WorldWideScience

Sample records for electrocoagulation

  1. Dechlorophyllation by Electrocoagulation

    OpenAIRE

    Duang Buddhasukh; Weerachai Phutdhawong; Kanlaya Jumpatong

    2006-01-01

    Electrocoagulation was used for dechlorophyllation of alcoholic extracts from five plants. The results showed that for every plant extract studied, electrocoagulation was more efficient than the classical solvent extraction method in removing plant pigments, while not affecting the important secondary metabolites in those extracts.

  2. The cost of electrocoagulation

    Energy Technology Data Exchange (ETDEWEB)

    Donini, J.C.; Kan, J.; Szynkarczuk, J.; Hassan, T.A.; Kar, K.L.

    1993-01-01

    Recent research has shown that electrocoagulation is suitable for separating solids from waste water. The purpose of this study is to determine whether the method is feasible economically. The cost incurred, namely energy costs and aluminum electrode consumed, during electrocoagulation experiments with kaolinite and bentonite are examined. Emphasis is placed on sodium chloride concentration, flow rate with and without recirculation, formation of passivation layers, how sodium chloride affects aluminum efficiency, and electrode efficiency. Further study is required. 8 refs., 25 figs., 9 tabs.

  3. Electrocoagulation in Water Treatment

    Science.gov (United States)

    Liu, Huijuan; Zhao, Xu; Qu, Jiuhui

    Electrocoagulation (EC) is an electrochemical method of treating polluted water where sacrificial anodes corrode to release active coagulant precursors (usually aluminum or iron cations) into solution. At the cathode, gas evolves (usually as hydrogen bubbles) accompanying electrolytic reactions. EC needs simple equipments and is designable for virtually any size. It is cost effective and easily operable. Specially, the recent technical improvements combined with a growing need for small-scale water treatment facilities have led to a revaluation of EC. In this chapter, the basic principle of EC was introduced first. Following that, reactions at the electrodes and electrode assignment were reviewed; electrode passivation process and activation method were presented; comparison between electrocoagulation and chemical coagulation was performed; typical design of the EC reactors was also described; and factors affecting electrocoagulation including current density, effect of conductivity, temperature, and pH were introduced in details. Finally, application of EC in water treatment was given in details.

  4. COMPARISON OF ELECTROCOAGULATION AND CHEMICAL ...

    African Journals Online (AJOL)

    In this study, the treatment of the effluents of an artisanal tannery by electrocoagulation with iron electrodes was carried out. During electrolytic treatment, a current intensity of 0.4 A was used, and the electrolysis time was varied from 0 to 40 minutes. The performance of electrocoagulation was compared with that of chemical ...

  5. Electrocoagulation of Quinone Pigments

    Directory of Open Access Journals (Sweden)

    Duang Buddhasukh

    2006-07-01

    Full Text Available Some representative quinones, viz. one naphthoquinone (plumbagin and five anthraquinones (alizarin, purpurin, chrysazin, emodin, and anthrarufin, were subjected to electrocoagulation. It was found that the rate and extent of coagulation of these compounds appears to correlate with the number and relative position of their phenolic substituent groups, and that all of the coagulated quinones could be recovered. Attempts were then made to electrochemically isolate three quinones, namely plumbagin, morindone and erythrolaccin, from natural sources.

  6. The cost of electrocoagulation

    Energy Technology Data Exchange (ETDEWEB)

    Donini, J.C.; Kan, J.; Szynkarczuk, J.; Hassan, T.A.; Kar, K.L.

    1993-01-01

    Electrocoagulation could be an attractive and suitable method for separating solids from waste water. The electrocoagulation of kaolinite and bentonite suspensions was studied in a pilot electrocoagulation unit to assess the cost and efficiency of the process. Factors affecting cost such as the formation of passivation layers on electrode plates and the recirculation and concentration of sodium chloride were examined. Colorimetry was used to analyze aluminum content in the suspension. The results were used to calculate the cost due to consumption of electrode material (aluminium) during the process. Total cost was assumed to comprise the energy cost and the cost of electrode material. Comparison was based on the settling properties of the treated product: turbidity, settling rate, and cake height. In most cases, aluminium efficiency averaged around 200% and material cost accounted for 80% of total cost. Although higher concentrations of sodium chloride could only slightly increase aluminium efficiency and electrode efficiency, the higher concentrations resulted in much greater total cost, due to the greater current generated by the increased suspension conductivity, which in turn dissolved a larger amount of aluminium. The recirculation loop increased the flow rate by 3-10 times, enhancing the mass transport between the electrodes and resulting in lower cost and better settling properties. Over the course of two months the electrodes coatings became thicker while efficiency decreased. The electrode efficiency was found to be as high as 94% for virgin electrodes and as low as 10% after two months. 8 refs., 25 figs., 9 tabs.

  7. Preparation of aluminium lakes by electrocoagulation

    OpenAIRE

    Prapai Pradabkham

    2008-01-01

    Aluminium lakes have been prepared by electrocoagulation employing aluminium as electrodes. The electrocoagulation is conducted in an aqueous alcoholic solution and is completed within one hour. The dye content in the lake ranges approximately between 4-32%.

  8. Pretreatment Capabilities and Benefits of Electrocoagulation

    Science.gov (United States)

    2004-12-01

    Electrocoagulation (EC) processes are a non-chemical, electrical means of removing suspended solids, colloidal material, and sparingly soluble salts as well as...precipitation or sedimentation (6). The following table provides a comparison of removal percentages: Chemical Electrocoagulation ...OBJECTIVES The goals of the research project were 1) to demonstrate the removal capabilities of the electrocoagulation (EC) technology and 2) to

  9. Electrocoagulation project: Pilot study testwork

    Energy Technology Data Exchange (ETDEWEB)

    Donini, J.C.; Garand, D.K.; Hassan, T.A.; Kar, K.L.; Thind, S.S.

    1991-09-01

    When a suspension or emulsion flows between two sacrificial metal electrodes excited by ac, the dispersed phase is consolidated and then settles. Laboratory-scale investigation of this mechanism, called electrocoagulation, and of its areas of application to water treatment were previously completed and a subsequent project was initiated to design and construct pilot-scale equipment consisting of an electrocoagulation cell, power supply, and computerized control system. The constructed pilot plant was used to test the effectiveness of electrocoagulation to clarify coal processing plant effluent. Results obtained with clay suspensions showed that flow conditions in the cell have a major effect on electric power consumption, and a reduction by a factor of three on this crucial cost parameter appeared possible compared to a previously tested batch-scale electrocoagulation system. Results obtained using the coal plant thickener feed closely duplicated those obtained with the clay mixtures. Aluminum electrode consumption, however, remained unchanged compared to the bench-scale tests. Supernatant clarity far exceeded requirements, while settling rate was too low. The settling could be speeded up by appropriate use of chemicals, but such addition affects the coagulation mechanism and reduces supernatant clarity. A tradeoff between settling rate and clarity was thus established. The total cost of treatment was deemed to be in excess of coal company requirements, but the pilot tests revealed much about the electrocoagulation system under continuous flow conditions. The technology is seen as having application in other areas such as municipal and industrial waste treatment. 22 refs., 6 figs., 2 tabs.

  10. Improved Electrocoagulation Reactor for Rapid Removal of Phosphate from Wastewater

    KAUST Repository

    Tian, Yushi; He, Weihua; Zhu, Xiuping; Yang, Wulin; Ren, Nanqi; Logan, Bruce E.

    2016-01-01

    by electrocoagulation. The performance of this process, called a reverse-electric field, air cathode electrocoagulation (REAEC) reactor, was tested using domestic wastewater as a function of charging time and electrocoagulation time. REAEC wastewater treatment removed

  11. The operating cost of electrocoagulation

    Energy Technology Data Exchange (ETDEWEB)

    Donini, J.C.; Kan, J.; Szynkarczuk, J.; Hassan, T.A.; Kar, K.L. (Canadian Centre for Mineral and Energy Technology, Devon, AB (Canada))

    1994-12-01

    The electrocoagulation of kaolinite and bentonite suspensions was studied in a pilot-scale electrocoagulation system to assess the operating cost and efficiency of the process. Factors affecting the operating cost such as formation of passivation layers on electrode plates, flow velocity, and concentration of NaCl in the suspension were examined. The operating costs investigated were the power cost of the electrocoagulation cell and the material cost due to the consumption of the aluminum electrode. Comparison was based on the settling properties of the treated product: turbidity, settling rate, and cake height. Higher NaCl concentration resulted in greater amounts of Al dissolved chemically and electrochemically into the suspension and thus a better clarity of the supernatant of the treated product. Increased flow velocity could reduce significantly the operating cost while improving both clarity of the supernatant and compactness of the sludge volume. The passivation layers developed quickly with time during the electrocoagulation process and more energy became wasted on the layers. 10 refs., 12 figs.

  12. Preparation of aluminium lakes by electrocoagulation

    Directory of Open Access Journals (Sweden)

    Prapai Pradabkham

    2008-07-01

    Full Text Available Aluminium lakes have been prepared by electrocoagulation employing aluminium as electrodes. The electrocoagulation is conducted in an aqueous alcoholic solution and is completed within one hour. The dye content in the lake ranges approximately between 4-32%.

  13. Arsenic removal from industrial effluent through electrocoagulation

    Energy Technology Data Exchange (ETDEWEB)

    Balasubramanian, N. [Central Electrochemical Research Inst., Karaikudi (India). Dept. of Pollution Control; Madhavan, K. [Coimbatore Inst. of Technology, Coimbatore (India). Dept. of Chemistry

    2001-05-01

    In the present investigation, it is attempted to remove arsenic from smelter industrial wastewater through electro-coagulation. Experiments covering a wide range of operating conditions for removal of the arsenic present in the smelter wastewater are carried out in a batch electrochemical reactor. It has been observed from the present work that arsenic can be removed effectively through electrocoagulation. (orig.)

  14. [Treatment by electrocoagulation in malignant tracheobronchial pathology].

    Science.gov (United States)

    Frizzelli, R

    1986-01-01

    The author reports his experience of electrocoagulation used to remove tumoral obstruction of the trachea and primary bronchi. Endoscopic electrocoagulation using a fibrobronchoscope is a useful method. Its results and its cost are of interest, as confirmed by experience in 17 patients.

  15. Comparison of Electrocoagulation and Chemical Coagulation ...

    African Journals Online (AJOL)

    PROF HORSFALL

    2017-12-02

    Dec 2, 2017 ... The investigations were focused on the operational (pH, conductivity) and pollution parameters (COD, total ..... from restaurant wastewater by electrocoagulation, Sep. Purif. ... (2006).Decolorization of basic dye solutions by.

  16. Alternating current electrocoagulation for Superfund site remediation

    International Nuclear Information System (INIS)

    Farrell, C.W.

    1991-01-01

    A study is being conducted by Electro-Pure Systems, Inc. (EPS) under the Emerging Technology portion of the U.S. Environmental Protection Agency's (EPA's) Superfund Innovative Technology Evaluation (SITE) Program to study alternating current electrocoagulation for Superfund site remediation. Alternating current electrocoagulation has proven to be effective in agglomerating and removing colloidal solids, metals and certain organic contaminants from surrogate soils prepared from the US EPA's Synthetic Soil Matrix. Treatments under a wide range of operating conditions have enabled the optimum parameter settings to be established for multiple phase separation. Electrocoagulation enables appreciably enhanced filtration and dewatering rates to be realized for metals- and diesel fuel-spiked surrogate soil slurries; such enhancements are prompted by growth in the mean particle size of the clays and particulates from typically < 10 microns to as much as 150 microns depending on the degree of electrocoagulation. Reduction in the total suspended solids content of clays in all slurries in excess of 90% can routinely be achieved. Bench-scale experiments of the metals-spiked surrogate soils indicate that electrocoagulation preferentially concentrates soluble metals into the sludge phase; excellent metals separation (Pb, Cr, Cu, Cd) can be realized. Experiments on surrogate wastes spiked with volatile organics suggest that this technology is not capable of effecting good volatile extractions from the aqueous phase. Reductions in excess of 80% in the total organic carbon (TOC) content of the diesel fuel-spiked surrogates can, however, be achieved

  17. Electrokinetics of samples treated by electrocoagulation methods

    Energy Technology Data Exchange (ETDEWEB)

    Angle, C.W.; Donini, J.C.

    1992-01-01

    The purpose is to study the theory of electrocoagulation during water treatment. Mechanisms proposed in the literature are charge neutralization and dipole-dipole interaction. The electrokinetics of highly concentrated model clay and process clay suspensions, before and after electrocoagulation, are studied experimentally. The charge on treated and untreated dispersions and controls are measured using electrokinetic sonic amplitude and microelectrophoresis techniques. Scanning electron microscopy is used to determine release of aluminum ions onto latex and process clays. The qualitative experimental observations, electrokinetic data, and analysis of aluminum coated particles provide some information on the mechanisms of electrocoagulation, but further studies with dilute dispersions are needed to confirm the charge neutralization mechanism. 10 refs., 4 figs., 3 tabs.

  18. Color removal from acid and reactive dye solutions by electrocoagulation and electrocoagulation/adsorption processes.

    Science.gov (United States)

    Bellebia, S; Kacha, S; Bouberka, Z; Bouyakoub, A Z; Derriche, Z

    2009-04-01

    In this study, electrocoagulation of Marine Blue Erionyl MR (acid dye) and electrocoagulation followed by adsorption of Brilliant Blue Levafix E-BRA (reactive dye) from aqueous solutions were investigated, using aluminum electrodes and granular activated carbon (GAC). In the electrocoagulation and adsorption of dyestuff solutions, the effects of current density, loading charge, pH, conductivity, stirring velocity, contact time, and GAC concentration were examined. The optimum conditions for the electrocoagulation process were identified as loading charges 7.46 and 1.49 F/m3, for a maximum abatement of 200 mg/L reactive and acid dye, respectively. The residual reactive dye concentration was completely removed with 700 mg/L GAC. The results of this investigation provide important data for the development of a combined process to remove significant concentrations of recalcitrant dyes from water, using moderate activated carbon energy and aluminum consumption, and thereby lowering the cost of treatment.

  19. Comparison of electrocoagulation and chemical coagulation ...

    African Journals Online (AJOL)

    In this work, electrocoagulation and chemical coagulation were applied to the exit effluent of a textile factory located at Douala (Cameroon).The investigations were focused on the operational (pH, conductivity) and pollution parameters (COD, total phosphorus, turbidity). The electrolytic treatment was carried out with 0.4 A ...

  20. Comparison of electrocoagulation and chemical coagulation for heavy metal removal

    Energy Technology Data Exchange (ETDEWEB)

    Akbal, F.; Camci, S. [Ondokuz Mayis University, Engineering Faculty, Environmental Engineering Department, Kurupelit, Samsun (Turkey)

    2010-10-15

    Copper (Cu), chromium (Cr), and nickel (Ni) removal from metal plating wastewater by electrocoagulation and chemical coagulation was investigated. Chemical coagulation was performed using either aluminum sulfate or ferric chloride, whereas electrocoagulation was done in an electrolytic cell using aluminum or iron electrodes. By chemical coagulation, Cu-, Cr-, and Ni-removal of 99.9 % was achieved with aluminum sulfate and ferric chloride dosages of 500, 1000, and 2000 mg L{sup -1}, respectively. Removal of metals by electrocoagulation was affected by the electrode material, wastewater pH, current density, number of electrodes, and electrocoagulation time. Electrocoagulation with iron electrodes at a current density of 10 mA cm{sup -2}, electrocoagulation time of 20 min, and pH 3.0 resulted in 99.9 % Cu-, 99.9 % Cr-, and 98 % Ni-removal. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  1. Comparison of COD removal from pharmaceutical wastewater by electrocoagulation, photoelectrocoagulation, peroxi-electrocoagulation and peroxi-photoelectrocoagulation processes

    International Nuclear Information System (INIS)

    Farhadi, Sajjad; Aminzadeh, Behnoush; Torabian, Ali; Khatibikamal, Vahid; Alizadeh Fard, Mohammad

    2012-01-01

    Highlights: ► Hydrogen peroxide improves the performance of electrocoagulation process. ► UV light can be effective on the performance on peroxi-electrocoagulation and electrocoagulation processes. ► The optimal amount of hydrogen peroxide for peroxi-electrocoagulation process for COD removal from pharmaceutical wastewater is 300 mg/L. ► The optimal values of pH for electrocoagulation and peroxi-electrocoagulation are 7 and 3, respectively. - Abstract: This work makes a comparison between electrocoagulation (EC), photoelectrocoagulation, peroxi-electrocoagulation and peroxi-photoelectrocoagulation processes to investigate the removal of chemical oxygen demand (COD) from pharmaceutical wastewater. The effects of operational parameters such as initial pH, current density, applied voltage, amount of hydrogen peroxide and electrolysis time on COD removal efficiency were investigated and the optimum operating range for each of these operating variables was experimentally determined. In electrocoagulation process, the optimum values of pH and voltage were determined to be 7 and 40 V, respectively. Desired pH and hydrogen peroxide concentration in the Fenton-based processes were found to be 3 and 300 mg/L, respectively. The amounts of COD, pH, electrical conductivity, temperature and total dissolved solids (TDS) were on-line monitored. Results indicated that under the optimum operating range for each process, the COD removal efficiency was in order of peroxi-electrocoagulation > peroxi-photoelectrocoagulation > photoelectrocoagulation > electrocoagulation. Finally, a kinetic study was carried out using the linear pseudo-second-order model and results showed that the pseudo-second-order equation provided the best correlation for the COD removal rate.

  2. Comparison of COD removal from pharmaceutical wastewater by electrocoagulation, photoelectrocoagulation, peroxi-electrocoagulation and peroxi-photoelectrocoagulation processes

    Energy Technology Data Exchange (ETDEWEB)

    Farhadi, Sajjad, E-mail: sajjadfarhadi@ut.ac.ir [Department of Civil and Environmental Engineering, Graduate Faculty of Environment, University of Tehran (Iran, Islamic Republic of); Aminzadeh, Behnoush, E-mail: bamin@ut.ac.ir [Department of Civil and Environmental Engineering, Graduate Faculty of Environment, University of Tehran (Iran, Islamic Republic of); Torabian, Ali, E-mail: atorabi@ut.ac.ir [Department of Civil and Environmental Engineering, Graduate Faculty of Environment, University of Tehran (Iran, Islamic Republic of); Khatibikamal, Vahid, E-mail: vahidkhatibi@ut.ac.ir [Department of Civil and Environmental Engineering, Graduate Faculty of Environment, University of Tehran (Iran, Islamic Republic of); Alizadeh Fard, Mohammad, E-mail: malizadeh1987@ut.ac.ir [Department of Civil and Environmental Engineering, Graduate Faculty of Environment, University of Tehran (Iran, Islamic Republic of)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Hydrogen peroxide improves the performance of electrocoagulation process. Black-Right-Pointing-Pointer UV light can be effective on the performance on peroxi-electrocoagulation and electrocoagulation processes. Black-Right-Pointing-Pointer The optimal amount of hydrogen peroxide for peroxi-electrocoagulation process for COD removal from pharmaceutical wastewater is 300 mg/L. Black-Right-Pointing-Pointer The optimal values of pH for electrocoagulation and peroxi-electrocoagulation are 7 and 3, respectively. - Abstract: This work makes a comparison between electrocoagulation (EC), photoelectrocoagulation, peroxi-electrocoagulation and peroxi-photoelectrocoagulation processes to investigate the removal of chemical oxygen demand (COD) from pharmaceutical wastewater. The effects of operational parameters such as initial pH, current density, applied voltage, amount of hydrogen peroxide and electrolysis time on COD removal efficiency were investigated and the optimum operating range for each of these operating variables was experimentally determined. In electrocoagulation process, the optimum values of pH and voltage were determined to be 7 and 40 V, respectively. Desired pH and hydrogen peroxide concentration in the Fenton-based processes were found to be 3 and 300 mg/L, respectively. The amounts of COD, pH, electrical conductivity, temperature and total dissolved solids (TDS) were on-line monitored. Results indicated that under the optimum operating range for each process, the COD removal efficiency was in order of peroxi-electrocoagulation > peroxi-photoelectrocoagulation > photoelectrocoagulation > electrocoagulation. Finally, a kinetic study was carried out using the linear pseudo-second-order model and results showed that the pseudo-second-order equation provided the best correlation for the COD removal rate.

  3. Palliative and curative electrocoagulation for rectal cancer : Experience and results

    NARCIS (Netherlands)

    Hoekstra, Harald J.; Verschueren, Rene CJ; Oldhoff, Jan; van der Ploeg, Els

    1985-01-01

    The 18‐year experience with electrocoagulation of rectal cancer in 51 patients is reported. The “boiling” technique used in this study is described. Electrocoagulation for palliative purpose was carried out in 18 patients. One patient is alive without evidence of disease after 4 years. The remaining

  4. The future for electrocoagulation as a localised water treatment technology.

    Science.gov (United States)

    Holt, Peter K; Barton, Geoffrey W; Mitchell, Cynthia A

    2005-04-01

    Electrocoagulation is an electrochemical method of treating polluted water whereby sacrificial anodes corrode to release active coagulant precursors (usually aluminium or iron cations) into solution. Accompanying electrolytic reactions evolve gas (usually as hydrogen bubbles) at the cathode. Electrocoagulation has a long history as a water treatment technology having been employed to remove a wide range of pollutants. However electrocoagulation has never become accepted as a 'mainstream' water treatment technology. The lack of a systematic approach to electrocoagulation reactor design/operation and the issue of electrode reliability (particularly passivation of the electrodes over time) have limited its implementation. However recent technical improvements combined with a growing need for small-scale decentralised water treatment facilities have led to a re-evaluation of electrocoagulation. Starting with a review of electrocoagulation reactor design/operation, this article examines and identifies a conceptual framework for electrocoagulation that focuses on the interactions between electrochemistry, coagulation and flotation. In addition detailed experimental data are provided from a batch reactor system removing suspended solids together with a mathematical analysis based on the 'white water' model for the dissolved air flotation process. Current density is identified as the key operational parameter influencing which pollutant removal mechanism dominates. The conclusion is drawn that electrocoagulation has a future as a decentralised water treatment technology. A conceptual framework is presented for future research directed towards a more mechanistic understanding of the process.

  5. Boron removal by electrocoagulation and recovery.

    Science.gov (United States)

    Isa, Mohamed Hasnain; Ezechi, Ezerie Henry; Ahmed, Zubair; Magram, Saleh Faraj; Kutty, Shamsul Rahman Mohamed

    2014-03-15

    This work investigated the removal of boron from wastewater and its recovery by electrocoagulation and hydrothermal mineralization methods respectively. The experimental design was developed using Box-Behnken Model. An initial study was performed based on four preselected variables (pH, current density, concentration and time) using synthetic wastewater. Response surface methodology (RSM) was used to evaluate the effect of process variables and their interaction on boron removal. The optimum conditions were obtained as pH 6.3, current density 17.4 mA/cm(2), and time 89 min. At these applied optimum conditions, 99.7% boron removal from an initial concentration of 10.4 mg/L was achieved. The process was effectively optimized by RSM with a desirability value of 1.0. The results showed that boron removal efficiency enhanced with increase in current density and treatment time. Removal efficiency also increased when pH was increased from 4 to 7 and subsequently decreased at pH 10. Adsorption kinetics study revealed that the reaction followed pseudo second order kinetic model; evidenced by high correlation and goodness of fit. Thermodynamics study showed that mechanism of boron adsorption was chemisorption and the reaction was endothermic in nature. Furthermore, the adsorption process was spontaneous as indicated by negative values of the adsorption free energy. Treatment of real produced water using electrocoagulation resulted in 98% boron removal. The hydrothermal mineralization study showed that borate minerals (Inyoite, Takadaite and Nifontovite) can be recovered as recyclable precipitate from electrocoagulation flocs of produced water. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Electrocoagulation and decolorization of landfill leachate

    Science.gov (United States)

    Mussa, Zainab Haider; Othman, Mohamed Rozali; Abdullah, Md Pauzi

    2013-11-01

    In this study, several operating conditions such as electrode material, treatment time, applied voltage, Cl□ concentration and PH of solution were tested on treatability of landfill leachate by using electrocoagulation (EC) method. According to the results, EC method can be used efficiently for the treatment of landfill leachate by using proper operating conditions. The best removal rats were obtained when C (rod) electrode as anode, operating time is 120 min, voltage applied is 10 V, NaCl concentration is 5.85 g/L and the raw PH, for these conditions, 70% color removal was obtained.

  7. American cutaneous leishmaniasis triggered by electrocoagulation.

    Science.gov (United States)

    Martins, Sofia Sales; Santos, Adriana de Oliveira; Lima, Beatriz Dolabela; Gomes, Ciro Martins; Sampaio, Raimunda Nonata Ribeiro

    2018-01-01

    Cutaneous leishmaniasis is usually transmitted by infected phlebotomine sand fly bites that initiate local cutaneous lesions. Few reports in the literature describe other modes of transmission. We report a case of a previously healthy 59-year-old woman who underwent electrocoagulation to remove seborrheic keratosis confirmed by dermatoscopy. Three months later, a skin fragment tested positive for Leishmania culture; the parasite was identified as L. (V.) braziliensis. Trauma may generate inflammatory cascades that favor Leishmania growth and lesion formation in previously infected patients. American cutaneous leishmaniasis is a dynamic disease with unclear pathophysiology because of continually changing environments, demographics, and human behaviors.

  8. Landfill Leachate Treatment by Electrocoagulation and Fiber Filtration.

    Science.gov (United States)

    Li, Runwei; Wang, Boya; Owete, Owete; Dertien, Joe; Lin, Chen; Ahmad, Hafiz; Chen, Gang

    2017-11-01

      Landfilling is widely adopted as one of the most economical processes for solid waste disposal. At the same time, landfill leachate is also a great environmental concern owing to its complex composition and high concentrations of contaminants. This research investigated electrocoagulation and fiber filtration for the treatment of landfill leachate. Besides electrical current (i.e., current density) and reaction time, pH played a very important role in arsenic and phosphorus removal by electrocoagulation. The combination of electrocoagulation with fiber filtration achieved a 94% chemical oxygen demand (COD), 87% arsenic, 96% iron, and 86% phosphorus removal. During electrocoagulation, the micro-particles that could not be settled by gravity were removed by the first stage of fiber filtration. Organic contaminants in the leachate were further removed by biodegradation in the second stage of fiber biofiltration.

  9. GENERAL ENVIRONMENTAL CORPORATION; CURE ELECTROCOAGULATION TECHNOLOGY: INNOVATIVE TECHNOLOGY EVALUATION REPORT

    Science.gov (United States)

    The CURE electrocoagulation technology was demonstrated under the Superfund Innovative Technology Evaluation (SITE) program at the U.S. Department of Energy (DOE) Rocky Flats Environmental Technology Site (RFETS), where water from the solar evaporation ponds (SEPs) was contaminat...

  10. [Establishment of mouse endometrial injury model by electrocoagulation].

    Science.gov (United States)

    Hu, Xiaoxiao; Lin, Xiaona; Jiang, Yinshen; Shi, Libing; Wang, Jieyu; Zhao, Lijuan; Zhang, Songying

    2014-12-23

    To establish the murine model of moderate endometrial injury. Electrocoagulation was applied to induce endometrial injury of ICR mice with 0.5 watts power while contralateral uterine cavity acted as control without electrocoagulation. The endometrial histomorphology was observed in 7 days later by microscopy and fetal number of each lateral uterus assessed at 17.5 days after pregnancy. At 7 days post-electrocoagulation, the average endometrial thickness of operating side was significantly thinner than that of control side (1.14 ± 0.08 vs 1.88 ± 0.15 mm, P electrocoagulation injury shows morphologic changes and decreased fertile ability. It has potential uses for animal studies of endometrial injury treatment.

  11. Removal of veterinary antibiotics from wastewater by electrocoagulation.

    Science.gov (United States)

    Baran, Wojciech; Adamek, Ewa; Jajko, Marcin; Sobczak, Andrzej

    2018-03-01

    The aim of this study was to assess the effectiveness of veterinary antibiotic removal from wastewater using an electrocoagulation method. The removal efficiency of ampicillin, doxycycline, sulfathiazole and tylosin; the antibiotic degradation degree after electrolysis; and the toxicity and qualitative composition of antibiotic solutions after electrocoagulation were determined in the experiments. HPLC-QTOF was used for quantitative and qualitative determination. The eco-toxicity was assessed using the MARA ® assay. After electrocoagulation, the concentration of ampicillin, doxycycline, sulfathiazole and tylosin in wastewater decreased 3.6 ± 3.2%, ∼100%, 3.3 ± 0.4% and 3.1 ± 0.3%, respectively. Doxycycline was the only antibiotic effectively removed from wastewater during electrocoagulation. Simultaneously, part of this antibiotic underwent oxidative degradation. As a result of this process, the eco-toxicity in the reaction environment decreased. Copyright © 2017. Published by Elsevier Ltd.

  12. The Influence of Parameters Affecting Boron Removal by Electrocoagulation Process

    KAUST Repository

    Zeboudji, B.; Drouiche, Nadjib; Lounici, Hakim; Mameri, Nabil; Ghaffour, NorEddine

    2013-01-01

    , this process requires chemical addition and important additional investment, operation and maintenance, and energy costs. Electrocoagulation (EC) process can be used to achieve such low boron concentration. In this work, the removal of boron from aqueous

  13. Electrocoagulative Surgical Procedure for Treatment of Conjunctivochalasis

    Science.gov (United States)

    Zhang, Xing-Ru; Zhang, Zhen-Yong; Hoffman, Matthew R.

    2012-01-01

    The purpose of this study was to present a new procedure to treat symptomatic conjunctivochalasis (CCh) and to evaluate its efficacy. Forty-two patients with symptomatic CCh refractory to medical management were included on this study. Twenty-two patients (n  =  32, eyes; n  =  14 women and n  =  8 men) underwent the new electrocoagulation procedure (Group I). Twenty patients (n  =  27 eyes; n  =  11 women and n  =  9 men) underwent crescent-shaped conjunctiva resection (Group II). Ocular Surface Disease Index (OSDI) was used to evaluate ocular symptoms. There was a significant difference in mean and SD operation time between Group I (8.67 ± 2.07 minutes) and Group II (20.45 ± 3.98 minutes; P Electrocoagulation of the conjunctiva can successfully treat symptomatic CCh with earlier symptomatic attenuation and less operation time than traditional conjunctiva resection. PMID:23102005

  14. Treatment of Biodiesel Wastewater by Electrocoagulation Process

    Directory of Open Access Journals (Sweden)

    Anchalee Srirangsan

    2009-07-01

    Full Text Available The objective of this research was to determine the optimum conditions for biodiesel wastewater treatment using an electrocoagulation process. Wastewater samples were obtained from a small-scale, commercial biodiesel production plant that employs an alkali-catalyzed tranesterification process. The wastewater was characterized by the high contents of alkali and high oil content of 6,020 mg/L. Tested operational conditions included types of electrode, current density, retention time and initial pH. The tested electrode materials for electrocoagulation were aluminum (Al, iron (Fe and graphite (C. Five tested pairs of anode and cathode materials included Fe-Fe, Fe-C, Al-Al, Al-C, C-C. Results show that the optimum conditions were achieved by using the electrodes of Al-C, applying the current density of 8.32 mA/cm2 to the wastewater with an initial pH value of 6 for 25 min. The removal efficiency was found to be 97.8 % for grease & oil (G&O, 96.9 % for SS and 55.4 % for COD. Moreover, the small amount of produced sludge was readily to remove from the treated wastewater.

  15. Enhanced removal of Methylene Blue by electrocoagulation using iron electrodes

    OpenAIRE

    Mohamed S. Mahmoud; Joseph Y. Farah; Taha E. Farrag

    2013-01-01

    The removal of pollutants from effluents by electrocoagulation has become an attractive method in recent years. The study deals with the enhancement of removal of Methylene Blue dye by using an electromagnetic field during the electrocoagulation process. Effects of electrolyte concentration, dye concentration, intensity and the direction of the electromagnet on the decolorization efficiency have been investigated. The formed ferric hydroxide flocs trap colloidal particles and make solid–liqui...

  16. Treatment of laundry wastewater by biological and electrocoagulation methods.

    Science.gov (United States)

    Ramcharan, Terelle; Bissessur, Ajay

    2017-01-01

    The present study describes an improvement in the current electrocoagulation treatment process and focuses on a comparative study for the clean-up of laundry wastewater (LWW) after each wash and rinse cycle by biological and electrocoagulation treatment methods. For biological treatment, the wastewater was treated with a Bacillus strain of aerobic bacteria especially suited for the degradation of fats, lipids, protein, detergents and hydrocarbons. Treatment of the LWW by electrocoagulation involved the oxidation of aluminium metal upon the application of a controlled voltage which produces various aluminium hydroxy species capable of adsorbing pollutants from the wastewater. The efficiency of the clean-up of LWW using each method was assessed by determination of surfactant concentration, chemical oxygen demand and total dissolved solids. A rapid decrease in surfactant concentration was noted within 0.5 hour of electrocoagulation, whereas a notable decrease in the surfactant concentration was observed only after 12 hour of biological treatment. The rapid generation of aluminium hydroxy species in the electrocoagulation cell allowed adsorption of pollutants at a faster rate when compared to the aerobic degradation of the surfactant; hence a reduced period of time is required for treatment of LWW by electrocoagulation.

  17. Improved Electrocoagulation Reactor for Rapid Removal of Phosphate from Wastewater

    KAUST Repository

    Tian, Yushi

    2016-11-01

    A new three-electrode electrocoagulation reactor was investigated to increase the rate of removal of phosphate from domestic wastewater. Initially, two electrodes (graphite plate and air cathode) were connected with 0.5 V of voltage applied for a short charging time (∼10 s). The direction of the electric field was then reversed, by switching the power supply lead from the anode to the cathode, and connecting the other lead to a sacrificial aluminum mesh anode for removal of phosphate by electrocoagulation. The performance of this process, called a reverse-electric field, air cathode electrocoagulation (REAEC) reactor, was tested using domestic wastewater as a function of charging time and electrocoagulation time. REAEC wastewater treatment removed up to 98% of phosphate in 15 min (inert electrode working time of 10 s, current density of 1 mA/cm2, and 15 min total electrocoagulation time), which was 6% higher than that of the control (no inert electrode). The energy demand varied from 0.05 kWh/m3 for 85% removal in 5 min, to 0.14 kwh/m3 for 98% removal in 15 min. These results indicate that the REAEC can reduce the energy demands and treatment times compared to conventional electrocoagulation processes for phosphate removal from wastewater.

  18. Electrocoagulation of Palm Oil Mill Effluent

    Science.gov (United States)

    Agustin, Melissa B.; Sengpracha, Waya P.; Phutdhawong, Weerachai

    2008-01-01

    Electrocoagulation (EC) is an electrochemical technique which has been employed in the treatment of various kinds of wastewater. In this work the potential use of EC for the treatment of palm oil mill effluent (POME) was investigated. In a laboratory scale, POME from a factory site in Chumporn Province (Thailand) was subjected to EC using aluminum as electrodes and sodium chloride as supporting electrolyte. Results show that EC can reduce the turbidity, acidity, COD, and BOD of the POME as well as some of its heavy metal contents. Phenolic compounds are also removed from the effluent. Recovery techniques were employed in the coagulated fraction and the recovered compounds was analysed for antioxidant activity by DPPH method. The isolate was found to have a moderate antioxidant activity. From this investigation, it can be concluded that EC is an efficient method for the treatment of POME. PMID:19139537

  19. Saline-enhanced radiofrequency electrocoagulation in bovine liver

    International Nuclear Information System (INIS)

    Shin, Hong Seop; Oh, Joo Hyeong; Yoon, Yup; Kim, Hyun Cheol; Ko, Young Tae; Choi, Woo Suk; Lim, Joo Won; Kim, Eui Jong

    1997-01-01

    To determine the effectiveness of saline-enhanced radiofrequency electrocoagulation in bovine liver tissue Saline-enhanced radiofrequency electrocoagulation (group I), hot saline injection induced by radiofrequency electrocoagulation (group II), and radiofrequency electrocoagulation (group III) were performed in ex vivo bovine liver. Radiofrequency power was 100 and 200 watts, and current was applied for 10, 20, and 30 seconds. Tissue was histopathologically examined for thermal injury. The largest diameter of thermal injury was about 41.0 mm in group I, 12.3 mm in group II and 9.3 mm in group III. The mean diameter of the injury increased with higher wattage in group I and II and with longer procedure time in group I (p<0.05). At corresponding wattage and times, group I showed a larger diameter of thermal injury and more increase in than group II or III (p<0.05). The degree of carbonization was more severe in group III than in groups I and II. Grossly, thermal injury showed a well-defined, relatively spherical configuration without extension along parenchymal interstitium. In an animal model, saline-enhanced radiofrequency electrocoagulation may effectively induce thermal injury, and may thus be another effective tool for use in the treatment of hepatic tumors. Further clinical experience is needed

  20. Clinical analysis of bronchoscopic electrocoagulation in pediatric patients

    Science.gov (United States)

    Ni, Caiyun; Yu, Huafeng; Han, Xiaorong; Meng, Chen; Zhang, Yanqing

    2014-01-01

    This study is to explore the efficacy and safety of bronchoscopic electrocoagulation treatment for pediatric disease of poor ventilation. Seventy pediatric patients of airway stenosis and obstruction as well as pharyngeal and laryngeal cysts received bronchoscopic electrocoagulation treatment, including 15 cases of epiglottic cyst, 13 cases of cicatricial hyperplasia of fibrous tissue after trachea intubation, 5 cases of foreign body in bronchus and 37 cases of endobronchial tuberculosis. Before and after the last electrocoagulation treatment, treatment efficacy was evaluated by examining the patients’ clinical presentations and lesions in airway under bronchoscope, examining chest CT and pulmonary function, and estimating pulmonary atelectasis and ventilation function. Seventy cases of pediatric patients were treated by bronchoscopic electrocoagulation, with the total treatment number of 106 times. Among them, 66 cases were treated with marked efficacy and 4 cases were with effective treatment. There was no invalid treatment. The treatment efficacy was 100% without complications. Bronchoscopic electrocoagulation treatment is a fast, effective and safe therapeutic method in treating airway stenosis and obstruction, such as foreign body in bronchus, granulation tissue hyperplasia, and epiglottic cysts. It is worthy of being widely applied in clinic. PMID:25664086

  1. Saline-enhanced radiofrequency electrocoagulation in bovine liver

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hong Seop; Oh, Joo Hyeong; Yoon, Yup; Kim, Hyun Cheol; Ko, Young Tae; Choi, Woo Suk; Lim, Joo Won; Kim, Eui Jong [Kyunghee Univ. Hospital, Seoul (Korea, Republic of)

    1997-08-01

    To determine the effectiveness of saline-enhanced radiofrequency electrocoagulation in bovine liver tissue Saline-enhanced radiofrequency electrocoagulation (group I), hot saline injection induced by radiofrequency electrocoagulation (group II), and radiofrequency electrocoagulation (group III) were performed in ex vivo bovine liver. Radiofrequency power was 100 and 200 watts, and current was applied for 10, 20, and 30 seconds. Tissue was histopathologically examined for thermal injury. The largest diameter of thermal injury was about 41.0 mm in group I, 12.3 mm in group II and 9.3 mm in group III. The mean diameter of the injury increased with higher wattage in group I and II and with longer procedure time in group I (p<0.05). At corresponding wattage and times, group I showed a larger diameter of thermal injury and more increase in than group II or III (p<0.05). The degree of carbonization was more severe in group III than in groups I and II. Grossly, thermal injury showed a well-defined, relatively spherical configuration without extension along parenchymal interstitium. In an animal model, saline-enhanced radiofrequency electrocoagulation may effectively induce thermal injury, and may thus be another effective tool for use in the treatment of hepatic tumors. Further clinical experience is needed.

  2. Does bipolar electrocoagulation time affect vessel weld strength?

    Science.gov (United States)

    Harrison, J D; Morris, D L

    1991-01-01

    The value of the bipolar electrocoagulator in the haemostasis of bleeding ulcers is controversial. We have therefore investigated the effect of different coagulation times on vessel weld strength achieved by the bipolar device. Welds were then made in vessels of known diameter using a standard 10F endoscopic haemostatic probe at coagulation times of two and 20 seconds. The intravascular temperature achieved at each time was measured. Vessel weld strength achieved by bipolar electrocoagulation was much greater at 20 seconds (approximately twice that at two seconds) and was highly significantly greater at all vessel diameters. There was a gradual reduction in weld strength with increasing vessel diameter, an effect that was seen for both two and 20 seconds of electrocoagulation. Intravascular temperature was significantly higher at 20 seconds than at two seconds. We conclude that vessel weld strength is related to coagulation time and that any future studies comparing the bipolar electrocoagulator with other haemostatic devices should use longer periods of bipolar electrocoagulation and record the coagulation time in order to optimise the clinical value of the device. PMID:1864540

  3. Fission product separation from seawater by electrocoagulation method

    International Nuclear Information System (INIS)

    Kitagaki, T.; Hoshino, T.; Sambommatsu, Y.; Yano, K.; Takeuchi, M.; Igarashi, T.; Suzuki, T.

    2013-01-01

    At the Fukushima Daiichi nuclear power station, seawater was urgently injected into the reactor core. Therefore a large amount of seawater containing highly radioactive fission products (FP) accumulated and its treatment has been a serious problem. FP such as Cs, Sr and I in water are generally removed by an ion exchanger such as zeolite and separated with column or chemical precipitation methods. An alternative electrocoagulation method, which efficiently separates fine particles from the liquid phase without a chemical reagent is expected to be part of a useful separation system that can reduce the amount of waste, decrease processing time and simplify the process. In this study, powdered adsorbents, such as ferrocyanide and zeolite, were added to seawater containing simulated FP, and the electrocoagulation effect with Al alloy electrodes were investigated. More than 99 % of Cs and 90 % of I were removed by potassium nickel hexacyanoferrate(II) and silver zeolite, respectively. Sedimentation was promoted by electrocoagulation and addition of an inorganic cohesion promoter further increased the sedimentation rate. Moreover, rapid dissolution reaction with heating of the aggregation substance was not observed, so the thermal risk of aqueous processing of it would be low. In addition, thermal analyses showed that the electrocoagulation process did not lead to thermal decomposition. Therefore, if the electrocoagulation method is applied to a decontamination system, it has the potential to thermally stabilize and reduce waste. (author)

  4. Comparison of COD removal from pharmaceutical wastewater by electrocoagulation, photoelectrocoagulation, peroxi-electrocoagulation and peroxi-photoelectrocoagulation processes.

    Science.gov (United States)

    Farhadi, Sajjad; Aminzadeh, Behnoush; Torabian, Ali; Khatibikamal, Vahid; Alizadeh Fard, Mohammad

    2012-06-15

    This work makes a comparison between electrocoagulation (EC), photoelectrocoagulation, peroxi-electrocoagulation and peroxi-photoelectrocoagulation processes to investigate the removal of chemical oxygen demand (COD) from pharmaceutical wastewater. The effects of operational parameters such as initial pH, current density, applied voltage, amount of hydrogen peroxide and electrolysis time on COD removal efficiency were investigated and the optimum operating range for each of these operating variables was experimentally determined. In electrocoagulation process, the optimum values of pH and voltage were determined to be 7 and 40 V, respectively. Desired pH and hydrogen peroxide concentration in the Fenton-based processes were found to be 3 and 300 mg/L, respectively. The amounts of COD, pH, electrical conductivity, temperature and total dissolved solids (TDS) were on-line monitored. Results indicated that under the optimum operating range for each process, the COD removal efficiency was in order of peroxi-electrocoagulation > peroxi-photoelectrocoagulation > photoelectrocoagulation>electrocoagulation. Finally, a kinetic study was carried out using the linear pseudo-second-order model and results showed that the pseudo-second-order equation provided the best correlation for the COD removal rate. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Treatment of acral persistent papular mucinosis with electrocoagulation.

    Science.gov (United States)

    André Jorge, Flávia; Mimura Cortez, Tatiana; Guadalini Mendes, Fabiana; Esther Alencar Marques, Mariângela; Amante Miot, Hélio

    2011-01-01

    Acral persistent papular mucinosis is a rare localized form of lichen myxedematosus with few case reports and no documented therapeutic options. To report full resolution of acral persistent papular mucinosis after electrocoagulation. Case report of a 51-year-old white female diagnosed with an acral persistent papular mucinosis. The clinical and histopathologic features, treatment provided, and response to treatment are detailed. Acral persistent papular mucinosis presented as multiple asymptomatic normochromic papules on the wrists. Treatment with topical and intralesional steroids was unsatisfactory. Gentle electrocoagulation led to complete resolution of the lesions and negligible scarring. The favorable results remained for 6 months of follow-up, and no new lesions have emerged. Our case of acral persistent papular mucinosis was successfully treated with electrocoagulation and long-lasting, excellent cosmetic results.

  6. Treatment of emulsified oils by electrocoagulation: pulsed voltage applications.

    Science.gov (United States)

    Genc, Ayten; Bakirci, Busra

    2015-01-01

    The effect of pulsed voltage application on energy consumption during electrocoagulation was investigated. Three voltage profiles having the same arithmetic average with respect to time were applied to the electrodes. The specific energy consumption for these profiles were evaluated and analyzed together with oil removal efficiencies. The effects of applied voltages, electrode materials, electrode configurations, and pH on oil removal efficiency were determined. Electrocoagulation experiments were performed by using synthetic and real wastewater samples. The pulsed voltages saved energy during the electrocoagulation process. In continuous operation, energy saving was as high as 48%. Aluminum electrodes used for the treatment of emulsified oils resulted in higher oil removal efficiencies in comparison with stainless steel and iron electrodes. When the electrodes gap was less than 1 cm, higher oil removal efficiencies were obtained. The highest oil removal efficiencies were 95% and 35% for the batch and continuous operating modes, respectively.

  7. [Osteoid osteoma in children: 5 cases treated with electrocoagulation].

    Science.gov (United States)

    Gilliaux, O; de Wispelaere, J-F; Charlier, H; Bodart, E

    2012-11-01

    Osteoid osteoma is a benign bone tumor. Its diagnosis is often delayed despite typical symptoms: severe pain mainly situated on the lower limbs and characteristically worse at night. Once diagnosed, an antalgic treatment by aspirin is well known to be very effective in relieving pain. Osteoid osteoma will resolve spontaneously. If symptoms persist despite the use of aspirin, surgery can be performed to remove the tumor. Percutaneous electrocoagulation can be performed instead of surgical resection as a less invasive procedure. The success rate of surgery and percutaneous electrocoagulation is comparable. We reviewed the cases of 5 patients who were hospitalized in our institution for percutaneous electrocoagulation of an osteoid osteoma. We compared them to the literature. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  8. Electrocoagulation treatment of black liquor from paper industry.

    Science.gov (United States)

    Zaied, M; Bellakhal, N

    2009-04-30

    The procedure of electrocoagulation is an effective, fast and economic technique for treatment of black liquor resulting from paper industry. The effect of electrolysis time, current density, type of electrode material and initial pH were studied in an attempt to achieve a higher removal capacity. Under the optimal experimental conditions (initial pH 7, t=50 min and J=14 mA cm(-2)), the treatment of black liquor by electrocoagulation has led to a removal capacity of 98% of COD, 92% of polyphenols and 99% of color intensity with a good repeatability (R.S.D.industrial interest of this electrochemical process.

  9. Boron removal from geothermal waters by electrocoagulation

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, A. Erdem [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering., 25240 Erzurum (Turkey)], E-mail: aerdemy@atauni.edu.tr; Boncukcuoglu, Recep [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering., 25240 Erzurum (Turkey); Kocakerim, M. Muhtar [Atatuerk University, Faculty of Engineering, Department of Chemical Engineering, 25240 Erzurum (Turkey); Yilmaz, M. Tolga; Paluluoglu, Cihan [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering., 25240 Erzurum (Turkey)

    2008-05-01

    Most of the geothermal waters in Turkey contain extremely high concentration of boron when they are used for irrigation. The use of geothermal waters for irrigation can results in excess amount deposition of boron in soil. On the other hand, a minimal boron concentration is required for irrigational waters. In this study, electrocoagulation (EC) was selected as a treatment process for the removal of boron from thermal waters obtained from Ilica-Erzurum in Turkey. Current density (CD), pH of solution and temperature of solution were selected as operational parameters. The results showed that boron removal efficiency increased from pH 4.0 to 8.0 and decreased at pH 10.0. Although boron removal efficiency was highest at pH 8.0, energy consumption was very high at this pH value compared to other pH intervals. Boron removal efficiency reached to 95% with increasing current density from 1.5 to 6.0 mA/cm{sup 2}, but energy consumption was also increased in this interval. At higher temperatures of solution, such as 313 and 333 K, boron removal efficiency increased. At optimum conditions, boron removal efficiency in geothermal water reached up to 95%.

  10. Boron removal from geothermal waters by electrocoagulation

    International Nuclear Information System (INIS)

    Yilmaz, A. Erdem; Boncukcuoglu, Recep; Kocakerim, M. Muhtar; Yilmaz, M. Tolga; Paluluoglu, Cihan

    2008-01-01

    Most of the geothermal waters in Turkey contain extremely high concentration of boron when they are used for irrigation. The use of geothermal waters for irrigation can results in excess amount deposition of boron in soil. On the other hand, a minimal boron concentration is required for irrigational waters. In this study, electrocoagulation (EC) was selected as a treatment process for the removal of boron from thermal waters obtained from Ilica-Erzurum in Turkey. Current density (CD), pH of solution and temperature of solution were selected as operational parameters. The results showed that boron removal efficiency increased from pH 4.0 to 8.0 and decreased at pH 10.0. Although boron removal efficiency was highest at pH 8.0, energy consumption was very high at this pH value compared to other pH intervals. Boron removal efficiency reached to 95% with increasing current density from 1.5 to 6.0 mA/cm 2 , but energy consumption was also increased in this interval. At higher temperatures of solution, such as 313 and 333 K, boron removal efficiency increased. At optimum conditions, boron removal efficiency in geothermal water reached up to 95%

  11. Swine manure digestate treatment using electrocoagulation

    Directory of Open Access Journals (Sweden)

    Rúbia Mores

    Full Text Available ABSTRACT Anaerobic biodigestion is an appropriate alternative for the treatment of swine wastewater due to its biogas generation properties and the possibility of its application as a source of energy for heating or electricity. However, digestate can still contain high levels of turbidity, organic carbon and nutrients and must be correctly managed as a biofertilizer, or treated to avoid any impact on the environment. Considering this, electrocoagulation (EC shows promise as a technology because of its ease of handling and high efficiency in effluent remediation. This study aimed to evaluate the performance of EC in a batch system in the treatment of swine wastewater digestate. The wastewater used in the treatment was sampled from a 10 m3 biodigestor effluent (digestate located at Concórdia, Santa Catarina, Brazil. A batch-scale experiment was carried out to evaluate the following two variables: electrode distance (ED and voltage applied (V. The removal efficiency levels (% for the best operational condition (2 cm, 5 V after 30 min were: 97 %, 98 %, 77 % and 10 % for color, turbidity, total organic carbon (TOC and total nitrogen (TN, respectively. The EC batch system produced efficient results, underlining its promise as an alternative to be applied in the treatment of digestate.

  12. Electrocoagulation in wastewater containing arsenic: Comparing different process designs

    International Nuclear Information System (INIS)

    Hansen, Henrik K.; Nunez, Patricio; Raboy, Deborah; Schippacasse, Italo; Grandon, Rodrigo

    2007-01-01

    Arsenic removal from wastewater is a key problem for copper smelters. This work shows results of electrocoagulation of aqueous solutions containing arsenic with three different process designs and operating parameters. Three types of electrocoagulation reactors were tested and compared: (a) a modified flow continuous reactor, (b) a turbulent flow reactor and (c) an airlift reactor. All used iron as sacrificial anodes. The results showed that the electrocoagulation process of a 100 mg/L As(V) solution could decrease the arsenic concentration to less than 2 mg/L in the effluent with a current density of 1.2 A/dm 2 with both the modified flow and the airlift reactor. The removal of arsenic with the turbulent flow reactor did not reach the same level but the Fe-to-As ratio (mol/mol) achieved in the coagulation process was in this case lower (approximately 7) than with the other two reactors. In addition, it seems that increasing the current density beyond a maximum value, the electrocoagulation process would not improve any further. This could probably be explained by passivation of the anode

  13. Electrocoagulation versus clips in laparoscopic varicocelectomy in boys

    NARCIS (Netherlands)

    Polok, Marcin; Patkowski, Dariusz; Apoznański, Wojciech; Dorobisz, Urszula; Laska, Ewa; Chrzan, Rafal

    2010-01-01

    INTRODUCTION: Varicocele occurs in about 15% of adolescents, but it is hardly ever noticed in children under 10 years old. Surgical treatment in adolescents is still controversial. Objectives: The aim of this work was to assess the outcome of laparoscopic varicoelectomy by using electrocoagulation

  14. Factors affecting the Faradaic efficiency of Fe(0) electrocoagulation

    NARCIS (Netherlands)

    van Genuchten, C.M.; Dalby, K.N.; Ceccato, M.; Stipp, S.L.S.; Dideriksen, K

    2017-01-01

    Electrocoagulation (EC) using Fe(0) electrodes is a low cost water treatment technology that relies on efficient production of Fe(II) from the electrolytic dissolution of Fe(0) electrodes (i.e. a high Faradaic efficiency). However, the (electro)chemical factors that favor Fe(0) oxidation rather than

  15. Electrocoagulation in wastewater containing arsenic: Comparing different process designs

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Henrik K. [Departamento de Procesos Quimicos, Biotecnologicos y Ambientales, Universidad Tecnica Federico Santa Maria, Avenida Espana 1680, Valparaiso (Chile)]. E-mail: henrik.hansen@usm.cl; Nunez, Patricio [Departamento de Procesos Quimicos, Biotecnologicos y Ambientales, Universidad Tecnica Federico Santa Maria, Avenida Espana 1680, Valparaiso (Chile); Raboy, Deborah [Departamento de Procesos Quimicos, Biotecnologicos y Ambientales, Universidad Tecnica Federico Santa Maria, Avenida Espana 1680, Valparaiso (Chile); Schippacasse, Italo [Departamento de Procesos Quimicos, Biotecnologicos y Ambientales, Universidad Tecnica Federico Santa Maria, Avenida Espana 1680, Valparaiso (Chile); Grandon, Rodrigo [Departamento de Procesos Quimicos, Biotecnologicos y Ambientales, Universidad Tecnica Federico Santa Maria, Avenida Espana 1680, Valparaiso (Chile)

    2007-02-25

    Arsenic removal from wastewater is a key problem for copper smelters. This work shows results of electrocoagulation of aqueous solutions containing arsenic with three different process designs and operating parameters. Three types of electrocoagulation reactors were tested and compared: (a) a modified flow continuous reactor, (b) a turbulent flow reactor and (c) an airlift reactor. All used iron as sacrificial anodes. The results showed that the electrocoagulation process of a 100 mg/L As(V) solution could decrease the arsenic concentration to less than 2 mg/L in the effluent with a current density of 1.2 A/dm{sup 2} with both the modified flow and the airlift reactor. The removal of arsenic with the turbulent flow reactor did not reach the same level but the Fe-to-As ratio (mol/mol) achieved in the coagulation process was in this case lower (approximately 7) than with the other two reactors. In addition, it seems that increasing the current density beyond a maximum value, the electrocoagulation process would not improve any further. This could probably be explained by passivation of the anode.

  16. Application of Electrocoagulation Process for Dairy Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Edris Bazrafshan

    2013-01-01

    Full Text Available Dairy industry wastewater is characterized by high biochemical oxygen demand (BOD5, chemical oxygen demand (COD, and other pollution load. The purpose of this study was to investigate the effects of the operating parameters such as applied voltage, number of electrodes, and reaction time on a real dairy wastewater in the electrocoagulation process. For this purpose, aluminum electrodes were used in the presence of potassium chloride as electrolytes. It has been shown that the removal efficiency of COD, BOD5, and TSS increased with increasing the applied voltage and the reaction time. The results indicate that electrocoagulation is efficient and able to achieve 98.84% COD removal, 97.95% BOD5 removal, 97.75% TSS removal, and >99.9% bacterial indicators at 60 V during 60 min. The experiments demonstrated the effectiveness of electrocoagulation techniques for the treatment of dairy wastewaters. Finally, the results demonstrated the technical feasibility of electrocoagulation process using aluminum electrodes as a reliable technique for removal of pollutants from dairy wastewaters.

  17. Coupling UV irradiation and electrocoagulation for reclamation of urban wastewater

    International Nuclear Information System (INIS)

    Cotillas, Salvador; Llanos, Javier; Miranda, Oscar G.; Díaz-Trujillo, Gerardo C.; Cañizares, Pablo; Rodrigo, Manuel A.

    2014-01-01

    Graphical abstract: - Highlights: • Iron electrodes allow removing turbidity and E. coli in urban wastewaters. • Enmeshment into growing flocs and oxidation are the key disinfection processes. • A synergistic effect of coupling UV and EC is found at low current densities. • Efficiency of UV irradiation is lowered at high current density. - Abstract: This work focuses on coupling electrocoagulation, with iron electrodes, and UV irradiation (photo-electrocoagulation) for the simultaneous removal of turbidity and E. coli from actual treated municipal wastewaters. Results show that single electrocoagulation behaves as a very efficient technology even using low current densities. E. coli is removed not only by the enmeshment of microorganisms into growing flocs, but also by the attack of electrochemically produced chlorine disinfectant species. Coupling UV irradiation to electrocoagulation with iron electrodes improves the process performance in terms of E. coli and turbidity removal. The effect of current density on process performance was evaluated, finding a synergistic interaction of both techniques at low current density (1.44 A m −2 ) but an antagonistic effect at higher values of current density (7.20 A m −2 ). This antagonistic effect is caused by the less efficient transmission of UV irradiation to the bulk solution due to the increase in the concentration of solids

  18. Key Process Parameters Affecting Performance of Electro-Coagulation.

    Czech Academy of Sciences Publication Activity Database

    Krystyník, Pavel; Tito, Duarte Novaes

    2017-01-01

    Roč. 117, JUL (2017), s. 106-112 ISSN 0255-2701 R&D Projects: GA TA ČR TA04020130 Institutional support: RVO:67985858 Keywords : electrocoagulation * dosing concentration * current density Subject RIV: CI - Industrial Chemistry, Chemical Engineering OBOR OECD: Chemical process engineering Impact factor: 2.234, year: 2016

  19. Electrocoagulation efficiency of the tannery effluent treatment using aluminium electrodes.

    Science.gov (United States)

    Espinoza-Quiñones, Fernando R; Fornari, Marilda M T; Módenes, Aparecido N; Palácio, Soraya M; Trigueros, Daniela E G; Borba, Fernando H; Kroumov, Alexander D

    2009-01-01

    An electro-coagulation laboratory scale system using aluminium plates electrodes was studied for the removal of organic and inorganic pollutants as a by-product from leather finishing industrial process. A fractional factorial 2(3) experimental design was applied in order to obtain optimal values of the system state variables. The electro-coagulation (EC) process efficiency was based on the chemical oxygen demand (COD), turbidity, total suspended solid, total fixed solid, total volatile solid, and chemical element concentration values. Analysis of variance (ANOVA) for final pH, total fixed solid (TFS), turbidity and Ca concentration have confirmed the predicted models by the experimental design within a 95% confidence level. The reactor working conditions close to real effluent pH (7.6) and electrolysis time in the range 30-45 min were enough to achieve the cost effective reduction factors of organic and inorganic pollutants' concentrations. An appreciable improvement in COD removal efficiency was obtained for electro-coagulation treatment. Finally, the technical-economical analysis results have clearly shown that the electro-coagulation method is very promising for industrial application.

  20. Bipolar electrocoagulation on cortex after AVMs lesionectomy for seizure control.

    Science.gov (United States)

    Cao, Yong; Wang, Rong; Yang, Lijun; Bai, Qin; Wang, Shuo; Zhao, Jizong

    2011-01-01

    The findings of previous studies remain controversial on the optimal management required for effective seizure control after surgical excision of arteriovenous malformations (AVMs). We evaluated the efficacy of additional bipolar electrocoagulation on the electrically positive cortex guided by intraoperative electrocorticography (ECoG) for controlling cerebral AVMs-related epilepsy. Sixty consecutive patients with seizure due to cerebral AVMs, who underwent surgical excision of cerebral AVMs and intraoperative ECoG, were assessed. The AVMs and surrounding hemosiderin stained tissue were completely removed, and bipolar electrocoagulation was applied on the surrounding cerebral cortex where epileptic discharges were monitored via intraoperative ECoG. Patients were followed up at three to six months after the surgery and then annually. We evaluated seizure outcome by using Engel's classification and postoperative complications. Forty-nine patients (81.6%) were detected of epileptic discharges before and after AVMs excision. These patients underwent the removal of AVMs plus bipolar electrocoagulation on spike-positive site cortex. After electrocoagulation, 45 patients' epileptic discharges disappeared, while four obviously diminished. Fifty-five of 60 patients (91.7%) had follow-up lasting at least 22 months (mean 51.1 months; range 22-93 months). Determined by the Engel Seizure Outcome Scale, 39 patients (70.9%) were Class I, seven (12.7%) Class II, five (9.0%) Class III, and four (7.2%) Class IV. Even after the complete removal of AVM and surrounding gliotic and hemosiderin stained tissue, a high-frequency residual spike remained on the surrounding cerebral cortex. Effective surgical seizure control can be achieved by carrying out additional bipolar electrocoagulation on the cortex guided by the intraoperative ECoG.

  1. Electrocoagulation-Adsorption to Remove Anionic and Cationic Dyes from Aqueous Solution by PV-Energy

    OpenAIRE

    Castañeda-Díaz, J.; Pavón-Silva, T.; Gutiérrez-Segura, E.; Colín-Cruz, A.

    2017-01-01

    The cationic dye malachite green (MG) and the anionic dye Remazol yellow (RY) were removed from aqueous solutions using electrocoagulation-adsorption processes. Batch and continuous electrocoagulation procedures were performed and compared. Carbonaceous materials obtained from industrial sewage sludge and commercial activated carbons were used to adsorb dyes from aqueous solutions in column systems with a 96–98% removal efficiency. The continuous electrocoagulation-adsorption system was more ...

  2. [CLINICAL BACKGROUND ANALYSIS ABOUT TRANSURETHRAL ELECTROCOAGULATION].

    Science.gov (United States)

    Katsui, Masahiro; Kikuchi, Eiji; Yazawa, Satoshi; Hagiwara, Masayuki; Morita, Shinya; Shinoda, Kazunobu; Kosaka, Takeo; Mizuno, Ryuichi; Shinojima, Toshiaki; Asanuma, Hiroshi; Miyajima, Akira; Oya, Mototsugu

    2015-10-01

    Transurethral electrocoagulation (TUC) is a rare event but occurs in a constant manner with various causes or disorders and reduces patient quality of life. So far there have been no reports focusing on the details of TUC. We focused on the clinical background and related causes in cases of TUC in our institution. We identified 76 cases (65 patients) who underwent TUC at Keio University Hospital between April 2001 and March 2011. We focused on patient background, especially with respect to the primary disease, treatment modality, use of antiplatelet or anticoagulant agent, timing of TUC, type of electrosurgical device, and the incidence of transfusion. The primary disease for TUC included bladder tumor (BT) in 31 cases, benign prostate hyperplasia (BPH) in 13, prostate cancer (PCa) in 13, idiopathic bladder bleeding in 4, periarteritis nodosa in 3, uterine cervical cancer in 3, and others in 9. TUC after transurethral resection (TUR) was found in 38 cases, including transurethral resection of bladder tumor (TURBT) in 26 of 31 BT cases and transurethral resection of prostate (TURP) in 12 of 13 BPH cases. After TURBT, TUC was performed before removal of a urethral catheter in 7 cases, and after removal of a urethral catheter in 19 cases. With regard to TUC associated with TURP, the average estimated prostate volume in TUC cases before removal of the urethral catheter was 66.2 ml, which was significantly larger than that in TUC cases after removal of the urethral catheter (46.1 ml, p = 0.045). TUC after the radiation therapy was observed in 21 cases, and the average time from the radiation therapy to TUC was 3.4 years (7 months-10 years). TUC was caused by multiple causes or disorders, and 75% of our TUC was associated with BT, BPH or PCa. TUC associated with TURBT frequently occurred within 1 week after TURBT but was still observed after 1 month following the operation. All TUC associated with TURP occurred within 3 weeks after operation. The average period from

  3. Study on thorium removal from effluent by electrocoagulation

    International Nuclear Information System (INIS)

    Nath, Baidurjya; Swaroopa Lakshmi, Y.V.; Tiwari, S.K.; Setty, D.S.; Kalyanakrishnan, G.; Saibaba, N.

    2015-01-01

    Coagulation-flocculation, membrane separation and ion-exchange are traditional methods for treatment of radioactive wastewater generated primarily from the front end processes of the fuel cycle. Electrocoagulation presents a robust and novel alternative to conventional coagulation process. The present study involves the establishment of electrocoagulation as a treatment process for thorium bearing non-process effluents in batch mode. This involved an electrolytic reactor with iron electrodes. The non-process effluent was subjected to coagulation and floatation by Fe(II) ions dissolved from the anode with the resultant flocs floating on the surface after being captured by hydrogen gas bubbles generated at the cathode. The effect of various operational parameters like initial pH, residence time, current density and initial thorium concentration on the removal efficiency was investigated. Maximum decontamination factor obtained was of the order of 10 4 . (author)

  4. Removal of heavy metals from synthetic solution by electrocoagulation

    Directory of Open Access Journals (Sweden)

    Mohamed Ilou

    2016-05-01

    Full Text Available The objective of this work concerns the optimization of the operating conditions for the removal of heavy metals from synthetic solution by Electrocoagulation (EC. To reach this purpose, we prepared a synthetic wastewater containing certain heavy metals (Ni, Cu, Zn, Fe and Pb to study the influence of various parameters (conductivity, pH, time of electrolysis, current density and the initial concentration of the metal on the rate of removal of these metals. The results show that this rate of removal can reach 99.9 % in the following optimal conditions: pH included between 6 and 8 and a density of the current of 1~1.5A / dm2. This study shows that it is possible to remove metals in aqueous solution by the technique of electrocoagulation

  5. Microlaparoscopic technique for partial salpingectomy using bipolar electrocoagulation.

    Science.gov (United States)

    Siegle, J C; Cartmell, L W; Rayburn, W F

    2001-07-01

    To describe a technique of performing a partial salpingectomy using a small-diameter (2-mm) laparoscope and bipolar electrocoagulation. Sixty consecutive women desiring permanent sterilization underwent laparoscopic partial salpingectomy using a 2-mm transumbilical laparoscope and secondary midline sites suprapubically and midway above the pubis. A midportion of the tube was coagulated using Kleppinger forceps, transected with scissors and removed using grasping forceps. Additional time to remove both coagulated tubal segments averaged 4 minutes (range, 3-10). Each segment (mean, 1.5 cm; range, 0.9-2.4 cm) was confirmed in the operating room, then histologically. The transected tubal edges were separated with no thermal injury to nearby structures and with no mesosalpingeal hemorrhage. No cases required conversion from microlaparoscopy to a traditional method, and recovery time was not prolonged. The puncture sites healed well without sutures. Successful removal of electrocoagulated tubal segments with histologic confirmation was undertaken microlaparoscopically, with minimal additional operative time.

  6. Enhanced electrocoagulation: New approaches to improve the electrochemical process (Review

    Directory of Open Access Journals (Sweden)

    Carlos E. Barrera-Díaz

    2014-12-01

    Full Text Available Electrocoagulation is a promising technology for the removal of colloids from different types of wastewater and it has also demonstrated good efficiencies for the breaking-up of emulsions. It consists of the dissolution ofaluminum or iron anodes, promoting the formation of coagulant reagents in wastewater that helps to coagulate pollutants and the formation of bubbles that favors the mixing (electroflocculation and the removal of suspended solids by flotation (electroflotation. During the recent years, the combination of this technology with other treatment technologies has become a hot topic looking for a synergistic improvement in the efficiencies. This work aims to review some of the more recent works regarding this topic, in particular the combination of electrocoagulation withozonation, adsorption and ultrasound irradiation.

  7. A parametric comparative study of electrocoagulation and coagulation using ultrafine quartz suspensions.

    Science.gov (United States)

    Kiliç, Mehtap Gülsün; Hoşten, Cetin; Demirci, Sahinde

    2009-11-15

    This paper attempts to compare electrocoagulation using aluminum anodes and stainless steel cathodes with conventional coagulation by aluminum sulfate dosing on aqueous suspensions of ultrafine quartz. Several key parameters affecting the efficiency of electrocoagulation and coagulation were investigated with laboratory scale experiments in search of optimal parameter values. Optimal values of the parameters were determined on the basis of the efficiency of turbidity removal from ultrafine quartz suspensions. The parameters investigated in the study were suspension pH, electrical potential, current density, electrocoagulation time, and aluminum dosage. A comparison between electrocoagulation and coagulation was made on the basis of total dissolved aluminum, revealing that electrocoagulation and coagulation were equally effective at the same aluminum dosage for the removal of quartz particles from suspensions. Coagulation, however, was more effective in a wider pH range (pH 6-9) than electrocoagulation which yielded optimum effectiveness in a relatively narrower pH range around 9, where, in both methods, these pH values corresponded to near-zero zeta potentials of quartz particles. Furthermore, experimental results confirmed that electrocoagulation could display some pH buffering capacity. The kinetics of electrocoagulation was very fast (<10 min) in approaching a residual turbidity, which could be modeled with a second-order rate equation.

  8. Removal of trace metal contaminants from potable water by electrocoagulation

    OpenAIRE

    Heffron, Joe; Marhefke, Matt; Mayer, Brooke K.

    2016-01-01

    This study investigated the effects of four operational and environmental variables on the removal of trace metal contaminants from drinking water by electrocoagulation (EC). Removal efficiencies for five metals (arsenic, cadmium, chromium, lead and nickel) were compared under varying combinations of electrode material, post-treatment, water composition and pH. Iron electrodes out-performed aluminum electrodes in removing chromium and arsenic. At pH 6.5, aluminum electrodes were slightly more...

  9. [High frequency electrocoagulation for treating noninvoluting congenital hemangioma].

    Science.gov (United States)

    Zhongqiang, Wang; Yafei, Wang; Jiashuang, Zhou; Quan, Zhou; Lijuan, Yang; Li, Wang

    2015-11-01

    To investigate the clinical efficiency of electrocoagulation for the treatment of noninvoluting congenital hemangioma. Sixteen infants with noninvoluting congenital hemangioma who were admitted to our hospital from January 2011 to June 2013 were included in this study. Color Doppler ultrasound was used to determine the hemangioma location, as well as its size and depth. High frequency electrocoagulation was adopted for the treatment. The output power was set at 10-20 W. The probes were inserted around the tumor or at the surface of the tumor. After switching on for 1-2 seconds, the direction and position of the probe was modulated until covering the whole tumor. After the treatment, the absorption of tumor was about 3-6 months. The efficiency was evaluated during the follow-up. Tumor atrophy was obvious after treatment in all patients. The temperature around the tumor mass was decreased, and the aberrant blood signals were decreased under the ultrasonic examination. Complete or partial atrophy were observed. The efficiency was graded as level I, II, III, IV in 0, 2, 9 and 5 patients, respectively. One patient showed local infection due to improper nursing, which was completely relieved after corresponding treatment. No severe adverse events were observed. High-frequency electrocoagulation is effective for treating noninvoluting congenital hemangioma through coagulating the aberrant blood vessels in the tumor, interrupting the vascular endothelial cell, blocking the aberrant blood flow, as well as leading to atrophy and absorption of tumor mass. Besides, no obvious scar is observed after the surgery.

  10. Reducing electrocoagulation harvesting costs for practical microalgal biodiesel production.

    Science.gov (United States)

    Dassey, Adam J; Theegala, Chandra S

    2014-01-01

    Electrocoagulation has shown potential to be a primary microalgae harvesting technique for biodiesel production. However, methods to reduce energy and electrode costs are still necessary for practical application. Electrocoagulation tests were conducted on Nannochloris sp. and Dunaliella sp. using perforated aluminium and iron electrodes under various charge densities. Aluminium electrodes were shown to be more efficient than iron electrodes when harvesting both algal species. Despite the lower harvesting efficiency, however, the iron electrodes were more energy and cost efficient. Operational costs of less than $0.03/L oil were achieved when harvesting Nannochloris sp. with iron electrodes at 35% harvest efficiency, whereas aluminium electrodes cost $0.75/L oil with 42% harvesting efficiency. Increasing the harvesting efficiencies for both aluminium and iron electrodes also increased the overall cost per litre of oil, therefore lower harvesting efficiencies with lower energy inputs was recommended. Also, increasing the culturing salinity to 2 ppt sodium chloride for freshwater Nannochloris sp. was determined practical to improve the electrocoagulation energy efficiency despite a 25% reduction in cell growth.

  11. Slaughterhouse wastewater treatment by combined chemical coagulation and electrocoagulation process.

    Science.gov (United States)

    Bazrafshan, Edris; Kord Mostafapour, Ferdos; Farzadkia, Mehdi; Ownagh, Kamal Aldin; Mahvi, Amir Hossein

    2012-01-01

    Slaughterhouse wastewater contains various and high amounts of organic matter (e.g., proteins, blood, fat and lard). In order to produce an effluent suitable for stream discharge, chemical coagulation and electrocoagulation techniques have been particularly explored at the laboratory pilot scale for organic compounds removal from slaughterhouse effluent. The purpose of this work was to investigate the feasibility of treating cattle-slaughterhouse wastewater by combined chemical coagulation and electrocoagulation process to achieve the required standards. The influence of the operating variables such as coagulant dose, electrical potential and reaction time on the removal efficiencies of major pollutants was determined. The rate of removal of pollutants linearly increased with increasing doses of PACl and applied voltage. COD and BOD(5) removal of more than 99% was obtained by adding 100 mg/L PACl and applied voltage 40 V. The experiments demonstrated the effectiveness of chemical and electrochemical techniques for the treatment of slaughterhouse wastewaters. Consequently, combined processes are inferred to be superior to electrocoagulation alone for the removal of both organic and inorganic compounds from cattle-slaughterhouse wastewater.

  12. Highly selective electrocoagulation therapy: an innovative treatment for lymphangioma circumscriptum.

    Science.gov (United States)

    Yang, Xi; Jin, Yunbo; Chen, Hui; Li, Suolan; Ma, Gang; Hu, Xiaojie; Qiu, Yajing; Yu, Wenxin; Chang, Lei; Wang, Tianyou; Lin, Xiaoxi

    2014-08-01

    Lymphangioma circumscriptum (LC) is a type of microcystic lymphatic malformation involving the skin and mucosa that presents as translucent vesicles of varying size with a pink, red, or black hue. Lymphangioma circumscriptum causes not only cosmetic problems but also refractory rupture, infection, lymphorrhea, and bleeding. Various invasive methods, such as surgical excision, lasers, and sclerotherapy, have been used in the past to treat LC with varying success. Herein, we report a new treatment for the management of LC. This study reports the outcomes of 12 patients (aged 4-31 years) with LC treated by electrocoagulation using a special isolated needle. Patient demographics, lesion characteristics, radiologic findings, treatment course, and clinical responses are recorded. All 12 patients who were treated with the highly selective electrocoagulation therapy achieved near-complete clearance. Minimal intra- and postoperative sequelae were observed. The local complications included mild pain (n = 9), proliferous scarring (n = 1), and ulceration (n = 1) with no systemic side effects. The mean follow-up period was 8.25 months (3-14 months). Highly selective electrocoagulation therapy is an innovative, minimally invasive technique that seems to be safe and effective for the treatment of LC; the results from our limited study population seem promising, and the observed complications are acceptable.

  13. Slaughterhouse Wastewater Treatment by Combined Chemical Coagulation and Electrocoagulation Process

    Science.gov (United States)

    Bazrafshan, Edris; Kord Mostafapour, Ferdos; Farzadkia, Mehdi; Ownagh, Kamal Aldin; Mahvi, Amir Hossein

    2012-01-01

    Slaughterhouse wastewater contains various and high amounts of organic matter (e.g., proteins, blood, fat and lard). In order to produce an effluent suitable for stream discharge, chemical coagulation and electrocoagulation techniques have been particularly explored at the laboratory pilot scale for organic compounds removal from slaughterhouse effluent. The purpose of this work was to investigate the feasibility of treating cattle-slaughterhouse wastewater by combined chemical coagulation and electrocoagulation process to achieve the required standards. The influence of the operating variables such as coagulant dose, electrical potential and reaction time on the removal efficiencies of major pollutants was determined. The rate of removal of pollutants linearly increased with increasing doses of PACl and applied voltage. COD and BOD5 removal of more than 99% was obtained by adding 100 mg/L PACl and applied voltage 40 V. The experiments demonstrated the effectiveness of chemical and electrochemical techniques for the treatment of slaughterhouse wastewaters. Consequently, combined processes are inferred to be superior to electrocoagulation alone for the removal of both organic and inorganic compounds from cattle-slaughterhouse wastewater. PMID:22768233

  14. Enhanced removal of Methylene Blue by electrocoagulation using iron electrodes

    Directory of Open Access Journals (Sweden)

    Mohamed S. Mahmoud

    2013-06-01

    Full Text Available The removal of pollutants from effluents by electrocoagulation has become an attractive method in recent years. The study deals with the enhancement of removal of Methylene Blue dye by using an electromagnetic field during the electrocoagulation process. Effects of electrolyte concentration, dye concentration, intensity and the direction of the electromagnet on the decolorization efficiency have been investigated. The formed ferric hydroxide flocs trap colloidal particles and make solid–liquid separation easier during the next stage. The electrocoagulation stages must be optimized in order to design an economically feasible process. The results showed that the optimum electrolysis was 10–20 min at a current density of 8 mA/cm2, while the optimum concentration of the electrolyte (NaOH was found to be 2 wt.% when the dye concentration was 50 mg/L. The utilization of an electromagnetic field enhanced the dye removal due to the induced motion of paramagnetic ions inside the solution. The power consumption required to remove the dye was reduced by 45% in the case of applying an electromagnetic field.

  15. Hydrogen recovery from the electrocoagulation treatment of dye-containing wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Phalakornkule, Chantaraporn [The Research and Technology Center for Renewable Products and Energy, King Mongkut' s University of Technology North Bangkok, Bangkok 10800 (Thailand); Department of Chemical Engineering, Faculty of Engineering, King Mongkut' s University of Technology North Bangkok, Bangkok 10800 (Thailand); Sukkasem, Pisut; Mutchimsattha, Chinnarat [Department of Chemical Engineering, Faculty of Engineering, King Mongkut' s University of Technology North Bangkok, Bangkok 10800 (Thailand)

    2010-10-15

    In this paper, a technique of hydrogen recovery from an electrocoagulation process treating dye-containing wastewater is presented. The electrocoagulation system used consists of a continuous-mode electrocoagulator connected with a gas separation tank and two sedimenters. It is shown that a significant amount of hydrogen can be harvested using the gas separation tank whose configuration follows that of a conventional upflow anaerobic sludge bed. The experimental hydrogen yields obtained were comparable with those calculated from theory. The electrical energy demand of the electrocoagulation process for treating Reactive Blue 140 and Direct Red 23 was 1.42 and 0.69 kWh{sub e} m{sup -3}, respectively, while the energy yield of harvested hydrogen was 0.2 kWh m{sup -3}. The quality of water treated by the electrocoagulation system was satisfactory, i.e., the color, COD and TS removal were 99%, 93% and 89%, respectively. (author)

  16. A quantitative comparison between electrocoagulation and chemical coagulation for boron removal from boron-containing solution

    International Nuclear Information System (INIS)

    Yilmaz, A. Erdem; Boncukcuoglu, Recep; Kocakerim, M. Muhtar

    2007-01-01

    This paper provides a quantitative comparison of electrocoagulation and chemical coagulation approaches based on boron removal. Electrocoagulation process delivers the coagulant in situ as the sacrificial anode corrodes, due to a fixed current density, while the simultaneous evolution of hydrogen at the cathode allows for pollutant removal by flotation. By comparison, conventional chemical coagulation typically adds a salt of the coagulant, with settling providing the primary pollutant removal path. Chemical coagulation was carried out via jar tests using aluminum chloride. Comparison was done with the same amount of coagulant between electrocoagulation and chemical coagulation processes. Boron removal obtained was higher with electrocoagulation process. In addition, it was seen that chemical coagulation has any effect for boron removal from boron-containing solution. At optimum conditions (e.g. pH 8.0 and aluminum dose of 7.45 g/L), boron removal efficiencies for electrocoagulation and chemical coagulation were 94.0% and 24.0%, respectively

  17. A quantitative comparison between electrocoagulation and chemical coagulation for boron removal from boron-containing solution

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, A. Erdem [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering, 25240 Erzurum (Turkey)], E-mail: aerdemy@atauni.edu.tr; Boncukcuoglu, Recep [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering, 25240 Erzurum (Turkey); Kocakerim, M. Muhtar [Atatuerk University, Faculty of Engineering, Department of Chemical Engineering, 25240 Erzurum (Turkey)

    2007-10-22

    This paper provides a quantitative comparison of electrocoagulation and chemical coagulation approaches based on boron removal. Electrocoagulation process delivers the coagulant in situ as the sacrificial anode corrodes, due to a fixed current density, while the simultaneous evolution of hydrogen at the cathode allows for pollutant removal by flotation. By comparison, conventional chemical coagulation typically adds a salt of the coagulant, with settling providing the primary pollutant removal path. Chemical coagulation was carried out via jar tests using aluminum chloride. Comparison was done with the same amount of coagulant between electrocoagulation and chemical coagulation processes. Boron removal obtained was higher with electrocoagulation process. In addition, it was seen that chemical coagulation has any effect for boron removal from boron-containing solution. At optimum conditions (e.g. pH 8.0 and aluminum dose of 7.45 g/L), boron removal efficiencies for electrocoagulation and chemical coagulation were 94.0% and 24.0%, respectively.

  18. Electro-coagulation applied to the treatment of industrial effluents; Electrocoagulation appliquee en traitement des effluents industriels

    Energy Technology Data Exchange (ETDEWEB)

    Laplace, C.; Leboucher, G.; Coste, M. [Anjou Recherche, Vivendi Water, 78 - Maisons-Laffitte (France)

    2001-07-01

    The electro-coagulation is a water treatment technic in electrolysis cell with double anode. In substitution to the coagulant reagent often used in water de-pollution, it realizes also the coloring decomposition, the DCO abatement and sometimes improving the sludges processing. The technic presents meanwhile some limitations as its poor treatment capacity and the necessity of a high effluent conductivity. An example of application shows that this technic is economically competitive. (A.L.B.)

  19. Electrocoagulation (EC and Electrocoagulation/Flotation(ECF Processes for Removing High Turbidity from Surface Water Using Al and Fe Electrodes

    Directory of Open Access Journals (Sweden)

    Ghorban Asgari

    2013-08-01

    Full Text Available Electrocoagulation (EC and Electrocoagulation/flotation (ECF processes are simple and efficient in water and wastewater treatment. In recent years, many investigations have focused on the use of these processes for treating of polluted water. The purpose of this study was to investigate the efficiency of EC and ECF processes in removal of high turbidity water using different electrodes in different circumstances. In present study an electrocoagulation and electrocoagulation/ flotation reactor in a lab scale to an approximate volume of 6 liters which is equipped with four Al-AL and Fe-Fe electrodes (200 * 20 * 2 mm was used  for removing of high turbidity water. The effects of operating parameters such as type of electrodes, initial water turbidity, applied voltage (10 to 30 v, initial pH of the solution (3 to 12 and reaction times (5 to 30 minutes were evaluated. The batch experimental results showed that initial turbidity water, initial pH of the solution, different applied voltages up to %88 turbidity as initial turbidity of 1200 NTU have been removed when using Al-Al and Fe-Fe electrodes and reaction times highly effective on the turbidity removal efficiency in these processes. In ECF process, 84% in optimum condition. However, in EC  process the maximum removal was found  up to 68% of initial turbidity when using Al-Al and Fe-Fe electrodes in same operation. Based on the result obtained in this study, the type of electrodes in EC and ECF processes  significantly affect the removal rate of high turbid water. Also, it was found that much higher turbidity removal could be achieved by ECF process than that by EC process in the same condition.

  20. Application of Electrocoagulation In Various Wastewater And Leachate Treatment-A Review

    Science.gov (United States)

    Zailani, L. W. M.; Zin, N. S. M.

    2018-04-01

    Electrocoagulation is a method that has a great ability on various wastewater and leachate treatment. It has a potential in removing various pollutants such as chemical oxygen demand, turbidity, ammonia, color, and suspended solid. The effectiveness of electrocoagulation method depends on several factors such as electrode, current density, operation time and pH. The aim of this paper is to review the relevant literature that publishes from 2000 to 2015 on the factor that influence Electrocoagulation (EC). The review describes, discussing and compare the factors that influence the EC process in various wastewater and leachate treatment.

  1. A low sludge generated anode by hybrid solar electrocoagulation for the removal of lead

    Science.gov (United States)

    Hussin, F.; Aroua, M. K.

    2017-06-01

    In this work, perforated zinc is proposed as a new anode for lead removal by hybrid solar electrocoagulation. The characteristics of the sludge were investigated to understand the behaviour of lead removal during electrocoagulation. Sludge products formed were characterised using X-ray diffraction (XRD), X-ray fluorescence (XRF) and Field Emission Scanning Electron Microscopy (FESEM). In addition, the pH variation during electrocoagulation and effects on the sludge products were examined. At optimum conditions showed that the perforated zinc electrode produced better performance with high removal efficiency, low sludge volume index and less energy consumption.

  2. Removal of arsenate from groundwater by electrocoagulation method.

    Science.gov (United States)

    Ali, Imran; Khan, Tabrez A; Asim, Mohd

    2012-06-01

    Arsenic, a toxic metalloid in drinking water, has become a major threat for human beings and other organisms. In the present work, attempts have been made to remove arsenate from the synthetic as well as natural water of Ballia district, India by electrocoagulation method. Efforts have also been made to optimize the various parameters such as initial arsenate concentration, pH, applied voltage, processing time, and working temperature. Electrocoagulation is a fast, inexpensive, selective, accurate, reproducible, and eco-friendly method for arsenate removal from groundwater. The present paper describes an electrocoagulation method for arsenate removal from groundwater using iron and zinc as anode and cathode, respectively. The maximum removal of arsenate was 98.8% at 2.0 mg L(-1), 7.0, 3.0 V, 10.0 min, and 30°C as arsenate concentration, pH, applied voltage, processing time, and working temperature, respectively. Relative standard deviation, coefficient of determination (r (2)), and confidence limits were varied from 1.50% to 1.59%, 0.9996% to 0.9998%, and 96.0% to 99.0%, respectively. The treated water was clear, colorless, and odorless without any secondary contamination. The developed and validated method was applied for arsenate removal of two samples of groundwater of Ballia district, U.P., India, having 0.563 to 0.805 mg L(-1), arsenate concentrations. The reported method is capable for the removal of arsenate completely (100% removal) from groundwater of Ballia district. There was no change in the groundwater quality after the removal of arsenate. The treated water was safe for drinking, bathing, and recreation purposes. Therefore, this method may be the choice of arsenate removal from natural groundwater.

  3. The Influence of Parameters Affecting Boron Removal by Electrocoagulation Process

    KAUST Repository

    Zeboudji, B.

    2013-04-01

    Boron removal in seawater desalination presents a particular challenge. In seawater reverse osmosis (SWRO) systems boron removal at low concentration (<0.5 mg/L) is usually achieved by a second pass using brackish water RO membranes. However, this process requires chemical addition and important additional investment, operation and maintenance, and energy costs. Electrocoagulation (EC) process can be used to achieve such low boron concentration. In this work, the removal of boron from aqueous solution was carried out by EC process using aluminum and iron electrodes. Several operating parameters on the removal efficiency such as initial pH, current density, initial boron ion concentration, feed concentration, gap between electrodes, and electrode material, were investigated. In the case of bipolar electrocoagulation (BEC), an optimum removal efficiency of 96% corresponding to a final boron concentration of 0.4 mg/L was achieved at a current density of 6 mA/cm2 and pH = 8 using aluminum electrodes. The concentration of NaCl was 2,500 mg/L and the gap between the electrodes of 0.5 cm. Furthermore, a comparison between monopolar electrocoagulation (MEC) and BEC using both aluminum and iron electrodes was carried out. Results showed that the BEC process has reduced the current density applied to obtain high level of boron removal in a short reaction time compared to MEC process. The high performance of the EC showed that the process could be used to reduce boron concentration to acceptable levels at low-cost and more environmentally friendly. © 2013 Copyright Taylor and Francis Group, LLC.

  4. Occlusion of the cystic duct by electrocoagulation: A radiologic technique

    International Nuclear Information System (INIS)

    Becker, C.D.; Quenville, W.F.; Burhenne, H.J.

    1987-01-01

    Chemical dissolution and extracorporeal shock wave lithotripsy are promising new methods for the treatment of cholelithiasis without cholecystectomy. Nonsurgical defunctionalization of the gallbladder is now required to prevent recurrent stone formation. The authors consider cystic duct occlusion to be the first step. Ten domestic pigs underwent transcatheter electrocoagulation of the cystic duct via a cholecystostomy under fluoroscopic control. Stricture formation was followed by complete cystic duct occlusion in all ten cases. After a follow-up period ranging from 2 to 17 weeks (mean, 13 weeks), the animals were killed. Histologic studies demonstrated that complete obliteration of the cystic duct lumen was due to fibrous scar formation

  5. ETV REPORT AND VERIFICATION STATEMENT - KASELCO POSI-FLO ELECTROCOAGULATION TREATMENT SYSTEM

    Science.gov (United States)

    The Kaselco Electrocoagulation Treatment System (Kaselco system) in combination with an ion exchange polishing system was tested, under actual production conditions, processing metal finishing wastewater at Gull Industries in Houston, Texas. The verification test evaluated the a...

  6. Endometrial ablation by rollerball electrocoagulation compared to uterine balloon thermal ablation. Technical and safety aspects.

    NARCIS (Netherlands)

    Zon-Rabelink, I.A.A. van; Vleugels, M.P.; Merkus, J.M.W.M.; Graaf, R.M. de

    2003-01-01

    OBJECTIVE: To compare two methods of endometrial ablation, hysteroscopic rollerball electrocoagulation (RBE) and non-hysteroscopic uterine balloon thermal (UBT) ablation (Thermachoice), regarding intra- and post-operative technical complications and safety aspects. STUDY DESIGN: A randomised

  7. Arsenic removal by electrocoagulation process: Recent trends and removal mechanism.

    Science.gov (United States)

    Nidheesh, P V; Singh, T S Anantha

    2017-08-01

    Arsenic contamination in drinking water is a major issue in the present world. Arsenicosis is the disease caused by the regular consumption of arsenic contaminated water, even at a lesser contaminated level. The number of arsenicosis patients is increasing day-by-day. Decontamination of arsenic from the water medium is the only one way to regulate this and the arsenic removal can be fulfilled by water treatment methods based on separation techniques. Electrocoagulation (EC) process is a promising technology for the effective removal of arsenic from aqueous solution. The present review article analyzes the performance of the EC process for arsenic removal. Electrocoagulation using various sacrificial metal anodes such as aluminium, iron, magnesium, etc. is found to be very effective for arsenic decontamination. The performances of each anode are described in detail. A special focus has been made on the mechanism behind the arsenite and arsenate removal by EC process. Main trends in the disposal methods of sludge containing arsenic are also included. Comparison of arsenic decontamination efficiencies of chemical coagulation and EC is also reported. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Cure electrocoagulation demonstration at Rocky Flats Environmental Technology Site

    International Nuclear Information System (INIS)

    Bridges, J.L.; Jones, J.; Ball, T.

    1996-01-01

    A demonstration of an innovative technology for remediating radionuclide contamination in water took place at the Rocky Flats Environmental Technology Site (RFETS) in Golden, Colorado, during the summer of 1995. The demonstration was part of the U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation (SITE) program and was conducted by EPA, the U.S. Department of Energy (DOE), and General Environmental Corporation (GEC). The SITE program encourages the development and demonstration of innovative treatment and monitoring technologies. The purpose of the demonstration was to evaluate the ability of GEC's innovative CURE technology to remove uranium, plutonium, and americium from water taken from the A and B solar evaporation ponds at RFETS. The CURE electrocoagulation process uses an anode and cathode in a patented geometry to remove contaminants, including radionuclides, from wastewater in a continuous flow process. Electrocoagulation has been recognized as a method of removing a variety of contaminants from wastewaters. With the CURE process, GEC has refined the technology and adapted it to hazardous waste cleanup. Bench scale treatability testing conducted in April 1995 indicated 99 percent removal efficiencies were possible for uranium, plutonium-239/240, and americium-241. During the field scale demonstration in August and September 1995, samples were collected from four demonstration runs at RFETS. A removal efficiency of approximately 50 percent was achieved for uranium and nearly 99 percent for plutonium and americium

  9. The investigation of parameters affecting boron removal by electrocoagulation method

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, A. Erdem [Department of Environmental Engineering, Atatuerk University, Faculty of Engineering, Erzurum (Turkey)]. E-mail: aerdemy@atauni.edu.tr; Boncukcuoglu, Recep [Department of Environmental Engineering, Atatuerk University, Faculty of Engineering, Erzurum (Turkey); Kocakerim, M. Muhtar [Department of Chemical Engineering, 25240, Atatuerk University, Faculty of Engineering Erzurum (Turkey); Keskinler, Buelent [Department of Environmental Engineering, Gebze Institute of Technology, Gebze/Kocaeli 41400 (Turkey)

    2005-10-17

    Boron removal from wastewaters by electrocoagulation using aluminum electrode material was investigated in this paper. Several working parameters, such as pH, current density, boron concentration and type and concentration of supporting electrolyte were studied in an attempt to achieve a higher removal capacity. The experiments were carried out by keeping the pH of solution constant and optimum pH of solution was determined 8.0 for the aluminum electrode. Although energy consumption increased with decreasing boron concentration, which conductivity of these solutions were low, boron removal efficiency was higher at 100 mg/L than that of 1000 mg/L. Current density was an important parameter affecting removal efficiency. Boron removal efficiency and energy consumption increased with increasing current density from 1.2 to 6.0 mA/cm{sup 2}. The types of different supporting electrolyte were experimented in order to investigate to this parameter effect on boron removal. The highest boron removal efficiency, 97%, was found by CaCl{sub 2}. Added CaCl{sub 2} increased more the conductivity of solution according to other supporting electrolytes, but decreased energy consumption. The results showed to have a high effectiveness of the electrocoagulation method in removing boron from aqueous solutions.

  10. The investigation of parameters affecting boron removal by electrocoagulation method

    International Nuclear Information System (INIS)

    Yilmaz, A. Erdem; Boncukcuoglu, Recep; Kocakerim, M. Muhtar; Keskinler, Buelent

    2005-01-01

    Boron removal from wastewaters by electrocoagulation using aluminum electrode material was investigated in this paper. Several working parameters, such as pH, current density, boron concentration and type and concentration of supporting electrolyte were studied in an attempt to achieve a higher removal capacity. The experiments were carried out by keeping the pH of solution constant and optimum pH of solution was determined 8.0 for the aluminum electrode. Although energy consumption increased with decreasing boron concentration, which conductivity of these solutions were low, boron removal efficiency was higher at 100 mg/L than that of 1000 mg/L. Current density was an important parameter affecting removal efficiency. Boron removal efficiency and energy consumption increased with increasing current density from 1.2 to 6.0 mA/cm 2 . The types of different supporting electrolyte were experimented in order to investigate to this parameter effect on boron removal. The highest boron removal efficiency, 97%, was found by CaCl 2 . Added CaCl 2 increased more the conductivity of solution according to other supporting electrolytes, but decreased energy consumption. The results showed to have a high effectiveness of the electrocoagulation method in removing boron from aqueous solutions

  11. Removal of COD from laundry wastewater by electrocoagulation/electroflotation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C.-T. [Department of Safety Health and Environmental Engineering, Chung Hwa University of Medical Technology, Tainan County, Hsien 717, Taiwan (China)], E-mail: ctwwang@mail.hwai.edu.tw; Chou, W.-L. [Department of Safety Health and Environmental Engineering and Institute of Occupational Safety and Hazard Prevention, HungKuang University, Sha-Lu, Taichung 433, Taiwan (China); Kuo, Y.-M. [Department of Safety Health and Environmental Engineering, Chung Hwa University of Medical Technology, Tainan County, Hsien 717, Taiwan (China)

    2009-05-15

    The removal efficiency of COD in the treatment of simulated laundry wastewater using electrocoagulation/electroflotation technology is described. The experimental results showed that the removal efficiency was better, reaching to about 62%, when applying ultrasound to the electrocoagulation cell. The solution pH approached neutrality in all experimental runs. The optimal removal efficiency of COD was obtained by using the applied voltage of 5 V when considering the energy efficiency and the acceptable removal efficiency simultaneously. The Cl{sup -} concentration of less than 2500 ppm had a positive effect on the removal efficiency. The performance of the monopolar connection of electrodes was better than that of the bipolar connection in this work. In addition, the removal efficiency of using Al electrodes was higher in comparison with using Fe electrodes in the study. The highest COD removal amount per joule was found to be 999 mg dm{sup -3} kW h{sup -1} while using two Al electrodes, although the removal efficiency increased with the number of Al plates.

  12. Removal of arsenic and COD from industrial wastewaters by electrocoagulation

    Directory of Open Access Journals (Sweden)

    H. POIROT

    2011-08-01

    Full Text Available The paper deals with the treatment of arsenic-containing industrial wastewaters by electrocoagulation. The waste issued from a paper mill industry downstream of the biological treatment by activated sludge was enriched with arsenic salts for the purpose of investigation of the treatment of mixed pollution. First, the treatment of single polluted waters, i.e. containing either the regular organic charge from the industrial waste or arsenic salts only, was studied. In the case of arsenic-containing waters, a broad selection of experimental data available in the literature was compiled and interpreted using an adsorption model developed previously. The same technique was used in the case of industrial waste. Arsenic-enriched paper mill wastewaters with various amounts of As salts were then treated by electrocoagulation with Fe electrodes. The set of data obtained were interpreted by a model developed on the basis of the separate models. The agreement between predicted and experimental variations of the As concentrations ranging from 0.3 µg/L to 730 µg/L showed that both the organic matter and As salt can be removed from the liquid independently from each other.

  13. Denitrification using a monopolar electrocoagulation/flotation (ECF) process.

    Science.gov (United States)

    Emamjomeh, Mohammad M; Sivakumar, Muttucumaru

    2009-01-01

    Nitrate levels are limited due to health concerns in potable water. Nitrate is a common contaminant in water supplies, and especially prevalent in surface water supplies and shallow wells. Nitrate is a stable and highly soluble ion with low potential for precipitation or adsorption. These properties make it difficult to remove using conventional water treatment methods. A laboratory batch electrocoagulation/flotation (ECF) reactor was designed to investigate the effects of different parameters such as electrolysis time, electrolyte pH, initial nitrate concentration, and current rate on the nitrate removal efficiency. The optimum nitrate removal was observed at a pH range of between 9 and 11. It appeared that the nitrate removal rate was 93% when the initial nitrate concentration and electrolysis time respectively were 100 mg L(-1)-NO(3)(-) and 40 min. The results showed a linear relationship between the electrolysis time for total nitrate removal and the initial nitrate concentration. It is concluded that the electrocoagulation technology for denitrification can be an effective preliminary process when the ammonia byproduct must be effectively removed by the treatment facilities.

  14. Cure electrocoagulation demonstration at Rocky Flats Environmental Technology Site

    Energy Technology Data Exchange (ETDEWEB)

    Bridges, J.L.; Jones, J.; Ball, T. [PRC Environmental Management, Inc., Denver, CO (United States)] [and others

    1996-12-31

    A demonstration of an innovative technology for remediating radionuclide contamination in water took place at the Rocky Flats Environmental Technology Site (RFETS) in Golden, Colorado, during the summer of 1995. The demonstration was part of the U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation (SITE) program and was conducted by EPA, the U.S. Department of Energy (DOE), and General Environmental Corporation (GEC). The SITE program encourages the development and demonstration of innovative treatment and monitoring technologies. The purpose of the demonstration was to evaluate the ability of GEC`s innovative CURE technology to remove uranium, plutonium, and americium from water taken from the A and B solar evaporation ponds at RFETS. The CURE electrocoagulation process uses an anode and cathode in a patented geometry to remove contaminants, including radionuclides, from wastewater in a continuous flow process. Electrocoagulation has been recognized as a method of removing a variety of contaminants from wastewaters. With the CURE process, GEC has refined the technology and adapted it to hazardous waste cleanup. Bench scale treatability testing conducted in April 1995 indicated 99 percent removal efficiencies were possible for uranium, plutonium-239/240, and americium-241. During the field scale demonstration in August and September 1995, samples were collected from four demonstration runs at RFETS. A removal efficiency of approximately 50 percent was achieved for uranium and nearly 99 percent for plutonium and americium.

  15. Removal of COD from laundry wastewater by electrocoagulation/electroflotation

    International Nuclear Information System (INIS)

    Wang, C.-T.; Chou, W.-L.; Kuo, Y.-M.

    2009-01-01

    The removal efficiency of COD in the treatment of simulated laundry wastewater using electrocoagulation/electroflotation technology is described. The experimental results showed that the removal efficiency was better, reaching to about 62%, when applying ultrasound to the electrocoagulation cell. The solution pH approached neutrality in all experimental runs. The optimal removal efficiency of COD was obtained by using the applied voltage of 5 V when considering the energy efficiency and the acceptable removal efficiency simultaneously. The Cl - concentration of less than 2500 ppm had a positive effect on the removal efficiency. The performance of the monopolar connection of electrodes was better than that of the bipolar connection in this work. In addition, the removal efficiency of using Al electrodes was higher in comparison with using Fe electrodes in the study. The highest COD removal amount per joule was found to be 999 mg dm -3 kW h -1 while using two Al electrodes, although the removal efficiency increased with the number of Al plates

  16. Detection of Cyanobacteria in Eutrophic Water Using a Portable Electrocoagulator and NanoGene Assay.

    Science.gov (United States)

    Lee, Eun-Hee; Chua, Beelee; Son, Ahjeong

    2018-02-06

    We have demonstrated the detection of cyanobacteria in eutrophic water samples using a portable electrocoagulator and NanoGene assay. The electrocoagulator is designed to preconcentrate cyanobacteria from water samples prior to analysis via NanoGene assay. Using Microcystis aeruginosa laboratory culture and environmental samples (cell densities ranging from 1.7 × 10 5 to 4.1 × 10 6 and 6.5 × 10 3 to 6.6 × 10 7 cells·mL -1 , respectively), the electrocoagulator was evaluated and compared with a conventional centrifuge. Varying the operation duration from 0 to 300 s with different cell densities was first investigated. Preconcentration efficiencies (obtained via absorbance measurement) and dry cell weight of preconcentrated cyanobacteria were then obtained and compared. For laboratory samples at cell densities from 3.2 × 10 5 to 4.1 × 10 6 cells·mL -1 , the preconcentration efficiencies of electrocoagulator appeared to be stable at ∼60%. At lower cell densities (1.7 and 2.2 × 10 5 cells·mL -1 ), the preconcentration efficiencies decreased to 33.9 ± 0.2 and 40.4 ± 5.4%, respectively. For environmental samples at cell densities of 2.7 × 10 5 and 6.6 × 10 7 cells·mL -1 , the electrocoagulator maintained its preconcentration efficiency at ∼60%. On the other hand, the centrifuge's preconcentration efficiencies decreased to nondetectable and below 40%, respectively. This shows that the electrocoagulator outperformed the centrifuge when using eutrophic water samples. Finally, the compatibility of the electrocoagulator with the NanoGene assay was verified via the successful detection of the microcystin synthetase D (mcyD) gene in environmental samples. The viability of the electrocoagulator as an in situ compatible alternative to the centrifuge is also discussed.

  17. The extent of adhesion induction through electrocoagulation and suturing in an experimental rat study.

    Science.gov (United States)

    Wallwiener, Christian W; Kraemer, Bernhard; Wallwiener, Markus; Brochhausen, Christoph; Isaacson, Keith B; Rajab, Taufiek K

    2010-03-01

    To investigate the effect of three types of peritoneal trauma occurring during surgery (high-frequency bipolar current, suturing, and mechanical damage) on postoperative adhesion formation in a rodent animal model. Randomized, controlled experimental trial in an in vitro animal model. Laboratory facilities of a university department of obstetrics and gynecology. Thirty-five female Wistar rats. Bilateral experimental lesions were created on the abdominal wall in every animal. The effect of minimal electrocoagulation was examined by creating lesions (n = 14) through sweeps of a bipolar forceps with a duration of 1 second and standardized pressure. For extensive electrocoagulation standardized lesions (n = 14) were created using sweeps of a duration of 3 seconds and three times more pressure. For mechanical trauma, standardized lesions (n = 14) were created by denuding the peritoneum mechanically. To study the additive effect of suturing, experimental lesions were created by suturing plus minimal electrocoagulation (n = 14) or mechanical denuding (n = 14). Adhesion incidence, quantity, and quality of the resulting adhesions were scored 14 days postoperatively. Adhesions were studied histopathologically. Mechanical denuding of the peritoneum did not result in adhesion formation. After minimal electrocoagulation, mean adhesion quantity of the traumatized area averaged 0%. This contrasted with extensive electrocoagulation, where there was 50% adhesion. Additional suturing increased mean adhesion quantity to 73% and 64% for superficial electrocoagulation and mechanical denuding, respectively. We conclude that superficial trauma limited mostly to the parietal peritoneum may be a negligible factor in adhesion formation in this model. This appears to be irrespective of the mode of trauma. However, additional trauma to the underlying tissues, either by deeper electrocoagulation or suturing, leads to significantly increased adhesion formation. These data also show that there

  18. Batch leachate treatment using stirred electrocoagulation reactor with variation of residence time and stirring rate

    Science.gov (United States)

    Sitorus, I. S.; Astono, W.; Iswanto, B.

    2018-01-01

    This study aims to reduce pollutant levels of the leachate by electrocoagulation method using a stirred electrocoagulation reactor as the electrochemical water treatment. The release of active coagulants as metallic ions took place in the anode, while in the cathode, the electrolysis reaction in the form of hydrogen gas dischargeoccurred. The source of wastewater is Waste Water Treatment Plant inlet III of Bantar Gebang, Bekasi. Some parameters were analyzed in this research, i.e., Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD), NH3, NO3 -, NO2 -, N-total, and organic substances as well as the microorganism growth before and after electrocoagulation, with variations of detention time (seconds) of 10, 20, 120, 600 and rapid mixing conditions (rpm) of 60, 100 and 200. The results show that the greater the rapid mixing speed and the detention time of electrolysis, the higher the removal of contaminants in liquid waste. The optimum condition of electrocoagulation was encountered at 200 rpm rapid mixing with 600 seconds of processing time. The removal efficiencies of electrocoagulation method for each parameter are TSS of 46.80%, BOD5 of 71.33%, COD of 73.77%, Pb of 62.5%,and NH3-N of 57.92%,whereas the pH value has been increased from 8.03 to 8.95. The electrocoagulation method can reduce levels of pollutants, complying with the environmental standards.

  19. Sono assisted electrocoagulation process for the removal of pollutant from pulp and paper industry effluent.

    Science.gov (United States)

    Asaithambi, P; Aziz, Abdul Raman Abdul; Sajjadi, Baharak; Daud, Wan Mohd Ashri Bin Wan

    2017-02-01

    In the present work, the efficiency of the sonication, electrocoagulation, and sono-electrocoagulation process for removal of pollutants from the industrial effluent of the pulp and paper industry was compared. The experimental results showed that the sono-electrocoagulation process yielded higher pollutant removal percentage compared to the sonication and electrocoagulation process alone. The effect of the operating parameters in the sono-electrocoagulation process such as electrolyte concentration (1-5 g/L), current density (1-5 A/dm 2 ), effluent pH (3-11), COD concentration (1500-6000 mg/L), inter-electrode distance (1-3 cm), and electrode combination (Fe and Al) on the color removal, COD removal, and power consumption were studied. The maximum color and COD removal percentages of 100 and 95 %, respectively, were obtained at the current density of 4 A/dm 2 , electrolyte concentration of 4 g/L, effluent pH of 7, COD concentration of 3000 mg/L, electrode combination of Fe/Fe, inter-electrode distance of 1 cm, and reaction time of 4 h, respectively. The color and COD removal percentages were analyzed by using an UV/Vis spectrophotometer and closed reflux method. The results showed that the sono-electrocoagulation process could be used as an efficient and environmental friendly technique for complete pollutant removal.

  20. Electrocoagulation-Adsorption to Remove Anionic and Cationic Dyes from Aqueous Solution by PV-Energy

    Directory of Open Access Journals (Sweden)

    J. Castañeda-Díaz

    2017-01-01

    Full Text Available The cationic dye malachite green (MG and the anionic dye Remazol yellow (RY were removed from aqueous solutions using electrocoagulation-adsorption processes. Batch and continuous electrocoagulation procedures were performed and compared. Carbonaceous materials obtained from industrial sewage sludge and commercial activated carbons were used to adsorb dyes from aqueous solutions in column systems with a 96–98% removal efficiency. The continuous electrocoagulation-adsorption system was more efficient for removing dyes than electrocoagulation alone. The thermodynamic parameters suggested the feasibility of the process and indicated that the adsorption was spontaneous and endothermic (ΔS=0.037 and −0.009 for MG and RY, resp.. The ΔG value further indicated that the adsorption process was spontaneous (−6.31 and −10.48; T=303 K. The kinetic electrocoagulation results and fixed-bed adsorption results were adequately described using a first-order model and a Bohart-Adams model, respectively. The adsorption capacities of the batch and column studies differed for each dye, and both adsorbent materials showed a high affinity for the cationic dye. Thus, the results presented in this work indicate that a continuous electrocoagulation-adsorption system can effectively remove this type of pollutant from water. The morphology and elements present in the sludge and adsorbents before and after dye adsorption were characterized using SEM-EDS and FT-IR.

  1. Posterior epistaxis: Common bleeding sites and prophylactic electrocoagulation.

    Science.gov (United States)

    Liu, Juan; Sun, Xicai; Guo, Limin; Wang, Dehui

    2016-01-01

    Posterior epistaxis is a frequent emergency, and the key to efficient management is identification of the bleeding point. We performed a retrospective study of 318 patients with posterior epistaxis treated with endoscopic bipolar electrocautery during a 4-year period. Distribution of the bleeding sites was recorded. Patients with no definite bleeding sites in the first operation were assigned to Group A (n = 39) and Group B (n = 34). Patients in Group A were only observed in the ward. Patients in Group B were given prophylactic electrocoagulation at the common bleeding points. Of the 318 patients, bleeding sites were successfully identified and coagulated in 263 patients. All of them were located posteriorly, with 166 on the lateral nasal wall, 86 on the septum, and 11 on the anterior face of the sphenoid sinus. The rebleeding rate of Group B (8.8%) was lower than that of Group A (38.5%) (p < 0.01).

  2. Characterization of electrocoagulation for removal of chromium and arsenic

    Energy Technology Data Exchange (ETDEWEB)

    Parga, J.R.; Valverde, V. [Institute of Technology of Saltillo, Dept. of Metallurgy and Materials Science, V. Carranza 2400, Saltillo Coah., C.P. 25280 (Mexico); Cocke, D.L.; Gomes, J.A.G.; Kesmez, M.; Moreno, H. [Lamar University, Gill Chair of Chemistry and Chemical Engineering, Beaumont, TX 77710 (United States); Weir, M.; Mencer, D. [Wilkes University, Dept. of Chemistry, Wilkes-Barre, PA 18766 (United States)

    2005-05-01

    Protection of the global environment and, in particular, providing a sustainable source of clean water is a necessity for human survival. The wide use of heavy metals by modern industries has generated by-products containing heavy metals. Specifically, large quantities of chromium and arsenic containing compounds are being discharged into the environment. This study has been conducted to determine the feasibility of an electrocoagulation (EC) process using air injection to remove these inorganic elements with iron electrodes. Powder X-ray diffraction, scanning electron microscopy, and transmission Moessbauer spectroscopy were used to characterize the solid products formed at iron electrodes during EC. The results of this study suggest that magnetite particles and amorphous iron oxyhydroxides are present in the examined EC products. The field pilot-scale study demonstrated the removal of Cr(VI)/Cr(III) and As(III)/As(V) with an efficiency of more than 99 % from both wastewater and wells. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  3. DEFLUORIDATION OF DRINKING WATER BY ELECTROCOAGULATION/ELECTROFLOTATION - KINETIC STUDY

    Directory of Open Access Journals (Sweden)

    Bennajah Mounir

    2010-06-01

    Full Text Available A variable order kinetic (VOK model derived from the langmuir-freundlish equation was applied to determine the kinetics of fluoride removal reaction by electrocoagulation (EC. Synthetic solutions were employed to elucidate the effects of the initial fluoride concentration, the applied current and the initial acidity on the simulation results of the model. The proposed model successfully describes the fluoride removal in Airlift reactor in comparison with the experimental results. In this study two EC cells with the same capacity (V = 20 L were used to carry out fluoride removal with aluminum electrodes, the first is a stirred tank reactor (STR the second is an airlift reactor (ALR. The comparison of energy consumption demonstrates that the (ALR is advantageous for carrying out the defluoridation removal process.

  4. Recovery of mineral oil from waste emulsion using electrocoagulation method

    Directory of Open Access Journals (Sweden)

    Razali Mohd Najib

    2016-01-01

    Full Text Available This paper presents a research to recover mineral oil from industrial waste emulsion. This research also evaluates the standard of water produced after the oil recovery. The ecosystem could be polluted if this waste is not treated prior to discharge. The equipment needed for this experiment is power supply (generator, connecting wire and metal plate for providing the coagulant. The chosen plates were aluminium and iron plate. The power supply will be connected to the plate producing anode (positive terminal and cathode (negative terminal. Both plates are immersed into a beaker containing waste emulsion. The charge supplied by the current will cause the aluminium or ferum to dissisipate and became ions. These ions will attract the oil to flock together and float at the surface. The water will then filter by using filter paper. Electrocoagulation was done without addition of chemical thus can prevent the hazard from the chemicals. The samples was sent for oil and grease test. The optimum time needed for recovery of oil was 3 hours. The percentage recovery reach constant trend of 95% afterwards. When the power consumption increases, the percentage recovery also increases. However, the current should be lower than 0.5 ampere as it is the limit that human body can withstand. Thus, power consumption of 27.5 Watt was chosen as optimum value. The oil recovery of at power consumption at 27.5W is 96%. The best plate in the process was the aluminium pair which can recover more than ferum plate. The present work concludes the promising future for waste water treatment by usage of electrocoagulation technique.

  5. Dechlorophyllation of Cosmos caudatus Kunth., Morinda citrifolia, and Mangifera indica L. Leaves Methanolic Extract by Electrocoagulation Technique

    Directory of Open Access Journals (Sweden)

    Ratna Budhi Pebriana

    2017-12-01

    Full Text Available The present of chlorophyll is not expected in the isolation process of plant active constituent. Electrocoagulation is a potential dechlorophyllation method. This research aims to know the effectivity of electrocoagulation in the dechlorophyllation process of Cosmos caudatus Kunth., Morinda citrifolia, and Mangifera indica L. leaves methanolic extract as well as the effect to the total phenolic content. Electrocoagulation are performed using copper, silver, aluminum and iron plates as the electrode. Dechlorophyllation by extraction using n-hexane is performed as reference. The % absorbance of chlorophyll and % of total phenolic content of dechlorophyllated samples are measured spectrophotometrically. Electrocoagulation process reduces % absorbance of chlorophyll in Cosmos caudatus Kunth., Morinda citrifolia, and Mangifera indica L. leaves methanolic extract. The more the duration of electrocoagulaton process the lower the % absorbance of chlorophyll obtained. % absorbance of chlorophyll of the electrocoagulated extract according to paired t-test (P=0.95 are significantly different with the previous. One way ANOVA continued with LSD (P=0.95 shows that the % absorbance of chlorophyll from the electrocoagulated extract are significantly different with those extracted with n-hexane. Electrocoagulation process reduces total phenolic content along with duration of electrocoagulation.

  6. Composite wastewater treatment by aerated electrocoagulation and modified peroxi-coagulation processes.

    Science.gov (United States)

    Kumar, Abhijeet; Nidheesh, P V; Suresh Kumar, M

    2018-08-01

    Treatment of composite wastewater generating from the industrial estates is a great challenge. The present study examines the applicability of aerated electrocoagulation and modified peroxi-coagulation processes for removing color and COD from composite wastewater. Iron plates were used as anodes and cathodes in both electrochemical processes and experiments were carried out in a working volume of 2 L. Aeration enhanced the efficiency of electrocoagulation process significantly. More than 50% of COD and 60% of color were removed after 1 h of electrocoagulation process operated at pH 3 and applied voltage of 1 V. Efficiency of the modified peroxi-coagulation process was significantly higher than that of aerated electrocoagulation. COD and color removal efficiencies of the modified peroxi-coagulation process were found as 77.7% and 97%, respectively after 1 h of electrolysis operated at 1 V, solution pH 3 and 50 mM hydrogen peroxide addition. This improved efficiency of modified peroxi-coagulation compared to aerated electrocoagulation is mainly due to the attack of in-situ generated hydroxyl radicals. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Fluoride Removal from pretreated Photovoltaic Wastewater by Electrocoagulation: An Investigation of The Effect of Operational Parameters

    KAUST Repository

    Drouiche, Nadjib; Aoudj, Saleh; Lounici, Hakim; Drouiche, M.; Ouslimane, Tarik; Ghaffour, Norredine

    2012-01-01

    In this paper, application of electrocoagulation using common iron electrode to a simulated photovoltaic wastewater after precipitation with lime (Ca(OH)2) was investigated. Electrocoagulation process delivers the coagulant in situ as the sacrificial anode corrodes, while the simultaneous evolution of hydrogen at the cathode allows pollutant removal by flotation. Several working parameters, such as initial pH, applied potential and distance between the electrodes, were studied in an attempt to achieve higher fluoride removal efficiency. The optimum conditions for the process were identified as pH = 6, the distance between electrodes = 1 and an applied potential of 30 V. Furthermore fluoride removal is under the direct discharge standards.Results showed high effectivenessof the electrocoagulation method in removing fluoride from aqueous solutions.

  8. Removal Efficiency of Electrocoagulation Treatment Using Aluminium Electrode for Stabilized Leachate

    Science.gov (United States)

    Mohamad Zailani, L. W.; Amdan, N. S. Mohd; Zin, N. S. M.

    2018-04-01

    This research was conducted to investigate the performance of aluminium electrode in electrocoagulation process removing chemical oxygen demand (COD), ammonia, turbidity, colour and suspended solid (SS) from Simpang Renggam landfill leachate. Effects of current density, electrolysis duration and pH were observed in this study. From the data obtained, optimum condition at current density was recorded at 200 A/m2with the electrolysis duration of 20-minutes and optimum pH value at 4. The removal recorded at this condition for COD, ammonia, colour, turbidity and suspended solid were 60%, 37%, 94%, 88% and 89% respectively. Electrocoagulation treatment give a better result and can be applied for leachate treatment in future. Thus, electrocoagulation treatment has the potential to be used in treatment of leachate.

  9. Application of Electrocoagulation Process for Continuous Coal Stockpile Wastewater Treatment System

    Directory of Open Access Journals (Sweden)

    Rusdianasari Rusdianasari

    2017-02-01

    Full Text Available Coal wastewater is characterized by high total suspended solid (TSS, heavy metals, and low acidity (pH. The purpose of this study was to research the effects of the operating parameters such as applied voltage, the number of electrodes, and reaction time on a real coal stockpile wastewater in the continuous electrocoagulation process. For this purpose, aluminum electrodes were used in the presence of potassium chloride as an electrolyte. It has been shown that the removal efficiency of TSS and heavy metals content increased with increasing the applied voltage and reaction time. The results indicate that the electrocoagulation process is efficient and able to achieve 88.67% TSS removal, 95.65% ferrous removal, 99.11% manganesse removal, and pH increased until 7.1 at 24 volts during 120 min, respectively. The experiments demonstrated the effectiveness of electrocoagulation methods for the treatment of coal stockpile wastewater.

  10. Fluoride Removal from pretreated Photovoltaic Wastewater by Electrocoagulation: An Investigation of The Effect of Operational Parameters

    KAUST Repository

    Drouiche, Nadjib

    2012-03-20

    In this paper, application of electrocoagulation using common iron electrode to a simulated photovoltaic wastewater after precipitation with lime (Ca(OH)2) was investigated. Electrocoagulation process delivers the coagulant in situ as the sacrificial anode corrodes, while the simultaneous evolution of hydrogen at the cathode allows pollutant removal by flotation. Several working parameters, such as initial pH, applied potential and distance between the electrodes, were studied in an attempt to achieve higher fluoride removal efficiency. The optimum conditions for the process were identified as pH = 6, the distance between electrodes = 1 and an applied potential of 30 V. Furthermore fluoride removal is under the direct discharge standards.Results showed high effectivenessof the electrocoagulation method in removing fluoride from aqueous solutions.

  11. Electrocoagulation of simulated reactive dyebath effluent with aluminum and stainless steel electrodes.

    Science.gov (United States)

    Arslan-Alaton, Idil; Kabdaşli, Işik; Vardar, Burcu; Tünay, Olcay

    2009-05-30

    Reactive dyebath effluents are ideal candidates for electrocoagulation due to their intensive color, medium strength, recalcitrant COD and high electrolyte (NaCl) content. The present study focused on the treatability of simulated reactive dyebath effluent (COD(o)=300 mg/L; color in terms of absorbance values A(o,436)=0.532 cm(-1), A(o,525)=0.693 cm(-1) and A(o,620)=0.808 cm(-1)) employing electrocoagulation with aluminum and stainless steel electrodes. Optimization of critical operating parameters such as initial pH (pH(o) 3-11), applied current density (J(c)=22-87 mA/cm(2)) and electrolyte type (NaCl or Na(2)SO(4)) improved the overall treatment efficiencies resulting in effective decolorization (99% using stainless steel electrodes after 60 min, 95% using aluminum electrodes after 90 min electrocoagulation) and COD abatement (93% with stainless steel electrodes after 60 min, 86% with aluminum electrodes after 90 min of reaction time). Optimum electrocoagulation conditions were established as pH(o) 5 and J(c)=22 mA/cm(2) for both electrode materials. The COD and color removal efficiencies also depended on the electrolyte type. No in situ, surplus adsorbable organically bound halogens (AOX) formation associated with the use of NaCl as the electrolyte during electrocoagulation was detected. An economical evaluation was also carried out within the frame of the study. It was demonstrated that electrocoagulation of reactive dyebath effluent with aluminum and stainless steel electrodes was a considerably less electrical energy-intensive, alternative treatment method as compared with advanced chemical oxidation techniques.

  12. Winograd Method Versus Winograd Method With Electrocoagulation in the Treatment of Ingrown Toenails.

    Science.gov (United States)

    Acar, Erdinc

    An important component of the Winograd surgical method for an ingrown toenail is total excision of the associated germinal matrix. However, this might not always be accomplished with the procedure. We hypothesized that the surgical results might be improved by adding electrocoagulation of the germinal matrix to the Winograd method. The objective of the present study was to compare the recurrence, satisfaction, and complication rates of the Winograd method with those of the Winograd method with electrocoagulation. We retrospectively evaluated the records of 102 patients with single Heifetz stage 2 or 3 ingrown toenails who had undergone surgery from January 2013 to October 2014 using 1 of these 2 methods. Of the 102 patients, 50 (49%) underwent the Winograd method and 52 (51%) underwent the Winograd method with electrocoagulation. The mean follow-up period of our patients was 12 (range 6 to 22) months. An ingrown toenail recurred in 3 patients (6%) in the Winograd group and in no patient in the Winograd with electrocoagulation group (p = .04). Among the patients in the Winograd group, 46 (92.0%) were satisfied or very satisfied. Among the patients in the Winograd plus electrocoagulation group, 49 (94.2%) were satisfied or very satisfied (p = .04). No complications developed in either group. In conclusion, the Winograd method for ingrown toenails results in high satisfaction rates, low recurrence rates, and low complication rates. The addition of electrocoagulation of the germinal matrix to the Winograd method could result in even lower recurrence rates, while maintaining high patient satisfaction and without increasing the risk of complications. Copyright © 2017 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  13. Extensive tissue damage of bovine ovaries after bipolar ovarian drilling compared to monopolar electrocoagulation or carbon dioxide laser.

    Science.gov (United States)

    Hendriks, Marja-Liisa; van der Valk, Paul; Lambalk, Cornelis B; Broeckaert, Mark A M; Homburg, Roy; Hompes, Peter G A

    2010-02-01

    To evaluate the size of ovarian damage caused by ovarian drilling in polycystic ovary syndrome, the amount of inflicted damage was assessed for the most frequently used ovarian drilling techniques. Experimental prospective design. University clinic. Six fresh bovine ovaries per technique. Carbon dioxide (CO(2)) laser, monopolar electrocoagulation, and bipolar electrocoagulation were used for in vitro ovarian drilling. Amount of inflicted ovarian damage per procedure. Bipolar electrocoagulation resulted in significantly more destruction per burn than the CO(2) laser and monopolar electrocoagulation (287.6 versus 24.0 and 70.0 mm(3), respectively). The damage found per lesion was multiplied by the regularly applied number of punctures per procedure in daily practice (based on the literature). Again, the bipolar electrocoagulation resulted in significantly more tissue damage than the CO(2) laser and monopolar coagulation (2,876 versus 599 and 700 mm(3), respectively). Ovarian drilling, especially bipolar electrocoagulation, causes extensive destruction of the ovary. Given the same clinical effectiveness of the various procedures, it is essential to use the lowest possible dose that works; thus, the first choice should be CO(2) laser or monopolar electrocoagulation. Copyright 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  14. Treatment of leachate by electrocoagulation using aluminum and iron electrodes.

    Science.gov (United States)

    Ilhan, Fatih; Kurt, Ugur; Apaydin, Omer; Gonullu, M Talha

    2008-06-15

    In this paper, treatment of leachate by electrocoagulation (EC) has been investigated in a batch process. The sample of leachate was supplied from Odayeri Landfill Site in Istanbul. Firstly, EC was compared with classical chemical coagulation (CC) process via COD removal. The first comparison results with 348 A/m2 current density showed that EC process has higher treatment performance than CC process. Secondly, effects of process variables such as electrode material, current density (from 348 to 631 A/m2), pH, treatment cost, and operating time for EC process are investigated on COD and NH4-N removal efficiencies. The appropriate electrode type search for EC provided that aluminum supplies more COD removal (56%) than iron electrode (35%) at the end of the 30 min operating time. Finally, EC experiments were also continued to determine the efficiency of ammonia removal, and the effects of current density, mixing, and aeration. All the findings of the study revealed that treatment of leachate by EC can be used as a step of a joint treatment.

  15. Textile Wastewater Treatment by Electrocoagulation Process using Aluminum Electrodes

    Directory of Open Access Journals (Sweden)

    Edris Bazrafshan

    2014-03-01

    Full Text Available Background and purpose: Textile industries are among the most polluting industries regarding the volume and the complexity of treatment of its effluents discharge. This study investigated the efficiency of electrocoagulation process using aluminum electrodes in basic red 18 dye removal from aqueous solutions. Materials and Methods: This study was performed in a bipolar batch reactor with six aluminum electrodes connected in parallel. Several important parameters, such as initial pH of solution, initial dye concentration, applied voltage; conductivity and reaction time were studied in an attempt to achieve higher removal efficiency. Results: The electrochemical technique showed satisfactory dye removal efficiency and reliable performance in treating of basic red 18. The maximum efficiency of dye removal which was obtained in voltage of 50 V, reaction time of 60 min, initial concentration 50 mg/L, conductivity 3000 μS/cm and pH 7 was equal to 97.7%. Dye removal efficiency was increased accordance to increase of applied voltage and in contrast electrode and energy consumption was increased simultaneously. Conclusion: As a conclusion, the method was found to be highly efficient and relatively fast compared to conventional existing techniques for dye removal from aqueous solutions.

  16. Removal of trace metal contaminants from potable water by electrocoagulation

    Science.gov (United States)

    Heffron, Joe; Marhefke, Matt; Mayer, Brooke K.

    2016-06-01

    This study investigated the effects of four operational and environmental variables on the removal of trace metal contaminants from drinking water by electrocoagulation (EC). Removal efficiencies for five metals (arsenic, cadmium, chromium, lead and nickel) were compared under varying combinations of electrode material, post-treatment, water composition and pH. Iron electrodes out-performed aluminum electrodes in removing chromium and arsenic. At pH 6.5, aluminum electrodes were slightly more effective at removing nickel and cadmium, while at pH 8.5, iron electrodes were more effective for these metals. Regardless of electrode, cadmium and nickel removal efficiencies were higher at pH 8.5 than at pH 6.5. Post-EC treatment using membrane filtration (0.45 μm) enhanced contaminant removal for all metals but nickel. With the exception of lead, all metals exhibited poorer removal efficiencies as the ionic strength of the background electrolyte increased, particularly in the very high-solids synthetic groundwaters. Residual aluminum concentrations were lowest at pH 6.5, while iron residuals were lowest in low ionic strength waters. Both aluminum and iron residuals required post-treatment filtration to meet drinking water standards. EC with post-treatment filtration appears to effectively remove trace metal contaminants to potable water standards, but both reactor and source water parameters critically impact removal efficiency.

  17. Optimization of electrocoagulation process for the treatment of landfill leachate

    Science.gov (United States)

    Huda, N.; Raman, A. A.; Ramesh, S.

    2017-06-01

    The main problem of landfill leachate is its diverse composition comprising of persistent organic pollutants (POPs) which must be removed before being discharge into the environment. In this study, the treatment of leachate using electrocoagulation (EC) was investigated. Iron was used as both the anode and cathode. Response surface methodology was used for experimental design and to study the effects of operational parameters. Central Composite Design was used to study the effects of initial pH, inter-electrode distance, and electrolyte concentration on color, and COD removals. The process could remove up to 84 % color and 49.5 % COD. The experimental data was fitted onto second order polynomial equations. All three factors were found to be significantly affect the color removal. On the other hand, electrolyte concentration was the most significant parameter affecting the COD removal. Numerical optimization was conducted to obtain the optimum process performance. Further work will be conducted towards integrating EC with other wastewater treatment processes such as electro-Fenton.

  18. Risk factors of electrocoagulation syndrome after esophageal endoscopic submucosal dissection

    Science.gov (United States)

    Ma, Dae Won; Youn, Young Hoon; Jung, Da Hyun; Park, Jae Jun; Kim, Jie-Hyun; Park, Hyojin

    2018-01-01

    AIM To investigate post endoscopic submucosal dissection electrocoagulation syndrome (PEECS) of the esophagus. METHODS We analyzed 55 consecutive cases with esophageal endoscopic submucosal dissection for superficial esophageal squamous neoplasms at a tertiary referral hospital in South Korea. Esophageal PEECS was defined as “mild” meeting one of the following criteria without any obvious perforation: fever (≥ 37.8 °C), leukocytosis (> 10800 cells/μL), or regional chest pain more than 5/10 points as rated on a numeric pain intensity scale. The grade of PEECS was determined as “severe” when meet two or more of above criteria. RESULTS We included 51 cases without obvious complications in the analysis. The incidence of mild and severe esophageal PEECS was 47.1% and 17.6%, respectively. Risk factor analysis revealed that resected area, procedure time, and muscle layer exposure were significantly associated with PEECS. In multivariate analysis, a resected area larger than 6.0 cm2 (OR = 4.995, 95%CI: 1.110-22.489, P = 0.036) and muscle layer exposure (OR = 5.661, 95%CI: 1.422-22.534, P = 0.014) were independent predictors of esophageal PEECS. All patients with PEECS had favorable outcomes with conservative management approaches, such as intravenous hydration or antibiotics. CONCLUSION Clinicians should consider the possibility of esophageal PEECS when the resected area exceeds 6.0 cm2 or when the muscle layer exposure is noted. PMID:29563758

  19. Optimization of electrocoagulation process to treat biologically pretreated bagasse effluent

    Directory of Open Access Journals (Sweden)

    Thirugnanasambandham K.

    2014-01-01

    Full Text Available The main objective of the present study was to investigate the efficiency of electrocoagulation process as a post-treatment to treat biologically pretreated bagasse effluent using iron electrodes. The removal of chemical oxygen demand (COD and total suspended solids (TSS were studied under different operating conditions such as amount of dilution, initial pH, applied current and electrolyte dose by using response surface methodology (RSM coupled with four-factor three-level Box-Behnken experimental design (BBD. The experimental results were analyzed by Pareto analysis of variance (ANOVA and second order polynomial mathematical models were developed with high correlation of efficiency (R2 for COD, TSS removal and electrical energy consumption (EEC. The individual and combined effect of variables on responses was studied using three dimensional response surface plots. Under the optimum operating conditions, such as amount of dilution at 30 %, initial pH of 6.5, applied current of 8 mA cm-2 and electrolyte dose of 740 mg l-1 shows the higher removal efficiency of COD (98 % and TSS (93 % with EEC of 2.40 Wh, which were confirmed by validation experiments.

  20. Treatment of the baker's yeast wastewater by electrocoagulation

    International Nuclear Information System (INIS)

    Kobya, M.; Delipinar, S.

    2008-01-01

    In the laboratory-scale experiments, treatment of baker's yeast production wastewater has been investigated by electrocoagulation (EC) using a batch reactor. Effects of the process variables such as pH, electrode material (Fe and Al), current density, and operating time are investigated in terms of removal efficiencies of chemical oxygen demand (COD), total organic carbon (TOC), turbidity, and operating cost, respectively. The maximum removal efficiencies of COD, TOC and turbidity under optimal operating conditions, i.e., pH 6.5 for Al electrode and pH 7 for Fe electrode, current density of 70 A/m 2 and operating time of 50 min were 71, 53 and 90% for Al electrode and 69, 52 and 56% for Fe electrode, respectively. Al electrode gave 4.4 times higher removal efficiency of turbidity than Fe electrode due to interference from color of dissolved iron. The operating costs for Al and Fe electrodes in terms of $/m 3 or $/kg COD were 1.54 and 0.82, 0.51 and 0.27, respectively

  1. Purification and detoxification of petroleum refinery wastewater by electrocoagulation process.

    Science.gov (United States)

    Gousmi, N; Sahmi, A; Li, H Z; Poncin, S; Djebbar, R; Bensadok, K

    2016-09-01

    The treatment of synthetic oily wastewater having the characteristics of a typical petroleum refinery wastewater (PRW) by electrocoagulation (EC) using iron and aluminum electrodes was conducted in an electrolytic reactor equipped with fluid recirculation. During the treatment, the emulsion stability was followed by the measurement of Zeta potential and particle sizes. Effects of some operating conditions such as electrodes material, current density and electrolysis time on removal efficiencies of turbidity, and chemical oxygen demand (COD) were investigated in detail. The PRW purification by the EC process was found to be the most effective using aluminum as the anode and cathode, current density of 60 A/m(2) and 30 min of electrolysis time. Under these conditions, the process efficiencies were 83.52% and 99.94%, respectively, for COD and turbidity removals which correspond to final values of 96 mg O2/L and 0.5 NTU. A moderate energy consumption (0.341 kWh) was needed to treat 1 m(3) of PRW. Besides, the ecotoxicity test proved that toxic substances presented in the PRW, and those inhibiting the germination growth of whet, were eliminated by the EC technique.

  2. Arsenic Removal and Its Chemistry in Batch Electrocoagulation Studies.

    Science.gov (United States)

    Sharma, Anshul; Adapureddy, Sri Malini; Goel, Sudha

    2014-04-01

    The aim of this study was to evaluate the impact of different oxidizing agents like light, aeration (by mixing) and electrocoagulation (EC) on the oxidation of As (III) and its subsequent removal in an EC batch reactor. Arsenic solutions prepared using distilled water and groundwater were evaluated. Optimum pH and the effect of varying initial pH on As removal efficiency were also evaluated. MaximumAs (III) removal efficiency with EC, light and aeration was 97% from distilled water and 71% from groundwater. Other results show that EC alone resulted in 90% As removal efficiency in the absence of light and mixing from distilled water and 53.6% from groundwater. Removal with light and mixing but without EC resulted in only 26% As removal from distilled water and 29% from groundwater proving that electro-oxidation and coagulation were more effective in removing arsenic compared to the other oxidizing agents examined. Initial pH was varied from 5 to 10 in distilled water and from 3 to 12 in groundwater for evaluating arsenic removal efficiency by EC. The optimum initial pH for arsenic removal was 7 for distilled water and groundwater. For all initial pHs tested between 5 and 10 in distilled water, the final pH ranged between 7 and 8 indicating that the EC process tends towards near neutral pH under the conditions examined in this study.

  3. Influence of softening sequencing on electrocoagulation treatment of produced water.

    Science.gov (United States)

    Esmaeilirad, Nasim; Carlson, Ken; Omur Ozbek, Pinar

    2015-01-01

    Electrocoagulation has been used to remove solids and some metals from both water and wastewater sources for decades. Additionally, chemical softening is commonly employed in water treatment systems to remove hardness. This paper assesses the combination and sequence of softening and EC methods to treat hydraulic fracturing flowback and produced water from shale oil and gas operations. EC is one of the available technologies to treat produced water for reuse in frac fluids, eliminating not only the need to transport more water but also the costs of providing fresh water. In this paper, the influence of chemical softening on EC was studied. In the softening process, pH was raised to 9.5 and 10.2 before and after EC, respectively. Softening, when practiced before EC was more effective for removing turbidity with samples from wells older than one month (99% versus 88%). However, neither method was successful in treating samples collected from early flowback (1-day and 2-day samples), likely due to the high concentration of organic matter. For total organic carbon, hardness, Ba, Sr, and B removal, application of softening before EC appeared to be the most efficient approach, likely due to the formation of solids before the coagulation process. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Hybrid process, electrocoagulation-biofiltration for landfill leachate treatment.

    Science.gov (United States)

    Dia, Oumar; Drogui, Patrick; Buelna, Gerardo; Dubé, Rino

    2018-05-01

    Landfill leachates are known for their high and complex composition of organic, inorganic and microbial pollutants. As a result, it is quite challenging to treat these effluents by using only one treatment process. A combining approach is generally required to treat efficiently these wastewaters and comply with the discharge standards. In this present study, electrocoagulation (EC) and biofiltration (BF) processes were sequentially used to treat landfill leachate. EC process has been able to remove 37 ± 2% of the initial total COD. A fractionation of organic compounds showed that EC was particularly efficient to remove insoluble COD and humic acids. In addition, other pollutants such as turbidity, true color, Zn and phosphorus were significantly reduced by EC with 82 ± 2.7%, 60 ± 13%, 95 ± 2.6% and 82 ± 5.5% of removal respectively. The subsequent treatment by BF process led to completely removal of ammonia pollution (>99% of NH 4 removal) and a partial removal of dissolved organic compounds (42 ± 7% of COD removal). The hybrid process EC/BF could form the basis of a process capable of removing organic and inorganic pollutants from many refractory wastewaters (mature landfill leachates, industrial and municipal wastewaters). Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Organic pollutant removal from edible oil process wastewater using electrocoagulation

    Science.gov (United States)

    Sharma, S.; Can, O. T.; Hammed, M.; Nawarathna, D.; Simsek, H.

    2018-03-01

    Wastewaters generated from vegetable oil industries contain a high concentration of organic pollutants that are detrimental to the aquatic ecosystem. Electrochemical processes are gaining importance in the treatment of inorganic and resistant organic pollutants in wastewaters. In this study, electrocoagulation (EC) was applied to remove organic pollutants and oil and grease from canola oil wastewater using aluminum (Al) and iron (Fe) electrodes. The application of EC in the wastewater achieved more than 80% removal of organic carbon and nearly 100% removal of suspended solids (SS). The effectiveness of EC is influenced mainly by current density, pH, electrolyte (NaCl), electrode contact time and electrode type. It was observed that Al electrode combination yielded better removal at a lesser time compared to that of Fe electrodes. However, varying current densities had its significance in terms of coagulation time only. Increase in current density achieved decrease in coagulation time. Both Al and Fe could remove between 52-59% of oil and grease from canola oil wastewater

  6. Removal of Pharmaceuticals from Wastewater by Intermittent Electrocoagulation

    Directory of Open Access Journals (Sweden)

    Benny Marie B. Ensano

    2017-01-01

    Full Text Available The continuous release of emerging contaminants (ECs in the aquatic environment, as a result of the inadequate removal by conventional treatment methods, has prompted research to explore viable solutions to this rising global problem. One promising alternative is the use of electrochemical processes since they represent a simple and highly efficient technology with less footprint. In this paper, the feasibility of treating ECs (i.e., pharmaceuticals using an intermittent electrocoagulation process, a known electrochemical technology, has been investigated. Diclofenac (DCF, carbamazepine (CBZ and amoxicillin (AMX were chosen as being representative of highly consumed drugs that are frequently detected in our water resources and were added in synthetic municipal wastewater. The removal efficiencies of both individual and combined pharmaceuticals were determined under different experimental conditions: hydraulic retention time (HRT (6, 19 and 38 h, initial concentration (0.01, 4 and 10 mg/L and intermittent application (5 min ON/20 min OFF of current density (0.5, 1.15 and 1.8 mA/cm2. Results have shown that these parameters have significant effects on pharmaceutical degradation. Maximum removals (DCF = 90%, CBZ = 70% and AMX = 77% were obtained at a current density of 0.5 mA/cm2, an initial concentration of 10 mg/L and HRT of 38 h.

  7. Aluminium removal from water after defluoridation with the electrocoagulation process.

    Science.gov (United States)

    Sinha, Richa; Mathur, Sanjay; Brighu, Urmila

    2015-01-01

    Fluoride is the most electronegative element and has a strong affinity for aluminium. Owing to this fact, most of the techniques used for fluoride removal utilized aluminium compounds, which results in high concentrations of aluminium in treated water. In the present paper, a new approach is presented to meet the WHO guideline for residual aluminium concentration as 0.2 mg/L. In the present work, the electrocoagulation (EC) process was used for fluoride removal. It was found that aluminium content in water increases with an increase in the energy input. Therefore, experiments were optimized for a minimum energy input to achieve the target value (0.7 mg/L) of fluoride in resultant water. These optimized sets were used for further investigations of aluminium control. The experimental investigations revealed that use of bentonite clay as coagulant in clariflocculation brings down the aluminium concentration of water below the WHO guideline. Bentonite dose of 2 g/L was found to be the best for efficient removal of aluminium.

  8. Effects of alternating and direct current in electrocoagulation process on the removal of cadmium from water

    International Nuclear Information System (INIS)

    Vasudevan, Subramanyan; Lakshmi, Jothinathan; Sozhan, Ganapathy

    2011-01-01

    Highlights: → Very high removal efficiency of cadmium was achieved by electrocoagulation. → Alternating current (AC) avoids oxide layer and corrosion on anode surface. → Good current transfer between anode and cathode results more removal efficiency. → Compact treatment facility and complete automation. → Aluminum alloy anode prevents residual aluminum in treated water. - Abstract: In practice, direct current (DC) is used in an electrocoagulation processes. In this case, an impermeable oxide layer may form on the cathode as well as corrosion formation on the anode due to oxidation. This prevents the effective current transfer between the anode and cathode, so the efficiency of electrocoagulation processes declines. These disadvantages of DC have been diminished by adopting alternating current (AC) in electrocoagulation processes. The main objective of this study is to investigate the effects of AC and DC on the removal of cadmium from water using aluminum alloy as anode and cathode. The results showed that the removal efficiency of 97.5 and 96.2% with the energy consumption of 0.454 and 1.002 kWh kl -1 was achieved at a current density of 0.2 A/dm 2 and pH of 7.0 using aluminum alloy as electrodes using AC and DC, respectively. For both AC and DC, the adsorption of cadmium was preferably fitting Langmuir adsorption isotherm, the adsorption process follows second order kinetics and the temperature studies showed that adsorption was exothermic and spontaneous in nature.

  9. Fluoride Removal From Drinking Water by Electrocoagulation Using Iron and Aluminum Electrodes

    OpenAIRE

    Takdastan; Emami Tabar; Neisi; Eslami

    2014-01-01

    Background Existence of fluoride in drinking water above the permissible level causes human skeletal fluorosis. Objectives Electrocoagulation by iron and aluminum electrodes was proposed for removing fluoride from drinking water. Materials and Methods Effects of different operating conditions such as treatment time, initial pH, applied voltage, type and number of electrodes, the sp...

  10. Effects of alternating and direct current in electrocoagulation process on the removal of cadmium from water

    Energy Technology Data Exchange (ETDEWEB)

    Vasudevan, Subramanyan, E-mail: vasudevan65@gmail.com [CSIR-Central Electrochemical Research Institute, Karaikudi 630 006 (India); Lakshmi, Jothinathan; Sozhan, Ganapathy [CSIR-Central Electrochemical Research Institute, Karaikudi 630 006 (India)

    2011-08-15

    Highlights: {yields} Very high removal efficiency of cadmium was achieved by electrocoagulation. {yields} Alternating current (AC) avoids oxide layer and corrosion on anode surface. {yields} Good current transfer between anode and cathode results more removal efficiency. {yields} Compact treatment facility and complete automation. {yields} Aluminum alloy anode prevents residual aluminum in treated water. - Abstract: In practice, direct current (DC) is used in an electrocoagulation processes. In this case, an impermeable oxide layer may form on the cathode as well as corrosion formation on the anode due to oxidation. This prevents the effective current transfer between the anode and cathode, so the efficiency of electrocoagulation processes declines. These disadvantages of DC have been diminished by adopting alternating current (AC) in electrocoagulation processes. The main objective of this study is to investigate the effects of AC and DC on the removal of cadmium from water using aluminum alloy as anode and cathode. The results showed that the removal efficiency of 97.5 and 96.2% with the energy consumption of 0.454 and 1.002 kWh kl{sup -1} was achieved at a current density of 0.2 A/dm{sup 2} and pH of 7.0 using aluminum alloy as electrodes using AC and DC, respectively. For both AC and DC, the adsorption of cadmium was preferably fitting Langmuir adsorption isotherm, the adsorption process follows second order kinetics and the temperature studies showed that adsorption was exothermic and spontaneous in nature.

  11. Endoscopic treatment of pharyngeal pouches: electrocoagulation vs carbon dioxide (CO2) laser

    NARCIS (Netherlands)

    Flikweert, D. C.; van der Baan, S.

    1992-01-01

    Endoscopic treatment of a hypopharyngeal diverticulum was performed in 75 patients during the period 1976-1990. Initially electrocoagulation was used to divide the septum between the diverticulum and oesophagus. More recently, the CO2 laser combined with the operating microscope has been used.

  12. Complexing agent and heavy metal removals from metal plating effluent by electrocoagulation with stainless steel electrodes.

    Science.gov (United States)

    Kabdaşli, Işik; Arslan, Tülin; Olmez-Hanci, Tuğba; Arslan-Alaton, Idil; Tünay, Olcay

    2009-06-15

    In the present study, the treatability of a metal plating wastewater containing complexed metals originating from the nickel and zinc plating process by electrocoagulation using stainless steel electrodes was experimentally investigated. The study focused on the effect of important operation parameters on electrocoagulation process performance in terms of organic complex former, nickel and zinc removals as well as sludge production and specific energy consumption. The results indicated that increasing the applied current density from 2.25 to 9.0 mA/cm(2) appreciably enhanced TOC removal efficiency from 20% to 66%, but a further increase in the applied current density to 56.25 mA/cm(2) did not accelerate TOC removal rates. Electrolyte concentration did not affect the process performance significantly and the highest TOC reduction (66%) accompanied with complete heavy metal removals were achieved at the original chloride content ( approximately 1500 mg Cl/L) of the wastewater sample. Nickel removal performance was adversely affected by the decrease of initial pH from its original value of 6. Optimum working conditions for electrocoagulation of metal plating effluent were established as follows: an applied current density of 9 mA/cm(2), the effluent's original electrolyte concentration and pH of the composite sample. TOC removal rates obtained for all electrocoagulation runs fitted pseudo-first-order kinetics very well (R(2)>92-99).

  13. Treatment of Palm Oil Mill Effluent (POME) by Using Electrocoagulation as an Alternative Method

    International Nuclear Information System (INIS)

    Suzana Che Sayuti; Abdul Aziz Mohd Azoddein

    2015-01-01

    The treatment of palm oil mill effluent (POME) is a crucial stage to prevent from environmental pollution. An alternative method should be implemented to replace the conventional wastewater treatment method. Concentration required by the Department of Environment (DOE) is 200 mg/L for chemical oxygen demand (COD) and 100 mg/L for total suspended solid (TSS). Electrocoagulation was used to reduce the amount of COD and TSS in POME. The performance of COD and TSS removal using electrocoagulation was scrutinized. Electrocoagulation reactor was used and the optimum operating parameters were determined. The voltage parameter was manipulated in order to identify the effect on the removal efficiency of COD and TSS. The highest removal efficiency obtained were 95.71 % for COD and 99.25 % for TSS in which COD reduced from 4900 mg/L to 210 mg/L meanwhile TSS from 4000 mg/L to 30 mg/L. The final COD almost meets the requirement of DOE of 200 mg/L while TSS fulfil the requirement of 100 mg/L for standard B. The highest efficiency obtained at optimum pH 7.44, electrocoagulation time 25 min and voltage of 100 V by using aluminium electrodes. This method was found to be efficient and capable to reduce time of treatment compared to standard conventional method. (author)

  14. Hysteroscopic tubal electrocoagulation versus laparoscopic tubal ligation for patients with hydrosalpinges undergoing in vitro fertilization.

    Science.gov (United States)

    El-Mazny, Akmal; Abou-Salem, Nermeen; Hammam, Mohamed; Saber, Walid

    2015-09-01

    To investigate the use and success rate of hysteroscopic tubal electrocoagulation for the treatment of hydrosalpinx-related infertility among patients undergoing in vitro fertilization (IVF) who have laparoscopic contraindications. A prospective study was conducted among patients who had unilateral or bilateral hydrosalpinges identified on hysterosalpingography and vaginal ultrasonography, and who were undergoing IVF at a center in Cairo, Egypt, between January 1, 2013, and October 30, 2014. All patients who had contraindications for laparoscopy were scheduled for hysteroscopic tubal electrocoagulation (group 1); the other patients underwent laparoscopic tubal ligation (group 2). For all patients, hysterosalpingography was performed 3 months after their procedure to evaluate proximal tubal occlusion. Among 85 enrolled patients, 22 underwent hysteroscopic tubal electrocoagulation and 63 underwent laparoscopic tubal ligation. The procedure was successful in terms of tubal occlusion for 25 (93%) of 27 hydrosalpinges in group 1, and 78 (96%) of 81 hydrosalpinges in group 2 (P=0.597). No intraoperative or postoperative complications were reported. Hysteroscopic tubal electrocoagulation was found to be a successful treatment for hydrosalpinges before IVF when laparoscopy is contraindicated. Copyright © 2015 International Federation of Gynecology and Obstetrics. Published by Elsevier Ireland Ltd. All rights reserved.

  15. Inflammatory cytokine expression following the use of bipolar electrocoagulation, ultracision harmonic scalpel and cold knife biopsy.

    Science.gov (United States)

    Litta, Pietro; Saccardi, Carlo; Gizzo, Salvatore; Conte, Lorena; Ambrosi, Giulia; Sissi, Claudia; Palumbo, Manlio

    2015-08-01

    Electrical surgical devices may determine tissue damage through lateral thermal spread and activation of inflammatory processes. Several tissue effects are associated with the use of different surgical instruments. The aim of the present study was to compare tissue damage following the application of cold knife biopsy, bipolar electrocoagulation and the ultracision harmonic scalpel, through the analysis of inflammatory gene mediator expression. Three fragments of the round ligament (length 0.5 cm) were obtained from 22 females who had undergone total or subtotal laparoscopic hysterectomy using three different modes of resection: Cold knife biopsy, bipolar electrocoagulation and ultracision harmonic scalpel. The tissue fragments were examined by quantitative polymerase chain reaction (qPCR) analysis of selected cytokines. Gene expression analysis demonstrated large standard deviations due to individual variability among patients and indicated variability in the concentrations of cytokines in the three different samples. The quantity of cytokine mRNA in the cold knife biopsy samples was generally greater than those obtained by other techniques. Tumor necrosis factor-α expression was significantly higher in the sample obtained with the ultracision harmonic scalpel and bipolar electrocoagulation (P=0.033) when compared with cold knife biopsy. The inflammatory response was analyzed by the quantification of gene expression through the use of qPCR. The ultracision harmonic scalpel and bipolar electrocoagulation triggered the inflammatory cascade and resulted in an increased production of cytokines compared with cold knife biopsy.

  16. Removal of Arsenic from Wastewaters by Airlift Electrocoagulation: Part 3: Copper Smelter Wastewater Treatment

    DEFF Research Database (Denmark)

    Hansen, H.K.; Ottosen, Lisbeth M.

    2010-01-01

    The arsenic content in wastewater is of major concern for copper smelters. A typical complex wastewater treatment is needed with a combination of chemical and physical processes. Electrocoagulation (EC) has shown its potential for arsenic removal due to the formation of ferric hydroxide-arsenate ...... threshold value for wastewater discharge could rapidly be reached when the conventional method did not clean the wastewater sufficiently....

  17. The application of electrocoagulation for the conversion of MSWI fly ash into nonhazardous materials.

    Science.gov (United States)

    Liao, Wing-Ping; Yang, Renbo; Kuo, Wei-Ting; Huang, Jui-Yuan

    2014-05-01

    This research investigated the electrocoagulation of municipal solid waste incineration (MSWI) fly ash at a liquid-to-solid ratio (L/S) of 20:1. The leachate that was obtained from this treatment was recovered for reutilization. Two different anodic electrodes were investigated, and two unit runs were conducted. In Unit I, the optimum anode was chosen, and in Unit II, the optimum anode and the recovered leachate were used to replace deionized water for repeating the same electrocoagulation experiments. The results indicate that the aluminum (Al) anode performed better than the iridium oxide (IrO2) anode. The electrocoagulation technique includes washing with water, changing the composition of the fly ash, and stabilizing the heavy metals in the ash. Washing with water can remove the soluble salts from fly ash, and the fly ash can be converted into Friedel's salt (3CaO·Al2O3·CaCl2·10H2O) under an uniform electric field and the sacrificial release of Al(+3) ions, which stabilizes the toxic heavy metals and brings the composition of the fly ash to within the regulatory limits of the toxicity characteristic leaching procedure (TCLP). Use of the Al anode to manage the MSWI fly ash and the leachate obtained from the electrocoagulation treatment is therefore feasible. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Treatment of textile wastewater by a hybrid electrocoagulation/nanofiltration process.

    Science.gov (United States)

    Aouni, Anissa; Fersi, Cheïma; Ben Sik Ali, Mourad; Dhahbi, Mahmoud

    2009-09-15

    Untreated effluents from textile industries are usually highly coloured and contain a considerable amount of contaminants and pollutants. Stringent environmental regulation for the control of textile effluents is enforced in several countries. Previous studies showed that many techniques have been used for the treatment of textile wastewater, such as adsorption, biological treatment, oxidation, coagulation and/or flocculation, among them coagulation is one of the most commonly used techniques. Electrocoagulation is a process consisting in creating metallic hydroxide flocks within the wastewater by the electrodissolution of soluble anodes, usually made of iron or aluminium. This method has been practiced for most of the 20th century with limited success. In recent years, however, it started to regain importance with the progress of the electrochemical processes and the increase in environmental restrictions in effluent wastewater. This paper examines the use of electrocoagulation treatment process followed by nanofiltration process of a textile effluent sample. The electrocoagulation process was studied under several conditions such as various current densities and effect of experimental tense. Efficiencies of COD and turbidity reductions and colour removal were studied for each experiment. The electrochemical treatment was indented primarily to remove colour and COD of wastewater while nanofiltration was used to further improve the removal efficiency of the colour, COD, conductivity, alkalinity and total dissolved solids (TDS). The experimental results, throughout the present study, have indicated that electrocoagulation treatment followed by nanofiltration processes were very effective and were capable of elevating quality of the treated textile wastewater effluent.

  19. Data on treatment of sewage wastewater by electrocoagulation using punched aluminum electrode and characterization of generated sludge

    Directory of Open Access Journals (Sweden)

    Vinita Khandegar

    2018-06-01

    Full Text Available The electrocoagulation setup must be optimized in order to design an economically feasible process. Therefore, in this work, the effect of the punched aluminum electrode on the performance of the electrocoagulation (EC has been investigated. A series of experiments were performed for treatment of sewage wastewater using plane electrode and compare with punched electrodes. Effect of contact time, voltage, electrode spacing and stirring speed has been optimized for removal of Biochemical oxygen demand (BOD and Total dissolved solids (TDS. It was observed that the performance of electrocoagulation process increased using punched electrode. Also, the less operating cost noticed in punched electrode as compared to a plane electrode for (70–80% removal of BOD and TDS. These data would be useful in designing of an EC reactor to obtain high removal efficiency at low energy consumption. Keywords: Electrocoagulation, Sewage wastewater, Aluminum, Plane, Punched electrode

  20. Grey water treatment by a continuous process of an electrocoagulation unit and a submerged membrane bioreactor system

    KAUST Repository

    Bani-Melhem, Khalid; Smith, Edward

    2012-01-01

    This paper presents the performance of an integrated process consisting of an electro-coagulation (EC) unit and a submerged membrane bioreactor (SMBR) technology for grey water treatment. For comparison purposes, another SMBR process without

  1. Efficacy and satisfaction rate comparing endometrial ablation by rollerball electrocoagulation to uterine balloon thermal ablation in a randomised controlled trial.

    NARCIS (Netherlands)

    Zon-Rabelink, I.A.A. van; Vleugels, M.P.; Merkus, J.M.W.M.; Graaf, R.M. de

    2004-01-01

    OBJECTIVE: To compare two methods of endometrial ablation, hysteroscopic rollerball electrocoagulation (RBE) and non-hysteroscopic uterine balloon thermal ablation (Thermachoice trade mark ), regarding efficacy for reducing dysfunctional uterine bleeding and patients satisfaction rate. METHODS: A

  2. Effects of water chemistry on arsenic removal from drinking water by electrocoagulation.

    Science.gov (United States)

    Wan, Wei; Pepping, Troy J; Banerji, Tuhin; Chaudhari, Sanjeev; Giammar, Daniel E

    2011-01-01

    Exposure to arsenic through drinking water poses a threat to human health. Electrocoagulation is a water treatment technology that involves electrolytic oxidation of anode materials and in-situ generation of coagulant. The electrochemical generation of coagulant is an alternative to using chemical coagulants, and the process can also oxidize As(III) to As(V). Batch electrocoagulation experiments were performed in the laboratory using iron electrodes. The experiments quantified the effects of pH, initial arsenic concentration and oxidation state, and concentrations of dissolved phosphate, silica and sulfate on the rate and extent of arsenic removal. The iron generated during electrocoagulation precipitated as lepidocrocite (γ-FeOOH), except when dissolved silica was present, and arsenic was removed by adsorption to the lepidocrocite. Arsenic removal was slower at higher pH. When solutions initially contained As(III), a portion of the As(III) was oxidized to As(V) during electrocoagulation. As(V) removal was faster than As(III) removal. The presence of 1 and 4 mg/L phosphate inhibited arsenic removal, while the presence of 5 and 20 mg/L silica or 10 and 50 mg/L sulfate had no significant effect on arsenic removal. For most conditions examined in this study, over 99.9% arsenic removal efficiency was achieved. Electrocoagulation was also highly effective at removing arsenic from drinking water in field trials conducted in a village in Eastern India. By using operation times long enough to produce sufficient iron oxide for removal of both phosphate and arsenate, the performance of the systems in field trials was not inhibited by high phosphate concentrations. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. General Potential-Current Model and Validation for Electrocoagulation

    International Nuclear Information System (INIS)

    Dubrawski, Kristian L.; Du, Codey; Mohseni, Madjid

    2014-01-01

    A model relating potential and current in continuous parallel plate iron electrocoagulation (EC) was developed for application in drinking water treatment. The general model can be applied to any EC parallel plate system relying only on geometric and tabulated input variables without the need of system-specific experimentally derived constants. For the theoretical model, the anode and cathode were vertically divided into n equipotential segments in a single pass, upflow, and adiabatic EC reactor. Potential and energy balances were simultaneously solved at each vertical segment, which included the contribution of ionic concentrations, solution temperature and conductivity, cathodic hydrogen flux, and gas/liquid ratio. We experimentally validated the numerical model with a vertical upflow EC reactor using a 24 cm height 99.99% pure iron anode divided into twelve 2 cm segments. Individual experimental currents from each segment were summed to determine total current, and compared with the theoretically derived value. Several key variables were studied to determine their impact on model accuracy: solute type, solute concentration, current density, flow rate, inter-electrode gap, and electrode surface condition. Model results were in good agreement with experimental values at cell potentials of 2-20 V (corresponding to a current density range of approximately 50-800 A/m 2 ), with mean relative deviation of 9% for low flow rate, narrow electrode gap, polished electrodes, and 150 mg/L NaCl. Highest deviation occurred with a large electrode gap, unpolished electrodes, and Na 2 SO 4 electrolyte, due to parasitic H 2 O oxidation and less than unity current efficiency. This is the first general model which can be applied to any parallel plate EC system for accurate electrochemical voltage or current prediction

  4. Theoretical Study of Amplitude Modulation Application during Radio Frequency Electrocoagulation

    Directory of Open Access Journals (Sweden)

    V. A. Karpuhin

    2015-01-01

    Full Text Available This article concerns the investigation results of influence of the amplitude-modulated acting signal parameters on the thermoelectric characteristics of biological tissues for a specified geometry of the working electrode section during RF mono-polar electrocoagulation. The geometric model ‘electrode - a biological tissue’ was suggested to study the distribution of power and temperature fields in biological tissue during mono-polar coagulation. The model of biological tissue is represented as a cylinder and the needle electrode is an ellipsoid immersed in the biological tissue. The heat and quasi-electrostatics equations are used as a mathematical model. These equations are solved in Comsol Multiphysics environment.As a result, we have got the following findings: the technique of calculating parameters of the PAM acting signal which has a fixed carrier frequency for the needle electrode of a specified geometry and the immersion depth in biological tissues is suggested. Parameters of PAM signal are determined for this electrode geometry. These parameters provide a 60 ... 80°C heating range of biological tissues near the working part of the tool for different amplitudes of acting signal during RF coagulation. It has been found out that both the temperature and the relaxation frequency of biological tissue depend on exposure time for the needle electrode of a specified geometry and immersion depth of the working part of tool into biological tissue.It is shown that the relaxation frequency of the biological tissue, subjected to the radiofrequency pulses, linearly depends on its heating temperature and can be used as a numerical criterion for maintaining the specified temperature conditions. It is found that the relaxation frequency of the biological tissue depends on the contact area of the tool working part and biological tissues. To reduce this dependence it is necessary to provide automatic current control of the output action.

  5. Feasibility assessment of electrocoagulation towards a new sustainable wastewater treatment.

    Science.gov (United States)

    Rodriguez, Jackson; Stopić, Srećko; Krause, Gregor; Friedrich, Bernd

    2007-11-01

    Electrocoagulation (EC) may be a potential answer to environmental problems dealing with water reuse and rational waste management. The aim of this research was to assess the feasibility of EC-process for industrial contaminated effluents from copper production, taking into consideration technical and economical factors. EC-technology claims to offer efficient removal rates for most types of wastewater impurities at low power consumption and without adding any precipitating agents. Real wastewater from Saraka stream with high concentrations of heavy metals was provided by RTB-BOR, a Serbian copper mining and smelting complex. Runs were performed on a 10 l EC-reactor using aluminum plates as sacrificial electrodes and powered by a 40 A supply unit. Results concerning key factors like pH, conductivity and power consumption were measured in real time. Analysis of dissolved metal concentrations before and after treatment were carried out via ICP-OES and confirmed by an independent test via AAS. Several aspects were taken into account, including current density, conductivity, interfacial resistivity and reactor settings throughout the runs, in order to analyze all possible factors playing a role in neutralization and metal removal in real industrial wastewater. Electrode configurations and their effects on energy demand were discussed and exemplified based on fundamentals of colloidal and physical chemistry. Based on experimental data and since no precipitating agents were applied, the EC-process proved to be not only feasible and environmentally-friendly, but also a cost-effective technology The EC-technology provides strategic guidelines for further research and development of sustainable water management processes. However, additional test series concerning continuous operation must be still performed in order to get this concept ready for future large-scale applications.

  6. Electrocoagulation Process for Treatment of Detergent and Phosphate

    Directory of Open Access Journals (Sweden)

    Afshin Takdastan

    2017-01-01

    Full Text Available Background & Aims of the Study: Detergent and phosphate are one of the main and vital threats (eutrophication phenomenon and production of synthetic foam for the source of drinking water, agriculture and industrial uses in the Ahvaz, Iran that threaten human health. The aim of this study is the evaluation of the efficiency of the electrocoagulation (EC process in the removal of detergent and phosphate from car wash effluent. Materials & Methods: In this experimental study, we used a glass tank with a volume of 2-4 liters (effective volume of 2 liters containing 4 electrode-plate iron and aluminum (AL-AL, AL-Fe, Fe-Fe. Bipolar method was used to convert alternative electricity to direct; electrodes were connected to a power supply. Daily samples were collected from different car washes sewage. Initial PHs of samples was from 7 to 9. At first, different tests were performed on primary samples. Reaction times were set for 90, 60 and 30 minutes with middle intervals of 2 cm. Results: According to the result of this study, percentage of phosphate removal in the EC with Al-Fe electrode, with an optimum pH = 7, has been from 34 % (in the 10 Volt to 78% (in the 30 Volt. Percentage of detergent removal in the EC with AL electrode, with an optimum pH = 7, has been from 68 % (in the 10 Volt to 94% (in the 30 Volt. Conclusions: Altogether, it was found that this method can be used as a confident and convenient method for treating car wash effluent and according to the highest removal efficiency of the process, effluent can be discharged safely into the environment.

  7. A case of reccuring giant condyloma of vulva in infant without sexual abuse successfully treated with electrocoagulation in Benin.

    Science.gov (United States)

    Akpadjan, Fabrice; Adégbidi, Hugues; Attinsounon, Cossi Angelo; Koudoukpo, Christiane; Dégboé, Bérénice; Agbessi, Nadège; Atadokpèdé, Félix

    2017-01-01

    We report here a case of giant vulval condyloma in a two-year-old infant infected by her "baby sitter" without sexual abuse. Treated by surgical excision coupled with electrocoagulation, it was noted a rapid recurrence two weeks after treatment requiring a second electrocoagulation session. More than a year later, no lesion was noted, thus demonstrating therapeutic success. The unavailability of imiquimod in our context requires a systematic use of invasive treatment regardless of the age of the patient.

  8. Electrocoagulation mechanism of perfluorooctanoate (PFOA) on a zinc anode: Influence of cathodes and anions.

    Science.gov (United States)

    Wang, Yujuan; Lin, Hui; Jin, Fangyuan; Niu, Junfeng; Zhao, Jinbo; Bi, Ying; Li, Ying

    2016-07-01

    Batch experiments were conducted to investigate the effects of cathode materials and anions (Cl(-), SO4(2-), NO3(-), and CO3(2-)/HCO3(-)) on perfluorooctanoate (PFOA) removal in electrocoagulation process using zinc anode. The results indicated that the hydroxide flocs generated in-situ in the electrocoagulation process using the stainless steel rod as cathode were more effective than those using aluminum rod as cathode for the removal of PFOA after 20min of electrocoagulation at a current density of 0.5mAcm(-2). Hydroxide flocs generated in-situ in the electrocoagulation in the presence of Cl(-)/NO3(-) could effectively remove PFOA from aqueous solution with the removal ratios of 99.7%/98.1% and 98.9%/97.3% using stainless steel rod and aluminum rod as cathode, respectively. However, the PFOA removal ratios were 96.2%/4.1% and 7.4%/4.6% using stainless steel rod and aluminum rod as cathode, respectively, in the presence of SO4(2-) and CO3(2-)/HCO3(-). The different removal ratios of PFOA during the electrocoagulation process were primarily due to the fact that the hydroxide flocs generated in-situ were different in the presence of diverse cathodes and anions. We firstly demonstrated that Zn0.70Al0.30(OH)2(CO3)0.15·xH2O and ZnO generated in-situ in the electrocoagulation process (except for CO3(2-)/HCO3(-)) using zinc anode and aluminum/stainless steel rod cathode governed the sorption of PFOA. The adsorbent hydroxide flocs in-situ generated in the presence of Cl(-) could effectively remove PFOA from aqueous solution containing CO3(2-)/HCO3(-) anion at the initial hydroxide flocs concentration of 2000mgL(-1). These results provided an effective and alternative method to remove PFOA from aqueous solution containing CO3(2-)/HCO3(-) anion. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Change in the microbiocenosis of waste waters containing SPAV under the influence of electrocoagulation

    Energy Technology Data Exchange (ETDEWEB)

    Klyshko, G.M.; Prokazov, G.F.; Zimenko, T.G.

    1981-01-01

    The change in the microbial cenosis of industrial waste waters during their treatment by the method of electrocoagulation was investigated. The bactericidal action of electrocoagulation on the microflora was ascertained. The total count of microorganisms and the number of individual groups of microbes under the influence of the treatment decreased by a factor of ten, and the content of bacteria of the E. coli group - by a factor of several thousand. On treatment of the waste waters with an electrical current voltage of 80 V complete removal of chromium and reduction in SPAV content by 45% were obtained. The method can be used for local purification of waste waters from leather-tanning kombinats.

  10. Decolorisation of wastewater with a high percentage of indigo by the electro-coagulation method

    International Nuclear Information System (INIS)

    Mejia, Claudia; Osorio Victor

    2003-01-01

    The electrochemical technology has enlarged its participation in the industry and it has been developed quickly like a strong and competitive alternative in an important number of processes; in the last years, one that is developing with force is the treatment of industrial effluents. In many cases, these methods are advantageous for their low or null consumption of reagents, what makes them environmentally attractiveness; this treatment technique uses as matter a clean reagent it prevails: the electric power. The fading is generally obtained by electro-oxidation with non-soluble anodes or for electro-coagulation with soluble anodes in those that the hydroxides of the metal resultants adsorbent the coloring. The purpose of this work is discoloring the residual waters of an industrial laundry by means of electro-coagulation

  11. Severe hematuria after transurethral electrocoagulation in a patient with an arteriovesical fistula.

    Science.gov (United States)

    Zheng, Xiangyi; Lin, Yiwei; Chen, Bin; Zhou, Xianyong; Zhou, Xiaofeng; Shen, Yuehong; Xie, Liping

    2013-12-01

    Arteriovesical fistulas are extremely rare. Only eleven cases were previously reported in the literature. They can occur iatrogenically, traumatically or spontaneously. We report an unusual case of a 62-year-old woman with arteriovesical fistula that developed fatal hematuria after transurethral electrocoagulation. Computed tomography (CT) and selective angiography revealed a pseudoaneurysm of the right superior vesical artery with arteriovesical fistula formation, which was managed by transarterial embolization. Contrast enhanced CT or CT angiography should be performed when a pulsatile hemorrhage is revealed during cystoscopy. Therapeutic vesical arterial embolization should be considered as a safe and effective procedure for arteriovesical fistulas. Transurethral electrocoagulation may cause severe hematuria for pulsatile bladder bleeding in patients with pelvic vascular malformation.

  12. Removal of COD and turbidity to improve wastewater quality using electrocoagulation technique

    International Nuclear Information System (INIS)

    Mohd Faiqun Niam; Fadil Othman; Johan Sohaili; Zulfa Fauzia

    2007-01-01

    Electrocoagulation (EC) is becoming a popular process to be used for wastewater treatment. The removal of COD and turbidity from wastewater by EC using iron (Fe) electrode material was investigated in this paper. Several working parameters, such as pH, current density, and operating time were studied in an attempt to achieve a higher removal capacity. Wastewater sample was made from milk powder with initial COD of 1140 mgL -1 and turbidity of 491 NTU. Current density was varied from 3.51 to 5.62 mA cm -2 , and operating time of between 30 and 50 minutes. The results show that the effluent wastewater was very clear and its quality exceeded the direct discharge standard. The removal efficiencies of COD and turbidity were high, being more than 65 % and 95 %. In addition, the experimental results also show that the electrocoagulation can neutralize pH of wastewater. (author)

  13. Optimization of the Electrocoagulation Process for Removal of Cr(VI Using Taguchi Method

    Directory of Open Access Journals (Sweden)

    Masoud Asadi Habib

    2012-01-01

    Full Text Available The aim of this study was to optimize electrocoagulation process for removal of chromium (VI using Taguchi method. An elecrtrocoagulation reactor with six parallel electrodes was used in this study. For this purpose, effects of 7 parameters such as electrode material, electric current, time of reactions, initial pH, initial voltage, initial chromium concentration and rpm of impeller (agitation intensity in two different levels were studied. Model of "OA_32" of Taguchi experimental design method was used. Among the above-mentioned parameters, electric current and electrode material had highest effects and rpm of impeller had the lowest effect on the electrocoagulation performance. According to the obtained results, highest chromium removal (168.33 mg/L observed in the following conditions: electric current=3A, time of reaction=20min, initial pH=4, initial voltage=6v, initial chromium concentration=400mg/L, rpm of impeller=0rpm and iron as electrode material

  14. Removal of micropollutants from municipal wastewater by graphene adsorption and simultaneous electrocoagulation/electrofiltration process.

    Science.gov (United States)

    Yang, Gordon C C; Tang, Pei-Ling; Yen, Chia-Heng

    2017-04-01

    In this work the optimal operating conditions for removing selected micropollutants (also known as emerging contaminants, ECs) from actual municipal wastewater by graphene adsorption (GA) and simultaneous electrocoagulation/electrofiltration (EC/EF) process, respectively, were first determined and evaluated. Then, performance and mechanisms for the removal of selected phthalates and pharmaceuticals from municipal wastewater simultaneously by the GA and EC/EF process were further assessed. ECs of concern included di-n-butyl phthalate (DnBP), di-(2-ethylhexyl) phthalate (DEHP), acetaminophen (ACE), caffeine (CAF), cefalexin (CLX) and sulfamethoxazole (SMX). It was found that GA plus EC/EF process yielded the following removal efficiencies: DnBP, 89 ± 2%; DEHP, 85 ± 3%; ACE, 99 ± 2%; CAF, 94 ± 3%; CLX, 100 ± 0%; and SMX, 98 ± 2%. Carbon adsorption, size exclusion, electrostatic repulsion, electrocoagulation, and electrofiltration were considered as the main mechanisms for the removal of target ECs by the integrated process indicated above.

  15. Effect of some operational parameters on the arsenic removal by electrocoagulation using iron electrodes

    OpenAIRE

    Can, Berrin Zeliha; Boncukcuoglu, Recep; Yilmaz, Alper Erdem; Fil, Baybars Ali

    2014-01-01

    Arsenic contamination of drinking water is a global problem that will likely become more apparent in future years as scientists and engineers measure the true extent of the problem. Arsenic poisoning is preventable though as there are several methods for easily removing even trace amounts of arsenic from drinking water. In the present study, electrocoagulation was evaluated as a treatment technology for arsenic removal from aqueous solutions. The effects of parameters such as initial pH, curr...

  16. Removal of Fe(II) from tap water by electrocoagulation technique

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, D.; Solanki, H. [Department of Chemical Engineering, Indian Institute of Technology, Guwahati 781039 (India); Purkait, M.K. [Department of Chemical Engineering, Indian Institute of Technology, Guwahati 781039 (India)], E-mail: mihir@iitg.ernet.in

    2008-06-30

    Electrocoagulation (EC) is a promising electrochemical technique for water treatment. In this work electrocoagulation (with aluminum as electrodes) was studied for iron Fe(II) removal from aqueous medium. Different concentration of Fe(II) solution in tap water was considered for the experiment. During EC process, various amorphous aluminum hydroxides complexes with high sorption capacity were formed. The removal of Fe(II) was consisted of two principal steps; (a) oxidation of Fe(II) to Fe(III) and (b) subsequent removal of Fe(III) by the freshly formed aluminum hydroxides complexes by adsorption/surface complexation followed by precipitation. Experiments were carried out with different current densities ranging from 0.01 to 0.04 A/m{sup 2}. It was observed that the removal of Fe(II) increases with current densities. Inter electrode distance was varied from 0.005 to 0.02 m and was found that least inter electrode distance is suitable in order to achieve higher Fe(II) removal. Other parameters such as conductivity, pH and salt concentration were kept constant as per tap water quality. Satisfactory iron removal of around 99.2% was obtained at the end of 35 min of operation from the initial concentration of 25 mg/L Fe(II). Iron concentration in the solution was determined using Atomic absorption spectrophotometer. By products obtained from the electrocoagulation bath were analyzed by SEM image and corresponding elemental analysis (EDAX). Cost estimation for the electrocoagulation was adopted and explained well. Up to 15 mg/L of initial Fe(II) concentration, the optimum total cost was 6.05 US$/m{sup 3}. The EC process for removing Fe(II) from tap water is expected to be adaptable for household use.

  17. Removal of dexamethasone from aqueous solution and hospital wastewater by electrocoagulation

    International Nuclear Information System (INIS)

    Arsand, Daniel R.; Kümmerer, Klaus; Martins, Ayrton F.

    2013-01-01

    This study is concerned with the removal of the anti-inflammatory dexamethasone from aqueous solution and hospital wastewater by electrocoagulation. The variation of the toxicity during the electrocoagulation was also studied through experiments that were designed and optimized by means of response surface methodology. The coagulation efficiency was evaluated by measuring the dexamethasone concentration by high performance liquid chromatography coupled to a diode array detector. In addition, variation was evaluated through a Vibrio fischeri test. The results showed an increase in the removal of dexamethasone (up to 38.1%) with a rise of the current applied and a decrease of the inter-electrode distance, in aqueous solutions. The application to hospital effluent showed similar results for the removal of dexamethasone. The main effect of the electrocoagulation was that it removed colloids and reduced the organic load of the hospital wastewater. Regarding the current applied, the calculated energy efficiency was 100%. Without pH adjustment of the aqueous solution or hospital wastewater, the residual aluminum concentration always remained lower than 10 mg L −1 , and, with adjustment (to pH 6.5), lower than 0.30 mg L −1 , at the final stage. No toxicity variation was observed during the electrocoagulation process in aqueous solution, either in the presence or absence of dexamethasone. - Highlights: ► Removal of DEX and organic load from aqueous solution and hospital wastewater by EC ► Evaluation of the toxicity during the removal of DEX by EC ► Suggestion of the EC process as a pretreatment for subsequent processes

  18. Post-polypectomy electrocoagulation syndrome: a rare cause of acute abdominal pain

    Science.gov (United States)

    Jehangir, Asad; Bennett, Kyle M.; Rettew, Andrew C.; Fadahunsi, Opeyemi; Shaikh, Bilal; Donato, Anthony

    2015-01-01

    While generally safe, the most feared complication of colonoscopy is perforation of the colon, occurring in nearly 1 in 1,000 procedures, and is more common when polypectomy is performed and electrocautery is used. Less commonly known is the post-polypectomy electrocoagulation syndrome, a transmural burn of the colon which mimics the signs and symptoms of perforation as well as the time course, but follows a benign course and can be treated conservatively. PMID:26486121

  19. Effect of electrolyte nature on kinetics of remazol yellow G removal by electrocoagulation

    Science.gov (United States)

    Rajabi, M.; Bagheri-Roochi, M.; Asghari, A.

    2011-10-01

    The present study describes an electrocoagulation process for the removal of remazol yellow G from dye solutions using Iron as the anode and Steel as the cathode. Pseudo-first-order, pseudo-second-order and intraparticle diffusion models were used to analyze the kinetic data obtained at different concentrations in different conditions. The adsorption kinetics was well described by the pseudo-second-order kinetic model.

  20. Removal of dexamethasone from aqueous solution and hospital wastewater by electrocoagulation

    Energy Technology Data Exchange (ETDEWEB)

    Arsand, Daniel R., E-mail: danielarsand@pelotas.ifsul.edu.br [Chemistry Department, Federal University of Santa Maria, RS (Brazil); Kümmerer, Klaus, E-mail: klaus.kuemmerer@leuphana.de [Institute for Environmental Chemistry, Leuphana University Lüneburg (Germany); Martins, Ayrton F., E-mail: martins@quimica.ufsm.br [Chemistry Department, Federal University of Santa Maria, RS (Brazil)

    2013-01-15

    This study is concerned with the removal of the anti-inflammatory dexamethasone from aqueous solution and hospital wastewater by electrocoagulation. The variation of the toxicity during the electrocoagulation was also studied through experiments that were designed and optimized by means of response surface methodology. The coagulation efficiency was evaluated by measuring the dexamethasone concentration by high performance liquid chromatography coupled to a diode array detector. In addition, variation was evaluated through a Vibrio fischeri test. The results showed an increase in the removal of dexamethasone (up to 38.1%) with a rise of the current applied and a decrease of the inter-electrode distance, in aqueous solutions. The application to hospital effluent showed similar results for the removal of dexamethasone. The main effect of the electrocoagulation was that it removed colloids and reduced the organic load of the hospital wastewater. Regarding the current applied, the calculated energy efficiency was 100%. Without pH adjustment of the aqueous solution or hospital wastewater, the residual aluminum concentration always remained lower than 10 mg L{sup −1}, and, with adjustment (to pH 6.5), lower than 0.30 mg L{sup −1}, at the final stage. No toxicity variation was observed during the electrocoagulation process in aqueous solution, either in the presence or absence of dexamethasone. - Highlights: ► Removal of DEX and organic load from aqueous solution and hospital wastewater by EC ► Evaluation of the toxicity during the removal of DEX by EC ► Suggestion of the EC process as a pretreatment for subsequent processes.

  1. Removal of Fe(II) from tap water by electrocoagulation technique

    International Nuclear Information System (INIS)

    Ghosh, D.; Solanki, H.; Purkait, M.K.

    2008-01-01

    Electrocoagulation (EC) is a promising electrochemical technique for water treatment. In this work electrocoagulation (with aluminum as electrodes) was studied for iron Fe(II) removal from aqueous medium. Different concentration of Fe(II) solution in tap water was considered for the experiment. During EC process, various amorphous aluminum hydroxides complexes with high sorption capacity were formed. The removal of Fe(II) was consisted of two principal steps; (a) oxidation of Fe(II) to Fe(III) and (b) subsequent removal of Fe(III) by the freshly formed aluminum hydroxides complexes by adsorption/surface complexation followed by precipitation. Experiments were carried out with different current densities ranging from 0.01 to 0.04 A/m 2 . It was observed that the removal of Fe(II) increases with current densities. Inter electrode distance was varied from 0.005 to 0.02 m and was found that least inter electrode distance is suitable in order to achieve higher Fe(II) removal. Other parameters such as conductivity, pH and salt concentration were kept constant as per tap water quality. Satisfactory iron removal of around 99.2% was obtained at the end of 35 min of operation from the initial concentration of 25 mg/L Fe(II). Iron concentration in the solution was determined using Atomic absorption spectrophotometer. By products obtained from the electrocoagulation bath were analyzed by SEM image and corresponding elemental analysis (EDAX). Cost estimation for the electrocoagulation was adopted and explained well. Up to 15 mg/L of initial Fe(II) concentration, the optimum total cost was 6.05 US$/m 3 . The EC process for removing Fe(II) from tap water is expected to be adaptable for household use

  2. Efficiency of Electrocoagulation for Removal of Reactive Yellow 14 from Aqueous Environments

    OpenAIRE

    Ahmad Reza Yaria; Mostafa Alizadeh; Sara Hashemi; Hamed Biglari

    2013-01-01

    Background & Aims of the Study: Discharge of textile industry colored wastewater without enough treatment into natural water resources cause serious pollution. Most of the conventional wastewater treatment methods are not effective enough to remove these dyes from wastewater. In this study, efficiency of electrocoagulation process with iron electrodes for treatment of Reactive Yellow 14 dye from synthetic solution has been studied and concluded. Materials & Methods: This exper...

  3. Thermodynamic Studies of the Arsenic Adsorption on Iron Species Generated by Electrocoagulation

    OpenAIRE

    Parga, J. R.; Vazquez, V.; Moreno, H.

    2009-01-01

    Protection of global environment and sustainable sources of clean water are a necessity for human survival. The wide use of heavy metals by modern industries has generated heavy metals containing wastes and by-products. Specifically, large quantities of arsenic compounds are being discharged into the environment. The full potential of Electrocoagulation (EC) with air injection as an alternative wastewater treatment technique to remove arsenic from water showed more than 99 percent of removal ...

  4. Treatment of Synthetic Wastewater Containing Reactive Red 198 by Electrocoagulation Process

    OpenAIRE

    N.M Mahmoodi; A Ameri; M Gholami; A Jonidi jafari; A Dalvand

    2011-01-01

    "nBackground and Objectives: Discharge of textile colored wastewater industries without providing enough treatment in water bodies, is harmful for human and aquatic organisms and poses serious damages to the environment. Most of conventional wastewater treatment methods don't have enough efficiency to remove textile dyes from colored wastewater; thus in this research the efficiency of electrocoagulation treatment process with aluminum electrodes for treatment of a synthetic wastewater co...

  5. Studies on Removal of Dyes from wastewater using Electro-coagulation Process

    OpenAIRE

    N B. Patel; B D. Soni; J P. Ruparelia

    2000-01-01

    Electro-coagulation (EC) is one of the effective techniques to remove colour, COD and organic compounds from wastewater. In this paper electro coagulation technique has been used for the removal of colour and COD from dye solutions containing Direct Black 22 and Acid Red 97 using batch process. For batch the process effect of operational parameters such as current density, initial pH of the solution, time of electrolysis and electrode materials were studied to attempt max...

  6. THE EFFICIENCY OF ELECTROCOAGULATION PROCESS USING ALUMINUM ELECTRODES IN REMOVAL OF HARDNESS FROM WATER

    Directory of Open Access Journals (Sweden)

    M. Malakootian ، N. Yousefi

    2009-04-01

    Full Text Available There are various techniques for removal of water hardness each with its own special advantages and disadvantages. Electrochemical or electrocoagulation method due to its simplicity has gained a great attention and is used for removal of various ions and organic matters. The aim of the present study was to investigate the efficiency of this technique in removal of water hardness under different conditions. This experimental study was performed using a pilot plant. The applied pilot was comprised of a reservoir containing aluminum sheet electrodes. The electrodes were connected as monopolar and a power supply was used for supplying direct electrical current. Drinking water of Kerman (southeast of Iran was used in the experiments. The efficiency of the system in three different pH, voltages and time intervals were determined. Results showed the efficiency of 95.6% for electrocoagulation technique in hardness removal. pH and electrical potential had direct effect on hardness removal in a way that the highest efficiency rate was obtained in pH=10.1, potential difference of 20 volt and detention time of 60 minutes. Considering the obtained efficiency in the present study, electrocoagulation technique may be suggested as an effective alternative technique in hardness removal.

  7. Performance of Electrocoagulation Process in the Removal of Total Coliform and Hetrotrophic Bacteria from Surface Water

    Directory of Open Access Journals (Sweden)

    Jamshid Derayat

    2015-03-01

    Full Text Available Electrocoagulation is an electrochemical method for the treatment of water and wastewater. The present cross-sectional study was designed to investigate the removal efficiency of total coliform and heterotrophic bacteria from surface water using the process. For this purpose, water samples were taken from the drinking water intake at Suleiman-Shahsonghur Dam. The electrocoagulation process was carried out in a Plexiglas reactor in the batch mode with Al and Fe used electrodes. The experiment design was carried out using the Design Expert Software (Stat-Ease Inc., Ver. 6.0.6. After each run, the values of metals dissolved due to anode electrode dissolution were measured using the Inductively Coupled Plasma (ICP and the results were analyzed using the RSM model. Results revealed maximum removal efficiencies of 100% and 89.1% for total coliform and heterotrophic bacteria using the Al electrode, respectively. Also, maximum removal efficiencies using the Fe electrode for the same pollutants were 100% and 76.1%. The measurements clearly indicate that the quantities of Al and Fe released in water were higher than the recommended values. While the electrocoagulation process showed to be effective in removing microbial agents from surface waters, the high concentrations of dissolved metals due to the dissolution of the anode electrode seem to remain a health problem that requires optimal conditions to be determined for acheiving standard concentrations of the dissolved metals.

  8. Fluoride Removal From Drinking Water by Electrocoagulation Using Iron and Aluminum Electrodes

    Directory of Open Access Journals (Sweden)

    Takdastan

    2014-07-01

    Full Text Available Background Existence of fluoride in drinking water above the permissible level causes human skeletal fluorosis. Objectives Electrocoagulation by iron and aluminum electrodes was proposed for removing fluoride from drinking water. Materials and Methods Effects of different operating conditions such as treatment time, initial pH, applied voltage, type and number of electrodes, the spaces between aluminum and iron electrodes, and energy consumption during electrocoagulation were investigated in the batch reactor. Variable concentrations of fluoride solution were prepared by mixing proper amounts of sodium fluoride with deionized water. Results Experimental results showed that aluminum electrode is more effective in fluoride removal than iron, as in 40 minutes and initial pH of 7.5 at 20 V, the fluoride removal process reached to 97.86%. The final recommendable limit of fluoride (1.5 mg/L was obtained in 10 minutes at 20 V with the aluminum electrode. Conclusions In electrocoagulation with iron and aluminum electrodes, increase of voltage, number of electrodes and reaction time as well as decrease of the spaces between electrodes, enhanced the fluoride removal efficiency from drinking water. In addition the effect of pH and initial concentration of fluoride varied with types of electrodes.

  9. Optimization of electrocoagulation process to treat grey wastewater in batch mode using response surface methodology.

    Science.gov (United States)

    Karichappan, Thirugnanasambandham; Venkatachalam, Sivakumar; Jeganathan, Prakash Maran

    2014-01-10

    Discharge of grey wastewater into the ecological system causes the negative impact effect on receiving water bodies. In this present study, electrocoagulation process (EC) was investigated to treat grey wastewater under different operating conditions such as initial pH (4-8), current density (10-30 mA/cm2), electrode distance (4-6 cm) and electrolysis time (5-25 min) by using stainless steel (SS) anode in batch mode. Four factors with five levels Box-Behnken response surface design (BBD) was employed to optimize and investigate the effect of process variables on the responses such as total solids (TS), chemical oxygen demand (COD) and fecal coliform (FC) removal. The process variables showed significant effect on the electrocoagulation treatment process. The results were analyzed by Pareto analysis of variance (ANOVA) and second order polynomial models were developed in order to study the electrocoagulation process statistically. The optimal operating conditions were found to be: initial pH of 7, current density of 20 mA/cm2, electrode distance of 5 cm and electrolysis time of 20 min. These results indicated that EC process can be scale up in large scale level to treat grey wastewater with high removal efficiency of TS, COD and FC.

  10. Obtaining of Solids With Potential Corrosion Inhibitory Effects by Electrocoagulation Vinasse Methods

    Directory of Open Access Journals (Sweden)

    Dra. Elaine Ojeda-Armaignac

    2015-11-01

    Full Text Available In this paper, electrocoagulation experiments are performed at different vinasse samples with a viewto obtaining solids with potential corrosion inhibitory effects. Experimental tests were performed with samples of complex sugar «Argeo Martínez» Guantánamo province, «Urbano Noris Holguín province, in the antique complex Destillery-Brewery «Hatuey» of the province of Santiago de Cuba and in the rum factory of Appleton» in Kingston Jamaica. Electrocoagulation preliminary tests performed with the vinasse from distilleries of Santiago de Cuba, Guantánamo and Holguín allowed the definition of thevariables and their domain, which were considered in the design of experiments to obtain the most favorable conditions of operation. Preliminary experiments corroborated that increasing the current density and pH, increase linearly solids obtained and current density values exceeding 0,194 5 A/cm2 are not feasible because they increase the energy consumption process and the increase of solids is negligible. Validation of electrocoagulation method was demonstrated with results of the experimentaldesign from Jamaica´s vinasse, that were similar to those obtained with Cuban vinasse; reaching favorable conditions for operation at current density of 0,194 5/cm2, pH equal to 8,97 and time 5,6 min, resulting in 15,42 g of total solids for a minimum consumption of 8,44 kW·h/kg.

  11. Treatment of emulsified oily wastewater by commercial scale electrocoagulation at Vancouver shipyards

    Energy Technology Data Exchange (ETDEWEB)

    Stephenson, R.J.; Tennant, B.D. [McKay Creek Technologies Ltd., North Vancouver, BC (Canada); Hartle, D.R. [Vancouver Shipping Co. Ltd., BC (Canada); Stuckert, B. [Quantum Environmental Group, Richmond, BC (Canada)

    2002-06-01

    Some of the emulsified oily wastewater generated by the Washington Marine Group fleet and the Vancouver shipyards are from sources such as bilge water, tank wash water from gas freeing operations, ballast water, and wastewater from pressure washing equipment. The Washington Marine Group is the largest shipbuilding, ship maintenance and repair, and marine transportation company in Canada, a group to which McKay Creek Technologies belongs. A investigation was performed in an attempt to find commercially viable means of treating this wastewater. McKay Creek Technologies developed its own cleaning process. Electrocoagulation is a process based on the use of an electrical current in an electrochemical cell to coagulate contaminants in wastewater. With three years of experience gained by treating the wastewater of the Washington Marine Group operations at Vancouver shipyards using this technology, McKay Creek Technologies has found ways to treat emulsified oily wastewater simply and effectively. It has been determined that electrocoagulation is an effective treatment method for emulsified oils, poly-nuclear aromatic hydrocarbons (PAHs), poorly settling solids, poorly soluble organics, contaminants which add turbidity to water, and negatively charged metal species like arsenic, molybdenum, and phosphate. A brief history of electrocoagulation was provided, and the authors explained the process and how it was applied to the situation at Vancouver shipyards. 2 refs., 5 tabs., 1 fig.

  12. Optimizing Electrocoagulation Process for the Removal of Nitrate From Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Dehghani

    2016-01-01

    Full Text Available Background High levels of nitrate anion are frequently detected in many groundwater resources in Fars province. Objectives The present study aimed to determine the removal efficiency of nitrate from aqueous solutions by electrocoagulation process using aluminum and iron electrodes. Materials and Methods A laboratory-scale batch reactor was conducted to determine nitrate removal efficiency using the electrocoagulation method. The removal of nitrate was determined at pH levels of 3, 7, and 11, different voltages (15, 20, and 30 V, and operation times of 30, 60, and 75 min, respectively. Data were analyzed using the SPSS software version 16 (Chicago, Illinois, USA and Pearson’s correlation coefficient was used to analyze the relationship between the parameters. Results Results of the present study showed that the removal efficiency was increased from 27% to 86% as pH increased from 3 to 11 at the optimal condition of 30 V and 75 min operation time. Moreover, by increasing the reaction time from 30 V to 75 min the removal efficiency was increased from 63% to 86%, respectively (30 V and pH = 11. Pearson’s correlation analysis showed that there was a significant relationship between removal efficiency and voltage and reaction time as well (P < 0.01. Conclusions In conclusion, the electrocoagulation process can be used for removing nitrate from water resources because of high efficiency, simplicity, and relatively low cost.

  13. Optimization of electrocoagulation process to treat grey wastewater in batch mode using response surface methodology

    Science.gov (United States)

    2014-01-01

    Background Discharge of grey wastewater into the ecological system causes the negative impact effect on receiving water bodies. Methods In this present study, electrocoagulation process (EC) was investigated to treat grey wastewater under different operating conditions such as initial pH (4–8), current density (10–30 mA/cm2), electrode distance (4–6 cm) and electrolysis time (5–25 min) by using stainless steel (SS) anode in batch mode. Four factors with five levels Box-Behnken response surface design (BBD) was employed to optimize and investigate the effect of process variables on the responses such as total solids (TS), chemical oxygen demand (COD) and fecal coliform (FC) removal. Results The process variables showed significant effect on the electrocoagulation treatment process. The results were analyzed by Pareto analysis of variance (ANOVA) and second order polynomial models were developed in order to study the electrocoagulation process statistically. The optimal operating conditions were found to be: initial pH of 7, current density of 20 mA/cm2, electrode distance of 5 cm and electrolysis time of 20 min. Conclusion These results indicated that EC process can be scale up in large scale level to treat grey wastewater with high removal efficiency of TS, COD and FC. PMID:24410752

  14. Application of Electrocoagulation Process for Reactive Red 198 Dye Removal from the Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Mansooreh Dehghani

    2014-04-01

    Full Text Available Abstract Background and purpose:The main objectives of this research were to evaluating the application of electrocoagulation process for 198 dye from the aqueous phase and determining the optimum operating conditions to the dye removal using aluminum and iron electrodes. Materials and Methods:The present study was conducted in bench-scale. The spectrophotometer DR 5000 was used to determine the dye concentration. The effects of pH, retention time, voltage, dye concentration on the efficiency of electrocoagulation process were investigated. Data were analyzed in SPSS for Windows 16.0 using Pearson’scorrelation coefficient to analyze the relationship between these parameters. Results:The results showed that the optimal conditions for reactive red 198 (RR-198 dye removal from the aqueous solution are pH of 11, the voltage of 32 V, the initial dye concentration of 10 ppm, and the reaction time of 40 min. Pearson correlation analysis showed that there is a significant relationship between voltage and the reaction time with the removal efficiencies (P< 0.01. Conclusion:It was revealed that the removal efficiency of dye was directly proportional to the voltage and reaction time, but inversely proportional to the initial dye concentration. In conclusion, electrocoagulation process using two-fold iron and aluminum electrodes is an appropriate method for reducing the RR-198 dye in the aqueous phase.

  15. A comprehensive review of electrocoagulation for water treatment: Potentials and challenges.

    Science.gov (United States)

    Moussa, Dina T; El-Naas, Muftah H; Nasser, Mustafa; Al-Marri, Mohammed J

    2017-01-15

    Electrocoagulation is an effective electrochemical approach for the treatment of different types of contaminated water and has received considerable attention in recent years due its high efficiency in dealing with numerous stubborn pollutants. It has been successful in dealing with organic and inorganic contaminants with negligible or almost no generation of by-product wastes. During the past decade, vast amount of research has been devoted to utilizing electrocoagulation for the treatment of several types of wastewater, ranging from polluted groundwater to highly contaminated refinery wastewater. This paper offers a comprehensive review of recent literature that has been dedicated to utilizing electrocoagulation for water treatment, focusing on current successes on specific applications in water and wastewater treatment, as well as potentials for future applications. The paper examines such aspects as theory, potential applications, current challenges, recent developments as well as economical concerns associated with the technology. Most of the recent EC research has been focusing on pollutant-specific evaluation without paying attention to cell design, process modeling or industrial applications. This review attempts to highlight the main achievements in the area and outlines the major shortcomings with recommendations for promising research options that can enhance the technology and broaden its range of applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Elimination of Phenol and Color from Pulping Black Liquor Using Electrocoagulation Process

    Directory of Open Access Journals (Sweden)

    Nahid Rastegarfar

    2013-08-01

    Full Text Available There are many non-wood lignocelluloses resources such as wheat, rice straw and other agriculture by- products with appropriate feature for pulp production in Iran. The most major deterrent to their use is presence of pulping black liquor that due to lignin of lignocelluloses solution contains significant amounts of color and phenol compounds. The aim of this paper was investigation of the ability to remove phenol and color as the most important organic pollutants from back liquor of agri-based pulping process using electrocoagulation method. In the electrocoagulation process aluminium electrode was used and cell potential and current intensity were adjusted on 16 V and 1700 mA respectively. The effect of various treatment time (10, 25, 40, 55, 70 min and initial pH (3, 5, 7, 9, 10/5 of black liquor were investigated.The results showed that maximum of decrease obtained at pH 5 that has led to a remove capacity 78% of phenol and 98% of color in treatment time 70 min. electrocoagulation method can be used for black liquor treatment because of simple, effective and its low investment cost compared to other technologies.

  17. Efficiency of Electrocoagulation for Removal of Reactive Yellow 14 from Aqueous Environments

    Directory of Open Access Journals (Sweden)

    Ahmad Reza Yaria

    2013-09-01

    Full Text Available Background & Aims of the Study: Discharge of textile industry colored wastewater without enough treatment into natural water resources cause serious pollution. Most of the conventional wastewater treatment methods are not effective enough to remove these dyes from wastewater. In this study, efficiency of electrocoagulation process with iron electrodes for treatment of Reactive Yellow 14 dye from synthetic solution has been studied and concluded. Materials & Methods: This experiment was conducted in a batch system with a volume of 2 L that had been equipped with 4 iron electrodes. The effect of operating parameters, such as voltage, time of reaction, initial dye concentration, and interelectrode distance on the dye removal efficiency was investigated. Results: In optimum condition (pH 2, voltage 40 V, electrolysis time 25 min, and interelectrode distance 1 cm, electrocoagulation method was able to remove 99.27% of Reactive Yellow 14 from synthetic solution. Conclusions: Electrocoagulation process by iron electrode is an efficient method for removal of reactive dyes from colored solution.

  18. Treatment of real wastewater produced from Mobil car wash station using electrocoagulation technique.

    Science.gov (United States)

    El-Ashtoukhy, E-S Z; Amin, N K; Fouad, Y O

    2015-10-01

    This paper deals with the electrocoagulation of real wastewater produced from a car wash station using a new cell design featuring a horizontal spiral anode placed above a horizontal disc cathode. The study dealt with the chemical oxygen demand (COD) reduction and turbidity removal using electrodes in a batch mode. Various operating parameters such as current density, initial pH, NaCl concentration, temperature, and electrode material were examined to optimize the performance of the process. Also, characterization of sludge formed during electrocoagulation was carried out. The results indicated that the COD reduction and turbidity removal increase with increasing the current density and NaCl concentration; pH from 7 to 8 was found to be optimum for treating the wastewater. Temperature was found to have an insignificant effect on the process. Aluminum was superior to iron as a sacrificial electrode material in treating car wash wastewater. Energy consumption based on COD reduction ranged from 2.32 to 15.1 kWh/kg COD removed depending on the operating conditions. Finally, the sludge produced during electrocoagulation using aluminum electrodes was characterized by scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS) analysis.

  19. Comparison of the effects of laparoscopic bipolar electrocoagulation and intracorporeal suture application to ovarian reserve in benign ovarian cysts.

    Science.gov (United States)

    Özgönen, Hakan; Erdemoglu, Evrim; Günyeli, Ilker; Güney, Mehmet; Mungan, Tamer

    2013-04-01

    Aim of the present study is to determine the effects of bipolar electrocoagulation and intracorporeal suture on the ovarian reserve after ovarian cystectomy. Sixty patients aged 18-42 years old and with a persistent adnexal mass were recruited to the study. Patients were randomized into suture hemostasis group or bipolar hemostasis group. Laparoscopic ovarian cystectomy was performed to all patients. Hemostasis was obtained by bipolar coagulation in 30 patients and by intracorporeal sutures in 30 patients. Serum levels of FSH, LH, estradiol, inhibin B and ultrasonographic measurements (antral follicle count and ovarian volume) were analyzed and recorded at day 3 of menstrual cycle, 1 and 3 months after the surgery. Basal FSH level measurement at the postoperative third month was significantly increased to 6.96 ± 1.86 mIU/ml (p electrocoagulation group. However, the decreased ovarian volume and antral follicle count was restored at the postoperative third month in the bipolar electrocoagulation group. Preoperative and postoperative FSH, LH, estradiol and inhibin B levels and ultrasonographic measurements were similar in the intracorporeal suture group. The unwanted effect of bipolar electrocoagulation on ovarian reserve is probably transient and causes minimal damage to ovary. FSH levels may be slightly elevated. Gentle use of bipolar electrocoagulation or intracorporeal are not found to effect ovarian reserve.

  20. Fractional Factorial Design Study on the Performance of GAC-Enhanced Electrocoagulation Process Involved in Color Removal from Dye Solutions

    Directory of Open Access Journals (Sweden)

    Iuliana Gabriela Breaban

    2013-07-01

    Full Text Available The aim of this study was to determine the effects of main factors and interactions on the color removal performance from dye solutions using the electrocoagulation process enhanced by adsorption on Granular Activated Carbon (GAC. In this study, a mathematical approach was conducted using a two-level fractional factorial design (FFD for a given dye solution. Three textile dyes: Acid Blue 74, Basic Red 1, and Reactive Black 5 were used. Experimental factors used and their respective levels were: current density (2.73 or 27.32 A/m2, initial pH of aqueous dye solution (3 or 9, electrocoagulation time (20 or 180 min, GAC dose (0.1 or 0.5 g/L, support electrolyte (2 or 50 mM, initial dye concentration (0.05 or 0.25 g/L and current type (Direct Current—DC or Alternative Pulsed Current—APC. GAC-enhanced electrocoagulation performance was analyzed statistically in terms of removal efficiency, electrical energy, and electrode material consumptions, using modeling polynomial equations. The statistical significance of GAC dose level on the performance of GAC enhanced electrocoagulation and the experimental conditions that favor the process operation of electrocoagulation in APC regime were determined. The local optimal experimental conditions were established using a multi-objective desirability function method.

  1. Fractional Factorial Design Study on the Performance of GAC-Enhanced Electrocoagulation Process Involved in Color Removal from Dye Solutions.

    Science.gov (United States)

    Secula, Marius Sebastian; Cretescu, Igor; Cagnon, Benoit; Manea, Liliana Rozemarie; Stan, Corneliu Sergiu; Breaban, Iuliana Gabriela

    2013-07-10

    The aim of this study was to determine the effects of main factors and interactions on the color removal performance from dye solutions using the electrocoagulation process enhanced by adsorption on Granular Activated Carbon (GAC). In this study, a mathematical approach was conducted using a two-level fractional factorial design ( FFD ) for a given dye solution. Three textile dyes: Acid Blue 74, Basic Red 1, and Reactive Black 5 were used. Experimental factors used and their respective levels were: current density (2.73 or 27.32 A/m²), initial pH of aqueous dye solution (3 or 9), electrocoagulation time (20 or 180 min), GAC dose (0.1 or 0.5 g/L), support electrolyte (2 or 50 mM), initial dye concentration (0.05 or 0.25 g/L) and current type (Direct Current- DC or Alternative Pulsed Current- APC ). GAC-enhanced electrocoagulation performance was analyzed statistically in terms of removal efficiency, electrical energy, and electrode material consumptions, using modeling polynomial equations. The statistical significance of GAC dose level on the performance of GAC enhanced electrocoagulation and the experimental conditions that favor the process operation of electrocoagulation in APC regime were determined. The local optimal experimental conditions were established using a multi-objective desirability function method.

  2. Combined process of electrocoagulation and photocatalytic degradation for the treatment of olive washing wastewater.

    Science.gov (United States)

    Ates, Hasan; Dizge, Nadir; Yatmaz, H Cengiz

    2017-01-01

    In this study, an electrocoagulation reactor (ECR) and photocatalytic reactor (PCR) were tested to understand the performance of combined electrocoagulation and photocatalytic-degradation of olive washing wastewater (OWW). The effects of initial pH (6.0, 6.9, 8.0, 9.0), applied voltage (10.0, 12.5, 15.0 V), and operating time (30, 60, 90, 120 min) were investigated in the electrocoagulation reactor when aluminum electrodes were used as both anode and cathode. The pH, conductivity, color, chemical oxygen demand (COD), and phenol were measured versus time to determine the efficiency of the ECR and PCR process. It was observed that electrocoagulation as a single treatment process supplied the COD removal of 62.5%, color removal of 98.1%, and total phenol removal of 87% at optimum conditions as pH 6.9, applied voltage of 12.5 V, and operating time of 120 min. Moreover, final pH and conductivity were 7.7 and 980 μS/cm, respectively. On the other hand, the effect of semiconductor catalyst type (TiO 2 and ZnO) and loading (1, 2, 3 g/L) were tested using PCR as a stand-alone technique. It was found that photocatalytic degradation as a single treatment process when using 1 g/L ZnO achieved the COD removal of 46%, color removal of 99% with a total phenol removal of 41% at optimum conditions. Final pH and conductivity were 6.2 and 915 μS/cm, respectively. Among semiconductor catalysts, TiO 2 and ZnO performed identical efficiencies for both COD and total phenol removal. Moreover, combination in which electrochemical degradation was employed as a pre-treatment to the photocatalytic degradation process obtained high COD removal of 88% and total phenol, as well as color removal of 100% for the OWW. The electrochemical treatment alone was not effective, but in combination with the photocatalytic process, led to a high-quality effluent. Finally, sludge collected from the electrocoagulation process was characterized by attenuated total reflection Fourier transform infrared and X

  3. Removal of Pb, Cu, Cd, and Zn Present in Aqueous Solution Using Coupled Electrocoagulation-Phytoremediation Treatment

    Directory of Open Access Journals (Sweden)

    Francisco Ferniza-García

    2017-01-01

    Full Text Available This study presents the results of a coupled electrocoagulation-phytoremediation treatment for the reduction of copper, cadmium, lead, and zinc, present in aqueous solution. The electrocoagulation was carried out in a batch reactor using aluminum electrodes in parallel arrangement; the optimal conditions were current density of 8 mA/cm2 and operating time of 180 minutes. For phytoremediation the macrophytes, Typha latifolia L., were used during seven days of treatment. The results indicated that the coupled treatment reduced metal concentrations by 99.2% Cu, 81.3% Cd, and 99.4% Pb, while Zn increased due to the natural concentrations of the plant used.

  4. The effects of chemical coagulants on the decolorization of dyes by electrocoagulation using response surface methodology (RSM)

    Science.gov (United States)

    Butler, Erick B.; Hung, Yung-Tse; Mulamba, Oliver

    2017-09-01

    This study assessed the efficiency of electrocoagulation (ECF) coupled with an addition of chemical coagulant to decolorize textile dye. Tests were conducted using Box Behnken methodology to vary six parameters: dye type, weight, coagulant type, dose, initial pH and current density. The combination of electrocoagulation and chemical coagulation was able to decolorize dye up to 99.42 % in 30 min of treatment time which is remarkably shorter in comparison with using conventional chemical coagulation. High color removal was found to be contingent upon the dye type and current density, along with the interactions between the current density and the coagulant dose. The addition of chemical coagulants did enhanced treatment efficiency.

  5. Treatment of hospital wastewater by electrocoagulation using aluminum and iron electrodes

    Directory of Open Access Journals (Sweden)

    Mansooreh Dehghani

    2014-01-01

    Full Text Available Aims: The main goal of this study was to determine of the removal efficiency of chemical oxygen demand (COD from educational hospital waste-water using electrocoagulation process by using iron and aluminum electrodes. Materials and Methods: A laboratory-scale batch reactor was conducted to determine the removal efficiency by the electrocoagulation method. Fifty-five samples of Shahid Mohammadi Hospital waste-water in Bandar Abbas were collected for the periods of 6 months according to standard methods. The removal of COD from the waste-water was determined at pH 3, 7, and 11 in the voltage range of 10, 20, and 30 V at the operation time of 30, 45, and 60 min. Data were analyzed in SPSS (version 16 using Pearson′s correlation coefficient to analyze the relationship between these parameters. Results: The removal efficiency is increased by 6.2% with decreasing pH from 11 to 3 at the optimal condition of 30 V and 60 min operation time. By increasing the reaction time from 30 min to 60 min at voltages (10, 20, and 30 V, the removal efficiency was increased from 32.3% to 87.1%. The maximum COD removal efficiency was observed at pH 3 and voltage of 30 V and 60 min reaction time using four iron electrodes. Pearson correlation analysis showed a significant relationship between voltage and the reaction time with the removal efficiencies (P < 0.01. Conclusion: Due to the high efficiency of the electrocoagulation process and also the simplicity and relatively low-cost, it can be used for removing COD from hospital waste-water.

  6. Removal of Reactive Red 141 Dye from Synthetic Wastewater by Electrocoagulation Process: Investigation of Operational Parameters

    Directory of Open Access Journals (Sweden)

    Elham Rahmanpour Salmani

    2016-01-01

    Full Text Available Release of textile industries waste especially their dying effluent impose a serious pollution on the environment. Reactive dyes are one of the most used dyes which are recalcitrant to conventional treatment processes. In the performed project, the effectiveness of electrocoagulation process was studied on decolorization. RR141 was selected as model dye and treatment process was performed in a simple batch of electrocoagulation (EC cell using iron electrodes. Central Composite Design (CCD was used to plan study runs. Experiments were done under 5 levels of various operational parameters at bench scale. Initial concentration of dye was varied among 50 and 500ppm, pH ranging from 4-12; retention time was ranged between 3-30 minutes, 1-3cm was selected as the distance between electrodes, and current intensity studied under the range of 5-30 mA/cm2. EC treatment process of dyestuff wastewater was satisfactory at high levels of current density, pH, and retention time. While increasing the initial dye concentration and electrodes gap had a negative effect on decolorization performance. Determined optimal conditions to treat 200ml of sample were including pH: 9.68, electrode gap: 1.58cm, dye concentration: 180ppm, retention time: 10.82 minutes, and current intensity: 22.76mA/cm2. Successful removal of the model dye about 99.88% was recorded in the mentioned values of variables. Simple design and operation of the experiments can be an interesting option for implementation and applying of inexpensive electrocoagulation treatment process which was successful to reach nearly a complete decolorization.

  7. Influence of voltage input to heavy metal removal from electroplating wastewater using electrocoagulation process

    Science.gov (United States)

    Wulan, D. R.; Cahyaningsih, S.; Djaenudin

    2017-03-01

    In medium capacity, electroplating industry usually treats wastewater until 5 m3 per day. Heavy metal content becomes concern that should be reduced. Previous studies performed electrocoagulation method on laboratory scale, either batch or continuous. This study was aimed to compare the influence of voltage input variation into heavy metal removal in electroplating wastewater treatment using electrocoagulation process on laboratory-scale in order to determine the optimum condition for scaling up the reactor into pilot-scale. The laboratory study was performed in 1.5 L glass reactor in batch system using wastewater from electroplating industry, the voltage input varied at 20, 30 and 40 volt. The electrode consisted of aluminium 32 cm2 as sacrifice anode and copper 32 cm2 as cathode. During 120 min electrocoagulation process, the pH value was measured using pH meter, whereas the heavy metal of chromium, copper, iron, and zinc concentration were analysed using Atomic Absorption Spectrophotometer (AAS). Result showed that removal of heavy metals from wastewater increased due to the increasing of voltage input. Different initial concentration of heavy metals on wastewater, resulted the different detention time. At pilot-scale reactor with 30 V voltage input, chromium, iron, and zinc reached removal efficiency until 89-98%, when copper reached 79% efficiency. At 40V, removal efficiencies increased on same detention time, i.e. chromium, iron, and zinc reached 89-99%, whereas copper reached 85%. These removal efficiencies have complied the government standard except for copper that had higher initial concentration in wastewater. Kinetic rate also calculated in this study as the basic factor for scaling up the process.

  8. Phase separation and soluble pollutant removal by means of alternationg current electrocoagulation

    International Nuclear Information System (INIS)

    Farrell, C.W.; Gardner-Clayson, T.W.

    1992-01-01

    Electro-Pure Systems (EPS) has undertaken a two-year laboratory program to investigate the technical and economic viability of alternation current electrocoagulation technology (ACE Technology) for Superfund site remediation. Alternating current electrocoagulation was originally developed as a treatment technology in the early 1980s to break stable aqueous suspensions of clays and coal fines in the mining industry. The technology offers a replacement for primary chemical coagulant addition to simplify effluent treatment, realize cost savings, and facilitate recovery of fine grained products that would otherwise have been lost. The traditional approach for treatment of such effluents entails addition of organic polymers or inorganic salts to promote flocculation of fine particulates and colloidi-sized oil droplets in aqueous suspensions. These flocculated materials are than separated by sedimentation or filtration. Unfortunately, chemical coagulant addition generates voluminous, gelatinous sludges which are difficult to dewater and slow to filter. As an alternative to chemical conditioning, alternation current electrocoagulation introduces into an aqueous medium highly, charged polymetric aluminum hydroxide species which will neutralize the electrostatic charges on suspended solids and oil droplets to facilitate their agglomeration (or coagulation). These species will also coprecipitate many soluble ions. ACE Technology prompts coagulation without adding any soluble species and produces a sludge with a lower contained water content and which will filter more rapidly through separation of the hazardous components from an aqueous waste the volume of potentially toxic pollutants requiring special handling and disposal can be minimized. Waste reduction goals may be accomplished by integrating this technology into a variety of operations which generate contaminated water

  9. Removal of Diazinon from aqueous solution by electrocoagulation process using aluminum electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Amooey, Ali Akbar; Ghasemi, Shahram; Mirsoleimani-azizi, Seyed Mohammad; Gholaminezhad, Zohreh; Chaichi, Mohammad Javad [University of Mazandaran, Babolsar (Iran, Islamic Republic of)

    2014-06-15

    Electrocoagulation (EC) is an electrochemical method to treat polluted wastewaters and aqueous solutions. In this paper, the removal of Diazinon was studied by EC on aluminum electrode. The effect of several parameters such as initial concentration of Diazinon, current density, solution conductivity, effect of pH, and electrolysis time were investigated on EC performance. The obtained results showed that the removal efficiency of EC depends on the current density, initial concentration of Diazinon and electrolysis time. The optimum pH is 3 and also the solution conductivity has no significant effect on removal efficiency.

  10. Electrocoagulation of a synthetic textile effluent powered by photovoltaic energy without batteries: Direct connection behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Valero, David; Ortiz, Juan M.; Exposito, Eduardo; Montiel, Vicente; Aldaz, Antonio [Grupo de Electroquimica Aplicada y Electrocatalisis, Departamento de Quimica Fisica, Instituto Universitario de Electroquimica, Universidad de Alicante, Ap 99, Alicante 03080 (Spain)

    2008-03-15

    The feasibility of the use of an electrocoagulation system (EC) directly powered by a photovoltaic (PV) array has been demonstrated. The model pollutant used was a reactive textile dye Remazol Red RB 133. It has been proved that PV array configuration is a factor of great influence on the use of the generated power. The optimum PV array configuration must be reshaped depending on the instantaneous solar irradiation. A useful and effective methodology to adjust the EC-PV system operation conditions depending on solar irradiation has been proposed. The current flow ratio, J{sub v}, is established as the control parameter. (author)

  11. Removal of Diazinon from aqueous solution by electrocoagulation process using aluminum electrodes

    International Nuclear Information System (INIS)

    Amooey, Ali Akbar; Ghasemi, Shahram; Mirsoleimani-azizi, Seyed Mohammad; Gholaminezhad, Zohreh; Chaichi, Mohammad Javad

    2014-01-01

    Electrocoagulation (EC) is an electrochemical method to treat polluted wastewaters and aqueous solutions. In this paper, the removal of Diazinon was studied by EC on aluminum electrode. The effect of several parameters such as initial concentration of Diazinon, current density, solution conductivity, effect of pH, and electrolysis time were investigated on EC performance. The obtained results showed that the removal efficiency of EC depends on the current density, initial concentration of Diazinon and electrolysis time. The optimum pH is 3 and also the solution conductivity has no significant effect on removal efficiency

  12. Application of Taguchi optimization on the cassava starch wastewater electrocoagulation using batch recycle method

    Science.gov (United States)

    Sudibyo, Hermida, L.; Suwardi

    2017-11-01

    Tapioca waste water is very difficult to treat; hence many tapioca factories could not treat it well. One of method which able to overcome this problem is electrodeposition. This process has high performance when it conducted using batch recycle process and use aluminum bipolar electrode. However, the optimum operation conditions are having a significant effect in the tapioca wastewater treatment using bath recycle process. In this research, The Taguchi method was successfully applied to know the optimum condition and the interaction between parameters in electrocoagulation process. The results show that current density, conductivity, electrode distance, and pH have a significant effect on the turbidity removal of cassava starch waste water.

  13. Deciphering the science behind electrocoagulation to remove suspended clay particles from water.

    Science.gov (United States)

    Holt, P K; Barton, G W; Mitchell, C A

    2004-01-01

    Electrocoagulation removes pollutant material from water by a combination of coagulant delivered from a sacrificial aluminium anode and hydrogen bubbles evolved at an inert cathode. Rates of clay particle flotation and settling were experimentally determined in a 7 L batch reactor over a range of currents (0.25-2.0 A) and pollutant loadings (0.1-1.7 g/L). Sedimentation and flotation are the dominant removal mechanism at low and high currents, respectively. This shift in separation mode can be explained by analysing the reactor in terms of a published dissolved air flotation model.

  14. Treatment of highly concentrated tannery wastewater using electrocoagulation: Influence of the quality of aluminium used for the electrode

    International Nuclear Information System (INIS)

    Elabbas, S.; Ouazzani, N.; Mandi, L.; Berrekhis, F.; Perdicakis, M.; Pontvianne, S.; Pons, M-N.; Lapicque, F.; Leclerc, J-P

    2016-01-01

    Highlights: • COD and Cr(III) species can be simultaneously removed by electrocoagulation. • Cu-containing Al alloy is more efficient than pure Al as electrodes. • Dilution of too concentrated tannery wastewater is required for efficient treatment. - Abstract: This paper deals with the ability of electrocoagulation (EC) to remove simultaneously COD and chromium from a real chrome tanning wastewater in a batch stirred electro-coagulation cell provided with two aluminium-based electrodes (aluminium/copper/magnesium alloy and pure aluminium). Effects of operating time, current density and initial concentration of Cr(III) and COD have been investigated. The concentrations of pollutants have been successfully reduced to environmentally acceptable levels even if the concentrated effluent requires a long time of treatment of around 6 h with a 400 A/m"2 current density. The aluminium alloy was found to be more efficient than pure aluminium for removal of COD and chromium. Dilution of the waste has been tested for treatment: high abatement levels could be obtained with shorter time of treatment and lower current densities. Energy consumption of the electrocoagulation process was also discussed. The dilution by half of the concentrated waste leads to a higher abatement performance of both COD and chromium with the best energy efficiency.

  15. Treatment of Reactive Black 5 by combined electrocoagulation-granular activated carbon adsorption-microwave regeneration process

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Shih-Hsien, E-mail: shchang@csmu.edu.tw [Department of Public Health, Chung-Shan Medical University, 110 Chen-Kuo N. Road, Taichung 402, Taiwan (China); Wang, Kai-Sung; Liang, Hsiu-Hao; Chen, Hsueh-Yu; Li, Heng-Ching; Peng, Tzu-Huan [Department of Public Health, Chung-Shan Medical University, 110 Chen-Kuo N. Road, Taichung 402, Taiwan (China); Su, Yu-Chun; Chang, Chih-Yuan [Institute of Environmental Engineering, National Chiao-Tung University, Hsinchu, 300, Taiwan (China)

    2010-03-15

    Treatment of an azo dye, Reactive Black 5 (RB5) by combined electrocoagulation-activated carbon adsorption-microwave regeneration process was evaluated. The toxicity was also monitored by the Vibrio fischeri light inhibition test. GAC of 100 g L{sup -1} sorbed 82% of RB5 (100 mg L{sup -1}) within 4 h. RB5-loaded GAC was not effectively regenerated by microwave irradiation (800 W, 30 s). Electrocoagulation showed high decolorization of RB5 within 8 min at pH{sub 0} of 7, current density of 277 A m{sup -2}, and NaCl of 1 g L{sup -1}. However, 61% COD residue remained after treatment and toxicity was high (100% light inhibition). GAC of 20 g L{sup -1} effectively removed COD and toxicity of electrocoagulation-treated solution within 4 h. Microwave irradiation effectively regenerated intermediate-loaded GAC within 30 s at power of 800 W, GAC/water ratio of 20 g L{sup -1}, and pH of 7.8. The adsorption capacity of GAC for COD removal from the electrocoagulation-treated solution did not significantly decrease at the first 7 cycles of adsorption/regeneration. The adsorption capacity of GAC for removal of both A{sub 265} (benzene-related groups) and toxicity slightly decreased after the 6th cycle.

  16. Bacteria attenuation by iron electrocoagulation governed by interactions between bacterial phosphate groups and Fe(III) precipitates

    NARCIS (Netherlands)

    Delaire, Caroline; van Genuchten, Case M.; Amrose, Susan E.; Gadgil, Ashok J.

    2016-01-01

    Iron electrocoagulation (Fe-EC) is a low-cost process in which Fe(II) generated from an Fe(0) anode reacts with dissolved O2 to form (1) Fe(III) precipitates with an affinity for bacterial cell walls and (2) bactericidal reactive oxidants. Previous work suggests that Fe-EC is a promising treatment

  17. A comparative study of pulsed 532-nm potassium titanyl phosphate laser and electrocoagulation in the treatment of spider nevi.

    NARCIS (Netherlands)

    Erceg, A.; Greebe, R.J.; Bovenschen, H.J.; Seijger, M.M.B.

    2010-01-01

    OBJECTIVE: To assess the clinical efficacy and safety of potassium titanyl phosphate (KTP) laser treatment and electrocoagulation (EC) for the treatment of spider nevi (SN). METHOD: A randomized single-blind intrapatient comparison study was performed. A blinded observer and patients reported the

  18. Treatment of Reactive Black 5 by combined electrocoagulation-granular activated carbon adsorption-microwave regeneration process

    International Nuclear Information System (INIS)

    Chang, Shih-Hsien; Wang, Kai-Sung; Liang, Hsiu-Hao; Chen, Hsueh-Yu; Li, Heng-Ching; Peng, Tzu-Huan; Su, Yu-Chun; Chang, Chih-Yuan

    2010-01-01

    Treatment of an azo dye, Reactive Black 5 (RB5) by combined electrocoagulation-activated carbon adsorption-microwave regeneration process was evaluated. The toxicity was also monitored by the Vibrio fischeri light inhibition test. GAC of 100 g L -1 sorbed 82% of RB5 (100 mg L -1 ) within 4 h. RB5-loaded GAC was not effectively regenerated by microwave irradiation (800 W, 30 s). Electrocoagulation showed high decolorization of RB5 within 8 min at pH 0 of 7, current density of 277 A m -2 , and NaCl of 1 g L -1 . However, 61% COD residue remained after treatment and toxicity was high (100% light inhibition). GAC of 20 g L -1 effectively removed COD and toxicity of electrocoagulation-treated solution within 4 h. Microwave irradiation effectively regenerated intermediate-loaded GAC within 30 s at power of 800 W, GAC/water ratio of 20 g L -1 , and pH of 7.8. The adsorption capacity of GAC for COD removal from the electrocoagulation-treated solution did not significantly decrease at the first 7 cycles of adsorption/regeneration. The adsorption capacity of GAC for removal of both A 265 (benzene-related groups) and toxicity slightly decreased after the 6th cycle.

  19. Experimental studies on the enhanced performance of lightweight oil recovery using a combined electrocoagulation and magnetic field processes.

    Science.gov (United States)

    Liu, Yang; Yang, Jie; Jiang, Wenming; Chen, Yimei; Yang, Chaojiang; Wang, Tianyu; Li, Yuxing

    2018-08-01

    On marine oil spill, inflammable lightweight oil has characteristics of explosion risk and contamination of marine enviroment, therefore treatment of stable emulsion with micron oil droplets is urgent. This study aimed to propose a combined electrocoagulation and magnetic field processes to enhance performance of lightweight oil recovery with lower energy consumption. The effects of current density, electrolysis time, strength and direction of magnetic field on the overall treatment efficiency of the reactor were explored. Furthermore, the comparison between coupling device and only electrocoagulation through tracking oil removal in nine regions between the electrodes. The results were shown that the permanent magnets applied was found to enhance demulsification process within electrocoagulation reactor. For a given current density of 60 A m -2 at 16 min, Lorentz force downward was proved to promote the sedimentation of coagulants. As the magnetic field strength increases from 20 to 60 mT, oil removal efficiency was observed to increase and then decrease, and simultaneously energy consumption reduced and then present constantly. The results were found that the magnetic field strength of 40 mT was optimal within electrocoagulation reactor, which can not only diminishe difference of mass transfer rate along the height of vertical plate but also consume lowest energy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Treatment of highly concentrated tannery wastewater using electrocoagulation: Influence of the quality of aluminium used for the electrode

    Energy Technology Data Exchange (ETDEWEB)

    Elabbas, S.; Ouazzani, N.; Mandi, L. [Laboratoire d’Hydrobiologie, Ecotoxicologie et Assainissement (LHEA, URAC 33), Faculté de Sciences Semlalia, BP 2390, Université Cadi Ayyad, Marrakech (Morocco); Centre National d’Etude et de Recherche sur l’Eau et l’Energie (CNEREE), Université Cadi Ayyad, BP 511, Marrakech (Morocco); Berrekhis, F. [Equipe de Physico-chimie des Matériaux, Ecole Normale Supérieure, Université Cadi Ayyad, BP 2400, 40000 Marrakech (Morocco); Perdicakis, M. [Laboratoire de Chimie Physique et Microbiologie pour l’Environnement (LCPME) UMR 7564, Université de Lorraine—CNRS, 405 rue de Vandoeuvre, F-54602 Villers-lès Nancy Cedex (France); Pontvianne, S.; Pons, M-N.; Lapicque, F. [Laboratoire Réactions et Génie des Procédés (LRGP) UMR 7274, CNRS, Université de Lorraine, 1 rue Grandville, BP 20451, 54001 Nancy cedex (France); Leclerc, J-P, E-mail: jean-pierre.leclerc@univ-lorraine.fr [Laboratoire Réactions et Génie des Procédés (LRGP) UMR 7274, CNRS, Université de Lorraine, 1 rue Grandville, BP 20451, 54001 Nancy cedex (France)

    2016-12-05

    Highlights: • COD and Cr(III) species can be simultaneously removed by electrocoagulation. • Cu-containing Al alloy is more efficient than pure Al as electrodes. • Dilution of too concentrated tannery wastewater is required for efficient treatment. - Abstract: This paper deals with the ability of electrocoagulation (EC) to remove simultaneously COD and chromium from a real chrome tanning wastewater in a batch stirred electro-coagulation cell provided with two aluminium-based electrodes (aluminium/copper/magnesium alloy and pure aluminium). Effects of operating time, current density and initial concentration of Cr(III) and COD have been investigated. The concentrations of pollutants have been successfully reduced to environmentally acceptable levels even if the concentrated effluent requires a long time of treatment of around 6 h with a 400 A/m{sup 2} current density. The aluminium alloy was found to be more efficient than pure aluminium for removal of COD and chromium. Dilution of the waste has been tested for treatment: high abatement levels could be obtained with shorter time of treatment and lower current densities. Energy consumption of the electrocoagulation process was also discussed. The dilution by half of the concentrated waste leads to a higher abatement performance of both COD and chromium with the best energy efficiency.

  1. Efficiency of Aluminum and Iron Electrodes for the Removal of Heavy Metals [(Ni (II), Pb (II), Cd (II)] by Electrocoagulation Method

    Energy Technology Data Exchange (ETDEWEB)

    Khosa, Muhammad Kaleem; Jamal, Muhammad Asghar; Hussain, Amira; Muneer, Majid; Zia, Khalid Mahmood [Government College Univ., Faisalabad (Pakistan); Hafeez, Samia [Bahaud-din-Zakariya Univ., Multan (Pakistan)

    2013-06-15

    Electrocoagulation (EC) technique is applied for the treatment of wastewater containing heavy metals ions such as nickel (Ni), lead (Pb) and cadmium (Cd) by using sacrificial anodes corrode to release active coagulant flocs usually aluminium or iron cations into the solution. During electrolytic reactions hydrogen gas evolve at the cathode. All the experiments were carried out in Batch mode. The tank was filled with synthetic wastewater containing heavy metals and efficiency of electrocoagulation in combination with aluminum and iron electrodes were investigated for removal of such metals. Several parameters, such as contact time, pH, electro-coagulant concentration, and current density were optimized to achieve maximum removal efficiency (%). The concentrations of heavy metals were determined by using Atomic Absorption Spectroscopy (AAS). It is found that the electro-coagulation process has potential to be utilized for the cost-effective removal of heavy metals from wastewater specially using iron electrodes in terms of high removal efficiencies and operating cost.

  2. Efficiency of Aluminum and Iron Electrodes for the Removal of Heavy Metals [(Ni (II), Pb (II), Cd (II)] by Electrocoagulation Method

    International Nuclear Information System (INIS)

    Khosa, Muhammad Kaleem; Jamal, Muhammad Asghar; Hussain, Amira; Muneer, Majid; Zia, Khalid Mahmood; Hafeez, Samia

    2013-01-01

    Electrocoagulation (EC) technique is applied for the treatment of wastewater containing heavy metals ions such as nickel (Ni), lead (Pb) and cadmium (Cd) by using sacrificial anodes corrode to release active coagulant flocs usually aluminium or iron cations into the solution. During electrolytic reactions hydrogen gas evolve at the cathode. All the experiments were carried out in Batch mode. The tank was filled with synthetic wastewater containing heavy metals and efficiency of electrocoagulation in combination with aluminum and iron electrodes were investigated for removal of such metals. Several parameters, such as contact time, pH, electro-coagulant concentration, and current density were optimized to achieve maximum removal efficiency (%). The concentrations of heavy metals were determined by using Atomic Absorption Spectroscopy (AAS). It is found that the electro-coagulation process has potential to be utilized for the cost-effective removal of heavy metals from wastewater specially using iron electrodes in terms of high removal efficiencies and operating cost

  3. A randomized controlled trial of electrocoagulation-enabled biopsy versus conventional biopsy in the diagnosis of endobronchial lesions.

    Science.gov (United States)

    Khan, Ajmal; Aggarwal, Ashutosh N; Agarwal, Ritesh; Bal, Amanjit; Gupta, Dheeraj

    2011-01-01

    Although electrocoagulation at time of endobronchial biopsy can potentially reduce procedure-related bleeding during fiberoptic bronchoscopy (FOB), it can also impair quality of tissue specimen; credible data for either are lacking. To evaluate the impact of hot biopsy on the quality of tissue samples and to quantify the amount of procedure-related bleeding during endobronchial biopsy. In this single-center, prospective, single-blind, randomized controlled study we included adult patients referred for FOB and having endobronchial lesions. Patients were randomized to bronchial biopsy using an electrocoagulation-enabled biopsy forceps, with (EC+ group) or without (EC- group) application of electrocoagulation current (40 W for 10 s in a monopolar mode). Procedure-related bleeding was semi-quantified by observer description, as well as through a visual analogue scale. Overall quality of biopsy specimen and tissue damage were assessed and graded by a pulmonary pathologist blinded to FOB details. 160 patients were randomized to endobronchial biopsy with (n = 81) or without (n = 79) the application of electrocoagulation. There were no severe bleeding episodes in either group, and severity of bleeding in the EC+ and EC- groups was similar (median visual analogue scale scores of 14 and 16, respectively). Histopathological diagnosis was similar in the EC+ and EC- groups (77.8% and 82.3%, respectively). There was no significant difference in tissue quality between the two groups. Use of electrocoagulation-enabled endobronchial biopsy does not alter specimen quality and does not result in any significant reduction in procedure-related bleeding. Copyright © 2010 S. Karger AG, Basel.

  4. Chromium (Cr+6 Removal from Aqueous Environments by Electrocoagulation Process Using Aluminum Electrodes

    Directory of Open Access Journals (Sweden)

    Amir Hossein Mahvi

    2007-06-01

    Full Text Available The performance of electrocoagulation, with aluminum sacrificial anode, has been investigated. for removal of Cr (VI, Several working parameters, such as pollutant concentration, pH, electrical potential, COD, turbidity, and reaction time were studied in an attempt to achieve higher removal efficiency levels. Solutions of varying chromium concentrations (5-50-500 ppm were prepared. To follow the progress of the treatment, samples of 25ml were taken at 20 min intervals for up to 1 h and then filtered (0.45 μ to eliminate sludge formed during electrolysis. The pH of the initial solution was also varied to study its effects on chromium removal efficiency. Results obtained with synthetic wastewater revealed that the most effective chromium removal efficiency could be achieved when a constant pH level of 3 was maintained. In addition, increased electrical potential, within the range of 20-40V, enhanced treatment rate without affecting the charge loading, but required reduced metal ion concentrations to below admissible standard levels. The process was successfully applied to the treatment of an electroplating wastewater where an effective reduction of Cr (VI concentration below standard limits was obtained just after 20-60 min. The method was found to be highly efficient and relatively fast compared to conventional techniques. Thus, it may be concluded that electrocoagulation process has the potential to be utilized for the cost-effective removal of heavy metals from water and wastewater.

  5. Investigation of Electrocoagulation Process Efficiency for Color Removal from Polyacrylic Textile Industrial astewater

    Directory of Open Access Journals (Sweden)

    2013-08-01

    Full Text Available Dyes due to coloring nature are appearance pollutants and destroys the transparency and aesthetic quality of surface waters even at relatively low concentration. Several processes have been used for dye removal from wastewater. In recent years, electrochemical methods have been successfully employed to treat dying wastewater.In this study, the electrocoagulation method with aluminum electrodes were used for polyacrylic textile wastewater treatment. COD of wastewater was 1400mg/l. This study was conducted in laboratory scale. The sample was placed in to the electrochemical reactor contains 4 electrodes. The electrodes were connected to a DC power supply. Then the effect of the three operational parameters, electrolysis time (20-60 minutes, electrical applied current (0.5-2.5 Ampere and pH (4-9 on color and COD removal efficiency has been investigated. The results showed that the color and COD removal efficiency is a direct relation with increasing of the reaction time and inverse relation with increase of pH. Optimum operation conditions were in applied current of 1.5 A, the retention time of 60 minutes and pH of 4. In this condition, color and COD removals were 86% and 85%, respectively. This study showed that electrocoagulation process is an effective and efficient method to treatment of polyacrylic textile wastewater.

  6. Electrocoagulation with polarity switch for fast oil removal from oil in water emulsions.

    Science.gov (United States)

    Gobbi, Lorena C A; Nascimento, Izabela L; Muniz, Eduardo P; Rocha, Sandra M S; Porto, Paulo S S

    2018-05-01

    An electrocoagulation technique using a 3.5 L reactor, with aluminum electrodes in a monopolar arrangement with polarity switch at each 10 s was used to separate oil from synthetic oily water similar in oil concentration to produced water from offshore platforms. Up to 98% of oil removal was achieved after 20 min of processing. Processing time dependence of the oil removal and pH was measured and successfully adjusted to exponential models, indicating a pseudo first order behavior. Statistical analysis was used to prove that electrical conductivity and total solids depend significantly on the concentration of electrolyte (NaCl) in the medium. Oil removal depends mostly on the distance between the electrodes but is proportional to electrolyte concentration when initial pH is 8. Electrocoagulation with polarity switch maximizes the lifetime of the electrodes. The process reduced oil concentration to a value below that stipulated by law, proving it can be an efficient technology to minimize the offshore drilling impact in the environment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Application of Electrocoagulation Process Using Iron and Aluminum Electrodes for Fluoride Removal from Aqueous Environment

    Directory of Open Access Journals (Sweden)

    Edris Bazrafshan

    2012-01-01

    Full Text Available Fluoride in drinking water above permissible level is responsible for human being affected by skeletal fluorosis. The present study was carried out to assess the ability of electrocoagulation process with iron and aluminum electrodes in order to removal of fluoride from aqueous solutions. Several working parameters, such as fluoride concentration, pH, applied voltage and reaction time were studied to achieve a higher removal capacity. Variable concentrations (1, 5 and 10 mg L-1 of fluoride solutions were prepared by mixing proper amount of sodium fluoride with deionized water. The varying pH of the initial solution (3, 7 and 10 was also studied to measure their effects on the fluoride removal efficiency. Results obtained with synthetic solution revealed that the most effective removal capacities of fluoride could be achieved at 40 V electrical potential. In addition, the increase of electrical potential, in the range of 10-40 V, enhanced the treatment rate. Also comparison of fluoride removal efficiency showed that removal efficiency is similar with iron and aluminum electrodes. Finally it can be concluded that the electrocoagulation process has the potential to be utilized for the cost-effective removal of fluoride from water and wastewater.

  8. Optimization of Acid Black 172 decolorization by electrocoagulation using response surface methodology

    Science.gov (United States)

    2012-01-01

    This paper utilizes a statistical approach, the response surface optimization methodology, to determine the optimum conditions for the Acid Black 172 dye removal efficiency from aqueous solution by electrocoagulation. The experimental parameters investigated were initial pH: 4–10; initial dye concentration: 0–600 mg/L; applied current: 0.5-3.5 A and reaction time: 3–15 min. These parameters were changed at five levels according to the central composite design to evaluate their effects on decolorization through analysis of variance. High R2 value of 94.48% shows a high correlation between the experimental and predicted values and expresses that the second-order regression model is acceptable for Acid Black 172 dye removal efficiency. It was also found that some interactions and squares influenced the electrocoagulation performance as well as the selected parameters. Optimum dye removal efficiency of 90.4% was observed experimentally at initial pH of 7, initial dye concentration of 300 mg/L, applied current of 2 A and reaction time of 9.16 min, which is close to model predicted (90%) result. PMID:23369574

  9. Treatment of pulp and paper industry bleaching effluent by electrocoagulant process

    International Nuclear Information System (INIS)

    Sridhar, R.; Sivakumar, V.; Prince Immanuel, V.; Prakash Maran, J.

    2011-01-01

    The experiments were carried out in an electrocoagulation reactor with aluminum as sacrificial electrodes. The influence of electrolysis time, current density, pH, NaCl concentration, rotational speed of the stirrer and electrode distance on reduction of color, COD and BOD were studied in detail. From the experimental results, 15 mA/cm 2 current density, pH of 7, 1 g/l NaCl, 100 rpm, 28 deg, C temperature and 3 cm electrode distance were found to be optimum for maximum reduction of color, COD and BOD. The reduction of color, COD and BOD under the optimum condition were found to be 94%, 90% and 87% respectively. The electrode energy consumption was calculated and found to be varied from 10.1 to 12.9 kWh/m 3 depending on the operating conditions. Under optimal operating condition such as 15 mA/cm 2 current density, pH of 7, 1 g/l NaCl, 100 rpm, 28 deg, C temperature and 3 cm electrode distance, the operating cost was found to be 1.56 US $/m 3 . The experimental results proved that the electrocoagulation is a suitable method for treating bleaching plant effluents for reuse.

  10. How Frequency of Electrosurgical Current and Electrode Size Affect the Depth of Electrocoagulation.

    Science.gov (United States)

    Taheri, Arash; Mansoori, Parisa; Bahrami, Naeim; Alinia, Hossein; Watkins, Casey E; Feldman, Steven R

    2016-02-01

    Many factors affect the depth of electrocoagulation. To evaluate the effect of current frequency and electrode size on the depth of electrocoagulation. In this in vitro study, 4 cylindrical electrodes (2, 2.3, 3, and 4 mm) were used to apply 3 electrosurgical currents (0.4, 1.5, and 3 MHz) to bovine liver. Each electrode was placed at different points on the surface of the liver, and energy at various levels and frequencies was delivered to the tissue. Subsequently, cross-sections of the liver were analyzed. Coagulation started at the periphery of the electrode-tissue contact area. With higher energy levels, coagulation spreads to involve the remainder of the contact area. Neither the frequency nor the electrode size had any effect on this coagulation pattern. The frequency of the current also did not show any relation with depth of coagulation; however, there was a direct correlation between the size of the electrode and the depth of coagulation. Larger-tip electrodes provided deeper coagulation compared with finer-tip electrodes.

  11. Electrocoagulation of palm oil mill effluent as wastewater treatment and hydrogen production using electrode aluminum.

    Science.gov (United States)

    Nasution, M Ansori; Yaakob, Z; Ali, Ehsan; Tasirin, S M; Abdullah, S R S

    2011-01-01

    Palm oil mill effluent (POME) is highly polluting wastewater generated from the palm oil milling process. Palm oil mill effluent was used as an electrolyte without any additive or pretreatment to perform electrocoagulation (EC) using electricity (direct current) ranging from 2 to 4 volts in the presence of aluminum electrodes with a reactor volume of 20 L. The production of hydrogen gas, removal of chemical oxygen demand (COD), and turbidity as a result of electrocoagulation of POME were determined. The results show that EC can reduce the COD and turbidity of POME by 57 and 62%, respectively, in addition to the 42% hydrogen production. Hydrogen production was also helpful to remove the lighter suspended solids toward the surface. The production of Al(OH)XHO at the aluminum electrode (anode) was responsible for the flocculation-coagulation process of suspended solids followed by sedimentation under gravity. The production of hydrogen gas from POME during EC was also compared with hydrogen gas production by electrolysis of tap water at pH 4 and tap water without pH adjustment under the same conditions. The main advantage of this study is to produce hydrogen gas while treating POME with EC to reduce COD and turbidity effectively. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  12. Treatment of oily bilge water by electrocoagulation process using aluminum electrodes

    Science.gov (United States)

    Soeprijanto, Perdani, Adela Dea; Nury, Dennis Farina; Pudjiastuti, Lily

    2017-05-01

    Electrocoagulation is electrochemical water and wastewater treatment technology which is the simplest technology using an electrochemical cell where the supply of DC power is applied to the electrodes, made of aluminum metals, and the electrolyte is oily bilge water. The electrocoagulation of oily bilge water was experimentally conducted in a batch system. Aluminum plates with dimensions of 20 cm ×8 cm × 0.2 cm were used for electrodes and mounted vertically with a distance of 4 cm. These electrodes were then connected to the direct current power supply of 10 V and 10 A. The total area of the effective working plate was 160 cm2 when immersed at a depth of 10 cm to the solutions. The results showed that total dissolved Solids (TDS) decreased from 31.2 to 7.54 mg/l and formation of sludge increased up to 12.54 g/l with oil concentration of 50 g/l for 15 min. The largest oil removal of 99.5% was obtained using the initial oil concentration of 55 g/l and the lowest of 96.25% was obtained with the initial oil concentration of 146.04 g/l. A current density of 62.3 mA/cm2 was achieved for a maximum oil removal.

  13. Treatment of pulp and paper industry bleaching effluent by electrocoagulant process

    Energy Technology Data Exchange (ETDEWEB)

    Sridhar, R., E-mail: sridhar36k@yahoo.co.in [Department of Chemical Engineering, Kongu Engineering College, Perundurai, Erode 638052, TN (India); Sivakumar, V., E-mail: drvsivakumar@yahoo.com [Department of Food Technology, Kongu Engineering College, Perundurai, Erode 638052, TN (India); Prince Immanuel, V., E-mail: princeimmanuel79@yahoo.com [Department of Chemical Engineering, Erode Sengunthar Engineering College, Thudupathi, Erode 638057, TN (India); Prakash Maran, J., E-mail: prakashmaran@gmail.com [Department of Food Technology, Kongu Engineering College, Perundurai, Erode 638052, TN (India)

    2011-02-28

    The experiments were carried out in an electrocoagulation reactor with aluminum as sacrificial electrodes. The influence of electrolysis time, current density, pH, NaCl concentration, rotational speed of the stirrer and electrode distance on reduction of color, COD and BOD were studied in detail. From the experimental results, 15 mA/cm{sup 2} current density, pH of 7, 1 g/l NaCl, 100 rpm, 28 deg, C temperature and 3 cm electrode distance were found to be optimum for maximum reduction of color, COD and BOD. The reduction of color, COD and BOD under the optimum condition were found to be 94%, 90% and 87% respectively. The electrode energy consumption was calculated and found to be varied from 10.1 to 12.9 kWh/m{sup 3} depending on the operating conditions. Under optimal operating condition such as 15 mA/cm{sup 2} current density, pH of 7, 1 g/l NaCl, 100 rpm, 28 deg, C temperature and 3 cm electrode distance, the operating cost was found to be 1.56 US $/m{sup 3}. The experimental results proved that the electrocoagulation is a suitable method for treating bleaching plant effluents for reuse.

  14. Humic Acid Removal from Aqueous Environments by Electrocoagulation Process Using Iron Electrodes

    Directory of Open Access Journals (Sweden)

    Edris Bazrafshan

    2012-01-01

    Full Text Available At present study the performance of electrocoagulation process using iron electrodes sacrificial anode has been investigated for removal of HA from artificial aqueous solution. The experiments were performed in a bipolar batch reactor with four iron electrode connected in parallel. Several working parameters, such as initial pH (3, 5, 7, and 9, electrical conductivity (50 V and reaction time were studied in an attempt to achieve the highest removal capacity. Solutions of HA with concentration equal 20 mg L-1 were prepared. To follow the progress of the treatment, samples of 10 ml were taken at 15, 30, 45, 60, and 75 min interval. Finally HA concentration was measured by UV absorbance at 254 nm (UV254 and TOC concentration was measured by TOC Analyser. The maximum efficiency of HA removal which was obtained in voltage of 50 V, reaction time of 75 min, initial concentration 20 mg L-1, conductivity 3000 µS/Cm and pH 5, is equal to 92.69%. But for natural water samples at the same optimum condition removal efficiency was low (68.8 %. It can be concluded that the electrocoagulation process has the potential to be utilized for cost-effective removal of HA from aqueous environments.

  15. Electrocoagulation for the treatment of textile industry effluent--a review.

    Science.gov (United States)

    Khandegar, V; Saroha, Anil K

    2013-10-15

    Various techniques such as physical, chemical, biological, advanced oxidation and electrochemical are used for the treatment of industrial effluent. The commonly used conventional biological treatment processes are time consuming, need large operational area and are not effective for effluent containing toxic elements. Advanced oxidation techniques result in high treatment cost and are generally used to obtain high purity grade water. The chemical coagulation technique is slow and generates large amount of sludge. Electrocoagulation has recently attracted attention as a potential technique for treating industrial effluent due to its versatility and environmental compatibility. This technique uses direct current source between metal electrodes immersed in the effluent, which causes the dissolution of electrode plates into the effluent. The metal ions, at an appropriate pH, can form wide range of coagulated species and metal hydroxides that destabilize and aggregate particles or precipitate and adsorb the dissolved contaminants. Therefore, the objective of the present manuscript is to review the potential of electrocoagulation for the treatment of industrial effluents, mainly removal of dyes from textile effluent. © 2013 Elsevier Ltd. All rights reserved.

  16. Cadmium analysis using field deployable nano-band electrode system and its removal using electrocoagulation

    Science.gov (United States)

    Guttula, Mallikarjuna Murthy

    Cadmium (Cd) is an extremely toxic metal commonly found in industrial workplaces. Major industrial releases of Cd stem from waste streams, leaching of landfills, and from a variety of operations that involve cadmium or zinc. Particularly, cadmium can be released to drinking water from the corrosion of some galvanized plumbing and water main pipe materials. The United State Environmental Protection Agency (USEPA) has set the Maximum Contaminant Level (MCL) for cadmium at 5 ppb. Long term exposure of cadmium above the MCL results in kidney, liver, bone and blood damage. An accurate and rapid measurement of cadmium in the field remains a technical challenge. In this work, a relatively new method of a Nano-Band Electrode system using anodic stripping voltammetry was optimized by changing deposition potential, electrolyte, and plating time. We efficiently used Electrocoagulation remove cadmium from wastewater and obtained a removal efficiency of +/-99%. Removal mechanism of cadmium in electrocoagulation was also proposed with the help of X-ray Diffraction (XRD), Attenuated Total Reflection - Fourier Transform Infra Red Spectroscopy (ATR-FTIR), and Scanning Electron Microscopy and Energy Dispersive Spectrometer (SEM-EDS).

  17. Experimental Design of Electrocoagulation and Magnetic Technology for Enhancing Suspended Solids Removal from Synthetic Wastewater

    Directory of Open Access Journals (Sweden)

    Moh Faiqun Ni'am

    2014-10-01

    Full Text Available Design of experiments (DOE is one of the statistical method that is used as a tool to enhance and improve experimental quality. The changes to the variables of a process or system is supposed to give the optimal result (response and quite satisfactory. Experimental design can defined as a test or series of test series by varying the input variables (factors of a process that can known to cause changes in output (response. This paper presents the results of experimental design of wastewater treatment by electrocoagulation (EC technique. A combined magnet and electrocoagulation (EC technology were designed to increase settling velocity and to enhance suspended solid removal efficiencies from wastewater samples. In this experiment, a synthetic wastewater samples were prepared by mixing 700 mg of the milk powder in one litre of water and treated by using an acidic buffer solution. The monopolar iron (Fe plate anodes and cathodes were employed as electrodes. Direct current was varied in a range of between 0.5 and 1.1 A, and flowrate in a range of between 1.00 to 3.50 mL/s. One permanent magnets namely AlNiCo with a magnetic strength of 0.16T was used in this experiment. The results show that the magnetic field and the flowrate have major influences on suspended solids removal. The efficiency removals of suspended solids, turbidity and COD removal efficiencies at optimum conditions were found to be more than 85%, 95%, and 75%, respectively.

  18. The efficiency of electrocoagulation using aluminum electrodesin treating wastewater from a dairy industry

    Directory of Open Access Journals (Sweden)

    Gerson de Freitas Silva Valente

    2015-09-01

    Full Text Available This research deals with the investigation of electrocoagulation (EC treatment of wastewater from a dairy plant using aluminum electrodes. Electrolysis time, pH, current density and distance between electrodes were considered to assess the removal efficiency of chemical oxygen demand (COD, total solids (TS and their fractions and turbidity. Samples were collected from the effluent of a dairy plant using a sampling methodology proportional to the flow. The treatments were applied according to design factorial of half fraction with two levels of treatments and 3 repetitions at the central point. The optimization of parameters for treating dairy industry effluent by electrocoagulation using aluminum electrodes showed that electric current application for 21 minutes, an initial sample pH near 5.0 and a current density of 61.6A m-2 resulted in a significant reduction in COD by 57%; removal of turbidity by 99%, removal of total suspended solids by 92% and volatile suspended solids by 97%; and a final treated effluent pH of approximately 10. Optimum operating condition was used for cost calculations show that operating cost is approximately 3.48R$ m-3.

  19. Continuous electrocoagulation of cheese whey wastewater: an application of Response Surface Methodology.

    Science.gov (United States)

    Tezcan Un, Umran; Kandemir, Ayse; Erginel, Nihal; Ocal, S Eren

    2014-12-15

    In this study, treatment of cheese whey wastewater was performed using a uniquely-designed continuous electrocoagulation reactor, not previously encountered in the literature. An iron horizontal rotating screw type anode was used in the continuous mode. An empirical model, in terms of effective operational factors, such as current density (40, 50, 60 mA/cm(2)), pH (3, 5, 7) and retention time (20, 40, 60 min), was developed through Response Surface Methodology. An optimal region characterized by low values of Chemical Oxygen Demand (COD) was determined. As a result of experiments, a linear effect in the removal efficiency of COD was obtained for current density and retention time, while the initial pH of the wastewater was found to have a quadratic effect in the removal efficiency of COD. The best fit nonlinear mathematical model, with a coefficient of determination value (R(2)) of 85%, was defined. An initial COD concentration of 15.500 mg/L was reduced to 2112 mg/L with a removal efficiency of 86.4%. In conclusion, it can be said that electrocoagulation was successfully applied for the treatment of cheese whey wastewater. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Solid Obtained by Electrocoagulation of Vinasse, new Inhibitor for Acid Corrosion of Brass

    Directory of Open Access Journals (Sweden)

    Elaine Ojeda-Armaignac

    2016-07-01

    Full Text Available This work is part of research related to obtaining a corrosion inhibitor from vinasse, whose basic advantages is the possibility of using an industrial waste from distilleries ethyl alcohol as raw material in the production of a solid corrosion inhibitor of national production by electrocoagulation, which implies import substitution and cost reductions. The inhibitory action of the solids obtained by electrocoagulation of vinasse was investigated by potentiodynamic polarization techniques and electrochemical impedance spectroscopy. It was found that the efficiencies of inhibition against the brass into the electrolyte solution were very good, behaving as an efficient inhibitor in acid medium. Inhibition efficiency increases with increasing concentration. The maximum inhibition efficiency was of 93,43 % for the concentration of 2 mg / L of vinasse. Thermodynamic parameters were obtained at the study temperature. It was found that the adsorption of inhibitor molecules on the surface of brass obey the Langmuir isotherm, and the values of adsorción free energy of - 23.06 kJ mol-1 show the spontaneity of adsorption and indicate that the inhibitor is strongly adsorbed on the surface of brass, study of potentiodynamic polarization curves confirmed that it is a mixed type inhibitor, with an anode predominance and there is a predominant mechanism of physical adsorption combined with a chemisorption.

  1. Polishing of treated palm oil mill effluent (POME) from ponding system by electrocoagulation process.

    Science.gov (United States)

    Bashir, Mohammed J K; Mau Han, Tham; Jun Wei, Lim; Choon Aun, Ng; Abu Amr, Salem S

    2016-01-01

    As the ponding system used to treat palm oil mill effluent (POME) frequently fails to satisfy the discharge standard in Malaysia, the present study aimed to resolve this problem using an optimized electrocoagulation process. Thus, a central composite design (CCD) module in response surface methodology was employed to optimize the interactions of process variables, namely current density, contact time and initial pH targeted on maximum removal of chemical oxygen demand (COD), colour and turbidity with satisfactory pH of discharge POME. The batch study was initially designed by CCD and statistical models of responses were subsequently derived to indicate the significant terms of interactive process variables. All models were verified by analysis of variance showing model significances with Prob > F < 0.01. The optimum performance was obtained at the current density of 56 mA/cm(2), contact time of 65 min and initial pH of 4.5, rendering complete removal of colour and turbidity with COD removal of 75.4%. The pH of post-treated POME of 7.6 was achieved, which is suitable for direct discharge. These predicted outputs were subsequently confirmed by insignificant standard deviation readings between predicted and actual values. This optimum condition also permitted the simultaneous removal of NH3-N, and various metal ions, signifying the superiority of the electrocoagulation process optimized by CCD.

  2. Investigation of Phenol Removal by Proxy-Electrocoagulation Process with Iron Electrodes from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Ali Assadi

    2017-09-01

    Full Text Available Background: Phenol as an aromatic hydroxyl compound are considered as a priority pollutant. Because of their stability, solubility in water and high toxicity had health important. Methods: In the present experimental study, electrocoagulation reactor by iron electrodes are used in the presence of hydrogen peroxide to phenol removing from aqueous solutions. Effects of variables including H2O2 dosage, reaction time, pH, current density and initial phenol concentration were evaluated to estimate the efficiency of the process. Results: The results showed that pH and H2O2 have the most important role in the removal of phenol. Increasing of H2O2 concentrations from 0.0125 to 0.025 M increased removal efficiency from 74% to 100%. Maximum removal was achieved at pH=3. However, increasing the pH to 9 lead to reducing removal efficiency to 9.8%. Also, by increasing of current density removal efficiency was increased. But with increasing initial concentration of phenol removal efficiency was reduced. Conclusion: Proxy-electrocoagulation process as an effective and robust process can be used for handling of phenol containing wastewater.

  3. Removal turbidity and separation of heavy metals using electrocoagulation-electroflotation technique

    Energy Technology Data Exchange (ETDEWEB)

    Merzouk, B. [Departement d' Hydraulique, Universite Mohamed Boudiaf de M' sila (Algeria)], E-mail: mbelkov@yahoo.fr; Gourich, B. [Laboratoire de Genie des Procedes, Ecole Superieure de Technologie de Casablanca, B.P. 8012, Oasis (Morocco); Sekki, A. [Departement de Genie des Procedes, Universite Ferhat Abbas de Setif (Algeria); Madani, K.; Chibane, M. [Faculte des Sciences de la Nature et de la Vie, Universite A - Mira de Bejaia (Algeria)

    2009-05-15

    The electrocoagulation (EC) process was developed to overcome the drawbacks of conventional wastewater treatment technologies. This process is very effective in removing organic pollutants including dyestuff wastewater and allows for the reduction of sludge generation. The purposes of this study were to investigate the effects of the operating parameters, such as pH, initial concentration (C{sub 0}), duration of treatment (t), current density (j), interelectrode distance (d) and conductivity ({kappa}) on a synthetic wastewater in the batch electrocoagulation-electroflotation (EF) process. The optimal operating conditions were determined and applied to a textile wastewater and separation of some heavy metals. Initially a batch-type EC-EF reactor was operated at various current densities (11.55, 18.6, 35.94, 56.64, 74.07 and 91.5 mA/cm{sup 2}) and various interelectrode distance (1, 2 and 3 cm). For solutions with 300 mg/L of silica gel, high turbidity removal (89.54%) was obtained without any coagulants when the current density was 11.55 mA/cm{sup 2}, initial pH was 7.6, conductivity was 2.1 mS/cm, duration of treatment was 10 min and interelectrode distance was 1 cm. The application of the optimal operating parameters on a textile wastewater showed a high removal efficiency for various items: suspended solid (SS) 86.5%, turbidity 81.56%, biological oxygen demand (BOD{sub 5}) 83%, chemical oxygen demand (COD) 68%, and color over 92.5%. During the EC process under these conditions, we have studied the separation of some heavy metal ions such as iron (Fe), nickel (Ni), copper (Cu), zinc (Zn), lead (Pb) and cadmium (Cd) with different initial concentrations in the range of 50-600 mg/L and initial pH between 7.5 and 7.8. This allowed us to show that the kinetics of electrocoagulation-electroflotation is very quick (<15 min), and the removal rate reaches 95%.

  4. Removal turbidity and separation of heavy metals using electrocoagulation-electroflotation technique

    International Nuclear Information System (INIS)

    Merzouk, B.; Gourich, B.; Sekki, A.; Madani, K.; Chibane, M.

    2009-01-01

    The electrocoagulation (EC) process was developed to overcome the drawbacks of conventional wastewater treatment technologies. This process is very effective in removing organic pollutants including dyestuff wastewater and allows for the reduction of sludge generation. The purposes of this study were to investigate the effects of the operating parameters, such as pH, initial concentration (C 0 ), duration of treatment (t), current density (j), interelectrode distance (d) and conductivity (κ) on a synthetic wastewater in the batch electrocoagulation-electroflotation (EF) process. The optimal operating conditions were determined and applied to a textile wastewater and separation of some heavy metals. Initially a batch-type EC-EF reactor was operated at various current densities (11.55, 18.6, 35.94, 56.64, 74.07 and 91.5 mA/cm 2 ) and various interelectrode distance (1, 2 and 3 cm). For solutions with 300 mg/L of silica gel, high turbidity removal (89.54%) was obtained without any coagulants when the current density was 11.55 mA/cm 2 , initial pH was 7.6, conductivity was 2.1 mS/cm, duration of treatment was 10 min and interelectrode distance was 1 cm. The application of the optimal operating parameters on a textile wastewater showed a high removal efficiency for various items: suspended solid (SS) 86.5%, turbidity 81.56%, biological oxygen demand (BOD 5 ) 83%, chemical oxygen demand (COD) 68%, and color over 92.5%. During the EC process under these conditions, we have studied the separation of some heavy metal ions such as iron (Fe), nickel (Ni), copper (Cu), zinc (Zn), lead (Pb) and cadmium (Cd) with different initial concentrations in the range of 50-600 mg/L and initial pH between 7.5 and 7.8. This allowed us to show that the kinetics of electrocoagulation-electroflotation is very quick (<15 min), and the removal rate reaches 95%

  5. Vertebral growth modulation by hemicircumferential electrocoagulation: an experimental study in pigs.

    Science.gov (United States)

    Caballero, Alberto; Barrios, Carlos; Burgos, Jesús; Hevia, Eduardo; Correa, Carlos

    2011-08-01

    This experimental study in pigs was aimed at evaluating spinal growth disorders after partial arrest of the vertebral epiphyseal plates (EP) and neurocentral cartilages (NCC). Unilateral and multisegmental single or combined lesions of the physeal structures were performed by electrocoagulation throughout a video-assisted thoracoscopical approach. Thirty 4-week-old domestic pigs (mean weight 16 kg) were included in the experiments. The superior and inferior epiphyseal plates of T5 to T9 vertebra were damaged in ten animals by hemicircumferential electrocoagulation (group I). In other ten pigs (group II), right NCC at the same T5-T9 levels were damaged. Ten other animals underwent combined lesions of the ipsilateral hemiepiphyseal plates and NCC at the T5-T9 levels. A total of 26 animals could be evaluated after 12 weeks of follow-up using conventional X-rays, CT scans and histology. The pigs with hemicircumferential EP damage developed very slight concave non-structured scoliotic deformities without vertebral rotation.(mean 12° Cobb; range10-16°). Some of the damaged vertebra showed a marked wedgening with unilateral development alteration of the vertebral body, including the adjacent discs The animals with damage of the NCC developed mild scoliotic curves (mean 19° Cobb; range 16-24°) with convexity opposite to the damaged side and loss of physiological kyphosis. The injured segments showed an asymmetric growth with hypoplasia of the pedicle and costovertebral joints at the damaged side. The pigs undergoing combined EP and NCC lesions developed minimal non-structured curves, ranging from 10 to 12° Cobb. In these animals there was a lack of growth of a vertebral hemibody and disc hypoplasia at the damaged segments. Both damage of the NCC and the EP affect the height of the vertebral body. No spinal stenosis was found in any case. In most cases, the adjacent superior and inferior vertebral EP to damaged segments had a compensatory growth that maintained the

  6. Which mode and potency of electrocoagulation yields the Smallest Unobstructed Area of the Fallopian Tubes?

    Science.gov (United States)

    Campagnolo, Marcelo Ivo; Reis, Ricardo Dos; Santos, Marcele Oliveira Dos; Kliemann, Lúcia Maria; Savaris, Ricardo Francalacci

    2018-05-29

     To determine which mode and potency of electrocoagulation, using a modern electrosurgical generator, yields the smallest unobstructed area of the Fallopian tubes.  In an experimental study, tubes from 48 hysterectomies or tubal ligation were evaluated. Tubes were randomly allocated to one of the following groups: group A) 25 W x 5 seconds ( n  = 17); group B) 30 W x 5 seconds ( n  = 17); group C) 35 W x 5 seconds ( n  = 18), group D) 40 W x 5 seconds ( n  = 20); group E) 40 W x 5 seconds with visual inspection (blanch, swells, collapse) ( n  = 16); group F) 50 W x 5 seconds ( n  = 8). Bipolar electrocoagulation was performed in groups A to E, and monopolar electrocoagulation was performed in group F. Coagulation mode was used in all groups. Digital photomicrography of the transversal histological sections of the isthmic segment of the Fallopian tube were taken, and the median percentage of unobstructed luminal area (mm 2 ) was measured with ImageJ software (ImageJ, National Institutes of Health, Bethesda, MD, USA). The Kruskal-Wallis test or analysis of variance (ANOVA) was used for statistical analysis.  Ninety-six Fallopian tube sections were analyzed. The smallest median occluded area (%; range) of the Fallopian tube was obtained in the group with 40 W with visual inspection (8.3%; 0.9-40%), followed by the groups 25 W (9.1%; 0-35.9%), 40 W (14.2; 0.9-43.2%), 30 W (14.2; 0.9-49.7%), 35 W (15.1; 3-46.4%) and 50 W (38.2; 3.1-51%). No statistically significant difference was found among groups ( p  = 0.09, Kruskal-Wallis test).  The smallest unobstructed area was obtained with power setting at 40 W with visual inspection using a modern electrosurgical generator. However, no statistically significant difference in the unobstructed area was observed among the groups using these different modes and potencies. Thieme Revinter Publicações Ltda Rio de Janeiro, Brazil.

  7. Decolourization of dye-containing effluent using mineral coagulants produced by electrocoagulation.

    Science.gov (United States)

    Zidane, Fatiha; Drogui, Patrick; Lekhlif, Brahim; Bensaid, Jalila; Blais, Jean-François; Belcadi, Said; El Kacemi, Kacem

    2008-06-30

    The colour and colour causing-compounds has always been undesirable in water for any use, be it industrial or domestic wastewaters. The discharge of such effluents causes excessive oxygen demand in the receiving water and then a treatment is required before discharge into ecosystems. This study examined the possibility to remove colour causing-compounds from effluent by chemical coagulation, in comparison with direct electrocoagulation. The inorganic coagulants (C1, C2 and C3) in the form of dry powder tested, were respectively produced from electrolysis of S1=[NaOH (7.5 x 10(-3)M)], S2=[NaCl (10(-2)M)], and S3=[NaOH (7.5 x 10(-3)M)+NaCl (10(-2)M)] solutions, using sacrificial aluminium electrodes operated at an electrical potential of 12 V. Reactive textile dye (CI Reactive Red 141) was used as model of colour-causing compound prepared at a concentration of 50 mgl(-1). The best performances of dye removal were obtained with C(2) having a chemical structure comprised of a mixture of polymeric specie (Al45O45(OH)45Cl) and monomeric species (AlCl(OH)2.2H2O and Al(OH)3). The removal efficiency (R(A)) evaluated by measuring the yields of 540 nm-absorbance removal varied from 41 to 96% through 60 min of treatment by imposing a concentration of C2 ranging from 100 to 400 mg l(-1). The effectiveness of the treatment increased and the effluent became more and more transparent while increasing C(2) concentration. The comparison of chemical treatment using C2 coagulant and direct electrocoagulation of CI Reactive Red 141 containing synthetic solution demonstrated the advantage of chemical treatment during the first few minutes of treatment. A yield of 88% of absorbance removal was recorded using C2 coagulant (400 mg l(-1)) over the first 10 min of treatment, compared to 60% measured using direct electrocoagulation while imposing either 10 or 15 V of electrical potential close to the value (12 V) required during C2 production. However, at the end of the treatment (after 60

  8. Design of a treatment pilot by electro-coagulation and electro-flotation of high charged liquid effluents; Conception d'un pilote de traitement par electrocoagulation-electroflottation d'effluents liquides fortement charges

    Energy Technology Data Exchange (ETDEWEB)

    Cames, M.C.; Leclerc, J.P.; Valentin, G.; Sanchez-Calvo, L.; Lapicque, F. [Centre National de la Recherche Scientifique (CNRS-ENSIC), Lab. des Sciences du Genie Chimique, 54 - Nancy (France); Rostan, A.; Muller, P. [Centre de Recherche pour l' Environnement, l' Energie et le Dechet, Vivendi Environnement, 78 - Limay (France)

    2001-07-01

    The possibilities of the electro-coagulation and electro-flotation process has been studied on many industrial effluents by cells. The results show that the process efficiency is conditioned by the effluent nature and the dissolved aluminium quantity, what ever the initial rate of Carbon Organic Total (COT). Other parameters as the current density and the circulation speed are not significant. (A.L.B.)

  9. Remediation of phosphate-contaminated water by electrocoagulation with aluminium, aluminium alloy and mild steel anodes.

    Science.gov (United States)

    Vasudevan, Subramanyan; Lakshmi, Jothinathan; Jayaraj, Jeganathan; Sozhan, Ganapathy

    2009-05-30

    The present study provides an electrocoagulation process for the remediation of phosphate-contaminated water using aluminium, aluminium alloy and mild steel as the anodes and stainless steel as the cathode. The various parameters like effect of anode materials, effect of pH, concentration of phosphate, current density, temperature and co-existing ions, and so forth, and the adsorption capacity was evaluated using both Freundlich and Langmuir isotherm models. The adsorption of phosphate preferably fitting the Langmuir adsorption isotherm suggests monolayer coverage of adsorbed molecules. The results showed that the maximum removal efficiency of 99% was achieved with aluminium alloy anode at a current density of 0.2 A dm(-2), at a pH of 7.0. The adsorption process follows second-order kinetics.

  10. Thermodynamic studies of chromium adsorption on iron species generated by electrocoagulation

    Energy Technology Data Exchange (ETDEWEB)

    Parga, J.R.; Vazquez, V.; Gonzalez, G.; Cisneros, M.M. [Metallurgy and Materials Science Department, Institute Technology of Saltillo (Mexico)

    2010-10-15

    The protection of the global environment and in particular, the provision of a sustainable source of clean water is a necessity for human survival. Specifically, large quantities of chromium containing compounds are being discharged into the environment. This study has been carried out to determine the feasibility of chromium adsorption on iron species by an Electrocoagulation (EC) process using the Langmuir Isotherm. The full potential of EC with air injection as an alternative wastewater treatment technique to remove chromium from well water shows more than 99 % removal without the addition of any chemical reagents. In this study, X-Ray Diffraction, Scanning Electron Microscopy, Moessbauer Spectroscopy and Fourier Transform Infrared Spectroscopy are used to characterize the solid products that reveal the expected crystalline iron oxides, i.e., lepidocrocite, magnetite, gohetite, and iron oxide. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  11. REMOVAL OF NATURAL ORGANIC MATTER USING ELECTROCOAGULATION AS A FIRST STEP FOR DESALINATION OF BRACKISH WATER

    Directory of Open Access Journals (Sweden)

    Wasinton Simanjuntak

    2011-07-01

    Full Text Available In the present study, electrocoagulation method was employed to remove natural organic matter from brackish water. This study explores the potential of brackish water as a source of potable water. Two electrochemical variables, potential and contact time, were tested to determine their effect on the treatment efficiency defined in terms of the reduction of the absorbance at the wavelength of 254 nm (A254. Both potential and contact time were found to influence the removal efficiency of the method, and the best result was obtained from the experiment using the potential of 8 V and contact time of 60 min, resulting in 69.5% reduction of the absorbance. Very clean treated water was produced with much lower conductivity (12.06 mS/cm as compared to that obtained for the sea water sample from a location near to the sampling site (133.9 mS/cm.

  12. Electrocoagulation of solvent residues in the reprocessing of spent nuclear fuels

    International Nuclear Information System (INIS)

    Gidarakos, E.; Gramatte, W.; Koehling, A.; Schmitt, R.E.

    1989-03-01

    The aim of this project was to find out the potential of the method for the electrocoagulation (EC) of colloidally dispersed particles for an improved fine feed purification in the reprocessing of high burnup nuclear fuels with the help of real fuel solutions on a laboratory scale. In EC, the particles colloidally dispersed in the solution are fed with electric charges at the electrodes; this leads to a coagulation of the particles, with separation taking place at the electrodes. The methods of analysis chosen for the EC were nephelometry for inactive experiments with RuO 2 suspensions, and gamma spectroscopy for experiments with radioactive fuel solutions, with the nuclide pair Ru/Rh-106 acting as a colloidal tracer nuclide. On the whole, the present experimental data permit the conclusion that under the experimental conditions and with the apparatus applied, EC gives rise to the separation of colloidally dispersed noble metal particles in an active fuel solution. (orig./RB) [de

  13. A combined electrocoagulation-sorption process applied to mixed industrial wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Linares-Hernandez, Ivonne [Universidad Autonoma del Estado de Mexico, Facultad de Quimica, Paseo Colon interseccion Paseo Tollocan S/N, C.P. 50120, Toluca (Mexico); Barrera-Diaz, Carlos [Universidad Autonoma del Estado de Mexico, Facultad de Quimica, Paseo Colon interseccion Paseo Tollocan S/N, C.P. 50120, Toluca (Mexico)]. E-mail: cbarrera@uaemex.mx; Roa-Morales, Gabriela [Universidad Autonoma del Estado de Mexico, Facultad de Quimica, Paseo Colon interseccion Paseo Tollocan S/N, C.P. 50120, Toluca (Mexico); Bilyeu, Bryan [University of North Texas, Department of Materials Science and Engineering, PO Box 305310, Denton, TX 76203-5310 (United States); Urena-Nunez, Fernando [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, Col. Escandon, Delegacion Miguel Hidalgo, C.P. 11801, Mexico, D.F. (Mexico)

    2007-06-01

    The removal of organic pollutants from a highly complex industrial wastewater by a aluminium electrocoagulation process coupled with biosorption was evaluated. Under optimal conditions of pH 8 and 45.45 A m{sup -2} current density, the electrochemical method yields a very effective reduction of all organic pollutants, this reduction was enhanced when the biosorption treatment was applied as a polishing step. Treatment reduced chemical oxygen demand (COD) by 84%, biochemical oxygen demand (BOD{sub 5}) by 78%, color by 97%, turbidity by 98% and fecal coliforms by 99%. The chemical species formed in aqueous solution were determined. The initial and final pollutant levels in the wastewater were monitored using UV-vis spectrometry and cyclic voltammetry. Finally, the morphology and elemental composition of the biosorbent was characterized with scanning electron microscopy (SEM) and energy dispersion spectra (EDS)

  14. Results of external beam irradiation for rectal carcinomas locally recurrent after local excision or electrocoagulation

    International Nuclear Information System (INIS)

    Shun Wong, C.; Cummings, B.J.; Keane, T.J.; O'Sullivan, Brian; Catton, C.N.

    1991-01-01

    The outcome of 42 patients who developed locally recurrent rectal carcinoma after initial local excision or electrocoagulation was presented. Five patients received combined surgery and radiotherapy (XRT). The remaining 37 patients were managed by XRT alone. The overall 5 years actuarial survival and local control rates were 21 and 22 percent, respectively. For patients who received XRT alone, the 5 year actuarial survival and local control rates were 20 and 15 percent, resp. The corresponding figures were 35 and 40 percent for patients who received a total XRT dose of 50 Gy or more. One patient who underwent combined treatment developed rectal and bladder incontinence requiring surgery. For patients with rectal recurrence after initial conservative surgery, XRT is an alternative to abdominoperipheral resection if major resection is contraindicated. (author). 13 refs.; 2 tabs

  15. In vivo MRI assessment of permanent middle cerebral artery occlusion by electrocoagulation: pitfalls of procedure

    Science.gov (United States)

    2010-01-01

    Permanent middle cerebral artery (MCA) occlusion (pMCAO) by electrocoagulation is a commonly used model but with potential traumatic lesions. Early MRI monitoring may assess pMCAO for non-specific brain damage. The surgical steps of pMCAO were evaluated for traumatic cerebral injury in 22 Swiss mice using diffusion and T2-weighted MRI (7T) performed within 1 h and 24 h after surgery. Temporal muscle cauterization without MCA occlusion produced an early T2 hyperintensity mimicking an infarct. No lesion was visible after temporal muscle incision or craniotomy. Early MRI monitoring is useful to identify non-specific brain injury that could hamper neuroprotective drugs assessment. PMID:20298536

  16. Electrocoagulation of whey acids: anode and cathode materials, electroactive area and polarization curves

    Directory of Open Access Journals (Sweden)

    Francisco Prieto Garcia

    2017-06-01

    Full Text Available Anode (Al and Fe and cathode (graphite and Ti/RuO2 materials have been tested for electrocoagulation (EC and purification of the acid whey. The electroactive areas (EA of electrodes were calculated by the double layer capacitance method. Experiments were performed by cyclic voltammetry, chronoamperometry and polarization experiments. Among cathodic materials, the Ti/RuO2 electrode showed higher EA (2167 cm2 than graphite (1560 cm2. The Fe anode was found more stable than Al with greater charge transfer carried out in less time. Correlation of these results with those obtained during preliminary tests confirmed high removals (79 % in 8 h. For the Al electrode, 24 h were required to achieve efficiency of 49 %.

  17. A combined electrocoagulation-sorption process applied to mixed industrial wastewater

    International Nuclear Information System (INIS)

    Linares-Hernandez, Ivonne; Barrera-Diaz, Carlos; Roa-Morales, Gabriela; Bilyeu, Bryan; Urena-Nunez, Fernando

    2007-01-01

    The removal of organic pollutants from a highly complex industrial wastewater by a aluminium electrocoagulation process coupled with biosorption was evaluated. Under optimal conditions of pH 8 and 45.45 A m -2 current density, the electrochemical method yields a very effective reduction of all organic pollutants, this reduction was enhanced when the biosorption treatment was applied as a polishing step. Treatment reduced chemical oxygen demand (COD) by 84%, biochemical oxygen demand (BOD 5 ) by 78%, color by 97%, turbidity by 98% and fecal coliforms by 99%. The chemical species formed in aqueous solution were determined. The initial and final pollutant levels in the wastewater were monitored using UV-vis spectrometry and cyclic voltammetry. Finally, the morphology and elemental composition of the biosorbent was characterized with scanning electron microscopy (SEM) and energy dispersion spectra (EDS)

  18. Treatment of automotive industry oily wastewater by electrocoagulation: statistical optimization of the operational parameters.

    Science.gov (United States)

    GilPavas, Edison; Molina-Tirado, Kevin; Gómez-García, Miguel Angel

    2009-01-01

    An electrocoagulation process was used for the treatment of oily wastewater generated from an automotive industry in Medellín (Colombia). An electrochemical cell consisting of four parallel electrodes (Fe and Al) in bipolar configuration was implemented. A multifactorial experimental design was used for evaluating the influence of several parameters including: type and arrangement of electrodes, pH, and current density. Oil and grease removal was defined as the response variable for the statistical analysis. Additionally, the BOD(5), COD, and TOC were monitored during the treatment process. According to the results, at the optimum parameter values (current density = 4.3 mA/cm(2), distance between electrodes = 1.5 cm, Fe as anode, and pH = 12) it was possible to reach a c.a. 95% oils removal, COD and mineralization of 87.4% and 70.6%, respectively. A final biodegradability (BOD(5)/COD) of 0.54 was reached.

  19. Treatment of Ni-EDTA containing wastewater by electrocoagulation using iron scraps packed-bed anode.

    Science.gov (United States)

    Ye, Xiaokun; Zhang, Junya; Zhang, Yan; Lv, Yuancai; Dou, Rongni; Wen, Shulong; Li, Lianghao; Chen, Yuancai; Hu, YongYou

    2016-12-01

    The unique electrocoagulator proposed in this study is highly efficient at removing Ni-EDTA, providing a potential remediation option for wastewater containing lower concentrations of Ni-EDTA (Ni ≤ 10 mg L -1 ). In the electrocoagulation (EC) system, cylindrical graphite was used as a cathode, and a packed-bed formed from iron scraps was used as an anode. The results showed that the removal of Ni-EDTA increased with the application of current and favoured acidic conditions. We also found that the iron scrap packed-bed anode was superior in its treatment ability and specific energy consumption (SECS) compared with the iron rod anode. In addition, the packed density and temperature had a large influence on the energy consumption (ECS). Over 94.3% of Ni and 95.8% of TOC were removed when conducting the EC treatment at an applied current of 0.5 A, initial pH of 3, air-purged rate 0.2 L min -1 , anode packed density of 400 kg m -3 temperature of 313 K and time of 30 min. SEM analysis of the iron scraps indicated that the specific area of the anode increased after the EC. The XRD analysis of flocs produced during EC revealed that hematite (α-Fe 2 O 3 ) and magnetite (Fe 3 O 4 ) were the main by-products under aerobic and anoxic conditions, respectively. A kinetic study demonstrated that the removal of Ni-EDTA followed a first-order model with the current parameters. Moreover, the removal efficiency of real wastewater was essentially consistent with that of synthetic wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Removal of natural organic matter and arsenic from water by electrocoagulation/flotation continuous flow reactor

    International Nuclear Information System (INIS)

    Mohora, Emilijan; Rončević, Srdjan; Dalmacija, Božo; Agbaba, Jasmina; Watson, Malcolm; Karlović, Elvira; Dalmacija, Milena

    2012-01-01

    Highlights: ► A continuous electrocoagulation/flotation reactor was designed built and operated. ► Highest NOM removal according to UV 254 was 77% relative to raw groundwater. ► Highest NOM removal accordance to DOC was 71%, relative to raw groundwater. ► Highest As removal archived was 85% (6.2 μg/l), relative to raw groundwater. ► Specific reactor energy and electrode consumption was 1.7 kWh/m 3 and 66 g Al/m 3 . - Abstract: The performance of the laboratory scale electrocoagulation/flotation (ECF) reactor in removing high concentrations of natural organic matter (NOM) and arsenic from groundwater was analyzed in this study. An ECF reactor with bipolar plate aluminum electrodes was operated in the horizontal continuous flow mode. Electrochemical and flow variables were optimized to examine ECF reactor contaminants removal efficiency. The optimum conditions for the process were identified as groundwater initial pH 5, flow rate = 4.3 l/h, inter electrode distance = 2.8 cm, current density = 5.78 mA/cm 2 , A/V ratio = 0.248 cm −1 . The NOM removal according to UV 254 absorbance and dissolved organic matter (DOC) reached highest values of 77% and 71% respectively, relative to the raw groundwater. Arsenic removal was 85% (6.2 μg As/l) relative to raw groundwater, satisfying the drinking water standards. The specific reactor electrical energy consumption was 17.5 kWh/kg Al. The specific aluminum electrode consumption was 66 g Al/m 3 . According to the obtained results, ECF in horizontal continuous flow mode is an energy efficient process to remove NOM and arsenic from groundwater.

  1. Removal of natural organic matter and arsenic from water by electrocoagulation/flotation continuous flow reactor

    Energy Technology Data Exchange (ETDEWEB)

    Mohora, Emilijan, E-mail: emohora@ifc.org [University of Novi Sad Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg D. Obradovica 3, 21000 Novi Sad (Serbia); Roncevic, Srdjan; Dalmacija, Bozo; Agbaba, Jasmina; Watson, Malcolm; Karlovic, Elvira; Dalmacija, Milena [University of Novi Sad Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg D. Obradovica 3, 21000 Novi Sad (Serbia)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer A continuous electrocoagulation/flotation reactor was designed built and operated. Black-Right-Pointing-Pointer Highest NOM removal according to UV{sub 254} was 77% relative to raw groundwater. Black-Right-Pointing-Pointer Highest NOM removal accordance to DOC was 71%, relative to raw groundwater. Black-Right-Pointing-Pointer Highest As removal archived was 85% (6.2 {mu}g/l), relative to raw groundwater. Black-Right-Pointing-Pointer Specific reactor energy and electrode consumption was 1.7 kWh/m{sup 3} and 66 g Al/m{sup 3}. - Abstract: The performance of the laboratory scale electrocoagulation/flotation (ECF) reactor in removing high concentrations of natural organic matter (NOM) and arsenic from groundwater was analyzed in this study. An ECF reactor with bipolar plate aluminum electrodes was operated in the horizontal continuous flow mode. Electrochemical and flow variables were optimized to examine ECF reactor contaminants removal efficiency. The optimum conditions for the process were identified as groundwater initial pH 5, flow rate = 4.3 l/h, inter electrode distance = 2.8 cm, current density = 5.78 mA/cm{sup 2}, A/V ratio = 0.248 cm{sup -1}. The NOM removal according to UV{sub 254} absorbance and dissolved organic matter (DOC) reached highest values of 77% and 71% respectively, relative to the raw groundwater. Arsenic removal was 85% (6.2 {mu}g As/l) relative to raw groundwater, satisfying the drinking water standards. The specific reactor electrical energy consumption was 17.5 kWh/kg Al. The specific aluminum electrode consumption was 66 g Al/m{sup 3}. According to the obtained results, ECF in horizontal continuous flow mode is an energy efficient process to remove NOM and arsenic from groundwater.

  2. Comparative study of humic acid removal and floc characteristics by electrocoagulation and chemical coagulation.

    Science.gov (United States)

    Semerjian, Lucy; Damaj, Ahmad; Salam, Darine

    2015-11-01

    The current study aims at investigating the efficiency of electrocoagulation for the removal of humic acid from contaminated waters. In parallel, conventional chemical coagulation was conducted to asses humic acid removal patterns. The effect of varying contributing parameters (matrix pH, humic acid concentration, type of electrode (aluminum vs. iron), current density, solution conductivity, and distance between electrodes) was considered to optimize the electrocoagulation process for the best attainable humic acid removal efficiencies. Optimum removals were recorded at pH of 5.0-5.5, an electrical conductivity of 3000 μS/cm at 25 °C, and an electrode distance of 1 cm for both electrode types. With aluminum electrodes, a current density of 0.05 mA/cm2 outperformed 0.1 mA/cm2 yet not higher densities, whereas a current density of 0.8 mA/cm2 was needed for iron electrodes to exhibit comparable performance. With both electrode types, higher initial humic acid concentrations were removed at a slower rate but ultimately attained almost complete removals. On the other hand, the best humic acid removals (∼90%) by chemical coagulation were achieved at 4 mg/L for both coagulants. Also, higher removals were attained at elevated initial humic acid concentrations. Humic acid removals of 90% or higher at an initial HA concentration of 40 mg/L were exhibited, yet alum performed better at the highest experimented concentration. It was evident that iron flocs were larger, denser, and more geometrical in shape compared to aluminum flocs.

  3. Removal of arsenic from drinking water by the electrocoagulation using Fe and Al electrodes

    International Nuclear Information System (INIS)

    Kobya, M.; Gebologlu, U.; Ulu, F.; Oncel, S.; Demirbas, E.

    2011-01-01

    Highlights: → Removal percentages of arsenic from drinking water at optimum operating conditions in electrocoagulation process were 93.5% for Fe electrode and 95.7% for Al electrode. → Operating costs at the optimum conditions were 0.020 Euro m -3 for Fe and 0.017 Euro m -3 for Al electrodes. → Surface topography of the solid particles at Fe/Al electrodes was analyzed with scanning electron microscope. → The adsorption of arsenic followed pseudo second-order adsorption model. - Abstract: A novel technique of electrocoagulation (EC) was attempted in the present investigation to remove arsenic from drinking waters. Experiments were carried out in a batch electrochemical reactor using Al and Fe electrodes with monopolar parallel electrode connection mode to assess their efficiency. The effects of several operating parameters on arsenic removal such as pH (4-9), current density (2.5-7.5 A m -2 ), initial concentration (75-500 μg L -1 ) and operating time (0-15 min) were examined. Optimum operating conditions were determined as an operating time of 12.5 min and pH 6.5 for Fe electrode (93.5%) and 15 min and pH 7 for Al electrode (95.7%) at 2.5 A m -2 , respectively. Arsenic removal obtained was highest with Al electrodes. Operating costs at the optimum conditions were calculated as 0.020 Euro m -3 for Fe and 0.017 Euro m -3 for Al electrodes. EC was able to bring down aqueous phase arsenic concentration to less than 10 μg L -1 with Fe and Al electrodes. The adsorption of arsenic over electrochemically produced hydroxides and metal oxide complexes was found to follow pseudo second-order adsorption model. Scanning electron microscopy was also used to analyze surface topography of the solid particles at Fe/Al electrodes during the EC process.

  4. Removal of colour, turbidity, oil and grease for slaughterhouse wastewater using electrocoagulation method

    Science.gov (United States)

    Yusoff, Mohd Suffian; Azwan, Azlyza Mohd; Zamri, Mohd Faiz Muaz Ahmad; Aziz, Hamidi Abdul

    2017-10-01

    In this study electrocoagulation method is used to treat slaughterhouse wastewaters. The aim of this study is to determine the efficiency of electrocoagulation method for the removal of colour, turbidity, oil and grease of slaughterhouse wastewaters. The factors of electrode types, and voltage applied during treatment are the study parameters. The types of electrode used are Aluminium (Al) grade 6082 and Iron (Fe) grade 1050. Meanwhile, the ranges of voltage applied are 2, 4, 6, 8 volts at a time interval of 10, 20 and 30 minutes respectively. The effect of these factors on the removal of fat oil and grease (FOG), colour and turbidity are analyzed. The results show maximum removal of FOG, colour and turbidity are recorded using Fe electrode at 8 V of applied voltage with 30 minutes of treatment time. The increase in treatment time of the cell will also increase the amount of hydrogen bubbles at the cathode which results in a greater upwards flux and a faster removal of FOG,, turbidity and colour. The removal of FOG, colour and turbidity are 98%, 92% and 91 % respectively. Meanwhile, by using Al electrodes in the same condition, the removal of FOG, colour and turbidity are 91%, 85% and 87 % respectively. Whereas by using Fe-Al as electrodes pairs, the removal of FOG, colour and turbidity are found to be at 90%, 87% and 76 % respectively. In this case, the Fe-Fe pair electrodes have been proven to provide better performance for FOG, colour and turbidity removals of slaughterhouse wastewaters. Therefore, it is feasible to be considered as an alternative method for wastewater treatment.

  5. [Treatment results for different categories of vaginal intraepithelial neoplasia with electrocoagulation, 5-fluorouracil and combined treatment].

    Science.gov (United States)

    Veloz-Martínez, María Guadalupe; Quintana-Romero, Verónica; Contreras-Morales, María del Rosario Sandra; Jiménez-Vieyra, Carlos Ramón

    2015-10-01

    Vaginal intraepithelial neoplasia (VAIN) represents a variety of changes that initiate as an intraepithelial squamous lesion with the possibility of resulting in cancer. To compare the results of the treatment for the different categories of VAIN with electrocoagulation, 5-fluorouracil and combined treatment. Observational an analytical study. We stablished groups according to the category of VAIN evaluating and comparing remission, persistence, recurrence, or progression of the disease ac- cording to the received treatment, with a 1-year follow up. The results were compared by chi2 and Kruskal Wallis. The statistics analysis was done with the SPSS program version 20. One hundred thirty seven patients between 20 and 81 years of age (mean age: 52.49 years) were included. Seventy-four percent of the patients had a history of premalignant or malignant cervical lesions. Seventy-four patients had VAIN I, 34 patients had VAIN II, 22 patients had VAIN III and there were seven cases of vaginal carcinoma in situ. Fifty-eight patients were treated with electrocoagulation, 55 patients were treated with 5-FU, 16 patients had combined treatment, and eight patients received expectant management. Sixty three percent of patients had total remission of the lesion, 34% had persistence and 3% showed progression, and there were no cases of recurrence. Results were better in patients with VAIN I treated with 5-FU (bigger percentage of remission P .026), for the remaining categories of VAIN, no treatment showed superior results. The superior response occurs in patients with VAIN I treated with 5-FU. None of the treatments achieves a 100% remission. The VAIN frequency is high, patients with a history of malignant or premalignant cervical pathology should undergo a closer surveillance through cytocolposcopic control with respect to the remaining population.

  6. Effect of some operational parameters on the arsenic removal by electrocoagulation using iron electrodes

    Science.gov (United States)

    2014-01-01

    Arsenic contamination of drinking water is a global problem that will likely become more apparent in future years as scientists and engineers measure the true extent of the problem. Arsenic poisoning is preventable though as there are several methods for easily removing even trace amounts of arsenic from drinking water. In the present study, electrocoagulation was evaluated as a treatment technology for arsenic removal from aqueous solutions. The effects of parameters such as initial pH, current density, initial concentration, supporting electrolyte type and stirring speed on removal efficiency were investigated. It has been observed that initial pH was highly effective on the arsenic removal efficiency. The highest removal efficiency was observed at initial pH = 4. The obtained experimental results showed that the efficiency of arsenic removal increased with increasing current density and decreased with increasing arsenic concentration in the solution. Supporting electrolyte had not significant effects on removal, adding supporting electrolyte decreased energy consumption. The effect of stirring speed on removal efficiency was investigated and the best removal efficiency was at the 150 rpm. Under the optimum conditions of initial pH 4, current density of 0.54 mA/cm2, stirring speed of 150 rpm, electrolysis time of 30 minutes, removal was obtained as 99.50%. Energy consumption in the above conditions was calculated as 0.33 kWh/m3. Electrocoagulation with iron electrodes was able to bring down 50 mg/L arsenic concentration to less than 10 μg/L at the end of electrolysis time of 45 minutes with low electrical energy consumption as 0.52 kWh/m3. PMID:24991426

  7. The energetic conditions determining the active dissolution of carbon steel during electrocoagulation in sulfate media

    International Nuclear Information System (INIS)

    Gerónimo-López, Carlos; Vazquez-Arenas, Jorge; Picquart, Michel; González, Ignacio

    2014-01-01

    This study aims to investigate the active dissolution of carbon steel under rotating conditions, necessary for continuous dosing of metal cation in electrocoagulation. A reaction mechanism is proposed for its dissolution in 0.1, 0.3 and 0.5 M Na 2 SO 4 , using electrochemical and chemical techniques (Raman, SEM). A continuous dissolution region was obtained from the potentiodynamic study, as a result of the competition between the rate of electrochemical reactions and the rate at which energetic conditions are imposed on the electrode. On the other hand, the dissolution of carbon steel underwent active, transition and passivation regions in potentiostatic and galvanostatic techniques, which respectively shifted to higher current densities and more positive potentials as the electrolyte concentration (Na 2 SO 4 ) was increased. In general, the increase of Na 2 SO 4 concentration promotes the iron dissolution and tightens the active region. The results revealed that the Na 2 SO 4 concentration, the Fe(II)/Fe(III) interface concentration, and the time of perturbation influence the occurrence and evolution of the Green Rust Sulphate (NaFe 6 II Fe 3 III (OH) 18 (SO 4 ) 2 ) intermediary, a precursor which hinders electrocoagulation through passive film formation. Scanning Electronic Microscopy and Raman spectroscopy showed that in the active dissolution region, the films grown potentiostatically are porous and contain α-FeOOH, δ-FeOOH, and Fe 3 O 4 as the dominant species. In the transition region, these films become less porous and include α-FeOOH, Fe 3 O 4 , α-Fe 2 O 3 , γ-Fe 2 O 3 , while γ-FeOOH was identified in the passive region

  8. Decolorization of basic dye solutions by electrocoagulation: an investigation of the effect of operational parameters.

    Science.gov (United States)

    Daneshvar, N; Oladegaragoze, A; Djafarzadeh, N

    2006-02-28

    Electrocoagulation (EC) is one of the most effective techniques to remove color and organic pollutants from wastewater, which reduces the sludge generation. In this paper, electrocoagulation has been used for the removal of color from solutions containing C. I. Basic Red 46 (BR46) and C. I. Basic Blue 3 (BB3). These dyes are used in the wool and blanket factories for fiber dyeing. The effect of operational parameters such as current density, initial pH of the solution, time of electrolysis, initial dye concentration and solution conductivity were studied in an attempt to reach higher removal efficiency. The findings in this study shows that an increase in the current density up to 60-80 A m(-2) enhanced the color removal efficiency, the electrolysis time was 5 min and the range of pH was determined between 5.5 and 8.5 for two mentioned dye solutions. It was found that for, the initial concentration of dye in solutions should not be higher than 80 mg l(-1) in order to achieve a high color removal percentage. The optimum conductivity was found to be 8 mS cm(-1), which was adjusted using proper amount of NaCl with the dye concentration of 50 mg l(-1). Electrical energy consumption in the above conditions for the decolorization of the dye solutions containing BR46 and BB3 were 4.70 kWh(kgdye removed)(-1) and 7.57 kWh(kgdye removed)(-1), respectively. Also, during the EC process under the optimized conditions, the COD decreased by more than 75% and 99% in dye solutions containing BB3 and BR46, respectively.

  9. Study on the treatment of photovoltaic wastewater using electrocoagulation: Fluoride removal with aluminium electrodes-Characteristics of products

    Energy Technology Data Exchange (ETDEWEB)

    Drouiche, N., E-mail: nadjibdrouiche@yahoo.fr [Silicon Technology Development Unit (UDTS), 2, Bd Frantz Fanon BP140, Alger-7-merveilles, 16200 (Algeria); Laboratory of Environmental Biotechnologies, Ecole Polytechnique d' Alger - 10, Avenue Pasteur El-Harrach (Algeria); Aoudj, S.; Hecini, M. [Silicon Technology Development Unit (UDTS), 2, Bd Frantz Fanon BP140, Alger-7-merveilles, 16200 (Algeria); Ghaffour, N. [Middle East Desalination Research Center, P.O. Box 21, P.C.133, Muscat (Oman); Lounici, H.; Mameri, N. [Laboratory of Environmental Biotechnologies, Ecole Polytechnique d' Alger - 10, Avenue Pasteur El-Harrach (Algeria)

    2009-09-30

    In this work, treatment of synthetic fluoride-containing solutions by electrocoagulation method using aluminium electrodes has been studied. Electrocoagulation was investigated for applied potential (10-30 V), electrolysis time and supporting electrolyte (NaCl) concentration (0-100 mg/L). The results showed that with increasing applied potential and electrolysis time, the Al{sup 3+} dosage increases, and thereby favouring the fluoride ions removal. It was also observed that defluoridation is dependant on the concentration of supporting electrolyte. Finally, X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy of X-rays and Fourier transform infrared spectroscopy were used to characterize the solid products formed by aluminium electrodes during the EC process.

  10. Study on the treatment of photovoltaic wastewater using electrocoagulation: Fluoride removal with aluminium electrodes-Characteristics of products

    International Nuclear Information System (INIS)

    Drouiche, N.; Aoudj, S.; Hecini, M.; Ghaffour, N.; Lounici, H.; Mameri, N.

    2009-01-01

    In this work, treatment of synthetic fluoride-containing solutions by electrocoagulation method using aluminium electrodes has been studied. Electrocoagulation was investigated for applied potential (10-30 V), electrolysis time and supporting electrolyte (NaCl) concentration (0-100 mg/L). The results showed that with increasing applied potential and electrolysis time, the Al 3+ dosage increases, and thereby favouring the fluoride ions removal. It was also observed that defluoridation is dependant on the concentration of supporting electrolyte. Finally, X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy of X-rays and Fourier transform infrared spectroscopy were used to characterize the solid products formed by aluminium electrodes during the EC process.

  11. Treatment of phthalic acid esters by electrocoagulation with stainless steel electrodes using dimethyl phthalate as a model compound.

    Science.gov (United States)

    Kabdaşli, Işik; Keleş, Asuman; Olmez-Hanci, Tuğba; Tünay, Olcay; Arslan-Alaton, Idil

    2009-11-15

    In this study, treatment of phthalates by electrocoagulation employing stainless steel electrodes was investigated using dimethyl phthalate (DMP) as a model compound. DMP was completely destructed within 30 min up to the high initial concentration of 100mg/L while total mineralization was also obtained within a couple of hours. The applied current density of 22.5 mA/cm(2) and electrolyte (NaCl) concentrations varying between 1000 and 1500 mg/L as chloride resulted in the highest treatment performance. The initial solution pH (2-6) had practically no effect on the process efficiency. Desorption experiments and the reaction rates obtained for DMP, COD and TOC abatements appeared to be a strong evidence of an oxidative removal mechanism. DMP removal fitted first order kinetics. COD and TOC removals began after the total DMP removal and also fitted first order kinetics. Activated sludge inhibition experiments revealed that toxicity could be significantly reduced by electrocoagulation application.

  12. THEORY OF ACTIVE HITTINGS IS IN PROCESSES OF ELECTRO-COAGULATION THE ADMIXTURES IN WATER TECHNOLOGICAL ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    В.В. Березуцький

    2012-10-01

    Full Text Available  In the article theoretical bases of electro-coagulation of admixtures are examined in a water technological environment with the use of theory of the active hittings, which are based on the results of the executed researches and analysis of scientific information. Application of theory of the active hittings is in coagulation, provides high efficiency of process of extraction of admixtures from water environments during minimization of energy consumption and expenses of materials.

  13. Therapeutic efficacy of narrow band imaging-assisted transurethral electrocoagulation for ulcer-type interstitial cystitis/painful bladder syndrome.

    Science.gov (United States)

    Kajiwara, Mitsuru; Inoue, Shougo; Kobayashi, Kanao; Ohara, Shinya; Teishima, Jun; Matsubara, Akio

    2014-04-01

    Narrow band imaging cystoscopy can increase the visualization and detection of Hunner's lesions. A single-center, prospective clinical trial was carried out aiming to show the effectiveness of narrow band imaging-assisted transurethral electrocoagulation for ulcer-type interstitial cystitis/painful bladder syndrome. A total of 23 patients (19 women and 4 men) diagnosed as having ulcer-type interstitial cystitis/painful bladder syndrome were included. All typical Hunner's lesions and suspected areas identified by narrow band imaging were electrocoagulated endoscopically after the biopsy of those lesions. Therapeutic efficacy was assessed prospectively by using visual analog scale score of pain, O'Leary-Sant's symptom index, O'Leary-Sant's problem index and overactive bladder symptom score. The mean follow-up period was 22 months. All patients (100%) experienced a substantial improvement in pain. The average visual analog scale pain scores significantly decreased from 7.3 preoperatively to 1.2 1 month postoperatively. A total of 21 patients (91.3%) who reported improvement had at least a 50% reduction in bladder pain, and five reported complete resolution. Daytime frequency was significantly decreased postoperatively. O'Leary-Sant's symptom index, O'Leary-Sant's problem index and overactive bladder symptom score were significantly decreased postoperatively. However, during the follow-up period, a total of six patients had recurrence, and repeat narrow band imaging-assisted transurethral electrocoagulation of the recurrent lesions was carried out for five of the six patients, with good response in relieving bladder pain. Our results showed that narrow band imaging-assisted transurethral electrocoagulation could be a valuable therapeutic alternative in patients with ulcer-type interstitial cystitis/painful bladder syndrome, with good efficacy and reduction of recurrence rate. © 2014 The Japanese Urological Association.

  14. Pretreatment of Real Wastewater from the Chocolate Manufacturing Industry through an Integrated Process of Electrocoagulation and Sand Filtration

    OpenAIRE

    García-Morales, Marco A.; Juárez, Julio César González; Martínez-Gallegos, Sonia; Roa-Morales, Gabriela; Peralta, Ever; del Campo López, Eduardo Martin; Barrera-Díaz, Carlos; Miranda, Verónica Martínez; Blancas, Teresa Torres

    2018-01-01

    The purpose of this study was to evaluate the efficiency of removal of suspended solids in terms of turbidity, color, and chemical oxygen demand (COD) when integrating the electrocoagulation process using aluminum sacrificial anodes and the sand filtration process as a pretreatment of wastewater from the chocolate manufacturing plant in Toluca, México. Wastewater from the chocolate manufacturing industry used in this study is classified as nontoxic, but is characterized as having a high conte...

  15. Iron removal, energy consumption and operating cost of electrocoagulation of drinking water using a new flow column reactor.

    Science.gov (United States)

    Hashim, Khalid S; Shaw, Andy; Al Khaddar, Rafid; Pedrola, Montserrat Ortoneda; Phipps, David

    2017-03-15

    The goal of this project was to remove iron from drinking water using a new electrocoagulation (EC) cell. In this research, a flow column has been employed in the designing of a new electrocoagulation reactor (FCER) to achieve the planned target. Where, the water being treated flows through the perforated disc electrodes, thereby effectively mixing and aerating the water being treated. As a result, the stirring and aerating devices that until now have been widely used in the electrocoagulation reactors are unnecessary. The obtained results indicated that FCER reduced the iron concentration from 20 to 0.3 mg/L within 20 min of electrolysis at initial pH of 6, inter-electrode distance (ID) of 5 mm, current density (CD) of 1.5 mA/cm 2 , and minimum operating cost of 0.22 US $/m 3 . Additionally, it was found that FCER produces H 2 gas enough to generate energy of 10.14 kW/m 3 . Statistically, it was found that the relationship between iron removal and operating parameters could be modelled with R 2 of 0.86, and the influence of operating parameters on iron removal followed the order: C 0 >t>CD>pH. Finally, the SEM (scanning electron microscopy) images showed a large number of irregularities on the surface of anode due to the generation of aluminium hydroxides. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  16. [Electrocoagulation on a fragment of anterior abdominal rectal muscle for the control of presacral bleeding during rectal resection].

    Science.gov (United States)

    Casal Núñez, José Enrique; Martínez, María Teresa García; Poblador, Alejandro Ruano

    2012-03-01

    Presacral venous haemorrhage during rectal movement is low, but is often massive, and even fatal. Our objective is the "in vitro" determination of the results of electrocoagulation applied to a fragment of muscle on the sacral bone surface during rectal resection due to a malignant neoplasm of the rectum. Single-pole coagulation was applied "in vitro" with the selector at maximum power on a 2×2 cms muscle fragment, applied to the anterior side of the IV sacral vertebra until reaching boiling point. The method was used on 6 patients with bleeding of the presacral venous plexus. In the "in vitro" study, boiling point was reached in 90 seconds from applying the single-pole current on the muscle fragment. Electrocoagulation was applied to a 2×2 cm rectal muscle fragment in 6 patients with presacral venous haemorrhage, using pressure on the surface of the presacral bone, with the stopping of the bleeding being achieved in all cases. The use of indirect electrocoagulation on a fragment of the rectus abdominis muscle is a straightforward and highly effective technique for controlling presacral venous haemorrhage. Copyright © 2011 AEC. Published by Elsevier Espana. All rights reserved.

  17. Use of adsorption using granular activated carbon (GAC) for the enhancement of removal of chromium from synthetic wastewater by electrocoagulation.

    Science.gov (United States)

    Vivek Narayanan, N; Ganesan, Mahesh

    2009-01-15

    The present work deals with removal of hexavalent chromium from synthetic effluents in a batch stirred electrocoagulation cell with iron-aluminium electrode pair coupled with adsorption using granular activated carbon (GAC). Several working parameters such as pH, current density, adsorbent concentration and operating time were studied in an attempt to achieve higher removal capacity. Results obtained with synthetic wastewater revealed that most effective removal capacities of chromium (VI) could be achieved when the initial pH was near 8. The removal of chromium (VI) during electrocoagulation, is due to the combined effect of chemical precipitation, coprecipitation, sweep coagulation and adsorption. In addition, increasing current density in a range of 6.7-26.7mA/cm2 and operating time from 20 to 100min enhanced the treatment rate to reduce metal ion concentration below admissible legal levels. The addition of GAC as adsorbent resulted in remarkable increase in the removal rate of chromium at lower current densities and operating time, than the conventional electrocoagulation process. The method was found to be highly efficient and relatively fast compared to existing conventional techniques.

  18. Treatment of highly concentrated tannery wastewater using electrocoagulation: Influence of the quality of aluminium used for the electrode.

    Science.gov (United States)

    Elabbas, S; Ouazzani, N; Mandi, L; Berrekhis, F; Perdicakis, M; Pontvianne, S; Pons, M-N; Lapicque, F; Leclerc, J-P

    2016-12-05

    This paper deals with the ability of electrocoagulation (EC) to remove simultaneously COD and chromium from a real chrome tanning wastewater in a batch stirred electro-coagulation cell provided with two aluminium-based electrodes (aluminium/copper/magnesium alloy and pure aluminium). Effects of operating time, current density and initial concentration of Cr(III) and COD have been investigated. The concentrations of pollutants have been successfully reduced to environmentally acceptable levels even if the concentrated effluent requires a long time of treatment of around 6h with a 400A/m(2) current density. The aluminium alloy was found to be more efficient than pure aluminium for removal of COD and chromium. Dilution of the waste has been tested for treatment: high abatement levels could be obtained with shorter time of treatment and lower current densities. Energy consumption of the electrocoagulation process was also discussed. The dilution by half of the concentrated waste leads to a higher abatement performance of both COD and chromium with the best energy efficiency. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Tolerance of Myriophyllum aquaticum to exposure of industrial wastewater pretreatment with electrocoagulation and their efficiency in the removal of pollutants.

    Science.gov (United States)

    Cano-Rodríguez, Claudia Teodora; Roa-Morales, Gabriela; Amaya-Chávez, Araceli; Valdés-Arias, Ricardo Antonio; Barrera-Díaz, Carlos Eduardo; Balderas-Hernández, Patricia

    2014-01-01

    The wastewater used in this study was obtained from a treatment plant where it mixed with wastewater of 142 industries and was treated using electrocoagulation with iron electrode and phytoremediation with Myriophyllum aquaticum, likewise certain biomarkers of oxidative stress of the plant were evaluated to find out its resistance to contaminant exposure. Electrocoagulation was performed under optimum operating conditions at pH 8 and with a current density of 45.45 A m(-2) to reduce the COD by 42%, color 89% and turbidity 95%; the electrochemical method produces partial elimination of contaminants, though this was improved using phytoremediation. Thus the coupled treatment reduced the COD by 94%, color 97% and turbidity 98%. The exposure of M. aquaticum to electrocoagulated wastewater did not have an effect on the ratio of chlorophyll a/b (2.84 + 0.24); on the activity of SOD, CAT and lipoperoxidation. The results show the potential of M. aquaticum to remove contaminants from pretreated wastewater since the enzymatic system of the plants was not significantly affected.

  20. A new multiple-stage electrocoagulation process on anaerobic digestion effluent to simultaneously reclaim water and clean up biogas.

    Science.gov (United States)

    Liu, Zhiguo; Stromberg, David; Liu, Xuming; Liao, Wei; Liu, Yan

    2015-03-21

    A new multiple-stage treatment process was developed via integrating electrocoagulation with biogas pumping to simultaneously reclaim anaerobic digestion effluent and clean up biogas. The 1st stage of electrocoagulation treatment under the preferred reaction condition led to removal efficiencies of 30%, 81%, 37% and >99.9% for total solids, chemical oxygen demand, total nitrogen and total phosphorus, respectively. Raw biogas was then used as a reactant and pumped into the effluent to simultaneously neutralize pH of the effluent and remove H2S in the biogas. The 2nd stage of electrocoagulation treatment on the neutralized effluent showed that under the selected reaction condition, additional 60% and 10% of turbidity and chemical oxygen demand were further removed. The study concluded a dual-purpose approach for the first time to synergistically combine biogas purification and water reclamation for anaerobic digestion system, which well addresses the downstream challenges of anaerobic digestion technology. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. An empirical model for parameters affecting energy consumption in boron removal from boron-containing wastewaters by electrocoagulation.

    Science.gov (United States)

    Yilmaz, A Erdem; Boncukcuoğlu, Recep; Kocakerim, M Muhtar

    2007-06-01

    In this study, it was investigated parameters affecting energy consumption in boron removal from boron containing wastewaters prepared synthetically, via electrocoagulation method. The solution pH, initial boron concentration, dose of supporting electrolyte, current density and temperature of solution were selected as experimental parameters affecting energy consumption. The obtained experimental results showed that boron removal efficiency reached up to 99% under optimum conditions, in which solution pH was 8.0, current density 6.0 mA/cm(2), initial boron concentration 100mg/L and solution temperature 293 K. The current density was an important parameter affecting energy consumption too. High current density applied to electrocoagulation cell increased energy consumption. Increasing solution temperature caused to decrease energy consumption that high temperature decreased potential applied under constant current density. That increasing initial boron concentration and dose of supporting electrolyte caused to increase specific conductivity of solution decreased energy consumption. As a result, it was seen that energy consumption for boron removal via electrocoagulation method could be minimized at optimum conditions. An empirical model was predicted by statistically. Experimentally obtained values were fitted with values predicted from empirical model being as following; [formula in text]. Unfortunately, the conditions obtained for optimum boron removal were not the conditions obtained for minimum energy consumption. It was determined that support electrolyte must be used for increase boron removal and decrease electrical energy consumption.

  2. Grey water treatment by a continuous process of an electrocoagulation unit and a submerged membrane bioreactor system

    KAUST Repository

    Bani-Melhem, Khalid

    2012-08-01

    This paper presents the performance of an integrated process consisting of an electro-coagulation (EC) unit and a submerged membrane bioreactor (SMBR) technology for grey water treatment. For comparison purposes, another SMBR process without electrocoagulation (EC) was operated in parallel with both processes operated under constant transmembrane pressure for 24. days in continuous operation mode. It was found that integrating EC process with SMBR (EC-SMBR) was not only an effective method for grey water treatment but also for improving the overall performance of the membrane filtration process. EC-SMBR process achieved up to 13% reduction in membrane fouling compared to SMBR without electrocoagulation. High average percent removals were attained by both processes for most wastewater parameters studied. The results demonstrated that EC-SMBR performance slightly exceeded that of SMBR for COD, turbidity, and colour. Both processes produced effluent free of suspended solids, and faecal coliforms were nearly (100%) removed in both processes. A substantial improvement was achieved in removal of phosphate in the EC-SMBR process. However, ammonia nitrogen was removed more effectively by the SMBR only. Accordingly, the electrolysis condition in the EC-SMBR process should be optimized so as not to impede biological treatment. © 2012 Elsevier B.V.

  3. Comparative study on the removal of COD from POME by electrocoagulation and electro-Fenton methods: Process optimization

    Science.gov (United States)

    Chairunnisak, A.; Arifin, B.; Sofyan, H.; Lubis, M. R.; Darmadi

    2018-03-01

    This research focuses on the Chemical Oxygen Demand (COD) treatment in palm oil mill effluent by electrocoagulation and electro-Fenton methods to solve it. Initially, the aqueous solution precipitates in acid condition at pH of about two. This study focuses on the palm oil mill effluent degradation by Fe electrodes in a simple batch reactor. This work is conducted by using different parameters such as voltage, electrolyte concentration of NaCl, volume of H2O2 and operation time. The processing of data resulted is by using response surface method coupled with Box-Behnken design. The electrocoagulation method results in the optimum COD reduction of 94.53% from operating time of 39.28 minutes, 20 volts, and without electrolyte concentration. For electro-Fenton process, experiment points out that voltage 15.78 volts, electrolyte concentration 0.06 M and H2O2 volume 14.79 ml with time 35.92 minutes yield 99.56% degradation. The result concluded that the electro-Fenton process was more effective to degrade COD of the palm-oil-mill effluent compared to electrocoagulation process.

  4. Turbidity and oil removal from oilfield produced water, middle oil company by electrocoagulation technique

    Directory of Open Access Journals (Sweden)

    Mohammed Thamer

    2018-01-01

    Full Text Available Huge quantity of produced water is salty water trapped in the oil wells rock and brought up along with oil or gas during production. It usually contains hydrocarbons as oil and suspended solids or turbidity. Therefore the aim of this study is to treat produced water before being discharge to surface water or re injected in oil wells. In this paper experimental results were investigated on treating produced water (which is obtained from Middle Oil Company-Iraq, through electrocoagulation (EC. The performance of EC was investigated for reduction of turbidity and oil content up to allowable limit. Effect of different parameters were studied; (pH, current density, distance between two electrodes, and electrolysis time. The experimental runs carried out by an electrocoagulation unit was assembled and installed in the lab and the reactor was made of a material Perspex, with a capacity of approximately 2.5 liters and dimensions were 20 cm in length, 14 cm in width and 16 cm height. The electrodes employed were made of commercial materials. The anode was a perforated aluminum rectangular plate with a thickness of 1.72 mm, a height of 60 mm and length of 140 mm and the cathode was a mesh iron. The current was used in the unit with different densities to test the turbidity removing efficiency (0.0025, 0.00633, 0.01266 and 0.0253 A/cm2.The experiment showed that the best turbidity removing was (10, 9.7, 9.2, 18 NTU respectively. The distance between the electrodes of the unit was 3cm. The present turbidity removing was 92.33%. A slight improvement of turbidity removing was shown when the distance between the electrodes was changed from 0.5 to 3 cm with fixation of current density. The best turbidity removing was 93.5% , (7.79 NTU when the distance between the electrodes were 1 cm. The experimental results found that concentration of oil had decreased to (10.7, 11.2, 11.7, 12.3 mg/l when different current densities (0.00253, 0.00633, 0.01266, 0.0253 A/cm2

  5. Post-treatment of molasses wastewater by electrocoagulation and process optimization through response surface analysis.

    Science.gov (United States)

    Tsioptsias, C; Petridis, D; Athanasakis, N; Lemonidis, I; Deligiannis, A; Samaras, P

    2015-12-01

    Molasses wastewater is a high strength effluent of food industry such as distilleries, sugar and yeast production plants etc. It is characterized by a dark brown color and exhibits a high content in substances of recalcitrant nature such as melanoidins. In this study, electrocoagulation (EC) was studied as a post treatment step for biologically treated molasses wastewater with high nitrogen content obtained from a baker's yeast industry. Iron and copper electrodes were used in various forms; the influence and interaction of current density, molasses wastewater dilution, and reaction time, on COD, color, ammonium and nitrate removal rates and operating cost were studied and optimized through Box Behnken's response surface analysis. Reaction time varied from 0.5 to 4 h, current density varied from 5 to 40 mA/cm(2) and dilution from 0 to 90% (v/v expressed as water concentration). pH, conductivity and temperature measurements were also carried out during each experiment. From preliminary experiments, it was concluded that the application of aeration and sample dilution, considerably influenced the kinetics of the process. The obtained results showed that COD removal varied between 10 and 54%, corresponding to an operation cost ranging from 0.2 to 33 euro/kg COD removed. Significant removal rates were obtained for nitrogen as nitrate and ammonium (i.e. 70% ammonium removal). A linear relation of COD and ammonium to the design parameters was observed, while operation cost and nitrate removal responded in a curvilinear function. A low ratio of electrode surface to treated volume was used, associated to a low investment cost; in addition, iron wastes could be utilized as low cost electrodes i.e. iron fillings from lathes, aiming to a low operation cost due to electrodes replacement. In general, electrocoagulation proved to be an effective and low cost process for biologically treated molasses-wastewater treatment for additional removal of COD and nitrogen content and

  6. Removal of arsenic from drinking water by the electrocoagulation using Fe and Al electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Kobya, M., E-mail: kobya@gyte.edu.tr [Gebze Institute of Technology, Department of Environmental Engineering, 41400 Gebze (Turkey); Gebologlu, U.; Ulu, F.; Oncel, S. [Gebze Institute of Technology, Department of Environmental Engineering, 41400 Gebze (Turkey); Demirbas, E. [Gebze Institute of Technology, Department of Chemistry, 41400 Gebze (Turkey)

    2011-05-30

    Highlights: > Removal percentages of arsenic from drinking water at optimum operating conditions in electrocoagulation process were 93.5% for Fe electrode and 95.7% for Al electrode. > Operating costs at the optimum conditions were 0.020 Euro m{sup -3} for Fe and 0.017 Euro m{sup -3} for Al electrodes. > Surface topography of the solid particles at Fe/Al electrodes was analyzed with scanning electron microscope. > The adsorption of arsenic followed pseudo second-order adsorption model. - Abstract: A novel technique of electrocoagulation (EC) was attempted in the present investigation to remove arsenic from drinking waters. Experiments were carried out in a batch electrochemical reactor using Al and Fe electrodes with monopolar parallel electrode connection mode to assess their efficiency. The effects of several operating parameters on arsenic removal such as pH (4-9), current density (2.5-7.5 A m{sup -2}), initial concentration (75-500 {mu}g L{sup -1}) and operating time (0-15 min) were examined. Optimum operating conditions were determined as an operating time of 12.5 min and pH 6.5 for Fe electrode (93.5%) and 15 min and pH 7 for Al electrode (95.7%) at 2.5 A m{sup -2}, respectively. Arsenic removal obtained was highest with Al electrodes. Operating costs at the optimum conditions were calculated as 0.020 Euro m{sup -3} for Fe and 0.017 Euro m{sup -3} for Al electrodes. EC was able to bring down aqueous phase arsenic concentration to less than 10 {mu}g L{sup -1} with Fe and Al electrodes. The adsorption of arsenic over electrochemically produced hydroxides and metal oxide complexes was found to follow pseudo second-order adsorption model. Scanning electron microscopy was also used to analyze surface topography of the solid particles at Fe/Al electrodes during the EC process.

  7. Ventricular fibrillation caused by electrocoagulation in monopolar mode during laparoscopic subphrenic mass resection

    Science.gov (United States)

    Yan, Chun-Yan; Wang, Yi-Fan; Yu, Hong

    2010-01-01

    Background Monopolar is usually a safe and effective electrosurgical unit used in laparoscopic general surgery. However, it can cause adverse outcomes and even cardiac arrest. We present a video of laparoscopic subphrenic mass resection using monopolar coagulation during which ventricular fibrillation occurred and from which the patient was successfully resuscitated. Methods Our patient was a 39-year-old man who was admitted to our institution for treatment of a liver mass. The mass was located in the left subphrenic region and was 3.31 cm × 2.7 cm according to B ultrasound. He had had a spleen resection after a car accident 14 years before. He was otherwise healthy and a physical examination was negative. He was scheduled for “laparoscopic exploration, mass resection.” General anesthesia was induced and the operation began. While dissecting the mass from the diaphragm there was some bleeding; monopolar electrocoagulation with 68 W was performed upon which ventricular fibrillation occurred. The operation was stopped and closed-chest compression began immediately. Defibrillation (200-J shock) was performed in 1 min and rhythm returned to sinus. Results The operation was resumed carefully and uneventfully. The patient was sent to the postoperative acute care unit and was extubated 10 min after operation. The patient recovered uneventfully without any signs of permanent cardiac injury and was discharged on postoperative day 3. The final pathology was accessory spleen. Conclusions We present a video of a patient who experienced ventricular fibrillation during laparoscopic surgery which was successfully defibrillated leaving no permanent cardiac injury. We assume the reason for the ventricular fibrillation was the low-frequency leakage current from electrocoagulation which may be conducted by Swan-Ganz catheter to the heart. It is important that we be familiar with the character of electrosurgical unit when performing laparoscopic surgery. We should be

  8. Removal of Acid Black 194 dye from water by electrocoagulation with aluminum anode.

    Science.gov (United States)

    Vidal, Jorge; Villegas, Loreto; Peralta-Hernández, Juan M; Salazar González, Ricardo

    2016-01-01

    Application of an electrocoagulation process (EC) for the elimination of AB194 textile dye from synthetic and textile wastewater (effluent) contaminated with AB194 dye, was carried out using aluminum anodes at two different initial pH values. Tafel studies in the presence and absence of the dye were performed. The aluminum species formed during the electrolysis were quantified by atomic absorption, and the flocs formed in the process were analyzed by HPLC-MS. Complete removal of AB194 from 1.0 L of solution was achieved applying low densities current at initial pH values of 4.0 and 8.0. The removal of AB194 by EC was possible with a short electrolysis time, removing practically 100% of the total organic carbon content and chemical oxygen demand. The final result was completely discolored water lacking dye and organic matter. An effluent contaminated with 126 mg L(-1) AB194 dye from a Chilean textile industry was also treated by EC under optimized experimental conditions, yielding discolored water and considerably decreasing the presence of organic compounds (dye + dyeing additives), with very low concentrations of dissolved Al(3+). Analysis of flocs showed the presence of the original dye without changes in its chemical structure.

  9. Development of an empirical model for fluoride removal from photovoltaic wastewater by electrocoagulation process

    KAUST Repository

    Drouiche, Nadjib

    2011-05-01

    Electrocoagulation experiments were conducted with bipolar aluminium electrodes to determine the optimum conditions for the fluoride removal from synthetic photovoltaic wastewater. A high fluoride concentration in community water supplies can cause fluorosis which has a detrimental effect on human health in particular on teeth and bones. A full 23 factorial design of experiments was used to obtain the best conditions of fluoride removal from water solutions. The three factors considered were initial fluoride concentration, applied potential, and supporting electrolyte dosage. Two levels for each factor were used; supporting electrolyte (0 and 100), applied potential (10 and 30 V), and initial fluoride concentration (20 and 25 mg/L). Results showed that the optimum conditions for fluoride removal from photovoltaic wastewater containing an initial fluoride concentration of 20 mg/L were a supporting electrolyte dose of 100 mg/L and an applied potential of 30 V. These gave a residual fluoride concentration of 8.6 mg/L which was below the standard discharge limit. A mathematical equation showing the relation between residual fluoride concentration and the effective variables was also developed. © 2011 Desalination Publications. All rights reserved.

  10. Coagulation and electrocoagulation for co-treatment of stabilized landfill leachate and municipal wastewater

    Directory of Open Access Journals (Sweden)

    Mohini Verma

    2018-04-01

    Full Text Available Landfill leachate and municipal wastewater at various ratios (1:20, 1:10, 1:7 and 1:5 were subjected to coagulation and electrocoagulation (EC. Alum was used in conventional coagulation at pH 6 and aluminum plate as electrode was used in EC at a current density of 386 A/m2 with 5 cm inter electrode spacing. Treatment efficiency was assessed from removal of chemical oxygen demand (COD, total suspended solids (TSS, turbidity, ammonia, nitrate and phosphate. At 1:5 ratio of landfill leachate to municipal wastewater, highest COD removal was with 3.8 g/L alum whereas highest turbidity removal was with 3.3 g/L alum during coagulation. EC exhibited almost similar removal efficiency for all the parameters at different ratios tested except for COD which was considerably higher at 1:20 ratio. Aluminum consumption from electrode was 0.7 g/L following EC as compared to 3.8 g/L alum used in coagulation. The amount of sludge produced was found to be higher with EC as compared to coagulation which could be due to the fact that the electrochemical method was performed for a longer duration than conventional coagulation. For minimal sludge generation, EC reaction time should be ∼30 min. Further studies with EC process on costing and sludge generation will help to advance the technology for wastewater treatment.

  11. The Use of Al, Cu, and Fe in an Integrated Electrocoagulation-Ozonation Process

    Directory of Open Access Journals (Sweden)

    Carlos E. Barrera Díaz

    2015-01-01

    Full Text Available This study presents the effect of supplying electrochemically generated metallic ions (Al, Cu, and Fe during an ozonation process for treating industrial wastewater. The pollutant removal efficiencies of the electrocoagulation (EC, ozonation, and coupled EC-ozonation processes were examined by the decrease in chemical oxygen demand (COD as a function of treatment time. The EC was performed in a raw industrial wastewater, which has contributions from 39 chemical, 34 metal finishing, 22 textile, 11 leather, and 5 automotive plants, at pH (7.3 using a current density of 150 A/m2 for 60 min, giving a 45% reduction in COD. The ozonation process was more effective with the same wastewater, reducing the COD by 52% after 60 min of treatment. Combining the EC and ozonation methods resulted in a synergistic process that improves the reduction of COD in a shorter time. In just 12 min the integrated process reduced the COD by 88%. Thus, the combination of EC and ozonation processes improves noticeably the wastewater quality, decreasing the treatment time and also reducing the sludge production.

  12. Arsenic and fluoride removal from groundwater by electrocoagulation using a continuous filter-press reactor.

    Science.gov (United States)

    Guzmán, Athziri; Nava, José L; Coreño, Oscar; Rodríguez, Israel; Gutiérrez, Silvia

    2016-02-01

    We investigated simultaneous arsenic and fluoride removal from ground water by electrocoagulation (EC) using aluminum as the sacrificial anode in a continuous filter-press reactor. The groundwater was collected at a depth of 320 m in the Bajío region in Guanajuato Mexico (arsenic 43 µg L(-1), fluoride 2.5 mg L(-1), sulfate 89.6 mg L(-1), phosphate 1.8 mg L(-1), hydrated silica 112.4 mg L(-1), hardness 9.8 mg L(-1), alkalinity 31.3 mg L(-1), pH 7.6 and conductivity 993 µS cm(-1)). EC was performed after arsenite was oxidized to arsenate by addition of 1 mg L(-1) hypochlorite. The EC tests revealed that at current densities of 4, 5 and 6 mA cm(-2) and flow velocities of 0.91 and 1.82 cm s(-1), arsenate was abated and residual fluoride concentration satisfies the WHO standard (CF < 1.5 mg L(-1)). Spectrometric analyses performed on aluminum flocs indicated that these are mainly composed of aluminum-silicates of calcium and magnesium. Arsenate removal by EC involves adsorption on aluminum flocs, while fluoride replaces a hydroxyl group from aluminum aggregates. The best EC was obtained at 4 mA cm(-2) and 1.82 cm s(-1) with electrolytic energy consumption of 0.34 KWh m(-3). Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Arsenic Removal from Natural Groundwater by Electrocoagulation Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    A. M. García-Lara

    2014-01-01

    Full Text Available Contamination of natural groundwater by arsenic (As is a serious problem that appears in some areas of Northern Central Mexico (NCM. In this research, As was removed from NCM wells groundwater by the electrocoagulation (EC technique. Laboratory-scale arsenic electroremoval experiments were carried out at continuous flow rates between 0.25 and 1.00 L min−1 using current densities of 5, 10, and 20 A m−2. Experiments were performed under galvanostatic conditions during 5 min, at constant temperature and pH. The response surface methodology (RSM was used for the optimization of the processing variables (flow rate and current density, response modeling, and predictions. The highest arsenic removal efficiency from underground water (99% was achieved at low flow rates (0.25 L min−1 and high current densities (20 A m−2. The response models developed explained 93.7% variability for As removal efficiency.

  14. Development of an empirical model for fluoride removal from photovoltaic wastewater by electrocoagulation process

    KAUST Repository

    Drouiche, Nadjib; Aoudj, Salaheddine; Lounici, Hakim; Mahmoudi, Hacè ne; Ghaffour, NorEddine; Goosen, Mattheus F A

    2011-01-01

    Electrocoagulation experiments were conducted with bipolar aluminium electrodes to determine the optimum conditions for the fluoride removal from synthetic photovoltaic wastewater. A high fluoride concentration in community water supplies can cause fluorosis which has a detrimental effect on human health in particular on teeth and bones. A full 23 factorial design of experiments was used to obtain the best conditions of fluoride removal from water solutions. The three factors considered were initial fluoride concentration, applied potential, and supporting electrolyte dosage. Two levels for each factor were used; supporting electrolyte (0 and 100), applied potential (10 and 30 V), and initial fluoride concentration (20 and 25 mg/L). Results showed that the optimum conditions for fluoride removal from photovoltaic wastewater containing an initial fluoride concentration of 20 mg/L were a supporting electrolyte dose of 100 mg/L and an applied potential of 30 V. These gave a residual fluoride concentration of 8.6 mg/L which was below the standard discharge limit. A mathematical equation showing the relation between residual fluoride concentration and the effective variables was also developed. © 2011 Desalination Publications. All rights reserved.

  15. Influence of operating parameters on the arsenic and boron removal by electrocoagulation

    International Nuclear Information System (INIS)

    Can, B. Z.; Boncukcuoglu, R.; Bayar, S.; Bayhan, Y.K

    2016-01-01

    Despite their high boron contents, some boron deposits contain considerable amounts of arsenic. Its toxicology and health hazard also has been reported for many years. In this work arsenic and boron removal from synthetic water was studied on laboratory scale by electrocoagulation using aluminum electrodes. The influence of main operating parameters such as current density, stirring speed, supporting electrolyte type and concentration on the arsenic and boron removal was investigated. Waste water sample was prepared with initial arsenic concentration of 50 mg L/sup -1/ and boron concentration of 1000 mg L/sup -1/. Current density was varied from 0.18 to 4.28 mA cm/sup -2/, stirring speed was varied as 50, 150, 250, 350 rpm, NaCl, KCl and Na/sub 2/SO/sub 4/ were used as supporting electrolyte. The obtained experimental results showed that efficiency of arsenic and boron removal increased with increasing current density. As the current density increases, the potential difference applied to the system also increases the energy consumption. Increasing the supporting electrolyte concentration increased conductivity of solution and decreased energy consumption. The most favorable supporting electrolyte type was NaCl for arsenic and boron removal. The best stirring speed was 150 rpm for arsenic and boron removal. (author)

  16. Abatements of reduced sulphur compounds, colour, and organic matter from indigo dyeing effluents by electrocoagulation.

    Science.gov (United States)

    Tünay, Olcay; Simşeker, Merve; Kabdaşli, Isik; Olmez-Hanci, Tugba

    2014-08-01

    In the present study, the treatability of indigo dyeing effluents by the electrocoagulation (EC) process using stainless steel electrodes was experimentally investigated. The samples used were concentrated with main pollutant parameters of chemical oxygen demand (COD) (1000-1100 mg/L), reduced sulphur species (over 2000 mg SO2-(3)/L), and colour (0.12-0.13 1/cm). The study focused on the effect of main operation parameters on the EC process performance in terms of abatement of reduced sulphur compounds as well as decolourization and organic matter reduction. Results indicated that the performance of EC proved to be high providing total oxidation of the reduced sulphur compounds, almost complete decolourization, and COD removal up to 90%. Increasing applied current density from 22.5 to 45 mA/cm2 appreciably improved abatement of the reduced sulphur compounds for Sample I, but a further increase in the applied current density to 67.5 mA/cm2 did not accelerate the conversion rate to sulphate. The process performance was adversely affected by increasing initial concentration of the reduced sulphur compounds. Decolourization and organic matter removal efficiency enhanced with increasing applied current density. The main removal mechanism of the reduced sulphur compounds by EC was explained as conversion to sulphate via oxidation. Conversion rate to sulphate fitted pseudo-first-order kinetics very well.

  17. Removal of oil and grease from automobile garage wastewater using electrocoagulation

    Science.gov (United States)

    Manilal, A. M.; Harinarayanan Nampoothiri, M. G.; Soloman, P. A.

    2017-06-01

    Wastewater from automobile garages and workshops is an important contributor to the water pollution. Oil and grease is one of the major content of wastewater from vehicle garages. Wastewater from a public transport depot at Thrissur district in Kerala, India was collected for the study. A batch reactor has been devised to assess the efficacy of electrocoagulation in removing oil and grease from the wastewater. Aluminium and iron were tested as the anode material with stainless steel as cathode. Experiments were conducted to investigate the effect of various operating parameters such as current density, pH, time and salt concentration on oil and grease removal. The results shown that aluminium is superior to iron in removing the oil and grease from the wastewater. The reactor with aluminium as anode was able to remove 90.8 % of the oil and grease at a current density of 0.6 A/dm2 in 15 minutes. The calculated specific energy consumption is also less for aluminium in comparison with iron.

  18. Adsorption treatment of oxide chemical mechanical polishing wastewater from a semiconductor manufacturing plant by electrocoagulation

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Wei-Lung, E-mail: wlchou@sunrise.hk.edu.tw [Department of Safety, Health and Environmental Engineering, Hungkuang University, No. 34, Chung-Chie Road, Sha-Lu, Taichung 433, Taiwan (China); Wang, Chih-Ta [Department of Safety Health and Environmental Engineering, Chung Hwa University of Medical Technology, Tainan Hsien 717, Taiwan (China); Chang, Wen-Chun; Chang, Shih-Yu [Department of Safety, Health and Environmental Engineering, Hungkuang University, No. 34, Chung-Chie Road, Sha-Lu, Taichung 433, Taiwan (China)

    2010-08-15

    In this study, metal hydroxides generated during electrocoagulation (EC) were used to remove the chemical oxygen demand (COD) of oxide chemical mechanical polishing (oxide-CMP) wastewater from a semiconductor manufacturing plant by EC. Adsorption studies were conducted in a batch system for various current densities and temperatures. The COD concentration in the oxide-CMP wastewater was effectively removed and decreased by more than 90%, resulting in a final wastewater COD concentration that was below the Taiwan discharge standard (100 mg L{sup -1}). Since the processed wastewater quality exceeded the direct discharge standard, the effluent could be considered for reuse. The adsorption kinetic studies showed that the EC process was best described using the pseudo-second-order kinetic model at the various current densities and temperatures. The experimental data were also tested against different adsorption isotherm models to describe the EC process. The Freundlich adsorption isotherm model predictions matched satisfactorily with the experimental observations. Thermodynamic parameters, including the Gibbs free energy, enthalpy, and entropy, indicated that the COD adsorption of oxide-CMP wastewater on metal hydroxides was feasible, spontaneous and endothermic in the temperature range of 288-318 K.

  19. Treatment of the baker's yeast wastewater by electrocoagulation

    Energy Technology Data Exchange (ETDEWEB)

    Kobya, M. [Department of Environmental Engineering, Gebze Institute of Technology, 41400 Gebze (Turkey)], E-mail: kobya@gyte.edu.tr; Delipinar, S. [Department of Environmental Engineering, Gebze Institute of Technology, 41400 Gebze (Turkey)

    2008-06-15

    In the laboratory-scale experiments, treatment of baker's yeast production wastewater has been investigated by electrocoagulation (EC) using a batch reactor. Effects of the process variables such as pH, electrode material (Fe and Al), current density, and operating time are investigated in terms of removal efficiencies of chemical oxygen demand (COD), total organic carbon (TOC), turbidity, and operating cost, respectively. The maximum removal efficiencies of COD, TOC and turbidity under optimal operating conditions, i.e., pH 6.5 for Al electrode and pH 7 for Fe electrode, current density of 70 A/m{sup 2} and operating time of 50 min were 71, 53 and 90% for Al electrode and 69, 52 and 56% for Fe electrode, respectively. Al electrode gave 4.4 times higher removal efficiency of turbidity than Fe electrode due to interference from color of dissolved iron. The operating costs for Al and Fe electrodes in terms of $/m{sup 3} or $/kg COD were 1.54 and 0.82, 0.51 and 0.27, respectively.

  20. The effect of bipolar electrocoagulation during ovarian cystectomy on ovarian reserve: a systematic review.

    Science.gov (United States)

    Pergialiotis, Vasilios; Prodromidou, Anastasia; Frountzas, Maximos; Bitos, Konstantinos; Perrea, Despina; Doumouchtsis, Stergios K

    2015-11-01

    The aim of the present systematic review was to study the effect of bipolar electrocoagulation during ovarian cystectomy on ovarian reserve. We searched Medline (1966-2015), Scopus (2004-2015), ClinicalTrials.gov (2008-2015), and Cochrane Central Register (CENTRAL) databases along with reference lists of electronically retrieved studies. The levels of antimullerian hormone (AMH) and antral follicle count (AFC) at 1, 3, 6, and 12 months following the excision of the benign ovarian cyst were defined as primary outcomes. Eight studies were finally included in our systematic review, which recruited 545 women. A metaanalysis was precluded because of significant heterogeneity in the methodological characteristics of the included studies. Data from the included studies suggest that the use of bipolar coagulation compared with ovarian sutures seems to result in significantly lower AMH and AFC during the first 3 months following the excision of the ovarian cyst. Two studies reported that this effect seems to persist at 6 and 12 months postoperatively. Bipolar electrodiathermy seems to be accompanied by increased damage to ovarian reserve, which is indicated by the lower levels of AMH and AFC. However, definitive results are precluded because of the significant heterogeneity of included studies and the potential bias. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Treatment of bio-digester effluent by electrocoagulation using iron electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Mayank; Ponselvan, F. Infant Anto; Malviya, Jodha Ram [Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee 247667 (India); Srivastava, Vimal Chandra, E-mail: vimalcsr@yahoo.co.in [Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee 247667 (India); Mall, Indra Deo, E-mail: id_mall2000@yahoo.co.in [Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee 247667 (India)

    2009-06-15

    The present paper deals with chemical oxygen demand (COD) reduction of a bio-digester effluent (BDE) in a batch electrocoagulation (EC) reactor using iron electrode. A central composite (CC) experimental design has been employed to evaluate the individual and interactive effects of four independent parameters on the COD removal efficiency. The parameters studied are current density (j): 44.65-223.25 A/m{sup 2}; initial pH (pH{sub 0}): 2-8; inter-electrode distance (g): 1-3 cm and electrolysis time (t): 30-150 min. The results have been analyzed using Pareto analysis of variance (ANOVA). Analysis showed a high coefficient of determination value (R{sup 2} = 0.8547) and satisfactory prediction for second-order regression model. Graphical response surface and contour plots have been used to locate the optimum values of studied parameters. Maximum COD and color reduction of 50.5% and 95.2%, respectively, was observed at optimum conditions. Present study shows that EC technique can be employed in distilleries to reduce the pollution load before treatment in aerobic treatment plants to meet the discharge standards.

  2. Removal of nitrate and sulphate from biologically treated municipal wastewater by electrocoagulation

    Science.gov (United States)

    Sharma, Arun Kumar; Chopra, A. K.

    2017-06-01

    The present investigation observed the effect of current density ( j), electrocoagulation (EC) time, inter electrode distance, electrode area, initial pH and settling time on the removal of nitrate (NO3 -) and sulphate (SO4 2-) from biologically treated municipal wastewater (BTMW), and optimization of the operating conditions of the EC process. A glass chamber of two-liter volume was used for the experiments with DC power supply using two electrode plates of aluminum (Al-Al). The maximum removal of NO3 - (63.21 %) and SO4 2- (79.98 %) of BTMW was found with the optimum operating conditions: current density: 2.65 A/m2, EC time: 40 min, inter electrode distance: 0.5 cm, electrode area: 160 cm2, initial pH: 7.5 and settling time: 60 min. The EC brought down the concentration of NO3 - within desirable limit of the Bureau of Indian Standard (BIS)/WHO for drinking water. Under optimal operating conditions, the operating cost was found to be 1.01/m3 of water in terms of the electrode consumption (23.71 × 10-5 kg Al/m3) and energy consumption (101.76 kWh/m3).

  3. Effects of operational parameters on the removal of brilliant green dye from aqueous solutions by electrocoagulation

    Directory of Open Access Journals (Sweden)

    Barun Kumar Nandi

    2017-05-01

    Full Text Available This paper presents an experimental study on the removal of brilliant green dye from aqueous solutions in a batch stirred electrocoagulation (EC reactor using iron electrodes. The main objectives of the experiments were to investigate the effects of the various operating parameters, such as current density, inter electrode distance, initial dye concentration, pH of the solution, EC duration and salt (NaCl concentrations on the brilliant green dye removal efficiency from synthetic wastewater containing in batch EC process. The experimental results showed that 99.59% dye removal was observed for initial dye concentration of 100 mg/L with current density of 41.7 A/m2, initial pH of 4.0 at the end of 30 min of operation. It was observed that, an increase in current density, time of operation and decrease in inter electrode distance improved the dye removal efficiency. Optimum pH for highest dye removal was 4.0–10.0. It was also observed that increase in salt (NaCl concentration in the solution reduces the specific electrical energy consumption (SEEC.

  4. Reduction of nutrients, microbes, and personal care products in domestic wastewater by a benchtop electrocoagulation unit

    Science.gov (United States)

    Symonds, E. M.; Cook, M. M.; McQuaig, S. M.; Ulrich, R. M.; Schenck, R. O.; Lukasik, J. O.; van Vleet, E. S.; Breitbart, M.

    2015-03-01

    To preserve environmental and human health, improved treatment processes are needed to reduce nutrients, microbes, and emerging chemical contaminants from domestic wastewater prior to discharge into the environment. Electrocoagulation (EC) treatment is increasingly used to treat industrial wastewater; however, this technology has not yet been thoroughly assessed for its potential to reduce concentrations of nutrients, a variety of microbial surrogates, and personal care products found in domestic wastewater. This investigation's objective was to determine the efficiency of a benchtop EC unit with aluminum sacrificial electrodes to reduce concentrations of the aforementioned biological and chemical pollutants from raw and tertiary-treated domestic wastewater. EC treatment resulted in significant reductions (p < 0.05, α = 0.05) in phosphate, all microbial surrogates, and several personal care products from raw and tertiary-treated domestic wastewater. When wastewater was augmented with microbial surrogates representing bacterial, viral, and protozoan pathogens to measure the extent of reduction, EC treatment resulted in up to 7-log10 reduction of microbial surrogates. Future pilot and full-scale investigations are needed to optimize EC treatment for the following: reducing nitrogen species, personal care products, and energy consumption; elucidating the mechanisms behind microbial reductions; and performing life cycle analyses to determine the appropriateness of implementation.

  5. Influence of operating parameters on electrocoagulation of C.I. disperse yellow 3

    Directory of Open Access Journals (Sweden)

    Djamel Ghernaout

    2014-12-01

    Full Text Available This work deals with the electrocoagulation (EC process for an organic dye removal. The chosen organic dye is C.I. disperse yellow 3 (DY which is used in textile industry. Experiments were performed in batch mode using Al electrodes and for comparison purposes Fe electrodes. The experimental set-up was composed of 1 L beaker, two identical electrodes which are separated 2 cm from each other. The main operating parameters influencing EC process were examined such as pH, supporting electrolyte concentration CNaCl, current density i, and DY concentration. High performance EC process was shown during 45 min for 200 mg/L dye concentration at i = 350 A m-2 (applied voltage 12 V and CNaCl = 1 g L-1 reaching 98 % for pHs 3 and 10 and 99 % for pH 6. After 10 min, DY was also efficiently removed (86 % showing that EC process may be conveniently applied for textile industry wastewater treatment. EC using Fe electrodes exhibited slightly lower performance comparing EC using Al electrodes.

  6. Arsenic removal from groundwater using iron electrocoagulation: effect of charge dosage rate.

    Science.gov (United States)

    Amrose, Susan; Gadgil, Ashok; Srinivasan, Venkat; Kowolik, Kristin; Muller, Marc; Huang, Jessica; Kostecki, Robert

    2013-01-01

    We demonstrate that electrocoagulation (EC) using iron electrodes can reduce arsenic below 10 μg/L in synthetic Bangladesh groundwater and in real groundwater from Bangladesh and Cambodia, while investigating the effect of operating parameters that are often overlooked, such as charge dosage rate. We measure arsenic removal performance over a larger range of current density than in any other single previous EC study (5000-fold: 0.02 - 100 mA/cm(2)) and over a wide range of charge dosage rates (0.060 - 18 Coulombs/L/min). We find that charge dosage rate has significant effects on both removal capacity (μg-As removed/Coulomb) and treatment time and is the appropriate parameter to maintain performance when scaling to different active areas and volumes. We estimate the operating costs of EC treatment in Bangladesh groundwater to be $0.22/m(3). Waste sludge (~80 - 120 mg/L), when tested with the Toxic Characteristic Leachate Protocol (TCLP), is characterized as non-hazardous. Although our focus is on developing a practical device, our results suggest that As[III] is mostly oxidized via a chemical pathway and does not rely on processes occurring at the anode. Supplementary materials are available for this article. Go to the publisher's online edition of Journal of Environmental Science and Health, Part A, to view the free supplemental file.

  7. Arsenic removal via electrocoagulation from heavy metal contaminated groundwater in La Comarca Lagunera Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Parga, Jose R. [Institute Technology of Saltillo, Department of Metallurgy and Materials Science, V. Carranza 2400, C.P. 25280, Saltillo, Coahuila, Mexico (Mexico)]. E-mail: drjrparga@hotmail.com; Cocke, David L. [Lamar University, Gill Chair of Chemistry and Chemical Engineering, Beaumont, TX 77710 (United States); Valenzuela, Jesus L. [University of Sonora, Hermosillo, Sonora, Mexico (Mexico); Gomes, Jewel A. [Lamar University, Gill Chair of Chemistry and Chemical Engineering, Beaumont, TX 77710 (United States); Kesmez, Mehmet [Lamar University, Gill Chair of Chemistry and Chemical Engineering, Beaumont, TX 77710 (United States); Irwin, George [Lamar University, Department of Chemistry and Physics, Beaumont, TX 77710 (United States); Moreno, Hector [Lamar University, Gill Chair of Chemistry and Chemical Engineering, Beaumont, TX 77710 (United States); Weir, Michael [Lamar University, Gill Chair of Chemistry and Chemical Engineering, Beaumont, TX 77710 (United States)

    2005-09-30

    Arsenic contamination is an enormous worldwide problem. A large number of people dwelling in Comarca Lagunera, situated in the central part of northern Mexico, use well water with arsenic in excess of the water standard regulated by the Secretary of Environment and Natural Resources of Mexico (SEMARNAT), to be suitable for human health. Individuals with lifetime exposure to arsenic develop the classic symptoms of arsenic poisoning. Among several options available for removal of arsenic from well water, electrocoagulation (EC) is a very promising electrochemical treatment technique that does not require the addition of chemicals or regeneration. First, this study will provide an introduction to the fundamental concepts of the EC method. In this study, powder X-ray diffraction, scanning electron microscopy, transmission Moessbauer spectroscopy and Fourier transform infrared spectroscopy were used to characterize the solid products formed at iron electrodes during the EC process. The results suggest that magnetite particles and amorphous iron oxyhydroxides present in the EC products remove arsenic(III) and arsenic(V) with an efficiency of more than 99% from groundwater in a field pilot scale study.

  8. Outcome of bipolar electrocoagulation with lesionectomy in the treatment of epilepsy involving eloquent areas.

    Science.gov (United States)

    Zhai, Feng; Zhou, Jian; Li, Tianfu; Cui, Zhiqiang; Luan, Guoming

    2015-01-01

    We have demonstrated previously that bipolar electrocoagulation on functional cortex (BCFC) is a safe and effective approach for epilepsy involving eloquent areas. Here, we report the results of BCFC with lesionectomy for patients with epileptogenic foci partially overlapping eloquent areas. Forty patients who had been treated with lesionectomy with BCFC were retrospectively reviewed with regard to seizure outcome and neurological deficits. Ten similar patients who had received lesionectomy with multiple subpial transections (MST) were examined as a control group. In the lesionectomy group with BCFC, Engel class I was achieved in 18 (45%) patients, class II in 8 (20%) patients, class III in 8 (20%) patients and class IV in 6 (15%) patients. Five (12.5%) patients developed mild hemiparesis and 1 (2.5%) patient mild sensory dysphasia. In the lesionectomy group with MST, Engel class I was achieved in 3 (30%) patients, class II in 2 (20%) patients, class III in 3 (30%) patients and class IV in 2 (20%) patients. Two (20%) patients developed mild hemiparesis and 1 (10%) patient moderate hemiparesis. All these complications recovered within 1-12 months. Compared with MST, the outcome of BCFC with lesionectomy is similar. But since MST leads to mechanical injury, while BCFC causes thermal injury, the complications of BCFC seem less severe. © 2014 S. Karger AG, Basel.

  9. Arsenic removal via electrocoagulation from heavy metal contaminated groundwater in La Comarca Lagunera Mexico

    International Nuclear Information System (INIS)

    Parga, Jose R.; Cocke, David L.; Valenzuela, Jesus L.; Gomes, Jewel A.; Kesmez, Mehmet; Irwin, George; Moreno, Hector; Weir, Michael

    2005-01-01

    Arsenic contamination is an enormous worldwide problem. A large number of people dwelling in Comarca Lagunera, situated in the central part of northern Mexico, use well water with arsenic in excess of the water standard regulated by the Secretary of Environment and Natural Resources of Mexico (SEMARNAT), to be suitable for human health. Individuals with lifetime exposure to arsenic develop the classic symptoms of arsenic poisoning. Among several options available for removal of arsenic from well water, electrocoagulation (EC) is a very promising electrochemical treatment technique that does not require the addition of chemicals or regeneration. First, this study will provide an introduction to the fundamental concepts of the EC method. In this study, powder X-ray diffraction, scanning electron microscopy, transmission Moessbauer spectroscopy and Fourier transform infrared spectroscopy were used to characterize the solid products formed at iron electrodes during the EC process. The results suggest that magnetite particles and amorphous iron oxyhydroxides present in the EC products remove arsenic(III) and arsenic(V) with an efficiency of more than 99% from groundwater in a field pilot scale study

  10. Coupling biofiltration process and electrocoagulation using magnesium-based anode for the treatment of landfill leachate.

    Science.gov (United States)

    Oumar, Dia; Patrick, Drogui; Gerardo, Buelna; Rino, Dubé; Ihsen, Ben Salah

    2016-10-01

    In this research paper, a combination of biofiltration (BF) and electrocoagulation (EC) processes was used for the treatment of sanitary landfill leachate. Landfill leachate is often characterized by the presence of refractory organic compounds (BOD/COD < 0.13). BF process was used as secondary treatment to remove effectively ammonia nitrogen (N-NH4 removal of 94%), BOD (94% removed), turbidity (95% removed) and phosphorus (more than 98% removed). Subsequently, EC process using magnesium-based anode was used as tertiary treatment. The best performances of COD and color removal from landfill leachate were obtained by applying a current density of 10 mA/cm(2) through 30 min of treatment. The COD removal reached 53%, whereas 85% of color removal was recorded. It has been proved that the alkalinity had a negative effect on COD removal during EC treatment. COD removal efficiencies of 52%, 41% and 27% were recorded in the presence of 1.0, 2.0 and 3.0 g/L of sodium bicarbonate (NaHCO3), respectively. Hydroxide ions produced at the cathode electrode reacted with the bicarbonate ions to form carbonates. The presence of bicarbonates in solution hampered the increase in pH, so that the precipitation of magnesium hydroxides could not take place to effectively remove organic pollutants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. How do operating conditions affect As(III) removal by iron electrocoagulation?

    Science.gov (United States)

    Delaire, Caroline; Amrose, Susan; Zhang, Minghui; Hake, James; Gadgil, Ashok

    2017-04-01

    Iron electrocoagulation (Fe-EC) has been shown to effectively remove arsenic from contaminated groundwater at low cost and has the potential to improve access to safe drinking water for millions of people. Understanding how operating conditions, such as the Fe dosage rate and the O 2 recharge rate, affect arsenic removal at different pH values is crucial to maximize the performance of Fe-EC under economic constraints. In this work, we improved upon an existing computational model to investigate the combined effects of pH, Fe dosage rate, and O 2 recharge rate on arsenic removal in Fe-EC. We showed that the impact of the Fe dosage rate strongly depends on pH and on the O 2 recharge rate, which has important practical implications. We identified the process limiting arsenic removal (As(III) oxidation versus As(V) adsorption) at different pH values, which allowed us to interpret the effect of operating conditions on Fe-EC performance. Finally, we assessed the robustness of the trends predicted by the model, which assumes a constant pH, against lab experiments reproducing more realistic conditions where pH is allowed to drift during treatment as a result of equilibration with atmospheric CO 2 . Our results provide a nuanced understanding of how operating conditions impact arsenic removal by Fe-EC and can inform decisions regarding the operation of this technology in a range of groundwaters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Modelling of fluoride removal via batch monopolar electrocoagulation process using aluminium electrodes

    Science.gov (United States)

    Amri, N.; Hashim, M. I.; Ismail, N.; Rohman, F. S.; Bashah, N. A. A.

    2017-09-01

    Electrocoagulation (EC) is a promising technology that extensively used to remove fluoride ions efficiently from industrial wastewater. However, it has received very little consideration and understanding on mechanism and factors that affecting the fluoride removal process. In order to determine the efficiency of fluoride removal in EC process, the effect of operating parameters such as voltage and electrolysis time were investigated in this study. A batch experiment with monopolar aluminium electrodes was conducted to identify the model of fluoride removal using empirical model equation. The EC process was investigated using several parameters which include voltage (3 - 12 V) and electrolysis time (0 - 60 minutes) at a constant initial fluoride concentration of 25 mg/L. The result shows that the fluoride removal efficiency increased steadily with increasing voltage and electrolysis time. The best fluoride removal efficiency was obtained with 94.8 % removal at 25 mg/L initial fluoride concentration, voltage of 12 V and 60 minutes electrolysis time. The results indicated that the rate constant, k and number of order, n decreased as the voltage increased. The rate of fluoride removal model was developed based on the empirical model equation using the correlation of k and n. Overall, the result showed that EC process can be considered as a potential alternative technology for fluoride removal in wastewater.

  13. Adsorption treatment of oxide chemical mechanical polishing wastewater from a semiconductor manufacturing plant by electrocoagulation

    International Nuclear Information System (INIS)

    Chou, Wei-Lung; Wang, Chih-Ta; Chang, Wen-Chun; Chang, Shih-Yu

    2010-01-01

    In this study, metal hydroxides generated during electrocoagulation (EC) were used to remove the chemical oxygen demand (COD) of oxide chemical mechanical polishing (oxide-CMP) wastewater from a semiconductor manufacturing plant by EC. Adsorption studies were conducted in a batch system for various current densities and temperatures. The COD concentration in the oxide-CMP wastewater was effectively removed and decreased by more than 90%, resulting in a final wastewater COD concentration that was below the Taiwan discharge standard (100 mg L -1 ). Since the processed wastewater quality exceeded the direct discharge standard, the effluent could be considered for reuse. The adsorption kinetic studies showed that the EC process was best described using the pseudo-second-order kinetic model at the various current densities and temperatures. The experimental data were also tested against different adsorption isotherm models to describe the EC process. The Freundlich adsorption isotherm model predictions matched satisfactorily with the experimental observations. Thermodynamic parameters, including the Gibbs free energy, enthalpy, and entropy, indicated that the COD adsorption of oxide-CMP wastewater on metal hydroxides was feasible, spontaneous and endothermic in the temperature range of 288-318 K.

  14. Treatment of bio-digester effluent by electrocoagulation using iron electrodes

    International Nuclear Information System (INIS)

    Kumar, Mayank; Ponselvan, F. Infant Anto; Malviya, Jodha Ram; Srivastava, Vimal Chandra; Mall, Indra Deo

    2009-01-01

    The present paper deals with chemical oxygen demand (COD) reduction of a bio-digester effluent (BDE) in a batch electrocoagulation (EC) reactor using iron electrode. A central composite (CC) experimental design has been employed to evaluate the individual and interactive effects of four independent parameters on the COD removal efficiency. The parameters studied are current density (j): 44.65-223.25 A/m 2 ; initial pH (pH 0 ): 2-8; inter-electrode distance (g): 1-3 cm and electrolysis time (t): 30-150 min. The results have been analyzed using Pareto analysis of variance (ANOVA). Analysis showed a high coefficient of determination value (R 2 = 0.8547) and satisfactory prediction for second-order regression model. Graphical response surface and contour plots have been used to locate the optimum values of studied parameters. Maximum COD and color reduction of 50.5% and 95.2%, respectively, was observed at optimum conditions. Present study shows that EC technique can be employed in distilleries to reduce the pollution load before treatment in aerobic treatment plants to meet the discharge standards.

  15. Application of a hybrid Electrocoagulation-Fenton process in yarn dye wastewater: Kinetic study

    Science.gov (United States)

    Riadi, L.; Sapei, L.; Lidiawati, T.; Agustin, Y. E.

    2016-11-01

    Reactive dyes contain a significant portion of colorants used in yarn dying process and also in textile industry. Since the COD content is usually high in such wastewater,we conducted a hybrid electrocoagulation-fenton method to treat the wastewater. This work describes the application of the hybrid system to the removal of chemical oxygen demand and color from the wastewater in a batch reactor. Having worked with initial pH of 3,0; temperature at 30°C, molar ratio of Fe2+/H2O2 =1/10 and the mol ratio H2O2/COD = 4, we got 88.3% COD conversion and 88.5% color removal. The COD degradation process can be explained in two phases, the first phase is instantaneous reaction and the second phase is first order reaction. The kinetic constant was 0.0053 minute-1 and the rate of COD degradation was 0.0053[COD] mg/L minute.

  16. Removal and adsorption characteristics of polyvinyl alcohol from aqueous solutions using electrocoagulation

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Wei-Lung, E-mail: wlchou@sunrise.hk.edu.tw [Department of Safety, Health and Environmental Engineering, Hungkuang University, Sha-Lu, Taichung 433, Taiwan (China)

    2010-05-15

    The study was to investigate the performance of electrocoagulation (EC) for the efficient removal of polyvinyl alcohol (PVA) from aqueous solutions. Several parameters were evaluated to characterize the PVA removal efficiency, such as various electrode pairs, current densities, supporting electrolytes, temperatures, and initial electrolyte concentrations. The effects of the current density, supporting electrolyte, and temperature on the electrical energy consumption were also investigated. The experimental results indicate that a Fe/Al electrode pair is the optimum choice out of four different electrode pair combinations. The optimum current density, supporting electrolyte concentration, and temperature were found to be 5 mA cm{sup -2}, 0.008N NaCl, and 298 K, respectively. The PVA removal efficiency decreased with increasing in the initial concentrations. The kinetic studies indicated that the EC process was best described using pseudo-second-order kinetics. The experimental data were also compared to different adsorption isotherm models in order to describe the EC process. The adsorption of PVA was best fitted by the Langmuir adsorption isotherm model. Thermodynamic parameters such as the Gibbs free energy, enthalpy, and entropy indicated that the adsorption of PVA on metal hydroxides was feasible, spontaneous and endothermic in the temperature range of 288-318 K.

  17. Factors influencing arsenic and nitrate removal from drinking water in a continuous flow electrocoagulation (EC) process

    International Nuclear Information System (INIS)

    Kumar, N. Sanjeev; Goel, Sudha

    2010-01-01

    An experimental study was conducted under continuous flow conditions to evaluate some of the factors influencing contaminant removal by electrocoagulation (EC). A bench-scale simulation of drinking water treatment was done by adding a filtration column after a rectangular EC reactor. Contaminant removal efficiency was determined for voltages ranging from 10 to 25 V and a comparative study was done with distilled water and tap water for two contaminants: nitrate and arsenic(V). Maximum removal efficiency was 84% for nitrate at 25 V and 75% for arsenic(V) at 20 V. No significant difference in contaminant removal was observed in tap water versus distilled water. Increase in initial As(V) concentration from 1 ppm to 2 ppm resulted in a 10% increase in removal efficiency. Turbidity in the EC reactor effluent was 52 NTU and had to be filtered to achieve acceptable levels of final turbidity (5 NTU) at steady-state. The flow regime in the continuous flow reactor was also evaluated in a tracer study to determine whether it is a plug flow reactor (PFR) or constantly stirred tank reactor (CSTR) and the results show that this reactor was close to an ideal CSTR, i.e., it was fairly well-mixed.

  18. Factors influencing arsenic and nitrate removal from drinking water in a continuous flow electrocoagulation (EC) process

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, N. Sanjeev [Civil Engineering Department, IIT Kharagpur, Kharagpur 721302 (India); Goel, Sudha, E-mail: sudhagoel@civil.iitkgp.ernet.in [Civil Engineering Department, IIT Kharagpur, Kharagpur 721302 (India)

    2010-01-15

    An experimental study was conducted under continuous flow conditions to evaluate some of the factors influencing contaminant removal by electrocoagulation (EC). A bench-scale simulation of drinking water treatment was done by adding a filtration column after a rectangular EC reactor. Contaminant removal efficiency was determined for voltages ranging from 10 to 25 V and a comparative study was done with distilled water and tap water for two contaminants: nitrate and arsenic(V). Maximum removal efficiency was 84% for nitrate at 25 V and 75% for arsenic(V) at 20 V. No significant difference in contaminant removal was observed in tap water versus distilled water. Increase in initial As(V) concentration from 1 ppm to 2 ppm resulted in a 10% increase in removal efficiency. Turbidity in the EC reactor effluent was 52 NTU and had to be filtered to achieve acceptable levels of final turbidity (5 NTU) at steady-state. The flow regime in the continuous flow reactor was also evaluated in a tracer study to determine whether it is a plug flow reactor (PFR) or constantly stirred tank reactor (CSTR) and the results show that this reactor was close to an ideal CSTR, i.e., it was fairly well-mixed.

  19. Improvement of the Performance of an Electrocoagulation Process System Using Fuzzy Control of pH.

    Science.gov (United States)

    Demirci, Yavuz; Pekel, Lutfiye Canan; Altinten, Ayla; Alpbaz, Mustafa

    2015-12-01

    The removal efficiencies of electrocoagulation (EC) systems are highly dependent on the initial value of pH. If an EC system has an acidic influent, the pH of the effluent increases during the treatment process; conversely, if such a system has an alkaline influent, the pH of the effluent decreases during the treatment process. Thus, changes in the pH of the wastewater affect the efficiency of the EC process. In this study, we investigated the dynamic effects of pH. To evaluate approaches for preventing increases in the pH of the system, the MATLAB/Simulink program was used to develop and evaluate an on-line computer-based system for pH control. The aim of this work was to study Proportional-Integral-Derivative (PID) control and fuzzy control of the pH of a real textile wastewater purification process using EC. The performances and dynamic behaviors of these two control systems were evaluated based on determinations of COD, colour, and turbidity removal efficiencies.

  20. Treatment of cooling tower blowdown water containing silica, calcium and magnesium by electrocoagulation.

    Science.gov (United States)

    Liao, Z; Gu, Z; Schulz, M C; Davis, J R; Baygents, J C; Farrell, J

    2009-01-01

    This research investigated the effectiveness of electrocoagulation using iron and aluminium electrodes for treating cooling tower blowdown (CTB) waters containing dissolved silica (Si(OH)(4)), Ca(2 + ) and Mg(2 + ). The removal of each target species was measured as a function of the coagulant dose in simulated CTB waters with initial pH values of 5, 7, and 9. Experiments were also performed to investigate the effect of antiscaling compounds and coagulation aids on hardness ion removal. Both iron and aluminum electrodes were effective at removing dissolved silica. For coagulant doses < or =3 mM, silica removal was a linear function of the coagulant dose, with 0.4 to 0.5 moles of silica removed per mole of iron or aluminium. Iron electrodes were only 30% as effective at removing Ca(2 + ) and Mg(2 + ) as compared to silica. There was no measurable removal of hardness ions by aluminium electrodes in the absence of organic additives. Phosphonate based antiscaling compounds were uniformly effective at increasing the removal of Ca(2 + ) and Mg(2 + ) by both iron and aluminium electrodes. Cationic and amphoteric polymers used as coagulation aids were also effective at increasing hardness ion removal.

  1. Removal and adsorption characteristics of polyvinyl alcohol from aqueous solutions using electrocoagulation

    International Nuclear Information System (INIS)

    Chou, Wei-Lung

    2010-01-01

    The study was to investigate the performance of electrocoagulation (EC) for the efficient removal of polyvinyl alcohol (PVA) from aqueous solutions. Several parameters were evaluated to characterize the PVA removal efficiency, such as various electrode pairs, current densities, supporting electrolytes, temperatures, and initial electrolyte concentrations. The effects of the current density, supporting electrolyte, and temperature on the electrical energy consumption were also investigated. The experimental results indicate that a Fe/Al electrode pair is the optimum choice out of four different electrode pair combinations. The optimum current density, supporting electrolyte concentration, and temperature were found to be 5 mA cm -2 , 0.008N NaCl, and 298 K, respectively. The PVA removal efficiency decreased with increasing in the initial concentrations. The kinetic studies indicated that the EC process was best described using pseudo-second-order kinetics. The experimental data were also compared to different adsorption isotherm models in order to describe the EC process. The adsorption of PVA was best fitted by the Langmuir adsorption isotherm model. Thermodynamic parameters such as the Gibbs free energy, enthalpy, and entropy indicated that the adsorption of PVA on metal hydroxides was feasible, spontaneous and endothermic in the temperature range of 288-318 K.

  2. Arsenic removal via electrocoagulation from heavy metal contaminated groundwater in La Comarca Lagunera México.

    Science.gov (United States)

    Parga, Jose R; Cocke, David L; Valenzuela, Jesus L; Gomes, Jewel A; Kesmez, Mehmet; Irwin, George; Moreno, Hector; Weir, Michael

    2005-09-30

    Arsenic contamination is an enormous worldwide problem. A large number of people dwelling in Comarca Lagunera, situated in the central part of northern México, use well water with arsenic in excess of the water standard regulated by the Secretary of Environment and Natural Resources of México (SEMARNAT), to be suitable for human health. Individuals with lifetime exposure to arsenic develop the classic symptoms of arsenic poisoning. Among several options available for removal of arsenic from well water, electrocoagulation (EC) is a very promising electrochemical treatment technique that does not require the addition of chemicals or regeneration. First, this study will provide an introduction to the fundamental concepts of the EC method. In this study, powder X-ray diffraction, scanning electron microscopy, transmission Mössbauer spectroscopy and Fourier transform infrared spectroscopy were used to characterize the solid products formed at iron electrodes during the EC process. The results suggest that magnetite particles and amorphous iron oxyhydroxides present in the EC products remove arsenic(III) and arsenic(V) with an efficiency of more than 99% from groundwater in a field pilot scale study.

  3. Integrated pretreatment and desalination by electrocoagulation (EC)-ion concentration polarization (ICP) hybrid.

    Science.gov (United States)

    Choi, Siwon; Kim, Bumjoo; Han, Jongyoon

    2017-06-13

    Conventional water treatment process is composed of multiple stages, including desalination (salt removal) and pre/post-treatment of desalination to remove particles, chemicals, and other potential foulants for desalination. In this work, we developed a microfluidic proof-of-concept for a single device water treatment system, which removes both salt ions and non-salt contaminants. Our system combines electrocoagulation (EC), a versatile contaminant removal process, and ion concentration polarization (ICP) desalination, which is an electromembrane desalination process. We demonstrated a continuous EC-ICP operation that removed >95% of suspended solids and reduced the salinity from brackish range (20 mM NaCl) to a potable level (<8.6 mM NaCl). We also demonstrated that our system is flexible in terms of the type and concentration of contaminants it can handle. Combining two different electrochemical processes into a single system, we can reduce unnecessary voltage drop by having a shared anode, and achieve both seamless integration and energy efficient operation. Our system will find applications as a small-scale water treatment system, if properly scaled up in the future.

  4. Removal of natural organic matter and arsenic from water by electrocoagulation/flotation continuous flow reactor.

    Science.gov (United States)

    Mohora, Emilijan; Rončević, Srdjan; Dalmacija, Božo; Agbaba, Jasmina; Watson, Malcolm; Karlović, Elvira; Dalmacija, Milena

    2012-10-15

    The performance of the laboratory scale electrocoagulation/flotation (ECF) reactor in removing high concentrations of natural organic matter (NOM) and arsenic from groundwater was analyzed in this study. An ECF reactor with bipolar plate aluminum electrodes was operated in the horizontal continuous flow mode. Electrochemical and flow variables were optimized to examine ECF reactor contaminants removal efficiency. The optimum conditions for the process were identified as groundwater initial pH 5, flow rate=4.3 l/h, inter electrode distance=2.8 cm, current density=5.78 mA/cm(2), A/V ratio=0.248 cm(-1). The NOM removal according to UV(254) absorbance and dissolved organic matter (DOC) reached highest values of 77% and 71% respectively, relative to the raw groundwater. Arsenic removal was 85% (6.2 μg As/l) relative to raw groundwater, satisfying the drinking water standards. The specific reactor electrical energy consumption was 17.5 kWh/kg Al. The specific aluminum electrode consumption was 66 g Al/m(3). According to the obtained results, ECF in horizontal continuous flow mode is an energy efficient process to remove NOM and arsenic from groundwater. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. The Effectiveness of Electrocoagulation Process for the Removal of Cadmium from Water

    Directory of Open Access Journals (Sweden)

    Ali Akhondi

    2012-07-01

    Full Text Available The presence of toxic heavy metals in industrial wastewaters and its discharge into the sewage system is one of the most environmental problems. In this research, electrocoagulation method was used to remove cadmium as a toxic heavy metal from aqueous phase. The important parameters wich affect the removal of cadmium from wastewater such as the electrode type, area of the electrode, distance between electrodes, voltage, intial concentreation of cadmium and the pH were examined.  Six electrodes with aluminum and iron types were employed with the areas of 2352, 3360, 4200 cm2. The distance between electrodes  were chosen to be 1, 2, 3 cm, respectively. The experimental results indicated that optimum condition was obtained with high surface area of the electrodes of 4200, distance of 1cm, entrance power of 185, residence of time of 40 minutes and pH of enfluent of 10.25. Results showed that change in initial cadmium concentration reduced its removel.

  6. Reduction of turbidity and chromium content of tannery wastewater by electrocoagulation process.

    Science.gov (United States)

    2018-02-12

    The present study is carried out to remove the chromium and turbidity from tannery wastewater by the electrocoagulationprocess with aluminum electrodes. This experimental study is performed using a batch system. The applied pilot comprises a reactor containing two parallel metal electrodes (Al). The latter are connected as mono polar and a different potential is applied between them. Several working parameters, such as applied potential difference, electrolysis time, active electrode surface, inter-electrode distance and pH of the medium have been studied to achieve higher removal efficiency.The treatment achieved a maximum reduction of 99% for the turbidity and 93% for the chromium under the following conditions: a potential difference: 15V; electrodes surface: 45cm2, inter-electrode distance: 1cm; raw water pH (6.1) and a contact time of 90 min. Considering the obtained efficiency in the present study, electrocoagulation process has the potential to be utilized for the cost-effective removal of pollutants from wastewater.

  7. Combined electrocoagulation and electroflotation for removal of fluoride from drinking water.

    Science.gov (United States)

    Zuo, Qianhai; Chen, Xueming; Li, Wei; Chen, Guohua

    2008-11-30

    A combined electrocoagulation (EC) and electroflotation (EF) process was proposed to remove fluoride from drinking water. Its efficacy was investigated under different conditions. Experimental results showed that the combined process could remove fluoride effectively. The total hydraulic retention time required was only 30 min. After treatment, the fluoride concentration was reduced from initial 4.0-6.0mg/L to lower than 1.0mg/L. The influent pH value was found to be a very important variable that affected fluoride removal significantly. The optimal influent pH range is 6.0-7.0 at which not only can effective defluoridation be achieved, but also no pH readjustment is needed after treatment. In addition, it was found that SO(4)(2-) had negative effect; Ca(2+) had positive effect; while Cl(-) had little effect on the fluoride removal. The EC charge loading, EF charge loading and energy consumption were 3.0 Faradays/m(3), 1.5 Faradays/m(3), and 1.2 kWh/m(3), respectively, under typical conditions where fluoride was reduced from initial 4.0 to 0.87 mg/L.

  8. Adsorption treatment of oxide chemical mechanical polishing wastewater from a semiconductor manufacturing plant by electrocoagulation.

    Science.gov (United States)

    Chou, Wei-Lung; Wang, Chih-Ta; Chang, Wen-Chun; Chang, Shih-Yu

    2010-08-15

    In this study, metal hydroxides generated during electrocoagulation (EC) were used to remove the chemical oxygen demand (COD) of oxide chemical mechanical polishing (oxide-CMP) wastewater from a semiconductor manufacturing plant by EC. Adsorption studies were conducted in a batch system for various current densities and temperatures. The COD concentration in the oxide-CMP wastewater was effectively removed and decreased by more than 90%, resulting in a final wastewater COD concentration that was below the Taiwan discharge standard (100 mg L(-1)). Since the processed wastewater quality exceeded the direct discharge standard, the effluent could be considered for reuse. The adsorption kinetic studies showed that the EC process was best described using the pseudo-second-order kinetic model at the various current densities and temperatures. The experimental data were also tested against different adsorption isotherm models to describe the EC process. The Freundlich adsorption isotherm model predictions matched satisfactorily with the experimental observations. Thermodynamic parameters, including the Gibbs free energy, enthalpy, and entropy, indicated that the COD adsorption of oxide-CMP wastewater on metal hydroxides was feasible, spontaneous and endothermic in the temperature range of 288-318 K. Copyright 2010 Elsevier B.V. All rights reserved.

  9. Comparison of Electrocoagulation and Chemical Coagulation Processes in Removing Reactive red 196 from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Ali Assadi

    2016-06-01

    Full Text Available Background: Conventional chemical coagulation is considered as an old method to dye and COD removal in textile effluent. Electrocoagulation (EC process is a robust method to achieve maximum removal. Methods: This study was designed to compare the result of operational parameters including optimum pH and coagulant concentration for chemical coagulation with ferric chloride and alum also, voltage, electrolysis time, initial pH, and conductivity for EC with iron electrodes to remove reactive red 196 (RR 196. Results: The outcomes show that ferric chloride and alum at optimum concentration were capable of removing dye and COD by 79.63 % and 84.83% and 53% and 55%, respectively. In contrast, EC process removed the dye and COD by 99.98% and 90.4%, respectively. Conclusion: The highest treatment efficiency was obtained by increasing the voltage, electrolysis time, pH and conductivity. Increase initial dye concentration reduces removal efficiency. Ultimately, it could be concluded that EC technology is an efficient procedure for handling of colored industrial wastewaters.

  10. Controlled destruction and temperature distributions in biological tissues subjected to monoactive electrocoagulation.

    Science.gov (United States)

    Erez, A; Shitzer, A

    1980-02-01

    An analysis of the temperature fields developed in a biological tissue undergoing a monoactive electrical coagulating process is presented, including thermal recovery following prolonged heating. The analysis is performed for the passage of alternating current and assumes a homogeneous and isotropic tissue model which is uniformly perfused by blood at arterial temperature. Solution for the one-dimensional spherical geometry is obtained by a Laplace transform and numerical integrations. Results obtained indicate the major role which blood perfusion plays in determining the effects of the coagulating process; tissue temperatures and depth of destruction are drastically reduced as blood perfusion increases. Metabolic heat generation rate is found to have negligible effects on tissue temperatures whereas electrode thermal inertia affects temperature levels appreciably. However, electrodes employed in practice would have a low thermal inertia which might be regarded as zero for all practical purposes. It is also found that the depth of tissue destruction is almost directly proportional to the electrical power and duration of application. To avoid excessively high temperatures and charring, it would be advantageous to reduce power and increase the time of application. Results of this study should be regarded as a first approximation to the rather complex phenomena associated with electrocoagulation. They may, nevertheless, serve as preliminary guidelines to practicing surgeons applying this technique.

  11. Treatment of industrial estate wastewater by the application of electrocoagulation process using iron electrodes.

    Science.gov (United States)

    Yavuz, Y; Ögütveren, Ü B

    2018-02-01

    In this study electrocoagulation (EC) of industrial estate wastewater taken from the inlet of wastewater treatment plant was investigated using sacrificial iron electrodes. Employing a pole changer to homogenous consumption of electrodes, studies on the parameters such as current density, supporting electrolyte concentration and initial pH, which have significant effects on COD removal and hence the energy consumption, were performed. Hydrogen peroxide was used in different concentrations to observe its effects on COD removal efficiency and the energy consumption. Sludge productions were also calculated for all experiments. COD removal efficiency of ∼92% was obtained at the best experimental conditions (i = 30 mA/cm 2 , SE = 3 mM Na 2 SO 4 , pH = original pH (∼6) of the wastewater, 1500 mg/L H 2 O 2 ) with an energy cost of €3.41/m 3 wastewater treated and the sludge production of 5.45 g per g COD removed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Simultaneous arsenic and fluoride removal from synthetic and real groundwater by electrocoagulation process: Parametric and cost evaluation.

    Science.gov (United States)

    Thakur, Lokendra Singh; Mondal, Prasenjit

    2017-04-01

    Co-existence of arsenic and fluoride in groundwater has raised severe health issues to living being. Thus, the present research has been conducted for simultaneous removal of arsenic and fluoride from synthetic groundwater by using electrocoagulation process with aluminum electrode. Effects of initial pH, current density, run time, inter electrode distance and NaCl concentration over percentage removal of arsenic and fluoride as well as operating cost have been studied. The optimum experimental conditions are found to be initial pH: 7, current density: 10 A/m 2 , run time: 95 min, inter electrode distance: 1 cm, NaCl concentration: 0.71 g/l for removal of 98.51% arsenic (initial concentration: 550 μg/l) and 88.33% fluoride (initial concentration: 12 mg/l). The concentration of arsenic and fluoride in treated water are found to be 8.19 μg/l and 1.4 mg/l, respectively, with an operating cost of 0.357 USD/m 3 treated water. Pseudo first and second order kinetic model of individual and simultaneous arsenic and fluoride removal in electrocoagulation have also been studied. Produced sludge characterization studies also confirm the presence of arsenic in As(III) form, and fluoride in sludge. The present electrocoagulation process is able to reduce the arsenic and fluoride concentration of synthetic as well as real groundwater to below 10 μg/l and 1.5 mg/l, respectively, which are maximum contaminant level of these elements in drinking water according to WHO guidelines. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. An empirical model for parameters affecting energy consumption in boron removal from boron-containing wastewaters by electrocoagulation

    International Nuclear Information System (INIS)

    Yilmaz, A. Erdem; Boncukcuoglu, Recep; Kocakerim, M. Muhtar

    2007-01-01

    In this study, it was investigated parameters affecting energy consumption in boron removal from boron containing wastewaters prepared synthetically, via electrocoagulation method. The solution pH, initial boron concentration, dose of supporting electrolyte, current density and temperature of solution were selected as experimental parameters affecting energy consumption. The obtained experimental results showed that boron removal efficiency reached up to 99% under optimum conditions, in which solution pH was 8.0, current density 6.0mA/cm 2 , initial boron concentration 100mg/L and solution temperature 293K. The current density was an important parameter affecting energy consumption too. High current density applied to electrocoagulation cell increased energy consumption. Increasing solution temperature caused to decrease energy consumption that high temperature decreased potential applied under constant current density. That increasing initial boron concentration and dose of supporting electrolyte caused to increase specific conductivity of solution decreased energy consumption. As a result, it was seen that energy consumption for boron removal via electrocoagulation method could be minimized at optimum conditions. An empirical model was predicted by statistically. Experimentally obtained values were fitted with values predicted from empirical model being as following;[ECB]=7.6x10 6 x[OH] 0.11 x[CD] 0.62 x[IBC] -0.57 x[DSE] -0.04 x[T] -2.98 x[t] Unfortunately, the conditions obtained for optimum boron removal were not the conditions obtained for minimum energy consumption. It was determined that support electrolyte must be used for increase boron removal and decrease electrical energy consumption.

  14. Impact of hemostasis methods, electrocoagulation versus suture, in laparoscopic endometriotic cystectomy on the ovarian reserve: a randomized controlled trial.

    Science.gov (United States)

    Tanprasertkul, Chamnan; Ekarattanawong, Sophapun; Sreshthaputra, Opas; Vutyavanich, Teraporn

    2014-08-01

    To evaluate the impact on ovarian reserve between two different methods ofhemostasis after laparoscopic ovarian endometrioma excision. A randomized controlled study was conducted from January to December 2013 in Thammasat University Hospital, Thailand. Reproductive women, age 18-45years who underwent laparoscopic ovarian cystectomy were randomized in electrocoagulation and suture groups. Clinical baseline data and ovarian reserve outcome (anti-Mullerian hormone (AMH)) were evaluated. Fifty participants were recruited and randomized in two groups. Electrocoagulation and suture groups consisted of 25 participants. Baseline characteristics between 2 groups (age, weight, BMI, height, cyst diameter, duration and estimated blood loss) were not statistically different. There were no significant difference of AMIH between electrocoagulation and suture group atpre-operative (2.90±2.26 vs. 2.52±2.37 ng/ml), 1 week (1.78±1.51 vs. 1.99±1.71 ng/ml), 1 month (1.76±1.50 vs. 2.09±1.62 ng/ml), 3 months (2.09±1.66 vs. 1.96±1.68 ng/ml) and 6 months (2.11±1.84 vs 1.72±1.68 ng/ml), respectively. However mean AMH ofboth groups significantly decreased since the first week of operation. Effect oflaparoscopic ovarian surgery had significantly declined and sustained AMH level until 6 months. Laparoscopic cystectomy of ovarian endometrioma has negative impact to ovarian reserve. Either electroco- agulation or suture method had no different effects.

  15. An empirical model for parameters affecting energy consumption in boron removal from boron-containing wastewaters by electrocoagulation

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, A. Erdem [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering, 25240 Erzurum (Turkey)]. E-mail: aerdemy@atauni.edu.tr; Boncukcuoglu, Recep [Atatuerk University, Faculty of Engineering, Department of Environmental Engineering, 25240 Erzurum (Turkey); Kocakerim, M. Muhtar [Atatuerk University, Faculty of Engineering, Department of Chemical Engineering, 25240 Erzurum (Turkey)

    2007-06-01

    In this study, it was investigated parameters affecting energy consumption in boron removal from boron containing wastewaters prepared synthetically, via electrocoagulation method. The solution pH, initial boron concentration, dose of supporting electrolyte, current density and temperature of solution were selected as experimental parameters affecting energy consumption. The obtained experimental results showed that boron removal efficiency reached up to 99% under optimum conditions, in which solution pH was 8.0, current density 6.0mA/cm{sup 2}, initial boron concentration 100mg/L and solution temperature 293K. The current density was an important parameter affecting energy consumption too. High current density applied to electrocoagulation cell increased energy consumption. Increasing solution temperature caused to decrease energy consumption that high temperature decreased potential applied under constant current density. That increasing initial boron concentration and dose of supporting electrolyte caused to increase specific conductivity of solution decreased energy consumption. As a result, it was seen that energy consumption for boron removal via electrocoagulation method could be minimized at optimum conditions. An empirical model was predicted by statistically. Experimentally obtained values were fitted with values predicted from empirical model being as following;[ECB]=7.6x10{sup 6}x[OH]{sup 0.11}x[CD]{sup 0.62}x[IBC]{sup -0.57}x[DSE]{sup -0.}= {sup 04}x[T]{sup -2.98}x[t] Unfortunately, the conditions obtained for optimum boron removal were not the conditions obtained for minimum energy consumption. It was determined that support electrolyte must be used for increase boron removal and decrease electrical energy consumption.

  16. Zn(II Removal from Wastewater by Electrocoagulation/Flotation Method using New Configuration of a Split-Plate Airlift Electrochemical Reactor

    Directory of Open Access Journals (Sweden)

    Saad H. Ammar

    2018-01-01

    Full Text Available In this paper, split-plate airlift electrochemical reactor as an apparatus with new configuration for wastewater treatment was provided. Two aluminum plates were fixed inside the reactor and present two functions; first it works as split plates for internal loop generation of the airlift system (the zone between the two plates acts as riser while the other two zones act as downcomer and second it works as two electrodes for electrocoagulation process. Simulated wastewater contaminated with zinc ions was used to test the performance of this apparatus for zinc removal by studying the effect of different experimental variables such as initial concentration of zinc (50-800 ppm, electrical current density (2.67-21.4 mA/cm2, initial pH (3-11, air flowrate (12-50 LPH, and implicitly the electrocoagulation time. The results have shown the applicability of this split-plate airlift reactor as electrocoagulation cell in the treatment of wastewater such as wastewater containing Zink ions. The Zink removal percent was shown to increase upon increasing the current density and the electrolysis time. Also best removal percent was achieved in the initial pH range between 7 and 9. The minimum electrocoagulation time required for removal of ≥ 90% of Zn(II decreases from 90 to 22 min when operating current density increases from 2.67 to 21.4 mA/cm2.

  17. Performance and microbial community analysis of bio-electrocoagulation on simultaneous nitrification and denitrification in submerged membrane bioreactor at limited dissolved oxygen.

    Science.gov (United States)

    Li, Liang; Dong, Yihua; Qian, Guangsheng; Hu, Xiaomin; Ye, Linlin

    2018-06-01

    A pair of Fe-C electrodes was installed in a traditional submerged membrane bioreactor (MBR, Rc), and a novel asynchronous periodic reversal bio-electrocoagulation system (Re) was developed. The simultaneous nitrification and denitrification (SND) performance was discussed under limited dissolved oxygen (DO). Results showed that electrocoagulation enhanced total nitrogen (TN) removal from 59.48% to 75.09% at 1.2 mg/L DO. Additionally, Fe electrode could increase sludge concentration, particle size, and enzyme activities related to nitrogen removal. The enzyme activities of Hydroxylamine oxidoreductase (HAO), Nitrate Reductase (NAR), nitric oxide reductase NOR and nitrous oxide reductase (N 2 OR) in Re were 38.35%, 21.59%, 89.96% and 38.64% higher than Rc, respectively. Moreover, electrocoagulation was advantageous for nitrite accumulation, indicating partial nitrification and denitrification were more easily achieved in Re. Besides, results from high throughput sequencing analysis revealed that electrocoagulation increased the relative abundance of most genera related to nitrogen removal, including Nitrosomonas, Comamonadaceae_unclassified, Haliangium and Denitratisoma. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Using electrocoagulation for metal and chelant separation from washing solution after EDTA leaching of Pb, Zn and Cd contaminated soil.

    Science.gov (United States)

    Pociecha, Maja; Lestan, Domen

    2010-02-15

    Electrocoagulation with an Al sacrificial anode was tested for the separation of chelant and heavy metals from a washing solution obtained after leaching Pb (3200 mg kg(-1)), Zn (1100 mg kg(-1)), and Cd (21 mg kg(-1)) contaminated soil with EDTA. In the electrochemical process, the sacrificial anode corroded to release Al(3+) which served as coagulant for precipitation of chelant and metals. A constant current density of 16-128 mAc m(-2) applied between the Al anode and the stainless-steel cathode removed up to 95% Pb, 68% Zn and 66% Cd from the soil washing solution. Approximately half of the initial EDTA remained in the washing solution after treatment, up to 16.3% of the EDTA was adsorbed on Al coagulant and precipitated, the rest of the EDTA was degraded by anodic oxidation. In a separate laboratory-scale remediation experiment, we leached a soil with 40 mmol EDTA per kg of soil and reused the washing solution (after electrocoagulation) in a closed loop. It removed 53% of Pb, 26% of Zn and 52% of Cd from the soil. The discharge solution was clear and colourless, with pH 7.52 and 170 mg L(-1) Pb, 50 mg L(-1) Zn, 1.5 mg L(-1) Cd and 11 mM EDTA.

  19. Effect of iron ions and electric field on nitrification process in the periodic reversal bio-electrocoagulation system.

    Science.gov (United States)

    Qian, Guangsheng; Hu, Xiaomin; Li, Liang; Ye, Linlin; Lv, Weijian

    2017-11-01

    This study explored the nitrification mechanism of a periodic reversal bio-electrocoagulation system with Fe-C electrodes. The ammonia nitrogen removal was compared in four identical cylindrical sequencing bath reactors. Two of them were reactors with Fe-C electrodes (S1) and C-C electrodes (S2), respectively. The other two were a reactor with iron ions (S3) and a traditional SBR (S4), respectively. The results demonstrated that the effect on enhancing nitrification in S1 was the best among all four SBRs, followed by S3, S2 and S4. Iron ions increased the biomass, and electric field improved the proton transfer and enzyme activity. The dominant bacterial genera in the four SBRs were Hyphomicrobium, Thauera, Nitrobacter, Nitrosomonas, Paracoccus and Hydrogenophaga. The iron ions may increase the levels of Nitrosomonas and Nitrobacter, both of which were the main microbes of the nitrification process. This study provided a significant and meaningful understanding of nitrification in a bio-electrocoagulation system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Phenolic compounds removal from mimosa tannin model water and olive mill wastewater by energy-efficient electrocoagulation process

    Directory of Open Access Journals (Sweden)

    Marijana Kraljić Roković

    2014-12-01

    Full Text Available The objective of this work was to study the influence of NaCl concentration, time, and current density on the removal efficiency of phenolic compounds by electrocoagulation process, as well as to compare the specific energy consumption (SEC of these processes under different experimental conditions. Electrocoagulation was carried out on two different samples of water: model water of mimosa tannin and olive mill wastewater (OMW. Low carbon steel electrodes were used in the experiments. The properties of the treated effluent were determined using UV/Vis spectroscopy and by measuring total organic carbon (TOC. Percentage of removal increased with time, current density, and NaCl concentration. SEC value increased with increased time and current density but it was decreased significantly by NaCl additions (0-29 g L-1. It was found that electro­coagulation treatment of effluents containing phenolic compounds involves complex formation between ferrous/ferric and phenolic compounds present in treated effluent, which has significant impact on the efficiency of the process.

  1. A combination of electro-enzymatic catalysis and electrocoagulation for the removal of endocrine disrupting chemicals from water.

    Science.gov (United States)

    Zhao, He; Zhang, Di; Du, Penghui; Li, Haitao; Liu, Chenming; Li, Yuping; Cao, Hongbin; Crittenden, John C; Huang, Qingguo

    2015-10-30

    We in this study investigated a novel electrochemical approach combining electro-enzyme and electrocoagulation to precipitate bisphenol A (BPA) from water containing humic acid (HA). Horseradish peroxidase was immobilized on the graphite felt of Ti electrode as HRP-GF/Ti cathode, with aluminum plate anode establishing a pair of working electrodes. BPA was 100% removed and the reduction of total organic carbon (TOC) reached 95.1% after 20-min sequencing treatment with the current density of 2.3 mA/cm(2). Real wastewater (TOC=28.76 mg/L, BPA=4.1 μg/L) also can achieve 94% BPA removal and 52% TOC reduction after sequencing treatment. Additionally, coupled electro-system with continuous flow only required energy of 0.016 kWh/m(3) to achieve simultaneous 90% BPA and 85% TOC removal. As indicated in the time-of-flight mass spectrometry and FTIR spectra, the electro-enzymatic process not only oxidized BPA into dimer and BPA-3,4-quinone, but also greatly altered the chemical and structural features of HA, where hydrophilic moieties (phenolic and alcohols) transformed into hydrophobic forms (ethers, quinone and aliphatic). These polymerized products were effectively separated from aquous solution during anodic electrocoagulation, leading to significant removal of BPA and TOC. Thus, the coupled process may provide a faster and less energy strategy to control certain emerging contaminants in water/wastewater treatment. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Modeling the removal of Sunfix Red S3B from aqueous solution by electrocoagulation process using artificial neural network

    Directory of Open Access Journals (Sweden)

    Manh Ha Bui

    2016-01-01

    Full Text Available This study presents an application of artificial neural networks (ANNs to predict the dye removal efficiency (color and chemical oxygen demand value of Electrocoagulation process from Sunfix Red S3B aqueous solution. The Bayesian regulation algorithm was applied to train the networks with experimental data including five factors: pH, current density, sulphate concentration, initial dye concentration (IDC, and electrolysis time. The predicting performance of the ANN models was validated through the low root mean square error value (9.844 %, mean absolute percentage error (13.776 % and the high determination coefficient value (0.836. Garson, Connection weight method and neural interpretation diagram were also used to study the influence of input variables on dye removal efficiency. For decolorization, the most effective inputs are determined as current density, electrolysis time and initial pH, while COD removal is found to be strongly affected by initial dye concentration and sulphate concentration. Through these steps, we demonstrated ANN’s robustness in modeling and analysis of electrocoagulation process.

  3. Efficacy of electrocoagulation in sealing the cystic artery and cystic duct occluded with only one absorbable clip during laparoscopic cholecystectomy.

    Science.gov (United States)

    Yang, Chang-Ping; Cao, Jin-Lin; Yang, Ren-Rong; Guo, Hong-Rong; Li, Zhao-Hui; Guo, Hai-Ying; Shao, Yin-Can; Liu, Gui-Bao

    2014-02-01

    Even though laparoscopic cholecystectomy (LC) emerged over 20 years ago, controversies persist with regard to the best method to ligate the cystic duct and artery. We proposed to assess the effectiveness and safety of electrocoagulation to seal the cystic artery and cystic duct after their occlusion with only one absorbable clip. We retrospectively compared the clinical data for 635 patients undergoing LC using electrocoagulation to seal the cystic artery and cystic duct that were occluded with only one absorbable clip (Group 1) and 728 patients undergoing LC using titanium clips (Group 2). In parallel, 30 rabbits randomized into six groups underwent cholecystectomy. After cystic duct ligation with absorbable or titanium clips, the animals were sacrificed 1, 3, or 6 months later, and intraabdominal adhesions were assessed after celiotomy. The mean operative time was significantly shorter (41.6 versus 58.9 minutes, PElectrocoagulation of the cystic artery and cystic duct that were occluded with only one absorbable clip is safe and effective during LC. This approach is associated with shortened operative times and reduced leakage, compared with the standard method using metal clips.

  4. Electrocoagulation improving bone cement use in middle-ear surgery: short-term and middle-term results.

    Science.gov (United States)

    Galy-Bernadoy, C; Akkari, M; Mondain, M; Uziel, A; Venail, F

    2016-12-01

    Bone cement is used for ossicular chain repair and revision stapes surgery. Its efficient use requires cautious removal of mucosa from the ossicles. This paper reports a technique for easy, fast and safe removal of this mucosa prior to cement application. It consists of the application of monopolar electrocoagulation on the ossicles prior to bone cement application. The outcomes of six cases of revision stapes surgery and seven cases of partial ossiculoplasty, conducted between 2007 and 2012 using this new technique, were evaluated. Intra-operative reports and audiometric data were collected. During the last assessment, reconstruction using bone cement resulted in mean post-operative air-bone gaps of 4.1 ± 6.5 dB in revision stapes surgery cases and 5.7 ± 5.5 dB in partial ossiculoplasty cases, reflecting a significant hearing improvement (p = 0.03). No complications were observed. Electrocoagulation allows the removal of mucosa from the ossicles in an easy, fast and safe manner, enabling the use of bone cement for ossicular chain reconstruction.

  5. Simultaneous algae-polluted water treatment and electricity generation using a biocathode-coupled electrocoagulation cell (bio-ECC).

    Science.gov (United States)

    Dong, Yue; Qu, Youpeng; Li, Chao; Han, Xiaoyu; Ambuchi, John J; Liu, Junfeng; Yu, Yanling; Feng, Yujie

    2017-10-15

    How to utilize electrocoagulation (EC) technology for algae-polluted water treatment in an energy-efficient manner remains a critical challenge for its widespread application. Herein, a novel biocathode-coupled electrocoagulation cell (bio-ECC) with sacrificial iron anode and nitrifying biocathode was developed. Under different solution conductivities (2.33±0.25mScm -1 and 4.94±0.55mScm -1 ), the bio-ECC achieved almost complete removal of algae cells. The maximum power densities of 8.41 and 11.33Wm -3 at corresponding current densities of 48.03Am -3 and 66.26Am -3 were obtained, with the positive energy balance of 4.52 and 7.44Wm -3 . In addition, the bio-ECC exhibited excellent NH 4 + -N removal performance with the nitrogen removal rates of 7.28mgL -1 h -1 and 6.77mgL -1 h -1 in cathode chamber, indicating the superiority of bio-ECC in NH 4 + -N removal. Pyrosequencing revealed that nitrifiers including Nitrospira, Nitrobacter, Nitrosococcus, and Nitrosomonas were enriched in biocathode. The removal mechanisms of algae in anode chamber were also explored by AFM and SEM-EDX tests. These results provide a proof-of-concept study of transferring energy-intensive EC process into an energy-neutral process with high-efficiency algae removal and electricity recovery. Copyright © 2017. Published by Elsevier B.V.

  6. Electrocoagulation treatment of raw landfill leachate using iron-based electrodes: Effects of process parameters and optimization.

    Science.gov (United States)

    Huda, N; Raman, A A A; Bello, M M; Ramesh, S

    2017-12-15

    The main problem of landfill leachate is its diverse composition comprising many persistent organic pollutants which must be removed before being discharge into the environment. This study investigated the treatment of raw landfill leachate using electrocoagulation process. An electrocoagulation system was designed with iron as both the anode and cathode. The effects of inter-electrode distance, initial pH and electrolyte concentration on colour and COD removals were investigated. All these factors were found to have significant effects on the colour removal. On the other hand, electrolyte concentration was the most significant parameter affecting the COD removal. Numerical optimization was also conducted to obtain the optimum process performance. Under optimum conditions (initial pH: 7.73, inter-electrode distance: 1.16 cm, and electrolyte concentration (NaCl): 2.00 g/L), the process could remove up to 82.7% colour and 45.1% COD. The process can be applied as a pre-treatment for raw leachates before applying other appropriate treatment technologies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Transformation and removal of arsenic in groundwater by sequential anodic oxidation and electrocoagulation.

    Science.gov (United States)

    Zhang, Peng; Tong, Man; Yuan, Songhu; Liao, Peng

    2014-08-01

    Oxidation of As(III) to As(V) is generally essential for the efficient remediation of As(III)-contaminated groundwater. The performance and mechanisms of As(III) oxidation by an as-synthesized active anode, SnO2 loaded onto Ti-based TiO2 nanotubes (Ti/TiO2NTs/Sb-SnO2), were investigated. The subsequent removal of total arsenic by electrocoagulation (EC) was further tested. The Ti/TiO2NTs/Sb-SnO2 anode showed a high and lasting electrochemical activity for As(III) oxidation. 6.67μM As(III) in synthetic groundwater was completely oxidized to As(V) within 60min at 50mA. Direct electron transfer was mainly responsible at the current below 30mA, while hydroxyl radicals contributed increasingly with the increase in the current above 30mA. As(III) oxidation was moderately inhibited by the presence of bicarbonate (20mM), while was dramatically increased with increasing the concentration of chloride (0-10mM). After the complete oxidation of As(III) to As(V), total arsenic was efficiently removed by EC in the same reactor by reversing electrode polarity. The removal efficiency increased with increasing the current but decreased by the presence of phosphate and silica. Anodic oxidation represents an effective pretreatment approach to increasing EC removal of As(III) in groundwater under O2-limited conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Physico-chemical treatment of liquid waste on an industrial plant for electrocoagulation.

    Science.gov (United States)

    Mlakar, Matej; Levstek, Marjetka; Stražar, Marjeta

    2017-10-01

    Wastewater from washing, oil separators, the metal processing and detergent industries, was tested and treated for treatment of different types of liquid waste at industrial level at Domžale-Kamnik Wastewater Treatment Plant (WWTP). The effect of implementing the electrocoagulation (EC) and flotation processes, respectively, is analysed and includes the duration of the EC implementation, voltage, number of electrodes, and chemical addition, as well as the pH effect and conductivity. The tests were performed not only on various types of liquid waste, but also on different mixtures of liquid waste. Laboratory analysis of the samples before and after EC have shown an effective reduction not only in organic loads in accordance with the COD (chemical oxygen demand) parameter, but also in mineral oil content, toxic metal concentration, and surfactants. The COD in liquid waste from the detergent industry was reduced by 73% and the content of surfactants by 64%. In liquid waste from the metal processing industry, the COD decreased by up to 95%, while the content of toxic metals decreased from 59 to 99%. Similar phenomena were shown in liquid waste from oil separators, where the COD was reduced to 33% and the concentration of mineral oils by 99%. Some of the liquid wastes were mixed together in the ratio 1:1, thus allowing testing of the operation of EC technology in heterogeneous liquid waste, where the final result proved to be effective cleaning as well. After treatment in the process of EC, the limit values of the treated water proved appropriate for discharge into the sewerage system.

  9. Electrocoagulation applied to the decontamination of stainless steel parts contaminated with uranium

    International Nuclear Information System (INIS)

    Pujol P, A. A.; Monroy G, F.; Bustos B, E.

    2017-09-01

    The decontamination of non-compact able radioactive waste, such as tools and equipment, has the purpose of removing surface radioactive waste from waste, in order to reduce its volume to be conditioned and stored. The application of treatment techniques based on electrochemistry, such as electro-coagulation (Ec) in the decontamination of waste or non-compact able radioactive materials of stainless steel containing uranium, was studied in the present work and its technical feasibility was evaluated. For this, tests were carried out, first with stainless steel plates coated with WO 3 , to simulate a fixed contamination and to determine the best conditions of tungsten removal by Ec as: ph, support electrolyte, cell potential, type of counter electrode material and distance between the anode/cathode electrodes. In addition, different arrangements of configurations were tested for a rectangular acrylic cell and for a circular configuration cell, using flat plate electrodes and cylindrical electrodes to perform the removal process of the contaminant with the best conditions. In the case of the Ec, the mechanism that occurs is an electrodisolution of the iron plate, with the release of oxygen at the anode and detachment of the WO 3 layer, all the material passing to the solution with the formation of iron hydroxides. Subsequently, from the best experimental conditions to remove WO 3 , UO 2 (NO 3 ) 2 was used as radioactive contaminant to evaluate the feasibility of the decontamination process. Removal efficiencies of 90% uranium were obtained in 1 hour, ph = 1, using a molar solution of H 2 SO 4 as support electrolyte and potential of 2.4 V. Finally, after testing the different electrochemical cell (Ec) arrays at the laboratory level, radioactive decontamination of real pieces contaminated with U-238 was performed using the circular configuration arrangement under the best experimental conditions previously determined. (Author)

  10. Electrocoagulation using a rotated anode: A novel reactor design for textile wastewater treatment.

    Science.gov (United States)

    Naje, Ahmed Samir; Chelliapan, Shreeshivadasan; Zakaria, Zuriati; Abbas, Saad A

    2016-07-01

    This paper investigates the optimum operational conditions of a novel rotated bed electrocoagulation (EC) reactor for the treatment of textile wastewater. The effect of various operational parameters such as rotational speed, current density (CD), operational time (RT), pH, temperature, and inter-electrode distance (IED) on the pollutant removal efficiency were examined. In addition, the consumption of aluminum (Al) and electrical energy, as well as operating costs at optimum conditions were also calculated. The results indicated that the optimum conditions for the treatment of textile wastewater were achieved at CD = 4 mA/cm(2), RT = 10 min, rotational speed = 150 rpm, pH = 4.57, temperature = 25 °C, and IED = 1 cm. The electrode consumption, energy consumption, and operating costs were 0.038 kg/m(3), 4.66 kWh/m(3) and 0.44 US$/m(3), respectively. The removal efficiencies of chemical oxygen demand (COD), biological oxygen demand (BOD), total suspended solid (TSS), turbidity and color were 97.10%, 95.55%, 98%, 96% and 98.50%, respectively, at the first 10 min of reaction time, while the phenol compound of the wastewater was almost entirely removed (99.99%). The experimental results confirm that the new reactor design with rotated anode impellers and cathode rings provided high treatment efficiency at a reduced reaction time and with lower energy consumption. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Electrocoagulation/electroflotation of reactive, disperse and mixture dyes in an external-loop airlift reactor

    International Nuclear Information System (INIS)

    Balla, Wafaa; Essadki, A.H.; Gourich, B.; Dassaa, A.; Chenik, H.; Azzi, M.

    2010-01-01

    This paper studied the efficiency of electrocoagulation/electroflotation in removing colour from synthetic and real textile wastewater by using aluminium and iron electrodes in an external-loop airlift reactor of 20 L. The disperse dye is a mixture of Yellow terasil 4G, Red terasil 343 150% and Blue terasil 3R02, the reactive dye is a mixture of Red S3B 195, Yellow SPD, Blue BRFS. For disperse dye, the removal efficiency was better using aluminium electrodes, whereas, the iron electrodes showed more efficiency for removing colour for reactive dye and mixed synthetic dye. Both for disperse, reactive and mixed dye, 40 mA cm -2 and 20 min were respectively the optimal current density and electrolysis time. 7.5 was an optimal initial pH for both reactive and mixed synthetic dye and 6.2 was an optimal initial pH for disperse dye. The colour efficiency reached in general 90%. The results showed also that Red and Blue disappeared quickly comparatively to the Yellow component both for reactive and disperse dyes. The real textile wastewater was then used. Three effluents were also used: disperse, reactive and the mixture. The colour efficiency is between 70 and 90% and COD efficiency reached 78%. The specific electrical energy consumption per kg dye removed (E dye ) in optimal conditions for real effluent was calculated. 170 kWh/kg dye was required for a reactive dye, 120 kWh/kg dye for disperse and 50 kWh/kg dye for the mixture.

  12. Oil refinery wastewater treatment using coupled electrocoagulation and fixed film biological processes

    Science.gov (United States)

    Pérez, Laura S.; Rodriguez, Oscar M.; Reyna, Silvia; Sánchez-Salas, José Luis; Lozada, J. Daniel; Quiroz, Marco A.; Bandala, Erick R.

    2016-02-01

    Oil refinery wastewater was treated using a coupled treatment process including electrocoagulation (EC) and a fixed film aerobic bioreactor. Different variables were tested to identify the best conditions using this procedure. After EC, the effluent was treated in an aerobic biofilter. EC was capable to remove over 88% of the overall chemical oxygen demand (COD) in the wastewater under the best working conditions (6.5 V, 0.1 M NaCl, 4 electrodes without initial pH adjustment) with total petroleum hydrocarbon (TPH) removal slightly higher than 80%. Aluminum release from the electrodes to the wastewater was found an important factor for the EC efficiency and closely related with several operational factors. Application of EC allowed to increase the biodegradability of the sample from 0.015, rated as non-biodegradable, up to 0.5 widely considered as biodegradable. The effluent was further treated using an aerobic biofilter inoculated with a bacterial consortium including gram positive and gram negative strains and tested for COD and TPH removal from the EC treated effluent during 30 days. Cell count showed the typical bacteria growth starting at day three and increasing up to a maximum after eight days. After day eight, cell growth showed a plateau which agreed with the highest decrease on contaminant concentration. Final TPHs concentration was found about 600 mgL-1 after 30 days whereas COD concentration after biological treatment was as low as 933 mgL-1. The coupled EC-aerobic biofilter was capable to remove up to 98% of the total TPH amount and over 95% of the COD load in the oil refinery wastewater.

  13. Optimization of electrocoagulation (EC) process for the purification of a real industrial wastewater from toxic metals.

    Science.gov (United States)

    Gatsios, Evangelos; Hahladakis, John N; Gidarakos, Evangelos

    2015-05-01

    In the present work, the efficiency evaluation of electrocoagulation (EC) in removing toxic metals from a real industrial wastewater, collected from Aspropyrgos, Athens, Greece was investigated. Manganese (Mn), copper (Cu) and zinc (Zn) at respective concentrations of 5 mg/L, 5 mg/L and 10 mg/L were present in the wastewater (pH=6), originated from the wastes produced by EBO-PYRKAL munitions industry and Hellenic Petroleum Elefsis Refineries. The effect of operational parameters such as electrode combination and distance, applied current, initial pH and initial metal concentration, was studied. The results indicated that Cu and Zn were totally removed in all experiments, while Mn exhibited equally high removal percentages (approximately 90%). Decreasing the initial pH and increasing the distance between electrodes, resulted in a negative effect on the efficiency and energy consumption of the process. On the other hand, increasing the applied current, favored metal removal but resulted in a power consumption increase. Different initial concentrations did not affect metal removal efficiency. The optimal results, regarding both cost and EC efficiency, were obtained with a combination of iron electrodes, at 2 cm distance, at initial current of 0.1 A and pH=6. After 90 min of treatment, maximum removal percentages obtained were 89% for Mn, 100% for Cu and 100% for Zn, at an energy consumption of 2.55 kWh/m(3). Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Electrocoagulation/electroflotation of reactive, disperse and mixture dyes in an external-loop airlift reactor

    Energy Technology Data Exchange (ETDEWEB)

    Balla, Wafaa [Ecole Superieure de Technologie, Laboratoire Genie des Procedes et Environnement, B.P. 8012, Oasis, Casablanca (Morocco); Faculte des sciences Ain Chock, Laboratoire d' Electrochimie et chimie de l' environnement, B.P. 5366, Maarif, Casablanca (Morocco); Essadki, A.H., E-mail: essadki@est-uh2c.ac.ma [Ecole Superieure de Technologie, Laboratoire Genie des Procedes et Environnement, B.P. 8012, Oasis, Casablanca (Morocco); Gourich, B. [Ecole Superieure de Technologie, Laboratoire Genie des Procedes et Environnement, B.P. 8012, Oasis, Casablanca (Morocco); Dassaa, A. [Faculte des sciences Ain Chock, Laboratoire d' Electrochimie et chimie de l' environnement, B.P. 5366, Maarif, Casablanca (Morocco); Chenik, H. [Ecole Superieure de Technologie, Laboratoire Genie des Procedes et Environnement, B.P. 8012, Oasis, Casablanca (Morocco); Faculte des sciences Ain Chock, Laboratoire d' Electrochimie et chimie de l' environnement, B.P. 5366, Maarif, Casablanca (Morocco); Azzi, M. [Faculte des sciences Ain Chock, Laboratoire d' Electrochimie et chimie de l' environnement, B.P. 5366, Maarif, Casablanca (Morocco)

    2010-12-15

    This paper studied the efficiency of electrocoagulation/electroflotation in removing colour from synthetic and real textile wastewater by using aluminium and iron electrodes in an external-loop airlift reactor of 20 L. The disperse dye is a mixture of Yellow terasil 4G, Red terasil 343 150% and Blue terasil 3R02, the reactive dye is a mixture of Red S3B 195, Yellow SPD, Blue BRFS. For disperse dye, the removal efficiency was better using aluminium electrodes, whereas, the iron electrodes showed more efficiency for removing colour for reactive dye and mixed synthetic dye. Both for disperse, reactive and mixed dye, 40 mA cm{sup -2} and 20 min were respectively the optimal current density and electrolysis time. 7.5 was an optimal initial pH for both reactive and mixed synthetic dye and 6.2 was an optimal initial pH for disperse dye. The colour efficiency reached in general 90%. The results showed also that Red and Blue disappeared quickly comparatively to the Yellow component both for reactive and disperse dyes. The real textile wastewater was then used. Three effluents were also used: disperse, reactive and the mixture. The colour efficiency is between 70 and 90% and COD efficiency reached 78%. The specific electrical energy consumption per kg dye removed (E{sub dye}) in optimal conditions for real effluent was calculated. 170 kWh/kg{sub dye} was required for a reactive dye, 120 kWh/kg{sub dye} for disperse and 50 kWh/kg{sub dye} for the mixture.

  15. In-situ identification of iron electrocoagulation speciation and application for natural organic matter (NOM) removal.

    Science.gov (United States)

    Dubrawski, Kristian L; Mohseni, Madjid

    2013-09-15

    In this work, iron speciation in electrocoagulation (EC) was studied to determine the impact of operating parameters on natural organic matter (NOM) removal from natural water. Two electrochemical EC parameters, current density (i) and charge loading rate (CLR), were investigated. Variation of these parameters led to a near unity current efficiency (φ = 0.957 ± 0.03), at any combination of i in a range of 1-25 mA/cm(2) and CLR in a range of 12-300 C/L/min. Higher i and CLR led to a higher bulk pH and limited the amount of dissolved oxygen (DO) reduced at the cathode surface due to mass transfer limitations. A low i (1 mA/cm(2)) and intermediate CLR (60 C/L/min) resulted in low bulk DO (<2.5 mg/L), where green rust (GR) was identified by in-situ Raman spectroscopy as the primary crystalline electrochemical product. Longer electrolysis times at higher i led to magnetite (Fe3O4) formation. Both higher (300 C/L/min) and lower (12 C/L/min) CLR values led to increased DO and/or increased pH, with lepidocrocite (γ-FeOOH) as the only crystalline species observed. The NOM removal of the three identified species was compared, with conditions leading to GR formation showing the greatest dissolved organic carbon removal, and highest removal of the low apparent molecular weight (<550 Da) chromophoric NOM fraction, determined by high performance size exclusion chromatography. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Transformation and removal of arsenic in groundwater by sequential anodic oxidation and electrocoagulation

    Science.gov (United States)

    Zhang, Peng; Tong, Man; Yuan, Songhu; Liao, Peng

    2014-08-01

    Oxidation of As(III) to As(V) is generally essential for the efficient remediation of As(III)-contaminated groundwater. The performance and mechanisms of As(III) oxidation by an as-synthesized active anode, SnO2 loaded onto Ti-based TiO2 nanotubes (Ti/TiO2NTs/Sb-SnO2), were investigated. The subsequent removal of total arsenic by electrocoagulation (EC) was further tested. The Ti/TiO2NTs/Sb-SnO2 anode showed a high and lasting electrochemical activity for As(III) oxidation. 6.67 μM As(III) in synthetic groundwater was completely oxidized to As(V) within 60 min at 50 mA. Direct electron transfer was mainly responsible at the current below 30 mA, while hydroxyl radicals contributed increasingly with the increase in the current above 30 mA. As(III) oxidation was moderately inhibited by the presence of bicarbonate (20 mM), while was dramatically increased with increasing the concentration of chloride (0-10 mM). After the complete oxidation of As(III) to As(V), total arsenic was efficiently removed by EC in the same reactor by reversing electrode polarity. The removal efficiency increased with increasing the current but decreased by the presence of phosphate and silica. Anodic oxidation represents an effective pretreatment approach to increasing EC removal of As(III) in groundwater under O2-limited conditions.

  17. Features of electrocoagulation syndrome after endoscopic submucosal dissection for colorectal neoplasm.

    Science.gov (United States)

    Yamashina, Takeshi; Takeuchi, Yoji; Uedo, Noriya; Hamada, Kenta; Aoi, Kenji; Yamasaki, Yasushi; Matsuura, Noriko; Kanesaka, Takashi; Akasaka, Tomofumi; Yamamoto, Sachiko; Hanaoka, Noboru; Higashino, Koji; Ishihara, Ryu; Iishi, Hiroyasu

    2016-03-01

    Endoscopic submucosal dissection (ESD) is a promising treatment for large gastrointestinal superficial neoplasms, although it is technically difficult, and perforation and delayed bleeding are well-known adverse events. However, there have been no large studies about electrocoagulation syndrome after colorectal ESD. The aim of this study was to evaluate the incidence and clinical significant risk factors of post-ESD coagulation syndrome (PECS). This was a retrospective cohort study conducted in a referral cancer center. A total of 336 patients with colorectal neoplasms (143 adenomas or serrated lesions and 193 carcinomas) underwent ESD from January 2011 to June 2013. Incidence, outcome, and factors associated with occurrence of PECS were investigated. Occurred in 32 patients (9.5%). The median time until PECS was 15.5 h, and the median period of PECS was 32.5 h. Fever (≥37.6 °C) after ESD was found in 41% of the PECS group and 9% of the non-PECS group (P < 0.001). All PECS cases were managed conservatively. On multivariate analysis, female patients (odds ratio [OR] = 3.2, P = 0.002), lesion location at ascending colon and cecum (OR = 3.5, P = 0.001), and resected specimen ≥40 mm (OR = 2.1, P = 0.05) were independent risk factors for PECS. Occurred in 32 patients (9.5%) with colorectal ESD; however, all cases had a good outcome with conservative management. Female sex, tumor location at the ascending colon and cecum, and resected specimen ≥40 mm were independently significant risk factors for PECS. © 2015 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  18. Treatment and toxicity reduction of textile dyeing wastewater using the electrocoagulation-electroflotation process.

    Science.gov (United States)

    Kim, Han-Lae; Cho, Jong-Bok; Park, Yong-Jin; Cho, Il-Hyoung

    2016-07-02

    A pilot-scale study was conducted using the electrocoagulation-electroflotation (EC-EF) process to treat textile dyeing raw wastewater to evaluate treatment performance. The effects of some key factors, such as current density, hydraulic retention time (HRT), and removal of conductivity, total suspended solids (TSS), chemical oxygen demand (COD), and color were investigated. The operating variables were current density of 0-300 A m(-2), HRT of 0-30 min, and a coagulant (anionic polyacrylamide (A-PAM)) dosage of 0-30 mg L(-1). Daphnia magna was used to test acute toxicity in raw and treated wastewater. Under the operating conditions without added coagulant, maxima of 51%, 88%, 84%, and 99% of conductivity, TSS, COD, and color were removed, respectively, with a HRT of 30 min. The coagulant enhanced removal of all wastewater parameters. Removal maxima of 59%, 92%, 94%, and 98% for conductivity, TSS, COD, and color were observed, respectively, with an optimal dosage of 30 mg L(-1) and a shortened HRT of 20 min. The 48 h-LC50 D. magna test showed that the raw wastewater was highly toxic. However, the EC-EF process decreased toxicity of the treated samples significantly, and >70% toxicity reduction was achieved by the EC-EF process with the addition of 15-30 mg L(-1) coagulant, HRT of 20 min, and current density of 150-300 A m(-2). The pilot scale test (0.3 m(3 )h(-1)) shows that the EC-EF process with added coagulant effectively treated textile dyeing wastewater.

  19. Treatment of As(V) and As(III) by electrocoagulation using Al and Fe electrode.

    Science.gov (United States)

    Kuan, W H; Hu, C Y; Chiang, M C

    2009-01-01

    A batch electrocoagulation (EC) process with bipolar electrode and potentiodynamic polarization tests with monopolar systems were investigated as methods to explore the effects of electrode materials and initial solution pH on the As(V) and As(III) removal. The results displayed that the system with Al electrode has higher reaction rate during the initial period from 0 to 25 minutes than that of Fe electrode for alkaline condition. The pH increased with the EC time because the As(V) and As(III) removal by either co-precipitation or adsorption resulted in that the OH positions in Al-hydroxide or Fe-hydroxide were substituted by As(V) and As(III). The pH in Fe electrode system elevate higher than that in Al electrode because the As(V) removal substitutes more OH position in Fe-hydroxide than that in Al-hydroxide. EC system with Fe electrode can successfully remove the As(III) but system with Al electrode cannot because As(III) can strongly bind to the surface of Fe-hydroxide with forming inner-sphere species but weakly adsorb to the Al-hydroxide surface with forming outer-sphere species. The acidic solution can destroy the deposited hydroxide passive film then allow the metallic ions liberate into the solution, therefore, the acidic initial solution can enhance the As(V) and As(III) removal. The over potential calculation and potentiodynamic polarization tests reveal that the Fe electrode systems possess higher over potential and pitting potential than that of Al electrode system due to the fast hydrolysis of and the occurrence of Fe-hydroxide passive film.

  20. Optimization of an integrated electrodisinfection/electrocoagulation process with Al bipolar electrodes for urban wastewater reclamation.

    Science.gov (United States)

    Cotillas, Salvador; Llanos, Javier; Cañizares, Pablo; Mateo, Sara; Rodrigo, Manuel A

    2013-04-01

    In this work, a novel integrated electrochemical process for urban wastewater regeneration is described. The electrochemical cell consists in a Boron Doped Diamond (BDD) or a Dimensionally Stable Anode (DSA) as anode, a Stainless Steel (SS) as cathode and a perforated aluminum plate, which behaves as bipolar electrode, between anode and cathode. Thus, in this cell, it is possible to carry out, at the same time, two different electrochemical processes: electrodisinfection (ED) and electrocoagulation (EC). The treatment of urban wastewater with different anodes and different operating conditions is studied. First of all, in order to check the process performance, experiments with synthetic wastewaters were carried out, showing that it is possible to achieve a 100% of turbidity removal by the electrodissolution of the bipolar electrode. Next, the effect of the current density and the anode material are studied during the ED-EC process of actual effluents. Results show that it is possible to remove Escherichia coli and turbidity simultaneously of an actual effluent from a WasteWater Treatment Facility (WWTF). The use of BDD anodes allows to remove the E. coli completely at an applied electric charge of 0.0077 A h dm(-3) when working with a current density of 6.65 A m(-2). On the other hand, with DSA anodes, the current density necessary to achieve the total removal of E. coli is higher (11.12 A m(-2)) than that required with BDD anodes. Finally, the influence of cell flow path and flow rate have been studied. Results show that the performance of the process strongly depends on the characteristics of the initial effluent (E. coli concentration and Cl(-)/NH(4)(+) initial ratio) and that a cell configuration cathode (inlet)-anode (outlet) and a higher flow rate enhance the removal of the turbidity from the treated effluent. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Removal of turbidity and suspended solids backwash water from rapid sand filter by using electrocoagulation

    Directory of Open Access Journals (Sweden)

    AR Yari

    2016-07-01

    Full Text Available Introduction: By appropriate method can be recycled more than 95 percent effluent backwashing the filter. This study aimed to examine the efficiency of the electrocoagulation process on turbidity and suspended solids removal from backwash effluent of rapid sand filter of water treatment plants No 1 in Karaj. Methods: This bench-scale experimental study was carried out on the samples of backwash effluent in a batch system. The Plexiglas tank with a volume of 4 liters, containing of 4 plate electrodes made of aluminum and iron was connected to a direct current power supply. Samples every 15 minutes to measure turbidity and suspended solids collected in the middle of the reactor and examined. Effect of several parameters such as current density, reaction time and voltage were studied. The total number of samples tested were 48. Turbidity and total suspended solids was measured by nephlometry and gravimetric method, respectively. Results: The highest removal efficiency of turbidity and suspended solids in reaction time of 60 minutes, current density of 2 mA and a voltage of 45 mV was observed. The highest removal efficiency of turbidity in aluminum and iron electrodes were 96.83 and 83.77 %, respectively. Also The highest removal efficiency of suspended solids were 96.73 and 86.22 %, respectively. Conclusion: The results showed that electro- coagulation process can be a good choice to remove turbidity and suspended from backwash of rapid sand filter. Aluminum electrode efficiency in the removal of turbidity and suspended solids was greater than the iron electrode.

  2. Inactivation of microbiota from urban wastewater by single and sequential electrocoagulation and electro-Fenton treatments.

    Science.gov (United States)

    Anfruns-Estrada, Eduard; Bruguera-Casamada, Carmina; Salvadó, Humbert; Brillas, Enric; Sirés, Ignasi; Araujo, Rosa M

    2017-12-01

    This work aims at comparing the ability of two kinds of electrochemical technologies, namely electrocoagulation (EC) and electro-Fenton (EF), to disinfect primary and secondary effluents from municipal wastewater treatment plants. Heterotrophic bacteria, Escherichia coli, enterococci, Clostridium perfringens spores, somatic coliphages and eukaryotes (amoebae, flagellates, ciliates and metazoa) were tested as indicator microorganisms. EC with an Fe/Fe cell at 200 A m -2 and natural pH allowed >5 log unit removal of E. coli and final concentration below 1 bacteria mL -1 of coliphages and eukaryotes from both effluents in ca. 60 min, whereas heterotrophic bacteria, enterococci and spores were more resistant. A larger removal was obtained for the primary effluent, probably because the flocs remove higher amount of total organic carbon (TOC), entrapping more easily the microbiota. EF with a boron-doped diamond (BDD) anode and an air-diffusion cathode that produces H 2 O 2 on site was first performed at pH 3.0, with large or even total inactivation of microorganisms within 30 min. A more effective microorganism removal was attained as compared to EC thanks to • OH formed from Fenton's reaction. A quicker disinfection was observed for the secondary effluent owing to its lower TOC content, allowing the attack of greater quantities of electrogenerated oxidants on microorganisms. Wastewater disinfection by EF was also feasible at natural pH (∼7), showing similar abatement of active microorganisms as a result of the synergistic action of generated oxidants like active chlorine and coagulation with iron hydroxides. A sequential EC/EF treatment (30 min each) was more effective for a combined decontamination and disinfection of urban wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Optimizing electrocoagulation and electro-Fenton process for treating car wash wastewater

    Directory of Open Access Journals (Sweden)

    Seyyedali Mirshahghassemi

    2017-02-01

    Full Text Available Background: Car wash wastewater contains several contaminants such as organic matter, oil, grease, detergents and phosphates, all of which are harmful for the environment. In this study, the application of electrocoagulation (EC to treat car wash wastewater has been studied, and the operating parameters optimized. The electro-Fenton (EF for further contaminant removal was also investigated. Methods: In EC process, the effect of pH, current density, and the reaction time of the removal efficiency of chemical oxygen demand (COD, phosphate, and turbidity were investigated using the response surface methodology (RSM. The electrochemical cell consisted of four iron electrodes that were connected to a power supply using a monopolar arrangement. In the EF process, the effect of pH, reaction time, and hydrogen peroxide concentration on COD removal efficiency were probed. Results: The optimum pH, current density, and the reaction time for the EC process were 7.3, 4.2 mA cm-2 and 20.3 minutes, respectively. Under these conditions, the COD, phosphate, and turbidity removal percentages were 80.8%, 94.9% and 85.5%, respectively, and the specific energy consumption was 1.5 kWh m-3. For the EF process, the optimum pH, reaction time, current and hydrogen peroxide dosage were 3, 10 minutes, 2 A and 500 mg L-1, respectively. The EF showed higher COD removal efficiency (85.6% with a lower specific energy consumption (0.5 kWh m-3 and reaction time compared to the EC. Conclusion: This study shows that both EC and EF can effectively treat car wash wastewater with high removal efficiency within a short reaction time.

  4. Electrocoagulation and nanofiltration integrated process application in purification of bilge water using response surface methodology.

    Science.gov (United States)

    Akarsu, Ceyhun; Ozay, Yasin; Dizge, Nadir; Elif Gulsen, H; Ates, Hasan; Gozmen, Belgin; Turabik, Meral

    Marine pollution has been considered an increasing problem because of the increase in sea transportation day by day. Therefore, a large volume of bilge water which contains petroleum, oil and hydrocarbons in high concentrations is generated from all types of ships. In this study, treatment of bilge water by electrocoagulation/electroflotation and nanofiltration integrated process is investigated as a function of voltage, time, and initial pH with aluminum electrode as both anode and cathode. Moreover, a commercial NF270 flat-sheet membrane was also used for further purification. Box-Behnken design combined with response surface methodology was used to study the response pattern and determine the optimum conditions for maximum chemical oxygen demand (COD) removal and minimum metal ion contents of bilge water. Three independent variables, namely voltage (5-15 V), initial pH (4.5-8.0) and time (30-90 min) were transformed to coded values. The COD removal percent, UV absorbance at 254 nm, pH value (after treatment), and concentration of metal ions (Ti, As, Cu, Cr, Zn, Sr, Mo) were obtained as responses. Analysis of variance results showed that all the models were significant except for Zn (P > 0.05), because the calculated F values for these models were less than the critical F value for the considered probability (P = 0.05). The obtained R(2) and Radj(2) values signified the correlation between the experimental data and predicted responses: except for the model of Zn concentration after treatment, the high R(2) values showed the goodness of fit of the model. While the increase in the applied voltage showed negative effects, the increases in time and pH showed a positive effect on COD removal efficiency; also the most effective linear term was found as time. A positive sign of the interactive coefficients of the voltage-time and pH-time systems indicated synergistic effect on COD removal efficiency, whereas interaction between voltage and pH showed an antagonistic

  5. Synthetic wastewaters treatment by electrocoagulation to remove silver nanoparticles produced by different routes.

    Science.gov (United States)

    Matias, M S; Melegari, S P; Vicentini, D S; Matias, W G; Ricordel, C; Hauchard, D

    2015-08-15

    Nanoscience is a field that has stood out in recent years. The accurate long-term health and environmental risks associated with these emerging materials are unknown. Therefore, this work investigated how to eliminate silver nanoparticles (AgNPs) from synthetic effluents by electrocoagulation (EC) due to the widespread use of this type of nanoparticle (NP) in industry and its potential inhibition power over microorganisms responsible for biological treatment in effluent treatment plants. Synthesized AgNPs were studied via four different routes by chemical reduction in aqueous solutions to simulate the chemical variations of a hypothetical industrial effluent, and efficiency conditions of the EC treatment were determined. All routes used silver nitrate as the source of silver ions, and two synthesis routes were studied with sodium citrate as a stabilizer. In route I, sodium citrate functioned simultaneously as the reducing agent and stabilizing agent, whereas route II used sodium borohydride as a reducing agent. Route III used D-glucose as the reducing agent and sodium pyrophosphate as the stabilizer; route IV used sodium pyrophosphate as the stabilizing agent and sodium borohydride as the reducing agent. The efficiency of the EC process of the different synthesized solutions was studied. For route I, after 85 min of treatment, a significant decrease in the plasmon resonance peak of the sample was observed, which reflects the efficiency in the mass reduction of AgNPs in the solution by 98.6%. In route II, after 12 min of EC, the absorbance results reached the detection limit of the measurement instrument, which indicates a minimum reduction of 99.9% of AgNPs in the solution. During the 4 min of treatment in route III, the absorbance intensities again reached the detection limit, which indicates a minimum reduction of 99.8%. In route IV, after 10 min of treatment, a minimum AgNP reduction of 99.9% was observed. Based on these results, it was possible to verify that

  6. Iron Polymerization and Arsenic Removal During In-Situ Iron Electrocoagulation in Synthetic Bangladeshi Groundwater

    Science.gov (United States)

    van Genuchten, C. M.; Pena, J.; Addy, S.; Gadgil, A.

    2010-12-01

    Millions of people worldwide are exposed to arsenic-contamination in groundwater drinking supplies. The majority of affected people live in rural Bangladesh. Electrocoagulation (EC) using iron electrodes is a promising arsenic removal strategy that is based on the generation of iron precipitates with a high affinity for arsenic through the electrochemical dissolution of a sacrificial iron anode. Many studies of iron hydrolysis in the presence of co-occurring ions in groundwater such as PO43-, SiO44-, and AsO43- suggest that these ions influence the polymerization and formation of iron oxide phases. However, the combined impact of these ions on precipitates generated by EC is not well understood. X-ray absorption spectroscopy (XAS) was used to examine EC precipitates generated in synthetic Bangladeshi groundwater (SBGW). The iron oxide structure and arsenic binding geometry were investigated as a function of EC operating conditions. As and Fe k-edge spectra were similar between samples regardless of the large range of current density (0.02, 1.1, 5.0, 100 mA/cm2) used during sample generation. This result suggests that current density does not play a large role in the formation EC precipitates in SBGW. Shell-by-shell fits of Fe K-edge data revealed the presence of a single Fe-Fe interatomic distance at approximately 3.06 Å. The absence of longer ranged Fe-Fe correlations suggests that EC precipitates consist of nano-scale chains (polymers) of FeO6 octahedra sharing equatorial edges. Shell-by-shell fits of As K-edge spectra show arsenic bound in primarily bidentate, binuclear corner sharing complexes. In this coordination geometry, arsenic prevents the formation of FeO6 corner-sharing linkages, which are necessary for 3-dimensional crystal growth. The individual and combined effects of other anions, such as PO43- and SiO44- present in SBGW are currently being investigated to determine the role of these ions in stunting crystal growth. The results provided by this

  7. Results of external beam irradiation for rectal carcinomas locally recurrent after local excision or electrocoagulation; Short communication

    Energy Technology Data Exchange (ETDEWEB)

    Shun Wong, C.; Cummings, B.J.; Keane, T.J.; O' Sullivan, Brian; Catton, C.N. (Princess Margaret Hospital, Toronto, ON (Canada))

    1991-10-01

    The outcome of 42 patients who developed locally recurrent rectal carcinoma after initial local excision or electrocoagulation was presented. Five patients received combined surgery and radiotherapy (XRT). The remaining 37 patients were managed by XRT alone. The overall 5 years actuarial survival and local control rates were 21 and 22 percent, respectively. For patients who received XRT alone, the 5 year actuarial survival and local control rates were 20 and 15 percent, resp. The corresponding figures were 35 and 40 percent for patients who received a total XRT dose of 50 Gy or more. One patient who underwent combined treatment developed rectal and bladder incontinence requiring surgery. For patients with rectal recurrence after initial conservative surgery, XRT is an alternative to abdominoperipheral resection if major resection is contraindicated. (author). 13 refs.; 2 tabs.

  8. Energy efficient electrocoagulation using a new flow column reactor to remove nitrate from drinking water - Experimental, statistical, and economic approach.

    Science.gov (United States)

    Hashim, Khalid S; Shaw, Andy; Al Khaddar, Rafid; Pedrola, Montserrat Ortoneda; Phipps, David

    2017-07-01

    In this investigation, a new bench-scale electrocoagulation reactor (FCER) has been applied for drinking water denitrification. FCER utilises the concepts of flow column to mix and aerate the water. The water being treated flows through the perforated aluminium disks electrodes, thereby efficiently mixing and aerating the water. As a result, FCER reduces the need for external stirring and aerating devices, which until now have been widely used in the electrocoagulation reactors. Therefore, FCER could be a promising cost-effective alternative to the traditional lab-scale EC reactors. A comprehensive study has been commenced to investigate the performance of the new reactor. This includes the application of FCER to remove nitrate from drinking water. Estimation of the produced amount of H 2 gas and the yieldable energy from it, an estimation of its preliminary operating cost, and a SEM (scanning electron microscope) investigation of the influence of the EC process on the morphology of the surface of electrodes. Additionally, an empirical model was developed to reproduce the nitrate removal performance of the FCER. The results obtained indicated that the FCER reduced the nitrate concentration from 100 to 15 mg/L (World Health Organization limitations for infants) after 55 min of electrolysing at initial pH of 7, GBE of 5 mm, CD of 2 mA/cm 2 , and at operating cost of 0.455 US $/m 3 . Additionally, it was found that FCER emits H 2 gas enough to generate a power of 1.36 kW/m 3 . Statistically, the relationship between the operating parameters and nitrate removal could be modelled with R 2 of 0.848. The obtained SEM images showed a large number dents on anode's surface due to the production of aluminium hydroxides. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  9. Degradation and biodegradability improvement of the olive mill wastewater by peroxi-electrocoagulation/electrooxidation-electroflotation process with bipolar aluminum electrodes.

    Science.gov (United States)

    Esfandyari, Yahya; Mahdavi, Yousef; Seyedsalehi, Mahdi; Hoseini, Mohammad; Safari, Gholam Hossein; Ghozikali, Mohammad Ghanbari; Kamani, Hossein; Jaafari, Jalil

    2015-04-01

    Olive mill wastewater is considered as one of the most polluting effluents of the food industry and constitutes a source of important environmental problems. In this study, the removal of pollutants (chemical oxygen demand (COD), biochemical oxygen demand (BOD5), polyphenols, turbidity, color, total suspended solids (TSS), and oil and grease) from olive oil mill processing wastewater by peroxi-electrocoagulation/electrooxidation-electroflotation process with bipolar aluminum electrodes was evaluated using a pilot continuous reactor. In the electrochemical unit, aluminum (Al), stainless steel, and RuO2/Ti plates were used. The effects of pH, hydrogen peroxide doses, current density, NaCl concentrations, and reaction times were studied. Under optimal conditions of pH 4, current density of 40 mA/m(2), 1000 mg/L H2O2, 1 g/L NaCl, and 30-min reaction time, the peroxi-electrochemical method yielded very effective removal of organic pollution from the olive mill wastewater diluted four times. The treatment process reduced COD by 96%, BOD5 by 93.6%, total, polyphenols by 94.4%, color by 91.4%, turbidity by 88.7, suspended solids by 97% and oil and grease by 97.1%. The biodegradability index (BOD5/COD) increased from 0.29 to 0.46. Therefore, the peroxi-electrocoagulation/electrooxidation-electroflotation process is considered as an effective and feasible process for pre-treating olive mill wastewater, making possible a post-treatment of the effluent in a biological system.

  10. Pretreatment of Real Wastewater from the Chocolate Manufacturing Industry through an Integrated Process of Electrocoagulation and Sand Filtration

    Directory of Open Access Journals (Sweden)

    Marco A. García-Morales

    2018-01-01

    Full Text Available The purpose of this study was to evaluate the efficiency of removal of suspended solids in terms of turbidity, color, and chemical oxygen demand (COD when integrating the electrocoagulation process using aluminum sacrificial anodes and the sand filtration process as a pretreatment of wastewater from the chocolate manufacturing plant in Toluca, México. Wastewater from the chocolate manufacturing industry used in this study is classified as nontoxic, but is characterized as having a high content of color (5952 ± 76 Pt-Co, turbidity (1648 ± 49 FAU, and COD (3608 ± 250 mg/L. Therefore, enhanced performance could be achieved by combining pretreatment techniques to increase the efficiencies of the physical, chemical, and biological treatments. In the integrated process, there was a turbidity reduction of 96.1 ± 0.2% and an increase in dissolved oxygen from 3.8 ± 0.05 mg/L (inlet sand filtration to 6.05 ± 0.03 mg/L (outlet sand filtration after 120 min of treatment. These results indicate good water quality necessary for all forms of elemental life. Color and COD removals were 98.2 ± 0.2% and 39.02 ± 2.2%, respectively, during the electrocoagulation process (0.2915 mA/cm2 current density and 120 min of treatment. The proposed integrated process could be an attractive alternative of pretreatment of real wastewater to increase water quality of conventional treatments.

  11. Removal of color and chemical oxygen demand using a coupled coagulation-electrocoagulation-ozone treatment of industrial wastewater that contains offset printing dyes

    International Nuclear Information System (INIS)

    Roa M, G.; Barrera D, C.; Balderas H, P.; Zaldumbide O, F.; Reyes P, H.; Bilyeu, B.

    2014-01-01

    Industrial offset printing processes generate wastewater with highly colored obtaining values of 5 x 10 6 Pt-Co units and great values of chemical oxygen demand (COD) 5.3 x 10 -5 mg L -1 . Thus, conventional technologies such as biologicals treatment fail in reaching the discharge limits. In this research, a sequential treatment was applied: coagulation with aluminum hydroxychloride (AHC), electrocoagulation with Al anodes and finally ozonation. Optimal conditions are found when adding 20 mg L -1 AHC, followed by electrocoagulation at 4 A for 50 min, and finally alkaline ozonation for 15 min, resulting in an overall color removal of 99.99% color and 99.35 COD. The sludge generated by the coagulation process was analyzed by scanning electron microscopy and energy dispersive X-ray (EDX) microanalysis. (Author)

  12. Removal of color and chemical oxygen demand using a coupled coagulation-electrocoagulation-ozone treatment of industrial wastewater that contains offset printing dyes

    Energy Technology Data Exchange (ETDEWEB)

    Roa M, G.; Barrera D, C.; Balderas H, P.; Zaldumbide O, F. [Centro Conjunto de Investigacion en Quimica Sustentable UAEM-UNAM, Km 14.5 Carretera Toluca-Atlacomulco, 50200 San Cayetano-Toluca, Estado de Mexico (Mexico); Reyes P, H. [Universidad Autonoma del Estado de Mexico, Facultad de Quimica, Paseo Colon y Paseo Tollocan s/n, 50120 Toluca, Estado de Mexico (Mexico); Bilyeu, B., E-mail: groam@uaemex.mx [Xavier University of Louisiana, Department of Chemistry, 1 Drexel Drive, New Orleans, LA 70125 (United States)

    2014-07-01

    Industrial offset printing processes generate wastewater with highly colored obtaining values of 5 x 10{sup 6}Pt-Co units and great values of chemical oxygen demand (COD) 5.3 x 10{sup -5} mg L{sup -1}. Thus, conventional technologies such as biologicals treatment fail in reaching the discharge limits. In this research, a sequential treatment was applied: coagulation with aluminum hydroxychloride (AHC), electrocoagulation with Al anodes and finally ozonation. Optimal conditions are found when adding 20 mg L{sup -1} AHC, followed by electrocoagulation at 4 A for 50 min, and finally alkaline ozonation for 15 min, resulting in an overall color removal of 99.99% color and 99.35 COD. The sludge generated by the coagulation process was analyzed by scanning electron microscopy and energy dispersive X-ray (EDX) microanalysis. (Author)

  13. [Comparative analysis of application of highly intensive laser irradiation and electrocoagulation during laparoscopic cholecystectomy performed for destructive forms of an acute calculous cholecystitis].

    Science.gov (United States)

    Nichitayio, M Yu; Bazyak, A M; Klochan, V V; Grusha, P K; Goman, A V

    2015-02-01

    Comparative analysis of results of the laser diode (the wave length 940 nm) and elec- trocoagulation application while performing laparoscopic cholecystectomy was con- ducted. For an acute calculous cholecystitis 52 patients were operated, in whom instead of electrocoagulation the laser was applied, provide for reduction of thermal impact on tissues, the complications absence, reduction of the patients stationary treatment duration postoperatively from (5.2 ± 1.2) to (4.9 ± 0.6) days.

  14. Electrocoagulation preconcentration of microcomponents of natural waters under the action of alternating asymmetric current before their determination by neutron activation analysis

    International Nuclear Information System (INIS)

    Kaplin, A.A.; Sudyko, A.F.; Vertman, E.G.; Obraztsov, S.V.; Markov, L.E.

    1990-01-01

    Method and features of electrocoagulation preconcentration of some elements (alkai, alkaline earth, rare earth, transition metals, Th, U, Br) from mineralized natural waters for their neutron activation analysis are studied. It is stated that during water electrotreatment quantitative concentration of microelements (U, Th, Sc, Hf, rare earths) on the precipitate with fixation of matrix elements (alkali, alkali earth elements, Br) in a solution takes place

  15. In vivo layer visualization of rat olfactory bulb by a swept source optical coherence tomography and its confirmation through electrocoagulation and anatomy

    Science.gov (United States)

    Watanabe, Hideyuki; Rajagopalan, Uma Maheswari; Nakamichi, Yu; Igarashi, Kei M.; Madjarova, Violeta Dimitrova; Kadono, Hirofumi; Tanifuji, Manabu

    2011-01-01

    Here, we report in vivo 3-D visualization of the layered organization of a rat olfactory bulb (OB) by a swept source optical coherence tomography (SS-OCT). The SS-OCT operates at a wavelength of 1334 nm with respective theoretical depth and lateral resolutions of 6.7 μm and 15.4 μm in air and hence it is possible to get a 3D structural map of OB in vivo at the micron level resolution with millimeter-scale imaging depth. Up until now, with methods such as MRI, confocal microscopy, OB depth structure in vivo had not been clearly visualized as these do not satisfy the criterion of simultaneously providing micron-scale spatial resolution and imaging up to a few millimeter in depth. In order to confirm the OB’s layered organization revealed by SS-OCT, we introduced the technique of electrocoagulation to make landmarks across the layered structure. To our knowledge this is such a first study that combines electrocoagulation and OCT in vivo of rat OB. Our results confirmed the layered organization of OB, and moreover the layers were clearly identified by electrocoagulation landmarks both in the OCT structural and anatomical slice images. We expect such a combined study is beneficial for both OCT and neuroscience fields. PMID:21833364

  16. Research on the enhancement of biological nitrogen removal at low temperatures from ammonium-rich wastewater by the bio-electrocoagulation technology in lab-scale systems, pilot-scale systems and a full-scale industrial wastewater treatment plant.

    Science.gov (United States)

    Li, Liang; Qian, Guangsheng; Ye, Linlin; Hu, Xiaomin; Yu, Xin; Lyu, Weijian

    2018-04-17

    In cold areas, nitrogen removal performance of wastewater treatment plants (WWTP) declines greatly in winter. This paper systematically describes the enhancement effect of a periodic reverse electrocoagulation technology on biological nitrogen removal at low temperatures. The study showed that in the lab-scale systems, the electrocoagulation technology improved the biomass amount, enzyme activity and the amount of nitrogen removal bacteria (Nitrosomonas, Nitrobacter, Paracoccus, Thauera and Enterobacter). This enhanced nitrification and denitrification of activated sludge at low temperatures. In the pilot-scale systems, the electrocoagulation technology increased the relative abundance of cold-adapted microorganisms (Luteimonas and Trueperaceae) at low temperatures. In a full-scale industrial WWTP, comparison of data from winter 2015 and winter 2016 showed that effluent chemical oxygen demand (COD), NH 4 + -N, and NO 3 - -N reduced by 10.37, 3.84, and 136.43 t, respectively, throughout the winter, after installation of electrocoagulation devices. These results suggest that the electrocoagulation technology is able to improve the performance of activated sludge under low-temperature conditions. This technology provides a new way for upgrading of the performance of WWTPs in cold areas. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Treatability Test Report For The Removal Of Chromium From Groundwater At 100-D Area Using Electrocoagulation

    International Nuclear Information System (INIS)

    Petersen, S.W.

    2009-01-01

    The U.S. Department of Energy (DOE) has committed to accelerate cleanup of contaminated groundwater along the Columbia River. The current treatment approach was driven by a series of Interim Action Records of Decision (IAROD) issued in the mid-1990s. Part of the approach for acceleration involves increasing the rate of groundwater extraction for the chromium plume north of the 100-D Reactor and injecting the treated water in strategic locations to hydraulically direct contaminated groundwater toward the extraction wells. The current treatment system uses ion exchange for Cr(VI) removal, with off-site regeneration of the ion exchange resins. Higher flow rates will increase the cost and frequency of ion exchange resin regeneration; therefore, alternative technologies are being considered for treatment at high flow rates. One of these technologies, electrocoagulation (EC), was evaluated through a pilot-scale treatability test. The primary purpose of the treatability study was to determine the effectiveness of Cr(VI) removal and the robustness/implementability of an EC system. Secondary purposes of the study were to gather information about derivative wastes and to obtain data applicable to scaling the process from the treatability scale to full-scale. The treatability study work plan identified a performance objective and four operational objectives. The performance objective for the treatability study was to determine the efficiency (effectiveness) of hexavalent chromium removal from the groundwater, with a desired concentration of (le) 20 micrograms per liter ((micro)g/L) Cr(VI) in the effluent prior to re-injection. Influent and effluent total chromium and hexavalent chromium data were collected using a field test kit for multiple samples per week, and from off-site laboratory analysis of samples collected approximately monthly. These data met all data quality requirements. Two of three effluent chromium samples analyzed in the off-site (that is, fixed) laboratory

  18. TREATABILITY TEST REPORT FOR THE REMOVAL OF CHROMIUM FROM GROUNDWATER AT 100-D AREA USING ELECTROCOAGULATION

    Energy Technology Data Exchange (ETDEWEB)

    PETERSEN SW

    2009-09-24

    The U.S. Department of Energy (DOE) has committed to accelerate cleanup of contaminated groundwater along the Columbia River. The current treatment approach was driven by a series of Interim Action Records of Decision (IAROD) issued in the mid-1990s. Part of the approach for acceleration involves increasing the rate of groundwater extraction for the chromium plume north of the 100-D Reactor and injecting the treated water in strategic locations to hydraulically direct contaminated groundwater toward the extraction wells. The current treatment system uses ion exchange for Cr(VI) removal, with off-site regeneration of the ion exchange resins. Higher flow rates will increase the cost and frequency of ion exchange resin regeneration; therefore, alternative technologies are being considered for treatment at high flow rates. One of these technologies, electrocoagulation (EC), was evaluated through a pilot-scale treatability test. The primary purpose of the treatability study was to determine the effectiveness of Cr(VI) removal and the robustness/implementability of an EC system. Secondary purposes of the study were to gather information about derivative wastes and to obtain data applicable to scaling the process from the treatability scale to full-scale. The treatability study work plan identified a performance objective and four operational objectives. The performance objective for the treatability study was to determine the efficiency (effectiveness) of hexavalent chromium removal from the groundwater, with a desired concentration of {le} 20 micrograms per liter ({micro}g/L) Cr(VI) in the effluent prior to re-injection. Influent and effluent total chromium and hexavalent chromium data were collected using a field test kit for multiple samples per week, and from off-site laboratory analysis of samples collected approximately monthly. These data met all data quality requirements. Two of three effluent chromium samples analyzed in the off-site (that is, fixed) laboratory

  19. Effect of operating parameters on indium (III) ion removal by iron electrocoagulation and evaluation of specific energy consumption

    International Nuclear Information System (INIS)

    Chou, Wei-Lung; Wang, Chih-Ta; Huang, Kai-Yu

    2009-01-01

    The aim of this study is to investigate the effects of operating parameters on the specific energy consumption and removal efficiency of synthetic wastewater containing indium (III) ions by electrocoagulation in batch mode using an iron electrode. Several parameters, including different electrode pairs, supporting electrolytes, initial concentration, pH variation, and applied voltage, were investigated. In addition, the effects of applied voltage, supporting electrolyte, and initial concentration on indium (III) ion removal efficiency and specific energy consumption were investigated under the optimum balance of reasonable removal efficiency and relative low energy consumption. Experiment results indicate that a Fe/Al electrode pair is the most efficient choice of the four electrode pairs in terms of energy consumption. The optimum supporting electrolyte concentration, initial concentration, and applied voltage were found to be 100 mg/l NaCl, 20 mg/l, and 20 V, respectively. A higher pH at higher applied voltage (20 or 30 V) enhanced the precipitation of indium (III) ion as insoluble indium hydroxide, which improved the removal efficiency. Results from the indium (III) ion removal kinetics show that the kinetics data fit the pseudo second-order kinetic model well. Finally, the composition of the sludge produced was characterized with energy dispersion spectra (EDS).

  20. Integrated electrocoagulation-electrooxidation process for the treatment of soluble coffee effluent: Optimization of COD degradation and operation time analysis.

    Science.gov (United States)

    Ibarra-Taquez, Harold N; GilPavas, Edison; Blatchley, Ernest R; Gómez-García, Miguel-Ángel; Dobrosz-Gómez, Izabela

    2017-09-15

    Soluble coffee production generates wastewater containing complex mixtures of organic macromolecules. In this work, a sequential Electrocoagulation-Electrooxidation (EC-EO) process, using aluminum and graphite electrodes, was proposed as an alternative way for the treatment of soluble coffee effluent. Process operational parameters were optimized, achieving total decolorization, as well as 74% and 63.5% of COD and TOC removal, respectively. The integrated EC-EO process yielded a highly oxidized (AOS = 1.629) and biocompatible (BOD 5 /COD ≈ 0.6) effluent. The Molecular Weight Distribution (MWD) analysis showed that during the EC-EO process, EC effectively decomposed contaminants with molecular weight in the range of 10-30 kDa. In contrast, EO was quite efficient in mineralization of contaminants with molecular weight higher than 30 kDa. A kinetic analysis allowed determination of the time required to meet Colombian permissible discharge limits. Finally, a comprehensive operational cost analysis was performed. The integrated EC-EO process was demonstrated as an efficient alternative for the treatment of industrial effluents resulting from soluble coffee production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Effect of pH and chloride concentration on the removal of hexavalent chromium in a batch electrocoagulation reactor

    International Nuclear Information System (INIS)

    Arroyo, M.G.; Perez-Herranz, V.; Montanes, M.T.; Garcia-Anton, J.; Guinon, J.L.

    2009-01-01

    In this work, the effect of pH and chloride ions concentration on the removal of Cr(VI) from wastewater by batch electrocoagulation using iron plate electrodes has been investigated. The initial solution pH was adjusted with different concentrations of H 2 SO 4 . The presence of chloride ions enhances the anode dissolution due to pitting corrosion. Fe 2+ ions formed during the anode dissolution cause the reduction of Cr(VI) to form Cr(III), which are co-precipitated with Fe 3+ ions at relatively low pH. The reduction degree of Cr(VI) to Cr(III) and the solubility of metal hydroxide species (both chromic and iron hydroxides) depend on pH. At higher concentrations of H 2 SO 4 , the reduction of Cr(VI) to Cr(III) by Fe 2+ ions is preferred, but the coagulation of Fe 3+ and Cr(III) is favoured at the lower H 2 SO 4 concentrations.

  2. Combined electrocoagulation and TiO2 photoassisted treatment applied to wastewater effluents from pharmaceutical and cosmetic industries

    International Nuclear Information System (INIS)

    Boroski, Marcela; Rodrigues, Angela Claudia; Garcia, Juliana Carla; Sampaio, Luiz Carlos; Nozaki, Jorge; Hioka, Noboru

    2009-01-01

    The treated wastewater consists of refractory materials and high organic content of hydrolyzed peptone residues from pharmaceutical factory. The combination of electrocoagulation (EC) followed by heterogeneous photocatalysis (TiO 2 ) conditions was maximized. The EC: iron cathode/anode (12.50 cm x 2.50 cm x 0.10 cm), current density 763 A m -2 , 90 min and initial pH 6.0. As EC consequence, the majority of the dissolved organic and suspended material was removed (about 91% and 86% of the turbidity and chemical oxygen demand (COD), respectively). After EC, refractory residues still remained in the effluent. The subsequent photocatalysis: UV/TiO 2 /H 2 O 2 (mercury lamps), pH 3.0, 4 h irradiation, 0.25 g L -1 TiO 2 and 10 mmol L -1 H 2 O 2 shows high levels of inorganic and organic compounds eliminations. The obtained COD values: 1753 mg L -1 for the sample from the factory, 160 mg L -1 after EC and 50 mg L -1 after EC/photocatalyzed effluents pointed out that the combined treatment stresses this water purification

  3. A new hybrid treatment system of bioreactors and electrocoagulation for superior removal of organic and nutrient pollutants from municipal wastewater.

    Science.gov (United States)

    Nguyen, Dinh Duc; Ngo, Huu Hao; Yoon, Yong Soo

    2014-02-01

    This paper evaluated a novel pilot scale hybrid treatment system which combines rotating hanging media bioreactor (RHMBR), submerged membrane bioreactor (SMBR) along with electrocoagulation (EC) as post treatment to treat organic and nutrient pollutants from municipal wastewater. The results indicated that the highest removal efficiency was achieved at the internal recycling ratio as 400% of the influent flow rate which produced a superior effluent quality with 0.26mgBOD5L(-1), 11.46mgCODCrL(-1), 0.00mgNH4(+)-NL(-1), and 3.81mgT-NL(-1), 0.03mgT-PL(-1). During 16months of operation, NH4(+)-N was completely eliminated and T-P removal efficiency was also up to 100%. It was found that increasing in internal recycling ratio could improve the nitrate and nitrogen removal efficiencies. Moreover, the TSS and coliform bacteria concentration after treatment was less than 5mgL(-1) and 30MPNmL(-1), respectively, regardless of internal recycling ratios and its influent concentration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Effect of operating parameters on indium (III) ion removal by iron electrocoagulation and evaluation of specific energy consumption

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Wei-Lung, E-mail: wlchou0388@hotmail.com [Department of Safety, Health and Environmental Engineering, Hungkuang University, Sha-Lu, Taichung 433, Taiwan (China); Wang, Chih-Ta [Department of Safety Health and Environmental Engineering, Chung Hwa University of Medical Technology, Tainan Hsien 717, Taiwan (China); Huang, Kai-Yu [Department of Safety, Health and Environmental Engineering, Hungkuang University, Sha-Lu, Taichung 433, Taiwan (China)

    2009-08-15

    The aim of this study is to investigate the effects of operating parameters on the specific energy consumption and removal efficiency of synthetic wastewater containing indium (III) ions by electrocoagulation in batch mode using an iron electrode. Several parameters, including different electrode pairs, supporting electrolytes, initial concentration, pH variation, and applied voltage, were investigated. In addition, the effects of applied voltage, supporting electrolyte, and initial concentration on indium (III) ion removal efficiency and specific energy consumption were investigated under the optimum balance of reasonable removal efficiency and relative low energy consumption. Experiment results indicate that a Fe/Al electrode pair is the most efficient choice of the four electrode pairs in terms of energy consumption. The optimum supporting electrolyte concentration, initial concentration, and applied voltage were found to be 100 mg/l NaCl, 20 mg/l, and 20 V, respectively. A higher pH at higher applied voltage (20 or 30 V) enhanced the precipitation of indium (III) ion as insoluble indium hydroxide, which improved the removal efficiency. Results from the indium (III) ion removal kinetics show that the kinetics data fit the pseudo second-order kinetic model well. Finally, the composition of the sludge produced was characterized with energy dispersion spectra (EDS).

  5. Combination of novel coalescing oil water separator and electrocoagulation technique for treatment of petroleum compound contaminated groundwater.

    Science.gov (United States)

    Oladzad, Sepideh; Fallah, Narges; Nasernejad, Bahram

    2017-07-01

    In the present study a combination of a novel coalescing oil water separator (COWS) and electrocoagulation (EC) technique was used for treatment of petroleum product contaminated groundwater. In the first phase, COWS was used as the primary treatment. Two different types of coalescing media and two levels of flow rates were examined in order to find the optimum conditions. The effluent of COWS was collected in optimum conditions and was treated using an EC process in the second phase of the research. In this phase, preliminary experiments were conducted in order to investigate the effect of EC reaction time and sedimentation time on chemical oxygen demand (COD) removal efficiency. Best conditions for EC reaction time and sedimentation time were obtained to be 5 min and 30 min, respectively. Response surface methodology was applied to evaluate the effect of initial pH, current density and aeration rate on settling velocity (V s ) and effluent COD. The optimum conditions, for achieving maximum values of V s as well as the values of effluent COD, in the range of results were obtained at conditions of 7, 34 mA·cm -2 and 1.5 L·min -1 for initial pH, current density and aeration rate, respectively.

  6. Combined electrocoagulation and TiO{sub 2} photoassisted treatment applied to wastewater effluents from pharmaceutical and cosmetic industries

    Energy Technology Data Exchange (ETDEWEB)

    Boroski, Marcela; Rodrigues, Angela Claudia; Garcia, Juliana Carla; Sampaio, Luiz Carlos; Nozaki, Jorge [Departamento de Quimica, Universidade Estadual de Maringa, Avenida Colombo 5790, Maringa-PR 87020-900 (Brazil); Hioka, Noboru [Departamento de Quimica, Universidade Estadual de Maringa, Avenida Colombo 5790, Maringa-PR 87020-900 (Brazil)], E-mail: nhioka2@yahoo.com.br

    2009-02-15

    The treated wastewater consists of refractory materials and high organic content of hydrolyzed peptone residues from pharmaceutical factory. The combination of electrocoagulation (EC) followed by heterogeneous photocatalysis (TiO{sub 2}) conditions was maximized. The EC: iron cathode/anode (12.50 cm x 2.50 cm x 0.10 cm), current density 763 A m{sup -2}, 90 min and initial pH 6.0. As EC consequence, the majority of the dissolved organic and suspended material was removed (about 91% and 86% of the turbidity and chemical oxygen demand (COD), respectively). After EC, refractory residues still remained in the effluent. The subsequent photocatalysis: UV/TiO{sub 2}/H{sub 2}O{sub 2} (mercury lamps), pH 3.0, 4 h irradiation, 0.25 g L{sup -1} TiO{sub 2} and 10 mmol L{sup -1} H{sub 2}O{sub 2} shows high levels of inorganic and organic compounds eliminations. The obtained COD values: 1753 mg L{sup -1} for the sample from the factory, 160 mg L{sup -1} after EC and 50 mg L{sup -1} after EC/photocatalyzed effluents pointed out that the combined treatment stresses this water purification.

  7. Highly efficient removal of perfluorooctanoic acid from aqueous solution by H2O2-enhanced electrocoagulation-electroflotation technique

    Directory of Open Access Journals (Sweden)

    Bo Yang

    2016-03-01

    Full Text Available Electrocoagulation (EC technique was used to investigate the removal performance of aqueous perfluorooctanoic acid (PFOA with relatively high concentration as simulating the wastewater from organic fluorine industry. A comparison was done with the similar amount of coagulant between EC and chemical coagulation process. PFOA removal obtained was higher with EC process, especially for Fe anode. Several factors were studied to optimize the EC process. At the optimal operating parameters including 37.5 mA/cm2 of current density, initial pH 3.77, and 180 rpm of mixing speed, 93% of PFOA could be removed with 100 mg/L of initial concentration after 90-min electrolysis. Furthermore, the remove efficiency could be obviously improved by H2O2 intermittent addition, which removed more than 99% of PFOA within 40-min EC. It could be attributed to that H2O2 facilitated the oxidative transformation from ferrous to ferric ion. In addition, the adsorptive removal of aqueous PFOA on Fe flocs during EC was also verified by fourier transform infrared spectra.

  8. Assessment of Electrocoagulation Method for Simultaneous Removal of Phosphate, Nitrate and COD by Fe Electrodes from Laundry Wastewater

    Directory of Open Access Journals (Sweden)

    Marzieh Razavi

    2013-12-01

    Full Text Available Background & Objectives: Discharging of wastewaters containing detergents either by manufacturers or through domestic and industrial usages has caused the incidence of serious environmental problems. Entering these materials in to the surface waters reduces the amount of dissolved oxygen in the water and causes unsightly environment and groundwater pollution that is always has been notified by environmental experts. Methods: This study focuses on the treatment of laundry wastewater containing phosphate, nitrate and COD using iron as sacrificial electrode by EC process. Various operating conditions such as pH (3, 4, 5, 6, 7, 9, distance between the electrode (3, 5, 10,15mm and current density (3, 6,9,12 mA/cm2 were investigated. Results: Experimental results showed that pollutant removal efficiency varied by changing pH, distance between the electrodes and current density. According to the results, optimum operating conditions for the removal of phosphate, nitrate and COD, were current density of 12mA/cm2, pH of 7.0, distance between the electrodes equal to 10 mm with Fe electrodes. The removal efficiency of phosphate, nitrate and COD were showed 99.33%, 96.67% and 91.43%. Also Kinetic analysis indicates that the adsorption system obeys a second- order kinetic model. Conclusion: According to the results, the Fe electrodes have been achieved the high removal efficiency of phosphate, nitrate and COD by using electrocoagulation.

  9. Optimization of the pretreatment of wastewater from a slaughterhouse and packing plant through electrocoagulation in a batch reactor.

    Science.gov (United States)

    Orssatto, Fábio; Ferreira Tavares, Maria Hermínia; Manente da Silva, Flávia; Eyng, Eduardo; Farias Biassi, Brendown; Fleck, Leandro

    2017-10-01

    The purpose of this study is to evaluate the removal of chemical oxygen demand (COD), turbidity and color of wastewater from a pig slaughterhouse and packing plant through the electrochemical technique and to optimize the ΔV (electric potential difference) and HRT (hydraulic retention time) variables in an electrocoagulation batch reactor using aluminum electrodes. The experimental design used was rotatable central composite design. For turbidity, the values for removal efficiency obtained varied from 92.85% to 99.28%; for color, they varied from 81.34% to 98.93% and for COD, they varied from 58.61% to 81.01%. The best optimized conditions of treatment were at 25 min for the HRT and 25 V for the ΔV, which correspond to electrical current of 1.08 A and a current density of 21.6 mA cm -2 . The aluminum residue varied from 15.254 to 54.291 mg L -1 and the cost of the treatment was US$4.288 m -3 . The novelty of the work was the simultaneous optimization of three response variables using the desirability function applied to the treatment of wastewater from slaughterhouses.

  10. Effect of pH and chloride concentration on the removal of hexavalent chromium in a batch electrocoagulation reactor

    Energy Technology Data Exchange (ETDEWEB)

    Arroyo, M.G. [Departamento de Ingenieria Quimica y Nuclear, Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain); Perez-Herranz, V., E-mail: vperez@iqn.upv.es [Departamento de Ingenieria Quimica y Nuclear, Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain); Montanes, M.T.; Garcia-Anton, J.; Guinon, J.L. [Departamento de Ingenieria Quimica y Nuclear, Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain)

    2009-09-30

    In this work, the effect of pH and chloride ions concentration on the removal of Cr(VI) from wastewater by batch electrocoagulation using iron plate electrodes has been investigated. The initial solution pH was adjusted with different concentrations of H{sub 2}SO{sub 4}. The presence of chloride ions enhances the anode dissolution due to pitting corrosion. Fe{sup 2+} ions formed during the anode dissolution cause the reduction of Cr(VI) to form Cr(III), which are co-precipitated with Fe{sup 3+} ions at relatively low pH. The reduction degree of Cr(VI) to Cr(III) and the solubility of metal hydroxide species (both chromic and iron hydroxides) depend on pH. At higher concentrations of H{sub 2}SO{sub 4}, the reduction of Cr(VI) to Cr(III) by Fe{sup 2+} ions is preferred, but the coagulation of Fe{sup 3+} and Cr(III) is favoured at the lower H{sub 2}SO{sub 4} concentrations.

  11. Kinetics, isothermal and thermodynamics studies of electrocoagulation removal of basic dye rhodamine B from aqueous solution using steel electrodes

    Science.gov (United States)

    Adeogun, Abideen Idowu; Balakrishnan, Ramesh Babu

    2017-07-01

    Electrocoagulation was used for the removal of basic dye rhodamine B from aqueous solution, and the process was carried out in a batch electrochemical cell with steel electrodes in monopolar connection. The effects of some important parameters such as current density, pH, temperature and initial dye concentration, on the process, were investigated. Equilibrium was attained after 10 min at 30 °C. Pseudo-first-order, pseudo-second-order, Elovich and Avrami kinetic models were used to test the experimental data in order to elucidate the kinetic adsorption process; pseudo-first-order and Avrami models best fitted the data. Experimental data were analysed using six model equations: Langmuir, Freudlinch, Redlich-Peterson, Temkin, Dubinin-Radushkevich and Sips isotherms and it was found that the data fitted well with Sips isotherm model. The study showed that the process depends on current density, temperature, pH and initial dye concentration. The calculated thermodynamics parameters (Δ G°, Δ H° and Δ S°) indicated that the process is spontaneous and endothermic in nature.

  12. Electrocoagulation of the Locus coeruleus and the plasma catecholamine responses to immobilization stress in normotensive and hypertensive rats

    International Nuclear Information System (INIS)

    Dronjak, S.; Nikolic, J.; Varagic, V.M.

    1998-01-01

    The Locus coeruleus (LC), the largest noradrenergic nucleus in the brain, plays a major role in behavioral arousal in response to novel or stressful stimuli (Foote et al, 1983). An interesting feature of the LC is the degree of plasticity it displays in response to stress or drug treatment. For example, electrophysiological evidence suggests that sprouting of LC axons may occur following repeated stress (Sakaguchi and Nakamura, 1990). Stress increases LC firing rate and results in increased levels of noradrenaline (Glavin et al, 1983). High concentrations of noradrenergic neurons in LC indicated that this structure might have an integrative role in the blood pressure regulation. Spontaneously hypertensive rats (SHP) are widely used as a model of human essential hypertension. These animals exhibit enhanced sympathetic activity (Brody et al, 1980). It was therefore of interest to study the role of LC in normotensive and spontaneously hypertensive rats, and the effect of unilateral and bilateral electrocoagulation of the LC on the plasma concentration of noradrenaline and adrenaline during immobilization stress. (author)

  13. Feasibility of electrocoagulation/flotation treatment of waste offset printing developer based on the response surface analysis

    Directory of Open Access Journals (Sweden)

    Savka Adamovic

    2016-01-01

    Full Text Available In the printing plate developing process, the offset printing developer undergoes changes, as well as enrichment by the various chemicals, i.e. metals, organic binders and photosensitive compounds. The objective of this study was to investigate the electrocoagulation/flotation (ECF treatment efficiency for the removal of copper, turbidity and organic substances from the waste offset printing developer (WOPD. The effect of operational parameters, such as electrode materials, current density, interelectrode distance and operating time, was studied. Also, the response surface analysis was applied to evaluate the effect of main operational variables and to get a balanced removal efficiency of investigated WOPD parameters by ECF treatment. The removal efficiency increases significantly with the increasing of operating time and mainly increases with the increasing of current density. The obtained results show that the interelectrode distance and combinations of electrodes determine the removal efficiency of copper, turbidity and organic substances. Based on the obtained results, the optimized parameters for the ECF treatment removal of investigated WOPD parameters were identified as: Al(−/Fe(+ electrode combination with interelectrode distance of 1.0 cm, operating time of 5 min and current density of 8 mA cm−2. This study confirms the practical feasibility of ECF method for treating real printing industrial effluent under optimum conditions.

  14. Defluoridation of drinking water by combined electrocoagulation: effects of the molar ratio of alkalinity and fluoride to Al(III).

    Science.gov (United States)

    Zhao, Hua-Zhang; Yang, Wei; Zhu, Jun; Ni, Jin-Ren

    2009-03-01

    The defluoridation efficiency (epsilon(F)) of electrocoagulation (EC) is closely related to the pH level of the F(-)-containing solution. The pH level usually needs to be adjusted by adding acid in order to obtain the highest epsilon(F) for the F(-)-containing groundwater. The use of combined EC (CEC), which is the combination of chemical coagulation with EC, was proposed to remove fluoride from drinking water for the first time in this study. The optimal scheme for the design and operation of CEC were obtained through experiments on the treatment of F(-)-containing groundwater. It was found, with OH(-) being the only alkalinity of the raw water, that the highest efficiency would be obtained when the molar ratio of alkalinity and fluoride to Al(III) (gamma(Alkalinity+F)) was controlled at 3.0. However, when the raw water contained HCO(3)(-) alkalinity, a correction coefficient was needed to correct the concentration of HCO(3)(-) to obtain the optimal defluoridation condition of gamma(Alkalinity+F)=3.0 for CEC. The correction coefficient of HCO(3)(-) concentration was concluded as 0.60 from the experiment. For the practical F(-)-containing groundwater treatment, CEC can achieve similar epsilon(F) as an acid-adding EC process. The consumption of aluminum electrode was decreased in CEC. The energy consumption also declined greatly in CEC, which is less than one third of that in the acid-adding EC process.

  15. Removal of pollutants with determination of power consumption from landfill leachate wastewater using an electrocoagulation process: optimization using response surface methodology (RSM)

    Science.gov (United States)

    Asaithambi, Perumal; Beyene, Dejene; Aziz, Abdul Raman Abdul; Alemayehu, Esayas

    2018-05-01

    Treatment of landfill leachate wastewater by electrocoagulation process using an aluminium electrode was investigated in a batch electrochemical cell reactor. Response surface methodology based on central composite design was used to optimize the operating parameters for the removal of % color and % total organic carbon (TOC) together with power consumption from landfill leachate. Effects of three important independent parameters such as current density ( X 1), inter-electrode distance ( X 2) and solution pH ( X 3) of the landfill leachate sample on the % color and % TOC removal with power consumption were investigated. A quadratic model was used to predict the % color and % TOC removal with power consumption in different experimental conditions. The significance of each independent variable was calculated by analysis of variance. In order to achieve the maximum % color and % TOC removal with minimum of power consumption, the optimum conditions were about current density ( X 1)—5.25 A/dm2, inter-electrode distance ( X 2)—1 cm and initial solution of effluent pH ( X 3)—7.83, with the yield of color removal of 74.57%, and TOC removal of 51.75% with the power consumption of 14.80 kWh/m3. Electrocoagulation process could be applied to remove pollutants from industrial effluents and wastewater.

  16. The treatment of chromium containing wastewater using electrocoagulation and the production of ceramic pigments from the resulting sludge.

    Science.gov (United States)

    Tezcan Un, Umran; Onpeker, Suzan Eroglu; Ozel, Emel

    2017-09-15

    This research experimentally investigates the treatment of authentic electroplating wastewater with high Cr(VI) content by electrocoagulation with the obtained sludge being reused as a raw material to produce inorganic pigments. A zero waste process is introduced to help conserve resources and to minimize environmental effects. The effects of operational parameters on electrocoagulation are determined in a batch stirred reactor using an iron electrode. The best performance was observed when a current density 20 mA/cm 2 , pH 2.4 and 0.05 M NaCl electrolyte were maintained. The initial Cr(VI) concentration of 1000 mg/L was almost completely abated (∼100%) at an energy cost of 2.68 kWh/m 3 , fulfilling the EPA guideline of 2.77 mg/L within a single step process. The sludge was characterized using XRD and XRF showing that the sludge is a rich source of iron and chromium and can be reused to produce value added ceramic pigments. Pigments prepared in this way appeared to be reddish brown and black color in transparent glaze and were also characterized using XRD and XRF. In this study, a zero waste process is successfully introduced with ∼100% Cr(VI) removal, with subsequent reuse of the resulting sludge. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Highly Efficient Interception and Precipitation of Uranium(VI) from Aqueous Solution by Iron-Electrocoagulation Combined with Cooperative Chelation by Organic Ligands.

    Science.gov (United States)

    Li, Peng; Zhun, Bao; Wang, Xuegang; Liao, PingPing; Wang, Guanghui; Wang, Lizhang; Guo, Yadan; Zhang, Weimin

    2017-12-19

    A new strategy combining iron-electrocoagulation and organic ligands (OGLs) cooperative chelation was proposed to screen and precipitate low concentrations (0-18.52 μmol/L) of uranium contaminant in aqueous solution. We hypothesized that OGLs with amino, hydroxyl, and carboxyl groups hydrophobically/hydrophilically would realize precuring of uranyl ion at pH electrocoagulation would achieve faster and more efficient uranium precipitation. Experimentally, the strategy demonstrated highly efficient uranium(VI) precipitation efficiency, especially with hydrophilic macromolecular OGLs. The uranium removal efficiency at optimized experimental condition reached 99.65%. The decrease of zeta potential and the lattice enwrapping between U-OGLs chelates and flocculation precursor were ascribed to the enhanced uranium precipitation activity. Uranium was precipitated as oxides of U(VI) or higher valences that were easily captured in aggregated micelles under low operation current potential. The actual uranium tailing wastewater was treated, and a satisfied uranium removal efficiency of 99.02% was discovered. After elution of the precipitated flocs, a concentrated uranium solution (up to 106.52 μmol/L) with very few other metallic impurities was obtained. Therefore, the proposed strategy could remove uranium and concentrate it concurrently. This work could provide new insights into the purification and recovery of uranium from aqueous solutions in a cost-effective and environmentally friendly process.

  18. Defluoridation of drinking water using a new flow column-electrocoagulation reactor (FCER) - Experimental, statistical, and economic approach.

    Science.gov (United States)

    Hashim, Khalid S; Shaw, Andy; Al Khaddar, Rafid; Ortoneda Pedrola, Montserrat; Phipps, David

    2017-07-15

    A new batch, flow column electrocoagulation reactor (FCER) that utilises a perforated plate flow column as a mixer has been used to remove fluoride from drinking water. A comprehensive study has been carried out to assess its performance. The efficiency of fluoride removal (R%) as a function of key operational parameters such as initial pH, detention time (t), current density (CD), inter-electrode distance (ID) and initial concentration (C 0 ) has been examined and an empirical model has been developed. A scanning electron microscopy (SEM) investigation of the influence of the EC process on morphology of the surface of the aluminium electrodes, showed the erosion caused by aluminium loss. A preliminary estimation of the reactor's operating cost is suggested, allowing for the energy from recycling of hydrogen gas hydrogen gas produced amount. The results obtained showed that 98% of fluoride was removed within 25 min of electrolysis at pH of 6, ID of 5 mm, and CD of 2 mA/cm 2 . The general relationship between fluoride removal and operating parameters could be described by a linear model with R 2 of 0.823. The contribution of the operating parameters to the suggested model followed the order: t > CD > C 0  > ID > pH. The SEM images obtained showed that, after the EC process, the surface of the anodes, became non-uniform with a large number of irregularities due to the generation of aluminium hydroxides. It is suggested that these do not materially affect the performance. A provisional estimate of the operating cost was 0.379 US $/m 3 . Additionally, it has been found that 0.6 kW/m 3 is potentially recoverable from the H 2 gas. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  19. Application of response surface methodology as a new PID tuning method in an electrocoagulation process control case.

    Science.gov (United States)

    Camcıoğlu, Ş; Özyurt, B; Doğan, I C; Hapoğlu, H

    2017-12-01

    In this work the application of response surface methodology (RSM) to proportional-integral-derivative (PID) controller parameter tuning for electrocoagulation (EC) treatment of pulp and paper mill wastewater was researched. Dynamic data for two controlled variables (pH and electrical conductivity) were obtained under pseudo random binary sequence (PRBS) input signals applied to manipulated variables (acid and supporting electrolyte flow rates). Third order plus time delay model parameters were evaluated through System Identification Toolbox™ in MATLAB ® . Four level full factorial design was applied to form a design matrix for three controller tuning parameters as factors and to evaluate statistical analysis of the system in terms of integral of square error (ISE), integral of absolute error (IAE), integral of time square error (ITSE) and integral of time absolute error (ITAE) performance criteria as response. Numerical values of the responses for the runs in the design matrices were determined using closed-loop PID control system simulations designed in Simulink ® . Optimum proportional gain, integral action and derivative action values for electrical conductivity control were found to be 1,500 s, 0 s and 16.4636 s respectively. Accordingly, the same optimization scheme was followed for pH control and optimum controller parameters were found to be -8.6970 s, 0.0211 s and 50 s, respectively. Theoretically optimized controller parameters were applied to batch experimental studies. Chemical oxygen demand (COD) removal efficiency and energy consumption of pulp and paper mill wastewater treatment by EC under controlled action of pH at 5.5 and electrical conductivity at 2.72 mS/cm was found to be 85% and 3.87 kWh/m 3 respectively. Results showed that multi input-multi output (MIMO) control action increased removal efficiency of COD by 15.41% and reduced energy consumption by 6.52% in comparison with treatment under uncontrolled conditions.

  20. Decolorization and COD reduction of UASB pretreated poultry manure wastewater by electrocoagulation process: A post-treatment study

    International Nuclear Information System (INIS)

    Yetilmezsoy, Kaan; Ilhan, Fatih; Sapci-Zengin, Zehra; Sakar, Suleyman; Gonullu, M. Talha

    2009-01-01

    The performance of electrocoagulation (EC) technique for decolorization and chemical oxygen demand (COD) reduction of anaerobically pretreated poultry manure wastewater was investigated in a laboratory batch study. Two identical 15.7-L up-flow anaerobic sludge blanket (UASB) reactors were first run under various organic and hydraulic loading conditions for 216 days. Effects of operating parameters such as type of sacrificial electrode material, time of electrolysis, current density, initial pH, and electrolyte concentration were further studied to optimize conditions for the post-treatment of UASB pretreated poultry manure wastewater. Preliminary tests conducted with two types of sacrificial electrodes (Al and Fe) resulted that Al electrodes were found to be more effective for both COD and color removals than Fe electrodes. The subsequent EC tests performed with Al electrodes showed that optimal operating conditions were determined to be an initial pH of 5.0, a current density of 15 mA/cm 2 , and an electrolysis time of 20 min. The results indicated that under the optimal conditions, about 90% of COD and 92% of residual color could be effectively removed from the UASB effluent with the further contribution of the EC technology used as a post-treatment unit. In this study, the possible acute toxicity of the EC effluent was also evaluated by a static bioassay test procedure using guppy fish (Lebistes reticulatus). Findings of this study clearly indicated that incorporation of a toxicological test into conventional physicochemical analyses provided a better evaluation of final discharge characteristics

  1. Cyanide detoxification of mining wastewaters with TiO{sub 2} nanoparticles and its recovery by electrocoagulation

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez, V.; Casillas, H.M. [Department of Metallurgy and Materials Science, Institute of Technology of Saltillo, Saltillo Coahuila (Mexico); Valenzuela, J.L. [Department of Chemical Engineering and Metallurgy, University of Sonora, Hermosillo Sonora (Mexico); Parga, J.R.

    2009-12-15

    Due to the widespread use of cyanide in mining operations, its recovery and destruction is important for both the environmental aspects of wastewater and its treatment, and the economic aspects associated with the high consumption of chemicals by the process itself. A photoelectrocatalytic detoxification technique with titanium dioxide microelectrodes is one of the most innovative ways for the treatment of wastewater containing cyanide. However, this technique has a disadvantage for industrial application in that the separation of titanium dioxide after the photocatalytic degradation of cyanide is rather difficult due to the fineness of the particles, and therefore, the reuse of the titanium dioxide has not been attained for the treatment of cyanide-containing wastewater. To overcome this weak point, an electrocoagulation (EC) technique is used to recover the titanium dioxide from its aqueous suspensions. The results show that photodegradation of cyanide is 93 % in 30 min using a 450 W halogen lamp. The recovery of anatase with the EC process is 98 %. The results indicate that this technique has the potential to serve as a reliable and economical method because sunlight can be used efficiently as the power source. The Langmuir isotherm is used to obtain the thermodynamic parameters, i.e., free energy, enthalpy and entropy. The evaluation of these parameters, i.e., {delta}G =-37 kJ/mol, {delta}H =-54 kJ/mol and {delta}S =0.524 kJ/mol K, indicates the spontaneous and exothermic nature of the adsorption of the anatase particles on the iron species. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  2. Removal of suspended solids and turbidity from marble processing wastewaters by electrocoagulation: Comparison of electrode materials and electrode connection systems

    Energy Technology Data Exchange (ETDEWEB)

    Solak, Murat [Duezce University, Kaynasli Vocational School, Environmental Protection and Control Department, 81900 Duezce (Turkey); Kilic, Mehmet, E-mail: kavi@mmf.sdu.edu.tr [Sueleyman Demirel University, Engineering and Architecture Faculty, Environmental Engineering Department, 32260 Isparta (Turkey); Hueseyin, Yazici; Sencan, Aziz [Sueleyman Demirel University, Engineering and Architecture Faculty, Environmental Engineering Department, 32260 Isparta (Turkey)

    2009-12-15

    In this study, removal of suspended solids (SS) and turbidity from marble processing wastewaters by electrocoagulation (EC) process were investigated by using aluminium (Al) and iron (Fe) electrodes which were run in serial and parallel connection systems. To remove these pollutants from the marble processing wastewater, an EC reactor including monopolar electrodes (Al/Fe) in parallel and serial connection system, was utilized. Optimization of differential operation parameters such as pH, current density, and electrolysis time on SS and turbidity removal were determined in this way. EC process with monopolar Al electrodes in parallel and serial connections carried out at the optimum conditions where the pH value was 9, current density was approximately 15 A/m{sup 2}, and electrolysis time was 2 min resulted in 100% SS removal. Removal efficiencies of EC process for SS with monopolar Fe electrodes in parallel and serial connection were found to be 99.86% and 99.94%, respectively. Optimum parameters for monopolar Fe electrodes in both of the connection types were found to be for pH value as 8, for electrolysis time as 2 min. The optimum current density value for Fe electrodes used in serial and parallel connections was also obtained at 10 and 20 A/m{sup 2}, respectively. Based on the results obtained, it was found that EC process running with each type of the electrodes and the connections was highly effective for the removal of SS and turbidity from marble processing wastewaters, and that operating costs with monopolar Al electrodes in parallel connection were the cheapest than that of the serial connection and all the configurations for Fe electrode.

  3. Removal of suspended solids and turbidity from marble processing wastewaters by electrocoagulation: Comparison of electrode materials and electrode connection systems

    International Nuclear Information System (INIS)

    Solak, Murat; Kilic, Mehmet; Hueseyin, Yazici; Sencan, Aziz

    2009-01-01

    In this study, removal of suspended solids (SS) and turbidity from marble processing wastewaters by electrocoagulation (EC) process were investigated by using aluminium (Al) and iron (Fe) electrodes which were run in serial and parallel connection systems. To remove these pollutants from the marble processing wastewater, an EC reactor including monopolar electrodes (Al/Fe) in parallel and serial connection system, was utilized. Optimization of differential operation parameters such as pH, current density, and electrolysis time on SS and turbidity removal were determined in this way. EC process with monopolar Al electrodes in parallel and serial connections carried out at the optimum conditions where the pH value was 9, current density was approximately 15 A/m 2 , and electrolysis time was 2 min resulted in 100% SS removal. Removal efficiencies of EC process for SS with monopolar Fe electrodes in parallel and serial connection were found to be 99.86% and 99.94%, respectively. Optimum parameters for monopolar Fe electrodes in both of the connection types were found to be for pH value as 8, for electrolysis time as 2 min. The optimum current density value for Fe electrodes used in serial and parallel connections was also obtained at 10 and 20 A/m 2 , respectively. Based on the results obtained, it was found that EC process running with each type of the electrodes and the connections was highly effective for the removal of SS and turbidity from marble processing wastewaters, and that operating costs with monopolar Al electrodes in parallel connection were the cheapest than that of the serial connection and all the configurations for Fe electrode.

  4. Bacteria attenuation by iron electrocoagulation governed by interactions between bacterial phosphate groups and Fe(III) precipitates.

    Science.gov (United States)

    Delaire, Caroline; van Genuchten, Case M; Amrose, Susan E; Gadgil, Ashok J

    2016-10-15

    Iron electrocoagulation (Fe-EC) is a low-cost process in which Fe(II) generated from an Fe(0) anode reacts with dissolved O2 to form (1) Fe(III) precipitates with an affinity for bacterial cell walls and (2) bactericidal reactive oxidants. Previous work suggests that Fe-EC is a promising treatment option for groundwater containing arsenic and bacterial contamination. However, the mechanisms of bacteria attenuation and the impact of major groundwater ions are not well understood. In this work, using the model indicator Escherichia coli (E. coli), we show that physical removal via enmeshment in EC precipitate flocs is the primary process of bacteria attenuation in the presence of HCO3(-), which significantly inhibits inactivation, possibly due to a reduction in the lifetime of reactive oxidants. We demonstrate that the adhesion of EC precipitates to cell walls, which results in bacteria encapsulation in flocs, is driven primarily by interactions between EC precipitates and phosphate functional groups on bacteria surfaces. In single solute electrolytes, both P (0.4 mM) and Ca/Mg (1-13 mM) inhibited the adhesion of EC precipitates to bacterial cell walls, whereas Si (0.4 mM) and ionic strength (2-200 mM) did not impact E. coli attenuation. Interestingly, P (0.4 mM) did not affect E. coli attenuation in electrolytes containing Ca/Mg, consistent with bivalent cation bridging between bacterial phosphate groups and inorganic P sorbed to EC precipitates. Finally, we found that EC precipitate adhesion is largely independent of cell wall composition, consistent with comparable densities of phosphate functional groups on Gram-positive and Gram-negative cells. Our results are critical to predict the performance of Fe-EC to eliminate bacterial contaminants from waters with diverse chemical compositions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Decolorization and COD reduction of UASB pretreated poultry manure wastewater by electrocoagulation process: A post-treatment study

    Energy Technology Data Exchange (ETDEWEB)

    Yetilmezsoy, Kaan [Department of Environmental Engineering, Yildiz Technical University, 34349 Yildiz, Besiktas, Istanbul (Turkey)], E-mail: yetilmez@yildiz.edu.tr; Ilhan, Fatih; Sapci-Zengin, Zehra; Sakar, Suleyman; Gonullu, M. Talha [Department of Environmental Engineering, Yildiz Technical University, 34349 Yildiz, Besiktas, Istanbul (Turkey)

    2009-02-15

    The performance of electrocoagulation (EC) technique for decolorization and chemical oxygen demand (COD) reduction of anaerobically pretreated poultry manure wastewater was investigated in a laboratory batch study. Two identical 15.7-L up-flow anaerobic sludge blanket (UASB) reactors were first run under various organic and hydraulic loading conditions for 216 days. Effects of operating parameters such as type of sacrificial electrode material, time of electrolysis, current density, initial pH, and electrolyte concentration were further studied to optimize conditions for the post-treatment of UASB pretreated poultry manure wastewater. Preliminary tests conducted with two types of sacrificial electrodes (Al and Fe) resulted that Al electrodes were found to be more effective for both COD and color removals than Fe electrodes. The subsequent EC tests performed with Al electrodes showed that optimal operating conditions were determined to be an initial pH of 5.0, a current density of 15 mA/cm{sup 2}, and an electrolysis time of 20 min. The results indicated that under the optimal conditions, about 90% of COD and 92% of residual color could be effectively removed from the UASB effluent with the further contribution of the EC technology used as a post-treatment unit. In this study, the possible acute toxicity of the EC effluent was also evaluated by a static bioassay test procedure using guppy fish (Lebistes reticulatus). Findings of this study clearly indicated that incorporation of a toxicological test into conventional physicochemical analyses provided a better evaluation of final discharge characteristics.

  6. Formation of macroscopic surface layers on Fe(0) electrocoagulation electrodes during an extended field trial of arsenic treatment.

    Science.gov (United States)

    van Genuchten, Case M; Bandaru, Siva R S; Surorova, Elena; Amrose, Susan E; Gadgil, Ashok J; Peña, Jasquelin

    2016-06-01

    Extended field trials to remove arsenic (As) via Fe(0) electrocoagulation (EC) have demonstrated consistent As removal from groundwater to concentrations below 10 μg L(-1). However, the coulombic performance of long-term EC field operation is lower than that of laboratory-based systems. Although EC electrodes used over prolonged periods show distinct passivation layers, which have been linked to decreased treatment efficiency, the spatial distribution and mineralogy of such surface layers have not been investigated. In this work, we combine wet chemical measurements with sub-micron-scale chemical maps and selected area electron diffraction (SAED) to determine the chemical composition and mineral phase of surface layers formed during long-term Fe(0) EC treatment. We analyzed Fe(0) EC electrodes used for 3.5 months of daily treatment of As-contaminated groundwater in rural West Bengal, India. We found that the several mm thick layer that formed on cathodes and anodes consisted of primarily magnetite, with minor fractions of goethite. Spatially-resolved SAED patterns also revealed small quantities of CaCO3, Mn oxides, and SiO2, the source of which was the groundwater electrolyte. We propose that the formation of the surface layer contributes to decreased treatment performance by preventing the migration of EC-generated Fe(II) to the bulk electrolyte, where As removal occurs. The trapped Fe(II) subsequently increases the surface layer size at the expense of treatment efficiency. Based on these findings, we discuss several simple and affordable methods to prevent the efficiency loss due to the surface layer, including alternating polarity cycles and cleaning the Fe(0) surface mechanically or via electrolyte scouring. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Removal of suspended solids and turbidity from marble processing wastewaters by electrocoagulation: comparison of electrode materials and electrode connection systems.

    Science.gov (United States)

    Solak, Murat; Kiliç, Mehmet; Hüseyin, Yazici; Sencan, Aziz

    2009-12-15

    In this study, removal of suspended solids (SS) and turbidity from marble processing wastewaters by electrocoagulation (EC) process were investigated by using aluminium (Al) and iron (Fe) electrodes which were run in serial and parallel connection systems. To remove these pollutants from the marble processing wastewater, an EC reactor including monopolar electrodes (Al/Fe) in parallel and serial connection system, was utilized. Optimization of differential operation parameters such as pH, current density, and electrolysis time on SS and turbidity removal were determined in this way. EC process with monopolar Al electrodes in parallel and serial connections carried out at the optimum conditions where the pH value was 9, current density was approximately 15 A/m(2), and electrolysis time was 2 min resulted in 100% SS removal. Removal efficiencies of EC process for SS with monopolar Fe electrodes in parallel and serial connection were found to be 99.86% and 99.94%, respectively. Optimum parameters for monopolar Fe electrodes in both of the connection types were found to be for pH value as 8, for electrolysis time as 2 min. The optimum current density value for Fe electrodes used in serial and parallel connections was also obtained at 10 and 20 A/m(2), respectively. Based on the results obtained, it was found that EC process running with each type of the electrodes and the connections was highly effective for the removal of SS and turbidity from marble processing wastewaters, and that operating costs with monopolar Al electrodes in parallel connection were the cheapest than that of the serial connection and all the configurations for Fe electrode.

  8. Escherichia coli Attenuation by Fe Electrocoagulation in Synthetic Bengal Groundwater: Effect of pH and Natural Organic Matter.

    Science.gov (United States)

    Delaire, Caroline; van Genuchten, Case M; Nelson, Kara L; Amrose, Susan E; Gadgil, Ashok J

    2015-08-18

    Technologies addressing both arsenic and microbial contamination of Bengal groundwater are needed. Fe electrocoagulation (Fe-EC), a simple process relying on the dissolution of an Fe(0) anode to produce Fe(III) precipitates, has been shown to efficiently remove arsenic from groundwater at low cost. We investigated Escherichia coli (E. coli) attenuation by Fe-EC in synthetic Bengal groundwater as a function of Fe dosage rate, total Fe dosed, pH, and presence of natural organic matter (NOM). A 2.5 mM Fe dosage simultaneously achieved over 4-log E. coli attenuation and arsenic removal from 450 to below 10 μg/L. E. coli reduction was significantly enhanced at pH 6.6 compared to pH 7.5, which we linked to the decreased rate of Fe(II) oxidation at lower pH. 3 mg/L-C of NOM (Suwanee River fulvic acid) did not significantly affect E. coli attenuation. Live-dead staining and comparisons of Fe-EC with chemical coagulation controls showed that the primary mechanism of E. coli attenuation is physical removal with Fe(III) precipitates, with inactivation likely contributing as well at lower pH. Transmission electron microscopy showed that EC precipitates adhere to and bridge individual E. coli cells, resulting in large bacteria-Fe aggregates that can be removed by gravitational settling. Our results point to the promising ability of Fe-EC to treat arsenic and bacterial contamination simultaneously at low cost.

  9. Oilfield water treatment by electrocoagulation-reverse osmosis for agricultural use: effects on germination and early growth characteristics of sunflower.

    Science.gov (United States)

    de Souza, Paulo S A; Cerqueira, Alexandre A; Rigo, Michelle M; de Paiva, Julieta L; Couto, Rafael S P; Merçon, Fábio; Perez, Daniel V; Marques, Monica R C

    2017-05-01

    This study aims to evaluate the effects of oilfield water (OW), treated by a hybrid process of electrocoagulation and reverse osmosis (EC-RO), on seed germination and early growth characteristics of sunflower (Heliantus annus L.). In the EC step, tests were conducted with 28.6 A m -2 current density and 4 min. reaction time. In the RO step, the system was operated with 1 L min -1 constant flow and 2 MPa, 2.5 MPa and 3 MPa feed pressures. In all feed pressures, RO polymeric membranes achieved very high removals of chemical oxygen demand (up to 89%) and oils and greases (100%) from EC-treated effluent. In best feed pressure (2.5 MPa), turbidity, total dissolved salts, electrical conductivity, salinity, toxic ions and sodium adsorption ratio values attained internationally recognized standards for irrigation water. Using EC-RO (feed pressure:2.5 MPa) treated OW, germinated sunflower seeds percentage (86 ± 6%), speed of germination (30 ± 2) and biomass production (49 ± 5 mg) were statistically similar to control (distilled water) results. Vigor index average values obtained using OW treated by EC-RO (3871)were higher than that obtained by OW water treated by EC (3300). The results of this study indicate that EC-RO seems to be a promising alternative for treatment of OW aiming sunflower crops irrigation, since the use of this treated effluent did not affect adversely seed germination and seedling development, and improved seedling vigor. Furthermore, OW treatment by EC-RO reduces sodium levels into acceptable standards values avoiding soil degradation.

  10. Parametric and energy consumption optimization of Basic Red 2 removal by electrocoagulation/egg shell adsorption coupling using response surface methodology in a batch system.

    Science.gov (United States)

    de Carvalho, Helder Pereira; Huang, Jiguo; Zhao, Meixia; Liu, Gang; Yang, Xinyu; Dong, Lili; Liu, Xingjuan

    2016-01-01

    In this study, response surface methodology (RSM) model was applied for optimization of Basic Red 2 (BR2) removal using electrocoagulation/eggshell (ES) coupling process in a batch system. Central composite design was used to evaluate the effects and interactions of process parameters including current density, reaction time, initial pH and ES dosage on the BR2 removal efficiency and energy consumption. The analysis of variance revealed high R(2) values (≥85%) indicating that the predictions of RSM models are adequately applicable for both responses. The optimum conditions when the dye removal efficiency of 93.18% and energy consumption of 0.840 kWh/kg were observed were 11.40 mA/cm(2) current density, 5 min and 3 s reaction time, 6.5 initial pH and 10.91 g/L ES dosage.

  11. Analysis of Heavy Metal in Electrocoagulated Metal Hydroxide Sludge (EMHS from the Textile Industry by Energy Dispersive X-Ray Fluorescence (EDXRF

    Directory of Open Access Journals (Sweden)

    Tanveer Mehedi Adyel

    2012-12-01

    Full Text Available Environmental pollution due to discharges of heavy metal containing sludge from textile industries is a common nuisance in Bangladesh, where no treatment of sludge is carried out before final disposals. Energy Dispersive X-ray Fluorescence (EDXRF was employed in the present study to analyze the heavy metal content of Electrocoagulated Metal Hydroxide Sludge (EMHS collected from a composite textile industry. Thirteen heavy metals, viz., Mn, Ti, Cu, Zn, Ni, Sr, V, Cr, Zr, Hg, Cd, Nb and Ga, were detected. Mn, Ni, Cu, Zn and Cd exceeded the permissible limit to apply the EMHS in agricultural land. Cr, Ni, Cu and Zn were compared to the values of the European legislation to evaluate the environmental risk and to classify the wastes as inert wastes or as wastes that have to be control landfilled. EMHS was categorized as class I and needs to be deposited in controlled landfills.

  12. Influence of filling ratio and carrier type on organic matter removal in a moving bed biofilm reactor with pretreatment of electrocoagulation in wastewater treatment.

    Science.gov (United States)

    Lopez-Lopez, C; Martín-Pascual, J; González-Martínez, A; Calderón, K; González-López, J; Hontoria, E; Poyatos, J M

    2012-01-01

    At present, there is great concern about limited water resources and water quality, which require a more advanced technology. The Moving Bed Biofilm Reactor (MBBR) has been shown to be an efficient technology for removal of organic matter and nutrients in industrial and urban wastewater treatment. However, there are some pollutants which are more difficult to remove by biological processes, so this process can be improved with additional physical and chemical treatments such as electrocoagulation, which appears to be a promising technology in electrochemical treatments. In this research, urban wastewater was treated in an MBBR plant with an electrocoagulation pre-treatment. K1 from AnoxKaldnes and AQWISE ABC5 from Aqwise were the carriers studied under three different filling ratios (20, 35, and 50%). The experimental pilot plant had four bioreactors with 20 L of operation volume and a common feed tank with 100 L of operation volume. The movement of the carriers was generated by aeration and stirrer systems. Organic matter removal was studied by analysis of soluble chemical oxygen demand (sCOD). The maximum organic matter removal in this MBBR system was 65.8% ± 1.4% and 78.4% ± 0.1% for K1 and Aqwise ABC5 carriers, respectively. Moreover, the bacterial diversity of the biofilm was studied by temperature-gradient gel electrophoresis (TGGE) of PCR-amplified partial 16S rRNA genes. 20 prominent TGGE bands were successfully reamplified and sequenced, being the predominant population: β-Proteobacteria, α-Proteobacteria, and Actinobacteria.

  13. Electrolytic treatment of liquid effluents: decontamination by electro coagulation of release water of a petroleum platform; Traitement electrolytique des effluents liquides: decontamination par electrocoagulation des eaux de rejet d'une plate forme petroliere

    Energy Technology Data Exchange (ETDEWEB)

    Nanseu-Njiki, Ch.P.; Ngameni, E.; Poumiba, S. [Yaounde Univ., Laboratoire de Chimie Analytique, Dept. de Chimie Inorganique, Faculte des Sciences (Cameroon); Darchen, A. [Ecole Nationale Superieure de Chimie de Rennes, Laboratoire d' Electrochimie, 35 - Rennes (France)

    2005-07-01

    The water releases of petroleum platforms present lots of pollutants; Usually, these waters are reinjected in ground water when it is possible. In the other cases they are released at the surface and need then a treatment. The electro-coagulation is a suitable method often used. The authors propose to study the optimum conditions of decontamination by this method, by a parametric evaluation (water flow, charge density, ph). Experiments used iron and aluminium electrodes. (A.L.B.)

  14. Concurrent arsenic and microbe removal from groundwater using iron electro-coagulation: Mechanisms of E.coli attenuation

    Science.gov (United States)

    Delaire, C.; Van Genuchten, C. M.; Amrose, S. E.; Gadgil, A.

    2013-12-01

    Around 60 million people in South Asia drink groundwater from arsenic contaminated shallow aquifers. Research over the last two decades has focused on arsenic removal alone to mitigate this problem, largely ignoring possible microbial contamination of shallow groundwater. However, diarrheal diseases are still prevalent in the region and recently, fecal indicators and pathogens were detected in shallow tubewells in Bangladesh. Comprehensive treatment technologies addressing both microbial and arsenic contamination are needed and may have a higher social acceptability, contributing to their sustainability in resource poor areas. Iron electro-coagulation (EC) is a low-cost and low-waste process using small amounts of electricity to produce Fe(III)-oxides that serve as an adsorbent for arsenic and a coagulant for microbes. Iron EC relies on the oxidative dissolution of a Fe(0) anode to produce Fe(II) ions that rapidly oxidize and precipitate in the presence of oxygen. In the process, strong oxidants generated by Fenton-like reactions convert As(III) into As(V), which is more amenable to adsorption. In this work, we demonstrate that iron EC can simultaneously remove arsenic and the model organism E.coli in South Asian synthetic groundwater. We find that E.coli is attenuated because it adheres to iron precipitates and is trapped in aggregates that settle out. Some inactivation (~20%, as probed by membrane permeability stains) also takes place, likely due to oxidative stress caused by strong oxidants produced in Fenton-like reactions. We find that pH has a significant effect on E.coli removal from South Asian synthetic groundwater. The iron dosages required to achieve 4-log attenuation (from an initial concentration of 10^6.4 CFU/mL) at pH 6.6. and 7.5 are 25 and 140 mg-Fe/L respectively, other parameters being equal. In this pH range, iron precipitates generated in synthetic groundwater have a negative surface charge, whose variation cannot entirely explain the

  15. Structure of Fe(III) precipitates generated by Fe(0) electrocoagulation in the presence of groundwater ions

    Science.gov (United States)

    van Genuchten, C. M.; Pena, J.; Addy, S. E.; Gadgil, A. J.

    2012-12-01

    Electrocoagulation (EC) using Fe(0) electrodes is an inexpensive and efficient technology capable of removing a variety of contaminants from water supplies. Because of its ease of use and modest electricity and Fe(0) requirements, EC has potential as an arsenic-removal technology for rural South Asia, where millions drink groundwater contaminated by arsenic. In EC, a small external voltage applied to a sacrificial Fe(0) anode in contact with an electrolyte (e.g. pumped groundwater containing arsenic) promotes the oxidative dissolution of Fe ions, which polymerize and create reactive hydrous ferric oxides (HFO) in-situ with a high affinity for binding contaminants. The chemical composition of the electrolyte influences EC performance. For example, major inorganic ions present in groundwater (e.g. Ca, Mg, P, As(V), Si) alter the pathway by which FeO6 oligomers polymerize to form crystalline Fe (oxyhydr)oxide minerals. Because the precipitate structure largely determines properties that govern the efficiency of EC systems (e.g. precipitate reactivity and colloidal stability), it is essential to understand the individual and interdependent structural effects of common groundwater ions. In this work, we integrate Fe K-edge EXAFS spectroscopy with the Pair Distribution Function (PDF) technique to create a detailed description of EC precipitate structure as a function of electrolyte chemistry. EC precipitate samples were generated in a range of individual and combined concentrations of Ca, Mg, P, As(V), and Si, encompassing most of the typical levels found in natural groundwater. Combining complementary EXAFS and PDF techniques with batch uptake experiments and general chemical reasoning, we obtain structural representations of EC precipitates that are inaccessible with any single characterization technique. Our results indicate that the presence of As(V), P, and Si oxyanions promote the formation of nanoscale material bearing similar, but not identical, intermediate

  16. Electricity production and phosphorous recovery as struvite from synthetic wastewater using magnesium-air fuel cell electrocoagulation.

    Science.gov (United States)

    Kim, Jung Hwan; An, Byung Min; Lim, Dae Hwan; Park, Joo Yang

    2018-04-01

    This research was based on the investigation of a major principle, regarding the effects of NaCl and KH 2 PO 4 concentrations on struvite recovery, with electricity production using magnesium-air fuel cell electrocoagulation, in accordance with the concentration of phosphorous and chloride. The weight ratio of N:P in the synthetic wastewater was in the range of 1.2-21. The concentration of NH 4 Cl was fixed at 0.277 M (approximately 3888 ppm as NH 3 -N and 5000 ppm as NH 4 ), while PO 4 -P was in the range of 0.006-0.1 M. In addition, the concentrations of NaCl as electrolyte were 0, 0.01, and 0.1 M. Phosphate removal increased linearly with the Mg:P ratio, up to approximately 1.1 mol mol -1 , irrespective of the initial concentrations of phosphate and NaCl. The one-to-one reaction as mole ratio between phosphate and the dissolved Mg ions resulted in phosphate removal, with the production of a one-to-one magnesium/phosphate mineral, such as struvite. The average removal rate of phosphorous in experiments without a dose of NaCl was 4.19 mg P cm -2 h -1 , which was lower than the relative values of 5.35 and 4.77 mg P cm -2 h -1 , in experiments with 0.01 and 0.1 M NaCl. The dissolution rate of Mg with electro-oxidation determined the rate of phosphorous removal with struvite recovery. The average removal rates of phosphorous with dose concentrations of 0.006, 0.01 and 0.02 M KH 2 PO 4 were 4.02, 5.54, 6.9 mg P cm -2 h -1 , respectively, which increased with the increase in KH 2 PO 4 dose. However, in experiments with a dose of 0.05 and 0.1 M KH 2 PO 4, the average removal rates of phosphorous decreased to 4.84 and 2.51, respectively. The maximum power densities in the electrolyte mixture of 0.05 M KH 2 PO 4 /0.277 M NH 4 Cl, 0.01 M NaCl/0.05 M KH 2 PO 4 /0.277 M NH 4 Cl, and 0.1 NaCl/0.05 KH 2 PO 4 /0.277 M NH 4 Cl were 25.1, 26.4, and 33.2 W/m 2 , respectively. The increase in the NaCl dose concentration resulted in an

  17. Comparison of the efficacy of two combined therapies for peptic ulcer bleeding: adrenaline injection plus haemoclipping versus adrenaline injection followed by bipolar electrocoagulation

    Science.gov (United States)

    Świdnicka-Siergiejko, Agnieszka; Wróblewski, Eugeniusz; Baniukiewicz, Andrzej; Dąbrowski, Andrzej

    2014-01-01

    Introduction Peptic ulcer remains the most frequent cause of upper gastrointestinal bleeding. Treatment of bleeding with simultaneous combination of two endoscopic techniques has proved to be more efficient than monotherapy. None of the published comparative studies of various contact coagulation modalities have confirmed the superiority of one of these techniques over the others. Aim To compare the therapeutic outcomes of the use of a device enabling both injection of adrenaline solution and bipolar electrocoagulation (A + BE) to those of combined adrenaline injection with mechanical therapy (haemostatic clips) (A + HC) in the treatment of peptic ulcer bleeding. Material and methods Fifty-two subjects with bleeding ulcers were assigned to the A + BE group, and 55 patients were treated with A + HC. Results Overall, treatment failed in 20 patients (20/107, 18.7%): in 10 individuals from the A + BE group (10/52; 18.2%) and in 10 individuals from the A + HC group (10/55; 19.2%) (p > 0.05). Primary haemostasis was not obtained in 7 patients (6.5%): in 4 patients in the A + BE group and in 3 patients in the A + HC group (p > 0.05). Ten individuals (9.3%) experienced recurrent bleeding during hospitalisation: 4 patients from the A + BE group and 6 patients from the A + HC group (p > 0.05). Finally, in 96.3% of the patients (n = 103) the endoscopic treatment proved efficient with regards to obtaining haemostasis during hospitalisation. Surgical intervention was required in 4 individuals (3.7%): 2 patients in the A + BE group and 2 patients treated with A + HC (p > 0.05). Three patients (2.8%) – all from the A + HC group – died during hospitalisation. No significant intergroup differences were documented with regards to the mean number of transfused blood units and the mean length of hospital stay. Conclusions The efficacy of combined endoscopic treatment of ulcer bleeding with a probe enabling simultaneous bipolar electrocoagulation and adrenaline injection seems

  18. Simultaneous removal of Ni(II and fluoride from a real flue gas desulfurization wastewater by electrocoagulation using Fe/C/Al electrode

    Directory of Open Access Journals (Sweden)

    Shinian Liu

    2017-09-01

    Full Text Available Large amounts of anions and heavy metals coexist in flue gas desulfurization (FGD wastewater originating from coal-fired power plants, which cause serious environmental pollution. Electrocoagulation (EC with Fe/C/Al hybrid electrodes was investigated for the separation of fluoride and nickel ions from a FGD wastewater. The study mainly focused on the technology parameters including anode electrode type, time, inter-electrode distance (5–40 mm, current density (1.88–6.25 mA/cm2 and initial pH (4–10. The results showed that favorable nickel and fluoride removal were obtained by increasing the time and current density, but this led to an increase in energy consumption. Eighty-six percent of fluoride and 98% of Ni(II were removed by conducting the Fe/C/Al EC with a current density of 5.00 mA/cm2 and inter-electrode distance of 5 mm at pH 4 for 25 min and energy consumption was 1.33 kWh/m3. Concomitant pollutants also achieved excellent treatment efficiency. The Hg, Mn, Pb, Cd, Cu, SS and chemical oxygen demand were reduced by 90%, 89%, 92%, 88%, 98%, 99.9% and 89%, respectively, which met stringent environmental regulations.

  19. Comparative performance of anodic oxidation and electrocoagulation as clean processes for electrocatalytic degradation of diazo dye Acid Brown 14 in aqueous medium.

    Science.gov (United States)

    Bassyouni, D G; Hamad, H A; El-Ashtoukhy, E-S Z; Amin, N K; El-Latif, M M Abd

    2017-08-05

    In this study, a laboratory scale for the treatment of a recalcitrant and toxic synthetic wastewater containing diazo dye, acid brown 14 (AB-14) has been comparatively performed by two electro-catalytic treatment processes, namely anodic oxidation (AO) and electrocoagulation (EC) using a new batch electrochemical cell. Additionally, the influence of several operating parameters such as; current density (j), initial dye concentration (C o ), NaCl concentration (C N ), and pH on the color removal efficiency and chemical oxygen demand (COD) are evaluated. The powerful capability of the AO and EC of AB-14 which related to the mechanistic reaction pathway is shown. The poor degradation is ascribed to higher C o and pH, while the enhancement of j and C N is responsible for better degradation of AB-14 dye. The results indicate that the EC is more effective than AO under the same operational condition. A kinetic model is developed for evaluation of the pseudo-first-order-rate constant (k app ) as a function of various operational parameters. The results emphasize the high efficiency of AO and EC and the clean processes which are hopeful alternative for the treatment of the large volume wastewater of the textile industry. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Extraction of antioxidants from olive mill wastewater and electro-coagulation of exhausted fraction to reduce its toxicity on anaerobic digestion.

    Science.gov (United States)

    Khoufi, Sonia; Aloui, Fathi; Sayadi, Sami

    2008-03-01

    Liquid-liquid extraction was used in order to recover phenolic compounds from centrifuged olive mill wastewater (OMW), a polluting by-product of olive oil production process, and to reduce their toxicity for a subsequent aerobic or anaerobic digestion. Phenolic compounds were identified in untreated and treated OMW by gas chromatography coupled to mass spectrometry (GC-MS). The experimental results of ethyl acetate extraction showed that the monomers recovery efficiency was over 90%. This pre-treatment resulted in the removal of the major LMM phenolic compounds and a small part of HMM polyphenols. The aerobic treatment of the exhausted OMW fraction removed 78.7% of the soluble COD. In the case of anaerobic digestion at OLR ranged from 1 to 3.5 gCOD l(-1)day(-1), methanisation process exhibited high methane yield as 0.3 l CH4 produced per g COD introduced and high COD removal (80%). However, a disruption of the process was observed when the OLR was increased to 4.5 gCODl(-1)day(-1). A pre-treatment by electro-coagulation resulted in decreasing the toxicity and enhancing the performance of methanisation operated at higher OLR from 4 to 7.5 gCODl(-1)day(-1).

  1. Effect of operational parameters on the decolorization of C.I. Reactive Blue 19 in aqueous solution by ozone-enhanced electrocoagulation

    Energy Technology Data Exchange (ETDEWEB)

    Song Shuang; Yao Jie [College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); He Zhiqiao [College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China)], E-mail: zqhe@zjut.edu.cn; Qiu Jianping; Chen Jianmeng [College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China)

    2008-03-21

    The aim of this paper was to investigate the efficiency of the ozone-enhanced electrocoagulation (EC) process in the decolorization of C.I. Reactive Blue 19 in water using iron electrodes. We determined the effects of various operating parameters such as initial pH, initial dye concentration, current density, salt concentration, temperature, ozone flow rate, and distance between electrodes on decolorization efficiency in a laboratory-scale reactor. Increasing the initial dye concentration decreased the decolorization efficiency, whereas increasing the distance between electrodes increased it. The other operating factors had both positive and negative effects. With an initial pH of 10.0, an initial dye concentration of 100 mg/L, current density of 10 mA/cm{sup 2}, salt concentration of 3000 mg/L, temperature of 30 deg. C, ozone flow rate of 20 mL/min, and distance between electrodes of 3 cm, over 96% of the color was removed after 10 min. As a consequence, removal of total organic carbon (TOC) was over 80%.

  2. Defluoridation of drinking water by electrocoagulation/electroflotation in a stirred tank reactor with a comparative performance to an external-loop airlift reactor

    International Nuclear Information System (INIS)

    Essadki, A.H.; Gourich, B.; Vial, Ch.; Delmas, H.; Bennajah, M.

    2009-01-01

    Defluoridation using batch electrocoagulation/electroflotation (EC/EF) was carried out in two reactors for comparison purpose: a stirred tank reactor (STR) close to a conventional EC cell and an external-loop airlift reactor (ELAR) that was recently described as an innovative reactor for EC. The respective influences of current density, initial concentration and initial pH on the efficiency of defluoridation were investigated. The same trends were observed in both reactors, but the efficiency was higher in the STR at the beginning of the electrolysis, whereas similar values were usually achieved after 15 min operation. The influence of the initial pH was explained using the analyses of sludge composition and residual soluble aluminum species in the effluents, and it was related to the prevailing mechanisms of defluoridation. Fluoride removal and sludge reduction were both favored by an initial pH around 4, but this value required an additional pre-treatment for pH adjustment. Finally, electric energy consumption was similar in both reactors when current density was lower than 12 mA/cm 2 , but mixing and complete flotation of the pollutants were achieved without additional mechanical power in the ELAR, using only the overall liquid recirculation induced by H 2 microbubbles generated by water electrolysis, which makes subsequent treatments easier to carry out.

  3. Effect of operational parameters on the decolorization of C.I. Reactive Blue 19 in aqueous solution by ozone-enhanced electrocoagulation

    International Nuclear Information System (INIS)

    Song Shuang; Yao Jie; He Zhiqiao; Qiu Jianping; Chen Jianmeng

    2008-01-01

    The aim of this paper was to investigate the efficiency of the ozone-enhanced electrocoagulation (EC) process in the decolorization of C.I. Reactive Blue 19 in water using iron electrodes. We determined the effects of various operating parameters such as initial pH, initial dye concentration, current density, salt concentration, temperature, ozone flow rate, and distance between electrodes on decolorization efficiency in a laboratory-scale reactor. Increasing the initial dye concentration decreased the decolorization efficiency, whereas increasing the distance between electrodes increased it. The other operating factors had both positive and negative effects. With an initial pH of 10.0, an initial dye concentration of 100 mg/L, current density of 10 mA/cm 2 , salt concentration of 3000 mg/L, temperature of 30 deg. C, ozone flow rate of 20 mL/min, and distance between electrodes of 3 cm, over 96% of the color was removed after 10 min. As a consequence, removal of total organic carbon (TOC) was over 80%

  4. Defluoridation of drinking water by electrocoagulation/electroflotation in a stirred tank reactor with a comparative performance to an external-loop airlift reactor

    Energy Technology Data Exchange (ETDEWEB)

    Essadki, A.H., E-mail: essadki@hotmail.com [Ecole Superieure de Technologie de Casablanca, BP 8012, Oasis, Casablanca (Morocco); Gourich, B. [Ecole Superieure de Technologie de Casablanca, BP 8012, Oasis, Casablanca (Morocco); Vial, Ch. [Laboratoire de Genie Chimique et Biochimique, LGCB-UBP/ENSCCF, 24 avenue des Landais, BP 206, 63174 Aubiere Cedex (France); Delmas, H. [Laboratoire de Genie Chimique, ENSIACET-INPT, 5 rue Paulin Talabot, 31106 Toulouse (France); Bennajah, M. [Ecole Superieure de Technologie de Casablanca, BP 8012, Oasis, Casablanca (Morocco); Laboratoire de Genie Chimique, ENSIACET-INPT, 5 rue Paulin Talabot, 31106 Toulouse (France)

    2009-09-15

    Defluoridation using batch electrocoagulation/electroflotation (EC/EF) was carried out in two reactors for comparison purpose: a stirred tank reactor (STR) close to a conventional EC cell and an external-loop airlift reactor (ELAR) that was recently described as an innovative reactor for EC. The respective influences of current density, initial concentration and initial pH on the efficiency of defluoridation were investigated. The same trends were observed in both reactors, but the efficiency was higher in the STR at the beginning of the electrolysis, whereas similar values were usually achieved after 15 min operation. The influence of the initial pH was explained using the analyses of sludge composition and residual soluble aluminum species in the effluents, and it was related to the prevailing mechanisms of defluoridation. Fluoride removal and sludge reduction were both favored by an initial pH around 4, but this value required an additional pre-treatment for pH adjustment. Finally, electric energy consumption was similar in both reactors when current density was lower than 12 mA/cm{sup 2}, but mixing and complete flotation of the pollutants were achieved without additional mechanical power in the ELAR, using only the overall liquid recirculation induced by H{sub 2} microbubbles generated by water electrolysis, which makes subsequent treatments easier to carry out.

  5. Treatment of palm oil mill effluent by electrocoagulation with presence of hydrogen peroxide as oxidizing agent and polialuminum chloride as coagulant-aid

    Directory of Open Access Journals (Sweden)

    Mohd Nasrullah

    2017-06-01

    Full Text Available The purposes of this study were to investigate the effects of operating parameters, such as electrode material, current density, percentage of hydrogen peroxide and amount of polialuminum chloride (PAC on chemical oxygen demand (COD removal of palm oil mill effluent (POME. The current density was varied between 30–80 mA cm−2, PAC (1–3 g L−1 as coagulant-aid and 1 and 2% of hydrogen peroxide as an oxidizing agent. As for the performance of electrode type, iron was more effective than aluminum. It appeared that the removal of COD increased with the increased of current density. When PAC and H2O2 increased, the percent of COD removal was increasing as well. The overall results demonstrate that electrocoagulation is very efficient and able to achieve more than 70% COD removal in 180 min at current density 30–80 mA cm−2 reliant upon the concentration of H2O2 and PAC.

  6. A Study on the Removal of Direct Blue 71 Dye From Textile Wastewater Produced From State Company of Cotton Industries by Electrocoagulation Using Aluminum Electrodes

    Directory of Open Access Journals (Sweden)

    Karim Khalifa Esgair

    2017-02-01

    Full Text Available The removal of direct blue 71 dye from a prepared wastewater was studied employing batch electrocoagulation (EC cell. The electrodes of aluminum were used. The influence of process variables which include initial pH (2.0-12.0, wastewater conductivity (0.8 -12.57 mS/cm , initial dye concentration (30 -210 mg/L, electrolysis time (3-12 min, current density (10-50 mA/cm2 were studied in order to maximize the color removal from wastewater. Experimental results showed that the color removal yield increases with increasing pH until pH 6.0 after that it decreased with increasing pH. The color removal increased with increasing current density, wastewater conductivity, electrolysis time, and decreased with increasing the concentration of initial dye. The maximum color removal yield of 96.5% was obtained at pH 6.0, wastewater conductivity 9.28 mS/cm , electrolysis time 6 min ,the concentration of initial dye 6 0 mg/L and current density 30 mA/cm2 .

  7. The use of artificial neural networks (ANN) for modeling of decolorization of textile dye solution containing C. I. Basic Yellow 28 by electrocoagulation process

    International Nuclear Information System (INIS)

    Daneshvar, N.; Khataee, A.R.; Djafarzadeh, N.

    2006-01-01

    In this paper, electrocoagulation has been used for removal of color from solution containing C. I. Basic Yellow 28. The effect of operational parameters such as current density, initial pH of the solution, time of electrolysis, initial dye concentration, distance between the electrodes, retention time and solution conductivity were studied in an attempt to reach higher removal efficiency. Our results showed that the increase of current density up to 80 A m -2 enhanced the color removal efficiency, the electrolysis time was 7 min and the range of pH was determined 5-8. It was found that for achieving a high color removal percent, the conductivity of the solution and the initial concentration of dye should be 10 mS cm -1 and 50 mg l -1 , respectively. An artificial neural networks (ANN) model was developed to predict the performance of decolorization efficiency by EC process based on experimental data obtained in a laboratory batch reactor. A comparison between the predicted results of the designed ANN model and experimental data was also conducted. The model can describe the color removal percent under different conditions

  8. Techno-economical optimization of Reactive Blue 19 removal by combined electrocoagulation/coagulation process through MOPSO using RSM and ANFIS models.

    Science.gov (United States)

    Taheri, M; Alavi Moghaddam, M R; Arami, M

    2013-10-15

    In this research, Response Surface Methodology (RSM) and Adaptive Neuro Fuzzy Inference System (ANFIS) models were applied for optimization of Reactive Blue 19 removal using combined electrocoagulation/coagulation process through Multi-Objective Particle Swarm Optimization (MOPSO). By applying RSM, the effects of five independent parameters including applied current, reaction time, initial dye concentration, initial pH and dosage of Poly Aluminum Chloride were studied. According to the RSM results, all the independent parameters are equally important in dye removal efficiency. In addition, ANFIS was applied for dye removal efficiency and operating costs modeling. High R(2) values (≥85%) indicate that the predictions of RSM and ANFIS models are acceptable for both responses. ANFIS was also used in MOPSO for finding the best techno-economical Reactive Blue 19 elimination conditions according to RSM design. Through MOPSO and the selected ANFIS model, Minimum and maximum values of 58.27% and 99.67% dye removal efficiencies were obtained, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. The use of artificial neural networks (ANN) for modeling of decolorization of textile dye solution containing C. I. Basic Yellow 28 by electrocoagulation process

    Energy Technology Data Exchange (ETDEWEB)

    Daneshvar, N. [Water and Wastewater Treatment Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of)]. E-mail: nezam_daneshvar@yahoo.com; Khataee, A.R. [Water and Wastewater Treatment Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of)]. E-mail: ar_khataee@yahoo.com; Djafarzadeh, N. [Water and Wastewater Treatment Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of)]. E-mail: n.jafarzadeh@gmail.com

    2006-10-11

    In this paper, electrocoagulation has been used for removal of color from solution containing C. I. Basic Yellow 28. The effect of operational parameters such as current density, initial pH of the solution, time of electrolysis, initial dye concentration, distance between the electrodes, retention time and solution conductivity were studied in an attempt to reach higher removal efficiency. Our results showed that the increase of current density up to 80 A m{sup -2} enhanced the color removal efficiency, the electrolysis time was 7 min and the range of pH was determined 5-8. It was found that for achieving a high color removal percent, the conductivity of the solution and the initial concentration of dye should be 10 mS cm{sup -1} and 50 mg l{sup -1}, respectively. An artificial neural networks (ANN) model was developed to predict the performance of decolorization efficiency by EC process based on experimental data obtained in a laboratory batch reactor. A comparison between the predicted results of the designed ANN model and experimental data was also conducted. The model can describe the color removal percent under different conditions.

  10. Decolorization of C.I. Acid Blue 9 solution by UV/Nano-TiO{sub 2}, Fenton, Fenton-like, electro-Fenton and electrocoagulation processes: A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Khataee, A.R. [Water and Wastewater Treatment Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of)], E-mail: a_khataee@tabrizu.ac.ir; Vatanpour, V. [Water and Wastewater Treatment Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of)], E-mail: vahidvatanpoor@yahoo.com; Amani Ghadim, A.R. [Water and Wastewater Treatment Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of)], E-mail: a.r_amani@yahoo.com

    2009-01-30

    This study makes a comparison between UV/Nano-TiO{sub 2}, Fenton, Fenton-like, electro-Fenton (EF) and electrocoagulation (EC) treatment methods to investigate the removal of C.I. Acid Blue 9 (AB9), which was chosen as the model organic contaminant. Results indicated that the decolorization efficiency was in order of Fenton > EC > UV/Nano-TiO{sub 2} > Fenton-like > EF. Desired concentrations of Fe{sup 2+} and H{sub 2}O{sub 2} for the abatement of AB9 in the Fenton-based processes were found to be 10{sup -4} M and 2 x 10{sup -3} M, respectively. In the case of UV/Nano-TiO{sub 2} process, we have studied the influence of the basic photocatalytic parameters such as the irradiation time, pH of the solution and amount of TiO{sub 2} nanoparticles on the photocatalytic decolorization efficiency of AB9. Accordingly, it could be stated that the complete removal of color, after selecting desired operational parameters could be achieved in a relatively short time, about 25 min. Our results also revealed that the most effective decomposition of AB9 was observed with 150 mg/l of TiO{sub 2} nanoparticles in acidic condition. The effect of operational parameters including current density, initial pH and time of electrolysis were studied in electrocoagulation process. The results indicated that for a solution of 20 mg/l AB9, almost 98% color were removed, when the pH was about 6, the time of electrolysis was 8 min and the current density was approximately 25 A/m{sup 2} in electrocoagulation process.

  11. Decolorization of C.I. Acid Blue 9 solution by UV/Nano-TiO2, Fenton, Fenton-like, electro-Fenton and electrocoagulation processes: A comparative study

    International Nuclear Information System (INIS)

    Khataee, A.R.; Vatanpour, V.; Amani Ghadim, A.R.

    2009-01-01

    This study makes a comparison between UV/Nano-TiO 2 , Fenton, Fenton-like, electro-Fenton (EF) and electrocoagulation (EC) treatment methods to investigate the removal of C.I. Acid Blue 9 (AB9), which was chosen as the model organic contaminant. Results indicated that the decolorization efficiency was in order of Fenton > EC > UV/Nano-TiO 2 > Fenton-like > EF. Desired concentrations of Fe 2+ and H 2 O 2 for the abatement of AB9 in the Fenton-based processes were found to be 10 -4 M and 2 x 10 -3 M, respectively. In the case of UV/Nano-TiO 2 process, we have studied the influence of the basic photocatalytic parameters such as the irradiation time, pH of the solution and amount of TiO 2 nanoparticles on the photocatalytic decolorization efficiency of AB9. Accordingly, it could be stated that the complete removal of color, after selecting desired operational parameters could be achieved in a relatively short time, about 25 min. Our results also revealed that the most effective decomposition of AB9 was observed with 150 mg/l of TiO 2 nanoparticles in acidic condition. The effect of operational parameters including current density, initial pH and time of electrolysis were studied in electrocoagulation process. The results indicated that for a solution of 20 mg/l AB9, almost 98% color were removed, when the pH was about 6, the time of electrolysis was 8 min and the current density was approximately 25 A/m 2 in electrocoagulation process

  12. Influence of the physico-chemical process as previous treatment to the electrocoagulation. Study with leachate of a landfill; Influencia del proceso fisicoquimico como tratamiento previo a la electrocoagulacion. Estudio con lixiviados de un relleno

    Energy Technology Data Exchange (ETDEWEB)

    Mercado Martinez, I. D.; Reyes Avila, D.

    2007-07-01

    This article has as purpose to show the influence of the method physico-chemical as previous process to the novel technique of electrocoagulation, presenting as a new alternative to depurate wastewaters. to obtain it, was done tests measuring the very parameters to leachates so much affluent as effluent from treatment plant of the Sanitary Landfill La Esmeralda, situated near to the Manizales city(Colombia), and so much before as later to apply this electrochemical technology, looking for this way to compare the obtained removals. (Author)

  13. The effect of operational parameters on electrocoagulation-flotation process followed by photocatalysis applied to the decontamination of water effluents from cellulose and paper factories

    International Nuclear Information System (INIS)

    Boroski, Marcela; Rodrigues, Angela Claudia; Garcia, Juliana Carla; Passarella Gerola, Adriana; Nozaki, Jorge; Hioka, Noboru

    2008-01-01

    Cellulose and paper pulp factories utilize a large amount of water generating several undesirable contaminants. The present work is a preliminary investigation that associates the electrocoagulation-flotation (EC) method followed by photocatalysis to treat such wastewater. For EC, the experiment with aluminium and iron electrodes showed similar efficiency. Iron electrodes (anode and cathode) were chosen. By applying 30 min of EC/Fe 0 , 153 A m -2 and pH 6.0, the COD values, UV-vis absorbance and turbidity underwent an intense decrease. For the subsequent UV photocatalysis (mercury lamps) TiO 2 was employed and the favourable operational conditions found were 0.25 g L -1 of the catalyst and solution pH 3.0. The addition of hydrogen peroxide (50 mmol L -1 ) highly increased the photo-process performance. By employing the UV/TiO 2 /H 2 O 2 system, the COD reduction was 88% compared to pre-treated effluents and complete sample photobleaching was verified. The salt concentration on EC (iron electrodes) showed that the electrolysis duration can be reduced from 30 to 10 min by the addition of 5.0 g L -1 of NaCl. The biodegradability index (BOD/COD) increased from 0.15 (pre-treated) to 0.48 (after EC) and to 0.89 (after EC/photocatalysis irradiated for 6 h), showing that the employed sequence is very helpful to improve the water quality. This result was confirmed by biotoxicity tests performed with microcrustaceous Artemia salina

  14. The effect of operational parameters on electrocoagulation-flotation process followed by photocatalysis applied to the decontamination of water effluents from cellulose and paper factories

    Energy Technology Data Exchange (ETDEWEB)

    Boroski, Marcela; Rodrigues, Angela Claudia; Garcia, Juliana Carla; Passarella Gerola, Adriana; Nozaki, Jorge [Departamento de Quimica, Universidade Estadual de Maringa, Avenida Colombo, 5790, CEP 87020-900, Maringa, PR (Brazil); Hioka, Noboru [Departamento de Quimica, Universidade Estadual de Maringa, Avenida Colombo, 5790, CEP 87020-900, Maringa, PR (Brazil)], E-mail: nhioka@uem.br

    2008-12-15

    Cellulose and paper pulp factories utilize a large amount of water generating several undesirable contaminants. The present work is a preliminary investigation that associates the electrocoagulation-flotation (EC) method followed by photocatalysis to treat such wastewater. For EC, the experiment with aluminium and iron electrodes showed similar efficiency. Iron electrodes (anode and cathode) were chosen. By applying 30 min of EC/Fe{sup 0}, 153 A m{sup -2} and pH 6.0, the COD values, UV-vis absorbance and turbidity underwent an intense decrease. For the subsequent UV photocatalysis (mercury lamps) TiO{sub 2} was employed and the favourable operational conditions found were 0.25 g L{sup -1} of the catalyst and solution pH 3.0. The addition of hydrogen peroxide (50 mmol L{sup -1}) highly increased the photo-process performance. By employing the UV/TiO{sub 2}/H{sub 2}O{sub 2} system, the COD reduction was 88% compared to pre-treated effluents and complete sample photobleaching was verified. The salt concentration on EC (iron electrodes) showed that the electrolysis duration can be reduced from 30 to 10 min by the addition of 5.0 g L{sup -1} of NaCl. The biodegradability index (BOD/COD) increased from 0.15 (pre-treated) to 0.48 (after EC) and to 0.89 (after EC/photocatalysis irradiated for 6 h), showing that the employed sequence is very helpful to improve the water quality. This result was confirmed by biotoxicity tests performed with microcrustaceous Artemia salina.

  15. Electrocoagulation applied to the decontamination of stainless steel parts contaminated with uranium; Electrocoagulacion aplicada a la descontaminacion de piezas de acero inoxidable contaminadas con uranio

    Energy Technology Data Exchange (ETDEWEB)

    Pujol P, A. A.; Monroy G, F. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Bustos B, E., E-mail: apujol@cideteq.mx [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, S. C., Parque Sanfandila s/n, Pedro Escobedo, 76703 Santiago de Queretaro, Qro. (Mexico)

    2017-09-15

    The decontamination of non-compact able radioactive waste, such as tools and equipment, has the purpose of removing surface radioactive waste from waste, in order to reduce its volume to be conditioned and stored. The application of treatment techniques based on electrochemistry, such as electro-coagulation (Ec) in the decontamination of waste or non-compact able radioactive materials of stainless steel containing uranium, was studied in the present work and its technical feasibility was evaluated. For this, tests were carried out, first with stainless steel plates coated with WO{sub 3}, to simulate a fixed contamination and to determine the best conditions of tungsten removal by Ec as: ph, support electrolyte, cell potential, type of counter electrode material and distance between the anode/cathode electrodes. In addition, different arrangements of configurations were tested for a rectangular acrylic cell and for a circular configuration cell, using flat plate electrodes and cylindrical electrodes to perform the removal process of the contaminant with the best conditions. In the case of the Ec, the mechanism that occurs is an electrodisolution of the iron plate, with the release of oxygen at the anode and detachment of the WO{sub 3} layer, all the material passing to the solution with the formation of iron hydroxides. Subsequently, from the best experimental conditions to remove WO{sub 3}, UO{sub 2} (NO{sub 3}) {sub 2} was used as radioactive contaminant to evaluate the feasibility of the decontamination process. Removal efficiencies of 90% uranium were obtained in 1 hour, ph = 1, using a molar solution of H{sub 2}SO{sub 4} as support electrolyte and potential of 2.4 V. Finally, after testing the different electrochemical cell (Ec) arrays at the laboratory level, radioactive decontamination of real pieces contaminated with U-238 was performed using the circular configuration arrangement under the best experimental conditions previously determined. (Author)

  16. The behavior of dissolution/passivation and the transformation of passive films during electrocoagulation: Influences of initial pH, Cr(VI) concentration, and alternating pulsed current

    International Nuclear Information System (INIS)

    Yang, Zhao-hui; Xu, Hai-yin; Zeng, Guang-ming; Luo, Yuan-ling; Yang, Xia; Huang, Jing; Wang, Li-ke; Song, Pei-pei

    2015-01-01

    Highlights: • Initial pH, Cr(VI) and APC could affect the behavior of dissolution/passivation in Fe-EC. • A dissolution/passivation region was constructed with different initial pH-Cr(VI). • The film was rich in Fe and Cr at high Cr(VI), whereas with lots of Fe but negligible of Cr at low Cr(VI). • The film was non-protective at long T APC , but became more stable and protective at short T APC . • Behavior of dissolution/passivation and passive film transformation in Fe-EC was elucidated. - Abstract: The passivation behavior of an iron anode for electrocoagulation (EC) was first investigated using response surface methodology (RSM). Tested initial pH range, Cr(VI) concentration and alternating pulsed current (APC) were 4.0 to 8.0, 52 to 520 mg L −1 and 10 to 590 s, respectively. The distance between electrodes was 25 mm, and K 2 SO 4 (1 g L −1 ) was used as the supporting electrolyte in a 2.5 L EC reactor. Results confirmed that initial pH, Cr(VI) concentration, and APC significantly influence the extent of passivation. Then, based on the interaction effect on passivation behavior between initial pH and Cr(VI) in RSM, a pH-Cr(VI)-dissolution/passivation diagram was constructed with galvanostatic measurements. The diagram showed an optimal dissolution region for EC operation. This optimum was characterized by a reasonable final pH for extended precipitation and little passivation. Results of the cyclic voltammetry and X-ray photoelectron spectroscopy revealed a significant difference in the composition and stability of oxide films in the region with more pronounced passivation. Interestingly, the APC had both positive and negative effect on the passivation behavior. Long period of APC (T APC = 590 s) produced a non-protective film, which favored the Fe 0 dissolution. However, a more stable and protective passive film with a uniform structure of Fe and Cr oxides was formed by short T APC (10 s). Based on the above results, this study elucidated the

  17. Performance and mechanisms for the removal of phthalates and pharmaceuticals from aqueous solution by graphene-containing ceramic composite tubular membrane coupled with the simultaneous electrocoagulation and electrofiltration process.

    Science.gov (United States)

    Yang, Gordon C C; Chen, Ying-Chun; Yang, Hao-Xuan; Yen, Chia-Heng

    2016-07-01

    In this study, commonly detected emerging contaminants (ECs) in water, including di-n-butyl phthalate (DnBP), di(2-ethylhexyl) phthalate (DEHP), cephalexin (CLX), sulfamethoxazole (SMX) and caffeine (CAF), were selected as the target contaminants. A lab-prepared graphene-containing ceramic composite tubular membrane (TGCCM) coupled with the simultaneous electrocoagulation and electrofiltration process (EC/EF) in crossflow filtration mode was used to remove target contaminants in model solution. Meanwhile, a comparison of the removal efficiency was made among various tubular composite membranes reported, including carbon fibers/carbon/alumina composite tubular membrane (TCCACM), titania/alumina composite tubular membrane (TTACM) and alumina tubular membrane (TAM). The results of this study showed that the removal efficiencies for DnBP and DEHP were 99%, whereas 32-97% for cephalexin (CLX), sulfamethoxazole (SMX) and caffeine (CAF). In this work the mechanisms involved in removing target ECs were proposed and their roles in removing various ECs were also discussed. Further, two actual municipal wastewaters were treated to evaluate the applicability of the aforementioned treatment technology (i.e., TGCCM coupled with EC/EF) to various aqueous solutions in the real world. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. ELECTROCOAGULATION METHOD FOR COLOUR REMOVAL IN ...

    African Journals Online (AJOL)

    Preferred Customer

    is a multi-stage process that requires considerable land area and a continual supply of chemicals ... In view of this, it was necessary to develop and optimize an effective electrochemical method for colour removal using a two-electrode system.

  19. comparison of electrocoagulation and chemical coagulation

    African Journals Online (AJOL)

    eobe

    ABSTRACT. In this study, the treatment of the effluents of an artisanal tannery by ... sixties, cases of contamination by the bacillus of coal of the industrial residuary waters were observed in ..... from aqueous solution by activated carbons: kinetic.

  20. Electrodissolution aluminum electrode during an electrocoagulation acid whey

    Directory of Open Access Journals (Sweden)

    Francisco Prieto-García

    2014-01-01

    Full Text Available La electrodisolución de aluminio en soluciones conteniendo ione s cloruros o sulfatos durante el proceso de electrocoagulación del lactosuero ácido, ha sido el objetivo de este trabajo. Los pH alcalinos aumentan la velocidad de disolución en varios órdenes de magnitud. El me dio electrolítico (Cl - o SO 4 2- no parece influir significativamente en la disolución de alum inio, pero aumentan la densidad de carga, que ayuda en el proce so electroquímico. Los resultados están relacionados con la natura leza de las especies de hidróxidos de aluminio formados durante la disolución anódica. En condiciones ácidas y neutras, los iones OH - del cátodo no participan completamente en la formación de espe cies neutras de hidróxido de aluminio y el exceso de iones OH - aumenta el pH del medio. En contraste, el pH disminuye en cond iciones altamente alcalinas atribuido al consumo de grandes cantidades de iones OH - para formar especies aniónicas, tales como Al(OH 4 - y Al(OH 5 2- y otras especies oligoméricas de aluminio.

  1. EMERGING TECHNOLOGY SUMMARY: ELECTRO-PURE ALTERNATING CURRENT ELECTROCOAGULATION

    Science.gov (United States)

    The Superfund Innovative Technology Evaluation (SITE) Program was authorized as part of the 1986 amendments to the Superfund legislation. It represents a joint effort between the U.S. Environmental Protection Agency’s (EPA) Office of Research and Development and Office of Solid W...

  2. Cystic Duct Closure by Sealing With Bipolar Electrocoagulation

    Science.gov (United States)

    Damgaard, B.; Jorgensen, L. N.; Larsen, S. S.; Kristiansen, V. B.

    2010-01-01

    Background: Cystic duct leakage after cholecystectomy is not uncommon and is a potentially serious complication. The aim of this study was to assess a bipolar sealing system (LigaSure®) for closure of the cystic duct. Methods: The records from consecutive laparoscopic cholecystectomies performed in 2 hospitals with closure of the cystic duct with LigaSure after informed consent were recorded and complications and morbidity registered. The records were compared with those of patients undergoing laparoscopic cholecystectomy with closure of the cystic duct with clips during the same period. Results: During the study period, 218 laparoscopic cholecystectomies were performed; 102 of these were performed with the LigaSure. One patient was excluded due to violation of the protocol. We experienced no cases of cystic duct leakage, but in one patient, bile leakage from the gallbladder bed was observed probably due to a small aberrant duct. Conclusion: The LigaSure system was safe and effective for closure and division of the cystic duct in laparoscopic cholecystectomy. PMID:20412641

  3. Iron-oxidation processes in an electroflocculation (electrocoagulation) cell

    Energy Technology Data Exchange (ETDEWEB)

    Sasson, Moshe Ben, E-mail: mosheinspain@hotmail.com [Department of Soil and Water Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot 76100 (Israel); Calmano, Wolfgang [Institute of Environmental Technology and Energy Economics, Technical University of Hamburg-Harburg, 21073 Hamburg (Germany); Adin, Avner [Department of Soil and Water Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot 76100 (Israel)

    2009-11-15

    The processes of iron oxidation in an electroflocculation cell were investigated for a pH range of 5-9 and electric currents of 0.05-0.4 A (equivalent current densities of 8.6-69 A/m{sup 2}). At all pH values and electric currents investigated, it was demonstrated and proven that for all practical purposes, the form of iron that dissolves from the anode is Fe{sup 2+} (ferrous). The difference between the amount of theoretical dissolution as calculated by Faraday's law and the amount of observed dissolved iron ions may indicate two phenomena in electrochemical cells. The first is possible dissolution of the anode even without the operation of an electric current; this led to higher theoretical dissolution rates at lower pH. The second is the participation of some of the electrons of the electric current in reactions other than anode dissolution which led to lower theoretical dissolution rates at higher pH. Those other reactions did not lead to an increase in the local oxidation saturation level near the anode and did not affect iron-oxidation rates in the electroflocculation processes. The oxidation rates of the dissolved Fe{sup 2+} (ferrous) to Fe{sup 3+} (ferric) ions in electroflocculation processes were strongly dependent on the pH and were similar to the known oxidation rates of iron in non-electrochemical cells.

  4. Cystic duct closure by sealing with bipolar electrocoagulation

    DEFF Research Database (Denmark)

    Schulze, S; Damgaard, B; Jørgensen, Lars Nannestad

    2010-01-01

    BACKGROUND: Cystic duct leakage after cholecystectomy is not uncommon and is a potentially serious complication. The aim of this study was to assess a bipolar sealing system (LigaSure) for closure of the cystic duct. METHODS: The records from consecutive laparoscopic cholecystectomies performed i...

  5. Iron-oxidation processes in an electroflocculation (electrocoagulation) cell

    International Nuclear Information System (INIS)

    Sasson, Moshe Ben; Calmano, Wolfgang; Adin, Avner

    2009-01-01

    The processes of iron oxidation in an electroflocculation cell were investigated for a pH range of 5-9 and electric currents of 0.05-0.4 A (equivalent current densities of 8.6-69 A/m 2 ). At all pH values and electric currents investigated, it was demonstrated and proven that for all practical purposes, the form of iron that dissolves from the anode is Fe 2+ (ferrous). The difference between the amount of theoretical dissolution as calculated by Faraday's law and the amount of observed dissolved iron ions may indicate two phenomena in electrochemical cells. The first is possible dissolution of the anode even without the operation of an electric current; this led to higher theoretical dissolution rates at lower pH. The second is the participation of some of the electrons of the electric current in reactions other than anode dissolution which led to lower theoretical dissolution rates at higher pH. Those other reactions did not lead to an increase in the local oxidation saturation level near the anode and did not affect iron-oxidation rates in the electroflocculation processes. The oxidation rates of the dissolved Fe 2+ (ferrous) to Fe 3+ (ferric) ions in electroflocculation processes were strongly dependent on the pH and were similar to the known oxidation rates of iron in non-electrochemical cells.

  6. Photovoltaic Energy-Assisted Electrocoagulation of a Synthetic Textile Effluent

    Directory of Open Access Journals (Sweden)

    Thelma Beatriz Pavón-Silva

    2018-01-01

    Full Text Available The feasibility of using photovoltaic modules to power a continuous 14 L electrochemical reactor applied to remove an azo dye with an efficiency of 70% is reported. The photovoltaic modules were directly connected, and the system efficiency was observed properly maintained when currents were applied in the range of 2.5 to 7.9 A. This value depends on solar radiation. Likewise, it was found that the efficiency depends mainly on the current density and the flow rate prevailing in the reactor.

  7. Photovoltaic Energy-Assisted Electrocoagulation of a Synthetic Textile Effluent

    OpenAIRE

    Thelma Beatriz Pavón-Silva; Hipólito Romero-Tehuitzil; Gonzálo Munguia del Río; Jorge Huacuz-Villamar

    2018-01-01

    The feasibility of using photovoltaic modules to power a continuous 14 L electrochemical reactor applied to remove an azo dye with an efficiency of 70% is reported. The photovoltaic modules were directly connected, and the system efficiency was observed properly maintained when currents were applied in the range of 2.5 to 7.9 A. This value depends on solar radiation. Likewise, it was found that the efficiency depends mainly on the current density and the flow rate prevailing in the reactor.

  8. The Use of Electrocoagulation Process for Removal of Turbidity, COD, Detergent and Phosphorus from Carwash Effluent

    Directory of Open Access Journals (Sweden)

    Afshin Takdastan

    2011-10-01

    Full Text Available This study evaluated the efficiency of Electrical coagulation process in removal of COD, turbidity, detergent and phosphate from carwash effluent. An experimental study in laboratory scale was carried out and a glass tank with volume of 3 liters (effective volume of 2 liters containing 4 electrode-page iron and aluminum (AL-AL, AL-Fe, Fe-Fe were used. Electrodes were connected to a power supply with using bipolar method to convert alternative electricity to direct current. Daily samples were collected from different carwash effluents. Initial pH of samples were reported between 7 to 9.At first different tests were performed on primary samples. Percentage of removal was calculated in range pH and electrical potential of 11, 7, 3 and 30, 20, 10 volts respectively. Reaction times were set 90, 60, 30 minutes with middle intervals of 2 cm. The results showed the efficiency of COD removal in the optimum range of  pH=3, voltage of 30 and retention time of 90 minutes removal efficiency in pH of 7 after 90 minutes retention time, voltage of 30, with aluminum electrode reached more than 99%. According to the results obtained electrical energy consumption in aluminum electrodes was less than others. However aluminum is more expensive than iron and the difference in energy consumption between iron and aluminum can be ingnored. Apart from that COD and detergent removal efficiency of iron electrodes is higher than aluminum electrodes therefore, using iron as the electrode is more economical and recommended. Altogether it was found that this method can be use as a safe and convenient method for treating carwash effluent and according to the high removal efficiency of process, effluent can be discharged safely into the environment.

  9. Application of Response Surface Methodology (RSM) for wastewater of hospital by using electrocoagulation

    Science.gov (United States)

    Murdani; Jakfar; Ekawati, D.; Nadira, R.; Darmadi

    2018-04-01

    Hospital wastewater is a source of potential environmental contamination. Therefore, the waste water needs to be treated before it is discharged into the landfill. Various research methods have been used to treat hospital wastewater. However, some methods that have been implemented have not achieved the effluent standards for hospitals that have been set by the government. The experiment was conducted by an electrochemical method is electrolysis using aluminum electrodes with independent variable is the voltage, contact time and concentration of electrolytes. The response optimization using response surface with optimum conditions obtained by the contact time of 34.26 min, voltage 12 V, concentration electrolyte 0.38 M can decrease of COD 65.039%. The model recommended by the response surface for the three variables, namely quadratic response.

  10. Removal of fluoride, SDS, ammonia and turbidity from semiconductor wastewater by combined electrocoagulation-electroflotation.

    Science.gov (United States)

    Aoudj, S; Khelifa, A; Drouiche, N

    2017-08-01

    Semiconductor industry effluents contain organic and inorganic pollutants, such as sodium dodecyl sulfate (SDS), fluoride and ammonia, at high levels which consists a major environmental issue. A combined EC-EF process is proposed as a post-treatment after precipitation for simultaneous clarification and removal of pollutants. In EC step, a hybrid Fe-Al was used as the soluble anode in order to avoid supplementary EC step. EC-Fe is more suitable for SDS removal; EC-Al is more suitable for fluoride removal, while EC with hybrid Al-Fe makes a good compromise. Clarification and ammonia oxidation were achieved in the EF step. Effects of anodic material, initial pH, current, anion nature, chloride concentration and initial pollutant concentration were studied. The final concentrations may reach 0.27, 6.23 and 0.22 mg L -1 for SDS, fluoride and ammonia respectively. These concentrations are far lower than the correspondent discharge limits. Similarly, the final turbidity was found 4.35 NTU which is lower than 5NTU and the treated water does not need further filtration before discharge. Furthermore, the EC-EF process proves to be sufficiently energy-efficient with less soluble electrode consumption. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Optimizing TOC and COD removal for the biodiesel wastewater by electrocoagulation

    Science.gov (United States)

    Tanattı, N. Pınar; Şengil, İ. Ayhan; Özdemir, Abdil

    2018-05-01

    In this study, the chemical oxygen demand (COD) and the total organic carbon content (TOC) in biodiesel wastewater iron and aluminum electrodes arranged in a bipolar position. In the EC of the biodiesel wastewater, the effects of the supporting electrolyte, initial pH, electrolysis time and current density were examined. The results showed that the majority of the pollutants in the biodiesel wastewater were effectively removed when the iron or aluminum electrodes were used as a sacrificial anode. The highest COD and TOC removal efficiencies were successfully obtained with the iron electrode. COD removal efficiencies are 91.74 and 90.94% for iron and aluminum electrode, respectively. In the same way, TOC removal efficiencies were obtained as 91.79 and 91.98% for the iron and aluminum electrodes, respectively, at initial pH of 6, the current density of 0.3226 mA/cm2, NaCl concentration 1 g/L and 1 min of operating time.

  12. Energy and electrode consumption analysis of electrocoagulation for the removal of arsenic from underground water

    International Nuclear Information System (INIS)

    Martinez-Villafane, J.F.; Montero-Ocampo, C.; Garcia-Lara, A.M.

    2009-01-01

    A systematic study of the effect of design and operation conditions of an electrochemical reactor on the treatment time for arsenic (As) electro-removal from underground water (GW) was carried out to analyse the energy and electrode consumption. The effects of four factors-current density, interelectrode distance, electrode area-volume ratio, and liquid motion driving mode-were evaluated. The response variables were the energy and the electrode consumption and the treatment time to reduce the GW residual As concentration to 10 μg L -1 , which is the maximum contaminant level (MCL) established by the World Health Organization (WHO) in drinking water. The results obtained in this study showed that the factor that had the greatest effect on most of the response variables was the liquid motion driving mode. The best residence time was 20 s, which favoured low energy consumption (58.78 Wh m -3 ) and low electrode material loss (9.59 g m -3 ).

  13. Ultrasound guided electrocoagulation in patients with chronic non-insertional Achilles tendinopathy

    DEFF Research Database (Denmark)

    Boesen, M Ilum; Torp-Pedersen, S; Koenig, M Juhl

    2006-01-01

    High resolution colour Doppler ultrasound shows intratendinous Doppler activity in patients with chronic Achilles tendinopathy. Treatment of this neovascularisation with sclerosing therapy seems to relieve the pain. However, the procedure often has to be repeated....

  14. Energy and electrode consumption analysis of electrocoagulation for the removal of arsenic from underground water

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Villafane, J.F., E-mail: mvjfer@gmail.com [CINVESTAV-IPN Unidad Saltillo, Carretera Saltillo-Monterrey Km 13.5, A.P. 663, 25900 Saltillo, Coahuila (Mexico); Montero-Ocampo, C.; Garcia-Lara, A.M. [CINVESTAV-IPN Unidad Saltillo, Carretera Saltillo-Monterrey Km 13.5, A.P. 663, 25900 Saltillo, Coahuila (Mexico)

    2009-12-30

    A systematic study of the effect of design and operation conditions of an electrochemical reactor on the treatment time for arsenic (As) electro-removal from underground water (GW) was carried out to analyse the energy and electrode consumption. The effects of four factors-current density, interelectrode distance, electrode area-volume ratio, and liquid motion driving mode-were evaluated. The response variables were the energy and the electrode consumption and the treatment time to reduce the GW residual As concentration to 10 {mu}g L{sup -1}, which is the maximum contaminant level (MCL) established by the World Health Organization (WHO) in drinking water. The results obtained in this study showed that the factor that had the greatest effect on most of the response variables was the liquid motion driving mode. The best residence time was 20 s, which favoured low energy consumption (58.78 Wh m{sup -3}) and low electrode material loss (9.59 g m{sup -3}).

  15. Treatment of medium-active liquid wastes by methods of electrocoagulation and ionic exchange method

    International Nuclear Information System (INIS)

    Krasnopyorova, A.P.; Ionenko, V.I.; Sytnik, O.Yu.; Lebedeva, L.T.; Gukovin, V.I.

    2001-01-01

    Since small volumes of LRW are accumulated in the laboratories, the simple scheme of LRW treatment and conversion into solid residual has been designed. It comprises two stages. The first stage is in the application of a electrical coagulation method with the application of aluminium electrodes. Additives of natural zeolite - clinoptilolite accelerate the formation process of a dense residue. Formed precipitate is removed by filtration through the vacuum pump with belting filter, impregnated by vegetable extract that contains tannins. Tannins are the natural complexing agents binding radionuclides into insoluble complexes. Thereby additional purification of the solutions from radionuclides is achieved. Received filtrate is tested for radionuclide content with standard techniques of β-γ-spectrometry and radiochemistry. In the method of LRW treatment, the bulk of radionuclides is removed as precipitate: Ca-45(100%), Sr-90(99.8%), Zn-65(99.5%), Cs-137(99.8%). Further decontamination of the received filtrate of LRW is achieved by filtration through the tower, filled with finely divided clinoptilolite. The highly developed surface of the powdered sorbent essentially improves kinetics of sorption, permits to decrease sorbent-sorbate contact time and use the sorbent capacity almost entirely. (authors)

  16. Microendoscopic Surgery of the Hypopharyngeal Diverticulum Using Electrocoagulation or Carbon Dioxide Laser

    NARCIS (Netherlands)

    van Overbeek, J. J. M.; Hoeksema, P. E.; Edens, E. Th.

    1984-01-01

    In 1964 we started to treat hypopharyngeal (Zenker's) diverticula endoscopically, using the procedure described by Dohlman. With the increase in the number of patients (274 patients up until 1982), the technique and the instruments used have improved. This paper describes the technique we have used

  17. Performance of Electrocoagulation Process for Removal of Sulphate Ion from Aqueous Environments Using Plate Aluminum Electrodes

    Directory of Open Access Journals (Sweden)

    a.h Mahvi

    2012-05-01

    Full Text Available

    Background and Objectives: Sulphate ion is one of the main ions available in natural and waste water. The high rate of sulphate in drinking water causes health problems such as irritation and digestive problems and makes water taste bitter. The purpose of this study was to assess the efficiency of sulphate ion removal from drinking water through Electrocogualation process (EC using plate aluminum electrodes. Methods: This study was conducted as a pilot plant using one glass tank in the volume of 1.3liter containing 6 plate aluminum electrodes. These electrodes were attached to a power supply in a mono-polar and parallel arrangement in order to switch the alternating current to the direct one. That is, each electrode was attached to positive and negative poles directly and alternately. The tank was filled with synthetic water containing sulphate ion with the concentration of 350 & 700mg/L. Percentage of sulphate ion removal in potential range of 10, 20 and 30 V, reaction times of 40, 20 and 60min and pH 7.0, 3.0 & 11.0 were measured. Results: In this study the maximum efficiency of sulphate ion removal was in the electrical potential of 30 V, reaction time of 60min and pH 11.0. With increase of ion concentration, the time needed to achieve a suitable efficiency of removal increased, that is, it indicated the direct effect of pH and difference of electrical potential on removal of sulphate ion through EC process. Conclusion: The results of this research show that Electrocogualation technology can be introduced as a suitable and promising technique to remove sulphate ion from aqueous environments using plate aluminum electrodes.

     

  18. Death during laparoscopy: can 1 gas push out another? Danger of argon electrocoagulation.

    Science.gov (United States)

    Sezeur, Alain; Partensky, Christian; Chipponi, Jacques; Duron, Jean-Jacques

    2008-08-01

    We report the death of a young man during a laparoscopic partial splenectomy performed with an argon plasma coagulator to remove a benign cyst. The report analyzes the very particular mechanism of a gas embolism, which caused death here. This analysis leads us to recommend a close attention on the use of argon coagulators during laparoscopy. The aim of this article is to draw surgeons' attention to the conclusions of a court-ordered expert assessment intended to elucidate the mechanisms responsible for the death of a 20-year-old man during a laparoscopic partial splenectomy performed with an argon plasma coagulator to remove a benign cyst.

  19. Laparoscopic ovariectomy using sequential electrocoagulation and sharp transection of the equine mesovarium.

    Science.gov (United States)

    Rodgerson, D H; Belknap, J K; Wilson, D A

    2001-01-01

    To describe in horses and ponies a laparoscopic ovariectomy technique facilitated by electrosurgical instrumentation. Elective ovariectomy was performed in 23 mares using laparoscopic electrosurgical instrumentation. Twenty-three mares (13 horses, 10 ponies), aged from 2 to 21 years and weighing 90 to 545 kg. Food was withheld for a minimum of 12 hours. Mares were sedated with detomidine hydrochloride (0.02 to 0.03 mg/kg) or xylazine hydrochloride (0.5 to 1.0 mg/kg). Excluding the pony mares, all other mares were restrained in stocks. Portal sites in the paralumbar fossa region were desensitized with 2% mepivacaine. Abdominal insufflation was achieved through a teat cannula positioned in the ventral abdomen or a Verres-type needle placed through the paralumbar fossa. After trocar and laparoscope insertion, the ipsilateral ovary and mesovarium were identified, and the mesovarium, tubal membrane, and proper ligament were infiltrated with 2% mepivacaine. The mesovarium was coagulated using bipolar or monopolar electrosurgical forceps and transected sequentially from cranial to caudal until the ovary was completely freed and then removed. The contralateral ovary was removed in a similar fashion through the opposite paralumbar fossa. Bipolar and monopolar electrosurgical forceps were easy to use and provided adequate coagulation of vessels within the mesovarium. Two mares were euthanatized after the procedure for unrelated reasons. One mare had mild signs of colic 24 hours after ovariectomy. In 1 pony mare, the incision used to remove one ovary dehisced on the 5th postoperative day and was allowed to heal by second-intention. No long-term complications had occurred in 11 horses and 10 ponies, 6 to 24 months after surgery. Laparoscopic ovariectomy and hemostasis of the mesovarium can be easily accomplished using electrosurgical instrumentation. Standing laparoscopic ovariectomy, using electrosurgical instrumentation, is an effective and safe technique to provide hemostasis of the mesovarium in mares. Copyright 2001 by The American College of Veterinary Surgeons

  20. Elimination of Phenol and Color from Pulping Black Liquor Using Electrocoagulation Process

    OpenAIRE

    Nahid Rastegarfar; Rabi Behrouz; Nader Bahramifar

    2013-01-01

    There are many non-wood lignocelluloses resources such as wheat, rice straw and other agriculture by- products with appropriate feature for pulp production in Iran. The most major deterrent to their use is presence of pulping black liquor that due to lignin of lignocelluloses solution contains significant amounts of color and phenol compounds. The aim of this paper was investigation of the ability to remove phenol and color as the most important organic pollutants from back liquor of agri-bas...

  1. Performance of Electrocoagulation Process for Removal of Sulphate Ion from Aqueous Environments Using Plate Aluminum Electrodes

    Directory of Open Access Journals (Sweden)

    Rajabizadeh A.

    2010-09-01

    Full Text Available Background and Objectives: Sulphate ion is one of the main ions available in natural and waste water. The high rate of sulphate in drinking water causes health problems such as irritation and digestive problems and makes water taste bitter. The purpose of this study was to assess the efficiency of sulphate ion removal from drinking water through Electrocogualation process (EC using plate aluminum electrodes.Methods: This study was conducted as a pilot plant using one glass tank in the volume of 1.3liter containing 6 plate aluminum electrodes. These electrodes were attached to a power supply in a mono-polar and parallel arrangement in order to switch the alternating current to the direct one. That is, each electrode was attached to positive and negative poles directly and alternately. The tank was filled with synthetic water containing sulphate ion with the concentration of 350 & 700mg/L. Percentage of sulphate ion removal in potential range of 10, 20 and 30 V, reaction times of 40, 20 and 60min and pH 7.0, 3.0 & 11.0 were measured.Results: In this study the maximum efficiency of sulphate ion removal was in the electrical potential of 30 V, reaction time of 60min and pH 11.0. With increase of ion concentration, the time needed to achieve a suitable efficiency of removal increased, that is, it indicated the direct effect of pH and difference of electrical potential on removal of sulphate ion through EC process.Conclusion: The results of this research show that Electrocogualation technology can be introduced as a suitable and promising technique to remove sulphate ion from aqueous environments using plate aluminum electrodes.

  2. Characterization of a siphonal flow electro-coagulation reactor for the water de-pollution; Caracterisation d'un reacteur d'electrocoagulation a ecoulement siphoide pour la depollution des eaux

    Energy Technology Data Exchange (ETDEWEB)

    Deffontaines, B.; Deffontaines-Fourez, M.; Thivel, P.X. [Unversite du Littoral - Cote d' Opale, Centre Universitaire Descartes, Lab. d' Etude en Genie Industriel et Management Environnemental, 62 - Longuenesse (France)

    2001-07-01

    The aim of this study is the establishment of a global quantitative relation between the kinetic and the hydrodynamic of a siphonal flow reactor. First results of the application in dyeing effluents recycling illustrate the reactor performance on the MES abatement and the turbidity of the recycling waters in the production cycle. (A.L.B.)

  3. Electrocoagulation process to Chemical and Biological Oxygen Demand treatment from carwash grey water in Ahvaz megacity, Iran.

    Science.gov (United States)

    Mohammadi, Mohammad Javad; Takdastan, Afshin; Jorfi, Sahand; Neisi, Abdolkazem; Farhadi, Majid; Yari, Ahmad Reza; Dobaradaran, Sina; Khaniabadi, Yusef Omidi

    2017-04-01

    In this work, we present the result of an electric coagulation process with iron and aluminum electrodes for removal of chemical and biological oxygen demand (COD and BOD) from grey water in different car washes of Ahvaz, Iran. Nowadays, one of the important dangerous that can contaminate water resources for drinking, agriculture and industrial is Car wash effluent [1,2]. In this study, initial COD and BOD concentration, pH of the solution, voltage power and reaction time was investigated. The concentration level of remaining COD and BOD in samples was measured, using DR/5000 UV-vis HACH spectrophotometer [3,4]. The effects of contact time, initial pH, electrical potential and voltage data on removal of COD and BOD were presented. Statistical analysis of the data was carried out using Special Package for Social Sciences (SPSS 16).

  4. Electrocoagulation process to Chemical and Biological Oxygen Demand treatment from carwash grey water in Ahvaz megacity, Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Javad Mohammadi

    2017-04-01

    Full Text Available In this work, we present the result of an electric coagulation process with iron and aluminum electrodes for removal of chemical and biological oxygen demand (COD and BOD from grey water in different car washes of Ahvaz, Iran. Nowadays, one of the important dangerous that can contaminate water resources for drinking, agriculture and industrial is Car wash effluent [1,2]. In this study, initial COD and BOD concentration, pH of the solution, voltage power and reaction time was investigated. The concentration level of remaining COD and BOD in samples was measured, using DR/5000 UV–vis HACH spectrophotometer [3,4]. The effects of contact time, initial pH, electrical potential and voltage data on removal of COD and BOD were presented. Statistical analysis of the data was carried out using Special Package for Social Sciences (SPSS 16.

  5. Electrocoagulation method for colour removal in tea effluent: a case study of Chemomi tea factory in rift valley, Kenya

    Directory of Open Access Journals (Sweden)

    John Lusweti

    2009-12-01

    Full Text Available A simple and efficient electrochemical method that utilizes two steel electrodes and is capable of reducing the colour of tea effluent prior to its discharge into the river system has been developed. The effects of potential difference, inter-electrode distance, surface area of electrodes to effluent volume ratio (S/V, effluent pH, temperature and effluent dilution on power consumption, were investigated. This method was effective at a potential difference of 24 volts, inter-electrode distance of 5 mm, S/V of 18.2 m2/m3 and effluent pH of 6. Effluent dilution led to increase in power consumption while raising temperatures led to a reduction in power consumption. Electrochemical method reduced COD, BOD and electrical conductivity by 96.6 %, 84.0 % and 31.5 %, respectively but increased pH by 10.32 %. The final pH, EC, COD and BOD values were below KBS maximum contaminant levels. The proposed mechanism in colour removal process was phenol coupling. Phenolic tea colour pigments were oxidized by electrons from ionization of iron to form keto radicals, which polymerized to form a long chain polymer. The polymer was electro-floated to the surface by hydrogen gas generated from the reduction of water and oxidation of theaflavins.

  6. Extensive tissue damage of bovine ovaries after bipolar ovarian drilling compared to monopolar electrocoagulation or carbon dioxide laser

    NARCIS (Netherlands)

    Hendriks, M.L.; van der Valk, P.; Lambalk, C.B.; Broeckaert, M.A.M.; Homburg, R.R.; Hompes, P.G.A.

    2010-01-01

    Objective: To evaluate the size of ovarian damage caused by ovarian drilling in polycystic ovary syndrome, the amount of inflicted damage was assessed for the most frequently used ovarian drilling techniques. Design: Experimental prospective design. Setting: University clinic. Patient(s): Six fresh

  7. Monopolar Electro-Coagulation Process for Azo Dye C.I. Acid Red 18 Removal from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Ghasem Azarian

    2014-12-01

    Full Text Available The discharge of wastewaters containing an untreated dye results in aesthetic problems and an increase in gases solubility, which causes light transmission inhibition into water bodies. In spite of advantages of physicochemical and biological methods, these processes produce huge amounts of sludge, toxic by-products and require several oxidant chemicals. By contrast, electrochemical processes because of their high versatility, high efficiency and eco-friendly properties are more acceptable. In the present study, the removal of azo dye Acid Red 18 and chemical oxygen demand (COD from synthetic wastewater by monopolar (EC process was investigated and key parameters such as operating time, current density (CD, initial pH and energy, and electrode consumption were optimized. It was found that the process had a very good efficiency in the removal of both COD and color; for the iron electrode, the maximum amounts of color and COD removal were 99.5% and 59.0%, respectively. An operating time of 45 min, pH of 7 and CD of 1.2 mA/cm2 was selected as the optimized condition. The optimization of variables is extremely crucial as it results in a decrease in costs, energy and electrode consumption. Overall, the iron electrode used less energy than the aluminum electrode and was more acceptable for use in this process due to economical reasons. The findings of UV/vis spectra illustrated that the structures of this dye were removed by the process. In comparison with traditional methods such as aerobic and anaerobic systems, the EC process is a suitable alternative for the treatment of wastewaters containing dye pollutants.

  8. Endoscopic treatment by snare electrocoagulation prior to Nd:YAG laser photocoagulation in 85 voluminous colorectal villous adenomas.

    Science.gov (United States)

    Aubert, A; Meduri, B; Fritsch, J; Aime, F; Baglin, A; Barbagelata, M

    1991-05-01

    The association of endoscopic resection with Nd:YAG laser photocoagulation was used to treat benign colorectal villous adenomas. Eight-five patients were included: 49 with surgical contraindications, 35 for whom surgical resection appeared to be too hazardous, and 1 who refused surgery. Forty-five tumors had an axial extension between 1 and 3 cm, and 40 tumors had an axial extension of at least 4 cm. Diathermic snare resection was performed to remove large tumoral fragments prior to laser photocoagulation of the residual flat lesions. Treatments were repeated every 15 days until total tumor destruction was achieved. A carcinoma was detected in biopsy specimens obtained during endoscopic treatment of five patients. Two patients were lost to follow-up. Treatment results could be analyzed in 78 patients. Successful treatment was achieved in 67 patients. Tumor destruction was complete in 77 percent of patients who had lesions of at least 4 cm diameter and in 93 percent of patients with smaller lesions. The axial extension of the tumor was the main factor affecting the results of treatment. No major complications occurred. During the average 103-week follow-up period, 21 percent of the patients with total tumor destruction had a recurrence. The risk of recurrence was correlated with the number of initial treatment sessions and previous surgery treatment. It would appear that the treatment with endoscopic resection prior to Nd:YAG laser photocoagulation is a safe and effective method in the destruction of colorectal villous adenomas.

  9. Laboratory Experiments on the Electrochemical Remediation of Environment. Part 4: Color Removal of Simulated Wastewater by Electrocoagulation-Electroflotation

    Science.gov (United States)

    Ibanez, Jorge G.; Singh, M. M.; Szafran, Z.

    1998-08-01

    Due to the large production of aqueous waste streams from textile mills and dye production plants, several processes have been under intense study. Electrochemical processes offer some distinctive advantages, including effects due to: 1) the production of electrolysis gases, and 2) the production of polyvalent cations from the oxidation of corrodible anodes (like Fe and Al). The gas bubbles can carry the pollutant to the top of the solution where it can be more easily concentrated, collected and removed. The metallic ions can react with the OH- ions produced at the cathode during the evolution of H2 gas to yield insoluble hydroxides that will adsorb pollutants out of the solution and also contribute to coagulation by neutralizing any negatively charged colloidal particles that might be present. In this experiment an iron electrode (paper clip) is used in conjunction with pH indicator dyes, so dramatic color changes will be noticed.

  10. New innovative electrocoagulation (EC) treatment technology for BWR colloidal iron utilizing the seeding and filtration electronically (SAFETTM) system

    International Nuclear Information System (INIS)

    Denton, Mark S.; Bostick, William D.

    2007-01-01

    The presence of iron (iron oxide from carbon steel piping) buildup in Boiling Water Reactor (BWR) circuits and wastewaters is decades old. In, perhaps the last decade, the advent of precoatless filters for condensate blow down has compounded this problem due to the lack of a solid substrate (e.g., Powdex resin pre-coat) to help drop the iron out of solution. The presence and buildup of this iron in condensate phase separators (CPS) further confounds the problem when the tank is decanted back to the plant. Iron carryover here is unavoidable without further treatment steps. The form of iron in these tanks, which partially settles and is pumped to a de-waterable high integrity container (HIC), is particularly difficult and time consuming to de-water (low shear strength, high water content). The addition upstream from the condensate phase separator (CPS) of chemicals, such as polymers, to carry out the iron, only produces an iron form even more difficult to filter and de-water (even less shear strength, higher water content, and a gel/slime consistency). Typical, untreated colloidal material contains both sub-micron particles up to, let's say 100 micron. It is believed that the sub-micron particles penetrate filters, or sheet filters, thus plugging the pores for what should have been the successful filtration of the larger micron particles. Like BWR iron wastewaters, fuel pools/storage basins (especially in the decon. phase) often contain colloids which make clarity and the resulting visibility nearly impossible. Likewise, miscellaneous, often high conductivity, waste streams at various plants contain such colloids, iron, salts (sometimes seawater intrusion and referred to as Salt Water Collection Tanks), dirt/clay, surfactants, waxes, chelants, etc. Such waste streams are not ideally suited for standard dead-end (cartridges) or cross-flow filtration (UF/RO) followed even by demineralizers. Filter and bed plugging are almost assured. The key to solving these dilemmas is 1) to break the colloid (i.e., break the outer radius repulsive charges of the similar charged colloidal particles), 2) allow these particles to now flocculate (floc), and 3) form a type of floc that is more readily filterable, and, thus, de-waterable. This task has been carried out with the innovative application of electronically seeding the feed stream with the metal of choice, and without the addition of chemicals common to ferri-flocking, or polymer addition. This patent-pending new system and technique is called Seeding And Filtration Electronically, or the SAFE TM System. Once the colloid has been broken and flocking has begun, removal of the resultant floc can be carried out by standard, back-washable (or, in simple cases, dead-end) filters; or simply in de-waterable HICs or liners. Such applications include low level radwaste (LLW) from both PWRs and BWRs, fuel pools, storage basins, salt water collection tanks, etc. For the removal of magnetic materials, such as some BWR irons, an Electro Magnetic Filter (EMF) was developed to couple with the Electro Coagulation (EC), (or metal-Flocking) Unit. In the advent that the waste stream primarily contains magnetic materials (e.g., boiler condensates and magnetite, and he-magnetite from BWRs), the material was simply filtered using the EMF. Bench-, pilot- and full-scale systems have been assembled and applied on actual plant waste samples quite successfully. The effects of initial feed pH and conductivity, as well as flocculation retention times was examined prior to applying the production equipment into the field. Since the initial studies (Denton, et al, EPRI, 2006), the ultimate success of field applications is now being demonstrated as the next development phase. For such portable field demonstrations and demand systems, a fully self enclosed (secondary containment) EC system was first developed and assembled in a modified B 25 Box (Floc-In-A-Box) and is being deployed to a number of NPP sites. Finally, a full-scale SAFE TM System has been deployed to Exelon's Dresden NPP as a vault cleanup demand system. This is a 30 gpm EC system to convert vault solids/sludges to a form capable of being collected and dewatered in a High Integrity Container (HIC). This initial vault work will be on-going for approximately three months, before being moved to additional vaults. During the past year, additional refinements to the patent pending SAFE TM System have included the SAFER TM System (Sealant and Foulant Electronic Removal) for the removal by EC of silica, calcium and magnesium. This has proven to be an effective enabler for RO, NF and UF as a pretreatment system. Advantages here include smaller, more efficiently designed systems and allowed lower removal efficiencies with the removal of the limiting factor of scalants. Similarly, the SAFE TM System has been applied in the form of a BAC-UP TM System (Boric Acid Clean-Up) as an alternative to more complex RO or boric acid recycle systems. Lastly, samples were received from two different DOE sites for the removal of totally soluable, TDS, species (e.g., cesium, Cs, Sr, Tc, etc.). For these applications, an ion-specific seed (an element of the SMART TM System) was coupled with the Cs prior to EC and subsequent filtration and dewatering, for the effective removal of the cesium complex and the segregation of low level and high level waste (LLW and HLW) streams. (authors)

  11. Wastewater parameters after the process of phosphorus compounds removal by the metal dissolution method in comparison with precipitation and electrocoagulation methods

    Directory of Open Access Journals (Sweden)

    Wysocka Izabela

    2017-03-01

    Full Text Available Precipitation methods are commonly used for removing phosphorus compounds from wastewater. Chemical precipitation method, based on adding iron, aluminium or calcium salts to the treated wastewater, is often used. Another possible way of precipitating phosphates is metal dissolution method, which is presented in this paper. The main difference between these two methods is how the phosphate precipitating ions are introduced to the wastewater.

  12. Ultrasonic intensification of electrochemical destruction of 1,3-dinitrobenzene and 2,4-dinitrotoluene with ozone and electrocoagulation of azo-dyes

    Energy Technology Data Exchange (ETDEWEB)

    Abramov, V.O.; Abramov, O.V.; Kuznetsov, V.M. [Russian Academy of Sciences, Lab. of Ultrasonics, Moscow (Russian Federation). Kumakov Inst. of General and Inorganic Chemistry

    2002-07-01

    For the detoxification of waste and sewage, oxidation of toxic components using strong and environmentally-friendly oxidants such as hydrogen peroxide or ozone in combination with additional physicochemical processes such as ultraviolet radiation, electric discharge and ultrasonic irradiation (advanced oxidation processes) is considered to be promising. The presence of the electron-withdrawing nitro group substantially reduces the reactivity of nitroaromatics in oxidation reactions. Therefore, even when using ozone, an acceptable rate of destruction of some stable compounds such as 1,3-dinitrobenzene (DNB), 2,4-dinitrotoluene (DNT) or TNT, cannot be achieved. We have previously found that the oxidation of organic compounds by ozone or a combination of ozone with hydrogen peroxide in an ultrasonic field is enhanced in a low electric field. The objective of the present work is to study the possibility of the oxidation of DNB and DNT by ozone in an electrochemical cell under ultrasonic irradiation. (orig.)

  13. Performance evaluation of a continuous bipolar electrocoagulation/electrooxidation-electroflotation (ECEO-EF) reactor designed for simultaneous removal of ammonia and phosphate from wastewater effluent

    Energy Technology Data Exchange (ETDEWEB)

    Mahvi, Amir Hossein, E-mail: ahmahvi@yahoo.com [Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Enghelab Street, Tehran (Iran, Islamic Republic of); National Institute of Health Research, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Ebrahimi, Seyed Jamal Al-din [Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Enghelab Street, Tehran (Iran, Islamic Republic of); Mesdaghinia, Alireza, E-mail: mesdaghinia@sina.tums.ac.ir [Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Enghelab Street, Tehran (Iran, Islamic Republic of); Gharibi, Hamed, E-mail: hgharibi65@gmail.com [Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Enghelab Street, Tehran (Iran, Islamic Republic of); Sowlat, Mohammad Hossein, E-mail: hsowlat@gmail.com [Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Enghelab Street, Tehran (Iran, Islamic Republic of)

    2011-09-15

    Highlights: {center_dot} Max removal efficiencies of the reactor for both ammonia and phosphate were 99%. {center_dot} Corresponding efficiencies under actual wastewater conditions were 98%. {center_dot} Optimum removal conditions were neutral pH and current density of 3 A. {center_dot} Lower influent concentration and higher detention time favored removal efficiency. {center_dot} Besides ammonia and phosphate, Al{sup 3+} plate enables removal of nitrite and nitrate. - Abstract: The present study aimed to evaluate the performance of a continuous bipolar ECEO-EF reactor designed for simultaneous removal of ammonia and phosphate from wastewater effluent. The reactor was comprised of two distinct units: electrochemical and separation. In the electrochemical unit, Al, stainless steel, and RuO{sub 2}/Ti plates were used. All the measurements were performed according to the standard methods. Maximum efficiency of the reactor for phosphate removal was 99% at pH of 6, current density of 3 A, detention time of 60 min, and influent phosphate concentration of 50 mg/l. The corresponding value for ammonia removal was 99% at a pH of 7 under the same operational conditions as for phosphate removal. For both phosphate and ammonia, the removal efficiency was highest at neutral pH, with higher current densities, and with lower influent concentrations. In addition to removal of phosphate and ammonia, application of the Al{sup 3+} plates enabled the removal of nitrite and nitrate, which may be present in wastewater effluent and are also products of the electrochemical process. The reactor was also able to decrease the concentrations of phosphate, ammonia, and COD under actual wastewater conditions by 98%, 98%, and 72%, respectively. According to the results of the present study, the reactor can be used for efficient removal of ammonia and phosphate from wastewater.

  14. Pilot scale hybrid processes for olive mill wastewater treatment, energy production and water reuse: comparison between fungal and electro-coagulation pre-treatments

    International Nuclear Information System (INIS)

    Sayadi, S.

    2009-01-01

    Olive oil mill wastewaters (OMW) cause disposal problems because they contain powerful pollutants such as phenolic compounds. Complete biodegradation or removal of these compounds is hardly achieved by a single treatment method. In this work, we investigated 2 integrated technologies for the treatment of the recalcitrant contaminants of OMW, allowing water recovery and reuse for agricultural purposes. (Author)

  15. Pilot scale hybrid processes for olive mill wastewater treatment, energy production and water reuse: comparison between fungal and electro-coagulation pre-treatments

    Energy Technology Data Exchange (ETDEWEB)

    Sayadi, S.

    2009-07-01

    Olive oil mill wastewaters (OMW) cause disposal problems because they contain powerful pollutants such as phenolic compounds. Complete biodegradation or removal of these compounds is hardly achieved by a single treatment method. In this work, we investigated 2 integrated technologies for the treatment of the recalcitrant contaminants of OMW, allowing water recovery and reuse for agricultural purposes. (Author)

  16. Enhancing liquid-liquid and solid-liquid phase separation by integrating alternating current electrocoagulators with processing and wastewater control systems

    International Nuclear Information System (INIS)

    Ryan, P.E.; Stanczyk, T.F.

    1989-01-01

    Coal, pigments, pharmaceutical solids, ceramics, carbon, clays, metallic powders and ores are among the categorical groups of products which are wasted as suspended solids in aqueous-based wash solutions. Phase separation and recovery of these solids by conventional dewatering systems is costly and relatively inefficient. Alternating current can be used to neutralize the electrical charge on fine and ultra-fine particles in aqueous suspensions, and facilitate agglomeration and settling of these particulates without using chemicals while improving recovery efficiencies. This paper provides an overview of the technology and discusses applications and benefits in the areas of in-plant processing, industrial wastewater treatment, site remediation and water purification

  17. Cutting and drill fluids destruction by electro-coagulation: a new technological option. Eliminacion de fluidos de corte y taladrinas por electrocoagulacion: una nueva alternativa tecnologia

    Energy Technology Data Exchange (ETDEWEB)

    Alava, J.I.; Ipinaza, E.; Ortiz de Urbina, G.; Mugica, J.C.; Yurramendi, L.; Labarta, C.; Solazabal, R. (Centro Tecnologico de Materiales, San Sebastian (Spain))

    1994-01-01

    With the aim of comparison between incoming technologies, that use electro coagulation as a method for cutting fluids elimination, some restricted conditions have been selected that, equalized the feature of different electro technologies. It has been also specifically selected, those treatments, that are starting-up in the industrial environment. The comparison shows the efficiency of the destruction of organic compounds (until 98%) and equalized his environmental advantages and disadvantages. (Author) 10 refs. (Author)

  18. Assessment of Oil Pretreatment Technologies to Improve Performance of Reverse Osmosis Systems

    Science.gov (United States)

    1992-06-19

    emulsion form can be removed by electrocoagulation process. Petroleum hydrocarbons in emulsion such as purgeable aromatics, phenolics, polynuclear aromatic...relatively low. References: Biswas, N.; G. Lazarescu, 1991. " Removal of oil from emulsions using electrocoagulation ." International Journal of...time is usually 30-60 minutes. 20 Technology status Full scale. 20 TOTAL SCORE 95 4- 10 ELECTROCOAGULATION CRITERIA COMMENTS SCORE Removal The optimum

  19. Severe Blue Rubber Bleb Nevus Syndrome in a Neonate

    DEFF Research Database (Denmark)

    Hansen, L; Wewer, V; Pedersen, S

    2008-01-01

    bleeding during the first 3 years of life. Afterwards repeated endoscopic electrocoagulations were performed over a period of one year resulting in a termination of bleeding episodes. At ten years of age the patient developed spastic diplegia with slight walking disabilities, coordination and fine motor...... problems. The case is unique because 1) it is the first neonatal case with BRBNS and severe gastrointestinal bleeding; 2) the patient was successfully treated by endoscopic electrocoagulation; and 3) the long-term follow-up. The use of electrocoagulation appears to have been effective and ablation...

  20. Treatment of olive mill wastewater by the combination of ultrafiltration and bipolar electrochemical reactor processes

    KAUST Repository

    Yahiaoui, O.; Lounici, Hakim; Abdi, Nadia; Drouiche, Nadjib; Ghaffour, NorEddine; Pauss, André ; Mameri, Nabil

    2011-01-01

    The main purpose of this study was to investigate the removal of the chemical oxygen demand (COD) from olive mill wastewater (OMW) by the combination of ultrafiltration with electrocoagulation process. Ultrafiltration process equipped with CERAVER

  1. remediation of electrocoagu remediation of refinery wastewater ...

    African Journals Online (AJOL)

    userpc

    reagent.The electrocoagulation (EC) induces coagulation and precipitation contaminants by a direct current electroly process followed by separation of floccule ..... Treatment by Electrocoagulation–Flotation. (Chapter 6): Handbook of Environmental. Engineering,. Floatation. Technology. Volume 12: Flotation Technology.

  2. Advantages of fulguration of posterior urethral valves by Nd: YAG laser

    Directory of Open Access Journals (Sweden)

    D K Gupta

    2000-01-01

    Full Text Available Posterior Urethral Valves (PUV are one of the com-monest urolgical problems seen in children and the electro-coagulation, which is the most widely preferred modality to ablate the valves, may not be feasible in small-for-date and low-birth-weight neonates as the suitable size resec-toscope/cystoscope may not available. With the availa-bility of Nd: YAG laser at our institute recently, we started performing the laser fulguration instead of electrocoagu-lation of the valves. We reviewed our experience with the emerging role of the Nd: YAG laser in the fulguration of PUV, comparing the results with a historical control group who underwent the classical electrocoagulation of the PUV. The boys (n=50 diagnosed to have PUV by VCUG were confirmed by Wolf 8.5 size cystoscope, underwent Nd: YAG laser fulguration of the valves with a bare fiber, as a day-care procedure without postoperative catheteri-zation. Historical controls (n=50 who had undergone classical electrocoagulation using 9.5 size Wolf resectos-cope served as the controls. The mean age was 1.3 y and 2.6 y in laser and electrocoagulation group respectively. The mean hospital stay of the electrocoagulation group was 3.8 d. Three patients after electrocoagulation devel-oped hematuria and 4 required refulguration whereas in the laser group 5 required refulguration and none devel-oped hematuria. In conclusion, endoscopic laser fulgura-tion of PUV is technically feasible even in neonates and small children. Laser offers excellent results that are com-parable to the time-honored electrocoagulation procedure. This has the additional advantage forfulgurating the PUV in smaller caliber urethra as this can be performed with the smaller available cystoscope that has a side channel, admitting the laser fiber.

  3. Feasibility of Cr (VI) Removal from Aqueous Solution Using Electrochemical Bipolar Aluminum Electrodes

    OpenAIRE

    Abbas Rezaei; Hooshyar Hosseini; Hossein Masoombeigi; Reza Darvishi Cheshmeh soltani

    2013-01-01

    Electrocoagulation is one of the technologies which have been considered by many researchers in recent years. This process has many advantages including high efficiency, no need to chemical addition, low sludge production, capability of process control, easy to operation and maintenance. Bipolar electrodes system is one of the electrocoagulation techniques which can be used for increasing the process efficiency and better distribution of the electric current. The aim of this study was to remo...

  4. Microcirculatory Impairment Following Focal and Global Cerebral Ischemia in the Rat.

    Science.gov (United States)

    1982-02-08

    intervals during isotope infusion. At I min the circulation was arrested by decapitation. The brain was quickly V 5 removed and frozen in isopentane...as blood pressure remains normal ŕ . When combined with prior electrocoagulation of the vertebral arteries, bilateral ligation of the common carotids...artery was electrocoagulated and the foramina packed with bone wax. The tissues were closed in layers. Through a midventral incision in the neck

  5. Kombinované foto- a elektrochemické zpracování odpadních vod obsahující nitro- a aminosloučeniny

    OpenAIRE

    Krystyník, Pavel

    2013-01-01

    Electrocoagulation is a very effective method for inorganic pollutants removal from water. It is possible to remove more than 95 % of inorganic pollutants depending on pH and current density. Photochemical oxidation is able to remove all organic compounds from water depending mainly on hydrogen peroxide concentration. Electrocoagulation also contributes to reduce the content of organic compounds so it decreases the hydrogen peroxide consumption in the oxidative treatment.

  6. Therapeutic embolization in pulmonary hemorrhage

    International Nuclear Information System (INIS)

    Gasparini, D.

    1989-01-01

    The author's purpose was to evaluate the efficacy of therapeutic embolization in pulmonary hemorrage performed with fibrin foam (Spongostan) suspended in sclerosing agents (hidroxy-poliethoxy-dodecano 3%, or natrium morruate 5%), and electrocoagulation (Bitrol, spa) as an alternative to surgery. Twenty patients were embolized: 17 with fibrin foam and sclerosing agents only, 2 with the addition of electrocoagulation and a Gianturco coil respectively, and 1 with electrocoagulation alone. The follow-up ranges from 3 to 42 months (average 22). A patient affected by aspergilloma died a few days after hemoptysis. The patient treated by electrocoagulation alone suffers from periodical hematic expectoration (spitting). The remaining 18 patients have not shown any pathological findings. In 2 cases the arterial occlusion was confirmed by angiography, while in 1 case partial arterial recanalization was observed. Such a finding was due to the vessel dimensions and to hyperflux values. In similar cases, obstruction must be completed different techniques (e.g. Gianturco coils, electrocoagulation, detachable balloons, etc.). The absence of flux resulting from embolization improves electrocoagulation efficiency, which should be considered as the technique of choice. Even though additional trials are needed, the techniques have proven quite reliable and suitable to replace surgery in low-aggression lesions

  7. Removal of boron (B) from waste liquors.

    Science.gov (United States)

    Jiang, J Q; Xu, Y; Simon, J; Quill, K; Shettle, K

    2006-01-01

    This paper explores the use of electrocoagulation to remove boron from waste effluent in comparison with alum coagulation. In treating model test wastes, greater boron removals were achieved with electrocoagulation at low doses than conventional alum coagulation when reaction was undertaken for the same conditions (pH 8.5, and initial boron concentration was 500 mg/L). Al electrocoagulation can achieve good boron removal performance (68.3%) at a dose of 2.1 (as molar ratio of Al:B, and for current density of 62.1 A/m2), while alum coagulation can only achieve the maximum boron removal of 56% at a dose of 2.4. Also, Al electrocoagulation can remove 15-20% more boron than alum coagulation for the same dose compared in the treatment of both model test wastes and industry effluent. The estimation of running costs shows that to achieve 75% boron removal from industry waste effluent, i.e. removing 150 g of boron from 1 m3 of effluent, electrocoagulation was 6.2 times cheaper than alum coagulation. The economic advantage of electrocoagulation in the treatment of boron-containing waste effluent is thus significant.

  8. Electrochemical removal of phenol from oil refinery wastewater.

    Science.gov (United States)

    Abdelwahab, O; Amin, N K; El-Ashtoukhy, E-S Z

    2009-04-30

    This study explores the possibility of using electrocoagulation to remove phenol from oil refinery waste effluent using a cell with horizontally oriented aluminum cathode and a horizontal aluminum screen anode. The removal of phenol was investigated in terms of various parameters namely: pH, operating time, current density, initial phenol concentration and addition of NaCl. Removal of phenol during electrocoagulation was due to combined effect of sweep coagulation and adsorption. The results showed that, at high current density and solution pH 7, remarkable removal of 97% of phenol after 2h can be achieved. The rate of electrocoagulation was observed to increase as the phenol concentration decreases; the maximum removal rate was attained at 30 mg L(-1) phenol concentration. For a given current density using an array of closely packed Al screens as anode was found to be more effective than single screen anode, the percentage phenol removal was found to increase with increasing the number of screens per array. After 2h of electrocoagulation, 94.5% of initial phenol concentration was removed from the petroleum refinery wastewater. Energy consumption and aluminum Electrode consumption were calculated per gram of phenol removed. The present study shows that, electrocoagulation of phenol using aluminum electrodes is a promising process.

  9. Electrocautery versus Ultracision versus LigaSure in Surgical Management of Hyperhidrosis.

    Science.gov (United States)

    Divisi, Duilio; Di Leonardo, Gabriella; De Vico, Andrea; Crisci, Roberto

    2015-12-01

    The aim of the study was to evaluate the sympathectomy procedures for primary hyperhidrosis in terms of complications and effectiveness. From January 2010 to September 2012 we performed 130 sympathectomies in 65 patients, 27 males (42%) and 38 females (58%). Electrocoagulation was used in 20 procedures (15%), ultrasonic scalpel in 54 (42%), and radiofrequency dissector in 56 (43%). Seven patients (11%) underwent bilateral sympathectomy in the same surgical session, while in 58 (89%) the right surgical approach was delayed 30 days from the first procedure. We noticed 12 complications (9%): (a) chest pain in 6 patients (4 with electrocoagulation, 1 with ultrasonic scalpel, and 1 with radiofrequency dissector), which disappeared in 20 ± 1 day; (b) paresthesias in 3 electrocoagulation patients, was solved in 23 ± 5 days; (c) bradycardia in 1 ultrasonic patient, normalized in 4th postoperative hour; (d) unilateral relapse in 2 electrocoagulation patients after the second side approach, positively treated in 1 patient by resurgery in video-assisted thoracoscopy (VAT). The quality-adjusted life year and the quality of life evaluation revealed a statistically significant improvement (p = 0.02) in excessive sweating and general satisfaction after surgery, with Ultracision and LigaSure showing better findings than electrocoagulation. The latest generation devices offered greater efficacy in the treatment of hyperhidrosis, minimizing complications and facilitating the resumption of normal work and social activity of patients. Georg Thieme Verlag KG Stuttgart · New York.

  10. Sizes of particles formed during municipal wastewater treatment.

    Science.gov (United States)

    Lech, Smoczynski; Marta, Kosobucka; Michal, Smoczynski; Harsha, Ratnaweera; Krystyna, Pieczulis-Smoczynska

    2017-02-01

    Volumetric diameters Dv and specific surface area SpS of sludge particles formed during chemical coagulation and electrocoagulation of sewage were determined. The obtained aggregate-flocs differed substantially in both Dv and SpS values. The differences in Dv and SpS values of the analyzed particles were interpreted based on theoretical models for expanding aggregates. The most uniform particles were formed under exposure to: (a) optimal and maximal doses of PIX, (b) optimal doses of PAX, (c) maximal doses of the Al electro-coagulant. The lowest PIX dose produced the least uniform particles. Sludge aggregates-particles produced under exposure to minimal doses of PIX and the Al electro-coagulant were characterized by the lowest SpS values. Sludge particles coagulated by PAX and the particles formed at higher doses of PIX and the Al electro-coagulant had higher SpS values. The particles formed at all doses of the applied coagulants and electro-coagulants were generally classified into two size ranges: the main range and the secondary range. Most particles belonged to the main size range. An increase in the percentage of colloidal hydroxide particles in sewage sludge increased SpS.

  11. [Evaluation of the results of surgical treatment of granuloma teleangiectodes].

    Science.gov (United States)

    Bogdanowski, T; Rubisz-Brzezińska, J; Macura-Gina, M; Misiewicz, D

    1990-01-01

    In the clinic of dermatological surgery, I Department of Dermatology Silesian Medical Academy in Katowice 328 patients were treated surgically for granuloma teleangiectodes in the years 1973-1988. Two methods were used: excision of the lesion and curettage with electrocoagulation of the base of the lesion. After excision the wound was closed by approximation of its margins or local plastic procedure (285 cases) and by covering it with a free full-thickness skin graft (3 cases). Curettage and electrocoagulation was used in 43 cases, mainly due to the location of the lesion (in 90% on fingers). After granuloma excision no recurrences were observed, while after curettage and electrocoagulation recurrences developed in 20% of cases.

  12. Severe Blue Rubber Bleb Nevus Syndrome in a Neonate

    DEFF Research Database (Denmark)

    Hansen, L; Wewer, V; Pedersen, S

    2008-01-01

    We report on a child with blue rubber bleb nevus syndrome (BRBNS) presenting during the first days of life with severe bleeding from the upper gastrointestinal tract. Medical treatment with methylprednisolone, cyklokapron, interferon 1 alpha and numerous blood transfusions were given to control...... problems. The case is unique because 1) it is the first neonatal case with BRBNS and severe gastrointestinal bleeding; 2) the patient was successfully treated by endoscopic electrocoagulation; and 3) the long-term follow-up. The use of electrocoagulation appears to have been effective and ablation...... bleeding during the first 3 years of life. Afterwards repeated endoscopic electrocoagulations were performed over a period of one year resulting in a termination of bleeding episodes. At ten years of age the patient developed spastic diplegia with slight walking disabilities, coordination and fine motor...

  13. [Hereditary hemorrhagic telangiectasia presenting with hematuria and severe anemia].

    Science.gov (United States)

    Paz, A; Goren, E; Segal, M

    1995-07-01

    A patient with hereditary hemorrhagic telangiectasia was admitted with hematuria and severe anemia after mild recurrent episodes of epistaxis. Telangiectasias were found in the skin and buccal and nasal mucosa. No defect in the coagulation mechanism was found; thrombocyte count and function were normal. On cystoscopy, tortuous engorged vessels, some actively bleeding, were seen in the trigonal mucosa. Biopsy showed enlarged vessels in the lamina propria. Electrocoagulation of the bleeding vessels stopped hematuria, but 6 months later it recurred. This time Nd-YAG laser was used to stop the bleeding after electrocoagulation was ineffective.

  14. Předčištění odpadních vod elektrokoagulací

    Czech Academy of Sciences Publication Activity Database

    Krystyník, Pavel; Klusoň, Petr; Šolcová, Olga; Wimmerová, L.

    2011-01-01

    Roč. 2011, č. 2 (2011), s. 92-102 ISSN 1804-0195 R&D Projects: GA MPO(CZ) FR-TI1/065 Institutional research plan: CEZ:AV0Z40720504 Keywords : electrocoagulation * Fe removal * wastewater treatment Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  15. Notes on Process and Data Analysis in Electro-Coagulation—The Importance of Standardisation and Clarity.

    Czech Academy of Sciences Publication Activity Database

    Tito, Duarte Novaes; Krystyník, Pavel; Klusoň, Petr

    2016-01-01

    Roč. 104, JUN 2016 (2016), s. 22-28 ISSN 0255-2701 Institutional support: RVO:67985858 Keywords : electro-coagulation * water treatment * process efficacy Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.234, year: 2016

  16. Mn(II) oxidation in Fenton and Fenton type systems : Identification of Reaction Efficiency and Reaction Products

    NARCIS (Netherlands)

    van Genuchten, C.M.; Peña, Jasquelin

    2017-01-01

    Efficient and low-cost methods of removing aqueous Mn(II) are required to improve the quality of impacted groundwater supplies. In this work, we show that Fe(0) electrocoagulation (EC) permits the oxidative removal of Mn(II) from solution by reaction with the reactive oxidant species produced

  17. Management of Ovarian Cysts by Laparoscopic Extracorporeal Approach Using Single Ancillary Trocar

    Directory of Open Access Journals (Sweden)

    Metin Capar

    2009-12-01

    Conclusion: This technique does not require the use of two or more ancillary trocars or widening of the trocar incision. The duration of surgery can be shortened considerably and complete excision of the cystic capsule can be performed. Homeostasis was achieved using 3-0 polyglactin sutures. No electrocoagulation was required.

  18. Cerebellar abnormalities following hypoxia alone compared to hypoxic-ischemic forebrain injury in the developing rat brain

    NARCIS (Netherlands)

    Biran, V.; Heine, V.M.; Verney, C.; Sheldon, R.A.; Spadafora, R.; Vexler, Z.S.; Rowitch, D.H.; Ferriero, D.M.

    2011-01-01

    Two-day-old (P2) rat pups were subjected to either a global hypoxia or to electrocoagulation of the right carotid artery followed by 2.5. h hypoxia. Cellular and regional injury in the cerebellum (CB) was studied at 1, 2 and 19. days using immunohistology. Following hypoxia and hypoxia-ischemia, all

  19. Cerebral venous angioma

    International Nuclear Information System (INIS)

    Inagawa, Tetsuji; Taguchi, Haruyoshi; Kamiya, Kazuko; Yano, Takashi; Nakajima, Reiko

    1984-01-01

    This report presents a 27-year-old male patient who was diagnosed as having cerebral venous angioma in the postero-temporal area by CT scan and cerebral angiography. The patient improved by removing angioma with electrocoagulation of medullary veins. (Namekawa, K.)

  20. Harmonic focus in thyroidectomy for substernal goiter

    DEFF Research Database (Denmark)

    Hahn, Christoffer Holst; Trolle, Waldemar; Sørensen, Christian Hjort

    2015-01-01

    , hospital stay and complications. MATERIALS AND METHODS: Prospective non-randomised study of 242 consecutive patients with substernal goiter out of 2258 patients (11%) who underwent thyroidectomy. A total of 121 patients had thyroidectomy performed with bipolar electrocoagulation and knot-tying techniques...

  1. ENDOSCOPIC TREATMENT OF THE HYPOPHARYNGEAL (ZENKERS) DIVERTICULUM

    NARCIS (Netherlands)

    WOUTERS, B; VANOVERBEEK, JJM

    Over the years the techniques for endoscopic treatment of Zenker's diverticulum have been improved. Initially, in 1964, we used the electrocoagulation technique as described by Dohlman, but currently we prefer to sever the tissue bridge between the diverticulum and esophagus with the CO2 laser under

  2. Water Treatment Process Intensification by Combination of Electrochemical and Photochemical Methods

    Czech Academy of Sciences Publication Activity Database

    Krystyník, Pavel; Klusoň, Petr; Tito, D.N.

    2015-01-01

    Roč. 94, SI (2015), s. 85-92 ISSN 0255-2701 R&D Projects: GA MPO(CZ) FR-TI1/065; GA TA ČR TA03010548 Institutional support: RVO:67985858 Keywords : electrocoagulation * photochemical oxidation * TOC removal Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.154, year: 2015

  3. 2011 Annual Report (National Defense Center for Energy and Environment)

    Science.gov (United States)

    2011-01-01

    settings on an electrocoagulation unit, one of four treatment technologies evaluated to remove cadmium from wastewater at LEAD. 16 17 By reducing...Coating Equipment Verification Electronics Recycling UXO Detection, Neutralization, and Removal RangeSafe Environmental Cost Analysis...ultrasonic cleaning systems were installed at Anniston Army Depot: a small arms cleaning system in Building 129 and a plating wax removal system in

  4. Feasibility of Cr (VI Removal from Aqueous Solution Using Electrochemical Bipolar Aluminum Electrodes

    Directory of Open Access Journals (Sweden)

    Abbas Rezaei

    2013-08-01

    Full Text Available Electrocoagulation is one of the technologies which have been considered by many researchers in recent years. This process has many advantages including high efficiency, no need to chemical addition, low sludge production, capability of process control, easy to operation and maintenance. Bipolar electrodes system is one of the electrocoagulation techniques which can be used for increasing the process efficiency and better distribution of the electric current. The aim of this study was to remove hexavalent chromium from aqueous solution by electrocoagulation technique. Response surface methodology (RSM was used to optimize the parameters involving in the process, and the effect of current density, initial chromium concentration and pH on the process were investigated. At optimal conditions, for the highest chromium removal (>90%, the optimum initial chromium, reaction time, current density and pH were found to be 117 mg/L, 50 min, 11.75 mA cm-2 and 4.5, respectively. It can be stated that electrocoagulation is an efficient technique for separation and removing high chromium concentration from aqueous solutions.

  5. Treatment Options for Liquid Radioactive Waste. Factors Important for Selecting of Treatment Methods

    Energy Technology Data Exchange (ETDEWEB)

    Dziewinski, J.J.

    1998-09-28

    The cleanup of liquid streams contaminated with radionuclides is obtained by the selection or a combination of a number of physical and chemical separations, processes or unit operations. Among those are: Chemical treatment; Evaporation; Ion exchange and sorption; Physical separation; Electrodialysis; Osmosis; Electrocoagulation/electroflotation; Biotechnological processes; and Solvent extraction.

  6. Navy MANTECH Program Fiscal Year 2002 Annual Report

    Science.gov (United States)

    2003-04-01

    Journal of Materials Engineering and Performance, Vol. 10, No 6. K. Kannan and J. J. Valencia Field-Scale Demonstration of Electrocoagulation and...Naval Air Systems Command / NADEP CP $741,000 Abrasive Flow Machining (coatings removal ) evaluation for repair of F404 turbine blade engine

  7. Chemical or electrochemical techniques, followed by ion exchange, for recycle of textile dye wastewater.

    Science.gov (United States)

    Raghu, S; Ahmed Basha, C

    2007-10-22

    This paper examines the use of chemical or electrocoagulation treatment process followed by ion-exchange process of the textile dye effluent. The dye effluent was treated using polymeric coagulant (cationic dye-fixing agent) or electrocoagulation (iron and aluminum electrode) process under various conditions such as various current densities and effect of pH. Efficiencies of COD reduction, colour removal and power consumption were studied for each process. The chemical or electrochemical treatment are indented primarily to remove colour and COD of wastewater while ion exchange is used to further improve the removal efficiency of the colour, COD, Fe concentration, conductivity, alkalinity and total dissolved solids (TDS). From the results chemical coagulation, maximum COD reduction of about 81.3% was obtained at 300 mg/l of coagulant whereas in electrocoagulation process, maximum COD removal of about 92.31% (0.25 A/dm2) was achieved with energy consumption of about 19.29 k Wh/kg of COD and 80% (1A/dm(2)) COD removal was obtained with energy consumption of about 130.095 k Wh/kg of COD at iron and aluminum electrodes, respectively. All the experimental results, throughout the present study, have indicated that chemical or electrocoagulation treatment followed by ion-exchange methods were very effective and were capable of elevating quality of the treated wastewater effluent to the reuse standard of the textile industry.

  8. Treatment Options for Liquid Radioactive Waste. Factors Important for Selecting of Treatment Methods

    International Nuclear Information System (INIS)

    Dziewinski, J.J.

    1998-01-01

    The cleanup of liquid streams contaminated with radionuclides is obtained by the selection or a combination of a number of physical and chemical separations, processes or unit operations. Among those are: Chemical treatment; Evaporation; Ion exchange and sorption; Physical separation; Electrodialysis; Osmosis; Electrocoagulation/electroflotation; Biotechnological processes; and Solvent extraction

  9. Study of hemostasis procedures for posterior epistaxis.

    Science.gov (United States)

    Iimura, Jiro; Hatano, Atsushi; Ando, Yuji; Arai, Chiaki; Arai, Satoshi; Shigeta, Yasushi; Kojima, Hiromi; Otori, Nobuyoshi; Wada, Kota

    2016-06-01

    Hemostasis is difficult in patients with bleeding emanating from the deep regions in the nasal cavity; however, there is no standard treatment method. We studied hemostasis procedures in patients who visited our outpatient department and presented with idiopathic epistaxis extending from the posterior nasal cavity to Kiesselbach's area. The subjects were patients with epistaxis who visited our hospital between June 2008 and May 2010. We asked specific questions at the time of the hospital visit and examined patients using a nasal speculum, a flexible endoscope, and a rigid endoscope (0 or 70 degree) to identify bleeding sites. Hemostasis using electrocoagulation was selected as the first-line therapy for patients in whom a bleeding point had been identified, whereas hemostasis using a gauze tampon was performed in patients in whom the bleeding point was unknown. The subjects were analyzed by multivariate logistic regression analysis. The bleeding point was unknown in most cases of recurrent posterior epistaxis. Electrocoagulation was the best hemostasis procedure. Identifying the bleeding points as much as possible and performing electrocoagulation at these sites was the preferred procedures. We propose the treatment procedure for refractory epistaxis. When it is difficult to identify a bleeding point in a patient with refractory epistaxis due to a deviated nasal septum, a bleeding point should be identified after septoplasty; for bleeding from the sphenopalatine artery region, electrocoagulation or endoscopic cauterization of the sphenopalatine artery should be performed. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Electrochemical recovery of water from the vegetable water in olive oil, to prevent contamination of the environment and the reuse as irrigation water; Recuperacion electroquimica del agua del Alpechin del Aceite de Oliva, para evitar la contaminacion del medio ambiente y su reutilizacion como agua de riego

    Energy Technology Data Exchange (ETDEWEB)

    Paredes, J. F.; Brito, R.

    2012-07-01

    The project began because of the awareness about the deterioration of the environment, which is why this thesis deals with the treatment of industrial effluent coming from the production of olive oil and vegetable water is known that untreated discharges are polluting soils. This project proposes to treat the effluent to reduce the concentrations of contaminants through a new technique that comes from the Electrochemical Engineering, called continuous flow electrocoagulation, in order to use this liquid as irrigation water. OMW polluting compounds are polyphenols which give a bactericidal effect lipid suspension to be dumped on the ground cause the waterproofing of the surface. In this case applied to solve electrocoagulation the issues raised. This method involves the use of electrolytic cells and aluminum metallic electrodes through which electrical current is passed continuously, to produce the decomposition of phenols, transforming them into hydrogen and carbon dioxide, as well as would cause flocculation of lipids on the surface of the effluent for subsequent extraction. (Author)

  11. Model Matematik Reduksi Thorium dalam Proses Elektrokoagulasi

    Directory of Open Access Journals (Sweden)

    Prayitno

    2017-11-01

    Full Text Available Thorium reduction by electrocoagulation has been conducted on radioactive waste with thorium contaminant grade of 5x10-4Kg/l through a batch system using aluminium electrodes. This study aims to determine a mathematical model of thorium reduction through speed reaction, constante reaction rate and reaction order which are affected by electrocoagulation process parameters like voltage, time, electrode distance, and pH. The research results the optimum voltage condition at 12.5 V at 1 cm electrode spacing, pH 7, and 30 minutes of processing time with 99.6 % efficiency. Prediction on thorium decline rate constante is obtained through mathematic integral method calculation. The research results thorium decline rate is following second order constante with its value at 5x10-3KgL-1min-1.

  12. Ovarian cryopreservation after laparoscopic ovariectomy using the Endo-GIA stapling device and LAPRO-clip absorbable ligating clip in a woman: a case report

    Directory of Open Access Journals (Sweden)

    Messner Alexandra

    2011-02-01

    Full Text Available Abstract Introduction Several options are available for preserving fertility before cytotoxic treatment, including ovarian tissue cryopreservation. Most reported surgical techniques include electrocoagulation. Our hypothesis is that avoidance of electrocoagulation may decrease ovarian cortex injury during cryopreservation procedures. Case presentation We report a laparoscopic technique of whole-ovary removal without coagulation using Endo-GIA forceps and clips. Laparoscopic ovariectomy was performed for cryopreservation in a 37-year-old Caucasian woman with breast cancer and for whom chemotherapy was planned. The procedure was completed quickly and without complication. This Endo-GIA procedure was of short duration with a short period of ischemia before freezing. Conclusion Laparoscopic ovariectomy using the Endo-GIA stapling device procedure without coagulation may diminish ovary injury before ovarian cryopreservation.

  13. Ovarian cryopreservation after laparoscopic ovariectomy using the Endo-GIA stapling device and LAPRO-clip absorbable ligating clip in a woman: a case report

    Science.gov (United States)

    2011-01-01

    Introduction Several options are available for preserving fertility before cytotoxic treatment, including ovarian tissue cryopreservation. Most reported surgical techniques include electrocoagulation. Our hypothesis is that avoidance of electrocoagulation may decrease ovarian cortex injury during cryopreservation procedures. Case presentation We report a laparoscopic technique of whole-ovary removal without coagulation using Endo-GIA forceps and clips. Laparoscopic ovariectomy was performed for cryopreservation in a 37-year-old Caucasian woman with breast cancer and for whom chemotherapy was planned. The procedure was completed quickly and without complication. This Endo-GIA procedure was of short duration with a short period of ischemia before freezing. Conclusion Laparoscopic ovariectomy using the Endo-GIA stapling device procedure without coagulation may diminish ovary injury before ovarian cryopreservation. PMID:21291518

  14. PARATHYROID HORMONE VALUES IN THYROID GLAND SURGERIES BY HARMONIC SCALPEL AND BY CONVENTIONAL METHODS

    OpenAIRE

    Grabovac, Stjepan; Prgomet, Drago; Janjanin, Saša; Đanić Hadžibegović, Ana

    2013-01-01

    We have examined if there are any differences in intraoperative and early postoperative concentrations of parathyroid hormone between the first group of patients, who had thyroidectomy surgery performed by harmonic scalpel, and the second group of patients operated on by standard techniqes with the use of electrocoagulation and ligature as primary hemostatic procedures. All the patients having total thyroidectomy had their blood taken in four measurement points; immediately after the inductio...

  15. Electrolytic treatment of liquid effluents: decontamination by electro coagulation of release water of a petroleum platform

    International Nuclear Information System (INIS)

    Nanseu-Njiki, Ch.P.; Ngameni, E.; Poumiba, S.; Darchen, A.

    2005-01-01

    The water releases of petroleum platforms present lots of pollutants; Usually, these waters are reinjected in ground water when it is possible. In the other cases they are released at the surface and need then a treatment. The electro-coagulation is a suitable method often used. The authors propose to study the optimum conditions of decontamination by this method, by a parametric evaluation (water flow, charge density, ph). Experiments used iron and aluminium electrodes. (A.L.B.)

  16. NRI's research on radioactive wastes

    International Nuclear Information System (INIS)

    Alexa, J.; Dlouhy, Z.; Kepak, F.; Kourim, V.; Napravnik, J.; Razga, J.; Ralkova, J.; Uher, E.; Vojtech, O.

    1976-01-01

    A survey is given (including 41 references) of work carried out at the Nuclear Research Institute. Discussed are sorption processes (a selective sorbent for 90 Sr based on BaSO 4 , etc.), sorption on inorganic ion exchangers (heteropolyacid salts, ferrocyanides for 137 Cs capture), on organic cation exchangers (separation of lanthanides), electrocoagulation. The process is described of vitrification of highly radioactive wastes, the arrest of emissions, the deposition of radioactive wastes and surface decontamination. (M.K.)

  17. Neurochemical Mechanisms Mediating Recovery of Function.

    Science.gov (United States)

    1984-11-01

    and hippocampus following physical ( electrocoagulation ) and chemical (ibotenic acid) destruction of the Ch neurons in the nucleus basalis...returned to the starting platform. For the choice run, the barrier was removed so that the rat could enter either compartment. The guillotine door was...flashing lights) as the one on the forced run was rewarded with sucrose. Entering the other compartment was not. In either case, the rat was removed from

  18. Review of Removal, Containment and Treatment Technologies for Remediation of Contaminated Sediment in the Great Lakes

    Science.gov (United States)

    1990-12-01

    selected as a remedy for the St. Paul Waterway Remedial Action and Habitat Restoration Project because it created few adverse impacts and provided great...J. K., Weitkamp, D. E., and Weiner, K. S. 1989. "St. Paul Waterway Remedial Action and Habitat Restoration Project," Contaminated Marine Sedi- ments...Electrocoagulation Anaerobic biodegradation Granular media filtration Flocculation/coagulation BioTrol aqueous treatment Membrane microfiLtration system Freeze

  19. Cambios en la mucosa nasal de los médicos por exposición al humo por electrocoagulación

    Directory of Open Access Journals (Sweden)

    María C. Navarro

    2016-05-01

    Full Text Available Objective: to prove that exposure to smoke resulting from electrocoagulation causes changes in the nasal mucosa of physicians in training at a public hospital in Mexico. Methodology: a prospective fixed cohort study was conducted with a working universe consisting of 43 physicians distributed as follows: a group of 20 professionals with non-surgical specialties (thus unexposed to electrocautery smoke inhalation, and another group of 23 with surgical specialties (thus they were exposed to electrocautery smoke inhalation. They underwent two nasal biopsies: one at the beginning of the study and another after training as specialists for four years. The biopsies were reviewed by the hospital’s chief of Pathology and the incidence of changes in the nasal mucosa in both groups was calculated together with exposure index and the relative risk. Results: the biopsies performed at baseline showed that none of the specialists in training included in this study had damages in the nasal mucosa. The final biopsies, performed after the four-year medical training, had the following results: 70% of the medical residents, who were exposed, showed some histopathological changes in the nasal mucosa (hyperplasia or squamous metaplasia, whereas only 5% (1/20 of the unexposed individuals had them; the risk factor for nasal mucosa damage by exposure was estimated at 13.8. The most common lesions resulting from exposure to smoke from electrocoagulation were hyperplasia and squamous metaplasia. Conclusions: our results demonstrate that residents exposed to smoke produced by electrocoagulation have changes in the nasal mucosa.

  20. Electrochemical removal of indium ions from aqueous solution using iron electrodes

    International Nuclear Information System (INIS)

    Chou, Wei-Lung; Huang, Yen-Hsiang

    2009-01-01

    The removal of indium ions from aqueous solution was carried out by electrocoagulation in batch mode using an iron electrode. Various operating parameters that could potentially affect the removal efficiency were investigated, including the current density, pH variation, supporting electrolyte, initial concentration, and temperature. The optimum current density, supporting electrolyte concentration, and temperature were found to be 6.4 mA/cm 2 , 0.003N NaCl, and 298 K, respectively. When the pH values lower than 6.1, the removal efficiencies of indium ions via electrocoagulation were up to 5 times greater than those by adding sodium hydroxide. The indium ion removal efficiency decreased with an increase in the initial concentration. Results for the indium ion removal kinetics at various current densities show that the kinetic rates conformed to the pseudo-second-order kinetic model with good correlation. The experimental data were also tested against different adsorption isotherm models for describing the electrocoagulation process. The adsorption of indium ions preferably fitting the Langmuir adsorption isotherm suggests monolayer coverage of adsorbed molecules.