Sample records for electrode chronically implanted

  1. A reliable method for intracranial electrode implantation and chronic electrical stimulation in the mouse brain. (United States)

    Jeffrey, Melanie; Lang, Min; Gane, Jonathan; Wu, Chiping; Burnham, W McIntyre; Zhang, Liang


    Electrical stimulation of brain structures has been widely used in rodent models for kindling or modeling deep brain stimulation used clinically. This requires surgical implantation of intracranial electrodes and subsequent chronic stimulation in individual animals for several weeks. Anchoring screws and dental acrylic have long been used to secure implanted intracranial electrodes in rats. However, such an approach is limited when carried out in mouse models as the thin mouse skull may not be strong enough to accommodate the anchoring screws. We describe here a screw-free, glue-based method for implanting bipolar stimulating electrodes in the mouse brain and validate this method in a mouse model of hippocampal electrical kindling. Male C57 black mice (initial ages of 6-8 months) were used in the present experiments. Bipolar electrodes were implanted bilaterally in the hippocampal CA3 area for electrical stimulation and electroencephalographic recordings. The electrodes were secured onto the skull via glue and dental acrylic but without anchoring screws. A daily stimulation protocol was used to induce electrographic discharges and motor seizures. The locations of implanted electrodes were verified by hippocampal electrographic activities and later histological assessments. Using the glue-based implantation method, we implanted bilateral bipolar electrodes in 25 mice. Electrographic discharges and motor seizures were successfully induced via hippocampal electrical kindling. Importantly, no animal encountered infection in the implanted area or a loss of implanted electrodes after 4-6 months of repetitive stimulation/recording. We suggest that the glue-based, screw-free method is reliable for chronic brain stimulation and high-quality electroencephalographic recordings in mice. The technical aspects described this study may help future studies in mouse models.

  2. Electrode impedance analysis of chronic tungsten microwire neural implants: understanding abiotic vs. biotic contributions

    Directory of Open Access Journals (Sweden)

    Viswanath eSankar


    Full Text Available Changes in biotic and abiotic factors can be reflected in the complex impedance spectrum of the microelectrodes chronically implanted into the neural tissue. The recording surface of the tungsten electrode in vivo undergoes abiotic changes due to recording site corrosion and insulation delamination as well as biotic changes due to tissue encapsulation as a result of the foreign body immune response. We reported earlier that large changes in electrode impedance measured at 1 kHz were correlated with poor electrode functional performance, quantified through electrophysiological recordings during the chronic lifetime of the electrode. There is a need to identity the factors that contribute to the chronic impedance variation. In this work, we use numerical simulation and regression to equivalent circuit models to evaluate both the abiotic and biotic contributions to the impedance response over chronic implant duration. COMSOL® simulation of abiotic electrode morphology changes provide a possible explanation for the decrease in the electrode impedance at long implant duration while biotic changes play an important role in the large increase in impedance observed initially.

  3. Characteristics of electrode impedance and stimulation efficacy of a chronic cortical implant using novel annulus electrodes in rat motor cortex (United States)

    Wang, Chun; Brunton, Emma; Haghgooie, Saman; Cassells, Kahli; Lowery, Arthur; Rajan, Ramesh


    Objective. Cortical neural prostheses with implanted electrode arrays have been used to restore compromised brain functions but concerns remain regarding their long-term stability and functional performance. Approach. Here we report changes in electrode impedance and stimulation thresholds for a custom-designed electrode array implanted in rat motor cortex for up to three months. Main Results. The array comprises four 2000 µm long electrodes with a large annular stimulating surface (7860-15700 µm2) displaced from the penetrating insulated tip. Compared to pre-implantation in vitro values there were three phases of impedance change: (1) an immediate large increase of impedance by an average of two-fold on implantation; (2) a period of continued impedance increase, albeit with considerable variability, which reached a peak at approximately four weeks post-implantation and remained high over the next two weeks; (3) finally, a period of 5-6 weeks when impedance stabilized at levels close to those seen immediately post-implantation. Impedance could often be temporarily decreased by applying brief trains of current stimulation, used to evoke motor output. The stimulation threshold to induce observable motor behaviour was generally between 75-100 µA, with charge density varying from 48-128 µC cm-2, consistent with the lower current density generated by electrodes with larger stimulating surface area. No systematic change in thresholds occurred over time, suggesting that device functionality was not compromised by the factors that caused changes in electrode impedance. Significance. The present results provide support for the use of annulus electrodes in future applications in cortical neural prostheses.

  4. Behavioral and cellular consequences of high-electrode count Utah Arrays chronically implanted in rat sciatic nerve (United States)

    Wark, H. A. C.; Mathews, K. S.; Normann, R. A.; Fernandez, E.


    Objective. Before peripheral nerve electrodes can be used for the restoration of sensory and motor functions in patients with neurological disorders, the behavioral and histological consequences of these devices must be investigated. These indices of biocompatibility can be defined in terms of desired functional outcomes; for example, a device may be considered for use as a therapeutic intervention if the implanted subject retains functional neurons post-implantation even in the presence of a foreign body response. The consequences of an indwelling device may remain localized to cellular responses at the device-tissue interface, such as fibrotic encapsulation of the device, or they may affect the animal more globally, such as impacting behavioral or sensorimotor functions. The objective of this study was to investigate the overall consequences of implantation of high-electrode count intrafascicular peripheral nerve arrays, High Density Utah Slanted Electrode Arrays (HD-USEAs; 25 electrodes mm-2). Approach. HD-USEAs were implanted in rat sciatic nerves for one and two month periods. We monitored wheel running, noxious sensory paw withdrawal reflexes, footprints, nerve morphology and macrophage presence at the tissue-device interface. In addition, we used a novel approach to contain the arrays in actively behaving animals that consisted of an organic nerve wrap. A total of 500 electrodes were implanted across all ten animals. Main results. The results demonstrated that chronic implantation (⩽8 weeks) of HD-USEAs into peripheral nerves can evoke behavioral deficits that recover over time. Morphology of the nerve distal to the implantation site showed variable signs of nerve fiber degeneration and regeneration. Cytology adjacent to the device-tissue interface also showed a variable response, with some electrodes having many macrophages surrounding the electrodes, while other electrodes had few or no macrophages present. This variability was also seen along the length

  5. Chronic implantation of cuff electrodes on the pelvic nerve in rats is well tolerated and does not compromise afferent or efferent fibre functionality (United States)

    Crook, J. J.; Brouillard, C. B. J.; Irazoqui, P. P.; Lovick, T. A.


    Objective. Neuromodulation of autonomic nerve activity to regulate physiological processes is an emerging field. Vagal stimulation has received most attention whereas the potential of modulate visceral function by targeting autonomic nerves within the abdominal cavity remains under-exploited. Surgery to locate intra-abdominal targets is inherently more stressful than for peripheral nerves. Electrode leads risk becoming entrapped by intestines and loss of functionality in the nerve-target organ connection could result from electrode migration or twisting. Since nociceptor afferents are intermingled with similar-sized visceral autonomic fibres, stimulation may induce pain. In anaesthetised rats high frequency stimulation of the pelvic nerve can suppress urinary voiding but it is not known how conscious animals would react to this procedure. Our objective therefore was to determine how rats tolerated chronic implantation of cuff electrodes on the pelvic nerve, whether nerve stimulation would be aversive and whether nerve-bladder functionality would be compromised. Approach. We carried out a preliminary de-risking study to investigate how conscious rats tolerated chronic implantation of electrodes on the pelvic nerve, their responsiveness to intermittent high frequency stimulation and whether functionality of the nerve-bladder connection became compromised. Main results. Implantation of cuff electrodes was well-tolerated. The normal diurnal pattern of urinary voiding was not disrupted. Pelvic nerve stimulation (up to 4 mA, 3 kHz) for 30 min periods evoked mild alerting at stimulus onset but no signs of pain. Stimulation evoked a modest (nerve temperature but the functional integrity of the nerve-bladder connection, reflected by contraction of the detrusor muscle in response to 10 Hz nerve stimulation, was not compromised. Significance. Chronic implantation of cuff electrodes on the pelvic nerve was found to be a well-tolerated procedure in rats and high frequency

  6. An Implantable Versatile Electrode-Driving ASIC for Chronic Epidural Stimulation in Rats. (United States)

    Giagka, Vasiliki; Eder, Clemens; Donaldson, Nick; Demosthenous, Andreas


    This paper presents the design and testing of an electrode driving application specific integrated circuit (ASIC) intended for epidural spinal cord electrical stimulation in rats. The ASIC can deliver up to 1 mA fully programmable monophasic or biphasic stimulus current pulses, to 13 electrodes selected in any possible configuration. It also supports interleaved stimulation. Communication is achieved via only 3 wires. The current source and the control of the stimulation timing were kept off-chip to reduce the heat dissipation close to the spinal cord. The ASIC was designed in a 0.18- μm high voltage CMOS process. Its output voltage compliance can be up to 25 V. It features a small core area (ASIC was developed to be suitable for integration on the epidural electrode array, and two different versions were fabricated and electrically tested. Results from both versions were almost indistinguishable. The performance of the system was verified for different loads and stimulation parameters. Its suitability to drive a passive epidural 12-electrode array in saline has also been demonstrated.

  7. In vivo monitoring of glial scar proliferation on chronically implanted neural electrodes by fiber optical coherence tomography (United States)

    Xie, Yijing; Martini, Nadja; Hassler, Christina; Kirch, Robert D.; Stieglitz, Thomas; Seifert, Andreas; Hofmann, Ulrich G.


    In neural prosthetics and stereotactic neurosurgery, intracortical electrodes are often utilized for delivering therapeutic electrical pulses, and recording neural electrophysiological signals. Unfortunately, neuroinflammation impairs the neuron-electrode-interface by developing a compact glial encapsulation around the implants in long term. At present, analyzing this immune reaction is only feasible with post-mortem histology; currently no means for specific in vivo monitoring exist and most applicable imaging modalities can not provide information in deep brain regions. Optical coherence tomography (OCT) is a well established imaging modality for in vivo studies, providing cellular resolution and up to 1.2 mm imaging depth in brain tissue. A fiber based spectral domain OCT was shown to be capable of minimally invasive brain imaging. In the present study, we propose to use a fiber based spectral domain OCT to monitor the progression of the tissue's immune response through scar encapsulation progress in a rat animal model. A fine fiber catheter was implanted in rat brain together with a flexible polyimide microelectrode in sight both of which acts as a foreign body and induces the brain tissue immune reaction. OCT signals were collected from animals up to 12 weeks after implantation and thus gliotic scarring in vivo monitored for that time. Preliminary data showed a significant enhancement of the OCT backscattering signal during the first 3 weeks after implantation, and increased attenuation factor of the sampled tissue due to the glial scar formation. PMID:25191264

  8. Long-term biocompatibility of implanted polymer-based intrafascicular electrodes

    DEFF Research Database (Denmark)

    Lawrence, Stephen M; Larsen, Jytte Overgaard; Horch, Kenneth W


    Polymer-based longitudinal intrafascicular electrodes (polyLIFEs) were chronically implanted into the sciatic nerve of white New Zealand rabbits (n=8) for a period of 6 months (hereafter referred to as the long-term group). The impact of the implantation procedure, as observed 6 months post surge...

  9. The influence of cochlear implant electrode position on performance

    NARCIS (Netherlands)

    Marel, K.S. van der; Briaire, J.J.; Verbist, B.M.; Muurling, T.J.; Frijns, J.H.M.


    To study the relation between variables related to cochlear implant electrode position and speech perception performance scores in a large patient population.The study sample consisted of 203 patients implanted with a CII or HiRes90K implant with a HiFocus 1 or 1J electrode of Advanced Bionics.

  10. A Novel Percutaneous Electrode Implant for Improving Robustness in Advanced Myoelectric Control

    Directory of Open Access Journals (Sweden)

    Janne M. Hahne


    Full Text Available Despite several decades of research, electrically powered hand and arm prostheses are still controlled with very simple algorithms that process the surface electromyogram (EMG of remnant muscles to achieve control of one prosthetic function at a time. More advanced machine learning methods have shown promising results under laboratory conditions. However, limited robustness has largely prevented the transfer of these laboratory advances to clinical applications. In this paper, we introduce a novel percutaneous EMG electrode to be implanted chronically with the aim of improving the reliability of EMG detection in myoelectric control. The proposed electrode requires a minimally invasive procedure for its implantation, similar to a cosmetic micro-dermal implant. Moreover, being percutaneous, it does not require power and data telemetry modules. Four of these electrodes were chronically implanted in the forearm of an able-bodied human volunteer for testing their characteristics. The implants showed significantly lower impedance and greater robustness against mechanical interference than traditional surface EMG electrodes used for myoelectric control. Moreover, the EMG signals detected by the proposed systems allowed more stable control performance across sessions in different days than that achieved with classic EMG electrodes. In conclusion, the proposed implants may be a promising interface for clinically available prostheses.

  11. Improving Impedance of Implantable Microwire Multi-Electrode Arrays by Ultrasonic Electroplating of Durable Platinum Black (United States)

    Desai, Sharanya Arcot; Rolston, John D.; Guo, Liang; Potter, Steve M.


    Implantable microelectrode arrays (MEAs) have been a boon for neural stimulation and recording experiments. Commercially available MEAs have high impedances, due to their low surface area and small tip diameters, which are suitable for recording single unit activity. Lowering the electrode impedance, but preserving the small diameter, would provide a number of advantages, including reduced stimulation voltages, reduced stimulation artifacts and improved signal-to-noise ratio. Impedance reductions can be achieved by electroplating the MEAs with platinum (Pt) black, which increases the surface area but has little effect on the physical extent of the electrodes. However, because of the low durability of Pt black plating, this method has not been popular for chronic use. Sonicoplating (i.e. electroplating under ultrasonic agitation) has been shown to improve the durability of Pt black on the base metals of macro-electrodes used for cyclic voltammetry. This method has not previously been characterized for MEAs used in chronic neural implants. We show here that sonicoplating can lower the impedances of microwire multi-electrode arrays (MMEA) by an order of magnitude or more (depending on the time and voltage of electroplating), with better durability compared to pulsed plating or traditional DC methods. We also show the improved stimulation and recording performance that can be achieved in an in vivo implantation study with the sonicoplated low-impedance MMEAs, compared to high-impedance unplated electrodes. PMID:20485478

  12. Fabrication of Pillar Shaped Electrode Arrays for Artificial Retinal Implants

    Directory of Open Access Journals (Sweden)

    Sung June Kim


    Full Text Available Polyimide has been widely applied to neural prosthetic devices, such as the retinal implants, due to its well-known biocompatibility and ability to be micropatterned. However, planar films of polyimide that are typically employed show a limited ability in reducing the distance between electrodes and targeting cell layers, which limits site resolution for effective multi-channel stimulation. In this paper, we report a newly designed device with a pillar structure that more effectively interfaces with the target. Electrode arrays were successfully fabricated and safely implanted inside the rabbit eye in suprachoroidal space. Optical Coherence Tomography (OCT showed well-preserved pillar structures of the electrode without damage. Bipolar stimulation was applied through paired sites (6:1 and the neural responses were successfully recorded from several regions in the visual cortex. Electrically evoked cortical potential by the pillar electrode array stimulation were compared to visual evoked potential under full-field light stimulation.

  13. Implantable electrode for recording nerve signals in awake animals (United States)

    Ninomiya, I.; Yonezawa, Y.; Wilson, M. F.


    An implantable electrode assembly consisting of collagen and metallic electrodes was constructed to measure simultaneously neural signals from the intact nerve and bioelectrical noises in awake animals. Mechanical artifacts, due to bodily movement, were negligibly small. The impedance of the collagen electrodes, measured in awake cats 6-7 days after implantation surgery, ranged from 39.8-11.5 k ohms at a frequency range of 20-5 kHz. Aortic nerve activity and renal nerve activity, measured in awake conditions using the collagen electrode, showed grouped activity synchronous with the cardiac cycle. Results indicate that most of the renal nerve activity was from postganglionic sympathetic fibers and was inhibited by the baroceptor reflex in the same cardiac cycle.

  14. Design of a new electrode array for cochlear implants

    International Nuclear Information System (INIS)

    Kha, H.; Chen, B.


    Full text: This study aims to design a new electrode array which can be precisely located beneath the basilar membrane within the cochlear scala tympani. This placement of the electrode array is beneficial for increasing the effectiveness of the electrical stimulation of the audi tory nerves and maximising the growth factors delivered into the cochlea for regenerating the progressively lost auditory neurons, thereby significantly improving performance of the cochlear implant systems. Methods The design process involved two steps. First, the biocom patible nitinol-based shape memory alloy, of which mechanical deformation can be controlled using electrical cUTents/fields act vated by body temperature, was selected. Second, five different designs of the electrode array with embedded nitinol actuators were studied (Table I). The finite element method was employed to predict final positions of these electrode arrays. Results The electrode array with three 6 mm actuators at 2-8, 8-J4 and 14-20 mm from the tip (Fig. I) was found to be located most closely to the basilar membrane, compared with those in the other four cases. Conclusions A new nitinol cochlear implant electrode array with three embedded nitinol actuators has been designed. This electrode array is expected to be located beneath the basilar membrane for maximising the delivery of growth factors. Future research will involve the manufacturing of a prototype of this electrode array for use in insertion experiments and neurotrophin release tests.

  15. Mathematical modeling of chemotaxis and glial scarring around implanted electrodes

    International Nuclear Information System (INIS)

    Silchenko, Alexander N; Tass, Peter A


    It is well known that the implantation of electrodes for deep brain stimulation or microelectrode probes for the recording of neuronal activity is always accompanied by the response of the brain’s immune system leading to the formation of a glial scar around the implantation sites. The implantation of electrodes causes massive release of adenosine-5′-triphosphate (ATP) and different cytokines into the extracellular space and activates the microglia. The released ATP and the products of its hydrolysis, such as ADP and adenosine, become the main elements mediating chemotactic sensitivity and motility of microglial cells via subsequent activation of P2Y 2,12 as well as A3A/A2A adenosine receptors. The size and density of an insulating sheath around the electrode, formed by microglial cells, are important criteria for the optimization of the signal-to-noise ratio during microelectrode recordings or parameters of electrical current delivered to the brain tissue. Here, we study a purinergic signaling pathway underlying the chemotactic motion of microglia towards implanted electrodes as well as the possible impact of an anti-inflammatory coating consisting of the interleukin-1 receptor antagonist. We present a model describing the formation of a stable aggregate around the electrode due to the joint chemo-attractive action of ATP and ADP and the mixed influence of extracellular adenosine. The bioactive coating is modeled as a source of chemo-repellent located near the electrode surface. The obtained analytical and numerical results allowed us to reveal the dependences of size and spatial location of the insulating sheath on the amount of released ATP and estimate the impact of immune suppressive coating on the scarring process. (paper)

  16. A wide-field suprachoroidal retinal prosthesis is stable and well tolerated following chronic implantation. (United States)

    Villalobos, Joel; Nayagam, David A X; Allen, Penelope J; McKelvie, Penelope; Luu, Chi D; Ayton, Lauren N; Freemantle, Alexia L; McPhedran, Michelle; Basa, Meri; McGowan, Ceara C; Shepherd, Robert K; Williams, Chris E


    The safety of chronic implantation of a retinal prosthesis in the suprachoroidal space has not been established. This study aimed to determine the safety of a wide-field suprachoroidal electrode array following chronic implantation using histopathologic techniques and electroretinography. A platinum electrode array in a wide silicone substrate was implanted unilaterally in the suprachoroidal space in adult cats (n = 7). The lead and connector were tunneled out of the orbit and positioned subcutaneously. Postsurgical recovery was assessed using fundus photography and electroretinography (ERG). Following 3 months of passive implantation, the animals were terminated and the eyes assessed for the pathologic response to implantation. The implant was mechanically stable in the suprachoroidal space during the course of the study. The implanted eye showed a transient increase in ERG response amplitude at 2 weeks, which returned to normal by 3 months. Pigmentary changes were observed at the distal end of the implant, near the optic disc. Histopathologic assessment revealed a largely intact retina and a thin fibrous capsule around the suprachoroidal implant cavity. The foreign body response was minimal, with sporadic presence of macrophages and no active inflammation. All implanted eyes were negative for bacterial or fungal infections. A midgrade granuloma and thick fibrous buildup surrounded the extraocular cable. Scleral closure was maintained in six of seven eyes. There were no staphylomas or choroidal incarceration. A wide-field retinal prosthesis was stable and well tolerated during long-term suprachoroidal implantation in a cat model. The surgical approach was reproducible and overall safe.

  17. Implantable optical-electrode device for stimulation of spinal motoneurons

    International Nuclear Information System (INIS)

    Matveev, M V; Erofeev, A I; Zakharova, O A; Vlasova, O L; Pyatyshev, E N; Kazakin, A N


    Recent years, optogenetic method of scientific research has proved its effectiveness in the nerve cell stimulation tasks. In our article we demonstrate an implanted device for the spinal optogenetic motoneurons activation. This work is carried out in the Laboratory of Molecular Neurodegeneration of the Peter the Great St. Petersburg Polytechnic University, together with Nano and Microsystem Technology Laboratory. The work of the developed device is based on the principle of combining fiber optic light stimulation of genetically modified cells with the microelectrode multichannel recording of neurons biopotentials. The paper presents a part of the electrode implant manufacturing technique, combined with the optical waveguide of ThorLabs (USA). (paper)

  18. Microstimulation with Chronically Implanted Intracortical Electrodes (United States)

    McCreery, Douglas

    Stimulating microelectrodes that penetrate into the brain afford a means of accessing the basic functional units of the central nervous system. Microstimulation in the region of the cerebral cortex that subserve vision may be an alternative, or an adjunct, to a retinal prosthesis, and may be particularly attractive as a means of restoring a semblance of high-resolution central vision. There also is the intriguing possibility that such a prosthesis could convey higher order visual percepts, many of which are mediated by neural circuits in the secondary or "extra-striate" visual areas that surround the primary visual cortex. The technologies of intracortical stimulating microelectrodes and investigations of the effects of microstimulation on neural tissue have advanced to the point where a cortical-level prosthesis is at least feasible. The imperative of protecting neural tissue from stimulation-induced damage imposes constraints on the selection of stimulus parameters, as does the requirement that the stimulation not greatly affect the electrical excitability of the neurons that are to be activated. The latter is especially likely to occur when many adjacent microelectrodes are pulsed, as will be necessary in a visual prosthesis. However, data from animal studies indicates that these restrictions on stimulus parameter are compatible with those that can evoke visual percepts in humans and in experimental animals. These findings give cause to be optimistic about the prospects for realizing a visual prosthesis utilizing intracortical microstimulation.

  19. Percutaneously Inject able Fetal Pacemaker: Electrodes, Mechanical Design and Implantation* (United States)

    Zhou, Li; Chmait, Ramen; Bar-Cohen, Yaniv; Peck, Raymond A.; Loeb, Gerald E.


    We are developing a self-contained cardiac pacemaker with a small, cylindrical shape (~3×20mm) that permits it to be implanted percutaneously into a fetus to treat complete heart block and consequent hydrops fetalis, which is otherwise fatal. The device uses off-the-shelf components including a rechargeable lithium cell and a highly efficient relaxation oscillator encapsulated in epoxy and glass. A corkscrew electrode made from activated iridium can be screwed into the myocardium, followed by release of the pacemaker and a short, flexible lead entirely within the chest of the fetus to avoid dislodgement from fetal movement. The feasibility of implanting the device percutaneously under ultrasonic imaging guidance was demonstrated in acute adult rabbit experiments. PMID:23367442

  20. Percutaneously injectable fetal pacemaker: electrodes, mechanical design and implantation. (United States)

    Zhou, Li; Chmait, Ramen; Bar-Cohen, Yaniv; Peck, Raymond A; Loeb, Gerald E


    We are developing a self-contained cardiac pacemaker with a small, cylindrical shape (~3 × 20 mm) that permits it to be implanted percutaneously into a fetus to treat complete heart block and consequent hydrops fetalis, which is otherwise fatal. The device uses off-the-shelf components including a rechargeable lithium cell and a highly efficient relaxation oscillator encapsulated in epoxy and glass. A corkscrew electrode made from activated iridium can be screwed into the myocardium, followed by release of the pacemaker and a short, flexible lead entirely within the chest of the fetus to avoid dislodgement from fetal movement. The feasibility of implanting the device percutaneously under ultrasonic imaging guidance was demonstrated in acute adult rabbit experiments.

  1. Electrode spanning with partial tripolar stimulation mode in cochlear implants. (United States)

    Wu, Ching-Chih; Luo, Xin


    The perceptual effects of electrode spanning (i.e., the use of nonadjacent return electrodes) in partial tripolar (pTP) mode were tested on a main electrode EL8 in five cochlear implant (CI) users. Current focusing was controlled by σ (the ratio of current returned within the cochlea), and current steering was controlled by α (the ratio of current returned to the basal electrode). Experiment 1 tested whether asymmetric spanning with α = 0.5 can create additional channels around standard pTP stimuli. It was found that in general, apical spanning (i.e., returning current to EL6 rather than EL7) elicited a pitch between those of standard pTP stimuli on main electrodes EL8 and EL9, while basal spanning (i.e., returning current to EL10 rather than EL9) elicited a pitch between those of standard pTP stimuli on main electrodes EL7 and EL8. The pitch increase caused by apical spanning was more salient than the pitch decrease caused by basal spanning. To replace the standard pTP channel on the main electrode EL8 when EL7 or EL9 is defective, experiment 2 tested asymmetrically spanned pTP stimuli with various α, and experiment 3 tested symmetrically spanned pTP stimuli with various σ. The results showed that pitch increased with decreasing α in asymmetric spanning, or with increasing σ in symmetric spanning. Apical spanning with α around 0.69 and basal spanning with α around 0.38 may both elicit a similar pitch as the standard pTP stimulus. With the same σ, the symmetrically spanned pTP stimulus was higher in pitch than the standard pTP stimulus. A smaller σ was thus required for symmetric spanning to match the pitch of the standard pTP stimulus. In summary, electrode spanning is an effective field-shaping technique that is useful for adding spectral channels and handling defective electrodes with CIs.

  2. Challenging aspects of contemporary cochlear implant electrode array design. (United States)

    Mistrík, Pavel; Jolly, Claude; Sieber, Daniel; Hochmair, Ingeborg


    A design comparison of current perimodiolar and lateral wall electrode arrays of the cochlear implant (CI) is provided. The focus is on functional features such as acoustic frequency coverage and tonotopic mapping, battery consumption and dynamic range. A traumacity of their insertion is also evaluated. Review of up-to-date literature. Perimodiolar electrode arrays are positioned in the basal turn of the cochlea near the modiolus. They are designed to initiate the action potential in the proximity to the neural soma located in spiral ganglion. On the other hand, lateral wall electrode arrays can be inserted deeper inside the cochlea, as they are located along the lateral wall and such insertion trajectory is less traumatic. This class of arrays targets primarily surviving neural peripheral processes. Due to their larger insertion depth, lateral wall arrays can deliver lower acoustic frequencies in manner better corresponding to cochlear tonotopicity. In fact, spiral ganglion sections containing auditory nerve fibres tuned to low acoustic frequencies are located deeper than 1 and half turn inside the cochlea. For this reason, a significant frequency mismatch might be occurring for apical electrodes in perimodiolar arrays, detrimental to speech perception. Tonal languages such as Mandarin might be therefore better treated with lateral wall arrays. On the other hand, closer proximity to target tissue results in lower psychophysical threshold levels for perimodiolar arrays. However, the maximal comfort level is also lower, paradoxically resulting in narrower dynamic range than that of lateral wall arrays. Battery consumption is comparable for both types of arrays. Lateral wall arrays are less likely to cause trauma to cochlear structures. As the current trend in cochlear implantation is the maximal protection of residual acoustic hearing, the lateral wall arrays seem more suitable for hearing preservation CI surgeries. Future development could focus on combining the

  3. Risk of chronic anxiety in implantable defibrillator patients

    DEFF Research Database (Denmark)

    Pedersen, Susanne S.; den Broek, Krista C van; Theuns, Dominic A M J


    Little is known about the prevalence of chronic anxiety in patients with an implantable cardioverter defibrillator (ICD). In a multi-center, prospective study, we examined 1) the prevalence of chronic anxiety (i.e., patients anxious at implantation and 12 months), and 2) predictors of chronic...... anxiety....

  4. Auditory brainstem activity and development evoked by apical versus basal cochlear implant electrode stimulation in children. (United States)

    Gordon, K A; Papsin, B C; Harrison, R V


    The role of apical versus basal cochlear implant electrode stimulation on central auditory development was examined. We hypothesized that, in children with early onset deafness, auditory development evoked by basal electrode stimulation would differ from that evoked more apically. Responses of the auditory nerve and brainstem, evoked by an apical and a basal implant electrode, were measured over the first year of cochlear implant use in 50 children with early onset severe to profound deafness who used hearing aids prior to implantation. Responses at initial stimulation were of larger amplitude and shorter latency when evoked by the apical electrode. No significant effects of residual hearing or age were found on initial response amplitudes or latencies. With implant use, responses evoked by both electrodes showed decreases in wave and interwave latencies reflecting decreased neural conduction time through the brainstem. Apical versus basal differences persisted with implant experience with one exception; eIII-eV interlatency differences decreased with implant use. Acute stimulation shows prolongation of basally versus apically evoked auditory nerve and brainstem responses in children with severe to profound deafness. Interwave latencies reflecting neural conduction along the caudal and rostral portions of the brainstem decreased over the first year of implant use. Differences in neural conduction times evoked by apical versus basal electrode stimulation persisted in the caudal but not rostral brainstem. Activity-dependent changes of the auditory brainstem occur in response to both apical and basal cochlear implant electrode stimulation.

  5. Chronic Orbital Inflammation Associated to Hydroxyapatite Implants in Anophthalmic Sockets

    Directory of Open Access Journals (Sweden)

    Alicia Galindo-Ferreiro


    Full Text Available Purpose: We report 6 patients who received a hydroxyapatite (HA orbital implant in the socket and developed chronic orbital inflammation unresponsive to conventional medical therapy. Case Reports: We assisted 6 cases (4 males, 2 females who received an HA orbital implant in the socket between 2015 and 2016 at King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia, and developed chronic orbital inflammation with chronic discharge, redness, and pain (onset from weeks to over 2 decades after surgery. Computed tomography evaluation indicated inflammation in the orbital tissues, and histological examination showed a foreign body granulomatous reaction mainly localized around and blanching the HA implant. The condition was unresponsive to usual medical treatment and was resolved immediately after implant removal. Conclusions: Chronic inflammation can occur decades after placement of an HA implant in the orbit and can be successfully treated with implant removal.

  6. Vestibular Function After Cochlear Implantation: A Comparison of Three Types of Electrodes. (United States)

    Frodlund, Jonas; Harder, Henrik; Mäki-Torkko, Elina; Ledin, Torbjörn


    To investigate the vestibular function after cochlear implantation with different types of electrode arrays. Retrospective cohort study. Academic tertiary referral center. Forty three adults underwent first cochlear implantation. Three consecutive series of patients: Group 1 (n = 13) implanted with a precurved electrode, Group 2 (n = 15) implanted with a straight electrode, Group 3 (n = 15) implanted with a flexible electrode. Patient's vestibular functions were assessed with pre- and postoperative caloric testing using videonystagmography (VNG). The postoperative reduction of the maximum slow phase velocity (MSPV) in the implanted ear was evaluated. Medical charts were reviewed to evaluate the occurrence of late onset of postoperative vestibular symptoms. Mean reduction of MSPV was 7.6/s (standard deviation [SD] 8.0) in Group 1, 23.1/s (SD 16.6) in Group 2, and 0.1/s (SD 18.5) in Group 3. Significant difference was found between Group 1 and 2 (p < 0.030) and between Group 2 and 3 (p < 0.001). Group 2 showed a higher prevalence of late onset of clinical vertigo (28.6%) than Group 1 (7.7%) and 3 (6.7%). In this prospective study, significantly larger reductions of caloric responses were found in subjects implanted with a straight electrode compared with subjects implanted with a precurved or flexible electrode. These findings seem to correlate to a higher prevalence of postoperative vertigo.

  7. Modifying cochlear implant design: advantages of placing a return electrode in the modiolus. (United States)

    Ho, Steven Y; Wiet, Richard J; Richter, Claus-Peter


    A modiolar return electrode significantly increases the current flow across spiral ganglion cells into the modiolus, and may decrease the cochlear implant's power requirements. Ideal cochlear implants should maximize current flow into the modiolus to stimulate auditory neurons. Previous efforts to facilitate current flow through the modiolus included the fabrication and use of precurved electrodes designed to "hug" the modiolus and silastic positioners designed to place the electrodes closer to the modiolus. In contrast to earlier efforts, this study explores the effects of return electrode placement on current distributions in the modiolus. The effects of return electrode positioning on current flow in the modiolus were studied in a Plexiglas model of the cochlea. Results of model measurements were confirmed by measurements in the modiolus of human temporal bones. The return electrode was placed either within the modiolus, or remotely, outside the temporal bone, simulating contemporary cochlear implant configurations using monopolar stimulation. Cochlear model results clearly show that modiolar current amplitudes can be influenced significantly by the location of the return electrode, being larger when placed into the modiolus. Temporal bone data show similar findings. Voltages recorded in the modiolus are, on average, 2.8 times higher with the return electrode in the modiolus compared with return electrode locations outside the temporal bone. Placing a cochlear implant's return electrode in the modiolus should significantly reduce its power consumption. Reducing power requirements should lead to improved efficiency, safer long-term use, and longer device life.

  8. Electrical characteristic of the titanium mesh electrode for transcutaneous intrabody communication to monitor implantable artificial organs. (United States)

    Okamoto, Eiji; Kikuchi, Sakiko; Mitamura, Yoshinori


    We have developed a tissue-inducing electrode using titanium mesh to obtain mechanically and electrically stable contact with the tissue for a new transcutaneous communication system using the human body as a conductive medium. In this study, we investigated the electrical properties of the titanium mesh electrode by measuring electrode-tissue interface resistance in vivo. The titanium mesh electrode (Hi-Lex Co., Zellez, Hyogo, Japan) consisted of titanium fibers (diameter of 50 μm), and it has an average pore size of 200 μm and 87 % porosity. The titanium mesh electrode has a diameter of 5 mm and thickness of 1.5 mm. Three titanium mesh electrodes were implanted separately into the dorsal region of the rat. We measured the electrode-electrode impedance using an LCR meter for 12 weeks, and we calculated the tissue resistivity and electrode-tissue interface resistance. The electrode-tissue interface resistance of the titanium mesh electrode decreased slightly until the third POD and then continuously increased to 75 Ω. The electrode-tissue interface resistance of the titanium mesh electrode is stable and it has lower electrode-tissue interface resistance than that of a titanium disk electrode. The extracted titanium mesh electrode after 12 weeks implantation was fixed in 10 % buffered formalin solution and stained with hematoxylin-eosin. Light microscopic observation showed that the titanium mesh electrode was filled with connective tissue, inflammatory cells and fibroblasts with some capillaries in the pores of the titanium mesh. The results indicate that the titanium mesh electrode is a promising electrode for the new transcutaneous communication system.

  9. Electrode selection for hearing preservation in cochlear implantation: A review of the evidence

    Directory of Open Access Journals (Sweden)

    Jason A. Brant


    Full Text Available Objective: To review and assess the ideal length of electrode in cochlear implant patients for hearing preservation. Methods: The English language literature was reviewed for studies including hearing preservation and speech understanding for electrodes of different lengths. Results: One prospective trial was found, and there were no studies that randomized patients into different length electrodes with an intent to preserve hearing. Eight studies total included multiple length electrodes and contained data regarding hearing preservation. Conclusions: Although there is some evidence that indicates that shorter electrodes may improve both short and long-term hearing preservation rates in cochlear implant patients, no study has directly compared implant length on hearing preservation in a similar patient population. A randomized trial of short and standard length electrodes for hearing preservation is warranted. In the interim, utilization of current electrodes measuring 20–25 mm could seem to be a prudent approach when seeking to preserve residual hearing without unduly compromising cochlear coverage. Keywords: Electrode, Length, Hearing preservation, Cochlear implantation

  10. Cochlear implant electrode localization in post-operative CT using a spherical measure

    DEFF Research Database (Denmark)

    Braithwaite, Benjamin Michael; Kjer, Hans Martin; Fagertun, Jens


    the ordering of electrode contacts on implanted electrode arrays from post-operative CT images. Our method applies a specialized filter chain to the images based on a threshold and spherical measure, and selects contact positions at local maxima in the filtered image. Two datasets of 13 temporal bone specimens...

  11. Diversity in cochlear morphology and its influence on cochlear implant electrode position

    NARCIS (Netherlands)

    Marel, K.S. van der; Briaire, J.J.; Wolterbeek, R..; Snel-Bongers, J.; Verbist, B.M.; Frijns, J.H.


    To define a minimal set of descriptive parameters for cochlear morphology and study its influence on the cochlear implant electrode position in relation to surgical insertion distance.Cochlear morphology and electrode position were analyzed using multiplanar reconstructions of the pre- and

  12. Finite difference time domain (FDTD) modeling of implanted deep brain stimulation electrodes and brain tissue. (United States)

    Gabran, S R I; Saad, J H; Salama, M M A; Mansour, R R


    This paper demonstrates the electromagnetic modeling and simulation of an implanted Medtronic deep brain stimulation (DBS) electrode using finite difference time domain (FDTD). The model is developed using Empire XCcel and represents the electrode surrounded with brain tissue assuming homogenous and isotropic medium. The model is created to study the parameters influencing the electric field distribution within the tissue in order to provide reference and benchmarking data for DBS and intra-cortical electrode development.

  13. Scanning electron microscopy of chronically implanted intracortical microelectrode arrays in non-human primates (United States)

    Barrese, James C.; Aceros, Juan; Donoghue, John P.


    Objective. Signal attenuation is a major problem facing intracortical sensors for chronic neuroprosthetic applications. Many studies suggest that failure is due to gliosis around the electrode tips, however, mechanical and material causes of failure are often overlooked. The purpose of this study was to investigate the factors contributing to progressive signal decline by using scanning electron microscopy (SEM) to visualize structural changes in chronically implanted arrays and histology to examine the tissue response at corresponding implant sites. Approach. We examined eight chronically implanted intracortical microelectrode arrays (MEAs) explanted from non-human primates at times ranging from 37 to 1051 days post-implant. We used SEM, in vivo neural recordings, and histology (GFAP, Iba-1, NeuN). Three MEAs that were never implanted were also imaged as controls. Main results. SEM revealed progressive corrosion of the platinum electrode tips and changes to the underlying silicon. The parylene insulation was prone to cracking and delamination, and in some instances the silicone elastomer also delaminated from the edges of the MEA. Substantial tissue encapsulation was observed and was often seen growing into defects in the platinum and parylene. These material defects became more common as the time in vivo increased. Histology at 37 and 1051 days post-implant showed gliosis, disruption of normal cortical architecture with minimal neuronal loss, and high Iba-1 reactivity, especially within the arachnoid and dura. Electrode tracts were either absent or barely visible in the cortex at 1051 days, but were seen in the fibrotic encapsulation material suggesting that the MEAs were lifted out of the brain. Neural recordings showed a progressive drop in impedance, signal amplitude, and viable channels over time. Significance. These results provide evidence that signal loss in MEAs is truly multifactorial. Gliosis occurs in the first few months after implantation but does

  14. Chronically implanted pressure sensors: challenges and state of the field. (United States)

    Yu, Lawrence; Kim, Brian J; Meng, Ellis


    Several conditions and diseases are linked to the elevation or depression of internal pressures from a healthy, normal range, motivating the need for chronic implantable pressure sensors. A simple implantable pressure transduction system consists of a pressure-sensing element with a method to transmit the data to an external unit. The biological environment presents a host of engineering issues that must be considered for long term monitoring. Therefore, the design of such systems must carefully consider interactions between the implanted system and the body, including biocompatibility, surgical placement, and patient comfort. Here we review research developments on implantable sensors for chronic pressure monitoring within the body, focusing on general design requirements for implantable pressure sensors as well as specifications for different medical applications. We also discuss recent efforts to address biocompatibility, efficient telemetry, and drift management, and explore emerging trends.

  15. Modeling the electrode-neuron interface of cochlear implants: effects of neural survival, electrode placement, and the partial tripolar configuration. (United States)

    Goldwyn, Joshua H; Bierer, Steven M; Bierer, Julie Arenberg


    The partial tripolar electrode configuration is a relatively novel stimulation strategy that can generate more spatially focused electric fields than the commonly used monopolar configuration. Focused stimulation strategies should improve spectral resolution in cochlear implant users, but may also be more sensitive to local irregularities in the electrode-neuron interface. In this study, we develop a practical computer model of cochlear implant stimulation that can simulate neural activation in a simplified cochlear geometry and we relate the resulting patterns of neural activity to basic psychophysical measures. We examine how two types of local irregularities in the electrode-neuron interface, variations in spiral ganglion nerve density and electrode position within the scala tympani, affect the simulated neural activation patterns and how these patterns change with electrode configuration. The model shows that higher partial tripolar fractions activate more spatially restricted populations of neurons at all current levels and require higher current levels to excite a given number of neurons. We find that threshold levels are more sensitive at high partial tripolar fractions to both types of irregularities, but these effects are not independent. In particular, at close electrode-neuron distances, activation is typically more spatially localized which leads to a greater influence of neural dead regions. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  16. Combined use of transcranial magnetic stimulation and metal electrode implants: a theoretical assessment of safety considerations (United States)

    Golestanirad, Laleh; Rouhani, Hossein; Elahi, Behzad; Shahim, Kamal; Chen, Robert; Mosig, Juan R.; Pollo, Claudio; Graham, Simon J.


    This paper provides a theoretical assessment of the safety considerations encountered in the simultaneous use of transcranial magnetic stimulation (TMS) and neurological interventions involving implanted metallic electrodes, such as electrocorticography. Metal implants are subject to magnetic forces due to fast alternating magnetic fields produced by the TMS coil. The question of whether the mechanical movement of the implants leads to irreversible damage of brain tissue is addressed by an electromagnetic simulation which quantifies the magnitude of imposed magnetic forces. The assessment is followed by a careful mechanical analysis determining the maximum tolerable force which does not cause irreversible tissue damage. Results of this investigation provide useful information on the range of TMS stimulator output powers which can be safely used in patients having metallic implants. It is shown that conventional TMS applications can be considered safe when applied on patients with typical electrode implants as the induced stress in the brain tissue remains well below the limit of tissue damage.

  17. The design of and chronic tissue response to a composite nerve electrode with patterned stiffness (United States)

    Freeberg, M. J.; Stone, M. A.; Triolo, R. J.; Tyler, D. J.


    Objective. As neural interfaces demonstrate success in chronic applications, a novel class of reshaping electrodes with patterned regions of stiffness will enable application to a widening range of anatomical locations. Patterning stiff regions and flexible regions of the electrode enables nerve reshaping while accommodating anatomical constraints of various implant locations ranging from peripheral nerves to spinal and autonomic plexi. Approach. Introduced is a new composite electrode enabling patterning of regions of various electrode mechanical properties. The initial demonstration of the composite’s capability is the composite flat interface nerve electrode (C-FINE). The C-FINE is constructed from a sandwich of patterned PEEK within layers of pliable silicone. The shape of the PEEK provides a desired pattern of stiffness: stiff across the width of the nerve to reshape the nerve, but flexible along its length to allow for bending with the nerve. This is particularly important in anatomical locations near joints or organs, and in constrained compartments. We tested pressure and volume design constraints in vitro to verify that the C-FINE can attain a safe cuff-to-nerve ratio (CNR) without impeding intraneural blood flow. We measured nerve function as well as nerve and axonal morphology following 3 month implantation of the C-FINE without wires on feline peripheral nerves in anatomically constrained areas near mobile joints and major blood vessels in both the hind and fore limbs. Main Results. In vitro inflation tests showed effective CNRs (1.93  ±  0.06) that exceeded the industry safety standard of 1.5 at an internal pressure of 20 mmHg. This is less than the 30 mmHg shown to induce loss of conduction or compromise blood flow. Implanted cats showed no changes in physiology or electrophysiology. Behavioral signs were normal suggesting healthy nerves. Motor nerve conduction velocity and compound motor action potential did not change significantly

  18. High-Density Stretchable Electrode Grids for Chronic Neural Recording. (United States)

    Tybrandt, Klas; Khodagholy, Dion; Dielacher, Bernd; Stauffer, Flurin; Renz, Aline F; Buzsáki, György; Vörös, János


    Electrical interfacing with neural tissue is key to advancing diagnosis and therapies for neurological disorders, as well as providing detailed information about neural signals. A challenge for creating long-term stable interfaces between electronics and neural tissue is the huge mechanical mismatch between the systems. So far, materials and fabrication processes have restricted the development of soft electrode grids able to combine high performance, long-term stability, and high electrode density, aspects all essential for neural interfacing. Here, this challenge is addressed by developing a soft, high-density, stretchable electrode grid based on an inert, high-performance composite material comprising gold-coated titanium dioxide nanowires embedded in a silicone matrix. The developed grid can resolve high spatiotemporal neural signals from the surface of the cortex in freely moving rats with stable neural recording quality and preserved electrode signal coherence during 3 months of implantation. Due to its flexible and stretchable nature, it is possible to minimize the size of the craniotomy required for placement, further reducing the level of invasiveness. The material and device technology presented herein have potential for a wide range of emerging biomedical applications. © 2018 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Modeling of electrodes and implantable pulse generator cases for the analysis of implant tip heating under MR imaging

    International Nuclear Information System (INIS)

    Acikel, Volkan; Atalar, Ergin; Uslubas, Ali


    Purpose: The authors’ purpose is to model the case of an implantable pulse generator (IPG) and the electrode of an active implantable medical device using lumped circuit elements in order to analyze their effect on radio frequency induced tissue heating problem during a magnetic resonance imaging (MRI) examination. Methods: In this study, IPG case and electrode are modeled with a voltage source and impedance. Values of these parameters are found using the modified transmission line method (MoTLiM) and the method of moments (MoM) simulations. Once the parameter values of an electrode/IPG case model are determined, they can be connected to any lead, and tip heating can be analyzed. To validate these models, both MoM simulations and MR experiments were used. The induced currents on the leads with the IPG case or electrode connections were solved using the proposed models and the MoTLiM. These results were compared with the MoM simulations. In addition, an electrode was connected to a lead via an inductor. The dissipated power on the electrode was calculated using the MoTLiM by changing the inductance and the results were compared with the specific absorption rate results that were obtained using MoM. Then, MRI experiments were conducted to test the IPG case and the electrode models. To test the IPG case, a bare lead was connected to the case and placed inside a uniform phantom. During a MRI scan, the temperature rise at the lead was measured by changing the lead length. The power at the lead tip for the same scenario was also calculated using the IPG case model and MoTLiM. Then, an electrode was connected to a lead via an inductor and placed inside a uniform phantom. During a MRI scan, the temperature rise at the electrode was measured by changing the inductance and compared with the dissipated power on the electrode resistance. Results: The induced currents on leads with the IPG case or electrode connection were solved for using the combination of the MoTLiM and

  20. Correlation of mRNA Expression and Signal Variability in Chronic Intracortical Electrodes. (United States)

    Falcone, Jessica D; Carroll, Sheridan L; Saxena, Tarun; Mandavia, Dev; Clark, Alexus; Yarabarla, Varun; Bellamkonda, Ravi V


    The goal for this research was to identify molecular mechanisms that explain animal-to-animal variability in chronic intracortical recordings. Microwire electrodes were implanted into Sprague Dawley rats at an acute (1 week) and a chronic (14 weeks) time point. Weekly recordings were conducted, and action potentials were evoked in the barrel cortex by deflecting the rat's whiskers. At 1 and 14 weeks, tissue was collected, and mRNA was extracted. mRNA expression was compared between 1 and 14 weeks using a high throughput multiplexed qRT-PCR. Pearson correlation coefficients were calculated between mRNA expression and signal-to-noise ratios at 14 weeks. At 14 weeks, a positive correlation between signal-to-noise ratio (SNR) and NeuN and GFAP mRNA expression was observed, indicating a relationship between recording strength and neuronal population, as well as reactive astrocyte activity. The inflammatory state around the electrode interface was evaluated using M1-like and M2-like markers. Expression for both M1-like and M2-like mRNA markers remained steady from 1 to 14 weeks. Anti-inflammatory markers, CD206 and CD163, however, demonstrated a significant positive correlation with SNR quality at 14 weeks. VE-cadherin, a marker for adherens junctions, and PDGFR-β, a marker for pericytes, both partial representatives of blood-brain barrier health, had a positive correlation with SNR at 14 weeks. Endothelial adhesion markers revealed a significant increase in expression at 14 weeks, while CD45, a pan-leukocyte marker, significantly decreased at 14 weeks. No significant correlation was found for either the endothelial adhesion or pan-leukocyte markers. A positive correlation between anti-inflammatory and blood-brain barrier health mRNA markers with electrophysiological efficacy of implanted intracortical electrodes has been demonstrated. These data reveal potential mechanisms for further evaluation to determine potential target mechanisms to improve

  1. Selecting electrode configurations for image-guided cochlear implant programming using template matching. (United States)

    Zhang, Dongqing; Zhao, Yiyuan; Noble, Jack H; Dawant, Benoit M


    Cochlear implants (CIs) are neural prostheses that restore hearing using an electrode array implanted in the cochlea. After implantation, the CI processor is programmed by an audiologist. One factor that negatively impacts outcomes and can be addressed by programming is cross-electrode neural stimulation overlap (NSO). We have proposed a system to assist the audiologist in programming the CI that we call image-guided CI programming (IGCIP). IGCIP permits using CT images to detect NSO and recommend deactivation of a subset of electrodes to avoid NSO. We have shown that IGCIP significantly improves hearing outcomes. Most of the IGCIP steps are robustly automated but electrode configuration selection still sometimes requires manual intervention. With expertise, distance-versus-frequency curves, which are a way to visualize the spatial relationship learned from CT between the electrodes and the nerves they stimulate, can be used to select the electrode configuration. We propose an automated technique for electrode configuration selection. A comparison between this approach and one we have previously proposed shows that our method produces results that are as good as those obtained with our previous method while being generic and requiring fewer parameters.

  2. The use of tungsten as a chronically implanted material (United States)

    Shah Idil, A.; Donaldson, N.


    This review paper shows that tungsten should not generally be used as a chronically implanted material. The metal has a long implant history, from neuroscience, vascular medicine, radiography, orthopaedics, prosthodontics, and various other fields, primarily as a result of its high density, radiopacity, tensile strength, and yield point. However, a crucial material criterion for chronically implanted metals is their long-term resistance to corrosion in body fluids, either by inherently noble metallic surfaces, or by protective passivation layers of metal oxide. The latter is often assumed for elemental tungsten, with references to its ‘inertness’ and ‘stability’ common in the literature. This review argues that in the body, metallic tungsten fails this criterion, and will eventually dissolve into the soluble hexavalent form W6+, typically represented by the orthotungstate WO42- (monomeric tungstate) anion. This paper outlines the metal’s unfavourable corrosion thermodynamics in the human physiological environment, the chemical pathways to either metallic or metal oxide dissolution, the rate-limiting steps, and the corrosion-accelerating effects of reactive oxidising species that the immune system produces post-implantation. Multiple examples of implant corrosion have been reported, with failure by dissolution to varying extents up to total loss, with associated emission of tungstate ions and elevated blood serum levels measured. The possible toxicity of these corrosion products has also been explored. As the field of medical implants grows and designers explore novel solutions to medical implant problems, the authors recommend the use of alternative materials.

  3. Durability of Hearing Preservation after Cochlear Implantation with Conventional-Length Electrodes and Scala Tympani Insertion. (United States)

    Sweeney, Alex D; Hunter, Jacob B; Carlson, Matthew L; Rivas, Alejandro; Bennett, Marc L; Gifford, Rene H; Noble, Jack H; Haynes, David S; Labadie, Robert F; Wanna, George B


    To analyze factors that influence hearing preservation over time in cochlear implant recipients with conventional-length electrode arrays located entirely within the scala tympani. Case series with planned chart review. Single tertiary academic referral center. A retrospective review was performed to analyze a subgroup of cochlear implant recipients with residual acoustic hearing. Patients were included in the study only if their electrode arrays remained fully in the scala tympani after insertion and serviceable acoustic hearing (≤80 dB at 250 Hz) was preserved. Electrode array location was verified through a validated radiographic assessment tool. Patients with scala tympani. In this group, the style of electrode array may influence residual hearing preservation over time. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2016.

  4. A second defibrillator chest patch electrode will increase implantation rates for nonthoracotomy defibrillators. (United States)

    Solomon, A J; Swartz, J F; Rodak, D J; Moore, H J; Hannan, R L; Tracy, C M; Fletcher, R D


    Nonthoracotomy defibrillator systems can be implanted with a lower morbidity and mortality, compared to epicardial systems. However, implantation may be unsuccessful in up to 15% of patients, using a monophasic waveform. It was the purpose of this study to prospectively examine the efficacy of a second chest patch electrode in a nonthoracotomy defibrillator system. Fourteen patients (mean age 62 +/- 11 years, ejection fraction = 0.29 +/- 0.12) with elevated defibrillation thresholds, defined as > or = 24 J, were studied. The initial lead system consisted of a right ventricular electrode (cathode), a left innominate vein, and subscapular chest patch electrode (anodes). If the initial defibrillation threshold was > or = 24 J, a second chest patch electrode was added. This was placed subcutaneously in the anterior chest (8 cases), or submuscularly in the subscapular space (6 cases). This resulted in a decrease in the system impedance at the defibrillation threshold, from 72.3 +/- 13.3 omega to 52.2 +/- 8.6 omega. Additionally, the defibrillation threshold decreased from > or = 24 J, with a single patch, to 16.6 +/- 2.8 J with two patches. These changes were associated with successful implantation of a nonthoracotomy defibrillator system in all cases. In conclusion, the addition of a second chest patch electrode (using a subscapular approach) will result in lower defibrillation thresholds in patients with high defibrillation thresholds, and will subsequently increase implantation rates for nonthoracotomy defibrillators.

  5. Hearing Preservation Outcomes With a Mid-Scala Electrode in Cochlear Implantation. (United States)

    Hunter, Jacob B; Gifford, René H; Wanna, George B; Labadie, Robert F; Bennett, Marc L; Haynes, David S; Rivas, Alejandro


    To evaluate hearing preservation (HP) outcomes in adult cochlear implant recipients with a mid-scala electrode. Tertiary academic center. Adult patients implanted with a mid-scala electrode between May 2013 and July 2015. Cochlear implantation. Age, sex, surgical approach, residual hearing changes post cochlear implantation, HP rates using different published classifications, and speech perception scores. Fifty ears for 47 patients (mean age, 58.2 yr; range, 23-86) were implanted with the electrode. Recognizing that not all patients were true HP candidates and/or underwent generally accepted HP surgical techniques, 39 ears had preoperative low-frequency hearing (audiometric threshold ≤ 85dB HL at 250Hz), 24 preserved acoustic hearing postoperatively (75.0%). Patients who had preserved acoustic hearing were implanted via round window (N = 18), extended round window (N = 4), or via cochleostomy (N = 2) approaches. Mean threshold elevation for low-frequency pure-tone average (125, 250, and 500  Hz) was 20.2  dB after surgery. 43.8% of patients had aidable low-frequency hearing at activation, 30.0% at 6-months postoperatively, and 30.8% 1-year postopera tively. Using a formula outlined by Skarzynski and colleagues, at 6-months postoperatively, 15.0% of patients had complete HP, whereas 40.0% had partial HP. At 1-year, these percentages decreased to 0% and 38.5%, respectively. Age, type of approach, and perioperative steroid use were not correlated with HP outcomes at activation and 6-months postoperatively (p > 0.05). The mid-scala electrode evaluated allows preservation of low-frequency hearing in patients undergoing cochlear implantation at rates and degrees of preservation close to other reports in the cochlear implant literature.

  6. [A physiological investigation of chronic electrical stimulation with scala tympani electrodes in kittens]. (United States)

    Ni, D


    A physiological investigation of cochlear electrical stimulation was undertaken in six two-month-old kittens. The scala tympani electrodes were implanted and electrically stimulated using biphasic balanced electrical pulses for periods of 1000-1500h in four ears. Four ears received implants for same period but without electrical stimulation. The other two ears served as normal control. The results indicated: 1) Chronic electrical stimulation of the cochlea within electrochemically safe limits did not influence the hearing of kittens and the normal delivery of impulses evoked by acoustic and electrical signals on the auditory brainstem pathway. 2) The wave shapes of EABRs were similar to those of ABRs. The amplitudes of EABRs showed a significant increase following chronic electrical stimulation, resulting in a leftward shift in the input/output function. The absolute latencies and interwave latencies of waves II-III, III-IV and II-IV were significantly shorter than those of ABRs. These results imply that there was no adverse effect of chronic electrical stimulation on the maturing auditory systems of kittens using these electrical parameters and the mechanism of electrical hearing should be further studied.

  7. Intracranial depth electrodes implantation in the era of image-guided surgery

    Directory of Open Access Journals (Sweden)

    Ricardo Silva Centeno


    Full Text Available The advent of modern image-guided surgery has revolutionized depth electrode implantation techniques. Stereoelectroencephalography (SEEG, introduced by Talairach in the 1950s, is an invasive method for three-dimensional analysis on the epileptogenic zone based on the technique of intracranial implantation of depth electrodes. The aim of this article is to discuss the principles of SEEG and their evolution from the Talairach era to the image-guided surgery of today, along with future prospects. Although the general principles of SEEG have remained intact over the years, the implantation of depth electrodes, i.e. the surgical technique that enables this method, has undergone tremendous evolution over the last three decades, due the advent of modern imaging techniques, computer systems and new stereotactic techniques. The use of robotic systems, the constant evolution of imaging and computing techniques and the use of depth electrodes together with microdialysis probes will open up enormous prospects for applying depth electrodes and SEEG both for investigative use and for therapeutic use. Brain stimulation of deep targets and the construction of "smart" electrodes may, in the near future, increase the need to use this method.

  8. Intracranial depth electrodes implantation in the era of image-guided surgery. (United States)

    Centeno, Ricardo Silva; Yacubian, Elza Márcia Targas; Caboclo, Luis Otávio Sales Ferreira; Júnior, Henrique Carrete; Cavalheiro, Sérgio


    The advent of modern image-guided surgery has revolutionized depth electrode implantation techniques. Stereoelectroencephalography (SEEG), introduced by Talairach in the 1950s, is an invasive method for three-dimensional analysis on the epileptogenic zone based on the technique of intracranial implantation of depth electrodes. The aim of this article is to discuss the principles of SEEG and their evolution from the Talairach era to the image-guided surgery of today, along with future prospects. Although the general principles of SEEG have remained intact over the years, the implantation of depth electrodes, i.e. the surgical technique that enables this method, has undergone tremendous evolution over the last three decades, due the advent of modern imaging techniques, computer systems and new stereotactic techniques. The use of robotic systems, the constant evolution of imaging and computing techniques and the use of depth electrodes together with microdialysis probes will open up enormous prospects for applying depth electrodes and SEEG both for investigative use and for therapeutic use. Brain stimulation of deep targets and the construction of "smart" electrodes may, in the near future, increase the need to use this method.

  9. Effects of ion implantation on the electrochemical characteristics of carbon electrodes

    International Nuclear Information System (INIS)

    Takahashi, Katsuo; Iwaki, Masaya


    Various carbon materials are important electrode materials for electrochemical field. By ion implantation, the surface layer reforming of carbon materials (mainly galssy carbon) was carried out, and the effect that it exerts to their electrode characteristics was investigated. As the results of the ion implantation of Li, N, O, K, Ti, Zn, Cd and others performed so far, it was found that mainly by the change of the surface layer to amorphous state, there were the effects of the lowering of base current and the lowering of electrode reaction rate, and it was known that the surface layers of carbon materials doped with various kinds of ions showed high chemical stability. The use of carbon materials as electrodes in electrochemistry is roughly divided into the electrodes for electrolytic industry and fuel cells for large current and those for the measurement in electrochemical reaction for small current. The structure of carbon materials and electrode characteristics, and the reforming effect by ion implantation are reported. (K.I.)

  10. Intracranial EEG fluctuates over months after implanting electrodes in human brain (United States)

    Ung, Hoameng; Baldassano, Steven N.; Bink, Hank; Krieger, Abba M.; Williams, Shawniqua; Vitale, Flavia; Wu, Chengyuan; Freestone, Dean; Nurse, Ewan; Leyde, Kent; Davis, Kathryn A.; Cook, Mark; Litt, Brian


    Objective. Implanting subdural and penetrating electrodes in the brain causes acute trauma and inflammation that affect intracranial electroencephalographic (iEEG) recordings. This behavior and its potential impact on clinical decision-making and algorithms for implanted devices have not been assessed in detail. In this study we aim to characterize the temporal and spatial variability of continuous, prolonged human iEEG recordings. Approach. Intracranial electroencephalography from 15 patients with drug-refractory epilepsy, each implanted with 16 subdural electrodes and continuously monitored for an average of 18 months, was included in this study. Time and spectral domain features were computed each day for each channel for the duration of each patient’s recording. Metrics to capture post-implantation feature changes and inflexion points were computed on group and individual levels. A linear mixed model was used to characterize transient group-level changes in feature values post-implantation and independent linear models were used to describe individual variability. Main results. A significant decline in features important to seizure detection and prediction algorithms (mean line length, energy, and half-wave), as well as mean power in the Berger and high gamma bands, was observed in many patients over 100 d following implantation. In addition, spatial variability across electrodes declines post-implantation following a similar timeframe. All selected features decreased by 14-50% in the initial 75 d of recording on the group level, and at least one feature demonstrated this pattern in 13 of the 15 patients. Our findings indicate that iEEG signal features demonstrate increased variability following implantation, most notably in the weeks immediately post-implant. Significance. These findings suggest that conclusions drawn from iEEG, both clinically and for research, should account for spatiotemporal signal variability and that properly assessing the iEEG in

  11. Clinical results of sacral neuromodulation for chronic voiding dysfunction using unilateral sacral foramen electrodes. (United States)

    Weil, E H; Ruiz-Cerdá, J L; Eerdmans, P H; Janknegt, R A; Van Kerrebroeck, P E


    The aim of this study was to determine the long-term clinical efficacy and complications of neuromodulation with a unilateral sacral foramen electrode in 36 patients with chronic voiding dysfunction. Following a positive effect of a percutaneous nerve evaluation test, patients underwent open surgery. A permanent electrode was implanted in 24 patients with urge incontinence, in 6 with urgency-frequency syndrome, and in 6 with nonobstructive urinary retention. After an average follow-up period of 37.8 months, 19 patients (52.8%) continue to benefit from the neuromodulation with a significant improvement of symptoms and urodynamic parameters. The median duration of the therapeutic effect for the total study population was longer than 60 months. No significant difference in the median duration of therapeutic effect with regard to sex, the type of voiding disorder, or the implant pulse generator was found. However, in patients with previous psychological disorders the median duration of therapeutic effect was only 12 months (P = 0.008). Complications were mild. In the group of patients in whom the therapeutic effect remains, 37 reoperations have had to be performed. We conclude that although reoperations were needed to overcome technical problems, patients can achieve lasting symptomatic improvement. Since technical changes in the equipment have reduced the number of complications, even better results can be expected in terms of the reoperation rate.

  12. Surgical implications of perimodiolar cochlear implant electrode design: avoiding intracochlear damage and scala vestibuli insertion. (United States)

    Briggs, R J; Tykocinski, M; Saunders, E; Hellier, W; Dahm, M; Pyman, B; Clark, G M


    To review the mechanisms and nature of intracochlear damage associated with cochlear implant electrode array insertion, in particular, the various perimodiolar electrode designs. Make recommendations regarding surgical techniques for the Nucleus Contour electrode to ensure correct position and minimal insertion trauma. The potential advantages of increased modiolar proximity of intracochlear multichannel electrode arrays are a reduction in stimulation thresholds, an increase in dynamic range and more localized neural excitation. This may improve speech perception and reduce power consumption. These advantages may be negated if increased intracochlear damage results from the method used to position the electrodes close to the modiolus. A review of the University of Melbourne Department of Otolaryngology experience with temporal bone safety studies using the Nucleus standard straight electrode array and a variety of perimodiolar electrode array designs; comparison with temporal bone insertion studies from other centres and postmortem histopathology studies reported in the literature. Review of our initial clinical experience using the Nucleus Contour electrode array. The nature of intracochlear damage resulting from electrode insertion trauma ranges from minor, localized, spiral ligament tear to diffuse organ of Corti disruption and osseous spiral lamina fracture. The type of damage depends on the mechanical characteristics of the electrode array, the stiffness, curvature and size of the electrode in relation to the scala, and the surgical technique. The narrow, flexible, straight arrays are the least traumatic. Pre-curved or stiffer arrays are associated with an incidence of basilar membrane perforation. The cochleostomy must be correctly sited in relation to the round window to ensure scala tympani insertion. A cochleostomy anterior to the round window rather than inferior may lead to scala media or scala vestibuli insertion. Proximity of electrodes to the modiolus

  13. Impact of chronic infections (periodontic and endodontic in implant dentistry

    Directory of Open Access Journals (Sweden)

    Bhumanapalli Venkata Ramesh Reddy


    Full Text Available Dental implant plays an important role in oral rehabilitation. In recent decades, the concept of restoratively driven implant placement has become well-accepted. Thus, an increasing number of patients, especially those with past or present periodontitis or with periapical infections, desire to receive dental implants to restore their lost teeth. This review discusses the relationship between chronic periodontal and periapical infections with periimplantitis, with a focus on implant outcome. The studies considered for the inclusion were searched in MEDLINE (pubmed. The search was restricted to studies published in English from 1980 to 2015. Screening of eligible studies and data extraction were carried out by the reviewers. The articles included in the review comprised in vitro studies, in vivo studies (animals and humans, abstracts, and review articles.

  14. A Communications Link for an Implantable Electrode Array. (United States)


    be gene -rated from the 256 electrodes in a 16 x 16 array which is narrow enough in bandwidth to be transmitted over a FM radio frequency carrier. The...MARCH 1973 DESIGNED FOR HIGH-SPE ED, MEDIUM-POWER SWITCHINGU AND GENERAL PURPOSE AMPLIFIER APPLICATIONS a hFE ... Guaranteed from 100 1pA to 500 mA

  15. Complications and results of subdural grid electrode implantation in epilepsy surgery. (United States)

    Lee, W S; Lee, J K; Lee, S A; Kang, J K; Ko, T S


    We assessed the risk of delayed subdural hematoma and other complications associated with subdural grid implantation. Forty-nine patients underwent subdural grid implantation with/without subdural strips or depth electrodes from January 1994 to August 1998. To identify the risk associated with subdural grid implantation, a retrospective review of all patients' medical records and radiological studies was performed. The major complications of 50 subdural grid electrode implantations were as follows: four cases (7.8%) of delayed subdural hematoma at the site of the subdural grid, requiring emergency operation; two cases (3.9%) of infection; one case (2.0%) of epidural hematoma; and one case (2.0%) of brain swelling. After subdural hematoma removal, the electrodes were left in place. CCTV monitoring and cortical stimulation studies were continued thereafter. No delayed subdural hematoma has occurred since routine placement of subdural drains was begun. In our experience the worst complication of subdural grid implantation has been delayed subdural hematoma. Placement of subdural drains and close observation may be helpful to prevent this serious complication.

  16. Seven years of recording from monkey cortex with a chronically implanted multiple microelectrode

    Directory of Open Access Journals (Sweden)

    Jürgen Krüger


    Full Text Available A brush of 64 microwires was chronically implanted in the ventral premotor cortex of a macaque monkey. Contrary to common approaches, the wires were inserted from the white matter side. This approach, by avoiding mechanical pressure on the dura and pia mater during penetration, disturbed only minimally the cortical recording site. With this approach isolated potentials and multiunit activity were recorded for more than seven years in about one third of electrodes. The indirect insertion method also provided an excellent stability within each recording session, and in some cases even allowed recording from the same neurons for several years. Histological examination of the implanted brain region shows only a very marginal damage the recording area. Advantages and problems related to long-term recording are discussed.

  17. Factors Affecting Outcomes in Cochlear Implant Recipients Implanted With a Perimodiolar Electrode Array Located in Scala Tympani. (United States)

    Holden, Laura K; Firszt, Jill B; Reeder, Ruth M; Uchanski, Rosalie M; Dwyer, Noël Y; Holden, Timothy A


    To identify primary biographic and audiologic factors contributing to cochlear implant (CI) performance variability in quiet and noise by controlling electrode array type and electrode position within the cochlea. Although CI outcomes have improved over time, considerable outcome variability still exists. Biographic, audiologic, and device-related factors have been shown to influence performance. Examining CI recipients with consistent array type and electrode position may allow focused investigation into outcome variability resulting from biographic and audiologic factors. Thirty-nine adults (40 ears) implanted for at least 6 months with a perimodiolar electrode array known (via computed tomography [CT] imaging) to be in scala tympani participated. Test materials, administered CI only, included monosyllabic words, sentences in quiet and noise, and spectral ripple discrimination. In quiet, scores were high with mean word and sentence scores of 76 and 87%, respectively; however, sentence scores decreased by an average of 35 percentage points when noise was added. A principal components (PC) analysis of biographic and audiologic factors found three distinct factors, PC1 Age, PC2 Duration, and PC3 Pre-op Hearing. PC1 Age was the only factor that correlated, albeit modestly, with speech recognition in quiet and noise. Spectral ripple discrimination strongly correlated with speech measures. For these recipients with consistent electrode position, PC1 Age was related to speech recognition performance. Consistent electrode position may have contributed to high speech understanding in quiet. Inter-subject variability in noise may have been influenced by auditory/cognitive processing, known to decline with age, and mechanisms that underlie spectral resolution ability.

  18. Investigation of Implantable Multi-Channel Electrode Array in Rat Cerebral Cortex Used for Recording (United States)

    Taniguchi, Noriyuki; Fukayama, Osamu; Suzuki, Takafumi; Mabuchi, Kunihiko

    There have recently been many studies concerning the control of robot movements using neural signals recorded from the brain (usually called the Brain-Machine interface (BMI)). We fabricated implantable multi-electrode arrays to obtain neural signals from the rat cerebral cortex. As any multi-electrode array should have electrode alignment that minimizes invasion, it is necessary to customize the recording site. We designed three types of 22-channel multi-electrode arrays, i.e., 1) wide, 2) three-layered, and 3) separate. The first extensively covers the cerebral cortex. The second has a length of 2 mm, which can cover the area of the primary motor cortex. The third array has a separate structure, which corresponds to the position of the forelimb and hindlimb areas of the primary motor cortex. These arrays were implanted into the cerebral cortex of a rat. We estimated the walking speed from neural signals using our fabricated three-layered array to investigate its feasibility for BMI research. The neural signal of the rat and its walking speed were simultaneously recorded. The results revealed that evaluation using either the anterior electrode group or posterior group provided accurate estimates. However, two electrode groups around the center yielded poor estimates although it was possible to record neural signals.

  19. Spatial and temporal characteristics of V1 microstimulation during chronic implantation of a microelectrode array in a behaving macaque (United States)

    Davis, T. S.; Parker, R. A.; House, P. A.; Bagley, E.; Wendelken, S.; Normann, R. A.; Greger, B.


    Objective. It has been hypothesized that a vision prosthesis capable of evoking useful visual percepts can be based upon electrically stimulating the primary visual cortex (V1) of a blind human subject via penetrating microelectrode arrays. As a continuation of earlier work, we examined several spatial and temporal characteristics of V1 microstimulation. Approach. An array of 100 penetrating microelectrodes was chronically implanted in V1 of a behaving macaque monkey. Microstimulation thresholds were measured using a two-alternative forced choice detection task. Relative locations of electrically-evoked percepts were measured using a memory saccade-to-target task. Main results. The principal finding was that two years after implantation we were able to evoke behavioural responses to electric stimulation across the spatial extent of the array using groups of contiguous electrodes. Consistent responses to stimulation were evoked at an average threshold current per electrode of 204 ± 49 µA (mean ± std) for groups of four electrodes and 91 ± 25 µA for groups of nine electrodes. Saccades to electrically-evoked percepts using groups of nine electrodes showed that the animal could discriminate spatially distinct percepts with groups having an average separation of 1.6 ± 0.3 mm (mean ± std) in cortex and 1.0° ± 0.2° in visual space. Significance. These results demonstrate chronic perceptual functionality and provide evidence for the feasibility of a cortically-based vision prosthesis for the blind using penetrating microelectrodes.

  20. Evaluation of a new mid-scala cochlear implant electrode using microcomputed tomography. (United States)

    Frisch, Christopher D; Carlson, Matthew L; Lane, John I; Driscoll, Colin L W


    To investigate electrode position, depth of insertion, and electrode contact using an electrode array with a mid-scala design following round window (RW) and cochleostomy insertion. Eight fresh-frozen cadaveric bones were implanted; half via a RW approach and half through an anteroinferior cochleostomy using a styleted mid-scala electrode design. Microcomputed tomography was used to acquire oblique coronal and oblique axial reformations. Individual electrode positions along each array, insertional depth, and electrode contact were determined using National Institutes of Health Image J software. All electrodes were inserted without significant resistance. The average angular depth of insertion was 436.5° for the RW group and 422.7° for the cochleostomy group. All electrodes acquired a perimodiolar position in the proximal segment and a lateral wall position at the basal turn, regardless of approach. Electrodes distal to the basal turn demonstrated a variable location, with 78% mid scala. One cochleostomy array fractured through the interscalar partition (ISP), acquiring a scala vestibuli position. The odds ratio for either abutting the modiolus, ISP, lateral wall or floor, or fracturing through the ISP were 2.7 times more likely following a cochleostomy insertion (P = .032). The styleted mid-scala electrode design acquires a proximal perimodiolar position, a lateral wall location, as it traverses the basal turn, and most commonly a mid-scala position in the distal array. Interscalar excursion occurred in one of the cochleostomy insertions. Cochleostomy insertion is more likely to result in ultimate final electrode position adjacent to critical intracochlear structures. NA. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.

  1. A Chronically Implantable Bidirectional Neural Interface for Non-human Primates

    Directory of Open Access Journals (Sweden)

    Misako Komatsu


    Full Text Available Optogenetics has potential applications in the study of epilepsy and neuroprostheses, and for studies on neural circuit dynamics. However, to achieve translation to clinical usage, optogenetic interfaces that are capable of chronic stimulation and monitoring with minimal brain trauma are required. We aimed to develop a chronically implantable device for photostimulation of the brain of non-human primates. We used a micro-light-emitting diode (LED array with a flexible polyimide film. The array was combined with a whole-cortex electrocorticographic (ECoG electrode array for simultaneous photostimulation and recording. Channelrhodopsin-2 (ChR2 was virally transduced into the cerebral cortex of common marmosets, and then the device was epidurally implanted into their brains. We recorded the neural activity during photostimulation of the awake monkeys for 4 months. The neural responses gradually increased after the virus injection for ~8 weeks and remained constant for another 8 weeks. The micro-LED and ECoG arrays allowed semi-invasive simultaneous stimulation and recording during long-term implantation in the brains of non-human primates. The development of this device represents substantial progress in the field of optogenetic applications.

  2. Insertion forces and intracochlear trauma in temporal bone specimens implanted with a straight atraumatic electrode array. (United States)

    Mirsalehi, Marjan; Rau, Thomas S; Harbach, Lenka; Hügl, Silke; Mohebbi, Saleh; Lenarz, Thomas; Majdani, Omid


    The aim of the study was to evaluate insertion forces during manual insertion of a straight atraumatic electrode in human temporal bones, and post-implantation histologic evaluation of the samples to determine whether violation of intracochlear structures is related to insertion forces. In order to minimize intracochlear trauma and preserve residual hearing during cochlear implantation, knowledge of the insertion forces is necessary. Ten fresh frozen human temporal bones were prepared with canal wall down mastoidectomy. All samples were mounted on a one-axis force sensor. Insertion of a 16-mm straight atraumatic electrode was performed from different angles to induce "traumatic" insertion. Histologic evaluation was performed in order to evaluate intracochlear trauma. In 4 of 10 samples, dislocation of the electrode into scala vestibuli was observed. The mean insertion force for all 10 procedures was 0.003 ± 0.005 N. Insertion forces measured around the site of dislocation to scala vestibuli in 3 of 4 samples were significantly higher than insertion forces at the same location of the cochleae measured in samples without trauma (p straight atraumatic electrode is lower than reported by other studies using longer electrodes. Based on our study, insertion forces leading to basilar membrane trauma may be lower than the previously reported direct rupture forces.

  3. Binaural release from masking with single- and multi-electrode stimulation in children with cochlear implants. (United States)

    Todd, Ann E; Goupell, Matthew J; Litovsky, Ruth Y


    Cochlear implants (CIs) provide children with access to speech information from a young age. Despite bilateral cochlear implantation becoming common, use of spatial cues in free field is smaller than in normal-hearing children. Clinically fit CIs are not synchronized across the ears; thus binaural experiments must utilize research processors that can control binaural cues with precision. Research to date has used single pairs of electrodes, which is insufficient for representing speech. Little is known about how children with bilateral CIs process binaural information with multi-electrode stimulation. Toward the goal of improving binaural unmasking of speech, this study evaluated binaural unmasking with multi- and single-electrode stimulation. Results showed that performance with multi-electrode stimulation was similar to the best performance with single-electrode stimulation. This was similar to the pattern of performance shown by normal-hearing adults when presented an acoustic CI simulation. Diotic and dichotic signal detection thresholds of the children with CIs were similar to those of normal-hearing children listening to a CI simulation. The magnitude of binaural unmasking was not related to whether the children with CIs had good interaural time difference sensitivity. Results support the potential for benefits from binaural hearing and speech unmasking in children with bilateral CIs.

  4. Pitch ranking, electrode discrimination, and physiological spread of excitation using current steering in cochlear implants (United States)

    Goehring, Jenny L.; Neff, Donna L.; Baudhuin, Jacquelyn L.; Hughes, Michelle L.


    The first objective of this study was to determine whether adaptive pitch-ranking and electrode-discrimination tasks with cochlear-implant (CI) recipients produce similar results for perceiving intermediate “virtual-channel” pitch percepts using current steering. Previous studies have not examined both behavioral tasks in the same subjects with current steering. A second objective was to determine whether a physiological metric of spatial separation using the electrically evoked compound action potential spread-of-excitation (ECAP SOE) function could predict performance in the behavioral tasks. The metric was the separation index (Σ), defined as the difference in normalized amplitudes between two adjacent ECAP SOE functions, summed across all masker electrodes. Eleven CII or 90 K Advanced Bionics (Valencia, CA) recipients were tested using pairs of electrodes from the basal, middle, and apical portions of the electrode array. The behavioral results, expressed as d′, showed no significant differences across tasks. There was also no significant effect of electrode region for either task. ECAP Σ was not significantly correlated with pitch ranking or electrode discrimination for any of the electrode regions. Therefore, the ECAP separation index is not sensitive enough to predict perceptual resolution of virtual channels. PMID:25480063

  5. Cochlear implantation in Mondini's deformity: could the straight electrode array with length of 31 mm be fully inserted? (United States)

    Sun, Jia-Qiang; Sun, Jing-Wu; Hou, Xiao-Yan


    The straight electrode array with length of 31 mm can be fully inserted using round window insertion in cochlear implantation with Mondini's deformity. It is a safe and effective process, but also a challenging task of the full implantation in children with Mondini's deformity. The aim of this study is to discuss whether the straight electrode array with a length of 31 mm could be fully inserted in cochlear implantation with Mondini's deformity. A chart review of 30 patients undergoing cochlear implantation with Mondini's deformity using the electrode array with length of 31 mm was undertaken from January 2012 and December 2015 in Anhui Provincial Hospital. Full insertion of the straight electrode array with length of 31 mm were performed successfully in all patients with Mondini's deformity using round window insertion. Resistance was not encountered while introducing the electrodes. Ten of 30 patients had cerebrospinal fluid drainage during cochlear implantation. Cerebrospinal fluid drainage was controlled with small pieces of temporalis fascia packing round window in all patients. Intra-operative neural response telemetry was performed in all patients, and results were good. The result of X-ray showed proper placement of the cochlear implant electrode array. During surgery, no patients had experienced any immediate or delayed post-operative complications such as wound infection, intracranial complication, extrusion, or migration of the implant during an average follow-up period of 6-36 months.

  6. Evaluation of the tripolar electrode stimulation method by numerical analysis and animal experiments for cochlear implants. (United States)

    Miyoshi, S; Sakajiri, M; Ifukube, T; Matsushima, J


    We have proposed the Tripolar Electrode Stimulation Method (TESM) which may enable us to narrow the stimulation region and to move continuously the stimulation site for the cochlear implants. We evaluated whether or not TESM works according to a theory based on numerical analysis using the auditory nerve fiber model. In this simulation, the sum of the excited model fibers were compared with the compound actions potentials obtained from animal experiments. As a result, this experiment showed that TESM could narrow a stimulation region by controlling the sum of the currents emitted from the electrodes on both sides, and continuously move a stimulation site by changing the ratio of the currents emitted from the electrodes on both sides.

  7. Electro active polymers : novel bio-electrodes and implants for urinary continence

    Energy Technology Data Exchange (ETDEWEB)

    Rajagopalan, S.; Sawan, M.; Savadogo, O. [Ecole Polytechnique, Montreal, PQ (Canada). Laboratoire de nouveaux materiaux pour les systemes electrochimiques et energetiques


    This paper presented a technical solution to spinal cord injuries that result in urinary bladder dysfunction. It involves miniaturized implants based on polypyrrole, an electroactive polymer, as smart drug-eluting electrodes for neural stimulation to restore bladder function. The nerve-electrode interface is the most vulnerable point in the design and operation of neuro-electronic implants. The main disadvantages are decreased impedance and protein build-up at the stimulation site due to an inflammatory reaction. Polypyrrole is a naturally conducting polymer having both electron-conducting properties as well as actuating properties, rendering it suitable as a drug-eluting electrode for a neurostimulator. Polypyrrole electrochemically coated on platinum increases biocompatibility and reduces electric impedance by increasing the surface area of the electrode. When electrically stimulated, polypyrrole also serves as a matrix to release a negatively-charged anti-inflammatory drug fosfosal. This technology may prove useful in reconstructing a severely damaged bladder through electroactive biomaterials. Polyelectrolyte gels, such as poly(sodium) acrylate, reversibly contract and relax when activated electrically or under the influx of divalent ions. These artificial muscles can be connected to a polypyrrole strain sensor to alert the microcontroller to activate the sphincter muscle, thereby creating an artificial bladder.

  8. Polymer Coatings of Cochlear Implant Electrode Surface - An Option for Improving Electrode-Nerve-Interface by Blocking Fibroblast Overgrowth.

    Directory of Open Access Journals (Sweden)

    C Hadler

    Full Text Available Overgrowth of connective tissue and scar formation induced by the electrode array insertion increase the impedance and, thus, diminish the interactions between neural probes as like cochlear implants (CI and the target tissue. Therefore, it is of great clinical interest to modify the carrier material of the electrodes to improve the electrode nerve interface for selective cell adhesion. On one side connective tissue growth needs to be reduced to avoid electrode array encapsulation, on the other side the carrier material should not compromise the interaction with neuronal cells. The present in vitro-study qualitatively and quantitatively characterises the interaction of fibroblasts, glial cells and spiral ganglion neurons (SGN with ultrathin poly(N,N-dimethylacrylamide (PDMAA, poly(2-ethyloxazoline (PEtOx and poly([2-methacryloyloxyethyl]trimethylammoniumchlorid (PMTA films immobilised onto glass surfaces using a photoreactive anchor layer. The layer thickness and hydrophilicity of the polymer films were characterised by ellipsometric and water contact angle measurement. Moreover the topography of the surfaces was investigated using atomic force microscopy (AFM. The neuronal and non-neuronal cells were dissociated from spiral ganglions of postnatal rats and cultivated for 48 h on top of the polymer coatings. Immunocytochemical staining of neuronal and intermediary filaments revealed that glial cells predominantly attached on PMTA films, but not on PDMAA and PEtOx monolayers. Hereby, strong survival rates and neurite outgrowth were only found on PMTA, whereas PDMAA and PEtOx coatings significantly reduced the SG neuron survival and neuritogenesis. As also shown by scanning electron microscopy (SEM SGN strongly survived and retained their differentiated phenotype only on PMTA. In conclusion, survival and neuritogenesis of SGN may be associated with the extent of the glial cell growth. Since PMTA was the only of the polar polymers used in this study

  9. Electrode Impedance Fluctuations as a Biomarker for Inner Ear Pathology After Cochlear Implantation. (United States)

    Choi, June; Payne, Matthew R; Campbell, Luke J; Bester, Christo W; Newbold, Carrie; Eastwood, Hayden; O'Leary, Stephen J


    Cochlear implant surgery now aims to preserve residual low frequency hearing. The current research explores whether fluctuations in the electrical impedance of cochlear implant electrodes may act as a biomarker for pathological changes that lead to the delayed loss of residual hearing. Secondary analysis of a double-blinded randomized trial, where methylprednisolone was administered intravenously before cochlear implantation with a view to preserving residual hearing. Seventy-four patients with residual hearing after cochlear implant surgery were investigated for an impedance "spike," defined as a median rise of ≥4 kΩ across all electrodes from the baseline measurements. Spikes were related to objective and subjective hearing loss, dizziness, and tinnitus. An impedance spike occurred in 14% (10/74) of enrolled patients. Three months after surgery, five patients exhibited spikes and three of these patients had a total loss of their residual hearing. 4.3% of the 69 patients without spikes lost residual hearing. At 1 year, 9 of 10 patients who exhibited spikes had lost all their residual hearing. 8.1% of the 37 patients who did not experience a spike lost their residual hearing. Seventy percent of patients exhibiting a spike also experienced vertigo. The administration of steroids at the time of surgery did not influence the occurrence of spikes. Our results suggest that there is a relationship between a spike and the loss of residual hearing. It seems that rises in impedance can reflect pathology within the inner ear and predict the future loss of residual hearing.

  10. Initial Operative Experience and Short-term Hearing Preservation Results With a Mid-scala Cochlear Implant Electrode Array. (United States)

    Svrakic, Maja; Roland, J Thomas; McMenomey, Sean O; Svirsky, Mario A


    To describe our initial operative experience and hearing preservation results with the Advanced Bionics (AB) Mid Scala Electrode (MSE). Retrospective review. Tertiary referral center. Sixty-three MSE implants in pediatric and adult patients were compared with age- and sex-matched 1j electrode implants from the same manufacturer. All patients were severe to profoundly deaf. Cochlear implantation with either the AB 1j electrode or the AB MSE. The MSE and 1j electrodes were compared in their angular depth of insertion and pre to postoperative change in hearing thresholds. Hearing preservation was analyzed as a function of angular depth of insertion. Secondary outcome measures included operative time, incidence of abnormal intraoperative impedance and telemetry values, and incidence of postsurgical complications. Depth of insertion was similar for both electrodes, but was more consistent for the MSE array and more variable for the 1j array. Patients with MSE electrodes had better hearing preservation. Thresholds shifts at four audiometric frequencies ranging from 250 to 2000 Hz were 10, 7, 2, and 6 dB smaller for the MSE electrode than for the 1j (p < 0.05). Hearing preservation at low frequencies was worse with deeper insertion, regardless of array. Secondary outcome measures were similar for both electrodes. The MSE electrode resulted in more consistent insertion depth and somewhat better hearing preservation than the 1j electrode. Differences in other surgical outcome measures were small or unlikely to have a meaningful effect.

  11. Comparison of Subgingival and Peri-implant Microbiome in Chronic Periodontitis. (United States)

    Zhang, Qian; Qin, Xue Yan; Jiang, Wei Peng; Zheng, Hui; Xu, Xin Li; Chen, Feng


    To analyse the microbia composition of 10 healthy dental implants and 10 chronic periodontitis patients. Subgingival plaque and peri-implant biofilm were sampled at the first molar site before and after implant restoration. The analysis was conducted by 454-prosequencing of bacterial V1 to V3 regions of 16S rDNA. Chronic periodontitis subjects showed greater bacterial diversity compared with implant subjects. The relative abundance of sixteen genera and twelve species differed significantly between implant and chronic periodontitis subjects. The genera Catonella, Desulfovibrio, Mogibacterium, Peptostreptococcus and Propionibacterium were present in higher abundance in chronic periodontitis subjects, while implant subjects had higher proportions of Brevundimonas and Pseudomonas species. Our results demonstrate that implant restoration changes the oral microbiota. The analysis suggests that periodontal bacteria can remain for a prolonged period of time at non-dental sites, from where they can colonise the peri-implant.

  12. Ten-Year Follow-up of a Blind Patient Chronically Implanted with Epiretinal Prosthesis Argus I. (United States)

    Yue, Lan; Falabella, Paulo; Christopher, Punita; Wuyyuru, Varalakshmi; Dorn, Jessy; Schor, Paulo; Greenberg, Robert J; Weiland, James D; Humayun, Mark S


    The Argus I implant is the first-generation epiretinal prosthesis approved for an investigational clinical trial by the United States Food and Drug Administration. Herein we report testing results obtained from a 10-year follow-up to study the physiologic effects of the bioelectronic visual implant after prolonged chronic electrical stimulation. Case report. One man, 55 years of age when enrolled in the study, underwent surgical implantation of the Argus I in June 2004, followed by periodic tests from July 2004 through June 2014, spanning a total of 10 years. The decade-long follow-up consisted of implant system performance tests, subject visual function evaluation, and implant-retina interface analysis. Changes in electrode impedance and perceptual threshold over the time course; subject's performance on visual function task, orientation, and mobility tests; and optical coherence tomography data, fundus imaging, and fluorescein angiography results for the assessment of subject's implant-retina physical interface. Electrically elicited phosphenes were present 10 years after implantation of an epiretinal stimulator. The test subject not only was able to perceive phosphenes, but also could perform visual tasks at rates well above chance. This decade-long follow-up report provides further support for the use of retinal prostheses as a long-lasting treatment for some types of blindness. Copyright © 2015 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  13. Haptoglobin gene polymorphisms in peri-implantitis and chronic periodontitis. (United States)

    Ebadian, Ahmad R; Kadkhodazadeh, Mahdi; Naghavi, Seyed Hamid Hosseini; Torshabi, Maryam; Tamizi, Mahmood


    The haptoglobin-hemoglobin (Hp-Hb) complex plays a significant role in regulating immune responses and acts as a bacteriostatic agent. Haptoglobin polymorphisms result in different Hb binding affinities. This study sought to assess whether Hp 2-2 could be a genetic determinant for increasing the risk of peri-implantitis and chronic periodontitis. Of the Iranian subjects referred to the Department of Periodontics, Shahid Beheshti University, Tehran, 203 were entered into the study, including 117 patients and 86 periodontally healthy individuals. Polymerase chain reaction (PCR) was performed for genotyping. Data were analyzed by Kruskal-Wallis test using the SPSS statistics software package. The prevalence of Hp 2-2, 2-1, and 1-1 did not differ significantly between patients and healthy subjects (P > 0.05). The highest frequencies of Hp 1-1, 2-1, and 2-2 genotypes were seen in the control (7%), peri-implantitis (51%) and periodontitis (64%) groups, respectively. Haptoglobin polymorphisms may not play a role in development of peri-implantitis or chronic periodontitis among Iranians but we strongly suggest researchers to evaluate this polymorphism in further studies on larger sample sizes, different populations, and other types of periodontitis. © 2013 Wiley Publishing Asia Pty Ltd.

  14. Improved 2-D resistivity imaging of features in covered karst terrain with arrays of implanted electrodes (United States)

    Kiflu, H. G.; Kruse, S. E.; Harro, D.; Loke, M. H.; Wilkinson, P. B.


    Electrical resistivity tomography is commonly used to identify geologic features associated with sinkhole formation. In covered karst terrain, however, it can be difficult to resolve the depth to top of limestone with this method. This is due to the fact that array lengths, and hence depth of resolution, are often limited by residential or commercial lot dimensions in urban environments. Furthermore, the sediments mantling the limestone are often clay-rich and highly conductive. The resistivity method has limited sensitivity to resistive zones beneath conductive zones. This sensitivity can be improved significantly with electrodes implanted at depth in the cover sediments near the top of limestone. An array of deep electrodes is installed with direct push technology in the karst cover. When combined with a surface array in which each surface electrode is underlain by a deep electrode, the array geometry is similar to a borehole array turned on its side. This method, called the Multi-Electrode Resistivity Implant Technique (MERIT), offers the promise of significantly improved resolution of epikarst and cover collapse development zones in the overlying sediment, the limestone or at the sediment-bedrock interface in heterogeneous karst environments. With a non-traditional array design, the question of optimal array geometries arises. Optimizing array geometries is complicated by the fact that many plausible 4-electrode readings will produce negative apparent resistivity values, even in homogeneous terrain. Negative apparent resistivities cannot be used in inversions based on the logarithm of the apparent resistivity. New algorithms for seeking optimal array geometries have been developed by modifying the 'Compare R' method of Wilkinson and Loke. The optimized arrays show significantly improved resolution over basic arrays adapted from traditional 2D surface geometries. Several MERIT case study surveys have been conducted in covered karst in west-central Florida, with

  15. Bio-inspired hybrid microelectrodes: a hybrid solution to improve long-term performance of chronic intracortical implants. (United States)

    De Faveri, Sara; Maggiolini, Emma; Miele, Ermanno; De Angelis, Francesco; Cesca, Fabrizia; Benfenati, Fabio; Fadiga, Luciano


    The use of implants that allow chronic electrical stimulation and recording in the brain of human patients is currently limited by a series of events that cause the deterioration over time of both the electrode surface and the surrounding tissue. The main reason of failure is the tissue inflammatory reaction that eventually causes neuronal loss and glial encapsulation, resulting in a progressive increase of the electrode-electrolyte impedance. Here, we describe a new method to create bio-inspired electrodes to mimic the mechanical properties and biological composition of the host tissue. This combination has a great potential to increase the implant lifetime by reducing tissue reaction and improving electrical coupling. Our method implies coating the electrode with reprogrammed neural or glial cells encapsulated within a hydrogel layer. We chose fibrin as a hydrogel and primary hippocampal neurons or astrocytes from rat brain as cellular layer. We demonstrate that fibrin coating is highly biocompatible, forms uniform coatings of controllable thickness, does not alter the electrochemical properties of the microelectrode and allows good quality recordings. Moreover, it reduces the amount of host reactive astrocytes - over time - compared to a bare wire and is fully reabsorbed by the surrounding tissue within 7 days after implantation, avoiding the common problem of hydrogels swelling. Both astrocytes and neurons could be successfully grown onto the electrode surface within the fibrin hydrogel without altering the electrochemical properties of the microelectrode. This bio-hybrid device has therefore a good potential to improve the electrical integration at the neuron-electrode interface and support the long-term success of neural prostheses.

  16. Bio-inspired hybrid microelectrodes. A hybrid solution to improve long-term performance of chronic intracortical implants.

    Directory of Open Access Journals (Sweden)

    Sara eDe Faveri


    Full Text Available The use of implants that allow chronic electrical stimulation and recording in the brain of human patients is currently limited by a series of events that cause the deterioration over time of both the electrode surface and the surrounding tissue. The main reason of failure is the tissue inflammatory reaction that eventually causes neuronal loss and glial encapsulation, resulting in a progressive increase of the electrode-electrolyte impedance. Here, we describe a new method to create bio-inspired electrodes to mimic the mechanical properties and biological composition of the host tissue. This combination has a great potential to increase the implant lifetime by reducing tissue reaction and improving electrical coupling. Our method implies coating the electrode with reprogrammed neural or glial cells encapsulated within a hydrogel layer. We chose fibrin as a hydrogel and primary hippocampal neurons or astrocytes from rat brain as cellular layer. We demonstrate that fibrin coating is highly biocompatible, forms uniform coatings of controllable thickness, does not alter the electrochemical properties of the microelectrode and allows good quality recordings. Moreover, it reduces the amount of host reactive astrocytes - over time - compared to a bare wire and is fully reabsorbed by the surrounding tissue within 7 days after implantation, avoiding the common problem of hydrogels swelling. Both astrocytes and neurons could be successfully grown onto the electrode surface within the fibrin hydrogel without altering the electrochemical properties of the microelectrode. This bio-hybrid device has therefore a good potential to improve the electrical integration at the neuron-electrode interface and support the long-term success of neural prostheses.

  17. Effect of steroid eluting versus conventional electrodes on propafenone induced rise in chronic ventricular pacing threshold. (United States)

    Cornacchia, D; Fabbri, M; Maresta, A; Nigro, P; Sorrentino, F; Puglisi, A; Ricci, R; Peraldo, C; Fazzari, M; Pistis, G


    The aim of this study was to evaluate chronic ventricular pacing threshold increase after oral propafenone therapy. Eighty-three patients affected by advanced atrioventricular block and sick sinus syndrome were studied at least 3 months after pacemaker implantation, before and after oral propafenone therapy (450-900 mg/day based on body weight). The patients were subdivided into three groups according to the type of unipolar electrode that was implanted: group I (41 patients) Medtronic CapSure 4003, group II (30 patients) Medtronic Target Tip 4011, and group III (12 patients) Osypka Vy screw-in lead. In all cases a Medtronic unipolar pacemaker was implanted: 30 Minix, 23 Activitrax, 14 Elite, 12 Legend, and 4 Pasys. Propafenone blood level was measured in 75 patients 3-5 hours after propafenone administration. The pacing autothreshold was measured at 0.8 V, 1.6 V, and 2.5 V by reducing pulse width. At the three different outputs before and after propafenone, threshold increments were significantly lower in group I in comparison with group II and group III (propafenone ranging from < 0.001 to < 0.05). No significant difference was found in pacing impedance or in propafenone plasma concentration in the three groups. Strength-duration curves were drawn for each group at baseline and after propafenone administration. Before propafenone, in group I, the knee was markedly shifted to the left and downward as compared to the classic curve, so that the steep part was predominant; in group II and group III this shift was progressively less evident.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Radiologic and functional evaluation of electrode dislocation from the scala tympani to the scala vestibuli in patients with cochlear implants. (United States)

    Fischer, N; Pinggera, L; Weichbold, V; Dejaco, D; Schmutzhard, J; Widmann, G


    Localization of the electrode after cochlear implantation seems to have an impact on auditory outcome, and conebeam CT has emerged as a reliable method for visualizing the electrode array position within the cochlea. The aim of this retrospective study was to evaluate the frequency and clinical impact of scalar dislocation of various electrodes and surgical approaches and to evaluate its influence on auditory outcome. This retrospective single-center study analyzed a consecutive series of 63 cochlear implantations with various straight electrodes. The placement of the electrode array was evaluated by using multiplanar reconstructed conebeam CT images. For the auditory outcome, we compared the aided hearing thresholds and the charge units of maximum comfortable loudness level at weeks 6, 12, and 24 after implantation. In 7.9% of the cases, the electrode array showed scalar dislocation. In all cases, the electrode array penetrated the basal membrane within 45° of the electrode insertion. All 3 cases of cochleostomy were dislocated in the first 45° segment. No hearing differences were noted, but the charge units of maximum comfortable loudness level seemed to increase with time in patients with dislocations. The intracochlear dislocation rate of various straight electrodes detected by conebeam CT images is relatively low. Scalar dislocation may not negatively influence the hearing threshold but may require an increase of the necessary stimulus charge and should be reported by the radiologist. © 2015 by American Journal of Neuroradiology.

  19. A surgical robot with augmented reality visualization for stereoelectroencephalography electrode implantation. (United States)

    Zeng, Bowei; Meng, Fanle; Ding, Hui; Wang, Guangzhi


    Using existing stereoelectroencephalography (SEEG) electrode implantation surgical robot systems, it is difficult to intuitively validate registration accuracy and display the electrode entry points (EPs) and the anatomical structure around the electrode trajectories in the patient space to the surgeon. This paper proposes a prototype system that can realize video see-through augmented reality (VAR) and spatial augmented reality (SAR) for SEEG implantation. The system helps the surgeon quickly and intuitively confirm the registration accuracy, locate EPs and visualize the internal anatomical structure in the image space and patient space. We designed and developed a projector-camera system (PCS) attached to the distal flange of a robot arm. First, system calibration is performed. Second, the PCS is used to obtain the point clouds of the surface of the patient's head, which are utilized for patient-to-image registration. Finally, VAR is produced by merging the real-time video of the patient and the preoperative three-dimensional (3D) operational planning model. In addition, SAR is implemented by projecting the planning electrode trajectories and local anatomical structure onto the patient's scalp. The error of registration, the electrode EPs and the target points are evaluated on a phantom. The fiducial registration error is [Formula: see text] mm (max 1.22 mm), and the target registration error is [Formula: see text] mm (max 1.18 mm). The projection overlay error is [Formula: see text] mm, and the TP error after the pre-warped projection is [Formula: see text] mm. The TP error caused by a surgeon's viewpoint deviation is also evaluated. The presented system can help surgeons quickly verify registration accuracy during SEEG procedures and can provide accurate EP locations and internal structural information to the surgeon. With more intuitive surgical information, the surgeon may have more confidence and be able to perform surgeries with better outcomes.

  20. Threshold and channel interaction in cochlear implant users: evaluation of the tripolar electrode configuration. (United States)

    Bierer, Julie Arenberg


    The efficacy of cochlear implants is limited by spatial and temporal interactions among channels. This study explores the spatially restricted tripolar electrode configuration and compares it to bipolar and monopolar stimulation. Measures of threshold and channel interaction were obtained from nine subjects implanted with the Clarion HiFocus-I electrode array. Stimuli were biphasic pulses delivered at 1020 pulses/s. Threshold increased from monopolar to bipolar to tripolar stimulation and was most variable across channels with the tripolar configuration. Channel interaction, quantified by the shift in threshold between single- and two-channel stimulation, occurred for all three configurations but was largest for the monopolar and simultaneous conditions. The threshold shifts with simultaneous tripolar stimulation were slightly smaller than with bipolar and were not as strongly affected by the timing of the two channel stimulation as was monopolar. The subjects' performances on clinical speech tests were correlated with channel-to-channel variability in tripolar threshold, such that greater variability was related to poorer performance. The data suggest that tripolar channels with high thresholds may reveal cochlear regions of low neuron survival or poor electrode placement.

  1. Impedance Changes and Fibrous Tissue Growth after Cochlear Implantation Are Correlated and Can Be Reduced Using a Dexamethasone Eluting Electrode.

    Directory of Open Access Journals (Sweden)

    Maciej Wilk

    Full Text Available The efficiency of cochlear implants (CIs is affected by postoperative connective tissue growth around the electrode array. This tissue formation is thought to be the cause behind post-operative increases in impedance. Dexamethasone (DEX eluting CIs may reduce fibrous tissue growth around the electrode array subsequently moderating elevations in impedance of the electrode contacts.For this study, DEX was incorporated into the silicone of the CI electrode arrays at 1% and 10% (w/w concentration. Electrodes prepared by the same process but without dexamethasone served as controls. All electrodes were implanted into guinea pig cochleae though the round window membrane approach. Potential additive or synergistic effects of electrical stimulation (60 minutes were investigated by measuring impedances before and after stimulation (days 0, 7, 28, 56 and 91. Acoustically evoked auditory brainstem responses were recorded before and after CI insertion as well as on experimental days 7, 28, 56, and 91. Additionally, histology performed on epoxy embedded samples enabled measurement of the area of scala tympani occupied with fibrous tissue.In all experimental groups, the highest levels of fibrous tissue were detected in the basal region of the cochlea in vicinity to the round window niche. Both DEX concentrations, 10% and 1% (w/w, significantly reduced fibrosis around the electrode array of the CI. Following 3 months of implantation impedance levels in both DEX-eluting groups were significantly lower compared to the control group, the 10% group producing a greater effect. The same effects were observed before and after electrical stimulation.To our knowledge, this is the first study to demonstrate a correlation between the extent of new tissue growth around the electrode and impedance changes after cochlear implantation. We conclude that DEX-eluting CIs are a means to reduce this tissue reaction and improve the functional benefits of the implant by attenuating

  2. Wireless implantable electronic platform for chronic fluorescent-based biosensors. (United States)

    Valdastri, Pietro; Susilo, Ekawahyu; Förster, Thilo; Strohhöfer, Christof; Menciassi, Arianna; Dario, Paolo


    The development of a long-term wireless implantable biosensor based on fluorescence intensity measurement poses a number of technical challenges, ranging from biocompatibility to sensor stability over time. One of these challenges is the design of a power efficient and miniaturized electronics, enabling the biosensor to move from bench testing to long term validation, up to its final application in human beings. In this spirit, we present a wireless programmable electronic platform for implantable chronic monitoring of fluorescent-based autonomous biosensors. This system is able to achieve extremely low power operation with bidirectional telemetry, based on the IEEE802.15.4-2003 protocol, thus enabling over three-year battery lifetime and wireless networking of multiple sensors. During the performance of single fluorescent-based sensor measurements, the circuit drives a laser diode, for sensor excitation, and acquires the amplified signals from four different photodetectors. In vitro functionality was preliminarily tested for both glucose and calcium monitoring, simply by changing the analyte-binding protein of the biosensor. Electronics performance was assessed in terms of timing, power consumption, tissue exposure to electromagnetic fields, and in vivo wireless connectivity. The final goal of the presented platform is to be integrated in a complete system for blood glucose level monitoring that may be implanted for at least one year under the skin of diabetic patients. Results reported in this paper may be applied to a wide variety of biosensors based on fluorescence intensity measurement.

  3. Symmetric Electrode Spanning Narrows the Excitation Patterns of Partial Tripolar Stimuli in Cochlear Implants. (United States)

    Luo, Xin; Wu, Ching-Chih


    In cochlear implants (CIs), standard partial tripolar (pTP) mode reduces current spread by returning a fraction of the current to two adjacent flanking electrodes within the cochlea. Symmetric electrode spanning (i.e., separating both the apical and basal return electrodes from the main electrode by one electrode) has been shown to increase the pitch of pTP stimuli, when the ratio of intracochlear return current was fixed. To explain the pitch increase caused by symmetric spanning in pTP mode, this study measured the electrical potentials of both standard and symmetrically spanned pTP stimuli on a main electrode EL8 in five CI ears using electrical field imaging (EFI). In addition, the spatial profiles of evoked compound action potentials (ECAP) and the psychophysical forward masking (PFM) patterns were also measured for both stimuli. The EFI, ECAP, and PFM patterns of a given stimulus differed in shape details, reflecting the different levels of auditory processing and different ratios of intracochlear return current across the measurement methods. Compared to the standard pTP stimuli, the symmetrically spanned pTP stimuli significantly reduced the areas under the curves of the normalized EFI and PFM patterns, without shifting the pattern peaks and centroids (both around EL8). The more focused excitation patterns with symmetric spanning may have caused the previously reported pitch increase, due to an interaction between pitch and timbre perception. Being able to reduce the spread of excitation, pTP mode symmetric spanning is a promising stimulation strategy that may further increase spectral resolution and frequency selectivity with CIs.

  4. Suitability of the Binaural Interaction Component for Interaural Electrode Pairing of Bilateral Cochlear Implants. (United States)

    Hu, Hongmei; Kollmeier, Birger; Dietz, Mathias


    Although bilateral cochlear implants (BiCIs) have succeeded in improving the spatial hearing performance of bilateral CI users, the overall performance is still not comparable with normal hearing listeners. Limited success can be partially caused by an interaural mismatch of the place-of-stimulation in each cochlea. Pairing matched interaural CI electrodes and stimulating them with the same frequency band is expected to facilitate binaural functions such as binaural fusion, localization, or spatial release from masking. It has been shown in animal experiments that the magnitude of the binaural interaction component (BIC) derived from the wave-eV decreases for increasing interaural place of stimulation mismatch. This motivated the investigation of the suitability of an electroencephalography-based objective electrode-frequency fitting procedure based on the BIC for BiCI users. A 61 channel monaural and binaural electrically evoked auditory brainstem response (eABR) recording was performed in 7 MED-EL BiCI subjects so far. These BiCI subjects were directly stimulated at 60% dynamic range with 19.9 pulses per second via a research platform provided by the University of Innsbruck (RIB II). The BIC was derived for several interaural electrode pairs by subtracting the response from binaural stimulation from their summed monaural responses. The BIC based pairing results are compared with two psychoacoustic pairing methods: interaural pulse time difference sensitivity and interaural pitch matching. The results for all three methods analyzed as a function of probe electrode allow for determining a matched pair in more than half of the subjects, with a typical accuracy of ± 1 electrode. This includes evidence for statistically significant tuning of the BIC as a function of probe electrode in human subjects. However, results across the three conditions were sometimes not consistent. These discrepancies will be discussed in the light of pitch plasticity versus less plastic

  5. A multichannel scala tympani electrode array incorporating a drug delivery system for chronic intracochlear infusion. (United States)

    Shepherd, Robert K; Xu, Jin


    We have developed a novel scala tympani electrode array suitable for use in experimental animals. A unique feature of this array is its ability to chronically deliver pharmacological agents to the scala tympani. The design of the electrode array is described in detail. Experimental studies performed in guinea pigs confirm that this array can successfully deliver various drugs to the cochlea while chronically stimulating the auditory nerve.

  6. Initial Operative Experience and Short Term Hearing Preservation Results with a Mid-Scala Cochlear Implant Electrode Array (United States)

    Svrakic, Maja; Roland, J. Thomas; McMenomey, Sean O.; Svirsky, Mario A.


    OBJECTIVE To describe our initial operative experience and hearing preservation results with the Advanced Bionics (AB) Mid Scala Electrode (MSE) STUDY DESIGN Retrospective review. SETTING Tertiary referral center. PATIENTS Sixty-three MSE implants in pediatric and adult patients were compared to age- and gender-matched 1j electrode implants from the same manufacturer. All patients were severe to profoundly deaf. INTERVENTION Cochlear implantation with either the AB 1j electrode or the AB MSE. MAIN OUTCOME MEASURES The MSE and 1j electrode were compared in their angular depth of insertion (aDOI) and pre- to post-operative change in hearing thresholds. Hearing preservation was analyzed as a function of aDOI. Secondary outcome measures included operative time, incidence of abnormal intraoperative impedance and telemetry values, and incidence of postsurgical complications. RESULTS Depth of insertion was similar for both electrodes, but was more consistent for the MSE array and more variable for the 1j array. Patients with MSE electrodes had better hearing preservation. Thresholds shifts at four audiometric frequencies ranging from 250 to 2,000 Hz were 10 dB, 7 dB, 2 dB and 6 dB smaller for the MSE electrode than for the 1j (p<0.05). Hearing preservation at low frequencies was worse with deeper insertion, regardless of array. Secondary outcome measures were similar for both electrodes. CONCLUSIONS The MSE electrode resulted in more consistent insertion depth and somewhat better hearing preservation than the 1j electrode. Differences in other surgical outcome measures were small or unlikely to have a meaningful effect. PMID:27755356

  7. An Implantable Wireless Neural Interface System for Simultaneous Recording and Stimulation of Peripheral Nerve with a Single Cuff Electrode. (United States)

    Shon, Ahnsei; Chu, Jun-Uk; Jung, Jiuk; Kim, Hyungmin; Youn, Inchan


    Recently, implantable devices have become widely used in neural prostheses because they eliminate endemic drawbacks of conventional percutaneous neural interface systems. However, there are still several issues to be considered: low-efficiency wireless power transmission; wireless data communication over restricted operating distance with high power consumption; and limited functionality, working either as a neural signal recorder or as a stimulator. To overcome these issues, we suggest a novel implantable wireless neural interface system for simultaneous neural signal recording and stimulation using a single cuff electrode. By using widely available commercial off-the-shelf (COTS) components, an easily reconfigurable implantable wireless neural interface system was implemented into one compact module. The implantable device includes a wireless power consortium (WPC)-compliant power transmission circuit, a medical implant communication service (MICS)-band-based radio link and a cuff-electrode path controller for simultaneous neural signal recording and stimulation. During in vivo experiments with rabbit models, the implantable device successfully recorded and stimulated the tibial and peroneal nerves while communicating with the external device. The proposed system can be modified for various implantable medical devices, especially such as closed-loop control based implantable neural prostheses requiring neural signal recording and stimulation at the same time.

  8. An Implantable Wireless Neural Interface System for Simultaneous Recording and Stimulation of Peripheral Nerve with a Single Cuff Electrode

    Directory of Open Access Journals (Sweden)

    Ahnsei Shon


    Full Text Available Recently, implantable devices have become widely used in neural prostheses because they eliminate endemic drawbacks of conventional percutaneous neural interface systems. However, there are still several issues to be considered: low-efficiency wireless power transmission; wireless data communication over restricted operating distance with high power consumption; and limited functionality, working either as a neural signal recorder or as a stimulator. To overcome these issues, we suggest a novel implantable wireless neural interface system for simultaneous neural signal recording and stimulation using a single cuff electrode. By using widely available commercial off-the-shelf (COTS components, an easily reconfigurable implantable wireless neural interface system was implemented into one compact module. The implantable device includes a wireless power consortium (WPC-compliant power transmission circuit, a medical implant communication service (MICS-band-based radio link and a cuff-electrode path controller for simultaneous neural signal recording and stimulation. During in vivo experiments with rabbit models, the implantable device successfully recorded and stimulated the tibial and peroneal nerves while communicating with the external device. The proposed system can be modified for various implantable medical devices, especially such as closed-loop control based implantable neural prostheses requiring neural signal recording and stimulation at the same time.

  9. High resolution micro-CT scanning as an innovative tool for evaluation of the surgical positioning of cochlear implant electrodes. (United States)

    Postnov, A; Zarowski, A; De Clerck, N; Vanpoucke, F; Offeciers, F E; Van Dyck, D; Peeters, S


    X-ray microtomography (micro-CT) is a new technique allowing for visualization of the internal structure of opaque specimens with a quasi-histological quality. Among multiple potential applications, the use of this technique in otology is very promising. Micro-CT appears to be ideally suited for in vitro visualization of the inner ear tissues as well as for evaluation of the electrode damage and/or surgical insertion trauma during implantation of the cochlear implant electrodes. This technique can greatly aid in design and development of new cochlear implant electrodes and is applicable for temporal bone studies. The main advantage of micro-CT is the practically artefact-free preparation of the samples and the possibility of evaluation of the interesting parameters along the whole insertion depth of the electrode. This paper presents the results of the first application of micro-CT for visualization of the inner ear structures in human temporal bones and for evaluation of the surgical positioning of the cochlear implant electrodes relative to the intracochlear soft tissues.

  10. Restoring speech perception with cochlear implants by spanning defective electrode contacts. (United States)

    Frijns, Johan H M; Snel-Bongers, Jorien; Vellinga, Dirk; Schrage, Erik; Vanpoucke, Filiep J; Briaire, Jeroen J


    Even with six defective contacts, spanning can largely restore speech perception with the HiRes 120 speech processing strategy to the level supported by an intact electrode array. Moreover, the sound quality is not degraded. Previous studies have demonstrated reduced speech perception scores (SPS) with defective contacts in HiRes 120. This study investigated whether replacing defective contacts by spanning, i.e. current steering on non-adjacent contacts, is able to restore speech recognition to the level supported by an intact electrode array. Ten adult cochlear implant recipients (HiRes90K, HiFocus1J) with experience with HiRes 120 participated in this study. Three different defective electrode arrays were simulated (six separate defective contacts, three pairs or two triplets). The participants received three take-home strategies and were asked to evaluate the sound quality in five predefined listening conditions. After 3 weeks, SPS were evaluated with monosyllabic words in quiet and in speech-shaped background noise. The participants rated the sound quality equal for all take-home strategies. SPS with background noise were equal for all conditions tested. However, SPS in quiet (85% phonemes correct on average with the full array) decreased significantly with increasing spanning distance, with a 3% decrease for each spanned contact.

  11. Corticosteroid implants for chronic non-infectious uveitis (United States)

    Brady, Christopher J; Villanti, Andrea C; Law, Hua Andrew; Rahimy, Ehsan; Reddy, Rahul; Sieving, Pamela C; Garg, Sunir J; Tang, Johnny


    Background Uveitis is a term used to describe a heterogeneous group of intraocular inflammatory diseases of the anterior, intermediate, and posterior uveal tract (iris, ciliary body, choroid). Uveitis is the fifth most common cause of vision loss in high-income countries, accounting for 5% to 20% of legal blindness, with the highest incidence of disease in the working-age population. Corticosteroids are the mainstay of acute treatment for all anatomical subtypes of non-infectious uveitis and can be administered orally, topically with drops or ointments, by periocular (around the eye) or intravitreal (inside the eye) injection, or by surgical implantation. Objectives To determine the efficacy and safety of steroid implants in people with chronic non-infectious posterior uveitis, intermediate uveitis, and panuveitis. Search methods We searched CENTRAL (which contains the Cochrane Eyes and Vision Trials Register) (Issue 10, 2015), Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid MEDLINE Daily, Ovid OLDMEDLINE (January 1946 to November 2015), EMBASE (January 1980 to November 2015), PubMed (1948 to November 2015), Latin American and Caribbean Health Sciences Literature Database (LILACS) (1982 to November 2015), the metaRegister of Controlled Trials (mRCT) ( (last searched 15 April 2013), (, and the World Health Organization (WHO) International Clinical Trials Registry Platform(ICTRP) ( did not use any date or language restrictions in the electronic search for studies. We last searched the electronic databases on 6 November 2015. We also searched reference lists of included study reports, citation databases, and abstracts and clinical study presentations from professional meetings. Selection criteria We included randomized controlled trials comparing either fluocinolone acetonide (FA) or dexamethasone intravitreal implants with standard

  12. Negative-ion current density dependence of the surface potential of insulated electrode during negative-ion implantation

    International Nuclear Information System (INIS)

    Tsuji, Hiroshi; Okayama, Yoshio; Toyota, Yoshitaka; Gotoh, Yasuhito; Ishikawa, Junzo; Sakai, Shigeki; Tanjyo, Masayasu; Matsuda, Kouji.


    Positive ion implantation has been utilized as the method of impurity injection in ultra-LSI production, but the problem of substrate charging cannot be resolved by conventional charge compensation method. It was forecast that by negative ion implantation, this charging problem can be resolved. Recently the experiment on the negative ion implantation into insulated electrodes was carried out, and the effect of negative ion implantation to this problem was proved. However, the dependence of charged potential on the increase of negative ion current at the time of negative ion implantation is a serious problem in large current negative ion implantation hereafter. The charged potential of insulated conductor substrates was measured by the negative ion implantation using the current up to several mA/cm 2 . The experimental method is explained. Medium current density and high current density negative ion implantation and charged potential are reported. Accordingly in negative ion implantation, if current density is optimized, the negative ion implantation without charging can be realized. (K.I.)

  13. Localizing ECoG electrodes on the cortical anatomy without post-implantation imaging (United States)

    Gupta, Disha; Hill, N. Jeremy; Adamo, Matthew A.; Ritaccio, Anthony; Schalk, Gerwin


    Introduction Electrocorticographic (ECoG) grids are placed subdurally on the cortex in people undergoing cortical resection to delineate eloquent cortex. ECoG signals have high spatial and temporal resolution and thus can be valuable for neuroscientific research. The value of these data is highest when they can be related to the cortical anatomy. Existing methods that establish this relationship rely either on post-implantation imaging using computed tomography (CT), magnetic resonance imaging (MRI) or X-Rays, or on intra-operative photographs. For research purposes, it is desirable to localize ECoG electrodes on the brain anatomy even when post-operative imaging is not available or when intra-operative photographs do not readily identify anatomical landmarks. Methods We developed a method to co-register ECoG electrodes to the underlying cortical anatomy using only a pre-operative MRI, a clinical neuronavigation device (such as BrainLab VectorVision), and fiducial markers. To validate our technique, we compared our results to data collected from six subjects who also had post-grid implantation imaging available. We compared the electrode coordinates obtained by our fiducial-based method to those obtained using existing methods, which are based on co-registering pre- and post-grid implantation images. Results Our fiducial-based method agreed with the MRI–CT method to within an average of 8.24 mm (mean, median = 7.10 mm) across 6 subjects in 3 dimensions. It showed an average discrepancy of 2.7 mm when compared to the results of the intra-operative photograph method in a 2D coordinate system. As this method does not require post-operative imaging such as CTs, our technique should prove useful for research in intra-operative single-stage surgery scenarios. To demonstrate the use of our method, we applied our method during real-time mapping of eloquent cortex during a single-stage surgery. The results demonstrated that our method can be applied intra

  14. Stability and selectivity of a chronic, multi-contact cuff electrode for sensory stimulation in human amputees. (United States)

    Tan, Daniel W; Schiefer, Matthew A; Keith, Michael W; Anderson, J Robert; Tyler, Dustin J


    Stability and selectivity are important when restoring long-term, functional sensory feedback in individuals with limb-loss. Our objective is to demonstrate a chronic, clinical neural stimulation system for providing selective sensory response in two upper-limb amputees. Multi-contact cuff electrodes were implanted in the median, ulnar, and radial nerves of the upper-limb. Nerve stimulation produced a selective sensory response on 19 of 20 contacts and 16 of 16 contacts in subjects 1 and 2, respectively. Stimulation elicited multiple, distinct percept areas on the phantom and residual limb. Consistent threshold, impedance, and percept areas have demonstrated that the neural interface is stable for the duration of this on-going, chronic study. We have achieved selective nerve response from multi-contact cuff electrodes by demonstrating characteristic percept areas and thresholds for each contact. Selective sensory response remains consistent in two upper-limb amputees for 1 and 2 years, the longest multi-contact sensory feedback system to date. Our approach demonstrates selectivity and stability can be achieved through an extraneural interface, which can provide sensory feedback to amputees.

  15. Current steering and current focusing in cochlear implants: comparison of monopolar, tripolar, and virtual channel electrode configurations.

    NARCIS (Netherlands)

    Berenstein, C.K.; Mens, L.H.M.; Mulder, J.J.S.; Vanpoucke, F.J.


    OBJECTIVES: To compare the effects of Monopole (Mono), Tripole (Tri), and "Virtual channel" (Vchan) electrode configurations on spectral resolution and speech perception in a crossover design. DESIGN: Nine experienced adults who received an Advanced Bionics CII/90K cochlear implant participated in a

  16. Numerical Characterization of Intraoperative and Chronic Electrodes in Deep Brain Stimulation

    Directory of Open Access Journals (Sweden)

    Alessandra ePaffi


    Full Text Available Intraoperative electrode is used in the Deep Brain stimulation (DBS technique to pinpoint the brain target and to choose the best parameters for the stimulating signal. However, when the intraoperative electrode is replaced with the chronic one, the observed effects do not always coincide with predictions.To investigate the causes of such discrepancies, in this work, a 3D model of the basal ganglia has been considered and realistic models of both intraoperative and chronic electrodes have been developed and numerically solved.Results of simulations on the electric potential and the activating function along neuronal fibers show that the different geometries and sizes of the two electrodes do not change shapes and polarities of these functions, but only the amplitudes. A similar effect is caused by the presence of different tissue layers (edema or glial tissue in the peri-electrode space. On the contrary, a not accurate positioning of the chronic electrode with respect to the intraoperative one (electric centers not coincident may induce a complete different electric stimulation on some groups of fibers.

  17. Biomimetic hydrogels for biosensor implant biocompatibility: electrochemical characterization using micro-disc electrode arrays (MDEAs). (United States)

    Justin, Gusphyl; Finley, Stephen; Abdur Rahman, Abdur Rub; Guiseppi-Elie, Anthony


    Our interest is in the development of engineered microdevices for continuous remote monitoring of intramuscular lactate, glucose, pH and temperature during post-traumatic hemorrhaging. Two important design considerations in the development of such devices for in vivo diagnostics are discussed; the utility of micro-disc electrode arrays (MDEAs) for electrochemical biosensing and the application of biomimetic, bioactive poly(HEMA)-based hydrogel composites for implant biocompatibility. A poly(HEMA)-based hydrogel membrane containing polyethylene glycol (PEG) was UV cross-linked with tetraethyleneglycol diacrylate following application to MDEAs (50 mum discs) and to 250 mum diameter gold electrodes within 8-well culture ware. Cyclic voltammetry (CV) of the MDEAs revealed a reduction in the apparent diffusion coefficient of ferrocenemonocarboxylic acid (FcCO(2)H), from 6.68 x 10(-5) to 6.74 x 10(-6) cm(2)/s for the uncoated and 6 mum thick hydrogel coated devices, respectively. Single frequency (4 kHz) temporal impedance measurements of the hydrogels in the 8-well culture ware showed a reversible 5% change in the absolute impedance of the hydrogels when exposed to a pH change between 6.1 to 7.2 and a 20% drop between pH 6.1 and 8.8.

  18. Mechanical fatigue resistance of an implantable branched lead system for a distributed set of longitudinal intrafascicular electrodes. (United States)

    Pena, A E; Kuntaegowdanahalli, S S; Abbas, J J; Patrick, J; Horch, K W; Jung, R


    A neural interface system has been developed that consists of an implantable stimulator/recorder can with a 15-electrode lead that trifurcates into three bundles of five individual wire longitudinal intrafascicular electrodes. This work evaluated the mechanical fatigue resistance of the branched lead and distributed electrode system under conditions designed to mimic anticipated strain profiles that would be observed after implantation in the human upper arm. Custom test setups and procedures were developed to apply linear or angular strain at four critical stress riser points on the lead and electrode system. Each test was performed to evaluate fatigue under a high repetition/low amplitude paradigm designed to test the effects of arm movement on the leads during activities such as walking, or under a low repetition/high amplitude paradigm designed to test the effects of more strenuous upper arm activities. The tests were performed on representative samples of the implantable lead system for human use. The specimens were fabricated using procedures equivalent to those that will be used during production of human-use implants. Electrical and visual inspections of all test specimens were performed before and after the testing procedures to assess lead integrity. Measurements obtained before and after applying repetitive strain indicated that all test specimens retained electrical continuity and that electrical impedance remained well below pre-specified thresholds for detection of breakage. Visual inspection under a microscope at 10×  magnification did not reveal any signs of damage to the wires or silicone sheathing at the stress riser points. These results demonstrate that the branched lead of this implantable neural interface system has sufficient mechanical fatigue resistance to withstand strain profiles anticipated when the system is implanted in an arm. The novel test setups and paradigms may be useful in testing other lead systems.

  19. Mechanical fatigue resistance of an implantable branched lead system for a distributed set of longitudinal intrafascicular electrodes (United States)

    Pena, A. E.; Kuntaegowdanahalli, S. S.; Abbas, J. J.; Patrick, J.; Horch, K. W.; Jung, R.


    Objective. A neural interface system has been developed that consists of an implantable stimulator/recorder can with a 15-electrode lead that trifurcates into three bundles of five individual wire longitudinal intrafascicular electrodes. This work evaluated the mechanical fatigue resistance of the branched lead and distributed electrode system under conditions designed to mimic anticipated strain profiles that would be observed after implantation in the human upper arm. Approach. Custom test setups and procedures were developed to apply linear or angular strain at four critical stress riser points on the lead and electrode system. Each test was performed to evaluate fatigue under a high repetition/low amplitude paradigm designed to test the effects of arm movement on the leads during activities such as walking, or under a low repetition/high amplitude paradigm designed to test the effects of more strenuous upper arm activities. The tests were performed on representative samples of the implantable lead system for human use. The specimens were fabricated using procedures equivalent to those that will be used during production of human-use implants. Electrical and visual inspections of all test specimens were performed before and after the testing procedures to assess lead integrity. Main results. Measurements obtained before and after applying repetitive strain indicated that all test specimens retained electrical continuity and that electrical impedance remained well below pre-specified thresholds for detection of breakage. Visual inspection under a microscope at 10×  magnification did not reveal any signs of damage to the wires or silicone sheathing at the stress riser points. Significance. These results demonstrate that the branched lead of this implantable neural interface system has sufficient mechanical fatigue resistance to withstand strain profiles anticipated when the system is implanted in an arm. The novel test setups and paradigms may be useful in

  20. Plasma immersion ion implantation of the interior surface of a large cylindrical bore using an auxiliary electrode

    International Nuclear Information System (INIS)

    Zeng, X.C.; Kwok, T.K.; Liu, A.G.; Chu, P.K.; Tang, B.Y.


    A model utilizing cold, unmagnetized, and collisionless fluid ions as well as Boltzmann electrons is used to comprehensively investigate the sheath expansion into a translationally invariant large bore in the presence of an auxiliary electrode during plasma immersion ion implantation (PIII) of a cylindrical bore sample. The governing equation of ion continuity, ion motion, and Poisson close-quote s equation are solved by using a numerical finite difference method for different cylindrical bore radii, auxiliary electrode radii, and voltage rise times. The ion density and ion impact energy at the cylindrical inner surface, as well as the ion energy distribution, maximum ion impact energy, and average ion impact energy for the various cases are obtained. Our results show a dramatic improvement in the impact energy when an auxiliary electrode is used and the recommended normalized auxiliary electrode radius is in the range of 0.1 endash 0.3. copyright 1998 American Institute of Physics

  1. Identifying cochlear implant channels with poor electrode-neuron interface: partial tripolar, single-channel thresholds and psychophysical tuning curves. (United States)

    Bierer, Julie Arenberg; Faulkner, Kathleen F


    The goal of this study was to evaluate the ability of a threshold measure, made with a restricted electrode configuration, to identify channels exhibiting relatively poor spatial selectivity. With a restricted electrode configuration, channel-to-channel variability in threshold may reflect variations in the interface between the electrodes and auditory neurons (i.e., nerve survival, electrode placement, and tissue impedance). These variations in the electrode-neuron interface should also be reflected in psychophysical tuning curve (PTC) measurements. Specifically, it is hypothesized that high single-channel thresholds obtained with the spatially focused partial tripolar (pTP) electrode configuration are predictive of wide or tip-shifted PTCs. Data were collected from five cochlear implant listeners implanted with the HiRes90k cochlear implant (Advanced Bionics Corp., Sylmar, CA). Single-channel thresholds and most comfortable listening levels were obtained for stimuli that varied in presumed electrical field size by using the pTP configuration for which a fraction of current (sigma) from a center-active electrode returns through two neighboring electrodes and the remainder through a distant indifferent electrode. Forward-masked PTCs were obtained for channels with the highest, lowest, and median tripolar (sigma = 1 or 0.9) thresholds. The probe channel and level were fixed and presented with either the monopolar (sigma = 0) or a more focused pTP (sigma > or = 0.55) configuration. The masker channel and level were varied, whereas the configuration was fixed to sigma = 0.5. A standard, three-interval, two-alternative forced choice procedure was used for thresholds and masked levels. Single-channel threshold and variability in threshold across channels systematically increased as the compensating current, sigma, increased and the presumed electrical field became more focused. Across subjects, channels with the highest single-channel thresholds, when measured with a

  2. Monitoring the evolution of boron doped porous diamond electrode on flexible retinal implant by OCT and in vivo impedance spectroscopy

    International Nuclear Information System (INIS)

    Hébert, Clément; Cottance, Myline; Degardin, Julie; Scorsone, Emmanuel; Rousseau, Lionel; Lissorgues, Gaelle; Bergonzo, Philippe; Picaud, Serge


    Nanocrystalline Boron doped Diamond proved to be a very attractive material for neural interfacing, especially with the retina, where reduce glia growth is observed with respect to other materials, thus facilitating neuro-stimulation over long terms. In the present study, we integrated diamond microelectrodes on a polyimide substrate and investigated their performances for the development of neural prosthesis. A full description of the microfabrication of the implants is provided and their functionalities are assessed using cyclic voltammetry and electrochemical impedance spectroscopy. A porous structure of the electrode surface was thus revealed and showed promising properties for neural recording or stimulation. Using the flexible implant, we showed that is possible to follow in vivo the evolution of the electric contact between the diamond electrodes and the retina over 4 months by using electrochemical impedance spectroscopy. The position of the implant was also monitored by optical coherence tomography to corroborate the information given by the impedance measurements. The results suggest that diamond microelectrodes are very good candidates for retinal prosthesis. - Highlights: • Microfabrication of porous diamond electrode on flexible retinal implant • Electrochemical characterization of microelectrode for neural interfacing • In vivo impedance spectroscopy of retinal tissue

  3. Monitoring the evolution of boron doped porous diamond electrode on flexible retinal implant by OCT and in vivo impedance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hébert, Clément, E-mail: [CEA-LIST, Diamond Sensors Laboratory, Gif-sur-Yvette 91191 (France); Cottance, Myline [Université Paris-Est, ESYCOM-ESIEE Paris, Noisy le Grand (France); Degardin, Julie [INSERM, U968, Institut de la Vision, Paris (France); Scorsone, Emmanuel [CEA-LIST, Diamond Sensors Laboratory, Gif-sur-Yvette 91191 (France); Rousseau, Lionel; Lissorgues, Gaelle [Université Paris-Est, ESYCOM-ESIEE Paris, Noisy le Grand (France); Bergonzo, Philippe [CEA-LIST, Diamond Sensors Laboratory, Gif-sur-Yvette 91191 (France); Picaud, Serge [INSERM, U968, Institut de la Vision, Paris (France)


    Nanocrystalline Boron doped Diamond proved to be a very attractive material for neural interfacing, especially with the retina, where reduce glia growth is observed with respect to other materials, thus facilitating neuro-stimulation over long terms. In the present study, we integrated diamond microelectrodes on a polyimide substrate and investigated their performances for the development of neural prosthesis. A full description of the microfabrication of the implants is provided and their functionalities are assessed using cyclic voltammetry and electrochemical impedance spectroscopy. A porous structure of the electrode surface was thus revealed and showed promising properties for neural recording or stimulation. Using the flexible implant, we showed that is possible to follow in vivo the evolution of the electric contact between the diamond electrodes and the retina over 4 months by using electrochemical impedance spectroscopy. The position of the implant was also monitored by optical coherence tomography to corroborate the information given by the impedance measurements. The results suggest that diamond microelectrodes are very good candidates for retinal prosthesis. - Highlights: • Microfabrication of porous diamond electrode on flexible retinal implant • Electrochemical characterization of microelectrode for neural interfacing • In vivo impedance spectroscopy of retinal tissue.

  4. A Strange Case of Downward Displacement of a Deep Brain Stimulation Electrode 10 Years Following Implantation: The Gliding Movement of Snakes Theory. (United States)

    Iacopino, Domenico Gerardo; Maugeri, Rosario; Giugno, Antonella; Giller, Cole A


    Despite the best efforts to ensure stereotactic precision, deep brain stimulation (DBS) electrodes can wander from their intended position after implantation. We report a case of downward electrode migration 10 years following successful implantation in a patient with Parkinson disease. A 53-year-old man with Parkinson disease underwent bilateral implantation of DBS electrodes connected to a subclavicular 2-channel pulse generator. The generator was replaced 7 years later, and a computed tomography (CT) scan confirmed the correct position of both leads. The patient developed a gradual worsening affecting his right side 3 years later, 10 years after the original implantation. A CT scan revealed displacement of the left electrode inferiorly into the pons. The new CT scans and the CT scans obtained immediately after the implantation were merged within a stereotactic planning workstation (Brainlab). Comparing the CT scans, the distal end of the electrode was in the same position, the proximal tip being significantly more inferior. The size and configuration of the coiled portions of the electrode had not changed. At implantation, the length was 27.7 cm; after 10 years, the length was 30.6 cm. These data suggests that the electrode had been stretched into its new position rather than pushed. Clinicians evaluating patients with a delayed worsening should be aware of this rare event. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. A Respiratory Marker Derived From Left Vagus Nerve Signals Recorded With Implantable Cuff Electrodes. (United States)

    Sevcencu, Cristian; Nielsen, Thomas N; Kjaergaard, Benedict; Struijk, Johannes J


    Left vagus nerve (LVN) stimulation (LVNS) has been tested for lowering the blood pressure (BP) in patients with resistant hypertension (RH). Whereas, closed-loop LVNS (CL-LVNS) driven by a BP marker may be superior to open-loop LVNS, there are situations (e.g., exercising) when hypertension is normal. Therefore, an ideal anti-RH CL-LVNS system requires a variable to avoid stimulation in such conditions, for example, a respiratory marker ideally extracted from the LVN. As the LVN conducts respiratory signals, this study aimed to investigate if such signals can be recorded using implantable means and if a marker to monitor respiration could be derived from such recordings. The experiments were performed in 14 anesthetized pigs. Five pigs were subjected to changes of the respiratory frequency and nine to changes of the respiratory volume. The LVN electroneurogram (VENG) was recorded using two cuff electrodes and the respiratory cycles (RC) using a pressure transducer. To separate the afferent and efferent VENGs, vagotomy was performed between the cuffs in the first group of pigs. The VENG was squared to derive respiration-related neural profiles (RnPs) and their correlation with the RCs was investigated in regard to timing and magnitude parameters derived from the two waveforms. The RnPs were morphologically similar with the RCs and the average RnPs represented accurate copies of the average RCs. Consequently, the lung inflation/deflation RC and RnP components had the same duration, the respiratory frequency changes affected in the same way both waveforms and the RnP amplitude increased linearly with the lung inflation in all tested pigs (R 2 values between 0.85 and 0.99). The RnPs comprise information regarding the timing and magnitude of the respiratory parameters. As those LVN profiles were derived using implantable means, this study indicates that the RnPs could serve as respiratory markers in implantable systems. © 2017 International Neuromodulation Society.

  6. Cone-beam computed tomography in children with cochlear implants: The effect of electrode array position on ECAP. (United States)

    Lathuillière, Marine; Merklen, Fanny; Piron, Jean-Pierre; Sicard, Marielle; Villemus, Françoise; Menjot de Champfleur, Nicolas; Venail, Frédéric; Uziel, Alain; Mondain, Michel


    To assess the feasibility of using cone-beam computed tomography (CBCT) in young children with cochlear implants (CIs) and study the effect of intracochlear position on electrophysiological and behavioral measurements. A total of 40 children with either unilateral or bilateral cochlear implants were prospectively included in the study. Electrode placement and insertion angles were studied in 55 Cochlear ® implants (16 straight arrays and 39 perimodiolar arrays), using either CBCT or X-ray imaging. CBCT or X-ray imaging were scheduled when the children were leaving the recovery room. We recorded intraoperative and postoperative neural response telemetry threshold (T-NRT) values, intraoperative and postoperative electrode impedance values, as well as behavioral T (threshold) and C (comfort) levels on electrodes 1, 5, 10, 15 and 20. CBCT imaging was feasible without any sedation in 24 children (60%). Accidental scala vestibuli insertion was observed in 3 out of 24 implants as assessed by CBCT. The mean insertion angle was 339.7°±35.8°. The use of a perimodiolar array led to higher angles of insertion, lower postoperative T-NRT, as well as decreased behavioral T and C levels. We found no significant effect of either electrode array position or angle of insertion on electrophysiological data. CBCT appears to be a reliable tool for anatomical assessment of young children with CIs. Intracochlear position had no significant effect on the electrically evoked compound action potential (ECAP) threshold. Our CBCT protocol must be improved to increase the rate of successful investigations. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Long-term implantation of deep brain stimulation electrodes in the pontine micturition centre of the Göttingen minipig. (United States)

    Jensen, Kristian N; Deding, Dorthe; Sørensen, Jens Christian; Bjarkam, Carsten R


    To implant deep brain stimulation (DBS) electrodes in the porcine pontine micturition centre (PMC) in order to establish a large animal model of PMC-DBS. Brain stems from four Göttingen minipigs were sectioned coronally into 40-mum-thick histological sections and stained with Nissl, auto-metallographic myelin stain, tyrosine hydroxylase and corticotrophin-releasing factor immunohistochemistry in order to identify the porcine PMC. DBS electrodes were then stereotaxically implanted on the right side into the PMC in four Göttingen minipigs, and the bladder response to electrical stimulation was evaluated by subsequent cystometry performed immediately after the operation and several weeks later. A paired CRF-dense area homologous to the PMC in other species was encountered in the rostral pontine tegmentum medial to the locus coeruleus and ventral to the floor of the fourth ventricle. Electrical stimulation of the CRF-dense area resulted in an increased detrusor pressure followed by visible voiding in some instances. The pigs were allowed to survive between 14 and 55 days, and electrical stimulation resulting in an increased detrusor pressure was performed on more than one occasion without affecting consciousness or general thriving. None of the pigs developed postoperative infections or died prematurely. DBS electrodes can be implanted for several weeks in the identified CRF-dense area resulting in a useful large animal model for basic research on micturition and the future clinical use of this treatment modality in neurogenic supra-pontine voiding disorders.

  8. Different contribution of BRINP3 gene in chronic periodontitis and peri-implantitis: a cross-sectional study. (United States)

    Casado, Priscila L; Aguiar, Diego P; Costa, Lucas C; Fonseca, Marcos A; Vieira, Thays C S; Alvim-Pereira, Claudia C K; Alvim-Pereira, Fabiano; Deeley, Kathleen; Granjeiro, José M; Trevilatto, Paula C; Vieira, Alexandre R


    Peri-implantitis is a chronic inflammation, resulting in loss of supporting bone around implants. Chronic periodontitis is a risk indicator for implant failure. Both diseases have a common etiology regarding inflammatory destructive response. BRINP3 gene is associated with aggressive periodontitis. However, is still unclear if chronic periodontitis and peri-implantitis have the same genetic background. The aim of this work was to investigate the association between BRINP3 genetic variation (rs1342913 and rs1935881) and expression and susceptibility to both diseases. Periodontal and peri-implant examinations were performed in 215 subjects, divided into: healthy (without chronic periodontitis and peri-implantitis, n = 93); diseased (with chronic periodontitis and peri-implantitis, n = 52); chronic periodontitis only (n = 36), and peri-implantitis only (n = 34). A replication sample of 92 subjects who lost implants and 185 subjects successfully treated with implants were tested. DNA was extracted from buccal cells. Two genetic markers of BRINP3 (rs1342913 and rs1935881) were genotyped using TaqMan chemistry. Chi-square (p chronic periodontitis.

  9. Cochlear Implant Electrode Localization Using an Ultra-High Resolution Scan Mode on Conventional 64-Slice and New Generation 192-Slice Multi-Detector Computed Tomography. (United States)

    Carlson, Matthew L; Leng, Shuai; Diehn, Felix E; Witte, Robert J; Krecke, Karl N; Grimes, Josh; Koeller, Kelly K; Bruesewitz, Michael R; McCollough, Cynthia H; Lane, John I


    A new generation 192-slice multi-detector computed tomography (MDCT) clinical scanner provides enhanced image quality and superior electrode localization over conventional MDCT. Currently, accurate and reliable cochlear implant electrode localization using conventional MDCT scanners remains elusive. Eight fresh-frozen cadaveric temporal bones were implanted with full-length cochlear implant electrodes. Specimens were subsequently scanned with conventional 64-slice and new generation 192-slice MDCT scanners utilizing ultra-high resolution modes. Additionally, all specimens were scanned with micro-CT to provide a reference criterion for electrode position. Images were reconstructed according to routine temporal bone clinical protocols. Three neuroradiologists, blinded to scanner type, reviewed images independently to assess resolution of individual electrodes, scalar localization, and severity of image artifact. Serving as the reference standard, micro-CT identified scalar crossover in one specimen; imaging of all remaining cochleae demonstrated complete scala tympani insertions. The 192-slice MDCT scanner exhibited improved resolution of individual electrodes (p implant imaging compared with conventional MDCT. This technology provides important feedback regarding electrode position and course, which may help in future optimization of surgical technique and electrode design.

  10. The Summating Potential Is a Reliable Marker of Electrode Position in Electrocochleography: Cochlear Implant as a Theragnostic Probe. (United States)

    Helmstaedter, Victor; Lenarz, Thomas; Erfurt, Peter; Kral, Andrej; Baumhoff, Peter


    For the increasing number of cochlear implantations in subjects with residual hearing, hearing preservation, and thus the prevention of implantation trauma, is crucial. A method for monitoring the intracochlear position of a cochlear implant (CI) and early indication of imminent cochlear trauma would help to assist the surgeon to achieve this goal. The aim of this study was to evaluate the reliability of the different electric components recorded by an intracochlear electrocochleography (ECochG) as markers for the cochleotopic position of a CI. The measurements were made directly from the CI, combining intrasurgical diagnostics with the therapeutical use of the CI, thus, turning the CI into a "theragnostic probe." Intracochlear ECochGs were measured in 10 Dunkin Hartley guinea pigs of either sex, with normal auditory brainstem response thresholds. All subjects were fully implanted (4 to 5 mm) with a custom six contact CI. The ECochG was recorded simultaneously from all six contacts with monopolar configuration (retroauricular reference electrode). The gross ECochG signal was filtered off-line to separate three of its main components: compound action potential, cochlear microphonic, and summating potential (SP). Additionally, five cochleae were harvested and histologically processed to access the spatial position of the CI contacts. Both ECochG data and histological reconstructions of the electrode position were fitted with the Greenwood function to verify the reliability of the deduced cochleotopic position of the CI. SPs could be used as suitable markers for the frequency position of the recording electrode with an accuracy of ±1/4 octave in the functioning cochlea, verified by histology. Cochlear microphonics showed a dependency on electrode position but were less reliable as positional markers. Compound action potentials were not suitable for CI position information but were sensitive to "cochlear health" (e.g., insertion trauma). SPs directly recorded from

  11. New Fabrication Method of Three-Electrode System on Cylindrical Capillary Surface as a Flexible Implantable Microneedle (United States)

    Yang, Zhuoqing; Zhang, Yi; Itoh, Toshihiro; Maeda, Ryutaro


    In this present paper, a three-electrode system has been fabricated and integrated on the cylindrical polymer capillary surface by micromachining technology, which could be used as a flexible and implantable microneedle for glucose sensor application in future. A UV lithography system is successfully developed for high resolution alignment on cylindrical substrates. The multilayer alignment exposure for cylindrical polymer capillary substrate is for the first time realized utilizing the lithography system. The ±1 μm alignment precision has been realized on the 330 μm-outer diameter polymer capillary surface, on which the three-electrode structure consisting of two platinum electrodes and one Ag/AgCl reference electrode has been fabricated. The fabricated whole device as microneedle for glucose sensor application has been also characterized in 1 mol/L KCl and 0.02 mol/L K3Fe(CN)6 mix solution. The measured cyclic voltammetry curve shows that the prepared three-electrode system has a good redox property.

  12. Recursive grid partitioning on a cortical surface model: an optimized technique for the localization of implanted subdural electrodes. (United States)

    Pieters, Thomas A; Conner, Christopher R; Tandon, Nitin


    .2 to 11.7 mm for an individual electrode, with mean errors ranging between 2.9 and 4.1 mm depending on the method used. The authors also noted a larger error in all methods that used CT scans alone to localize electrodes compared with those that used both postoperative CT and postoperative MRI. The large mean errors reported with these methods are liable to affect intermodal data comparisons (for example, with functional mapping techniques) and may impact surgical decision making. The authors have presented several aspects of using new techniques to visualize electrodes implanted for localizing epilepsy. The ability to use automated labeling schemas to denote which gyrus a particular electrode overlies is potentially of great utility in planning resections and in corroborating the results of extraoperative stimulation mapping. Dilation of the pial mesh model provides, for the first time, a sense of the cortical surface not sampled by the electrode, and the potential roles this "electrophysiologically hidden" cortex may play in both eloquent function and seizure onset.

  13. Micro-drive and headgear for chronic implant and recovery of optoelectronic probes. (United States)

    Chung, Jinho; Sharif, Farnaz; Jung, Dajung; Kim, Soyoun; Royer, Sebastien


    Silicon probes are multisite electrodes used for the electrophysiological recording of large neuronal ensembles. Optoelectronic probes (OEPs) are recent upgrades that allow, in parallel, the delivery of local optical stimuli. The procedures to use these delicate electrodes for chronic experiments in mice are still underdeveloped and typically assume one-time uses. Here, we developed a micro-drive, a support for OEPs optical fibers, and a hat enclosure, which fabrications consist in fitting and fastening together plastic parts made with 3D printers. Excluding two parts, all components and electrodes are relatively simple to recover after the experiments, via the loosening of screws. To prevent the plugging of OEPs laser sources from altering the stability of recordings, the OEPs fibers can be transiently anchored to the hat via the tightening of screws. We test the stability of recordings in the mouse hippocampus under three different conditions: acute head-fixed, chronic head-fixed, and chronic freely moving. Drift in spike waveforms is significantly smaller in chronic compared to acute conditions, with the plugging/unplugging of head-stage and fiber connectors not affecting much the recording stability. Overall, these tools generate stable recordings of place cell in chronic conditions, and make the recovery and reuse of electrode packages relatively simple.

  14. Safety of repetitive transcranial magnetic stimulation in patients with implanted cortical electrodes. An ex-vivo study and report of a case. (United States)

    Phielipp, Nicolás M; Saha, Utpal; Sankar, Tejas; Yugeta, Akihiro; Chen, Robert


    To evaluate the safety of repetitive transcranial magnetic stimulation (rTMS) in patients with implanted subdural cortical electrodes. We performed ex-vivo experiments to test the temperature, displacement and current induced in the electrodes with single pulse transcranial magnetic stimulation (TMS) from 10 to 100% of stimulator output and tested a typical rTMS protocol used in a clinical setting. We then used rTMS to the motor cortex to treat a patient with refractory post-herpetic neuralgia who had previously been implanted with a subdural motor cortical electrode for pain management. The rTMS protocol consisted of ten sessions of 2000 stimuli at 20Hz and 90% of resting motor threshold. The ex-vivo study showed an increase in the coil temperature of 2°C, a maximum induced charge density of 30.4μC/cm 2 /phase, and no electrode displacement with TMS. There was no serious adverse effect associated with rTMS treatment of the patient. Cortical tremor was observed in the intervals between trains of stimuli during one treatment session. TMS was safe in a patient with implanted Medtronic Resume II electrode (model 3587A) subdural cortical electrode. TMS may be used as a therapeutic, diagnostic or research tool in patients this type of with implanted cortical electrodes. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  15. The role of eABR with intracochlear test electrode in decision making between cochlear and brainstem implants: preliminary results. (United States)

    Cinar, Betul Cicek; Yarali, Mehmet; Atay, Gamze; Bajin, Munir Demir; Sennaroglu, Gonca; Sennaroglu, Levent


    The objective of the study was to discuss the findings of intraoperative electrically evoked auditory brainstem response (eABR) test results with a recently designed intracochlear test electrode (ITE) in terms of their relation to decisions of cochlear or auditory brainstem implantation. This clinical study was conducted in Hacettepe University, Department of Otolaryngology, Head and Neck Surgery and Department of Audiology. Subjects were selected from inner ear malformation (IEM) database. Eleven subjects with profound sensorineural hearing loss were included in the current study with age range from 1 year 3 months to 4 years 3 months for children with prelingual hearing loss. There was only one 42-year-old post-lingual subject. eABR was recorded with an ITE and intraoperatively with an original cochlear implant (CI) electrode in 11 cases with different IEMs. Findings of eABR with ITE and their relation to the decision for CI or auditory brainstem implant (ABI) are discussed. Positive eABR test results were found to be dependent on close to normal cochlear structures and auditory nerve. The probability of positive result decreases with increasing degree of malformation severity. The prediction value of eABR via ITE on decision for hearing restoration was found to be questionable in this study. The results of eABR with ITE have predictive value on what we will get with the actual CI electrode. ITE appears to stimulate the cochlea like an actual CI. If the eABR is positive, the results are reliable. However, if eABR is negative, the results should be evaluated with preoperative audiological testing and MRI findings.

  16. Biodegradable Magnesium (Mg) Implantation Does Not Impose Related Metabolic Disorders in Rats with Chronic Renal Failure (United States)

    Wang, Jiali; Xu, Jiankun; Liu, Waiching; Li, Yangde; Qin, Ling


    Mg and its alloys have been considered as one of the most promising biodegradable medical devices, but it was still unclear whether hypermagnesemia involved health risks would occur in persons with kidney disease due to their deteriorated kidney function for Mg ions excretion from their body. In this study, we established a chronic renal failure (CRF) model in rats induced by adenine administration prior to Mg implantation, aiming to predict if CRF patients are suitable for the use of Mg implants. The results showed that Mg levels in serum, urine, feces and internal organs had no significant changes after Mg implantation for both normal and CRF rats. Biochemical indices detection and histopathological analysis in kidney, liver and heart tissue confirmed that Mg implants did not induce any extra damage in animals even with renal failure. Our study indicates that Mg based orthopaedic medical device may be considered for use in CRF patients without biosafety concerns.

  17. Pedicle screw loosening is correlated to chronic subclinical deep implant infection: a retrospective database analysis. (United States)

    Leitner, Lukas; Malaj, Isabella; Sadoghi, Patrick; Amerstorfer, Florian; Glehr, Mathias; Vander, Klaus; Leithner, Andreas; Radl, Roman


    Spinal fusion is used for treatment of spinal deformities, degeneration, infection, malignancy, and trauma. Reduction of motion enables osseous fusion and permanent stabilization of segments, compromised by loosening of the pedicle screws (PS). Deep implant infection, biomechanical, and chemical mechanisms are suspected reasons for loosening of PS. Study objective was to investigate the frequency and impact of deep implant infection on PS loosening. Intraoperative infection screening from wound and explanted material sonication was performed during revision surgeries following dorsal stabilization. Case history events and factors, which might promote implant infections, were included in this retrospective survey. 110 cases of spinal metal explantation were included. In 29.1% of revision cases, infection screening identified a germ, most commonly Staphylococcus (53.1%) and Propionibacterium (40.6%) genus. Patients screened positive had a significant higher number of previous spinal operations and radiologic loosening of screws. Patients revised for adjacent segment failure had a significantly lower rate of positive infection screening than patients revised for directly implant associated reasons. Removal of implants that revealed positive screening effected significant pain relief. Chronic implant infection seems to play a role in PS loosening and ongoing pain, causing revision surgery after spinal fusion. Screw loosening and multiple prior spinal operations should be suspicious for implant infection after spinal fusion when it comes to revision surgery. These slides can be retrieved under Electronic Supplementary Material.

  18. Scalar localization by cone-beam computed tomography of cochlear implant carriers: a comparative study between straight and periomodiolar precurved electrode arrays. (United States)

    Boyer, Eric; Karkas, Alexandre; Attye, Arnaud; Lefournier, Virginie; Escude, Bernard; Schmerber, Sebastien


    To compare the incidence of dislocation of precurved versus straight flexible cochlear implant electrode arrays using cone-beam computed tomography (CBCT) image analyses. Consecutive nonrandomized case-comparison study. Tertiary referral center. Analyses of patients' CBCT images after cochlear implant surgery. Precurved and straight flexible electrode arrays from two different manufacturers were implanted. A round window insertion was performed in most cases. Two cases necessitated a cochleostomy. The patients' CBCT images were reconstructed in the coronal oblique, sagittal oblique, and axial oblique section. The insertion depth angle and the incidence of dislocation from the scala tympani to the scala vestibuli were determined. The CBCT images and the incidence of dislocation were analyzed in 54 patients (61 electrode arrays). Thirty-one patients were implanted with a precurved perimodiolar electrode array and 30 patients with a straight flexible electrode array. A total of nine (15%) scalar dislocations were observed in both groups. Eight (26%) scalar dislocations were observed in the precurved array group and one (3%) in the straight array group. Dislocation occurred at an insertion depth angle between 170 and 190 degrees in the precurved array group and at approximately 370 degrees in the straight array group. With precurved arrays, dislocation usually occurs in the ascending part of the basal turn of the cochlea. With straight flexible electrode arrays, the incidence of dislocation was lower, and it seems that straight flexible arrays have a higher chance of a confined position within the scala tympani than perimodiolar precurved arrays.

  19. Chronic multisite brain recordings from a totally implantable bidirectional neural interface: experience in 5 patients with Parkinson's disease. (United States)

    Swann, Nicole C; de Hemptinne, Coralie; Miocinovic, Svjetlana; Qasim, Salman; Ostrem, Jill L; Galifianakis, Nicholas B; Luciano, Marta San; Wang, Sarah S; Ziman, Nathan; Taylor, Robin; Starr, Philip A


    OBJECTIVE Dysfunction of distributed neural networks underlies many brain disorders. The development of neuromodulation therapies depends on a better understanding of these networks. Invasive human brain recordings have a favorable temporal and spatial resolution for the analysis of network phenomena but have generally been limited to acute intraoperative recording or short-term recording through temporarily externalized leads. Here, the authors describe their initial experience with an investigational, first-generation, totally implantable, bidirectional neural interface that allows both continuous therapeutic stimulation and recording of field potentials at multiple sites in a neural network. METHODS Under a physician-sponsored US Food and Drug Administration investigational device exemption, 5 patients with Parkinson's disease were implanted with the Activa PC+S system (Medtronic Inc.). The device was attached to a quadripolar lead placed in the subdural space over motor cortex, for electrocorticography potential recordings, and to a quadripolar lead in the subthalamic nucleus (STN), for both therapeutic stimulation and recording of local field potentials. Recordings from the brain of each patient were performed at multiple time points over a 1-year period. RESULTS There were no serious surgical complications or interruptions in deep brain stimulation therapy. Signals in both the cortex and the STN were relatively stable over time, despite a gradual increase in electrode impedance. Canonical movement-related changes in specific frequency bands in the motor cortex were identified in most but not all recordings. CONCLUSIONS The acquisition of chronic multisite field potentials in humans is feasible. The device performance characteristics described here may inform the design of the next generation of totally implantable neural interfaces. This research tool provides a platform for translating discoveries in brain network dynamics to improved neurostimulation

  20. A Mid-scala Cochlear Implant Electrode Design Achieves a Stable Post-surgical Position in the Cochlea of Patients Over Time-A Prospective Observational Study. (United States)

    Dees, Guido; Smits, Jeroen Jules; Janssen, A Miranda L; Hof, Janny R; Gazibegovic, Dzemal; Hoof, Marc van; Stokroos, Robert J


    Cochlear implant (CI) electrode design impacts the clinical performance of patients. Stability and the occurrence of electrode array migration, which is the postoperative movement of the electrode array, were investigated using a mid-scalar electrode array and postoperative image analysis. A prospective observational study was conducted. A mid-scalar electrode was surgically placed using a mastoidectomy, followed by a posterior tympanotomy and an extended round-window or cochleostomy insertion. A few days after surgery and 3 months later Cone Beam Computed Tomography (CBCT) was performed. The two different CBCT's were fused, and the differences between the electrode positions in three dimensions were calculated (the migration). A migration greater than 0.5 mm was deemed clinically relevant. Fourteen subjects participated. The mid-scalar electrode migrated in one patient (7%). This did not lead to the extrusion of an electrode contact. The mean migration of every individual electrode contact in all patients was 0.36 mm (95% confidence interval 0.22-0.50 mm), which approximates to the estimated measurement error of the CBCT technique. A mid-scalar electrode array achieves a stable position in the cochlea in a small but representative group of patients. The methods applied in this work can be used for providing postoperative feedback for surgeons and for benchmarking electrode designs.

  1. Angioplastia del seno coronario en el implante de electrodo del ventrículo izquierdo Angioplasty of coronary sinus in left ventricle electrode implant

    Directory of Open Access Journals (Sweden)

    Alejandro Orjuela


    Full Text Available Con el incremento de implantes de dispositivos de estimulación cardíaca en pacientes con miocardiopatía dilatada, el diseno día a día más sofisticado de los mismos para satisfacer los requerimientos de los pacientes con cambios anatómicos que surgen como consecuencia de la misma dilatación cardíaca, tales como modificaciones en el calibre, curso, longitud y número de venas coronarias, cada vez se encuentran mayores dificultades para lograr los objetivos anatómicos, en particular el sitio ideal de posicionamiento del electrodo de estimulación ventricular izquierda en el seno coronario. Esta situación limita, en algunos casos, el beneficio terapéutico de esta técnica, viéndose, en ocasiones, en la necesidad de someter al paciente a toracotomía para posicionar el electrodo en el epicardio posterolateral del ventrículo izquierdo. Es así como, con el objetivo de abreviar los tiempos y la morbimortalidad e incrementar el éxito del implante, se disenó una estrategia basada en la técnica de hemodinámica para vencer las obstrucciones de las arterias coronarias y lograr, mediante angioplastia de las estrecheces del seno coronario, un abordaje más preciso a un determinado vaso epicárdico preseleccionado. Se describe la técnica usada en la angioplastia del seno coronario para este propósito.The design of devices of cardiac stimulation in patients with dilated cardiomyopathy has become more sophisticated due to the increment of its implantation, devices that must satisfy the requirements for patients with anatomical changes that appear as a consequence of the cardiac dilation such as caliber modifications, course, length and number of coronary veins. Every time is more difficult to achieve the anatomical objectives, particularly the ideal place for the left ventricular stimulation electrode position in the coronary sinus. This situation limits in some cases the therapeutical benefit of this technique, occasionally facing to the

  2. A new cochlear implant electrode with a "cork"-type stopper for inner ear malformations. (United States)

    Sennaroğlu, Levent; Atay, Gamze; Bajin, Münir Demir


    Gusher in inner ear malformations is common in patients with incomplete partition type I and type III. It is also common in less severe form as oozing in incomplete partition type II and large vestibular aqueduct. It is important to prevent cerebrospinal fluid (CSF) escape around the electrode to prevent meningitis. The custom-made device was produced by Med-El Company. It has a "cork"-like stopper instead of the usual silicon ring to prevent gusher. There are two types of electrodes of different lengths. The standard one is 25mm (contact space 1.7mm) and the short one is 20mm (contact space 1.3mm). It was used in 50 patients with different inner ear malformations. Thirteen patients had gusher, and 11 patients oozing during cochleostomy. One patient with initial prototype of the cork electrode had to be revised because of persistent oozing around the electrode. Another patient had slow extrusion of the electrode most probably due to CSF pulsation and had to be revised. Both patients had no more CSF fistula. CSF fistula in inner ear malformations is a serious situation which may lead to recurrent meningitis. The new electrode with "cork" stopper looks promising in preventing the postoperative CSF leak around the electrode. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. A hybrid clinical-research depth electrode for acute and chronic in vivo microelectrode recording of human brain neurons. Technical note. (United States)

    Howard, M A; Volkov, I O; Granner, M A; Damasio, H M; Ollendieck, M C; Bakken, H E


    For several decades, important scientific information has been gained from in vivo microelectrode recordings of individual human cerebral cortical neurons in patients with epilepsy. The experimental methods used, however, are technically complex and require a highly skilled intraoperative team. There are also significant experimental time limitations, as well as constraints on the type of behavioral tests conducted, and the brain regions that may be safely studied. In this report, a new method is described for obtaining in vivo microelectrode recordings using a hybrid depth electrode (HDE). High-impedance research recording contacts are interspersed between low-impedance clinical electroencephalographic (EEG) contacts along the HDE shaft. The HDE has the same external physical properties as a standard clinical depth electrode (DE). Following preclinical laboratory testing, 15 HDEs were used in the evaluation of six patients with medically refractory epilepsy. High-quality EEG recordings were obtained in all cases (two acute intraoperative, four from the chronic epilepsy monitoring unit). Action potentials from individual neurons were successfully recorded during all experimental sessions; however, the chronic preparations were clearly superior. Chronic HDEs are placed using a standard stereotactic system, and the locations of recording contacts are documented on a postimplantation imaging study. The quality of the chronic research recordings was excellent over study periods ranging from 5 to 14 days. The patients rested comfortably on the ward and were able to cooperate with complex experimental instructions. Basic neuroscientists participated fully in all aspects of the chronic investigations. The use of an HDE in place of a standard clinical DE may now allow detailed physiological investigations of any brain region targeted for clinical DE implantation.

  4. Treatment of an Erratic Extraction Socket for Implant Therapy in a Patient with Chronic Periodontitis (United States)

    Prabhu, Srividya


    As implant therapy becomes more commonplace in daily practice, preservation and preparation of edentulous sites are key. Many times, however, implant therapy may not be considered at the time of tooth extraction and additional measures are not taken to conserve the edentulous site. While the healing process in extraction sockets has been well investigated and bone fill can be expected, there are cases where even when clinicians perform thorough debridement of the sockets, connective tissue infiltration into the socket can occur. This phenomenon, known as “erratic healing,” may be associated with factors that lead to peri-implant disease and should be appropriately managed and treated prior to surgical implant placement. This case report describes the successful management of an erratic healing extraction socket in a 62-year-old Caucasian male patient with chronic periodontitis and the outcomes of an evidence-based treatment protocol performed prior to implant therapy. Careful preoperative analysis and cone beam computed tomography imaging can help detect signs of impaired healing in future implant sites and prevent surgical complications. PMID:27807485

  5. Treatment of an Erratic Extraction Socket for Implant Therapy in a Patient with Chronic Periodontitis

    Directory of Open Access Journals (Sweden)

    Yusuke Hamada


    Full Text Available As implant therapy becomes more commonplace in daily practice, preservation and preparation of edentulous sites are key. Many times, however, implant therapy may not be considered at the time of tooth extraction and additional measures are not taken to conserve the edentulous site. While the healing process in extraction sockets has been well investigated and bone fill can be expected, there are cases where even when clinicians perform thorough debridement of the sockets, connective tissue infiltration into the socket can occur. This phenomenon, known as “erratic healing,” may be associated with factors that lead to peri-implant disease and should be appropriately managed and treated prior to surgical implant placement. This case report describes the successful management of an erratic healing extraction socket in a 62-year-old Caucasian male patient with chronic periodontitis and the outcomes of an evidence-based treatment protocol performed prior to implant therapy. Careful preoperative analysis and cone beam computed tomography imaging can help detect signs of impaired healing in future implant sites and prevent surgical complications.

  6. Treatment of an Erratic Extraction Socket for Implant Therapy in a Patient with Chronic Periodontitis. (United States)

    Hamada, Yusuke; Prabhu, Srividya; John, Vanchit


    As implant therapy becomes more commonplace in daily practice, preservation and preparation of edentulous sites are key. Many times, however, implant therapy may not be considered at the time of tooth extraction and additional measures are not taken to conserve the edentulous site. While the healing process in extraction sockets has been well investigated and bone fill can be expected, there are cases where even when clinicians perform thorough debridement of the sockets, connective tissue infiltration into the socket can occur. This phenomenon, known as "erratic healing," may be associated with factors that lead to peri-implant disease and should be appropriately managed and treated prior to surgical implant placement. This case report describes the successful management of an erratic healing extraction socket in a 62-year-old Caucasian male patient with chronic periodontitis and the outcomes of an evidence-based treatment protocol performed prior to implant therapy. Careful preoperative analysis and cone beam computed tomography imaging can help detect signs of impaired healing in future implant sites and prevent surgical complications.

  7. An array of highly flexible electrodes with a tailored configuration locked by gelatin during implantation – initial evaluation in cortex cerebri of awake rats

    Directory of Open Access Journals (Sweden)

    Johan eAgorelius


    Full Text Available A major challenge in the field of neural interfaces is to overcome the problem of poor stability of neuronal recordings, which impedes long-term studies of individual neurons in the brain. Conceivably, unstable recordings reflect relative movements between electrode and tissue. To address this challenge, we have developed a new ultra-flexible electrode array and evaluated its performance in awake non-restrained animals.MethodsAn array of eight separated gold leads (4 x10 μm, individually flexible in 3D, were cut from a gold sheet using laser milling and insulated with Parylene C. To provide structural support during implantation into rat cortex, the electrode array was embedded in a hard gelatin based material, which dissolves after implantation. Recordings were made during 3 weeks. At termination, the animals were perfused with fixative and frozen to prevent dislocation of the implanted electrodes. A thick slice of brain tissue, with the electrode array still in situ, was made transparent using methyl salicylate to evaluate the conformation of the implanted electrode array.ResultsMedian noise levels and signal/noise remained relatively stable during the 3 week observation period; 4.3 μV to 5.9 μV and 2.8 to 4.2, respectively. The spike amplitudes were often quite stable within recording sessions and for 15% of recordings where single-units were identified, the highest-SNR unit had an amplitude higher than 150 V. In addition, high correlations (>0.96 between unit waveforms recorded at different time points were obtained for 58% of the electrode sites. The structure of the electrode array was well preserved 3 weeks after implantation.Conclusions A new implantable multichannel neural interface, comprising electrodes individually flexible in 3D that retain its architecture and functionality after implantation has been developed. Since the new neural interface design is adaptable, it offers a versatile tool to explore the function of various

  8. Wireless radio channel for intramuscular electrode implants in the control of upper limb prostheses. (United States)

    Stango, Antonietta; Yazdandoost, Kamya Yekeh; Farina, Dario


    In the last few years the use of implanted devices has been considered also in the field of myoelectric hand prostheses. Wireless implanted EMG (Electromyogram) sensors can improve the functioning of the prosthesis, providing information without the disadvantage of the wires, and the usability by amputees. The solutions proposed in the literature are based on proprietary communication protocols between the implanted devices and the prosthesis controller, using frequency bands that are already assigned to other purposes. This study proposes the use of a standard communication protocol (IEEE 802.15.6), specific for wireless body area networks (WBANs), which assign a specific bandwidth to implanted devices. The propagation losses from in-to-on body were investigated by numerical simulation with a 3D human model and an electromagnetic solver. The channel model resulting from the study represents the first step towards the development of myoelectric prosthetic hands which are driven by signals acquired by implanted sensors. However these results can provide important information to researchers for further developments, and manufacturers, which can decrease the production costs for hand prostheses having a common standard of communication with assigned frequencies of operation.

  9. Electrical Neural Stimulation and Simultaneous in Vivo Monitoring with Transparent Graphene Electrode Arrays Implanted in GCaMP6f Mice. (United States)

    Park, Dong-Wook; Ness, Jared P; Brodnick, Sarah K; Esquibel, Corinne; Novello, Joseph; Atry, Farid; Baek, Dong-Hyun; Kim, Hyungsoo; Bong, Jihye; Swanson, Kyle I; Suminski, Aaron J; Otto, Kevin J; Pashaie, Ramin; Williams, Justin C; Ma, Zhenqiang


    Electrical stimulation using implantable electrodes is widely used to treat various neuronal disorders such as Parkinson's disease and epilepsy and is a widely used research tool in neuroscience studies. However, to date, devices that help better understand the mechanisms of electrical stimulation in neural tissues have been limited to opaque neural electrodes. Imaging spatiotemporal neural responses to electrical stimulation with minimal artifact could allow for various studies that are impossible with existing opaque electrodes. Here, we demonstrate electrical brain stimulation and simultaneous optical monitoring of the underlying neural tissues using carbon-based, fully transparent graphene electrodes implanted in GCaMP6f mice. Fluorescence imaging of neural activity for varying electrical stimulation parameters was conducted with minimal image artifact through transparent graphene electrodes. In addition, full-field imaging of electrical stimulation verified more efficient neural activation with cathode leading stimulation compared to anode leading stimulation. We have characterized the charge density limitation of capacitive four-layer graphene electrodes as 116.07-174.10 μC/cm 2 based on electrochemical impedance spectroscopy, cyclic voltammetry, failure bench testing, and in vivo testing. This study demonstrates the transparent ability of graphene neural electrodes and provides a method to further increase understanding and potentially improve therapeutic electrical stimulation in the central and peripheral nervous systems.

  10. Bacterial Analysis of Peri-implantitis and Chronic Periodontitis in Iranian Subjects

    Directory of Open Access Journals (Sweden)

    Gunnar Dahlén


    Full Text Available Chronic periodontitis (CP and peri-implantitis (PI are multifactorial diseases of tooth and implant supporting apparatus. Bacterial invasion and consequent host immune response seem to play a role in relevant pathogenesis. The structural differences between tooth and implant pose preferential biofilm colonization. This study was aimed to compare the prevalence of bacteria in CP and PI. Clinical and radiographic examination performed over 69 individuals referred to Shahid Beheshti Dental School (Tehran, Iran and four groups categorized: CP (n=22, HP (n=21, PI (n=13 and HI (n=13. The mean age was 45.6 years, 55% of participants were female and 45% were male. Bacterial samples were collected by paper point method and transferred to Institute of Odontology, University of Gothenburg (Gothenburg, Sweden for checkerboard DNA-DNA hybridization. Kruskal-Wallis and Mann-Whitney U tests were used to compare distribution of bacteria in four groups. Significant differences were observed for T. forsythia, P. intermedia, C. rectus, P. endodontic, P. gingivalis, T. denticola and P. tannerae (P<0.05. The most prevalent bacteria in CP and PI were T. forsythia and P. gingivalis, respectively. In conclusion, bacterial prevalence differs significantly between tooth and implant. The most prevalent bacteria in Iranian subpopulation do not necessarily bear a resemblance to other populations. The type of implant surface may influence the biofilm. Other studies should be conducted to corroborate these findings.

  11. An implantable CMOS signal conditioning system for recording nerve signals with cuff electrodes

    DEFF Research Database (Denmark)

    Papathanasiou, Konstantinos; Lehmann, Torsten


    We propose a system architecture for recording nerve signals with cuff electrodes and develop the key component in this system, the small-input, low-noise, low-power, high-gain amplifier. The amplifier is implemented using a mixture of weak- and strong-inversion transistors and a special off-set ......-set compensation technique; its performance is validated using Spice simulations....

  12. Chronic behavior evaluation of a micro-machined neural implant with optimized design based on an experimentally derived model. (United States)

    Andrei, Alexandru; Welkenhuysen, Marleen; Ameye, Lieveke; Nuttin, Bart; Eberle, Wolfgang


    Understanding the mechanical interactions between implants and the surrounding tissue is known to have an important role for improving the bio-compatibility of such devices. Using a recently developed model, a particular micro-machined neural implant design aiming the reduction of insertion forces dependence on the insertion speed was optimized. Implantations with 10 and 100 μm/s insertion speeds showed excellent agreement with the predicted behavior. Lesion size, gliosis (GFAP), inflammation (ED1) and neuronal cells density (NeuN) was evaluated after 6 week of chronic implantation showing no insertion speed dependence.

  13. Chronic microelectrode investigations of normal human brain physiology using a hybrid depth electrode. (United States)

    Howard, M A; Volkov, I O; Noh, M D; Granner, M A; Mirsky, R; Garell, P C


    Neurosurgeons have unique access to in vivo human brain tissue, and in the course of clinical treatment important scientific advances have been made that further our understanding of normal brain physiology. In the modern era, microelectrode recordings have been used to systematically investigate the cellular properties of lateral temporal cerebral cortex. The current report describes a hybrid depth electrode (HDE) recording technique that was developed to enable neurosurgeons to simultaneously investigate normal cellular physiology during chronic intracranial EEG recordings. The HDE combines microelectrode and EEG recordings sites on a single shaft. Multiple microelectrode recordings are obtained from MRI defined brain sites and single-unit activity is discriminated from these data. To date, over 60 HDEs have been placed in 20 epilepsy surgery patients. Unique physiologic data have been gathered from neurons in numerous brain regions, including amygdala, hippocampus, frontal lobe, insula and Heschl's gyrus. Functional activation studies were carried out without risking patient safety or comfort.

  14. Correlations between histology and neuronal activity recorded by microelectrodes implanted chronically in the cerebral cortex (United States)

    McCreery, Douglas; Cogan, Stuart; Kane, Sheryl; Pikov, Victor


    Objective. To quantify relations between the neuronal activity recorded with chronically-implanted intracortical microelectrodes and the histology of the surrounding tissue, using radial distance from the tip sites and time after array implantation as parameters. Approach. ‘Utah’-type intracortical microelectrode arrays were implanted into cats’ sensorimotor cortex for 275-364 days. The brain tissue around the implants was immuno-stained for the neuronal marker NeuN and for the astrocyte marker GFAP. Pearson’s product-moment correlations were used to quantify the relations between these markers and the amplitudes of the recorded neuronal action potentials (APs) and their signal-to-noise ratios (S/N). Main results. S/N was more stable over post-implant time than was AP amplitude, but its increased correlation with neuronal density after many months indicates ongoing loss of neurons around the microelectrodes. S/N was correlated with neuron density out to at least 140 μm from the microelectrodes, while AP amplitude was correlated with neuron density and GFAP density within ˜80 μm. Correlations between AP amplitude and histology markers (GFAP and NeuN density) were strongest immediately after implantation, while correlation between the neuron density and S/N was strongest near the time the animals were sacrificed. Unlike AP amplitude, there was no significant correlation between S/N and density of GFAP around the tip sites. Significance. Our findings indicate an evolving interaction between changes in the tissue surrounding the microelectrodes and the microelectrode’s electrical properties. Ongoing loss of neurons around recording microelectrodes, and the interactions between their delayed electrical deterioration and early tissue scarring around the tips appear to pose the greatest threats to the microelectrodes’ long-term functionality.

  15. Robust, highly customizable, and economical multi-channel electrode for chronic multi-unit recording in behaving animals. (United States)

    Tateyama, Yukina; Oyama, Kei; Shiraishi, Masaru; Iijima, Toshio; Tsutsui, Ken-Ichiro


    Multi-unit recording has been one of the most widely used techniques to investigate the correlation between multiple neuronal activities and behavior. However, a common problem of currently used multi-channel electrodes is their physical weakness. In this study, we developed a novel multi-channel electrode with sufficient physical strength to penetrate a thickened dura mater. This electrode consists of low-cost materials and is easily fabricated, and it enables recording without removing dura mater, thereby reducing the risk of inflammation, infection, or brain herniation. The low-cost multi-channel electrode developed in this study would be a useful tool for chronic recording in behaving animals. Copyright © 2017. Published by Elsevier B.V.

  16. Plasma-assisted atomic layer deposition of Al(2)O(3) and parylene C bi-layer encapsulation for chronic implantable electronics. (United States)

    Xie, Xianzong; Rieth, Loren; Merugu, Srinivas; Tathireddy, Prashant; Solzbacher, Florian


    Encapsulation of biomedical implants with complex three dimensional geometries is one of the greatest challenges achieving long-term functionality and stability. This report presents an encapsulation scheme that combines Al(2)O(3) by atomic layer deposition with parylene C for implantable electronic systems. The Al(2)O(3)-parylene C bi-layer was used to encapsulate interdigitated electrodes, which were tested invitro by soak testing in phosphate buffered saline solution at body temperature (37 °C) and elevated temperatures (57 °C and 67 °C) for accelerated lifetime testing up to 5 months. Leakage current and electrochemical impedance spectroscopy were measured for evaluating the integrity and insulation performance of the coating. Leakage current was stably about 15 pA at 5 V dc, and impedance was constantly about 3.5 MΩ at 1 kHz by using electrochemical impedance spectroscopy for samples under 67 °C about 5 months (approximately equivalent to 40 months at 37 °C). Alumina and parylene coating lasted at least 3 times longer than parylene coated samples tested at 80 °C. The excellent insulation performance of the encapsulation shows its potential usefulness for chronic implants.

  17. Impact of a chronic smoking habit on the osteo-immunoinflammatory mediators in the peri-implant fluid of clinically healthy dental implants. (United States)

    Negri, Brenno Marcondes; Pimentel, Suzana Peres; Casati, Marcio Zaffalon; Cirano, Fabiano Ribeiro; Casarin, Renato Correa; Ribeiro, Fernanda Vieira


    The aim of this study was to evaluate the influence of chronic cigarette smoking on the profile of osteo-immunoinflammatory markers in the peri-implant crevicular fluid (PICF) from clinically healthy implants DESIGNS: Twenty-five smokers and 23 non-smoker subjects with a unitary screwed implant-supported crown in the molar or pre-molar region were enrolled in this study. The implants should have been in functioning for at least 12 months, and the peri-implant tissue should be clinically healthy [probing depth (PD)0.05). Moreover, higher ICTP concentrations and a higher TH1/TH2 ratio were observed in the PICF of the smoker patients (p0.05). Smoking habit modulate peri-implant cytokine profile, leading to reductions in IL-4, -8 TNF-α, and OPG levels and an increased ICTP and TH1/TH2 ratio in peri-implant crevicular fluid. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Vibratory function and healing outcomes after small intestinal submucosa biomaterial implantation for chronic vocal fold scar. (United States)

    Pitman, Michael J; Kurita, Takashi; Powell, Maria E; Kimball, Emily E; Mizuta, Masanobu; Chang, Siyuan; Garrett, C Gaelyn; Rousseau, Bernard


    Vocal fold scar is a major cause of dysphonia, and optimal treatments do not currently exist. Small intestinal submucosa (SIS) is a biomaterial developed for the treatment of a variety of pathologies. The purpose of this study was to investigate the effects of SIS implantation on tissue remodeling in scarred vocal folds using routine staining, immunohistochemistry, and high-speed videoendoscopy (HSV). Prospective, blinded group analysis. Thirteen New Zealand White rabbits underwent a vocal fold scarring procedure followed by microflap elevation with or without SIS implantation. Seven months later, they underwent a phonation procedure with HSV and laryngeal harvest. Alcian blue and elastica van Gieson staining and immunohistochemistry for collagen types I and III were used to evaluate histological healing outcomes. Dynamic functional remodeling of the scarred vocal fold in the presence of SIS implants was evaluated using HSV imaging to capture restoration of vibratory amplitude, amplitude ratio, and left-right phase symmetry. Density of collagen I was significantly decreased in SIS versus microflap-treated vocal folds. No differences were found between groups for hyaluronic acid, elastin, or collagen type III. Organization of elastin in the subepithelial region appeared to affect amplitude of vibration and the shape of the vocal fold edge. SIS implantation into chronic scar reduced the density of collagen I deposits. There was no evidence of a negative impact or complication from SIS implantation. Regardless of treatment type, organization of elastin in the subepithelial region may be important to vibratory outcomes. NA. Laryngoscope, 128:901-908, 2018. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  19. Identifying cochlear implant channels with poor electrode-neuron interface: electrically-evoked auditory brainstem responses measured with the partial tripolar configuration (United States)

    Bierer, Julie Arenberg; Faulkner, Kathleen F.; Tremblay, Kelly L.


    Objectives The goal of this study was to compare cochlear implant behavioral measures and electrically-evoked auditory brainstem responses (EABRs) obtained with a spatially focused electrode configuration. It has been shown previously that channels with high thresholds, when measured with the tripolar configuration, exhibit relatively broad psychophysical tuning curves (Bierer and Faulkner, 2010). The elevated threshold and degraded spatial/spectral selectivity of such channels are consistent with a poor electrode-neuron interface, such as suboptimal electrode placement or reduced nerve survival. However, the psychophysical methods required to obtain these data are time intensive and may not be practical during a clinical mapping procedure, especially for young children. Here we have extended the previous investigation to determine if a physiological approach could provide a similar assessment of channel functionality. We hypothesized that, in accordance with the perceptual measures, higher EABR thresholds would correlate with steeper EABR amplitude growth functions, reflecting a degraded electrode-neuron interface. Design Data were collected from six cochlear implant listeners implanted with the HiRes 90k cochlear implant (Advanced Bionics). Single-channel thresholds and most comfortable listening levels were obtained for stimuli that varied in presumed electrical field size by using the partial tripolar configuration, for which a fraction of current (σ) from a center active electrode returns through two neighboring electrodes and the remainder through a distant indifferent electrode. EABRs were obtained in each subject for the two channels having the highest and lowest tripolar (σ=1 or 0.9) behavioral threshold. Evoked potentials were measured with both the monopolar (σ=0) and a more focused partial tripolar (σ ≥ 0.50) configuration. Results Consistent with previous studies, EABR thresholds were highly and positively correlated with behavioral thresholds

  20. Identifying cochlear implant channels with poor electrode-neuron interfaces: electrically evoked auditory brain stem responses measured with the partial tripolar configuration. (United States)

    Bierer, Julie Arenberg; Faulkner, Kathleen F; Tremblay, Kelly L


    The goal of this study was to compare cochlear implant behavioral measures and electrically evoked auditory brain stem responses (EABRs) obtained with a spatially focused electrode configuration. It has been shown previously that channels with high thresholds, when measured with the tripolar configuration, exhibit relatively broad psychophysical tuning curves. The elevated threshold and degraded spatial/spectral selectivity of such channels are consistent with a poor electrode-neuron interface, defined as suboptimal electrode placement or reduced nerve survival. However, the psychophysical methods required to obtain these data are time intensive and may not be practical during a clinical mapping session, especially for young children. Here, we have extended the previous investigation to determine whether a physiological approach could provide a similar assessment of channel functionality. We hypothesized that, in accordance with the perceptual measures, higher EABR thresholds would correlate with steeper EABR amplitude growth functions, reflecting a degraded electrode-neuron interface. Data were collected from six cochlear implant listeners implanted with the HiRes 90k cochlear implant (Advanced Bionics). Single-channel thresholds and most comfortable listening levels were obtained for stimuli that varied in presumed electrical field size by using the partial tripolar configuration, for which a fraction of current (σ) from a center active electrode returns through two neighboring electrodes and the remainder through a distant indifferent electrode. EABRs were obtained in each subject for the two channels having the highest and lowest tripolar (σ = 1 or 0.9) behavioral threshold. Evoked potentials were measured with both the monopolar (σ = 0) and a more focused partial tripolar (σ ≥ 0.50) configuration. Consistent with previous studies, EABR thresholds were highly and positively correlated with behavioral thresholds obtained with both the monopolar and partial

  1. FY 1998 annual report on the development of novel, high-activity oxygen electrode by ion-implantation; 1998 nendo ion chunyuho ni yoru shinkina kokassei sanso denkyoku no kaihatsu chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)



    An attempt has been made to develop an electrode material having high activity for oxygen generating reactions by ion-implantation, which is used to form the bulk defects (fine gaps at the atomic level) on the electrode surface, considered to serve as the active sites. It is found that implantation of the Co{sup +} or Zn{sup +} ion into a compound oxide electrode of Ti and Ru is accompanied by decreased overvoltage for oxygen generation by 50 to 100 mV. The Co{sup +} and Zn{sup +} ions, when implanted, cause damage of similar density in the thin film, decreasing its overvoltage to a similar extent, in spite of their different chemical properties, from which it is considered that the effect of ion implantation is not to change chemical properties of the film but to form a structural defect therein. A thin-film electrode of ruthenium dioxide, which is considered to be the oxygen generating electrode of the highest activity at present, is prepared and implanted with the Ru{sup +} ion, to observe the effect. The ion implantation also decreases the overvoltage by 50 to 70 mV, demonstrating its effect. The same principle is expected to be applicable to development of high-activity oxygen reducing electrode (electrode for fuel cell). (NEDO)

  2. The Effect of Round Window vs Cochleostomy Surgical Approaches on Cochlear Implant Electrode Position: A Flat-Panel Computed Tomography Study. (United States)

    Jiam, Nicole T; Jiradejvong, Patpong; Pearl, Monica S; Limb, Charles J


    The round window insertion (RWI) and cochleostomy approaches are the 2 most common surgical techniques used in cochlear implantation (CI). However, there is no consensus on which approach is ideal for electrode array insertion, in part because visualization of intracochlear electrode position is challenging, so postoperative assessment of intracochlear electrode contact is lacking. To measure and compare electrode array position between RWI and cochleostomy approaches for CI insertion. Retrospective case-comparison study of 17 CI users with Med-El standard-length electrode arrays who underwent flat-panel computed tomography scans after CI surgery at a tertiary referral center. The data was analyzed in October 2015. Flat-panel computed tomography scans were collected between January 1 and August 31, 2013, for 22 electrode arrays. The surgical technique was identified by a combination of operative notes and imaging. Eight cochleae underwent RWI and 14 cochleae underwent cochleostomy approaches anterior and inferior to the round window. Interscalar electrode position and electrode centroid distance to the osseous spiral lamina, lateral bony wall, and central axis of the modiolus. Nine participants were men, and 8, women; the mean age was 54.4 (range, 21-64) years. Electrode position was significantly closer to cochlear neural elements with RWI than cochleostomy approaches. Between the 2 surgical approaches, the RWI technique produced shorter distances between the electrode and the modiolus (mean difference, -0.33 [95% CI, -0.29 to -0.39] mm in the apical electrode; -1.42 [95% CI, -1.24 to -1.57] mm in the basal electrode). This difference, which was most prominent in the first third and latter third of the basal turn, decreased after the basal turn. The RWI approach was associated with an increased likelihood of perimodiolar placement. Opting to use RWI over cochleostomy approaches in CI candidates may position electrodes closer to cochlear neural substrates and

  3. Wireless, Ultra-Low-Power Implantable Sensor for Chronic Bladder Pressure Monitoring. (United States)

    Majerus, Steve J A; Garverick, Steven L; Suster, Michael A; Fletter, Paul C; Damaser, Margot S


    The wireless implantable/intracavity micromanometer (WIMM) system was designed to fulfill the unmet need for a chronic bladder pressure sensing device in urological fields such as urodynamics for diagnosis and neuromodulation for bladder control. Neuromodulation in particular would benefit from a wireless bladder pressure sensor which could provide real-time pressure feedback to an implanted stimulator, resulting in greater bladder capacity while using less power. The WIMM uses custom integrated circuitry, a MEMS transducer, and a wireless antenna to transmit pressure telemetry at a rate of 10 Hz. Aggressive power management techniques yield an average current draw of 9 μ A from a 3.6-Volt micro-battery, which minimizes the implant size. Automatic pressure offset cancellation circuits maximize the sensing dynamic range to account for drifting pressure offset due to environmental factors, and a custom telemetry protocol allows transmission with minimum overhead. Wireless operation of the WIMM has demonstrated that the external receiver can receive the telemetry packets, and the low power consumption allows for at least 24 hours of operation with a 4-hour wireless recharge session.

  4. Chronic cortical and electromyographic recordings from a fully implantable device: preclinical experience in a nonhuman primate (United States)

    Ryapolova-Webb, Elena; Afshar, Pedram; Stanslaski, Scott; Denison, Tim; de Hemptinne, Coralie; Bankiewicz, Krystof; Starr, Philip A.


    Objective. Analysis of intra- and perioperatively recorded cortical and basal ganglia local field potentials in human movement disorders has provided great insight into the pathophysiology of diseases such as Parkinson's, dystonia, and essential tremor. However, in order to better understand the network abnormalities and effects of chronic therapeutic stimulation in these disorders, long-term recording from a fully implantable data collection system is needed. Approach. A fully implantable investigational data collection system, the Activa® PC + S neurostimulator (Medtronic, Inc., Minneapolis, MN), has been developed for human use. Here, we tested its utility for extended intracranial recording in the motor system of a nonhuman primate. The system was attached to two quadripolar paddle arrays: one covering sensorimotor cortex, and one covering a proximal forelimb muscle, to study simultaneous cortical field potentials and electromyography during spontaneous transitions from rest to movement. Main results. Over 24 months of recording, movement-related changes in physiologically relevant frequency bands were readily detected, including beta and gamma signals at approximately 2.5 μV/\\sqrtHz and 0.7 μV/\\sqrt{Hz}, respectively. The system architecture allowed for flexible recording configurations and algorithm triggered data recording. In the course of physiological analyses, sensing artifacts were observed (˜1 μVrms stationary tones at fixed frequency), which were mitigated either with post-processing or algorithm design and did not impact the scientific conclusions. Histological examination revealed no underlying tissue damage; however, a fibrous capsule had developed around the paddles, demonstrating a potential mechanism for the observed signal amplitude reduction. Significance. This study establishes the usefulness of this system in measuring chronic brain and muscle signals. Use of this system may potentially be valuable in human trials of chronic brain

  5. Combined Ahmed Glaucoma Valve Placement, Intravitreal Fluocinolone Acetonide Implantation and Cataract Extraction for Chronic Uveitis. (United States)

    Chang, Ingrid T; Gupta, Divakar; Slabaugh, Mark A; Vemulakonda, Gurunadh A; Chen, Philip P


    To report the outcomes of combined Ahmed glaucoma valve (AGV) placement, intravitreal fluocinolone acetonide implant, and cataract extraction procedure in the treatment of chronic noninfectious uveitis. Retrospective case series of patients with chronic noninfectious uveitis who underwent AGV placement, intravitreal fluocinolone acetonide implantation, and cataract extraction in a single surgical session performed at 1 institution from January 2009 to November 2014. Outcome measures included intraocular pressure (IOP) and glaucoma medication use. Secondary outcome measures included visual acuity, systemic anti-inflammatory medications, number of uveitis flares, and complications. Fifteen eyes of 10 patients were studied, with a mean age of 40.3±15.7 and mean follow-up duration of 26 months (range, 13 to 39 mo). Before surgery, the IOP was 18.5±7.3 mm Hg and patients were using 1.5±1.5 topical glaucoma medications. At the 12-month follow-up, IOP was 12.8±3.2 mm Hg (P=0.01) and patients were using 0.5±0.8 (P=0.03) topical glaucoma medications. At 36 months of follow-up, late, nonsustained hypotony had occurred in 3 eyes (20%), and 1 eye (6%) had received a second AGV for IOP control. Before treatment, patients had 2.7±1.5 uveitis flares in the year before surgery while on an average of 2.1±0.6 systemic anti-inflammatory medications, which decreased to an average of 0.1±0.3 (Pglaucoma medications at 12 months after treatment in patients with chronic uveitis.

  6. Effect of right ventricular electrode location (outflow tract vs. apex) on mechanical Ventricular synchrony in patients that underwent pacemaker implant therapy

    International Nuclear Information System (INIS)

    Rincon, Oscar S; Saenz, Luis C; Salazar, Gabriel; Hernandez, Edgar


    Objective: to assess in depth the effect of ventricular stimulation from the right ventricular outflow tract and the apex on mechanical ventricular synchrony. Materials And Methods: cohort analytical study. 20 patients with indication of definitive pacemaker indication underwent trans thoracic echocardiogram before and after pacemaker implant with electrode implantation in the right ventricular outflow tract and in the apex (10 patients in each group). There was no structural cardiopathy, ejection fraction was ? 50%, QRS and AV conduction were normal. Mechanical ventricular asynchrony (M mode and tissue doppler) and implant and device parameters were evaluated. Statistical Analysis: results are given as mean values, standard deviation or percentages.Continuous variables were compared using Chi-square test and ANOVA. A p <0.05 value was considered statistically significant. Results: in five patients (25%) a pre-implant ventricular asynchrony was found; in seven (70%) ventricular asynchrony post-implant in the right ventricle outflow tract and in 5 (50%) in the apex. Mean interventricular pot-implant delay was 21,6 ms in the right ventricular outflow tract and 11,5 ms in the apex (p = 0,8); mean septal to lateral wall delay was 73 ms in the right ventricular outflow tract and 26 ms in the apex (p = 0,8). QRS post-implant delay was 134 ms in the right ventricular outflow tract and 140 ms in the apex (p = 0,1). No differences between implant parameters and device programming were found. Conclusions: presence of ventricular asynchrony was evidenced in patients with normal QRS and structurally healthy heart. Ventricular stimulation with pacemaker from the apex or the right ventricular outflow tract suggests acute ventricular asynchrony at least in 60% of the cases, without statistically significant difference between both groups.

  7. Poly(3,4-ethylenedioxythiophene) (PEDOT) polymer coatings facilitate smaller neural recording electrodes (United States)

    Ludwig, Kip A.; Langhals, Nicholas B.; Joseph, Mike D.; Richardson-Burns, Sarah M.; Hendricks, Jeffrey L.; Kipke, Daryl R.


    We investigated using poly(3,4-ethylenedioxythiophene) (PEDOT) to lower the impedance of small, gold recording electrodes with initial impedances outside of the effective recording range. Smaller electrode sites enable more densely packed arrays, increasing the number of input and output channels to and from the brain. Moreover, smaller electrode sizes promote smaller probe designs; decreasing the dimensions of the implanted probe has been demonstrated to decrease the inherent immune response, a known contributor to the failure of long-term implants. As expected, chronically implanted control electrodes were unable to record well-isolated unit activity, primarily as a result of a dramatically increased noise floor. Conversely, electrodes coated with PEDOT consistently recorded high-quality neural activity, and exhibited a much lower noise floor than controls. These results demonstrate that PEDOT coatings enable electrode designs 15 µm in diameter.

  8. Current steering and current focusing in cochlear implants: comparison of monopolar, tripolar, and virtual channel electrode configurations. (United States)

    Berenstein, Carlo K; Mens, Lucas H M; Mulder, Jef J S; Vanpoucke, Filiep J


    To compare the effects of Monopole (Mono), Tripole (Tri), and "Virtual channel" (Vchan) electrode configurations on spectral resolution and speech perception in a crossover design. Nine experienced adults who received an Advanced Bionics CII/90K cochlear implant participated in a crossover design using three experimental strategies for 2 wk each. Three strategies were compared: (1) Mono; (2) Tri with current partly returning to adjacent electrodes and partly (25 or 75%) to the extracochlear reference; and (3) a monopolar "Vchan" strategy creating seven intermediate channels between two contacts. Each strategy was a variant of the standard "HiRes" processing strategy using 14 channels and 1105 pulses/sec/ channel, and a pulse duration of 32 microsec/phase. Spectral resolution was measured using broadband noise with a sinusoidally rippled spectral envelope with peaks evenly spaced on a logarithmic frequency scale. Speech perception was measured for monosyllables in quiet and in steady-state and fluctuating noises. Subjective comments on music experience and preferences in everyday use were assessed through questionnaires. Thresholds and most comfortable levels with Mono and Vchan were both significantly lower than levels with Tri. Spectral resolution was significantly higher with Tri than with Mono; spectral resolution with Vchan did not differ significantly from the other configurations. Moderate but significant correlations between word recognition and spectral resolution were found in speech in quiet and fluctuating noise. For speech in quiet, word recognition was best with Mono and worst with Vchan; Tri did not significantly differ from the other configurations. Pooled across the noise conditions, word recognition was best with Tri and worst with Vchan (Mono did not significantly differ from the other configurations). These differences were small and insufficient to result in a clear increase in performance across subjects if the result from the best

  9. Neurofeedback Control in Parkinsonian Patients Using Electrocorticography Signals Accessed Wirelessly With a Chronic, Fully Implanted Device. (United States)

    Khanna, Preeya; Swann, Nicole C; de Hemptinne, Coralie; Miocinovic, Svjetlana; Miller, Andrew; Starr, Philip A; Carmena, Jose M


    Parkinson's disease (PD) is characterized by motor symptoms such as rigidity and bradykinesia that prevent normal movement. Beta band oscillations (13-30 Hz) in neural local field potentials (LFPs) have been associated with these motor symptoms. Here, three PD patients implanted with a therapeutic deep brain neural stimulator that can also record and wirelessly stream neural data played a neurofeedback game where they modulated their beta band power from sensorimotor cortical areas. Patients' beta band power was streamed in real-time to update the position of a cursor that they tried to drive into a cued target. After playing the game for 1-2 hours each, all three patients exhibited above chance-level performance regardless of subcortical stimulation levels. This study, for the first time, demonstrates using an invasive neural recording system for at-home neurofeedback training. Future work will investigate chronic neurofeedback training as a potentially therapeutic tool for patients with neurological disorders.

  10. Chronic alcohol abuse and endosseous implants: Linkage of in vitro osteoblast dysfunction to titanium osseointegration rate

    International Nuclear Information System (INIS)

    Torricelli, Paola; Fini, Milena; Giavaresi, Gianluca; Rimondini, Lia; Tschon, Matilde; Rimondini, Roberto; Carrassi, Antonio; Giardino, Roberto


    Chronic alcohol consumption is associated with pathological effects on bone, and it is correlated with the increasing risk of osteoporosis and fractures. The negative effects of alcohol intake also influence bone repair processes and the osseointegration of implants. The aim of the present in vitro study was to investigate the proliferation and synthetic activity of osteoblasts isolated from the trabecular bone of rats previously exposed to 7-week intermittent exposure to ethanol vapour (EE-OB), and sham-aged rats (SA-OB), when cultured on standard commercially pure Ti (cpTi). Osteoblast proliferation (WST-1), alkaline phosphatase (ALP), osteocalcin (OC), collagen type I (CICP), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and transforming growth factor-β1 (TGF-β1) were measured at 1, 7, and 14 days of culture. Our results showed a decrease in the cell viability and synthetic activity of osteoblasts exposed to ethanol when cultured on cpTi. Moreover, the release of local regulatory factors from osteoblasts was imbalanced: TGF-β1 production was reduced and TNF-α and IL-6 were up-regulated. These in vitro data suggest that alcohol abuse affects bone repair and decreases the ability to form bone around standard cpTi. Innovative surfaces and adjuvant therapies could be useful when implants are required in alcoholics

  11. A review on mechanical considerations for chronically-implanted neural probes (United States)

    Lecomte, Aziliz; Descamps, Emeline; Bergaud, Christian


    This review intends to present a comprehensive analysis of the mechanical considerations for chronically-implanted neural probes. Failure of neural electrical recordings or stimulation over time has shown to arise from foreign body reaction and device material stability. It seems that devices that match most closely with the mechanical properties of the brain would be more likely to reduce the mechanical stress at the probe/tissue interface, thus improving body acceptance. The use of low Young’s modulus polymers instead of hard substrates is one way to enhance this mechanical mimetism, though compliance can be achieved through a variety of means. The reduction of probe width and thickness in comparison to a designated length, the use of soft hydrogel coatings and the release in device tethering to the skull, can also improve device compliance. Paradoxically, the more compliant the device, the more likely it will fail during the insertion process in the brain. Strategies have multiplied this past decade to offer partial or temporary stiffness to the device to overcome this buckling effect. A detailed description of the probe insertion mechanisms is provided to analyze potential sources of implantation failure and the need for a mechanically-enhancing structure. This leads us to present an overview of the strategies that have been put in place over the last ten years to overcome buckling issues. Particularly, great emphasis is put on bioresorbable polymers and their assessment for neural applications. Finally, a discussion is provided on some of the key features for the design of mechanically-reliable, polymer-based next generation of chronic neuroprosthetic devices.

  12. Report on the FY 1999 investigational survey on the activation of oxygen electrode by ion implantation; 1999 nendo ion chunyuho ni yoru sanso denkyoku no kasseika ni kansuru kenkyu chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)



    The oxygen electrode is important as the base electrode for water electrolysis and fuel cell, but to move it, overvoltage (activated energy) in addition to equilibrium voltage is necessary, which leads to the lowering of energy efficiency. By forming the active spot by ion implantation, the lowering of overvoltage was studied. The implantation of Ru{sup +} ion in Ruthenium dioxide thin film electrode reduced the oxygen generating overvoltage by 15-20mV. Even in the oxygen reduction, activity was also increased. The chemical composition of thin film does not change by ion implantation. The increase in activity is based on a physical change which is called the surface defect formation. The layer of ion implantation is composed of microcrystals, which is thought to contribute to the formation of any active spot. Ions were implanted in Pt electrode as a practical use material, and even in the oxygen reduction of Pt, a possibility of heightening activity by ion implantation was admitted even in the oxygen reduction of Pt. The generation of high activity oxygen by ion plantation and development of oxygen reduction electrode were established as one method as a rule. (NEDO)

  13. The main features of electrical stimulation of biological tissues by implant electrodes: study from engineering perspective and equipment development to produce

    International Nuclear Information System (INIS)

    Suarez Bagnasco, D.; Alvarez Alonso, J.; Suarez Antola, R.


    The main features of electrical stimulation of biological tissues by implant electrodes are studied.These electrodes are applied in neural prostheses and cardiac pacing.Threshold phenomena are stressed and some aspects related with implant electrode design are discussed. A fairly through theoretical research about the optimal pulse shape for electrical stimulation of biological tissues is done.The excitation functional is introduced as a criterium to identify threshold pulses of electric current. We obtain the optimal pulse shapes that minimize the energy dissipated in tissues, or the energy taken by the load seen by the pulse generator, amongst other criteria.We show how these pulse shapes can be determined from experimentally measured strength-duration (S-D) curves using rectangular pulses of current. The development of a prototype of a new equipment is described.The equipment may be used to measure S-D curves and with this information it is able to syntetize the abovementioned optimal pulse shapes. The top-down design process is presented, involving both hardware and software.The construction and assembling of the prototype, as well as the implementation of software are described.Some testing and measures with the prototype, including test with biological tissues are described and assessed

  14. A Wireless and Batteryless Microsystem with Implantable Grid Electrode/3-Dimensional Probe Array for ECoG and Extracellular Neural Recording in Rats

    Directory of Open Access Journals (Sweden)

    Chih-Wei Chang


    Full Text Available This paper presents the design and implementation of an integrated wireless microsystem platform that provides the possibility to support versatile implantable neural sensing devices in free laboratory rats. Inductive coupled coils with low dropout regulator design allows true long-term recording without limitation of battery capacity. A 16-channel analog front end chip located on the headstage is designed for high channel account neural signal conditioning with low current consumption and noise. Two types of implantable electrodes including grid electrode and 3D probe array are also presented for brain surface recording and 3D biopotential acquisition in the implanted target volume of tissue. The overall system consumes less than 20 mA with small form factor, 3.9 × 3.9 cm2 mainboard and 1.8 × 3.4 cm2 headstage, is packaged into a backpack for rats. Practical in vivo recordings including auditory response, brain resection tissue and PZT-induced seizures recording demonstrate the correct function of the proposed microsystem. Presented achievements addressed the aforementioned properties by combining MEMS neural sensors, low-power circuit designs and commercial chips into system-level integration.

  15. Sensitive DNA impedance biosensor for detection of cancer, chronic lymphocytic leukemia, based on gold nanoparticles/gold modified electrode

    International Nuclear Information System (INIS)

    Ensafi, Ali A.; Taei, M.; Rahmani, H.R.; Khayamian, T.


    Highlights: → Chronic lymphocytic leukemia causes an increase in the number of white blood cells. → We introduced a highly sensitive biosensor for the detection of chronic lymphocytic leukemia. → A suitable 25-mer ssDNA probe was immobilized on the surface of the gold nanoparticles. → We used electrochemical impedance spectroscopy as a suitable tool for the detection. → Detection of chronic lymphocytic leukemia in blood sample was checked using the sensor. - Abstract: A simple and sensitive DNA impedance sensor was prepared for the detection of chronic lymphocytic leukemia. The DNA electrochemical biosensor is worked based on the electrochemical impedance spectroscopic (EIS) detection of the sequence-specific DNA related to chronic lymphocytic leukemia. The ssDNA probe was immobilized on the surface of the gold nanoparticles. Compared to the bare gold electrode, the gold nanoparticles-modified electrode could improve the density of the probe DNA attachment and hence the sensitivity of the DNA sensor greatly. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy were performed in a solution containing 1.0 mmol L -1 K 3 [Fe(CN) 6 ]/K 4 [Fe(CN) 6 ] and 50 mmol L -1 phosphate buffer saline pH 6.87 plus 50 mmol L -1 KCl. In the CV studied, the potential was cycled from 0.0 to +0.65 V with a scan rate of 50 mV s -1 . Using EIS, the difference of the electron transfer resistance (ΔR et ) was linear with the logarithm of the complementary oligonucleotides sequence concentrations in the range of 7.0 x 10 -12 -2.0 x 10 -7 mol L -1 , with a detection limit of 1.0 x 10 -12 mol L -1 . In addition, the DNA sensor showed a good reproducibility and stability during repeated regeneration and hybridization cycles.

  16. Fabrication and characterization of implantable and flexible nerve cuff electrodes with Pt, Ir and IrOx films deposited by RF sputtering

    International Nuclear Information System (INIS)

    Lee, Soo Hyun; Jung, Jung Hwan; Chae, Youn Mee; Kang, Ji Yoon; Suh, Jun-Kyo Francis


    This paper presents the fabrication and characterization of implantable and flexible nerve cuff electrodes for neural interfaces using the conventional BioMEMS technique. In order to fabricate a flexible nerve electrode, polyimide (PI) was chosen as the substrate material. Then, nerve electrodes were thermally re-formed in a cuff shape so as to increase the area in which the charges were transferred to the nerve. Platinum (Pt), iridium (Ir) and iridium oxide (IrO x ) films, which were to serve as conducting materials for the nerve electrodes, were deposited at different working pressures by RF magnetron sputtering. The electrochemical properties of the deposited films were characterized by electrochemical impedance spectroscopy (EIS). The charge delivery capacities of the films were recorded and calculated by cyclic voltammetry (CV). The deposited films of Pt, Ir and IrO x have strong differences in electrochemical properties, which depend on the working pressure of sputter. Each film deposited at 30 mTorr of working pressure shows the highest value of charge delivery capacity (CDC). For the IrO x films, the electrochemical properties were strongly affected by the working pressure as well as the Ar:O 2 gas ratio. The IrO x film deposited with an Ar:O 2 gas ratio of 8:1 showed the highest CDC of 59.5 mC cm −2 , which was about five times higher than that of films deposited with a 1:1 gas ratio.

  17. High-current and low acceleration voltage arsenic ion implanted polysilicon-gate and source-drain electrode Si mos transistor

    International Nuclear Information System (INIS)

    Saito, Yasuyuki; Sugimura, Yoshiro; Sugihara, Michiyuki


    The fabrication process of high current arsenic (As) ion implanted polysilicon (Si) gate and source drain (SD) electrode Si n-channel metal oxide-semiconductor field effect transistor (MOSFET) was examined. Poly Si film n-type doping was performed by using high current (typical current: 2mA) and relatively low acceleration voltage (40keV) As ion implantation technique (Lintott series 3). It was observed that high dose As implanted poly Si films as is show refractoriness against radical fluorine excited by microwave. Using GCA MANN4800 (m/c ID No.2, resist: OFPR) mask pattern printing technique, the high current As ion implantation technique and radical fluorine gas phase etching (Chemical dry etching: CDE) technique, the n-channel Poly Si gate (ρs = ≅100Ω/□) enhancement MQSFETs(ρs source drain = ≅50Ω/□, SiO 2 gate=380 angstrom) with off-leak-less were obtained on 3 inch Czochralski grown 2Ωcm boron doped p type wafers (Osaka titanium). By the same process, a 8 bit single chip μ-processor with 26MHz full operation was performed

  18. Cost-Effectiveness of Implantable Pulmonary Artery Pressure Monitoring in Chronic Heart Failure. (United States)

    Sandhu, Alexander T; Goldhaber-Fiebert, Jeremy D; Owens, Douglas K; Turakhia, Mintu P; Kaiser, Daniel W; Heidenreich, Paul A


    This study aimed to evaluate the cost-effectiveness of the CardioMEMS (CardioMEMS Heart Failure System, St Jude Medical Inc, Atlanta, Georgia) device in patients with chronic heart failure. The CardioMEMS device, an implantable pulmonary artery pressure monitor, was shown to reduce hospitalizations for heart failure and improve quality of life in the CHAMPION (CardioMEMS Heart Sensor Allows Monitoring of Pressure to Improve Outcomes in NYHA Class III Heart Failure Patients) trial. We developed a Markov model to determine the hospitalization, survival, quality of life, cost, and incremental cost-effectiveness ratio of CardioMEMS implantation compared with usual care among a CHAMPION trial cohort of patients with heart failure. We obtained event rates and utilities from published trial data; we used costs from literature estimates and Medicare reimbursement data. We performed subgroup analyses of preserved and reduced ejection fraction and an exploratory analysis in a lower-risk cohort on the basis of the CHARM (Candesartan in Heart failure: Reduction in Mortality and Morbidity) trials. CardioMEMS reduced lifetime hospitalizations (2.18 vs. 3.12), increased quality-adjusted life-years (QALYs) (2.74 vs. 2.46), and increased costs ($176,648 vs. $156,569), thus yielding a cost of $71,462 per QALY gained and $48,054 per life-year gained. The cost per QALY gained was $82,301 in patients with reduced ejection fraction and $47,768 in those with preserved ejection fraction. In the lower-risk CHARM cohort, the device would need to reduce hospitalizations for heart failure by 41% to cost cost-effectiveness was most sensitive to the device's durability. In populations similar to that of the CHAMPION trial, the CardioMEMS device is cost-effective if the trial effectiveness is sustained over long periods. Post-marketing surveillance data on durability will further clarify its value. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights

  19. Multichannel cochlear implantation in the scala vestibuli. (United States)

    Lin, Karen; Marrinan, Michelle S; Waltzman, Susan B; Roland, J Thomas


    Sensorineural hearing loss resulting from otosclerosis, meningitis, chronic otitis media, autoimmune ear disease, and trauma can be associated with partial or total obstruction of the cochlear scalae. Multichannel cochlear implantation may be difficult in a cochlea with an obstructed scala tympani. The purpose of this study is to determine the safety and efficacy of scala tympani electrode insertion. Retrospective chart review. Academic medical center. Eight children and adults with profound sensorineural hearing loss who underwent cochlear implantation with known scala vestibuli electrode array insertion were subjects for this study. Eight study subjects underwent implantation: five with the Nucleus 24RCS (Contour) device and three with the Nucleus 24M device. Imaging findings, operative findings, and age-appropriate speech perception testing. All patients had full electrode insertion. Various obstructive patterns on computed tomography and magnetic resonance imaging were found, and there was a range of speech perception results. All but one patient improved based on age-appropriate monosyllabic word and sentence tests. Scala vestibuli multielectrode insertion is a viable alternative when scala tympani insertion is not possible because of abnormal anatomy or anatomical changes secondary to disease or previous implantation. We will also present an algorithm of options for decision making for implantation when encountering cochlear obstruction and difficult electrode insertion.

  20. Effectiveness of finger-equipped electrode (FEE)-triggered electrical stimulation improving chronic stroke patients with severe hemiplegia. (United States)

    Inobe, Jun-ichi; Kato, Takashi


    Electric stimulation (ES) has been recognized as an effective method to improve motor function to paralysed patients with stroke. It is important for ES to synchronize with voluntary movement. To enhance this co-ordination, the finger-equipped electrode (FEE) was developed. The purpose of this study was to evaluate FEE in improving motor function of upper extremities (UEs) in patients with chronic stroke. The study participants included four patients with chronic stroke who received FEE electronic stimulation (FEE-ES) plus passive and active training and three control patients who underwent training without FEE-ES. The patients were treated five times weekly for 4 weeks. UE motor function was evaluated before and after treatment using Fugl-Meyer Assessment (FMA) and Brunnstrom recovery staging. The mean age of patients in each group was 60-years and there was a mean of 49 months since the onset of symptoms. All patients had severe UE weakness. The patients receiving FEE-ES had greater improvement in UE function than control patients (total, proximal and distal FMA, p FEE-ES may be an effective treatment for patients with chronic stroke.

  1. [Positions of the implanted stimulating electrodes for artificial facial nerve for inducing contraction of the orbicularis oris muscle in rabbit with peripheral facial paralysis]. (United States)

    Xu, D Y; Zhao, N J; Zhao, Y X; Luo, D; Sun, Y J; Li, K Y


    Objective: To explore the optimal positions of the implanted stimulating eletrodes for artificial facial nerve (AFN) for inducing contraction of the orbicularis oris muscle (OOM) in rabbit with peripheral facial paralysis. Methods: According to the four microelectrodes of the AFN stimulating side, four modes of the implanted positions were divided. In line with different modes, the electrodes were implanted into the affected OOM of the rabbits with unilateral peripheral facial paralysis. AFN output electric stimulation to induce contraction of the affected OOM with uniform stimulating frequency and pulse length in vitro. Then compared the stimulus threshold amplitude and the peak amplitude separately among different modes by SAS 9.3 version statistical software. Results: The differences of the stimulus threshold amplitude and the peak amplitude had no statistically significant separately between the first mode and the second mode ( P >0.05), but there were statistically significant differences between the third mode and the fourth mode ( P <0.05). Both kinds of the amplitudes were approximated between the first mode and the second mode respectively, and higher than those in the third mode or the fourth mode. Furthermore, both kinds of the amplitudes in the fourth mode were higher than those in the third mode. Conclusions: The microelectrodes of the AFN stimulating lateral are implanted into the upper lip with a public microelectrode and an output microelectrode, into the lower lip with an output microelectrode, and into the way, which is located to the angle 40° to 45° about the line joining between the midpoint of the ipsilateral auricle root and the corner of the mouth with an output microelectrode. This is the third positional mode which requires lowest effective stimulus current intensity. Thus the mode is suitable as the optimal placement programme.

  2. A novel electrode surface fabricated by directly attaching gold nanoparticles onto NH2+ ions implanted-indium tin oxide substrate

    International Nuclear Information System (INIS)

    Liu Chenyao; Jiao Jiao; Chen Qunxia; Xia Ji; Li Shuoqi; Hu Jingbo; Li Qilong


    A new type of gold nanoparticle attached to a NH 2 + ion implanted-indium tin oxide surface was fabricated without using peculiar binder molecules, such as 3-(aminopropyl)-trimethoxysilane. A NH 2 /indium tin oxide film was obtained by implantation at an energy of 80 keV with a fluence of 5 x 10 15 ions/cm 2 . The gold nanoparticle-modified film was characterized by X-ray photoelectron spectroscopy, scanning electron microscopy and electrochemical techniques and compared with a modified bare indium tin oxide surface and 3-(aminopropyl)-trimethoxysilane linked surface, which exhibited a relatively low electron transfer resistance and high electrocatalytic activity. The results demonstrate that NH 2 + ion implanted-indium tin oxide films can provide an important route to immobilize nanoparticles, which is attractive in developing new biomaterials.

  3. A systematic review of studies on anatomical position of electrode contacts used for chronic subthalamic stimulation in Parkinson's disease. (United States)

    Caire, François; Ranoux, Danièle; Guehl, Dominique; Burbaud, Pierre; Cuny, Emmanuel


    The dorso-lateral part of the subthalamic nucleus (STN) is considered as the usual target of deep brain stimulation for Parkinson's disease. Nevertheless, the exact anatomical location of the electrode contacts used for chronic stimulation is still a matter of debate. The aim of this study was to perform a systematic review of the existing literature on this issue. We searched for studies on the anatomical location of active contacts published until December 2012. We identified 13 studies, published between 2002 and 2010, including 260 patients and 466 electrodes. One hundred and sixty-four active contacts (35 %) were identified within the STN, 117 (25 %) at the interface between STN and the surrounding structures, 184 (40 %) above the STN and one within the substantia nigra. We observed great discrepancies between the different series. The contra-lateral improvement was between 37 and 78.5 % for contacts located within the STN, between 48.6 and 73 % outside the STN, between 65.3 and 66 % at the interface. The authors report no clear correlation between anatomical location and stimulation parameters. Post-operative analysis of the anatomical location of active contacts is difficult, and all the methods used are debatable. The relationship between the anatomical location of active contacts and the clinical effectiveness of stimulation is unclear. It would be necessary to take into account the volume of the electrode contacts and the diffusion of the stimulation. We can nevertheless assume that the interface between dorso-lateral STN, zona incerta and Forel's fields could be directly involved in the effects of stimulation.

  4. Oral Effects and Early Implant Survival Results After Imatinib Discontinuation Therapy for Chronic Myelogenous Leukemia: A Case Report. (United States)

    Dixon, Douglas R; Yassin, Alaa


    Little is known regarding the success, failure, or complication rates of advanced implant procedures in patients after discontinuation therapy of long-term medications for the treatment of chronic myelogenous leukemia (CML). This case report presents initial results of a case involving implant placement in the mandible and maxilla as well as reduction of palatal oral pigmentation in a patient discontinuing long-term tyrosine kinase inhibitor (TKI) therapy for CML. A 57-year-old male was referred to the Department of Periodontics, University of Washington, Seattle, Washington, for an assessment of edentulous areas (tooth sites #3 and #14) and failing tooth #19. Previous medical treatment included oral administration (>10 years) of TKI for the treatment of CML. Systemic complications arising from long-term TKI therapy were treated with discontinuation of this medication. Concurrently, after multispecialty dental and medical consultation, extraction of tooth #19 with immediate implant placement and bilateral sinus augmentation with simultaneous implant placement were successfully performed during three separate surgical appointments. Additionally, marked reduction of oral palatal pigmentation was observed during the surgical and restorative phases after TKI discontinuation. Patients with a history of long-term TKIs for CML are at risk for developing complications that result in discontinuation of therapy. Long-term benefits of therapy may allow these patients to enjoy remission with an extended and improved quality of life. Patients undergoing discontinuation therapy may seek dental care. Therefore, dental providers need to understand these systemic interactions and, with multispecialty consultation, may help effectively treat these individuals.

  5. Terapia de resincronización con implante de electrodo ventricular izquierdo por vía epicárdica Resynchronization therapy with left ventricular electrode implant via epicardium

    Directory of Open Access Journals (Sweden)

    Francisco Gómez


    casos. No se presentaron complicaciones durante el procedimiento ni estimulación diafragmática o desalojo del eléctrodo epicárdico después de seis meses de seguimiento. Conclusión: se demostró que la implantación de marcapasos tricameral para resincronización cardiaca con la utilización de electrodo epicárdico ventricular izquierdo, es una terapia segura, con la cual se obtienen parámetros adecuados de implantación y normofunción del dispositivo.Introduction: heart resynchronization therapy is safe and effective for improving functional class and quality of life and to diminish mortality in patients with heart failure in functional state III and IV with optimal medical therapy. Methods: we report the procedure realized to a group of patients in the Cardiovascular and Transplant Unit at the University Hospital San Vicente de Paul and the Antioquia University between November 2004 and February 2006, to whom a tricameral pacemaker for cardiac resynchronization was implanted, inserting the left ventricular electrode via epicardium. Patients chosen for the insertion fulfilled the heart failure state C or D criteria, according to the NYHA III or IV classification, corroborated with functional test 120ms. and echocardiographic criteria of intra-ventricular, inter-ventricular or atrio-ventricular dyssynchronism. Results: 9 patients were included: 5 men and 4 women with mean age 57 years; 8 patients had left His bundle block. The implant procedure was realized in two times: the first one in the hemodynamics ward where an electrode in right atrium and right ventricle was put, and the second one in the operating room where an electrode in the left ventricle via epicardium through left anterior mini-thoracotomy was implanted. Total procedure time oscillated between 35 and 210 minutes with a mean of 105 minutes, and less than this in the last patients. Intra-operative measures show a mean stimulation threshold of 0.9 mV; QRST duration was less than 130 ms. after

  6. Moderate hypothermia technique for chronic implantation of a total artificial heart in calves. (United States)

    Karimov, Jamshid H; Grady, Patrick; Sinkewich, Martin; Sunagawa, Gengo; Dessoffy, Raymond; Byram, Nicole; Moazami, Nader; Fukamachi, Kiyotaka


    The benefit of whole-body hypothermia in preventing ischemic injury during cardiac surgical operations is well documented. However, application of hypothermia during in vivo total artificial heart implantation has not become widespread because of limited understanding of the proper techniques and restrictions implied by constitutional and physiological characteristics specific to each animal model. Similarly, the literature on hypothermic set-up in total artificial heart implantation has also been limited. Herein we present our experience using hypothermia in bovine models implanted with the Cleveland Clinic continuous-flow total artificial heart.

  7. Chronic transcranial focal stimulation from tripolar concentric ring electrodes does not disrupt memory formation in rats. (United States)

    Luby, Matthew D; Makeyev, Oleksandr; Besio, Walter G


    Non-invasive electrical brain stimulation has shown potential utility as a treatment for seizures in epilepsy patients. Transcranial focal stimulation (TFS) via tripolar concentric ring electrodes (TCREs) has been effective in reducing seizure severity in acute rodent models, but it has yet to be determined whether or not it will serve as a viable long-term treatment strategy. Prior experiments indicate that a single dose of TFS via TCRE does not impact short- or long-term memory formation. The present study investigated if five daily doses of TFS via a TCRE on the scalp affected the memory. The spontaneous object recognition (SOR) test was used to evaluate the memory. Sham and TFS-treated groups were evaluated and both showed comparable levels of preference for novel objects, indicating successful memory formation. More work on repeated dosage strategies is important for establishing the safety and efficacy of TFS as a putative treatment.

  8. A Metal Matrix CNTS Modified Electrode Fabricated Using Micromachining-Based Implantation Method for Improving Sensitivity and Stability

    Directory of Open Access Journals (Sweden)

    Yan Wang


    Full Text Available The metal matrix carbon nanotubes modified electrode (MCME has been fabricated by a novel process involving preparation of carbon nanotubes (CNTs/polyimide (PI composite film, wet, etching, sputtering, electroplating, and wet-etch releasing. Pretreated CNTs are dispersed in PI by mechanical ball milling and then CNTs solution is spin-coated on the substrate. The CNTs/PI composite film is etched away a layer of PI to expose tips of CNTs using buffering solution. These exposed tips of CNTs are covered by metal particles in sputtering process as metal seed layer, followed by metal supporting film formed by electroplating. The MCME is obtained after releasing PI film from the metal supporting film. The MCME shows well morphology of uniform distributional protruding tips of CNTs and increased electron transfer efficiency with strong bonding connection between CNTs and metal matrix, which greatly improves sensitivity and stability of the MCME. The oxidation peak of the MCME in cyclic voltammeter (CV test is 1.7 times more than that of CNTs suspension spin-coated metal electrode (SCME. The decline of peak current of the MCME after fifty cycles is only 1.8% much less than 67% of the SCME. Better sensitivity and stability may be helpful for CNTs modified electrodes wide application for trace test of many special materials.

  9. Rapid prototyping of flexible intrafascicular electrode arrays by picosecond laser structuring. (United States)

    Mueller, Matthias; de la Oliva, Natalia; Del Valle, Jaume; Delgado-Martínez, Ignacio; Navarro, Xavier; Stieglitz, Thomas


    Interfacing the peripheral nervous system can be performed with a large variety of electrode arrays. However, stimulating and recording a nerve while having a reasonable amount of channels limits the number of available systems. Translational research towards human clinical trial requires device safety and biocompatibility but would benefit from design flexibility in the development process to individualize probes. We selected established medical grade implant materials like precious metals and Parylene C to develop a rapid prototyping process for novel intrafascicular electrode arrays using a picosecond laser structuring. A design for a rodent animal model was developed in conjunction with an intrafascicular implantation strategy. Electrode characterization and optimization was performed first in saline solution in vitro before performance and biocompatibility were validated in sciatic nerves of rats in chronic implantation. The novel fabrication process proved to be suitable for prototyping and building intrafascicular electrode arrays. Electrochemical properties of the electrode sites were enhanced and tested for long-term stability. Chronic implantation in the sciatic nerve of rats showed good biocompatibility, selectivity and stable stimulation thresholds. Established medical grade materials can be used for intrafascicular nerve electrode arrays when laser structuring defines structure size in the micro-scale. Design flexibility reduces re-design cycle time and material certificates are beneficial support for safety studies on the way to clinical trials.

  10. Rapid prototyping of flexible intrafascicular electrode arrays by picosecond laser structuring (United States)

    Mueller, Matthias; de la Oliva, Natalia; del Valle, Jaume; Delgado-Martínez, Ignacio; Navarro, Xavier; Stieglitz, Thomas


    Objective. Interfacing the peripheral nervous system can be performed with a large variety of electrode arrays. However, stimulating and recording a nerve while having a reasonable amount of channels limits the number of available systems. Translational research towards human clinical trial requires device safety and biocompatibility but would benefit from design flexibility in the development process to individualize probes. Approach. We selected established medical grade implant materials like precious metals and Parylene C to develop a rapid prototyping process for novel intrafascicular electrode arrays using a picosecond laser structuring. A design for a rodent animal model was developed in conjunction with an intrafascicular implantation strategy. Electrode characterization and optimization was performed first in saline solution in vitro before performance and biocompatibility were validated in sciatic nerves of rats in chronic implantation. Main results. The novel fabrication process proved to be suitable for prototyping and building intrafascicular electrode arrays. Electrochemical properties of the electrode sites were enhanced and tested for long-term stability. Chronic implantation in the sciatic nerve of rats showed good biocompatibility, selectivity and stable stimulation thresholds. Significance. Established medical grade materials can be used for intrafascicular nerve electrode arrays when laser structuring defines structure size in the micro-scale. Design flexibility reduces re-design cycle time and material certificates are beneficial support for safety studies on the way to clinical trials.

  11. Virtual electrodes for high-density electrode arrays (United States)

    Cela, Carlos J.; Lazzi, Gianluca


    The present embodiments are directed to implantable electrode arrays having virtual electrodes. The virtual electrodes may improve the resolution of the implantable electrode array without the burden of corresponding complexity of electronic circuitry and wiring. In a particular embodiment, a virtual electrode may include one or more passive elements to help steer current to a specific location between the active electrodes. For example, a passive element may be a metalized layer on a substrate that is adjacent to, but not directly connected to an active electrode. In certain embodiments, an active electrode may be directly coupled to a power source via a conductive connection. Beneficially, the passive elements may help to increase the overall resolution of the implantable array by providing additional stimulation points without requiring additional wiring or driver circuitry for the passive elements.

  12. EMG-Torque Relation in Chronic Stroke: A Novel EMG Complexity Representation With a Linear Electrode Array. (United States)

    Zhang, Xu; Wang, Dongqing; Yu, Zaiyang; Chen, Xiang; Li, Sheng; Zhou, Ping


    This study examines the electromyogram (EMG)-torque relation for chronic stroke survivors using a novel EMG complexity representation. Ten stroke subjects performed a series of submaximal isometric elbow flexion tasks using their affected and contralateral arms, respectively, while a 20-channel linear electrode array was used to record surface EMG from the biceps brachii muscles. The sample entropy (SampEn) of surface EMG signals was calculated with both global and local tolerance schemes. A regression analysis was performed between SampEn of each channel's surface EMG and elbow flexion torque. It was found that a linear regression can be used to well describe the relation between surface EMG SampEn and the torque. Each channel's root mean square (RMS) amplitude of surface EMG signal in the different torque level was computed to determine the channel with the highest EMG amplitude. The slope of the regression (observed from the channel with the highest EMG amplitude) was smaller on the impaired side than on the nonimpaired side in 8 of the 10 subjects, regardless of the tolerance scheme (global or local) and the range of torques (full or matched range) used for comparison. The surface EMG signals from the channels above the estimated muscle innervation zones demonstrated significantly lower levels of complexity compared with other channels between innervation zones and muscle tendons. The study provides a novel point of view of the EMG-torque relation in the complexity domain, and reveals its alterations post stroke, which are associated with complex neural and muscular changes post stroke. The slope difference between channels with regard to innervation zones also confirms the relevance of electrode position in surface EMG analysis.

  13. The activL® Artificial Disc: a next-generation motion-preserving implant for chronic lumbar discogenic pain (United States)

    Yue, James J; Garcia, Rolando; Miller, Larry E


    Degeneration of the lumbar intervertebral discs is a leading cause of chronic low back pain in adults. Treatment options for patients with chronic lumbar discogenic pain unresponsive to conservative management include total disc replacement (TDR) or lumbar fusion. Until recently, only two lumbar TDRs had been approved by the US Food and Drug Administration − the Charité Artificial Disc in 2004 and the ProDisc-L Total Disc Replacement in 2006. In June 2015, a next-generation lumbar TDR received Food and Drug Administration approval − the activL® Artificial Disc (Aesculap Implant Systems). Compared to previous-generation lumbar TDRs, the activL® Artificial Disc incorporates specific design enhancements that result in a more precise anatomical match and allow a range of motion that better mimics the healthy spine. The results of mechanical and clinical studies demonstrate that the activL® Artificial Disc results in improved mechanical and clinical outcomes versus earlier-generation artificial discs and compares favorably to lumbar fusion. The purpose of this report is to describe the activL® Artificial Disc including implant characteristics, intended use, surgical technique, postoperative care, mechanical testing, and clinical experience to date. PMID:27274317

  14. The activL® Artificial Disc: a next-generation motion-preserving implant for chronic lumbar discogenic pain

    Directory of Open Access Journals (Sweden)

    Yue JJ


    Full Text Available James J Yue,1 Rolando Garcia Jr,2 Larry E Miller3 1Department of Orthopaedic Surgery, Yale School of Medicine, New Haven, CT, 2Orthopedic Care Center, Miami, FL, 3Miller Scientific Consulting, Inc., Asheville, NC, USA Abstract: Degeneration of the lumbar intervertebral discs is a leading cause of chronic low back pain in adults. Treatment options for patients with chronic lumbar discogenic pain unresponsive to conservative management include total disc replacement (TDR or lumbar fusion. Until recently, only two lumbar TDRs had been approved by the US Food and Drug Administration - the Charité Artificial Disc in 2004 and the ProDisc-L Total Disc Replacement in 2006. In June 2015, a next-generation lumbar TDR received Food and Drug Administration approval - the activL® Artificial Disc (Aesculap Implant Systems. Compared to previous-generation lumbar TDRs, the activL® Artificial Disc incorporates specific design enhancements that result in a more precise anatomical match and allow a range of motion that better mimics the healthy spine. The results of mechanical and clinical studies demonstrate that the activL® Artificial Disc results in improved mechanical and clinical outcomes versus earlier-generation artificial discs and compares favorably to lumbar fusion. The purpose of this report is to describe the activL® Artificial Disc including implant characteristics, intended use, surgical technique, postoperative care, mechanical testing, and clinical experience to date. Keywords: activL® Artificial Disc, artificial disc, degenerative disc disease, discogenic, implant, lumbar, motion preservation, pain

  15. Pathomorphology of the consequences of chronic irradiation from γ-neutron source implanted in abdominal cavity

    International Nuclear Information System (INIS)

    Ivanov, A.E.; Vasilenko, V.T.; Kiselev, Yu.M.; Mosidze, T.G.; Krylova, A.I.; Suskova, V.S.


    Comparison of the results of morphological investigations of the internal organs of dogs and sheep with γ-neutron radiation sources, implanted in the abdominal cavity, has shown that the correlation between a degree of severity and type of morphological changes in this case is similar to that of identical irradiation from an external source

  16. Rodent model for assessing the long term safety and performance of peripheral nerve recording electrodes (United States)

    Vasudevan, Srikanth; Patel, Kunal; Welle, Cristin


    Objective. In the US alone, there are approximately 185 000 cases of limb amputation annually, which can reduce the quality of life for those individuals. Current prosthesis technology could be improved by access to signals from the nervous system for intuitive prosthesis control. After amputation, residual peripheral nerves continue to convey motor signals and electrical stimulation of these nerves can elicit sensory percepts. However, current technology for extracting information directly from peripheral nerves has limited chronic reliability, and novel approaches must be vetted to ensure safe long-term use. The present study aims to optimize methods to establish a test platform using rodent model to assess the long term safety and performance of electrode interfaces implanted in the peripheral nerves. Approach. Floating Microelectrode Arrays (FMA, Microprobes for Life Sciences) were implanted into the rodent sciatic nerve. Weekly in vivo recordings and impedance measurements were performed in animals to assess performance and physical integrity of electrodes. Motor (walking track analysis) and sensory (Von Frey) function tests were used to assess change in nerve function due to the implant. Following the terminal recording session, the nerve was explanted and the health of axons, myelin and surrounding tissues were assessed using immunohistochemistry (IHC). The explanted electrodes were visualized under high magnification using scanning electrode microscopy (SEM) to observe any physical damage. Main results. Recordings of axonal action potentials demonstrated notable session-to-session variability. Impedance of the electrodes increased upon implantation and displayed relative stability until electrode failure. Initial deficits in motor function recovered by 2 weeks, while sensory deficits persisted through 6 weeks of assessment. The primary cause of failure was identified as lead wire breakage in all of animals. IHC indicated myelinated and unmyelinated axons

  17. In Vivo Electrochemical Analysis of a PEDOT/MWCNT Neural Electrode Coating

    Directory of Open Access Journals (Sweden)

    Nicolas A. Alba


    Full Text Available Neural electrodes hold tremendous potential for improving understanding of brain function and restoring lost neurological functions. Multi-walled carbon nanotube (MWCNT and dexamethasone (Dex-doped poly(3,4-ethylenedioxythiophene (PEDOT coatings have shown promise to improve chronic neural electrode performance. Here, we employ electrochemical techniques to characterize the coating in vivo. Coated and uncoated electrode arrays were implanted into rat visual cortex and subjected to daily cyclic voltammetry (CV and electrochemical impedance spectroscopy (EIS for 11 days. Coated electrodes experienced a significant decrease in 1 kHz impedance within the first two days of implantation followed by an increase between days 4 and 7. Equivalent circuit analysis showed that the impedance increase is the result of surface capacitance reduction, likely due to protein and cellular processes encapsulating the porous coating. Coating’s charge storage capacity remained consistently higher than uncoated electrodes, demonstrating its in vivo electrochemical stability. To decouple the PEDOT/MWCNT material property changes from the tissue response, in vitro characterization was conducted by soaking the coated electrodes in PBS for 11 days. Some coated electrodes exhibited steady impedance while others exhibiting large increases associated with large decreases in charge storage capacity suggesting delamination in PBS. This was not observed in vivo, as scanning electron microscopy of explants verified the integrity of the coating with no sign of delamination or cracking. Despite the impedance increase, coated electrodes successfully recorded neural activity throughout the implantation period.

  18. Bipolar leads for use with permanently implantable cardiac pacing systems: a review of limitations of traditional and coaxial configurations and the development and testing of new conductor, insulation, and electrode designs. (United States)

    Tyers, G F; Mills, P; Clark, J; Cheesman, M; Yeung-Lai-Wah, J A; Brownlee, R R


    (connector, conductor, or insulation) or functional (exit block, micro or macro displacement, or over- or undersensing) problems. Implant pacing thresholds (PT) at 0.45 ms were AL, 0.6 +/- 0.2 (74) and VL 0.4 +/- 0.2 V; impedance (Z) at 3.5 V output AL 373 +/- 77 (82) and VL 497 +/- 117 omega. Sensing thresholds (ST) were AL 3.1 +/- 1.6 (74) and VL 10.3 +/- 4.9 mV. Ventricular lead data were obtained for all patients (N = 110). Atrial lead data are incomplete, because some patients were in atrial fibrillation during implantation. After 12 months, AL PT at 1.5 V output was 0.18 +/- 0.10 ms (21) and at 2.5 V was 0.10 +/- 0.053 (22). Associated AL ST was 3.3 +/- 0.9 mV (21) AL Z 500 +/- 65 omega (25). After 18 months VL PT at 1.5 V was 0.15 +/- 0.10 ms (9) and at 2.5 V output was 0.09 +/- 0.04 ms (9). Associated VL ST was > 7.5 +/- 2.4 mV (9) and VL Z 497 +/- 105 omega (9). Follow-up time discrepancy is due to the VL being available 6 months earlier than the AL. There were no 30-day deaths and only one late death at 10 months in a patient with chronic atrial fibrillation. Death was unrelated to pacer or lead function. At 1 year, 68% AL (15/22) and 62% (24/39) captured at 0.5 V and design studied combined with coated iridium oxide electrodes provide for a negligible incidence of mechanical or functional failure with clinical follow-up now approaching 3 years. Excellent acute and chronic sensing and pacing thresholds have been documented. Late thresholds have continued to improve gradually. Long-term clinical pacing at design produces very flexible < 5 French bipolar redundantly insulated lead bodies allowing both AL and VL to simultaneously pass through a single 10 French introducer sheath. (ABSTRACT TRUNCATED)

  19. PET Mapping for Brain-Computer Interface Stimulation of the Ventroposterior Medial Nucleus of the Thalamus in Rats with Implanted Electrodes. (United States)

    Zhu, Yunqi; Xu, Kedi; Xu, Caiyun; Zhang, Jiacheng; Ji, Jianfeng; Zheng, Xiaoxiang; Zhang, Hong; Tian, Mei


    Brain-computer interface (BCI) technology has great potential for improving the quality of life for neurologic patients. This study aimed to use PET mapping for BCI-based stimulation in a rat model with electrodes implanted in the ventroposterior medial (VPM) nucleus of the thalamus. PET imaging studies were conducted before and after stimulation of the right VPM. Stimulation induced significant orienting performance. (18)F-FDG uptake increased significantly in the paraventricular thalamic nucleus, septohippocampal nucleus, olfactory bulb, left crus II of the ansiform lobule of the cerebellum, and bilaterally in the lateral septum, amygdala, piriform cortex, endopiriform nucleus, and insular cortex, but it decreased in the right secondary visual cortex, right simple lobule of the cerebellum, and bilaterally in the somatosensory cortex. This study demonstrated that PET mapping after VPM stimulation can identify specific brain regions associated with orienting performance. PET molecular imaging may be an important approach for BCI-based research and its clinical applications. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  20. Reliability of spring interconnects for high channel-count polyimide electrode arrays (United States)

    Khan, Sharif; Ordonez, Juan Sebastian; Stieglitz, Thomas


    Active neural implants with a high channel-count need robust and reliable operational assembly for the targeted environment in order to be classified as viable fully implantable systems. The discrete functionality of the electrode array and the implant electronics is vital for intact assembly. A critical interface exists at the interconnection sites between the electrode array and the implant electronics, especially in hybrid assemblies (e.g. retinal implants) where electrodes and electronics are not on the same substrate. Since the interconnects in such assemblies cannot be hermetically sealed, reliable protection against the physiological environment is essential for delivering high insulation resistance and low defusibility of salt ions, which are limited in complexity by current assembly techniques. This work reports on a combination of spring-type interconnects on a polyimide array with silicone rubber gasket insulation for chronically active implantable systems. The spring design of the interconnects on the backend of the electrode array compensates for the uniform thickness of the sandwiched gasket during bonding in assembly and relieves the propagation of extrinsic stresses to the bulk polyimide substrate. The contact resistance of the microflex-bonded spring interconnects with the underlying metallized ceramic test vehicles and insulation through the gasket between adjacent contacts was investigated against the MIL883 standard. The contact and insulation resistances remained stable in the exhausting environmental conditions.

  1. Investigation of the effect of cochlear implant electrode length on speech comprehension in quiet and noise compared with the results with users of electro-acoustic-stimulation, a retrospective analysis. (United States)

    Büchner, Andreas; Illg, Angelika; Majdani, Omid; Lenarz, Thomas


    This investigation evaluated the effect of cochlear implant (CI) electrode length on speech comprehension in quiet and noise and compare the results with those of EAS users. 91 adults with some degree of residual hearing were implanted with a FLEX20, FLEX24, or FLEX28 electrode. Some subjects were postoperative electric-acoustic-stimulation (EAS) users; the other subjects were in the groups of electric stimulation-only (ES-only). Speech perception was tested in quiet and noise at 3 and 6 months of ES or EAS use. Speech comprehension results were analyzed and correlated to electrode length. While the FLEX20 ES and FLEX24 ES groups were still in their learning phase between the 3 to 6 months interval, the FLEX28 ES group was already reaching a performance plateau at the three months appointment yielding remarkably high test scores. EAS subjects using FLEX20 or FLEX24 electrodes outscored ES-only subjects with the same short electrodes on all 3 tests at each interval, reaching significance with FLEX20 ES and FLEX24 ES subjects on all 3 tests at the 3-months interval and on 2 tests at the 6- months interval. Amongst ES-only subjects at the 3- months interval, FLEX28 ES subjects significantly outscored FLEX20 ES subjects on all 3 tests and the FLEX24 ES subjects on 2 tests. At the-6 months interval, FLEX28 ES subjects still exceeded the other ES-only subjects although the difference did not reach significance. Among ES-only users, the FLEX28 ES users had the best speech comprehension scores, at the 3- months appointment and tendentially at the 6 months appointment. EAS users showed significantly better speech comprehension results compared to ES-only users with the same short electrodes.

  2. [Cochlear implantation through the middle fossa approach]. (United States)

    Szyfter, W; Colletti, V; Pruszewicz, A; Kopeć, T; Szymiec, E; Kawczyński, M; Karlik, M


    The inner part of cochlear implant is inserted into inner ear during surgery through mastoid and middle ear. It is a classical method, used in the majority cochlear centers in the world. This is not a suitable method in case of chronic otitis media and middle ear malformation. In these cases Colletti proposed the middle fossa approach and cochlear implant insertion omitting middle ear structures. In patient with bilateral chronic otitis media underwent a few ears operations without obtaining dry postoperative cavity. Cochlear implantation through the middle fossa approach was performed in this patient. The bone fenster was cut, temporal lobe was bent and petrosus pyramid upper surface was exposed. When the superficial petrosal greater nerve, facial nerve and arcuate eminence were localised, the cochlear was open in the basal turn and electrode were inserted. The patient achieves good results in the postoperative speech rehabilitation. It confirmed Colletti tesis that deeper electrode insertion in the cochlear implantation through the middle fossa approach enable use of low and middle frequencies, which are very important in speech understanding.

  3. [Fluocinolone acetonide (ILUVIEN®) micro-implant for chronic diabetic macular edema]. (United States)

    Soubrane, G; Behar-Cohen, F


    Diabetic macular edema (DME) is a frequent complication of diabetic retinopathy and may cause severe visual loss. In this article, we examine the pathophysiology of DME and review various treatment options, such as laser photocoagulation, anti-vascular endothelial growth factor (VEGF) receptor antibodies, and steroids including ILUVIEN(®), which is a new sustained-release, non biodegradable, injectable, intravitreal micro-implant containing fluocinolone acetonide. The results of the FAME (Fluocinolone Acetonide in Diabetic Macular Edema) studies, conducted to evaluate the efficacy and safety of ILUVIEN(®) in DME, are discussed. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  4. An implantable two axis micromanipulator made with a 3D printer for recording neural activity in free-swimming fish. (United States)

    Rogers, Loranzie S; Van Wert, Jacey C; Mensinger, Allen F


    Chronically implanted electrodes allow monitoring neural activity from free moving animals. While a wide variety of implanted headstages, microdrives and electrodes exist for terrestrial animals, few have been developed for use with aquatic animals. A two axis micromanipulator was fabricated with a Formlabs 3D printer for implanting electrodes into free-swimming oyster toadfish (Opsanus tau). The five piece manipulator consisted of a base, body, electrode holder, manual screw drive and locking nut. The manipulator measured approximately 25×20×30mm (l×w×h) and weighed 5.28g after hand assembly. Microwire electrodes were inserted successfully with the manipulator to record high fidelity signals from the anterior lateral line nerve of the toadfish. The micromanipulator allowed the chronically implanted electrodes to be repositioned numerous times to record from multiple sites and extended successful recording time in the toadfish by several days. Three dimensional printing allowed an inexpensive (<$US 5 material), two axis micromanipulator to be printed relatively rapidly (<2h) to successfully record from multiple sites in the anterior lateral line nerve of free-swimming toadfish. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Continuous ambulatory right heart pressure measurements with an implantable hemodynamic monitor: a multicenter, 12-month follow-up study of patients with chronic heart failure. (United States)

    Magalski, Anthony; Adamson, Philip; Gadler, Frederick; Böehm, Michael; Steinhaus, David; Reynolds, Dwight; Vlach, Kathryn; Linde, Cecilia; Cremers, Bodo; Sparks, Brandon; Bennett, Tom


    We describe the performance of an implantable hemodynamic monitor (IHM) that allows continuous recording of heart rate, patient activity levels, and right ventricular systolic, right ventricular diastolic, and estimated pulmonary artery diastolic pressures. Pressure parameters derived from the implantable monitor were correlated to measurements made with a balloon-tipped catheter to establish accuracy and reproducibility over time in patients with chronic heart failure (CHF). IHM devices were implanted in 32 patients with CHF (left ventricular ejection fraction, 29% +/- 11%; range, 14%-62%) and were tested with right heart catheterization at implantation and 3, 6, and 12 months later. Hemodynamic variables were digitally recorded simultaneously from the IHM and catheter. Values were recorded during supine rest, peak response of Valsalva maneuver, sitting, peak of a 2-stage (25-50 W) bicycle exercise test, and final rest period. The median of 21 paired beat-to-beat cardiac cycles was analyzed for each intervention. A total of 217 paired data values from all maneuvers were analyzed for 32 patients at implantation and 129 paired data values for 20 patients at 1 year. The IHM and catheter values were not different at baseline or at 1 year (P >.05). Combining all interventions, correlation coefficients were 0.96 and 0.94 for right ventricular systolic pressure, 0.96 and 0.83 for right ventricular diastolic pressure, and 0.87 and 0.87 for estimated pulmonary artery diastolic pressure at implantation and 1 year, respectively. The IHM and a standard reference pressure system recorded comparable right heart pressure values in patients with CHF. This implantable pressure transducer is accurate over time and provides a means to precisely monitor the hemodynamic condition of patients with CHF in a continuous fashion.


    Directory of Open Access Journals (Sweden)

    Ulises A Aregueta-Robles


    Full Text Available Traditional neuronal interfaces utilize metallic electrodes which in recent years have reached a plateau in terms of the ability to provide safe stimulation at high resolution or rather with high densities of microelectrodes with improved spatial selectivity. To achieve higher resolution it has become clear that reducing the size of electrodes is required to enable higher electrode counts from the implant device. The limitations of interfacing electrodes including low charge injection limits, mechanical mismatch and foreign body response can be addressed through the use of organic electrode coatings which typically provide a softer, more roughened surface to enable both improved charge transfer and lower mechanical mismatch with neural tissue. Coating electrodes with conductive polymers or carbon nanotubes offers a substantial increase in charge transfer area compared to conventional platinum electrodes. These organic conductors provide safe electrical stimulation of tissue while avoiding undesirable chemical reactions and cell damage. However, the mechanical properties of conductive polymers are not ideal, as they are quite brittle. Hydrogel polymers present a versatile coating option for electrodes as they can be chemically modified to provide a soft and conductive scaffold. However, the in vivo chronic inflammatory response of these conductive hydrogels remains unknown. A more recent approach proposes tissue engineering the electrode interface through the use of encapsulated neurons within hydrogel coatings. This approach may provide a method for activating tissue at the cellular scale, however several technological challenges must be addressed to demonstrate feasibility of this innovative idea. The review focuses on the various organic coatings which have been investigated to improve neural interface electrodes.

  7. Descending volleys generated by efficacious epidural motor cortex stimulation in patients with chronic neuropathic pain

    NARCIS (Netherlands)

    Lefaucheur, Jean-Pascal; Holsheimer, J.; Goujon, Colette; Keravel, Yves; Nguyen, Jean-Paul

    Epidural motor cortex stimulation (EMCS) is a therapeutic option for chronic, drug-resistant neuropathic pain, but its mechanisms of action remain poorly understood. In two patients with refractory hand pain successfully treated by EMCS, the presence of implanted epidural cervical electrodes for

  8. Chronic electrical stimulation with a suprachoroidal retinal prosthesis: a preclinical safety and efficacy study.

    Directory of Open Access Journals (Sweden)

    David A X Nayagam

    Full Text Available To assess the safety and efficacy of chronic electrical stimulation of the retina with a suprachoroidal visual prosthesis.Seven normally-sighted feline subjects were implanted for 96-143 days with a suprachoroidal electrode array and six were chronically stimulated for 70-105 days at levels that activated the visual cortex. Charge balanced, biphasic, current pulses were delivered to platinum electrodes in a monopolar stimulation mode. Retinal integrity/function and the mechanical stability of the implant were assessed monthly using electroretinography (ERG, optical coherence tomography (OCT and fundus photography. Electrode impedances were measured weekly and electrically-evoked visual cortex potentials (eEVCPs were measured monthly to verify that chronic stimuli were suprathreshold. At the end of the chronic stimulation period, thresholds were confirmed with multi-unit recordings from the visual cortex. Randomized, blinded histological assessments were performed by two pathologists to compare the stimulated and non-stimulated retina and adjacent tissue.All subjects tolerated the surgical and stimulation procedure with no evidence of discomfort or unexpected adverse outcomes. After an initial post-operative settling period, electrode arrays were mechanically stable. Mean electrode impedances were stable between 11-15 kΩ during the implantation period. Visually-evoked ERGs & OCT were normal, and mean eEVCP thresholds did not substantially differ over time. In 81 of 84 electrode-adjacent tissue samples examined, there were no discernible histopathological differences between stimulated and unstimulated tissue. In the remaining three tissue samples there were minor focal fibroblastic and acute inflammatory responses.Chronic suprathreshold electrical stimulation of the retina using a suprachoroidal electrode array evoked a minimal tissue response and no adverse clinical or histological findings. Moreover, thresholds and electrode impedance remained

  9. Cochlear implantation in a bilateral Mondini dysplasia. (United States)

    Turrini, M; Orzan, E; Gabana, M; Genovese, E; Arslan, E; Fisch, U


    We report the speech perception progress and programming procedures of a case of congenital profound deafness and bilateral Mondini dysplasia implanted with a Nucleus 20 + 2 cochlear implant at the age of six. Unclear relations between electrodes array and cochlear partition made implant programming difficult and non-standard procedures were set. Cochlear implantation may give excellent rehabilitative results also in cochleae with malformation.

  10. COMMUNICATION: Toward a self-deploying shape memory polymer neuronal electrode (United States)

    Sharp, Andrew A.; Panchawagh, Hrishikesh V.; Ortega, Alicia; Artale, Ryan; Richardson-Burns, Sarah; Finch, Dudley S.; Gall, Ken; Mahajan, Roop L.; Restrepo, Diego


    The widespread application of neuronal probes for chronic recording of brain activity and functional stimulation has been slow to develop partially due to long-term biocompatibility problems with existing metallic and ceramic probes and the tissue damage caused during probe insertion. Stiff probes are easily inserted into soft brain tissue but cause astrocytic scars that become insulating sheaths between electrodes and neurons. In this communication, we explore the feasibility of a new approach to the composition and implantation of chronic electrode arrays. We demonstrate that softer polymer-based probes can be inserted into the olfactory bulb of a mouse and that slow insertion of the probes reduces astrocytic scarring. We further present the development of a micromachined shape memory polymer probe, which provides a vehicle to self-deploy an electrode at suitably slow rates and which can provide sufficient force to penetrate the brain. The deployment rate and composition of shape memory polymer probes can be tailored by polymer chemistry and actuator design. We conclude that it is feasible to fabricate shape memory polymer-based electrodes that would slowly self-implant compliant conductors into the brain, and both decrease initial trauma resulting from implantation and enhance long-term biocompatibility for long-term neuronal measurement and stimulation.

  11. Stimulation and recording electrodes for neural prostheses

    CERN Document Server

    Pour Aryan, Naser; Rothermel, Albrecht


    This book provides readers with basic principles of the electrochemistry of the electrodes used in modern, implantable neural prostheses. The authors discuss the boundaries and conditions in which the electrodes continue to function properly for long time spans, which are required when designing neural stimulator devices for long-term in vivo applications. Two kinds of electrode materials, titanium nitride and iridium are discussed extensively, both qualitatively and quantitatively. The influence of the counter electrode on the safety margins and electrode lifetime in a two electrode system is explained. Electrode modeling is handled in a final chapter.

  12. Cochlear Implant

    Directory of Open Access Journals (Sweden)

    Mehrnaz Karimi


    Full Text Available People with profound hearing loss are not able to use some kinds of conventional amplifiers due to the nature of their loss . In these people, hearing sense is stimulated only when the auditory nerve is activated via electrical stimulation. This stimulation is possible through cochlear implant. In fact, for the deaf people who have good mental health and can not use surgical and medical treatment and also can not benefit from air and bone conduction hearing aids, this device is used if they have normal central auditory system. The basic parts of the device included: Microphone, speech processor, transmitter, stimulator and receiver, and electrode array.

  13. A novel electrode surface fabricated by directly attaching gold nanoparticles onto NH{sub 2}{sup +} ions implanted-indium tin oxide substrate

    Energy Technology Data Exchange (ETDEWEB)

    Liu Chenyao; Jiao Jiao; Chen Qunxia [College of Chemistry, Beijing Normal University, Beijing 100875 (China); Xia Ji [Key Laboratory of Beam Technology and Material Modification of Ministry of Education, Beijing Normal University, Beijing 100875 (China); Li Shuoqi [College of Chemistry, Beijing Normal University, Beijing 100875 (China); Hu Jingbo, E-mail: [College of Chemistry, Beijing Normal University, Beijing 100875 (China); Li Qilong [College of Chemistry, Beijing Normal University, Beijing 100875 (China)


    A new type of gold nanoparticle attached to a NH{sub 2}{sup +} ion implanted-indium tin oxide surface was fabricated without using peculiar binder molecules, such as 3-(aminopropyl)-trimethoxysilane. A NH{sub 2}/indium tin oxide film was obtained by implantation at an energy of 80 keV with a fluence of 5 x 10{sup 15} ions/cm{sup 2}. The gold nanoparticle-modified film was characterized by X-ray photoelectron spectroscopy, scanning electron microscopy and electrochemical techniques and compared with a modified bare indium tin oxide surface and 3-(aminopropyl)-trimethoxysilane linked surface, which exhibited a relatively low electron transfer resistance and high electrocatalytic activity. The results demonstrate that NH{sub 2}{sup +} ion implanted-indium tin oxide films can provide an important route to immobilize nanoparticles, which is attractive in developing new biomaterials.

  14. A Multimodal, SU-8 - Platinum - Polyimide Microelectrode Array for Chronic In Vivo Neurophysiology.

    Directory of Open Access Journals (Sweden)

    Gergely Márton

    Full Text Available Utilization of polymers as insulator and bulk materials of microelectrode arrays (MEAs makes the realization of flexible, biocompatible sensors possible, which are suitable for various neurophysiological experiments such as in vivo detection of local field potential changes on the surface of the neocortex or unit activities within the brain tissue. In this paper the microfabrication of a novel, all-flexible, polymer-based MEA is presented. The device consists of a three dimensional sensor configuration with an implantable depth electrode array and brain surface electrodes, allowing the recording of electrocorticographic (ECoG signals with laminar ones, simultaneously. In vivo recordings were performed in anesthetized rat brain to test the functionality of the device under both acute and chronic conditions. The ECoG electrodes recorded slow-wave thalamocortical oscillations, while the implanted component provided high quality depth recordings. The implants remained viable for detecting action potentials of individual neurons for at least 15 weeks.

  15. Handcrafted Electrocorticography Electrodes for a Rodent Behavioral Model

    Directory of Open Access Journals (Sweden)

    Nishat Tasnim


    Full Text Available Electrocorticography (ECoG is a minimally invasive neural recording method that has been extensively used for neuroscience applications. It has proven to have the potential to ease the establishment of proper links for neural interfaces that can offer disabled patients an alternative solution for their lost sensory and motor functions through the use of brain-computer interface (BCI technology. Although many neural recording methods exist, ECoG provides a combination of stability, high spatial and temporal resolution with chronic and mobile capabilities that could make BCI systems accessible for daily applications. However, many ECoG electrodes require MEMS fabricating techniques which are accompanied by various expenses that are obstacles for research projects. For this reason, this paper presents an animal study using a low cost and simple handcrafted ECoG electrode that is made of commercially accessible materials. The study is performed on a Lewis rat implanted with a handcrafted 32-channel non-penetrative ECoG electrode covering an area of 3 × 3 mm2 on the cortical surface. The ECoG electrodes were placed on the motor and somatosensory cortex to record the signal patterns while the animal was active on a treadmill. Using a Tucker-Davis Technologies acquisition system and the software Synapse to monitor and analyze the electrophysiological signals, the electrodes obtained signals within the amplitude range of 200 µV for local field potentials with reliable spatiotemporal profiles. It was also confirmed that the handcrafted ECoG electrode has the stability and chronic features found in other commercial electrodes.

  16. Improving arm function in chronic stroke: a pilot study of sensory amplitude electrical stimulation via glove electrode during task-specific training. (United States)

    Sullivan, Jane; Girardi, Madeline; Hensley, Melissa; Rohaus, Jordan; Schewe, Clay; Whittey, Colby; Hansen, Piper; Muir, Kimberly


    To investigate the effects of sensory amplitude electrical stimulation (SES) delivered by glove electrode during task-specific exercise on arm movement, function, and sensation in chronic stroke. The design was an intervention pilot study, pre-test, post-test, follow-up design. The settings used were a university research laboratory and home-based intervention. Participants comprised of 11 individuals with chronic stroke (7.2 ± 4.1 years post onset) and moderate arm paresis, 10.82/20 ± 2.27 on the Stroke Rehabilitation Assessment of Movement (STREAM) - Arm Subscale. Participants were seven males and four females (mean age: 59 years). Participants were recruited from university-based database. Intervention- Participants engaged in task-specific training at home for 30 min, twice daily, for 5 weeks, while receiving SES via glove electrode. Participants received supervised task practice at least twice during intervention period for 1 hour. Main outcome measures- Jebsen-Taylor Hand Function Test (JTHFT), STREAM - Arm Subscale, Motor Activity Log-14 (MAL-14) - Amount and Quality Subscales, and Nottingham Stereognosis Assessment (NSA). Significant changes were found in group mean pre- and post-test comparisons on the NSA (P = 0.042), MAL amount subscale (P = 0.047), and JTHFT (with writing item 29 excluded) (P = 0.003) and in pre-test to follow-up comparisons on NSA (P = 0.027) and JTHFT (writing item excluded) (P = 0.009). There was no significant change on the STREAM (P = 1.0). Individuals with a greater baseline motor capacity determined by STREAM scores (P = 0.048) and more recent stroke (P = 0.014) had significantly greater improvements. Combining task-specific training with glove-based SES in chronic stroke resulted in changes in arm sensation and function that were maintained at 3-month follow-up.

  17. Evaluation of focused multipolar stimulation for cochlear implants: a preclinical safety study (United States)

    Shepherd, Robert K.; Wise, Andrew K.; Enke, Ya Lang; Carter, Paul M.; Fallon, James B.


    Objective. Cochlear implants (CIs) have a limited number of independent stimulation channels due to the highly conductive nature of the fluid-filled cochlea. Attempts to develop highly focused stimulation to improve speech perception in CI users includes the use of simultaneous stimulation via multiple current sources. Focused multipolar (FMP) stimulation is an example of this approach and has been shown to reduce interaction between stimulating channels. However, compared with conventional biphasic current pulses generated from a single current source, FMP is a complex stimulus that includes extended periods of stimulation before charge recovery is achieved, raising questions on whether chronic stimulation with this strategy is safe. The present study evaluated the long-term safety of intracochlear stimulation using FMP in a preclinical animal model of profound deafness. Approach. Six cats were bilaterally implanted with scala tympani electrode arrays two months after deafening, and received continuous unilateral FMP stimulation at levels that evoked a behavioural response for periods of up to 182 d. Electrode impedance, electrically-evoked compound action potentials (ECAPs) and auditory brainstem responses (EABRs) were monitored periodically over the course of the stimulation program from both the stimulated and contralateral control cochleae. On completion of the stimulation program cochleae were examined histologically and the electrode arrays were evaluated for evidence of platinum (Pt) corrosion. Main results. There was no significant difference in electrode impedance between control and chronically stimulated electrodes following long-term FMP stimulation. Moreover, there was no significant difference between ECAP and EABR thresholds evoked from control or stimulated cochleae at either the onset of stimulation or at completion of the stimulation program. Chronic FMP stimulation had no effect on spiral ganglion neuron (SGN) survival when compared with

  18. Chronic in vivo stability assessment of carbon fiber microelectrode arrays (United States)

    Patel, Paras R.; Zhang, Huanan; Robbins, Matthew T.; Nofar, Justin B.; Marshall, Shaun P.; Kobylarek, Michael J.; Kozai, Takashi D. Y.; Kotov, Nicholas A.; Chestek, Cynthia A.


    Objective. Individual carbon fiber microelectrodes can record unit activity in both acute and semi-chronic (∼1 month) implants. Additionally, new methods have been developed to insert a 16 channel array of carbon fiber microelectrodes. Before assessing the in vivo long-term viability of these arrays, accelerated soak tests were carried out to determine the most stable site coating material. Next, a multi-animal, multi-month, chronic implantation study was carried out with carbon fiber microelectrode arrays and silicon electrodes. Approach. Carbon fibers were first functionalized with one of two different formulations of PEDOT and subjected to accelerated aging in a heated water bath. After determining the best PEDOT formula to use, carbon fiber arrays were chronically implanted in rat motor cortex. Some rodents were also implanted with a single silicon electrode, while others received both. At the end of the study a subset of animals were perfused and the brain tissue sliced. Tissue sections were stained for astrocytes, microglia, and neurons. The local reactive responses were assessed using qualitative and quantitative methods. Main results. Electrophysiology recordings showed the carbon fibers detecting unit activity for at least 3 months with average amplitudes of ∼200 μV. Histology analysis showed the carbon fiber arrays with a minimal to non-existent glial scarring response with no adverse effects on neuronal density. Silicon electrodes showed large glial scarring that impacted neuronal counts. Significance. This study has validated the use of carbon fiber microelectrode arrays as a chronic neural recording technology. These electrodes have demonstrated the ability to detect single units with high amplitude over 3 months, and show the potential to record for even longer periods. In addition, the minimal reactive response should hold stable indefinitely, as any response by the immune system may reach a steady state after 12 weeks.

  19. Efecto de la localización del electrodo ventricular derecho (tracto de salida vs. ápex sobre la sincronía ventricular mecánica, en pacientes sometidos a terapia de implante de marcapaso cardiaco Effect of right ventricular electrode location (outflow tract vs. apex on mechanical ventricular synchrony in patients that underwent pacemaker implant therapy

    Directory of Open Access Journals (Sweden)

    Oscar S Rincón


    Full Text Available Objetivo: evaluar a profundidad el efecto de la estimulación ventricular desde el tracto de salida del ventrículo derecho y el ápex, sobre la sincronía ventricular mecánica. Materiales y métodos: estudio analítico de cohorte, en el que se realizó ecocardiograma transtorácico pre y post implante de marcapaso a 20 pacientes (diez por cada grupo con indicación de marcapaso definitivo, con implante del electrodo en el tracto de salida del ventrículo derecho y el ápex, sin cardiopatía estructural, fracción de eyección > 50%; QRS y conducción aurículo-ventricular normal, con el fin de evaluar la asincronía ventricular mecánica (modo M y Doppler tisular y los parámetros de implante y programación del dispositivo. Análisis estadístico: los resultados se presentan como promedios, desviación estándar o porcentajes. Las variables continuas se compararon utilizando prueba Chi cuadrado y ANOVA. Se consideró como estadísticamente significativa una p Objective: to assess in depth the effect of ventricular stimulation from the right ventricular outflow tract and the apex on mechanical ventricular synchrony. Materials and Methods: cohort analytical study. 20 patients with indication of definitive pacemaker indication underwent transthoracic echocardiogram before and after pacemaker implant with electrode implantation in the right ventricular outflow tract and in the apex (10 patients in each group. There was no structural cardiopathy, ejection fraction was > 50%, QRS and AV conduction were normal. Mechanical ventricular asynchrony (M mode and tissue doppler and implant and device parameters were evaluated. Statistical Analysis: results are given as mean values, standard deviation or percentages. Continuous variables were compared using Chi-square test and ANOVA. A p <0.05 value was considered statistically significant. Results: in five patients (25% a pre-implant ventricular asynchrony was found; in seven (70% ventricular asynchrony

  20. The diagnostic value of [18F]FDG PET for the detection of chronic osteomyelitis and implant-associated infection

    International Nuclear Information System (INIS)

    Wenter, Vera; Albert, Nathalie L.; Lehner, Sebastian; Fendler, Wolfgang P.; Bartenstein, Peter; Mueller, Jan-Phillip; Friederichs, Jan; Militz, Matthias; Hungerer, Sven; Cyran, Clemens C.; Hacker, Marcus


    The diagnosis of osteomyelitis and implant-associated infections in patients with nonspecific laboratory or radiological findings is often unsatisfactory. We retrospectively evaluated the contributions of [ 18 F]FDG PET and [ 18 F]FDG PET/CT to the diagnosis of osteomyelitis and implant-associated infections, enabling timely and appropriate decision-making for further therapy options. [ 18 F]FDG PET or PET/CT was performed in 215 patients with suspected osteomyelitis or implant-associated infections between 2000 and 2013. We assessed the diagnostic accuracy of both modalities together and separately with reference to intraoperative microbial findings, with a mean clinical follow-up of 69 ± 49 months. Infections were diagnosed clinically in 101 of the 215 patients. PET and PET/CT scans revealed 87 true-positive, 76 true-negative, 38 false-positive, and 14 false-negative results, indicating a sensitivity of 86 %, a specificity of 67 %, a positive predictive value (PPV) of 70 %, a negative predictive value (NPV) of 84 % and an accuracy of 76 %. The sensitivity of PET/CT was 88 %, but specificity, PPV, NPV and accuracy (76 %, 76 %, 89 % and 82 %, respectively) were higher than those of stand-alone PET. [ 18 F]FDG PET is able to identify with high sensitivity the presence of osteomyelitis in orthopaedic surgery patients with nonspecific clinical symptoms of infection. (orig.)

  1. Serious Complication of Percutaneous Angioplasty with Stent Implantation in so Called "Chronic Cerebrospinal Venous Insufficiency" in Multiple Sclerosis Patient

    Directory of Open Access Journals (Sweden)

    Ondřej Doležal


    Full Text Available We report female patient, age 51, with clinically definitive multiple sclerosis (CDMS since 1998, who underwent two PTA procedures with stent implantation for CCSVI in 2010. Expanded disability status scale (EDSS worsened since the procedure from 4.5 to 6. Total number of three stents was implanted (two of them in the right internal jugular vein. In six month time, in 2011, patient was referred for independent examination by computer tomography (CT phlebography for right-sided neck pain. Dislocation of stents on the right side and thrombosis of left sided stent was found. Conservative approach was used so far. Our short report is showing possible complications of PTA and stenting in jugular veins in so called CCSVI and bringing information about neurological state (EDSS worsening in a subject. Continuation of stent migration in the future is probable, possibly resulting in pulmonary embolism with fatal risk for the patient. We strongly ask for restriction of PTA procedure in so called CCSVI, which concept was not proven to be relevant to MS.

  2. Correlation between pulmonary artery pressure and thoracic impedance: Insights from daily monitoring through an implanted device in chronic heart failure. (United States)

    Perego, Giovanni Battista; Oldani, Matteo; Pellegrini, Dario; Brasca, Francesco Maria Angelo; Malfatto, Gabriella; Villani, Alessandra; Brambilla, Roberto; Rella, Valeria; Parati, Gianfranco


    Thoracic impedance (TI) decrease and pulmonary artery pressure (PAP) elevation precede acute decompensation in congestive heart failure (HF). However, the relationship between TI and PAP has been studied only in the context of acute decompensation. This prospective, observational study enrolled subjects with reduced ejection fraction HF, previously implanted with an ICD capable of measuring TI. Patients underwent implantation of a sensor for direct measurement of PAP (CardioMEMs™). Both TI and PAP were remotely monitored daily during follow up. Investigators were blinded to PAP values during the first three months, then PAP was used as a guide to therapy. Ten patients were followed up for 405±141days (3720 patient-days). During hemodynamic guided therapy, diastolic PAP (dPAP) decreased from 27.8±10.2mmHg to 24.0±8.0mmHg (p<0.001); non-significant variations of TI were observed. A significant negative correlation was found between the variations of TI and PAP vs. baseline (p<0.001). Episodes of sustained increase of PAP preceded subsequent periods of TI decrease by 5.6±3.9days, but the former were poor predictors of the latter (sensitivity 0.37). Our study confirms the strict correlation that exists between left ventricular filling pressures and lung water content, estimated by dPAP and TI, respectively. However, dPAP acute variation analysis showed a limited value in predicting subsequent episodes of TI decrease. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. A fully implantable rodent neural stimulator (United States)

    Perry, D. W. J.; Grayden, D. B.; Shepherd, R. K.; Fallon, J. B.


    The ability to electrically stimulate neural and other excitable tissues in behaving experimental animals is invaluable for both the development of neural prostheses and basic neurological research. We developed a fully implantable neural stimulator that is able to deliver two channels of intra-cochlear electrical stimulation in the rat. It is powered via a novel omni-directional inductive link and includes an on-board microcontroller with integrated radio link, programmable current sources and switching circuitry to generate charge-balanced biphasic stimulation. We tested the implant in vivo and were able to elicit both neural and behavioural responses. The implants continued to function for up to five months in vivo. While targeted to cochlear stimulation, with appropriate electrode arrays the stimulator is well suited to stimulating other neurons within the peripheral or central nervous systems. Moreover, it includes significant on-board data acquisition and processing capabilities, which could potentially make it a useful platform for telemetry applications, where there is a need to chronically monitor physiological variables in unrestrained animals.

  4. Ion implantation

    International Nuclear Information System (INIS)

    Dearnaley, Geoffrey


    First, ion implantation in semiconductors is discussed: ion penetration, annealing of damage, gettering, ion implanted semiconductor devices, equipement requirements for ion implantation. The importance of channeling for ion implantation is studied. Then, some applications of ion implantation in metals are presented: study of the corrosion of metals and alloys; influence or ion implantation on the surface-friction and wear properties of metals; hyperfine interactions in implanted metals

  5. Low Cost Electrode Assembly for EEG Recordings in Mice

    Directory of Open Access Journals (Sweden)

    Emily C. Vogler


    Full Text Available Wireless electroencephalography (EEG of small animal subjects typically utilizes miniaturized EEG devices which require a robust recording and electrode assembly that remains in place while also being well-tolerated by the animal so as not to impair the ability of the animal to perform normal living activities or experimental tasks. We developed simple and fast electrode assembly and method of electrode implantation using electrode wires and wire-wrap technology that provides both higher survival and success rates in obtaining recordings from the electrodes than methods using screws as electrodes. The new wire method results in a 51% improvement in the number of electrodes that successfully record EEG signal. Also, the electrode assembly remains affixed and provides EEG signal for at least a month after implantation. Screws often serve as recording electrodes, which require either drilling holes into the skull to insert screws or affixing screws to the surface of the skull with adhesive. Drilling holes large enough to insert screws can be invasive and damaging to brain tissue, using adhesives may interfere with conductance and result in a poor signal, and soldering screws to wire leads results in fragile connections. The methods presented in this article provide a robust implant that is minimally invasive and has a significantly higher success rate of electrode implantation. In addition, the implant remains affixed and produces good recordings for over a month, while using economical, easily obtained materials and skills readily available in most animal research laboratories.

  6. Wireless microsensor network solutions for neurological implantable devices (United States)

    Abraham, Jose K.; Whitchurch, Ashwin; Varadan, Vijay K.


    The design and development of wireless mocrosensor network systems for the treatment of many degenerative as well as traumatic neurological disorders is presented in this paper. Due to the advances in micro and nano sensors and wireless systems, the biomedical sensors have the potential to revolutionize many areas in healthcare systems. The integration of nanodevices with neurons that are in communication with smart microsensor systems has great potential in the treatment of many neurodegenerative brain disorders. It is well established that patients suffering from either Parkinson"s disease (PD) or Epilepsy have benefited from the advantages of implantable devices in the neural pathways of the brain to alter the undesired signals thus restoring proper function. In addition, implantable devices have successfully blocked pain signals and controlled various pelvic muscles in patients with urinary and fecal incontinence. Even though the existing technology has made a tremendous impact on controlling the deleterious effects of disease, it is still in its infancy. This paper presents solutions of many problems of today's implantable and neural-electronic interface devices by combining nanowires and microelectronics with BioMEMS and applying them at cellular level for the development of a total wireless feedback control system. The only device that will actually be implanted in this research is the electrodes. All necessary controllers will be housed in accessories that are outside the body that communicate with the implanted electrodes through tiny inductively-coupled antennas. A Parkinson disease patient can just wear a hat-system close to the implantable neural probe so that the patient is free to move around, while the sensors continually monitor, record, transmit all vital information to health care specialist. In the event of a problem, the system provides an early warning to the patient while they are still mobile thus providing them the opportunity to react and

  7. Natural Resistance Associated Macrophage Protein 1 Gene Polymorphism is Associated with Chronic Periodontitis Not Peri-Implantitis in an Iranian Population: A Cross Sectional Study

    Directory of Open Access Journals (Sweden)

    Mahdi Kadkhodazadeh


    Full Text Available In inflammatory diseases such as peri-implantitis (PI and chronic periodontitis (CP both adaptive and innate immunity play a part. Natural resistance associated macrophage protein 1 (NRAMP1 has considerable effects on macrophage function (phagocytosis and host innate immune response against infections. The present study was to investigate the relationship of NRAMP1 gene polymorphisms with PI and CP in an Iranian population. In this cross sectional study 79 patients with CP, 38 patients with PI and 84 healthy controls presenting to the Periodontology Department of Shahid Beheshti University of Medical Sciences were enrolled. DNA was extracted from fresh blood samples of arm vein of participants and transferred to KBiosience institute (United Kingdom for genotyping. X2 and Fisher’s exact tests were used by SPSS software v.19 for statistical analyzes. Significant differences were detected in the distribution of genotypes between control and CP groups both for rs17235409 and rs2276631 polymorphisms (P:0.044 and P:0.028 respectively. Distribution of genotypes differed insignificantly in comparison of PI and control groups for rs2276631 (P:0.623 and either rs17235409 (P:1 polymorphisms. Based on our results, we conclude that presence of G allele in both rs2276631 and rs17235409 location may be a protective factor against CP. More studies with a larger sample size in different populations are required for confirming NRAMP1 as a genetic determinant in periodontal disorders.

  8. Bilateral chronic sacral neuromodulation for treatment of lower urinary tract dysfunction. (United States)

    Hohenfellner, M; Schultz-Lampel, D; Dahms, S; Matzel, K; Thüroff, J W


    Chronic sacral neuromodulation aims at functional restoration of selected forms of nonneurogenic and neurogenic bladder dysfunction. The original technique, as described by Tanagho and Schmidt, provides unilateral sacral nerve stimulation via an implanted stimulator powering an electrode inserted into a sacral foramen. Its drawback was that the implant failed unpredictably in some patients despite previous successful percutaneous test stimulation. Therefore, we modified the stimulation technique to improve the efficacy of chronic sacral neuromodulation. Guarded bipolar electrodes powered by an implantable neurostimulator were attached bilaterally directly to the S3 nerves through a sacral laminectomy in 9 women and 2 men (mean age 43.4 years). Of the patients 5 had urinary incontinence due to detrusor hyperactivity and 6 had urinary retention from detrusor hypocontractility. Mean followup with repeated urodynamics was 13 months (range 9 to 28). Four significant complications were encountered in 4 patients. In 10 patients the urological sequelae of the neurological disorder were alleviated significantly (50% or more), including 5 who experienced complete relief of symptoms. The efficacy of chronic sacral neuromodulation can be improved by bilateral attachment of electrodes directly to the sacral nerves.

  9. [Effects of afloqualone, a centrally acting muscle relaxant, on the sleep-wakefulness cycle in cats with chronically implanted electrodes (author's transl)]. (United States)

    Kojima, M; Kudo, Y; Ishida, R


    The present study was carried out to elucidate whether or whether not afloqualone has a hypnotic action because of its similarity in chemical structure to methaqualone. In the sleep-wakefulness cycles during the 8-hour observation period (9:00-17:00), afloqualone increased the percentages of resting (REST) and slow wave light sleep (SWLS) stages at a dose of 25 mg/kg (p.o.), producing a moderate muscle relaxation. Even at a dose of 50 mg/kg (p.o.) where a marked muscle relaxation was produced, afloqualone had no influence on the percentage of slow wave deep sleep (SWDS) stage, though it increased the percentages of SWLS and decreased the percentages of awake (AWK), REST and fast wave sleep (FWS) stages. On the other hand, tolperisone . HCl, chlormezanone, methaqualone and pentobarbital . Na, used as the reference drugs, all increased the percentage of SWDS stage, but either decreased or had no effect on the percentages of the other four stages at pharmacologically effective doses. From these results it was concluded that afloqualone seems to be devoid of a hypnotic action and has different effects on the sleep-wakefulness cycle than those of both the hypnotics and the other muscle relaxants used.

  10. A novel intravitreal fluocinolone acetonide implant (Iluvien® in the treatment of patients with chronic diabetic macular edema that is insufficiently responsive to other medical treatment options: a case series

    Directory of Open Access Journals (Sweden)

    Schmit-Eilenberger VK


    Full Text Available Vera K Schmit-Eilenberger Augenklinik Städtisches Klinikum, Karlsruhe, Baden-Württemberg, Germany Background: Iluvien® is a novel, nonbiodegradable, sustained-release drug delivery system (0.2 µg/d fluocinolone acetonide [FAc] indicated in Europe for the treatment of vision impairment associated with chronic diabetic macular edema (DME, considered insufficiently responsive to available therapies.Objective: To evaluate the safety and efficacy of 190-µg FAc implant in patients with chronic DME refractory to other medical treatment options in a clinical setting. Methods: Retrospective registry data were collected by using standard case report forms (CRFs. Prior to intravitreal injection of the FAc implant, all patients were treated either with a vascular endothelial growth factor (VEGF antagonist and/or a steroid (triamcinolone, dexamethasone implant. Patients were excluded from receiving FAc if they had a known history of elevated intraocular pressure (IOP following corticosteroid therapy, glaucoma, ocular hypertension, or any contraindications cited in the summary of product characteristics. Best-corrected visual acuity (BCVA was the main study parameter. Central fovea thickness (CFT and IOP were measured concurrently. These parameters were recorded prior to and after the injection of the 190-µg FAc implant (between 1 week and 9 months. Injections were performed between May 2013 and March 2014.Results: Fifteen eyes from ten patients were treated. Thirteen eyes (nine patients were pseudophakic, and seven eyes (five patients were vitrectomized prior to receiving therapy. BCVA improved in eleven eyes (73.3%, remained unchanged in two eyes (13.3%, and decreased slightly in two eyes (13.3% at the last follow-up visit versus baseline levels. IOP increased in two patients and was controlled using fixed-combination of IOP-lowering eyedrops or sectorial cyclocryotherapy (n=1.Conclusion: The 190-µg FAc implant was efficacious and showed a favorable

  11. Liquid electrode (United States)

    Ekechukwu, A.A.


    A dropping electrolyte electrode is described for use in electrochemical analysis of non-polar sample solutions, such as benzene or cyclohexane. The liquid electrode, preferably an aqueous salt solution immiscible in the sample solution, is introduced into the solution in dropwise fashion from a capillary. The electrolyte is introduced at a known rate, thus, the droplets each have the same volume and surface area. The electrode is used in making standard electrochemical measurements in order to determine properties of non-polar sample solutions. 2 figures.

  12. Synaptic plasticity and the analysis of the field-EPSP as well as the population spike using separate recording electrodes in the dentate gyrus in freely moving rats. (United States)

    Frey, Sabine; Frey, Julietta U


    Commonly, synaptic plasticity events such as long-term potentiation (LTP) are investigated by using a stimulation electrode and a single, monopolar field recording electrode in the dentate gyrus in intact, freely moving rats. The recording electrode is mostly positioned in the granular cell layer, or the hilar region of the dentate gyrus, i.e. far away from the place of generation of monosynaptic postsynaptic excitatory potentials (EPSP). Since LTP is a synaptic phenomenon and field recordings far away from the activated synapses do not guarantee a specific interpretation of the overlaid, mixture of complex potentials of several different electrical fields it is often difficult or even impossible to interpret the data obtained by such a single recording electrode. Therefore, at least a separate or two recording electrodes should be used to record the EPSP as well as the spike, respectively, ideally at their places of generation. Here, we describe a method by implanting a chronic bipolar recording electrode which fulfils the above requirements by recording the field-EPSP as well as the population spike at their places of generation and describe the time course of LTP measured using this "double-recording" electrode. We show that different tetanization protocols resulted in EPSP- or population spike-LTP but only if the potentials were recorded by electrodes positioned within adequate places of potential generation. Interestingly, the commonly used recording in the hilus of a distinct part of a potential, mistakenly analyzed as an "EPSP" did not reveal any LTP.

  13. electrode array

    African Journals Online (AJOL)


    A geoelectric investigation employing vertical electrical soundings (VES) using the Ajayi - Makinde Two-Electrode array and the ... arrangements used in electrical D.C. resistivity survey. These include ..... Refraction Tomography to Study the.

  14. Implantable biochemical fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Richter, G; Rao, J R


    Implantable biochemical fuel cells for the operation of heart pacemakers or artificial hearts convert oxidisable body substances such as glucose on the anode side and reduce the oxygen contained in body fluids at the cathode. The anode and cathode are separated by membranes which are impermeable to albumen and blood corpuscles in body fluids. A chemical shortcircuit cannot occur in practice if, according to the invention, one or more selective oxygen electrodes with carbon as catalyst are arranged so that the mixture which diffuses into the cell from body fluids during operation reaches the fuel cell electrode through the porous oxygen electrode. The membranes used must be permeable to water. Cellulose, polymerised polyvinyl alcohol or an ion exchanger with a buffering capacity between pH5 and 8 act as permeable materials.

  15. Simplifying cochlear implant speech processor fitting

    NARCIS (Netherlands)

    Willeboer, C.


    Conventional fittings of the speech processor of a cochlear implant (CI) rely to a large extent on the implant recipient's subjective responses. For each of the 22 intracochlear electrodes the recipient has to indicate the threshold level (T-level) and comfortable loudness level (C-level) while

  16. Comparison of long-term clinical outcome between patients with chronic versus acute type B aortic dissection treated by implantation of a stent graft: a single-center report

    Directory of Open Access Journals (Sweden)

    Chen SL


    Full Text Available Shao-Liang Chen, Jian-Cheng Zhu, Xiao-Bo Li, Fei Ye, Jun-Jie Zhang, Zhi-Zhong Liu, Nai-Liang Tian, Song Lin, Cheng-Yu Lv Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China Background: Stent grafting for treatment of type B aortic dissection has been extensively used. However, the difference in the long-term clinical outcome between patients with chronic versus acute type B aortic dissection remains unknown. This study aimed to analyze the difference in long-term clinical outcome after endovascular repair for patients with chronic (93% complete false-lumen thrombosis. Untreated tear and type I endoleak were predictors of clinical events during follow-up. Conclusion: Comparable long-term clinical results were achieved in patients with chronic or acute type B aortic dissection after implantation of a stent graft. Keywords: aortic dissection, endovascular repair, procedure-related events, propensity score matching

  17. A LabVIEW based experiment system for the efficient collection and analysis of cyclic voltametry and electrode charge capacity measurements. (United States)

    Detlefsen, D; Hu, Z; Troyk, P R


    Cyclic voltametry and recording of stimulation electrode voltage excursions are two critical methods of measurement for understanding the performance of implantable electrodes. Because implanted electrodes cannot easily be replaced, it is necessary to have an a-priori understanding of an electrode's implanted performance and capabilities. In-vitro exhaustive tests are often needed to quantify an electrodes performance. Using commonly available equipment, the human labor cost to conduct this work is immense. Presented is an automated experiment system that is highly configurable that can efficiently conduct a battery of repeatable CV and stimulation recording measurements. Results of preparing 96 electrodes prior to an animal implantation are also discussed.

  18. Conducting polymer coated neural recording electrodes (United States)

    Harris, Alexander R.; Morgan, Simeon J.; Chen, Jun; Kapsa, Robert M. I.; Wallace, Gordon G.; Paolini, Antonio G.


    Objective. Neural recording electrodes suffer from poor signal to noise ratio, charge density, biostability and biocompatibility. This paper investigates the ability of conducting polymer coated electrodes to record acute neural response in a systematic manner, allowing in depth comparison of electrochemical and electrophysiological response. Approach. Polypyrrole (Ppy) and poly-3,4-ethylenedioxythiophene (PEDOT) doped with sulphate (SO4) or para-toluene sulfonate (pTS) were used to coat iridium neural recording electrodes. Detailed electrochemical and electrophysiological investigations were undertaken to compare the effect of these materials on acute in vivo recording. Main results. A range of charge density and impedance responses were seen with each respectively doped conducting polymer. All coatings produced greater charge density than uncoated electrodes, while PEDOT-pTS, PEDOT-SO4 and Ppy-SO4 possessed lower impedance values at 1 kHz than uncoated electrodes. Charge density increased with PEDOT-pTS thickness and impedance at 1 kHz was reduced with deposition times up to 45 s. Stable electrochemical response after acute implantation inferred biostability of PEDOT-pTS coated electrodes while other electrode materials had variable impedance and/or charge density after implantation indicative of a protein fouling layer forming on the electrode surface. Recording of neural response to white noise bursts after implantation of conducting polymer-coated electrodes into a rat model inferior colliculus showed a general decrease in background noise and increase in signal to noise ratio and spike count with reduced impedance at 1 kHz, regardless of the specific electrode coating, compared to uncoated electrodes. A 45 s PEDOT-pTS deposition time yielded the highest signal to noise ratio and spike count. Significance. A method for comparing recording electrode materials has been demonstrated with doped conducting polymers. PEDOT-pTS showed remarkable low fouling during

  19. An implantable integrated low-power amplifier-microelectrode array for Brain-Machine Interfaces. (United States)

    Patrick, Erin; Sankar, Viswanath; Rowe, William; Sanchez, Justin C; Nishida, Toshikazu


    One of the important challenges in designing Brain-Machine Interfaces (BMI) is to build implantable systems that have the ability to reliably process the activity of large ensembles of cortical neurons. In this paper, we report the design, fabrication, and testing of a polyimide-based microelectrode array integrated with a low-power amplifier as part of the Florida Wireless Integrated Recording Electrode (FWIRE) project at the University of Florida developing a fully implantable neural recording system for BMI applications. The electrode array was fabricated using planar micromachining MEMS processes and hybrid packaged with the amplifier die using a flip-chip bonding technique. The system was tested both on bench and in-vivo. Acute and chronic neural recordings were obtained from a rodent for a period of 42 days. The electrode-amplifier performance was analyzed over the chronic recording period with the observation of a noise floor of 4.5 microVrms, and an average signal-to-noise ratio of 3.8.

  20. System of fabricating a flexible electrode array

    Energy Technology Data Exchange (ETDEWEB)

    Krulevitch, Peter [Pleasanton, CA; Polla, Dennis L [Roseville, MN; Maghribi, Mariam N [Davis, CA; Hamilton, Julie [Tracy, CA; Humayun, Mark S [La Canada, CA; Weiland, James D [Valencia, CA


    An image is captured or otherwise converted into a signal in an artificial vision system. The signal is transmitted to the retina utilizing an implant. The implant consists of a polymer substrate made of a compliant material such as poly(dimethylsiloxane) or PDMS. The polymer substrate is conformable to the shape of the retina. Electrodes and conductive leads are embedded in the polymer substrate. The conductive leads and the electrodes transmit the signal representing the image to the cells in the retina. The signal representing the image stimulates cells in the retina.

  1. System of fabricating a flexible electrode array (United States)

    Krulevitch, Peter; Polla, Dennis L.; Maghribi, Mariam N.; Hamilton, Julie; Humayun, Mark S.; Weiland, James D.


    An image is captured or otherwise converted into a signal in an artificial vision system. The signal is transmitted to the retina utilizing an implant. The implant consists of a polymer substrate made of a compliant material such as poly(dimethylsiloxane) or PDMS. The polymer substrate is conformable to the shape of the retina. Electrodes and conductive leads are embedded in the polymer substrate. The conductive leads and the electrodes transmit the signal representing the image to the cells in the retina. The signal representing the image stimulates cells in the retina.

  2. Cermet electrode (United States)

    Maskalick, Nicholas J.


    Disclosed is a cermet electrode consisting of metal particles of nickel, cobalt, iron, or alloys or mixtures thereof immobilized by zirconia stabilized in cubic form which contains discrete deposits of about 0.1 to about 5% by weight of praseodymium, dysprosium, terbium, or a mixture thereof. The solid oxide electrode can be made by covering a substrate with particles of nickel, cobalt, iron, or mixtures thereof, growing a stabilized zirconia solid oxide skeleton around the particles thereby immobilizing them, contacting the skeleton with a compound of praseodymium, dysprosium, terbium, or a mixture thereof, and heating the skeleton to a temperature of at least C. The electrode can also be made by preparing a slurry of nickel, cobalt, iron, or mixture and a compound of praseodymium, dysprosium, terbium, or a mixture thereof, depositing the slurry on a substrate, heating the slurry to dryness, and growing a stabilized zirconia skeleton around the metal particles.

  3. Stab injury and device implantation within the brain results in inversely multiphasic neuroinflammatory and neurodegenerative responses (United States)

    Potter, Kelsey A.; Buck, Amy C.; Self, Wade K.; Capadona, Jeffrey R.


    An estimated 25 million people in the US alone rely on implanted medical devices, ˜2.5 million implanted within the nervous system. Even though many devices perform adequately for years, the host response to medical devices often severely limits tissue integration and long-term performance. This host response is believed to be particularly limiting in the case of intracortical microelectrodes, where it has been shown that glial cell encapsulation and localized neuronal cell loss accompany intracortical microelectrode implantation. Since neuronal ensembles must be within ˜50 µm of the electrode to obtain neuronal spikes and local field potentials, developing a better understanding of the molecular and cellular environment at the device-tissue interface has been the subject of significant research. Unfortunately, immunohistochemical studies of scar maturation in correlation to device function have been inconclusive. Therefore, here we present a detailed quantitative study of the cellular events and the stability of the blood-brain barrier (BBB) following intracortical microelectrode implantation and cortical stab injury in a chronic survival model. We found two distinctly inverse multiphasic profiles for neuronal survival in device-implanted tissue compared to stab-injured animals. For chronically implanted animals, we observed a biphasic paradigm between blood-derived/trauma-induced and CNS-derived inflammatory markers driving neurodegeneration at the interface. In contrast, stab injured animals demonstrated a CNS-mediated neurodegenerative environment. Collectively these data provide valuable insight to the possibility of multiple roles of chronic neuroinflammatory events on BBB disruption and localized neurodegeneration, while also suggesting the importance to consider multiphasic neuroinflammatory kinetics in the design of therapeutic strategies for stabilizing neural interfaces.

  4. Factors associated with hearing loss in a normal-hearing guinea pig model of Hybrid cochlear implants. (United States)

    Tanaka, Chiemi; Nguyen-Huynh, Anh; Loera, Katherine; Stark, Gemaine; Reiss, Lina


    The Hybrid cochlear implant (CI), also known as Electro-Acoustic Stimulation (EAS), is a new type of CI that preserves residual acoustic hearing and enables combined cochlear implant and hearing aid use in the same ear. However, 30-55% of patients experience acoustic hearing loss within days to months after activation, suggesting that both surgical trauma and electrical stimulation may cause hearing loss. The goals of this study were to: 1) determine the contributions of both implantation surgery and EAS to hearing loss in a normal-hearing guinea pig model; 2) determine which cochlear structural changes are associated with hearing loss after surgery and EAS. Two groups of animals were implanted (n = 6 per group), with one group receiving chronic acoustic and electric stimulation for 10 weeks, and the other group receiving no direct acoustic or electric stimulation during this time frame. A third group (n = 6) was not implanted, but received chronic acoustic stimulation. Auditory brainstem response thresholds were followed over time at 1, 2, 6, and 16 kHz. At the end of the study, the following cochlear measures were quantified: hair cells, spiral ganglion neuron density, fibrous tissue density, and stria vascularis blood vessel density; the presence or absence of ossification around the electrode entry was also noted. After surgery, implanted animals experienced a range of 0-55 dB of threshold shifts in the vicinity of the electrode at 6 and 16 kHz. The degree of hearing loss was significantly correlated with reduced stria vascularis vessel density and with the presence of ossification, but not with hair cell counts, spiral ganglion neuron density, or fibrosis area. After 10 weeks of stimulation, 67% of implanted, stimulated animals had more than 10 dB of additional threshold shift at 1 kHz, compared to 17% of implanted, non-stimulated animals and 0% of non-implanted animals. This 1-kHz hearing loss was not associated with changes in any of the cochlear measures

  5. Chronic monitoring of lower urinary tract activity via a sacral dorsal root ganglia interface (United States)

    Khurram, Abeer; Ross, Shani E.; Sperry, Zachariah J.; Ouyang, Aileen; Stephan, Christopher; Jiman, Ahmad A.; Bruns, Tim M.


    Objective. Our goal is to develop an interface that integrates chronic monitoring of lower urinary tract (LUT) activity with stimulation of peripheral pathways. Approach. Penetrating microelectrodes were implanted in sacral dorsal root ganglia (DRG) of adult male felines. Peripheral electrodes were placed on or in the pudendal nerve, bladder neck and near the external urethral sphincter. Supra-pubic bladder catheters were implanted for saline infusion and pressure monitoring. Electrode and catheter leads were enclosed in an external housing on the back. Neural signals from microelectrodes and bladder pressure of sedated or awake-behaving felines were recorded under various test conditions in weekly sessions. Electrodes were also stimulated to drive activity. Main results. LUT single- and multi-unit activity was recorded for 4-11 weeks in four felines. As many as 18 unique bladder pressure single-units were identified in each experiment. Some channels consistently recorded bladder afferent activity for up to 41 d, and we tracked individual single-units for up to 23 d continuously. Distension-evoked and stimulation-driven (DRG and pudendal) bladder emptying was observed, during which LUT sensory activity was recorded. Significance. This chronic implant animal model allows for behavioral studies of LUT neurophysiology and will allow for continued development of a closed-loop neuroprosthesis for bladder control.

  6. Magnetohydrodynamic electrode

    International Nuclear Information System (INIS)


    The object of the invention is the provision of a material capable of withstanding a high-temperature, corrosive and erosive environment for use as a ceramic-metal composite electrode current collector in the channel of a magnetohydrodynamic generator. (U.K.)

  7. Cochlear Implants (United States)

    ... implant, including: • How long a person has been deaf, •The number of surviving auditory nerve fibers, and • ... Implant, Severe Sensoryneurial Hearing Loss Get Involved Professional Development Practice Management ENT Careers Marketplace Privacy Policy Terms ...

  8. Evaluating cochlear implant trauma to the scala vestibuli. (United States)

    Adunka, O; Kiefer, J; Unkelbach, M H; Radeloff, A; Gstoettner, W


    Placement of cochlear implant electrodes into the scala vestibuli may be intentional, e.g. in case of blocked scala tympani or unintentional as a result of trauma to the basilar membrane or erroneous location of the cochieostomy. The aim of this study was to evaluate the morphological consequences and cochlear trauma after implantation of different cochlear implant electrode arrays in the scala vestibuli. Human temporal bone study with histological and radiological evaluation. Twelve human cadaver temporal bones were implanted with different cochlear implant electrodes. Implanted bones were processed using a special method to section undecalcified bone. Cochlear trauma and intracochlear positions. All implanted electrodes were implanted into the scala vestibuli using a special approach that allows direct scala vestibuli insertions. Fractures of the osseous spiral lamina were evaluated in some bones in the basal cochlear regions. In most electrodes, delicate structures of the organ of Corti were left intact, however, Reissner's membrane was destroyed in all specimens and the electrode lay upon the tectorial membrane. In some bones the organ of Corti was destroyed. Scala vestibuli insertions did not cause severe trauma to osseous or neural structures, thus preserving the basis for electrostimulation of the cochlea. However, destruction of Reissner's membrane and impact on the Organ of Corti can be assumed to destroy residual hearing.

  9. Electrode Processes in Porous Electrodes. (United States)


    F104470 2.0 MASS SPECTROMETRY One part of activity for this year is an investigation of the behavior of silver electrodes through the distribution (2)). These, in some cases, involve tedious and time comsuming procedures and discrepencies of as much as 15% have been observed in the results. As

  10. Technological innovations in implants used for pain therapies. (United States)

    Shaw, Andrew; Sharma, Mayur; Deogaonkar, Milind; Rezai, Ali


    The field of pain management has experienced tremendous growth in implantable therapies secondary to the innovations of bioengineers, implanters, and industry. Every aspect of neuromodulation is amenable to innovation from implanting devices to anchors, electrodes, programming, and even patient programmers. Patients with previously refractory neuropathic pain syndromes have new and effective pain management strategies that are a direct result of innovations in implantable devices. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Round window electrode insertion potentiates retention in the scala tympani. (United States)

    Connor, Stephen E J; Holland, N Julian; Agger, Andreas; Leong, Annabelle C; Varghese, Re Ajay; Jiang, Dan; Fitzgerald O'Connor, Alec


    The round window membrane (RWM)-intentioned approach is superior to the traditional bony cochleostomy (BC) approach in obtaining electrode placement within the scala tympani (ST). Cochlear implant outcome is influenced by several factors, including optimal placement and retention of the electrode array within the ST. The present study aimed to assess whether the RWM route is superior to a traditional BC for placement and retention of the electrode array in the ST. This was a prospective consecutive non-randomized comparison study. All patients were implanted with the Advanced Bionics 1J electrode array. The RWM approach (n = 32) was compared with a traditional BC group (n = 33). The outcome measure was the electrode position as judged within the scalar chambers at four points along the basal turn using postoperative computed tomography (CT). When the mean position scores were compared, the RWM-intentioned group had significantly more electrodes directed towards the ST compartment than the BC group (p scala vestibuli.

  12. The scala vestibuli for cochlear implantation. An anatomic study. (United States)

    Gulya, A J; Steenerson, R L


    Traditionally, cochlear implantation has used the scala tympani (ST) for electrode insertion. When faced with ST ossification, the surgeon may elect to drill out the cochlea to accomplish partial electrode insertion. Theoretically, another option in this situation is to insert the electrode into the scala vestibuli (SV). To determine whether or not the dimensions of the SV are sufficient to accommodate an electrode array so as to assess the feasibility of SV cochlear implantation. The study of 20 normal human temporal bones, comparing the maximum diameter and surface area of the ST with those of the combined SV and scala media. The dimensions of the SV and scala media were comparable to those of the ST and appeared sufficient to accommodate a cochlear implant electrode array. It appears that the combination of SV and scala media is a viable alternative route for electrode insertion, at least on the basis of anatomic dimensions, in those cases in which the ST is obliterated.

  13. Extraction of retinal tacks from subjects implanted with an epiretinal visual prosthesis. (United States)

    de Juan, Eugene; Spencer, Rand; Barale, Pierre-Olivier; da Cruz, Lyndon; Neysmith, Jordan


    Retinal tacks, first developed for the treatment of complex retinal detachments, have more recently been used for the fixation of epiretinal electrode arrays as part of implanted visual prostheses. Here, we report on the clinical experience of extracting four such tacks after chronic implantation. The ability to safely extract retinal tacks ensures that epiretinal devices can be repositioned or removed if necessary. Custom-built, titanium alloy retinal tacks were mechanically removed from the posterior coats after prolonged implantation (up to 19 months). The resulting wound was characterized by clinical evaluation, fundus photography, and fluorescein angiography while being monitored for stability over time. The wounds were also compared to earlier published reports of the healing response around retinal tacks in human subjects. Tack extraction was accomplished successfully, without complication, in all four subjects. The wound site was readily identified by pale scar tissue. No change in the wound size or appearance was noted over many months of post-operative observation (up to 22 months after explant). No adverse effects on overall ocular health were detected. Extraction of retinal tacks from subjects implanted with epiretinal prostheses can be performed without significant complication. The long-term healing response appears to be stable and localized in eyes afflicted with retinitis pigmentosa or choroideremia. There was also minimal, if any, impact on the local circulatory system. These cases suggest that the use of retinal tacks for anchoring epiretinal visual prostheses does not preclude safe repositioning or removal of the device more than a year after implant.

  14. Sub-meninges implantation reduces immune response to neural implants. (United States)

    Markwardt, Neil T; Stokol, Jodi; Rennaker, Robert L


    Glial scar formation around neural interfaces inhibits their ability to acquire usable signals from the surrounding neurons. To improve neural recording performance, the inflammatory response and glial scarring must be minimized. Previous work has indicated that meningeally derived cells participate in the immune response, and it is possible that the meninges may grow down around the shank of a neural implant, contributing to the formation of the glial scar. This study examines whether the glial scar can be reduced by placing a neural probe completely below the meninges. Rats were implanted with sets of loose microwire implants placed either completely below the meninges or implanted conventionally with the upper end penetrating the meninges, but not attached to the skull. Histological analysis was performed 4 weeks following surgical implantation to evaluate the glial scar. Our results found that sub-meninges implants showed an average reduction in reactive astrocyte activity of 63% compared to trans-meninges implants. Microglial activity was also reduced for sub-meninges implants. These results suggest that techniques that isolate implants from the meninges offer the potential to reduce the encapsulation response which should improve chronic recording quality and stability. Published by Elsevier B.V.

  15. Micro-implant d'acétonide de fluocinolone (ILUVIEN(®)) pour l'oedème maculaire diabétique chronique [Fluocinolone acetonide (ILUVIEN®) micro-implant for chronic diabetic macular edema].


    Soubrane, G.; Behar-Cohen, F.


    Diabetic macular edema (DME) is a frequent complication of diabetic retinopathy and may cause severe visual loss. In this article, we examine the pathophysiology of DME and review various treatment options, such as laser photocoagulation, anti-vascular endothelial growth factor (VEGF) receptor antibodies, and steroids including ILUVIEN(®), which is a new sustained-release, non biodegradable, injectable, intravitreal micro-implant containing fluocinolone acetonide. The results of the FAME (Flu...

  16. Air Abrasive Disinfection of Implant Surfaces in a Simulated Model of Peri-Implantitis (United States)


    may be higher in patients diagnosed with periodontal disease, systemic chronic disease such as diabetes or patients who smoke tobacco.9,10 One of...flora associated with peri-implantitis is similar to that found in chronic periodontitis .14 Gram-positive, facultative bacteria are normally...9):1490-5. 20. Heitz-Mayfield LJ, Lang NP. Comparative biology of chronic and aggressive periodontitis vs. peri-implantitis. Periodontol 2000

  17. A telemetry study on the chronic effects of microdialyis probe implantation on the activity pattern and temperature rhythm of the rat

    NARCIS (Netherlands)

    Drijfhout, W.J.; Kemper, R.H.A.; Meerlo, P.; Koolhaas, J.M.; Grol, C.J.; Westerink, B.H.C.


    The present study describes the effects of implantation of microdialysis probes on temperature and activity rhythms of the rat, measured with a telemetry system. For comparison two widely used types of microdialysis probes were investigated, a transcerebral probe, inserted into the pineal gland and

  18. Efficacy and safety of sustained-delivery fluocinolone acetonide intravitreal implant in patients with chronic diabetic macular edema insufficiently responsive to available therapies: a real-life study

    Directory of Open Access Journals (Sweden)

    Massin P


    Full Text Available Pascale Massin, Ali Erginay, Bénédicte Dupas, Aude Couturier, Ramin Tadayoni Ophthalmology Department, Lariboisière Hospital, Paris, France Purpose: To evaluate the efficacy and safety of sustained-delivery fluocinolone acetonide (FAc intravitreal implant for diabetic macular edema (DME. Patients and methods: Prospective study in patients with DME insufficiently responsive to laser and anti-vascular endothelial growth factor (anti-VEGF. Patients with history of rise of intraocular pressure after intravitreal corticosteroids were excluded. Results: The macular edema rapidly decreased both in group 1 (prior laser only; n=7 eyes and group 2 (prior laser and ≥3 monthly anti-VEGF therapy; n=10 eyes and central subfield thickness was reduced by -299 µm (P=0.008 and -251 µm (P=0.016 at 12 months, respectively. Mean area under the curve from baseline to last value for pseudophakic eyes was +4.2 letters in group 1 and +9.5 letters in group 2. Overall, the FAc implant was well tolerated. Conclusion: This prospective study confirms the efficacy of the FAc implant in DME patients insufficiently responsive to laser and anti-VEGF. Moreover, with a careful patient selection, our safety results would support an earlier use of FAc in the DME treatment pathway. Keywords: diabetic macular edema, intravitreal corticosteroid, corticosteroid intravitreal implant, fluocinolone acetonide

  19. An electrocorticographic electrode array for simultaneous recording from medial, lateral, and intrasulcal surface of the cortex in macaque monkeys. (United States)

    Fukushima, Makoto; Saunders, Richard C; Mullarkey, Matthew; Doyle, Alexandra M; Mishkin, Mortimer; Fujii, Naotaka


    Electrocorticography (ECoG) permits recording electrical field potentials with high spatiotemporal resolution over a large part of the cerebral cortex. Application of chronically implanted ECoG arrays in animal models provides an opportunity to investigate global spatiotemporal neural patterns and functional connectivity systematically under various experimental conditions. Although ECoG is conventionally used to cover the gyral cortical surface, recent studies have shown the feasibility of intrasulcal ECoG recordings in macaque monkeys. Here we developed a new ECoG array to record neural activity simultaneously from much of the medial and lateral cortical surface of a single hemisphere, together with the supratemporal plane (STP) of the lateral sulcus in macaque monkeys. The ECoG array consisted of 256 electrodes for bipolar recording at 128 sites. We successfully implanted the ECoG array in the left hemisphere of three rhesus monkeys. The electrodes in the auditory and visual cortex detected robust event related potentials to auditory and visual stimuli, respectively. Bipolar recording from adjacent electrode pairs effectively eliminated chewing artifacts evident in monopolar recording, demonstrating the advantage of using the ECoG array under conditions that generate significant movement artifacts. Compared with bipolar ECoG arrays previously developed for macaque monkeys, this array significantly expands the number of cortical target areas in gyral and intralsulcal cortex. This new ECoG array provides an opportunity to investigate global network interactions among gyral and intrasulcal cortical areas. Published by Elsevier B.V.

  20. Assessing the Electrode-Neuron Interface with the Electrically Evoked Compound Action Potential, Electrode Position, and Behavioral Thresholds. (United States)

    DeVries, Lindsay; Scheperle, Rachel; Bierer, Julie Arenberg


    Variability in speech perception scores among cochlear implant listeners may largely reflect the variable efficacy of implant electrodes to convey stimulus information to the auditory nerve. In the present study, three metrics were applied to assess the quality of the electrode-neuron interface of individual cochlear implant channels: the electrically evoked compound action potential (ECAP), the estimation of electrode position using computerized tomography (CT), and behavioral thresholds using focused stimulation. The primary motivation of this approach is to evaluate the ECAP as a site-specific measure of the electrode-neuron interface in the context of two peripheral factors that likely contribute to degraded perception: large electrode-to-modiolus distance and reduced neural density. Ten unilaterally implanted adults with Advanced Bionics HiRes90k devices participated. ECAPs were elicited with monopolar stimulation within a forward-masking paradigm to construct channel interaction functions (CIF), behavioral thresholds were obtained with quadrupolar (sQP) stimulation, and data from imaging provided estimates of electrode-to-modiolus distance and scalar location (scala tympani (ST), intermediate, or scala vestibuli (SV)) for each electrode. The width of the ECAP CIF was positively correlated with electrode-to-modiolus distance; both of these measures were also influenced by scalar position. The ECAP peak amplitude was negatively correlated with behavioral thresholds. Moreover, subjects with low behavioral thresholds and large ECAP amplitudes, averaged across electrodes, tended to have higher speech perception scores. These results suggest a potential clinical role for the ECAP in the objective assessment of individual cochlear implant channels, with the potential to improve speech perception outcomes.

  1. Labyrinthectomy with cochlear implantation. (United States)

    Zwolan, T A; Shepard, N T; Niparko, J K


    Numerous reports indicate that the cochlea remains responsive to electrical stimulation following labyrinthectomy. We report a case of a 47-year-old woman with a severe to profound sensorineural hearing loss from birth, who developed episodic vertigo with symptoms suggestive of delayed onset endolymphatic hydrops. Following 8 months of failed medical and vestibular rehabilitation management, a right-sided labyrinthectomy combined with cochlear implantation was performed without complication. Postoperatively the patient was free of vertigo. Attempts to activate the patient's device between 4 to 12 weeks after surgery were unsuccessful as stimulation of the electrodes resulted in discomfort. However, all 20 electrodes elicited comfortable hearing sensations 16 weeks postsurgery. One year after the successful activation, the patient demonstrated improved sound awareness and speech recognition with the implant when compared with preoperative performance with a hearing aid. This case study suggests that electrical detection thresholds with prosthetic stimulation may be unstable in the recently labyrinthectomized ear but supports and extends prior observations of preserved cochlear responsiveness after labyrinthectomy.

  2. Ion implantation

    International Nuclear Information System (INIS)

    Johnson, E.


    It is the purpose of the present paper to give a review of surface alloy processing by ion implantation. However, rather than covering this vast subject as a whole, the survey is confined to a presentation of the microstructures that can be found in metal surfaces after ion implantation. The presentation is limited to alloys processed by ion implantation proper, that is to processes in which the alloy compositions are altered significantly by direct injection of the implanted ions. The review is introduced by a presentation of the processes taking place during development of the fundamental event in ion implantation - the collision cascade, followed by a summary of the various microstructures which can be formed after ion implantation into metals. This is compared with the variability of microstructures that can be achieved by rapid solidification processing. The microstructures are subsequently discussed in the light of the processes which, as the implantations proceed, take place during and immediately after formation of the individual collision cascades. These collision cascades define the volumes inside which individual ions are slowed down in the implanted targets. They are not only centres for vigorous agitation but also the sources for formation of excess concentrations of point defects, which will influence development of particular microstructures. A final section presents a selection of specific structures which have been observed in different alloy systems. (orig./GSCH)

  3. Implantable Nanosensors: Towards Continuous Physiologic Monitoring


    Ruckh, Timothy T.; Clark', Heather A.


    Continuous physiologic monitoring would add greatly to both home and clinical medical treatment for chronic conditions. Implantable nanosensors are a promising platform for designing continuous monitoring systems. This feature reviews design considerations and current approaches towards such devices.

  4. Sirviendo a los estudiantes sordos que tienen Los implantes cocleares. Hoja de consejos de PEPNet (Serving Deaf Students Who Have Cochlear Implants. PEPNet Tipsheet) (United States)

    Clark, Catherine


    This version of "Serving Deaf Students Who Have Cochlear Implants. PEPNet Tipsheet," written in Spanish, describes how cochlear implants (CIs) work. CIs are complex electronic devices surgically implanted under the skin behind the ear. These devices utilize electrodes placed in the inner ear (the cochlea) to stimulate the auditory nerve of…

  5. Evaluation and use of regenerative multi electrode interfaces in peripheral nerves (United States)

    Desai, Vidhi

    Peripheral nerves offer unique accessibility to the innate motor and sensory pathways that can be interfaced with high degree of selectivity for intuitive and bidirectional control of advanced upper extremity prosthetic limbs. Several peripheral nerve interfaces have been proposed and investigated over the last few decades with significant progress made in the area of sensory feedback. However, clinical translation still remains a formidable challenge due to the lack of long term recordings. Prominent causes include signal degradation, eventual interface failures, and lack of specificity in the low amplitude nerve signals. This dissertation evaluates the capabilities of the newly developed Regenerative Multi-electrode Interface (REMI) by the characterization of signal quality progression, the identification of interfaced axon types, and the demonstration of "functional linkage" between acquired signals and target organs. Chapter 2 details the chronic recording of high quality signals from REMI in sciatic nerve which remained stable over a 120 day implantation period indicative of minimal ongoing tissue response with no detrimental effects on the recording ability. The dominant cause of failures was attributable to abiotic factors pertaining to the connector/wire breakage, observed in 76% of REMI implants. Also, the REMI implants had 20% higher success rate and significantly larger Signal to Noise Ratio (SNR) in comparison to the Utah Slanted Electrode Array (USEA). Chapter 3 describes the successful feasibility of interfacing with motor and sensory axons by REMI implantation in the tibial and sural fascicles of the sciatic nerve. A characteristic sampling bias towards recording signals from medium-to-large diameter axons that are primarily involved in mechanoception and proprioception sensory functions was uncovered. Specific bursting units (Inter Spike Interval of 30-70ms) were observed most frequently from the tibial fascicle during bipedal locomotion. Chapter 4

  6. Multi-scale, multi-modal analysis uncovers complex relationship at the brain tissue-implant neural interface: new emphasis on the biological interface (United States)

    Michelson, Nicholas J.; Vazquez, Alberto L.; Eles, James R.; Salatino, Joseph W.; Purcell, Erin K.; Williams, Jordan J.; Cui, X. Tracy; Kozai, Takashi D. Y.


    Objective. Implantable neural electrode devices are important tools for neuroscience research and have an increasing range of clinical applications. However, the intricacies of the biological response after implantation, and their ultimate impact on recording performance, remain challenging to elucidate. Establishing a relationship between the neurobiology and chronic recording performance is confounded by technical challenges related to traditional electrophysiological, material, and histological limitations. This can greatly impact the interpretations of results pertaining to device performance and tissue health surrounding the implant. Approach. In this work, electrophysiological activity and immunohistological analysis are compared after controlling for motion artifacts, quiescent neuronal activity, and material failure of devices in order to better understand the relationship between histology and electrophysiological outcomes. Main results. Even after carefully accounting for these factors, the presence of viable neurons and lack of glial scarring does not convey single unit recording performance. Significance. To better understand the biological factors influencing neural activity, detailed cellular and molecular tissue responses were examined. Decreases in neural activity and blood oxygenation in the tissue surrounding the implant, shift in expression levels of vesicular transporter proteins and ion channels, axon and myelin injury, and interrupted blood flow in nearby capillaries can impact neural activity around implanted neural interfaces. Combined, these tissue changes highlight the need for more comprehensive, basic science research to elucidate the relationship between biology and chronic electrophysiology performance in order to advance neural technologies.

  7. Creating virtual electrodes with 2D current steering (United States)

    Spencer, Thomas C.; Fallon, James B.; Shivdasani, Mohit N.


    Objective. Current steering techniques have shown promise in retinal prostheses as a way to increase the number of distinct percepts elicitable without increasing the number of implanted electrodes. Previously, it has been shown that ‘virtual’ electrodes can be created between simultaneously stimulated electrode pairs, producing unique cortical response patterns. This study investigated whether virtual electrodes could be created using 2D current steering, and whether these virtual electrodes can produce cortical responses with predictable spatial characteristics. Approach. Normally-sighted eyes of seven adult anaesthetised cats were implanted with a 42-channel electrode array in the suprachoroidal space and multi-unit neural activity was recorded from the visual cortex. Stimuli were delivered to individual physical electrodes, or electrodes grouped into triangular, rectangular, and hexagonal arrangements. Varying proportions of charge were applied to each electrode in a group to ‘steer’ current and create virtual electrodes. The centroids of cortical responses to stimulation of virtual electrodes were compared to those evoked by stimulation of single physical electrodes. Main results. Responses to stimulation of groups of up to six electrodes with equal ratios of charge on each electrode resulted in cortical activation patterns that were similar to those elicited by the central physical electrode (centroids: RM ANOVA on ranks, p  >  0.05 neural spread: one-way ANOVA on Ranks, p  >  0.05). We were also able to steer the centroid of activation towards the direction of any of the electrodes of the group by applying a greater charge to that electrode, but the movement in the centroid was not found to be significant. Significance. The results suggest that current steering is possible in two dimensions between up to at least six electrodes, indicating it may be possible to increase the number of percepts in patients without increasing the number


    Directory of Open Access Journals (Sweden)

    A. V. Starokha


    Full Text Available Current paper describes an experience of cochlear implantation in elderly. Cochlear implantation has become a widely accepted intervention in the treatment of individuals with severe-to-profound sensorineural hearing loss. Cochlear implants are now accepted as a standard of care to optimize hearing and subsequent speech development in children and adults with deafness. But cochlear implantation affects not only hearing abilities, speech perception and speech production; it also has an outstanding impact on the social life, activities and self-esteem of each patient. The aim of this study was to evaluate the cochlear implantation efficacy in elderly with severe to profound sensorineural hearing loss. There were 5 patients under our observation. Surgery was performed according to traditional posterior tympanotomy and cochleostomy for cochlear implant electrode insertion for all observed patients. The study was conducted in two stages: before speech processor’s activation and 3 months later. Pure tone free field audiometry was performed to each patient to assess the efficiency of cochlear implantation in dynamics. The aim of the study was also to evaluate quality of life in elderly with severe to profound sensorineural hearing loss after unilateral cochlear implantation. Each patient underwent questioning with 36 Item Short Form Health Survey (SF-36. SF-36 is a set of generic, coherent, and easily administered quality-of-life measures. The SF-36 consists of eight scaled scores, which are the weighted sums of the questions in their section. Each scale is directly transformed into a 0-100 scale on the assumption that each question carries equal weight. The eight sections are: physical functioning; physical role functioning; emotional role functioning; vitality; emotional well-being; social role functioning; bodily pain; general health perceptions. Our results demonstrate that cochlear implantation in elderly consistently improved quality of life

  9. The diagnostic value of [{sup 18}F]FDG PET for the detection of chronic osteomyelitis and implant-associated infection

    Energy Technology Data Exchange (ETDEWEB)

    Wenter, Vera; Albert, Nathalie L.; Lehner, Sebastian; Fendler, Wolfgang P.; Bartenstein, Peter [University of Munich, Department of Nuclear Medicine, Munich (Germany); Mueller, Jan-Phillip; Friederichs, Jan; Militz, Matthias; Hungerer, Sven [BG Trauma Center Murnau, Murnau (Germany); PMU Salzburg, Salzburg (Austria); Cyran, Clemens C. [University of Munich, Institute for Clinical Radiology, Munich (Germany); Hacker, Marcus [University of Vienna, Department of Nuclear Medicine, Vienna (Austria); Department of Biomedical Imaging and Image-guided Therapy, Vienna (Austria)


    The diagnosis of osteomyelitis and implant-associated infections in patients with nonspecific laboratory or radiological findings is often unsatisfactory. We retrospectively evaluated the contributions of [{sup 18}F]FDG PET and [{sup 18}F]FDG PET/CT to the diagnosis of osteomyelitis and implant-associated infections, enabling timely and appropriate decision-making for further therapy options. [{sup 18}F]FDG PET or PET/CT was performed in 215 patients with suspected osteomyelitis or implant-associated infections between 2000 and 2013. We assessed the diagnostic accuracy of both modalities together and separately with reference to intraoperative microbial findings, with a mean clinical follow-up of 69 ± 49 months. Infections were diagnosed clinically in 101 of the 215 patients. PET and PET/CT scans revealed 87 true-positive, 76 true-negative, 38 false-positive, and 14 false-negative results, indicating a sensitivity of 86 %, a specificity of 67 %, a positive predictive value (PPV) of 70 %, a negative predictive value (NPV) of 84 % and an accuracy of 76 %. The sensitivity of PET/CT was 88 %, but specificity, PPV, NPV and accuracy (76 %, 76 %, 89 % and 82 %, respectively) were higher than those of stand-alone PET. [{sup 18}F]FDG PET is able to identify with high sensitivity the presence of osteomyelitis in orthopaedic surgery patients with nonspecific clinical symptoms of infection. (orig.)

  10. Implantable enzyme amperometric biosensors. (United States)

    Kotanen, Christian N; Moussy, Francis Gabriel; Carrara, Sandro; Guiseppi-Elie, Anthony


    The implantable enzyme amperometric biosensor continues as the dominant in vivo format for the detection, monitoring and reporting of biochemical analytes related to a wide range of pathologies. Widely used in animal studies, there is increasing emphasis on their use in diabetes care and management, the management of trauma-associated hemorrhage and in critical care monitoring by intensivists in the ICU. These frontier opportunities demand continuous indwelling performance for up to several years, well in excess of the currently approved seven days. This review outlines the many challenges to successful deployment of chronically implantable amperometric enzyme biosensors and emphasizes the emerging technological approaches in their continued development. The foreign body response plays a prominent role in implantable biotransducer failure. Topics considering the approaches to mitigate the inflammatory response, use of biomimetic chemistries, nanostructured topographies, drug eluting constructs, and tissue-to-device interface modulus matching are reviewed. Similarly, factors that influence biotransducer performance such as enzyme stability, substrate interference, mediator selection and calibration are reviewed. For the biosensor system, the opportunities and challenges of integration, guided by footprint requirements, the limitations of mixed signal electronics, and power requirements, has produced three systems approaches. The potential is great. However, integration along the multiple length scales needed to address fundamental issues and integration across the diverse disciplines needed to achieve success of these highly integrated systems, continues to be a challenge in the development and deployment of implantable amperometric enzyme biosensor systems. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Middle ear implants

    Directory of Open Access Journals (Sweden)

    K S Gangadhara Somayaji


    Full Text Available Hearing loss is becoming more common in the society living in cities with lot of background noise around, and frequent use of gadgets like mobile phones, MP3s, and IPods are adding to the problem. The loss may involve the conductive or perceptive pathway. Majority of the patients with conductive hearing loss will revert back to normal hearing levels with medical and/or surgical treatment. However, in sensorineural hearing loss, many factors are involved in the management. Though traditionally hearing aids in various forms are the most commonly used modality in managing these patients, there are some drawbacks associated with them. Implantable middle ear amplifiers represent the most recent breakthrough in the management of hearing loss. Middle ear implants are surgically implanted electronic devices that aim to correct hearing loss by stimulating the ossicular chain or middle ear. Of late, they are also being used in the management of congenital conductive hearing loss and certain cases of chronic otitis media with residual hearing loss. The article aims to provide general information about the technology, indications and contraindications, selection of candidates, available systems, and advantages of middle ear implants. (MEI

  12. Carmustine Implant (United States)

    ... works by slowing or stopping the growth of cancer cells in your body. ... are pregnant, plan to become pregnant, or are breast-feeding. If you become pregnant while receiving carmustine implant, call your doctor. Carmustine may harm the fetus.

  13. Cochlear Implants (United States)

    ... NIDCD A cochlear implant is a small, complex electronic device that can help to provide a sense ... Hearing Aids Retinitis Pigmentosa - National Eye Institute Telecommunications Relay Services Usher Syndrome Your Baby's Hearing Screening News ...

  14. Braided multi-electrode probes: mechanical compliance characteristics and recordings from spinal cords (United States)

    Kim, Taegyo; Branner, Almut; Gulati, Tanuj; Giszter, Simon F.


    Objective. To test a novel braided multi-electrode probe design with compliance exceeding that of a 50 µm microwire, thus reducing micromotion- and macromotion-induced tissue stress. Approach. We use up to 24 ultra-fine wires interwoven into a tubular braid to obtain a highly flexible multi-electrode probe. The tether-portion wires are simply non-braided extensions of the braid structure, allowing the microprobe to follow gross neural tissue movements. Mechanical calculation and direct measurements evaluated bending stiffness and axial compression forces in the probe and tether system. These were compared to 50 µm nichrome microwire standards. Recording tests were performed in decerebrate animals. Main results. Mechanical bending tests on braids comprising 9.6 or 12.7 µm nichrome wires showed that implants (braided portions) had 4 to 21 times better mechanical compliance than a single 50 µm wire and non-braided tethers were 6 to 96 times better. Braided microprobes yielded robust neural recordings from animals' spinal cords throughout cord motions. Significance. Microwire electrode arrays that can record and withstand tissue micro- and macromotion of spinal cord tissues are demonstrated. This technology may provide a stable chronic neural interface into spinal cords of freely moving animals, is extensible to various applications, and may reduce mechanical tissue stress.

  15. Neurotrophic treatment of the degenerating auditory nerve; cochlear implants in deafened guinea pigs

    NARCIS (Netherlands)

    Agterberg, M.J.H.


    To date, the cochlear implant is the most successful sensorineural prosthesis. The device consists of a small array with a number of electrodes implanted in the cochlea of profoundly hearing impaired people. Some people with an implant are able to use the telephone. Unfortunately, others hardly

  16. Selenium implantation in epitaxial gallium arsenide layers

    International Nuclear Information System (INIS)

    Inada, T.; Tokunaga, K.; Taka, S.; Yuge, Y.; Kohzu, H.


    Selenium implantation at room temperature in S-doped epitaxial GaAs layers as a means of the formation of n + layers has been investigated. Doping profiles for Se-implanted layers have been examined by a C-V technique and/or a differential Hall effect method. It has been shown that n + layers with a maximum carrier concentration of approx. equal to1.5 x 10 18 cm -3 can be formed by implantation followed by a 15 min annealing at 950 0 C. Contact resistance of ohmic electrodes is reduced by use of the Se-implanted n + layers, resulting in the improvement on GaAs FET performance. Measured minimum noise figure of the Se-implanted GaAs FETs is 0.74 dB at 4 GHz. (orig.)

  17. Implant materials modified by colloids

    Directory of Open Access Journals (Sweden)

    Zboromirska-Wnukiewicz Beata


    Full Text Available Recent advances in general medicine led to the development of biomaterials. Implant material should be characterized by a high biocompatibility to the tissue and appropriate functionality, i.e. to have high mechanical and electrical strength and be stable in an electrolyte environment – these are the most important properties of bioceramic materials. Considerations of biomaterials design embrace also electrical properties occurring on the implant-body fluid interface and consequently the electrokinetic potential, which can be altered by modifying the surface of the implant. In this work, the surface of the implants was modified to decrease the risk of infection by using metal colloids. Nanocolloids were obtained using different chemical and electrical methods. It was found that the colloids obtained by physical and electrical methods are more stable than colloids obtained by chemical route. In this work the surface of modified corundum implants was investigated. The implant modified by nanosilver, obtained by electrical method was selected. The in vivo research on animals was carried out. Clinical observations showed that the implants with modified surface could be applied to wounds caused by atherosclerotic skeleton, for curing the chronic and bacterial inflammations as well as for skeletal reconstruction surgery.

  18. A questionnaire-based study on patients' experiences with rechargeable implanted programmable generators for spinal cord stimulation to treat chronic lumbar spondylosis pain. (United States)

    McAuley, John; Farah, Nima; van Gröningen, Richard; Green, Christopher


    The latest generation of rechargeable implantable programmable generators (IPGs) for spinal cord stimulation may greatly extend IPG lifespan compared with previous nonrechargeable devices. This study explores patients' experiences with these devices. Twenty-five patients attending the Department of Neurostimulation, Royal London Hospital, who were implanted with a rechargeable IPG (SC-1110; Boston Scientific, Minneapolis, MN, USA) to provide pain relief from post-surgical lumbosacral spondylosis were surveyed using a questionnaire. Patients reported a mean (SD) benefit from stimulation of 43.7% (32.6%). On a 1 (worst) to 5 (best) scale, the median score was 5 for ease of recharging. Eight patients who had previously had nonrechargeable IPGs felt the rechargeable system was better (p= 0.0143). A particular issue with nonrechargeable batteries was that, while patients considered 5 years an acceptable interval for battery replacements and the procedure itself not too inconvenient, they felt an acceptable wait for replacement after failure to be only 1 week, much shorter than actual waiting times. Patients found the rechargeable IPG easy to recharge and those who had had previous experience with nonrechargeable devices preferred using the rechargeable device. Its benefits in terms of pain relief fell within the range expected from previous studies using nonrechargeable batteries. The main disadvantage of nonrechargeable devices as reported by the patients in this study was concern over the length of time they would have to wait without pain relief between battery replacements. © 2012 International Neuromodulation Society.

  19. Modiolus-Hugging Intracochlear Electrode Array with Shape Memory Alloy

    Directory of Open Access Journals (Sweden)

    Kyou Sik Min


    Full Text Available In the cochlear implant system, the distance between spiral ganglia and the electrodes within the volume of the scala tympani cavity significantly affects the efficiency of the electrical stimulation in terms of the threshold current level and spatial selectivity. Because the spiral ganglia are situated inside the modiolus, the central axis of the cochlea, it is desirable that the electrode array hugs the modiolus to minimize the distance between the electrodes and the ganglia. In the present study, we propose a shape-memory-alloy-(SMA- embedded intracochlear electrode which gives a straight electrode a curved modiolus-hugging shape using the restoration force of the SMA as triggered by resistive heating after insertion into the cochlea. An eight-channel ball-type electrode array is fabricated with an embedded titanium-nickel SMA backbone wire. It is demonstrated that the electrode array changes its shape in a transparent plastic human cochlear model. To verify the safe insertion of the electrode array into the human cochlea, the contact pressures during insertion at the electrode tip and the contact pressures over the electrode length after insertion were calculated using a 3D finite element analysis. The results indicate that the SMA-embedded electrode is functionally and mechanically feasible for clinical applications.

  20. Implantation, recoil implantation, and sputtering

    International Nuclear Information System (INIS)

    Kelly, R.


    The implantation and sputtering mechanisms which are relevant to ion bombardment of surfaces are described. These are: collision, thermal, electronic and photon-induced sputtering. 135 refs.; 36 figs.; 9 tabs

  1. A Fully Implantable Stimulator With Wireless Power and Data Transmission for Experimental Investigation of Epidural Spinal Cord Stimulation. (United States)

    Xu, Qi; Hu, Dingyin; Duan, Bingyu; He, Jiping


    Epidural spinal cord stimulation (ESCS) combined with partial weight-bearing therapy (PWBT) has been shown to facilitate recovery of functional walking for individuals after spinal cord injury (SCI). The investigation of neural mechanisms of recovery from SCI under this treatment has been conducted broadly in rodent models, yet a suitable ESCS system is still unavailable. This paper describes a practical, programmable, and fully implantable stimulator for laboratory research on rats to explore fundamental neurophysiological principles for functional recovery after SCI. The ESCS system is composed of a personal digital assistant (PDA), an external controller, an implantable pulse generator (IPG), lead extension, and stimulating electrodes. The stimulation parameters can be programmed and adjusted through a graphical user interface on the PDA. The external controller is placed on the rat back and communicates with the PDA via radio-frequency (RF) telemetry. An RF carrier from the class-E power amplifier in the external controller provides both data and power for the IPG through an inductive link. The IPG is built around a microcontroller unit to generate voltage-regulated pulses delivered to the bipolar electrode for ESCS in rats. The encapsulated IPG measures 22 mm × 23 mm × 7 mm with a mass of  ∼  3.78 g. This fully implantable batteryless stimulator provided a simplified and efficient method to carry out chronic experiments in untethered animals for medical electro-neurological research.

  2. High performance 3-coil wireless power transfer system for the 512-electrode epiretinal prosthesis. (United States)

    Zhao, Yu; Nandra, Mandheerej; Yu, Chia-Chen; Tai, Yu-chong


    The next-generation retinal prostheses feature high image resolution and chronic implantation. These features demand the delivery of power as high as 100 mW to be wireless and efficient. A common solution is the 2-coil inductive power link, used by current retinal prostheses. This power link tends to include a larger-size extraocular receiver coil coupled to the external transmitter coil, and the receiver coil is connected to the intraocular electrodes through a trans-sclera trans-choroid cable. In the long-term implantation of the device, the cable may cause hypotony (low intraocular pressure) and infection. However, when a 2-coil system is constructed from a small-size intraocular receiver coil, the efficiency drops drastically which may induce over heat dissipation and electromagnetic field exposure. Our previous 2-coil system achieved only 7% power transfer. This paper presents a fully intraocular and highly efficient wireless power transfer system, by introducing another inductive coupling link to bypass the trans-sclera trans-choroid cable. With the specific equivalent load of our customized 512-electrode stimulator, the current 3-coil inductive link was measured to have the overall power transfer efficiency around 36%, with 1-inch separation in saline. The high efficiency will favorably reduce the heat dissipation and electromagnetic field exposure to surrounding human tissues. The effect of the eyeball rotation on the power transfer efficiency was investigated as well. The efficiency can still maintain 14.7% with left and right deflection of 30 degree during normal use. The surgical procedure for the coils' implantation into the porcine eye was also demonstrated.

  3. Investigation of a new electrode array technology for a central auditory prosthesis.

    Directory of Open Access Journals (Sweden)

    Roger Calixto

    Full Text Available Ongoing clinical studies on patients recently implanted with the auditory midbrain implant (AMI into the inferior colliculus (IC for hearing restoration have shown that these patients do not achieve performance levels comparable to cochlear implant patients. The AMI consists of a single-shank array (20 electrodes for stimulation along the tonotopic axis of the IC. Recent findings suggest that one major limitation in AMI performance is the inability to sufficiently activate neurons across the three-dimensional (3-D IC. Unfortunately, there are no currently available 3-D array technologies that can be used for clinical applications. More recently, there has been a new initiative by the European Commission to fund and develop 3-D chronic electrode arrays for science and clinical applications through the NeuroProbes project that can overcome the bulkiness and limited 3-D configurations of currently available array technologies. As part of the NeuroProbes initiative, we investigated whether their new array technology could be potentially used for future AMI patients. Since the NeuroProbes technology had not yet been tested for electrical stimulation in an in vivo animal preparation, we performed experiments in ketamine-anesthetized guinea pigs in which we inserted and stimulated a NeuroProbes array within the IC and recorded the corresponding neural activation within the auditory cortex. We used 2-D arrays for this initial feasibility study since they were already available and were sufficient to access the IC and also demonstrate effective activation of the central auditory system. Based on these encouraging results and the ability to develop customized 3-D arrays with the NeuroProbes technology, we can further investigate different stimulation patterns across the ICC to improve AMI performance.

  4. Perceptual Interactions Between Electrodes Using Focused and Monopolar Cochlear Stimulation

    DEFF Research Database (Denmark)

    Marozeau, Jeremy; McDermott, Hugh J.; Swanson, Brett A.


    -matched sequential and simultaneous stimuli composed of 2 spatially separated pulse trains was measured as function of the electrode separation. Results indicated a strong current-summation interaction for simultaneous stimuli in the MP mode for separations up to at least 4.8 mm. No significant interaction was found......In today’s cochlear implant (CI) systems, the monopolar (MP) electrode configuration is the most commonly used stimulation mode, requiring only a single current source. However, with an implant that will allow simultaneous activation of multiple independent current sources, it is possible...

  5. Fractal Interfaces for Stimulating and Recording Neural Implants (United States)

    Watterson, William James

    From investigating movement in an insect to deciphering cognition in a human brain to treating Parkinson's disease, hearing loss, or even blindness, electronic implants are an essential tool for understanding the brain and treating neural diseases. Currently, the stimulating and recording resolution of these implants remains low. For instance, they can record all the neuron activity associated with movement in an insect, but are quite far from recording, at an individual neuron resolution, the large volumes of brain tissue associated with cognition. Likewise, there is remarkable success in the cochlear implant restoring hearing due to the relatively simple anatomy of the auditory nerves, but are failing to restore vision to the blind due to poor signal fidelity and transmission in stimulating the more complex anatomy of the visual nerves. The critically important research needed to improve the resolution of these implants is to optimize the neuron-electrode interface. This thesis explores geometrical and material modifications to both stimulating and recording electrodes which can improve the neuron-electrode interface. First, we introduce a fractal electrode geometry which radically improves the restored visual acuity achieved by retinal implants and leads to safe, long-term operation of the implant. Next, we demonstrate excellent neuron survival and neurite outgrowth on carbon nanotube electrodes, thus providing a safe biomaterial which forms a strong connection between the electrode and neurons. Additional preliminary evidence suggests carbon nanotubes patterned into a fractal geometry will provide further benefits in improving the electrode-neuron interface. Finally, we propose a novel implant based off field effect transistor technology which utilizes an interconnecting fractal network of semiconducting carbon nanotubes to record from thousands of neurons simutaneously at an individual neuron resolution. Taken together, these improvements have the potential to

  6. Speech perception with mono- and quadrupolar electrode configurations: a crossover study.

    NARCIS (Netherlands)

    Mens, L.H.M.; Berenstein, C.K.


    OBJECTIVE: To study the effect of two multipolar electrode configurations on speech perception, pitch perception, and the intracochlear electrical field. STUDY DESIGN: Crossover design; within subject. SETTING: Tertiary referral center. PATIENTS: Eight experienced adult cochlear implant users.

  7. Hip Implant Systems (United States)

    ... Implants and Prosthetics Metal-on-Metal Hip Implants Hip Implants Share Tweet Linkedin Pin it More sharing options Linkedin Pin it Email Print Hip implants are medical devices intended to restore mobility ...

  8. Breast reconstruction - implants (United States)

    Breast implants surgery; Mastectomy - breast reconstruction with implants; Breast cancer - breast reconstruction with implants ... harder to find a tumor if your breast cancer comes back. Getting breast implants does not take as long as breast reconstruction ...

  9. Cochlear implant revision surgeries in children. (United States)

    Amaral, Maria Stella Arantes do; Reis, Ana Cláudia Mirândola B; Massuda, Eduardo T; Hyppolito, Miguel Angelo


    The surgery during which the cochlear implant internal device is implanted is not entirely free of risks and may produce problems that will require revision surgeries. To verify the indications for cochlear implantation revision surgery for the cochlear implant internal device, its effectiveness and its correlation with certain variables related to language and hearing. A retrospective study of patients under 18 years submitted to cochlear implant Surgery from 2004 to 2015 in a public hospital in Brazil. Data collected were: age at the time of implantation, gender, etiology of the hearing loss, audiological and oral language characteristics of each patient before and after Cochlear Implant surgery and any need for surgical revision and the reason for it. Two hundred and sixty-five surgeries were performed in 236 patients. Eight patients received a bilateral cochlear implant and 10 patients required revision surgery. Thirty-two surgeries were necessary for these 10 children (1 bilateral cochlear implant), of which 21 were revision surgeries. In 2 children, cochlear implant removal was necessary, without reimplantation, one with cochlear malformation due to incomplete partition type I and another due to trauma. With respect to the cause for revision surgery, of the 8 children who were successfully reimplanted, four had cochlear calcification following meningitis, one followed trauma, one exhibited a facial nerve malformation, one experienced a failure of the cochlear implant internal device and one revision surgery was necessary because the electrode was twisted. The incidence of the cochlear implant revision surgery was 4.23%. The period following the revision surgeries revealed an improvement in the subject's hearing and language performance, indicating that these surgeries are valid in most cases. Copyright © 2018 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  10. High performance cermet electrodes (United States)

    Isenberg, Arnold O.; Zymboly, Gregory E.


    Disclosed is a method of increasing the operating cell voltage of a solid oxide electrochemical cell having metal electrode particles in contact with an oxygen-transporting ceramic electrolyte. The metal electrode is heated with the cell, and oxygen is passed through the oxygen-transporting ceramic electrolyte to the surface of the metal electrode particles so that the metal electrode particles are oxidized to form a metal oxide layer between the metal electrode particles and the electrolyte. The metal oxide layer is then reduced to form porous metal between the metal electrode particles and the ceramic electrolyte.

  11. Long-term stability of intracortical recordings using perforated and arrayed Parylene sheath electrodes (United States)

    Hara, Seth A.; Kim, Brian J.; Kuo, Jonathan T. W.; Lee, Curtis D.; Meng, Ellis; Pikov, Victor


    Objective. Acquisition of reliable and robust neural recordings with intracortical neural probes is a persistent challenge in the field of neuroprosthetics. We developed a multielectrode array technology to address chronic intracortical recording reliability and present in vivo recording results. Approach. The 2 × 2 Parylene sheath electrode array (PSEA) was microfabricated and constructed from only Parylene C and platinum. The probe includes a novel three-dimensional sheath structure, perforations, and bioactive coatings that improve tissue integration and manage immune response. Coatings were applied using a sequential dip-coating method that provided coverage over the entire probe surface and interior of the sheath structure. A sharp probe tip taper facilitated insertion with minimal trauma. Fabricated probes were subject to examination by optical and electron microscopy and electrochemical testing prior to implantation. Main results. 1 × 2 arrays were successfully fabricated on wafer and then packaged together to produce 2 × 2 arrays. Then, probes having electrode sites with adequate electrochemical properties were selected. A subset of arrays was treated with bioactive coatings to encourage neuronal growth and suppress inflammation and another subset of arrays was implanted in conjunction with a virally mediated expression of Caveolin-1. Arrays were attached to a custom-made insertion shuttle to facilitate precise insertion into the rat motor cortex. Stable electrophysiological recordings were obtained during the period of implantation up to 12 months. Immunohistochemical evaluation of cortical tissue around individual probes indicated a strong correlation between the electrophysiological performance of the probes and histologically observable proximity of neurons and dendritic sprouting. Significance. The PSEA demonstrates the scalability of sheath electrode technology and provides higher electrode count and density to access a greater volume for recording

  12. Implantação estereotáxica de eletrodos profundos por ressonância magnética para cirurgia de epilepsia MRI-guided stereotactic implantation of depth electrodes in epilepsy surgery

    Directory of Open Access Journals (Sweden)



    Full Text Available Apresentamos o caso de uma paciente com epilepsia refratária ao tratamento medicamentoso e submetida à monitorização em vídeo-eletrencefalografia por eletrodos de profundidade intracerebrais. A história, o exame clínico, a ressonância magnética (RM, a vídeo-eletrencefalografia e o estudo neuropsicológico não foram suficientes para a determinação da área cerebral de origem das crises convulsivas. Eletrodos de profundidade intracerebrais colocados por estereotaxia guiada por RM possibilitaram o registro de forma muito clara da atividade epileptiforme, determinando com precisão a área cerebral epileptogênica a ser removida por cirurgia. Após lobectomia temporal anterior direita com amígdalo-hipocampectomia realizada há três meses, a paciente permanece sem crises convulsivas. Segundo informações obtidas durante o último Congresso da Liga Brasileira de Epilepsia, esta é a primeira cirurgia estereotáxica para colocação de eletrodos de profundidade intracerebrais em epilepsia no Brasil.We present the case of a 40-year-old woman with refractory epilepsy since aged 18, who was submitted to video-EEG monitoring with intracerebral depth electrodes. The clinical history and examination, magnetic resonance image (MRI, video-EEG and neuropsychological study did not allow the determination of the cerebral onset of epileptic seizures. Depth electrodes inserted by MRI-guided stereotaxis allowed the recording of the epileptic activity and thus showed quite accurately the area of the brain to be surgically resected. She underwent a right anterior temporal lobectomy with amygdalohippocampectomy. The immediate postoperative period was uneventful and she is without epileptic seizures after three months of follow-up. The average pre-operative free-seizure period was two weeks. To our knowledge, this is the first stereotactic surgery for insertion of depth intracerebral electrodes in epilepsy in Brazil.

  13. Pneumococcal meningitis post-cochlear implantation: preventative measures. (United States)

    Wei, Benjamin P C; Shepherd, Robert K; Robins-Browne, Roy M; Clark, Graeme M; O'Leary, Stephen J


    Both clinical data and laboratory studies demonstrated the risk of pneumococcal meningitis post-cochlear implantation. This review examines strategies to prevent post-implant meningitis. Medline/PubMed database; English articles after 1980. Search terms: cochlear implants, pneumococcus meningitis, streptococcus pneumonia, immunization, prevention. Narrative review. All articles relating to post-implant meningitis without any restriction in study designs were assessed and information extracted. The presence of inner ear trauma as a result of surgical technique or cochlear implant electrode array design was associated with a higher risk of post-implant meningitis. Laboratory data demonstrated the effectiveness of pneumococcal vaccination in preventing meningitis induced via the hematogenous route of infection. Fibrous sealing around the electrode array at the cochleostomy site, and the use of antibiotic-coated electrode array reduced the risk of meningitis induced via an otogenic route. The recent scientific data support the U.S. Food and Drug Administration recommendation of pneumococcal vaccination for the prevention of meningitis in implant recipients. Nontraumatic cochlear implant design, surgical technique, and an adequate fibrous seal around the cochleostomy site further reduce the risk of meningitis. Copyright © 2010 American Academy of Otolaryngology–Head and Neck Surgery Foundation. Published by Mosby, Inc. All rights reserved.

  14. Bioresorbable vascular scaffold (BVS) for in-stent chronic total occlusion: Antegrade recanalization and IVUS-guided BVS implantation by radial access

    Energy Technology Data Exchange (ETDEWEB)

    Medda, Massimo [Interventional Cardiology Unit, Istituto Clinico Sant' Ambrogio, Milano (Italy); Casilli, Francesco, E-mail: [Interventional Cardiology Unit, Istituto Clinico Sant' Ambrogio, Milano (Italy); Bande, Marta [Interventional Cardiology Unit, Istituto Clinico Sant' Ambrogio, Milano (Italy); Latini, Maria Giulia [Cardiologia Interventistica, IRCCS Policlinico San Donato, San Donato Milanese, Milano (Italy); Ghommidh, Mehdi [Interventional Cardiology Unit, Istituto Clinico Sant' Ambrogio, Milano (Italy); Del Furia, Francesca [Unità Operativa di Cardiologia, Azienda Ospedaliera di Melegnano, Milano (Italy); Inglese, Luigi [Interventistica Cardiovascolare, Gruppo Sanitario Policlinico di Monza, Milano (Italy)


    The completely absorbable stents represent one of the latest innovations in the field of interventional cardiology, prospecting the possibility of “vascular repair”. In the published trials (ABSORB Cohort A and B, ABSORB EXTEND, and ABSORB II, III and IV) chronic total occlusions (CTOs) were considered an exclusion criteria. More recently the CTO-ABSORB pilot study demonstrated the safety and feasibility of bioresorbable vascular scaffold (BVS) use in case of CTO recanalization. We present the first case, to our knowledge, of in-stent occlusion successfully treated with an everolimus-eluting BVS and discuss its potential advantages in such kind of lesions.

  15. Bioresorbable vascular scaffold (BVS) for in-stent chronic total occlusion: Antegrade recanalization and IVUS-guided BVS implantation by radial access

    International Nuclear Information System (INIS)

    Medda, Massimo; Casilli, Francesco; Bande, Marta; Latini, Maria Giulia; Ghommidh, Mehdi; Del Furia, Francesca; Inglese, Luigi


    The completely absorbable stents represent one of the latest innovations in the field of interventional cardiology, prospecting the possibility of “vascular repair”. In the published trials (ABSORB Cohort A and B, ABSORB EXTEND, and ABSORB II, III and IV) chronic total occlusions (CTOs) were considered an exclusion criteria. More recently the CTO-ABSORB pilot study demonstrated the safety and feasibility of bioresorbable vascular scaffold (BVS) use in case of CTO recanalization. We present the first case, to our knowledge, of in-stent occlusion successfully treated with an everolimus-eluting BVS and discuss its potential advantages in such kind of lesions.

  16. A Simple Hydrogen Electrode (United States)

    Eggen, Per-Odd


    This article describes the construction of an inexpensive, robust, and simple hydrogen electrode, as well as the use of this electrode to measure "standard" potentials. In the experiment described here the students can measure the reduction potentials of metal-metal ion pairs directly, without using a secondary reference electrode. Measurements…

  17. The Composite Insertion Electrode

    DEFF Research Database (Denmark)

    Atlung, Sven; Zachau-Christiansen, Birgit; West, Keld


    The specific energy obtainable by discharge of porous insertion electrodes is limited by electrolyte depletion in thepores. This can be overcome using a solid ion conductor as electrolyte. The term "composite" is used to distinguishthese electrodes from porous electrodes with liquid electrolyte...

  18. Near-Electrode Imager

    Energy Technology Data Exchange (ETDEWEB)

    Rathke, Jerome W.; Klingler, Robert J.; Woelk, Klaus; Gerald, Rex E.,II


    An apparatus, near-electrode imager, for employing nuclear magnetic resonance imaging to provide in situ measurements of electrochemical properties of a sample as a function of distance from a working electrode. The near-electrode imager use the radio frequency field gradient within a cylindrical toroid cavity resonator to provide high-resolution nuclear magnetic resonance spectral information on electrolyte materials.

  19. Clinical Paresthesia Atlas Illustrates Likelihood of Coverage Based on Spinal Cord Stimulator Electrode Location. (United States)

    Taghva, Alexander; Karst, Edward; Underwood, Paul


    Concordant paresthesia coverage is an independent predictor of pain relief following spinal cord stimulation (SCS). Using aggregate data, our objective is to produce a map of paresthesia coverage as a function of electrode location in SCS. This retrospective analysis used x-rays, SCS programming data, and paresthesia coverage maps from the EMPOWER registry of SCS implants for chronic neuropathic pain. Spinal level of dorsal column stimulation was determined by x-ray adjudication and active cathodes in patient programs. Likelihood of paresthesia coverage was determined as a function of stimulating electrode location. Segments of paresthesia coverage were grouped anatomically. Fisher's exact test was used to identify significant differences in likelihood of paresthesia coverage as a function of spinal stimulation level. In the 178 patients analyzed, the most prevalent areas of paresthesia coverage were buttocks, anterior and posterior thigh (each 98%), and low back (94%). Unwanted paresthesia at the ribs occurred in 8% of patients. There were significant differences in the likelihood of achieving paresthesia, with higher thoracic levels (T5, T6, and T7) more likely to achieve low back coverage but also more likely to introduce paresthesia felt at the ribs. Higher levels in the thoracic spine were associated with greater coverage of the buttocks, back, and thigh, and with lesser coverage of the leg and foot. This paresthesia atlas uses real-world, aggregate data to determine likelihood of paresthesia coverage as a function of stimulating electrode location. It represents an application of "big data" techniques, and a step toward achieving personalized SCS therapy tailored to the individual's chronic pain. © 2017 International Neuromodulation Society.

  20. Estudo clínico de um sistema cardioversor-desfibrilador implantável que apresenta limiares de desfibrilação baixos usando eletrodos de estrutura fractal Clinical studies of an implantable cardioversor - defibrillators system providing low defibrillation thresholds as well as high signal amplitudes due to fractal coated electrodes

    Directory of Open Access Journals (Sweden)

    Fernando A. LUCCHESE


    Full Text Available Em função do contínuo desenvolvimento tecnológico, a geração atual de cardioversores-desfibriladores implantáveis (CDI garante um alto grau de segurança e eficiência na detecção e reversão de taquiarritmias ventriculares. O presente trabalho sumariza os resultados clínicos obtidos com 1058 CDI de câmara única (Phylax 6, Phylax XM, Biotronik utilizando eletrodo único e tecnologia de carcaça ativa, SPS e Kainox RV (com uma mola intracavitária de choque, SL-ICD e Kainox SL (com duas molas intracavitárias de choque, Biotronik. Na quase totalidade dos pacientes, com exceção de 3 (> 99%, foram obtidos limiares de desfibrilação com baixa energia usando apenas um eletrodo transvenoso. Isto tem permitido substituir o teste de limiar de desfibrilação usual por um teste simples durante o implante, afim de minimizar os riscos associados com repetidas induções de fibrilação e conseqüente extensão do período de anestesia.Due to continuously improved technologies, the present generation of implantable cardioverter-defibrillators (ICD guarantees a high degree of safety and efficacy for detecting and terminating ventricular tachyarrhythmias. This paper summarizes the clinical results obtained with 1058 single-chamber ICD (Phylax 6, Phylax XM, Biotronik employing single-lead and active housing technology (SPS and Kainox RV (single coil, SL-ICD and Kainox SL (double coil, Biotronik. In all but 3 patients (> 99%, reliable low-energy defibrillation was achieved using transvenous leads only. This has led to the trend to replace DFT testing by a short function test during implantation in order to minimize the risks associated with repeated induction of fibrillation and extended anesthesia.

  1. Design, construction and mechanical optimisation process of electrode with radial current flow in the scala tympani. (United States)

    Deman, P R; Kaiser, T M; Dirckx, J J; Offeciers, F E; Peeters, S A


    A 48 contact cochlear implant electrode has been constructed for electrical stimulation of the auditory nerve. The stimulating contacts of this electrode are organised in two layers: 31 contacts on the upper surface directed towards the habenula perforata and 17 contacts connected together as one longitudinal contact on the underside. The design of the electrode carrier aims to make radial current flow possible in the cochlea. The mechanical structure of the newly designed electrode was optimised to obtain maximal insertion depth. Electrode insertion tests were performed in a transparent acrylic model of the human cochlea.

  2. Customizable cap implants for neurophysiological experimentation. (United States)

    Blonde, Jackson D; Roussy, Megan; Luna, Rogelio; Mahmoudian, Borna; Gulli, Roberto A; Barker, Kevin C; Lau, Jonathan C; Martinez-Trujillo, Julio C


    Several primate neurophysiology laboratories have adopted acrylic-free, custom-fit cranial implants. These implants are often comprised of titanium or plastic polymers, such as polyether ether ketone (PEEK). Titanium is favored for its mechanical strength and osseointegrative properties whereas PEEK is notable for its lightweight, machinability, and MRI compatibility. Recent titanium/PEEK implants have proven to be effective in minimizing infection and implant failure, thereby prolonging experiments and optimizing the scientific contribution of a single primate. We created novel, customizable PEEK 'cap' implants that contour to the primate's skull. The implants were created using MRI and/or CT data, SolidWorks software and CNC-machining. Three rhesus macaques were implanted with a PEEK cap implant. Head fixation and chronic recordings were successfully performed. Improvements in design and surgical technique solved issues of granulation tissue formation and headpost screw breakage. Primate cranial implants have traditionally been fastened to the skull using acrylic and anchor screws. This technique is prone to skin recession, infection, and implant failure. More recent methods have used imaging data to create custom-fit titanium/PEEK implants with radially extending feet or vertical columns. Compared to our design, these implants are more surgically invasive over time, have less force distribution, and/or do not optimize the utilizable surface area of the skull. Our PEEK cap implants served as an effective and affordable means to perform electrophysiological experimentation while reducing surgical invasiveness, providing increased strength, and optimizing useful surface area. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  3. Chronic Electrical Stimulation at Acupoints Reduces Body Weight and Improves Blood Glucose in Obese Rats via Autonomic Pathway. (United States)

    Liu, Jiemin; Jin, Haifeng; Foreman, Robert D; Lei, Yong; Xu, Xiaohong; Li, Shiying; Yin, Jieyun; Chen, Jiande D Z


    The aim of this study was to investigate effects and mechanisms of chronic electrical stimulation at acupoints (CEA) using surgically implanted electrodes on food intake, body weight, and metabolisms in diet-induced obese (DIO) rats. Thirty-six DIO rats were chronically implanted with electrodes at acupoints ST-36 (Zusanli). Three sets of parameters were tested: electrical acupuncture (EA) 1 (2-s on, 3-s off, 0.5 ms, 15 Hz, 6 mA), EA2 (same as EA1 but continuous pulses), and EA3 (same as EA2 but 10 mA). A chronic study was then performed to investigate the effects of CEA on body weight and mechanisms involving gastrointestinal hormones and autonomic functions. EA2 significantly reduced food intake without uncomfortable behaviors. CEA at EA2 reduced body weight and epididymal fat pad weight (P fasting plasma level of glucagon-like peptide-1 (GLP-1) and peptide YY (P < 0.05); the increase of GLP-1 was inversely correlated with postprandial blood glucose (R (2) = 0.89, P < 0.05); and the plasma ghrelin level remained unchanged. EA increased sympathetic activity (P < 0.01) and reduced vagal activity (P < 0.01). CEA at ST-36 reduces body weight and improves blood glucose possibly attributed to multiple mechanisms involving gastrointestinal motility and hormones via the autonomic pathway.

  4. Modeling of Auditory Neuron Response Thresholds with Cochlear Implants

    Directory of Open Access Journals (Sweden)

    Frederic Venail


    Full Text Available The quality of the prosthetic-neural interface is a critical point for cochlear implant efficiency. It depends not only on technical and anatomical factors such as electrode position into the cochlea (depth and scalar placement, electrode impedance, and distance between the electrode and the stimulated auditory neurons, but also on the number of functional auditory neurons. The efficiency of electrical stimulation can be assessed by the measurement of e-CAP in cochlear implant users. In the present study, we modeled the activation of auditory neurons in cochlear implant recipients (nucleus device. The electrical response, measured using auto-NRT (neural responses telemetry algorithm, has been analyzed using multivariate regression with cubic splines in order to take into account the variations of insertion depth of electrodes amongst subjects as well as the other technical and anatomical factors listed above. NRT thresholds depend on the electrode squared impedance (β = −0.11 ± 0.02, P<0.01, the scalar placement of the electrodes (β = −8.50 ± 1.97, P<0.01, and the depth of insertion calculated as the characteristic frequency of auditory neurons (CNF. Distribution of NRT residues according to CNF could provide a proxy of auditory neurons functioning in implanted cochleas.

  5. Insertion of linear 8.4 μm diameter 16 channel carbon fiber electrode arrays for single unit recordings (United States)

    Patel, Paras R.; Na, Kyounghwan; Zhang, Huanan; Kozai, Takashi D. Y.; Kotov, Nicholas A.; Yoon, Euisik; Chestek, Cynthia A.


    Objective Single carbon fiber electrodes (d=8.4 μm) insulated with parylene-c and functionalized with PEDOT:pTS have been shown to record single unit activity but manual implantation of these devices with forceps can be difficult. Without an improvement in the insertion method any increase in the channel count by fabricating carbon fiber arrays would be impractical. In this study, we utilize a water soluble coating and structural backbones that allow us to create, implant, and record from fully functionalized arrays of carbon fibers with ~150 μm pitch. Approach Two approaches were tested for the insertion of carbon fiber arrays. The first method used a PEG coating that temporarily stiffened the fibers while leaving a small portion at the tip exposed. The small exposed portion (500 μm – 1 mm) readily penetrated the brain allowing for an insertion that did not require the handling of each fiber by forceps. The second method involved the fabrication of silicon support structures with individual shanks spaced 150 μm apart. Each shank consisted of a small groove that held an individual carbon fiber. Main results Our results showed that the PEG coating allowed for the chronic implantation of carbon fiber arrays in 5 rats with unit activity detected at 31 days post-implant. The silicon support structures recorded single unit activity in 3 acute rat surgeries. In one of those surgeries a stacked device with 3 layers of silicon support structures and carbon fibers was built and shown to readily insert into the brain with unit activity on select sites. Significance From these studies we have found that carbon fibers spaced at ~150 μm readily insert into the brain. This greatly increases the recording density of chronic neural probes and paves the way for even higher density devices that have a minimal scarring response. PMID:26035638

  6. Electrochemical investigations of ion-implanted oxide films

    International Nuclear Information System (INIS)

    Schultze, J.W.; Danzfuss, B.; Meyer, O.; Stimming, U.


    Oxide films (passive films) of 40-50 nm thickness were prepared by anodic polarization of hafnium and titanium electrodes up to 20 V. Multiple-energy ion implantation of palladium, iron and xenon was used in order to obtain modified films with constant concentration profiles of the implanted ions. Rutherford backscattering, X-ray photoelectron spectroscopy measurements and electrochemical charging curves prove the presence of implanted ions, but electrochemical and photoelectrochemical measurements indicate that the dominating effect of ion implantation is the disordering of the oxide film. The capacity of hafnium electrodes increases as a result of an increase in the dielectric constant D. For titanium the Schottky-Mott analysis shows that ion implantation causes an increase in D and the donor concentration N. Additional electronic states in the band gap which are created by the implantation improve the conductivity of the semiconducting or insulating films. This is seen in the enhancement of electron transfer reactions and its disappearance during repassivation and annealing. Energy changes in the band gap are derived from photoelectrochemical measurements; the absorption edge of hafnium oxide films decreases by approximately 2 eV because of ion implantation, but it stays almost constant for titanium oxide films. All changes in electrochemical behavior caused by ion implantation show little variation with the nature of the implanted ion. Hence the dominating effect seems to be a disordering of the oxide. (Auth.)

  7. Localizing and tracking electrodes using stereovision in epilepsy cases (United States)

    Fan, Xiaoyao; Ji, Songbai; Roberts, David W.; Paulsen, Keith D.


    In epilepsy cases, subdural electrodes are often implanted to acquire intracranial EEG (iEEG) for seizure localization and resection planning. However, the electrodes may shift significantly between implantation and resection, during the time that the patient is monitored for iEEG recording. As a result, the accuracy of surgical planning based on electrode locations at the time of resection can be compromised. Previous studies have only quantified the electrode shift with respect to the skull, but not with respect to the cortical surface, because tracking cortical shift between surgeries is challenging. In this study, we use an intraoperative stereovision (iSV) system to visualize and localize the cortical surface as well as electrodes, record three-dimensional (3D) locations of the electrodes in MR space at the time of implantation and resection, respectively, and quantify the raw displacements, i.e., with respect to the skull. Furthermore, we track the cortical surface and quantify the shift between surgeries using an optical flow (OF) based motion-tracking algorithm. Finally, we compute the electrode shift with respect to the cortical surface by subtracting the cortical shift from raw measured displacements. We illustrate the method using one patient example. In this particular patient case, the results show that the electrodes not only shifted significantly with respect to the skull (8.79 +/- 3.00 mm in the lateral direction, ranging from 2.88 mm to 12.87 mm), but also with respect to the cortical surface (7.20 +/- 3.58 mm), whereas the cortical surface did not shift significantly in the lateral direction between surgeries (2.23 +/- 0.76 mm).

  8. Short Implants: New Horizon in Implant Dentistry. (United States)

    Jain, Neha; Gulati, Manisha; Garg, Meenu; Pathak, Chetan


    The choice of implant length is an essential factor in deciding the survival rates of these implants and the overall success of the prosthesis. Placing an implant in the posterior part of the maxilla and mandible has always been very critical due to poor bone quality and quantity. Long implants can be placed in association with complex surgical procedures such as sinus lift and bone augmentation. These techniques are associated with higher cost, increased treatment time and greater morbidity. Hence, there is need for a less invasive treatment option in areas of poor bone quantity and quality. Data related to survival rates of short implants, their design and prosthetic considerations has been compiled and structured in this manuscript with emphasis on the indications, advantages of short implants and critical biomechanical factors to be taken into consideration when choosing to place them. Studies have shown that comparable success rates can be achieved with short implants as those with long implants by decreasing the lateral forces to the prosthesis, eliminating cantilevers, increasing implant surface area and improving implant to abutment connection. Short implants can be considered as an effective treatment alternative in resorbed ridges. Short implants can be considered as a viable treatment option in atrophic ridge cases in order to avoid complex surgical procedures required to place long implants. With improvement in the implant surface geometry and surface texture, there is an increase in the bone implant contact area which provides a good primary stability during osseo-integration.

  9. [Multi-channel cochlear implants in patients with Mondini malformation]. (United States)

    Li, Yong-xin; Han, De-min; Zhao, Xiao-tian; Chen, Xue-qing; Kong, Ying; Zheng, Jun; Liu, Bo; Liu, Sha; Mo, Ling-yan; Zhang, Hua; Wang, Shuo


    To describe clinical experiences with multi-channel cochlear implantation in patients with Mondini malformation. Among 300 patients who received multi-channel cochlear implants from 1996 to 2002 in Beijing Tongren Hospital, 15 patients were diagnosed with Mondini malformation. A retrospective analysis was performed dealing with the surgical techniques, mapping and rehabilitations characteristics after surgery. 15 patients with normal cochlear structure are consider as control group. Gusher is found more common than the normal cochlear implantation, most of them are serious. The electrodes are inserted in the "cochleostomy" in full length of 13 Patients, 2 pairs of electrodes remains outside of "cochleostomy" in 2 patients. No serious complications occurred after implantation. All patients have auditory sensations. The impedance of the electrodes, the T level, C level and the hearing threshold are similar with the normal cochlear implantation group. The results have no significant difference in compare with normal cochlear group(P > 0.05). Multi-channel cochlear implantation could be performed safely in patients with Mondini malformation. The primary outcome for patients with Mondini malformation are similar to those with normal cochlear structure following the multi-channel cochlear implantation.

  10. The new mid-scala electrode array: a radiologic and histologic study in human temporal bones. (United States)

    Hassepass, Frederike; Bulla, Stefan; Maier, Wolfgang; Laszig, Roland; Arndt, Susan; Beck, Rainer; Traser, Lousia; Aschendorff, Antje


    To analyze the quality of insertion of the newly developed midscala (MS) electrode, which targets a midscalar electrode position to reduce the risk of trauma to the lateral wall and the modiolus. Modern cochlear implant surgery aims for a safe intracochlear placement of electrode arrays with an ongoing debate regarding cochleostomy or round window (RW) insertion and the use of lateral wall or perimodiolar electrode placement. Intracochlear trauma after insertion of different electrodes depends on insertion mode and electrode design and may result in trauma to the delicate structures of the cochlear. We performed a temporal bone (TB) trial with insertion of the MS electrode in n = 20 TB's after a mastoidectomy and posterior tympanotomy. Insertion was performed either via the RW or a cochleostomy. Electrode positioning, length of insertion, and angle of insertion were analyzed with rotational tomography (RT). TBs were histologically analyzed. Results of RT and histology were compared. Scala tympani (ST) insertion could be accomplished reliably by both RW and via a cochleostomy approach. In 20 TBs, 1 scala vestibuli insertion, 1 incomplete (ST), and 1 elevation of basilar membrane were depicted. No trauma was found in 94.7% of all ST insertions. RT allowed determination of the intracochlear electrode position, which was specified by histologic sectioning. The new MS electrode seems to fulfill reliable atraumatic intracochlear placement via RW and cochleostomy approaches. RT is available for evaluation of intracochlear electrode position, serving as a potential quality control instrument in human implantation.

  11. The electrochemical behavior and surface structure of titanium electrodes modified by ion beams

    International Nuclear Information System (INIS)

    Huang, G.F.; Xie, Z.; Huang, W.Q.; Yang, S.B.; Zhao, L.H.


    Industrial grade titanium modified by ion implantation and sputtering was used as electrodes. The effect of ion beam modification on the electrochemical behavior and surface structure of electrodes was investigated. Also discussed is the hydrogen evolution process of the electrode in acidic solution. Several ions such as Fe + , C + , W + , Ni + and others, were implanted into the electrode. The electrochemical tests were carried out in 1N H 2 SO 4 solution at 30±1 deg. C. The electrode potential was measured versus a saturate calomel electrode as a function of immersion time. The cathodic polarization curves were measured by the stable potential static method. The surface layer composition and the chemical state of the electrodes were also investigated by Auger electron spectrometer (AES) and X-ray photoelectron spectroscopy (XPS) technique. The results show that: (1) the stability of modified electrodes depends on the active elements introduced by ion implantation and sputtering deposition. (2) The hydrogen evolution activity of industrial grade titanium may be improved greatly by ion beam modification. (3) Ion beam modification changed the composition and the surface state of electrodes over a certain depth range and forms an activity layer having catalytic hydrogen evolution, which inhibited the absorption of hydrogen and formation of titanium hydride. Thus promoted hydrogen evolution and improved the hydrogen evolution catalytic activity in industrial grade titanium

  12. Implantation, recoil implantation, and sputtering

    International Nuclear Information System (INIS)

    Kelly, R.


    Underlying ion-beam modification of surfaces is the more basic subject of particle-surface interaction. The ideas can be grouped into forward and backward features, i.e. those affecting the interior of the target and those leading to particle expulsion. Forward effects include the stopping of the incident particles and the deposition of energy, both governed by integral equations which are easily set up but difficult to solve. Closely related is recoil implantation where emphasis is placed not on the stopping of the incident particles but on their interaction with target atoms with resulting implantation of these atoms. Backward effects, all of which are denoted as sputtering, are in general either of collisional, thermal, electronic, or exfoliational origin. (Auth.)

  13. Uncharged positive electrode composition (United States)

    Kaun, Thomas D.; Vissers, Donald R.; Shimotake, Hiroshi


    An uncharged positive-electrode composition contains particulate lithium sulfide, another alkali metal or alkaline earth metal compound other than sulfide, e.g., lithium carbide, and a transition metal powder. The composition along with a binder, such as electrolytic salt or a thermosetting resin is applied onto an electrically conductive substrate to form a plaque. The plaque is assembled as a positive electrode within an electrochemical cell opposite to a negative electrode containing a material such as aluminum or silicon for alloying with lithium. During charging, lithium alloy is formed within the negative electrode and transition metal sulfide such as iron sulfide is produced within the positive electrode. Excess negative electrode capacity over that from the transition metal sulfide is provided due to the electrochemical reaction of the other than sulfide alkali metal or alkaline earth metal compound.

  14. Dental Implant Surgery (United States)

    ... here to find out more. Dental Implant Surgery Dental Implant Surgery Dental implant surgery is, of course, ... to find out more. Wisdom Teeth Management Wisdom Teeth Management An impacted wisdom tooth can damage neighboring ...

  15. A foldable electrode array for 3D recording of deep-seated abnormal brain cavities (United States)

    Kil, Dries; De Vloo, Philippe; Fierens, Guy; Ceyssens, Frederik; Hunyadi, Borbála; Bertrand, Alexander; Nuttin, Bart; Puers, Robert


    Objective. This study describes the design and microfabrication of a foldable thin-film neural implant and investigates its suitability for electrical recording of deep-lying brain cavity walls. Approach. A new type of foldable neural electrode array is presented, which can be inserted through a cannula. The microfabricated electrode is specifically designed for electrical recording of the cavity wall of thalamic lesions resulting from stroke. The proof-of-concept is demonstrated by measurements in rat brain cavities. On implantation, the electrode array unfolds in the brain cavity, contacting the cavity walls and allowing recording at multiple anatomical locations. A three-layer microfabrication process based on UV-lithography and Reactive Ion Etching is described. Electrochemical characterization of the electrode is performed in addition to an in vivo experiment in which the implantation procedure and the unfolding of the electrode are tested and visualized. Main results. Electrochemical characterization validated the suitability of the electrode for in vivo use. CT imaging confirmed the unfolding of the electrode in the brain cavity and analysis of recorded local field potentials showed the ability to record neural signals of biological origin. Significance. The conducted research confirms that it is possible to record neural activity from the inside wall of brain cavities at various anatomical locations after a single implantation procedure. This opens up possibilities towards research of abnormal brain cavities and the clinical conditions associated with them, such as central post-stroke pain.

  16. Handbook of reference electrodes

    CERN Document Server

    Inzelt, György; Scholz, Fritz


    Reference Electrodes are a crucial part of any electrochemical system, yet an up-to-date and comprehensive handbook is long overdue. Here, an experienced team of electrochemists provides an in-depth source of information and data for the proper choice and construction of reference electrodes. This includes all kinds of applications such as aqueous and non-aqueous solutions, ionic liquids, glass melts, solid electrolyte systems, and membrane electrodes. Advanced technologies such as miniaturized, conducting-polymer-based, screen-printed or disposable reference electrodes are also covered. Essen

  17. Chronic neural probe for simultaneous recording of single-unit, multi-unit, and local field potential activity from multiple brain sites (United States)

    Pothof, F.; Bonini, L.; Lanzilotto, M.; Livi, A.; Fogassi, L.; Orban, G. A.; Paul, O.; Ruther, P.


    Objective. Drug resistant focal epilepsy can be treated by resecting the epileptic focus requiring a precise focus localisation using stereoelectroencephalography (SEEG) probes. As commercial SEEG probes offer only a limited spatial resolution, probes of higher channel count and design freedom enabling the incorporation of macro and microelectrodes would help increasing spatial resolution and thus open new perspectives for investigating mechanisms underlying focal epilepsy and its treatment. This work describes a new fabrication process for SEEG probes with materials and dimensions similar to clinical probes enabling recording single neuron activity at high spatial resolution. Approach. Polyimide is used as a biocompatible flexible substrate into which platinum electrodes and leads are integrated with a minimal feature size of 5 μm. The polyimide foils are rolled into the cylindrical probe shape at a diameter of 0.8 mm. The resulting probe features match those of clinically approved devices. Tests in saline solution confirmed the probe stability and functionality. Probes were implanted into the brain of one monkey (Macaca mulatta), trained to perform different motor tasks. Suitable configurations including up to 128 electrode sites allow the recording of task-related neuronal signals. Main results. Probes with 32 and 64 electrode sites were implanted in the posterior parietal cortex. Local field potentials and multi-unit activity were recorded as early as one hour after implantation. Stable single-unit activity was achieved for up to 26 days after implantation of a 64-channel probe. All recorded signals showed modulation during task execution. Significance. With the novel probes it is possible to record stable biologically relevant data over a time span exceeding the usual time needed for epileptic focus localisation in human patients. This is the first time that single units are recorded along cylindrical polyimide probes chronically implanted 22 mm deep into the

  18. Embedded Ultrathin Cluster Electrodes for Long-Term Recordings in Deep Brain Centers.

    Directory of Open Access Journals (Sweden)

    Leila Etemadi

    Full Text Available Neural interfaces which allow long-term recordings in deep brain structures in awake freely moving animals have the potential of becoming highly valuable tools in neuroscience. However, the recording quality usually deteriorates over time, probably at least partly due to tissue reactions caused by injuries during implantation, and subsequently micro-forces due to a lack of mechanical compliance between the tissue and neural interface. To address this challenge, we developed a gelatin embedded neural interface comprising highly flexible electrodes and evaluated its long term recording properties. Bundles of ultrathin parylene C coated platinum electrodes (N = 29 were embedded in a hard gelatin based matrix shaped like a needle, and coated with Kollicoat™ to retard dissolution of gelatin during the implantation. The implantation parameters were established in an in vitro model of the brain (0.5% agarose. Following a craniotomy in the anesthetized rat, the gelatin embedded electrodes were stereotactically inserted to a pre-target position, and after gelatin dissolution the electrodes were further advanced and spread out in the area of the subthalamic nucleus (STN. The performance of the implanted electrodes was evaluated under anesthesia, during 8 weeks. Apart from an increase in the median-noise level during the first 4 weeks, the electrode impedance and signal-to-noise ratio of single-units remained stable throughout the experiment. Histological postmortem analysis confirmed implantation in the area of STN in most animals. In conclusion, by combining novel biocompatible implantation techniques and ultra-flexible electrodes, long-term neuronal recordings from deep brain structures with no significant deterioration of electrode function were achieved.

  19. The Computer in a Programmable Implantable Medication System (PIMS)


    Sanders, K. H.; Radford, W. E.


    The Programmable Implantable Medication System (PIMS) developed at APL can be used in the treatment of diabetes, reproductive hormone dysfunction, hypertension, cancer, chronic pain, thrombosis, and the delivery of growth hormone. The Implantable Programmable Infusion Pump (IPIP) is the implanted element of PIMS. Under control of a microprocessor, the IPIP administers medication and stores data pertaining to its operation. An external unit can read out the stored data, as well as program the ...

  20. Complications after cardiac implantable electronic device implantations

    DEFF Research Database (Denmark)

    Kirkfeldt, Rikke Esberg; Johansen, Jens Brock; Nohr, Ellen Aagaard


    Complications after cardiac implantable electronic device (CIED) treatment, including permanent pacemakers (PMs), cardiac resynchronization therapy devices with defibrillators (CRT-Ds) or without (CRT-Ps), and implantable cardioverter defibrillators (ICDs), are associated with increased patient...

  1. Spatial channel interactions in cochlear implants (United States)

    Tang, Qing; Benítez, Raul; Zeng, Fan-Gang


    The modern multi-channel cochlear implant is widely considered to be the most successful neural prosthesis owing to its ability to restore partial hearing to post-lingually deafened adults and to allow essentially normal language development in pre-lingually deafened children. However, the implant performance varies greatly in individuals and is still limited in background noise, tonal language understanding, and music perception. One main cause for the individual variability and the limited performance in cochlear implants is spatial channel interaction from the stimulating electrodes to the auditory nerve and brain. Here we systematically examined spatial channel interactions at the physical, physiological, and perceptual levels in the same five modern cochlear implant subjects. The physical interaction was examined using an electric field imaging technique, which measured the voltage distribution as a function of the electrode position in the cochlea in response to the stimulation of a single electrode. The physiological interaction was examined by recording electrically evoked compound action potentials as a function of the electrode position in response to the stimulation of the same single electrode position. The perceptual interactions were characterized by changes in detection threshold as well as loudness summation in response to in-phase or out-of-phase dual-electrode stimulation. To minimize potentially confounding effects of temporal factors on spatial channel interactions, stimulus rates were limited to 100 Hz or less in all measurements. Several quantitative channel interaction indexes were developed to define and compare the width, slope and symmetry of the spatial excitation patterns derived from these physical, physiological and perceptual measures. The electric field imaging data revealed a broad but uniformly asymmetrical intracochlear electric field pattern, with the apical side producing a wider half-width and shallower slope than the basal

  2. Optimization of pillar electrodes in subretinal prosthesis for enhanced proximity to target neurons (United States)

    Flores, Thomas; Lei, Xin; Huang, Tiffany; Lorach, Henri; Dalal, Roopa; Galambos, Ludwig; Kamins, Theodore; Mathieson, Keith; Palanker, Daniel


    Objective. High-resolution prosthetic vision requires dense stimulating arrays with small electrodes. However, such miniaturization reduces electrode capacitance and penetration of electric field into tissue. We evaluate potential solutions to these problems with subretinal implants based on utilization of pillar electrodes. Approach. To study integration of three-dimensional (3D) implants with retinal tissue, we fabricated arrays with varying pillar diameter, pitch, and height, and implanted beneath the degenerate retina in rats (Royal College of Surgeons, RCS). Tissue integration was evaluated six weeks post-op using histology and whole-mount confocal fluorescence imaging. The electric field generated by various electrode configurations was calculated in COMSOL, and stimulation thresholds assessed using a model of network-mediated retinal response. Main results. Retinal tissue migrated into the space between pillars with no visible gliosis in 90% of implanted arrays. Pillars with 10 μm height reached the middle of the inner nuclear layer (INL), while 22 μm pillars reached the upper portion of the INL. Electroplated pillars with dome-shaped caps increase the active electrode surface area. Selective deposition of sputtered iridium oxide onto the cap ensures localization of the current injection to the pillar top, obviating the need to insulate the pillar sidewall. According to computational model, pillars having a cathodic return electrode above the INL and active anodic ring electrode at the surface of the implant would enable six times lower stimulation threshold, compared to planar arrays with circumferential return, but suffer from greater cross-talk between the neighboring pixels. Significance. 3D electrodes in subretinal prostheses help reduce electrode-tissue separation and decrease stimulation thresholds to enable smaller pixels, and thereby improve visual acuity of prosthetic vision.

  3. Evaluation of high-perimeter electrode designs for deep brain stimulation (United States)

    Howell, Bryan; Grill, Warren M.


    Objective. Deep brain stimulation (DBS) is an effective treatment for movement disorders and a promising therapy for treating epilepsy and psychiatric disorders. Despite its clinical success, complications including infections and mis-programing following surgical replacement of the battery-powered implantable pulse generator adversely impact the safety profile of this therapy. We sought to decrease power consumption and extend battery life by modifying the electrode geometry to increase stimulation efficiency. The specific goal of this study was to determine whether electrode contact perimeter or area had a greater effect on increasing stimulation efficiency. Approach. Finite-element method (FEM) models of eight prototype electrode designs were used to calculate the electrode access resistance, and the FEM models were coupled with cable models of passing axons to quantify stimulation efficiency. We also measured in vitro the electrical properties of the prototype electrode designs and measured in vivo the stimulation efficiency following acute implantation in anesthetized cats. Main results. Area had a greater effect than perimeter on altering the electrode access resistance; electrode (access or dynamic) resistance alone did not predict stimulation efficiency because efficiency was dependent on the shape of the potential distribution in the tissue; and, quantitative assessment of stimulation efficiency required consideration of the effects of the electrode-tissue interface impedance. Significance. These results advance understanding of the features of electrode geometry that are important for designing the next generation of efficient DBS electrodes.

  4. Carbon Nanofiber Electrode Array for Neurochemical Monitoring (United States)

    Koehne, Jessica E.


    A sensor platform based on vertically aligned carbon nanofibers (CNFs) has been developed. Their inherent nanometer scale, high conductivity, wide potential window, good biocompatibility and well-defined surface chemistry make them ideal candidates as biosensor electrodes. Here, we report using vertically aligned CNF as neurotransmitter recording electrodes for application in a smart deep brain stimulation (DBS) device. Our approach combines a multiplexed CNF electrode chip, developed at NASA Ames Research Center, with the Wireless Instantaneous Neurotransmitter Concentration Sensor (WINCS) system, developed at the Mayo Clinic. Preliminary results indicate that the CNF nanoelectrode arrays are easily integrated with WINCS for neurotransmitter detection in a multiplexed array format. In the future, combining CNF based stimulating and recording electrodes with WINCS may lay the foundation for an implantable smart therapeutic system that utilizes neurochemical feedback control while likely resulting in increased DBS application in various neuropsychiatric disorders. In total, our goal is to take advantage of the nanostructure of CNF arrays for biosensing studies requiring ultrahigh sensitivity, high-degree of miniaturization, and selective biofunctionalization.

  5. Electrode stabilizing materials (United States)

    Amine, Khalil; Abouimrane, Ali; Moore, Jeffrey S.; Odom, Susan A.


    An electrolyte includes a polar aprotic solvent; an alkali metal salt; and an electrode stabilizing compound that is a monomer, which when polymerized forms an electrically conductive polymer. The electrode stabilizing compound is a thiophene, a imidazole, a anilines, a benzene, a azulene, a carbazole, or a thiol. Electrochemical devices may incorporate such electrolytes.

  6. Durable fuel electrode

    DEFF Research Database (Denmark)


    the composite. The invention also relates to the use of the composite as a fuel electrode, solid oxide fuel cell, and/or solid oxide electrolyser. The invention discloses a composite for an electrode, comprising a three-dimensional network of dispersed metal particles, stabilised zirconia particles and pores...

  7. Trapping of deuterium in argon-implanted nickel

    International Nuclear Information System (INIS)

    Frank, R.C.; Rehn, L.E.; Baldo, P.


    Argon ions with energy 250 keV were implanted at fluences of 2 x 10 16 cm -2 at temperatures of 500, 250, and 21 0 C, in the specimen of relatively pure polycrystalline nickel. Deuterium was introduced into the surface and implanted regions by making the specimen the negative electrode of an electrolytic cell containing 1-N pure deuterated sulfuric acid. Deuterium trapped in the vacancy complexes of the implanted regions was analyzed as a function of temperature using the vacancy complexes of the implanted regions was analyzed as a function of temperature using the 2 H( 3 He, 1 H) 4 He nuclear reaction during an isochronal annealing process. The results indicate that the types of traps and trap densities found in the regions implanted at 21 and 250 0 C were essentially identical while the trap density found in the region implanted at 500 0 C was approximately 40% of that found in the other regions. Math model comparison with the experimental results suggests the existence of at least two types of traps in each region. Trap binding enthalpies used in the math model to fit the experimental data were slightly higher for the region implanted with argon at 500 0 C than for the regions implanted at the lower temperatures. TEM studies revealed the presence of small voids in the region implanted at 500 0 as well as dislocation loops similar to those found in the regions implanted at the lower temperatures. 20 references, 2 figures

  8. Imunohistological aspects of the tissue around dental implants (United States)

    Nimigean, Victor; Nimigean, Vanda R.; Sǎlǎvǎstru, Dan I.; Moraru, Simona; BuÅ£incu, Lavinia; Ivaşcu, Roxana V.; Poll, Alexandru


    Objectives: study of soft and hard tissues around implants. Material and methods: For the immunohistochemical and histological study of the implant/soft tissue interface, we examined pieces of peri-implant mucosa harvested from 35 patients. The implant/bone interface was assessed using histologic and histomorphometric examination of hard tissues around unloaded, early loaded or delayed loaded dental implants with pre-established design, with a sandblasted and acid-etched surface, placed both in extraction sockets, or after bone healing following tooth removal. This study was performed on 9 common race dogs. Results: The histological study of the implant/soft tissue interface showed regenerative modifications and moderate chronic subepithelial inflammatory reactions. Immunohistochemical evaluation of the soft tissue biopsies revealed the presence of specific immunocompetent cells and proteins of the matrix metalloproteinase (MMP) expression. Bone-implants contacts were more obvious in the apical half of the implants and at the edges of the threads, than between them. A mature, lamelliform bone containing lacunae with osteocytes and lack of connective tissue were noticed around implants that were late placed and loaded. The new-formed bone was also abundant in the crestal zone, not only in the apical part of the implants. Conclusions: A thorough understanding of the microstructure of dental implant/soft and hard tissue interface will improve the longevity of osseointegrated implants.

  9. Right versus left parasternal electrode position in the entirely subcutaneous ICD. (United States)

    Bettin, Markus; Dechering, Dirk; Frommeyer, Gerrit; Larbig, Robert; Löher, Andreas; Reinke, Florian; Köbe, Julia; Eckardt, Lars


    The subcutaneous implantable cardioverter defibrillator (S-ICD ® ) has been established as an alternative to conventional transvenous ICD for the prevention of sudden cardiac death. Initial studies have shown safety and efficacy of the system with a left parasternal (LP) electrode. However, several case studies reported a right parasternal (RP) position. The purpose of this study was to analyze shock efficacy and safety of an RP electrode position. Between June 2010 and May 2016, 120 S-ICD ® were implanted at our institution. On the basis of the heart location on preoperative chest radiography (CXR), the investigators decided on an RP (n = 52) or LP electrode position (n = 68). All perioperative induced VF episodes, and spontaneous appropriate and inappropriate episodes during follow-up were analyzed. Patients with an RP electrode did not differ in terms of age, sex, or ejection fraction. A statistically significant difference in underlying cardiac disease was observed between the RP and LP electrode group, with more patients with channelopathies in the RP electrode group and more patients with non-ischemic cardiomyopathy in the LP electrode group. During a mean follow-up of 24.3 ± 19.5 months, 27 appropriate (19 in the LP group and 8 in the RP group) and 28 inappropriate (18 LP and 10 RP) ICD shocks occurred (p value = NS). In the present study, an RP electrode position was chosen on the basis of chest radiographic characteristics and was efficient in terms of sensing and shock efficacy. Thus, a right-sided electrode implant might be an alternative if a left-sided electrode implant is inadequate. It might also be favorable for young patients with narrow heart silhouettes in the midsagittal position.

  10. Electromagnetic interference of mobile phones with electronic implants

    International Nuclear Information System (INIS)

    Kainz, W.


    Chapter 1:Interference matrix: The objective of Chapter 1 was to give an overview of the implants used at present and their electromagnetic compatibility (EMC). The evaluation of the available literature provides an estimate of the probability of electronic implants being influenced by various interference sources. A literature search at the AKH (Allgemeines Krankenhaus) in Vienna and at the Technical University of Vienna in the FIZ (Fach-Informations-Zentrum) -Biomedizinische Technik, Medline, Pascal Biomed, CC Search und Embase databases yielded 236 relevant publications. At present 12 different implants are used: pacemaker, defibrillator, cochlear and brain-stem implants, neurostimulators, spinal-cord stimulators, spinal-fusion stimulators, telemetry systems, artificial hearts, drug-delivery systems, neurological pulse generators, visual prosthetics and implantable patient chips. The frequency with which they are used and the EMC on exposure to the various interference sources was summarized. Publications on EMC were found only for the first six implant types and only for 30% of the possible combinations of implant type and interference source. Based on the number of the implants examined, the probability of interference was calculated and summarized in the interference matrix. Chapter 2:Measurements on the phantom: No publication on the electromagnetic compatibility of neurological pulse generators (NPG) could be found. This implant has been used increasingly in the last few years to treat Parkinson's disease. A phantom was built to examine this implant at 900 MHz. The electromagnetic compatibility was measured by exposing the NPG to the fields of ten different 900 MHz GSM mobile phones. Every mobile phone was tested in three different positions relative to the phantom, with four electrode configurations and four stimulation parameters. No interference was found even at a maximum transmit power of 2 watts. Further tests with half-wave dipoles and increased

  11. Chronic pancreatitis (United States)

    Chronic pancreatitis - chronic; Pancreatitis - chronic - discharge; Pancreatic insufficiency - chronic; Acute pancreatitis - chronic ... abuse over many years. Repeated episodes of acute pancreatitis can lead to chronic pancreatitis. Genetics may be ...

  12. Implantable biochemical fuel cell. [German patent

    Energy Technology Data Exchange (ETDEWEB)

    Richter, G; Rao, J R


    Implantable biochemical fuel cells for the operation of heart pacemakers or artificial hearts convert oxidisable body substances such as glucose on the anode side and reduce the oxygen contained in body fluids at the cathode. The anode and cathode are separated by membranes which are impermeable to albumen and blood corpuscles in body fluids. A chemical shortcircuit cannot occur in practice if, according to the invention, one or more selective oxygen electrodes with carbon as catalyst are arranged so that the mixture which diffuses into the cell from body fluids during operation reaches the fuel cell electrode through the porous oxygen electrode. The membranes used must be permeable to water. Cellulose, polymerised polyvinyl alcohol or an ion exchanger with a buffering capacity between pH5 and 8 act as permeable materials.

  13. Meningitis after cochlear implantation in Mondini malformation. (United States)

    Page, E L; Eby, T L


    Although the potential for CSF leakage and subsequent meningitis after cochlear implantation in the malformed cochlea has been recognized, this complication has not been previously reported. We report a case of CSF otorhinorrhea and meningitis after minor head trauma developing 2 years after cochlear implantation in a child with Mondini malformation. Leakage of CSF was identified from the cochleostomy around the electrode of the implant, and this leak was sealed with a temporalis fascia and muscle plug. Although this complication appears to be rare, care must be taken to seal the cochleostomy in children with inner ear malformations at the initial surgery, and any episode of meningitis after surgery must be thoroughly investigated to rule out CSF leakage from the labyrinth.

  14. Cochlear pathology following reimplantation of a multichannel scala tympani electrode array in the macaque. (United States)

    Shepherd, R K; Clark, G M; Xu, S A; Pyman, B C


    The histopathologic consequence of removing and reimplanting intracochlear electrode arrays on residual auditory nerve fibers is an important issue when evaluating the safety of cochlear prostheses. The authors have examined this issue by implanting multichannel intracochlear electrodes in macaque monkeys. Macaques were selected because of the similarity of the surgical technique used to insert electrodes into the cochlea compared to that in humans, in particular the ability to insert the arrays into the upper basal turn. Five macaques were bilaterally implanted with the Melbourne/Cochlear banded electrode array. Following a minimum implant period of 5 months, the electrode array on one side of each animal was removed and another immediately implanted. The animals were sacrificed a minimum of 5 months following the reinsertion procedure, and the cochleas prepared for histopathologic analysis. Long-term implantation of the electrode resulted in a relatively mild tissue response within the cochlea. Results also showed that inner and outer hair cell survival, although significantly reduced adjacent to the array, was normal in 8 of the 10 cochleas apicalward. Moreover, the electrode reinsertion procedure did not appear to adversely affect this apical hair cell population. Significant new bone formation was frequently observed in both control and reimplanted cochleas close to the electrode fenestration site and was associated with trauma to the endosteum and/or the introduction of bone chips into the cochlea at the time of surgery. Electrode insertion trauma, involving the osseous spiral lamina or basilar membrane, was more commonly observed in reimplanted cochleas. This damage was usually restricted to the lower basal turn and resulted in a more extensive ganglion cell loss. Finally, in a number of cochleas part of the electrode array was located within the scala media or scala vestibuli. These electrodes did not appear to evoke a more extensive tissue response or

  15. [Strategy for minimally invasive cochlear implantation and residual hearing preservation]. (United States)

    Huang, Y Y; Chen, J Y; Shen, M; Yang, J


    In the past few decades, considerable development was achieved in the cochlear implantation following the emergence of innovative electrode array and advances in minimally invasive surgery. Minimally invasive technique led to a better preservation of residual low-frequency hearing. The loss of residual hearing was caused by complicated factors. According to previous studies, a slower and stable speed of electrode insertion and the use of perioperative steroids were demonstrated to have a positive impact on hearing preservation. The selection of electrode array or its insertion approaches didn't show any distinctive benefits in hearing preservation.

  16. Characterization of ion implanted silicon by the electrolytic reverse current

    International Nuclear Information System (INIS)

    Hueller, J.; Pham, M.T.


    The current voltage behaviour of ion implanted silicon electrodes in HF electrolyte is investigated. The electrolytic reverse current, i.e. the reaction rate of the minority carrier limited reactions is found to increase. The current increase depends on the implanted dose and layer stripping. Reason for the increased reverse current can be referred to radiation damage acting as generation centres for minority carriers. Measurement of the electrolytic reverse current can be used for determining damage profiles. Layer stripping is carried out by anodic dissolution in the same electrolyte. The sensitivity of this new method for characterizing ion implanted silicon layers lies at 10 11 to 10 12 atoms/cm 2 . (author)

  17. Retrograde peri-implantitis

    Directory of Open Access Journals (Sweden)

    Mohamed Jumshad


    Full Text Available Retrograde peri-implantitis constitutes an important cause for implant failure. Retrograde peri-implantitis may sometimes prove difficult to identify and hence institution of early treatment may not be possible. This paper presents a report of four cases of (the implant placed developing to retrograde peri-implantitis. Three of these implants were successfully restored to their fully functional state while one was lost due to extensive damage. The paper highlights the importance of recognizing the etiopathogenic mechanisms, preoperative assessment, and a strong postoperative maintenance protocol to avoid retrograde peri-implant inflammation.

  18. Transcatheter mitral valve implantation via transapical approach

    DEFF Research Database (Denmark)

    Sondergaard, Lars; Brooks, Matthew; Ihlemann, Nikolaj


    bypass surgery (n = 2), severe pulmonary hypertension (n = 1) and moderate to severe chronic renal failure (n = 3). A CardiAQ mitral valve was implanted using fluoroscopy and transoesophageal (TEE) guidance via a standard transapical approach. RESULTS: Accurate prosthesis positioning and deployment...

  19. Individual titanium zygomatic implant (United States)

    Nekhoroshev, M. V.; Ryabov, K. N.; Avdeev, E. V.


    Custom individual implants for the reconstruction of craniofacial defects have gained importance due to better qualitative characteristics over their generic counterparts – plates, which should be bent according to patient needs. The Additive Manufacturing of individual implants allows reducing cost and improving quality of implants. In this paper, the authors describe design of zygomatic implant models based on computed tomography (CT) data. The fabrication of the implants will be carried out with 3D printing by selective laser melting machine SLM 280HL.

  20. Electrode-electrolyte interface model of tripolar concentric ring electrode and electrode paste. (United States)

    Nasrollaholhosseini, Seyed Hadi; Steele, Preston; Besio, Walter G


    Electrodes are used to transform ionic currents to electrical currents in biological systems. Modeling the electrode-electrolyte interface could help to optimize the performance of the electrode interface to achieve higher signal to noise ratios. There are previous reports of accurate models for single-element biomedical electrodes. In this paper we develop a model for the electrode-electrolyte interface for tripolar concentric ring electrodes (TCRE) that are used to record brain signals.

  1. Electrochemical properties of polypyrrole/polyfuran polymer composite electrode

    International Nuclear Information System (INIS)

    Cha, Seong Keuck


    Poly pyrrole polymer(ppy) has an excellent electrical conductivity and can be easily polymerized on anode to give various morphology according to doped anion on electroactive sites. To improve the properties of brittleness, ageing and hydrophobicity, poly furan polymer(pfu) having a high initiation potential was anodically implanted in this porous ppy film matrix to get the Pt/ppy/pfu(x)type of polymer campsite electrode. Cyclic voltammetry and electrochemical impedance methods were used to these electrode, where PF 6 - , BF 4 - , and ClO 4 - ions were employed as dopants. The composition of the pfu(x) at the electrode was changed from 0 to 1.10, but the range was useful only at 0.1 to 0.2 as the redox electrode. The polymer composite electrode doped with PF 6 - was better in charge transfer resistance by a factor of 40 times and in double layer capacitance by a factor of 20 times than others. The charge transfer in the polymer film of the electrode was influenced on frequency change and equivalent circuit of this electrode had Warburg impedance including mass transfer

  2. [Cochlear implant in children: rational, indications and cost/efficacy]. (United States)

    Martini, A; Bovo, R; Trevisi, P; Forli, F; Berrettini, S


    A cochlear implant (CI) is a partially implanted electronic device that can help to provide a sense of sound and support speech to severely to profoundly hearing impaired patients. It is constituted by an external portion, that usually sits behind the ear and an internal portion surgically placed under the skin. The external components include a microphone connected to a speech processor that selects and arranges sounds pucked up by the microphone. This is connected to a transmitter coil, worn on the side of the head, which transmits data to an internal receiver coil placed under the skin. The received data are delivered to an array of electrodes that are surgically implanted within the cochlea. The primary neural targets of the electrodes are the spiral ganglion cells which innervate fibers of the auditory nerve. When the electrodes are activated by the signal, they send a current along the auditory nerve and auditory pathways to the auditory cortex. Children and adults who are profoundly or severely hearing impaired can be fitted with cochlear implants. According to the Food and Drug Administration, approximately 188,000 people worldwide have received implants. In Italy it is extimated that there are about 6-7000 implanted patients, with an average of 700 CI surgeries per year. Cochlear implantation, followed by intensive postimplantation speech therapy, can help young children to acquire speech, language, and social skills. Early implantation provides exposure to sounds that can be helpful during the critical period when children learn speech and language skills. In 2000, the Food and Drug Administration lowered the age of eligibility to 12 months for one type of CI. With regard to the results after cochlear implantation in relation to early implantation, better linguistic results are reported in children implanted before 12 months of life, even if no sufficient data exist regarding the relation between this advantage and the duration of implant use and how long

  3. Challenges in Improving Cochlear Implant Performance and Accessibility. (United States)

    Zeng, Fan-Gang


    Here I identify two gaps in cochlear implants that have been limiting their performance and acceptance. First, cochlear implant performance has remained largely unchanged, despite the number of publications tripling per decade in the last 30 years. Little has been done so far to address a fundamental limitation in the electrode-to-neuron interface, with the electrode size being a thousand times larger than the neuron diameter while the number of electrodes being a thousand times less. Both the small number and the large size of electrodes produce broad spatial activation and poor frequency resolution that limit current cochlear implant performance. Second, a similarly rapid growth in cochlear implant volume has not produced an expected decrease in unit price in the same period. The high cost contributes to low market penetration rate, which is about 20% in developed countries and less than 1% in developing countries. I will discuss changes needed in both research strategy and business practice to close the gap between prosthetic and normal hearing as well as that between haves and have-nots.

  4. DBS Electrodes With Single Disconnected Contacts: Long-Term Observation and Implications for the Management. (United States)

    Allert, Niels; Jusciute, Egle; Quindt, Regina; Lindlau, Alexandra; Nolden, Brit Meike; Daryaeitabar, Mohammadreza; Karbe, Hans


    To evaluate the long-term course of quadripolar DBS electrodes with disconnected single contacts that cannot be used for DBS. Quadripolar electrodes with open circuits of single contacts or monopolar impedances >6500 Ω were identified from a cohort of 2082 electrodes from 1044 patients with variable movement disorders. The long-term course was analyzed from follow-up data. Disconnected contacts were found in 58 electrodes (2.8%) from 49 patients (4.7%). The dysfunction was restricted to one contact in 51 electrodes (87.9%), two contacts in 5 electrodes (8.6%), three contacts in 2 electrodes (3.4%). Onset was related to surgery (implantation, impulse generator replacement, or other surgical revision) in 34 electrodes (58.6%), trauma in 2 electrodes, undetermined in 11 electrodes, and occurred spontaneously after previous normal measurements in 11 electrodes (19.0%). Repeated measurements at follow-ups of ≥3 months were available in 39 electrodes. In 16 electrodes (41.0%) abnormal impedances persisted constantly during observations up to 11½ years (47 ± 35 months, median 41 months). In 21 electrodes (53.8%) abnormal impedances remained restricted to the initial contact(s) but varied considerably between measurements during up to six years (39 ± 18 months, median 38 months). Only two electrodes (5.1%) with initially one disconnected contact developed a disconnection of a second contact. Disconnections of single contacts occur with increasing cumulative incidence during long-term DBS. Surgery is the main causative risk factor. In the majority of electrodes, the dysfunction remains restricted to the initial contact(s). © 2018 International Neuromodulation Society.

  5. Sensor employing internal reference electrode

    DEFF Research Database (Denmark)


    The present invention concerns a novel internal reference electrode as well as a novel sensing electrode for an improved internal reference oxygen sensor and the sensor employing same.......The present invention concerns a novel internal reference electrode as well as a novel sensing electrode for an improved internal reference oxygen sensor and the sensor employing same....

  6. Fabrication of a Biologically-Implantable, Multiplexed, Multielectrode Array of JFETS for Cortical Implantation. (United States)


    which could be implanted at the surface of the brain. Electrodes of microfine dimensions I-1 . check the operation of the diffusion furnace oxidation tube by comparing measured thicknesses of the oxide against calculated values. Oxide Growth...faster rate than that of Eq ), (11-2). Initial adjustments made prior to using the diffusion furnace included: (1) profiling the oxidation tube to

  7. Recovery of supraspinal control of leg movement in a chronic complete flaccid paraplegic man after continuous low-frequency pelvic nerve stimulation and FES-assisted training

    DEFF Research Database (Denmark)

    Possover, Marc; Forman, Axel


    INTRODUCTION: More than 30 years ago, functional electrical stimulation (FES) was developed as an orthotic system to be used for rehabilitation for SCI patients. In the present case report, FES-assisted training was combined with continuous low-frequency stimulation of the pelvic somatic nerves...... in a SCI patient. CASE PRESENTATION: We report on unexpected findings in a 41-year-old man with chronic complete flaccid paraplegia, since he was 18 years old, who underwent spinal stem cell therapy and a laparoscopic implantation of neuroprosthesis (LION procedure) in the pelvic lumbosacral nerves....... The patient had complete flaccid sensomotoric paraplegia T12 as a result of a motor vehicle accident in 1998. In June 2011, he underwent a laparoscopic implantation of stimulation electrodes to the sciatic and femoral nerves for continuous low-frequency electrical stimulation and functional electrical...

  8. Antibacterial, anti-inflammatory and neuroprotective layer-by-layer coatings for neural implants (United States)

    Zhang, Zhiling; Nong, Jia; Zhong, Yinghui


    Objective. Infection, inflammation, and neuronal loss are common issues that seriously affect the functionality and longevity of chronically implanted neural prostheses. Minocycline hydrochloride (MH) is a broad-spectrum antibiotic and effective anti-inflammatory drug that also exhibits potent neuroprotective activities. In this study, we investigated the development of biocompatible thin film coatings capable of sustained release of MH for improving the long term performance of implanted neural electrodes. Approach. We developed a novel magnesium binding-mediated drug delivery mechanism for controlled and sustained release of MH from an ultrathin hydrophilic layer-by-layer (LbL) coating and characterized the parameters that control MH loading and release. The anti-biofilm, anti-inflammatory and neuroprotective potencies of the LbL coating and released MH were also examined. Main results. Sustained release of physiologically relevant amount of MH for 46 days was achieved from the Mg2+-based LbL coating at a thickness of 1.25 μm. In addition, MH release from the LbL coating is pH-sensitive. The coating and released MH demonstrated strong anti-biofilm, anti-inflammatory, and neuroprotective potencies. Significance. This study reports, for the first time, the development of a bioactive coating that can target infection, inflammation, and neuroprotection simultaneously, which may facilitate the translation of neural interfaces to clinical applications.

  9. Electrical field imaging as a means to predict the loudness of monopolar and tripolar stimuli in cochlear implant patients.

    NARCIS (Netherlands)

    Berenstein, C.K.; Vanpoucke, F.J.; Mulder, J.J.S.; Mens, L.H.M.


    Tripolar and other electrode configurations that use simultaneous stimulation inside the cochlea have been tested to reduce channel interactions compared to the monopolar stimulation conventionally used in cochlear implant systems. However, these "focused" configurations require increased current

  10. Cochlear Dummy Electrodes for Insertion Training and Research Purposes: Fabrication, Mechanical Characterization, and Experimental Validation

    Directory of Open Access Journals (Sweden)

    Jan-Philipp Kobler


    Full Text Available To develop skills sufficient for hearing preservation cochlear implant surgery, surgeons need to perform several electrode insertion trials in ex vivo temporal bones, thereby consuming relatively expensive electrode carriers. The objectives of this study were to evaluate the insertion characteristics of cochlear electrodes in a plastic scala tympani model and to fabricate radio opaque polymer filament dummy electrodes of equivalent mechanical properties. In addition, this study should aid the design and development of new cochlear electrodes. Automated insertion force measurement is a new technique to reproducibly analyze and evaluate the insertion dynamics and mechanical characteristics of an electrode. Mechanical properties of MED-EL’s FLEX28, FLEX24, and FLEX20 electrodes were assessed with the help of an automated insertion tool. Statistical analysis of the overall mechanical behavior of the electrodes and factors influencing the insertion force are discussed. Radio opaque dummy electrodes of comparable characteristics were fabricated based on insertion force measurements. The platinum-iridium wires were replaced by polymer filament to provide sufficient stiffness to the electrodes and to eradicate the metallic artifacts in X-ray and computed tomography (CT images. These low-cost dummy electrodes are cheap alternatives for surgical training and for in vitro, ex vivo, and in vivo research purposes.

  11. Electrode-tissues interface: modeling and experimental validation

    International Nuclear Information System (INIS)

    Sawan, M; Laaziri, Y; Mounaim, F; Elzayat, E; Corcos, J; Elhilali, M M


    The electrode-tissues interface (ETI) is one of the key issues in implantable devices such as stimulators and sensors. Once the stimulator is implanted, safety and reliability become more and more critical. In this case, modeling and monitoring of the ETI are required. We propose an empirical model for the ETI and a dedicated integrated circuit to measure its corresponding complex impedance. These measurements in the frequency range of 1 Hz to 100 kHz were achieved in acute dog experiments. The model demonstrates a closer fitting with experimental measurements. In addition, a custom monitoring device based on a stimuli current generator has been completed to evaluate the phase shift and voltage across the electrodes and to transmit wirelessly the values to an external controller. This integrated circuit has been fabricated in a CMOS 0.18 μm process, which consumes 4 mW only during measurements and occupies an area of 1 mm 2 . (review article)

  12. The cochlear implant as a tinnitus treatment. (United States)

    Vallés-Varela, Héctor; Royo-López, Juan; Carmen-Sampériz, Luis; Sebastián-Cortés, José M; Alfonso-Collado, Ignacio


    Tinnitus is a symptom of high prevalence in patients with cochlear pathology. We studied the evolution of tinnitus in patients undergoing unilateral cochlear implantation for treatment of profound hearing loss. This was a longitudinal, retrospective study of patients that underwent unilateral cochlear implantation and who had bilateral tinnitus. Tinnitus was assessed quantitatively and qualitatively before surgery and at 6 and 12 months after surgery. We evaluated 20 patients that underwent unilateral cochlear implantation with a Nucleus(®) CI24RE Contour Advance™ electrode device. During the periods in which the device was in operation, improvement or disappearance of tinnitus was evidenced in the ipsilateral ear in 65% of patients, and in the contralateral ear, in 50%. In periods in which the device was disconnected, improvement or disappearance of tinnitus was found in the ipsilateral ear in 50% of patients, and in the ear contralateral to the implant in 45% of the patients. In 10% of the patients, a new tinnitus appeared in the ipsilateral ear. The patients with profound hearing loss and bilateral tinnitus treated with unilateral cochlear implantation improved in a high percentage of cases, in the ipsilateral ear and in the contralateral ear. Copyright © 2012 Elsevier España, S.L. All rights reserved.

  13. A touch probe method of operating an implantable RFID tag for orthopedic implant identification. (United States)

    Liu, Xiaoyu; Berger, J Lee; Ogirala, Ajay; Mickle, Marlin H


    The major problem in operating an implantable radio-frequency identification (RFID) tag embedded on an orthopedic implant is low efficiency because of metallic interference. To improve the efficiency, this paper proposes a method of operating an implantable passive RFID tag using a touch probe at 13.56 MHz. This technology relies on the electric field interaction between two pairs of electrodes, one being a part of the touch probe placed on the surface of tissue and the other being a part of the tag installed under the tissue. Compared with using a conventional RFID antenna such as a loop antenna, this method has a better performance in the near field operation range to reduce interference with the orthopedic implant. Properly matching the touch probe and the tag to the tissue and the implant reduces signal attenuation and increases the overall system efficiency. The experiments have shown that this method has a great performance in the near field transcutaneous operation and can be used for orthopedic implant identification.

  14. Decline in verbal fluency after subthalamic nucleus deep brain stimulation in Parkinson's disease: a microlesion effect of the electrode trajectory? (United States)

    Le Goff, Floriane; Derrey, Stéphane; Lefaucheur, Romain; Borden, Alaina; Fetter, Damien; Jan, Maryvonne; Wallon, David; Maltête, David


    Decline in verbal fluency (VF) is frequently reported after chronic deep brain stimulation (DBS) of the subthalamic nucleus (STN) in Parkinson disease (PD). We investigated whether the trajectory of the implanted electrode correlate with the VF decline 6 months after surgery. We retrospectively analysed 59 PD patients (mean age, 61.9 ± 7; mean disease duration, 13 ± 4.6) who underwent bilateral STN-DBS. The percentage of VF decline 6 months after STN-DBS in the on-drug/on-stimulation condition was determined in respect of the preoperative on-drug condition. The patients were categorised into two groups (decline and stable) for each VF. Cortical entry angles, intersection with deep grey nuclei (caudate, thalamic or pallidum), and anatomical extent of the STN affected by the electrode pathway, were compared between groups. A significant decline of both semantic and phonemic VF was found after surgery, respectively 14.9% ± 22.1 (P < 0.05) and 14.2% ± 30.3 (P < 0.05). Patients who declined in semantic VF (n = 44) had a left trajectory with a more anterior cortical entry point (56 ± 53 versus 60 ± 55 degree, P = 0.01) passing less frequently trough the thalamus (P = 0.03). Microlesion of left brain regions may contribute to subtle cognitive impairment following STN-DBS in PD.

  15. Implantable Medical Devices (United States)

    ... Artery Disease Venous Thromboembolism Aortic Aneurysm More Implantable Medical Devices Updated:Sep 16,2016 For Rhythm Control ... a Heart Attack Introduction Medications Surgical Procedures Implantable Medical Devices • Life After a Heart Attack • Heart Attack ...

  16. Intercavitary implants dosage calculation

    International Nuclear Information System (INIS)

    Rehder, B.P.

    The use of spacial geometry peculiar to each treatment for the attainment of intercavitary and intersticial implants dosage calculation is presented. The study is made in patients with intercavitary implants by applying a modified Manchester technique [pt

  17. Ultra-nanocrystalline diamond electrodes: optimization towards neural stimulation applications. (United States)

    Garrett, David J; Ganesan, Kumaravelu; Stacey, Alastair; Fox, Kate; Meffin, Hamish; Prawer, Steven


    Diamond is well known to possess many favourable qualities for implantation into living tissue including biocompatibility, biostability, and for some applications hardness. However, conducting diamond has not, to date, been exploited in neural stimulation electrodes due to very low electrochemical double layer capacitance values that have been previously reported. Here we present electrochemical characterization of ultra-nanocrystalline diamond electrodes grown in the presence of nitrogen (N-UNCD) that exhibit charge injection capacity values as high as 163 µC cm(-2) indicating that N-UNCD is a viable material for microelectrode fabrication. Furthermore, we show that the maximum charge injection of N-UNCD can be increased by tailoring growth conditions and by subsequent electrochemical activation. For applications requiring yet higher charge injection, we show that N-UNCD electrodes can be readily metalized with platinum or iridium, further increasing charge injection capacity. Using such materials an implantable neural stimulation device fabricated from a single piece of bio-permanent material becomes feasible. This has significant advantages in terms of the physical stability and hermeticity of a long-term bionic implant.

  18. Implantable electronic medical devices

    CERN Document Server

    Fitzpatrick, Dennis


    Implantable Electronic Medical Devices provides a thorough review of the application of implantable devices, illustrating the techniques currently being used together with overviews of the latest commercially available medical devices. This book provides an overview of the design of medical devices and is a reference on existing medical devices. The book groups devices with similar functionality into distinct chapters, looking at the latest design ideas and techniques in each area, including retinal implants, glucose biosensors, cochlear implants, pacemakers, electrical stimulation t

  19. Fabrication of an Implantable Micro-pressure Sensor to Measure Deviation Within the Cochlea

    Directory of Open Access Journals (Sweden)

    Leonardo Perez


    Full Text Available The Cochlear Implant is broadly worn by people with deep hearing damage. This device makes up an electrode array to electrically stimulate the auditory nerves. When the electrode is implanted into the inner ear by surgery, the scala tympani is ill-treated due to the strong pressure applied on the internal ear structures. To minimize this intra-cochlear trauma, it is proposed to fabricate a micro pressure-sensor and built it in the electrode array, in such a way that the pressure applied by the electrode is measured. This work selected the MEMS SU-8 Fabry-Perot interferometer-based pressure sensor. This paper describes the sensor fabrication process carried out, and explains how to integrate this sensor with the electrode array.

  20. Presence of Biofilms on Polyurethane-Coated Breast Implants: Preliminary Results. (United States)

    Rieger, Ulrich M; Djedovic, Gabriel; Pattiss, Alexander; Raschke, Gregor F; Frei, Reno; Pierer, Gerhard; Trampuz, Andrej


    Polyurethane-coated breast implants seem to be associated with lower medium- and long-term capsular contracture rates in comparison to textured or smooth implant surfaces. Although the etiology of capsular contracture is uncertain, bacterial biofilms have been suggested to trigger chronic peri-implant inflammation, eventually leading to capsular contracture. It is unknown whether polyurethane-coated implants are less prone to biofilm colonization than other implant surfaces. We extracted data from patient records included in a prospective cohort between 2008 and 2011. All patients who underwent removal of polyurethane-coated implants were included in this current study and screened for presence of biofilms by sonication. In addition, implant- and patient-related data were analyzed. Of the ten included polyurethane-coated breast implants, six had been inserted for reconstructive purposes and four for aesthetic reasons. The median implant indwelling time was 28.3 mo. Overall, sonication cultures were positive in 50% of implants. Propionibacterium acnes and coagulase-negative staphylococci were the predominant pathogens isolated from biofilm cultures. Like other implant surfaces, polyurethane-coated implants are prone to biofilm colonization. Further investigations are needed to determine why capsular contracture rates seem to be lower in polyurethane implants than in other implant surfaces. Notably, in this study, 40% of the implants were explanted from breasts with severe capsular contracture.

  1. Hearing Preservation in Cochlear Implant Surgery

    Directory of Open Access Journals (Sweden)

    Priscila Carvalho Miranda


    Full Text Available In the past, it was thought that hearing loss patients with residual low-frequency hearing would not be good candidates for cochlear implantation since insertion was expected to induce inner ear trauma. Recent advances in electrode design and surgical techniques have made the preservation of residual low-frequency hearing achievable and desirable. The importance of preserving residual low-frequency hearing cannot be underestimated in light of the added benefit of hearing in noisy atmospheres and in music quality. The concept of electrical and acoustic stimulation involves electrically stimulating the nonfunctional, high-frequency region of the cochlea with a cochlear implant and applying a hearing aid in the low-frequency range. The principle of preserving low-frequency hearing by a “soft surgery” cochlear implantation could also be useful to the population of children who might profit from regenerative hair cell therapy in the future. Main aspects of low-frequency hearing preservation surgery are discussed in this review: its brief history, electrode design, principles and advantages of electric-acoustic stimulation, surgical technique, and further implications of this new treatment possibility for hearing impaired patients.

  2. Quantum effects in ion implanted devices

    International Nuclear Information System (INIS)

    Jamieson, D.N.; Chan, V.; Hudson, F.E.; Andresen, S.E.; Yang, C.; Hopf, T.; Hearne, S.M.; Pakes, C.I.; Prawer, S.; Gauja, E.; Yang, C.; Dzurak, A.S.; Yang, C.; Clark, R.G.; Yang, C.


    Fabrication of nanoscale devices that exploit the rules of quantum mechanics to process information presents formidable technical challenges because it will be necessary to control quantum states at the level of individual atoms, electrons or photons. We have developed a pathway to the construction of quantum devices using ion implantation and demonstrate, using charge transport analysis, that the devices exhibit single electron effects. We construct devices that employ two P donors in Si by employing the technique of ion beam induced charge (IBIC) in which single 14 keV P ions can be implanted into ultra-pure silicon by monitoring on-substrate detector electrodes. We have used IBIC with a MeV nuclear microprobe to map and measure the charge collection efficiency in the development of the electrode structure and show that 100% charge collection efficiency can be achieved leading to the fabrication of prototype devices that display quantum effects in the transport of single charge quanta between the islands of implanted donors. (author). 9 refs., 4 figs., 1 tab

  3. Composite carbon foam electrode (United States)

    Mayer, Steven T.; Pekala, Richard W.; Kaschmitter, James L.


    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivty and power to system energy.

  4. Porous electrode preparation method (United States)

    Arons, R.M.; Dusek, J.T.


    A porous sintered plaque is provided with a bimodal porosity that is especially well suited for use as an electrode within a molten carbonate fuel cell. The coarse porosity is sufficient for admitting gases into contact with the reaction surfaces while the fine porosity is wetted with and retains molten electrolyte on the reaction sites. The electrode structure is prepared by providing a very fine powder of such as nickel oxide and blending the powder with a suitable decomposable binder to form a solid mass. The mass is comminuted into agglomerate size particles substantially larger than the fine oxide particles and formed into a cohesive compact for subsequent sintering. Sintering is carried out at sufficient conditions to bind the agglomerates together into a porous structure having both coarse and fine porosity. Where lithiated nickel oxide cathodes are prepared, the sintering conditions can be moderate enough to retain substantial quantities of lithium within the electrode for adequate conductivity. 2 figs.

  5. Data-driven model comparing the effects of glial scarring and interface interactions on chronic neural recordings in non-human primates (United States)

    Malaga, Karlo A.; Schroeder, Karen E.; Patel, Paras R.; Irwin, Zachary T.; Thompson, David E.; Bentley, J. Nicole; Lempka, Scott F.; Chestek, Cynthia A.; Patil, Parag G.


    Objective. We characterized electrode stability over twelve weeks of impedance and neural recording data from four chronically-implanted Utah arrays in two rhesus macaques, and investigated the effects of glial scarring and interface interactions at the electrode recording site on signal quality using a computational model. Approach. A finite-element model of a Utah array microelectrode in neural tissue was coupled with a multi-compartmental model of a neuron to quantify the effects of encapsulation thickness, encapsulation resistivity, and interface resistivity on electrode impedance and waveform amplitude. The coupled model was then reconciled with the in vivo data. Histology was obtained seventeen weeks post-implantation to measure gliosis. Main results. From week 1-3, mean impedance and amplitude increased at rates of 115.8 kΩ/week and 23.1 μV/week, respectively. This initial ramp up in impedance and amplitude was observed across all arrays, and is consistent with biofouling (increasing interface resistivity) and edema clearing (increasing tissue resistivity), respectively, in the model. Beyond week 3, the trends leveled out. Histology showed that thin scars formed around the electrodes. In the model, scarring could not match the in vivo data. However, a thin interface layer at the electrode tip could. Despite having a large effect on impedance, interface resistivity did not have a noticeable effect on amplitude. Significance. This study suggests that scarring does not cause an electrical problem with regard to signal quality since it does not appear to be the main contributor to increasing impedance or significantly affect amplitude unless it displaces neurons. This, in turn, suggests that neural signals can be obtained reliably despite scarring as long as the recording site has sufficiently low impedance after accumulating a thin layer of biofouling. Therefore, advancements in microelectrode technology may be expedited by focusing on improvements to the

  6. Efficacy of transverse tripolar stimulation for relief of chronic low back pain: results of a single center. (United States)

    Slavin, K V; Burchiel, K J; Anderson, V C; Cooke, B


    The goal of this study was to evaluate the efficacy of the transverse tripolar spinal cord stimulation system (TTS) in providing relief of low back pain in patients with chronic non-malignant pain. Transverse tripolar electrodes were implanted in the lower thoracic region (T(8-9) to T(12)-L(1)) in 10 patients with chronic neuropathic pain, all of whom reported a significant component of low back pain in combination with unilateral or bilateral leg pain. One patient reported inadequate pain relief during the trial and was not implanted with a permanent generator. A visual analogue scale of low back pain showed a nonsignificant decrease from 64 +/- 19 to 47 +/- 30 (p = 0.25; paired t test) after 1 month of stimulation. Similarly, functional disability evaluated using Oswestry Low Back Pain Questionnaire was not improved (p = 0. 46; paired t test). We conclude that chronic low back pain is not particularly responsive to the transverse stimulation provided by the TTS system. Copyright 2000 S. Karger AG, Basel

  7. Sandwich-type electrode (United States)

    Lu, Wen-Tong P.; Garcia, Earl R.


    Disclosed is an improvement on a method of making an electrode wherein a suspension in a liquid is prepared of a powdered catalyst containing a noble metal, carbon powder and a binder, and the suspension is poured over a carbon substrate dried, compressed and sintered to form a solid catalyst layer bonded to the carbon substrate. The improvement is placing a carbon paper on the catalyst layer prior to compressing. The improved electrode can be used as either a cathode or an anode in a sulfur dioxide depolarized electrolyzer in a process for producing hydrogen from water.

  8. Ion-selective electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Mikhelson, Konstantin N. [St. Petersburg State Univ. (Russian Federation). Ion-Selective Electrode Laboratory


    Ion-selective electrodes (ISEs) have a wide range of applications in clinical, environmental, food and pharmaceutical analysis as well as further uses in chemistry and life sciences. Based on his profound experience as a researcher in ISEs and a course instructor, the author summarizes current knowledge for advanced teaching and training purposes with a particular focus on ionophore-based ISEs. Coverage includes the basics of measuring with ISEs, essential membrane potential theory and a comprehensive overview of the various classes of ion-selective electrodes. The principles of constructing ISEs are outlined, and the transfer of methods into routine analysis is considered.

  9. Single Electrode Heat Effects

    DEFF Research Database (Denmark)

    Jacobsen, Torben; Broers, G. H. J.


    The heat evolution at a single irreversibly working electrode is treated onthe basis of the Brønsted heat principle. The resulting equation is analogous to the expression for the total heat evolution in a galvanic cellwith the exception that –DeltaS is substituted by the Peltier entropy, Delta......SP, of theelectrode reaction. eta is the overvoltage at the electrode. This equation is appliedto a high temperature carbonate fuel cell. It is shown that the Peltier entropyterm by far exceeds the heat production due to the irreversible losses, and thatthe main part of heat evolved at the cathode is reabsorbed...

  10. Ion-selective electrodes

    CERN Document Server

    Mikhelson, Konstantin N


    Ion-selective electrodes (ISEs) have a wide range of applications in clinical, environmental, food and pharmaceutical analysis as well as further uses in chemistry and life sciences. Based on his profound experience as a researcher in ISEs and a course instructor, the author summarizes current knowledge for advanced teaching and training purposes with a particular focus on ionophore-based ISEs. Coverage includes the basics of measuring with ISEs, essential membrane potential theory and a comprehensive overview of the various classes of ion-selective electrodes. The principles of constructing I

  11. Simultaneous Bilateral Cochlear Implantation for a 6-Month Child with a History of Meningitis

    Directory of Open Access Journals (Sweden)

    Kh. M. Diab


    Full Text Available The article presents the first case of simultaneous bilateral cochlear implantation for a 6-month child with IV degree sensorineural hearing loss after meningocephalitis in Russia. Despite partial ossification of the cochlear basal turns, the early timing of implantation allowed to fully implant active electrodes to both ears. The simultaneous bilateral cochlear implantation in young children, who had meningitis, is a minimally invasive and highly efficient procedure with good long-term results of oral-aural after-care.

  12. Ring and peg electrodes for minimally-Invasive and long-term sub-scalp EEG recordings. (United States)

    Benovitski, Y B; Lai, A; McGowan, C C; Burns, O; Maxim, V; Nayagam, D A X; Millard, R; Rathbone, G D; le Chevoir, M A; Williams, R A; Grayden, D B; May, C N; Murphy, M; D'Souza, W J; Cook, M J; Williams, C E


    Minimally-invasive approaches are needed for long-term reliable Electroencephalography (EEG) recordings to assist with epilepsy diagnosis, investigation and more naturalistic monitoring. This study compared three methods for long-term implantation of sub-scalp EEG electrodes. Three types of electrodes (disk, ring, and peg) were fabricated from biocompatible materials and implanted under the scalp in five ambulatory ewes for 3months. Disk electrodes were inserted into sub-pericranial pockets. Ring electrodes were tunneled under the scalp. Peg electrodes were inserted into the skull, close to the dura. EEG was continuously monitored wirelessly. High resolution CT imaging, histopathology, and impedance measurements were used to assess the status of the electrodes at the end of the study. EEG amplitude was larger in the peg compared with the disk and ring electrodes (pEEG, mechanical stability, and lower chewing artifact. Whereas, ring electrode arrays tunneled under the scalp enable minimal surgical techniques to be used for implantation and removal. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Flexible electrode belt for EIT using nanofiber web dry electrodes. (United States)

    Oh, Tong In; Kim, Tae Eui; Yoon, Sun; Kim, Kap Jin; Woo, Eung Je; Sadleir, Rosalind J


    Efficient connection of multiple electrodes to the body for impedance measurement and voltage monitoring applications is of critical importance to measurement quality and practicality. Electrical impedance tomography (EIT) experiments have generally required a cumbersome procedure to attach the multiple electrodes needed in EIT. Once placed, these electrodes must then maintain good contact with the skin during measurements that may last several hours. There is usually also the need to manage the wires that run between the electrodes and the EIT system. These problems become more severe as the number of electrodes increases, and may limit the practicality and portability of this imaging method. There have been several trials describing human-electrode interfaces using configurations such as electrode belts, helmets or rings. In this paper, we describe an electrode belt we developed for long-term EIT monitoring of human lung ventilation. The belt included 16 embossed electrodes that were designed to make good contact with the skin. The electrodes were fabricated using an Ag-plated PVDF nanofiber web and metallic threads. A large contact area and padding were used behind each electrode to improve subject comfort and reduce contact impedances. The electrodes were incorporated, equally spaced, into an elasticated fabric belt. We tested the electrode belt in conjunction with the KHU Mark1 multi-frequency EIT system, and demonstrate time-difference images of phantoms and human subjects during normal breathing and running. We found that the Ag-plated PVDF nanofiber web electrodes were suitable for long-term measurement because of their flexibility and durability. Moreover, the contact impedance and stability of the Ag-plated PVDF nanofiber web electrodes were found to be comparable to similarly tested Ag/AgCl electrodes.

  14. Intracochlear Position of Cochlear Implants Determined Using CT Scanning versus Fitting Levels: Higher Threshold Levels at Basal Turn

    NARCIS (Netherlands)

    Beek, F.B. van der; Briaire, J.J.; Marel, K.S. van der; Verbist, B.M.; Frijns, J.H.


    OBJECTIVES: In this study, the effects of the intracochlear position of cochlear implants on the clinical fitting levels were analyzed. DESIGN: A total of 130 adult subjects who used a CII/HiRes 90K cochlear implant with a HiFocus 1/1J electrode were included in the study. The insertion angle and

  15. Trends in cochlear implants. (United States)

    Zeng, Fan-Gang


    More than 60,000 people worldwide use cochlear implants as a means to restore functional hearing. Although individual performance variability is still high, an average implant user can talk on the phone in a quiet environment. Cochlear-implant research has also matured as a field, as evidenced by the exponential growth in both the patient population and scientific publication. The present report examines current issues related to audiologic, clinical, engineering, anatomic, and physiologic aspects of cochlear implants, focusing on their psychophysical, speech, music, and cognitive performance. This report also forecasts clinical and research trends related to presurgical evaluation, fitting protocols, signal processing, and postsurgical rehabilitation in cochlear implants. Finally, a future landscape in amplification is presented that requires a unique, yet complementary, contribution from hearing aids, middle ear implants, and cochlear implants to achieve a total solution to the entire spectrum of hearing loss treatment and management.

  16. Concept and Development of an Electronic Framework Intended for Electrode and Surrounding Environment Characterization In Vivo

    Directory of Open Access Journals (Sweden)

    Stefan B. Rieger


    Full Text Available There has been substantial progress over the last decade towards miniaturizing implantable microelectrodes for use in Active Implantable Medical Devices (AIMD. Compared to the rapid development and complexity of electrode miniaturization, methods to monitor and assess functional integrity and electrical functionality of these electrodes, particularly during long term stimulation, have not progressed to the same extent. Evaluation methods that form the gold standard, such as stimulus pulse testing, cyclic voltammetry and electrochemical impedance spectroscopy, are either still bound to laboratory infrastructure (impractical for long term in vivo experiments or deliver no comprehensive insight into the material’s behaviour. As there is a lack of cost effective and practical predictive measures to understand long term electrode behaviour in vivo, material investigations need to be performed after explantation of the electrodes. We propose the analysis of the electrode and its environment in situ, to better understand and correlate the effects leading to electrode failure. The derived knowledge shall eventually lead to improved electrode designs, increased electrode functionality and safety in clinical applications. In this paper, the concept, design and prototyping of a sensor framework used to analyse the electrode’s behaviour and to monitor diverse electrode failure mechanisms, even during stimulation pulses, is presented. We focused on the electronic circuitry and data acquisition techniques required for a conceptual multi-sensor system. Functionality of single modules and a prototype framework have been demonstrated, but further work is needed to convert the prototype system into an implantable device. In vitro studies will be conducted first to verify sensor performance and reliability.

  17. Benefits and Risks of Cochlear Implants (United States)

    ... and Medical Procedures Implants and Prosthetics Cochlear Implants Benefits and Risks of Cochlear Implants Share Tweet Linkedin ... the Use of Cochlear Implants What are the Benefits of Cochlear Implants? For people with implants: Hearing ...

  18. Novel Pharmacological Approaches for Treatment of Neurotoxicity Induced by Chronic Exposure to Depleted Uranium

    National Research Council Canada - National Science Library

    Lasley, Stephen M


    .... This hypothesis is consistent with previous observations ensuing from chronic intramuscular DU pellet implants in rats, and is based on the anticipation that specific pharmacological agents will...

  19. New Criteria of Indication and Selection of Patients to Cochlear Implant

    Directory of Open Access Journals (Sweden)

    André L. L. Sampaio


    Full Text Available Numerous changes continue to occur in cochlear implant candidacy. In general, these have been accompanied by concomitant and satisfactory changes in surgical techniques. Together, this has advanced the utility and safety of cochlear implantation. Most devices are now approved for use in patients with severe to profound unilateral hearing loss rather then the prior requirement of a bilateral profound loss. Furthermore, studies have begun utilizing short electrode arrays for shallow insertion in patients with considerable low-frequency residual hearing. This technique will allow the recipient to continue to use acoustically amplified hearing for the low frequencies simultaneously with a cochlear implant for the high frequencies. The advances in design of, and indications for, cochlear implants have been matched by improvements in surgical techniques and decrease in complications. The resulting improvements in safety and efficacy have further encouraged the use of these devices. This paper will review the new concepts in the candidacy of cochlear implant. Medline data base was used to search articles dealing with the following topics: cochlear implant in younger children, cochlear implant and hearing preservation, cochlear implant for unilateral deafness and tinnitus, genetic hearing loss and cochlear implant, bilateral cochlear implant, neuropathy and cochlear implant and neural plasticity, and the selection of patients for cochlear implant.

  20. Protected electrodes for plasma panels

    International Nuclear Information System (INIS)

    Hall, S.W.


    A metal oxide coating is applied between the conductive base and the magnesium oxide dielectric of the input and/or erase electrode(s) in a plasma display device to prevent break-down of the dielectric

  1. Treatment of spasmodic dysphonia with a neuromodulating electrical implant. (United States)

    Pitman, Michael J


    To investigate the feasibility of an implantable electrical stimulation device to treat spasmodic dysphonia (SD) by neuromodulation of the muscle spindle gamma loop. Prospective case series. Five subjects underwent daily stimulation of the left thyroarytenoid muscle (TA) below the level of α-motor neuron activation (AMNA) for 5 consecutive days. Professional and patient voice evaluations were performed. Transcartilagenous placement of an implantable stimulation device lead was investigated in anesthetized porcine and cadaveric human models. Three of 5 subjects improved in all categories of evaluation. One subject improved in three of four categories. These four subjects described significant carryover of effect after treatment. The fifth subject evidenced improvement until contracting an upper respiratory infection on day 3. Transcartilagenous electrode placement into the porcine TA with muscle stimulation was successful. The electrode lead was passed from the cadaveric larynx to the mastoid tip in the subplatysma layer with an absence of tension. The symptoms of SD improve after electrical stimulation of the TA at levels below AMNA. This is likely through neuromodulation of the muscle spindle gamma loop. Implantation of an electrode into the TA with a postauricular implanted stimulator is feasible with modifications of an already existing device. With further investigation, such a device has the potential to deliver an alternative treatment for SD. 4. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.

  2. Toward biomaterial-based implantable photonic devices

    Directory of Open Access Journals (Sweden)

    Humar Matjaž


    Full Text Available Optical technologies are essential for the rapid and efficient delivery of health care to patients. Efforts have begun to implement these technologies in miniature devices that are implantable in patients for continuous or chronic uses. In this review, we discuss guidelines for biomaterials suitable for use in vivo. Basic optical functions such as focusing, reflection, and diffraction have been realized with biopolymers. Biocompatible optical fibers can deliver sensing or therapeutic-inducing light into tissues and enable optical communications with implanted photonic devices. Wirelessly powered, light-emitting diodes (LEDs and miniature lasers made of biocompatible materials may offer new approaches in optical sensing and therapy. Advances in biotechnologies, such as optogenetics, enable more sophisticated photonic devices with a high level of integration with neurological or physiological circuits. With further innovations and translational development, implantable photonic devices offer a pathway to improve health monitoring, diagnostics, and light-activated therapies.

  3. Ion-selective electrode reviews

    CERN Document Server

    Thomas, J D R


    Ion-Selective Electrode Reviews, Volume 7 is a collection of papers that covers the applications of electrochemical sensors, along with the versatility of ion-selective electrodes. The coverage of the text includes solid contact in membrane ion-selective electrodes; immobilized enzyme probes for determining inhibitors; potentiometric titrations based on ion-pair formation; and application of ion-selective electrodes in soil science, kinetics, and kinetic analysis. The text will be of great use to chemists and chemical engineers.

  4. Pudendal nerve stimulation and block by a wireless-controlled implantable stimulator in cats. (United States)

    Yang, Guangning; Wang, Jicheng; Shen, Bing; Roppolo, James R; de Groat, William C; Tai, Changfeng


    The study aims to determine the functionality of a wireless-controlled implantable stimulator designed for stimulation and block of the pudendal nerve. In five cats under α-chloralose anesthesia, the stimulator was implanted underneath the skin on the left side in the lower back along the sacral spine. Two tripolar cuff electrodes were implanted bilaterally on the pudendal nerves in addition to one bipolar cuff electrode that was implanted on the left side central to the tripolar cuff electrode. The stimulator provided high-frequency (5-20 kHz) biphasic stimulation waveforms to the two tripolar electrodes and low-frequency (1-100 Hz) rectangular pulses to the bipolar electrode. Bladder and urethral pressures were measured to determine the effects of pudendal nerve stimulation (PNS) or block. The maximal (70-100 cmH2O) urethral pressure generated by 20-Hz PNS applied via the bipolar electrode was completely eliminated by the pudendal nerve block induced by the high-frequency stimulation (6-15 kHz, 6-10 V) applied via the two tripolar electrodes. In a partially filled bladder, 20-30 Hz PNS (2-8 V, 0.2 ms) but not 5 Hz stimulation applied via the bipolar electrode elicited a large sustained bladder contraction (45.9 ± 13.4 to 52.0 ± 22 cmH2O). During cystometry, the 5 Hz PNS significantly (p < 0.05) increased bladder capacity to 176.5 ± 27.1% of control capacity. The wireless-controlled implantable stimulator successfully generated the required waveforms for stimulation and block of pudendal nerve, which will be useful for restoring bladder functions after spinal cord injury. © 2013 International Neuromodulation Society.

  5. Foramen ovale electrodes in the evaluation of epilepsy surgery: conventional and unconventional uses. (United States)

    Karakis, Ioannis; Velez-Ruiz, Naymee; Pathmanathan, Jay S; Sheth, Sameer A; Eskandar, Emad N; Cole, Andrew J


    Foramen ovale (FO) electrodes have been used in the evaluation of epilepsy surgery for more than 25 years. Their traditional application was in patients with mesial temporal lobe epilepsy. Due in part to advances in neuroimaging, their use has declined. We describe our cumulative experience with FO electrodes and use examples to illustrate a range of indications for FO recordings that extend beyond their conventional utility for mesial temporal lobe cases. We also summarize the pros and cons of FO electrodes implantation and attempt to reestablish their utility in presurgical evaluation. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Neural Implants, Packaging for Biocompatible Implants, and Improving Fabricated Capacitors (United States)

    Agger, Elizabeth Rose

    We have completed the circuit design and packaging procedure for an NIH-funded neural implant, called a MOTE (Microscale Optoelectronically Transduced Electrode). Neural recording implants for mice have greatly advanced neuroscience, but they are often damaging and limited in their recording location. This project will result in free-floating implants that cause less damage, provide rapid electronic recording, and increase range of recording across the cortex. A low-power silicon IC containing amplification and digitization sub-circuits is powered by a dual-function gallium arsenide photovoltaic and LED. Through thin film deposition, photolithography, and chemical and physical etching, the Molnar Group and the McEuen Group (Applied and Engineering Physics department) will package the IC and LED into a biocompatible implant approximately 100microm3. The IC and LED are complete and we have begun refining this packaging procedure in the Cornell NanoScale Science & Technology Facility. ICs with 3D time-resolved imaging capabilities can image microorganisms and other biological samples given proper packaging. A portable, flat, easily manufactured package would enable scientists to place biological samples on slides directly above the Molnar group's imaging chip. We have developed a packaging procedure using laser cutting, photolithography, epoxies, and metal deposition. Using a flip-chip method, we verified the process by aligning and adhering a sample chip to a holder wafer. In the CNF, we have worked on a long-term metal-insulator-metal (MIM) capacitor characterization project. Former Fellow and continuing CNF user Kwame Amponsah developed the original procedure for the capacitor fabrication, and another former fellow, Jonilyn Longenecker, revised the procedure and began the arduous process of characterization. MIM caps are useful to clean room users as testing devices to verify electronic characteristics of their active circuitry. This project's objective is to

  7. Rehabilitation of deaf persons with cochlear implants

    International Nuclear Information System (INIS)

    Gstoettner, W.; Hamzavi, J.; Czerny, C.


    In the last decade, the rehabilitation of postlingually deaf adults and prelingually deaf children with cochlear implants has been established as a treatment of deafness. The technological development of the implant devices and improvement of the surgical technique have led to a considerable increase of hearing performance during the last years. The postlingually deaf adults are able to use the telephone and may be integrated in their original job. Prelingually deaf children can even visit normal schools after cochlear implantation and hearing rehabilitation training. In order to preoperatively establish the state of the cochlear, radiological diagnosis of the temporal bone is necessary. High resolution computerized tomography imaging of the temporal bone with coronar and axial 1 mm slices and MRI with thin slice technique (three dimensional, T2 weighted turbo-spinecho sequence with 0.7 mm slices) have proved to be valuable according to our experience. Furthermore a postoperative synoptical X-ray, in a modified Chausse III projection, offers good information about the position of the implant and insertion of the stimulating electrode into the cochlea. (orig.) [de

  8. Hearing Preservation after Cochlear Implantation: UNICAMP Outcomes

    Directory of Open Access Journals (Sweden)

    Guilherme Machado de Carvalho


    Full Text Available Background. Electric-acoustic stimulation (EAS is an excellent choice for people with residual hearing in low frequencies but not high frequencies and who derive insufficient benefit from hearing aids. For EAS to be effective, subjects' residual hearing must be preserved during cochlear implant (CI surgery. Methods. We implanted 6 subjects with a CI. We used a special surgical technique and an electrode designed to be atraumatic. Subjects' rates of residual hearing preservation were measured 3 times postoperatively, lastly after at least a year of implant experience. Subjects' aided speech perception was tested pre- and postoperatively with a sentence test in quiet. Subjects' subjective responses assessed after a year of EAS or CI experience. Results. 4 subjects had total or partial residual hearing preservation; 2 subjects had total residual hearing loss. All subjects' hearing and speech perception benefited from cochlear implantation. CI diminished or eliminated tinnitus in all 4 subjects who had it preoperatively. 5 subjects reported great satisfaction with their new device. Conclusions. When we have more experience with our surgical technique we are confident we will be able to report increased rates of residual hearing preservation. Hopefully, our study will raise the profile of EAS in Brazil and Latin/South America.

  9. A trabecular metal implant 4 months after placement: clinical-histologic case report. (United States)

    Spinato, Sergio; Zaffe, Davide; Felice, Pietro; Checchi, Luigi; Wang, Hom-Lay


    The aim of this case report was to histologically evaluate the behavior of a trabecular metal (TM) implant composed of titanium and spatial 3-dimensional tantalum (Ta) trabeculae. This study is the first human histologic case report of this implant. A TM implant was placed in a 54-year-old woman exhibiting moderate chronic periodontitis. After periodontal treatment, the implant was inserted under favorable clinical conditions. Patient was not seen for 4 months because of unrelated breast reduction surgery. At the surgical reopening, periimplant inflammation affecting the coronal third of the implant was observed 4 months after implant placement. With patient's consent, the implant was removed for histologic analysis. Histology highlighted a greater amount of bone in close contact with Ta trabeculae than titanium surfaces. The finding of bone formation around the Ta trabeculae suggests that trabecular metal material promotes bone ingrowth for secondary implant stability. Additional evidence is needed to confirm this observation.

  10. Enhanced control of electrochemical response in metallic materials in neural stimulation electrode applications

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, K.G.; Steen, W.M.; Manna, I. [Univ. of Liverpool (United Kingdom)] [and others


    New means have been investigated for the production of electrode devices (stimulation electrodes) which could be implanted in the human body in order to control pain, activate paralysed limbs or provide electrode arrays for cochlear implants for the deaf or for the relief of tinitus. To achieve this ion implantation and laser materials processing techniques were employed. Ir was ion implanted in Ti-6Al-4V alloy and the surface subsequently enriched in the noble metal by dissolution in sulphuric acid. For laser materials processing techniques, investigation has been carried out on the laser cladding and laser alloying of Ir in Ti wire. A particular aim has been the determination of conditions required for the formation of a two phase Ir, Ir-rich, and Ti-rich microstructure which would enable subsequent removal of the non-noble phase to leave a highly porous noble metal with large real surface area and hence improved charge carrying capacity compared with conventional non porous electrodes. Evaluation of the materials produced has been carried out using repetitive cyclic voltammetry, amongst other techniques. For laser alloyed Ir on Ti wire, it has been found that differences in the melting point and density of the materials makes control of the cladding or alloying process difficult. Investigation of laser process parameters for the control of alloying and cladding in this system was carried out and a set of conditions for the successful production of two phase Ir-rich and Ti-rich components in a coating layer with strong metallurgical bonding to the Ti alloy substrate was derived. The laser processed material displays excellent potential for further development in providing stimulation electrodes with the current carrying capacity of Ir but in a form which is malleable and hence capable of formation into smaller electrodes with improved spatial resolution compared with presently employed electrodes.

  11. Ion-selective electrode reviews

    CERN Document Server

    Thomas, J D R


    Ion-Selective Electrode Reviews, Volume 5 is a collection of articles that covers ion-speciation. The book aims to present the advancements of the range and capabilities of selective ion-sensors. The topics covered in the selection are neutral carrier based ion-selective electrodes; reference electrodes and liquid junction effects in ion-selective electrode potentiometry; ion transfer across water/organic phase boundaries and analytical; and carbon substrate ion-selective electrodes. The text will be of great use to chemists and chemical engineers.

  12. Modified endoscopic medial maxillectomy for zygomatic implant salvage. (United States)

    Schwartz, Joseph S; Tajudeen, Bobby A; Adappa, Nithin D; Palmer, James N


    Odontogenic chronic rhinosinusitis (CRS) is an epidemiologically important disease process due, in part, to the increasingly commonplace use of dental restorative procedures such as zygomatic implantation. Traditional management of this clinical entity typically entails extraction of the infected hardware via an open or endoscopic approach. We describe a novel management strategy of odontogenic CRS following bilateral zygomatic implantation for oral rehabilitation that we surgically salvaged via a modified endoscopic medial maxillectomy. We describe the presentation and management of a case of metachronous development of bilateral CRS subsequent to zygomatic implantation. The patient's postoperative course was characterized by marked endoscopic, radiologic, and symptomatic improvement as measured by the 22-item Sino-Nasal Outcome Test. We describe a novel treatment strategy for the management of odontogenic sinusitis resulting from erroneous zygomatic implant placement. Modified endoscopic medial maxillectomy in this clinical context facilitates mucosal normalization of the affected sinus, while permitting preservation of oral function through salvage of the displaced implant.

  13. [Cochlear implant in patients with congenital malformation of inner ear]. (United States)

    Han, Dong-yi; Wu, Wen-ming; Xi, Xin; Huang, De-liang; Yang, Wei-yan


    To study surgical difficulty and key of the cochlear implant in patients with congenital malformation of inner ear. The cochlear implantations were performed in our department from Jan. 2001 to Apr. 2003 for 18 patients with the malformation of inner ear. In this series, there were 11 cases of large vestibular aqueduct syndrome (LVAS), 3 cases of Waardenberg syndrome, 3 cases of Mondini malformation, and 1 case of Usher syndrome. All 18 patients accepted the Nucleus 24-channel cochlear implantations, including Nucleus straight electrode in 13 cases but Contour implantation in 5 cases of LVAS. During operations, leakage of perilymph but not cerebrospinal fluid (CSF) from the open of scala tympani occurred in 11 cases of LVAS, however, the electrode was inserted successfully. The abnormalities of round window occurred in one of 3 cases of Waardenberg syndrome and 3 cases of Mondini malformation, respectively. The cochlear implant could be conducted successfully for the LVAS, and the postoperative effect was same as the ones for the deafness persons with normal development of inner ear. However, for the patients with Mondini syndrome and common cavity, it is important to accurately assess the extent of abnormalities in the inner ear and accompanied malformation before operation, and to evaluate the full extent of difficulties of the operation in order to minimize the risk of CSF leakage and meningitis.

  14. Non-invasive method for selection of electrodes and stimulus parameters for FES applications with intrafascicular arrays (United States)

    Dowden, B. R.; Frankel, M. A.; Normann, R. A.; Clark, G. A.


    High-channel-count intrafascicular electrode arrays provide comprehensive and selective access to the peripheral nervous system. One practical difficulty in using several electrode arrays to evoke coordinated movements in paralyzed limbs is the identification of the appropriate stimulation channels and stimulus parameters to evoke desired movements. Here we present the use of a six degree-of-freedom load cell placed under the foot of a feline to characterize the muscle activation produced by three 100-electrode Utah Slanted Electrode Arrays (USEAs) implanted into the femoral nerves, sciatic nerves, and muscular branches of the sciatic nerves of three cats. Intramuscular stimulation was used to identify the endpoint force directions produced by 15 muscles of the hind limb, and these directions were used to classify the forces produced by each intrafascicular USEA electrode as flexion or extension. For 451 USEA electrodes, stimulus intensities for threshold and saturation muscle forces were identified, and the 3D direction and linearity of the force recruitment curves were determined. Further, motor unit excitation independence for 198 electrode pairs was measured using the refractory technique. This study demonstrates the utility of 3D endpoint force monitoring as a simple and non-invasive metric for characterizing the muscle-activation properties of hundreds of implanted peripheral nerve electrodes, allowing for electrode and parameter selection for neuroprosthetic applications.

  15. Transcanal labyrinthectomy for intractable vertigo after unilateral cochlear implantation. (United States)

    Heidenreich, Katherine D; Basura, Gregory J; Zwolan, Teresa A; El-Kashlan, Hussam K; Telian, Steven A


    Document the use of transcanal labyrinthectomy to treat disabling attacks of vertigo after unilateral cochlear implantation. A 46-year-old woman with severe-profound bilateral sensorineural hearing loss secondary to enlarged vestibular aqueducts underwent cochlear implantation for her right ear with a Nucleus Freedom device. The surgery was uneventful, and postoperative imaging confirmed that the electrode was positioned properly. She developed episodic vertigo 10 to 14 days after the implant surgery, which failed to improve with aggressive vestibular rehabilitation therapy. Plugging of the round window for possible perilymphatic fistula did not relieve her symptoms. Right transcanal labyrinthectomy supplemented by filling the vestibule with gentamicin-soaked Gelfoam and then a customized vestibular rehabilitation program. Comparison of vestibular symptoms and cochlear implant performance before and after transcanal labyrinthectomy. The patient had immediate relief of symptoms, and the function of the cochlear implant was not adversely affected. Transcanal labyrinthectomy may be an effective method to ablate the vestibular end organ after unilateral cochlear implantation. It can offer relief of disabling vertigo without adversely affecting the performance of the implant.

  16. Optical effects of ion implantation

    International Nuclear Information System (INIS)

    Townsend, P.D.


    The review concerns the effects of ion implantation that specifically relate to the optical properties of insulators. Topics which are reviewed include: ion implantation, ion range and damage distributions, colour centre production by ion implantation, high dose ion implantation, and applications for integrated optics. Numerous examples are presented of both diagnostic and industrial examples of ion implantation effects in insulators. (U.K.)

  17. Electrostatic Levitator Electrode Layout (United States)


    Schematic of Electrostatic Levitator (ESL) electrodes and controls system. The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials science program.

  18. Flexible transparent electrode (United States)

    Demiryont, Hulya; Shannon, Kenneth C., III; Moorehead, David; Bratcher, Matthew


    This paper presents the properties of the EclipseTECTM transparent conductor. EclipseTECTM is a room temperature deposited nanostructured thin film coating system comprised of metal-oxide semiconductor elements. The system possesses metal-like conductivity and glass-like transparency in the visible region. These highly conductive TEC films exhibit high shielding efficiency (35dB at 1 to 100GHz). EclipseTECTM can be deposited on rigid or flexible substrates. For example, EclipseTECTM deposited on polyethylene terephthalate (PET) is extremely flexible that can be rolled around a 9mm diameter cylinder with little or no reduction in electrical conductivity and that can assume pre-extension states after an applied stress is relieved. The TEC is colorless and has been tailored to have high visible transmittance which matches the eye sensitivity curve and allows the viewing of true background colors through the coating. EclipseTECTM is flexible, durable and can be tailored at the interface for applications such as electron- or hole-injecting OLED electrodes as well as electrodes in flexible displays. Tunable work function and optical design flexibility also make EclipseTECTM well-suited as a candidate for grid electrode replacement in next-generation photovoltaic cells.

  19. Ion implantation in semiconductors

    International Nuclear Information System (INIS)

    Gusev, V.; Gusevova, M.


    The historical development is described of the method of ion implantation, the physical research of the method, its technological solution and practical uses. The method is universally applicable, allows the implantation of arbitrary atoms to an arbitrary material, ensures high purity of the doping element. It is linked with sample processing at low temperatures. In implantation it is possible to independently change the dose and energy of the ions thereby affecting the spatial distribution of the ions. (M.S.)

  20. Ion implantation in semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Gusev, V; Gusevova, M


    The historical development of the method of ion implantation, the physical research of the method, its technological solution and practical uses is described. The method is universally applicable, allows the implantation of arbitrary atoms to an arbitrary material and ensures high purity of the doping element. It is linked with sample processing at low temperatures. In implantation it is possible to independently change the dose and energy of the ions thereby affecting the spatial distribution of the ions.

  1. Trends in Cochlear Implants


    Zeng, Fan-Gang


    More than 60,000 people worldwide use cochlear implants as a means to restore functional hearing. Although individual performance variability is still high, an average implant user can talk on the phone in a quiet environment. Cochlear-implant research has also matured as a field, as evidenced by the exponential growth in both the patient population and scientific publication. The present report examines current issues related to audiologic, clinical, engineering, anatomic, and physiologic as...

  2. [Management of surgery patients with implanted cardiac pacemakers]. (United States)

    Ugljen, R; Dadić, D; Ferek-Petrić, B; Jelić, I; Letica, D; Anić, D; Husar, J


    Patients having cardiac pacemaker implanted may be subjected to various general surgery procedures. Application of electrosurgery for the purpose of resection and coagulation, provides a high frequency electric field which produces electric voltage on the electrodes of the pacing system. This voltage may be detected within the pacing system, and various arrhythmias can be provoked in correlation with underlying rhythm and mode of pacing. Preoperative patient control and proper pacemaker programming can prevent the pacing malfunctions due to the electrosurgery application. Appropriate positioning of the neutral electrode in relation to the pacing system avoids the electric fields intersection and decreases their interference.

  3. Evaluation of the hybrid-L24 electrode using microcomputed tomography. (United States)

    Driscoll, Colin L W; Carlson, Matthew L; Fama, Anthony F; Lane, John I


    To compare electrode array position, and depth of insertion of the Cochlear Hybrid-L24 electrode array following traditional cochleostomy and round window (RW) insertion. Prospective cadaveric temporal bone study. Ten cadaveric temporal bones were implanted with the Hybrid-L24 electrode array; half were introduced through a RW approach, whereas the other half were inserted through a traditional scala tympani cochleostomy. A micro-CT scanner was then used to evaluate electrode position, intracochlear trauma, and depth of insertion. All electrodes were inserted into the scala tympani without significant resistance. No electrodes demonstrated tip fold-over or through-fracturing of the osseous spiral lamina, basilar membrane, or spiral ligament. The average angular depth of insertion for all 10 electrodes was 252.4°. Compared to cochleostomy insertions, electrodes inserted through the RW more commonly acquired a proximal perimodiolar orientation, followed a more predictable course, and less commonly contacted critical soft tissue structures. The results of this study demonstrate that the Hybrid-L24 electrode can be successfully inserted using a RW or traditional cochleostomy technique with minimal intracochlear trauma. Our data also suggests that with this model, RW insertions may provide particular advantages with respect to hearing preservation over the traditional cochleostomy approach. Copyright © 2011 The American Laryngological, Rhinological, and Otological Society, Inc.

  4. Ion implantation technology

    CERN Document Server

    Downey, DF; Jones, KS; Ryding, G


    Ion implantation technology has made a major contribution to the dramatic advances in integrated circuit technology since the early 1970's. The ever-present need for accurate models in ion implanted species will become absolutely vital in the future due to shrinking feature sizes. Successful wide application of ion implantation, as well as exploitation of newly identified opportunities, will require the development of comprehensive implant models. The 141 papers (including 24 invited papers) in this volume address the most recent developments in this field. New structures and possible approach

  5. High energy ion implantation

    International Nuclear Information System (INIS)

    Ziegler, J.F.


    High energy ion implantation offers the oppertunity for unique structures in semiconductor processing. The unusual physical properties of such implantations are discussed as well as the special problems in masking and damage annealing. A review is made of proposed circuit structures which involve deep implantation. Examples are: deep buried bipolar collectors fabricated without epitaxy, barrier layers to reduce FET memory sensitivity to soft-fails, CMOS isolation well structures, MeV implantation for customization and correction of completed circuits, and graded reach-throughs to deep active device components. (orig.)

  6. [Silastic implant and synovitis]. (United States)

    Sennwald, G


    The silastic implant based on siloxane polymere induces granulomatous synovitis in certain predisposed individuals, a reaction which may continue even after removal of the implant. This is also true of a prosthesis of the trapezium in two of our patients, though to a lesser degree. This is probably the reason why the problem has not yet been widely recognized. The hypothesis is put forward that an enzymatic predisposition may allow chemical degradation of the fragmented silastic implant into a toxic component responsible for the pathologic condition. The slow progression of the lesions is a challenge for the future and puts in question the further use of silastic implants.

  7. Cochlear implant magnet retrofit. (United States)

    Cohen, N L; Breda, S D; Hoffman, R A


    An implantable magnet is now available for patients who have received the standard Nucleus 22-channel cochlear implant and who are not able to wear the headband satisfactorily. This magnet is attached in piggy-back fashion to the previously implanted receiver/stimulator by means of a brief operation under local anesthesia. Two patients have received this magnet retrofit, and are now wearing the headset with greater comfort and satisfaction. It is felt that the availability of this magnet will increase patient compliance in regard to hours of implant usage.

  8. The immediate placement of dental implants into extraction sites with periapical lesions: a retrospective chart review. (United States)

    Bell, Christopher Lincoln; Diehl, David; Bell, Brian Michael; Bell, Robert E


    The purpose of this study was to evaluate the success of dental implants placed immediately into extraction sites in the presence of chronic periapical pathology. The charts of 655 patients who had implants immediately placed into fresh extraction sites were reviewed for the presence or absence of periapical radiolucencies. A total of 922 implants were included. Of the 922 implants, 285 were immediately placed into sockets that had chronic periapical infections. The remaining 637 implants, without signs of periapical pathology, were used as the control group. Success of the implants was defined as successful osseointegration, successful restoration, and absence of evidence of bone loss or peri-implantitis. Other variables such as age, gender, smoking, diabetes, bisphosphonate use, lucencies of adjacent teeth, and implant stability at the time of placement were also evaluated. Of the 922 implants, 285 were placed into sockets with periapical radiolucencies. The success rate of implants placed in the study group was 97.5%, whereas the success rate of the control group was 98.7%. The difference was not found to be statistically significant. The mean follow-up was 19.75 months, with a maximum of 93 months and a minimum of 3 months. A statistically higher failure rate was found for implants placed adjacent to retained teeth with periapical pathology. The placement of implants in sockets affected by chronic periapical pathology can be considered a safe and viable treatment option. There is a risk of implant failure when placing implants adjacent to teeth with periapical radiolucencies. Copyright © 2011 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  9. Surface potential measurement of negative-ion-implanted insulators by analysing secondary electron energy distribution

    International Nuclear Information System (INIS)

    Toyota, Yoshitaka; Tsuji, Hiroshi; Nagumo, Syoji; Gotoh, Yasuhito; Ishikawa, Junzo; Sakai, Shigeki.


    The negative ion implantation method we have proposed is a noble technique which can reduce surface charging of isolated electrodes by a large margin. In this paper, the way to specify the surface potential of negative-ion-implanted insulators by the secondary electron energy analysis is described. The secondary electron energy distribution is obtained by a retarding field type energy analyzer. The result shows that the surface potential of fused quartz by negative-ion implantation (C - with the energy of 10 keV to 40 keV) is negatively charged by only several volts. This surface potential is extremely low compared with that by positive-ion implantation. Therefore, the negative-ion implantation is a very effective method for charge-up free implantation without charge compensation. (author)

  10. Flexible and stretchable electrodes for dielectric elastomer actuators (United States)

    Rosset, Samuel; Shea, Herbert R.


    Dielectric elastomer actuators (DEAs) are flexible lightweight actuators that can generate strains of over 100 %. They are used in applications ranging from haptic feedback (mm-sized devices), to cm-scale soft robots, to meter-long blimps. DEAs consist of an electrode-elastomer-electrode stack, placed on a frame. Applying a voltage between the electrodes electrostatically compresses the elastomer, which deforms in-plane or out-of plane depending on design. Since the electrodes are bonded to the elastomer, they must reliably sustain repeated very large deformations while remaining conductive, and without significantly adding to the stiffness of the soft elastomer. The electrodes are required for electrostatic actuation, but also enable resistive and capacitive sensing of the strain, leading to self-sensing actuators. This review compares the different technologies used to make compliant electrodes for DEAs in terms of: impact on DEA device performance (speed, efficiency, maximum strain), manufacturability, miniaturization, the integration of self-sensing and self-switching, and compatibility with low-voltage operation. While graphite and carbon black have been the most widely used technique in research environments, alternative methods are emerging which combine compliance, conduction at over 100 % strain with better conductivity and/or ease of patternability, including microfabrication-based approaches for compliant metal thin-films, metal-polymer nano-composites, nanoparticle implantation, and reel-to-reel production of μm-scale patterned thin films on elastomers. Such electrodes are key to miniaturization, low-voltage operation, and widespread commercialization of DEAs.

  11. Idiopathic facial pain related with dental implantation

    Directory of Open Access Journals (Sweden)

    Tae-Geon Kwon


    Full Text Available Chronic pain after dental implantation is rare but difficult issue for the implant practitioner. Patients with chronic pain who had been performed previous implant surgery or related surgical intervention sometimes accompany with psychological problem and difficult to adequately manage. According to the International Classification of Headache Disorders (ICHD 3rd eds, Cepalagia 2013, painful neuropathies and other facial pains are subdivided into the 12 subcategories; 13.1. Trigeminal neuralgia; 13.2 Glossopharyngeal neuralgia; 13.3 Nervus intermedius (facial nerve neuralgia; 13.4 Occipital neuralgia; 13.5 Optic neuritis; 13.6 Headache attributed to ischaemic ocular motor nerve palsy; 13.7 Tolosa-Hunt syndrome; 13.8 Paratrigeminal oculo-sympathetic (Raeder’s syndrome; 13.9 Recurrent painful ophthalmoplegic neuropathy; 13.10 Burning Mouth Syndrome (BMS; 13.11 Persistent Idiopathic Facial Pain (PIFP; 13.12 Central neuropathic pain. Chronic orofacial pain after dental implant surgery can be largely into the two main categories that can be frequently encountered in clinical basis ; 1 Neuropathic pain, 2 Idiopathic pain. If there is no direct evidence of the nerve injury related with the implant surgery, the clinician need to consider the central cause of pain instead of the peripheral cause of the pain. There might be several possibilities; 1 Anaesthesia dolorosa, 2 Central post-stroke pain, 3 Facial pain attributed to multiple sclerosis, 4 Persistent idiopathic facial pain (PIFP, 5 Burning mouth syndrome. In this presentation, Persistent idiopathic facial pain (PIFP, the disease entity that can be frequently encountered in the clinic would be discussed. Persistent idiopathic facial pain (PIFP can be defined as “persistent facial and/or oral pain, with varying presentations but recurring daily for more than 2 hours per day over more than 3 months, in the absence of clinical neurological deficit”. ‘Atypical’ pain is a diagnosis of

  12. Studying the glial cell response to biomaterials and surface topography for improving the neural electrode interface (United States)

    Ereifej, Evon S.

    Neural electrode devices hold great promise to help people with the restoration of lost functions, however, research is lacking in the biomaterial design of a stable, long-term device. Current devices lack long term functionality, most have been found unable to record neural activity within weeks after implantation due to the development of glial scar tissue (Polikov et al., 2006; Zhong and Bellamkonda, 2008). The long-term effect of chronically implanted electrodes is the formation of a glial scar made up of reactive astrocytes and the matrix proteins they generate (Polikov et al., 2005; Seil and Webster, 2008). Scarring is initiated when a device is inserted into brain tissue and is associated with an inflammatory response. Activated astrocytes are hypertrophic, hyperplastic, have an upregulation of intermediate filaments GFAP and vimentin expression, and filament formation (Buffo et al., 2010; Gervasi et al., 2008). Current approaches towards inhibiting the initiation of glial scarring range from altering the geometry, roughness, size, shape and materials of the device (Grill et al., 2009; Kotov et al., 2009; Kotzar et al., 2002; Szarowski et al., 2003). Literature has shown that surface topography modifications can alter cell alignment, adhesion, proliferation, migration, and gene expression (Agnew et al., 1983; Cogan et al., 2005; Cogan et al., 2006; Merrill et al., 2005). Thus, the goals of the presented work are to study the cellular response to biomaterials used in neural electrode fabrication and assess surface topography effects on minimizing astrogliosis. Initially, to examine astrocyte response to various materials used in neural electrode fabrication, astrocytes were cultured on platinum, silicon, PMMA, and SU-8 surfaces, with polystyrene as the control surface. Cell proliferation, viability, morphology and gene expression was measured for seven days in vitro. Results determined the cellular characteristics, reactions and growth rates of astrocytes

  13. CT evaluation of preoperative cochlear implantation cochlear implantation

    International Nuclear Information System (INIS)

    Tan Xiuzhong; Zhong Lansheng; Lan Bowen; Huang Yaosheng; Du Baowen; Zhu Jian


    Objective: To evaluate CT scan as a preoperative evaluation for cochlear implantation candidates. Methods: Axial high-resolution temporal bone CT and three-dimensional reconstruction of inner ear were performed in 93 patients with sensorineural hearing loss. results: Among 81 patients with congenital sensorineural deafness, Mondini malformation was seen in 7 case (13 ears); large vestibular aqueduct syndrome (LVAS) was revealed in 5 cases (8 ears); and inner ear ossification was found in 1 case (2 ears). In 1 case (2 ears) of inner ear fibrosis, reduced cochlear signal was noted on MRI but no unremarkable findings was shown on CT scan, however, in the operation, the device could not inserted into the basal circle of the cochlea, due to fibrous obliteration. In 12 patients with post-speech deafness, chronic suppurative tympanitis was seen in 2 cases (4 ears), and inner ear ossification was revealed in 1 case (2 ears). Conclusion: CT plays an indispensable role in the pre-operative evaluation of cochlear implantation. T 2 -weighted FSE-MRI of the inner ear is a useful complementary to CT scan. (authors)

  14. Electroactive Ionic Soft Actuators with Monolithically Integrated Gold Nanocomposite Electrodes. (United States)

    Yan, Yunsong; Santaniello, Tommaso; Bettini, Luca Giacomo; Minnai, Chloé; Bellacicca, Andrea; Porotti, Riccardo; Denti, Ilaria; Faraone, Gabriele; Merlini, Marco; Lenardi, Cristina; Milani, Paolo


    Electroactive ionic gel/metal nanocomposites are produced by implanting supersonically accelerated neutral gold nanoparticles into a novel chemically crosslinked ion conductive soft polymer. The ionic gel consists of chemically crosslinked poly(acrylic acid) and polyacrylonitrile networks, blended with halloysite nanoclays and imidazolium-based ionic liquid. The material exhibits mechanical properties similar to that of elastomers (Young's modulus ≈ 0.35 MPa) together with high ionic conductivity. The fabrication of thin (≈100 nm thick) nanostructured compliant electrodes by means of supersonic cluster beam implantation (SCBI) does not significantly alter the mechanical properties of the soft polymer and provides controlled electrical properties and large surface area for ions storage. SCBI is cost effective and suitable for the scaleup manufacturing of electroactive soft actuators. This study reports the high-strain electromechanical actuation performance of the novel ionic gel/metal nanocomposites in a low-voltage regime (from 0.1 to 5 V), with long-term stability up to 76 000 cycles with no electrode delamination or deterioration. The observed behavior is due to both the intrinsic features of the ionic gel (elasticity and ionic transport capability) and the electrical and morphological features of the electrodes, providing low specific resistance (<100 Ω cm -2 ), high electrochemical capacitance (≈mF g -1 ), and minimal mechanical stress at the polymer/metal composite interface upon deformation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Fabrication and surface-modification of implantable microprobes for neuroscience studies

    International Nuclear Information System (INIS)

    Cao, H; Nguyen, C M; Chiao, J C


    In this work implantable micro-probes for central nervous system (CNS) studies were developed on silicon and polyimide substrates. The probes which contained micro-electrode arrays with different surface modifications were designed for implantation in the CNS. The electrode surfaces were modified with nano-scale structures that could greatly increase the active surface area in order to enhance the electrochemical current outputs while maintaining micro-scale dimensions of the electrodes and probes. The electrodes were made of gold or platinum, and designed with different sizes. The silicon probes were modified by silicon nanowires fabricated with the vapor–liquid–solid mechanism at high temperatures. With polyimide substrates, the nanostructure modification was carried out by applying concentrated gold or silver colloid solutions onto the micro-electrodes at room temperature. The surfaces of electrodes before and after modification were observed by scanning electron microscopy. The silicon nanowire-modified surface was characterized by cyclic voltammetry. Experiments were carried out to investigate the improvement in sensing performance. The modified electrodes were tested with H 2 O 2 , electrochemical L-glutamate and dopamine. Comparisons between electrodes with and without nanostructure modification were conducted showing that the modifications have enhanced the signal outputs of the electrochemical neurotransmitter sensors

  16. Fabrication and surface-modification of implantable microprobes for neuroscience studies (United States)

    Cao, H.; Nguyen, C. M.; Chiao, J. C.


    In this work implantable micro-probes for central nervous system (CNS) studies were developed on silicon and polyimide substrates. The probes which contained micro-electrode arrays with different surface modifications were designed for implantation in the CNS. The electrode surfaces were modified with nano-scale structures that could greatly increase the active surface area in order to enhance the electrochemical current outputs while maintaining micro-scale dimensions of the electrodes and probes. The electrodes were made of gold or platinum, and designed with different sizes. The silicon probes were modified by silicon nanowires fabricated with the vapor-liquid-solid mechanism at high temperatures. With polyimide substrates, the nanostructure modification was carried out by applying concentrated gold or silver colloid solutions onto the micro-electrodes at room temperature. The surfaces of electrodes before and after modification were observed by scanning electron microscopy. The silicon nanowire-modified surface was characterized by cyclic voltammetry. Experiments were carried out to investigate the improvement in sensing performance. The modified electrodes were tested with H2O2, electrochemical L-glutamate and dopamine. Comparisons between electrodes with and without nanostructure modification were conducted showing that the modifications have enhanced the signal outputs of the electrochemical neurotransmitter sensors.

  17. Anaesthetic management of a patient with deep brain stimulation implant for radical nephrectomy

    Directory of Open Access Journals (Sweden)

    Monica Khetarpal


    Full Text Available A 63-year-old man with severe Parkinson′s disease (PD who had been implanted with deep brain stimulators into both sides underwent radical nephrectomy under general anaesthesia with standard monitoring. Deep brain stimulation (DBS is an alternative and effective treatment option for severe and refractory PD and other illnesses such as essential tremor and intractable epilepsy. Anaesthesia in the patients with implanted neurostimulator requires special consideration because of the interaction between neurostimulator and the diathermy. The diathermy can damage the brain tissue at the site of electrode. There are no standard guidelines for the anaesthetic management of a patient with DBS electrode in situ posted for surgery.

  18. Trends in Intraoperative Testing During Cochlear Implantation. (United States)

    Page, Joshua Cody; Cox, Matthew D; Hollowoa, Blake; Bonilla-Velez, Juliana; Trinidade, Aaron; Dornhoffer, John L


    No consensus guidelines exist regarding intraoperative testing during cochlear implantation and wide variation in practice habits exists. The objective of this observational study was to survey otologists/neurotologists to understand practice habits and overall opinion of usefulness of intraoperative testing. Cross-sectional survey. A web-based survey was sent to 194 practicing Otologists/Neurotologists. Questions included practice setting and experience, habits with respect to electrodes used, intraoperative testing modalities used, overall opinion of intraoperative testing, and practice habits in various scenarios. Thirty-nine of 194 (20%) completed the survey. For routine patients, ECAPs and EIs were most commonly used together (38%) while 33% do not perform testing at all. Eighty-nine percent note that testing "rarely" or "never" changes management. Fifty-one percent marked the most important reason for testing is the reassurance provided to the family and/or the surgeon. Intraoperative testing habits and opinions regarding testing during cochlear implantation vary widely among otologic surgeons. The majority of surgeons use testing but many think there is minimal benefit and that surgical decision-making is rarely impacted. The importance of testing may change as electrodes continue to evolve.

  19. Quantum effects in ion implanted devices

    International Nuclear Information System (INIS)

    Jamieson, D.N.; Chan, V.; Hudson, F.E.; Andresen, S.E.; Yang, C.; Hopf, T.; Hearne, S.M.; Pakes, C.I.; Prawer, S.; Gauja, E.; Dzurak, A.S.; Clark, R.G.


    Fabrication of nanoscale devices that exploit the rules of quantum mechanics to process information presents formidable technical challenges because of the need to control quantum states at the level of individual atoms, electrons or photons. We have used ion implantation to fabricate devices on the scale of 10 nm that have allowed the development and test of nanocircuitry for the control of charge transport at the level of single electrons. This fabrication method is compatible with the construction of devices that employ counted P dopants in Si by employing the technique of ion beam induced charge (IBIC) in which single 14 keV P ions can be implanted into ultra-pure silicon substrates by monitoring on-substrate detector electrodes. We have used IBIC with a MeV nuclear microprobe to map and measure the charge collection efficiency in the development of the electrode structure and show that 100% charge collection efficiency can be achieved. Prototype devices fabricated by this method have been used to investigate quantum effects in the control and transport of single electrons with potential applications to solid state quantum information processing devices

  20. Evolution of impedance field telemetry after one day of activation in cochlear implant recipients.

    Directory of Open Access Journals (Sweden)

    Hao-Chun Hu

    Full Text Available Changes in impedance between 24 hours and one month after cochlear implantation have never been explored due to the inability to switch on within one day. This study examined the effect of early activation (within 24 hours on the evolution of electrode impedance with the aim of providing information on the tissue-to-electrode interface when electrical stimulation was commenced one day post implantation.We performed a retrospective review at a single institution. Patients who received a Nucleus 24RECA implant system (Cochlear, Sydney, Australia and underwent initial switch-on within 24 hours postoperatively were included. Impedance measurements were obtained intraoperatively and postoperatively at 1 day, 1 week, 4 weeks, and 8 weeks.A significant drop in impedance was noted 1 day after an initial activation within 24 hours followed by a significant rise in impedance in all channels until 1 week, after which the impedance behaved differently in different segments. Basal and mid-portion electrodes revealed a slight increase while apical electrodes showed a slight decrease in impedance from 1 week to 8 weeks postoperatively. Impedance was relatively stable 4 weeks after surgery.This is the first study to report the evolution of impedance in all channels between initial mapping 1 day and 1 month after cochlear implantation. The underlying mechanism for the differences in behavior between different segments of the electrode may be associated with the combined effect of dynamics among the interplay of cell cover formation, electrical stimulation, and fibrotic reaction.

  1. Nipple piercing may be contraindicated in male patients with chest implants. (United States)

    de Kleer, N; Cohen, M; Semple, J; Simor, A; Antonyshyn, O


    The authors present a man who underwent chest augmentation and nipple piercing. The patient developed chronic nipple infection, which led to unnecessary invasive diagnostic procedures, serious implant infection, and eventually urgent explantation. This unfavorable scenario illustrates the distinct features of the procedure in men, which includes close proximity of the nipple to the implant and reduced awareness by health care providers. Based on this case the authors recommend avoiding nipple piercing in men with chest implants.

  2. Percutaneous and skeletal biocarbon implants (United States)

    Mooney, V.


    Review of carbon implants developed by NASA discussed four different types of implants and subsequent improvements. Improvements could be of specific interest to rehabilitation centers and similar organizations.

  3. Degradable Implantate: Entwicklungsbeispiele (United States)

    Ruffieux, Kurt; Wintermantel, Erich

    Resorbierbare Implantate werden seit mehreren Jahrzehnten in der Implantologie eingesetzt. Bekannt wurden diese Biomaterialien mit dem Aufkommen von sich selbst auflösenden Nahtfäden auf der Basis von synthetisch hergestellten Polylactiden und Polyglycoliden in den 70er Jahren. In einem nächsten Schritt wurden Implantate wie Platten und Schrauben zur Gewebefixation aus den gleichen Biomaterialien hergestellt.

  4. Risks of Breast Implants (United States)

    ... have a risk of developing a type of cancer called breast implant-associated anaplastic large cell lymphoma (BIA-ALCL) in the breast tissue surrounding the implant. BIA-ALCL is not breast cancer. Women diagnosed with BIA-ALCL may need to ...

  5. Ion implantation of metals

    International Nuclear Information System (INIS)

    Dearnaley, G.


    In this part of the paper descriptions are given of the effects of ion implantation on (a) friction and wear in metals; and (b) corrosion of metals. In the study of corrosion, ion implantation can be used either to introduce a constituent that is known to convey corrosion resistance, or more generally to examine the parameters which control corrosion. (U.K.)

  6. Ion implantation into diamond

    International Nuclear Information System (INIS)

    Sato, Susumu


    The graphitization and the change to amorphous state of diamond surface layer by ion implantation and its characteristics are reported. In the diamond surface, into which more than 10 16 ions/cm 2 was implanted, the diamond crystals are broken, and the structure changes to other carbon structure such as amorphous state or graphite. Accompanying this change of structure, the electric conductivity of the implanted layer shows two discontinuous values due to high resistance and low resistance. This control of structure can be done by the temperature of the base during the ion implantation into diamond. Also it is referred to that by the base temperature during implantation, the mutual change of the structure between amorphous state and graphite can be controlled. The change of the electric resistance and the optical characteristics by the ion implantation into diamond surface, the structural analysis by Raman spectroscopy, and the control of the structure of the implanted layer by the base temperature during implantation are reported. (K.I.)

  7. Excitation Patterns of Standard and Steered Partial Tripolar Stimuli in Cochlear Implants


    Wu, Ching-Chih; Luo, Xin


    Current steering in partial tripolar (pTP) mode has been shown to improve pitch perception and spectral resolution with cochlear implants (CIs). In this mode, a fraction (?) of the main electrode current is returned within the cochlea and steered between the basal and apical flanking electrodes (with a proportion of ? and 1????, respectively). Pitch generally decreases when ? increases from 0 to 1, although the salience of pitch change varies across CI users. This study aimed to identify the ...

  8. Low-Gain, Low-Noise Integrated Neuronal Amplifier for Implantable Artifact-Reduction Recording System


    Zbrzeski, Adeline; Lewis, Noëlle; Rummens, Francois; Jung, Ranu; N'Kaoua, Gilles; Benazzouz, Abdelhamid; Renaud, Sylvie


    Brain neuroprostheses for neuromodulation are being designed to monitor the neural activity of the brain in the vicinity of the region being stimulated using a single macro-electrode. Using a single macro-electrode, recent neuromodulation studies show that recording systems with a low gain neuronal amplifier and successive amplifier stages can reduce or reject stimulation artifacts. These systems were made with off-the-shelf components that are not amendable for future implant design. A low-g...

  9. Number of implants for mandibular implant overdentures: a systematic review (United States)

    Lee, Jeong-Yol; Kim, Ha-Young; Bryant, S. Ross


    PURPOSE The aim of this systematic review is to address treatment outcomes of Mandibular implant overdentures relative to implant survival rate, maintenance and complications, and patient satisfaction. MATERIALS AND METHODS A systematic literature search was conducted by a PubMed search strategy and hand-searching of relevant journals from included studies. Randomized Clinical Trials (RCT) and comparative clinical trial studies on mandibular implant overdentures until August, 2010 were selected. Eleven studies from 1098 studies were finally selected and data were analyzed relative to number of implants. RESULTS Six studies presented the data of the implant survival rate which ranged from 95% to 100% for 2 and 4 implant group and from 81.8% to 96.1% for 1 and 2 implant group. One study, which statistically compared implant survival rate showed no significant differences relative to the number of implants. The most common type of prosthetic maintenance and complications were replacement or reattaching of loose clips for 2 and 4 implant group, and denture repair due to the fracture around an implant for 1 and 2 implant groups. Most studies showed no significant differences in the rate of prosthetic maintenance and complication, and patient satisfaction regardless the number of implants. CONCLUSION The implant survival rate of mandibular overdentures is high regardless of the number of implants. Denture maintenance is likely not inflenced substantially by the number of implants and patient satisfaction is typically high again regardless os the number of implants. PMID:23236572

  10. Transparent Electrodes for Efficient Optoelectronics

    KAUST Repository

    Morales-Masis, Monica


    With the development of new generations of optoelectronic devices that combine high performance and novel functionalities (e.g., flexibility/bendability, adaptability, semi or full transparency), several classes of transparent electrodes have been developed in recent years. These range from optimized transparent conductive oxides (TCOs), which are historically the most commonly used transparent electrodes, to new electrodes made from nano- and 2D materials (e.g., metal nanowire networks and graphene), and to hybrid electrodes that integrate TCOs or dielectrics with nanowires, metal grids, or ultrathin metal films. Here, the most relevant transparent electrodes developed to date are introduced, their fundamental properties are described, and their materials are classified according to specific application requirements in high efficiency solar cells and flexible organic light-emitting diodes (OLEDs). This information serves as a guideline for selecting and developing appropriate transparent electrodes according to intended application requirements and functionality.

  11. Transparent Electrodes for Efficient Optoelectronics

    KAUST Repository

    Morales-Masis, Monica; De Wolf, Stefaan; Woods-Robinson, Rachel; Ager, Joel W.; Ballif, Christophe


    With the development of new generations of optoelectronic devices that combine high performance and novel functionalities (e.g., flexibility/bendability, adaptability, semi or full transparency), several classes of transparent electrodes have been developed in recent years. These range from optimized transparent conductive oxides (TCOs), which are historically the most commonly used transparent electrodes, to new electrodes made from nano- and 2D materials (e.g., metal nanowire networks and graphene), and to hybrid electrodes that integrate TCOs or dielectrics with nanowires, metal grids, or ultrathin metal films. Here, the most relevant transparent electrodes developed to date are introduced, their fundamental properties are described, and their materials are classified according to specific application requirements in high efficiency solar cells and flexible organic light-emitting diodes (OLEDs). This information serves as a guideline for selecting and developing appropriate transparent electrodes according to intended application requirements and functionality.

  12. Ion implantation into iron

    International Nuclear Information System (INIS)

    Iwaki, Masaya


    The distribution of implanted ions in iron, the friction characteristics and the corrosion of iron were studied. The distribution of Ni or Cr ions implanted into mild steel was measured. The accelerated voltage was 150 keV, and the beam current density was about 2 microampere/cm 2 . The measurement was made with an ion microanalyzer. The measured distribution was compared with that of LSS theory. Deep invasion of Ni was seen in the measured distribution. The distribution of Cr ions was different from the distribution calculated by the LSS theory. The relative friction coefficient of mild steel varied according to the dose of implanted Cu or N ions, and to the accelerating voltage. Formation of compound metals on the surfaces of metals by ion-implantation was investigated for the purpose to prevent the corrosion of metals. The resistance of mild steel in which Ni ions were implanted was larger than that of mild steel without any treatment. (Kato, T.)

  13. Cardiac resynchronization therapy (CRT). From the fundamentals to the successful implantation

    International Nuclear Information System (INIS)

    Butter, C.; Minden, H.H.


    The cardiac resynchronization therapy (CRT) has been developed during the past years toward an established method for chronic severe heart insufficiencies. The book is an overview of the fundamentals of CRT and a practical guideline for a successful implantation. Based on x-ray imaging using coloured structures every required step of the implantation is demonstrated [de

  14. [Method of recording impulses from an implanted cardiostimulator]. (United States)

    Vetkin, A N; Osipov, V P


    An analysis of pulses from an implanted cardiostimulator recorded from the surface of the patient's body is one of the methods permitting it to pass judgment as to its functioning. Because of the possibility of the recording electrodes location coinciding with the equipotential line an erroneous interpretation of the cardiostimulator's condition is not to be ruled out. It is recommended that the pulses should be recorded with their subsequent analysis in no less than 2 standard ECG leads from the limbs.

  15. Experiences from Auditory Brainstem Implantation (ABIs) in four paediatric patients. (United States)

    Lundin, Karin; Stillesjö, Fredrik; Nyberg, Gunnar; Rask-Andersen, Helge


    Indications for auditory brainstem implants (ABIs) have been widened from patients with neurofibromatosis type 2 (NF2) to paediatric patients with congenital cochlear malformations, cochlear nerve hypoplasia/aplasia, or cochlear ossification after meningitis. We present four ABI surgeries performed in children at Uppsala University Hospital in Sweden since 2009. Three children were implanted with implants from Cochlear Ltd. (Lane Cove, Australia) and one child with an implant from MedEl GMBH (Innsbruck, Austria). A boy with Goldenhar syndrome was implanted with a Cochlear Nucleus ABI24M at age 2 years (patient 1). Another boy with CHARGE syndrome was implanted with a Cochlear Nucleus ABI541 at age 2.5 years (patient 2). Another boy with post-ossification meningitis was implanted with a Cochlear Nucleus ABI24M at age 4 years (patient 3). A girl with cochlear aplasia was implanted with a MedEl Synchrony ABI at age 3 years (patient 4). In patients 1, 2, and 3, the trans-labyrinthine approach was used, and in patient 4 the retro-sigmoid approach was used. Three of the four children benefited from their ABIs and use it full time. Two of the full time users had categories of auditory performance (CAP) score of 4 at their last follow up visit (6 and 2.5 years postoperative) which means they can discriminate consistently any combination of two of Ling's sounds. One child has not been fully evaluated yet, but is a full time user and had CAP 2 (responds to speech sounds) after 3 months of ABI use. No severe side or unpleasant stimulation effects have been observed so far. There was one case of immediate electrode migration and one case of implant device failure after 6.5 years. ABI should be considered as an option in the rehabilitation of children with similar diagnoses.


    Directory of Open Access Journals (Sweden)

    T. N. Novikova


    Full Text Available Aim. To evaluate efficacy of the combined therapy (sotalol and constant electric cardiostimulation in AAI regimen at two atrial electrode position: in low back part of interatrial septum (IAS and in right atrial auricle (RAA.Material and methods. 20 patients with tachy-brady syndrome were examined. They were randomized in 2 groups depending on atrial electrode position. Sotalol (160 mg daily was prescribed to all patients in a month after implantation of constant atrial pacemaker (CAP. A number of atrial fibrillation paroxysms (AFP was evaluated initially, in a month after CAP implantation and in a month after start of sotalol therapy.Results. Significant AFP reduction was observed in IAS stimulation, unlike RAA stimulation. Sotalol addition had essential significance in the termination or reduction of AFP. Sotalol effect did not depend on atrial electrode position.Conclusion. Sotalol usage together with constant electric cardiostimulation significantly reduces AFP irrespectively of atrial electrode position. 

  17. Electrode for disintegrating metallic material

    International Nuclear Information System (INIS)

    Persang, J.C.


    A graphite electrode is provided for disintegrating and removing metallic material from a workpiece, e.g., such as portions of a nuclear reactor to be repaired while in an underwater and/or radioactive environment. The electrode is provided with a plurality of openings extending outwardly, and a manifold for supplying a mixture of water and compressed gas to be discharged through the openings for sweeping away the disintegrated metallic material during use of the electrode

  18. Chronological changes in astrocytes induced by chronic electrical sensorimotor cortex stimulation in rats. (United States)

    Morishita, Takashi; Yamashita, Akiko; Katayama, Yoichi; Oshima, Hideki; Nishizaki, Yuji; Shijo, Katsunori; Fukaya, Chikashi; Yamamoto, Takamitsu


    Motor cortex stimulation (MCS) is a treatment option for various disorders such as medically refractory pain, poststroke hemiplegia, and movement disorders. However, the exact mechanisms underlying its effects remain unknown. In this study, the effects of long-term chronic MCS were investigated by observing changes in astrocytes. A quadripolar stimulation electrode was implanted on the dura over the sensorimotor cortex of adult rats, and the cortex was continuously stimulated for 3 hours, 1 week, 4 weeks, and 8 weeks. Immunohistochemical staining of microglia (ionized calcium-binding adaptor molecule 1 [Iba1] staining) and astrocytes (glial fibrillary acidic protein [GFAP] staining), and neuronal degeneration histochemistry (Fluoro-Jade B staining) were carried out to investigate the morphological changes following long-term chronic MCS. Iba1 staining and Fluoro-Jade B staining showed no evidence of Iba1-positive microglial changes or neurodegeneration. Following continuous MCS, GFAP-positive astrocytes were enlarged and their number increased in the cortex and the thalamus of the stimulated hemisphere. These findings indicate that chronic electrical stimulation can continuously activate astrocytes and result in morphological and quantitative changes. These changes may be involved in the mechanisms underlying the neuroplasticity effect induced by MCS.

  19. Ion-selective electrode reviews

    CERN Document Server

    Thomas, J D R


    Ion-Selective Electrode Reviews, Volume 3, provides a review of articles on ion-selective electrodes (ISEs). The volume begins with an article on methods based on titration procedures for surfactant analysis, which have been developed for discrete batch operation and for continuous AutoAnalyser use. Separate chapters deal with detection limits of ion-selective electrodes; the possibility of using inorganic ion-exchange materials as ion-sensors; and the effect of solvent on potentials of cells with ion-selective electrodes. Also included is a chapter on advances in calibration procedures, the d

  20. Field testing of sulphide electrodes

    International Nuclear Information System (INIS)

    Singh, P.R.; Gaonkar, K.B.; Gadiyar, H.S.


    Sulphide ion selective electrodes have been developed at BARC, for determination of Ag + and S - ions directly and Cl - and CN - ions indirectly. The electrodes were tested for their use in sulphide environments in the EAD (Effluent After Dilution) stream at the Heavy Water Plant, Kota. The electrodes are suitable in the concentration range of 16000 ppm to 0.002 ppm, with a slope of 29-31 mV per decade change in the sulphide ion concentration. The response time is less than 10 seconds. These electrodes are reliable for continuous on-line use for a long period. (author). 7 refs., 11 figs., 1 tab

  1. Coated carbon nanotube array electrodes (United States)

    Ren, Zhifeng [Newton, MA; Wen, Jian [Newton, MA; Chen, Jinghua [Chestnut Hill, MA; Huang, Zhongping [Belmont, MA; Wang, Dezhi [Wellesley, MA


    The present invention provides conductive carbon nanotube (CNT) electrode materials comprising aligned CNT substrates coated with an electrically conducting polymer, and the fabrication of electrodes for use in high performance electrical energy storage devices. In particular, the present invention provides conductive CNTs electrode material whose electrical properties render them especially suitable for use in high efficiency rechargeable batteries. The present invention also provides methods for obtaining surface modified conductive CNT electrode materials comprising an array of individual linear, aligned CNTs having a uniform surface coating of an electrically conductive polymer such as polypyrrole, and their use in electrical energy storage devices.

  2. Microbial electrode sensor for alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Hikuma, M [Ajinomoto Co., Inc., Kawasaki, Japan; Kubo, T; Yasuda, T; Karube, I; Suzuki, S


    A microbial electrode consisting of immobilized microorganisms, a gas permeable Teflon membrane, and an oxygen electrode was prepared for the continuous determination of methyl and ethyl alcohols. Immobilized Trichosporon brassicae was employed for a microbial electrode sensor for ethyl alcohol. When a sample solution containing ethyl alcohol was injected into a microbial electrode system, the current of the electrode decreased markedly with time until a steady state was reached. The response time was within 10 min by the steady state method and within 6 min by the pulse method. A linear relationship was observed between the current decrease and the concentration of ethyl alcohol below 22.5 mg/liter. The current was reproducible within +- 6% of the relative error when a sample solution containing 16.5 mg/liter ethyl alcohol. The standard deviation was 0.5 mg/liter in 40 experiments. The selectivity of the microbial electrode sensor for ethyl alcohol was satisfactory. The microbial electrode sensor was applied to a fermentation broth of yeasts and satisfactory comparative results were obtained (correlation coefficient 0.98). The current output of the microbial electrode sensor was almost constant for more than three weeks and 2100 assays. A microbial electrode sensor using immobilized bacteria for methyl alcohol was also described.

  3. Influence of Palatal Coverage and Implant Distribution on Implant Strain in Maxillary Implant Overdentures. (United States)

    Takahashi, Toshihito; Gonda, Tomoya; Mizuno, Yoko; Fujinami, Yozo; Maeda, Yoshinobu


    Maxillary implant overdentures are often used in clinical practice. However, there is no agreement or established guidelines regarding prosthetic design or optimal implant placement configuration. The purpose of this study was to examine the influence of palatal coverage and implant number and distribution in relation to impact strain under maxillary implant overdentures. A maxillary edentulous model with implants and experimental overdentures with and without palatal coverage was fabricated. Four strain gauges were attached to each implant, and they were positioned in the anterior, premolar, and molar areas. A vertical occlusal load of 98 N was applied through a mandibular complete denture, and the implant strains were compared using one-way analysis of variance (P = .05). The palatolabial strain was much higher on anterior implants than on other implants in both denture types. Although there was no significant difference between the strain under dentures with and without palatal coverage, palateless dentures tended to result in higher implant strain than dentures with palatal coverage. Dentures supported by only two implants registered higher strain than those supported by four or six implants. Implants under palateless dentures registered higher strain than those under dentures with palatal coverage. Anterior implants exhibited higher palatolabial strain than other implants regardless of palatal coverage and implant configuration; it is therefore recommended that maxillary implant overdentures should be supported by six implants with support extending to the distal end of the arch.

  4. [Applied anatomy of scala tympani inlet related to cochlear implantation]. (United States)

    Zou, Tuanming; Guo, Menghe; Zhang, Hongzheng; Shu, Fan; Xie, Nanping


    To investigate the related parameters of the temporal bone structure for determining the position of implanting electrode into the scala tympani in cochlear implantation surgery through the facial recess and epitympanum approach. In a surgical simulation experiment, 20 human temporal bones were studied and measured to determine the related parameters of the temporal bone structure. The distance 5.91∓0.29 mm between the short process of the incus and the round window niche, 2.11∓0.18 mm between the stapes and the round window niche, 6.70∓0.19 mm between the facial nerve in the perpendicular paragraph and the round window niche, 2.22∓0.21 mm from the pyramidal eminence to the round window, and 2.16∓0.14 mm between the stapes and the round window. The minimal distance between the implanting electrode and the vestibular window was 2.12∓0.19 mm. The distance between the cochleariform process and the round window niche was 3.79∓0.17 mm. The position of the cochlear electrode array insertion into the second cochlear turn was 2.25∓0.13 mm under the stapes. The location of the cochlear electrode array insertion into the second cochlear turn was 2.28∓0.20 mm inferior to the pyramidal eminence. These parameters provide a reference value to determine the different positions of cochlear electrode array insertion into the scale tympani in different patients.

  5. Lithium alloy negative electrodes (United States)

    Huggins, Robert A.

    The 1996 announcement by Fuji Photo Film of the development of lithium batteries containing convertible metal oxides has caused a great deal of renewed interest in lithium alloys as alternative materials for use in the negative electrode of rechargeable lithium cells. The earlier work on lithium alloys, both at elevated and ambient temperatures is briefly reviewed. Basic principles relating thermodynamics, phase diagrams and electrochemical properties under near-equilibrium conditions are discussed, with the Li-Sn system as an example. Second-phase nucleation, and its hindrance under dynamic conditions plays an important role in determining deviations from equilibrium behavior. Two general types of composite microstructure electrodes, those with a mixed-conducting matrix, and those with a solid electrolyte matrix, are discussed. The Li-Sn-Si system at elevated temperatures, and the Li-Sn-Cd at ambient temperatures are shown to be examples of mixed-conducting matrix microstructures. The convertible oxides are an example of the solid electrolyte matrix type. Although the reversible capacity can be very large in this case, the first cycle irreversible capacity required to convert the oxides to alloys may be a significant handicap.

  6. Mapping the temporal pole with a specialized electrode array: technique and preliminary results

    International Nuclear Information System (INIS)

    Abel, Taylor J; Rhone, Ariane E; Nourski, Kirill V; Oya, Hiroyuki; Kawasaki, Hiroto; Howard, Matthew A III; Granner, Mark A; Tranel, Daniel T; Griffiths, Timothy D


    Temporopolar cortex plays a crucial role in the pathogenesis of temporal lobe epilepsy and subserves important cognitive functions. Because of its shape and position in the middle cranial fossa, complete electrode coverage of the temporal pole (TP) is difficult to achieve using existing devices. We designed a novel TP electrode array that conforms to the surface of temporopolar cortex and achieves dense electrode coverage of this important brain region. A multi-pronged electrode array was designed that can be placed over the surface of the TP using a straightforward insertion technique. Twelve patients with medically intractable epilepsy were implanted with the TP electrode array for purposes of seizure localization. Select patients underwent cognitive mapping by electrocorticographic (ECoG) recording from the TP during a naming task. Use of the array resulted in excellent TP electrode coverage in all patients. High quality ECoG data were consistently obtained for purposes of delineating seizure activity and functional mapping. During a naming task, significant increases in ECoG power were observed within localized subregions of the TP. One patient developed a transient neurological deficit thought to be related to the mass effect of multiple intracranial recording arrays, including the TP array. This deficit resolved following removal of all electrodes. The TP electrode array overcomes limitations of existing devices and enables clinicians and researchers to obtain optimal multi-site recordings from this important brain region. (paper)

  7. Gas sensor with multiple internal reference electrodes and sensing electrodes

    DEFF Research Database (Denmark)


    The invention relates to a potentiometric gas sensor, or potentiometric gas detection element, with multiple internal reference electrodes and multiple sensing electrodes for determining the concentrations of gas components in a gaseous mixture. The sensor for gas detection comprises: a solid...

  8. Fourteen-years experience with cochlear implantation in Ramathibodi Hospital. (United States)

    Kasemsuwan, Lalida; Cheewaruangroj, Wichit; Tungkeeratichai, Jumroon; Bhongmakapat, Thongchai; Thawin, Cheamchit; Lertsukprasert, Krisna; Tiravanitchakul, Rattinan; Dara, Rada; Laothamatas, Jiraporn


    To review the cochlear implant program in Ramathibodi Hospital and share experience of cochlear implantation emphasized on clinical and surgical outcomes. Retrospective review of 143 ears (140 patients) operated with cochlear implant between 1995 and 2009. The demographic data including etiology of deafness and findings from temporal bone CTscans were reviewed. The authors' experience with cochlear implant surgery in terms of patient selection, patient advisory clinic, necessary equipment, pre- and postoperative evaluations, surgical techniques and complications were discussed. Most congenital origin was unknown etiology and congenital rubella was the most common known cause. From the CT scans of congenital deafness, vestibular aqueduct dilatation was the most common and found in 29.31% while Mondini malformation was shown to be 16.37%. The authors' surgical technique of using the pocket method and designed bony ridge at cortical mastoid rim had helped stabilizing the implant and electrode fancoil. During the last two years, no complication or revision surgery was detected. Cochlear implant surgery in both children and adults can result in good surgical outcome and fewer complications under experienced surgeons and a good team.

  9. Reading with a simulated 60-channel implant

    Directory of Open Access Journals (Sweden)

    Angelica ePerez Fornos


    Full Text Available First generation retinal prostheses containing 50-60 electrodes are currently in clinical trials. The purpose of this study was to evaluate the theoretical upper limit (best possible reading performance attainable with a state-of-the-art 60-channel retinal implant and to find the optimum viewing conditions for the task. Four normal volunteers performed full-page text reading tasks with a low resolution, 60-pixel viewing window that was stabilized in the central visual field. Two parameters were systematically varied: (1 spatial resolution (image magnification and (2 the orientation of the rectangular viewing window. Performance was measured in terms of reading accuracy (% of correctly read words and reading rates (words/min. Maximum reading performances were reached at spatial resolutions between 3.6 and 6 pixels/char. Performance declined outside this range for all subjects. In optimum viewing conditions (4.5 pixels/char, subjects achieved almost perfect reading accuracy and mean reading rates of 26 words/min for the vertical viewing window and of 34 words/min for the horizontal viewing window. These results suggest that, theoretically, some reading abilities can be restored with actual state-of-the-art retinal implant prototypes if image magnification is within an optimum range. Future retinal implants providing higher pixel resolutions, thus allowing for a wider visual span might allow faster reading rates.

  10. Implants for orthodontic anchorage (United States)

    Zheng, Xiaowen; Sun, Yannan; Zhang, Yimei; Cai, Ting; Sun, Feng; Lin, Jiuxiang


    Abstract Implantanchorage continues to receive much attention as an important orthodontic anchorage. Since the development of orthodontic implants, the scope of applications has continued to increase. Although multiple reviews detailing implants have been published, no comprehensive evaluations have been performed. Thus, the purpose of this study was to comprehensively evaluate the effects of implants based on data published in review articles. An electronic search of the Cochrane Library, Medline, Embase, Ebsco and Sicencedirect for reviews with “orthodontic” and “systematic review or meta analysis” in the title, abstract, keywords, or full text was performed. A subsequent manual search was then performed to identify reviews concerning orthodontic implants. A manual search of the orthodontic journals American Journal of Orthodontics and Dentofacial Orthopedics (AJODO), European Journal of Orthodontics (EJO), and Angle Othodontist was also performed. Such systematic reviews that evaluated the efficacy and safety of orthodontic implants were used to indicate success rates and molar movements. A total of 23 reviews were included in the analysis. The quality of each review was assessed using a measurement tool for Assessment of Multiple Systematic Reviews (AMSTAR), and the review chosen to summarize outcomes had a quality score of >6. Most reviews were less than moderate quality. Success rates of implants ranged in a broad scope, and movement of the maxillary first molar was superior with implants compared with traditional anchorage. PMID:29595673

  11. Maintenance in dental implants

    Directory of Open Access Journals (Sweden)

    Giselle Póvoa Gomes


    Full Text Available In implants, maintenance is a decisive factor for obtaining success when implant supported overdentures and dentures are used. The present stud presents, a clinical case of a patient, a 70 year-old white man, with a completely edentulous mandibular alveolar ridge, severe bone resorption with presence of basal bone only, and absence of vestibule. Initially, treatment consisted of the placement of a mandibular overdenture, supported on three implants in the anterior inter-foramen region, as the left implant was transfixed in the basal bone of 2 to 3 millimeters. Eleven years later, another two implants were placed in the anterior area and an immediate load was performed up to the first molars, for the placement of an implant supported fixed. Throughout the entire treatment, meticulous maintenance was carried out, with follow-up for fourteen years, interrupted by the patient’s death. From the third month after the opening the three implants initially placed, the presence of keratinized mucosa, definition of the vestibule, maturation of the alveolar ridge and bone formation in the mento region were observed. It was concluded that good planning, allied to mastery of the technique and adequate maintenance were the prerequisites necessary for obtaining favorable results, success of the present case, and for the patient to have a better quality of life.

  12. Catoptric electrodes: transparent metal electrodes using shaped surfaces. (United States)

    Kik, Pieter G


    An optical electrode design is presented that theoretically allows 100% optical transmission through an interdigitated metallic electrode at 50% metal areal coverage. This is achieved by redirection of light incident on embedded metal electrode lines to an angle beyond that required for total internal reflection. Full-field electromagnetic simulations using realistic material parameters demonstrate 84% frequency-averaged transmission for unpolarized illumination across the entire visible spectral range using a silver interdigitated electrode at 50% areal coverage. The redirection is achieved through specular reflection, making it nonresonant and arbitrarily broadband, provided the electrode width exceeds the optical wavelength. These findings could significantly improve the performance of photovoltaic devices and optical detectors that require high-conductivity top contacts.

  13. Possible sources of neuroprotection following subretinal silicon chip implantation in RCS rats (United States)

    Pardue, Machelle T.; Phillips, Michael J.; Yin, Hang; Fernandes, Alcides; Cheng, Yian; Chow, Alan Y.; Ball, Sherry L.


    Current retinal prosthetics are designed to stimulate existing neural circuits in diseased retinas to create a visual signal. However, implantation of retinal prosthetics may create a neurotrophic environment that also leads to improvements in visual function. Possible sources of increased neuroprotective effects on the retina may arise from electrical activity generated by the prosthetic, mechanical injury due to surgical implantation, and/or presence of a chronic foreign body. This study evaluates these three neuroprotective sources by implanting Royal College of Surgeons (RCS) rats, a model of retinitis pigmentosa, with a subretinal implant at an early stage of photoreceptor degeneration. Treatment groups included rats implanted with active and inactive devices, as well as sham-operated. These groups were compared to unoperated controls. Evaluation of retinal function throughout an 18 week post-implantation period demonstrated transient functional improvements in eyes implanted with an inactive device at 6, 12 and 14 weeks post-implantation. However, the number of photoreceptors located directly over or around the implant or sham incision was significantly increased in eyes implanted with an active or inactive device or sham-operated. These results indicate that in the RCS rat localized neuroprotection of photoreceptors from mechanical injury or a chronic foreign body may provide similar results to subretinal electrical stimulation at the current output evaluated here.

  14. Nanotechnology for dental implants. (United States)

    Tomsia, Antoni P; Lee, Janice S; Wegst, Ulrike G K; Saiz, Eduardo


    With the advent of nanotechnology, an opportunity exists for the engineering of new dental implant materials. Metallic dental implants have been successfully used for decades, but they have shortcomings related to osseointegration and mechanical properties that do not match those of bone. Absent the development of an entirely new class of materials, faster osseointegration of currently available dental implants can be accomplished by various surface modifications. To date, there is no consensus regarding the preferred method(s) of implant surface modification, and further development will be required before the ideal implant surface can be created, let alone become available for clinical use. Current approaches can generally be categorized into three areas: ceramic coatings, surface functionalization, and patterning on the micro- to nanoscale. The distinctions among these are imprecise, as some or all of these approaches can be combined to improve in vivo implant performance. These surface improvements have resulted in durable implants with a high percentage of success and long-term function. Nanotechnology has provided another set of opportunities for the manipulation of implant surfaces in its capacity to mimic the surface topography formed by extracellular matrix components of natural tissue. The possibilities introduced by nanotechnology now permit the tailoring of implant chemistry and structure with an unprecedented degree of control. For the first time, tools are available that can be used to manipulate the physicochemical environment and monitor key cellular events at the molecular level. These new tools and capabilities will result in faster bone formation, reduced healing time, and rapid recovery to function.

  15. Application of ion implantation RBS to the study of electrocatalysis

    International Nuclear Information System (INIS)

    Kelly, E.J.; Vallet, C.E.; White, C.W.


    Ir-implanted titanium near-surface alloys were prepared by ion implantation, characterized (Ir concentration/depth profiles) by Rutherford backscattering (RBS), and subsequently anodically oxidized to form electrocatalytically active Ir x Ti 1-x O 2 /Ti electrodes. The electrochemical behavior of the metallic-like Ir 4 Ti 1-x O 2 /Ti electrodes in acidic chloride, sulfate, and perchlorate solutions was investigated, and the results compared with those previously obtained with similarly prepared Ru x Ti 1-x O 2 /Ti electrodes. For both electrodes, M x Ti 1-x O 2 /Ti (M equals Ir or Ru), the Tafel slope for the Cl 2 evolution reaction is 40 mV, i.e.,δE/δlog i equals 2.303 (2RT/3F). The reaction order (n) with respect to chloride ion concentration δlogi/δlog[Cl - ] + 1, where K 9 equals 54.9 dm 3 mol -1 for Ir x Ti 1-x O 2 /Ti and K 9 equals 40 dm 3 mol -1 for Ru x Ti 1-x O 2 /Ti. A modified Volmer-Heyrovsky mechanism, one in which the role of absorbed chloride ions is taken into account, is shown to be consistent with aforementioned diagnostic parameters

  16. Scala vestibuli cochlear implantation in patients with partially ossified cochleas. (United States)

    Berrettini, Stefano; Forli, Francesca; Neri, Emanuele; Segnini, Giovanni; Franceschini, Stefano Sellari


    Partial cochlear obstruction is a relatively common finding in candidates for cochlear implants and frequently involves the inferior segment of the scala tympani in the basal turn of the cochlea. In such patients, the scala vestibuli is often patent and offers an alternative site for implantation. The current report describes two patients with such partial obstruction of the inferior segment of the basal cochlear turn, caused in one case by systemic vasculitis (Takayasu's disease) and in the other by obliterative otosclerosis. A scala vestibuli implantation allowed for complete insertion of the electrode array. No problems were encountered during the surgical procedures and the good post-operative hearing and communicative outcomes achieved were similar to those reported in patients without cochlear ossification. The importance of accurate pre-operative radiological study of the inner ear is underscored, to disclose the presence and define the features of the cochlear ossification and ultimately to properly plan the surgical approach.

  17. Some technical nuances for deep brain stimulator implantation

    Directory of Open Access Journals (Sweden)

    Cole A. Giller, MD, PhD, MBA


    Full Text Available Protocols for deep brain stimulator (DBS implantation vary significantly among movement disorders centers despite the need to address similar operative problems. The general steps of this procedure are well accepted, but there are many seemingly minor, yet important nuances not extensively discussed in published descriptions. A classification and the details of the nuances adopted by a single institution may therefore be helpful in providing a basis for discussion and comparison. We describe operative nuances adopted at the Georgia Regents Medical Center (GRMC for DBS implantation that may not be universally employed. The problems of DBS implantation considered here include stereotactic planning, draping, creation and use of the burhole, physiological testing, anchoring of the electrode, financial considerations, and overall technique. Fourteen categories of operative nuances were identified and described in detail. These include the use of specific anatomical relationships for planning, the use of clear and watertight drapes, countersinking of the burhole, the use of gelfoam and tissue glue to seal the burhole, methods to review the entire microelectrode data simultaneously, blinded communication with the patient during macrostimulation, fluoroscopic marking, MRI compatible protection of the electrode tip, financial considerations effecting choice of operative materials, and restriction to a single operator. The majority of these have not been extensively described but may be in use at other centers. The many operative problems arising during DBS implantation can be addressed with specific technical nuances.

  18. Light addressable gold electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Khalid, Waqas


    The main objective carried out in this dissertation was to fabricate Light Amplified Potentiometric sensors (LAPS) based upon the semiconductor nanoparticles (quantum dots) instead of its bulk form. Quantum dots (QDs) were opted for this device fabrication because of their superior fluorescent, electric and catalytic properties. Also in comparison to their bulk counterparts they will make device small, light weighted and power consumption is much lower. QDs were immobilized on a Au substrate via 1,4 benzene dithiol (BDT) molecule. Initially a self-assembled monolayer (SAM) of BDT was established on Au substrate. Because of SAM, the conductivity of Au substrate decreased dramatically. Furthermore QDs were anchored with the help of BDT molecule on Au substrate. When QDs immobilized on Au substrate (QD/Au) via BDT molecule were irradiated with UV-visible light, electron-hole pairs were generated in QDs. The surface defect states in QDs trapped the excited electrons and long lived electron-hole pairs were formed. By the application of an appropriate bias potential on Au substrate the electrons could be supplied or extracted from the QDs via tunneling through BDT. Thus a cathodic or anodic current could be observed depending upon bias potential under illumination. However without light illumination the QD/Au electrode remained an insulator. To improve the device different modifications were made, including different substrates (Au evaporated on glass, Au evaporated on mica sheets and Au sputtered on SiO{sub 2}/Si) and different dithiol molecules (capped and uncapped biphenyl 4,4' dithiol and capped and uncapped 4,4' dimercaptostilbenes) were tried. Also different QD immobilization techniques (normal incubation, spin coating, layer by layer assembly (LbL) of polyelectrolytes and heat immobilization) were employed. This device was able to detect electrochemically different analytes depending upon the QDs incorporated. For example CdS QDs were able to detect 4

  19. Ion implantation for microelectronics

    International Nuclear Information System (INIS)

    Dearnaley, G.


    Ion implantation has proved to be a versatile and efficient means of producing microelectronic devices. This review summarizes the relevant physics and technology and assesses the advantages of the method. Examples are then given of widely different device structures which have been made by ion implantation. While most of the industrial application has been in silicon, good progress continues to be made in the more difficult field of compound semiconductors. Equipment designed for the industrial ion implantation of microelectronic devices is discussed briefly. (Auth.)

  20. Optimization of dental implantation (United States)

    Dol, Aleksandr V.; Ivanov, Dmitriy V.


    Modern dentistry can not exist without dental implantation. This work is devoted to study of the "bone-implant" system and to optimization of dental prostheses installation. Modern non-invasive methods such as MRI an 3D-scanning as well as numerical calculations and 3D-prototyping allow to optimize all of stages of dental prosthetics. An integrated approach to the planning of implant surgery can significantly reduce the risk of complications in the first few days after treatment, and throughout the period of operation of the prosthesis.

  1. A temperature sensor implant for active implantable medical devices for in vivo subacute heating tests under MRI. (United States)

    Silemek, Berk; Acikel, Volkan; Oto, Cagdas; Alipour, Akbar; Aykut, Zaliha Gamze; Algin, Oktay; Atalar, Ergin


    To introduce a temperature sensor implant (TSI) that mimics an active implantable medical device (AIMD) for animal testing of MRI heating. Computer simulations and phantom experiments poorly represent potential temperature increases. Animal experiments could be a better model, but heating experiments conducted immediately after the surgery suffer from alterations of the thermoregulatory and tissue properties during acute testing conditions. Therefore, the aim of this study was to introduce a temperature sensor implant that mimics an AIMD and capable of measuring the electrode temperature after implantation of the device without any further intervention at any time after the surgery in an animal model. A battery-operated TSI, which resembled an AIMD, was used to measure the lead temperature and impedance and the case temperature. The measured values were transmitted to an external computer via a low-power Bluetooth communication protocol. In addition to validation experiments on the phantom, a sheep experiment was conducted to test the feasibility of the system in subacute conditions. The measurements had a maximum of 0.5°C difference compared to fiber-optic temperature probes. In vivo animal experiments demonstrated feasibility of the system. An active implant, which can measure its own temperature, was proposed to investigate implant heating during MRI examinations. Magn Reson Med 79:2824-2832, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  2. Radiation sterilization of polymeric implant materials

    International Nuclear Information System (INIS)

    Bruck, S.D.; Mueller, E.P.


    High-energy irradiation sterilization of medical devices and implants composed of polymeric biomaterials that are in contact with tissue and/or blood, may adversely affect their long-term mechanical and/or biological performance (tissue and/or blood compatibility). Since many polymeric implants may contain trace quantities of catalysts and/or other additives, the effect of high-energy radiation on these additives, and possible synergistic effects with the polymer chains under the influence of high-energy radiation, must be considered. It is essential to indicate whether polymeric implants are used in short-term (acute) or long-term (chronic) applications. Relatively small changes in their physicochemical, mechanical, and biological properties may be tolerable in the short term, whereas similar changes may lead to catastrophic failures in long-term applications. Therefore, polymeric implants which are to be sterilized by high-energy irradiation should be carefully evaluated for long-term property changes which may be induced by the radiation

  3. EDM Electrode for Internal Grooves (United States)

    Ramani, V.; Werner, A.


    Electroerosive process inexpensive alternative to broaching. Hollow brass electrodes, soldered at one end to stainless-steel holding ring, held in grooves in mandrel. These electrodes used to machine grooves electrically in stainless-steel tube three-eights inch (9.5 millimeters) in diameter. Tool used on tubes already in place in equipment.

  4. Making EDM Electrodes By Stereolithography (United States)

    Barlas, Philip A.


    Stereolithography is computer-aided manufacturing technique. Used to make models and molds of electrodes for electrical-discharge machining (EDM). Eliminates intermediate steps in fabrication of plastic model of object used in making EDM electrode to manufacture object or mold for object.

  5. Surface-modified electrodes (SME)

    NARCIS (Netherlands)

    Schreurs, J.P.G.M.; Barendrecht, E.


    This review deals with the literature (covered up to August 1983), the characterization and the applications of Surface-Modified Electrodes (SME). As a special class of SME's, the Enzyme-Modified Electrode (EME) is introduced. Three types of modification procedures are distinguished; i.e. covalent

  6. Storage-battery electrodes. [preparation

    Energy Technology Data Exchange (ETDEWEB)


    Two incompatible thermoplastic resins are mixed with a powdered electrochemical active substance. The substance may be, for example, an oxide of cadmium, iron, lead, or zinc or nickel hydroxide. After the mixture is shaped into elements which are inserted into conducting sheaths for an electrode, the one resin is washed out to form a porous electrode. (RWR)

  7. Electrochemical photovoltaic cells and electrodes (United States)

    Skotheim, Terje A.


    Improved electrochemical photovoltaic cells and electrodes for use therein, particularly electrodes employing amorphous silicon or polyacetylene coating are produced by a process which includes filling pinholes or porous openings in the coatings by electrochemical oxidation of selected monomers to deposit insulating polymer in the openings.

  8. Improved photovoltaic cells and electrodes (United States)

    Skotheim, T.A.


    Improved photovoltaic cells and electrodes for use therein, particularly electrodes employing amorphous silicon or polyacetylene coating are produced by a process which includes filling pinholes or porous openings in the coatings by electrochemical oxidation of selected monomers to deposit insulating polymer in the openings.

  9. Planar self-aligned ion implanted InP MISFETS for fast logic applications

    International Nuclear Information System (INIS)

    Cameron, D.C.; Irving, L.D.; Whitehouse, C.R.; Woodward, J.; Lee, D.


    The first successful use of ion implantation to fabricate truly self-aligned planar n-channel enhancement-mode indium phosphide MISFITS is reported. The transistors have been fabricated on iron-doped semi-insulating material using PECVD-deposited SiO 2 as the gate dielectric and molybdenum gate electrodes. The self-aligned source and drain contact regions were produced by Si 29 ion implantation using each gate stripe as an implant mask. The devices fabricated to date have exhibited channel mobilities up to value of 2400 cm 2 v -1 s -1 , with excellent uniformity and stability of the device characteristics also being observed. (author)

  10. Multi electrode semiconductors detectors

    CERN Document Server

    Amendolia, S R; Bertolucci, Ennio; Bosisio, L; Bradaschia, C; Budinich, M; Fidecaro, F; Foà, L; Focardi, E; Giazotto, A; Giorgi, M A; Marrocchesi, P S; Menzione, A; Ristori, L; Rolandi, Luigi; Scribano, A; Stefanini, A; Vincelli, M L


    Detectors with very high space resolution have been built in this laboratory and tested at CERN in order to investigate their possible use in high energy physics experiments. These detectors consist of thin layers of silicon crystals acting as ionization chambers. Thin electrodes, structured in strips or in more fancy shapes are applied to their surfaces by metal coating. The space resolution which could be reached is of the order of a few microns. An interesting feature of these solid state detectors is that they can work under very high or low external pressure or at very low temperature. The use of these detectors would strongly reduce the dimensions and the cost of high energy experiments. (3 refs).

  11. Multi electrode semiconductor detectors

    International Nuclear Information System (INIS)

    Amendolia, S.R.; Batignani, G.; Bertolucci, E.; Bosisio, L.; Budinich, M.; Bradaschia, C.; Fidecaro, F.; Foa, L.; Focardi, E.; Giazotto, A.; Giorgi, M.A.; Marrocchesi, P.S.; Menzione, A.; Ristori, L.; Rolandi, L.; Scribano, A.; Stefanini, A.; Vincelli, M.L.


    Detectors with very high space resolution have been built in the laboratory and tested at CERN in order to investigate their possible use in high energy physics experiments. These detectors consist of thin layers of silicon crystals acting as ionization chambers. Thin electrodes, structured in strips or in more fancy shapes are applied to their surfaces by metal coating. The space resolution which could be reached is of the order of a few microns. An interesting feature of these solid state detectors is that they can work under very high or low external pressure or at very low temperature. The use of these detectors would strongly reduce the dimensions and the cost of high energy experiments. (Auth.)

  12. Adsorption at electrodes

    International Nuclear Information System (INIS)

    Hubbard, A.T.; Ping Gao


    Surface electrochemical studies are described and summarized in which atomic, ionic or molecular layers were allowed to form from aqueous solutions at well-defined Pt(111) surfaces. The resulting adsorbed layers were chemisorbed in most cases and stable in vacuum, permitting identification and quantitation by Auger spectroscopy, EELS, LEED and electrochemistry. Adsorbed atomic, ionic, or molecular layers formed at metal-solution interfaces frequently display long-range order. Molecular properties of the adsorbed layers correlate with their electrochemical properties. The molecular orientation of organic adsorbates was deduced from packing density measurements, supplemented with vibrational spectra. Interfacial variables such as electrode potential have a strong influence on interfacial structure along with the nature and mode of surface attachment of adsorbates. The angular distribution of Auger electron emission from metal single crystals and atomic adsorbed layers has proved to be useful for direct imaging of surface crystal and interfacial structure. (author). 14 refs, 11 figs

  13. Gel electrolytes and electrodes (United States)

    Fleischmann, Sven; Bunte, Christine; Mikhaylik, Yuriy V.; Viner, Veronika G.


    Gel electrolytes, especially gel electrolytes for electrochemical cells, are generally described. In some embodiments, the gel electrolyte layers comprise components a) to c). Component a) may be at least one layer of at least one polymer comprising polymerized units of: a1) at least one monomer containing an ethylenically unsaturated unit and an amido group and a2) at least one crosslinker. Component b) may be at least one conducting salt and component c) may be at least one solvent. Electrodes may comprise the components a), d) and e), wherein component a) may be at least one layer of at least one polymer as described herein. Component d) may be at least one electroactive layer and component e) may be at least one ceramic layer. Furthermore, electrochemical cells comprising component a) which may be at least one layer of at least one polymer as described herein, are also provided.

  14. Current steering with partial tripolar stimulation mode in cochlear implants. (United States)

    Wu, Ching-Chih; Luo, Xin


    The large spread of excitation is a major cause of poor spectral resolution for cochlear implant (CI) users. Partial tripolar (pTP) mode has been proposed to reduce current spread by returning an equally distributed fraction (0.5 × σ) of current to two flanking electrodes and the rest to an extra-cochlear ground. This study tested the efficacy of incorporating current steering into pTP mode to add spectral channels. Different proportions of current [α × σ and (1 - α) × σ] were returned to the basal and apical flanking electrodes respectively to shape the electric field. Loudness and pitch perception with α from 0 to 1 in steps of 0.1 was simulated with a computational model of CI stimulation and tested on the apical, middle, and basal electrodes of six CI subjects. The highest σ allowing for full loudness growth within the implant compliance limit was chosen for each main electrode. Pitch ranking was measured between pairs of loudness-balanced steered pTP stimuli with an α interval of 0.1 at the most comfortable level. Results demonstrated that steered pTP stimuli with α around 0.5 required more current to achieve equal loudness than those with α around 0 or 1, maybe due to more focused excitation patterns. Subjects usually perceived decreasing pitches as α increased from 0 to 1, somewhat consistent with the apical shift of the center of gravity of excitation pattern in the model. Pitch discrimination was not better with α around 0.5 than with α around 0 or 1, except for some subjects and electrodes. For three subjects with better pitch discrimination, about half of the pitch ranges of two adjacent main electrodes overlapped with each other in steered pTP mode. These results suggest that current steering with focused pTP mode may improve spectral resolution and pitch perception with CIs.

  15. [Total cervical disk replacement--implant-specific approaches: keel implant (Prodisc-C intervertebral disk prosthesis)]. (United States)

    Korge, Andreas; Siepe, Christoph J; Heider, Franziska; Mayer, H Michael


    Dynamic intervertebral support of the cervical spine via an anterolateral approach using a modular artificial disk prosthesis with end-plate fixation by central keel fixation. Cervical median or mediolateral disk herniations, symptomatic cervical disk disease (SCDD) with anterior osseous, ligamentous and/or discogenic narrowing of the spinal canal. Cervical fractures, tumors, osteoporosis, arthrogenic neck pain, severe facet degeneration, increased segmental instability, ossification of posterior longitudinal ligament (OPLL), severe osteopenia, acute and chronic systemic, spinal or local infections, systemic and metabolic diseases, known implant allergy, pregnancy, severe adiposity (body mass index > 36 kg/m2), reduced patient compliance, alcohol abuse, drug abuse and dependency. Exposure of the anterior cervical spine using the minimally invasive anterolateral approach. Intervertebral fixation of retainer screws. Intervertebral diskectomy. Segmental distraction with vertebral body retainer and vertebral distractor. Removal of end-plate cartilage. Microscopically assisted decompression of spinal canal. Insertion of trial implant to determine appropriate implant size, height and position. After biplanar image intensifier control, drilling for keel preparation using drill guide and drill bit, keel-cut cleaner to remove bone material from the keel cut, radiologic control of depth of the keel cut using the corresponding position gauge. Implantation of original implant under lateral image intensifier control. Removal of implant inserter. Functional postoperative care and mobilization without external support, brace not used routinely, soft brace possible for 14 days due to postoperative pain syndromes. Implantation of 100 cervical Prodisc-C disk prostheses in 78 patients (average age 48 years) at a single center. Clinical and radiologic follow-up 24 months postoperatively. Significant improvement based on visual analog scale and Neck Disability Index. Radiologic


    Directory of Open Access Journals (Sweden)

    P. Borghei S. Abdi


    Full Text Available Performing cochlear implantation in patients with inner ear malformation has always been a matter of dispute. This study was designed to analyze the operative findings,complications, and postoperative performance of patients with inner ear anomalies who underwent cochlear implantation. Six patients with inner ear malformations underwent implantation in our academic tertiary referral center from 1997 to 2002. The average follow-up period was 27 months. Malformations included one incomplete partition, one common cavity, one narrow internal acoustic canal (IAC in a patient with Riley-Day syndrome and 3 cases of large vestibular aqueduct. All received multi-channel implants either Nucleus 22 or Clarion device. Facial nerve was anomalous in 2 cases. CSF gusher occurred in 4 patients, which was controlled with packing the cochleostomy site. In all cases, the full length of electrode array was inserted, except one with Mondini's dysplasia where insertion failed in the first operation and was referred to another center for a successful surgery on the opposite ear. No other surgical complications were encountered. In 4 cases, all the 22 electrodes could be activated. All patients showed improved hearing performance after implantation. Four showed open-set speech recognition. The one with narrow IAC showed improved awareness to environmental sounds. In the other case (common cavity, the perception tests could not be performed because of very young age. Cochlear implantation in patients with inner ear malformations is a successful way of rehabilitation, although complications should be expected and auditory responses may be highly variable and relatively moderate.

  17. Electrode for a lithium cell (United States)

    Thackeray, Michael M [Naperville, IL; Vaughey, John T [Elmhurst, IL; Dees, Dennis W [Downers Grove, IL


    This invention relates to a positive electrode for an electrochemical cell or battery, and to an electrochemical cell or battery; the invention relates more specifically to a positive electrode for a non-aqueous lithium cell or battery when the electrode is used therein. The positive electrode includes a composite metal oxide containing AgV.sub.3O.sub.8 as one component and one or more other components consisting of LiV.sub.3O.sub.8, Ag.sub.2V.sub.4O.sub.11, MnO.sub.2, CF.sub.x, AgF or Ag.sub.2O to increase the energy density of the cell, optionally in the presence of silver powder and/or silver foil to assist in current collection at the electrode and to improve the power capability of the cell or battery.

  18. Use of antibiotic beads to salvage infected breast implants. (United States)

    Sherif, Rami D; Ingargiola, Michael; Sanati-Mehrizy, Paymon; Torina, Philip J; Harmaty, Marco A


    When an implant becomes infected, implant salvage is often performed where the implant is removed, capsulectomy is performed, and a new implant is inserted. The patient is discharged with a PICC line and 6-8 weeks of intravenous (IV) antibiotics. This method has variable success and subjects the patient to long-term systemic antibiotics. In the 1960s, the use of antibiotic-impregnated beads for the treatment of chronic osteomyelitis was described. These beads deliver antibiotic directly to the site of the infection, thereby eliminating the complications of systemic IV antibiotics. This study aimed to present a case series illustrating the use of STIMULAN calcium sulfate beads loaded with vancomycin and tobramycin to increase the rate of salvage of the infected implant and forgo IV antibiotics. A retrospective analysis was performed of patients who were treated at Mount Sinai Hospital for implant infection with salvage and antibiotic beads. Twelve patients were identified, 10 of whom had breast cancer. Comorbidities included hypertension, smoking, and immunocompromised status. Infections were noted anywhere from 5 days to 8 years postoperatively. Salvage was successful in 9 out of the 12 infected implants using antibiotic bead therapy without home IV antibiotics. The use of antibiotic beads is promising for salvaging infected breast implants without IV antibiotics. Seventy-five percent of the implants were successfully salvaged. Of the three patients who had unsalvageable implants, one was infected with antibiotic-resistant Rhodococcus that was refractory to bead therapy and one was noncompliant with postoperative instructions. Copyright © 2017 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  19. Breast Reconstruction with Implants (United States)

    ... your surgical options and discuss the advantages and disadvantages of implant-based reconstruction, and may show you ... Policy Notice of Privacy Practices Notice of Nondiscrimination Advertising Mayo Clinic is a not-for-profit organization ...

  20. Ion Implantation of Polymers

    DEFF Research Database (Denmark)

    Popok, Vladimir


    The current paper presents a state-of-the-art review in the field of ion implantation of polymers. Numerous published studies of polymers modified by ion beams are analysed. General aspects of ion stopping, latent track formation and changes of structure and composition of organic materials...... are discussed. Related to that, the effects of radiothermolysis, degassing and carbonisation are considered. Specificity of depth distributions of implanted into polymers impurities is analysed and the case of high-fluence implantation is emphasised. Within rather broad topic of ion bombardment, the focus...... is put on the low-energy implantation of metal ions causing the nucleation and growth of nanoparticles in the shallow polymer layers. Electrical, optical and magnetic properties of metal/polymer composites are under the discussion and the approaches towards practical applications are overviewed....

  1. Precipitation processes in implanted materials

    International Nuclear Information System (INIS)

    Borders, J.A.


    Ion implantation is a nonequilibrium process. It is possible to implant materials with impurities to concentration levels which exceed the solid solubilities. The return of the system to thermodynamic equilibrium is often accomplished by precipitation of the implanted species or a compound involving atoms of both the host and the implanted species. This may involve long time scales when taking place at room temperature or it may take place during the implantation

  2. Cutaneous and systemic hypersensitivity reactions to metallic implants

    DEFF Research Database (Denmark)

    Basko-Plluska, Juliana L; Thyssen, Jacob P; Schalock, Peter C


    ) following the insertion of intravascular stents, dental implants, cardiac pacemakers, or implanted gynecologic devices. Despite repeated attempts by researchers and clinicians to further understand this difficult area of medicine, the association between metal sensitivity and cutaneous allergic reactions......Cutaneous reactions to metal implants, orthopedic or otherwise, are well documented in the literature. The first case of a dermatitis reaction over a stainless steel fracture plate was described in 1966. Most skin reactions are eczematous and allergic in nature, although urticarial, bullous......, and vasculitic eruptions may occur. Also, more complex immune reactions may develop around the implants, resulting in pain, inflammation, and loosening. Nickel, cobalt, and chromium are the three most common metals that elicit both cutaneous and extracutaneous allergic reactions from chronic internal exposure...

  3. Ion implantation for semiconductors

    International Nuclear Information System (INIS)

    Grey-Morgan, T.


    Full text: Over the past two decades, thousands of particle accelerators have been used to implant foreign atoms like boron, phosphorus and arsenic into silicon crystal wafers to produce special embedded layers for manufacturing semiconductor devices. Depending on the device required, the atomic species, the depth of implant and doping levels are the main parameters for the implantation process; the selection and parameter control is totally automated. The depth of the implant, usually less than 1 micron, is determined by the ion energy, which can be varied between 2 and 600 keV. The ion beam is extracted from a Freeman or Bernas type ion source and accelerated to 60 keV before mass analysis. For higher beam energies postacceleration is applied up to 200 keV and even higher energies can be achieved by mass selecting multiplycharged ions, but with a corresponding reduction in beam output. Depending on the device to be manufactured, doping levels can range from 10 10 to 10 15 atoms/cm 2 and are controlled by implanter beam currents in the range up to 30mA; continuous process monitoring ensures uniformity across the wafer of better than 1 % . As semiconductor devices get smaller, additional sophistication is required in the design of the implanter. The silicon wafers charge electrically during implantation and this charge must be dissipated continuously to reduce the electrical stress in the device and avoid destructive electrical breakdown. Electron flood guns produce low energy electrons (below 10 electronvolts) to neutralize positive charge buildup and implanter design must ensure minimum contamination by other isotopic species and ensure low internal sputter rates. The pace of technology in the semiconductor industry is such that implanters are being built now for 256 Megabit circuits but which are only likely to be widely available five years from now. Several specialist companies manufacture implanter systems, each costing around US$5 million, depending on the

  4. [Cochlear implant in patients with congenital malformation of the inner ear]. (United States)

    Wan, Liang-cai; Guo, Meng-he; Qian, Yu-hong; Liu, Shuang-xiu; Zhang, Hong-zheng; Chen, Shuai-jun; Chen, Hao; Gong, Jian


    To summarize the clinical experience with multi-channel cochlear implantation in patients with inner ear malformations and evaluate and the outcomes of speech rehabilitation. A retrospective study was conducted in 295 patients receiving cochlear implantation from 1998 to 2007, including 25 patients with large vestibular aqueduct syndrome (LVAS), 9 with Modini malformation, and 5 with common cavity deformity. All the patients received the Nucleus24 cochlear implants. In LVAS cases, 4 had Nucleus 24R (ST) implants, 8 had Contuor implants, 10 had Contuor Advance, and the remaining cases used Nucleus24(M) straight-electrode implants. Severe gusher appeared in 3 cases of LVAS, and perilymph fluctuation were seen in other 15 cases. Four patients with Mondini malformation and 2 with common cavity malformation also experienced severe gusher, but the electrodes were inserted smoothly in all the patients without postoperative facial paralysis or cerebrospinal fluid leakage. The hearing threshold in these patients was similar to that in patients with normal cochlear structure. After speech rehabilitation for over 6 months, the abilities of speech discrimination and spoken language improved in all the cases in comparison with the preoperative lingual functions. Multi-channel cochlear implantation can be performed in patients with inner ear malformation, but should not be attempted in patients with poor cochlear and cochlear nerve development. A comprehensive pre-operative radiographic and audiological evaluation is essential.

  5. Quantitative ion implantation

    International Nuclear Information System (INIS)

    Gries, W.H.


    This is a report of the study of the implantation of heavy ions at medium keV-energies into electrically conducting mono-elemental solids, at ion doses too small to cause significant loss of the implanted ions by resputtering. The study has been undertaken to investigate the possibility of accurate portioning of matter in submicrogram quantities, with some specific applications in mind. The problem is extensively investigated both on a theoretical level and in practice. A mathematical model is developed for calculating the loss of implanted ions by resputtering as a function of the implanted ion dose and the sputtering yield. Numerical data are produced therefrom which permit a good order-of-magnitude estimate of the loss for any ion/solid combination in which the ions are heavier than the solid atoms, and for any ion energy from 10 to 300 keV. The implanted ion dose is measured by integration of the ion beam current, and equipment and techniques are described which make possible the accurate integration of an ion current in an electromagnetic isotope separator. The methods are applied to two sample cases, one being a stable isotope, the other a radioisotope. In both cases independent methods are used to show that the implantation is indeed quantitative, as predicted. At the same time the sample cases are used to demonstrate two possible applications for quantitative ion implantation, viz. firstly for the manufacture of calibration standards for instrumental micromethods of elemental trace analysis in metals, and secondly for the determination of the half-lives of long-lived radioisotopes by a specific activity method. It is concluded that the present study has advanced quantitative ion implantation to the state where it can be successfully applied to the solution of problems in other fields

  6. Ion implantation - an introduction

    International Nuclear Information System (INIS)

    Townsend, P.D.


    Ion implantation is a widely used technique with a literature that covers semiconductor production, surface treatments of steels, corrosion resistance, catalysis and integrated optics. This brief introduction outlines advantages of the technique, some aspects of the underlying physics and examples of current applications. Ion implantation is already an essential part of semiconductor technology while in many other areas it is still in an early stage of development. The future scope of the subject is discussed. (author)

  7. Contraceptive implants: current perspectives

    Directory of Open Access Journals (Sweden)

    Rowlands S


    Full Text Available Sam Rowlands,1,2 Stephen Searle3 1Centre of Postgraduate Medical Research and Education, School of Health and Social Care, Bournemouth University, Bournemouth, United Kingdom; 2Dorset HealthCare, Bournemouth, United Kingdom; 3Sexual Health Services, Chesterfield, United KingdomAbstract: Progestin-only contraceptive implants are a highly cost-effective form of long-acting reversible contraception. They are the most effective reversible contraceptives and are of a similar effectiveness to sterilization. Pregnancies are rare in women using this method of contraception, and those that do occur must be fully investigated, with an ultrasound scan of the arm and serum etonogestrel level if the implant cannot be located. There are very few contraindications to use of implants, and they have an excellent safety profile. Both acceptability and continuation with the method are high. Noncontraceptive benefits include improvements in dysmenorrhea, ovulatory pain, and endometriosis. Problematic bleeding is a relatively common adverse effect that must be covered in preinsertion information-giving and supported adequately if it occurs. Recognized training for both insertion and removal should be undertaken. Care needs to be taken at both insertion and removal to avoid neurovascular injury. Implants should always be palpable; if they are not, noninsertion should be assumed until disproven. Etonogestrel implants are now radiopaque, which aids localization. Anticipated difficult removals should be performed by specially trained experts. Keywords: contraceptive, subdermal implant, etonogestrel, levonorgestrel, progestin-only, long-acting reversible contraception

  8. Anodized dental implant surface

    Directory of Open Access Journals (Sweden)

    Sunil Kumar Mishra


    Full Text Available Purpose: Anodized implants with moderately rough surface were introduced around 2000. Whether these implants enhanced biologic effect to improve the environment for better osseointegration was unclear. The purpose of this article was to review the literature available on anodized surface in terms of their clinical success rate and bone response in patients till now. Materials and Methods: A broad electronic search of MEDLINE and PubMed databases was performed. A focus was made on peer-reviewed dental journals. Only articles related to anodized implants were included. Both animal and human studies were included. Results: The initial search of articles resulted in 581 articles on anodized implants. The initial screening of titles and abstracts resulted in 112 full-text papers; 40 animal studies, 16 studies on cell adhesion and bacterial adhesion onto anodized surfaced implants, and 47 human studies were included. Nine studies, which do not fulfill the inclusion criteria, were excluded. Conclusions: The long-term studies on anodized surface implants do favor the surface, but in most of the studies, anodized surface is compared with that of machined surface, but not with other surfaces commercially available. Anodized surface in terms of clinical success rate in cases of compromised bone and immediately extracted sockets has shown favorable success.

  9. Plasma source ion implantation

    International Nuclear Information System (INIS)

    Conrad, J.R.; Forest, C.


    The authors' technique allows the ion implantation to be performed directly within the ion source at higher currents without ion beam extraction and transport. The potential benefits include greatly increased production rates (factors of 10-1000) and the ability to implant non-planar targets without rastering or shadowing. The technique eliminates the ion extractor grid set, beam raster equipment, drift space and target manipulator equipment. The target to be implanted is placed directly within the plasma source and is biased to a large negative potential so that plasma ions gain energy as they accelerate through the potential drop across the sheath that forms at the plasma boundary. Because the sheath surrounds the target on all sides, all surfaces of the target are implanted without the necessity to raster the beam or to rotate the target. The authors have succeeded in implanting nitrogen ions in a silicon target to the depths and concentrations required for surface treatment of materials like stainless steel and titanium alloys. They have performed ESCA measurements of the penetration depth profile of a silicon target that was biased to 30 kV in a nitrogen discharge plasma. Nitrogen ions were implanted to a depth of 700A at a peak concentration of 30% atomic. The measured profile is quite similar to a previously obtained profile in titanium targets with conventional techniques


    Directory of Open Access Journals (Sweden)

    O. S. Voronenko


    Full Text Available 52 patients (24 male and 28 female aged 71 ± 8 years, underwent permanent pacemaker implantation were included in the study. Analysis of heart electrical axis (HEA α angle values distribution was carried out in three dimensions in patience before and after pacemaker (PM implantation. The data processed in Microsoft Excel with calculation of the average and it’s standard deviation. Significance of differences in data before and after PM implantation was assessed using Friedman ANOVA test and Kendall concordance coefficient. It was found, that α angle values distribution in patients with implanted PM is transformed from a unimodal to bimodal on the permanent cardiac pacing background. It’s assumed, that α angle changes resulting due to right ventricular electrode positioning options during PM implantation. Clarification of the nature of this change requires a special study.

  11. Construction of implantable optical fibers for long-term optogenetic manipulation of neural circuits. (United States)

    Sparta, Dennis R; Stamatakis, Alice M; Phillips, Jana L; Hovelsø, Nanna; van Zessen, Ruud; Stuber, Garret D


    In vivo optogenetic strategies have redefined our ability to assay how neural circuits govern behavior. Although acutely implanted optical fibers have previously been used in such studies, long-term control over neuronal activity has been largely unachievable. Here we describe a method to construct implantable optical fibers to readily manipulate neural circuit elements with minimal tissue damage or change in light output over time (weeks to months). Implanted optical fibers readily interface with in vivo electrophysiological arrays or electrochemical detection electrodes. The procedure described here, from implant construction to the start of behavioral experimentation, can be completed in approximately 2-6 weeks. Successful use of implantable optical fibers will allow for long-term control of mammalian neural circuits in vivo, which is integral to the study of the neurobiology of behavior.

  12. Investigations on effects of the hole size to fix electrodes and interconnection lines in polydimethylsiloxane (United States)

    Behkami, Saber; Frounchi, Javad; Ghaderi Pakdel, Firouz; Stieglitz, Thomas


    Translational research in bioelectronics medicine and neural implants often relies on established material assemblies made of silicone rubber (polydimethylsiloxane-PDMS) and precious metals. Longevity of the compound is of utmost importance for implantable devices in therapeutic and rehabilitation applications. Therefore, secure mechanical fixation can be used in addition to chemical bonding mechanisms to interlock PDMS substrate and insulation layers with metal sheets for interconnection lines and electrodes. One of the best ways to fix metal lines and electrodes in PDMS is to design holes in electrode rims to allow for direct interconnection between top to bottom layer silicone. Hence, the best layouts and sizes of holes (up to 6) which provide sufficient stability against lateral and vertical forces have been investigated with a variety of numbers of hole in line electrodes, which are simulated and fabricated with different layouts, sizes and materials. Best stability was obtained with radii of 100, 72 and 62 µm, respectively, and a single central hole in aluminum, platinum and MP35N foil line electrodes of 400  ×  500 µm2 size and of thickness 20 µm. The study showed that the best hole size which provides line electrode immobility (of thickness less than 30 µm) within a central hole is proportional to reverse value of Young’s Modulus of the material used. Thus, an array of line electrodes was designed and fabricated to study this effect. Experimental results were compared with simulation data. Subsequently, an approximation curve was generated as design rule to propose the best radius to fix line electrodes according to the material thickness between 10 and 200 µm using PDMS as substrate material.

  13. Silicon/SU8 multi-electrode micro-needle for in vivo neurochemical monitoring. (United States)

    Vasylieva, Natalia; Marinesco, Stéphane; Barbier, Daniel; Sabac, Andrei


    Simultaneous monitoring of glucose and lactate is an important challenge for understanding brain energetics in physiological or pathological states. We demonstrate here a versatile method based on a minimally invasive single implantation in the rat brain. A silicon/SU8-polymer multi-sensing needle-shaped biosensor, was fabricated and tested. The multi-electrode array design comprises three platinum planar microelectrodes with a surface area of 40 × 200 µm(2) and a spacing of 200 µm, which were micromachined on a single 3mm long micro-needle having a 100 × 50 µm(2) cross-section for reduced tissue damage during implantation. Platinum micro-electrodes were aligned at the bottom of micro-wells obtained by photolithography on a SU8 photoresist layer. After clean room processing, each micro-electrode was functionalized inside the micro-wells by means of a micro-dispensing device, either with glucose oxidase or with lactate oxidase, which were cross-linked on the platinum electrodes. The third electrode covered with Bovine Serum Albumin (BSA) was used for the control of non-specific currents. The thick SU8 photoresist layer has revealed excellent electrical insulation of the micro-electrodes and between interconnection lines, and ensured a precise localization and packaging of the sensing enzymes on platinum micro-electrodes. During in vitro calibration with concentrations of analytes in the mM range, the micro-wells patterned in the SU8 photoresist proved to be highly effective in eliminating cross-talk signals, caused by H2O2 diffusion from closely spaced micro-electrodes. Moreover, our biosensor was successfully assayed in the rat cortex for simultaneous monitoring of both glucose and lactate during insulin and glucose administration. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Decoronation followed by dental implants placement: fundamentals, applications and explanations (United States)

    Consolaro, Alberto; Ribeiro, Paulo Domingos; Cardoso, Maurício A.; Miranda, Dario A. Oliveira; Salfatis, Monica


    ABSTRACT Dental arches areas with teeth presenting dentoalveolar ankylosis and replacement root resorption can be considered as presenting normal bone, in full physiological remodeling process; and osseointegrated implants can be successfully placed. Bone remodeling will promote osseointegration, regardless of presenting ankylosis and/or replacement root resorption. After 1 to 10 years, all dental tissues will have been replaced by bone. The site, angulation and ideal positioning in the space to place the implant should be dictated exclusively by the clinical convenience, associated with previous planning. One of the advantages of decoronation followed by dental implants placement in ankylosed teeth with replacement resorption is the maintenance of bone volume in the region, both vertical and horizontal. If possible, the buccal part of the root, even if thin, should be preserved in the preparation of the cavity for the implant, as this will maintain gingival tissues looking fully normal for long periods. In the selection of cases for decoronation, the absence of microbial contamination in the region - represented by chronic periapical lesions, presence of fistula, old unconsolidated root fractures and active advanced periodontal disease - is important. Such situations are contraindications to decoronation. However, the occurrence of dentoalveolar ankylosis and replacement resorption without contamination should neither change the planning for implant installation, nor the criteria for choosing the type and brand of dental implant to be used. Failure to decoronate and use dental implants has never been reported. PMID:29791693

  15. Short dental implants: an emerging concept in implant treatment. (United States)

    Al-Hashedi, Ashwaq Ali; Taiyeb Ali, Tara Bai; Yunus, Norsiah


    Short implants have been advocated as a treatment option in many clinical situations where the use of conventional implants is limited. This review outlines the effectiveness and clinical outcomes of using short implants as a valid treatment option in the rehabilitation of edentulous atrophic alveolar ridges. Initially, an electronic search was performed on the following databases: Medline, PubMed, Embase, Cochrane Database of Systematic Reviews, and DARE using key words from January 1990 until May 2012. An additional hand search was included for the relevant articles in the following journals: International Journal of Oral and Maxillofacial Implants, Clinical Oral Implants Research, Journal of Clinical Periodontology, International Journal of Periodontics, Journal of Periodontology, and Clinical Implant Dentistry and Related Research. Any relevant papers from the journals' references were hand searched. Articles were included if they provided detailed data on implant length, reported survival rates, mentioned measures for implant failure, were in the English language, involved human subjects, and researched implants inserted in healed atrophic ridges with a follow-up period of at least 1 year after implant-prosthesis loading. Short implants demonstrated a high rate of success in the replacement of missing teeth in especially atrophic alveolar ridges. The advanced technology and improvement of the implant surfaces have encouraged the success of short implants to a comparable level to that of standard implants. However, further randomized controlled clinical trials and prospective studies with longer follow-up periods are needed.

  16. A Binaural CI Research Platform for Oticon Medical SP/XP Implants Enabling ITD/ILD and Variable Rate Processing (United States)

    Adiloğlu, K.; Herzke, T.


    We present the first portable, binaural, real-time research platform compatible with Oticon Medical SP and XP generation cochlear implants. The platform consists of (a) a pair of behind-the-ear devices, each containing front and rear calibrated microphones, (b) a four-channel USB analog-to-digital converter, (c) real-time PC-based sound processing software called the Master Hearing Aid, and (d) USB-connected hardware and output coils capable of driving two implants simultaneously. The platform is capable of processing signals from the four microphones simultaneously and producing synchronized binaural cochlear implant outputs that drive two (bilaterally implanted) SP or XP implants. Both audio signal preprocessing algorithms (such as binaural beamforming) and novel binaural stimulation strategies (within the implant limitations) can be programmed by researchers. When the whole research platform is combined with Oticon Medical SP implants, interaural electrode timing can be controlled on individual electrodes to within ±1 µs and interaural electrode energy differences can be controlled to within ±2%. Hence, this new platform is particularly well suited to performing experiments related to interaural time differences in combination with interaural level differences in real-time. The platform also supports instantaneously variable stimulation rates and thereby enables investigations such as the effect of changing the stimulation rate on pitch perception. Because the processing can be changed on the fly, researchers can use this platform to study perceptual changes resulting from different processing strategies acutely. PMID:26721923

  17. A Binaural CI Research Platform for Oticon Medical SP/XP Implants Enabling ITD/ILD and Variable Rate Processing. (United States)

    Backus, B; Adiloğlu, K; Herzke, T


    We present the first portable, binaural, real-time research platform compatible with Oticon Medical SP and XP generation cochlear implants. The platform consists of (a) a pair of behind-the-ear devices, each containing front and rear calibrated microphones, (b) a four-channel USB analog-to-digital converter, (c) real-time PC-based sound processing software called the Master Hearing Aid, and (d) USB-connected hardware and output coils capable of driving two implants simultaneously. The platform is capable of processing signals from the four microphones simultaneously and producing synchronized binaural cochlear implant outputs that drive two (bilaterally implanted) SP or XP implants. Both audio signal preprocessing algorithms (such as binaural beamforming) and novel binaural stimulation strategies (within the implant limitations) can be programmed by researchers. When the whole research platform is combined with Oticon Medical SP implants, interaural electrode timing can be controlled on individual electrodes to within ±1 µs and interaural electrode energy differences can be controlled to within ±2%. Hence, this new platform is particularly well suited to performing experiments related to interaural time differences in combination with interaural level differences in real-time. The platform also supports instantaneously variable stimulation rates and thereby enables investigations such as the effect of changing the stimulation rate on pitch perception. Because the processing can be changed on the fly, researchers can use this platform to study perceptual changes resulting from different processing strategies acutely. © The Author(s) 2015.

  18. Lymphoscintigraphy and autologous stem cell implantation

    International Nuclear Information System (INIS)

    Peña, Yamile; Batista, Juan F.; Perera, Alejandro; Torres, Leonel A.; Sánchez, Elvia L.; Sánchez, Yolaine; Ducat, Luis; Prats, Anais; Hernández, Porfirio; Romero, Susana; Goicochea, Pedro; Quintela, Ana M.


    Lymphoscintigraphy is the criterion standard technique for the diagnosis of lymphedema. Advances of the application of autologous hematopoietic stem cells in ischemic disorders of lower limbs have increased the attention of researchers in this field. Aim: To determine the usefulness of lymphoscintigraphy for the assessment the efficacy of autologous stem cell implantation in patients with chronic lymphedema of the upper and lower limbs. Methods: Sixty-five patients were included. Clinical evaluation and lymphoscintigraphy were performed before and six months after stem cells implantation. The stem cells implantations were carried out by multiple superficial and deep injections in the trajectory of the lymphatic vessels and also in the inguinal region. A volume of 0.75 to 1.00 mL of cell suspension (1.0-2.2 x 109 stem cells) was administered in each injection site. Lymphoscintigraphy: Whole-body scans were acquired at 20 minutes, 1 hour, and 3 hours after administration of 185 to 259 MBq (5–7mCi) of 99m Tc-albumin nanocolloids in the interdigital space of both limbs. The anatomy and function of the lymphatic system were evaluated. Results: Functional assessment before implantation of stem cells showed that 69.2% of the patients had severe lymphatic insufficiency. The 61.5% of patients showed clinical improvement, confirmed by the results of the lymphoscintigraphy. The 46.1% of the cases evaluated showed a clear improvement. The study showed that the isotopic lymphography can evaluate the therapeutic response and its intensity. Conclusion: Lymphoscintigraphy is a useful technique for the evaluation and monitoring of autologous stem cell transplantation in patients with chronic lymphedema. (author)

  19. Bilateral Changes of Spontaneous Activity Within the Central Auditory Pathway Upon Chronic Unilateral Intracochlear Electrical Stimulation. (United States)

    Basta, Dietmar; Götze, Romy; Gröschel, Moritz; Jansen, Sebastian; Janke, Oliver; Tzschentke, Barbara; Boyle, Patrick; Ernst, Arne


    In recent years, cochlear implants have been applied successfully for the treatment of unilateral hearing loss with quite surprising benefit. One reason for this successful treatment, including the relief from tinnitus, could be the normalization of spontaneous activity in the central auditory pathway because of the electrical stimulation. The present study, therefore, investigated at a cellular level, the effect of a unilateral chronic intracochlear stimulation on key structures of the central auditory pathway. Normal-hearing guinea pigs were mechanically single-sided deafened through a standard HiFocus1j electrode array (on a HiRes 90k cochlear implant) being inserted into the first turn of the cochlea. Four to five electrode contacts could be used for the stimulation. Six weeks after surgery, the speech processor (Auria) was fitted, based on tNRI values and mounted on the animal's back. The two experimental groups were stimulated 16 hours per day for 90 days, using a HiRes strategy based on different stimulation rates (low rate (275 pps/ch), high rate (5000 pps/ch)). The results were compared with those of unilateral deafened controls (implanted but not stimulated), as well as between the treatment groups. All animals experienced a standardized free field auditory environment. The low-rate group showed a significantly lower average spontaneous activity bilaterally in the dorsal cochlear nucleus and the medial geniculate body than the controls. However, there was no difference in the inferior colliculus and the primary auditory cortex. Spontaneous activity of the high-rate group was also reduced bilaterally in the dorsal cochlear nucleus and in the primary auditory cortex. No differences could be observed between the high-rate group and the controls in the contra-lateral inferior colliculus and medial geniculate body. The high-rate group showed bilaterally a higher activity in the CN and the MGB compared with the low-rate group, whereas in the IC and in the

  20. Surgical Results and Complications of Cochlear Implantation in Far-Advanced Otosclerosis