metal electrodes for dielectric elastomer actuators

    Science.gov (United States)

    Finkenauer, Lauren R.; Majidi, Carmel

    2014-03-01

    This work presents a liquid-phase metal electrode to be used with poly(dimethylsiloxane) (PDMS) for a dielectric elastomer actuator (DEA). DEAs are favorable for soft-matter applications where high efficiency and response times are desirable. A consistent challenge faced during the fabrication of these devices is the selection and deposition of electrode material. While numerous designs have been demonstrated with a variety of conductive elastomers and greases, these materials have significant and often intrinsic shortcomings, e.g. low conductivity, hysteresis, incapability of large deformations, and complex fabrication requirements. The liquid metal alloy eutectic Gallium-Indium (EGaIn) is a promising alternative to existing compliant electrodes, having both high conductivity and complete soft-matter functionality. The liquid electrode shares almost the same electrical conductivity as conventional metal wiring and provides no mechanical resistance to bending or stretching of the DEA. This research establishes a straightforward and effective method for quickly depositing EGaIn electrodes, which can be adapted for batch fabrication, and demonstrates the successful actuation of sample curved cantilever elastomer actuators using these electrodes. As with the vast majority of electrostatically actuated elastomer devices, the voltage requirements for these curved DEAs are still quite significant, though modifications to the fabrication process show some improved electrical properties. The ease and speed with which this method can be implemented suggests that the development of a more electronically efficient device is realistic and worthwhile.

  3. Fabrication of nano-electrode arrays of free-standing carbon nanotubes on nano-patterned substrate by imprint method

    Energy Technology Data Exchange (ETDEWEB)

    Chang, W.S., E-mail: paul@kimm.re.kr [Department of Nano Mechanics, Korea Institute of Machinery and Materials, 104 Sinseongno, Yuseong-gu Daejeon 305-343 (Korea, Republic of); Kim, J.W. [Gyeongbuk Hybrid Technology Institute, 36 Goeyeon-dong, Yeongcheon, Gyeongbuk 770-170 (Korea, Republic of); Choi, D.G. [Department of Nano Mechanics, Korea Institute of Machinery and Materials, 104 Sinseongno, Yuseong-gu Daejeon 305-343 (Korea, Republic of); Han, C.S. [Gyeongbuk Hybrid Technology Institute, 36 Goeyeon-dong, Yeongcheon, Gyeongbuk 770-170 (Korea, Republic of)

    2011-01-15

    The synthesis of isolated carbon nanotubes with uniform outer diameters and ordered spacing over wafer-scale areas was investigated for fabrication of nano-electrode arrays on silicon wafers for field emission and sensor devices. Multi-walled carbon nanotubes (MWCNTs) were grown on TiN electrode layer with iron catalyst patterned by nano-imprint lithography (NIL), which allows the precise placement of individual CNTs on a substrate. The proposed techniques, including plasma-enhanced chemical vapor deposition (PECVD) and NIL, are simple, inexpensive, and reproducible methods for fabrication of nano-scale devices in large areas. The catalyst patterns were defined by an array of circles with 200 nm in diameter, and variable lengths of pitch. The nano-patterned master and Fe catalyst were observed with good pattern fidelity over a large area by atomic force microscope (AFM) and scanning electron microscopy (SEM). Nano-electrodes of MWCNTs had diameters ranging from 50 nm to 100 nm and lengths of about 300 nm. Field emission tests showed the reducing ignition voltage as the geometry of nanotube arrays was controlled by catalyst patterning. These results showed a wafer-scale approach to the control of the size, pitch, and position of nano-electrodes of nanotubes for various applications including electron field-emission sources, electrochemical probes, functionalized sensor elements, and so on.

  4. Fabrication of a Micro-Needle Array Electrode by Thermal Drawing for Bio-Signals Monitoring.

    Science.gov (United States)

    Ren, Lei; Jiang, Qing; Chen, Keyun; Chen, Zhipeng; Pan, Chengfeng; Jiang, Lelun

    2016-06-17

    A novel micro-needle array electrode (MAE) fabricated by thermal drawing and coated with Ti/Au film was proposed for bio-signals monitoring. A simple and effective setup was employed to form glassy-state poly (lactic-co-glycolic acid) (PLGA) into a micro-needle array (MA) by the thermal drawing method. The MA was composed of 6 × 6 micro-needles with an average height of about 500 μm. Electrode-skin interface impedance (EII) was recorded as the insertion force was applied on the MAE. The insertion process of the MAE was also simulated by the finite element method. Results showed that MAE could insert into skin with a relatively low compression force and maintain stable contact impedance between the MAE and skin. Bio-signals, including electromyography (EMG), electrocardiography (ECG), and electroencephalograph (EEG) were also collected. Test results showed that the MAE could record EMG, ECG, and EEG signals with good fidelity in shape and amplitude in comparison with the commercial Ag/AgCl electrodes, which proves that MAE is an alternative electrode for bio-signals monitoring.

  5. Fabrication of a Micro-Needle Array Electrode by Thermal Drawing for Bio-Signals Monitoring

    Directory of Open Access Journals (Sweden)

    Lei Ren

    2016-06-01

    Full Text Available A novel micro-needle array electrode (MAE fabricated by thermal drawing and coated with Ti/Au film was proposed for bio-signals monitoring. A simple and effective setup was employed to form glassy-state poly (lactic-co-glycolic acid (PLGA into a micro-needle array (MA by the thermal drawing method. The MA was composed of 6 × 6 micro-needles with an average height of about 500 μm. Electrode-skin interface impedance (EII was recorded as the insertion force was applied on the MAE. The insertion process of the MAE was also simulated by the finite element method. Results showed that MAE could insert into skin with a relatively low compression force and maintain stable contact impedance between the MAE and skin. Bio-signals, including electromyography (EMG, electrocardiography (ECG, and electroencephalograph (EEG were also collected. Test results showed that the MAE could record EMG, ECG, and EEG signals with good fidelity in shape and amplitude in comparison with the commercial Ag/AgCl electrodes, which proves that MAE is an alternative electrode for bio-signals monitoring.

  6. Electronically conductive polymer binder for lithium-ion battery electrode

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gao; Xun, Shidi; Battaglia, Vincent S.; Zheng, Honghe; Wu, Mingyan

    2017-08-01

    A family of carboxylic acid groups containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. Triethyleneoxide side chains provide improved adhesion to materials such as, graphite, silicon, silicon alloy, tin, tin alloy. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  7. Electronically conductive polymer binder for lithium-ion battery electrode

    Science.gov (United States)

    Liu, Gao; Xun, Shidi; Battaglia, Vincent S.; Zheng, Honghe; Wu, Mingyan

    2015-07-07

    A family of carboxylic acid groups containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. Triethyleneoxide side chains provide improved adhesion to materials such as, graphite, silicon, silicon alloy, tin, tin alloy. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  8. Electrochemical fabrication of TiO2 nanoparticles/[BMIM]BF4 ionic liquid hybrid film electrode and its application in determination of p-acetaminophen

    International Nuclear Information System (INIS)

    Wang, Bin; Li, Yuan; Qin, Xianjing; Zhan, Guoqing; Ma, Ming; Li, Chunya

    2012-01-01

    A water soluble ionic liquid, 1‐butyl‐3‐methylimidazolium tetrafluoroborate ([BMIM]BF 4 ), was incorporated into TiO 2 nanoparticles to fabricate a hybrid film modified glassy carbon electrode (nano‐TiO 2 /[BMIM]BF 4 /GCE) through electrochemical deposition in a tetrabutyltitanate sol solution containing [BMIM]BF 4 . The obtained nano‐TiO 2 /[BMIM]BF 4 /GCEs were characterized scanning electronic microscopy (SEM) and X‐ray photoelectron spectroscopy (XPS). Electrochemical behaviors of p‐acetaminophen at the nano‐TiO 2 /[BMIM]BF 4 /GCEs were thoroughly investigated. Compared to the redox reaction of p‐acetaminophen using an unmodified electrode under the same conditions, a new reduction peak was observed clearly at 0.26 V with the modified electrode. In addition, the peak potential for the oxidation of p‐acetaminophen was found to shift negatively about 90 mV and the current response increased significantly. These changes indicate that the nano‐TiO 2 /[BMIM]BF 4 hybrid film can improve the redox reactions of p‐acetaminophen in aqueous medium. Under optimum conditions, a linear relationship was obtained for the p‐acetaminophen solutions with concentration in the range from 5.0 × 10 −8 to 5.0 × 10 −5 M. The estimated detection limit was 1.0 × 10 −8 M (S/N = 3). The newly developed method was applied for the determination of p-acetaminophen in urine samples. - Highlights: ► Nano-TiO 2 /[BMIM]BF 4 hybrid film electrode was fabricated with electrodeposition. ► Voltammetric behavior of p-acetaminophen at the obtained electrode was investigated. ► The hybrid film electrode shows good electrocatalytic response to p-acetaminophen. ► p-acetaminophen in urine samples was successfully determined.

  9. Improved performance of inkjet-printed Ag source/drain electrodes for organic thin-film transistors by overcoming the coffee ring effects

    Science.gov (United States)

    Liu, Cheng-Fang; Lin, Yan; Lai, Wen-Yong; Huang, Wei

    2017-11-01

    Inkjet printing is a promising technology for the scalable fabrication of organic electronics because of the material conservation and facile patterning as compared with other solution processing techniques. In this study, we have systematically investigated the cross-sectional profile control of silver (Ag) electrode via inkjet printing. A facile methodology for achieving inkjet-printed Ag source/drain with improved profiles is developed. It is demonstrated that the printing conditions such as substrate temperature, drop spacing and printing layers affect the magnitude of the droplet deposition and the rate of evaporation, which can be optimized to greatly reduce the coffee ring effects for improving the inkjet-printed electrode profiles. Ag source/drain electrodes with uniform profiles were successfully inkjet-printed and incorporated into organic thin-film transistors (OTFTs). The resulting devices showed superior electrical performance than those without special treatments. It is noted to mention that the strategy for modulating the inkjet-printed Ag electrodes in this work does not demand the ink formulation or complicated steps, which is beneficial for scaling up the printing techniques for potential large-area/mass manufacturing.

  10. Fabrication of Chitosan-complexed Electrode and Evaluation of Its Efficiency in Removal of Copper Ion from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Yoon Young-Chan

    2016-01-01

    Full Text Available In this study, we fabricated chitosan/PVA/activated carbon complexed electrode to remove copper ion from aqueous solution. The prepared composite electrode was analyzed by BET and SEM to investigate its physicochemical properties. Electrochemical properties of prepared composite electrodes were analyzed via cyclic voltammetry. Adsorption performance of copper ion on chitosan composite complexed electrodes was evaluated. Almost similar pore size distribution results were observed in the series of ACP not included electrodes while observed differences in pore size distribution for the ACP included one. Cyclic voltammetry results exhibited that oxidation-reduction reaction does not occur in a potential range of -1.0 ~ 1.0 V. The amount of copper ion during adsroption reaction is increase according to increase of adsorption potential to 1.0 V.

  11. Fabrication and characterization of p{sup +}-i-p{sup +} type organic thin film transistors with electrodes of highly doped polymer

    Energy Technology Data Exchange (ETDEWEB)

    Tadaki, Daisuke [Graduate School of Biomedical Engineering, Tohoku University, Sendai 980-8579 (Japan); Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, Sendai 980-8577 (Japan); CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan); Ma, Teng; Niwano, Michio, E-mail: niwano@riec.tohoku.ac.jp [Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, Sendai 980-8577 (Japan); CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan); Zhang, Jinyu; Iino, Shohei [Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, Sendai 980-8577 (Japan); Hirano-Iwata, Ayumi [Graduate School of Biomedical Engineering, Tohoku University, Sendai 980-8579 (Japan); CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan); Kimura, Yasuo [CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan); Tokyo University of Technology, Hachioji, Tokyo 192-0982 (Japan); Rosenberg, Richard A. [Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439 (United States)

    2016-04-21

    Organic thin film transistors (OTFTs) have been explored because of their advantageous features such as light-weight, flexible, and large-area. For more practical application of organic electronic devices, it is very important to realize OTFTs that are composed only of organic materials. In this paper, we have fabricated p{sup +}-i-p{sup +} type of OTFTs in which an intrinsic (i) regioregular poly (3-hexylthiophene) (P3HT) layer is used as the active layer and highly doped p-type (p{sup +}) P3HT is used as the source and drain electrodes. The 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F{sub 4}-TCNQ) was used as the p-type dopant. A fabricating method of p{sup +}-i-p{sup +} OTFTs has been developed by using SiO{sub 2} and aluminum films as capping layers for micro-scaled patterning of the p{sup +}-P3HT electrodes. The characteristics of the OTFTs were examined using the photoelectron spectroscopy and electrical measurements. We demonstrated that the fabricated p{sup +}-i-p{sup +} OTFTs work with carrier injection through a built-in potential at p{sup +}/i interfaces. We found that the p{sup +}-i-p{sup +} OTFTs exhibit better FET characteristics than the conventional P3HT-OTFT with metal (Au) electrodes, indicating that the influence of a carrier injection barrier at the interface between the electrode and the active layer was suppressed by replacing the metal electrodes with p{sup +}-P3HT layers.

  12. Horseradish Peroxidase (HRP Immobilized Poly(aniline-co-m-aminophenol Film Electrodes–fabrication and Evaluation as Hydrogen Peroxide Sensor

    Directory of Open Access Journals (Sweden)

    Seong-Ho Choi

    2007-05-01

    Full Text Available Enzyme modified electrodes were fabricated with poly(aniline-co-m-aminophenol. Electrochemical polymerization of aniline and m-aminophenol wasperformed to get the film of copolymer on the surface of gold electrode. Modifiedelectrodes were fabricated by two methods, physical entrapment and covalent cross-linking.In one of the method, gold nanoparticles were loaded into the copolymer film andhorseradish peroxidase (HRP was immobilized into the Au nanoparticle loaded copolymerfilm through physical entrapment. In the other method, the amino and -OH groups in thecopolymer are utilized to form covalent functionalization with HRP via glutaric dialdehydeas cross-linker/mediator. The conducting copolymer/enzyme modified electrodes preparedby physical entrapment/covalent functionalization of enzyme were tested forelectrocatalytic activities towards sensing of H2O2. Amperometric results indicate thatenzyme modified electrode via physical entrapment possesses better electrocatalyticperformance over covalent functionalized enzyme electrode.

  13. Al-doped ZnO/Ag grid hybrid transparent conductive electrodes fabricated using a low-temperature process

    Energy Technology Data Exchange (ETDEWEB)

    An, Ha-Rim; Oh, Sung-Tag [Department of Materials Science and Engineering, Seoul National University of Science and Technology, Seoul 139-743 (Korea, Republic of); Kim, Chang Yeoul [Future Convergence Ceramic Division, Korea Institute Ceramic Engineering and Technology (KICET), Seoul 233-5 (Korea, Republic of); Baek, Seong-Ho [Energy Research Division, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 711-873 (Korea, Republic of); Park, Il-Kyu, E-mail: ikpark@ynu.ac.kr [Department of Electronic Engineering, Yeungnam University, Gyeongbuk 712-749 (Korea, Republic of); Ahn, Hyo-Jin, E-mail: hjahn@seoultech.ac.kr [Department of Materials Science and Engineering, Seoul National University of Science and Technology, Seoul 139-743 (Korea, Republic of)

    2014-12-05

    Highlights: • Al-doped ZnO/Ag transparent conductive electrode is fabricated at low temperature. • Performance of the hybrid transparent conductive electrode affected by the structure. • The performance enhancement mechanism is suggested. - Abstract: Al-doped ZnO (AZO)/Ag grid hybrid transparent conductive electrode (TCE) structures were fabricated at a low temperature by using electrohydrodynamic jet printing for the Ag grids and atomic layer deposition for the AZO layers. The structural investigations showed that the AZO/Ag grid hybrid structures consisted of Ag grid lines formed by Ag particles and the AZO layer covering the inter-spacing between the Ag grid lines. The Ag particles comprising the Ag grid lines were also capped by thin AZO layers, and the coverage of the AZO layers was increased with increasing the thickness of the AZO layer. Using the optimum thickness of AZO layer of 70 nm, the hybrid TCE structure showed an electrical resistivity of 5.45 × 10{sup −5} Ω cm, an optical transmittance of 80.80%, and a figure of merit value of 1.41 × 10{sup −2} Ω{sup −1}. The performance enhancement was suggested based on the microstructural investigations on the AZO/Ag grid hybrid structures.

  14. Facile in-situ fabrication of graphene/riboflavin electrode for microbial fuel cells

    International Nuclear Information System (INIS)

    Wang, Qian-Qian; Wu, Xia-Yuan; Yu, Yang-Yang; Sun, De-Zhen; Jia, Hong-Hua; Yong, Yang-Chun

    2017-01-01

    A novel graphene/riboflavin (RF) composite electrode was developed and its potential application as microbial fuel cell (MFC) anode was demonstrated. Graphene layers were first grown on the surface of graphite electrode by a one-step in-situ electrochemical exfoliation approach. Then, noncovalent functionalization of the graphene layers with RF was achieved by a simple spontaneous adsorption process. The graphene/RF electrode was extensively characterized by transmission electron microscopy, Fourier transform infrared spectroscopy, Raman analysis, and cyclic voltammetry analysis. Remarkably, when applied as the anode of Shewanella oneidensis MR-1 inoculated MFCs, the graphene/RF electrode significantly decreased charge transfer over-potential and enhanced cell attachment, which in turn delivered about 5.3- and 2.5-fold higher power output, when compared with that produced by the bare graphite paper electrode and graphene electrode, respectively. These results demonstrated that electron shuttle immobilization on the electrode surface could be a promising and practical strategy for improving the performance of microbial electrochemical systems.

  15. Fabrication of Micro-Needle Electrodes for Bio-Signal Recording by a Magnetization-Induced Self-Assembly Method

    Directory of Open Access Journals (Sweden)

    Keyun Chen

    2016-09-01

    Full Text Available Micro-needle electrodes (MEs have attracted more and more attention for monitoring physiological electrical signals, including electrode-skin interface impedance (EII, electromyography (EMG and electrocardiography (ECG recording. A magnetization-induced self-assembling method (MSM was developed to fabricate a microneedle array (MA. A MA coated with Ti/Au film was assembled as a ME. The fracture and insertion properties of ME were tested by experiments. The bio-signal recording performance of the ME was measured and compared with a typical commercial wet electrode (Ag/AgCl electrode. The results show that the MA self-assembled from the magnetic droplet array under the sum of gravitational surface tension and magnetic potential energies. The ME had good toughness and could easily pierce rabbit skin without being broken or buckling. When the compression force applied on the ME was larger than 2 N, ME could stably record EII, which was a lower value than that measured by Ag/AgCl electrodes. EMG signals collected by ME varied along with the contraction of biceps brachii muscle. ME could record static ECG signals with a larger amplitude and dynamic ECG signals with more distinguishable features in comparison with a Ag/AgCl electrode, therefore, ME is an alternative electrode for bio-signal monitoring in some specific situations.

  16. Microelectrode array fabrication for electrochemical detection with carbon nanotubes

    Science.gov (United States)

    Clark, James

    Understanding how the brain works remains one of the key challenges for scientists. To further this understanding a wide variety of technologies and research methods have been developed. One such technology is conductive electrodes, used to measure the electrical signals elicited from neuronal cells and tissues. These electrodes can be fabricated as a singular electrode or as a multi-electrode array (MEA). This permits bio-electrical measurements from one particular area or simultaneous measurements from multiple areas, respectively. Studying electrical and chemical signals of individual cells in situ requires the use of electrodes with ≤20 µm diameter. However, electrodes of this size generally produce high impedance, perturbing recording of the small signals generated from individual cells. Nanomaterials, such as carbon nanotubes (CNTs), can be deposited to increase the real surface area of these electrodes, producing higher sensitivity measurements. This thesis investigates the potential for using photo-thermal chemical vapour deposition grown CNTs as the electrode material for a de novo fabricated MEA. This device aimed to measure electrochemical signals in the form of dopamine, an important mammalian neurotransmitter, as well as conventional bio-electrical signals that the device is designed for. Realising this aim began with improving CNT aqueous wetting behaviour via oxygen plasma functionalisation. This procedure demonstrated grafting of oxygen functional groups to the CNT structure, and dramatic improvements in aqueous wetting behaviour, with CNTs attached to the device. Subsequently, oxygen plasma functionalised CNT-based MEAs were fabricated and tested, allowing comparisons with a non-functionalised CNT MEA and a state-of-the-art commercial MEA. The functionalised CNT MEA demonstrated an order of magnitude improvement compared to commercial MEAs (2.75 kΩ vs. 25.6 kΩ), at the biologically relevant frequency of 1 kHz. This was followed by measurement

  17. Developing barbed microtip-based electrode arrays for biopotential measurement.

    Science.gov (United States)

    Hsu, Li-Sheng; Tung, Shu-Wei; Kuo, Che-Hsi; Yang, Yao-Joe

    2014-07-10

    This study involved fabricating barbed microtip-based electrode arrays by using silicon wet etching. KOH anisotropic wet etching was employed to form a standard pyramidal microtip array and HF/HNO3 isotropic etching was used to fabricate barbs on these microtips. To improve the electrical conductance between the tip array on the front side of the wafer and the electrical contact on the back side, a through-silicon via was created during the wet etching process. The experimental results show that the forces required to detach the barbed microtip arrays from human skin, a polydimethylsiloxane (PDMS) polymer, and a polyvinylchloride (PVC) film were larger compared with those required to detach microtip arrays that lacked barbs. The impedances of the skin-electrode interface were measured and the performance levels of the proposed dry electrode were characterized. Electrode prototypes that employed the proposed tip arrays were implemented. Electroencephalogram (EEG) and electrocardiography (ECG) recordings using these electrode prototypes were also demonstrated.

  18. Developing Barbed Microtip-Based Electrode Arrays for Biopotential Measurement

    Directory of Open Access Journals (Sweden)

    Li-Sheng Hsu

    2014-07-01

    Full Text Available This study involved fabricating barbed microtip-based electrode arrays by using silicon wet etching. KOH anisotropic wet etching was employed to form a standard pyramidal microtip array and HF/HNO3 isotropic etching was used to fabricate barbs on these microtips. To improve the electrical conductance between the tip array on the front side of the wafer and the electrical contact on the back side, a through-silicon via was created during the wet etching process. The experimental results show that the forces required to detach the barbed microtip arrays from human skin, a polydimethylsiloxane (PDMS polymer, and a polyvinylchloride (PVC film were larger compared with those required to detach microtip arrays that lacked barbs. The impedances of the skin-electrode interface were measured and the performance levels of the proposed dry electrode were characterized. Electrode prototypes that employed the proposed tip arrays were implemented. Electroencephalogram (EEG and electrocardiography (ECG recordings using these electrode prototypes were also demonstrated.

  19. Fabrication and performance of Li4Ti5O12/C Li-ion battery electrodes using combined double flame spray pyrolysis and pressure-based lamination technique

    Science.gov (United States)

    Gockeln, Michael; Pokhrel, Suman; Meierhofer, Florian; Glenneberg, Jens; Schowalter, Marco; Rosenauer, Andreas; Fritsching, Udo; Busse, Matthias; Mädler, Lutz; Kun, Robert

    2018-01-01

    Reduction of lithium-ion battery (LIB) production costs is inevitable to make the use of LIB technology more viable for applications such as electric vehicles or stationary storage. To meet the requirements in today's LIB cost efficiency, our current research focuses on an alternative electrode fabrication method, characterized by a combination of double flame spray pyrolysis and lamination technique (DFSP/lamination). In-situ carbon coated nano-Li4Ti5O12 (LTO/C) was synthesized using versatile DFSP. The as-prepared composite powder was then directly laminated onto a conductive substrate avoiding the use of any solvent or binder for electrode preparation. The influence of lamination pressures on the microstructure and electrochemical performance of the electrodes was also investigated. Enhancements in intrinsic electrical conductivity were found for higher lamination pressures. Capacity retention of highest pressurized DFSP/lamination-prepared electrode was 87.4% after 200 dis-/charge cycles at 1C (vs. Li). In addition, LTO/C material prepared from the double flame spray pyrolysis was also used for fabricating electrodes via doctor blading technique. Laminated electrodes obtained higher specific discharge capacities compared to calendered and non-calendered blade-casted electrodes due to superior microstructural properties. Such a fast and industrially compelling integrative DFSP/lamination tool could be a prosperous, next generation technology for low-cost LIB electrode fabrication.

  20. Fabrication and electrochemical behavior of single-walled carbon nanotube/graphite-based electrode

    International Nuclear Information System (INIS)

    Moghaddam, Abdolmajid Bayandori; Ganjali, Mohammad Reza; Dinarvand, Rassoul; Razavi, Taherehsadat; Riahi, Siavash; Rezaei-Zarchi, Saeed; Norouzi, Parviz

    2009-01-01

    An electrochemical method for determining the dihydroxybenzene derivatives on glassy carbon (GC) has been developed. In this method, the performance of a single-walled carbon nanotube (SWCNT)/graphite-based electrode, prepared by mixing SWCNTs and graphite powder, was described. The resulting electrode shows an excellent behavior for redox of 3,4-dihydroxybenzoic acid (DBA). SWCNT/graphite-based electrode presents a significant decrease in the overvoltage for DBA oxidation as well as a dramatic improvement in the reversibility of DBA redox behavior in comparison with graphite-based and glassy carbon (GC) electrodes. In addition, scanning electron microscopy (SEM) and atomic force microscopy (AFM) procedures performed for used SWCNTs

  1. Electronically conductive polymer binder for lithium-ion battery electrode

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gao; Xun, Shidi; Battaglia, Vincent S.; Zheng, Honghe

    2017-05-16

    A family of carboxylic acid group containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  2. Ultrahigh PEMFC performance of a thin-film, dual-electrode assembly with tailored electrode morphology.

    Science.gov (United States)

    Jung, Chi-Young; Kim, Tae-Hyun; Yi, Sung-Chul

    2014-02-01

    A dual-electrode membrane electrode assembly (MEA) for proton exchange membrane fuel cells with enhanced polarization under zero relative humidity (RH) is fabricated by introducing a phase-separated morphology in an agglomerated catalyst layer of Pt/C (platinum on carbon black) and Nafion. In the catalyst layer, a sufficient level of phase separation is achieved by dispersing the Pt catalyst and the Nafion dispersion in a mixed-solvent system (propane-1,2,3-triol/1-methyl-2-pyrrolidinone).The high polymer chain mobility results in improved water uptake and regular pore-size distribution with small pore diameters. The electrochemical performance of the dual-film electrode assembly with different levels of phase separation is compared to conventional electrode assemblies. As a result, good performance at 0 % RH is obtained because self-humidification is dramatically improved by attaching this dense and phase-separated catalytic overlayer onto the conventional catalyst layer. A MEA prepared using the thin-film, dual-layered electrode exhibits 39-fold increased RH stability and 28-fold improved start-up recovery time during the on-off operation relative to the conventional device. We demonstrate the successful operation of the dual-layered electrode comprised of discriminatively phase-separated agglomerates with an ultrahigh zero RH fuel-cell performance reaching over 95 % performance of a fully humidified MEA. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Electric Double-Layer Capacitor Fabricated with Addition of Carbon Nanotube to Polarizable Electrode

    OpenAIRE

    Yoshiyuki Show

    2012-01-01

    Electrical double-layer capacitor (EDLC) was fabricated with addition of carbon nanotube (CNT) to polarization electrodes as a conducting material. The CNT addition reduced the series resistance of the EDLC by one-twentieth, while the capacitance was not increased by the CNT addition. The low series resistance leaded to the high electrical energy stored in the EDLC. In this paper, the dependence of the series resistance, the specific capacitance, the energy, and the energy efficiencies on the...

  4. Improvement of interface property for membrane electrode assembly in fuel cell

    International Nuclear Information System (INIS)

    Fujii, K.; Sato, Y.; Kakigi, T.; Matsuura, A.; Mitani, N.; Muto, F.; Li Jingye; Miura, T.; Oshima, A.; Washio, M.

    2006-01-01

    Membrane electrode assembly (MEA) in polymer electrolyte fuel cells (PEFC) is consisted of proton exchange membrane (PEM), binder and Pt/C electrodes. In our previous work, partial-fluorinated sulfonic acid membranes were synthesized for PEMs using pre-EB grafting method. In the fuel cell (FC) operation, the dispersion of per-fluorinated sulfonic acid such as Nafion (DuPont de Nemours LTD.) was used for binder material. So, it is found that the trouble on conditions at three phase interface would occur at high temperature FC operation due to the differences of thermal properties. Thus, the control of interface property is important. In this study, in order to improve the interface properties, proton exchange membrane was synthesized from poly (tetrafluoroethylene-co-perfluoroalkylvinylether) (PFA), and then the obtained sulfonated PFA (s-PFA) was applied for binder material. PFA membranes were grafted in liquid styrene after EB irradiation under nitrogen atmosphere, and then sulfonated by chlorosulfonic acid solutions. The s-PFA membranes were milled to the powder in the mortar, and the average diameter was about 13 μm. S-PFA / Nafion blend dispersion was prepared by s-PFA mixed with Nafion dispersion with various ratios. MEAs were fabricated by using obtained binders, s-PFA membranes and Pt / C electrodes, followed by hot pressing at 110 degree C and at 8 MPa during 3 min. The properties of MEAs were measured by electrochemical analyses. In consequence, ion conductivities in MEA using obtained binders were about 1.3 times higher than those using Nafion dispersion. And, both power densities at 500 mA/cm 2 and maximum power densities were 1.1 times higher than those of Nafion dispersion. These are due to the improvement of the proton transfer at interface. (authors)

  5. Improvement of Transparent Conducting Performance on Oxygen-Activated Fluorine-Doped Tin Oxide Electrodes Formed by Horizontal Ultrasonic Spray Pyrolysis Deposition.

    Science.gov (United States)

    Koo, Bon-Ryul; Oh, Dong-Hyeun; Riu, Doh-Hyung; Ahn, Hyo-Jin

    2017-12-27

    In this study, highly transparent conducting fluorine-doped tin oxide (FTO) electrodes were fabricated using the horizontal ultrasonic spray pyrolysis deposition. In order to improve their transparent conducting performances, we carried out oxygen activation by adjusting the ratio of O 2 /(O 2 +N 2 ) in the carrier gas (0%, 20%, and 50%) used during the deposition process. The oxygen activation on the FTO electrodes accelerated the substitution concentration of F (F O • ) into the oxygen sites in the FTO electrode while the oxygen vacancy (V O • • ) concentration was reduced. In addition, due to growth of pyramid-shaped crystallites with (200) preferred orientations, this oxygen activation caused the formation of a uniform surface structure. As a result, compared to others, the FTO electrode prepared at 50% O 2 showed excellent electrical and optical properties (sheet resistance of ∼4.0 ± 0.14 Ω/□, optical transmittance of ∼85.3%, and figure of merit of ∼5.09 ± 0.19 × 10 -2 Ω -1 ). This led to a superb photoconversion efficiency (∼7.03 ± 0.20%) as a result of the improved short-circuit current density. The photovoltaic performance improvement can be defined by the decreased sheet resistance of FTO used as a transparent conducting electrode in dye-sensitized solar cells (DSSCs), which is due to the combined effect of the high carrier concentration by the improved F O • concentration on the FTO electrodes and the fasted Hall mobility by the formation of a uniform FTO surface structure and distortion relaxation on the FTO lattices resulting from the reduced V O • • • concentration.

  6. Electric Double-Layer Capacitor Fabricated with Addition of Carbon Nanotube to Polarizable Electrode

    International Nuclear Information System (INIS)

    Yoshiyuki, S.

    2012-01-01

    Electrical double-layer capacitor (EDLC) was fabricated with addition of carbon nano tube (CNT) to polarization electrodes as a conducting material. The CNT addition reduced the series resistance of the EDLC by one-twentieth, while the capacitance was not increased by the CNT addition. The low series resistance leaded to the high electrical energy stored in the EDLC. In this paper, the dependence of the series resistance, the specific capacitance, the energy, and the energy efficiencies on the CNT addition is discussed

  7. Comparative investigation on electrochemical behavior of hydroquinone at carbon ionic liquid electrode, ionic liquid modified carbon paste electrode and carbon paste electrode

    International Nuclear Information System (INIS)

    Zhang, Ya; Zheng, Jian Bin

    2007-01-01

    Ionic liquid, 1-heptyl-3-methylimidazolium hexafluorophosphate (HMIMPF 6 ), has been used to fabricate two new electrodes, carbon ionic liquid electrode (CILE) and ionic liquid modified carbon paste electrode (IL/CPE), using graphite powder mixed with HMIMPF 6 or the mixture of HMIMPF 6 /paraffin liquid as the binder, respectively. The electrochemical behaviors of hydroquinone at the CILE, the IL/CPE and the CPE were investigated in phosphate buffer solution. At all these electrodes, hydroquinone showed a pair of redox peaks. The order of the current response and the standard rate constant of hydroquinone at these electrodes were as follows: CILE > IL/CPE > CPE, while the peak-to-peak potential separation was in an opposite sequence: CILE < IL/CPE < CPE. The results show the superiority of CILE to IL/CPE and CPE, and IL/CPE to CPE in terms of promoting electron transfer, improving reversibility and enhancing sensitivity. The CILE was chosen as working electrode to determine hydroquinone by differential pulse voltammetry, which can be used for sensitive, simple and rapid determination of hydroquinone in medicated skin cosmetic cream

  8. Investigation of nanoporous platinum thin films fabricated by reactive sputtering: Application as micro-SOFC electrode

    Science.gov (United States)

    Jung, WooChul; Kim, Jae Jin; Tuller, Harry L.

    2015-02-01

    Highly porous Pt thin films, with nano-scale porosity, were fabricated by reactive sputtering. The strategy involved deposition of thin film PtOx at room temperature, followed by the subsequent decomposition of the oxide by rapid heat treatment. The resulting films exhibited percolating Pt networks infiltrated with interconnected nanosized pores, critical for superior solid oxide fuel cell cathode performance. This approach is particularly attractive for micro-fabricated solid oxide fuel cells, since it enables fabrication of the entire cell stack (anode/electrolyte/cathode) within the sputtering chamber, without breaking vacuum. In this work, the morphological, crystallographic and chemical properties of the porous electrode were systematically varied by control of deposition conditions. Oxygen reduction reaction kinetics were investigated by means of electrochemical impedance spectroscopy, demonstrating the critical role of nano-pores in achieving satisfactory micro-SOFC cathode performance.

  9. Deep Ultraviolet Copper(I) Thiocyanate (CuSCN) Photodetectors Based on Coplanar Nanogap Electrodes Fabricated via Adhesion Lithography

    KAUST Repository

    Wyatt-Moon, Gwenhivir

    2017-11-28

    Adhesion lithography (a-Lith) is a versatile fabrication technique used to produce asymmetric coplanar electrodes separated by a <15 nm nanogap. Here, we use a-Lith to fabricate deep ultraviolet (DUV) photodetectors by combining coplanar asymmetric nanogap electrode architectures (Au/Al) with solution-processable wide-band-gap (3.5–3.9 eV) p-type semiconductor copper(I) thiocyanate (CuSCN). Because of the device’s unique architecture, the detectors exhibit high responsivity (≈79 A W–1) and photosensitivity (≈720) when illuminated with a DUV-range (λpeak = 280 nm) light-emitting diode at 220 μW cm–2. Interestingly, the photosensitivity of the photodetectors remains fairly high (≈7) even at illuminating intensities down to 0.2 μW cm–2. The scalability of the a-Lith process combined with the unique properties of CuSCN paves the way to new forms of inexpensive, yet high-performance, photodetectors that can be manufactured on arbitrary substrate materials including plastic.

  10. Deep Ultraviolet Copper(I) Thiocyanate (CuSCN) Photodetectors Based on Coplanar Nanogap Electrodes Fabricated via Adhesion Lithography

    KAUST Repository

    Wyatt-Moon, Gwenhivir; Georgiadou, Dimitra G; Semple, James; Anthopoulos, Thomas D.

    2017-01-01

    Adhesion lithography (a-Lith) is a versatile fabrication technique used to produce asymmetric coplanar electrodes separated by a <15 nm nanogap. Here, we use a-Lith to fabricate deep ultraviolet (DUV) photodetectors by combining coplanar asymmetric nanogap electrode architectures (Au/Al) with solution-processable wide-band-gap (3.5–3.9 eV) p-type semiconductor copper(I) thiocyanate (CuSCN). Because of the device’s unique architecture, the detectors exhibit high responsivity (≈79 A W–1) and photosensitivity (≈720) when illuminated with a DUV-range (λpeak = 280 nm) light-emitting diode at 220 μW cm–2. Interestingly, the photosensitivity of the photodetectors remains fairly high (≈7) even at illuminating intensities down to 0.2 μW cm–2. The scalability of the a-Lith process combined with the unique properties of CuSCN paves the way to new forms of inexpensive, yet high-performance, photodetectors that can be manufactured on arbitrary substrate materials including plastic.

  11. Fabrication and characterization of a CuO/ITO heterojunction with a graphene transparent electrode

    Science.gov (United States)

    Mageshwari, K.; Han, Sanghoo; Park, Jinsub

    2016-05-01

    In this paper, we investigate the electrical properties of a CuO-ITO heterojunction diode with the use of a graphene transparent electrode by current-voltage (I-V) characteristics. CuO thin films were deposited onto an ITO substrate by a simple sol-gel spin coating method and annealed at 500 °C. The x-ray diffraction pattern of the CuO thin films revealed the polycrystalline nature of CuO and exhibited a monoclinic crystal structure. FESEM images showed a uniform and densely packed particulate morphology. The optical band gap of CuO thin films estimated using UV-vis absorption spectra was found to be 2.50 eV. The I-V characteristics of the fabricated CuO-ITO heterojunction showed a well-defined rectifying behavior with improved electrical properties after the insertion of graphene. The electronic parameters of the heterostructure such as barrier height, ideality factor and series resistance were determined from the I-V measurements, and the possible current transport mechanism was discussed.

  12. Printable Fabrication of Nanocoral-Structured Electrodes for High-Performance Flexible and Planar Supercapacitor with Artistic Design.

    Science.gov (United States)

    Lin, Yuanjing; Gao, Yuan; Fan, Zhiyong

    2017-11-01

    Planar supercapacitors with high flexibility, desirable operation safety, and high performance are considered as attractive candidates to serve as energy-storage devices for portable and wearable electronics. Here, a scalable and printable technique is adopted to construct novel and unique hierarchical nanocoral structures as the interdigitated electrodes on flexible substrates. The as-fabricated flexible all-solid-state planar supercapacitors with nanocoral structures achieve areal capacitance up to 52.9 mF cm -2 , which is 2.5 times that of devices without nanocoral structures, and this figure-of-merit is among the highest in the literature for the same category of devices. More interestingly, due to utilization of the inkjet-printing technique, excellent versatility on electrode-pattern artistic design is achieved. Particularly, working supercapacitors with artistically designed patterns are demonstrated. Meanwhile, the high scalability of such a printable method is also demonstrated by fabrication of large-sized artistic supercapacitors serving as energy-storage devices in a wearable self-powered system as a proof of concept. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Nanowire-decorated microscale metallic electrodes

    DEFF Research Database (Denmark)

    Vlad, A.; Mátéfi-Tempfli, M.; Antohe, V.A.

    2008-01-01

    The fabrication of metallic nanowire patterns within anodic alumina oxide (AAO) membranes on top of continuous conducting substrates are discussed. The fabrication protocol is based on the realization of nanowire patterns using supported nanoporous alumina templates (SNAT) prepared on top...... of lithographically defined metallic microelectrodes. The anodization of the aluminum permits electroplating only on top of the metallic electrodes, leading to the nanowire patterns having the same shape as the underlying metallic tracks. The variation in the fabricated structures between the patterned and non......-patterned substrates can be interpreted in terms of different behavior during anodization. The improved quality of fabricated nanowire patterns is clearly demonstrated by the SEM imaging and the uniform growth of nanowires inside the alumina template is observed without any significant height variation....

  14. Fabrication of Stretchable Copper Coated Carbon Nanotube Conductor for Non-Enzymatic Glucose Detection Electrode with Low Detection Limit and Selectivity

    Directory of Open Access Journals (Sweden)

    Dawei Jiang

    2018-03-01

    Full Text Available The increasing demand for wearable glucose sensing has stimulated growing interest in stretchable electrodes. The development of the electrode materials having large stretchability, low detection limit, and good selectivity is the key component for constructing high performance wearable glucose sensors. In this work, we presented fabrication of stretchable conductor based on the copper coated carbon nanotube sheath-core fiber, and its application as non-enzymatic electrode for glucose detection with high stretchability, low detection limit, and selectivity. The sheath-core fiber was fabricated by coating copper coated carbon nanotube on a pre-stretched rubber fiber core followed by release of pre-stretch, which had a hierarchically buckled structure. It showed a small resistance change as low as 27% as strain increasing from 0% to 500% strain, and a low resistance of 0.4 Ω·cm−1 at strain of 500%. This electrode showed linear glucose concentration detection in the range between 0.05 mM and 5 mM and good selectivity against sucrose, lactic acid, uric acid, acrylic acid in phosphate buffer saline solution, and showed stable signal in high salt concentration. The limit of detection (LOD was 0.05 mM, for the range of 0.05–5 mM, the sensitivity is 46 mA·M−1. This electrode can withstand large strain of up to 60% with negligible influence on its performance.

  15. Polycrystalline diamond detectors with three-dimensional electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Lagomarsino, S., E-mail: lagomarsino@fi.infn.it [University of Florence, Department of Physics, Via Sansone 1, 50019 Sesto Fiorentino (Italy); INFN Firenze, Via B. Rossi 1, 50019 Sesto Fiorentino (Italy); Bellini, M. [INO-CNR Firenze, Largo E. Fermi 6, 50125 Firenze (Italy); Brianzi, M. [INFN Firenze, Via B. Rossi 1, 50019 Sesto Fiorentino (Italy); Carzino, R. [Smart Materials-Nanophysics, Istituto Italiano di Tecnologia, Genova, Via Morego 30, 16163 Genova (Italy); Cindro, V. [Joseph Stefan Institute, Jamova Cesta 39, 1000 Ljubljana (Slovenia); Corsi, C. [University of Florence, Department of Physics, Via Sansone 1, 50019 Sesto Fiorentino (Italy); LENS Firenze, Via N. Carrara 1, 50019 Sesto Fiorentino (Italy); Morozzi, A.; Passeri, D. [INFN Perugia, Perugia (Italy); Università degli Studi di Perugia, Dipartimento di Ingegneria, via G. Duranti 93, 06125 Perugia (Italy); Sciortino, S. [University of Florence, Department of Physics, Via Sansone 1, 50019 Sesto Fiorentino (Italy); INFN Firenze, Via B. Rossi 1, 50019 Sesto Fiorentino (Italy); Servoli, L. [INFN Perugia, Perugia (Italy)

    2015-10-01

    The three-dimensional concept in diamond detectors has been applied, so far, to high quality single-crystal material, in order to test this technology in the best available conditions. However, its application to polycrystalline chemical vapor deposited diamond could be desirable for two reasons: first, the short inter-electrode distance of three-dimensional detectors should improve the intrinsically lower collection efficiency of polycrystalline diamond, and second, at high levels of radiation damage the performances of the poly-crystal material are not expected to be much lower than those of the single crystal one. We report on the fabrication and test of three-dimensional polycrystalline diamond detectors with several inter-electrode distances, and we demonstrate that their collection efficiency is equal or higher than that obtained with conventional planar detectors fabricated with the same material. - Highlights: • Pulsed laser fabrication of polycristalline diamond detectors with 3D electrodes. • Measurement of the charge collection efficiency (CCE) under beta irradiation. • Comparation between the CCE of 3D and conventional planar diamond sensors. • A rationale for the behavior of three-dimensional and planar sensors is given.

  16. Influence of fabrication procedure on the electrochemical performance of Ag/AgCl reference electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Stoica, Daniela [Department of Biomedical and Inorganic Chemistry, Laboratoire National de Metrologie et d' Essais, 1 Rue Gaston Boissier, 75015 Paris (France); Brewer, Paul J., E-mail: paul.brewer@npl.co.uk [Analytical Science Division, National Physical Laboratory, Teddington, Middlesex TW11 0LW (United Kingdom); Brown, Richard J.C. [Analytical Science Division, National Physical Laboratory, Teddington, Middlesex TW11 0LW (United Kingdom); Fisicaro, Paola [Department of Biomedical and Inorganic Chemistry, Laboratoire National de Metrologie et d' Essais, 1 Rue Gaston Boissier, 75015 Paris (France)

    2011-11-30

    The influence of several parameters in the preparation procedure of thermal-electrolytic Ag/AgCl electrodes on the resulting electrode performance has been studied. In particular, we report the effect on electrode performance of subtle variations in the preparation of silver oxide paste used for electrode manufacture, in thermal annealing conditions employed and in the procedure for electrochemically converting a fraction of the electrode from silver to silver chloride. Scanning electron microscopy and electrochemical impedance spectroscopy have been used to study the characteristics of the electrodes produced. This work reveals a correlation between the electrochemical behaviour and surface physical characteristics - in particular electrode porosity. The outputs of this study have positive implications for improving the accuracy and comparability of primary pH measurement.

  17. Electric Double-Layer Capacitor Fabricated with Addition of Carbon Nanotube to Polarizable Electrode

    Directory of Open Access Journals (Sweden)

    Yoshiyuki Show

    2012-01-01

    Full Text Available Electrical double-layer capacitor (EDLC was fabricated with addition of carbon nanotube (CNT to polarization electrodes as a conducting material. The CNT addition reduced the series resistance of the EDLC by one-twentieth, while the capacitance was not increased by the CNT addition. The low series resistance leaded to the high electrical energy stored in the EDLC. In this paper, the dependence of the series resistance, the specific capacitance, the energy, and the energy efficiencies on the CNT addition is discussed.

  18. Wearable Atmospheric Pressure Plasma Fabrics Produced by Knitting Flexible Wire Electrodes for the Decontamination of Chemical Warfare Agents

    OpenAIRE

    Heesoo Jung; Jin Ah Seo; Seungki Choi

    2017-01-01

    One of the key reasons for the limited use of atmospheric pressure plasma (APP) is its inability to treat non-flat, three-dimensional (3D) surface structures, such as electronic devices and the human body, because of the rigid electrode structure required. In this study, a new APP system design?wearable APP (WAPP)?that utilizes a knitting technique to assemble flexible co-axial wire electrodes into a large-area plasma fabric is presented. The WAPP device operates in ambient air with a fully e...

  19. Smooth Nanowire/Polymer Composite Transparent Electrodes

    KAUST Repository

    Gaynor, Whitney; Burkhard, George F.; McGehee, Michael D.; Peumans, Peter

    2011-01-01

    Smooth composite transparent electrodes are fabricated via lamination of silver nanowires into the polymer poly-(4,3-ethylene dioxythiophene): poly(styrene-sulfonate) (PEDOT:PSS). The surface roughness is dramatically reduced compared to bare nanowires. High-efficiency P3HT:PCBM organic photovoltaic cells can be fabricated using these composites, reproducing the performance of cells on indium tin oxide (ITO) on glass and improving the performance of cells on ITO on plastic. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Smooth Nanowire/Polymer Composite Transparent Electrodes

    KAUST Repository

    Gaynor, Whitney

    2011-04-29

    Smooth composite transparent electrodes are fabricated via lamination of silver nanowires into the polymer poly-(4,3-ethylene dioxythiophene): poly(styrene-sulfonate) (PEDOT:PSS). The surface roughness is dramatically reduced compared to bare nanowires. High-efficiency P3HT:PCBM organic photovoltaic cells can be fabricated using these composites, reproducing the performance of cells on indium tin oxide (ITO) on glass and improving the performance of cells on ITO on plastic. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Field Emission of Wet Transferred Suspended Graphene Fabricated on Interdigitated Electrodes.

    Science.gov (United States)

    Xu, Ji; Wang, Qilong; Tao, Zhi; Qi, Zhiyang; Zhai, Yusheng; Wu, Shengqi; Zhang, Xiaobing; Lei, Wei

    2016-02-10

    Suspended graphene (SG) membranes could enable strain-engineering of ballistic Dirac fermion transport and eliminate the extrinsic bulk disorder by annealing. When freely suspended without contact to any substrates, graphene could be considered as the ultimate two-dimensional (2D) morphology, leading to special field characteristics with the 2D geometrical effect and effectively utilized as an outstanding structure to explore the fundamental electronic or optoelectronic mechanism. In this paper, we report field emission characterization on an individual suspended few-layer graphene. A controllable wet transfer method is used to obtain the continuous and suspended graphene membrane on interdigitated gold electrodes. This suspended structure displays an overall field emission from the entirely surface, except for the variation in the emitting positions, acquiring a better enhancement than the exfoliated graphene on the conventional flat substrate. We also observe the transition process from space charge flow at low bias to the Fowler-Nordheim theory at high current emission regime. It could enable theoretical and experimental investigation of the typical electron emission properties of the 2D regime. Numerical simulations are also carried out to study the electrical properties of the suspended structure. Further improvement on the fabrication would realize low disorder, high quality, and large-scale suspended graphene devices.

  2. Fabrication of β-CoV3O8 nanorods embedded in graphene sheets and their application for electrochemical charge storage electrode

    Science.gov (United States)

    Jeong, Gyoung Hwa; Lee, Ilbok; Lee, Donghyun; Lee, Hea-Min; Baek, Seungmin; Kwon, O.-Pil; Kumta, Prashant N.; Yoon, Songhun; Kim, Sang-Wook

    2018-05-01

    The fabrication of β-CoV3O8 nanorods embedded in graphene sheets and their application as electrochemical charge storage electrodes is reported. From the surfactant treatment of raw graphite, graphene was directly prepared and its nanocomposite with β-CoV3O8 nanorods distributed between graphene layers (β-CoV3O8-G) was synthesized by a hydrothermal method. When applied as an anode in lithium-ion batteries, the β-CoV3O8-G anode exhibits greatly improved charge and discharge capacities of 790 and 627 mAh · g-1, respectively, with unexpectedly high initial efficiency of 82%. The observed discharge capacity reflected that at least 3.7 mol of Li+ is selectively accumulated within the β-CoV3O8 phase (LixCoV3O8, x > 3.7), indicative of significantly improved Li+ uptake when compared with aggregated β-CoV3O8 nanorods. Moreover, very distinct peak plateaus and greatly advanced cycling performance are observed, showing more improved Li+ storage within the β-CoV3O8 phase. As a supercapacitor electrode, moreover, our composite electrode exhibits very high peak pseudocapacitances of 2.71 F · cm-2 and 433.65 F · g-1 in the β-CoV3O8 phase with extremely stable cycling performance. This remarkably enhanced performance in the individual electrochemical charge storage electrodes is attributed to the novel phase formation of β-CoV3O8 and its optimized nanocomposite structure with graphene, which yield fast electrical conduction through graphene, easy accessibility of ions through the open multilayer nanosheet structure, and a relaxation space between the β-CoV3O8-G.

  3. EIT-based fabric pressure sensing.

    Science.gov (United States)

    Yao, A; Yang, C L; Seo, J K; Soleimani, M

    2013-01-01

    This paper presents EIT-based fabric sensors that aim to provide a pressure mapping using the current carrying and voltage sensing electrodes attached to the boundary of the fabric patch. Pressure-induced shape change over the sensor area makes a change in the conductivity distribution which can be conveyed to the change of boundary current-voltage data. This boundary data is obtained through electrode measurements in EIT system. The corresponding inverse problem is to reconstruct the pressure and deformation map from the relationship between the applied current and the measured voltage on the fabric boundary. Taking advantage of EIT in providing dynamical images of conductivity changes due to pressure induced shape change, the pressure map can be estimated. In this paper, the EIT-based fabric sensor was presented for circular and rectangular sensor geometry. A stretch sensitive fabric was used in circular sensor with 16 electrodes and a pressure sensitive fabric was used in a rectangular sensor with 32 electrodes. A preliminary human test was carried out with the rectangular sensor for foot pressure mapping showing promising results.

  4. EIT-Based Fabric Pressure Sensing

    Directory of Open Access Journals (Sweden)

    A. Yao

    2013-01-01

    Full Text Available This paper presents EIT-based fabric sensors that aim to provide a pressure mapping using the current carrying and voltage sensing electrodes attached to the boundary of the fabric patch. Pressure-induced shape change over the sensor area makes a change in the conductivity distribution which can be conveyed to the change of boundary current-voltage data. This boundary data is obtained through electrode measurements in EIT system. The corresponding inverse problem is to reconstruct the pressure and deformation map from the relationship between the applied current and the measured voltage on the fabric boundary. Taking advantage of EIT in providing dynamical images of conductivity changes due to pressure induced shape change, the pressure map can be estimated. In this paper, the EIT-based fabric sensor was presented for circular and rectangular sensor geometry. A stretch sensitive fabric was used in circular sensor with 16 electrodes and a pressure sensitive fabric was used in a rectangular sensor with 32 electrodes. A preliminary human test was carried out with the rectangular sensor for foot pressure mapping showing promising results.

  5. Controllable Fabrication of Amorphous Co-Ni Pyrophosphates for Tuning Electrochemical Performance in Supercapacitors.

    Science.gov (United States)

    Chen, Chen; Zhang, Ning; He, Yulu; Liang, Bo; Ma, Renzhi; Liu, Xiaohe

    2016-09-07

    Incorporation of two transition metals offers an effective method to enhance the electrochemical performance in supercapacitors for transition metal compound based electrodes. However, such a configuration is seldom concerned in pyrophosphates. Here, amorphous phase Co-Ni pyrophosphates are fabricated as electrodes in supercapacitors. Through controllably adjusting the ratios of Co and Ni as well as the calcination temperature, the electrochemical performance can be tuned. An optimized amorphous Ni-Co pyrophosphate exhibits much higher specific capacitance than monometallic Ni and Co pyrophosphates and shows excellent cycling ability. When employing Ni-Co pyrophosphates as positive electrode and activated carbon as a negative electrode, the fabricated asymmetric supercapacitor cell exhibits favorable capacitance and cycling ability. This study provides facile methods to improve the transition metal pyrophosphate electrodes for efficient electrodes in electrochemical energy storage devices.

  6. A transparent electrode based on a metal nanotrough network.

    Science.gov (United States)

    Wu, Hui; Kong, Desheng; Ruan, Zhichao; Hsu, Po-Chun; Wang, Shuang; Yu, Zongfu; Carney, Thomas J; Hu, Liangbing; Fan, Shanhui; Cui, Yi

    2013-06-01

    Transparent conducting electrodes are essential components for numerous flexible optoelectronic devices, including touch screens and interactive electronics. Thin films of indium tin oxide-the prototypical transparent electrode material-demonstrate excellent electronic performances, but film brittleness, low infrared transmittance and low abundance limit suitability for certain industrial applications. Alternatives to indium tin oxide have recently been reported and include conducting polymers, carbon nanotubes and graphene. However, although flexibility is greatly improved, the optoelectronic performance of these carbon-based materials is limited by low conductivity. Other examples include metal nanowire-based electrodes, which can achieve sheet resistances of less than 10Ω □(-1) at 90% transmission because of the high conductivity of the metals. To achieve these performances, however, metal nanowires must be defect-free, have conductivities close to their values in bulk, be as long as possible to minimize the number of wire-to-wire junctions, and exhibit small junction resistance. Here, we present a facile fabrication process that allows us to satisfy all these requirements and fabricate a new kind of transparent conducting electrode that exhibits both superior optoelectronic performances (sheet resistance of ~2Ω □(-1) at 90% transmission) and remarkable mechanical flexibility under both stretching and bending stresses. The electrode is composed of a free-standing metallic nanotrough network and is produced with a process involving electrospinning and metal deposition. We demonstrate the practical suitability of our transparent conducting electrode by fabricating a flexible touch-screen device and a transparent conducting tape.

  7. On the role of diluted magnetic cobalt-doped ZnO electrodes in efficiency improvement of InGaN light emitters

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hong-Ru; Wang, Shih-Yin [Department of Materials Science and Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China); Ou, Sin-Liang [Department of Materials Science and Engineering, Da-Yeh University, Changhua 51591, Taiwan (China); Wuu, Dong-Sing, E-mail: dsw@dragon.nchu.edu.tw [Department of Materials Science and Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China); Department of Materials Science and Engineering, Da-Yeh University, Changhua 51591, Taiwan (China); Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 70101, Taiwan (China)

    2016-07-11

    The 120-nm-thick cobalt-doped ZnO (Co-doped ZnO, CZO) dilute magnetic films deposited by pulsed laser deposition were employed as the n-electrodes for both lateral-type blue (450 nm) and green (520 nm) InGaN light emitters. In comparison to the conventional blue and green emitters, there were 15.9% and 17.7% enhancements in the output power (@350 mA) after fabricating the CZO n-electrode on the n-GaN layer. Observations on the role of CZO n-electrodes in efficiency improvement of InGaN light emitters were performed. Based on the results of Hall measurements, the carrier mobilities were 176 and 141 cm{sup 2}/V s when the electrons passed through the n-GaN and the patterned-CZO/n-GaN, respectively. By incorporating the CZO n-electrode into the InGaN light emitters, the electrons would be scattered because of the collisions between the magnetic atoms and the electrons as the device is driven, leading to the reduction of the electron mobility. Therefore, the excessively large mobility difference between electron and hole carriers occurred in the conventional InGaN light emitter can be efficiently decreased after preparing the CZO n-electrode on the n-GaN layer, resulting in the increment of carrier recombination rate and the improvement of light output power.

  8. On the role of diluted magnetic cobalt-doped ZnO electrodes in efficiency improvement of InGaN light emitters

    International Nuclear Information System (INIS)

    Liu, Hong-Ru; Wang, Shih-Yin; Ou, Sin-Liang; Wuu, Dong-Sing

    2016-01-01

    The 120-nm-thick cobalt-doped ZnO (Co-doped ZnO, CZO) dilute magnetic films deposited by pulsed laser deposition were employed as the n-electrodes for both lateral-type blue (450 nm) and green (520 nm) InGaN light emitters. In comparison to the conventional blue and green emitters, there were 15.9% and 17.7% enhancements in the output power (@350 mA) after fabricating the CZO n-electrode on the n-GaN layer. Observations on the role of CZO n-electrodes in efficiency improvement of InGaN light emitters were performed. Based on the results of Hall measurements, the carrier mobilities were 176 and 141 cm"2/V s when the electrons passed through the n-GaN and the patterned-CZO/n-GaN, respectively. By incorporating the CZO n-electrode into the InGaN light emitters, the electrons would be scattered because of the collisions between the magnetic atoms and the electrons as the device is driven, leading to the reduction of the electron mobility. Therefore, the excessively large mobility difference between electron and hole carriers occurred in the conventional InGaN light emitter can be efficiently decreased after preparing the CZO n-electrode on the n-GaN layer, resulting in the increment of carrier recombination rate and the improvement of light output power.

  9. Study and Fabrication of Super Low-Cost Solar Cell (SLC-SC) Based on Counter Electrode from Animal’s Bone

    Science.gov (United States)

    Fadlilah, D. R.; Fajar, M. N.; Aini, A. N.; Haqqiqi, R. I.; Wirawan, P. R.; Endarko

    2018-04-01

    The synthesized carbon from bones of chicken, cow, and fish with the calcination temperature at 450 and 600°C have been successfully fabricated for counter electrode in the Super Low-Cost Solar Cell (SLC-LC) based the structure of Dye-Sensitized Solar Cells (DSSC). The main proposed study was to fabricate SLC-SC and investigate the influence of the synthesized carbon from animal’s bone for counter electrode towards to photovoltaic performance of SLC-SC. X-Ray Diffraction and UV-Vis was used to characterize the phase and the optical properties of TiO2 as photoanode in SLC-SC. Meanwhile, the morphology and particle size distribution of the synthesized carbon in counter electrodes were investigated by Scanning Electron Microscopy (SEM) and Particle Size Analyzer (PSA). The results showed that the TiO2 has anatase phase with the absorption wavelength of 300 to 550 nm. The calcination temperature for synthesizing of carbon could affect morphology and particle size distribution. The increasing temperature gave the effect more dense in morphology and increased the particle size of carbon in the counter electrode. Changes in morphology and particle size of carbon give effect to the performance of the SLC-SC where the increased morphology’s compact and particle size make decreased in the performance of the SLC-SC.

  10. Controllable Fabrication and Tuned Electrochemical Performance of Potassium Co-Ni Phosphate Microplates as Electrodes in Supercapacitors.

    Science.gov (United States)

    Liang, Bo; Chen, Yule; He, Jiangyu; Chen, Chen; Liu, Wenwen; He, Yuanqing; Liu, Xiaohe; Zhang, Ning; Roy, Vellaisamy A L

    2018-01-31

    Most reported pristine phosphates, such as NH 4 MPO 4 ·H 2 O (M = Co, Ni), are not very stable as supercapacitor electrodes because of their chemical properties. In this work, KCo x Ni 1-x PO 4 ·H 2 O microplates were fabricated by a facile hydrothermal method at low temperature and used as electrodes in supercapacitors. The Co and Ni content could be adjusted, and optimal electrochemical performance was found in KCo 0.33 Ni 0.67 PO 4 ·H 2 O, which also possessed superior specific capacitance, rate performance, and long-term chemical stability compared with NH 4 Co 0.33 Ni 0.67 PO 4 ·H 2 O because of its unique chemical composition and microstructure. Asymmetric supercapacitor cells based on KCo 0.33 Ni 0.67 PO 4 ·H 2 O and active carbon were assembled, which produce specific capacitance of 34.7 mA h g -1 (227 F g -1 ) under current density of 1.5 A g -1 and retain 82% as initial specific capacitance after charging and discharging approximately 5000 times. The assembled asymmetric supercapacitor cells (ASCs) exhibited much higher power and energy density than most previously reported transition metal phosphate ASCs. The KCo x Ni 1-x PO 4 ·H 2 O electrodes fabricated in this work are efficient, inexpensive, and composed of naturally abundant materials, rendering them promising for energy storage device applications.

  11. Fabrication, characterization, and functionalization of dual carbon electrodes as probes for scanning electrochemical microscopy (SECM).

    Science.gov (United States)

    McKelvey, Kim; Nadappuram, Binoy Paulose; Actis, Paolo; Takahashi, Yasufumi; Korchev, Yuri E; Matsue, Tomokazu; Robinson, Colin; Unwin, Patrick R

    2013-08-06

    Dual carbon electrodes (DCEs) are quickly, easily, and cheaply fabricated by depositing pyrolytic carbon into a quartz theta nanopipet. The size of DCEs can be controlled by adjusting the pulling parameters used to make the nanopipet. When operated in generation/collection (G/C) mode, the small separation between the electrodes leads to reasonable collection efficiencies of ca. 30%. A three-dimensional finite element method (FEM) simulation is developed to predict the current response of these electrodes as a means of estimating the probe geometry. Voltammetric measurements at individual electrodes combined with generation/collection measurements provide a reasonable guide to the electrode size. DCEs are employed in a scanning electrochemical microscopy (SECM) configuration, and their use for both approach curves and imaging is considered. G/C approach curve measurements are shown to be particularly sensitive to the nature of the substrate, with insulating surfaces leading to enhanced collection efficiencies, whereas conducting surfaces lead to a decrease of collection efficiency. As a proof-of-concept, DCEs are further used to locally generate an artificial electron acceptor and to follow the flux of this species and its reduced form during photosynthesis at isolated thylakoid membranes. In addition, 2-dimensional images of a single thylakoid membrane are reported and analyzed to demonstrate the high sensitivity of G/C measurements to localized surface processes. It is finally shown that individual nanometer-size electrodes can be functionalized through the selective deposition of platinum on one of the two electrodes in a DCE while leaving the other one unmodified. This provides an indication of the future versatility of this type of probe for nanoscale measurements and imaging.

  12. A full-wafer fabrication process for glass microfluidic chips with integrated electroplated electrodes by direct bonding of dry film resist

    International Nuclear Information System (INIS)

    Vulto, Paul; Urban, G A; Huesgen, Till; Albrecht, Björn

    2009-01-01

    A full-wafer process is presented for fast and simple fabrication of glass microfluidic chips with integrated electroplated electrodes. The process employs the permanent dry film resist (DFR) Ordyl SY300 to create microfluidic channels, followed by electroplating of silver and subsequent chlorination. The dry film resist is bonded directly to a second substrate, without intermediate gluing layers, only by applying pressure and moderate heating. The process of microfluidic channel fabrication, electroplating and wafer bonding can be completed within 1 day, thus making it one of the fastest and simplest full-wafer fabrication processes. (note)

  13. Compressed multiwall carbon nanotube composite electrodes provide enhanced electroanalytical performance for determination of serotonin

    International Nuclear Information System (INIS)

    Fagan-Murphy, Aidan; Patel, Bhavik Anil

    2014-01-01

    Serotonin (5-HT) is an important neurochemical that is present in high concentrations within the intestinal tract. Carbon fibre and boron-doped diamond based electrodes have been widely used to date for monitoring 5-HT, however these electrodes are prone to fouling and are difficult to fabricate in certain sizes and geometries. Carbon nanotubes have shown potential as a suitable material for electroanalytical monitoring of 5-HT but can be difficult to manipulate into a suitable form. The fabrication of composite electrodes is an approach that can shape conductive materials into practical electrode geometries suitable for biological environments. This work investigated how compression of multiwall carbon nanotubes (MWCNTs) epoxy composite electrodes can influence their electroanalytical performance. Highly compressed composite electrodes displayed significant improvements in their electrochemical properties along with decreased internal and charge transfer resistance, reproducible behaviour and improved batch to batch variability when compared to non-compressed composite electrodes. Compression of MWCNT epoxy composite electrodes resulted in an increased current response for potassium ferricyanide, ruthenium hexaammine and dopamine, by preferentially removing the epoxy during compression and increasing the electrochemical active surface of the final electrode. For the detection of serotonin, compressed electrodes have a lower limit of detection and improved sensitivity compared to non-compressed electrodes. Fouling studies were carried out in 10 μM serotonin where the MWCNT compressed electrodes were shown to be less prone to fouling than non-compressed electrodes. This work indicates that the compression of MWCNT carbon-epoxy can result in a highly conductive material that can be moulded to various geometries, thus providing scope for electroanalytical measurements and the production of a wide range of analytical devices for a variety of systems

  14. The electrocatalytic oxidation of carbohydrates at a nickel/carbon paper electrode fabricated by the filtered cathodic vacuum arc technique

    International Nuclear Information System (INIS)

    Fu, Yingyi; Wang, Tong; Su, Wen; Yu, Yanan; Hu, Jingbo

    2015-01-01

    The direct electrochemical behaviour of carbohydrates at a nickel/carbon paper electrode with a novel fabrication method is investigated. The investigation is used for verification the feasibility of using monosaccharides and disaccharides in the application of fuel cell. The selected monosaccharides are glucose, fructose and galactose; the disaccharides are sucrose, maltose and lactose. The modified nickel/carbon paper electrode was prepared using a filtered cathodic vacuum arc technique. The morphology image of the nickel thin film on the carbon paper surface was characterized by scanning electron microscopy (SEM). The existence of nickel was verified by X-ray photoelectron spectroscopy (XPS). The contact angle measurement was also used to characterize the modified electrode. Cyclic voltammetry (CV) was employed to evaluate the electrochemical behaviour of monosaccharides and disaccharides in an alkaline aqueous solution. The modified electrode exhibits good electrocatalytic activities towards carbohydrates. In addition, the stability of the nickel/carbon paper electrode with six sugars was also investigated. The good catalytic effects of the nickel/carbon paper electrode allow for the use of carbohydrates as fuels in fuel cell applications

  15. Diffuse plasma treatment of polyamide 66 fabric in atmospheric pressure air

    International Nuclear Information System (INIS)

    Li, Lee; Peng, Ming-yang; Teng, Yun; Gao, Guozhen

    2016-01-01

    Graphical abstract: - Highlights: • A cylindrical-electrode nanosecond-pulse diffuse-discharge reactor is presented. • Large-scale non-thermal plasmas were generated steadily in atmospheric air. • Treated PA66 fabric is etched with oxygen-containing group increases. • The hydrophily of treated PA66 fabric improves effectively. • Extending the treatment time is a method to reduce the treatment frequency. - Abstract: The polyamide 66 (PA66) fabrics are hard to be colored or glued in industrial production due to the poor hydrophily. Diffuse plasma is a kind of non-thermal plasma generated at atmospheric pressure in air. This paper proposes that large-scale diffuse plasma generated between wire electrodes can be employed for improving the hydrophily of PA66 fabrics. A repetitive nanosecond-pulse diffuse-discharge reactor using a cylindrical wire electrode configuration is presented, which can generate large-scale non-thermal plasmas steadily at atmospheric pressure without any barrier dielectric. Then the reactor is used to treat PA66 fabrics in different discharge conditions. The hydrophilicity property of modified PA66 is measured by wicking test method. The modified PA66 is also analyzed by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) to prove the surface changes in physical microstructure and chemical functional groups, respectively. What's more, the effects of treatment time and treatment frequency on surface modification are investigated and discussed.

  16. Fabrication and energy harvesting characteristics of unimorph piezoelectric cantilever generators with interdigitated electrode lead zirconate titanate laminates

    Science.gov (United States)

    Lee, Min-seon; Yun, Ji-sun; Park, Woon-ik; Hong, Youn-woo; Cho, Jeong-ho; Paik, Jong-hoo; Park, Yong Ho; Son, Chun-myung; Jeong, Young Hun

    2017-12-01

    Interdigitated electrode (IDE) unimorph piezoelectric cantilever generators (UPCGs) were fabricated and their energy harvesting characteristics were investigated. A hard lead zirconate titanate (PZT) material with a high mechanical quality factor (Q m) of 1280 was used for the active piezoelectric film of the IDE UPCGs. Two different laminated IDE UPCGs were prepared; one has Ag/Pd interdigitated electrode (IDE) formed only on the top and bottom PZT sheets (D-IDE), while the other has Ag/Pd IDE on all of the PZT sheets (M-IDE). Cofiring was conducted at 1050 °C for 2 h for PZT laminates with IDEs. The fabricated IDE UPCGs exhibited power densities of 50.4 µW/cm3 for the D-IDE and 820 µW/cm3 for the M-IDE. The UPCG with the M-IDE exhibited a higher performance than that with the D-IDE. Specifically, a significantly enhanced normalized power factor of 670 µW/(g2·cm3) was found at 118 Hz across 100 kΩ.

  17. Dye-sensitized solar cell with a pair of carbon-based electrodes

    International Nuclear Information System (INIS)

    Kyaw, Aung Ko Ko; Demir, Hilmi Volkan; Sun Xiaowei; Tantang, Hosea; Zhang Qichun; Wu Tao; Ke, Lin; Wei Jun

    2012-01-01

    We have fabricated a dye-sensitized solar cell (DSSC) with a pair of carbon-based electrodes using a transparent, conductive carbon nanotubes (CNTs) film modified with ultra-thin titanium-sub-oxide (TiO x ) as the working electrode and a bilayer of conductive CNTs and carbon black as the counter electrode. Without TiO x modification, the DSSC is almost nonfunctional whereas the power conversion efficiency (PCE) increases significantly when the working electrode is modified with TiO x . The performance of the cell could be further improved when the carbon black film was added on the counter electrode. The improved efficiency can be attributed to the inhibition of the mass recombination at the working electrode/electrolyte interface by TiO x and the acceleration of the electron transfer kinetics at the counter electrode by carbon black. The DSSC with a pair of carbon-based electrodes gives the PCE of 1.37%. (paper)

  18. The fabrication of graphene/polydopamine/nickel foam composite material with excellent electrochemical performance as supercapacitor electrode

    Science.gov (United States)

    Zheng, Yu; Lu, Shixiang; Xu, Wenguo; He, Ge; Cheng, Yuanyuan; Yu, Tianlong; Zhang, Yan

    2018-02-01

    A three dimensional composite electrode consisted of reduced graphene oxide (rGO), polydopamine (PDA) and nickel foam (NF) (rGO/PDA/NF) was fabricated by immersing NF into PDA aqueous solution and then graphene oxide (GO) suspension solution respectively, and followed by annealing treatment. During the procedure, GO was coated on NF with assistance of cohesive effect of the PDA middle film, and the reduction of GO and nitrogen doping occurred simultaneously while annealing. Through XRD analyzing, the composites GO/PDA and rGO/PDA treated in experiment are amorphous. The resulted rGO/PDA/NF composite electrode was directly applied as a supercapacitor electrode and showed excellent electrochemical performance, with a high specific capacitance of 566.9 F g-1 at 1 A g-1, the maximum energy density of 172.7 W h kg-1 and a power density of 27.2 kW kg-1 in 1 mol L-1 Na2SO4 electrolyte.

  19. Design and fabrication of an ac-electro-osmosis micropump with 3D high-aspect-ratio electrodes using only SU-8

    International Nuclear Information System (INIS)

    Rouabah, Hamza A; Morgan, Hywel; Green, Nicolas G; Park, Benjamin Y; Zaouk, Rabih B; Madou, Marc J

    2011-01-01

    Lab-on-a-chip devices require integrated pumping and fluid control in microchannels. A recently developed mechanism that can produce fluid flow is an integrated ac-electro-osmosis micropump. However, like most electrokinetic pumps, ac-electro-osmotic pumps are incapable of handling backpressure as the pumping force mechanism acts on the surface of the fluid rather than the bulk. This paper presents a novel 3D electrode structure designed to overcome this limitation. The electrodes are fabricated using carbon-MEMS technology based on the pyrolysis of the photo-patternable polymer SU-8. The novel ac-electro-osmosis micropump shows an increase in the flow velocity compared to planar electrodes.

  20. Controllable Impregnation Via Inkjet Printing for the Fabrication of Solid Oxide Cell Air Electrodes

    KAUST Repository

    Da'as, E. H.

    2013-10-07

    The impregnation method has been considered as one of the most successful techniques for the fabrication of highly efficient electrodes for solid oxide fuel and electrolysis cells (SOCs) at the lab scale. However, because the impregnation is usually performed manually, its irreproducibility remains a major problem that can be solved by using controllable techniques, such as inkjet printing. In this paper, lanthanum strontium manganite (LSM)/yttria stabilized zirconia (YSZ) air electrodes were prepared by infiltrating YSZ porous bodies with LSM precursor solution using inkjet printing, followed by annealing at 800°C for 2 hours. XRD analysis confirmed the formation of the LSM phase, which was in the form of nanoparticles with size in the 50-70 nm range on the YSZ walls, as revealed by FEG-SEM observations. The effect of printing parameters on the distribution of the impregnated phase was investigated and discussed.

  1. Controllable Impregnation Via Inkjet Printing for the Fabrication of Solid Oxide Cell Air Electrodes

    KAUST Repository

    Da'as, E. H.; Irvine, J. T. S.; Traversa, Enrico; Boulfrad, S.

    2013-01-01

    The impregnation method has been considered as one of the most successful techniques for the fabrication of highly efficient electrodes for solid oxide fuel and electrolysis cells (SOCs) at the lab scale. However, because the impregnation is usually performed manually, its irreproducibility remains a major problem that can be solved by using controllable techniques, such as inkjet printing. In this paper, lanthanum strontium manganite (LSM)/yttria stabilized zirconia (YSZ) air electrodes were prepared by infiltrating YSZ porous bodies with LSM precursor solution using inkjet printing, followed by annealing at 800°C for 2 hours. XRD analysis confirmed the formation of the LSM phase, which was in the form of nanoparticles with size in the 50-70 nm range on the YSZ walls, as revealed by FEG-SEM observations. The effect of printing parameters on the distribution of the impregnated phase was investigated and discussed.

  2. Improving Single-Carbon-Nanotube-Electrode Contacts Using Molecular Electronics.

    Science.gov (United States)

    Krittayavathananon, Atiweena; Ngamchuea, Kamonwad; Li, Xiuting; Batchelor-McAuley, Christopher; Kätelhön, Enno; Chaisiwamongkhol, Korbua; Sawangphruk, Montree; Compton, Richard G

    2017-08-17

    We report the use of an electroactive species, acetaminophen, to modify the electrical connection between a carbon nanotube (CNT) and an electrode. By applying a potential across two electrodes, some of the CNTs in solution occasionally contact the electrified interface and bridge between two electrodes. By observing a single CNT contact between two microbands of an interdigitated Au electrode in the presence and absence of acetaminophen, the role of the molecular species at the electronic junction is revealed. As compared with the pure CNT, the current magnitude of the acetaminophen-modified CNTs significantly increases with the applied potentials, indicating that the molecule species improves the junction properties probably via redox shuttling.

  3. Fabrication of flexible silver nanowire conductive films and transmittance improvement based on moth-eye nanostructure array

    Science.gov (United States)

    Zhang, Chengpeng; Zhu, Yuwen; Yi, Peiyun; Peng, Linfa; Lai, Xinmin

    2017-07-01

    Transparent conductive electrodes (TCEs) are widely used in optoelectronic devices, such as touch screens, liquid-crystal displays and light-emitting diodes. To date, the material of the most commonly used TCEs was indium-tin oxide (ITO), which had several intrinsic drawbacks that limited its applications in the long term, including relatively high material cost and brittleness. Silver nanowire (AgNW), as one of the alternative materials for ITO TCEs, has already gained much attention all over the world. In this paper, we reported a facile method to greatly enhance the transmittance of the AgNW TCEs without reducing the electrical conductivity based on moth-eye nanostructures, and the moth-eye nanostructures were fabricated by using a roll-to-roll ultraviolet nanoimprint lithography process. Besides, the effects of mechanical pressure and bending on the moth-eye nanostructure layer were also investigated. In the research, the optical transmittance of the flexible AgNW TCEs was enhanced from 81.3% to 86.0% by attaching moth-eye nanostructures onto the other side of the flexible polyethylene terephthalate substrate while the electrical conductivity of the AgNW TCEs was not sacrificed. This research can provide a direction for the cost-effective fabrication of moth-eye nanostructures and the transmittance improvement of the flexible transparent electrodes.

  4. Fabrication of flexible silver nanowire conductive films and transmittance improvement based on moth-eye nanostructure array

    International Nuclear Information System (INIS)

    Zhang, Chengpeng; Zhu, Yuwen; Yi, Peiyun; Peng, Linfa; Lai, Xinmin

    2017-01-01

    Transparent conductive electrodes (TCEs) are widely used in optoelectronic devices, such as touch screens, liquid-crystal displays and light-emitting diodes. To date, the material of the most commonly used TCEs was indium-tin oxide (ITO), which had several intrinsic drawbacks that limited its applications in the long term, including relatively high material cost and brittleness. Silver nanowire (AgNW), as one of the alternative materials for ITO TCEs, has already gained much attention all over the world. In this paper, we reported a facile method to greatly enhance the transmittance of the AgNW TCEs without reducing the electrical conductivity based on moth-eye nanostructures, and the moth-eye nanostructures were fabricated by using a roll-to-roll ultraviolet nanoimprint lithography process. Besides, the effects of mechanical pressure and bending on the moth-eye nanostructure layer were also investigated. In the research, the optical transmittance of the flexible AgNW TCEs was enhanced from 81.3% to 86.0% by attaching moth-eye nanostructures onto the other side of the flexible polyethylene terephthalate substrate while the electrical conductivity of the AgNW TCEs was not sacrificed. This research can provide a direction for the cost-effective fabrication of moth-eye nanostructures and the transmittance improvement of the flexible transparent electrodes. (paper)

  5. Improving the technology of deposition using strip electrode

    Directory of Open Access Journals (Sweden)

    Сергій Володимирович Гулаков

    2017-07-01

    Full Text Available The behavior of the arc at the strip electrode tip is studied. It is shown that the arc is moving along the electrode tip due to periodic short-circuits of the arc gap. Thus, a new arc is excited at the point where short circuit occurred after a conductive bridge formed by molten metal is vanished due to a high welding current. This leads to an increase in the probability of defect formation in the deposited layer of workpiece under treatment. To improve deposited layer quality, it is suggested to identify the moments of short-circuits of the electrode to the base metal and to discharge the pre-charged capacitorat these instants, connecting it between the electrode and the product. High discharge current pulse speeds up the destruction of the molten metal bridge between electrode tip and workpiece, thus lowering the time needed for arc re-ignition and improving depostion process stability. A special automated equipment has been developed to implement this process. Capacitor discharge is done using power thyristor with series-connected inductance for limiting discharging current rate of rise and for limiting discharge current peak value such that it is not impairing thyristor reliability. The pre-charging of the capacitor is done by an auxiliary power supply. Several thyristor-capacitor networks can be used in parallel to allow for multiple current pulses mode and to reduce RMS currents in capacitors

  6. Cu mesh for flexible transparent conductive electrodes.

    Science.gov (United States)

    Kim, Won-Kyung; Lee, Seunghun; Hee Lee, Duck; Hee Park, In; Seong Bae, Jong; Woo Lee, Tae; Kim, Ji-Young; Hun Park, Ji; Chan Cho, Yong; Ryong Cho, Chae; Jeong, Se-Young

    2015-06-03

    Copper electrodes with a micromesh/nanomesh structure were fabricated on a polyimide substrate using UV lithography and wet etching to produce flexible transparent conducting electrodes (TCEs). Well-defined mesh electrodes were realized through the use of high-quality Cu thin films. The films were fabricated using radio-frequency (RF) sputtering with a single-crystal Cu target--a simple but innovative approach that overcame the low oxidation resistance of ordinary Cu. Hybrid Cu mesh electrodes were fabricated by adding a capping layer of either ZnO or Al-doped ZnO. The sheet resistance and the transmittance of the electrode with an Al-doped ZnO capping layer were 6.197 ohm/sq and 90.657%, respectively, and the figure of merit was 60.502 × 10(-3)/ohm, which remained relatively unchanged after thermal annealing at 200 °C and 1,000 cycles of bending. This fabrication technique enables the mass production of large-area flexible TCEs, and the stability and high performance of Cu mesh hybrid electrodes in harsh environments suggests they have strong potential for application in smart displays and solar cells.

  7. Fabrication of a Combustion-Reacted High-Performance ZnO Electron Transport Layer with Silver Nanowire Electrodes for Organic Solar Cells.

    Science.gov (United States)

    Park, Minkyu; Lee, Sang-Hoon; Kim, Donghyuk; Kang, Juhoon; Lee, Jung-Yong; Han, Seung Min

    2018-02-28

    Herein, a new methodology for solution-processed ZnO fabrication on Ag nanowire network electrode via combustion reaction is reported, where the amount of heat emitted during combustion was minimized by controlling the reaction temperature to avoid damaging the underlying Ag nanowires. The degree of participation of acetylacetones, which are volatile fuels in the combustion reaction, was found to vary with the reaction temperature, as revealed by thermogravimetric and compositional analyses. An optimized processing temperature of 180 °C was chosen to successfully fabricate a combustion-reacted ZnO and Ag nanowire hybrid electrode with a sheet resistance of 30 Ω/sq and transmittance of 87%. A combustion-reacted ZnO on Ag nanowire hybrid structure was demonstrated as an efficient transparent electrode and electron transport layer for the PTB7-Th-based polymer solar cells. The superior electrical conductivity of combustion-reacted ZnO, compared to that of conventional sol-gel ZnO, increased the external quantum efficiency over the entire absorption range, whereas a unique light scattering effect due to the presence of nanopores in the combustion-derived ZnO further enhanced the external quantum efficiency in the 450-550 nm wavelength range. A power conversion efficiency of 8.48% was demonstrated for the PTB7-Th-based polymer solar cell with the use of a combustion-reacted ZnO/Ag NW hybrid transparent electrode.

  8. PZT Thin-Film Micro Probe Device with Dual Top Electrodes

    Science.gov (United States)

    Luo, Chuan

    Lead zirconate titanate (PZT) thin-film actuators have been studied intensively for years because of their potential applications in many fields. In this dissertation, a PZT thin-film micro probe device is designed, fabricated, studied, and proven to be acceptable as an intracochlear acoustic actuator. The micro probe device takes the form of a cantilever with a PZT thin-film diaphragm at the tip of the probe. The tip portion of the probe will be implanted in cochlea later in animal tests to prove its feasibility in hearing rehabilitation. The contribution of the dissertation is three-fold. First, a dual top electrodes design, consisting of a center electrode and an outer electrode, is developed to improve actuation displacement of the PZT thin-film diaphragm. The improvement by the dual top electrodes design is studied via a finite element model. When the dimensions of the dual electrodes are optimized, the displacement of the PZT thin-film diaphragm increases about 30%. A PZT thin-film diaphragm with dual top electrodes is fabricated to prove the concept, and experimental results confirm the predictions from the finite element analyses. Moreover, the dual electrode design can accommodate presence of significant residual stresses in the PZT thin-film diaphragm by changing the phase difference between the two electrodes. Second, a PZT thin-film micro probe device is fabricated and tested. The fabrication process consists of PZT thin-film deposition and deep reactive ion etching (DRIE). The uniqueness of the fabrication process is an automatic dicing mechanism that allows a large number of probes to be released easily from the wafer. Moreover, the fabrication is very efficient, because the DRIE process will form the PZT thin-film diaphragm and the special dicing mechanism simultaneously. After the probes are fabricated, they are tested with various possible implantation depths (i.e., boundary conditions). Experimental results show that future implantation depths

  9. Characterisation of nano-interdigitated electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Skjolding, L H D; Ribayrol, A; Montelius, L [Division of Solid State Physics, Lund University, Box 118, SE-221 00 Lund (Sweden); Spegel, C [Department of Analytical Chemistry Lund University, Box 124, SE-221 00 Lund (Sweden); Emneus, J [MIC - Department of Micro and Nanotechnology, DTU - Building 345 East, DK-2800 Kgs. Lyngby (Denmark)], E-mail: lars_henrik.daehli_skjolding@ftf.lth.se

    2008-03-15

    Interdigitated electrodes made up of two individually addressable interdigitated comb-like electrode structures have frequently been suggested as ultra sensitive electrochemical biosensors. Since the signal enhancement effects due to cycling of the reduced and oxidized species are strongly dependent on the inter electrode distances, since the nature of the enhancement is due to overlying diffusion layers, interdigitated electrodes with an electrode separation of less then one micrometer are desired for maximum signal amplification. Fabrication of submicron structures can only be made by advanced lithography techniques. By use of electron beam lithography we have fabricated arrays of interdigitated electrodes with an electrode separation distance of 200 nm and an electrode finger width of likewise 200 nm. The entire electrode structure is 100 micrometre times 100 micrometre, and the active electrode area is dictated by the opening in the passivation layer, that is defined by UV lithography. Here we report measurements of redox cycling of ferrocyanide by coupled cyclic voltammograms, where the potential at one of the working electrodes are varied and either an oxidising or reducing potential is applied to the complimentary interdigitated electrode. The measurements show fast conversion and high collection efficiency round 87% as expected for nano-interdigitated electrodes.

  10. Studying the glial cell response to biomaterials and surface topography for improving the neural electrode interface

    Science.gov (United States)

    Ereifej, Evon S.

    grown on PMMA resembled closely to that of cells grown on the control surface, thus confirming the biocompatibility of PMMA. Additionally, the astrocyte GFAP gene expressions of cells grown on PMMA were lower than the control, signifying a lack of astrocyte reactivity. Based on the findings from the biomaterials study, it was decided to optimize PMMA by changing the surface characteristic of the material. Through the process of hot embossing, nanopatterns were placed on the surface in order to test the hypothesis that nanopatterning can improve the cellular response to the material. Results of this study agreed with current literature showing that topography effects protein and cell behavior. It was concluded that for the use in neural electrode fabrication and design, the 3600mm/gratings pattern feature sizes were optimal. The 3600 mm/gratings pattern depicted cell alignment along the nanopattern, less protein adsorption, less cell adhesion, proliferation and viability, inhibition of GFAP and MAP2k1 compared to all other substrates tested. Results from the initial biomaterials study also indicated platinum was negatively affected the cells and may not be a suitable material for neural electrodes. This lead to pursuing studies with iridium oxide and platinum alloy wires for the glial scar assay. Iridium oxide advantages of lower impedance and higher charge injection capacity would appear to make iridium oxide more favorable for neural electrode fabrication. However, results of this study demonstrate iridium oxide wires exhibited a more significant reactive response as compared to platinum alloy wires. Astrocytes cultured with platinum alloy wires had less GFAP gene expression, lower average GFAP intensity, and smaller glial scar thickness. Results from the nanopatterning PMMA study prompted a more thorough investigation of the nanopatterning effects using an organotypic brain slice model. PDMS was utilized as the substrate due to its optimal physical properties

  11. Miniaturized, Planar Ion-selective Electrodes Fabricated by Means of Thick-film Technology

    Directory of Open Access Journals (Sweden)

    Robert Koncki

    2006-04-01

    Full Text Available Various planar technologies are employed for developing solid-state sensorshaving low cost, small size and high reproducibility; thin- and thick-film technologies aremost suitable for such productions. Screen-printing is especially suitable due to itssimplicity, low-cost, high reproducibility and efficiency in large-scale production. Thistechnology enables the deposition of a thick layer and allows precise pattern control.Moreover, this is a highly economic technology, saving large amounts of the used inks. Inthe course of repetitions of the film-deposition procedure there is no waste of material dueto additivity of this thick-film technology. Finally, the thick films can be easily and quicklydeposited on inexpensive substrates. In this contribution, thick-film ion-selective electrodesbased on ionophores as well as crystalline ion-selective materials dedicated forpotentiometric measurements are demonstrated. Analytical parameters of these sensors arecomparable with those reported for conventional potentiometric electrodes. All mentionedthick-film strip electrodes have been totally fabricated in only one, fully automated thick-film technology, without any additional manual, chemical or electrochemical steps. In allcases simple, inexpensive, commercially available materials, i.e. flexible, plastic substratesand easily cured polymer-based pastes were used.

  12. Inkjet Impregnation for Tailoring Air Electrode Microstructure to Improve Solid Oxide Cells Performance

    KAUST Repository

    Da’as, Eman H.

    2015-09-30

    The urge to lower the operating temperature of solid oxide cells (SOCs) to the intermediate ranges between 500-700°C motivated the research into impregnation processes, which offer highly efficient SOC air electrodes at low operating temperatures. Lack of controllability and reproducibility of this technique in the conventional way is still considered as an inadequacy for industrialization since it is performed manually. Therefore, inkjet-printing technology was proposed as an adequate approach to perform scalable and controllable impregnation for SOC air electrodes, which in turn leads to low operating temperatures. Composite LSM-ionic conductive air electrodes of weight ratio 1:2 were fabricated by inkjet impregnation of lanthanum strontium manganite (La0.8Sr0.2MnO3) precursor nitrates onto a porous ionic conductive backbone structure. First, porous yttria stabilized zirconia (8YSZ) substrates prepared by tape casting were used to study the influence of the printing parameters on the lateral dispersion and penetration of LSM ink inside the pores. XRD analysis confirmed the formation of LSM phase after calcination at 800°C for 2 h, while SEM revealed the formation of LSM nanostructures. It has been found by optical microscope observations that the spacing between the drops and the substrate temperature have a significant role in controlling the printing process. Next, the optimized printing parameters were applied in the inkjet impregnation of the LSM ink into porous YSZ electrodes that were spin coated on both sides of dense YSZ layers. LSM-YSZ composite air electrodes achieved an area specific resistance (ASR) of around 0.29 Ω.cm2 at 700°C. The performance of LSM-YSZ composite electrodes was influenced by the microstructure and the thickness, and by the electrode/electrolyte interface characteristics. As a result, the enhancement in LSM-YSZ composite electrode performance was observed due to the better percolation in LSM, YSZ and oxygen diffusion. Finally

  13. Diode-rectified multiphase AC arc for the improvement of electrode erosion characteristics

    Science.gov (United States)

    Tanaka, Manabu; Hashizume, Taro; Saga, Koki; Matsuura, Tsugio; Watanabe, Takayuki

    2017-11-01

    An innovative multiphase AC arc (MPA) system was developed on the basis of a diode-rectification technique to improve electrode erosion characteristics. Conventionally, electrode erosion in AC arc is severer than that in DC arc. This originated from the fact that the required properties for the cathode and anode are different, although an AC electrode works as the cathode and the anode periodically. To solve this problem, a separation of AC electrodes into pairs of thoriated tungsten cathode and copper anode by diode-rectification was attempted. A diode-rectified multiphase AC arc (DRMPA) system was then successfully established, resulting in a drastic improvement of the erosion characteristics. The electrode erosion rate in the DRMPA was less than one-third of that in the conventional MPA without the diode rectification. In order to clarify its erosion mechanism, electrode phenomena during discharge were visualized by a high-speed camera system with appropriate band-pass filters. Fluctuation characteristics of the electrode temperature in the DRMPA were revealed.

  14. Fabrication of Porous ZnO/Co₃O₄ Composites for Improving Cycling Stability of Supercapacitors.

    Science.gov (United States)

    Su, Dongqing; Zhang, Longmei; Tang, Zehua; Yu, Tingting; Liu, Huili; Zhang, Junhao; Liu, Yuanjun; Yuan, Aihua; Kong, Qinghong

    2018-07-01

    To tackle the issue of poor cycling stability for metal oxide nanoparticles as supercapacitor electrode, porous ZnO/Co3O4 composites were fabricated via solid-state thermolysis of [CoZn(BTC)(NO3)](2H2O)(0.5DMF) under air atmosphere. The results demonstrate that the products are mesoporous polyhedron structure with the diameter of about 10 μm, which are constructed by many interconnected nanocrystals with the sizes of around 20 nm. ZnO/Co3O4 composites as supercapacitor electrode exhibited excellent cyclic stability capacity, showing a maximum specific capacitance of 106.7 F g-1 and a capacity retention of 102.7 F · g-1 after 1000 cycles at 0.5 A · g-1. The superior electrochemical performance was contributed to ZnO/Co3O4 composites with porous structures and small size, which shortened the route of electronic transmission as well as ions insertion and desertion processes. Additionally, the synergetic effect of bimetallic oxides improved the electrochemical stability.

  15. A top-down approach for fabricating free-standing bio-carbon supercapacitor electrodes with a hierarchical structure.

    Science.gov (United States)

    Li, Yingzhi; Zhang, Qinghua; Zhang, Junxian; Jin, Lei; Zhao, Xin; Xu, Ting

    2015-09-23

    Biomass has delicate hierarchical structures, which inspired us to develop a cost-effective route to prepare electrode materials with rational nanostructures for use in high-performance storage devices. Here, we demonstrate a novel top-down approach for fabricating bio-carbon materials with stable structures and excellent diffusion pathways; this approach is based on carbonization with controlled chemical activation. The developed free-standing bio-carbon electrode exhibits a high specific capacitance of 204 F g(-1) at 1 A g(-1); good rate capability, as indicated by the residual initial capacitance of 85.5% at 10 A g(-1); and a long cycle life. These performance characteristics are attributed to the outstanding hierarchical structures of the electrode material. Appropriate carbonization conditions enable the bio-carbon materials to inherit the inherent hierarchical texture of the original biomass, thereby facilitating effective channels for fast ion transfer. The macropores and mesopores that result from chemical activation significantly increase the specific surface area and also play the role of temporary ion-buffering reservoirs, further shortening the ionic diffusion distance.

  16. Pt-graphene electrodes for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Hoshi, Hajime; Tanaka, Shumpei; Miyoshi, Takashi

    2014-01-01

    Highlights: • Graphene films with Pt nanoparticles were prepared from commercial graphene. • Pt consumption can be reduced by using Pt-graphene films. • The film showed improved catalytic activity for the reaction I 3 − /I − . • The film can be used as the counter electrode of dye-sensitized solar cells (DSSCs). • The performance of DSSC was superior to that of the Pt electrode. - Abstract: A simple paste method for fabricating graphene films with Pt nanoparticles was developed. First, graphene pastes with Pt nanoparticles were prepared from commercially available graphene. The resulting films of graphene nanoplatelet aggregates with Pt nanoparticles (Pt-GNA) contained Pt nanoparticles distributed over the entire three-dimensional surface of the GNA. Then, the catalytic activity for the I 3 − /I − redox reaction was evaluated by cyclic voltammetry. The GNA electrode exhibited higher activity than a graphene nanoplatelet electrode because of its higher effective surface area. Addition of Pt nanoparticles to the electrodes improved the catalytic activity. In particular, a large Faradaic current for the I 3 − /I − reaction was observed for the Pt-GNA electrode. As the counter electrodes of dye-sensitized solar cells (DSSCs), their performance was consistent with the cyclic voltammetry results. In particular, the DSSC performance of the Pt-GNA electrode was superior to that of the Pt electrodes commonly used in DSSCs

  17. Fabrication and characterization of spiral interdigitated electrodes based biosensor for salivary glucose detection

    Science.gov (United States)

    Adelyn, P. Y. P.; Hashim, U.; Arshad, M. K. Md; Voon, C. H.; Liu, Wei-Wen; Kahar, S. M.; Huda, A. R. N.; Lee, H. Cheun

    2017-03-01

    This work introduces the non-invasive glucose monitoring technique by using the Complementary Metal Oxide Semiconductor (CMOS) technologically fabricated spiral Interdigitated Electrodes (IDE) based biosensor. Scanning Electron Microscopy (SEM) image explores the morphology of spiral IDE while Energy Dispersive X-Ray (EDX) determines the elements induced in spiral IDE. Oral saliva of two patients are collected and tested on the spiral IDE sensor with electrical characterization as glucose detection results. However, both patients exhibit their glucose level characteristics inconsistently. Therefore, this work could be extended and enhanced by adding Glutaraldehyde in between 3-Aminoproply)triethoxysilane (APTES) modified and glucose oxidase (GOD) enzyme immobilized layer with FTIR validation for bonding attachment.

  18. Fully Textile, PEDOT:PSS Based Electrodes for Wearable ECG Monitoring Systems.

    Science.gov (United States)

    Pani, Danilo; Dessi, Alessia; Saenz-Cogollo, Jose F; Barabino, Gianluca; Fraboni, Beatrice; Bonfiglio, Annalisa

    2016-03-01

    To evaluate a novel kind of textile electrodes based on woven fabrics treated with PSS, through an easy fabrication process, testing these electrodes for biopotential recordings. Fabrication is based on raw fabric soaking in PSS using a second dopant, squeezing and annealing. The electrodes have been tested on human volunteers, in terms of both skin contact impedance and quality of the ECG signals recorded at rest and during physical activity (power spectral density, baseline wandering, QRS detectability, and broadband noise). The electrodes are able to operate in both wet and dry conditions. Dry electrodes are more prone to noise artifacts, especially during physical exercise and mainly due to the unstable contact between the electrode and the skin. Wet (saline) electrodes present a stable and reproducible behavior, which is comparable or better than that of traditional disposable gelled Ag/AgCl electrodes. The achieved results reveal the capability of this kind of electrodes to work without the electrolyte, providing a valuable interface with the skin, due to mixed electronic and ionic conductivity of PSS. These electrodes can be effectively used for acquiring ECG signals. Textile electrodes based on PSS represent an important milestone in wearable monitoring, as they present an easy and reproducible fabrication process, very good performance in wet and dry (at rest) conditions and a superior level of comfort with respect to textile electrodes proposed so far. This paves the way to their integration into smart garments.

  19. Improvements and artifact analysis in conductivity images using multiple internal electrodes

    International Nuclear Information System (INIS)

    Farooq, Adnan; McEwan, Alistair Lee; Woo, Eung Je; Oh, Tong In; Tehrani, Joubin Nasehi

    2014-01-01

    Electrical impedance tomography is an attractive functional imaging method. It is currently limited in resolution and sensitivity due to the complexity of the inverse problem and the safety limits of introducing current. Recently, internal electrodes have been proposed for some clinical situations such as intensive care or RF ablation. This paper addresses the research question related to the benefit of one or more internal electrodes usage since these are invasive. Internal electrodes would be able to reduce the effect of insulating boundaries such as fat and bone and provide improved internal sensitivity. We found there was a measurable benefit with increased numbers of internal electrodes in saline tanks of a cylindrical and complex shape with up to two insulating boundary gel layers modeling fat and muscle. The internal electrodes provide increased sensitivity to internal changes, thereby increasing the amplitude response and improving resolution. However, they also present an additional challenge of increasing sensitivity to position and modeling errors. In comparison with previous work that used point sources for the internal electrodes, we found that it is important to use a detailed mesh of the internal electrodes with these voxels assigned to the conductivity of the internal electrode and its associated holder. A study of different internal electrode materials found that it is optimal to use a conductivity similar to the background. In the tank with a complex shape, the additional internal electrodes provided more robustness in a ventilation model of the lungs via air filled balloons. (paper)

  20. Performance of GaN-Based LEDs with Nanopatterned Indium Tin Oxide Electrode

    Directory of Open Access Journals (Sweden)

    Zhanxu Chen

    2016-01-01

    Full Text Available The indium tin oxide (ITO has been widely applied in light emitting diodes (LEDs as the transparent current spreading layer. In this work, the performance of GaN-based blue light LEDs with nanopatterned ITO electrode is investigated. Periodic nanopillar ITO arrays are fabricated by inductive coupled plasma etching with the mask of polystyrene nanosphere. The light extraction efficiency (LEE of LEDs can be improved by nanopatterned ITO ohmic contacts. The light output intensity of the fabricated LEDs with nanopatterned ITO electrode is 17% higher than that of the conventional LEDs at an injection current of 100 mA. Three-dimensional finite difference time domain simulation matches well with the experimental result. This method may serve as a practical approach to improving the LEE of the LEDs.

  1. Integration of Polymer Micro-Electrodes for Bio-Sensing

    DEFF Research Database (Denmark)

    Argyraki, Aikaterini; Larsen, Simon Tylsgaard; Tanzi, Simone

    We present the fabrication of PEDOT and pyrolyzed micro-electrodes for the detection of neurotransmitter exocytosis from single cells. The patterns of the electrodes are defined with photolithography. The micro-electro-fluidic-chips were fabricated by bonding two injection molded TOPAS parts. Pol...

  2. Maskless fabrication of a microfluidic device with interdigitated electrodes on PCB using laser ablation

    Science.gov (United States)

    Contreras-Saenz, Michael; Hassard, Christian; Vargas-Chacon, Rafael; Gordillo, Jose Luis; Camacho-Leon, Sergio

    2016-03-01

    This paper reports the maskless fabrication of a microfluidic device with interdigitated electrodes (IDE) based on the technology of MicroElectroMechanical Systems on Printed Circuit Board (PCB-MEMS) and laser ablation. The device has flame retardant (FR)-4 resin as substrate, cooper (Cu) as active material and SU-8 polymer as structural material. By adjusting the laser parameters, Cu IDEs and SU-8 microchannels were successfully patterned onto the FR-4 substrate. The respective width, gap and overlap of the IDEs were 50 μm, 25 μm and 500 μm. The respective width, depth and length of the microchannels were 210 μm, 24.6 μm and 6.3 mm. The resolution and repeatability achieved in this approach, along with the low cost of the involved materials and techniques, enable an affordable micromachining platform with rapid fabrication-test cycle to develop active multiphysic microdevices with several applications in the fields of biosensing, cell culture, drug delivery, transport and sorting of molecules, among others.

  3. Fabrication of Composite Microneedle Array Electrode for Temperature and Bio-Signal Monitoring.

    Science.gov (United States)

    Sun, Yiwei; Ren, Lei; Jiang, Lelun; Tang, Yong; Liu, Bin

    2018-04-13

    Body temperature and bio-signals are important health indicators that reflect the human health condition. However, monitoring these indexes is inconvenient and time-consuming, requires various instruments, and needs professional skill. In this study, a composite microneedle array electrode (CMAE) was designed and fabricated. It simultaneously detects body temperature and bio-signals. The CMAE consists of a 6 × 6 microneedles array with a height of 500 μm and a base diameter of 200 μm. Multiple insertion experiments indicate that the CMAE possesses excellent mechanical properties. The CMAE can pierce porcine skin 100 times without breaking or bending. A linear calibration relationship between temperature and voltage are experimentally obtained. Armpit temperature (35.8 °C) and forearm temperature (35.3 °C) are detected with the CMAE, and the measurements agree well with the data acquired with a clinical thermometer. Bio-signals including EII, ECG, and EMG are recorded and compared with those obtained by a commercial Ag/AgCl electrode. The CMAE continuously monitors bio-signals and is more convenient to apply because it does not require skin preparation and gel usage. The CMAE exhibits good potential for continuous and repetitive monitoring of body temperature and bio-signals.

  4. Fabrication of Composite Microneedle Array Electrode for Temperature and Bio-Signal Monitoring

    Directory of Open Access Journals (Sweden)

    Yiwei Sun

    2018-04-01

    Full Text Available Body temperature and bio-signals are important health indicators that reflect the human health condition. However, monitoring these indexes is inconvenient and time-consuming, requires various instruments, and needs professional skill. In this study, a composite microneedle array electrode (CMAE was designed and fabricated. It simultaneously detects body temperature and bio-signals. The CMAE consists of a 6 × 6 microneedles array with a height of 500 μm and a base diameter of 200 μm. Multiple insertion experiments indicate that the CMAE possesses excellent mechanical properties. The CMAE can pierce porcine skin 100 times without breaking or bending. A linear calibration relationship between temperature and voltage are experimentally obtained. Armpit temperature (35.8 °C and forearm temperature (35.3 °C are detected with the CMAE, and the measurements agree well with the data acquired with a clinical thermometer. Bio-signals including EII, ECG, and EMG are recorded and compared with those obtained by a commercial Ag/AgCl electrode. The CMAE continuously monitors bio-signals and is more convenient to apply because it does not require skin preparation and gel usage. The CMAE exhibits good potential for continuous and repetitive monitoring of body temperature and bio-signals.

  5. Design and Fabrication of Low Cost Thick Film pH Sensor using Silver Chlorinated Reference Electrodes with Integrated Temperature Sensor

    Directory of Open Access Journals (Sweden)

    Wiranto Goib

    2016-01-01

    Full Text Available This paper describes the design and fabrication of thick film pH sensor, in which the reference electrode has been formed by chlorination of Ag using FeCl3. The process was aimed to replace Ag/AgCl paste commonly used as reference electrodes. Fabricated using thick film screen printing technology on Al2O3 substrate, the pH sensor showed a measured sensitivity of -52.97, -53.17 and -53.68 mV/pH at 25°C, 45°C, and 65°C, respectively. The measured values were close to the theoretical Nernstian slope of -59 mV/pH 25°C.The sensor was also designed with an integrated Ruthenium based temperature sensor for future temperature compensation. The measured resistance temperature characteristics showed a linear reasponse over the range of 25 – 80°C. This miniaturised planar sensor should find wide application, especially in field water quality monitoring, replacing their glass type counterparts.

  6. Effects of electrode properties and fabricated pressure on Li ion diffusion and diffusion-induced stresses in cylindrical Li-ion batteries

    International Nuclear Information System (INIS)

    Zhang, Tao; Guo, Zhansheng

    2014-01-01

    The effects of electrode properties and fabricated pressure on Li ion diffusion and diffusion-induced stress in a cylindrical Li-ion battery are studied. It is found that hydrostatic pressure or elastic modulus variation in the active layer have little effect on the distribution of Li ions for a higher diffusivity coefficient, but both can facilitate Li ion diffusion for a lower diffusivity coefficient. The elastic modulus variation has a significant effect on the distribution of stress and hydrostatic pressure can reduce the surface stress for the lower diffusivity coefficient. A higher charging rate causes a more transient response in the stress history, but a linear charging history is observed for slow charging rates. A higher charging rate would not inflict extra damage on the electrode for the higher diffusivity coefficient and the stress history becomes highly transient and charging rate dependent for the lower diffusivity coefficient. The effect of fabricated pressure can be neglected. (paper)

  7. Formic Acid Electrooxidation by a Platinum Nanotubule Array Electrode

    Directory of Open Access Journals (Sweden)

    Eric Broaddus

    2013-01-01

    Full Text Available One-dimensional metallic nanostructures such as nanowires, rods, and tubes have drawn much attention for electrocatalytic applications due to potential advantages that include fewer diffusion impeding interfaces with polymeric binders, more facile pathways for electron transfer, and more effective exposure of active surface sites. 1D nanostructured electrodes have been fabricated using a variety of methods, typically showing improved current response which has been attributed to improved CO tolerance, enhanced surface activity, and/or improved transport characteristics. A template wetting approach was used to fabricate an array of platinum nanotubules which were examined electrochemically with regard to the electrooxidation of formic acid. Arrays of 100 and 200 nm nanotubules were compared to a traditional platinum black catalyst, all of which were found to have similar surface areas. Peak formic acid oxidation current was observed to be highest for the 100 nm nanotubule array, followed by the 200 nm array and the Pt black; however, CO tolerance of all electrodes was similar, as were the onset potentials of the oxidation and reduction peaks. The higher current response was attributed to enhanced mass transfer in the nanotubule electrodes, likely due to a combination of both the more open nanostructure as well as the lack of a polymeric binder in the catalyst layer.

  8. ZnS nanoparticles electrodeposited onto ITO electrode as a platform for fabrication of enzyme-based biosensors of glucose

    International Nuclear Information System (INIS)

    Du, Jian; Yu, Xiuping; Wu, Ying; Di, Junwei

    2013-01-01

    The electrochemical and photoelectrochemical biosensors based on glucose oxidase (GOD) and ZnS nanoparticles modified indium tin oxide (ITO) electrode were investigated. The ZnS nanoparticles were electrodeposited directly on the surface of ITO electrode. The enzyme was immobilized on ZnS/ITO electrode surface by sol–gel method to fabricate glucose biosensor. GOD could electrocatalyze the reduction of dissolved oxygen, which resulted in a great increase of the reduction peak current. The reduction peak current decreased linearly with the addition of glucose, which could be used for glucose detection. Moreover, ZnS nanoparticles deposited on ITO electrode surface showed good photocurrent response under illumination. A photoelectrochemical biosensor for the detection of glucose was also developed by monitoring the decreases in the cathodic peak photocurrent. The results indicated that ZnS nanoparticles deposited on ITO substrate were a good candidate material for the immobilization of enzyme in glucose biosensor construction. - Highlights: ► ZnS nanoparticles were electrodeposited directly on ITO surface. ► The direct electron transfer of GOD immobilized on ZnS surface was obtained. ► The enzyme electrode was used to the determination of glucose in the presence of oxygen. ► The response of photoelectrochemical biosensor towards glucose was more sensitive

  9. ZnS nanoparticles electrodeposited onto ITO electrode as a platform for fabrication of enzyme-based biosensors of glucose

    Energy Technology Data Exchange (ETDEWEB)

    Du, Jian; Yu, Xiuping; Wu, Ying; Di, Junwei, E-mail: djw@suda.edu.cn

    2013-05-01

    The electrochemical and photoelectrochemical biosensors based on glucose oxidase (GOD) and ZnS nanoparticles modified indium tin oxide (ITO) electrode were investigated. The ZnS nanoparticles were electrodeposited directly on the surface of ITO electrode. The enzyme was immobilized on ZnS/ITO electrode surface by sol–gel method to fabricate glucose biosensor. GOD could electrocatalyze the reduction of dissolved oxygen, which resulted in a great increase of the reduction peak current. The reduction peak current decreased linearly with the addition of glucose, which could be used for glucose detection. Moreover, ZnS nanoparticles deposited on ITO electrode surface showed good photocurrent response under illumination. A photoelectrochemical biosensor for the detection of glucose was also developed by monitoring the decreases in the cathodic peak photocurrent. The results indicated that ZnS nanoparticles deposited on ITO substrate were a good candidate material for the immobilization of enzyme in glucose biosensor construction. - Highlights: ► ZnS nanoparticles were electrodeposited directly on ITO surface. ► The direct electron transfer of GOD immobilized on ZnS surface was obtained. ► The enzyme electrode was used to the determination of glucose in the presence of oxygen. ► The response of photoelectrochemical biosensor towards glucose was more sensitive.

  10. Gold leaf counter electrodes for dye-sensitized solar cells

    Science.gov (United States)

    Shimada, Kazuhiro; Toyoda, Takeshi

    2018-03-01

    In this study, a gold leaf 100 nm thin film is used as the counter electrode in dye-sensitized solar cells. The traditional method of hammering gold foil to obtain a thin gold leaf, which requires only small amounts of gold, was employed. The gold leaf was then attached to the substrate using an adhesive to produce the gold electrode. The proposed approach for fabricating counter electrodes is demonstrated to be facile and cost-effective, as opposed to existing techniques. Compared with electrodes prepared with gold foil and sputtered gold, the gold leaf counter electrode demonstrates higher catalytic activity with a cobalt-complex electrolyte and higher cell efficiency. The origin of the improved performance was investigated by surface morphology examination (scanning electron microscopy), various electrochemical analyses (cyclic voltammetry, linear sweep voltammetry, and electrochemical impedance spectroscopy), and crystalline analysis (X-ray diffractometry).

  11. Fabrication and characterization of implantable and flexible nerve cuff electrodes with Pt, Ir and IrOx films deposited by RF sputtering

    International Nuclear Information System (INIS)

    Lee, Soo Hyun; Jung, Jung Hwan; Chae, Youn Mee; Kang, Ji Yoon; Suh, Jun-Kyo Francis

    2010-01-01

    This paper presents the fabrication and characterization of implantable and flexible nerve cuff electrodes for neural interfaces using the conventional BioMEMS technique. In order to fabricate a flexible nerve electrode, polyimide (PI) was chosen as the substrate material. Then, nerve electrodes were thermally re-formed in a cuff shape so as to increase the area in which the charges were transferred to the nerve. Platinum (Pt), iridium (Ir) and iridium oxide (IrO x ) films, which were to serve as conducting materials for the nerve electrodes, were deposited at different working pressures by RF magnetron sputtering. The electrochemical properties of the deposited films were characterized by electrochemical impedance spectroscopy (EIS). The charge delivery capacities of the films were recorded and calculated by cyclic voltammetry (CV). The deposited films of Pt, Ir and IrO x have strong differences in electrochemical properties, which depend on the working pressure of sputter. Each film deposited at 30 mTorr of working pressure shows the highest value of charge delivery capacity (CDC). For the IrO x films, the electrochemical properties were strongly affected by the working pressure as well as the Ar:O 2 gas ratio. The IrO x film deposited with an Ar:O 2 gas ratio of 8:1 showed the highest CDC of 59.5 mC cm −2 , which was about five times higher than that of films deposited with a 1:1 gas ratio.

  12. Pt-graphene electrodes for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Hoshi, Hajime, E-mail: hoshi@ed.tus.ac.jp; Tanaka, Shumpei; Miyoshi, Takashi

    2014-12-15

    Highlights: • Graphene films with Pt nanoparticles were prepared from commercial graphene. • Pt consumption can be reduced by using Pt-graphene films. • The film showed improved catalytic activity for the reaction I{sub 3}{sup −}/I{sup −}. • The film can be used as the counter electrode of dye-sensitized solar cells (DSSCs). • The performance of DSSC was superior to that of the Pt electrode. - Abstract: A simple paste method for fabricating graphene films with Pt nanoparticles was developed. First, graphene pastes with Pt nanoparticles were prepared from commercially available graphene. The resulting films of graphene nanoplatelet aggregates with Pt nanoparticles (Pt-GNA) contained Pt nanoparticles distributed over the entire three-dimensional surface of the GNA. Then, the catalytic activity for the I{sub 3}{sup −}/I{sup −} redox reaction was evaluated by cyclic voltammetry. The GNA electrode exhibited higher activity than a graphene nanoplatelet electrode because of its higher effective surface area. Addition of Pt nanoparticles to the electrodes improved the catalytic activity. In particular, a large Faradaic current for the I{sub 3}{sup −}/I{sup −} reaction was observed for the Pt-GNA electrode. As the counter electrodes of dye-sensitized solar cells (DSSCs), their performance was consistent with the cyclic voltammetry results. In particular, the DSSC performance of the Pt-GNA electrode was superior to that of the Pt electrodes commonly used in DSSCs.

  13. Nanoscale biomemory composed of recombinant azurin on a nanogap electrode

    International Nuclear Information System (INIS)

    Chung, Yong-Ho; Lee, Taek; Choi, Jeong-Woo; Park, Hyung Ju; Yun, Wan Soo; Min, Junhong

    2013-01-01

    We fabricate a nanoscale biomemory device composed of recombinant azurin on nanogap electrodes. For this, size-controllable nanogap electrodes are fabricated by photolithography, electron beam lithography, and surface catalyzed chemical deposition. Moreover, we investigate the effect of gap distance to optimize the size of electrodes for a biomemory device and explore the mechanism of electron transfer from immobilized protein to a nanogap counter-electrode. As the distance of the nanogap electrode is decreased in the nanoscale, the absolute current intensity decreases according to the distance decrement between the electrodes due to direct electron transfer, in contrast with the diffusion phenomenon of a micro-electrode. The biomemory function is achieved on the optimized nanogap electrode. These results demonstrate that the fabricated nanodevice composed of a nanogap electrode and biomaterials provides various advantages such as quantitative control of signals and exclusion of environmental effects such as noise. The proposed bioelectronics device, which could be mass-produced easily, could be applied to construct a nanoscale bioelectronics system composed of a single biomolecule. (paper)

  14. Polypyrrole electrodes doped with sulfanilic acid azochromotrop for electrochemical supercapacitors

    Science.gov (United States)

    Chen, S.; Zhitomirsky, I.

    2013-12-01

    In this work we demonstrate the feasibility of deposition of polypyrrole (PPy) films by electropolymerization on stainless steel substrates and fabrication of PPy powders by chemical polymerization using sulfanilic acid azochromotrop (SPADNS) as a new anionic dopant. The problem of low adhesion of PPy films to stainless steel substrates is addressed by the use of SPADNS, which exhibits chelating properties, promoting film formation. The use of fine particles, prepared by the chemical polymerization method, allows impregnation of Ni foams and fabrication of porous electrodes with high materials loading for electrochemical supercapacitors (ES). PPy films and Ni foam based PPy electrodes show capacitive behaviour in Na2SO4 electrolyte. The electron microscopy studies, impedance spectroscopy data and analysis of the SPADNS structure provide an insight into the factors, controlling capacitive behaviour. The Ni foam based electrodes offer advantages of improved capacitive behaviour at high materials loadings and good cycling stability. The area normalized and volume normalized specific capacitances are as high as 5.43 F cm-2 and 93.6 F cm-3, respectively, for materials loading of 35.4 mg cm-2. The capacitance retention of Ni foam based electrodes is 91.5% after 1000 cycles. The Ni foam based PPy electrodes are promising for application in ES.

  15. Pyrolyzed Photoresist Electrodes for Integration in Microfluidic Chips for Transmitter Detection from Biological Cells

    DEFF Research Database (Denmark)

    Larsen, Simon Tylsgaard; Argyraki, Aikaterini; Amato, Letizia

    2013-01-01

    In this study, we show how pyrolyzed photoresist carbon electrodes can be used for amperometric detection of potassium-induced transmitter release from large groups of neuronal PC 12 cells. This opens the way for the use of carbon film electrodes in microfabricated devices for neurochemical drug ...... by the difference in photoresist viscosity. By adding a soft bake step to the fabrication procedure, the flatness of pyrolyzed AZ 5214 electrodes could be improved which would facilitate their integration in microfluidic chip devices....

  16. Making EDM Electrodes By Stereolithography

    Science.gov (United States)

    Barlas, Philip A.

    1988-01-01

    Stereolithography is computer-aided manufacturing technique. Used to make models and molds of electrodes for electrical-discharge machining (EDM). Eliminates intermediate steps in fabrication of plastic model of object used in making EDM electrode to manufacture object or mold for object.

  17. Reversible storage of lithium in a rambutan-like tin-carbon electrode.

    Science.gov (United States)

    Deng, Da; Lee, Jim Yang

    2009-01-01

    Fruity electrodes: A simple bottom-up self-assembly method was used to fabricate rambutan-like tin-carbon (Sn@C) nanoarchitecture (see scheme, green Sn) to improve the reversible storage of lithium in tin. The mechanism of the growth of the pear-like hairs is explored.

  18. Laser-Direct Writing of Silver Metal Electrodes on Transparent Flexible Substrates with High-Bonding Strength.

    Science.gov (United States)

    Zhou, Weiping; Bai, Shi; Ma, Ying; Ma, Delong; Hou, Tingxiu; Shi, Xiaomin; Hu, Anming

    2016-09-21

    We demonstrate a novel approach to rapidly fabricate conductive silver electrodes on transparent flexible substrates with high-bonding strength by laser-direct writing. A new type of silver ink composed of silver nitrate, sodium citrate, and polyvinylpyrrolidone (PVP) was prepared in this work. The role of PVP was elucidated for improving the quality of silver electrodes. Silver nanoparticles and sintered microstructures were simultaneously synthesized and patterned on a substrate using a focused 405 nm continuous wave laser. The writing was completed through the transparent flexible substrate with a programmed 2D scanning sample stage. Silver electrodes fabricated by this approach exhibit a remarkable bonding strength, which can withstand an adhesive tape test at least 50 times. After a 1500 time bending test, the resistance only increased 5.2%. With laser-induced in-situ synthesis, sintering, and simultaneous patterning of silver nanoparticles, this technology is promising for the facile fabrication of conducting electronic devices on flexible substrates.

  19. Controlled dielectrophoretic nanowire self-assembly using atomic layer deposition and suspended microfabricated electrodes

    International Nuclear Information System (INIS)

    Baca, Alicia I; Brown, Joseph J; Bright, Victor M; Bertness, Kris A

    2012-01-01

    Effects of design and materials on the dielectrophoretic self-assembly of individual gallium nitride nanowires (GaN NWs) onto microfabricated electrodes have been experimentally investigated. The use of TiO 2 surface coating generated by atomic layer deposition (ALD) improves dielectrophoretic assembly yield of individual GaN nanowires on microfabricated structures by as much as 67%. With a titanium dioxide coating, individual nanowires were placed across suspended electrode pairs in 46% of tests (147 out of 320 total), versus 28% of tests (88 out of 320 total tests) that used uncoated GaN NWs. An additional result from these tests was that suspending the electrodes 2.75 μm above the substrate corresponded with up to 15.8% improvement in overall assembly yield over that of electrodes fabricated directly on the substrate. (paper)

  20. Molybdenum coated SU-8 microneedle electrodes for transcutaneous electrical nerve stimulation.

    Science.gov (United States)

    Soltanzadeh, Ramin; Afsharipour, Elnaz; Shafai, Cyrus; Anssari, Neda; Mansouri, Behzad; Moussavi, Zahra

    2017-11-21

    Electrophysiological devices are connected to the body through electrodes. In some applications, such as nerve stimulation, it is needed to minimally pierce the skin and reach the underneath layers to bypass the impedance of the first layer called stratum corneum. In this study, we have designed and fabricated surface microneedle electrodes for applications such as electrical peripheral nerve stimulation. We used molybdenum for microneedle fabrication, which is a biocompatible metal; it was used for the conductive layer of the needle array. To evaluate the performance of the fabricated electrodes, they were compared with the conventional surface electrodes in nerve conduction velocity experiment. The recorded signals showed a much lower contact resistance and higher bandwidth in low frequencies for the fabricated microneedle electrodes compared to those of the conventional electrodes. These results indicate the electrode-tissue interface capacitance and charge transfer resistance have been increased in our designed electrodes, while the contact resistance decreased. These changes will lead to less harmful Faradaic current passing through the tissue during stimulation in different frequencies. We also compared the designed microneedle electrodes with conventional ones by a 3-dimensional finite element simulation. The results demonstrated that the current density in the deep layers of the skin and the directivity toward a target nerve for microneedle electrodes were much more than those for the conventional ones. Therefore, the designed electrodes are much more efficient than the conventional electrodes for superficial transcutaneous nerve stimulation purposes.

  1. Fabric based supercapacitor

    International Nuclear Information System (INIS)

    Yong, S; Tudor, M J; Beeby, S P; Owen, J R

    2013-01-01

    Flexible supercapacitors with electrodes coated on inexpensive fabrics by the dipping technique. This paper present details of the design, fabrication and characterisation of fabric supercapacitor. The sandwich structured supercapacitors can achieve specific capacitances of 11.1F/g, area capacitance 105 mF.cm −2 and maintain 95% of the initial capacitance after cycling the device for more than 15000 times

  2. Improved Long-Term Stability of Transparent Conducting Electrodes Based on Double-Laminated Electrosprayed Antimony Tin Oxides and Ag Nanowires

    Directory of Open Access Journals (Sweden)

    Koo B.-R.

    2017-06-01

    Full Text Available We fabricated double-laminated antimony tin oxide/Ag nanowire electrodes by spin-coating and electrospraying. Compared to pure Ag nanowire electrodes and single-laminated antimony tin oxide/Ag nanowire electrodes, the double-laminated antimony tin oxide/Ag nanowire electrodes had superior transparent conducting electrode performances with sheet resistance ~19.8 Ω/□ and optical transmittance ~81.9%; this was due to uniform distribution of the connected Ag nanowires because of double lamination of the metallic Ag nanowires without Ag aggregation despite subsequent microwave heating at 250°C. They also exhibited excellent and superior long-term chemical and thermal stabilities and adhesion to substrate because double-laminated antimony tin oxide thin films act as the protective layers between Ag nanowires, blocking Ag atoms penetration.

  3. System of fabricating a flexible electrode array

    Energy Technology Data Exchange (ETDEWEB)

    Krulevitch, Peter [Pleasanton, CA; Polla, Dennis L [Roseville, MN; Maghribi, Mariam N [Davis, CA; Hamilton, Julie [Tracy, CA; Humayun, Mark S [La Canada, CA; Weiland, James D [Valencia, CA

    2012-01-28

    An image is captured or otherwise converted into a signal in an artificial vision system. The signal is transmitted to the retina utilizing an implant. The implant consists of a polymer substrate made of a compliant material such as poly(dimethylsiloxane) or PDMS. The polymer substrate is conformable to the shape of the retina. Electrodes and conductive leads are embedded in the polymer substrate. The conductive leads and the electrodes transmit the signal representing the image to the cells in the retina. The signal representing the image stimulates cells in the retina.

  4. System of fabricating a flexible electrode array

    Science.gov (United States)

    Krulevitch, Peter; Polla, Dennis L.; Maghribi, Mariam N.; Hamilton, Julie; Humayun, Mark S.; Weiland, James D.

    2010-10-12

    An image is captured or otherwise converted into a signal in an artificial vision system. The signal is transmitted to the retina utilizing an implant. The implant consists of a polymer substrate made of a compliant material such as poly(dimethylsiloxane) or PDMS. The polymer substrate is conformable to the shape of the retina. Electrodes and conductive leads are embedded in the polymer substrate. The conductive leads and the electrodes transmit the signal representing the image to the cells in the retina. The signal representing the image stimulates cells in the retina.

  5. Metal-nanoparticle single-electron transistors fabricated using electromigration

    DEFF Research Database (Denmark)

    Bolotin, K I; Kuemmeth, Ferdinand; Pasupathy, A N

    2004-01-01

    We have fabricated single-electron transistors from individual metal nanoparticles using a geometry that provides improved coupling between the particle and the gate electrode. This is accomplished by incorporating a nanoparticle into a gap created between two electrodes using electromigration, all...... on top of an oxidized aluminum gate. We achieve sufficient gate coupling to access more than ten charge states of individual gold nanoparticles (5–15 nm in diameter). The devices are sufficiently stable to permit spectroscopic studies of the electron-in-a-box level spectra within the nanoparticle as its...

  6. Characterization of Transition-Metal Oxide Deposition on Carbon Electrodes of a Supercapacitor

    Directory of Open Access Journals (Sweden)

    Ying-Chung Chen

    2016-12-01

    Full Text Available In order to fabricate the composite electrodes of a supercapacitor, transition-metal oxide materials NiO and WO3 were deposited on carbon electrodes by electron beam evaporation. The influences of various transition-metal oxides, scan rates of cyclic voltammograms (CVs, and galvanostatic charge/discharge tests on the characteristics of supercapacitor were studied. The charge/discharge efficiency and the lifetime of the composite electrodes were also investigated. It was found that the composite electrodes exhibited more favorable capacitance properties than those of the carbon electrodes at high scan rates. The results revealed the promotion of the capacitance property of the supercapacitor with composite electrode and the improving of the decay property in capacitance at high scan rate. In addition, the charge/discharge efficiency is close to 100% after 5000 cycles, and the composite electrode retains strong adhesion between the electrode material and the substrate.

  7. Electrochemical detection of nitrite based on the polythionine/carbon nanotube modified electrode

    International Nuclear Information System (INIS)

    Deng, Chunyan; Chen, Jinzhuo; Nie, Zhou; Yang, Minghui; Si, Shihui

    2012-01-01

    In this paper, thionine was electro-polymerized onto the surface of carbon nanotube (CNT)-modified glassy carbon (GC) to fabricate the polythionine (PTH)/CNT/GC electrode. It was found that the electro-reduction current of nitrite was enhanced greatly at the PTH/CNT/GC electrode. It may be demonstrated that PTH was used as a mediator for electrocatalytic reduction of nitrite, and CNTs as an excellent nanomaterial can improve the electron transfer between the electrode and nitrite. Therefore, based on the synergic effect of PTH and CNTs, the PTH/CNT/GC electrode was employed to detect nitrite, and the high sensitivity of 5.81 μA mM −1 , and the detection limit of 1.4 × 10 −6 M were obtained. Besides, the modified electrode showed an inherent stability, fast response time, and good anti-interference ability. These suggested that the PTH/CNT/GC electrode was favorable and reliable for the detection of nitrite. - Highlights: ► Polythionine (PTH) was used as a mediator for electrocatalytic reduction of nitrite. ► Carbon nanotubes (CNTs) improve electron transfer between the electrode and nitrite. ► The PTH/CNT/glassy carbon electrode showed excellent nitrite detection performance.

  8. Carbonization of SU-8 Based Electrode for MEMS Supercapacitors

    OpenAIRE

    Liu, Yang

    2014-01-01

    Supercapacitors are more sustainable and environmentally friendly energy sources than traditional ones. To achieve the supercapacitors with both energy density and power density that mainly depend on the effective surface area of theelectrodes, SU-8 can be used for electrode material to fabricate 3D microstructures as the electrodes that increase the effective surface area significantly. The objective of this project is to fabricate the reliable electrodes of large surface area for supercapac...

  9. Improving the accuracy of Laplacian estimation with novel multipolar concentric ring electrodes

    Science.gov (United States)

    Ding, Quan; Besio, Walter G.

    2015-01-01

    Conventional electroencephalography with disc electrodes has major drawbacks including poor spatial resolution, selectivity and low signal-to-noise ratio that are critically limiting its use. Concentric ring electrodes, consisting of several elements including the central disc and a number of concentric rings, are a promising alternative with potential to improve all of the aforementioned aspects significantly. In our previous work, the tripolar concentric ring electrode was successfully used in a wide range of applications demonstrating its superiority to conventional disc electrode, in particular, in accuracy of Laplacian estimation. This paper takes the next step toward further improving the Laplacian estimation with novel multipolar concentric ring electrodes by completing and validating a general approach to estimation of the Laplacian for an (n + 1)-polar electrode with n rings using the (4n + 1)-point method for n ≥ 2 that allows cancellation of all the truncation terms up to the order of 2n. An explicit formula based on inversion of a square Vandermonde matrix is derived to make computation of multipolar Laplacian more efficient. To confirm the analytic result of the accuracy of Laplacian estimate increasing with the increase of n and to assess the significance of this gain in accuracy for practical applications finite element method model analysis has been performed. Multipolar concentric ring electrode configurations with n ranging from 1 ring (bipolar electrode configuration) to 6 rings (septapolar electrode configuration) were directly compared and obtained results suggest the significance of the increase in Laplacian accuracy caused by increase of n. PMID:26693200

  10. Carbon nanotube/polymer composite electrodes for flexible, attachable electrochemical DNA sensors.

    Science.gov (United States)

    Li, Jianfeng; Lee, Eun-Cheol

    2015-09-15

    All-solution-processed, easily-made, flexible multi-walled carbon nanotube (MWCNT)/polydimethylsiloxane (PDMS)-based electrodes were fabricated and used for electrochemical DNA sensors. These electrodes could serve as a recognition layer for DNA, without any surface modification, through π-π interactions between the MWCNTs and DNA, greatly simplifying the fabrication process for DNA sensors. The electrodes were directly connected to an electrochemical analyzer in the differential pulse voltammetry (DPV) and cyclic voltammetry (CV) measurements, where methylene blue was used as a redox indicator. Since neither functional groups nor probe DNA were immobilized on the surfaces of the electrodes, the sensor can be easily regenerated by washing these electrodes with water. The limit of detection was found to be 1.3 × 10(2)pM (S/N=3), with good DNA sequence differentiation ability. Fast fabrication of a DNA sensor was also achieved by cutting and attaching the MWCNT-PDMS composite electrodes at an analyte solution-containable region. Our results pave the way for developing user-fabricated easily attached DNA sensors at low costs. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Electrochemical fabrication of a novel conducting metallopolymer nanoparticles and its electrocatalytic application

    International Nuclear Information System (INIS)

    Kazemi, Sayed Habib; Mohamadi, Rahim

    2013-01-01

    Graphical abstract: Nanoparticles of nickel-curcumin conducting polymer (Ni-Curc-NPs) were fabricated by a two steps electrochemical method. In the first step, nickel source was immobilized at the electrode surface in the form of nickel nanoparticles (NiNPs). Then, electropolymerization of Ni-curcumin was performed at the NiNPs modified electrode. These nanostructures were successfully employed for electrooxidative determination of glucose and significant increase in the electrochemical sensitivity and lower limit of detection were observed. -- Highlights: • A novel two steps method for fabrication of nickel-curcumin conducting polymer was described. • Nickel-curcumine nanoparticles were easily prepared instead of thin film. • Ni-Curc-NPs modified electrode was successfully employed for electrooxidation of glucose. • Significant improvement in the sensitivity and limit of detection was observed. -- Abstract: Present article is the first example of a novel two step electrochemical route for fabrication of nanoparticles of conducting metallopolymer of Ni-curcumin (Ni-Curc-NPs). Firstly, nickel nanoparticles (Ni-NPs) were electrochemically deposited on the electrode surface. Then, electropolymerization of Ni-Curc-NPs were performed at the electrode modified with Ni-NPs. These nanostructures were characterized using electrochemical methods including cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and hydrodynamic amperometry, also surface analysis methods and electron microscopy including energy dispersive analysis of X-ray (EDAX), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Additionally, application of the Ni-Curc-NPs modified electrode toward glucose electrooxidation was examined. A lower limit of detection and enhanced dynamic linear range for determination of glucose were observed at Ni-Curc-NPs modified electrode compared to Ni-NPs modified electrode

  12. Non-aqueous hybrid supercapacitors fabricated with mesoporous TiO2 microspheres and activated carbon electrodes with superior performance

    Science.gov (United States)

    Cai, Yong; Zhao, Bote; Wang, Jie; Shao, Zongping

    2014-05-01

    Mesoporous TiO2 microspheres, synthesized by a facile template-free solvothermal method and subsequent heat treatment, are exploited as the electrode for hybrid supercapacitors. The effects of the calcination temperature on the phase composition, particulate microstructure and morphology are characterized by XRD, Raman, FE-SEM and N2 adsorption/desorption measurements. Hybrid supercapacitors utilizing the as-prepared TiO2 mesoporous microspheres as the negative electrode and activated carbon (AC) as the positive electrode in a non-aqueous electrolyte are fabricated. The electrochemical performance of these hybrid supercapacitors is studied by galvanostatic charge-discharge and cyclic voltammetry (CV). The hybrid supercapacitor built from TiO2 microspheres calcined at 400 °C shows the best performance, delivering an energy density of 79.3 Wh kg-1 at a power density of 178.1 W kg-1. Even at a power density of 9.45 kW kg-1, an energy density of 31.5 Wh kg-1 is reached. These values are much higher than the AC-AC symmetric supercapacitor. In addition, the hybrid supercapacitor exhibits excellent cycling performance, retaining 98% of the initial energy density after 1000 cycles. Such outstanding electrochemical performance of the hybrid supercapacitor is attributed to the matched reaction kinetics between the two electrodes with different energy storage mechanisms.

  13. Ion traps fabricated in a CMOS foundry

    Energy Technology Data Exchange (ETDEWEB)

    Mehta, K. K.; Ram, R. J. [Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Eltony, A. M.; Chuang, I. L. [Center for Ultracold Atoms, Research Laboratory of Electronics and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Bruzewicz, C. D.; Sage, J. M., E-mail: jsage@ll.mit.edu; Chiaverini, J., E-mail: john.chiaverini@ll.mit.edu [Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts 02420 (United States)

    2014-07-28

    We demonstrate trapping in a surface-electrode ion trap fabricated in a 90-nm CMOS (complementary metal-oxide-semiconductor) foundry process utilizing the top metal layer of the process for the trap electrodes. The process includes doped active regions and metal interconnect layers, allowing for co-fabrication of standard CMOS circuitry as well as devices for optical control and measurement. With one of the interconnect layers defining a ground plane between the trap electrode layer and the p-type doped silicon substrate, ion loading is robust and trapping is stable. We measure a motional heating rate comparable to those seen in surface-electrode traps of similar size. This demonstration of scalable quantum computing hardware utilizing a commercial CMOS process opens the door to integration and co-fabrication of electronics and photonics for large-scale quantum processing in trapped-ion arrays.

  14. Direct Inkjet Printing of Silver Source/Drain Electrodes on an Amorphous InGaZnO Layer for Thin-Film Transistors.

    Science.gov (United States)

    Ning, Honglong; Chen, Jianqiu; Fang, Zhiqiang; Tao, Ruiqiang; Cai, Wei; Yao, Rihui; Hu, Shiben; Zhu, Zhennan; Zhou, Yicong; Yang, Caigui; Peng, Junbiao

    2017-01-10

    Printing technologies for thin-film transistors (TFTs) have recently attracted much interest owing to their eco-friendliness, direct patterning, low cost, and roll-to-roll manufacturing processes. Lower production costs could result if electrodes fabricated by vacuum processes could be replaced by inkjet printing. However, poor interfacial contacts and/or serious diffusion between the active layer and the silver electrodes are still problematic for achieving amorphous indium-gallium-zinc-oxide (a-IGZO) TFTs with good electrical performance. In this paper, silver (Ag) source/drain electrodes were directly inkjet-printed on an amorphous a-IGZO layer to fabricate TFTs that exhibited a mobility of 0.29 cm²·V -1 ·s -1 and an on/off current ratio of over 10⁵. To the best of our knowledge, this is a major improvement for bottom-gate top-contact a-IGZO TFTs with directly printed silver electrodes on a substrate with no pretreatment. This study presents a promising alternative method of fabricating electrodes of a-IGZO TFTs with desirable device performance.

  15. Direct Inkjet Printing of Silver Source/Drain Electrodes on an Amorphous InGaZnO Layer for Thin-Film Transistors

    Directory of Open Access Journals (Sweden)

    Honglong Ning

    2017-01-01

    Full Text Available Printing technologies for thin-film transistors (TFTs have recently attracted much interest owing to their eco-friendliness, direct patterning, low cost, and roll-to-roll manufacturing processes. Lower production costs could result if electrodes fabricated by vacuum processes could be replaced by inkjet printing. However, poor interfacial contacts and/or serious diffusion between the active layer and the silver electrodes are still problematic for achieving amorphous indium–gallium–zinc–oxide (a-IGZO TFTs with good electrical performance. In this paper, silver (Ag source/drain electrodes were directly inkjet-printed on an amorphous a-IGZO layer to fabricate TFTs that exhibited a mobility of 0.29 cm2·V−1·s−1 and an on/off current ratio of over 105. To the best of our knowledge, this is a major improvement for bottom-gate top-contact a-IGZO TFTs with directly printed silver electrodes on a substrate with no pretreatment. This study presents a promising alternative method of fabricating electrodes of a-IGZO TFTs with desirable device performance.

  16. Nickel–copper hybrid electrodes self-adhered onto a silicon wafer by supersonic cold-spray

    International Nuclear Information System (INIS)

    Lee, Jong-Gun; Kim, Do-Yeon; Kang, Byungjun; Kim, Donghwan; Song, Hee-eun; Kim, Jooyoung; Jung, Woonsuk; Lee, Dukhaeng; Al-Deyab, Salem S.; James, Scott C.; Yoon, Sam S.

    2015-01-01

    High-performance electrodes are fabricated through supersonic spraying of nickel and copper particles. These electrodes yield low specific resistivities, comparable to electrodes produced by screen-printed silver paste and light-induced plating. The appeal of this fabrication method is the low cost of copper and large area scalability of supersonic spray-coating techniques. The copper and nickel electrode was fabricated in the open air without any pre- or post-treatment. The spray-coated copper–nickel electrode was characterized by optical microscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction, and energy dispersive spectroscopy. Although both SEM and TEM images confirmed voids trapped between flattened particles in the fabricated electrode, this electrode’s resistivity was order 10 −6 Ω cm, which is comparable to the bulk value for pure copper

  17. Graphene Oxide/ Ruthenium Oxide Composites for Supercapacitors Electrodes

    Science.gov (United States)

    Amir, Fatima

    Supercapacitors are electrical energy storage devices with high power density, high rate capability, low maintenance cost, and long life cycle. They complement or replace batteries in harvesting applications when high power delivery is needed. An important improvement in performance of supercapacitors has been achieved through recent advances in the development of new nanostructured materials. Here we will discuss the fabrication of graphene oxide/ ruthenium oxide supercacitors electrodes including electrophoretic deposition. The morphology and structure of the fabricated electrodes were investigated and will be discussed. The electrochemical properties were determined using cyclic voltammetry and galvanostatic charge/discharge techniques and the experiments that demonstrate the excellent capacitive properties of the obtained supercapacitors will also be discussed. The fabrication and characterization of the samples were performed at the Center of Functional Nanomaterials at Brookhaven National Lab. The developed approaches in our study represent an exciting direction for designing the next generation of energy storage devices. This work was supported in part by the U.S. Department of Energy through the Visiting Faculty Program and the research used resources of the Center for Functional Nanomaterials at Brookhaven National Laboratory.

  18. Towards Flexible Transparent Electrodes Based on Carbon and Metallic Materials

    Directory of Open Access Journals (Sweden)

    Minghui Luo

    2017-01-01

    Full Text Available Flexible transparent electrodes (FTEs with high stability and scalability are in high demand for the extremely widespread applications in flexible optoelectronic devices. Traditionally, thin films of indium thin oxide (ITO served the role of FTEs, but film brittleness and scarcity of materials limit its further application. This review provides a summary of recent advances in emerging transparent electrodes and related flexible devices (e.g., touch panels, organic light-emitting diodes, sensors, supercapacitors, and solar cells. Mainly focusing on the FTEs based on carbon nanomaterials (e.g., carbon nanotubes and graphene and metal materials (e.g., metal grid and metal nanowires, we discuss the fabrication techniques, the performance improvement, and the representative applications of these highly transparent and flexible electrodes. Finally, the challenges and prospects of flexible transparent electrodes will be summarized.

  19. Whole Wafer Design and Fabrication for the Alignment of Nanostructures for Chemical Sensor Applications

    Science.gov (United States)

    Biaggi-Labiosa, Azlin M.; Hunter, Gary W.

    2013-01-01

    A major objective in aerospace sensor development is to produce sensors that are small in size, easy to batch fabricate and low in cost, and have low power consumption The fabrication of chemical sensors involving nanostructured materials can provide these properties as well as the potential for the development of sensor systems with unique properties and improved performance. However, the fabrication and processing of nanostructures for sensor applications currently is limited in the ability to control their location on the sensor. Currently, our group at NASA Glenn Research Center has demonstrated the controlled placement of nanostructures in sensors using a sawtooth patterned electrode design. With this design the nanostructures are aligned between opposing sawtooth electrodes by applying an alternating current.

  20. Evaluation of contact resistance between carbon fiber/epoxy composite laminate and printed silver electrode for damage monitoring

    International Nuclear Information System (INIS)

    Jeon, Eun Beom; Kim, Hak Sung; Takahashi, Kosuke

    2014-01-01

    An addressable conducting network (ACN) makes it possible to monitor the condition of a structure using the electrical resistance between electrodes on the surface of a carbon fiber reinforced plastics (CFRP) structure. To improve the damage detection reliability of the ACN, the contact resistances between the electrodes and CFRP laminates needs to be minimized. In this study, silver nanoparticle electrodes were fabricated via printed electronics techniques on a CFRP composite. The contact resistance between the silver electrodes and CFRP were measured with respect to various fabrication conditions such as the sintering temperature of the silver nano-ink and the surface roughness of the CFRP laminates. The interfaces between the silver electrode and carbon fibers were observed using a scanning electron microscope (SEM). Based on this study, it was found that the lowest contact resistance of 0.3664Ω could be achieved when the sintering temperature of the silver nano-ink and surface roughness were 120 degree C and 0.230 a, respectively.

  1. Low-loss microelectrodes fabricated using reverse-side exposure for a tunable ferroelectric capacitor application

    Science.gov (United States)

    Yoon, Yong-Kyu; Stevenson Kenney, J.; Hunt, Andrew T.; Allen, Mark G.

    2006-02-01

    Narrowly spaced thick microelectrodes are fabricated using a self-aligned multiple reverse-side exposure scheme for an improved quality-factor tunable ferroelectric capacitor. The microelectrodes are fabricated on a functional substrate—a thin film ferroelectric (barium strontium titanate, BST; BaxSr1-xTiO3) coated sapphire substrate, which has an electric-field-dependent dielectric property providing tuning functionality, as well as UV transparency permitting an additional degree of freedom in photolithography steps. The microelectrode process has been applied to interdigitated capacitor fabrication, where a critical challenge is maintaining narrow gaps between electrodes for high tunability, while simultaneously forming thick electrodes to minimize conductor loss. A single mask, self-aligned reverse-side exposure through the transparent substrate achieves both these goals. A single-finger test capacitor with an electrode gap of 1.2 µm and an electrode thickness of 2.2 µm is fabricated and characterized. Tunability (T = 100 × (C0 - Cbias)/C0) of 33% at 10 V has been achieved at 100 kHz. The 2.2 µm thick structure shows improvement of Q-factor compared to that of a 0.1 µm thick structure. To demonstrate the scalability of this process, a 102-finger interdigitated capacitor is fabricated and characterized at 100 kHz and 1 GHz. The structure is embedded in a 25 µm thick epoxy resin SU-8 for passivation. A quality factor decrease of 15-25%, tunability decrease of 2-3% and capacitance increase of 6% are observed due to the expoxy resin after passivation. High frequency performance of the capacitor has been measured to be 15.9 pF of capacitance, 28.1% tunability at 10 V and a quality factor of 16 (at a 10 V dc bias) at 1 GHz.

  2. AZO-Ag-AZO transparent electrode for amorphous silicon solar cells

    International Nuclear Information System (INIS)

    Theuring, Martin; Vehse, Martin; Maydell, Karsten von; Agert, Carsten

    2014-01-01

    Metal-based transparent electrodes can be fabricated at low temperatures, which is crucial for various substrate materials and solar cells. In this work, an oxide-metal-oxide (OMO) transparent electrode based on aluminum zinc oxide (AZO) and silver is compared to AZO layers, fabricated at different temperatures and indium tin oxides. With the OMO structure, a sheet resistance of 7.1/square and a transparency above 80% for almost the entire visible spectrum were achieved. The possible application of such electrodes on a textured solar cell was demonstrated on the example of a rough ZnO substrate. An OMO structure is benchmarked in a n-i-p amorphous silicon solar cell against an AZO front contact fabricated at 200 °C. In the experiment, the OMO electrode shows a superior performance with an efficiency gain of 30%. - Highlights: • Multilayer transparent electrode based on aluminum zinc oxide (AZO) and Ag • Comparison of AZO-Ag-AZO transparent electrode to AZO and indium tin oxide • Performance of AZO-Ag-AZO transparent electrodes on textured surfaces • Comparison of amorphous silicon solar cells with different transparent electrodes

  3. Low-Temperature Solution Processable Electrodes for Piezoelectric Sensors Applications

    Science.gov (United States)

    Tuukkanen, Sampo; Julin, Tuomas; Rantanen, Ville; Zakrzewski, Mari; Moilanen, Pasi; Lupo, Donald

    2013-05-01

    Piezoelectric thin-film sensors are suitable for a wide range of applications from physiological measurements to industrial monitoring systems. The use of flexible materials in combination with high-throughput printing technologies enables cost-effective manufacturing of custom-designed, highly integratable piezoelectric sensors. This type of sensor can, for instance, improve industrial process control or enable the embedding of ubiquitous sensors in our living environment to improve quality of life. Here, we discuss the benefits, challenges and potential applications of piezoelectric thin-film sensors. The piezoelectric sensor elements are fabricated by printing electrodes on both sides of unmetallized poly(vinylidene fluoride) film. We show that materials which are solution processable in low temperatures, biocompatible and environmental friendly are suitable for use as electrode materials in piezoelectric sensors.

  4. Parameter Optimization and Electrode Improvement of Rotary Stepper Micromotor

    Science.gov (United States)

    Sone, Junji; Mizuma, Toshinari; Mochizuki, Shunsuke; Sarajlic, Edin; Yamahata, Christophe; Fujita, Hiroyuki

    We developed a three-phase electrostatic stepper micromotor and performed a numerical simulation to improve its performance for practical use and to optimize its design. We conducted its circuit simulation by simplifying its structure, and the effect of springback force generated by supported mechanism using flexures was considered. And we considered new improvement method for electrodes. This improvement and other parameter optimizations achieved the low voltage drive of micromotor.

  5. Materials science and integration bases for fabrication of (BaxSr1-x)TiO3 thin film capacitors with layered Cu-based electrodes

    Science.gov (United States)

    Fan, W.; Kabius, B.; Hiller, J. M.; Saha, S.; Carlisle, J. A.; Auciello, O.; Chang, R. P. H.; Ramesh, R.

    2003-11-01

    The synthesis and fundamental material properties of layered TiAl/Cu/Ta electrodes were investigated to achieve the integration of Cu electrodes with high-dielectric constant (κ) oxide thin films for application to the fabrication of high-frequency devices. The Ta layer is an excellent diffusion barrier to inhibit deleterious Cu diffusion into the Si substrate, while the TiAl layer provides an excellent barrier against oxygen diffusion into the Cu layer to inhibit Cu oxidation during the growth of the high-κ layer in an oxygen atmosphere. Polycrystalline (BaxSr1-x)TiO3 (BST) thin films were grown on the Cu-based bottom electrode by rf magnetron sputtering at temperatures in the range 400-600 °C in oxygen, to investigate the performance of BST/Cu-based capacitors. Characterization of the Cu-based layered structure using surface analytical methods showed that two amorphous oxide layers were formed on both sides of the TiAl barrier, such that the oxide layer on the free surface of the TiAl layer correlates with TiAlOx, while the oxide layer at the TiAl/Cu interface is an Al2O3-rich layer. This double amorphous barrier layer structure effectively prevents oxygen penetration towards the underlying Cu and Ta layers. The TiAlOx interfacial layer, which has a relatively low dielectric constant compared with BST, reduced the total capacitance of the BST thin film capacitors. In addition, the layered electrode-oxide interface roughening observed during the growth of BST films at high temperature, due to copper grain growth, resulted in large dielectric loss on the fabricated BST capacitors. These problems were solved by growing the BST layer at 450 °C followed by a rapid thermal annealing at 700 °C. This process significantly reduced the thickness of the TiAlOx layer and interface roughness resulting in BST capacitors exhibiting properties suitable for the fabrication of high-performance high-frequency devices. In summary, relatively high dielectric constant (280), low

  6. Materials science and integration bases for fabrication of (BaxSr1-x)TiO3 thin film capacitors with layered Cu-based electrodes

    International Nuclear Information System (INIS)

    Fan, W.; Kabius, B.; Hiller, J.M.; Saha, S.; Carlisle, J.A.; Auciello, O.; Chang, R.P.H.; Ramesh, R.

    2003-01-01

    The synthesis and fundamental material properties of layered TiAl/Cu/Ta electrodes were investigated to achieve the integration of Cu electrodes with high-dielectric constant (κ) oxide thin films for application to the fabrication of high-frequency devices. The Ta layer is an excellent diffusion barrier to inhibit deleterious Cu diffusion into the Si substrate, while the TiAl layer provides an excellent barrier against oxygen diffusion into the Cu layer to inhibit Cu oxidation during the growth of the high-κ layer in an oxygen atmosphere. Polycrystalline (Ba x Sr 1-x )TiO 3 (BST) thin films were grown on the Cu-based bottom electrode by rf magnetron sputtering at temperatures in the range 400-600 deg. C in oxygen, to investigate the performance of BST/Cu-based capacitors. Characterization of the Cu-based layered structure using surface analytical methods showed that two amorphous oxide layers were formed on both sides of the TiAl barrier, such that the oxide layer on the free surface of the TiAl layer correlates with TiAlO x , while the oxide layer at the TiAl/Cu interface is an Al 2 O 3 -rich layer. This double amorphous barrier layer structure effectively prevents oxygen penetration towards the underlying Cu and Ta layers. The TiAlO x interfacial layer, which has a relatively low dielectric constant compared with BST, reduced the total capacitance of the BST thin film capacitors. In addition, the layered electrode-oxide interface roughening observed during the growth of BST films at high temperature, due to copper grain growth, resulted in large dielectric loss on the fabricated BST capacitors. These problems were solved by growing the BST layer at 450 deg. C followed by a rapid thermal annealing at 700 deg. C. This process significantly reduced the thickness of the TiAlO x layer and interface roughness resulting in BST capacitors exhibiting properties suitable for the fabrication of high-performance high-frequency devices. In summary, relatively high

  7. Stable switching of resistive random access memory on the nanotip array electrodes

    KAUST Repository

    Tsai, Kun-Tong

    2016-09-13

    The formation/rupture of conducting filaments (CFs) in resistive random access memory (ReRAM) materials tune the electrical conductivities non-volatilely and are largely affected by its material composition [1], internal configurations [2] and external environments [3,4]. Therefore, controlling repetitive formation/rupture of CF as well as the spatial uniformity of formed CF are fundamentally important for improving the resistive switching (RS) performance. In this context, we have shown that by adding a field initiator, typically a textured electrode, both performance and switching uniformity of ReRAMs can be improved dramatically [5]. In addition, despite its promising characteristics, the scalable fabrication and structural homogeneity of such nanostructured electrodes are still lacking or unattainable, making miniaturization of ReRAM devices an exceeding challenge. Here, we employ nanostructured electrode (nanotip arrays, extremely uniform) formed spontaneously via a self-organized process to improve the ZnO ReRAM switching characteristics.

  8. Nanometer-spaced electrodes with calibrated separation

    NARCIS (Netherlands)

    Kervennic, Y.V.; Van der Zant, H.S.J.; Morpurgo, A.F.; Gurevich, L.; Kouwenhoven, L.P.

    2002-01-01

    We have fabricated pairs of platinum electrodes with separation between 20 and 3.5 nm. Our technique combines electron beam lithography and chemical electrodeposition. We show that the measurement of the conductance between the two electrodes through the electrolyte provides an accurate and

  9. Micro-EDM process modeling and machining approaches for minimum tool electrode wear for fabrication of biocompatible micro-components

    DEFF Research Database (Denmark)

    Puthumana, Govindan

    2017-01-01

    Micro-electrical discharge machining (micro-EDM) is a potential non-contact method for fabrication of biocompatible micro devices. This paper presents an attempt to model the tool electrode wear in micro-EDM process using multiple linear regression analysis (MLRA) and artificial neural networks...... linear regression model was developed for prediction of TWR in ten steps at a significance level of 90%. The optimum architecture of the ANN was obtained with 7 hidden layers at an R-sq value of 0.98. The predicted values of TWR using ANN matched well with the practically measured and calculated values...... (ANN). The governing micro-EDM factors chosen for this investigation were: voltage (V), current (I), pulse on time (Ton) and pulse frequency (f). The proposed predictive models generate a functional correlation between the tool electrode wear rate (TWR) and the governing micro-EDM factors. A multiple...

  10. Fabrication and characterization of all-polymer, transparent ferroelectric capacitors on flexible substrates

    KAUST Repository

    Khan, Yasser

    2011-12-01

    All-polymer, transparent ferroelectric devices, based on the functional polymer poly(vinylidene fluoride trifluoroethylene) [P(VDF-TrFE)], have been fabricated on flexible substrates. The performance of the all-polymer devices was studied and compared to devices with metal electrodes. Specifically, poly(3,4-ethylenedioxythiophene):poly(styrene sulfonic acid) [PEDOT:PSS] and platinum (Pt) electrode effects on the morphology, crystallinity and orientation of P(VDF-TrFE) films were investigated. The devices with PEDOT:PSS electrodes showed similar hysteresis and switching current response compared to Pt electrodes but with tremendously improved fatigue performance. Further, the devices with PEDOT:PSS electrodes showed lower coercive field and better fatigue performance than values reported for other polymer electrodes used with P(VDF-TrFE) on flexible substrates. © 2011 Elsevier B.V. All rights reserved.

  11. Flexible supercapacitor electrodes with vertically aligned carbon nanotubes grown on aluminum foils

    Directory of Open Access Journals (Sweden)

    Itir Bakis Dogru

    2016-06-01

    Full Text Available In this work, vertically aligned carbon nanotubes (VACNTs grown on aluminum foils were used as flexible supercapacitor electrodes. Aluminum foils were used as readily available, cheap and conductive substrates, and VACNTs were grown directly on these foils through chemical vapor deposition (CVD method. Solution based ultrasonic spray pyrolysis (USP method was used for the deposition of the CNT catalyst. Direct growth of VACNTs on aluminum foils ruled out both the internal resistance of the supercapacitor electrodes and the charge transfer resistance between the electrode and electrolyte. A specific capacitance of 2.61 mF/cm2 at a scan rate of 800 mV/s was obtained from the fabricated electrodes, which is further improved through the bending cycles.

  12. Flexible supercapacitor yarns with coaxial carbon nanotube network electrodes

    International Nuclear Information System (INIS)

    Smithyman, Jesse; Liang, Richard

    2014-01-01

    Graphical abstract: - Highlights: • Fabricated flexible yarn supercapacitor with coaxial electrodes. • Use of multifunctional carbon nanotube network electrodes eliminates inactive components and enables high energy/power density. • Robust structure maintains >95% of energy/power while under deformation. - Abstract: Flexible supercapacitors with a yarn-like geometry were fabricated with coaxially arranged electrodes. Carbon nanotube (CNT) network electrodes enabled the integration of the electronic conductor and active material of each electrode into a single component. CNT yarns were employed as the inner electrode to provide the supporting structure of the device. These part integration strategies eliminated the need for inactive material, which resulted in device volumetric energy and power densities among the highest reported for flexible carbon-based EDLCs. In addition, the coaxial yarn cell design provided a robust structure able to undergo flexural deformation with minimal impact on the energy storage performance. Greater than 95% of the energy density and 99% of the power density were retained when wound around an 11 cm diameter cylinder. The electrochemical properties were characterized at stages throughout the fabrication process to provide insights and potential directions for further development of these novel cell designs

  13. Engineering Silver Nanowire Networks: From Transparent Electrodes to Resistive Switching Devices.

    Science.gov (United States)

    Du, Haiwei; Wan, Tao; Qu, Bo; Cao, Fuyang; Lin, Qianru; Chen, Nan; Lin, Xi; Chu, Dewei

    2017-06-21

    Metal nanowires (NWs) networks with high conductance have shown potential applications in modern electronic components, especially the transparent electrodes over the past decade. In metal NW networks, the electrical connectivity of nanoscale NW junction can be modulated for various applications. In this work, silver nanowire (Ag NW) networks were selected to achieve the desired functions. The Ag NWs were first synthesized by a classic polyol process, and spin-coated on glass to fabricate transparent electrodes. The as-fabricated electrode showed a sheet resistance of 7.158 Ω □ -1 with an optical transmittance of 79.19% at 550 nm, indicating a comparable figure of merit (FOM, or Φ TC ) (13.55 × 10 -3 Ω -1 ). Then, two different post-treatments were designed to tune the Ag NWs for not only transparent electrode but also for threshold resistive switching (RS) application. On the one hand, the Ag NW film was mechanically pressed to significantly improve the conductance by reducing the junction resistance. On the other hand, an Ag@AgO x core-shell structure was deliberately designed by partial oxidation of Ag NWs through simple ultraviolet (UV)-ozone treatment. The Ag core can act as metallic interconnect and the insulating AgO x shell acts as a switching medium to provide a conductive pathway for Ag filament migration. By fabricating Ag/Ag@AgO x /Ag planar structure, a volatile threshold switching characteristic was observed and an on/off ratio of ∼100 was achieved. This work showed that through different post-treatments, Ag NW network can be engineered for diverse functions, transforming from transparent electrodes to RS devices.

  14. Microarray Dot Electrodes Utilizing Dielectrophoresis for Cell Characterization

    Directory of Open Access Journals (Sweden)

    Fatimah Ibrahim

    2013-07-01

    Full Text Available During the last three decades; dielectrophoresis (DEP has become a vital tool for cell manipulation and characterization due to its non-invasiveness. It is very useful in the trend towards point-of-care systems. Currently, most efforts are focused on using DEP in biomedical applications, such as the spatial manipulation of cells, the selective separation or enrichment of target cells, high-throughput molecular screening, biosensors and immunoassays. A significant amount of research on DEP has produced a wide range of microelectrode configurations. In this paper; we describe the microarray dot electrode, a promising electrode geometry to characterize and manipulate cells via DEP. The advantages offered by this type of microelectrode are also reviewed. The protocol for fabricating planar microelectrodes using photolithography is documented to demonstrate the fast and cost-effective fabrication process. Additionally; different state-of-the-art Lab-on-a-Chip (LOC devices that have been proposed for DEP applications in the literature are reviewed. We also present our recently designed LOC device, which uses an improved microarray dot electrode configuration to address the challenges facing other devices. This type of LOC system has the capability to boost the implementation of DEP technology in practical settings such as clinical cell sorting, infection diagnosis, and enrichment of particle populations for drug development.

  15. Design, fabrication, and characterization of a 2.3 kJ plasma focus of negative inner electrode

    International Nuclear Information System (INIS)

    Mathuthu, M.; Zengeni, T.G.; Gholap, A.V.

    1997-01-01

    The design, fabrication, and characterization of a 2.3 kJ plasma focus device with negative inner electrode are discussed. The purpose of the design was to initiate research in and study of plasma dynamics, nuclear reactions, and neutron emission mechanisms at the university. Also the device will be used to teach and demonstrate plasma phenomena at the postgraduate level and to perform experiments with inverted polarity to examine different operating regimes with nonstandard gases. It is hoped that in the long run the research work will help find a solution to the polarity riddle of plasma focus devices. When the system was operated with spectrographic argon as the filling gas, the best focus was obtained at a pressure range of 0.1 endash 1.25 Torr. With nitrogen as the filling gas, the best focus was obtained at pressures between 0.1 and 1.25 Torr. Air gave the best focus at a pressure range of 0.5 endash 1.5 Torr. The observed good focus action is attributed to the small inner electrode length (this reduces the amount of anode material ablated into the current sheath) and tapering of the inner electrode. Positive z-directed electrons contribute to the temperature and further ionization of the plasma gas during focusing. The performance of the device compares quite well with other known devices. copyright 1997 American Institute of Physics

  16. Sculptured platinum nanowire counter electrodes for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyeonseok [Department of Electrical Engineering, Pennsylvania State University, University Park 16802 (United States); Horn, Mark W., E-mail: MHorn@engr.psu.edu [Department of Engineering Science and Mechanics, Pennsylvania State University, University Park 16802-6812 (United States)

    2013-07-01

    Sculptured platinum nanowire thin films were formed by oblique angle electron beam evaporation with a 5° vapor incidence angle and incorporated as counter electrodes for dye-sensitized solar cells (DSSCs). For the comparison of the performance, bare fluorine doped tin oxide, planar Pt electrodes and counter electrodes treated with chloroplatinic acid were prepared. The sculptured Pt nanowire electrodes showed five times lower charge transfer resistance (0.121 [Ω∗cm{sup 2}]) than that of Pt planar electrode (0.578 [Ω∗cm{sup 2}]) and when the Pt nanowire electrodes are treated with an H{sub 2}PtCl{sub 6} solution have more than ten times lower charge transfer resistance (0.04025 [Ω∗cm{sup 2}]). Moreover, Pt nanowire films used as a counter electrode lead to enhancement in current density and efficiency in comparison with Pt planar counter electrodes. The conversion efficiency with planar electrodes was 5.1 [%] while the efficiency of DSSC with platinum nanowire counter electrodes reached to 5.63 [%] under AM 1.5 illumination. - Highlights: • Pt sculptured thin films (STFs) fabricated by electron beam evaporator. • The STFs featured higher roughness and lower charge transfer resistance. • Improved performance of dye-sensitized solar cells by Pt STFs counter electrodes.

  17. Efficiency enhancement of silicon nanowire solar cells by using UV/Ozone treatments and micro-grid electrodes

    Science.gov (United States)

    Chen, Junyi; Subramani, Thiyagu; Sun, Yonglie; Jevasuwan, Wipakorn; Fukata, Naoki

    2018-05-01

    Silicon nanowire solar cells were fabricated by metal catalyzed electroless etching (MCEE) followed by thermal chemical vapor deposition (CVD). In this study, we investigated two effects, a UV/ozone treatment and the use of a micro-grid electrodes, to enhance light absorption and reduce the optic losses in the solar cell device. The UV/ozone treatment successfully improved the conversion efficiency. The micro-grid electrodes were then applied in solar cell devices subjected to a back surface field (BSF) treatment and rapid thermal annealing (RTA). These effects improved the conversion efficiency from 9.4% to 10.9%. Moreover, to reduce surface recombination and improve the continuity of front electrodes, we optimized the etching time of the MCEE process, giving a high efficiency of 12.3%.

  18. Micromachined three-dimensional electrode arrays for transcutaneous nerve tracking

    Science.gov (United States)

    Rajaraman, Swaminathan; Bragg, Julian A.; Ross, James D.; Allen, Mark G.

    2011-08-01

    We report the development of metal transfer micromolded (MTM) three-dimensional microelectrode arrays (3D MEAs) for a transcutaneous nerve tracking application. The measurements of electrode-skin-electrode impedance (ESEI), electromyography (EMG) and nerve conduction utilizing these minimally invasive 3D MEAs are demonstrated in this paper. The 3D MEAs used in these measurements consist of a metalized micro-tower array that can penetrate the outer layers of the skin in a painless fashion and are fabricated using MTM technology. Two techniques, an inclined UV lithography approach and a double-side exposure of thick negative tone resist, have been developed to fabricate the 3D MEA master structure. The MEAs themselves are fabricated from the master structure utilizing micromolding techniques. Metal patterns are transferred during the micromolding process, thereby ensuring reduced process steps compared to traditional silicon-based approaches. These 3D MEAs have been packaged utilizing biocompatible Kapton® substrates. ESEI measurements have been carried out on test human subjects with standard commercial wet electrodes as a reference. The 3D MEAs demonstrate an order of magnitude lower ESEI (normalized to area) compared to wet electrodes for an area that is 12.56 times smaller. This compares well with other demonstrated approaches in literature. For a nerve tracking demonstration, we have chosen EMG and nerve conduction measurements on test human subjects. The 3D MEAs show 100% improvement in signal power and SNR/√area as compared to standard electrodes. They also demonstrate larger amplitude signals and faster rise times during nerve conduction measurements. We believe that this microfabrication and packaging approach scales well to large-area, high-density arrays required for applications like nerve tracking. This development will increase the stimulation and recording fidelity of skin surface electrodes, while increasing their spatial resolution by an order of

  19. Improved continuity of reduced graphene oxide on polyester fabric by use of polypyrrole to achieve a highly electro-conductive and flexible substrate

    International Nuclear Information System (INIS)

    Berendjchi, Amirhosein; Khajavi, Ramin; Yousefi, Ali Akbar; Yazdanshenas, Mohammad Esmail

    2016-01-01

    Graphical abstract: - Highlights: • Discontinuity of reduced graphene oxide (RGO) coated polyester fabric (PET) substrate was overcome by filling the gaps by in situ chemical oxidative polymerization of polypyrrole (PPy). • The RGO–PPy coated samples exhibited 53% and 263% lower surface resistivity values (5 Ω/sq) than samples coated only with PPy (12 Ω/sq) and RGO (1300 Ω/sq), respectively. • The RGO–PPy coated fabric displayed other properties, such as excellent UV blocking (UPF = 73), antibacterial activity, improved electrochemical behavior and thermal stability which make it a multifunctional fabric. - Abstract: A flexible and highly conductive fabric can be applied for wearable electronics and as a pliable counter electrode for photovoltaics. Methods such as surface coating of fabrics with conductive polymers and materials have been developed, but the roughness of fabric is a challenge because it creates discontinuity in the coated layer. The present study first coated polyethylene terephthalate (PET) fabric with reduced graphene oxide sheets; RGO and then filled the gaps with polypyrrole (PPy). The samples were first dipped in graphene oxide (GO) and then reduced to RGO. They were next coated with PPy by in situ polymerization. The results showed that the presence of oxidative agent during synthesis of PPy oxidized the RGO to some extent on the previously RGO-coated samples. PPy was more uniform on samples pre-coated with RGO in comparison those coated with raw PET. The RGO–PPy coated samples exhibited 53% and 263% lower surface resistivity values than samples coated only with PPy and RGO, respectively. There was no significant difference between the tenacity of samples but the bending rigidity of samples increased. The RGO–PPy coated fabric displayed properties, such as excellent UV blocking (UPF = 73), antibacterial activity, improved electrochemical behavior and thermal stability which make it a multifunctional fabric.

  20. Improved continuity of reduced graphene oxide on polyester fabric by use of polypyrrole to achieve a highly electro-conductive and flexible substrate

    Energy Technology Data Exchange (ETDEWEB)

    Berendjchi, Amirhosein [Department of Textile Engineering, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Khajavi, Ramin, E-mail: khajavi@azad.ac.ir [Nano Technology Research Center, South Tehran Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Yousefi, Ali Akbar [Faculty of Polymer Processing, Iran Polymer and Petrochemical Institute, Tehran (Iran, Islamic Republic of); Yazdanshenas, Mohammad Esmail [Department of Textile Engineering, Yazd Branch, Islamic Azad University, Yazd (Iran, Islamic Republic of)

    2016-02-15

    Graphical abstract: - Highlights: • Discontinuity of reduced graphene oxide (RGO) coated polyester fabric (PET) substrate was overcome by filling the gaps by in situ chemical oxidative polymerization of polypyrrole (PPy). • The RGO–PPy coated samples exhibited 53% and 263% lower surface resistivity values (5 Ω/sq) than samples coated only with PPy (12 Ω/sq) and RGO (1300 Ω/sq), respectively. • The RGO–PPy coated fabric displayed other properties, such as excellent UV blocking (UPF = 73), antibacterial activity, improved electrochemical behavior and thermal stability which make it a multifunctional fabric. - Abstract: A flexible and highly conductive fabric can be applied for wearable electronics and as a pliable counter electrode for photovoltaics. Methods such as surface coating of fabrics with conductive polymers and materials have been developed, but the roughness of fabric is a challenge because it creates discontinuity in the coated layer. The present study first coated polyethylene terephthalate (PET) fabric with reduced graphene oxide sheets; RGO and then filled the gaps with polypyrrole (PPy). The samples were first dipped in graphene oxide (GO) and then reduced to RGO. They were next coated with PPy by in situ polymerization. The results showed that the presence of oxidative agent during synthesis of PPy oxidized the RGO to some extent on the previously RGO-coated samples. PPy was more uniform on samples pre-coated with RGO in comparison those coated with raw PET. The RGO–PPy coated samples exhibited 53% and 263% lower surface resistivity values than samples coated only with PPy and RGO, respectively. There was no significant difference between the tenacity of samples but the bending rigidity of samples increased. The RGO–PPy coated fabric displayed properties, such as excellent UV blocking (UPF = 73), antibacterial activity, improved electrochemical behavior and thermal stability which make it a multifunctional fabric.

  1. Nanostructured ternary electrodes for energy-storage applications

    KAUST Repository

    Baby, Rakhi Raghavan

    2012-02-13

    A three-component, flexible electrode is developed for supercapacitors over graphitized carbon fabric, utilizing γ-MnO 2 nanoflowers anchored onto carbon nanotubes (γ-MnO 2/CNT) as spacers for graphene nanosheets (GNs). The three-component, composite electrode doubles the specific capacitance with respect to GN-only electrodes, giving the highest-reported specific capacitance (308 F g -1) for symmetric supercapacitors containing MnO 2 and GNs using a two-electrode configuration, at a scan rate of 20 mV s -1. A maximum energy density of 43 W h kg -1 is obtained for our symmetric supercapacitors at a constant discharge-current density of 2.5 A g -1 using GN-(γ-MnO 2/CNT)-nanocomposite electrodes. The fabricated supercapacitor device exhibits an excellent cycle life by retaining ≈90% of the initial specific capacitance after 5000 cycles. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Dielectric material in lead-based perovskite and fabrication process for multilayer ceramic capacitor with copper internal electrode

    International Nuclear Information System (INIS)

    Kato, J.; Yokotani, Y.; Kagata, H.; Nakatani, S.; Kugimiya, K.

    1990-01-01

    This paper reports on the development of a multilayer ceramic capacitor with copper internal electrodes. Dielectric materials of the capacitor is lead- based perovskite (Pb a Ca b ) (Mg 1/3 Nb 2/3 ) x Ti y (Ni 1/2 W 1/2 ) z O 2 + a + b where a + b gt 1 and x + y + z = 1. The materials can be fired below 1000 degrees C and have high resistivity even when fired in the atmosphere below the equilibrium oxygen partial pressure of copper and CuO. The fabrication process of the capacitor has following features. The electrode paste is composed of copper oxide to prevent breaking of the laminated body in a burn out process. Then the copper oxide is first metalized and fired in a controlled atmosphere. The obtained capacitor of 20 dielectric layers of 17 micron meter meets to Z5U specification and has low loss tangent of 0.6% and stability under d.c. bias voltage and high a.c. field

  3. Direct growth of metal-organic frameworks thin film arrays on glassy carbon electrode based on rapid conversion step mediated by copper clusters and hydroxide nanotubes for fabrication of a high performance non-enzymatic glucose sensing platform.

    Science.gov (United States)

    Shahrokhian, Saeed; Khaki Sanati, Elnaz; Hosseini, Hadi

    2018-07-30

    The direct growth of self-supported metal-organic frameworks (MOFs) thin film can be considered as an effective strategy for fabrication of the advanced modified electrodes in sensors and biosensor applications. However, most of the fabricated MOFs-based sensors suffer from some drawbacks such as time consuming for synthesis of MOF and electrode making, need of a binder or an additive layer, need of expensive equipment and use of hazardous solvents. Here, a novel free-standing MOFs-based modified electrode was fabricated by the rapid direct growth of MOFs on the surface of the glassy carbon electrode (GCE). In this method, direct growth of MOFs was occurred by the formation of vertically aligned arrays of Cu clusters and Cu(OH) 2 nanotubes, which can act as both mediator and positioning fixing factor for the rapid formation of self-supported MOFs on GCE surface. The effect of both chemically and electrochemically formed Cu(OH) 2 nanotubes on the morphological and electrochemical performance of the prepared MOFs were investigated. Due to the unique properties of the prepared MOFs thin film electrode such as uniform and vertically aligned structure, excellent stability, high electroactive surface area, and good availability to analyte and electrolyte diffusion, it was directly used as the electrode material for non-enzymatic electrocatalytic oxidation of glucose. Moreover, the potential utility of this sensing platform for the analytical determination of glucose concentration was evaluated by the amperometry technique. The results proved that the self-supported MOFs thin film on GCE is a promising electrode material for fabricating and designing non-enzymatic glucose sensors. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Fabrication of a Multi-Walled Nanotube (MWNT Ionic Liquid Electrode and Its Application for Sensing Phenolics in Red Wines

    Directory of Open Access Journals (Sweden)

    Kyo-Il Kim

    2009-08-01

    Full Text Available A multi-walled nanotube (MWNT ionic liquid was prepared by the immobilization of 1-butylimidazole bromide onto an epoxy group on a poly(glycidyl methacrylate-grafted MWNT, which was synthesized by radiation-induced graft polymerization of glycidyl methacrylate onto MWNT in an aqueous solution. Subsequently, a MWNT ionic liquid electrode was fabricated by hand-casting MWNT ionic liquid, tyrosinase, and chitosan solution as a binder on indium tin oxide (ITO glass. The sensing ranges of the MWNT ionic liquid electrode with immobilized tyrosinase was in the range of 0.01-0.08 mM in a phosphate buffer solution. The optimal conditions such as pH, temperature, and effects of different phenolic compounds were determined. The total phenolic compounds of three commercial red wines were also determined on the tyrosinase-immobilized biosensor.

  5. Application of silicalite for improvement of enzyme adsorption on the stainless steel electrodes

    Directory of Open Access Journals (Sweden)

    Pyeshkova V. N.

    2014-11-01

    Full Text Available Aim. Improvement of analytical characteristics of an enzyme biosensor based on new inexpensive perspective stainless steel electrodes using silicalite nanoparticles. Methods. Conductometric enzyme biosensor was used. Results. Three methods of glucose oxidase (GOx immobilization were studied and compared: GOx adsorption on silicalite modified electrodes (GOx-SME; cross-linking by glutaraldehyde without silicalite (GOx-GA; GOx adsorption on SME along with cross-linking by glutaraldehyde (GOx-SME-GA. The GOx-SME-GA biosensors based on stainless steel electrodes were characterized by 12–25-fold higher sensitivity comparing with other biosensors. The developed GOx-SME-GA biosensors were characterized by good reproducibility of glucose biosensors construction (relative standard deviation (RSD – 18 %, improved signal reproducibility (RSD of glucose determination was 7 % and good storage stability (29 % loss of activity after 18 days. Conclusions. The method of enzyme immobilization using silicalite together with GA cross-linking sufficiently enhances the enzyme adsorption on the stainless steel electrodes and improves the analytical parameters of biosensors. This method is found to be promising for further creation of other enzyme biosensors.

  6. An improved fabrication process for Si-detector-compatible JFETs

    International Nuclear Information System (INIS)

    Piemonte, Claudio; Dalla Betta, Gian-Franco; Boscardin, Maurizio; Gregori, Paolo; Zorzi, Nicola; Ratti, Lodovico

    2006-01-01

    We report on JFET devices fabricated on high-resistivity silicon with a radiation detector technology. The problems affecting previous versions of these devices have been thoroughly investigated and solved by developing an improved fabrication process, which allows for a sizeable enhancement in the JFET performance. In this paper, the main features of the fabrication technology are presented and selected results from the electrical and noise characterization of transistors are discussed

  7. A Platform for Manufacturable Stretchable Micro-electrode Arrays

    NARCIS (Netherlands)

    Khoshfetrat Pakazad, S.; Savov, A.; Braam, S.R.; Dekker, R.

    2012-01-01

    A platform for the batch fabrication of pneumatically actuated Stretchable Micro-Electrode Arrays (SMEAs) by using state-of-the-art micro-fabrication techniques and materials is demonstrated. The proposed fabrication process avoids the problems normally associated with processing of thin film

  8. High aspect ratio silver grid transparent electrodes using UV embossing process

    Directory of Open Access Journals (Sweden)

    Dong Jin Kim

    2017-10-01

    Full Text Available This study presents a UV embossing process to fabricate high aspect ratio silver grid transparent electrodes on a polymer film. Transparent electrodes with a high optical transmittance (93 % and low sheet resistance (4.6 Ω/sq were fabricated without any high temperature or vacuum processes. The strong adhesion force between the UV resin and the silver ink enables the fabrication of silver microstructures with an aspect ratio higher than 3. The high aspect ratio results in a low sheet resistance while maintaining a high optical transmittance. Multi-layer transparent electrodes were fabricated by repeating the proposed UV process. Additionally, a large-area of 8-inch touch panel was fabricated with the proposed UV process. The proposed UV process is a relatively simple and low cost process making it suitable for large-area production as well as mass production.

  9. ITO with embedded silver grids as transparent conductive electrodes for large area organic solar cells

    Science.gov (United States)

    Patil, Bhushan R.; Mirsafaei, Mina; Piotr Cielecki, Paweł; Fernandes Cauduro, André Luis; Fiutowski, Jacek; Rubahn, Horst-Günter; Madsen, Morten

    2017-10-01

    In this work, development of semi-transparent electrodes for efficient large area organic solar cells (OSCs) has been demonstrated. Electron beam evaporated silver grids were embedded in commercially available ITO coatings on glass, through a standard negative photolithography process, in order to improve the conductivity of planar ITO substrates. The fabricated electrodes with embedded line and square patterned Ag grids reduced the sheet resistance of ITO by 25% and 40%, respectively, showing optical transmittance drops of less than 6% within the complete visible light spectrum for both patterns. Solution processed bulk heterojunction OSCs based on PTB7:[70]PCBM were fabricated on top of these electrodes with cell areas of 4.38 cm2, and the performance of these OSCs was compared to reference cells fabricated on pure ITO electrodes. The Fill Factor (FF) of the large-scale OSCs fabricated on ITO with embedded Ag grids was enhanced by 18% for the line grids pattern and 30% for the square grids pattern compared to that of the reference OSCs. The increase in the FF was directly correlated to the decrease in the series resistance of the OSCs. The maximum power conversion efficiency (PCE) of the OSCs was measured to be 4.34%, which is 23% higher than the PCE of the reference OSCs. As the presented method does not involve high temperature processing, it could be considered a general approach for development of large area organic electronics on solvent resistant, flexible substrates.

  10. Advanced screening of electrode couples

    Science.gov (United States)

    Giner, J. D.; Cahill, K.

    1980-01-01

    The chromium (Cr(3+)/Cr(2+)) redox couple (electrolyte and electrode) was investigated to determine its suitability as negative electrode for the iron (Fe(3+)/Fe(2+))-chromium (Cr(3+)/Cr(2+)) redox flow battery. Literature search and laboratory investigation established that the solubility and stability of aqueous acidic solutions of chromium(3) chloride and chromium(2) chloride are sufficient for redox battery application. Four categories of electrode materials were tested; namely, metals and metalloid materials (elements and compounds), alloys, plated materials, and Teflon-bonded materials. In all, the relative performance of 26 candidate electrode materials was evaluated on the basis of slow scan rate linear sweep voltammetry in stirred solution. No single material tested gave both acceptable anodic an acceptable cathodic performance. However, the identification of lead as a good cathodic electrocatalyst and gold as a good anodic electrocatalyst led to the invention of the lead/gold combination electrocatalyst. This type of catalyst can be fabricated in several ways and appears to offer the advantages of each metal without the disadvantages associated with their use as single materials. This lead/gold electrocatalyst was tested by NASA-Lewis Research Center in complete, flowing, redox batteries comprising a stack of several cells. A large improvement in the battery's coulombic and energy efficiency was observed.

  11. Fabrication of binder-free graphene-SnO{sub 2} electrodes by laser introduced conversion of precursors for lithium secondary batteries

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xiaoxiao, E-mail: xlu@zjut.edu.cn [College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Wu, Guolong [Institute of Laser Advanced Manufacturing, Zhejiang University of Technology, Hangzhou 310014 (China); Xiong, Qinqin; Qin, Haiying [College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Wang, Weibin [Institute of Laser Advanced Manufacturing, Zhejiang University of Technology, Hangzhou 310014 (China); Luo, Fang, E-mail: luofang@zjut.edu.cn [Institute of Laser Advanced Manufacturing, Zhejiang University of Technology, Hangzhou 310014 (China); College of Zhijiang, Zhejiang University of Technology, Hangzhou 310001 (China)

    2017-06-01

    Highlights: • Binder-free graphene-SnO{sub 2} electrodes were prepared by a laser irradiation method. • Laser irradiation can well control the conversion of precursors. • As-prepared electrodes present high lithium storage capacity with good cyclablity. - Abstract: Binder-free graphene-SnO{sub 2} electrodes were prepared by laser introduced conversion of precursor (mixture of graphene oxide and stannic oxide sol) coatings on a copper film. The evolution of the microstructure, thermal stability, morphologies and sheet resistance has been studied as a function of laser fluences. It was shown that the conversion of precursors is mainly attributed to the photothermic effect, and a laser fluence of 69.3 J cm{sup −2} is the best condition for sample preparation. When the as-prepared electrode used as an anode for lithium ion batteries, it has been demonstrated with a high lithium storage capacity and good cycling stability. A high capacity of around 700 mAh g{sup −1} can be retained after 50 cycles at a current density of 100 mA g{sup −1}, and even after 400 cycles the specific capacity steadied to around 690 mAh g{sup −1}. Such electrodes have a short preparing procedure and good electrochemical performance, so the fabrication method adopted here could be referable for industrial continuous production.

  12. Hierarchical ZnO@MnO2 Core-Shell Pillar Arrays on Ni Foam for Binder-Free Supercapacitor Electrodes

    KAUST Repository

    Huang, Ming; Li, Fei; Zhao, Xiao Li; Luo, Da; You, Xue Qiu; Zhang, Yu Xin; Li, Gang

    2015-01-01

    © 2014 Elsevier Ltd. All rights reserved. Hierarchical ZnO@MnO2 core-shell pillar arrays on Ni foam have been fabricated by a facile two-step hydrothermal approach and further investigated as the binder-free electrode for supercapacitors. The core-shell hybrid nanostructure is achieved by decorating ultrathin self-standing MnO2 nanosheets on ZnO pillar arrays grown radically on Nickel foam. This unique well-designed binder-free electrode exhibits a high specific capacitance (423.5 F g-1 at a current density of 0.5 A g-1), and excellent cycling stability (92% capacitance retention after 3000 cycles). The improved electrochemical results show that the ZnO@MnO2 core-shell nanostructure electrode is promising for high-performance supercapacitors. The facile design of the unique core-shell array architectures provides a new and effective approach to fabricate high-performance binder-free electrode for supercapacitors.

  13. Exploring the electrochemical performance of graphitic paste electrodes: graphene vs. graphite.

    Science.gov (United States)

    Figueiredo-Filho, Luiz C S; Brownson, Dale A C; Gómez-Mingot, Maria; Iniesta, Jesús; Fatibello-Filho, Orlando; Banks, Craig E

    2013-11-07

    We report the fabrication, characterisation (SEM, TEM, XPS and Raman spectroscopy) and electrochemical implementation of a graphene paste electrode. The paste electrodes utilised are constructed by simply mixing graphene with mineral oil (which acts as a binder) prior to loading the resultant paste into a piston-driven polymeric-tubing electrode-shell, where this electrode configuration allows for rapid renewal of the electrode surface. The fabricated paste electrode is electrochemically characterised using both inner-sphere and outer-sphere redox probes, namely potassium ferrocyanide(ii), hexaammine-ruthenium(iii) chloride and hexachloroiridate(iii), in addition to the biologically relevant and electroactive analytes, l-ascorbic acid (AA) and uric acid (UA). Comparisons are made with a graphite paste alternative and the benefits of graphene implementation as a paste electrode within electrochemistry are explored, as well as the characterisation of their electroanalytical performances. We reveal no observable differences in the electrochemical performance and thus suggest that there are no advantages of using graphene over graphite in the fabrication of paste electrodes. Such work is highly important and informative for those working in the field of electroanalysis where electrochemistry can provide portable, rapid, reliable and accurate sensing protocols (bringing the laboratory into the field), with particular relevance to those searching for new electrode materials.

  14. Transparent platinum counter electrode for efficient semi-transparent dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Iefanova, Anastasiia; Nepal, Jeevan; Poudel, Prashant; Davoux, Daren; Gautam, Umesh [Electrical Engineering and Computer Science Department, South Dakota State University, Brookings, SD 57006 (United States); Mallam, Venkataiah [Chemistry and Biochemistry Department, South Dakota State University, Brookings, SD 57006 (United States); Qiao, Qiquan [Electrical Engineering and Computer Science Department, South Dakota State University, Brookings, SD 57006 (United States); Logue, Brian [Chemistry and Biochemistry Department, South Dakota State University, Brookings, SD 57006 (United States); Baroughi, Mahdi Farrokh, E-mail: m.farrokhbaroughi@sdstate.edu [Electrical Engineering and Computer Science Department, South Dakota State University, Brookings, SD 57006 (United States)

    2014-07-01

    A method for fabrication of highly transparent platinum counter electrodes (CEs) has been developed based on spray coating of Pt nanoparticles (NPs) on hot substrates. This method leads to 86% reduction in Pt consumption reducing the Pt cost per peak watt of counter electrode from $0.79/Wp down to $0.11/Wp compared to the conventional Pt counter electrodes made by sputter deposition. The simplicity and low cost of this method provide a basis for an up-scalable fabrication process. The Pt NP layer is over 88% transparent, leading to overall transparency of 80% when incorporated with indium tin oxide/glass substrates for functional counter electrodes. This counter electrode exhibits a large surface area and high catalytic activity, comparable to that of the conventional opaque CEs. Semi-transparent dye-sensitized solar cells fabricated based on this counter electrode showed 6.17% power conversion efficiency. - Highlights: • Counter electrode (CE) prepared by spraying nanoparticle (NP) Pt on hot substrate. • Low cost and scalable fabrication process of CE. • The spray deposited CE uses 10 times less Pt compared to the sputtering method. • The CE is 80% transparent and exhibits a large surface and high catalytic activity. • A semitransparent dye-sensitized solar cell with Pt NP CE was 6.17% efficient.

  15. Investigations on the effects of electrode materials on the device characteristics of ferroelectric memory thin film transistors fabricated on flexible substrates

    Science.gov (United States)

    Yang, Ji-Hee; Yun, Da-Jeong; Seo, Gi-Ho; Kim, Seong-Min; Yoon, Myung-Han; Yoon, Sung-Min

    2018-03-01

    For flexible memory device applications, we propose memory thin-film transistors using an organic ferroelectric poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] gate insulator and an amorphous In-Ga-Zn-O (a-IGZO) active channel. The effects of electrode materials and their deposition methods on the characteristics of memory devices exploiting the ferroelectric field effect were investigated for the proposed ferroelectric memory thin-film transistors (Fe-MTFTs) at flat and bending states. It was found that the plasma-induced sputtering deposition and mechanical brittleness of the indium-tin oxide (ITO) markedly degraded the ferroelectric-field-effect-driven memory window and bending characteristics of the Fe-MTFTs. The replacement of ITO electrodes with metal aluminum (Al) electrodes prepared by plasma-free thermal evaporation greatly enhanced the memory device characteristics even under bending conditions owing to their mechanical ductility. Furthermore, poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) (PEDOT:PSS) was introduced to achieve robust bending performance under extreme mechanical stress. The Fe-MTFTs using PEDOT:PSS source/drain electrodes were successfully fabricated and showed the potential for use as flexible memory devices. The suitable choice of electrode materials employed for the Fe-MTFTs is concluded to be one of the most important control parameters for highly functional flexible Fe-MTFTs.

  16. Improving the Accuracy of Laplacian Estimation with Novel Variable Inter-Ring Distances Concentric Ring Electrodes

    Directory of Open Access Journals (Sweden)

    Oleksandr Makeyev

    2016-06-01

    Full Text Available Noninvasive concentric ring electrodes are a promising alternative to conventional disc electrodes. Currently, the superiority of tripolar concentric ring electrodes over disc electrodes, in particular, in accuracy of Laplacian estimation, has been demonstrated in a range of applications. In our recent work, we have shown that accuracy of Laplacian estimation can be improved with multipolar concentric ring electrodes using a general approach to estimation of the Laplacian for an (n + 1-polar electrode with n rings using the (4n + 1-point method for n ≥ 2. This paper takes the next step toward further improving the Laplacian estimate by proposing novel variable inter-ring distances concentric ring electrodes. Derived using a modified (4n + 1-point method, linearly increasing and decreasing inter-ring distances tripolar (n = 2 and quadripolar (n = 3 electrode configurations are compared to their constant inter-ring distances counterparts. Finite element method modeling and analytic results are consistent and suggest that increasing inter-ring distances electrode configurations may decrease the truncation error resulting in more accurate Laplacian estimates compared to respective constant inter-ring distances configurations. For currently used tripolar electrode configuration, the truncation error may be decreased more than two-fold, while for the quadripolar configuration more than a six-fold decrease is expected.

  17. Improving the Accuracy of Laplacian Estimation with Novel Variable Inter-Ring Distances Concentric Ring Electrodes

    Science.gov (United States)

    Makeyev, Oleksandr; Besio, Walter G.

    2016-01-01

    Noninvasive concentric ring electrodes are a promising alternative to conventional disc electrodes. Currently, the superiority of tripolar concentric ring electrodes over disc electrodes, in particular, in accuracy of Laplacian estimation, has been demonstrated in a range of applications. In our recent work, we have shown that accuracy of Laplacian estimation can be improved with multipolar concentric ring electrodes using a general approach to estimation of the Laplacian for an (n + 1)-polar electrode with n rings using the (4n + 1)-point method for n ≥ 2. This paper takes the next step toward further improving the Laplacian estimate by proposing novel variable inter-ring distances concentric ring electrodes. Derived using a modified (4n + 1)-point method, linearly increasing and decreasing inter-ring distances tripolar (n = 2) and quadripolar (n = 3) electrode configurations are compared to their constant inter-ring distances counterparts. Finite element method modeling and analytic results are consistent and suggest that increasing inter-ring distances electrode configurations may decrease the truncation error resulting in more accurate Laplacian estimates compared to respective constant inter-ring distances configurations. For currently used tripolar electrode configuration, the truncation error may be decreased more than two-fold, while for the quadripolar configuration more than a six-fold decrease is expected. PMID:27294933

  18. Micromachined Planar Supercapacitor with Interdigital Buckypaper Electrodes

    Directory of Open Access Journals (Sweden)

    Yun-Ting Chen

    2018-05-01

    Full Text Available In this work, a flexible micro-supercapacitor with interdigital planar buckypaper electrodes is presented. A simple fabrication process involving vacuum filtration method and SU-8 molding techniques is proposed to fabricate in-plane interdigital buckypaper electrodes on a membrane filter substrate. The proposed process exhibits excellent flexibility for future integration of the micro-supercapacitors (micro-SC with other electronic components. The device’s maximum specific capacitance measured using cyclic voltammetry was 107.27 mF/cm2 at a scan rate of 20 mV/s. The electrochemical stability was investigated by measuring the performance of charge-discharge at different discharge rates. Devices with different buckypaper electrode thicknesses were also fabricated and measured. The specific capacitance of the proposed device increased linearly with the buckypaper electrode thickness. The measured leakage current was approximately 9.95 µA after 3600 s. The device exhibited high cycle stability, with 96.59% specific capacitance retention after 1000 cycles. A Nyquist plot of the micro-SC was also obtained by measuring the impedances with frequencies from 1 Hz to 50 kHz; it indicated that the equivalent series resistance value was approximately 18 Ω.

  19. Coated carbon nanotube array electrodes

    Science.gov (United States)

    Ren, Zhifeng [Newton, MA; Wen, Jian [Newton, MA; Chen, Jinghua [Chestnut Hill, MA; Huang, Zhongping [Belmont, MA; Wang, Dezhi [Wellesley, MA

    2008-10-28

    The present invention provides conductive carbon nanotube (CNT) electrode materials comprising aligned CNT substrates coated with an electrically conducting polymer, and the fabrication of electrodes for use in high performance electrical energy storage devices. In particular, the present invention provides conductive CNTs electrode material whose electrical properties render them especially suitable for use in high efficiency rechargeable batteries. The present invention also provides methods for obtaining surface modified conductive CNT electrode materials comprising an array of individual linear, aligned CNTs having a uniform surface coating of an electrically conductive polymer such as polypyrrole, and their use in electrical energy storage devices.

  20. Study on conventional carbon characteristics as counter electrode for dye sensitized solar cells

    International Nuclear Information System (INIS)

    Fajar, Muhammad Noer; Endarko

    2017-01-01

    Activated carbon (AC), black carbon (BC), and graphite were deposited onto ITO (Indium Tin Oxide) glass for counter electrode application in Dye-Sensitized Solar Cells. SEM-EDX was used to observe and analyse the morphology and composition of electrodes. The results showed that the particle distribution of the graphite electrode observed was approximately 34% with a size of 1 to 2 µm and BC electrode about 20% have a size of 0.5 to 1 µm, while AC electrode has a size of 0 – 0.5 µm observed around 20%. AC electrode has a more porous and uniform particle aggregates compared to BC and graphite electrodes. The efficiency of the counter electrode was measured using the solar simulator. The highest efficiency was at 0.011516% for the counter electrode that was fabricated by AC. Meanwhile, black carbon and graphite electrodes were achieved at 0.008744% and 0.010561%, respectively. The results proved that the porosity and the uniform aggregate of the particles were the most significant factors to improve the performance of DSSC. (paper)

  1. Manganese Oxide on Carbon Fabric for Flexible Supercapacitors

    Directory of Open Access Journals (Sweden)

    Jianfeng Zhang

    2016-01-01

    Full Text Available We report the fabrication of uniform large-area manganese oxide (MnO2 nanosheets on carbon fabric which oxidized using O2 plasma treatment (MnO2/O2-carbon fabric via electrodeposition process and their implementation as supercapacitor electrodes. Electrochemical measurements demonstrated that MnO2/O2-carbon fabric exhibited capacitance as high as 275 F/g at a scan rate of 5 mV/s; in addition, it showed an excellent cycling performance (less than 20% capacitance loss after 10,000 cycles. All the results suggest that MnO2/O2-carbon fabric is a promising electrode material which has great potential for application on flexible supercapacitors.

  2. Monolithic and Flexible ZnS/SnO2 Ultraviolet Photodetectors with Lateral Graphene Electrodes.

    Science.gov (United States)

    Zhang, Cheng; Xie, Yunchao; Deng, Heng; Tumlin, Travis; Zhang, Chi; Su, Jheng-Wun; Yu, Ping; Lin, Jian

    2017-05-01

    A continuing trend of miniaturized and flexible electronics/optoelectronic calls for novel device architectures made by compatible fabrication techniques. However, traditional layer-to-layer structures cannot satisfy such a need. Herein, a novel monolithic optoelectronic device fabricated by a mask-free laser direct writing method is demonstrated in which in situ laser induced graphene-like materials are employed as lateral electrodes for flexible ZnS/SnO 2 ultraviolet photodetectors. Specifically, a ZnS/SnO 2 thin film comprised of heterogeneous ZnS/SnO 2 nanoparticles is first coated on polyimide (PI) sheets by a solution process. Then, CO 2 laser irradiation ablates designed areas of the ZnS/SnO 2 thin film and converts the underneath PI into highly conductive graphene as the lateral electrodes for the monolithic photodetectors. This in situ growth method provides good interfaces between the graphene electrodes and the semiconducting ZnS/SnO 2 resulting in high optoelectronic performance. The lateral electrode structure reduces total thickness of the devices, thus minimizing the strain and improving flexibility of the photodetectors. The demonstrated lithography-free monolithic fabrication is a simple and cost-effective method, showing a great potential for developement into roll-to-roll manufacturing of flexible electronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Transparent capacitors with hybrid ZnO:Al and Ag nanowires as electrodes

    International Nuclear Information System (INIS)

    Zhang, Guozhen; Wu, Hao; Wang, Xiao; Wang, Ti; Liu, Chang

    2016-01-01

    Transparent conducting films with a composite structure of AlZnO–Ag nanowires (AgNWs) have been prepared by atomic layer deposition. The sheet resistance was reduced from 120 to 9 Ω when the AgNW networks were involved. Transparent capacitors with Al_2O_3–TiO_2–Al_2O_3 dielectrics were fabricated on the composite electrodes and demonstrated a capacitance density of 10.1 fF μm"−"2, which was significantly higher than that of capacitors with AlZnO electrodes (8.8 fF μm"−"1). The capacitance density remained almost unchanged in a broad frequency range from 3 kHz to 1 MHz. Moreover, a low leakage current density of 2.4 × 10"−"7 A cm"−"2 at 1 V was achieved. Transparent and flexible capacitors were also fabricated using the composite electrodes, and demonstrated an improved bendability. The transparent capacitors showed an average optical transmittance over 70% in the visible range, and thus open the door to practical applications in transparent integrated circuits. (paper)

  4. Enhancing the efficiency of dye-sensitized solar cells by adding diatom frustules into TiO{sub 2} working electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Der-Ray, E-mail: derray@mail.ndhu.edu.tw; Jiang, Yan-Jang; Liou, Run-Lin; Chen, Chih-Han; Chen, Yi-An; Tsai, Chih-Hung, E-mail: cht@mail.ndhu.edu.tw

    2015-08-30

    Graphical abstract: - Highlights: • High-speed centrifugal processing and sedimentation-rate separation techniques were used to obtain diatom frustules. • Diatom frustules were added into TiO{sub 2} paste to prepare a TiO{sub 2}-diatom paste mixture. • TiO{sub 2}-diatom paste mixture was used to fabricate working electrodes for DSSCs. • TiO{sub 2}-diatom electrodes improved the light-trapping effect and DSSC efficiency. • DSSCs with using the TiO{sub 2}-diatom electrode exhibited a 38% increase in efficiency. - Abstract: In this study, diatom frustules were added into TiO{sub 2} paste to prepare a TiO{sub 2}-diatom paste mixture. Spin-coating and high-temperature sintering techniques were then used to fabricate working electrodes for dye-sensitized solar cells (DSSCs). Mixing the diatom frustules with the TiO{sub 2} paste improved the light-trapping effect and scattering properties of the incident light in the TiO{sub 2}-diatom working electrodes, thereby enhancing the power conversion efficiency of the DSSCs. In this study, a high-speed centrifugal processing technology and sedimentation-rate separation techniques were first used to obtain the diatom frustules, which were then mixed with the TiO{sub 2} paste at a weight ratio of 1:50; a spin-coating technique was then used to fabricate the working electrodes. Finally, a high-temperature sintering process (500 °C) was performed. In this study, optical microscopy, scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and a surface profiler and spectrometer were used to analyze the characteristics of the working electrodes. The TiO{sub 2} or TiO{sub 2}-diatom working electrodes were prepared under various spin-coating conditions for fabricating and analyzing the characteristics of the DSSCs. The results indicated that under identical conditions, the power conversion efficiency of the DSSCs was 3.81% when coated three times with a conventional TiO{sub 2

  5. Fabrication and characterization of a sandpaper-based flexible energy storage

    International Nuclear Information System (INIS)

    Shieh, Jen-Yu; Wu, Cheng-Hung; Tsai, Sung-Ying; Yu, Hsin Her

    2016-01-01

    Graphical abstract: A sandpaper-based supercapacitor was assembled from two graphene/CNTs-coated fine-sandpaper electrodes and a PVA porous separator enclosed with H_3PO_4/PVA gel electrolyte, then packaged between two PET sheets by hot pressing. The galvanostatic charge/discharge curves obtained at a current of 0.10 mA over about 3000 cycles. The capacitance retention rates remained over 91% after this period, indicating the electrochemical stability of the supercapacitor. Thus, the supercapacitor based on the fine sandpaper electrode has a long lifetime and good cycling stability. - Highlights: • Carbon nanotubes prevent stacking of graphene sheets and act as spacers and binders. • The sandpaper surface provides more electrode/electrolyte contact area. • The gel electrolyte can prevent contact discontinuity in a supercapacitor. • Sandpaper-based supercapacitors exhibit excellent flexibility and cycling stability. - Abstract: In this paper, graphene and carbon nanotubes dispersed in a pectin solution are examined as a precursor for electrode fabrication for supercapacitor applications. The carbon nanotubes not only prevent the stacking of graphene sheets, but also act as spacers and binders. Dropping the hybrid conductive suspension onto sandpaper is found to form a sandpaper-based electrode that improves the specific capacitance of a subsequently fabricated supercapacitor because of its high surface area. In particular, the large contact surface of the sandpaper allows it to absorb more electrolyte ions and increases the number of ions assembled on the electrode surface. For the supercapacitor fabrication, replacing the liquid or solid electrolyte with a gel electrolyte prevents leakage and contact discontinuity. Therefore, a high-performance supercapacitor can be constructed with one separator coated with a gel electrolyte inserted between two fine-sandpaper-based electrodes, which can be assembled into a sandwich structure by hot pressing

  6. Fabrication and characterization of a sandpaper-based flexible energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Shieh, Jen-Yu; Wu, Cheng-Hung; Tsai, Sung-Ying [Institute of Electro-Optical and Materials Science, National Formosa University, 64 Wenhua Road, Huwei, Yunlin 63208, Taiwan (China); Yu, Hsin Her, E-mail: hhyu@nfu.edu.tw [Department of Biotechnology, National Formosa University, 64 Wenhua Road, Huwei, Yunlin 63208, Taiwan (China)

    2016-02-28

    Graphical abstract: A sandpaper-based supercapacitor was assembled from two graphene/CNTs-coated fine-sandpaper electrodes and a PVA porous separator enclosed with H{sub 3}PO{sub 4}/PVA gel electrolyte, then packaged between two PET sheets by hot pressing. The galvanostatic charge/discharge curves obtained at a current of 0.10 mA over about 3000 cycles. The capacitance retention rates remained over 91% after this period, indicating the electrochemical stability of the supercapacitor. Thus, the supercapacitor based on the fine sandpaper electrode has a long lifetime and good cycling stability. - Highlights: • Carbon nanotubes prevent stacking of graphene sheets and act as spacers and binders. • The sandpaper surface provides more electrode/electrolyte contact area. • The gel electrolyte can prevent contact discontinuity in a supercapacitor. • Sandpaper-based supercapacitors exhibit excellent flexibility and cycling stability. - Abstract: In this paper, graphene and carbon nanotubes dispersed in a pectin solution are examined as a precursor for electrode fabrication for supercapacitor applications. The carbon nanotubes not only prevent the stacking of graphene sheets, but also act as spacers and binders. Dropping the hybrid conductive suspension onto sandpaper is found to form a sandpaper-based electrode that improves the specific capacitance of a subsequently fabricated supercapacitor because of its high surface area. In particular, the large contact surface of the sandpaper allows it to absorb more electrolyte ions and increases the number of ions assembled on the electrode surface. For the supercapacitor fabrication, replacing the liquid or solid electrolyte with a gel electrolyte prevents leakage and contact discontinuity. Therefore, a high-performance supercapacitor can be constructed with one separator coated with a gel electrolyte inserted between two fine-sandpaper-based electrodes, which can be assembled into a sandwich structure by hot pressing

  7. Improved Sound Absorption Performance of Nonwoven Fabric using Fabric Facing and Air Back Cavity

    Directory of Open Access Journals (Sweden)

    Ismail Ahmad Yusuf

    2017-01-01

    Full Text Available This paper presents the improvement methods to increase sound absorption performance of polyethylene based nonwoven fabric (PNF. The methods are placing a woven fabric in front of the sample as well as providing air cavity behind the sample. The samples were experimentally tested in an impedance tube based on ISO 10354-2:2001 whereby two microphones are used and the transfer matrix methods are employed. From the results, it can be seen that placing front woven fabric effectively increases sound absorption performance. Moreover, introducing air cavity gap behind the sample is also found to be more significant to increase sound absorption.

  8. Glucose biosensors based on a gold nanodendrite modified screen-printed electrode

    International Nuclear Information System (INIS)

    Liu, Hsi-Chien; Tsai, Chung-Che; Wang, Gou-Jen

    2013-01-01

    In this study, an enzymatic glucose biosensor based on a three-dimensional gold nanodendrite (GND) modified screen-printed electrode was developed. The GNDs were electrochemically synthesized on the working electrode component of a commercially available screen-printed electrode using a solution acquired by dissolving bulk gold in aqua regia as the precursor. The 3D GND electrode greatly enhanced the effective sensing area of the biosensor, which improved the sensitivity of glucose detection. Actual glucose detections demonstrated that the fabricated devices could perform at a sensitivity of 46.76 μA mM −1 cm −2 with a linear detection range from 28 μM–8.4 mM and detection limit of 7 μM. A fast response time (∼3 s) was also observed. Moreover, only a 20 μl glucose oxidase is required for detection owing to the incorporation of the commercially available screen-printed electrode. (paper)

  9. Laser-Scribed Graphene Electrodes for Aptamer-Based Biosensing

    KAUST Repository

    Fenzl, Christoph; Nayak, Pranati; Hirsch, Thomas; Wolfbeis, Otto S.; Alshareef, Husam N.; Baeumner, Antje J.

    2017-01-01

    (LSG) electrodes are demonstrated here as highly sensitive and reliable biosensor transducers in blood serum analysis. These flexible electrodes with large electrochemical surface areas were fabricated using a direct-write laser process on polyimide foils. A

  10. Time effectiveness of capillary effect improvement of ramie fabrics processed by RF glow discharging

    International Nuclear Information System (INIS)

    Wang Zhiwen; Wei Weixing; He Yanhe; Zhao Yuanqing; Pan Liyiji; Li Xuemei; Shi Shaodui; Li Guangxin

    2010-01-01

    The time effectiveness of capillary effect improvement of ramie fabrics processed by RF glow discharging was studied. The ramie fabrics were processed in fulfilling with different gas (O 2 , N 2 , Ar) by different parameters (such as pressure,power and time) plasma. The capillary effect of the ramie fabrics processed by RF glow discharging was tested at different time. The results indicate that the capillary effect of ramie fabrics processed by RF glow discharging has been improved, the improvement of the capillary effect firstly decrease rapidly, then slowly, and become stable after 15 day, it indicate that improvement of the ramie fabrics capillary has good time effectiveness, and the plasma parameter for the best capillary effect improvement of ramie fabric is 100 W and 40 Pa processed 20 min by oxygen plasma. (authors)

  11. Cryogenic Dark Matter Search detector fabrication process and recent improvements

    Energy Technology Data Exchange (ETDEWEB)

    Jastram, A., E-mail: akjastram@tamu.edu [Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Harris, H.R.; Mahapatra, R.; Phillips, J.; Platt, M.; Prasad, K. [Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Sander, J. [Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Department of Physics, University of South Dakota, Vermillion, SD 57069 (United States); Upadhyayula, S. [Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States)

    2015-02-01

    A dedicated facility has been commissioned for Cryogenic Dark Matter Search (CDMS) detector fabrication at Texas A and M University (TAMU). The fabrication process has been carefully tuned using this facility and its equipment. Production of successfully tested detectors has been demonstrated. Significant improvements in detector performance have been made using new fabrication methods/equipment and tuning of process parameters.

  12. Using oxygen plasma treatment to improve the performance of electrodes for capacitive water deionization

    International Nuclear Information System (INIS)

    Hojati-Talemi, Pejman; Zou, Linda; Fabretto, Manrico; Short, Robert D.

    2013-01-01

    An oxygen plasma treatment was employed to modify the surface of carbon electrodes used in capacitive deionization (CDI). X-ray photoelectron spectroscopy analysis of samples showed that oxygen plasma is mainly attaching oxygenated groups on the PTFE binder used in these electrodes. By functionalizing the binder it can increase the hydrophilicity of the electrode surface and increase the available specific surface area. 2.5 min of plasma treatment resulted in the largest improvement of CDI performance of electrodes. Thermodynamic study of CDI performance showed that the modified electrodes followed Langmuir and Freundlich isotherms resulting from the increased interaction between the enhanced electrodes and water. The kinetic study showed that the CDI process followed a pseudo-first order adsorption kinetics. The calculated adsorption rate constants suggested that plasma modification can accelerate ion adsorption of electrodes

  13. Micromachined three-dimensional electrode arrays for transcutaneous nerve tracking

    International Nuclear Information System (INIS)

    Rajaraman, Swaminathan; Allen, Mark G; Bragg, Julian A; Ross, James D

    2011-01-01

    We report the development of metal transfer micromolded (MTM) three-dimensional microelectrode arrays (3D MEAs) for a transcutaneous nerve tracking application. The measurements of electrode–skin–electrode impedance (ESEI), electromyography (EMG) and nerve conduction utilizing these minimally invasive 3D MEAs are demonstrated in this paper. The 3D MEAs used in these measurements consist of a metalized micro-tower array that can penetrate the outer layers of the skin in a painless fashion and are fabricated using MTM technology. Two techniques, an inclined UV lithography approach and a double-side exposure of thick negative tone resist, have been developed to fabricate the 3D MEA master structure. The MEAs themselves are fabricated from the master structure utilizing micromolding techniques. Metal patterns are transferred during the micromolding process, thereby ensuring reduced process steps compared to traditional silicon-based approaches. These 3D MEAs have been packaged utilizing biocompatible Kapton® substrates. ESEI measurements have been carried out on test human subjects with standard commercial wet electrodes as a reference. The 3D MEAs demonstrate an order of magnitude lower ESEI (normalized to area) compared to wet electrodes for an area that is 12.56 times smaller. This compares well with other demonstrated approaches in literature. For a nerve tracking demonstration, we have chosen EMG and nerve conduction measurements on test human subjects. The 3D MEAs show 100% improvement in signal power and SNR/√area as compared to standard electrodes. They also demonstrate larger amplitude signals and faster rise times during nerve conduction measurements. We believe that this microfabrication and packaging approach scales well to large-area, high-density arrays required for applications like nerve tracking. This development will increase the stimulation and recording fidelity of skin surface electrodes, while increasing their spatial resolution by an order

  14. Embedding of inkjet-printed Ag-grid/ITO hybrid transparent electrode ...

    Indian Academy of Sciences (India)

    2018-02-02

    Feb 2, 2018 ... Keywords. Solution process; inkjet; electrohydrodynamic printing; transparent electrode; flexible electrode. 1. Introduction. Transparent electrodes (TEs) are one of the most indispensable materials to fabricate rapidly emerging elec- tronic devices, including flexible displays, touch panels, photovoltaic cells ...

  15. Improved efficiency of CdS quantum dot sensitized solar cell with an organic redox couple and a polymer counter electrode

    International Nuclear Information System (INIS)

    Shu, Ting; Li, Xiong; Ku, Zhi-Liang; Wang, Shi; Wu, Shi; Jin, Xiao-Hong; Hu, Chun-Di

    2014-01-01

    Highlights: • The organic AT - /BAT and T - /T 2 redox couples were used in CdS QDSSCs. • The AT - /BAT and PEDOT are better than polysulfide electrolyte and Pt and CoS CEs. • An improved η of 1.53% was obtained with the AT - /BAT electrolyte and the PEDOT CE. • PEDOT CE deposited at high deposition charge has better electrochemical activity. • The AT - /BAT outperformed T - /T 2 electrolyte due to suppressed charge recombination. - Abstract: Quantum dot sensitized solar cells (QDSSCs) based on an organic thiolate/disulfide redox couple (C 7 H 5 N 4 S - /C 14 H 10 N 8 S 2 or C 2 H 3 N 4 S - /C 4 H 6 N 8 S 2 ) and a polymer counter electrode [poly (3, 4-ethylenedioxythiophene), PEDOT] were fabricated and their photovoltaic performance were investigated. In CdS QDSSC, the organic C 7 H 5 N 4 S - /C 14 H 10 N 8 S 2 electrolyte shows better performance than the polysulfide electrolyte, and the PEDOT counter electrode exhibits higher efficiency than that of the Pt counter electrode and the CoS counter electrode. An efficiency of 1.53% was achieved in this QDSSC. The influences of the morphology and the deposition charge of the PEDOT counter electrodes on the cell performance were also studied. Furthermore, it was found that the C 7 H 5 N 4 S - /C 14 H 10 N 8 S 2 redox couple outperformed the C 2 H 3 N 4 S - /C 4 H 6 N 8 S 2 redox couple due to reduced electron recombination

  16. High Efficient THz Emission From Unbiased and Biased Semiconductor Nanowires Fabricated Using Electron Beam Lithography

    Energy Technology Data Exchange (ETDEWEB)

    Balci, Soner; Czaplewski, David A.; Jung, Il Woong; Kim, Ju-Hyung; Hatami, Fariba; Kung, Patrick; Kim, Seongsin Margaret

    2017-07-01

    Besides having perfect control on structural features, such as vertical alignment and uniform distribution by fabricating the wires via e-beam lithography and etching process, we also investigated the THz emission from these fabricated nanowires when they are applied DC bias voltage. To be able to apply a voltage bias, an interdigitated gold (Au) electrode was patterned on the high-quality InGaAs epilayer grown on InP substrate bymolecular beam epitaxy. Afterwards, perfect vertically aligned and uniformly distributed nanowires were fabricated in between the electrodes of this interdigitated pattern so that we could apply voltage bias to improve the THz emission. As a result, we achieved enhancement in the emitted THz radiation by ~four times, about 12 dB increase in power ratio at 0.25 THz with a DC biased electric field compared with unbiased NWs.

  17. Fabrication of low temperature cofired ceramic (LTCC) chip couplers for high frequencies : I. Effect of binder burnout process on the formation of electrode line

    Energy Technology Data Exchange (ETDEWEB)

    Cho, N.T.; Shim, K.B.; Lee, S.W. [Hanyang University, Seoul (Korea); Koo, K.D. [K-Cera Inc., Yongin (Korea)

    1999-06-01

    In the fabrication of ceramic chip couplers for high frequency applications such as the mobile communication equipment, the formation of electrode lines and Ag diffusion were investigated with heat treatment conditions for removing organic binders. The deformation and densification of the electrode line greatly depended on the binder burnout process due to the overlapped temperature zone near 400{sup o} C of the binder dissociation and the solid phase sintering of the silver electrode. Ag ions were diffused into the glass ceramic substrate. The Ag diffusion was led by the glassy phase containing Pb ions rather than by the crystalline phase containing Ca ions. The fact suggests that the Ag diffusion could be controlled by managing the composition of the glass ceramic substrate. 9 refs., 10 figs., 1 tab.

  18. Glucose Oxidation on Gold-modified Copper Electrode

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Jieun; Pyo, Sung Gyu; Son, Hyungbin; Kim, Sookil [Chung-Ang Univ., Seoul (Korea, Republic of); Ahn, Sang Hyun; Son, Hyungbin [Korea Institute of Science and Technology, Seoul (Korea, Republic of)

    2013-09-15

    The activities of Au-modified Cu electrodes toward glucose oxidation are evaluated according to their fabrication conditions and physico-chemical properties. The Au-modified Cu electrodes are fabricated by the galvanic displacement of Au on a Cu substrate and the characteristics of the Au particles are controlled by adjusting the displacement time. From the glucose oxidation tests, it is found that the Au modified Cu has superior activity to the pure Au or Cu film, which is evidenced by the negative shift in the oxidation potential and enhanced current density during the electrochemical oxidation. Though the activity of the Au nanoparticles is a contributing factor, the enhanced activity of the Au-modified Cu electrode is due to the increased oxidation number of Cu through the electron transfer from Cu to more electronegative Au. The depletion of electron in Cu facilitates the oxidation of glucose. The stability of the Au-modified Cu electrode was also studied by chronoamperometry.

  19. Method for fabricating carbon/lithium-ion electrode for rechargeable lithium cell

    Science.gov (United States)

    Huang, Chen-Kuo (Inventor); Surampudi, Subbarao (Inventor); Attia, Alan I. (Inventor); Halpert, Gerald (Inventor)

    1995-01-01

    The method includes steps for forming a carbon electrode composed of graphitic carbon particles adhered by an ethylene propylene diene monomer binder. An effective binder composition is disclosed for achieving a carbon electrode capable of subsequent intercalation by lithium ions. The method also includes steps for reacting the carbon electrode with lithium ions to incorporate lithium ions into graphitic carbon particles of the electrode. An electrical current is repeatedly applied to the carbon electrode to initially cause a surface reaction between the lithium ions and to the carbon and subsequently cause intercalation of the lithium ions into crystalline layers of the graphitic carbon particles. With repeated application of the electrical current, intercalation is achieved to near a theoretical maximum. Two differing multi-stage intercalation processes are disclosed. In the first, a fixed current is reapplied. In the second, a high current is initially applied, followed by a single subsequent lower current stage. Resulting carbon/lithium-ion electrodes are well suited for use as an anode in a reversible, ambient temperature, lithium cell.

  20. A microfluidic glucose sensor incorporating a novel thread-based electrode system.

    Science.gov (United States)

    Gaines, Michelle; Gonzalez-Guerrero, Maria Jose; Uchida, Kathryn; Gomez, Frank A

    2018-05-01

    An electrochemical sensor for the detection of glucose using thread-based electrodes and fabric is described. This device is relatively simple to fabricate and can be used for multiple readings after washing with ethanol. The fabrication of the chip consisted of two steps. First, three thread-based electrodes (reference, working, and counter) were fabricated by painting pieces of nylon thread with either layered silver ink and carbon ink or silver/silver chloride ink. The threads were then woven into a fabric chip with a beeswax barrier molded around the edges in order to prevent leaks from the tested solutions. A thread-based working electrode consisting of one layer of silver underneath two layers of carbon was selected to fabricate the final sensor system. Using the chip, a PBS solution containing glucose oxidase (GOx) (10 mg/mL), potassium ferricyanide (K 3 [Fe(CN) 6 ]) (10 mg/mL) as mediator, and different concentrations of glucose (0-25 mM), was measured by cyclic voltammetry (CV). It was found that the current output from the oxidation of glucose was proportional to the glucose concentrations. This thread-based electrode system is a viable sensor platform for detecting glucose in the physiological range. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  1. Effect of annealing over optoelectronic properties of graphene based transparent electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Shriniwas, E-mail: sniwas89@gmail.com; Kaur, Inderpreet, E-mail: inderpreety@yahoo.co.in [Academy of Scientific and Innovative Research- Central Scientific Instruments Organisation (AcSIR-CSIO), Sector-30C, Chandigarh (India); Council of Scientific and Industrial Research- Central Scientific Instruments Organisation (CSIR-CSIO), Sector-30C, Chandigarh (India)

    2016-04-13

    Graphene, an atom–thick two dimensional graphitic material have led various fundamental breakthroughs in the field of science and technology. Due to their exceptional optical, physical and electrical properties, graphene based transparent electrodes have shown several applications in organic light emitting diodes, solar cells and thin film transistors. Here, we are presenting effect of annealing over optoelectronic properties of graphene based transparent electrodes. Graphene based transparent electrodes have been prepared by wet chemical approach over glass substrates. After fabrication, these electrodes tested for optical transmittance in visible region. Sheet resistance was measured using four probe method. Effect of thermal annealing at 200 °C was studied over optical and electrical performance of these electrodes. Optoelectronic performance was judged from ratio of direct current conductivity to optical conductivity (σ{sub dc}/σ{sub opt}) as a figure of merit for transparent conductors. The fabricated electrodes display good optical and electrical properties. Such electrodes can be alternatives for doped metal oxide based transparent electrodes.

  2. Effect of annealing over optoelectronic properties of graphene based transparent electrodes

    Science.gov (United States)

    Yadav, Shriniwas; Kaur, Inderpreet

    2016-04-01

    Graphene, an atom-thick two dimensional graphitic material have led various fundamental breakthroughs in the field of science and technology. Due to their exceptional optical, physical and electrical properties, graphene based transparent electrodes have shown several applications in organic light emitting diodes, solar cells and thin film transistors. Here, we are presenting effect of annealing over optoelectronic properties of graphene based transparent electrodes. Graphene based transparent electrodes have been prepared by wet chemical approach over glass substrates. After fabrication, these electrodes tested for optical transmittance in visible region. Sheet resistance was measured using four probe method. Effect of thermal annealing at 200 °C was studied over optical and electrical performance of these electrodes. Optoelectronic performance was judged from ratio of direct current conductivity to optical conductivity (σdc/σopt) as a figure of merit for transparent conductors. The fabricated electrodes display good optical and electrical properties. Such electrodes can be alternatives for doped metal oxide based transparent electrodes.

  3. Design and fabrication of a micro zinc/air battery

    International Nuclear Information System (INIS)

    Fu, L; Luo, J K; Huber, J E; Lu, T J

    2006-01-01

    Micro-batteries are one of the key components that restrict the application of autonomous Microsystems. However little efforts were made to solve the problem. We have proposed a new planar zinc/air micro-battery, suitable for autonomous microsystem applications. The micro-battery has a layered structure of zinc electrode/alkaline electrolyte/air cathode. A 3D zinc electrode with a high density of posts was designed to obtain a high porosity, hence to offer a best performance. A model of the micro-battery is developed and the device performances were simulated and discussed. A four-mask process was developed to fabricate the prototype micro-batteries. The preliminary testing results showed the micro-batteries is able to deliver a maximum power up to 5 mW, and with an average power of 100 μW at a steady period for up to 2hrs. Fabrication process is still under optimization for further improvement

  4. High power and high energy electrodes using carbon nanotubes

    Science.gov (United States)

    Martini, Fabrizio; Brambilla, Nicolo Michele; Signorelli, Riccardo

    2015-04-07

    An electrode useful in an energy storage system, such as a capacitor, includes an electrode that includes at least one to a plurality of layers of compressed carbon nanotube aggregate. Methods of fabrication are provided. The resulting electrode exhibits superior electrical performance in terms of gravimetric and volumetric power density.

  5. Screen printed silver top electrode for efficient inverted organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Junwoo [Department of Printed Electronics, Korea Institute of Machinery & Materials (KIMM), Daejeon (Korea, Republic of); Duraisamy, Navaneethan [Department of Mechatronics Engineering, Jeju National University, Jeju (Korea, Republic of); Lee, Taik-Min [Department of Printed Electronics, Korea Institute of Machinery & Materials (KIMM), Daejeon (Korea, Republic of); Kim, Inyoung, E-mail: ikim@kimm.re.kr [Department of Printed Electronics, Korea Institute of Machinery & Materials (KIMM), Daejeon (Korea, Republic of); Choi, Kyung-Hyun, E-mail: amm@jejunu.ac.kr [Department of Mechatronics Engineering, Jeju National University, Jeju (Korea, Republic of)

    2015-10-15

    Highlights: • Screen printing of silver pattern. • X-ray diffraction pattern confirmed the face centered cubic structure of silver. • Uniform surface morphology of silver pattern with sheet resistance of 0.06 Ω/sq. • The power conversion efficiency of fabricated solar cell is found to be 2.58%. - Abstract: The present work is mainly focused on replacement of the vacuum process for top electrode fabrication in organic solar cells. Silver top electrode deposited through solution based screen printing on pre-deposited polymeric thin film. The solution based printing technology provides uniform top electrode without damaging the underlying organic layers. The surface crystallinity and surface morphology of silver top electrode are examined through X-ray diffraction, field-emission scanning electron microscope and atomic force microscope. The purity of silver is examined through X-ray energy dispersive spectroscopy. The top electrode exhibits face centered cubic structure with homogeneous morphology. The sheet resistance of top electrode is found to be 0.06 Ω/sq and an average pattern thickness of ∼15 μm. The power conversion efficiency is 2.58%. Our work demonstrates that the solution based screen printing is a significant role in the replacement of vacuum process for the fabrication of top electrode in organic solar cells.

  6. Screen printed silver top electrode for efficient inverted organic solar cells

    International Nuclear Information System (INIS)

    Kim, Junwoo; Duraisamy, Navaneethan; Lee, Taik-Min; Kim, Inyoung; Choi, Kyung-Hyun

    2015-01-01

    Highlights: • Screen printing of silver pattern. • X-ray diffraction pattern confirmed the face centered cubic structure of silver. • Uniform surface morphology of silver pattern with sheet resistance of 0.06 Ω/sq. • The power conversion efficiency of fabricated solar cell is found to be 2.58%. - Abstract: The present work is mainly focused on replacement of the vacuum process for top electrode fabrication in organic solar cells. Silver top electrode deposited through solution based screen printing on pre-deposited polymeric thin film. The solution based printing technology provides uniform top electrode without damaging the underlying organic layers. The surface crystallinity and surface morphology of silver top electrode are examined through X-ray diffraction, field-emission scanning electron microscope and atomic force microscope. The purity of silver is examined through X-ray energy dispersive spectroscopy. The top electrode exhibits face centered cubic structure with homogeneous morphology. The sheet resistance of top electrode is found to be 0.06 Ω/sq and an average pattern thickness of ∼15 μm. The power conversion efficiency is 2.58%. Our work demonstrates that the solution based screen printing is a significant role in the replacement of vacuum process for the fabrication of top electrode in organic solar cells

  7. Seeded growth fabrication of Cu-on-Si electrodes for in situ ATR-SEIRAS applications

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hui-Feng [Shanghai Key Laboratory for Molecular Catalysis and Innovative Materials and Department of Chemistry, Fudan University, Shanghai 200433 (China); Yan, Yan-Gang [Shanghai Key Laboratory for Molecular Catalysis and Innovative Materials and Department of Chemistry, Fudan University, Shanghai 200433 (China); Huo, Sheng-Juan [Shanghai Key Laboratory for Molecular Catalysis and Innovative Materials and Department of Chemistry, Fudan University, Shanghai 200433 (China); Cai, Wen-Bin [Shanghai Key Laboratory for Molecular Catalysis and Innovative Materials and Department of Chemistry, Fudan University, Shanghai 200433 (China); Department of Enviromental Engineering, Shanghai University of Electric Power, Shanghai 200090 (China); E-mail: wbcai@fudan.edu.cn; Xu, Qun-Jie [Department of Enviromental Engineering, Shanghai University of Electric Power, Shanghai 200090 (China); Osawa, Masatoshi [Catalysis Research Center, Hokkaido University, Sapporo 001-0021 (Japan)

    2007-05-25

    A seeded-growth approach has been developed to fabricate a Cu nanoparticle film (simplified hereafter with nanofilm) on Si for electrochemical ATR surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS). The approach comprises an initial activation of the reflecting plane of hemicylindrical Si prism by introducing a Cu seed layer in a CuSO{sub 4}-HF solution and the subsequent electroless deposition of the Cu nanofilms from an electroless Cu plating bath. The as-deposited Cu nanofilm exhibited strong SEIRA effect for the CO probe and interfacial free H{sub 2}O. ATR-SEIRAS was also applied to characterize the adsorbed geometries of pyridine at the Cu/electrolyte interface. Only vibrational bands assignable to the A {sub 1} symmetry modes were detected in the entire potential window investigated, suggestive of an end-on adsorption via the ring N-atom on a Cu electrode.

  8. Seeded growth fabrication of Cu-on-Si electrodes for in situ ATR-SEIRAS applications

    International Nuclear Information System (INIS)

    Wang, Hui-Feng; Yan, Yan-Gang; Huo, Sheng-Juan; Cai, Wen-Bin; Xu, Qun-Jie; Osawa, Masatoshi

    2007-01-01

    A seeded-growth approach has been developed to fabricate a Cu nanoparticle film (simplified hereafter with nanofilm) on Si for electrochemical ATR surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS). The approach comprises an initial activation of the reflecting plane of hemicylindrical Si prism by introducing a Cu seed layer in a CuSO 4 -HF solution and the subsequent electroless deposition of the Cu nanofilms from an electroless Cu plating bath. The as-deposited Cu nanofilm exhibited strong SEIRA effect for the CO probe and interfacial free H 2 O. ATR-SEIRAS was also applied to characterize the adsorbed geometries of pyridine at the Cu/electrolyte interface. Only vibrational bands assignable to the A 1 symmetry modes were detected in the entire potential window investigated, suggestive of an end-on adsorption via the ring N-atom on a Cu electrode

  9. Tailoring electrode/electrolyte interfacial properties in flexible supercapacitors by applying pressure

    Energy Technology Data Exchange (ETDEWEB)

    Masarapu, Charan; Wang, Lian-Ping; Li, Xin; Wei, Bingqing [Department of Mechanical Engineering, University of Delaware, Newark, DE (United States)

    2012-05-15

    Electrode/electrolyte interfacial properties of flexible supercapacitors assembled with nanostructured activated carbon fabric (ACF) electrodes can be tailored by applying a pressure and tuning electrolyte ion size relative to electrode pore size. Experimental results reveal that increasing pressure between the supercapacitor electrodes can significantly improve capacitive performance. The ratio of solvated ion size in the electrolyte to the pore size on the electrodes determines the minimum pressure necessary to achieve an optimum performance. For a specific electrode material, this minimum pressure for optimum performance is primarily governed by the size of the larger solvated ions (either the anions or cations), and is lower ({proportional_to}689 KPa) when the ratio of the solvated ion size to the pore size is higher than 0.6, and is higher (at least 1379 KPa) when the ratio is lower than 0.6. An analytical model capable of predicting the experimental performance data has been developed. These results together provide a fundamental understanding of pressure dependence of electrode/electrolyte interfacial properties and pave the way for practical applications of flexible supercapacitors. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Comparison between wire mesh and plate electrodes during Wide-pattern machining on invar fine sheet using through-mask electrochemical micromachining

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Kwang-ho; Jin, Da-som; Kim, Seong-hyun; Lee, Eun-sang [Inha University, Incheon (Korea, Republic of)

    2017-04-15

    Many research on the fabrication of Organic light emitting diodes (OLED) shadow masks with high resolution have been carried out because of the development of the smart-display industry. It is the parts of display panel which has millions of micro holes on invar (Fe- Ni) fine sheet. Various techniques such as laser machining, chemical etching and Electrochemical micro-machining (EMM) are used to produce micro-hole arrays. In this study, Through-mask electrochemical machining (TMEMM) combine with portion of photolithography process was applied to fabricate micro-hole arrays on invar fine sheet. The sheet was coated with dry film photoresist. Two types of electrode, plate and mesh, was used to compare the influence of electrode type. The sheet was coated with dry film photoresist with micro- sized through holes. The results were compared in regard to uniformity and taper angle. Compared with the plate electrode, the mesh electrode has better uniformity and taper angle which is important criteria of OLED shadow mask. These results could be used to improve TMEMM for invar fine sheet when it is applied to fabricate micro-hole arrays and help to obtain optical uniformity and desired taper angles.

  11. Fabrication approaches for plasmon-improved photovoltaic cells

    DEFF Research Database (Denmark)

    Gritti, Claudia; Malureanu, Radu; Kardynal, B.

    During this talk we will present various fabrication approaches to improve the performance of photovoltaic (PV) cells by using metallic nanoparticles in order to generate photocurrent below the bandgap. This effect is possible due to the generation of surface plasmon polaritons (SPPs) in optimized...

  12. Defining the origins of electron transfer at screen-printed graphene-like and graphite electrodes: MoO2 nanowire fabrication on edge plane sites reveals electrochemical insights.

    Science.gov (United States)

    Rowley-Neale, Samuel J; Brownson, Dale A C; Banks, Craig E

    2016-08-18

    Molybdenum (di)oxide (MoO2) nanowires are fabricated onto graphene-like and graphite screen-printed electrodes (SPEs) for the first time, revealing crucial insights into the electrochemical properties of carbon/graphitic based materials. Distinctive patterns observed in the electrochemical process of nanowire decoration show that electron transfer occurs predominantly on edge plane sites when utilising SPEs fabricated/comprised of graphitic materials. Nanowire fabrication along the edge plane sites (and on edge plane like-sites/defects) of graphene/graphite is confirmed with Cyclic Voltammetry, Scanning Electron Microscopy (SEM) and Raman Spectroscopy. Comparison of the heterogeneous electron transfer (HET) rate constants (k°) at unmodified and nanowire coated SPEs show a reduction in the electrochemical reactivity of SPEs when the edge plane sites are effectively blocked/coated with MoO2. Throughout the process, the basal plane sites of the graphene/graphite electrodes remain relatively uncovered; except when the available edge plane sites have been utilised, in which case MoO2 deposition grows from the edge sites covering the entire surface of the electrode. This work clearly illustrates the distinct electron transfer properties of edge and basal plane sites on graphitic materials, indicating favourable electrochemical reactivity at the edge planes in contrast to limited reactivity at the basal plane sites. In addition to providing fundamental insights into the electron transfer properties of graphite and graphene-like SPEs, the reported simple, scalable, and cost effective formation of unique and intriguing MoO2 nanowires realised herein is of significant interest for use in both academic and commercial applications.

  13. Fabrication of a Tantalum-Based Josephson Junction for an X-Ray Detector

    Science.gov (United States)

    Morohashi, Shin'ichi; Gotoh, Kohtaroh; Yokoyama, Naoki

    2000-06-01

    We have fabricated a tantalum-based Josephson junction for an X-ray detector. The tantalum layer was selected for the junction electrode because of its long quasiparticle lifetime, large X-ray absorption efficiency and stability against thermal cycling. We have developed a buffer layer to fabricate the tantalum layer with a body-centered cubic structure. Based on careful consideration of their superconductivity, we have selected a niobium thin layer as the buffer layer for fabricating the tantalum base electrode, and a tungsten thin layer for the tantalum counter electrode. Fabricated Nb/AlOx-Al/Ta/Nb and Nb/Ta/W/AlOx-Al/Ta/Nb Josephson junctions exhibited current-voltage characteristics with a low subgap leakage current.

  14. Performance improvement of pasted nickel electrodes with multi-wall carbon nanotubes for rechargeable nickel batteries

    International Nuclear Information System (INIS)

    Song, Q.S.; Aravindaraj, G.K.; Sultana, H.; Chan, S.L.I.

    2007-01-01

    Carbon nanotubes (CNTs) were employed as a functional additive to improve the electrochemical performance of pasted nickel-foam electrodes for rechargeable nickel-based batteries. The nickel electrodes were prepared with spherical β-Ni(OH) 2 powder as the active material and various amounts of CNTs as additives. Galvanostatic charge/discharge cycling tests showed that in comparison with the electrode without CNTs, the pasted nickel electrode with added CNTs exhibited better electrochemical properties in the chargeability, specific discharge capacity, active material utilization, discharge voltage, high-rate capability and cycling stability. Meanwhile, the CNT addition also lowered the packing density of Ni(OH) 2 particles in the three-dimensional porous nickel-foam substrate, which could lead to the decrease in the active material loading and discharge capacity of the electrode. Hence, the amount of CNTs added to Ni(OH) 2 should be optimized to obtain a high-performance nickel electrode, and an optimum amount of CNT addition was found to be 3 wt.%. The superior electrochemical performance of the nickel electrode with CNTs could be attributed to lower electrochemical impedance and less γ-NiOOH formed during charge/discharge cycling, as indicated by electrochemical impedance spectroscopy and X-ray diffraction analyses. Thus, it was an effective method to improve the electrochemical properties of pasted nickel electrodes by adding an appropriate amount of CNTs to spherical Ni(OH) 2 as the active material

  15. Vacuum-free processed bulk heterojunction solar cells with E-GaIn cathode as an alternative to Al electrode

    International Nuclear Information System (INIS)

    Ongul, Fatih; Yuksel, Sureyya Aydın; Bozar, Sinem; Gunes, Serap; Cakmak, Gulbeden; Guney, Hasan Yuksel; Egbe, Daniel Ayuk Mbi

    2015-01-01

    In this paper, the photovoltaic characteristics of bulk heterojunction solar cells employing an eutectic gallium–indium (EGaIn) alloy as a top metal contact which was coated by a simple and inexpensive brush-painting was investigated. The overall solar cell fabrication procedure was vacuum-free. As references, regular organic bulk heterojunction solar cells employing thermally evaporated Aluminum as a top metal contact were also fabricated. Inserting the ZnO layer between the active layer and the cathode electrodes (Al and EGaIn) improved the photovoltaic performance of the herein investigated devices. The power conversion efficiencies with and without EGaIn top electrodes were rather comparable. Hence, we have shown that the EGaIn, which is liquid at room temperature, can be used as a cathode. It allows an easy and rapid device fabrication that can be implemented through a vacuum free process. (paper)

  16. Study on the improvement of hydrophilic character on polyvinylalcohol treated polyester fabric

    Directory of Open Access Journals (Sweden)

    S. Pitchai

    2014-12-01

    Full Text Available Polyester fabric was treated with polyvinyl alcohol in alkaline medium. The moisture regain, water retention and wettability of the PVA treated polyester fabric were tested. The PVA treated PET fabric was dyed with disperse dye. The presence of PVA in the treated PET fabric was assessed by spot test. The treated fabric was also characterized by scanning electron microscope, FTIR and differential scanning calorimetry. The PVA treated polyester fabric showed improved hydrophilic character over intact and sodium hydroxide treated PET fabrics.

  17. All-Carbon Electrodes for Flexible Solar Cells

    OpenAIRE

    Zexia Zhang; Ruitao Lv; Yi Jia; Xin Gan; Hongwei Zhu; Feiyu Kang

    2018-01-01

    Transparent electrodes based on carbon nanomaterials have recently emerged as new alternatives to indium tin oxide (ITO) or noble metal in organic photovoltaics (OPVs) due to their attractive advantages, such as long-term stability, environmental friendliness, high conductivity, and low cost. However, it is still a challenge to apply all-carbon electrodes in OPVs. Here, we report our efforts to develop all-carbon electrodes in organic solar cells fabricated with different carbon-based materia...

  18. Flexible electroluminescent device with inkjet-printed carbon nanotube electrodes

    Science.gov (United States)

    Azoubel, Suzanna; Shemesh, Shay; Magdassi, Shlomo

    2012-08-01

    Carbon nanotube (CNTs) inks may provide an effective route for producing flexible electronic devices by digital printing. In this paper we report on the formulation of highly concentrated aqueous CNT inks and demonstrate the fabrication of flexible electroluminescent (EL) devices by inkjet printing combined with wet coating. We also report, for the first time, on the formation of flexible EL devices in which all the electrodes are formed by inkjet printing of low-cost multi-walled carbon nanotubes (MWCNTs). Several flexible EL devices were fabricated by using different materials for the production of back and counter electrodes: ITO/MWCNT and MWCNT/MWCNT. Transparent electrodes were obtained either by coating a thin layer of the CNTs or by inkjet printing a grid which is composed of empty cells surrounded by MWCNTs. It was found that the conductivity and transparency of the electrodes are mainly controlled by the MWCNT film thickness, and that the dominant factor in the luminance intensity is the transparency of the electrode.

  19. Hierarchical Co3O4/PANI hollow nanocages: Synthesis and application for electrode materials of supercapacitors

    Science.gov (United States)

    Ren, Xiaohu; Fan, Huiqing; Ma, Jiangwei; Wang, Chao; Zhang, Mingchang; Zhao, Nan

    2018-05-01

    Hierarchically hollow Co3O4/polyaniline nanocages (Co3O4/PANI NCs) with enhanced specific capacitance and cycle performance for electrode material of supercapacitors are fabricated by combining self-sacrificing template and in situ polymerization route. Benefiting from the good conductivity of PANI improving an electron transport rate as well as high specific surface area from such a hollow structure, the electrode made of Co3O4/PANI NCs exhibits a large specific capacitance of 1301 F/g at the current density of 1 A/g, a much enhancement is obtained as compared with the pristine Co3O4 NCs electrode. The contact resistance (Re), charge-transfer (Rct) and Warburg resistance of Co3O4/PANI NCs electrode is significantly lower than that of the pristine Co3O4 NCs electrode, indicating the enhanced electrical conductivity. In addition, the Co3O4/PANI NCs electrode also displays superior cycling stability with 90 % capacitance retention after 2000 cycles. Moreover, an aqueous asymmetric supercapacitor was successfully assembled using Co3O4/PANI NCs as the positive electrode and activated carbon (AC) as the negative electrode, the assembled device exhibits a superior energy density of 41.5 Wh/kg at 0.8 kW/kg, outstanding power density of 15.9 kW/kg at 18.4 Wh/kg, which significantly transcending those of most previously reported. These results demonstrate that the hierarchically hollow Co3O4/PANI NCs composites have a potential for fabricating electrode of supercapacitors.

  20. Improving Mechanical Properties of Molded Silicone Rubber for Soft Robotics Through Fabric Compositing.

    Science.gov (United States)

    Wang, Yue; Gregory, Cherry; Minor, Mark A

    2018-06-01

    Molded silicone rubbers are common in manufacturing of soft robotic parts, but they are often prone to tears, punctures, and tensile failures when strained. In this article, we present a fabric compositing method for improving the mechanical properties of soft robotic parts by creating a fabric/rubber composite that increases the strength and durability of the molded rubber. Comprehensive ASTM material tests evaluating the strength, tear resistance, and puncture resistance are conducted on multiple composites embedded with different fabrics, including polyester, nylon, silk, cotton, rayon, and several blended fabrics. Results show that strong fabrics increase the strength and durability of the composite, valuable in pneumatic soft robotic applications, while elastic fabrics maintain elasticity and enhance tear strength, suitable for robotic skins or soft strain sensors. Two case studies then validate the proposed benefits of the fabric compositing for soft robotic pressure vessel applications and soft strain sensor applications. Evaluations of the fabric/rubber composite samples and devices indicate that such methods are effective for improving mechanical properties of soft robotic parts, resulting in parts that can have customized stiffness, strength, and vastly improved durability.

  1. Improving the Power out of a Piezoelectric Energy Harvester Using Segmented Electrodes

    Directory of Open Access Journals (Sweden)

    SAJID RAFIQUE

    2017-01-01

    Full Text Available Vibration-based EH (Energy Harvesting using piezoelectric materials have been investigated by several research groups with the aim of harvesting maximum energy and providing power to low-powered wireless electronic systems for their entire operational life. The main areas of research includes improvements in mathematical modelling, optimization of harvester geometry, developments in electrical circuitry, advancements in charge storage devices and investigating various piezoelectric materials to achieve maximum power output. This paper investigates and compares the electrical power output with whole length electrodes and with segmentation of electrodes for the same harvester length. It is found that the voltage generated by one electrode of length l/2 of the direction-fixed tip system is significantly greater than that produced by one electrode of length l of the free tip system. This paper also verifies the fact that segmentation of electrodes reduces the effect of strain nodes and charge cancellation particularly at higher mode frequencies. The paper presents the simulation results using DSM (Dynamic Stiffness Matrix which is a compact method of modelling piezoelectric beams

  2. Improving the power out of a piezoelectric energy harvester using segmented electrodes

    International Nuclear Information System (INIS)

    Rafiq, S.; Shah, S.A.

    2017-01-01

    Vibration-based EH (Energy Harvesting) using piezoelectric materials have been investigated by several research groups with the aim of harvesting maximum energy and providing power to low-powered wireless electronic systems for their entire operational life. The main areas of research includes improvements in mathematical modelling, optimization of harvester geometry, developments in electrical circuitry, advancements in charge storage devices and investigating various piezoelectric materials to achieve maximum power output. This paper investigates and compares the electrical power output with whole length electrodes and with segmentation of electrodes for the same harvester length. It is found that the voltage generated by one electrode of length l/2 of the direction-fixed tip system is significantly greater than that produced by one electrode of length l of the free tip system. This paper also verifies the fact that segmentation of electrodes reduces the effect of strain nodes and charge cancellation particularly at higher mode frequencies. The paper presents the simulation results using DSM (Dynamic Stiffness Matrix) which is a compact method of modelling piezoelectric beams. (author)

  3. Processing of poly-Si electrodes for charge-coupled devices

    Energy Technology Data Exchange (ETDEWEB)

    Sherohman, J.W.; Cook, F.D.

    1978-12-06

    A technique has been developed to fabricate poly-Si electrodes for charge-coupled devices. By controlling the microstructure of a poly-Si film, an anisotropic etchant was selected to provide essentially uniform electrode width dimensions. The electrode widths have only a 6% variation for the majority of the devices over the area of a 2 inch silicon wafer.

  4. Fabrication process for CMUT arrays with polysilicon electrodes, nanometre precision cavity gaps and through-silicon vias

    International Nuclear Information System (INIS)

    Due-Hansen, J; Poppe, E; Summanwar, A; Jensen, G U; Breivik, L; Wang, D T; Schjølberg-Henriksen, K; Midtbø, K

    2012-01-01

    Capacitive micromachined ultrasound transducers (CMUTs) can be used to realize miniature ultrasound probes. Through-silicon vias (TSVs) allow for close integration of the CMUT and read-out electronics. A fabrication process enabling the realization of a CMUT array with TSVs is being developed. The integrated process requires the formation of highly doped polysilicon electrodes with low surface roughness. A process for polysilicon film deposition, doping, CMP, RIE and thermal annealing that resulted in a film with sheet resistance of 4.0 Ω/□ and a surface roughness of 1 nm rms has been developed. The surface roughness of the polysilicon film was found to increase with higher phosphorus concentrations. The surface roughness also increased when oxygen was present in the thermal annealing ambient. The RIE process for etching CMUT cavities in the doped polysilicon gave a mean etch depth of 59.2 ± 3.9 nm and a uniformity across the wafer ranging from 1.0 to 4.7%. The two presented processes are key processes that enable the fabrication of CMUT arrays suitable for applications in for instance intravascular cardiology and gastrointestinal imaging. (paper)

  5. Bipolarly stacked electrolyser for energy and space efficient fabrication of supercapacitor electrodes

    Science.gov (United States)

    Liu, Xiaojuan; Wu, Tao; Dai, Zengxin; Tao, Keran; Shi, Yong; Peng, Chuang; Zhou, Xiaohang; Chen, George Z.

    2016-03-01

    Stacked electrolysers with titanium bipolar plates are constructed for electrodeposition of polypyrrole electrodes for supercapacitors. The cathode side of the bipolar Ti plates are pre-coated with activated carbon. In this new design, half electrolysis occurs which significantly lowers the deposition voltage. The deposited electrodes are tested in a symmetrical unit cell supercapacitor and an asymmetrical supercapacitor stack. Both devices show excellent energy storage performances and the capacitance values are very close to the design value, suggesting a very high current efficiency during the electrodeposition. The electrolyser stack offers multi-fold benefits for preparation of conducting polymer electrodes, i.e. low energy consumption, facile control of the electrode capacitance and simultaneous preparation of a number of identical electrodes. Therefore, the stacked bipolar electrolyser is a technology advance that offers an engineering solution for mass production of electrodeposited conducting polymer electrodes for supercapacitors.

  6. Effects of Flexible Dry Electrode Design on Electrodermal Activity Stimulus Response Detection.

    Science.gov (United States)

    Haddad, Peter A; Servati, Amir; Soltanian, Saeid; Ko, Frank; Servati, Peyman

    2017-12-01

    The focus of this research is to evaluate the effects of design parameters including surface area, distance between and geometry of dry flexible electrodes on electrodermal activity (EDA) stimulus response detection. EDA is a result of the autonomic nervous system being stimulated, which causes sweat and changes the electrical characteristics of the skin. Standard silver/silver chloride (Ag/AgCl) EDA electrodes are rigid and lack conformability in contact with skin. In this study, flexible dry Ag/AgCl EDA electrodes were fabricated on a compliant substrate, used to monitor EDA stimulus responses and compared to results simultaneously collected by rigid dry Ag/AgCl electrodes. A repeatable fabrication process for flexible Ag/AgCl electrodes has been established. Surface area, distance between and geometry of electrodes are shown to affect the detectability of the EDA response and the minimum number of sweat glands to be covered by the electrodes has been estimated at 140, or more, in order to maintain functionality. The optimal flexible EDA electrode is a serpentine design with a 0.15 cm 2 surface area and a 0.20 cm distance with an average Pearson correlation coefficient of . Fabrication of flexible electrodes is described and an understanding of the effects of electrode designs on the EDA stimulus response detection has been established and is potentially related to the coverage of sweat glands. This work presents a novel systematic approach to understand the effects of electrode designs on monitoring EDA which is of importance for the design of wearable EDA monitoring devices.

  7. Improvements during fabrication of the Spanish steam generators

    International Nuclear Information System (INIS)

    Alvarez Miranda, A.

    1994-01-01

    The ENSA company is manufacturing the tubes of the steam generator in NP Asco 1. The improvements of fabrication and production are broken down into 3 chapters: - Mechanizing process - Welding process - Clean area activities

  8. Flexible Textile-Based Organic Transistors Using Graphene/Ag Nanoparticle Electrode

    Science.gov (United States)

    Kim, Youn; Kwon, Yeon Ju; Lee, Kang Eun; Oh, Youngseok; Um, Moon-Kwang; Seong, Dong Gi; Lee, Jea Uk

    2016-01-01

    Highly flexible and electrically-conductive multifunctional textiles are desirable for use in wearable electronic applications. In this study, we fabricated multifunctional textile composites by vacuum filtration and wet-transfer of graphene oxide films on a flexible polyethylene terephthalate (PET) textile in association with embedding Ag nanoparticles (AgNPs) to improve the electrical conductivity. A flexible organic transistor can be developed by direct transfer of a dielectric/semiconducting double layer on the graphene/AgNP textile composite, where the textile composite was used as both flexible substrate and conductive gate electrode. The thermal treatment of a textile-based transistor enhanced the electrical performance (mobility = 7.2 cm2·V−1·s−1, on/off current ratio = 4 × 105, and threshold voltage = −1.1 V) due to the improvement of interfacial properties between the conductive textile electrode and the ion-gel dielectric layer. Furthermore, the textile transistors exhibited highly stable device performance under extended bending conditions (with a bending radius down to 3 mm and repeated tests over 1000 cycles). We believe that our simple methods for the fabrication of graphene/AgNP textile composite for use in textile-type transistors can potentially be applied to the development of flexible large-area electronic clothes. PMID:28335276

  9. Glassy carbon electrode modified with gold nanoparticles and hemoglobin in a chitosan matrix for improved pH-switchable sensing of hydrogen peroxide

    International Nuclear Information System (INIS)

    Liu, Yang; Shi, Liang; Gong, Jin; Fang, Yu-Ting; Bao, Ning; Gu, Hai-Ying; Zeng, Jiang

    2015-01-01

    Hemoglobin (Hb) has been demonstrated to endow electrochemical sensors with pH-switchable response because of the presence of carboxyl and amino groups. Hb was deposited in a chitosan matrix on a glassy carbon electrode (GCE) that was previously coated with clustered gold nanoparticles (Au-NPs) by electrodeposition. The switching behavior is active (“on”) to the negatively charged probe [Fe(CN) 6 3− ] at pH 4.0, but inactive (“off”) to the probe at pH 8.0. This switch is fully reversible by simply changing the pH value of the solution and can be applied for pH-controlled reversible electrochemical reduction of H 2 O 2 catalyzed by Hb. The modified electrode was tested for its response to the different electroactive probes. The response to these species strongly depends on pH which was cycled between 4 and 8. The effect is also attributed to the presence of pH dependent charges on the surface of the electrode which resulted in either electrostatic attraction or repulsion of the electroactive probes. The presence of Hb, in turn, enhances the pH-controllable response, and the electrodeposited Au-NPs improve the capability of switching. This study reveals the potential of protein based pH-switchable materials and also provides a simple and effective strategy for fabrication of switchable chemical sensors as exemplified in a pH-controllable electrode for hydrogen peroxide. (author)

  10. Electrodes of carbonized MWCNT-cellulose paper for supercapacitor

    Science.gov (United States)

    Sun, Xiaogang; Cai, Manyuan; Chen, Long; Qiu, Zhiwen; Liu, Zhenghong

    2017-07-01

    A flexible composite paper of multi-walled carbon nanotube (MWCNT) and cellulose fiber (CF) were fabricated by traditional paper-making method. Then, the MWCNT/CF papers were carbonized at high temperature in vacuum to remove organic component. The carbonized MWCNT/CF (MWCNT/CCF) papers are consisted of MWCNT and carbon fiber. The papers were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), and four-point probe resistance meter. The electrochemical performances of the supercapacitors were tested by cyclic voltammetry and galvanostatic charge/discharge >with 1 moL/L LiPF6 as electrolyte. The MWCNT/CCF electrode yielded a specific capacitance of 156F/g at a current density of 50 mA/g by galvanostatic charge/discharge measurement, which is 1.29 times higher than MWCNT/CF electrode of 68F/g. The MWCNT/CCF electrodes also displayed an excellent specific capacitance retention of 84% after 2000 continuous charge/discharge cycles at a current density of 400 mA/g. The increase of specific capacitance can be attributed to enhanced electrical conductivity of MWCNT/CCF papers and improved contact interface between electrolyte and electrodes.

  11. Composite Electrodes for Electrochemical Supercapacitors

    OpenAIRE

    Li, Jun; Yang, QuanMin; Zhitomirsky, Igor

    2010-01-01

    Abstract Manganese dioxide nanofibers with length ranged from 0.1 to 1 μm and a diameter of about 4–6 nm were prepared by a chemical precipitation method. Composite electrodes for electrochemical supercapacitors were fabricated by impregnation of the manganese dioxide nanofibers and multiwalled carbon nanotubes (MWCNT) into porous Ni plaque current collectors. Obtained composite electrodes, containing 85% of manganese dioxide and 15 mass% of MWCNT, as a conductive additive, with to...

  12. Submersed sensing electrode used in fuel-cell type hydrogen detector

    Science.gov (United States)

    Niedrach, L. W.; Rudek, F. P.; Rutkoneski, M. D.

    1971-01-01

    Electrode has silicone rubber diffusion barrier with fixed permeation constant for hydrogen. Barrier controls flow of hydrogen to anode and Faraday relationship establishes upper limit for current through cell. Electrode fabrication is described.

  13. Fabrication and testing of an electrochemical microcell for in situ soft X-ray microspectroscopy measurements

    Science.gov (United States)

    Gianoncelli, A.; Kaulich, B.; Kiskinova, M.; Mele, C.; Prasciolu, M.; Sgura, I.; Bozzini, B.

    2013-03-01

    In this paper we report on the fabrication and testing of a novel concept of electrochemical microcell for in-situ soft X-ray microspectroscopy in transmission. The microcell, fabricated by electron-beam lithography, implements an improved electrode design, with optimal current density distribution and minimised ohmic drop, allowing the same three-electrode electrochemical control achievable with traditional cells. Moreover standard electroanalytical measurements, such as cyclic voltammetry, can be routinely performed. As far as the electrolyte is concerned, we selected a room-temperature ionic-liquid. Some of the materials belonging to this class, in addition to a broad range of outstanding electrochemical properties, feature two highlights that are crucial for in situ, soft X-ray transmission work: spinnability, enabling accurate thickness control, and stability to UHV, allowing operation of an open cell in the analysis chamber vacuum (10-6 mbar). The cell can, of course, be used also with non-vacuum stable electrolytes in the sealed version developed in previous work in our group. In this study, the microcell designed, fabricated and tested in situ by applying an anodic polarisation to a Au electrode and following the formation of a distribution of corrosion features. This specific material combination presented in this work does not limit the cell concept, that can implement any electrodic material grown by lithography, any liquid electrolyte and any spinnable solid electrolyte.

  14. Altering Anode Thickness To Improve Power Production in Microbial Fuel Cells with Different Electrode Distances

    KAUST Repository

    Ahn, Yongtae

    2013-01-17

    A better understanding of how anode and separator physical properties affect power production is needed to improve energy and power production by microbial fuel cells (MFCs). Oxygen crossover from the cathode can limit power production by bacteria on the anode when using closely spaced electrodes [separator electrode assembly (SEA)]. Thick graphite fiber brush anodes, as opposed to thin carbon cloth, and separators have previously been examined as methods to reduce the impact of oxygen crossover on power generation. We examined here whether the thickness of the anode could be an important factor in reducing the effect of oxygen crossover on power production, because bacteria deep in the electrode could better maintain anaerobic conditions. Carbon felt anodes with three different thicknesses were examined to see the effects of thicker anodes in two configurations: widely spaced electrodes and SEA. Power increased with anode thickness, with maximum power densities (604 mW/m 2, 0.32 cm; 764 mW/m2, 0.64 cm; and 1048 mW/m2, 1.27 cm), when widely spaced electrodes (4 cm) were used, where oxygen crossover does not affect power generation. Performance improved slightly using thicker anodes in the SEA configuration, but power was lower (maximum of 689 mW/m2) than with widely spaced electrodes, despite a reduction in ohmic resistance to 10 Ω (SEA) from 51-62 Ω (widely spaced electrodes). These results show that thicker anodes can work better than thinner anodes but only when the anodes are not adversely affected by proximity to the cathode. This suggests that reducing oxygen crossover and improving SEA MFC performance will require better separators. © 2012 American Chemical Society.

  15. Altering Anode Thickness To Improve Power Production in Microbial Fuel Cells with Different Electrode Distances

    KAUST Repository

    Ahn, Yongtae; Logan, Bruce E.

    2013-01-01

    A better understanding of how anode and separator physical properties affect power production is needed to improve energy and power production by microbial fuel cells (MFCs). Oxygen crossover from the cathode can limit power production by bacteria on the anode when using closely spaced electrodes [separator electrode assembly (SEA)]. Thick graphite fiber brush anodes, as opposed to thin carbon cloth, and separators have previously been examined as methods to reduce the impact of oxygen crossover on power generation. We examined here whether the thickness of the anode could be an important factor in reducing the effect of oxygen crossover on power production, because bacteria deep in the electrode could better maintain anaerobic conditions. Carbon felt anodes with three different thicknesses were examined to see the effects of thicker anodes in two configurations: widely spaced electrodes and SEA. Power increased with anode thickness, with maximum power densities (604 mW/m 2, 0.32 cm; 764 mW/m2, 0.64 cm; and 1048 mW/m2, 1.27 cm), when widely spaced electrodes (4 cm) were used, where oxygen crossover does not affect power generation. Performance improved slightly using thicker anodes in the SEA configuration, but power was lower (maximum of 689 mW/m2) than with widely spaced electrodes, despite a reduction in ohmic resistance to 10 Ω (SEA) from 51-62 Ω (widely spaced electrodes). These results show that thicker anodes can work better than thinner anodes but only when the anodes are not adversely affected by proximity to the cathode. This suggests that reducing oxygen crossover and improving SEA MFC performance will require better separators. © 2012 American Chemical Society.

  16. All conducting polymer electrodes for asymmetric solid-state supercapacitors

    KAUST Repository

    Kurra, Narendra; Wang, Ruiqi; Alshareef, Husam N.

    2015-01-01

    electrode material. In addition, the high stability of PEDOT in its oxidised state makes it capable to exhibit electrochemical activity in a wide potential window. This can qualify PEDOT to be used as a negative electrode in fabricating asymmetric solid

  17. Transparent conductive electrodes of mixed TiO2−x–indium tin oxide for organic photovoltaics

    KAUST Repository

    Lee, Kyu-Sung

    2012-05-22

    A transparent conductive electrode of mixed titanium dioxide (TiO2−x)–indium tin oxide (ITO) with an overall reduction in the use of indium metal is demonstrated. When used in organic photovoltaicdevices based on bulk heterojunction photoactive layer of poly (3-hexylthiophene) and [6,6]-phenyl C61 butyric acid methyl ester, a power conversion efficiency of 3.67% was obtained, a value comparable to devices having sputtered ITO electrode. Surface roughness and optical efficiency are improved when using the mixed TiO2−x–ITO electrode. The consumption of less indium allows for lower fabrication cost of such mixed thin filmelectrode.

  18. Improvements in fabrication of metallic fuels

    International Nuclear Information System (INIS)

    Tracy, D.B.; Henslee, S.P.; Dodds, N.E.; Longua, K.J.

    1989-12-01

    Argonne National Laboratory is currently developing a new liquid- metal cooled breeder reactor known as the Integral Fast Reactor (IFR). IFR fuels represent the state-of-the-art in metal-fueled reactor technology. Improvements in the fabrication of metal fuel, to be discussed below, will support the fully remote fuel cycle facility that as an integral part of the IFR concept will be demonstrated at the EBR-II site. 3 refs

  19. Virtual electrodes for high-density electrode arrays

    Science.gov (United States)

    Cela, Carlos J.; Lazzi, Gianluca

    2015-10-13

    The present embodiments are directed to implantable electrode arrays having virtual electrodes. The virtual electrodes may improve the resolution of the implantable electrode array without the burden of corresponding complexity of electronic circuitry and wiring. In a particular embodiment, a virtual electrode may include one or more passive elements to help steer current to a specific location between the active electrodes. For example, a passive element may be a metalized layer on a substrate that is adjacent to, but not directly connected to an active electrode. In certain embodiments, an active electrode may be directly coupled to a power source via a conductive connection. Beneficially, the passive elements may help to increase the overall resolution of the implantable array by providing additional stimulation points without requiring additional wiring or driver circuitry for the passive elements.

  20. Selective laser etching or ablation for fabrication of devices

    KAUST Repository

    Buttner, Ulrich

    2017-01-12

    Methods of fabricating devices vial selective laser etching are provided. The methods can include selective laser etching of a portion of a metal layer, e.g. using a laser light source having a wavelength of 1,000 nm to 1,500 nm. The methods can be used to fabricate a variety of features, including an electrode, an interconnect, a channel, a reservoir, a contact hole, a trench, a pad, or a combination thereof. A variety of devices fabricated according to the methods are also provided. In some aspects, capacitive humidity sensors are provided that can be fabricated according to the provided methods. The capacitive humidity sensors can be fabricated with intricate electrodes, e.g. having a fractal pattern such as a Peano curve, a Hilbert curve, a Moore curve, or a combination thereof.

  1. A comparative study of dye-sensitized solar cells added carbon nanotubes to electrolyte and counter electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Uk Lee, Sung; Hong, Byungyou [School of Information and Communication Engineering, Sungkyunkwan University (Korea); Seok Choi, Won [Department of Electrical Engineering, Hanbat National University (Korea)

    2010-04-15

    For the purpose of increasing the energy conversion efficiency of dye-sensitized solar cells (DSSCs), carbon nanotubes (CNTs) were added to electrolyte and PtCl{sub 4}-treated electrode. We used two different powders containing single-wall CNT (SWCNT) and multi-wall CNT (MWCNT). We added CNTs to PtCl{sub 4}-treated electrode (called as CNT-counter electrode) or electrolyte (called as CNT-electrolyte) and then fabricated four kinds of DSSCs with SWCNT-counter electrode, MWCNT-counter electrode, SWCNT-electrolyte, and MWCNT-electrolyte. The efficiency of CNT-counter electrode DSSC was improved to 4.03% (SWCNT) and 4.36% (MWCNT), respectively. In case of CNT-electrolyte DSSC, MWCNT-electrolyte DSSC showed higher efficiency (4.2%) than SWCNT-electrolyte DSSC (3.62%). Compared with a standard DSSC without CNTs whose efficiency was 3.22%, the energy conversion efficiency increased up to about 26% and 24% for the MWCNT-electrode DSSC and the MWCNT-electrolyte DSSC, respectively. (author)

  2. Sub-15-nm patterning of asymmetric metal electrodes and devices by adhesion lithography

    KAUST Repository

    Beesley, David J.

    2014-05-27

    Coplanar electrodes formed from asymmetric metals separated on the nanometre length scale are essential elements of nanoscale photonic and electronic devices. Existing fabrication methods typically involve electron-beam lithography - a technique that enables high fidelity patterning but suffers from significant limitations in terms of low throughput, poor scalability to large areas and restrictive choice of substrate and electrode materials. Here, we describe a versatile method for the rapid fabrication of asymmetric nanogap electrodes that exploits the ability of selected self-assembled monolayers to attach conformally to a prepatterned metal layer and thereby weaken adhesion to a subsequently deposited metal film. The method may be carried out under ambient conditions using simple equipment and a minimum of processing steps, enabling the rapid fabrication of nanogap electrodes and optoelectronic devices with aspect ratios in excess of 100,000.2014 Macmillan Publishers Limited. All rights reserved.

  3. Sub-15-nm patterning of asymmetric metal electrodes and devices by adhesion lithography

    KAUST Repository

    Beesley, David J.; Semple, James; Jagadamma, Lethy Krishnan; Amassian, Aram; McLachlan, Martyn A.; Anthopoulos, Thomas D.; deMello, John C.

    2014-01-01

    Coplanar electrodes formed from asymmetric metals separated on the nanometre length scale are essential elements of nanoscale photonic and electronic devices. Existing fabrication methods typically involve electron-beam lithography - a technique that enables high fidelity patterning but suffers from significant limitations in terms of low throughput, poor scalability to large areas and restrictive choice of substrate and electrode materials. Here, we describe a versatile method for the rapid fabrication of asymmetric nanogap electrodes that exploits the ability of selected self-assembled monolayers to attach conformally to a prepatterned metal layer and thereby weaken adhesion to a subsequently deposited metal film. The method may be carried out under ambient conditions using simple equipment and a minimum of processing steps, enabling the rapid fabrication of nanogap electrodes and optoelectronic devices with aspect ratios in excess of 100,000.2014 Macmillan Publishers Limited. All rights reserved.

  4. Fabrication and dc characteristics of small-area tantalum and niobium superconducting tunnel junctions

    International Nuclear Information System (INIS)

    Face, D.W.; Prober, D.E.

    1987-01-01

    We discuss the fabrication and dc electrical characteristics of small-area (1--6 μm 2 ) superconducting tunnel junctions with Ta or Nb base electrodes and Pb or Pb/sub 0.9/Bi/sub 0.1/ counterelectrodes. These junctions have very small subgap leakage currents, a ''sharp'' current rise at the sum-gap voltage, and show strong quantum effects when used as microwave mixers. The use of a low-energy (--150 eV) ion cleaning process and a novel step-defined fabrication process that eliminates photoresist processing after base electrode deposition are discussed. Tunnel barriers formed by dc glow discharge oxidation were the most successful. Tunnel barrier formation by thermal oxidation and ion-beam oxidation is also discussed. An oxidized Ta overlayer (--7 nm thick) was found to improve the characteristics of Nb-based junctions. The electrical characteristics of junctions with different electrode and barrier materials are presented and discussed in terms of the physical mechanisms that lead to excess subgap current and to a width of the current rise at the sum-gap voltage

  5. Fabrication and surface-modification of implantable microprobes for neuroscience studies

    International Nuclear Information System (INIS)

    Cao, H; Nguyen, C M; Chiao, J C

    2012-01-01

    In this work implantable micro-probes for central nervous system (CNS) studies were developed on silicon and polyimide substrates. The probes which contained micro-electrode arrays with different surface modifications were designed for implantation in the CNS. The electrode surfaces were modified with nano-scale structures that could greatly increase the active surface area in order to enhance the electrochemical current outputs while maintaining micro-scale dimensions of the electrodes and probes. The electrodes were made of gold or platinum, and designed with different sizes. The silicon probes were modified by silicon nanowires fabricated with the vapor–liquid–solid mechanism at high temperatures. With polyimide substrates, the nanostructure modification was carried out by applying concentrated gold or silver colloid solutions onto the micro-electrodes at room temperature. The surfaces of electrodes before and after modification were observed by scanning electron microscopy. The silicon nanowire-modified surface was characterized by cyclic voltammetry. Experiments were carried out to investigate the improvement in sensing performance. The modified electrodes were tested with H 2 O 2 , electrochemical L-glutamate and dopamine. Comparisons between electrodes with and without nanostructure modification were conducted showing that the modifications have enhanced the signal outputs of the electrochemical neurotransmitter sensors

  6. Fabrication and surface-modification of implantable microprobes for neuroscience studies

    Science.gov (United States)

    Cao, H.; Nguyen, C. M.; Chiao, J. C.

    2012-06-01

    In this work implantable micro-probes for central nervous system (CNS) studies were developed on silicon and polyimide substrates. The probes which contained micro-electrode arrays with different surface modifications were designed for implantation in the CNS. The electrode surfaces were modified with nano-scale structures that could greatly increase the active surface area in order to enhance the electrochemical current outputs while maintaining micro-scale dimensions of the electrodes and probes. The electrodes were made of gold or platinum, and designed with different sizes. The silicon probes were modified by silicon nanowires fabricated with the vapor-liquid-solid mechanism at high temperatures. With polyimide substrates, the nanostructure modification was carried out by applying concentrated gold or silver colloid solutions onto the micro-electrodes at room temperature. The surfaces of electrodes before and after modification were observed by scanning electron microscopy. The silicon nanowire-modified surface was characterized by cyclic voltammetry. Experiments were carried out to investigate the improvement in sensing performance. The modified electrodes were tested with H2O2, electrochemical L-glutamate and dopamine. Comparisons between electrodes with and without nanostructure modification were conducted showing that the modifications have enhanced the signal outputs of the electrochemical neurotransmitter sensors.

  7. Two-dimensional nickel hydroxide nanosheets as high performance pseudo-capacitor electrodes

    Science.gov (United States)

    Bhat, Karthik S.; Nagaraja, H. S.

    2018-04-01

    Electrochemical supercapacitor is a vital technology for the progress of consistent energy harvesting devices. Herein, we report the fabrication of supercapacitor electrodes based on nickel hydroxide nanosheets synthesized via one-pot hydrothermal method. Structure and shape of synthesized materials were analyzed with XRD and SEM measurements. Pseudo-capacitive performances of the fabricated electrodes were evaluated through cyclic voltammetry and galvanostatic charge-discharge measurements with three-electrode configurations. Results indicated the specific capacitance of l80 F g-1 at 5 mV s-1 scan rate and complimented with capacitance retention of 76% for l500 cycles.

  8. A paper-based electrode using a graphene dot/PEDOT:PSS composite for flexible solar cells

    KAUST Repository

    Lee, Chuan-Pei

    2017-04-22

    We have synthesized a metal-free composite ink that contains graphene dots (GDs) and poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) that can be used on paper to serve as the counter electrode in a flexible dye-sensitized solar cell (DSSC). This paper-based GD/PEDOT:PSS electrode is low-cost, light-weight, flexible, environmentally friendly, and easy to cut and process for device fabrication. We determined the GD/PEDOT:PSS composite effectively fills the dense micro-pores in the paper substrate, which leads to improved carrier transport in the electrode and a 3-fold enhanced cell efficiency as compared to the paper electrode made with sputtered Pt. Moreover, the DSSC with the paper electrode featuring the GD/PEDOT:PSS composite did not fail in photovoltaic tests even after bending the electrode 150 times, whereas the device made with the Pt-based paper electrode decreased in efficiency by 45% after such manipulation. These exceptional properties make the metal-free GD/PEDOT:PSS composite ink a promising electrode material for a wide variety of flexible electronic applications.

  9. Poly(dimethylsiloxane) cross-linked carbon paste electrodes for microfluidic electrochemical sensing.

    Science.gov (United States)

    Sameenoi, Yupaporn; Mensack, Meghan M; Boonsong, Kanokporn; Ewing, Rebecca; Dungchai, Wijitar; Chailapakul, Orawan; Cropek, Donald M; Henry, Charles S

    2011-08-07

    Recently, the development of electrochemical biosensors as part of microfluidic devices has garnered a great deal of attention because of the small instrument size and portability afforded by the integration of electrochemistry in microfluidic systems. Electrode fabrication, however, has proven to be a major obstacle in the field. Here, an alternative method to create integrated, low cost, robust, patternable carbon paste electrodes (CPEs) for microfluidic devices is presented. The new CPEs are composed of graphite powder and a binder consisting of a mixture of poly(dimethylsiloxane) (PDMS) and mineral oil. The electrodes are made by filling channels molded in previously cross-linked PDMS using a method analogous to screen printing. The optimal binder composition was investigated to obtain electrodes that were physically robust and performed well electrochemically. After studying the basic electrochemistry, the PDMS-oil CPEs were modified with multi-walled carbon nanotubes (MWCNT) and cobalt phthalocyanine (CoPC) for the detection of catecholamines and thiols, respectively, to demonstrate the ease of electrode chemical modification. Significant improvement of analyte signal detection was observed from both types of modified CPEs. A nearly 2-fold improvement in the electrochemical signal for 100 μM dithiothreitol (DTT) was observed when using a CoPC modified electrode (4.0 ± 0.2 nA (n = 3) versus 2.5 ± 0.2 nA (n = 3)). The improvement in signal was even more pronounced when looking at catecholamines, namely dopamine, using MWCNT modified CPEs. In this case, an order of magnitude improvement in limit of detection was observed for dopamine when using the MWCNT modified CPEs (50 nM versus 500 nM). CoPC modified CPEs were successfully used to detect thiols in red blood cell lysate while MWCNT modified CPEs were used to monitor temporal changes in catecholamine release from PC12 cells following stimulation with potassium.

  10. Fabrication and characterization of ZnO nanowires array electrodes with high photocurrent densities: Effects of the seed layer calcination time

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yi-Jing; Liu, Ching-Fang; Hu, Chi-Chang, E-mail: cchu@che.nthu.edu.tw; Kuo, Jen-Hou; Boddula, Rajender

    2017-03-01

    In this work, we demonstrate that vertically grown ZnO nanowire (NW) arrays of the wurzite phase were successfully fabricated on fluorine doped tin oxide (FTO) substrates via a hydrothermal method. The coating of a seed layer onto the FTO substrates was found to favor the growth of a uniform ZnO NWs array which shows saturation in the photocurrent density with a relatively low potential bias. Furthermore, prolonging the calcination time of the seed layer makes the ZnO NWs behave the better charge separation and improve the photo-electrochemical performance. Under the irradiation at a 75 mW cm{sup −2} from a simulated sunlight source, the ZnO NWs array electrode prepared from the seed layer with calcination at 350 °C for 5 h shows a saturated photocurrent density of 514 μA cm{sup −2} and a maximum half-cell solar-to-hydrogen (HC-STH) efficiency of 0.26% was obtained at 0.6 V versus reversible hydrogen electrode (RHE) in neutral electrolyte. - Highlights: • The seed layer annealing time strongly influences the textural and photo-activity of ZnO NWs. • The average diameter and density of ZnO NWs were controlled to 47–70 nm and 46–70 NWs μm{sup −2}, respectively. • ZnO NWs show promising application potential in solar-electrocatalytic water splitting under potential bias. • The ZnO NWs with SL annealing time = 5 h achieve the highest HC-STH efficiency of 0.26% at 0.6 V.

  11. A facile one-step approach for the fabrication of polypyrrole nanowire/carbon fiber hybrid electrodes for flexible high performance solid-state supercapacitors

    Science.gov (United States)

    Huang, Sanqing; Han, Yichuan; Lyu, Siwei; Lin, Wenzhen; Chen, Peishan; Fang, Shaoli

    2017-10-01

    Wearable electronics are in high demand, requiring that all the components are flexible. Here we report a facile approach for the fabrication of flexible polypyrrole nanowire (NPPy)/carbon fiber (CF) hybrid electrodes with high electrochemical activity using a low-cost, one-step electrodeposition method. The structure of the NPPy/CF electrodes can be easily controlled by the applied electrical potential and electrodeposition time. Our NPPy/CF-based electrodes showed high flexibility, conductivity, and stability, making them ideal for flexible all-solid-state fiber supercapacitors. The resulting NPPy/CF-based supercapacitors provided a high specific capacitance of 148.4 F g-1 at 0.128 A g-1, which is much higher than for supercapacitors based on polypyrrole film/CF (38.3 F g-1) and pure CF (0.6 F g-1) under the same conditions. The NPPy/CF-based supercapacitors also showed high bending and cycling stability, retaining 84% of the initial capacitance after 500 bending cycles, and 91% of the initial capacitance after 5000 charge/discharge cycles.

  12. A facile one-step approach for the fabrication of polypyrrole nanowire/carbon fiber hybrid electrodes for flexible high performance solid-state supercapacitors.

    Science.gov (United States)

    Huang, Sanqing; Han, Yichuan; Lyu, Siwei; Lin, Wenzhen; Chen, Peishan; Fang, Shaoli

    2017-10-27

    Wearable electronics are in high demand, requiring that all the components are flexible. Here we report a facile approach for the fabrication of flexible polypyrrole nanowire (NPPy)/carbon fiber (CF) hybrid electrodes with high electrochemical activity using a low-cost, one-step electrodeposition method. The structure of the NPPy/CF electrodes can be easily controlled by the applied electrical potential and electrodeposition time. Our NPPy/CF-based electrodes showed high flexibility, conductivity, and stability, making them ideal for flexible all-solid-state fiber supercapacitors. The resulting NPPy/CF-based supercapacitors provided a high specific capacitance of 148.4 F g -1 at 0.128 A g -1 , which is much higher than for supercapacitors based on polypyrrole film/CF (38.3 F g -1 ) and pure CF (0.6 F g -1 ) under the same conditions. The NPPy/CF-based supercapacitors also showed high bending and cycling stability, retaining 84% of the initial capacitance after 500 bending cycles, and 91% of the initial capacitance after 5000 charge/discharge cycles.

  13. Fabrication of conducting polymer-gold nanoparticles film on electrodes using monolayer protected gold nanoparticles and its electrocatalytic application

    Energy Technology Data Exchange (ETDEWEB)

    Kannan, Palanisamy [Department of Chemistry, Gandhigram Rural University, Gandhigram 624 302, Dindigul (India); School of Chemical and Biomedical Engineering, N1.3, B4-01, 70 Nanyang Drive, Nanyang Technological University, Singapore 637457 (Singapore); John, S. Abraham, E-mail: abrajohn@yahoo.co.in [Department of Chemistry, Gandhigram Rural University, Gandhigram 624 302, Dindigul (India)

    2011-08-01

    We wish to report a simple and new strategy for the fabrication of gold nanoparticles-conducting polymer film on glassy carbon (GC) and indium tin oxide (ITO) surfaces using 5-amino-2-mercapto-1,3,4-thiadiazole capped gold nanoparticles (AMT-AuNPs) in 0.01 M H{sub 2}SO{sub 4} by electropolymerization. The presence of amine groups on the surface of the AuNPs was responsible for the deposition of the AMT-AuNPs film on the electrode surface. The atomic force microscopy (AFM) studies reveal that the fabricated p-AMT-AuNPs film showed homogeneously distributed AuNPs with a spherical shape of {approx}8 nm diameter. The XPS spectrum shows the binding energies at 83.8 and 87.5 eV in the Au 4f region corresponding to 4f{sub 7/2} and 4f{sub 5/2}, respectively. The position and difference between these two peaks (3.7 eV) exactly match the value reported for Au{sup 0}. The N1s XPS showed three binding energies at 396.7, 399.6 and 403.3 eV, corresponding to the =NH, -NH- and -N{sup +}H-, respectively, confirming that the electropolymerization proceeded through the oxidation of -NH{sub 2} groups present on the periphery of the AMT-AuNPs. The application of the present p-AMT-AuNPs modified electrode was demonstrated by studying the electro reduction of oxygen at pH 7.2. The p-AMT-AuNPs film enhanced the oxygen reduction current more than three times than that of p-AMT film prepared under identical conditions.

  14. Etching holes in graphene supercapacitor electrodes for faster performance.

    Science.gov (United States)

    Ervin, Matthew H

    2015-06-12

    Graphene is being widely investigated as a material to replace activated carbon in supercapacitor (electrochemical capacitor) electrodes. Supercapacitors have much higher energy density, but are typically slow devices (∼0.1 Hz) compared to other types of capacitors. Here, top-down semiconductor processing has been applied to graphene-based electrodes in order to fabricate ordered arrays of holes through the graphene electrodes. This is demonstrated to increase the speed of the electrodes by reducing the ionic impedance through the electrode thickness. This approach may also be applicable to speeding up other types of devices, such as batteries and sensors, that use porous electrodes.

  15. Fabrication of digital microfluidic devices on flexible paper-based and rigid substrates via screen printing

    Science.gov (United States)

    Yafia, Mohamed; Shukla, Saurabh; Najjaran, Homayoun

    2015-05-01

    In this work, a new fabrication method is presented for digital microfluidic (DMF) devices in which the electrodes are generated using the screen printing technique. This method is applicable to both rigid and flexible substrates. The proposed screen printing approach, as a batch printing technique, is advantageous to the widely reported DMF fabrication methods in terms of fabrication time, cost and capability of mass production. Screen printing provides an effective means for printing different types of conductive materials on a variety of substrates. Specifically, screen printing of conductive silver and carbon based inks is performed on paper, glass and wax paper. As a result, the fabricated DMF devices are characterized by being flexible, disposable and incinerable. Hence, the main advantage of screen printing carbon based inks on paper substrates is more pronounced for point-of-care applications that require a large number of low cost DMF chips, and laboratory setups that lack sophisticated microfabrication facilities. The resolution of the printed DMF electrodes generated by this technique is examined for proof of concept using manual screen printing, but higher resolution screens and automated machines are available off-the-shelf, if needed. Another contribution of this research is the improved actuation techniques that facilitate droplet transport in electrode configurations with relatively large electrode spacing to alleviate the disadvantage of lower resolution screens. Thus, we were able to reduce the cost of fabrication significantly without compromising the DMF performance. The paper-based devices have already shown to be effective in continuous microfluidics domain, so the investigation of their applicability in DMF systems is worthwhile. With this in mind, successful integration of a paper-based microchannel with paper-based digital microfluidic chip is demonstrated in this work.

  16. Fabrication of digital microfluidic devices on flexible paper-based and rigid substrates via screen printing

    International Nuclear Information System (INIS)

    Yafia, Mohamed; Shukla, Saurabh; Najjaran, Homayoun

    2015-01-01

    In this work, a new fabrication method is presented for digital microfluidic (DMF) devices in which the electrodes are generated using the screen printing technique. This method is applicable to both rigid and flexible substrates. The proposed screen printing approach, as a batch printing technique, is advantageous to the widely reported DMF fabrication methods in terms of fabrication time, cost and capability of mass production. Screen printing provides an effective means for printing different types of conductive materials on a variety of substrates. Specifically, screen printing of conductive silver and carbon based inks is performed on paper, glass and wax paper. As a result, the fabricated DMF devices are characterized by being flexible, disposable and incinerable. Hence, the main advantage of screen printing carbon based inks on paper substrates is more pronounced for point-of-care applications that require a large number of low cost DMF chips, and laboratory setups that lack sophisticated microfabrication facilities. The resolution of the printed DMF electrodes generated by this technique is examined for proof of concept using manual screen printing, but higher resolution screens and automated machines are available off-the-shelf, if needed. Another contribution of this research is the improved actuation techniques that facilitate droplet transport in electrode configurations with relatively large electrode spacing to alleviate the disadvantage of lower resolution screens. Thus, we were able to reduce the cost of fabrication significantly without compromising the DMF performance. The paper-based devices have already shown to be effective in continuous microfluidics domain, so the investigation of their applicability in DMF systems is worthwhile. With this in mind, successful integration of a paper-based microchannel with paper-based digital microfluidic chip is demonstrated in this work. (note)

  17. Planar silver nanowire, carbon nanotube and PEDOT:PSS nanocomposite transparent electrodes

    Science.gov (United States)

    Stapleton, Andrew J.; Yambem, Soniya D.; Johns, Ashley H.; Afre, Rakesh A.; Ellis, Amanda V.; Shapter, Joe G.; Andersson, Gunther G.; Quinton, Jamie S.; Burn, Paul L.; Meredith, Paul; Lewis, David A.

    2015-04-01

    Highly conductive, transparent and flexible planar electrodes were fabricated using interwoven silver nanowires and single-walled carbon nanotubes (AgNW:SWCNT) in a PEDOT:PSS matrix via an epoxy transfer method from a silicon template. The planar electrodes achieved a sheet resistance of 6.6 ± 0.0 Ω/□ and an average transmission of 86% between 400 and 800 nm. A high figure of merit of 367 Ω-1 is reported for the electrodes, which is much higher than that measured for indium tin oxide and reported for other AgNW composites. The AgNW:SWCNT:PEDOT:PSS electrode was used to fabricate low temperature (annealing free) devices demonstrating their potential to function with a range of organic semiconducting polymer:fullerene bulk heterojunction blend systems.

  18. Scalable Coating and Properties of Transparent, Flexible, Silver Nanowire Electrodes

    KAUST Repository

    Hu, Liangbing

    2010-05-25

    We report a comprehensive study of transparent and conductive silver nanowire (Ag NW) electrodes, including a scalable fabrication process, morphologies, and optical, mechanical adhesion, and flexibility properties, and various routes to improve the performance. We utilized a synthesis specifically designed for long and thin wires for improved performance in terms of sheet resistance and optical transmittance. Twenty Ω/sq and ∼ 80% specular transmittance, and 8 ohms/sq and 80% diffusive transmittance in the visible range are achieved, which fall in the same range as the best indium tin oxide (ITO) samples on plastic substrates for flexible electronics and solar cells. The Ag NW electrodes show optical transparencies superior to ITO for near-infrared wavelengths (2-fold higher transmission). Owing to light scattering effects, the Ag NW network has the largest difference between diffusive transmittance and specular transmittance when compared with ITO and carbon nanotube electrodes, a property which could greatly enhance solar cell performance. A mechanical study shows that Ag NW electrodes on flexible substrates show excellent robustness when subjected to bending. We also study the electrical conductance of Ag nanowires and their junctions and report a facile electrochemical method for a Au coating to reduce the wire-to-wire junction resistance for better overall film conductance. Simple mechanical pressing was also found to increase the NW film conductance due to the reduction of junction resistance. The overall properties of transparent Ag NW electrodes meet the requirements of transparent electrodes for many applications and could be an immediate ITO replacement for flexible electronics and solar cells. © 2010 American Chemical Society.

  19. Scalable Coating and Properties of Transparent, Flexible, Silver Nanowire Electrodes

    KAUST Repository

    Hu, Liangbing; Kim, Han Sun; Lee, Jung-Yong; Peumans, Peter; Cui, Yi

    2010-01-01

    We report a comprehensive study of transparent and conductive silver nanowire (Ag NW) electrodes, including a scalable fabrication process, morphologies, and optical, mechanical adhesion, and flexibility properties, and various routes to improve the performance. We utilized a synthesis specifically designed for long and thin wires for improved performance in terms of sheet resistance and optical transmittance. Twenty Ω/sq and ∼ 80% specular transmittance, and 8 ohms/sq and 80% diffusive transmittance in the visible range are achieved, which fall in the same range as the best indium tin oxide (ITO) samples on plastic substrates for flexible electronics and solar cells. The Ag NW electrodes show optical transparencies superior to ITO for near-infrared wavelengths (2-fold higher transmission). Owing to light scattering effects, the Ag NW network has the largest difference between diffusive transmittance and specular transmittance when compared with ITO and carbon nanotube electrodes, a property which could greatly enhance solar cell performance. A mechanical study shows that Ag NW electrodes on flexible substrates show excellent robustness when subjected to bending. We also study the electrical conductance of Ag nanowires and their junctions and report a facile electrochemical method for a Au coating to reduce the wire-to-wire junction resistance for better overall film conductance. Simple mechanical pressing was also found to increase the NW film conductance due to the reduction of junction resistance. The overall properties of transparent Ag NW electrodes meet the requirements of transparent electrodes for many applications and could be an immediate ITO replacement for flexible electronics and solar cells. © 2010 American Chemical Society.

  20. Improving Impedance of Implantable Microwire Multi-Electrode Arrays by Ultrasonic Electroplating of Durable Platinum Black

    Science.gov (United States)

    Desai, Sharanya Arcot; Rolston, John D.; Guo, Liang; Potter, Steve M.

    2010-01-01

    Implantable microelectrode arrays (MEAs) have been a boon for neural stimulation and recording experiments. Commercially available MEAs have high impedances, due to their low surface area and small tip diameters, which are suitable for recording single unit activity. Lowering the electrode impedance, but preserving the small diameter, would provide a number of advantages, including reduced stimulation voltages, reduced stimulation artifacts and improved signal-to-noise ratio. Impedance reductions can be achieved by electroplating the MEAs with platinum (Pt) black, which increases the surface area but has little effect on the physical extent of the electrodes. However, because of the low durability of Pt black plating, this method has not been popular for chronic use. Sonicoplating (i.e. electroplating under ultrasonic agitation) has been shown to improve the durability of Pt black on the base metals of macro-electrodes used for cyclic voltammetry. This method has not previously been characterized for MEAs used in chronic neural implants. We show here that sonicoplating can lower the impedances of microwire multi-electrode arrays (MMEA) by an order of magnitude or more (depending on the time and voltage of electroplating), with better durability compared to pulsed plating or traditional DC methods. We also show the improved stimulation and recording performance that can be achieved in an in vivo implantation study with the sonicoplated low-impedance MMEAs, compared to high-impedance unplated electrodes. PMID:20485478

  1. The fabrication of ZnO nanowire field-effect transistors combining dielectrophoresis and hot-pressing

    International Nuclear Information System (INIS)

    Chang, Y-K; Chau-N H, Franklin

    2009-01-01

    Zinc oxide nanowire field-effect transistors (NW-FETs) were fabricated combining the dielectrophoresis (DEP) and the hot-pressing methods. DEP was used to position both ends of the nanowires on top of the source and the drain electrodes, respectively. Hot-pressing of nanowires on the electrodes was then employed to ensure good contacts between the nanowires and the electrodes. The good device performance achieved with our method of fabrication indicates that DEP combined with hot-pressing has the potential to be applied to the fabrication of flexible electronics on a roll-to-roll basis.

  2. Interpenetrating polyaniline-gold electrodes for SERS and electrochemical measurements

    Science.gov (United States)

    West, R. M.; Semancik, S.

    2016-11-01

    Facile fabrication of nanostructured electrode arrays is critical for development of bimodal SERS and electrochemical biosensors. In this paper, the variation of applied potential at a polyaniline-coated Pt electrode is used to selectivity deposit Au on the polyaniline amine sites or on the underlying Pt electrode. By alternating the applied potential, the Au is grown simultaneously from the top and the bottom of the polyaniline film, leading to an interpenetrated, nanostructured polymer-metal composite extending from the Pt electrode to the electrolyte solution. The resulting films have unique pH-dependent electrochemical properties, e.g. they retain electrochemical activity in both acidic and neutral solutions, and they also include SERS-active nanostructures. By varying the concentration of chloroaurate used during deposition, Au nanoparticles, nanodendrites, or nanosheets can be selectively grown. For the films deposited under optimal conditions, using 5 mmol/L chloroaurate, the SERS enhancement factor for Rhodamine 6G was found to be as high as 1.1 × 106 with spot-to-spot and electrode-to-electrode relative standard deviations as low as 8% and 12%, respectively. The advantages of the reported PANI-Au composite electrodes lie in their facile fabrication, enabling the targeted deposition of tunable nanostructures on sensing arrays, and their ability to produce orthogonal optical and electrochemical analytical results.

  3. Calculating and optimizing inter-electrode capacitances of charge division microchannel plate detectors

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Yan [Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Chen, Bo, E-mail: chenb@ciomp.ac.cn [Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China); Zhang, Hong-Ji; Wang, Hai-Feng; He, Ling-Ping [Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China); Jin, Fang-Yuan [Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China); University of Chinese Academy of Sciences, Beijing 100049 (China)

    2016-04-01

    Based on the principle of charge division microchannel plate detectors, the inter-electrode capacitances of charge division anodes which are related to electronic noise of the charge sensitive amplifier and crosstalk effect of the anode are presented. Under all the requirements of charge division microchannel plate detectors such as the imaging linearity and spatial resolution, decreasing the inter-electrode capacitances is one way to improve the imaging performance. In this paper, we illustrate the simulation process of calculating the inter-electrode capacitances. Moreover, a Wedge and Strip (WSZ) anode is fabricated with the picosecond laser micromachining process. Comparing the simulated capacitances and measured capacitances, the three-dimensional finite element method is proved to be valid. Furthermore, by adjusting the design parameters of the anode, the effects of the substrate permittivity, insulation width and the size of pitch on the inter-electrode capacitances have been analysed. The structure of the charge division anode has been optimized based on the simulation data.

  4. Electrode fabrication for Lithium-ion batteries by intercalating of carbon nano tubes inside nano metric pores of silver foam

    International Nuclear Information System (INIS)

    Khoshnevisan, B.

    2011-01-01

    Here there is an on effort to improve working electrode (Ag + carbon nano tubes) preparation for Li-Ion batteries applications. Nano scaled silver foam with high specific area has been employed as a frame for loading carbon nano tubes by electrophoretic deposition method. In this ground, the prepared electrodes show a very good stability and also charge-discharge cycles reversibility.

  5. Fabrication and RF characterization of zinc oxide based Film Bulk Acoustic Resonator

    Science.gov (United States)

    Patel, Raju; Bansal, Deepak; Agrawal, Vimal Kumar; Rangra, Kamaljit; Boolchandani, Dharmendar

    2018-06-01

    This work reports fabrication and characterization of Film Bulk Acoustic Resonator (FBAR) to improve the performance characteristics for RF filter and sensing application. Zinc oxide as a piezoelectric (PZE) material was deposited on an aluminum bottom electrode using an RF magnetron sputtering, at room temperature, and gold as top electrode for the resonator. Tetramethyl ammonium hydroxide (TMAH) setup was used for bulk silicon etching to make back side cavity to confine the acoustic signals. The transmission characteristics show that the FBARs have a central frequency at 1.77 GHz with a return loss of -10.7 dB.

  6. Nickel hydrogen bipolar battery electrode design

    Science.gov (United States)

    Puglisi, V. J.; Russell, P.; Verrier, D.; Hall, A.

    1985-01-01

    The preferred approach of the NASA development effort in nickel hydrogen battery design utilizes a bipolar plate stacking arrangement to obtain the required voltage-capacity configuration. In a bipolar stack, component designs must take into account not only the typical design considerations such as voltage, capacity and gas management, but also conductivity to the bipolar (i.e., intercell) plate. The nickel and hydrogen electrode development specifically relevant to bipolar cell operation is discussed. Nickel oxide electrodes, having variable type grids and in thicknesses up to .085 inch are being fabricated and characterized to provide a data base. A selection will be made based upon a system level tradeoff. Negative (hydrpogen) electrodes are being screened to select a high performance electrode which can function as a bipolar electrode. Present nickel hydrogen negative electrodes are not capable of conducting current through their cross-section. An electrode was tested which exhibits low charge and discharge polarization voltages and at the same time is conductive. Test data is presented.

  7. Simplified Reference Electrode for Electrorefining of Spent Nuclear Fuel in High Temperature Molten Salt

    Energy Technology Data Exchange (ETDEWEB)

    Kim Davies; Shelly X Li

    2007-09-01

    Pyrochemical processing plays an important role in development of proliferation- resistant nuclear fuel cycles. At the Idaho National Laboratory (INL), a pyrochemical process has been implemented for the treatment of spent fuel from the Experimental Breeder Reactor II (EBR-II) in the last decade. Electrorefining in a high temperature molten salt is considered a signature or central technology in pyroprocessing fuel cycles. Separation of actinides from fission products is being demonstrated by electrorefining the spent fuel in a molten UCl3-LiCl-KCl electrolyte in two engineering scale electrorefiners (ERs). The electrorefining process is current controlled. The reference electrode provides process information through monitoring of the voltage difference between the reference and the anode and cathode electrodes. This information is essential for monitoring the reactions occurring at the electrodes, investigating separation efficiency, controlling the process rate, and determining the process end-point. The original reference electrode has provided good life expectancy and signal stability, but is not easily replaceable. The reference electrode used a vycor-glass ion-permeable membrane containing a high purity silver wire with one end positioned in ~2 grams of LiCl/KCl salt electrolyte with a low concentration (~1%) AgCl. It was, however, a complex assembly requiring specialized skill and talent to fabricate. The construction involved multiple small pieces, glass joints, ceramic to glass joints, and ceramic to metal joints all assembled in a high purity inert gas environment. As original electrodes reached end-of-life it was uncertain if the skills and knowledge were readily available to successfully fabricate replacements. Experimental work has been conducted to identify a simpler electrode design while retaining the needed long life and signal stability. This improved design, based on an ion-permeable membrane of mullite has been completed. Use of the silver wire

  8. Simplified Reference Electrode for Electrorefining of Spent Nuclear Fuel in High Temperature Molten Salt

    International Nuclear Information System (INIS)

    Kim Davies; Shelly X Li

    2007-01-01

    Pyrochemical processing plays an important role in development of proliferation-resistant nuclear fuel cycles. At the Idaho National Laboratory (INL), a pyrochemical process has been implemented for the treatment of spent fuel from the Experimental Breeder Reactor II (EBR-II) in the last decade. Electrorefining in a high temperature molten salt is considered a signature or central technology in pyroprocessing fuel cycles. Separation of actinides from fission products is being demonstrated by electrorefining the spent fuel in a molten UCl3-LiCl-KCl electrolyte in two engineering scale electrorefiners (ERs). The electrorefining process is current controlled. The reference electrode provides process information through monitoring of the voltage difference between the reference and the anode and cathode electrodes. This information is essential for monitoring the reactions occurring at the electrodes, investigating separation efficiency, controlling the process rate, and determining the process end-point. The original reference electrode has provided good life expectancy and signal stability, but is not easily replaceable. The reference electrode used a vycor-glass ion-permeable membrane containing a high purity silver wire with one end positioned in ∼2 grams of LiCl/KCl salt electrolyte with a low concentration (∼1%) AgCl. It was, however, a complex assembly requiring specialized skill and talent to fabricate. The construction involved multiple small pieces, glass joints, ceramic to glass joints, and ceramic to metal joints all assembled in a high purity inert gas environment. As original electrodes reached end-of-life it was uncertain if the skills and knowledge were readily available to successfully fabricate replacements. Experimental work has been conducted to identify a simpler electrode design while retaining the needed long life and signal stability. This improved design, based on an ion-permeable membrane of mullite has been completed. Use of the silver

  9. Fabrication of nickel hydroxide electrodes with open-ended hexagonal nanotube arrays for high capacitance supercapacitors.

    Science.gov (United States)

    Wu, Mao-Sung; Huang, Kuo-Chih

    2011-11-28

    A nickel hydroxide electrode with open-ended hexagonal nanotube arrays, prepared by hydrolysis of nickel chloride in the presence of hexagonal ZnO nanorods, shows a very high capacitance of 1328 F g(-1) at a discharge current density of 1 A g(-1) due to the significantly improved ion transport.

  10. Development of Au-Ag nanowire mesh fabrication by UV-induced approach

    Energy Technology Data Exchange (ETDEWEB)

    Saggar, Siddhartha [Laboratory for Molecular Photonics and Electronics, Department of Physics, National Institute of Technology, Calicut, Kerala, India and School of Nanoscience and Technology, National Institute of Technology, Calicut, Kerala (India); Predeep, Padmanabhan, E-mail: predeep@nitc.ac.in

    2014-10-15

    In an attempt to overcome the limitations of the presently prevailing transparent conducting electrode (TCE) - indium tin oxide (ITO) - many materials have been considered for replacing ITO. Recently, a novel method has been reported for the synthesis of Au-Ag nanowire (NW) mesh, and tested successfully for organic-light-emitting-diodes (OLEDs). It employs UV-induced reduction of gold- and silver- precursors to form Au-Ag NW mesh. In this report, Au-Ag NW mesh thin films are synthesized on glass substrates with an objective for use as facing-electrode for Organic Photovoltaics. Various issues and factors affecting the fabrication-process have been improved, and are also discussed here. The electrode showed good transmitivity, of around 95% (excluding that of glass substrate). The advantage of the technique is its simple processing method and cost-effectiveness.

  11. Engineering the Membrane/Electrode Interface To Improve the Performance of Solid-State Supercapacitors.

    Science.gov (United States)

    Huang, Chun; Zhang, Jin; Snaith, Henry J; Grant, Patrick S

    2016-08-17

    This paper investigates the effect of adding a 450 nm layer based on porous TiO2 at the interface between a 4.5 μm carbon/TiO2 nanoparticle-based electrode and a polymer electrolyte membrane as a route to improve energy storage performance in solid-state supercapacitors. Electrochemical characterization showed that adding the interface layer reduced charge transfer resistance, promoted more efficient ion transfer across the interface, and significantly improved charge/discharge dynamics in a solid-state supercapacitor, resulting in an increased areal capacitance from 45.3 to 111.1 mF cm(-2) per electrode at 0.4 mA cm(-2).

  12. Simple fabrication of active electrodes using direct laser transference

    International Nuclear Information System (INIS)

    Cavallo, P.; Coneo Rodriguez, R.; Broglia, M.; Acevedo, D.F.; Barbero, C.A.

    2014-01-01

    Highlights: •Electroactive materials can be transferred using a single pulse of laser light. •The transfer is made in air using a 6 ns pulse of Nd-YAG laser (532 or 1064 nm). •Conducting polymers films can be transferred maintaining the electroactivity. •Conducting polymer multilayers can be deposited using successive pulses. •Metallic (Au, Pt) transferred micro/nanoparticles are electrocatalytic. -- Abstract: Direct laser transference (DLT) method is applied to obtain electrodes modified with thin films of conducting polymers (CPs) or catalytic metals. A short (6–10 ns) pulse of laser light (second harmonic of Nd-YAG Laser, λ = 532 nm) is shined on the backside of a thin (<200 nm) film of the material to be transferred, which is deposited on a transparent substrate. The illuminated region heats up and the material (conducting polymer or metal) is thermally transferred to a solid target placed at short distance in air. In that ways, CPs are transferred onto polypropylene, glass, indium doped tin oxide (ITO), glassy carbon and gold films. In the same manner, electrocatalytic metals (platinum or gold) are transferred onto conductive substrates (glassy carbon or ITO films on glass). The films have been characterized by scanning electron microscopy, cyclic voltammetry, atomic force microscopy, UV-visible and Fourier Transform Infrared spectroscopies. The chemical, electrical and redox properties of the polymeric materials transferred remain unaltered after the transfer. Moreover, CP multilayers can be built applying DLT several times onto the same substrate. Besides polyaniline, it is shown that it is also possible to transfer functionalized polyanilines. The electrode modified with transferred Pt shows electrocatalytic activity toward methanol oxidation while ferricyanide shows a quasireversible behavior on electrodes modified with transferred Au. The method is simple and fast, works in air without complex environmental conditions and can produce active

  13. A process to fabricate fused silica nanofluidic devices with embedded electrodes using an optimized room temperature bonding technique

    Science.gov (United States)

    Boden, Seth; Karam, P.; Schmidt, A.; Pennathur, S.

    2017-05-01

    Fused silica is an ideal material for nanofluidic systems due to its extreme purity, chemical inertness, optical transparency, and native hydrophilicity. However, devices requiring embedded electrodes (e.g., for bioanalytical applications) are difficult to realize given the typical high temperature fusion bonding requirements (˜1000 °C). In this work, we optimize a two-step plasma activation process which involves an oxygen plasma treatment followed by a nitrogen plasma treatment to increase the fusion bonding strength of fused silica at room temperature. We conduct a parametric study of this treatment to investigate its effect on bonding strength, surface roughness, and microstructure morphology. We find that by including a nitrogen plasma treatment to the standard oxygen plasma activation process, the room temperature bonding strength increases by 70% (0.342 J/m2 to 0.578 J/m2). Employing this optimized process, we fabricate and characterize a nanofluidic device with an integrated and dielectrically separated electrode. Our results prove that the channels do not leak with over 1 MPa of applied pressure after a 24 h storage time, and the electrode exhibits capacitive behavior with a finite parallel resistance in the upper MΩ range for up to a 6.3Vdc bias. These data thus allow us to overcome the barrier that has barred nanofluidic progress for the last decade, namely, the development of nanometer scale well-defined channels with embedded metallic materials for far-reaching applications such as the exquisite manipulation of biomolecules.

  14. Device Fabrication and Probing of Discrete Carbon Nanostructures

    KAUST Repository

    Batra, Nitin M

    2015-05-06

    Device fabrication on multi walled carbon nanotubes (MWCNTs) using electrical beam lithography (EBL), electron beam induced deposition (EBID), ion beam induced deposition (IBID) methods was carried out, followed by device electrical characterization using a conventional probe station. A four-probe configuration was utilized to measure accurately the electrical resistivity of MWCNTs with similar results obtained from devices fabricated by different methods. In order to reduce the contact resistance of the beam deposited platinum electrodes, single step vacuum thermal annealing was performed. Microscopy and spectroscopy were carried out on the beam deposited electrodes to follow the structural and chemical changes occurring during the vacuum thermal annealing. For the first time, a core-shell type structure was identified on EBID Pt and IBID Pt annealed electrodes and analogous free standing nanorods previously exposed to high temperature. We believe this observation has important implications for transport properties studies of carbon materials. Apart from that, contamination of carbon nanostructure, originating from the device fabrication methods, was also studied. Finally, based on the observations of faster processing time together with higher yield and flexibility for device preparation, we investigated EBID to fabricate devices for other discrete carbon nanostructures.

  15. Asymmetric Supercapacitor Electrodes and Devices.

    Science.gov (United States)

    Choudhary, Nitin; Li, Chao; Moore, Julian; Nagaiah, Narasimha; Zhai, Lei; Jung, Yeonwoong; Thomas, Jayan

    2017-06-01

    The world is recently witnessing an explosive development of novel electronic and optoelectronic devices that demand more-reliable power sources that combine higher energy density and longer-term durability. Supercapacitors have become one of the most promising energy-storage systems, as they present multifold advantages of high power density, fast charging-discharging, and long cyclic stability. However, the intrinsically low energy density inherent to traditional supercapacitors severely limits their widespread applications, triggering researchers to explore new types of supercapacitors with improved performance. Asymmetric supercapacitors (ASCs) assembled using two dissimilar electrode materials offer a distinct advantage of wide operational voltage window, and thereby significantly enhance the energy density. Recent progress made in the field of ASCs is critically reviewed, with the main focus on an extensive survey of the materials developed for ASC electrodes, as well as covering the progress made in the fabrication of ASC devices over the last few decades. Current challenges and a future outlook of the field of ASCs are also discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Ultrasmooth, extremely deformable and shape recoverable Ag nanowire embedded transparent electrode.

    Science.gov (United States)

    Nam, Sanggil; Song, Myungkwan; Kim, Dong-Ho; Cho, Byungjin; Lee, Hye Moon; Kwon, Jung-Dae; Park, Sung-Gyu; Nam, Kee-Seok; Jeong, Yongsoo; Kwon, Se-Hun; Park, Yun Chang; Jin, Sung-Ho; Kang, Jae-Wook; Jo, Sungjin; Kim, Chang Su

    2014-04-25

    Transparent electrodes have been widely used in electronic devices such as solar cells, displays, and touch screens. Highly flexible transparent electrodes are especially desired for the development of next generation flexible electronic devices. Although indium tin oxide (ITO) is the most commonly used material for the fabrication of transparent electrodes, its brittleness and growing cost limit its utility for flexible electronic devices. Therefore, the need for new transparent conductive materials with superior mechanical properties is clear and urgent. Ag nanowire (AgNW) has been attracting increasing attention because of its effective combination of electrical and optical properties. However, it still suffers from several drawbacks, including large surface roughness, instability against oxidation and moisture, and poor adhesion to substrates. These issues need to be addressed before wide spread use of metallic NW as transparent electrodes can be realized. In this study, we demonstrated the fabrication of a flexible transparent electrode with superior mechanical, electrical and optical properties by embedding a AgNW film into a transparent polymer matrix. This technique can produce electrodes with an ultrasmooth and extremely deformable transparent electrode that have sheet resistance and transmittance comparable to those of an ITO electrode.

  17. $MNO_2$ catalyzed carbon electrodes for dioxygen reduction in concentrated alkali

    OpenAIRE

    Manoharan, R; Shulka, AK

    1984-01-01

    A process to deposit $\\gamma-MnO_2$ catalytic oxide onto coconut-shell charcoal substrate is described. Current-potential curves for electroreduction of dioxygen with electrodes fabricated from this catalyzed substrate are obtained in 6M KOH under ambient conditions. The performance of these electrodes is competitive with platinized carbon electrodes.

  18. Ionic polymer metal composites with polypyrrole-silver electrodes

    Science.gov (United States)

    Cellini, F.; Grillo, A.; Porfiri, M.

    2015-03-01

    Ionic polymer metal composites (IPMCs) are a class of soft active materials that are finding increasing application in robotics, environmental sensing, and energy harvesting. In this letter, we demonstrate the fabrication of IPMCs via in-situ photoinduced polymerization of polypyrrole-silver electrodes on an ionomeric membrane. The composition, morphology, and sheet resistance of the electrodes are extensively characterized through a range of experimental techniques. We experimentally investigate IPMC electrochemistry through electrochemical impedance spectroscopy, and we propose a modified Randle's model to interpret the impedance spectrum. Finally, we demonstrate in-air dynamic actuation and sensing and assess IPMC performance against more established fabrication methods. Given the simplicity of the process and the short time required for the formation of the electrodes, we envision the application of our technique in the development of a rapid prototyping technology for IPMCs.

  19. Design of lithium cobalt oxide electrodes with high thermal conductivity and electrochemical performance using carbon nanotubes and diamond particles

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eungje; Salgado, Ruben Arash; Lee, Byeongdu; Sumant, Anirudha V.; Rajh, Tijana; Johnson, Christopher; Balandin, Alexander A.; Shevchenko, Elena V.

    2018-04-01

    Thermal management remains one of the major challenges in the design of safe and reliable Li-ion batteries. We show that composite electrodes assembled from commercially available 100 μm long carbon nanotubes (CNTs) and LiCoO2 (LCO) particles demonstrate the in-plane thermal conductivity of 205.8 W/m*K. This value exceeds the thermal conductivity of dry conventional laminated electrodes by about three orders of magnitude. The cross-plane thermal conductivity of CNT-based electrodes is in the same range as thermal conductivities of conventional laminated electrodes. The CNT-based electrodes demonstrate a similar capacity to conventional laminated design electrodes, but revealed a better rate performance and stability. The introduction of diamond particles into CNT-based electrodes further improves the rate performance. Our lightweight, flexible electrode design can potentially be a general platform for fabricating polymer binder- and aluminum and copper current collector- free electrodes from a broad range of electrochemically active materials with efficient thermal management.

  20. Metal-electrode-free Window-like Organic Solar Cells with p-Doped Carbon Nanotube Thin-film Electrodes

    Science.gov (United States)

    Jeon, Il; Delacou, Clement; Kaskela, Antti; Kauppinen, Esko I.; Maruyama, Shigeo; Matsuo, Yutaka

    2016-08-01

    Organic solar cells are flexible and inexpensive, and expected to have a wide range of applications. Many transparent organic solar cells have been reported and their success hinges on full transparency and high power conversion efficiency. Recently, carbon nanotubes and graphene, which meet these criteria, have been used in transparent conductive electrodes. However, their use in top electrodes has been limited by mechanical difficulties in fabrication and doping. Here, expensive metal top electrodes were replaced with high-performance, easy-to-transfer, aerosol-synthesized carbon nanotubes to produce transparent organic solar cells. The carbon nanotubes were p-doped by two new methods: HNO3 doping via ‘sandwich transfer’, and MoOx thermal doping via ‘bridge transfer’. Although both of the doping methods improved the performance of the carbon nanotubes and the photovoltaic performance of devices, sandwich transfer, which gave a 4.1% power conversion efficiency, was slightly more effective than bridge transfer, which produced a power conversion efficiency of 3.4%. Applying a thinner carbon nanotube film with 90% transparency decreased the efficiency to 3.7%, which was still high. Overall, the transparent solar cells had an efficiency of around 50% that of non-transparent metal-based solar cells (7.8%).

  1. Nickel oxide electrode interlayer in CH3 NH3 PbI3 perovskite/PCBM planar-heterojunction hybrid solar cells.

    Science.gov (United States)

    Jeng, Jun-Yuan; Chen, Kuo-Cheng; Chiang, Tsung-Yu; Lin, Pei-Ying; Tsai, Tzung-Da; Chang, Yun-Chorng; Guo, Tzung-Fang; Chen, Peter; Wen, Ten-Chin; Hsu, Yao-Jane

    2014-06-25

    This study successfully demonstrates the application of inorganic p-type nickel oxide (NiOx ) as electrode interlayer for the fabrication of NiOx /CH3 NH3 PbI3 perovskite/PCBM PHJ hybrid solar cells with a respectable solar-to-electrical PCE of 7.8%. The better energy level alignment and improved wetting of the NiOx electrode interlayer significantly enhance the overall photovoltaic performance. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Fabrication of Ultra-thin Color Films with Highly Absorbing Media Using Oblique Angle Deposition.

    Science.gov (United States)

    Yoo, Young Jin; Lee, Gil Ju; Jang, Kyung-In; Song, Young Min

    2017-08-29

    Ultra-thin film structures have been studied extensively for use as optical coatings, but performance and fabrication challenges remain.  We present an advanced method for fabricating ultra-thin color films with improved characteristics. The proposed process addresses several fabrication issues, including large area processing. Specifically, the protocol describes a process for fabricating ultra-thin color films using an electron beam evaporator for oblique angle deposition of germanium (Ge) and gold (Au) on silicon (Si) substrates.  Film porosity produced by the oblique angle deposition induces color changes in the ultra-thin film. The degree of color change depends on factors such as deposition angle and film thickness. Fabricated samples of the ultra-thin color films showed improved color tunability and color purity. In addition, the measured reflectance of the fabricated samples was converted into chromatic values and analyzed in terms of color. Our ultra-thin film fabricating method is expected to be used for various ultra-thin film applications such as flexible color electrodes, thin film solar cells, and optical filters. Also, the process developed here for analyzing the color of the fabricated samples is broadly useful for studying various color structures.

  3. Fabrication, characterization and electrocatalytic application of a lead dioxide electrode with porous titanium substrate

    International Nuclear Information System (INIS)

    Zhang, Wenli; Kong, Haishen; Lin, Haibo; Lu, Haiyan; Huang, Weimin; Yin, Jian; Lin, Zheqi; Bao, Jinpeng

    2015-01-01

    In this study, PbO 2 electrode was prepared on porous Ti/SnO 2 –Sb 2 O 5 substrate (denoted as 3D-Ti/PbO 2 electrode), and its electrochemical properties were investigated in detail. The electrodeposition mechanism of 3D-Ti/PbO 2 electrode was investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Scanning electron microscope (SEM) result showed that the 3D-Ti/PbO 2 electrode possessed porous structure when it was electrodeposited for time less than 30 min. The 3D-Ti/PbO 2 electrode prepared for 10 min had more active sites than the lead dioxide electrode electrodeposited on planar titanium substrate (denoted as 2D-Ti/PbO 2 electrode) and its electrochemical porosity is about 54%. The embedded structure between porous Ti/SnO 2 –Sb 2 O 5 substrate and PbO 2 coating increased the stability of 3D-Ti/PbO 2 electrode. The service life of 3D-Ti/PbO 2 electrode was about 350 h which was much longer than 2D-Ti/PbO 2 electrode. What's more, 3D-Ti/PbO 2 electrode had better electrocatalytic activity towards phenol degradation than 2D-Ti/PbO 2 electrode. - Highlights: • 3D-Ti/PbO 2 electrode was prepared on a porous titanium substrate. • The electrochemical active surface area was investigated. • The activity of 3D-Ti/PbO 2 electrode towards phenol oxidation was investigated. • 3D-Ti/PbO 2 electrode shows superior electrocatalytic activity.

  4. High Reversibility of Soft Electrode Materials in All-solid-state Batteries

    Directory of Open Access Journals (Sweden)

    Atsushi eSakuda

    2016-05-01

    Full Text Available All-solid-state batteries using inorganic solid electrolytes (SEs are considered to be ideal batteries for electric vehicles (EVs and plug-in hybrid electric vehicles (PHEVs because they are potentially safer than conventional lithium-ion batteries (LIBs. In addition, all-solid-state batteries are expected to have long battery lives owing to the inhibition of chemical side reactions because only lithium ions move through the typically used inorganic SEs. The development of high-energy (more than 300 Wh kg-1 secondary batteries has been eagerly anticipated for years. The application of high-capacity electrode active materials is essential for fabricating such batteries. Recently, we proposed metal polysulfides as new electrode materials. These materials show higher conductivity and density than sulfur, which is advantageous for fabricating batteries with relatively higher energy density. Lithium niobium sulfides, such as Li3NbS4, have relatively high density, conductivity, and rate capability among metal polysulfide materials, and batteries with these materials have capacities high enough to potentially exceed the gravimetric energy density of conventional LIBs.Favorable solid-solid contact between the electrode and electrolyte particles is a key factor for fabricating high performance all-solid-state batteries. Conventional oxide-based positive electrode materials tend to be given rise to cracks during fabrication and/or charge-discharge processes. Here we report all-solid-state cells using lithium niobium sulfide as a positive electrode material, where favorable solid-solid contact was established by using lithium sulfide electrode materials because of their high processability. Cracks were barely observed in the electrode particles in the all-solid-state cells before or after charging and discharging with a high capacity of approx. 400 mAh g-1, suggesting that the lithium niobium sulfide electrode charged and discharged without experiencing

  5. Fabrication of a biocomposite reinforced with hydrophilic eggshell proteins

    International Nuclear Information System (INIS)

    Kim, GeunHyung; Min, Taijin; Park, Su A; Kim, Wan Doo; Koh, Young Ho

    2007-01-01

    Soluble eggshell proteins were used as a reinforcing material of electrospun micro/nanofibers for tissue engineering. A biocomposite composed of poly(ε-caprolactone) (PCL) micro/nanofibers and soluble eggshell protein was fabricated with a two-step fabrication method, which is an electrospinning process followed by an air-spraying process. To achieve a stable electrospinning process, we used an auxiliary cylindrical electrode connected with a spinning nozzle. PCL biocomposite was characterized in water contact angle and mechanical properties as well as cell proliferation for its application as a tissue engineering material. It showed an improved hydrophilic characteristic compared with that of a micro/nanofiber web generated from a pure PCL solution using a typical electrospinning process. Moreover, the fabricated biocomposite had good mechanical properties compared to a typical electrospun micro/nanofiber mat. The fabricated biocomposite made human dermal fibroblasts grow better than pure PCL. From the results, the reinforced polymeric micro/nanofiber scaffold can be easily achieved with these modified processes

  6. Neodymium conversion layers formed on zinc powder for improving electrochemical properties of zinc electrodes

    International Nuclear Information System (INIS)

    Zhu Liqun; Zhang Hui; Li Weiping; Liu Huicong

    2008-01-01

    Zinc powder, as active material of secondary alkaline zinc electrode, can greatly limit the performance of zinc electrode due to corrosion and dendritic growth of zinc resulting in great capacity-loss and short cycle life of the electrode. This work is devoted to modification study of zinc powder with neodymium conversion films coated directly onto it using ultrasonic immersion method for properties improvement of zinc electrodes. Scanning electron microscopy and other characterization techniques are applied to prove that neodymium conversion layers are distributing on the surface of modified zinc powder. The electrochemical performance of zinc electrodes made of such modified zinc powder is investigated through potentiodynamic polarization, potentiostatic polarization and cyclic voltammetry. The neodymium conversion films are found to have a significant effect on inhibition corrosion capability of zinc electrode in a beneficial way. It is also confirmed that the neodymium conversion coatings can obviously suppress dendritic growth of zinc electrode, which is attributed to the amelioration of deposition state of zinc. Moreover, the results of cyclic voltammetry reveal that surface modification of zinc powder enhances the cycle performance of the electrode mainly because the neodymium conversion films decrease the amounts of ZnO or Zn(OH) 2 dissolved in the electrolyte

  7. Microchip-based electrochemical detection using a 3-D printed wall-jet electrode device.

    Science.gov (United States)

    Munshi, Akash S; Martin, R Scott

    2016-02-07

    Three dimensional (3-D) printing technology has evolved dramatically in the last few years, offering the capability of printing objects with a variety of materials. Printing microfluidic devices using this technology offers various advantages such as ease and uniformity of fabrication, file sharing between laboratories, and increased device-to-device reproducibility. One unique aspect of this technology, when used with electrochemical detection, is the ability to produce a microfluidic device as one unit while also allowing the reuse of the device and electrode for multiple analyses. Here we present an alternate electrode configuration for microfluidic devices, a wall-jet electrode (WJE) approach, created by 3-D printing. Using microchip-based flow injection analysis, we compared the WJE design with the conventionally used thin-layer electrode (TLE) design. It was found that the optimized WJE system enhances analytical performance (as compared to the TLE design), with improvements in sensitivity and the limit of detection. Experiments were conducted using two working electrodes - 500 μm platinum and 1 mm glassy carbon. Using the 500 μm platinum electrode the calibration sensitivity was 16 times higher for the WJE device (as compared to the TLE design). In addition, use of the 1 mm glassy carbon electrode led to limit of detection of 500 nM for catechol, as compared to 6 μM for the TLE device. Finally, to demonstrate the versatility and applicability of the 3-D printed WJE approach, the device was used as an inexpensive electrochemical detector for HPLC. The number of theoretical plates was comparable to the use of commercially available UV and MS detectors, with the WJE device being inexpensive to utilize. These results show that 3-D-printing can be a powerful tool to fabricate reusable and integrated microfluidic detectors in configurations that are not easily achieved with more traditional lithographic methods.

  8. A flexible capacitive tactile sensing array with floating electrodes

    International Nuclear Information System (INIS)

    Cheng, M-Y; Huang, X-H; Ma, C-W; Yang, Y-J

    2009-01-01

    In this work, we present the development of a capacitive tactile sensing array realized by using MEMS fabrication techniques and flexible printed circuit board (FPCB) technologies. The sensing array, which consists of two micromachined polydimethlysiloxane (PDMS) structures and a FPCB, will be used as the artificial skin for robot applications. Each capacitive sensing element comprises two sensing electrodes and a common floating electrode. The sensing electrodes and the metal interconnect for signal scanning are implemented on the FPCB, while the floating electrode is patterned on one of the PDMS structures. This special design can effectively reduce the complexity of the device structure and thus makes the device highly manufacturable. The characteristics of the devices with different dimensions are measured and discussed. The corresponding scanning circuits are also designed and implemented. The tactile images induced by the PMMA stamps of different shapes are also successfully captured by a fabricated 8 × 8 array

  9. Solution-Processable transparent conducting electrodes via the self-assembly of silver nanowires for organic photovoltaic devices.

    Science.gov (United States)

    Tugba Camic, B; Jeong Shin, Hee; Hasan Aslan, M; Basarir, Fevzihan; Choi, Hyosung

    2018-02-15

    Solution-processed transparent conducting electrodes (TCEs) were fabricated via the self-assembly deposition of silver nanowires (Ag NWs). Glass substrates modified with (3-aminopropyl)triethoxysilane (APTES) and (3-mercaptopropyl)trimethoxysilane (MPTES) were coated with Ag NWs for various deposition times, leading to three different Ag NWs samples (APTES-Ag NWs (PVP), MPTES-Ag NWs (PVP), and APTES-Ag NWs (COOH)). Controlling the deposition time produced Ag NWs monolayer thin films with different optical transmittance and sheet resistance. Post-annealing treatment improved their electrical conductivity. The Ag NWs films were successfully characterized using UV-Vis spectroscopy, field emission scanning electron microscopy, optical microscopy and four-point probe. Three Ag NWs films exhibited low sheet resistance of 4-19Ω/sq and high optical transmittance of 65-81% (at 550nm), which are comparable to those of commercial ITO electrode. We fabricated an organic photovoltaic device by using Ag NWs as the anode instead of ITO electrode, and optimized device with Ag NWs exhibited power conversion efficiency of 1.72%. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Method for making thin carbon foam electrodes

    Science.gov (United States)

    Pekala, Richard W.; Mayer, Steven T.; Kaschmitter, James L.; Morrison, Robert L.

    1999-01-01

    A method for fabricating thin, flat carbon electrodes by infiltrating highly porous carbon papers, membranes, felts, metal fibers/powders, or fabrics with an appropriate carbon foam precursor material. The infiltrated carbon paper, for example, is then cured to form a gel-saturated carbon paper, which is subsequently dried and pyrolyzed to form a thin sheet of porous carbon. The material readily stays flat and flexible during curing and pyrolyzing to form thin sheets. Precursor materials include polyacrylonitrile (PAN), polymethylacrylonitrile (PMAN), resorcinol/formaldehyde, catechol/formaldehyde, phenol/formaldehyde, etc., or mixtures thereof. These thin films are ideal for use as high power and energy electrodes in batteries, capacitors, and fuel cells, and are potentially useful for capacitive deionization, filtration and catalysis.

  11. Etching holes in graphene supercapacitor electrodes for faster performance

    International Nuclear Information System (INIS)

    Ervin, Matthew H

    2015-01-01

    Graphene is being widely investigated as a material to replace activated carbon in supercapacitor (electrochemical capacitor) electrodes. Supercapacitors have much higher energy density, but are typically slow devices (∼0.1 Hz) compared to other types of capacitors. Here, top-down semiconductor processing has been applied to graphene-based electrodes in order to fabricate ordered arrays of holes through the graphene electrodes. This is demonstrated to increase the speed of the electrodes by reducing the ionic impedance through the electrode thickness. This approach may also be applicable to speeding up other types of devices, such as batteries and sensors, that use porous electrodes. (special)

  12. Gas sensing performance at room temperature of nanogap interdigitated electrodes for detection of acetone at low concentration

    NARCIS (Netherlands)

    Minh, Q. Nguyen; Tong, H.D.; Kuijk, A.; van de Bent, F.; Beekman, Pepijn; Van Rijn, C. J.M.

    2017-01-01

    A facile approach for the fabrication of large-scale interdigitated nanogap electrodes (nanogap IDEs) with a controllable gap was demonstrated with conventional micro-fabrication technology to develop chemocapacitors for gas sensing applications. In this work, interdigitated nanogap electrodes

  13. A flexible and disposable battery powered by bacteria using eyeliner coated paper electrodes.

    Science.gov (United States)

    Veerubhotla, Ramya; Das, Debabrata; Pradhan, Debabrata

    2017-08-15

    Herein, an environment friendly paper-based biobattery is demonstrated that yields a power of 12.5W/m 3 . Whatman filter papers were used not only as support for electrode fabrication but also as separator of the biobattery. To provide electrical conductivity to the paper-based cathode and anode, commercially available eyeliner containing carbon nanoparticles and Fe 3 O 4 was directly employed as conductive ink without any binder. With an instant start-up, the as-fabricated biocompatible electrodes could hold bacteria in an active form at the anode allowing chemical oxidation of organic fuel producing current. The facile process delineated here can be employed for the tailored electrode fabrication of various flexible energy harnessing devices. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Carbon and graphene double protection strategy to improve the SnOx electrode performance anodes for lithium-ion batteries

    Science.gov (United States)

    Zhu, Jian; Lei, Danni; Zhang, Guanhua; Li, Qiuhong; Lu, Bingan; Wang, Taihong

    2013-05-01

    SnOx is a promising high-capacity anode material for lithium-ion batteries (LIBs), but it usually exhibits poor cycling stability because of its huge volume variation during the lithium uptake and release process. In this paper, SnOx carbon nanofibers (SnOx@CNFs) are firstly obtained in the form of a nonwoven mat by electrospinning followed by calcination in a 0.02 Mpa environment at 500 °C. Then we use a simple mixing method for the synthesis of SnOx@CNF@graphene (SnOx@C@G) nanocomposite. By this technique, the SnOx@CNFs can be homogeneously deposited in graphene nanosheets (GNSs). The highly scattered SnOx@C@G composite exhibits enhanced electrochemical performance as anode material for LIBs. The double protection strategy to improve the electrode performance through producing SnOx@C@G composites is versatile. In addition, the double protection strategy can be extended to the fabrication of various types of composites between metal oxides and graphene nanomaterials, possessing promising applications in catalysis, sensing, supercapacitors and fuel cells.SnOx is a promising high-capacity anode material for lithium-ion batteries (LIBs), but it usually exhibits poor cycling stability because of its huge volume variation during the lithium uptake and release process. In this paper, SnOx carbon nanofibers (SnOx@CNFs) are firstly obtained in the form of a nonwoven mat by electrospinning followed by calcination in a 0.02 Mpa environment at 500 °C. Then we use a simple mixing method for the synthesis of SnOx@CNF@graphene (SnOx@C@G) nanocomposite. By this technique, the SnOx@CNFs can be homogeneously deposited in graphene nanosheets (GNSs). The highly scattered SnOx@C@G composite exhibits enhanced electrochemical performance as anode material for LIBs. The double protection strategy to improve the electrode performance through producing SnOx@C@G composites is versatile. In addition, the double protection strategy can be extended to the fabrication of various types of

  15. Conformal coating of Ni(OH)2 nanoflakes on carbon fibers by chemical bath deposition for efficient supercapacitor electrodes

    KAUST Repository

    Alhebshi, Nuha

    2013-01-01

    A novel supercapacitor electrode structure has been developed in which a uniform and conformal coating of nanostructured Ni(OH)2 flakes on carbon microfibers is deposited in situ by a simple chemical bath deposition process at room temperature. The microfibers conformally coated with Ni(OH) 2 nanoflakes exhibit five times higher specific capacitance compared to planar (non-conformal) Ni(OH)2 nanoflake electrodes prepared by drop casting of Ni(OH)2 powder on the carbon microfibers (1416 F g-1vs. 275 F g-1). This improvement in supercapacitor performance can be ascribed to the preservation of the three-dimensional structure of the current collector, which is a fibrous carbon fabric, even after the conformal coating of Ni(OH)2 nanoflakes. The 3-D network morphology of the fibrous carbon fabric leads to more efficient electrolyte penetration into the conformal electrode, allowing the ions to have greater access to active reaction sites. Cyclic stability testing of the conformal and planar Ni(OH)2 nanoflake electrodes, respectively, reveals 34% and 62% drop in specific capacitance after 10 000 cycles. The present study demonstrates the crucial effect that electrolyte penetration plays in determining the pseudocapacitive properties of the supercapacitor electrodes. © 2013 The Royal Society of Chemistry.

  16. Electrochemical characterization of silver nanorod electrodes prepared by oblique angle deposition

    Energy Technology Data Exchange (ETDEWEB)

    Tang, X-J [Department of Physics and Astronomy, Nanoscale Science and Engineering Center, University of Georgia, Athens, GA 30602 (United States); Zhang, G [Department of Biological and Agriculture Engineering, Nanoscale Science and Engineering Center, University of Georgia, Athens, GA 30602 (United States); Zhao, Y-P [Department of Physics and Astronomy, Nanoscale Science and Engineering Center, University of Georgia, Athens, GA 30602 (United States)

    2006-09-14

    Ag nanorod electrodes with different nanorod lengths are fabricated by a simple vacuum deposition technique, oblique angle deposition (OAD). The as-grown Ag nanorods are aligned on the substrate and have a diameter of {approx}60-70 nm, a density of {approx}200-300 x 10{sup 7} cm{sup -2}, and a tilting angle of {approx}70 deg. -80 deg. with respect to the surface normal. The electrochemical behaviours of the Ag nanorod electrode are characterized by cyclic voltammetry at various scan rates with comparison to an Ag thin-film electrode. The capacitive current is found to be proportional to the actual surface area, and the faradic redox current also increases monotonically with the surface area of the nanorod electrodes, but the increase is not as significant as that of the capacitive current due to the diffusion layer overlapping for the highly compacted nanorods. This indicates that the Ag nanorod electrode could improve the electrolytic sensor for amperometric response measurements, especially for the bimolecular measurements due to the biocompatibility of Ag. The high capacitance also suggests a promising usage of the developed nanostructures for battery and energy storage applications.

  17. A Novel Percutaneous Electrode Implant for Improving Robustness in Advanced Myoelectric Control

    Directory of Open Access Journals (Sweden)

    Janne M. Hahne

    2016-03-01

    Full Text Available Despite several decades of research, electrically powered hand and arm prostheses are still controlled with very simple algorithms that process the surface electromyogram (EMG of remnant muscles to achieve control of one prosthetic function at a time. More advanced machine learning methods have shown promising results under laboratory conditions. However, limited robustness has largely prevented the transfer of these laboratory advances to clinical applications. In this paper, we introduce a novel percutaneous EMG electrode to be implanted chronically with the aim of improving the reliability of EMG detection in myoelectric control. The proposed electrode requires a minimally invasive procedure for its implantation, similar to a cosmetic micro-dermal implant. Moreover, being percutaneous, it does not require power and data telemetry modules. Four of these electrodes were chronically implanted in the forearm of an able-bodied human volunteer for testing their characteristics. The implants showed significantly lower impedance and greater robustness against mechanical interference than traditional surface EMG electrodes used for myoelectric control. Moreover, the EMG signals detected by the proposed systems allowed more stable control performance across sessions in different days than that achieved with classic EMG electrodes. In conclusion, the proposed implants may be a promising interface for clinically available prostheses.

  18. Fabrication of fuel cell electrodes and other catalytic structures

    Science.gov (United States)

    Smith, J.L.

    1987-02-11

    A porous layer of catalyst material suitable for use as an electrode in a molten carbonate fuel cell includes elongated pores substantially extending across the layer thickness. The catalyst layer is prepared by depositing particulate catalyst material into polymeric flocking on a substrate surface by a procedure such as tape casting. The loaded substrate is heated in a series of steps with rising temperatures to set the tape, thermally decompose the substrate with flocking and sinter bond the catalyst particles into a porous catalytic layer with elongated pores across its thickness. Employed as an electrode, the elongated pores provide distribution of reactant gas into contact with catalyst particles wetted by molten electrolyte. 1 fig.

  19. Fabrication of catalytic electrodes for molten carbonate fuel cells

    Science.gov (United States)

    Smith, James L.

    1988-01-01

    A porous layer of catalyst material suitable for use as an electrode in a molten carbonate fuel cell includes elongated pores substantially extending across the layer thickness. The catalyst layer is prepared by depositing particulate catalyst material into polymeric flocking on a substrate surface by a procedure such as tape casting. The loaded substrate is heated in a series of steps with rising temperatures to set the tape, thermally decompose the substrate with flocking and sinter bond the catalyst particles into a porous catalytic layer with elongated pores across its thickness. Employed as an electrode, the elongated pores provide distribution of reactant gas into contact with catalyst particles wetted by molten electrolyte.

  20. Optimization of spin-coated electrodes for electrolyte-supported solid oxide fuel cells

    International Nuclear Information System (INIS)

    Nobrega, Shayenne Diniz da; Monteiro, Natalia Kondo; Tabuti, Francisco; Fonseca, Fabio Coral; Florio, Daniel Zanetti de

    2017-01-01

    Electrodes for electrolyte-supported solid oxide fuel cells (SOFC’s) were fabricated by spin coating. Strontium-doped lanthanum manganite (LSM) cathode and nickel yttria-stabilized zirconia cermet anodes were synthesized and processed for enhanced deposition conditions. The influence of electrode microstructural parameters was investigated by a systematic experimental procedure aiming at optimized electrochemical performance of single cells. Polarization curves showed a strong dependence on both electrode thickness and sintering temperature. By a systematic control of such parameters, the performance of single cells was significantly enhanced due to decreasing of polarization resistance from 26 Ω cm² to 0.6 Ω cm² at 800°C. The results showed that spin-coated electrodes can be optimized for fast and cost effective fabrication of SOFCs. (author)

  1. Optimization of spin-coated electrodes for electrolyte-supported solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Nobrega, Shayenne Diniz da; Monteiro, Natalia Kondo; Tabuti, Francisco; Fonseca, Fabio Coral, E-mail: shaynnedn@hotmail.com, E-mail: nataliakm@usp.br, E-mail: fntabuti@ipen.br, E-mail: fabiocf@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil); Florio, Daniel Zanetti de, E-mail: daniel.florio@ufabc.edu.br [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil)

    2017-01-15

    Electrodes for electrolyte-supported solid oxide fuel cells (SOFC’s) were fabricated by spin coating. Strontium-doped lanthanum manganite (LSM) cathode and nickel yttria-stabilized zirconia cermet anodes were synthesized and processed for enhanced deposition conditions. The influence of electrode microstructural parameters was investigated by a systematic experimental procedure aiming at optimized electrochemical performance of single cells. Polarization curves showed a strong dependence on both electrode thickness and sintering temperature. By a systematic control of such parameters, the performance of single cells was significantly enhanced due to decreasing of polarization resistance from 26 Ω cm² to 0.6 Ω cm² at 800°C. The results showed that spin-coated electrodes can be optimized for fast and cost effective fabrication of SOFCs. (author)

  2. Embedded Metal Electrode for Organic-Inorganic Hybrid Nanowire Solar Cells.

    Science.gov (United States)

    Um, Han-Don; Choi, Deokjae; Choi, Ahreum; Seo, Ji Hoon; Seo, Kwanyong

    2017-06-27

    We demonstrate here an embedded metal electrode for highly efficient organic-inorganic hybrid nanowire solar cells. The electrode proposed here is an effective alternative to the conventional bus and finger electrode which leads to a localized short circuit at a direct Si/metal contact and has a poor collection efficiency due to a nonoptimized electrode design. In our design, a Ag/SiO 2 electrode is embedded into a Si substrate while being positioned between Si nanowire arrays underneath poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), facilitating suppressed recombination at the Si/Ag interface and notable improvements in the fabrication reproducibility. With an optimized microgrid electrode, our 1 cm 2 hybrid solar cells exhibit a power conversion efficiency of up to 16.1% with an open-circuit voltage of 607 mV and a short circuit current density of 34.0 mA/cm 2 . This power conversion efficiency is more than twice as high as that of solar cells using a conventional electrode (8.0%). The microgrid electrode significantly minimizes the optical and electrical losses. This reproducibly yields a superior quantum efficiency of 99% at the main solar spectrum wavelength of 600 nm. In particular, our solar cells exhibit a significant increase in the fill factor of 78.3% compared to that of a conventional electrode (61.4%); this is because of the drastic reduction in the metal/contact resistance of the 1 μm-thick Ag electrode. Hence, the use of our embedded microgrid electrode in the construction of an ideal carrier collection path presents an opportunity in the development of highly efficient organic-inorganic hybrid solar cells.

  3. Polyaniline-deposited porous carbon electrode for supercapacitor

    International Nuclear Information System (INIS)

    Chen, W.-C.; Wen, T.-C.; Teng, H.

    2003-01-01

    Electrodes for supercapacitors were fabricated by depositing polyaniline (PANI) on high surface area carbons. The chemical composition of the PANI-deposited carbon electrode was determined by X-ray photoelectron spectroscopy (XPS). Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to investigate the electrochemical properties of electrodes. An equivalent circuit was proposed to successfully fit the EIS data, and the significant contribution of pseudocapacitance from PANI was thus identified. A comparative analysis on the electrochemical properties of bare-carbon electrodes was also conducted under similar conditions. The performance of the capacitors equipped with the resulting electrodes in 1 M H 2 SO 4 was evaluated by constant current charge-discharge cycling within a potential range from 0 to 0.6 V. The PANI-deposited electrode exhibits high specific capacitance of 180 F/g, in comparison with a value of 92 F/g for the bare-carbon electrode

  4. Polymer solution, fiber mat, and nanofiber membrane-electrode-assembly therewith, and method of fabricating same

    DEFF Research Database (Denmark)

    2016-01-01

    of fibers. The fibers may further include particles of a catalyst. The fiber mat may be used to form an electrode or a membrane. In a further aspect, a fuel cell membrane-electrode-assembly has an anode electrode, a cathode electrode, and a membrane disposed between the anode electrode and the cathode...... electrode. Each of the anode electrode, the cathode electrode and the membrane may be formed with a fiber mat....

  5. Carbon in bifunctional air electrodes in alkaline solution

    International Nuclear Information System (INIS)

    Tryk, D.; Aldred, W.; Yeager, E.

    1983-01-01

    Bifunctional O 2 electrodes can be used both to reduce and to generate O 2 in rechargeable metal-air batteries and fuel cells. The factors controlling the O 2 reduction and generation reactions in gas-diffusional bifunctional O 2 electrodes are discussed. The resistance of such electrodes, as established from voltammetry curves, has been found to increase markedly during anodic polarization and to be dependent upon the electrode fabrication technique. Carbon blacks with more graphitic structure than Shawinigan black have been found to be more resistant to electro-oxidation. The further extension of cycle life of bifunctional electrodes using carbon is critically dependent on finding more oxidation-resistant carbons that at the same time have other surface properties meeting the requirements for catalyzed gas-diffusion electrodes

  6. Silver nanowire based flexible electrodes with improved properties: High conductivity, transparency, adhesion and low haze

    International Nuclear Information System (INIS)

    Kiran Kumar, A.B.V.; Wan Bae, Chang; Piao, Longhai; Kim, Sang-Ho

    2013-01-01

    Graphical abstract: This graphical abstract illustrates the schematic representation of the main drawbacks and rectifications for AgNWs based transparent electrodes. - Highlights: • Films exhibited low sheet resistance and optical properties with R s ≤ 30 Ω/□ and T ≥ 90%. • We decreased haze to 2% by controlling AgNWs length, diameter, and concentration. • We achieved good adhesion for AgNWs on PET film. • There is no significant change in resistance in the bending angle from 0° to 180°, and on twisting. - Abstract: Recent work has been focusing on solution processable transparent electrodes for various applications including solar cells and displays. As well as, the research aims majorly at silver nanowires (AgNWs) to replace ITO. We enhance the transparent electrode performance as a function of optical and mechanical properties with low sheet resistance, by controlling the AgNWs accept ratios, ink composition, and processing conditions. The nanowire network of transparent films agrees with the 2D percolation law. The film transmittance values at 550 nm are coping with a reference ITO film. Sheet resistance and haze values are suitable for flexible electronic applications. We fabricate transparent flexible film using a low-cost processing technique

  7. Silver nanowire based flexible electrodes with improved properties: High conductivity, transparency, adhesion and low haze

    Energy Technology Data Exchange (ETDEWEB)

    Kiran Kumar, A.B.V.; Wan Bae, Chang; Piao, Longhai, E-mail: piaolh@kongju.ac.kr; Kim, Sang-Ho, E-mail: sangho1130@kongju.ac.kr

    2013-08-01

    Graphical abstract: This graphical abstract illustrates the schematic representation of the main drawbacks and rectifications for AgNWs based transparent electrodes. - Highlights: • Films exhibited low sheet resistance and optical properties with R{sub s} ≤ 30 Ω/□ and T ≥ 90%. • We decreased haze to 2% by controlling AgNWs length, diameter, and concentration. • We achieved good adhesion for AgNWs on PET film. • There is no significant change in resistance in the bending angle from 0° to 180°, and on twisting. - Abstract: Recent work has been focusing on solution processable transparent electrodes for various applications including solar cells and displays. As well as, the research aims majorly at silver nanowires (AgNWs) to replace ITO. We enhance the transparent electrode performance as a function of optical and mechanical properties with low sheet resistance, by controlling the AgNWs accept ratios, ink composition, and processing conditions. The nanowire network of transparent films agrees with the 2D percolation law. The film transmittance values at 550 nm are coping with a reference ITO film. Sheet resistance and haze values are suitable for flexible electronic applications. We fabricate transparent flexible film using a low-cost processing technique.

  8. Influence of Fabricating Process on Gas Sensing Properties of ZnO Nanofiber-Based Sensors

    International Nuclear Information System (INIS)

    Xu Lei; Wang Rui; Liu Yong; Dong Liang

    2011-01-01

    ZnO nanofibers are synthesized by an electrospinning method and characterized by x-ray diffraction (XRD) and scanning electron microscopy (SEM). Two types of gas sensors are fabricated by loading these nanofibers as the sensing materials and their performances are investigated in detail. Compared with the sensors based on traditional ceramic tubes with Au electrodes (traditional sensors), the sensors fabricated by spinning ZnO nanofibers on ceramic planes with Ag-Pd electrodes (plane sensors) exhibit much higher sensing properties. The sensitivity for the plane sensors is about 30 to 100 ppm ethanol at 300°C, while the value is only 13 for the traditional sensors. The response and recovery times are about 2 and 3s for the plane sensors and are 3 and 6s for the traditional sensors, respectively. Lower minimum-detection-limit is also found for the plane sensors. These improvements are explained by considering the morphological damage in the fabricating process for traditional sensors. The results suggest that the plane sensors are more suitable to sensing investigation for higher veracity. (general)

  9. Electrochemical oxidation of nitrite on nanodiamond powder electrode

    Energy Technology Data Exchange (ETDEWEB)

    Chen, L.H.; Zang, J.B.; Wang, Y.H.; Bian, L.Y. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China)

    2008-03-10

    Nanodiamond (ND) powder electrodes were fabricated and the electrochemical properties were investigated in the solution containing nitrite in this article. This electrode exhibits substantial catalytic ability toward the oxidation of nitrite anions. The electrochemical oxidation mechanism of nitrite on the ND powder electrode is discussed. The oxidation of NaNO{sub 2} is a two-electron transfer process. The electrode reaction rate constant k is estimated to be 2.013 x 10{sup -4} cm/s and (1 - {alpha})n{sub {alpha}} is 0.1643. The peak current increases linearly with the rising of the concentration of NaNO{sub 2}. (author)

  10. Comparative Photoelectrochemical Study of PEC Solar Cell Fabricated with n-TiO2 Photo-electrodes at Different Temperatures and under Different Oxygen Flow Rates

    International Nuclear Information System (INIS)

    Mishra, P.R.; Srivastava, O.N.; Shukla, P.K.

    2006-01-01

    Photoelectrochemical splitting of water induced by solar energy for hydrogen production has been studied in the present investigation. PEC solar cell was fabricated with n-TiO 2 photo-electrodes synthesized at different oxidation temperatures e.g. 700 C, 750 C, 800 C and 850 C under oxygen flow rate 200 ml/min, 350 ml/min and 500 ml/min. The optimum oxygen flow rate for all the temperatures was found to be 350 ml/min. This is therefore kept invariant for synthesis of electrodes at different temperatures. The photo-electrochemical characterization of the PEC cell was done in the three-electrode configuration, i.e Ti/n-TiO 2 /1M-NaOH/Pt. It has been observed that the optimum values of the PEC solar cell parameters are exhibited by the solar cell employing the photo-electrodes prepared at ∼7500 C. The XRD and SEM explorations revealed that the TiO 2 prepared at ∼7500 C is in the nano-metric range (∼100-150 nm). The TiO 2 films formed at this temperature has been found to exhibit optimum PEC solar cell parameters. The PEC parameters, like photocurrent density, photo-conversion efficiency and hydrogen production rate, with this photo-electrode correspond to 0.93 mA/cm 2 , 0.472% and 4.00 l/hm 2 respectively. (authors)

  11. Electrochemical impedance measurement of a carbon nanotube probe electrode

    International Nuclear Information System (INIS)

    Inaba, Akira; Takei, Yusuke; Kan, Tetsuo; Shimoyama, Isao; Matsumoto, Kiyoshi

    2012-01-01

    We measured and analyzed the electrochemical impedance of carbon nanotube (CNT) probe electrodes fabricated through the physical separation of insulated CNT bridges. The fabricated CNT electrodes were free-standing CNTs that were completely covered with an insulator, except for their tips. Typical dimensions of the nanoelectrodes were 1–10 nm in CNT diameter, 80–300 nm in insulator diameter, 0.5–4 μm in exposed CNT length and 1–10 μm in probe length. The electrochemical impedance at frequencies ranging from 40 Hz to 1 MHz was measured in physiological saline. The measured impedance of the CNT electrode was constant at 32 MΩ at frequencies below 1 kHz and was inversely proportional to frequency at frequencies above 10 kHz. By means of comparison with the parasitic capacitive impedance of the insulator membrane, we confirmed that the electrode was sufficiently insulated such that the measured constant impedance was given by the exposed CNT tip. Consequently, we can use the CNT electrode for highly localized electrochemical impedance measurements below 1 kHz. Considering an equivalent circuit and the nanoscopic dimensions of the CNT electrode, we demonstrated that the constant impedance was governed by diffusion impedance, whereas the solution resistance, charge-transfer resistance and double-layer capacitance were negligible. (paper)

  12. Improvements in the fabrication of metallic fuels

    International Nuclear Information System (INIS)

    Tracy, D.B.; Henslee, S.P.; Dodds, N.E.; Longua, K.J.

    1989-01-01

    Argonne National Laboratory (ANL) is currently developing a new liquid-metal-cooled breeder reactor known as the Integral Fast Reactor (IFR). The IFR represents the state of the art in metal-fueled reactor technology. Improvements in the fabrication of metal fuel, discussed in this paper, will support ANL-West's (ANL-W) fully remote fuel cycle facility, which is an integral part of the IFR concept

  13. Graphene based integrated tandem supercapacitors fabricated directly on separators

    KAUST Repository

    Chen, Wei; Xia, Chuan; Alshareef, Husam N.

    2015-01-01

    It is of great importance to fabricate integrated supercapacitors with extended operation voltages as high energy density storage devices. In this work, we develop a novel direct electrode deposition on separator (DEDS) process to fabricate graphene

  14. Reduced contact resistance of a-IGZO thin film transistors with inkjet-printed silver electrodes

    Science.gov (United States)

    Chen, Jianqiu; Ning, Honglong; Fang, Zhiqiang; Tao, Ruiqiang; Yang, Caigui; Zhou, Yicong; Yao, Rihui; Xu, Miao; Wang, Lei; Peng, Junbiao

    2018-04-01

    In this study, high performance amorphous In–Ga–Zn–O (a-IGZO) TFTs were successfully fabricated with inkjet-printed silver source-drain electrodes. The results showed that increased channel thickness has an improving trend in the properties of TFTs due to the decreased contact resistance. Compared with sputtered silver TFTs, devices with printed silver electrodes were more sensitive to the thickness of active layer. Furthermore, the devices with optimized active layer showed high performances with a maximum saturation mobility of 8.73 cm2 · V‑1 · S‑1 and an average saturation mobility of 6.97 cm2 · V‑1 · S‑1, I on/I off ratio more than 107 and subthreshold swing of 0.28 V/decade, which were comparable with the analogous devices with sputtered electrodes.

  15. Strategy for improved frequency response of electric double-layer capacitors

    Science.gov (United States)

    Wada, Yoshifumi; Pu, Jiang; Takenobu, Taishi

    2015-10-01

    We propose a strategy for improving the response speed of electric double-layer capacitors (EDLCs) and electric double-layer transistors (EDLTs), based on an asymmetric structure with differently sized active materials and gate electrodes. We validate the strategy analytically by a classical calculation and experimentally by fabricating EDLCs with asymmetric Au electrodes (1:50 area ratio and 7.5 μm gap distance). The performance of the EDLCs is compared with that of conventional symmetric EDLCs. Our strategy dramatically improved the cut-off frequency from 14 to 93 kHz and this improvement is explained by fast charging of smaller electrodes. Therefore, this approach is particularly suitable to EDLTs, potentially expanding the applicability to medium speed (kHz-MHz) devices.

  16. Performance of electrodes synthesized with polyacrylonitrile-based carbon nanofibers for application in electrochemical sensors and biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Adabi, Mahdi [Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Saber, Reza [Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran (Iran, Islamic Republic of); Faridi-Majidi, Reza, E-mail: refaridi@sina.tums.ac.ir [Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran (Iran, Islamic Republic of); Faridbod, Farnoush [Science and Technology in Medicine (RCSTIM), Tehran University of Medical Sciences, Tehran, Iran. (Iran, Islamic Republic of)

    2015-03-01

    The purpose of this work was to investigate the performance of electrodes synthesized with Polyacrylonitrile-based carbon nanofibers (PAN-based CNFs). The homogenous PAN solutions with different concentrations were prepared and electrospun to acquire PAN nanofibers and then CNFs were fabricated by heat treatment. The effective parameters for the production of electrospun CNF electrode were investigated. Scanning electron microscopy (SEM) was used to characterize electrospun nanofibers. Cyclic voltammetry was applied to investigate the changes of behavior of electrospun CNF electrodes with different diameters. The structure of CNFs was also evaluated via X-ray diffraction (XRD) and Raman spectroscopy. The results exhibited that diameter of nanofibers reduced with decreasing polymer concentration and applied voltage and increasing tip-to-collector distance, while feeding rate did not have significant effect on nanofiber diameter. The investigations of electrochemical behavior also demonstrated that cyclic voltammetric response improved as diameter of CNFs electrode decreased. - Highlights: • Electrospun CNFs can be directly used as working electrode. • Cyclic voltammetric response improved as diameter of CNFs electrode decreased. • The diameter of nanofibers reduced with decreasing polymer concentration. • The diameter of nanofibers reduced with decreasing applied voltage. • The diameter of nanofibers reduced with increasing tip-to-collector distance.

  17. Performance of electrodes synthesized with polyacrylonitrile-based carbon nanofibers for application in electrochemical sensors and biosensors

    International Nuclear Information System (INIS)

    Adabi, Mahdi; Saber, Reza; Faridi-Majidi, Reza; Faridbod, Farnoush

    2015-01-01

    The purpose of this work was to investigate the performance of electrodes synthesized with Polyacrylonitrile-based carbon nanofibers (PAN-based CNFs). The homogenous PAN solutions with different concentrations were prepared and electrospun to acquire PAN nanofibers and then CNFs were fabricated by heat treatment. The effective parameters for the production of electrospun CNF electrode were investigated. Scanning electron microscopy (SEM) was used to characterize electrospun nanofibers. Cyclic voltammetry was applied to investigate the changes of behavior of electrospun CNF electrodes with different diameters. The structure of CNFs was also evaluated via X-ray diffraction (XRD) and Raman spectroscopy. The results exhibited that diameter of nanofibers reduced with decreasing polymer concentration and applied voltage and increasing tip-to-collector distance, while feeding rate did not have significant effect on nanofiber diameter. The investigations of electrochemical behavior also demonstrated that cyclic voltammetric response improved as diameter of CNFs electrode decreased. - Highlights: • Electrospun CNFs can be directly used as working electrode. • Cyclic voltammetric response improved as diameter of CNFs electrode decreased. • The diameter of nanofibers reduced with decreasing polymer concentration. • The diameter of nanofibers reduced with decreasing applied voltage. • The diameter of nanofibers reduced with increasing tip-to-collector distance

  18. Fabrication of Freestanding Sheets of Multiwalled Carbon Nanotubes (Buckypapers) for Vanadium Redox Flow Batteries and Effects of Fabrication Variables on Electrochemical Performance

    International Nuclear Information System (INIS)

    Mustafa, Ibrahim; Lopez, Ivan; Younes, Hammad; Susantyoko, Rahmat Agung; Al-Rub, Rashid Abu; Almheiri, Saif

    2017-01-01

    Typically, multiwalled carbon nanotubes (MWCNTs) are drop-casted on the surface of the underlying carbon substrates; the outcome is a randomly distributed MWCNT layers leading to uncontrollable structure and unreproducible results. Additionally, we suspect that the electrochemical response is influenced by the primary carbon-based substrate. Herein, we propose the use of freestanding sheets of MWCNTs (buckypapers, BP electrodes) as electrode materials for vanadium redox flow batteries to directly probe the electrochemical activity of MWCNTs toward VO 2+ /VO 2 + and V 2+ /V 3+ redox couples; henceforth, eliminating the need for an underlying carbon substrate. The amount of surfactant and the sonication time used during the fabrication of BP electrodes affect their morphological characteristics and electrochemical performances. Although the electrical conductivity of BP electrodes decreases with increasing surfactant amount and increasing sonication time, the heterogeneous rate constants for both redox couples increase as these fabrication variables are increased, indicating that the performance-limiting process is not electrical conductivity but the number of active sites available for the electrochemical reaction. The standard heterogeneous rate constant of the BP electrode with the highest amount of surfactant is comparable to those of state-of-the-art electrodes. Our promising results call for more research on the potential use of BP electrodes in redox flow batteries.

  19. Electrodeposited nickel-cobalt sulfide nanosheet on polyacrylonitrile nanofibers: a binder-free electrode for flexible supercapacitors

    Science.gov (United States)

    Kamran Sami, Syed; Siddiqui, Saqib; Tajmeel Feroze, Muhammad; Chung, Chan-Hwa

    2017-11-01

    To pursue high-performance energy storage devices with both high energy density and power density, one-dimensional (1D) nanostructures play a key role in the development of functional devices including energy conversion, energy storage, and environmental devices. The polyacrylonitrile (PAN) nanofibers were obtained by the versatile electrospinning method. An ultra-thin nickel-cobalt sulfide (NiCoS) layer was conformably electrodeposited on a self-standing PAN nanofibers by cyclic voltammetry to fabricate the light-weighted porous electrodes for supercapacitors. The porous web of PAN nanofibers acts as a high-surface-area scaffold with significant electrochemical performance, while the electrodeposition of metal sulfide nanosheet further enhances the specific capacitance. The fabricated NiCoS on PAN (NiCoS/PAN) nanofibers exhibits a very high capacitance of 1513 F g-1 at 5 A g-1 in 1 M potassium chloride (KCl) aqueous electrolyte with superior rate capability and excellent electrochemical stability as a hybrid electrode. The high capacitance of the NiCoS is attributed to the large surface area of the electrospun PAN nanofibers scaffold, which has offered a large number of active sites for possible redox reaction of ultra-thin NiCoS layer. Benefiting from the compositional features and electrode architectures, the hybrid electrode of NiCoS/PAN nanofibers shows greatly improved electrochemical performance with an ultra-high capacitance (1124 F g-1 at 50 A g-1). Moreover, a binder-free asymmetric supercapacitor device is also fabricated by using NiCoS/PAN nanofibers as the positive electrode and activated carbon (MSP-20) on PAN nanofibers as the negative electrode; this demonstrates high energy density of 56.904 W h kg-1 at a power density of 1.445 kW kg-1, and it still delivers the energy density of 33.3923 W h kg-1 even at higher power density of 16.5013 kW kg-1.

  20. Green preparation using black soybeans extract for graphene-based porous electrodes and their applications in supercapacitors

    Science.gov (United States)

    Chu, Hwei-Jay; Lee, Chi-Young; Tai, Nyan-Hwa

    2016-08-01

    Adopting an in situ construction strategy, green reduction of graphene oxide (GO) and the formation of an open porous structure are simultaneously completed in a one-pot process using an aqueous extract of an anthocyanin-containing plant, black soybean, as a green reducing agent. The reduced GO prepared by the aqueous extract of black soybean (BRGO), and the hydrogel of BRGO are characterized to better understand the nature of BRGO and the evolution of BRGO from GO. Graphene-based porous electrodes for supercapacitors are fabricated using the BRGO hydrogel as a primary material, and the electrochemical performance of the electrodes are further improved when the BRGO porous electrodes are treated in a microwave oven. Owing to the formation of uniformly dispersed nanoparticles on the graphene surface during the microwave treatment, the electrical conductivity of the electrodes improves by four orders of magnitude and the electroactive surface area also increases by over four times, as a consequence, the capacitance is significantly enhanced, reaching a capacitance of 268.4 F g-1 at a charging current of 0.1 A g-1.

  1. In-situ growth of high-performance all-solid-state electrode for flexible supercapacitors based on carbon woven fabric/ polyaniline/ graphene composite

    Science.gov (United States)

    Lin, Yingxi; Zhang, Haiyan; Deng, Wentao; Zhang, Danfeng; Li, Na; Wu, Qibai; He, Chunhua

    2018-04-01

    For the development of wearable electronic devices, it is crucial to develop energy storage components combining high-capacity and flexibility. Herein, an all-solid-state supercapacitor is prepared through an in-situ "growth and wrapping" method. The electrode contains polyaniline deposited on a carbon woven fabric and wrapped with a graphene-based envelop. The hybrid electrode exhibits excellent mechanical and electrochemical performance. The optimized few layer graphene wrapping layer provides for a conductive network, which effectively enhances the cycling stability as 88.9% of the starting capacitance is maintained after 5000 charge/discharge cycles. Furthermore, the assembled device delivers a high areal capacity (of 790 F cm-2) at the current density of 1 A cm-2, a high areal energy (28.21 uWh cm-2) at the power densities of 0.12 mW cm-2 and shows no significant decrease in the performance with a bending angle of 180°. This unique flexible supercapacitor thus exhibits great potential for wearable electronics.

  2. DNA-FET using carbon nanotube electrodes

    International Nuclear Information System (INIS)

    Sasaki, T K; Ikegami, A; Aoki, N; Ochiai, Y

    2006-01-01

    We demonstrate DNA field effect transistor (DNA-FET) using multiwalled carbon nanotube (MWNT) as nano-structural source and drain electrodes. The MWNT electrodes have been fabricated by focused ion-beam bombardment (FIBB). A very short channel, approximately 50 nm, was easily formed between the severed MWNT. The current-voltage (I-V) characteristics of DNA molecules between the MWNT electrodes showed hopping transport property. We have also measured the gate-voltage dependence in the I-V characteristics and found that poly DNA molecules exhibits p-type conduction. The transport of DNA-FET can be explained by two hopping lengths which depend on the range of the source-drain bias voltages

  3. High Reversibility of “Soft” Electrode Materials in All-Solid-State Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Sakuda, Atsushi, E-mail: a.sakuda@aist.go.jp; Takeuchi, Tomonari, E-mail: a.sakuda@aist.go.jp; Shikano, Masahiro; Sakaebe, Hikari; Kobayashi, Hironori [Department of Energy and Environment, Research Institute for Electrochemical Energy, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda (Japan)

    2016-05-10

    All-solid-state batteries using inorganic solid electrolytes (SEs) are considered to be ideal batteries for electric vehicles and plug-in hybrid electric vehicles because they are potentially safer than conventional lithium-ion batteries (LIBs). In addition, all-solid-state batteries are expected to have long battery life owing to the inhibition of chemical side reactions because only lithium ions move through the typically used inorganic SEs. The development of high-energy density (more than 300 Wh kg{sup −1}) secondary batteries has been eagerly anticipated for years. The application of high-capacity electrode active materials is essential for fabricating such batteries. Recently, we proposed metal polysulfides as new electrode materials. These materials show higher conductivity and density than sulfur, which is advantageous for fabricating batteries with relatively higher energy density. Lithium niobium sulfides, such as Li{sub 3}NbS{sub 4}, have relatively high density, conductivity, and rate capability among metal polysulfide materials, and batteries with these materials have capacities high enough to potentially exceed the gravimetric-energy density of conventional LIBs. Favorable solid–solid contact between the electrode and electrolyte particles is a key factor for fabricating high performance all-solid-state batteries. Conventional oxide-based positive electrode materials tend to give rise to cracks during fabrication and/or charge–discharge processes. Here, we report all-solid-state cells using lithium niobium sulfide as a positive electrode material, where favorable solid–solid contact was established by using lithium sulfide electrode materials because of their high processability. Cracks were barely observed in the electrode particles in the all-solid-state cells before or after charging and discharging with a high capacity of approximately 400 mAh g{sup −1} suggesting that the lithium niobium sulfide electrode charged and discharged without

  4. High Reversibility of “Soft” Electrode Materials in All-Solid-State Batteries

    International Nuclear Information System (INIS)

    Sakuda, Atsushi; Takeuchi, Tomonari; Shikano, Masahiro; Sakaebe, Hikari; Kobayashi, Hironori

    2016-01-01

    All-solid-state batteries using inorganic solid electrolytes (SEs) are considered to be ideal batteries for electric vehicles and plug-in hybrid electric vehicles because they are potentially safer than conventional lithium-ion batteries (LIBs). In addition, all-solid-state batteries are expected to have long battery life owing to the inhibition of chemical side reactions because only lithium ions move through the typically used inorganic SEs. The development of high-energy density (more than 300 Wh kg −1 ) secondary batteries has been eagerly anticipated for years. The application of high-capacity electrode active materials is essential for fabricating such batteries. Recently, we proposed metal polysulfides as new electrode materials. These materials show higher conductivity and density than sulfur, which is advantageous for fabricating batteries with relatively higher energy density. Lithium niobium sulfides, such as Li 3 NbS 4 , have relatively high density, conductivity, and rate capability among metal polysulfide materials, and batteries with these materials have capacities high enough to potentially exceed the gravimetric-energy density of conventional LIBs. Favorable solid–solid contact between the electrode and electrolyte particles is a key factor for fabricating high performance all-solid-state batteries. Conventional oxide-based positive electrode materials tend to give rise to cracks during fabrication and/or charge–discharge processes. Here, we report all-solid-state cells using lithium niobium sulfide as a positive electrode material, where favorable solid–solid contact was established by using lithium sulfide electrode materials because of their high processability. Cracks were barely observed in the electrode particles in the all-solid-state cells before or after charging and discharging with a high capacity of approximately 400 mAh g −1 suggesting that the lithium niobium sulfide electrode charged and discharged without experiencing

  5. High-Efficiency Graphene Photo Sensor Using a Transparent Electrode

    Institute of Scientific and Technical Information of China (English)

    LIU Tao; HUANG Zheng

    2011-01-01

    We report the first implementation of transparent electrodes in bottom-gate graphene transistors used for photo detection.Compared to conventional nontransparent electrodes,the transparent electrodes allow photons to transmit through to the graphene beneath,providing an enlarged absorption area and thereby giving rise to an enhancement of photocurrent generation.The devices are fabricated with an asymmetric metallization scheme and the experimental results show that the maximum photocurrent density using the transparent electrodes (ITO and Pd/ITO) is over two times higher than that using the nontransparent electrodes (Ti and Pd),indicating a significant enhancement in the performance of graphene photo sensors.Graphene,a single-atomic-layer of carbon atoms with a zero-gap band structure has received great attention recently.[1-4] One promising application of graphene is in high-speed photodetection,owing to its high Fermi velocity (~1/300 of the speed of light),high electrical mobility (200000 cm2/Vs for both electrons and holes) and zero-gap induced wide absorption spectrum (in the visible-to-infrared range).[5,6]%We report the first implementation of transparent electrodes in bottom-gate graphene transistors used for photo detection. Compared to conventional nontransparent electrodes, the transparent electrodes allow photons to transmit through to the graphene beneath, providing an enlarged absorption area and thereby giving rise to an enhancement of photocurrent generation. The devices are fabricated with an asymmetric metallization scheme and the experimental results show that the maximum photocurrent density using the transparent electrodes (ITO and Pd/ITO) is over two times higher than that using the nontransparent electrodes (Ti and Pd), indicating a significant enhancement in the performance of graphene photo sensors.

  6. Surface effects of electrode-dependent switching behavior of resistive random-access memory

    KAUST Repository

    Ke, Jr Jian; Wei, Tzu Chiao; Tsai, Dung Sheng; Lin, Chun-Ho; He, Jr-Hau

    2016-01-01

    of the oxygen chemisorption process was proposed to explain this electrode-dependent switching behavior. The temperature-dependent switching voltage demonstrates that the ReRAM devices fabricated with Pt electrodes have a lower activation energy

  7. Binder-free Si nanoparticles@carbon nanofiber fabric as energy storage material

    International Nuclear Information System (INIS)

    Liu, Yuping; Huang, Kai; Fan, Yu; Zhang, Qing; Sun, Fu; Gao, Tian; Wang, Zhongzheng; Zhong, Jianxin

    2013-01-01

    A nonwoven nanofiber fabric with paper-like qualities composed of Si nanoparticles and carbon as binder-free anode electrode is reported. The nanofiber fabrics are prepared by convenient electrospinning technique, in which, the Si nanoparticles are uniformly confined in the carbon nanofibers. The high strength and flexibility of the nanofiber fabrics are beneficial for alleviating the structural deformation and facilitating ion transports throughout the whole composited electrodes. Due to the absence of binder, the less weight, higher energy density, and excellent electrical conductivity anodes can be attained. These traits make the composited nanofiber fabrics excellent used as a binder-free, mechanically flexible, high energy storage anode material in the next generation of rechargeable lithium ions batteries

  8. Vanadium oxide nanowire-carbon nanotube binder-free flexible electrodes for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Perera, Sanjaya D.; Patel, Bijal; Seitz, Oliver; Ferraris, John P.; Balkus, Kenneth J. Jr. [Department of Chemistry and the Alan G. MacDiarmid Nanotech Institute, 800 West Campbell Rd, University of Texas at Dallas, Richardson, TX 75080 (United States); Nijem, Nour; Roodenko, Katy; Chabal, Yves J. [Laboratory for Surface and Nanostructure Modification, Department of Material Science and Engineering, 800 West Campbell Rd, University of Texas Dallas, Richardson, TX 75080 (United States)

    2011-10-15

    Vanadium pentoxide (V{sub 2}O{sub 5}) layered nanostructures are known to have very stable crystal structures and high faradaic activity. The low electronic conductivity of V{sub 2}O{sub 5} greatly limits the application of vanadium oxide as electrode materials and requires combining with conducting materials using binders. It is well known that the organic binders can degrade the overall performance of electrode materials and need carefully controlled compositions. In this study, we develop a simple method for preparing freestanding carbon nanotube (CNT)-V{sub 2}O{sub 5} nanowire (VNW) composite paper electrodes without using binders. Coin cell type (CR2032) supercapacitors are assembled using the nanocomposite paper electrode as the anode and high surface area carbon fiber electrode (Spectracarb 2225) as the cathode. The supercapacitor with CNT-VNW composite paper electrode exhibits a power density of 5.26 kW Kg{sup -1} and an energy density of 46.3 Wh Kg{sup -1}. (Li)VNWs and CNT composite paper electrodes can be fabricated in similar manner and show improved overall performance with a power density of 8.32 kW Kg{sup -1} and an energy density of 65.9 Wh Kg{sup -1}. The power and energy density values suggest that such flexible hybrid nanocomposite paper electrodes may be useful for high performance electrochemical supercapacitors. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Glucose Fuel Cells with a MicroChannel Fabricated on Flexible Polyimide Film

    Science.gov (United States)

    Sano, Ryohei; Fukushi, Yudai; Sasaki, Tsubasa; Mogi, Hiroshi; Koide, Syohei; Ikoma, Ryuta; Akatsuka, Wataru; Tsujimura, Seiya; Nishioka, Yasushiro

    2013-12-01

    In this work, a glucose fuel cell was fabricated using microfabrication processes assigned for microelectromechanical systems. The fuel cell was equipped with a microchannel to flow an aqueous solution of glucose. The cell was fabricated on a flexible polyimide substrate, and its porous carbon-coated aluminum (Al) electrodes of 2.8 mm in width and 11 mm in length were formed using photolithography and screen printing techniques. Porous carbon was deposited by screen printing of carbon black ink on the Al electrode surfaces in order to increase the effective electrode surface area and to absorb more enzymes on the electrode surfaces. The microchannel with a depth of 200 μm was fabricated using a hot embossing technique. A maximum power of 0.45 μW at 0.5 V that corresponds to a power density of 1.45 μW/cm2 was realized by introducing a 200 mM concentrated glucose solution at room temperature.

  10. Glucose Fuel Cells with a MicroChannel Fabricated on Flexible Polyimide Film

    International Nuclear Information System (INIS)

    Sano, Ryohei; Fukushi, Yudai; Sasaki, Tsubasa; Mogi, Hiroshi; Koide, Syohei; Ikoma, Ryuta; Nishioka, Yasushiro; Akatsuka, Wataru; Tsujimura, Seiya

    2013-01-01

    In this work, a glucose fuel cell was fabricated using microfabrication processes assigned for microelectromechanical systems. The fuel cell was equipped with a microchannel to flow an aqueous solution of glucose. The cell was fabricated on a flexible polyimide substrate, and its porous carbon-coated aluminum (Al) electrodes of 2.8 mm in width and 11 mm in length were formed using photolithography and screen printing techniques. Porous carbon was deposited by screen printing of carbon black ink on the Al electrode surfaces in order to increase the effective electrode surface area and to absorb more enzymes on the electrode surfaces. The microchannel with a depth of 200 μm was fabricated using a hot embossing technique. A maximum power of 0.45 μW at 0.5 V that corresponds to a power density of 1.45 μW/cm 2 was realized by introducing a 200 mM concentrated glucose solution at room temperature

  11. CNT/PDMS composite flexible dry electrodes for long-term ECG monitoring.

    Science.gov (United States)

    Jung, Ha-Chul; Moon, Jin-Hee; Baek, Dong-Hyun; Lee, Jae-Hee; Choi, Yoon-Young; Hong, Joung-Sook; Lee, Sang-Hoon

    2012-05-01

    We fabricated a carbon nanotube (CNT)/ polydimethylsiloxane (PDMS) composite-based dry ECG electrode that can be readily connected to conventional ECG devices, and showed its long-term wearable monitoring capability and robustness to motion and sweat. While the dispersion of CNTs in PDMS is challenging, we optimized the process to disperse untreated CNTs within PDMS by mechanical force only. The electrical and mechanical characteristics of the CNT/PDMS electrode were tested according to the concentration of CNTs and its thickness. The performances of ECG electrodes were evaluated by using 36 types of electrodes which were fabricated with different concentrations of CNTs, and with a differing diameter and thickness. The ECG signals were obtained by using electrodes of diverse sizes to observe the effects of motion and sweat, and the proposed electrode was shown to be robust to both factors. The CNT concentration and diameter of the electrodes were critical parameters in obtaining high-quality ECG signals. The electrode was shown to be biocompatible from the cytotoxicity test. A seven-day continuous wearability test showed that the quality of the ECG signal did not degrade over time, and skin reactions such as itching or erythema were not observed. This electrode could be used for the long-term measurement of other electrical biosignals for ubiquitous health monitoring including EMG, EEG, and ERG.

  12. Two – step approach of fabrication of three – dimensional reduced graphene oxide – carbon nanotubes – nickel foams hybrid as a binder – free supercapacitor electrode

    International Nuclear Information System (INIS)

    Xiong, Chuanyin; Li, Tiehu; Zhao, Tingkai; Shang, Yudong; Dang, Alei; Ji, Xianglin; Li, Hao; Wang, Jungao

    2016-01-01

    Highlights: • 3D rGO-CNTs-NF electrode is fabricated by combination of EPD and FCCVD. • EPD with excellent uniformity is an economical processing technique. • FCCVD is beneficial to obtain more compact and uniform VACNTs. • The hybrid shows a high specific capacitance of 236.18 F g −1 and a high energy density of 19.24 Wh kg −1 . • This work provides various assumptions for designing hierarchical rGO-based architecture. - Abstract: A facile method is designed to prepare 3D reduced graphene oxide (rGO) - carbon nanotubes (CNTs) - nickel foams (NF). In this research, the 3D rGO-CNTs-NF electrode is fabricated by combination of electrophoretic deposition and floating catalyst chemical vapor deposition. The vertically-aligned CNTs forests not only effectively prevent stacking of rGO sheets but also facilitate the electron transfer during the charge/discharge process and contribute to the whole capacitance. Moreover, the 3D rGO-CNTs-NF hybrid can be used directly as electrodes of supercapacitor without binder. Additionally, the hybrid shows a specific capacitance of 236.18 F g −1 which is much higher than that of the rGO - NF electrode (100.23 F g −1 ). Importantly, the energy density and power density of 3D rGO-CNTs-NF are respectively as high as 19.24 Wh kg −1 and 5398 W kg −1 , indicating that our work provides a way to design hierarchical rGO-based architecture composed of rGO, CNTs and various electroactive materials for high-performance energy storage devices.

  13. Characteristics of sputtered Al-doped ZnO films for transparent electrodes of organic thin-film transistor

    International Nuclear Information System (INIS)

    Park, Yong Seob; Kim, Han-Ki

    2011-01-01

    Aluminum-doped ZnO (AZO) thin-films were deposited with various RF powers at room temperature by radio frequency (RF) magnetron sputtering method. The electrical properties of the AZO film were improved with the increasing RF power. These results can be explained by the improvement of the crystallinity in the AZO film. We fabricated the organic thin-film transistor (OTFT) of the bottom gate structure using pentacene active and poly-4-vinyl phenol gate dielectric layers on the indium tin oxide gate electrode, and estimated the device properties of the OTFTs including drain current-drain voltage (I D -V D ), drain current-gate voltage (I D -V G ), threshold voltage (V T ), on/off ratio and field effect mobility. The AZO film that grown at 160 W RF power exhibited low resistivity (1.54 x 10 -3 Ω.cm), high crystallinity and uniform surface morphology. The pentacene thin-film transistor using the AZO film that's fabricated at 160 W RF power exhibited good device performance such as the mobility of 0.94 cm 2 /V s and the on/off ratio of ∼ 10 5 . Consequently, the performance of the OTFT such as larger field-effect carrier mobility was determined the conductivity of the AZO source/drain (S/D) electrode. AZO films prepared at room temperature by the sputtering method are suitable for the S/D electrodes in the OTFTs.

  14. Simple graphene chemiresistors as pH sensors: fabrication and characterization

    Science.gov (United States)

    Lei, Nan; Li, Pengfei; Xue, Wei; Xu, Jie

    2011-10-01

    We report the fabrication and characterization of a simple gate-free graphene device as a pH sensor. The graphene sheets are made by mechanical exfoliation. Platinum contact electrodes are fabricated with a mask-free process using a focused ion beam and then expanded by silver paint. Annealing is used to improve the electrical contact. The experiment on the fabricated graphene device shows that the resistance of the device decreases linearly with increasing pH values (in the range of 4-10) in the surrounding liquid environment. The resolution achieved in our experiments is approximately 0.3 pH in alkali environment. The sensitivity of the device is calculated as approximately 2 kΩ pH-1. The simple configuration, miniaturized size and integration ability make graphene-based sensors promising candidates for future micro/nano applications.

  15. Simple graphene chemiresistors as pH sensors: fabrication and characterization

    International Nuclear Information System (INIS)

    Lei, Nan; Li, Pengfei; Xue, Wei; Xu, Jie

    2011-01-01

    We report the fabrication and characterization of a simple gate-free graphene device as a pH sensor. The graphene sheets are made by mechanical exfoliation. Platinum contact electrodes are fabricated with a mask-free process using a focused ion beam and then expanded by silver paint. Annealing is used to improve the electrical contact. The experiment on the fabricated graphene device shows that the resistance of the device decreases linearly with increasing pH values (in the range of 4–10) in the surrounding liquid environment. The resolution achieved in our experiments is approximately 0.3 pH in alkali environment. The sensitivity of the device is calculated as approximately 2 kΩ pH −1 . The simple configuration, miniaturized size and integration ability make graphene-based sensors promising candidates for future micro/nano applications. (technical design note)

  16. Beyond Slurry-Cast Supercapacitor Electrodes: PAN/MWNT Heteromat-Mediated Ultrahigh Capacitance Electrode Sheets

    Science.gov (United States)

    Lee, Jung Han; Kim, Jeong A.; Kim, Ju-Myung; Lee, Sun-Young; Yeon, Sun-Hwa; Lee, Sang-Young

    2017-01-01

    Supercapacitors (SCs) have garnered considerable attention as an appealing power source for forthcoming smart energy era. An ultimate challenge facing the SCs is the acquisition of higher energy density without impairing their other electrochemical properties. Herein, we demonstrate a new class of polyacrylonitrile (PAN)/multi-walled carbon tube (MWNT) heteromat-mediated ultrahigh capacitance electrode sheets as an unusual electrode architecture strategy to address the aforementioned issue. Vanadium pentoxide (V2O5) is chosen as a model electrode material to explore the feasibility of the suggested concept. The heteromat V2O5 electrode sheets are produced through one-pot fabrication based on concurrent electrospraying (for V2O5 precursor/MWNT) and electrospinning (for PAN nanofiber) followed by calcination, leading to compact packing of V2O5 materials in intimate contact with MWNTs and PAN nanofibers. As a consequence, the heteromat V2O5 electrode sheets offer three-dimensionally bicontinuous electron (arising from MWNT networks)/ion (from spatially reticulated interstitial voids to be filled with liquid electrolytes) conduction pathways, thereby facilitating redox reaction kinetics of V2O5 materials. In addition, elimination of heavy metallic foil current collectors, in combination with the dense packing of V2O5 materials, significantly increases (electrode sheet-based) specific capacitances far beyond those accessible with conventional slurry-cast electrodes.

  17. Fabrication of a printed capacitive air-gap touch sensor

    Science.gov (United States)

    Lee, Sang Hoon; Seo, Hwiwon; Lee, Sangyoon

    2018-05-01

    Unlike lithography-based processes, printed electronics does not require etching, which makes it difficult to fabricate electronic devices with an air gap. In this study, we propose a method to fabricate capacitive air-gap touch sensors via printing and coating. First, the bottom electrode was fabricated on a flexible poly(ethylene terephthalate) (PET) substrate using roll-to-roll gravure printing with silver ink. Then poly(dimethylsiloxane) (PDMS) was spin coated to form a sacrificial layer. The top electrode was fabricated on the sacrificial layer by spin coating with a stretchable silver ink. The sensor samples were then put in a tetrabutylammonium (TBAF) bath to generate the air gap by removing the sacrificial layer. The capacitance of the samples was measured for verification, and the results show that the capacitance increases in proportion to the applied force from 0 to 2.5 N.

  18. Sensor employing internal reference electrode

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention concerns a novel internal reference electrode as well as a novel sensing electrode for an improved internal reference oxygen sensor and the sensor employing same.......The present invention concerns a novel internal reference electrode as well as a novel sensing electrode for an improved internal reference oxygen sensor and the sensor employing same....

  19. Cleaved-edge-overgrowth nanogap electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Luber, Sebastian M; Bichler, Max; Abstreiter, Gerhard; Tornow, Marc, E-mail: m.tornow@tu-bs.de [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall, 85748 Garching (Germany)

    2011-02-11

    We present a method to fabricate multiple metal nanogap electrodes of tailored width and distance in parallel, on the cleaved plane of a GaAs/AlGaAs heterostructure. The three-dimensional patterned structures are obtained by a combination of molecular-beam-epitaxial regrowth on a crystal facet, using the cleaved-edge-overgrowth (CEO) method, and subsequent wet selective etching and metallization steps. SEM and AFM studies reveal smooth and co-planar electrodes of width and distance of the order of 10 nm. Preliminary electrical characterization indicates electrical gap insulation in the 100 M{Omega} range with k{Omega} lead resistance. We propose our methodology to realize multiple electrode geometries that would allow investigation of the electrical conductivity of complex nanoscale objects such as branched organic molecules.

  20. Cleaved-edge-overgrowth nanogap electrodes.

    Science.gov (United States)

    Luber, Sebastian M; Bichler, Max; Abstreiter, Gerhard; Tornow, Marc

    2011-02-11

    We present a method to fabricate multiple metal nanogap electrodes of tailored width and distance in parallel, on the cleaved plane of a GaAs/AlGaAs heterostructure. The three-dimensional patterned structures are obtained by a combination of molecular-beam-epitaxial regrowth on a crystal facet, using the cleaved-edge-overgrowth (CEO) method, and subsequent wet selective etching and metallization steps. SEM and AFM studies reveal smooth and co-planar electrodes of width and distance of the order of 10 nm. Preliminary electrical characterization indicates electrical gap insulation in the 100 MΩ range with kΩ lead resistance. We propose our methodology to realize multiple electrode geometries that would allow investigation of the electrical conductivity of complex nanoscale objects such as branched organic molecules.

  1. Fabrication of an Implantable Micro-pressure Sensor to Measure Deviation Within the Cochlea

    Directory of Open Access Journals (Sweden)

    Leonardo Perez

    2013-06-01

    Full Text Available The Cochlear Implant is broadly worn by people with deep hearing damage. This device makes up an electrode array to electrically stimulate the auditory nerves. When the electrode is implanted into the inner ear by surgery, the scala tympani is ill-treated due to the strong pressure applied on the internal ear structures. To minimize this intra-cochlear trauma, it is proposed to fabricate a micro pressure-sensor and built it in the electrode array, in such a way that the pressure applied by the electrode is measured. This work selected the MEMS SU-8 Fabry-Perot interferometer-based pressure sensor. This paper describes the sensor fabrication process carried out, and explains how to integrate this sensor with the electrode array.

  2. Hydrogen substituted graphdiyne as carbon-rich flexible electrode for lithium and sodium ion batteries.

    Science.gov (United States)

    He, Jianjiang; Wang, Ning; Cui, Zili; Du, Huiping; Fu, Lin; Huang, Changshui; Yang, Ze; Shen, Xiangyan; Yi, Yuanping; Tu, Zeyi; Li, Yuliang

    2017-10-27

    Organic electrodes are potential alternatives to current inorganic electrode materials for lithium ion and sodium ion batteries powering portable and wearable electronics, in terms of their mechanical flexibility, function tunability and low cost. However, the low capacity, poor rate performance and rapid capacity degradation impede their practical application. Here, we concentrate on the molecular design for improved conductivity and capacity, and favorable bulk ion transport. Through an in situ cross-coupling reaction of triethynylbenzene on copper foil, the carbon-rich frame hydrogen substituted graphdiyne film is fabricated. The organic film can act as free-standing flexible electrode for both lithium ion and sodium ion batteries, and large reversible capacities of 1050 mAh g -1 for lithium ion batteries and 650 mAh g -1 for sodium ion batteries are achieved. The electrode also shows a superior rate and cycle performances owing to the extended π-conjugated system, and the hierarchical pore bulk with large surface area.

  3. Next generation self-shielded flux cored electrode with improved toughness for off shore oil well platform structures

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Daya; Soltis, Patrick; Narayanan, Badri; Quintana, Marie; Fox, Jeff [The Lincoln Electric Company (United States)

    2005-07-01

    Self-shielded flux cored arc welding electrodes (FCAW-S) are ideal for outdoor applications, particularly open fabrication yards where high winds are a possibility. Development work was carried out on a FCAW-S electrode for welding 70 and 80 ksi yield strength base materials with a required minimum average Charpy V-Notch (CVN) absorbed energy value of 35 ft-lb at -40 deg F in the weld metal. The effect of Al, Mg, Ti, and Zr on CVN toughness was evaluated by running a Design of Experiments approach to systematically vary the levels of these components in the electrode fill and, in turn, the weld metal. These electrodes were used to weld simulated pipe joints. Over the range of compositions tested, 0.05% Ti in the weld metal was found to be optimum for CVN toughness. Ti also had a beneficial effect on the usable voltage range. Simulated offshore joints were welded to evaluate the effect of base metal dilution, heat input, and welding procedure on the toughness of weld metal. CVN toughness was again measured at -40 deg F on samples taken from the root and the cap pass regions. The root pass impact toughness showed strong dependence on the base metal dilution and the heat input used to weld the root and fill passes. (author)

  4. Electrochemical properties of arc-black and carbon nano-balloon as electrochemical capacitor electrodes

    International Nuclear Information System (INIS)

    Sato, T; Suda, Y; Uruno, H; Takikawa, H; Tanoue, H; Ue, H; Aoyagi, N; Okawa, T; Shimizu, K

    2012-01-01

    In this study, we used two types of carbon nanomaterials, arc-black (AcB) which has an amorphous structure and carbon nano-balloon (CNB) which has a graphitic structure as electrochemical capacitor electrodes. We made a coin electrode from these carbon materials and fabricated an electric double-layer capacitor (EDLC) that sandwiches a separator between the coin electrodes. On the other hand, RuO 2 was loaded on these carbon materials, and we fabricated a pseudo-capacitor that has an ion insertion mechanism into RuO 2 . For comparison with these carbon materials, activated carbon (AC) was also used for a capacitor electrode. The electrochemical properties of all the capacitors were evaluated in 1M H 2 SO 4 aqueous solution. As a result of EDLC performance, AcB electrode had a higher specific capacitance than AC electrode at a high scan rate (≥ 100 mV/s). In the evaluation of pseudo-capacitor performance, RuO 2 -loaded CNB electrode showed a high specific capacitance of 734 F/g per RuO 2 weight.

  5. Electrode for improving electrochemical measurements in high temperature water

    International Nuclear Information System (INIS)

    Sengarsai, T.

    2005-01-01

    A silver/silver-chloride (Ag/AgCl) reference electrode was specially designed and constructed in a body of oxidized titanium for potentiometric measurements under high-temperature and high-pressure conditions. To avoid the thermal decomposition of silver-chloride, the electrode is designed to maintain the reference element at low temperature while it is still connected to high-temperature process zone via a non-isothermal electrolyte bridge. This configuration leads to the development of a thermal gradient along the length of the electrode. At room temperature, the stability of the Ag/AgCl reference electrode versus a standard calomel electrode (SCE) is maintained with an accuracy of 5 mV. The electrode's performance at high temperature and pressure (up to 300 o C and 1500 psi) was examined by measuring the potential difference against platinum, which acted as a reversible hydrogen electrode (RHE). Comparison of the experimental and theoretical values verifies the reliability and reproducibility of the electrode. Deviation from the Nernst equation is considered and related to the thermal liquid junction potential (TLJP). An empirical correction factor is used to maintain the Ag/AgCl potential within an acceptable accuracy limit of ±20 mV at high temperature. (author)

  6. Electrospun carbon nanofibers surface-grafted with vapor-grown carbon nanotubes as hierarchical electrodes for supercapacitors

    Science.gov (United States)

    Zhou, Zhengping; Wu, Xiang-Fa; Fong, Hao

    2012-01-01

    This letter reports the fabrication and electrochemical properties of electrospun carbon nanofibers surface-grafted with vapor-grown carbon nanotubes (CNTs) as hierarchical electrodes for supercapacitors. The specific capacitance of the fabricated electrodes was measured up to 185 F/g at the low discharge current density of 625 mA/g; a decrease of 38% was detected at the high discharge current density of 2.5 A/g. The morphology and microstructure of the electrodes were examined by electron microscopy, and the unique connectivity of the hybrid nanomaterials was responsible for the high specific capacitance and low intrinsic contact electric resistance of the hierarchical electrodes.

  7. Fabrication of silver nanowires and metal oxide composite transparent electrodes and their application in UV light-emitting diodes

    Science.gov (United States)

    Yan, Xingzhen; Ma, Jiangang; Xu, Haiyang; Wang, Chunliang; Liu, Yichun

    2016-08-01

    In this paper, we prepared the silver nanowires (AgNWs)/aluminum-doped zinc oxide (AZO) composite transparent conducting electrodes for n-ZnO/p-GaN heterojunction light emitting-diodes (LEDs) by drop casting AgNW networks and subsequent atomic layer deposition (ALD) of AZO at 150 °C. The contact resistances between AgNWs were dramatically reduced by pre-annealing in the vacuum chamber before the ALD of AZO. In this case, AZO works not only as the conformal passivation layer that protects AgNWs from oxidation, but also as the binding material that improves AgNWs adhesion to substrates. Due to the localized surface plasmons (LSPs) of the AgNWs resonant coupling with the ultraviolet (UV) light emission from the LEDs, a higher UV light extracting efficiency is achieved from LEDs with the AgNWs/AZO composite electrodes in comparison with the conventional AZO electrodes. Additionally, the antireflective nature of random AgNW networks in the composite electrodes caused a broad output light angular distribution, which could be of benefit to certain optoelectronic devices like LEDs and solar cells.

  8. Ferrite control--Measurement problems and solutions during stainless steel fabrication

    International Nuclear Information System (INIS)

    Pickering, E.W.

    1986-01-01

    Ferrite is one of the magnetic phases found in many grades of otherwise nonmagnetic austenitic stainless steel weldments. Control of ferrite during the fabrication of cryogenic component parts is necessary to produce a reliable product, free of cracking and microfissuring. This is accomplished by balancing compositions in order to produce a small amount of ferrite which is generally accompanied with reduced toughness. Control of ferrite is essential during the fabrication of component parts. The means to accomplish this will vary with the type of material being welded, thickness, welding process, method of measurement and fabrication procedures. An application used during the fabrication of component parts for the Fast Flux Test Facility (FFTF) required specially formulated shielded manual arc welding (SMAW) electrodes and consumable inserts. Control of ferrite measurements and shop welding procedures were essential. The special materials and techniques were used to weld Type 316 stainless steel pipe joints, 28 in. (0.71 m) in diameter. By using three lots of electrodes, each with a different ferrite level, a compatible range of ferrite was achieved throughout the layers of weld metal. By extensive use of the Schaeffler and DeLong modified constitution diagrams for stainless steel weld metal, E-16-8-2 SMAW electrodes were developed with ''0'' ferrite level. The electrodes were used during fabrication of the Liquid Metal Fast Breader Reactor (LMFBR) component parts of Type 316 stainless steel. Metallographic evaluation of laboratory specimens, control of shop welding techniques and individual laboratory training of shop welders combined to produce a quality product

  9. Highly sensitive room temperature ammonia gas sensor based on Ir-doped Pt porous ceramic electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenlong [College of pharmacy and biological engineering, Chengdu University, Chengdu, 610106 (China); Department of chemical and materials engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan (China); Liu, Yen-Yu [Department of chemical and materials engineering, Tunghai University, Taichung 407, Taiwan (China); Do, Jing-Shan, E-mail: jsdo@ncut.edu.tw [Department of chemical and materials engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan (China); Li, Jing, E-mail: lijing@cdu.edu.cn [College of pharmacy and biological engineering, Chengdu University, Chengdu, 610106 (China)

    2016-12-30

    Highlights: • Water vapors seem to hugely improve the electrochemical activity of the Pt and Pt-Ir porous ceramic electrodes. • The gas sensors based on the Pt and Pt-Ir alloy electrodes possess good sensing performances. • The reaction path of the ammonia on platinum has been discussed. - Abstract: Room temperature NH{sub 3} gas sensors based on Pt and Pt-Ir (Ir doping Pt) porous ceramic electrodes have been fabricated by both electroplating and sputtering methods. The properties of the gaseous ammonia sensors have been examined by polarization and chronoamperometry techniques. The influence of humidity on the features of the resulting sensors in the system has also been discussed, and the working potential was optimized. Water vapors seem to hugely improve the electrochemical activity of the electrode. With increasing the relative humidity, the response of the Pt-Ir(E)/Pt(S)/PCP sensor to NH{sub 3} gas could be enhanced remarkably, and the sensitivity increases from 1.14 to 12.06 μA ppm{sup −1} cm{sup −2} .Then we have also discussed the sensing mechanism of the Pt-Ir sensor and the result has been confirmed by X-ray photoelectron spectroscopy of the electrode surface before and after reaction in the end.

  10. Development of more efficient and cheaper MEA's for PEM fuel cells; Membrane-electrode-assembly

    Energy Technology Data Exchange (ETDEWEB)

    Yde Andersen, S. (IRD Fuel Cell A/S, Svendborg (Denmark)); Nilsson, M.S. (Danish Power System Aps, Charlottenlund (Denmark)); Siu, A.; Plackett, D. (Technical Univ. of Denmark. Risoe National Lab. for Sustainable Energy, Dansk Polymer Center, Roskilde (Denmark)); Li, Q. (Technical Univ. of Denmark, Dept. of Chemistry, Kgs. Lyngby (Denmark))

    2008-06-15

    The project covered 5 main areas: 1) polymer and membranes; 2) electrocatalysts; 3) gas diffusion electrodes; 4) MEAs; and 5) evaluation techniques. For the polymers, by purification of monomers and optimizing parameters, high molecular weight polybenzimidazoles have been synthesized in batches of 50 g with good reproducibility. Based on the polymer, two types of new membranes have been prepared. One is the cross-linked (covalently and acid-base) PBI blend membranes. The blend membranes were systematically characterized and show excellent properties such as very high acid doping levels, conductivity, mechanical strength and durability. The other type is composite membranes based on PBI and nanoclay. Using the modified nanoclay, good dispersion and transparent composite membranes have been achieved. For catalyst preparation, the carbon supports have been modified with thermal treatment. Improved corrosion resistance was achieved with little sacrificing of the catalytic activity. High Pt loading catalysts were prepared, based on which high performance gas diffusion electrodes were fabricated. The performance target of both cathode and anode was achieved, as evaluated by the PTFE half cell tests. New gas diffusion layer (GDL) materials have been developed and tested in different MEA configurations. Significant performance improvement has been achieved with also potential to reduce the cost. Techniques for applying micro porous layers and catalyst layers have been optimized, including tape casting, spraying, and catalyst-coated membrane (CCM). Using the developed membranes and gas diffusion electrodes, membrane-electrode assemblies (MEAs) were fabricated for both single cell and stack tests. Selection of sealing materials and design of integrated gaskets have been made for both low and high temperature MEAs. Parameters for hot-pressing such as temperature, pressure and duration were systematically studied. 44 MEAs with an active area of 256 cm{sup 2} have been prepared

  11. Solid-state supercapacitors with rationally designed heterogeneous electrodes fabricated by large area spray processing for wearable energy storage applications

    Science.gov (United States)

    Huang, Chun; Zhang, Jin; Young, Neil P.; Snaith, Henry J.; Grant, Patrick S.

    2016-01-01

    Supercapacitors are in demand for short-term electrical charge and discharge applications. Unlike conventional supercapacitors, solid-state versions have no liquid electrolyte and do not require robust, rigid packaging for containment. Consequently they can be thinner, lighter and more flexible. However, solid-state supercapacitors suffer from lower power density and where new materials have been developed to improve performance, there remains a gap between promising laboratory results that usually require nano-structured materials and fine-scale processing approaches, and current manufacturing technology that operates at large scale. We demonstrate a new, scalable capability to produce discrete, multi-layered electrodes with a different material and/or morphology in each layer, and where each layer plays a different, critical role in enhancing the dynamics of charge/discharge. This layered structure allows efficient utilisation of each material and enables conservative use of hard-to-obtain materials. The layered electrode shows amongst the highest combinations of energy and power densities for solid-state supercapacitors. Our functional design and spray manufacturing approach to heterogeneous electrodes provide a new way forward for improved energy storage devices. PMID:27161379

  12. Solid-state supercapacitors with rationally designed heterogeneous electrodes fabricated by large area spray processing for wearable energy storage applications.

    Science.gov (United States)

    Huang, Chun; Zhang, Jin; Young, Neil P; Snaith, Henry J; Grant, Patrick S

    2016-05-10

    Supercapacitors are in demand for short-term electrical charge and discharge applications. Unlike conventional supercapacitors, solid-state versions have no liquid electrolyte and do not require robust, rigid packaging for containment. Consequently they can be thinner, lighter and more flexible. However, solid-state supercapacitors suffer from lower power density and where new materials have been developed to improve performance, there remains a gap between promising laboratory results that usually require nano-structured materials and fine-scale processing approaches, and current manufacturing technology that operates at large scale. We demonstrate a new, scalable capability to produce discrete, multi-layered electrodes with a different material and/or morphology in each layer, and where each layer plays a different, critical role in enhancing the dynamics of charge/discharge. This layered structure allows efficient utilisation of each material and enables conservative use of hard-to-obtain materials. The layered electrode shows amongst the highest combinations of energy and power densities for solid-state supercapacitors. Our functional design and spray manufacturing approach to heterogeneous electrodes provide a new way forward for improved energy storage devices.

  13. Fabrication and application of boron doped diamond BDD electrode in olive mill wastewater treatment in Jordan

    Directory of Open Access Journals (Sweden)

    Inshad Jum'h

    2017-12-01

    Full Text Available A boron doped diamond (BDD electrode was employed in an electrochemical reactor to oxidize the phenolic content of Jordanian olive mill wastewater. The BDD anode was fabricated using hot filament chemical vapor deposition on niobium and the morphology of the BDD electrode was characterized using an atomic force microscope. Then, electrolysis batch runs were carried out at laboratory scale to test the effect of different process parameters, namely, initial chemical oxygen demand (COD load (72.9, 33.8, and 0.18 g/L, the addition of Na2SO4 as supporting electrolyte, and adding NaCl along with Na2SO4, on the efficiency of the treatment process. The results were reported in terms of COD, color and turbidity removal, and pH variation. The experiments revealed that electrochemical oxidation using BDD significantly reduced the COD by 85% with no supporting electrolytes. It was observed that adding Na2SO4 with NaCl brought the COD removal to higher than 90% after 7 hours of treatment for COD loads of 72.9 and 33.8 g/L, and after 2 hours for a COD load of 0.18 g/L. Likewise, color was completely removed regardless of the initial COD load. The turbidity for samples with 72.9 and 33.8 g/L as COD load reached a minimal value of 2.5 and 1 NTU respectively.

  14. Controlled atmosphere for fabrication of cermet electrodes

    Science.gov (United States)

    Ray, Siba P.; Woods, Robert W.

    1998-01-01

    A process for making an inert electrode composite wherein a metal oxide and a metal are reacted in a gaseous atmosphere at an elevated temperature of at least about 750.degree. C. The metal oxide is at least one of the nickel, iron, tin, zinc and zirconium oxides and the metal is copper, silver, a mixture of copper and silver or a copper-silver alloy. The gaseous atmosphere has an oxygen content that is controlled at about 5-3000 ppm in order to obtain a desired composition in the resulting composite.

  15. Fabricating method of gas diffusion electrode for fuel cell. Nenryo denchiyo gas kakusan denkyoku no seizo hoho

    Energy Technology Data Exchange (ETDEWEB)

    Harada, H [Yokohama (Japan)

    1994-01-28

    When the cation exchange film of the solid high polymer electrolyte fuel cell which uses the cation exchange film as the electrolyte (PEMFC) is bonded with the electrode catalyst layers for the anode and cathode, the hot-press conditions are severe and satisfactory bonding is hard to be achieved because the softening temperature of polytetrafluoroethylene used as the binder for the bonding is higher than that of the cation exchange film. This invention is concerned with a means of obtaining PEMFC which can generate high cell voltage, wherein perfluorosulfonic acid system copolymer solution or dispersed solution similar to that used for the cation exchange film is used as the binder when bonding carbon cloth or carbon paper coated with electrode catalyst layers for anode and cathode to the cation exchange film, setting of hot-pressing conditions is made easier, and the adhesion and bonding of the cation exchange film surface and the electrode catalyst layers are improved. 1 fig.

  16. Modifying cochlear implant design: advantages of placing a return electrode in the modiolus.

    Science.gov (United States)

    Ho, Steven Y; Wiet, Richard J; Richter, Claus-Peter

    2004-07-01

    A modiolar return electrode significantly increases the current flow across spiral ganglion cells into the modiolus, and may decrease the cochlear implant's power requirements. Ideal cochlear implants should maximize current flow into the modiolus to stimulate auditory neurons. Previous efforts to facilitate current flow through the modiolus included the fabrication and use of precurved electrodes designed to "hug" the modiolus and silastic positioners designed to place the electrodes closer to the modiolus. In contrast to earlier efforts, this study explores the effects of return electrode placement on current distributions in the modiolus. The effects of return electrode positioning on current flow in the modiolus were studied in a Plexiglas model of the cochlea. Results of model measurements were confirmed by measurements in the modiolus of human temporal bones. The return electrode was placed either within the modiolus, or remotely, outside the temporal bone, simulating contemporary cochlear implant configurations using monopolar stimulation. Cochlear model results clearly show that modiolar current amplitudes can be influenced significantly by the location of the return electrode, being larger when placed into the modiolus. Temporal bone data show similar findings. Voltages recorded in the modiolus are, on average, 2.8 times higher with the return electrode in the modiolus compared with return electrode locations outside the temporal bone. Placing a cochlear implant's return electrode in the modiolus should significantly reduce its power consumption. Reducing power requirements should lead to improved efficiency, safer long-term use, and longer device life.

  17. Oriented nanotube electrodes for lithium ion batteries and supercapacitors

    Science.gov (United States)

    Frank, Arthur J.; Zhu, Kai; Wang, Qing

    2013-03-05

    An electrode having an oriented array of multiple nanotubes is disclosed. Individual nanotubes have a lengthwise inner pore defined by interior tube walls which extends at least partially through the length of the nanotube. The nanotubes of the array may be oriented according to any identifiable pattern. Also disclosed is a device featuring an electrode and methods of fabrication.

  18. Catoptric electrodes: transparent metal electrodes using shaped surfaces.

    Science.gov (United States)

    Kik, Pieter G

    2014-09-01

    An optical electrode design is presented that theoretically allows 100% optical transmission through an interdigitated metallic electrode at 50% metal areal coverage. This is achieved by redirection of light incident on embedded metal electrode lines to an angle beyond that required for total internal reflection. Full-field electromagnetic simulations using realistic material parameters demonstrate 84% frequency-averaged transmission for unpolarized illumination across the entire visible spectral range using a silver interdigitated electrode at 50% areal coverage. The redirection is achieved through specular reflection, making it nonresonant and arbitrarily broadband, provided the electrode width exceeds the optical wavelength. These findings could significantly improve the performance of photovoltaic devices and optical detectors that require high-conductivity top contacts.

  19. Formation of nanotubes in poly (vinylidene fluoride): Application as solid polymer electrolyte in DSC fabricated using carbon counter electrode

    Energy Technology Data Exchange (ETDEWEB)

    Muthuraaman, B. [Department of Energy, University of Madras, Guindy campus, Chennai 600025 (India); Maruthamuthu, P., E-mail: pmaruthu@yahoo.com [Department of Energy, University of Madras, Guindy campus, Chennai 600025 (India)

    2011-09-01

    Highlights: > Incorporation of a {pi}-electron donor compound as dopant in poly(vinylidene fluoride) along with redox couple (I{sup -}/I{sub 3}{sup -}) which forms brush like nanotubes. > Investigations about the use of conducting carbon coated FTO as a durable counter electrode and its effects in DSC. > High charge separation and the channelized flow of electrons in the nanotubes in electrolyte favors stable performance. - Abstract: In the present work, we report the incorporation of 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) in poly(vinylidene fluoride) (PVDF) along with the redox couple (I{sup -}/I{sub 3}{sup -}). When ABTS, a {pi}-electron donor, is used to dope PVDF, the polymer composite forms brush-like nanotubes and has been successfully used as a solid polymer electrolyte in dye-sensitized solar cells. Under the given conditions, the electrolyte composition forms nanotubes while it is doped with ABTS, a {pi}-electron donor. With this new electrolyte, a dye-sensitized solar cell was fabricated using N3 dye adsorbed over TiO{sub 2} nanoparticles as the photoanode and conducting carbon cement coated FTO as counter electrode.

  20. Fabrication of a New Electrostatic Linear Actuator

    Science.gov (United States)

    Matsunaga, Takashi; Kondoh, Kazuya; Kumagae, Michihiro; Kawata, Hiroaki; Yasuda, Masaaki; Murata, Kenji; Yoshitake, Masaaki

    2000-12-01

    We propose a new electrostatic linear actuator with a large stroke and a new process for fabricating the actuator. A moving slider with many teeth on both sides is suspended above lower electrodes on a substrate by two bearings. A photoresist is used as a sacrificial layer. Both the slider and the bearings are fabricated by Ni electroplating. The bearings are fabricated by the self-alignment technique. Bearings with 0.6 μm clearance can be easily fabricated. All processes are performed at low temperatures up to 110°C. It is confirmed that the slider can be moved mechanically, and also can be moved by about 10 μm when a voltage pulse of 50 V is applied between the slider and the lower electrodes when the slider is upside down. However, the slider cannot move continuously because of friction. We also calculate the electrostatic force acting on one slider tooth. The simulation result shows that the reduction of the electrostatic force to the vertical direction is very important for mechanical movement of the actuator.

  1. Electrode pattern design for GaAs betavoltaic batteries

    International Nuclear Information System (INIS)

    Chen Haiyang; Yin Jianhua; Li Darang

    2011-01-01

    The sensitivities of betavoltaic batteries and photovoltaic batteries to series and parallel resistance are studied. Based on the study, an electrode pattern design principle of GaAs betavoltaic batteries is proposed. GaAs PIN junctions with and without the proposed electrode pattern are fabricated and measured under the illumination of 63 Ni. Results show that the proposed electrode can reduce the backscattering and shadowing for the beta particles from 63 Ni to increase the GaAs betavoltaic battery short circuit currents effectively but has little impact on the fill factors and ideal factors.

  2. Ti Porous Film-Supported NiCo₂S₄ Nanotubes Counter Electrode for Quantum-Dot-Sensitized Solar Cells.

    Science.gov (United States)

    Deng, Jianping; Wang, Minqiang; Song, Xiaohui; Yang, Zhi; Yuan, Zhaolin

    2018-04-17

    In this paper, a novel Ti porous film-supported NiCo₂S₄ nanotube was fabricated by the acid etching and two-step hydrothermal method and then used as a counter electrode in a CdS/CdSe quantum-dot-sensitized solar cell. Measurements of the cyclic voltammetry, Tafel polarization curves, and electrochemical impedance spectroscopy of the symmetric cells revealed that compared with the conventional FTO (fluorine doped tin oxide)/Pt counter electrode, Ti porous film-supported NiCo₂S₄ nanotubes counter electrode exhibited greater electrocatalytic activity toward polysulfide electrolyte and lower charge-transfer resistance at the interface between electrolyte and counter electrode, which remarkably improved the fill factor, short-circuit current density, and power conversion efficiency of the quantum-dot-sensitized solar cell. Under illumination of one sun (100 mW/cm²), the quantum-dot-sensitized solar cell based on Ti porous film-supported NiCo₂S₄ nanotubes counter electrode achieved a power conversion efficiency of 3.14%, which is superior to the cell based on FTO/Pt counter electrode (1.3%).

  3. Voltammetric Determination of Lead (II) and Cadmium (II) Using a Bismuth Film Electrode Modified with Mesoporous Silica Nanoparticles

    International Nuclear Information System (INIS)

    Yang, Die; Wang, Liang; Chen, Zuliang; Megharaj, Mallavarapu; Naidu, Ravi

    2014-01-01

    A new chemically modified glassy carbon electrode based on bismuth film coated mesoporous silica nanoparticles was developed and evaluated for reliable quantification of trace Pb 2+ and Cd 2+ by anodic stripping square wave voltammetry in natural water samples. Compared with conventional bismuth film electrodes or bismuth nanoparticles modified electrodes, this electrode exhibited significantly improved sensitivity and stability for Pb 2+ and Cd 2+ detection. The key experimental parameters related to the fabrication of the electrode and the voltammetric measurements were optimized on the basis of the stripping signals, where the peak currents increased linearly with the metal concentrations in a range of 2-150 μg L −1 with a detect limit of 0.2 μg L −1 for Pb 2+ , and 0.6 μg L −1 for Cd 2+ for 120s deposition. Good reproducibility was achieved on both single and equally prepared electrodes. In addition, scanning electron microscopy reveals that fibril-like bismuth structures were formed on silica nanoparticles, which could be responsible for the improved voltammetric performance due to the enhanced surface area. Finally, the developed electrode was applied to determine Pb 2+ and Cd 2+ in water samples, indicating that this electrode was sensitive, reliable and effective for the simultaneous determination of Pb 2+ and Cd 2+

  4. Improving electrochemical performance of flexible thin film electrodes with micropillar array structures

    International Nuclear Information System (INIS)

    Myllymaa, Sami; Myllymaa, Katja; Lappalainen, Reijo; Pirinen, Sami; Pakkanen, Tapani A; Pakkanen, Tuula T; Suvanto, Mika

    2012-01-01

    For reliable function, bioelectrodes require a stable, low-impedance contact with the target tissue. In biosignal monitoring applications, in which low ion current densities are recorded, it is important to minimize electrode contact impedances. Recently, several flexible electrode concepts have been introduced for single-patient use. These electrodes conform well on the patient skin enabling an artifact-free, low-noise recording. In this study, polydimethylsiloxane (PDMS) elastomer was used as an electrode substrate material. One half of the substrates were surface-patterned with micropillars produced by using micro-working robot-made mold inserts and a replica molding technique. The substrates were subsequently coated with thin films of titanium (Ti), copper (Cu), silver (Ag) or silver–silver chloride (Ag/AgCl). Electrical impedance spectroscopy studies revealed that the micropillar structure caused statistically significant reductions in impedance modulus and phase for each coating candidate. The relative effect was strongest for pure Ag, for which the values of the real part (Z′) and the imaginary part (Z″) decreased to less than one tenth of the original (smooth) values. However, Ag/AgCl, as expected, proved to be a superior electrode material. Coating with chloride drastically reduced the interfacial impedance compared to pure Ag. Further significant reduction was achieved by the micropillars, since the phase angle declined from 10–13° (for smooth samples, f < 50 Hz) to a value as low as 5°. Equivalent circuit modeling was used to obtain a better understanding of phenomena occurring at various electrode–electrolyte interfaces. The knowledge obtained in this study will be exploited in the further development of flexible electrodes and miniaturized biointerfaces with improved electrochemical characteristics. (paper)

  5. Fabrication of Nickel/nanodiamond/boron-doped diamond electrode for non-enzymatic glucose biosensor

    International Nuclear Information System (INIS)

    Dai, Wei; Li, Mingji; Gao, Sumei; Li, Hongji; Li, Cuiping; Xu, Sheng; Wu, Xiaoguo; Yang, Baohe

    2016-01-01

    Highlights: • Nanodiamonds (NDs) were electrophoretically deposited on the BDD film. • The NDs significantly extended the potential window. • Ni/NDs/BDD electrode was prepared by electrodeposition. • The electrode shows good catalytic activity for glucose oxidation. - Abstract: A stable and sensitive non-enzymatic glucose sensor was prepared by modifying a boron-doped diamond (BDD) electrode with nickel (Ni) nanosheets and nanodiamonds (NDs). The NDs were electrophoretically deposited on the BDD surface, and acted as nucleation sites for the subsequent electrodeposition of Ni. The morphology and composition of the modified BDD electrodes were characterized by field-emission scanning electron microscopy and energy-dispersive X-ray spectroscopy, respectively. The Ni nanosheet-ND modified BDD electrode exhibited good current response towards the non-enzymatic oxidation of glucose in alkaline media. The NDs significantly extended the potential window. The response to glucose was linear over the 0.2–1055.4-μM range. The limit of detection was 0.05 μM, at a signal-to-noise ratio of 3. The Ni nanosheet-ND/BDD electrode exhibited good selectivity, reproducibility and stability. Its electrochemical performance, low cost and simple preparation make it a promising non-enzymatic glucose sensor.

  6. Visibility and oxidation stability of hybrid-type copper mesh electrodes with combined nickel-carbon nanotube coating

    Science.gov (United States)

    Kim, Bu-Jong; Hwang, Young-Jin; Park, Jin-Seok

    2017-04-01

    Hybrid-type transparent conductive electrodes (TCEs) were fabricated by coating copper (Cu) meshes with carbon nanotube (CNT) via electrophoretic deposition, and with nickel (Ni) via electroplating. For the fabricated electrodes, the effects of the coating with CNT and Ni on their transmittance and reflectance in the visible-light range, electrical sheet resistance, and chromatic parameters (e.g., redness and yellowness) were characterized. Also, an oxidation stability test was performed by exposing the electrodes to air for 20 d at 85 °C and 85% temperature and humidity conditions, respectively. It was discovered that the CNT coating considerably reduced the reflectance of the Cu meshes, and that the Ni coating effectively protected the Cu meshes against oxidation. Furthermore, after the coating with CNT, both the redness and yellowness of the Cu mesh regardless of the Ni coating approached almost zero, indicating a natural color. The experiment results confirmed that the hybrid-type Cu meshes with combined Ni-CNT coating improved characteristics in terms of reflectance, sheet resistance, oxidation stability, and color, superior to those of the primitive Cu mesh, and also simultaneously satisfied most of the requirements for TCEs.

  7. Improved Mechanical Properties of Various Fabric-Reinforced Geocomposite at Elevated Temperature

    Science.gov (United States)

    Samal, Sneha; Phan Thanh, Nhan; Petríková, Iva; Marvalová, Bohadana

    2015-07-01

    This article signifies the improved performance of the various types of fabric reinforcement of geopolymer as a function of physical, thermal, mechanical, and heat-resistant properties at elevated temperatures. Geopolymer mixed with designed Si:Al ratios of 15.6 were synthesized using three different types of fabric reinforcement such as carbon, E-glass, and basalt fibers. Heat testing was conducted on 3-mm-thick panels with 15 × 90 mm surface exposure region. The strength of carbon-based geocomposite increased toward a higher temperature. The basalt-reinforced geocomposite strength decreased due to the catastrophic failure in matrix region. The poor bridging effect and dissolution of fabric was observed in the E-glass-reinforced geocomposite. At an elevated temperature, fiber bridging was observed in carbon fabric-reinforced geopolymer matrix. Among all the fabrics, carbon proved to be suitable candidate for the high-temperature applications in thermal barrier coatings and fire-resistant panels.

  8. Improved passive shunt vibration control of smart piezo-elastic beams using modal piezoelectric transducers with shaped electrodes

    International Nuclear Information System (INIS)

    Vasques, C M A

    2012-01-01

    Modal control and spatial filtering technologies for mitigation of vibration and/or structural acoustics radiation may be achieved through the use of distributed modal piezoelectric transducers with properly shaped electrodes. This approach filters out undesirable and uncontrollable modes over the bandwidth of interest in order to increase the robustness and stability of the controlled structural system, and may also yield higher values of the generalized modal electromechanical coupling coefficient, which is an important design parameter for achieving efficient passive shunt damping design. In this paper the improvements in passive shunt damping performance when using modal piezoelectric transducers with shaped electrodes are investigated for a two-layered resonant-shunted piezo-elastic smart beam structure. An electromechanical one-dimensional equivalent single-layer Euler–Bernoulli analytical model of two-layered smart piezo-elastic beams with arbitrary spatially shaped electrodes is established for modal and uniform electrode designs. The model is verified and validated by comparison with a one-dimensional discrete-layer (layerwise) finite element model, the damping performance of the shunted smart beam with shaped electrodes is investigated and assessed in terms of the generalized electromechanical coupling coefficient and frequency responses obtained when considering uniform and modally shaped electrodes and the underlying improved performance and advantages are assessed and discussed. (paper)

  9. Fabrication and characterization of solid oxide cells for energy conversion and storage

    Science.gov (United States)

    Yang, Chenghao

    2011-12-01

    for portable applications. (3) Promising intermediate temperature micro-tubular solid oxide fuel cells for portable power supply applications Maximum power densities of 0.5, 0.38 and 0.27 W/cm2 have been obtained using H2-15% H2O as fuel at 550, 600 and 650°C, respectively. Quick thermal cycles performed on the intermediate temperature MT-SOFC stability demonstrate that the cell has robust performance stability for portable applications. (4) Micro-tubular solid oxide cell (MT-SOC) for steam electrolysis The electrochemical properties of MT-SOC will be investigated in detail in electrolysis mode. The mechanism of the novel hydrogen electrode structure benefiting the cell performance will be demonstrated systematically. The high electrochemical performance of the MT-SOC in electrolysis mode indicates that MT-SOC can provide an efficient hydrogen generation process. (5) Micro-tubular solid oxide cell (MT-SOC) for steam and CO2 co-electrolysis The MT-SOC will be operated in co-electrolysis mode for steam and CO 2, which will provide an efficient approach to generate syngas (H2+CO) without consuming fossil fuels. This can potentially provide an alternative superior approach for carbon sequestration which has been a critical issue facing the sustainability of our society. (6) Steam and CO2 co-electrolysis using solid oxide cells fabricated by freeze-drying tape-casting Tri-layer scaffolds have been prepared by freeze-drying tape casting process and the electrode catalysts are obtained by infiltrating the porous electrode substrates. Button cells will be tested for co-electrolysis of steam and CO2. The mechanism and efficiency of steam and CO2 co-electrolysis will be systemically investigated. In conclusion, SOCs have been fabricated with conventional materials and evaluated, but their performance has been found to be limited in either SOFC or SOEC mode. The cell performance has been significantly improved by employing an infiltrated LSM-YSZ electrode, due to dramatically

  10. Electrospray-deposition of graphene electrodes: a simple technique to build high-performance supercapacitors.

    Science.gov (United States)

    Tang, Huaichao; Yang, Cheng; Lin, Ziyin; Yang, Quanhong; Kang, Feiyu; Wong, Ching Ping

    2015-05-28

    Here we report an electrostatic spray deposition method to prepare three-dimensional porous graphene electrodes for supercapacitor applications. The symmetric supercapacitor exhibits excellent specific capacitance (366 F g(-1) at 1 A g(-1) in 6 M KOH) and long cycle life (108% capacitance retention up to 40 000 cycles). Moreover, the energy densities of the organic and aqueous electrolyte based supercapacitors reach 22.9 and 8.1 Wh kg(-1) when the power densities are 119.2 and 15.4 kW kg(-1), respectively. Compared with the previously reported graphene based supercapacitors, the improved properties could be attributed to the excellent three-dimensional open porous electrode structure, which is favorable for the ion diffusion and electron transport. In addition, this method provides a simple electrode-fabrication route without the involvement of conducting additives and binders. It may find vast applications in thin and miniaturized energy storage scenarios.

  11. All-Carbon Electrode Consisting of Carbon Nanotubes on Graphite Foil for Flexible Electrochemical Applications

    Directory of Open Access Journals (Sweden)

    Je-Hwang Ryu

    2014-03-01

    Full Text Available We demonstrate the fabrication of an all-carbon electrode by plasma-enhanced chemical vapor deposition for use in flexible electrochemical applications. The electrode is composed of vertically aligned carbon nanotubes that are grown directly on a flexible graphite foil. Being all-carbon, the simple fabrication process and the excellent electrochemical characteristics present an approach through which high-performance, highly-stable and cost-effective electrochemical applications can be achieved.

  12. Graphene oxide-mediated electrochemistry of glucose oxidase on glassy carbon electrodes.

    Science.gov (United States)

    Castrignanò, Silvia; Valetti, Francesca; Gilardi, Gianfranco; Sadeghi, Sheila J

    2016-01-01

    Glucose oxidase (GOD) was immobilized on glassy carbon electrodes in the presence of graphene oxide (GO) as a model system for the interaction between GO and biological molecules. Lyotropic properties of didodecyldimethylammonium bromide (DDAB) were used to stabilize the enzymatic layer on the electrode surface resulting in a markedly improved electrochemical response of the immobilized GOD. Transmission electron microscopy images of the GO with DDAB confirmed the distribution of the GO in a two-dimensional manner as a foil-like material. Although it is known that glassy carbon surfaces are not ideal for hydrogen peroxide detection, successful chronoamperometric titrations of the GOD in the presence of GO with β-d-glucose were performed on glassy carbon electrodes, whereas no current response was detected upon β-d-glucose addition in the absence of GO. The GOD-DDAB-GO system displayed a high turnover efficiency and substrate affinity as a glucose biosensor. The simplicity and ease of the electrode preparation procedure of this GO/DDAB system make it a good candidate for immobilizing other biomolecules for fabrication of amperometric biosensors. © 2015 International Union of Biochemistry and Molecular Biology, Inc.

  13. Recent Progress in Self-Supported Metal Oxide Nanoarray Electrodes for Advanced Lithium-Ion Batteries.

    Science.gov (United States)

    Zhang, Feng; Qi, Limin

    2016-09-01

    The rational design and fabrication of electrode materials with desirable architectures and optimized properties has been demonstrated to be an effective approach towards high-performance lithium-ion batteries (LIBs). Although nanostructured metal oxide electrodes with high specific capacity have been regarded as the most promising alternatives for replacing commercial electrodes in LIBs, their further developments are still faced with several challenges such as poor cycling stability and unsatisfying rate performance. As a new class of binder-free electrodes for LIBs, self-supported metal oxide nanoarray electrodes have many advantageous features in terms of high specific surface area, fast electron transport, improved charge transfer efficiency, and free space for alleviating volume expansion and preventing severe aggregation, holding great potential to solve the mentioned problems. This review highlights the recent progress in the utilization of self-supported metal oxide nanoarrays grown on 2D planar and 3D porous substrates, such as 1D and 2D nanostructure arrays, hierarchical nanostructure arrays, and heterostructured nanoarrays, as anodes and cathodes for advanced LIBs. Furthermore, the potential applications of these binder-free nanoarray electrodes for practical LIBs in full-cell configuration are outlined. Finally, the future prospects of these self-supported nanoarray electrodes are discussed.

  14. Highly conductive interwoven carbon nanotube and silver nanowire transparent electrodes

    Directory of Open Access Journals (Sweden)

    Andrew J Stapleton, Rakesh A Afre, Amanda V Ellis, Joe G Shapter, Gunther G Andersson, Jamie S Quinton and David A Lewis

    2013-01-01

    Full Text Available Electrodes fabricated using commercially available silver nanowires (AgNWs and single walled carbon nanotubes (SWCNTs produced sheet resistances in the range 4–24 Ω squ−1 with specular transparencies up to 82 %. Increasing the aqueous dispersibility of SWCNTs decreased the bundle size present in the film resulting in improved SWCNT surface dispersion in the films without compromising transparency or sheet resistance. In addition to providing conduction pathways between the AgNW network, the SWCNTs also provide structural support, creating stable self-supporting films. Entanglement of the AgNWs and SWCNTs was demonstrated to occur in solution prior to deposition by monitoring the transverse plasmon resonance mode of the AgNWs during processing. The interwoven AgNW/SWCNT structures show potential for use in optoelectronic applications as transparent electrodes and as an ITO replacement.

  15. Improved 2-D resistivity imaging of features in covered karst terrain with arrays of implanted electrodes

    Science.gov (United States)

    Kiflu, H. G.; Kruse, S. E.; Harro, D.; Loke, M. H.; Wilkinson, P. B.

    2013-12-01

    Electrical resistivity tomography is commonly used to identify geologic features associated with sinkhole formation. In covered karst terrain, however, it can be difficult to resolve the depth to top of limestone with this method. This is due to the fact that array lengths, and hence depth of resolution, are often limited by residential or commercial lot dimensions in urban environments. Furthermore, the sediments mantling the limestone are often clay-rich and highly conductive. The resistivity method has limited sensitivity to resistive zones beneath conductive zones. This sensitivity can be improved significantly with electrodes implanted at depth in the cover sediments near the top of limestone. An array of deep electrodes is installed with direct push technology in the karst cover. When combined with a surface array in which each surface electrode is underlain by a deep electrode, the array geometry is similar to a borehole array turned on its side. This method, called the Multi-Electrode Resistivity Implant Technique (MERIT), offers the promise of significantly improved resolution of epikarst and cover collapse development zones in the overlying sediment, the limestone or at the sediment-bedrock interface in heterogeneous karst environments. With a non-traditional array design, the question of optimal array geometries arises. Optimizing array geometries is complicated by the fact that many plausible 4-electrode readings will produce negative apparent resistivity values, even in homogeneous terrain. Negative apparent resistivities cannot be used in inversions based on the logarithm of the apparent resistivity. New algorithms for seeking optimal array geometries have been developed by modifying the 'Compare R' method of Wilkinson and Loke. The optimized arrays show significantly improved resolution over basic arrays adapted from traditional 2D surface geometries. Several MERIT case study surveys have been conducted in covered karst in west-central Florida, with

  16. Preparation of a Counter Electrode with P-Type NiO and Its Applications in Dye-Sensitized Solar Cell

    Directory of Open Access Journals (Sweden)

    Chuen-Shii Chou

    2010-01-01

    Full Text Available This study investigates the applicability of a counter electrode with a P-type semiconductor oxide (such as NiO on a dye-sensitized solar cell (DSSC. The counter electrode is fabricated by depositing an NiO film on top of a Pt film, which has been deposited on a Fluorine-doped tin oxide (FTO glass using an ion-sputtering coater (or E-beam evaporator, using a simple spin coating method. This study also examines the effect of the average thickness of TiO2 film deposited on a working electrode upon the power conversion efficiency of a DSSC. This study shows that the power conversion efficiency of a DSSC with a Pt(E/NiO counter electrode (4.28% substantially exceeds that of a conventional DSSC with a Pt(E counter electrode (3.16% on which a Pt film was deposited using an E-beam evaporator. This result is attributed to the fact that the NiO film coated on the Pt(E counter electrode improves the electrocatalytic activity of the counter electrode.

  17. Fabrication of GNPs/CDSH-Fc/nafion modified electrode for the detection of dopamine in the presence of ascorbic acid

    International Nuclear Information System (INIS)

    Chen Ming; Wei Xiujuan; Qian Hui; Diao Guowang

    2011-01-01

    A novel dopamine sensor was fabricated by forming the inclusion complex between mono-6-thio-β-cyclodextrin (CD-SH) and ferrocene (Fc) functionalized gold nanoparticles (GNPs) films on a platinum electrode. The properties of the GNPs/CDSH-Fc nanocomposite were characterized by Fourier transform infrared spectra, UV-visible absorption spectroscopy, transmission electron microscopy and cyclic voltammetry. The electrochemistry of dopamine (DA) was investigated by cyclic voltammetry (CV) and differential pulse voltammograms (DPV). The electrooxidation of dopamine could be catalyzed by Fc/Fc + couple as a mediator and had a higher electrochemical response due to the unique performance of GNPs/CDSH-Fc. The anodic peaks of DA and ascorbic acid (AA) in their mixture can be well separated by the prepared electrode. Under optimum conditions linear calibration graphs were obtained over the DA concentration range 2.0 x 10 -6 to 5.0 x 10 -5 M with a correlation coefficient of 0.998 and a detection limit of 9.0 x 10 -8 M (S/N = 3). The modified electrode had been effectively applied for the assay of DA in dopamine hydrochloride injections. This work provides a simple and easy approach to selectively detect DA in the presence of AA. - Research highlights: → The sensor of DA was constructed by using GNPs/CDSH-Fc as the building block. → Inclusion complex on the surface of GNPs decreased the leakage of mediator. → The electro-oxidation of DA could be catalyzed by Fc/Fc + couple as a mediator. → This work provides a simple approach to selectively detect DA in the presence of AA.

  18. Facilely scraping Si nanoparticles@reduced graphene oxide sheets onto nickel foam as binder-free electrodes for lithium ion batteries

    International Nuclear Information System (INIS)

    Li, Suyuan; Xie, Wenhe; Gu, Lili; Liu, Zhengjiao; Hou, Xiaoyi; Liu, Boli; Wang, Qi; He, Deyan

    2016-01-01

    Binder-free electrodes of Si nanoparticles@reducedgrapheneoxidesheets(Si@rGO) for lithium ion batteries were facilely fabricated by scraping the mixture of commercial Si powder, graphene oxide and poly(vinyl pyrrolidone) (PVP) onto nickel foam and following a heat treatment. It was shown that the Si@rGO electrode performs an excellent electrochemical behavior. Even at a current density as high as 4 A/g, a reversible capacity of 792 mAh/g was obtained after 100 cycles. A small amount of PVP additive plays important roles, it not only increases the viscosity of the mixture paint in the coating process, but also improves the conductivity of the overall electrode after carbonization.

  19. Application of a multiwalled carbon nanotube-chitosan composite as an electrode in the electrosorption process for water purification.

    Science.gov (United States)

    Ma, Chih-Yu; Huang, Shih-Ching; Chou, Pei-Hsin; Den, Walter; Hou, Chia-Hung

    2016-03-01

    In this study, a multiwalled carbon nanotubes-chitosan (CNTs-CS) composite electrode was fabricated to enable water purification by electrosorption. The CNTs-CS composite electrode was shown to possess excellent capacitive behaviors and good pore accessibility by electrochemical impedance spectroscopy, galvanostatic charge-discharge, and cyclic voltammetry measurements in 1 M H2SO4 electrolyte. Moreover, the CNTs-CS composite electrode showed promising performance for capacitive water desalination. At an electric potential of 1.2 V, the electrosorption capacity and electrosorption rate of NaCl ions on the CNTs-CS composite electrode were determined to be 10.7 mg g(-1) and 0.051 min(-1), respectively, which were considerably higher than those of conventional activated electrodes. The improved electrosorption performance could be ascribed to the existence of mesopores. Additionally, the feasibility of electrosorptive removal of aniline from an aqueous solution has been demonstrated. Upon polarization at 0.6 V, the CNTs-CS composite electrode had a larger electrosorption capacity of 26.4 mg g(-1) and a higher electrosorption rate of 0.006 min(-1) for aniline compared with the open circuit condition. The enhanced adsorption resulted from the improved affinity between aniline and the electrode under electrochemical assistance involving a nonfaradic process. Consequently, the CNT-CS composite electrode, exhibiting typical double-layer capacitor behavior and a sufficient potential range, can be a potential electrode material for application in the electrosorption process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Carbon coated stainless steel as counter electrode for dye sensitized solar cells

    Science.gov (United States)

    Prakash, Shejale Kiran; Sharma, Rakesh K.; Roy, Mahesh S.; Kumar, Mahesh

    2014-10-01

    A new type of counter electrode for dye sensitized solar cells has been fabricated using a stainless steel sheet as substrate and graphite, graphene and multiwall carbon nanotubes as the catalytic material which applied by screen printing technique. The sheet resistances of the substrates and there influence on the dye sensitized solar cells has been studied. The fabricated counter electrodes i.e. SS-graphite, SS-graphene SS-MWCNT and SS-platinum were tested for their photovoltaic response in the form of dye sensitized solar cells.

  1. Electrodes for stochastic cooling of the FNAL antiproton source

    International Nuclear Information System (INIS)

    Voelker, F.

    1982-11-01

    AN electrode array for stochastic cooling is being developed for use on the FNAL antiproton source. With minor power handling modifications, the same electrodes can function as pickups or as kickers. When used as pickups, a large array is needed to increase the signal-to-noise ratio. Each electrode is one element of a pair of directional coupler loops that are mounted flush with the upper and lower walls of the beam chamber. The loops, fabricated from flat metal plates, are supported by specially shaped legs

  2. A microelectromechanical accelerometer fabricated using printed circuit processing techniques

    Science.gov (United States)

    Rogers, J. E.; Ramadoss, R.; Ozmun, P. M.; Dean, R. N.

    2008-01-01

    A microelectromechanical systems (MEMS) capacitive-type accelerometer fabricated using printed circuit processing techniques is presented. A Kapton polymide film is used as the structural layer for fabricating the MEMS accelerometer. The accelerometer proof mass along with four suspension beams is defined in the Kapton polyimide film. The proof mass is suspended above a Teflon substrate using a spacer. The deflection of the proof mass is detected using a pair of capacitive sensing electrodes. The top electrode of the accelerometer is defined on the top surface of the Kapton film. The bottom electrode is defined in the metallization on the Teflon substrate. The initial gap height is determined by the distance between the bottom electrode and the Kapton film. For an applied external acceleration (normal to the proof mass), the proof mass deflects toward or away from the fixed bottom electrode due to inertial force. This deflection causes either a decrease or increase in the air-gap height thereby either increasing or decreasing the capacitance between the top and the bottom electrodes. An example PCB MEMS accelerometer with a square proof mass of membrane area 6.4 mm × 6.4 mm is reported. The measured resonant frequency is 375 Hz and the Q-factor in air is 0.52.

  3. A microelectromechanical accelerometer fabricated using printed circuit processing techniques

    International Nuclear Information System (INIS)

    Rogers, J E; Ramadoss, R; Ozmun, P M; Dean, R N

    2008-01-01

    A microelectromechanical systems (MEMS) capacitive-type accelerometer fabricated using printed circuit processing techniques is presented. A Kapton polymide film is used as the structural layer for fabricating the MEMS accelerometer. The accelerometer proof mass along with four suspension beams is defined in the Kapton polyimide film. The proof mass is suspended above a Teflon substrate using a spacer. The deflection of the proof mass is detected using a pair of capacitive sensing electrodes. The top electrode of the accelerometer is defined on the top surface of the Kapton film. The bottom electrode is defined in the metallization on the Teflon substrate. The initial gap height is determined by the distance between the bottom electrode and the Kapton film. For an applied external acceleration (normal to the proof mass), the proof mass deflects toward or away from the fixed bottom electrode due to inertial force. This deflection causes either a decrease or increase in the air-gap height thereby either increasing or decreasing the capacitance between the top and the bottom electrodes. An example PCB MEMS accelerometer with a square proof mass of membrane area 6.4 mm × 6.4 mm is reported. The measured resonant frequency is 375 Hz and the Q-factor in air is 0.52

  4. Characterization of 3D-stc detectors fabricated at ITC-irst

    International Nuclear Information System (INIS)

    Boscardin, Maurizio; Bosisio, Luciano; Bruzzi, Mara; Dalla Betta, Gian-Franco; Piemonte, Claudio; Pozza, Alberto; Ronchin, Sabina; Tosi, Carlo; Zorzi, Nicola

    2007-01-01

    3D silicon radiation detectors offer many advantages over planar detectors, including improved radiation tolerance and faster charge collection time. We proposed a new 3D architecture (referred to as 3D-stc), which features columnar electrodes of one doping type only, thus, allowing a considerable simplification of the manufacturing process. In this paper, we report selected results from the electrical characterization of 3D diodes fabricated with this technology, along with preliminary results on the charge collection efficiency of these devices

  5. Electrochemical oxidation of p-nitrophenol using graphene-modified electrodes, and a comparison to the performance of MWNT-based electrodes

    International Nuclear Information System (INIS)

    Arvinte, A.; Pinteala, M.; Mahosenaho, M.; Sesay, A.M.; Virtanen, V.

    2011-01-01

    The electrochemical oxidation of p-nitrophenol (p-NP) has been studied comparatively on a graphene modified electrode and a multiwall carbon nanotube (MWNT) electrode by using cyclic and differential pulse voltammetry. The sensors were fabricated by modifying screen-printed electrodes with graphene and MWNT nanomaterials, respectively, both dispersed in Nafion polymer. p-NP is irreversibly oxidized at +0. 9 V (vs. the Ag/AgCl) in solutions of pH 7. The height and potential of the peaks depend on pH in the range from 5 to 11. In acidic media, p-NP yields a well-defined oxidation peak at +0. 96 V which gradually increases in height with the concentration of the analyte. In case of differential pulse voltammetry in sulfuric acid solution, the sensitivity is practically the same for both electrodes. The modified electrodes display an unusually wide linear response (from 10 μM to 0. 62 mM of p-NP), with a detection limit of 0. 6 μM in case of the graphene electrode, and of 1. 3 μM in case of the MWNT electrode. (author)

  6. Performance of a polymer electrolyte membrane fuel cell with thin film catalyst electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Young Gab; Kim, Chang Soo; Peck, Dong Hyun; Shin, Dong Ryul [Korea Institute of Energy Research, Taejon (Korea, Republic of)

    1998-03-15

    In order to develop a kW-class polymer electrolyte membrane fuel cell (PEMFC), several electrodes have been fabricated by different catalyst layer preparation procedures and evaluated based on the cell performance. Conventional carbon paper and carbon cloth electrodes were fabricated using a ptfe-bonded Pt/C electrol catalyst by coating and rolling methods. Thin-film catalyst/ionomer composite layers were also formed on the membrane by direct coating and transfer printing techniques. The performance evaluation with catalyst layer preparation methods was carried out using a large or small electrode single cell. Conventional and thin film membrane and electrode assemblies (MEAs) with small electrode area showed a performance of 350 and 650 mA/cm{sup 2} at 0.6 V, respectively. The performance of direct coated thin film catalyst layer with 300 cm{sup 2} MEAs was higher than those of the conventional and transfer printing technique MEAs. The influence of some characteristic parameters of the thin film electrode on electrochemical performance was examined. Various other aspects of overall operation of PEMFC stacks were also discussed. (orig.)

  7. Processing and characterization of multilayers for energy device fabrication (invited)

    DEFF Research Database (Denmark)

    Kaiser, Andreas; Kiebach, Wolff-Ragnar; Gurauskis, Jonas

    SOFC and tubular OTM, we present selected challenges in ceramic processing such asymmetric multilayer structures. By optimizing different steps in the ceramic processing, we improved the mechanical properties and gas permeability of porous supports and the (electrochemical) performance of electrodes......The performance of asymmetric multilayer structures in solid oxide fuel cells (SOFC)/solid oxide electrolysis cells (SOEC), tubular oxygen transport membranes (OTM) and similar high temperature energy devices is often determined by the ceramic fabrication (for given materials and design). A good...... understanding and control of different processing steps (from powder/materials selection, through shaping and sintering) is of crucial importance to achieve a defect-free multilayer microstructure with the desired properties and performance. Based on the experiences at DTU Energy with the fabrication of planar...

  8. Flexible, silver nanowire network nickel hydroxide core-shell electrodes for supercapacitors

    Science.gov (United States)

    Yuksel, Recep; Coskun, Sahin; Kalay, Yunus Eren; Unalan, Husnu Emrah

    2016-10-01

    We present a novel one-dimensional coaxial architecture composed of silver nanowire (Ag NW) network core and nickel hydroxide (Ni(OH)2) shell for the realization of coaxial nanocomposite electrode materials for supercapacitors. Ag NWs are formed conductive networks via spray coating onto polyethylene terephthalate (PET) substrates and Ni(OH)2 is gradually electrodeposited onto the Ag NW network to fabricate core-shell electrodes for supercapacitors. Synergy of highly conductive Ag NWs and high capacitive Ni(OH)2 facilitate ion and electron transport, enhance electrochemical properties and result in a specific capacitance of 1165.2 F g-1 at a current density of 3 A g-1. After 3000 cycles, fabricated nanocomposite electrodes show 93% capacity retention. The rational design explored in this study points out the potential of nanowire based coaxial energy storage devices.

  9. Extraction electrode geometry for a calutron

    International Nuclear Information System (INIS)

    Veach, A.M.; Bell, W.A. Jr.

    1975-01-01

    This patent relates to an improved geometry for the extraction electrode and the ground electrode utilized in the operation of a calutron. The improved electrodes are constructed in a partial-picture-frame fashion with the slits of both electrodes formed by two tungsten elongated rods. Additional parallel spaced-apart rods in each electrode are used to establish equipotential surfaces over the rest of the front of the ion source

  10. High performance supercapacitors using metal oxide anchored graphene nanosheet electrodes

    KAUST Repository

    Baby, Rakhi Raghavan

    2011-01-01

    Metal oxide nanoparticles were chemically anchored onto graphene nanosheets (GNs) and the resultant composites - SnO2/GNs, MnO2/GNs and RuO2/GNs (58% of GNs loading) - coated over conductive carbon fabric substrates were successfully used as supercapacitor electrodes. The results showed that the incorporation of metal oxide nanoparticles improved the capacitive performance of GNs due to a combination of the effect of spacers and redox reactions. The specific capacitance values (with respect to the composite mass) obtained for SnO2/GNs (195 F g-1) and RuO 2/GNs (365 F g-1) composites at a scan rate of 20 mV s-1 in the present study are the best ones reported to date for a two electrode configuration. The resultant supercapacitors also exhibited high values for maximum energy (27.6, 33.1 and 50.6 W h kg-1) and power densities (15.9, 20.4 and 31.2 kW kg-1) for SnO2/GNs, MnO2/GNs and RuO2/GNs respectively. These findings demonstrate the importance and great potential of metal oxide/GNs based composite coated carbon fabric in the development of high-performance energy-storage systems. © 2011 The Royal Society of Chemistry.

  11. Improved ceramic anodes for SOFCs with modified electrode/electrolyte interface

    DEFF Research Database (Denmark)

    Abdul Jabbar, Mohammed Hussain; Høgh, Jens Valdemar Thorvald; Zhang, Wei

    2012-01-01

    The electrode performance of solid oxide fuel cell anode with Pd nanoparticles at the interface of ScYSZ electrolyte and Sr0.94Ti0.9Nb0.1O3 (STN) electrode introduced in the form of metal functional layer have been investigated at temperatures below 600 °C. A metal functional layer consisting of Pd...... was deposited by magnetron sputtering. Effecting from heat treatments, Pd nanoparticles with particle sizes in the range of 5–20 nm were distributed at the interface, and throughout the backbone. The polarization resistance of the modified STN reduced to 30 Ωcm2 at 600 °C, which is three times less than...... an unmodified STN backbone. In order to improve the anode performance further, Pd and Gd-doped CeO2 electrocatalysts were infiltrated into the STN backbone. The modified interface with Pd nanoparticles in combination with nanostructured electrocatalyst by infiltration resulted in polarisation resistances of 0...

  12. Nafion/2,2'-bipyridyl-modified bismuth film electrode for anodic stripping voltammetry

    International Nuclear Information System (INIS)

    Torma, Ferenc; Kadar, Mihaly; Toth, Klara; Tatar, Eniko

    2008-01-01

    This paper describes the fabrication, characterisation and the application of a Nafion/2,2'-bipyridyl/bismuth composite film-coated glassy carbon electrode (NC(Bpy)BiFE) for the anodic stripping voltammetric determination of trace metal ions (Zn 2+ , Cd 2+ and Pb 2+ ). The NC(Bpy)BiFE electrode is prepared by first applying a 2.5 mm 3 drop of a coating solution containing 0.5 wt% Nafion and 0.1% (w/v) 2,2'-bipyridil (Bpy) onto the surface of a glassy carbon electrode, while the Bi film was plated in situ simultaneously with the target metal ions at -1.4 V. The main advantage of the polymer coated bismuth film electrode is that the sensitivity of the stripping responses is increased considerably due to the incorporation of the neutral chelating agent of 2,2'-bipyridyl (Bpy) in the Nafion film, while the Nafion coating improved the mechanical stability of the bismuth film and its resistance to the interference of surfactants. The key experimental parameters relevant to both the electrode fabrication and the voltammetric measurement were optimized on the basis of the stripping signals. With a 2 min deposition time in the presence of oxygen, linear calibration curves were obtained in a wide concentration range (about 2-0.001 μM) with detection limits of 8.6 nM (0.56 μg dm -3 ) for Zn 2+ , 1.1 nM (0.12 μg dm -3 ) for Cd 2+ and 0.37 nM (0.077 μg dm -3 ) for Pb 2+ . For nine successive preconcentration/determination/electrode renewal experiments the standard deviations were between 3 and 5% at 1.2 μM for zinc and 0.3-0.3 μM concentration level for lead and cadmium, respectively, and the method exhibited excellent selectivity in the presence of the excess of several potential interfering metal ions. The analytical utility of the stripping voltammetric method elaborated was tested in the assay of heavy metals in some real samples and the method was validated by ICP-MS technique

  13. Emerging Transparent Conducting Electrodes for Organic Light Emitting Diodes

    Directory of Open Access Journals (Sweden)

    Tze-Bin Song

    2014-03-01

    Full Text Available Organic light emitting diodes (OLEDs have attracted much attention in recent years as next generation lighting and displays, due to their many advantages, including superb performance, mechanical flexibility, ease of fabrication, chemical versatility, etc. In order to fully realize the highly flexible features, reduce the cost and further improve the performance of OLED devices, replacing the conventional indium tin oxide with better alternative transparent conducting electrodes (TCEs is a crucial step. In this review, we focus on the emerging alternative TCE materials for OLED applications, including carbon nanotubes (CNTs, metallic nanowires, conductive polymers and graphene. These materials are selected, because they have been applied as transparent electrodes for OLED devices and achieved reasonably good performance or even higher device performance than that of indium tin oxide (ITO glass. Various electrode modification techniques and their effects on the device performance are presented. The effects of new TCEs on light extraction, device performance and reliability are discussed. Highly flexible, stretchable and efficient OLED devices are achieved based on these alternative TCEs. These results are summarized for each material. The advantages and current challenges of these TCE materials are also identified.

  14. All conducting polymer electrodes for asymmetric solid-state supercapacitors

    KAUST Repository

    Kurra, Narendra

    2015-02-16

    In this study, we report the fabrication of solid-state asymmetric supercapacitors (ASCs) based on conducting polymer electrodes on a plastic substrate. Nanostructured conducting polymers of poly(3,4-ethylenedioxythiophene), PEDOT, and polyaniline (PANI) are deposited electrochemically over Au-coated polyethylene naphthalate (PEN) plastic substrates. Due to the electron donating nature of the oxygen groups in the PEDOT, reduction potentials are higher, allowing it to be used as a negative electrode material. In addition, the high stability of PEDOT in its oxidised state makes it capable to exhibit electrochemical activity in a wide potential window. This can qualify PEDOT to be used as a negative electrode in fabricating asymmetric solid state supercapacitors with PANI as a positive electrode while employing polyvinyl alcohol (PVA)/H2SO4 gel electrolyte. The ASCs exhibit a maximum power density of 2.8 W cm−3 at an energy density of 9 mW h cm−3, which is superior to the carbonaceous and metal oxide based ASC solid state devices. Furthermore, the tandem configuration of asymmetric supercapacitors is shown to be capable of powering a red light emitting diode for about 1 minute after charging for 10 seconds.

  15. Characteristics of indium-free GZO/Ag/GZO and AZO/Ag/AZO multilayer electrode grown by dual target DC sputtering at room temperature for low-cost organic photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ho-Kyun; Kim, Han-Ki [Department of Display Materials Research Center, Materials Research Center for Information Displays (MRCID), Kyung Hee University, 1 Seocheon-dong, Youngin-si, Gyeonggi-do 446-701 (Korea); Kang, Jae-Wook [Department of Material Processing, Korea Institute of Materials Science(KIMS), 66 Sangnam-dong, Changwon-si, Gyeongnam 641-831 (Korea); Na, Seok-In; Kim, Don-Yu. [Heeger Center for Advanced Materials, Department of Materials Science and Engineering, Gwangju Institute of Science and Technology, 1 Oryoung-dong, Gwangju 500-712 (Korea)

    2009-11-15

    We compared the electrical, optical, structural and surface properties of indium-free Ga-doped ZnO (GZO)/Ag/GZO and Al-doped ZnO (AZO)/Ag/AZO multilayer electrodes deposited by dual target direct current sputtering at room temperature for low-cost organic photovoltaics. It was shown that the electrical and optical properties of the GZO/Ag/GZO and AZO/Ag/AZO multilayer electrodes could be improved by the insertion of an Ag layer with optimized thickness between oxide layers, due to its very low resistivity and surface plasmon effect. In addition, the Auger electron spectroscopy depth profile results for the GZO/Ag/GZO and AZO/Ag/AZO multilayer electrodes showed no interfacial reaction between the Ag layer and GZO or AZO layer, due to the low preparation temperature and the stability of the Ag layer. Moreover, the bulk heterojunction organic solar cell fabricated on the multilayer electrodes exhibited higher power conversion efficiency than the organic solar cells fabricated on the single GZO or AZO layer, due to much lower sheet resistance of the multilayer electrode. This indicates that indium-free GZO/Ag/GZO and AZO/Ag/AZO multilayer electrodes are a promising low-cost and low-temperature processing electrode scheme for low-cost organic photovoltaics. (author)

  16. Effect of Argon Plasma Treatment Variables on Wettability and Antibacterial Properties of Polyester Fabrics

    Science.gov (United States)

    Senthilkumar, Pandurangan; Karthik, Thangavelu

    2016-04-01

    In this research work, the effect of argon plasma treatment variables on the comfort and antibacterial properties of polyester fabric has been investigated. The SEM micrographs and FTIR analysis confirms the modification of fabric surface. The Box-Behnken design was used for the optimization of plasma process variables and to evaluate the effects and interactions of the process variables, i.e. operating power, treatment time and distance between the electrodes on the characteristics of polyester fabrics. The optimum conditions of operating power 600 W, treatment time 30 s, and the distance between the electrodes of 2.8 mm was arrived using numerical prediction tool in Design-Expert software. The plasma treated polyester fabrics showed better fabric characteristics particularly in terms of water vapour permeability, wickability and antibacterial activity compared to untreated fabrics, which confirms that the modified structure of polyester fabric.

  17. A general strategy for the fabrication of high performance microsupercapacitors

    KAUST Repository

    Kurra, Narendra

    2015-06-04

    We propose a generic strategy for microsupercapacitor fabrication that integrates layers of reduced graphene oxide (rGO) and pseudocapacitive materials to create electrode heterostructures with significantly improved cycling stability and performance. Our approach involves a combination of photolithography and a simple transfer method of free-standing reduced graphene oxide film onto an Au/patterned photoresist bilayer. The resulting stack (rGO/Au/patterned resist/substrate) is then used for the electrochemical deposition of various pseudocapacitive materials before the final step of lift-off. To prove the viability of this method, we have successfully fabricated microsupercapacitors (MSCs) with the following interdigitated electrode heterostructures: MnO2/rGO, Co(OH)2/rGO and PANI/rGO. These MSCs show better performance and cycling stability compared to the single layer, (i.e., rGO-free) counterparts. The interdigitated electrode heterostructures result in MSCs with energy densities in the range of 3–12 mW h/cm3 and power densities in the range of 400–1200 mW/cm3, which is superior to the Li thin film batteries (E=10 mW h/cm3), carbon, and metal oxide based MSCs (E=1–6 mW h/cm3) while device energy densities are in the range of 1.3–5.3 mW h/cm3, corresponding power densities are in the range of 178–533 mW/cm3. These results can be explained by a facilitated nucleation model, where surface topology of the rGO film creates a favorable environment for the nucleation and growth of pseudocapacitive materials with strong interfacial contacts and enhanced surface area. This approach opens up a new avenue in fabricating MSCs involving a variety of heterostructures combining electrical double layer carbon type with Faradaic pseudocapacitive materials for enhanced electrochemical performance.

  18. A general strategy for the fabrication of high performance microsupercapacitors

    KAUST Repository

    Kurra, Narendra; Jiang, Qiu; Alshareef, Husam N.

    2015-01-01

    We propose a generic strategy for microsupercapacitor fabrication that integrates layers of reduced graphene oxide (rGO) and pseudocapacitive materials to create electrode heterostructures with significantly improved cycling stability and performance. Our approach involves a combination of photolithography and a simple transfer method of free-standing reduced graphene oxide film onto an Au/patterned photoresist bilayer. The resulting stack (rGO/Au/patterned resist/substrate) is then used for the electrochemical deposition of various pseudocapacitive materials before the final step of lift-off. To prove the viability of this method, we have successfully fabricated microsupercapacitors (MSCs) with the following interdigitated electrode heterostructures: MnO2/rGO, Co(OH)2/rGO and PANI/rGO. These MSCs show better performance and cycling stability compared to the single layer, (i.e., rGO-free) counterparts. The interdigitated electrode heterostructures result in MSCs with energy densities in the range of 3–12 mW h/cm3 and power densities in the range of 400–1200 mW/cm3, which is superior to the Li thin film batteries (E=10 mW h/cm3), carbon, and metal oxide based MSCs (E=1–6 mW h/cm3) while device energy densities are in the range of 1.3–5.3 mW h/cm3, corresponding power densities are in the range of 178–533 mW/cm3. These results can be explained by a facilitated nucleation model, where surface topology of the rGO film creates a favorable environment for the nucleation and growth of pseudocapacitive materials with strong interfacial contacts and enhanced surface area. This approach opens up a new avenue in fabricating MSCs involving a variety of heterostructures combining electrical double layer carbon type with Faradaic pseudocapacitive materials for enhanced electrochemical performance.

  19. Photovoltaic performance of dye-sensitized solar cells with various MWCNT counter electrode structures produced by different coating methods

    International Nuclear Information System (INIS)

    Munkhbayar, B.; Hwang, Seunghwa; Kim, Junhyo; Bae, Kangyoul; Ji, Myoungkuk; Chung, Hanshik; Jeong, Hyomin

    2012-01-01

    Highlights: ► Catalyst on tube surface was removed and the tube caps were opened by purification. ► Highest peak of UV-light absorption was achieved in the purified and ground MWCNTs solution. ► The particles uniformly distributed on glass substrate by spin coating method. ► Highest photoelectric efficiency of DSSCs with MWCNTs counter electrode was achieved 4.94%. - Abstract: We report the successful application of multi-walled carbon nanotubes (MWCNTs) as electrocatalysts for triiodide reduction in dye-sensitized solar cells (DSSCs). To improve the photovoltaic performance of DSSCs, upgrade the quality of MWCNT structure and obtain an optimum deposition approach regarding a counter electrode, the present study was investigated. Three different MWCNT structures, raw, purified and purified and ground, were investigated as platinum (Pt) alternatives for counter electrodes in DSSCs. The counter electrodes were prepared on fluorine-doped tin oxide (FTO) glass substrates by two different techniques: spin coating from fluid-type MWCNTs and screen printing from paste-type MWCNTs. By utilizing a spin-coating technique, a DSSC that was fabricated with a purified and ground MWCNT counter electrode achieved an overall photovoltaic efficiency of 4.94%. This photovoltaic performance is comparable to that of a DSSC using a conventional “Pt” counter electrode fabricated under the same conditions. We found that the grinding method is powerful for increasing specific surface area and porosity. With this technique, macropores can be transformed into mesopores, thereby reducing the agglomeration of the MWCNTs, and with an additional modification, an increased DSSC photovoltaic efficiency results.

  20. Tunneling spectroscopy of a germanium quantum dot in single-hole transistors with self-aligned electrodes

    International Nuclear Information System (INIS)

    Chen, G-L; Kuo, David M T; Lai, W-T; Li, P-W

    2007-01-01

    We have fabricated a Ge quantum dot (QD) (∼10 nm) single-hole transistor with self-aligned electrodes using thermal oxidation of a SiGe-on-insulator nanowire based on FinFET technology. This fabricated device exhibits clear Coulomb blockade oscillations with large peak-to-valley ratio (PVCR) of 250-750 and negative differential conductance with PVCR of ∼12 at room temperature. This reveals that the gate-induced tunneling barrier lowering is effectively suppressed due to the self-aligned electrode structure. The magnitude of tunneling current spectra also reveals the coupling strengths between the energy levels of the Ge QD and electrodes