WorldWideScience

Sample records for electrochemically pretreated glassy

  1. Adsorptive Stripping Voltammetric Determination of Hydroquinone using an Electrochemically Pretreated Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Abdul Niaz1,

    2008-12-01

    Full Text Available A simple and efficient adsorptive stripping voltammetric (AdSV method was developed for the determination of hydroquinone at an electrochemically pretreated glassy carbon (GC electrode in waste water. Various parameters such as solvent system, accumulation potential, accumulation time and scan rate were optimized. The electrochemically pretreated GC electrode showed good response towards hydroquinone determination by using AdSV. Under the optimized conditions the peak current showed good linear relationship with the hydroquinone concentration in the range of 0.5-4.0mg L-1 and 5-30mg L-1. The 60/40 methanol/water composition was found to be the best solvent system and 0.05mol L-1 H2SO4 was found as useful supporting electrolyte concentration. The accumulation time was 60 s and the detection limit was 50µg L-1. The developed method was successfully applied for the determination of hydroquinone in polymeric industrial discharge samples waste photographic developer solution and cream sample without any significant effect of surface fouling.

  2. Activation of glassy carbon electrodes by photocatalytic pretreatment

    Energy Technology Data Exchange (ETDEWEB)

    Dumanli, Onur [Department of Chemistry, Faculty of Science and Art, Ondokuz Mayis University, Kurupelit, 55139 Samsun (Turkey); Onar, A. Nur [Department of Chemistry, Faculty of Science and Art, Ondokuz Mayis University, Kurupelit, 55139 Samsun (Turkey)], E-mail: nonar@omu.edu.tr

    2009-11-01

    This paper describes a simple and rapid photocatalytic pretreatment procedure that removes contaminants from glassy carbon (GC) surfaces. The effectiveness of TiO{sub 2} mediated photocatalytic pretreatment procedure was compared to commonly used alumina polishing procedure. Cyclic voltammetric and chronocoulometric measurements were carried out to assess the changes in electrode reactivity by using four redox systems. Electrochemical measurements obtained on photocatalytically treated GC electrodes showed a more active surface relative to polished GC. In cyclic voltammograms of epinephrine, Fe(CN){sub 6}{sup 3-/4-} and ferrocene redox systems, higher oxidation and reduction currents were observed. The heterogeneous electron transfer rate constants (k{sup o}) were calculated for Fe(CN){sub 6}{sup 3-/4-} and ferrocene which were greater for photocatalytic pretreatment. Chronocoulometry was performed in order to find the amount of adsorbed methylene blue onto the electrode and was calculated as 0.34 pmol cm{sup -2} for photocatalytically pretreated GC. The proposed photocatalytic GC electrode cleansing and activating pretreatment procedure was more effective than classical alumina polishing.

  3. Electrochemical pre anodization of glassy carbon electrode and application to determine chloramphenicol

    International Nuclear Information System (INIS)

    Truc, Nguyen Minh; Mortensen, John; Anh, Nguyen Ba Hoai

    2008-01-01

    This paper suggested a method to enhance the performance of carbon electrodes for the determination of chloramphenicol (CAP). The sensitivity and the reproducibility of the carbon electrodes could be enhanced easily by electrochemical pretreatment. Some kinds of carbon material were studied including glassy carbon, graphite carbon and pyrolytic carbon. Numerous kinds of supporting electrolyte have been tried. For glassy carbon electrode, the acidic solution, H 2 SO 4 5 mM, resulted in best performance at pretreated voltage of +2.1V (vs. Ag/ AgCl) in duration of 250 second. However, for graphite and pyrolytic carbon electrodes, the phosphate buffer solution pH 6.0 gave the best performance at +1.7V (vs. Ag/ AgCl) in duration of 20 seconds. The detection limit could be at very low concentration of CAP: 0.8 ng/ ml for glassy carbon electrode, 3.5 ng/ ml for graphite carbon electrode. The method was successful applied to aqua-agriculture water sample and milk sample with simple extraction as well as direct ointment sample analysis. (author)

  4. Electrochemical and microstructural characterization of platinum supported on glassy carbon

    Directory of Open Access Journals (Sweden)

    Terzić Sanja

    2007-01-01

    Full Text Available The effect of the electrochemical oxidation of glassy carbon on the deposition of platinum particles and the electrocatalytic activity of platinum supported on oxidized glassy carbon were studied for methanol oxidation in H2SO4 solution. Platinum was potentiostatically deposited from H2SO4 + 6mM H2PtCl6 solution. Glassy carbon was anodically polarized in 1 M NaOH at 1.41 V (SCE for 35 and 95 s and in 0.5 M H2SO4 at 2V (SCE for 35; 95 s and 2.25 V for 35 and 95 s. Electrochemical treatment of the GC support leads to a better distribution of platinum on the substrate and has remarkable effect on the activity. The activity of the Pt/GCox electrode for methanol oxidation is larger than that of polycrystalline Pt and by more than one order of magnitude larger than that of a Pt/GC electrode. This increase in activity indicates the pronounced role of the organic residues of the GC support on the properties of Pt particles deposited on glassy carbon.

  5. Electrochemical oxidation of niclosamide at a glassy carbon ...

    African Journals Online (AJOL)

    Cyclic voltammetry, square-wave voltammetry and controlled potential electrolysis have been used to study the electrochemical oxidation behaviour of niclosamide at a glassy carbon electrode. The number of electrons transferred, the wave characteristics, the diffusion coefficient and reversibility of the reactions have been ...

  6. Electrochemical functionalization of glassy carbon electrode by reduction of diazonium cations in protic ionic liquid

    International Nuclear Information System (INIS)

    Shul, Galyna; Ruiz, Carlos Alberto Castro; Rochefort, Dominic; Brooksby, Paula A.; Bélanger, Daniel

    2013-01-01

    Protic ionic liquid based on 2-methoxypyridine and trifluoroacetic acid was used as electrolyte for the functionalization of a glassy carbon electrode surface by electrochemical reduction of in situ generated 4-chlorobenzene diazonium and 4-nitrobenzene diazonium cations. The diazonium cations were synthesized in an electrochemical cell by reaction of the corresponding amines with NaNO 2 dissolved in protic ionic liquid. The resulting electrografted organic layers exhibit similar properties to those layers obtained by the derivatization from isolated diazonium salts dissolved in protic ionic liquid. Functionalized glassy carbon electrode surfaces were characterized by cyclic voltammetry, Fourier transform infrared and X-ray photoelectron spectroscopies. Atomic force microscopy thickness measurements revealed that, in our experimental conditions, the use of protic ionic liquid led to the formation of film with a thickness of about 1.5 nm. It is also demonstrated that the nitrobenzene chemisorbed on glassy carbon electrode or dissolved in protic ionic liquid undergoes electrochemical conversion to hydroxyaminobenzene

  7. Electrochemical behavior of cysteine at a CuGeO3 nanowires modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Dong Yongping; Pei Lizhai; Chu Xiangfeng; Zhang Wangbing; Zhang Qianfeng

    2010-01-01

    A CuGeO 3 nanowire modified glassy carbon electrode was fabricated and characterized by scanning electron microscopy. The results of electrochemical impedance spectroscopy reveal that electron transfer through nanowire film is facile compared with that of bare glassy carbon electrode. The modified electrode exhibited a novel electrocatalytic behavior to the electrochemical reactions of L-cysteine in neutral solution, which was not reported previously. Two pairs of semi-reversible electrochemical peaks were observed and assigned to the processes of oxidation/reduction and adsorption/desorption of cysteine at the modified electrode, respectively. The electrochemical response of cysteine is poor in alkaline condition and is enhanced greatly in acidic solution, suggesting that hydrogen ions participate in the electrochemical oxidation process of cysteine. The intensities of two anodic peaks varied linearly with the concentration of cysteine in the range of 1 x 10 -6 to 1 x 10 -3 mol L -1 , which make it possible to sensitive detection of cysteine with the CuGeO 3 nanowire modified electrode. Furthermore, the modified electrode exhibited good reproducibility and stability.

  8. Electrochemically modified sulfisoxazole nanofilm on glassy carbon for determination of cadmium(II) in water samples

    International Nuclear Information System (INIS)

    Gupta, Vinod Kumar; Yola, Mehmet Lütfi; Atar, Necip; Solak, Ali Osman; Uzun, Lokman; Üstündağ, Zafer

    2013-01-01

    Highlights: • Sulfisoxazole was grafted onto glassy carbon electrode. • The electrode was characterized by spectroscopic and electrochemical methods. • It has been used for the determination of Cd(II) ions in real samples in very low concentrations. -- Abstract: Sulfisoxazole (SO) was grafted to glassy carbon electrode (GCE) via the electrochemical oxidation of SO in acetonitrile solution containing 0.1 M tetrabutylammoniumtetra-fluoroborate (TBATFB). The prepared electrode was characterized by using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), reflection–absorption infrared spectroscopy (RAIRS) and X-ray photoelectron spectroscopy (XPS). The ellipsometric thickness of SO nanofilm at the glassy carbon surface was obtained as 14.48 ± 0.11 nm. The stability of the SO modified GCE was studied. The SO modified GCE was also utilized for the determination of Cd(II) ions in water samples in the presence of Pb(II) and Fe(II) by adsorptive stripping voltammetry. The linearity range and the detection limit of Cd(II) ions were 1.0 × 10 −10 to 5.0 × 10 −8 M and 3.3 × 10 −11 M (S/N = 3), respectively

  9. Potentiometric application of boron- and phosphorus-doped glassy carbon electrodes

    Directory of Open Access Journals (Sweden)

    ZORAN V. LAUSEVIC

    2001-03-01

    Full Text Available Acomparative study was carried out of the potentiometric application of boronand phosphorus-doped and undoped glassy carbon samples prepared at the same heat treatment temperature (HTT 1000°C. The electrochemical activities of the obtained electrode materials were investigated on the example of argentometric titrations. It was found that the electrochemical behaviour of the doped glassy carbon samples are very similar to a Sigri (undoped glassy carbon sample (HTT 2400°C. The experiments showed that the potentiometric response depends on the polarization mode, the nature of the sample, the pretreatment of the electrode surface, and the nature of the supporting electrolyte. The amounts of iodide, bromide, and of chloridewere determined to be 1.27 mg, 0.80 mg and 0.54 mg, respectively, with a maximum relative standard deviation of less than 1.1%. The obtained results are in good agreement with the results of comparative potentiometric titrations using a silver indicator electrode. The titrationmethod was applied to the indirect determination of pyridoxine hydrochloride, i.e., vitamin B6.

  10. Electrochemical sensing of etoposide using carbon quantum dot modified glassy carbon electrode.

    Science.gov (United States)

    Nguyen, Hoai Viet; Richtera, Lukas; Moulick, Amitava; Xhaxhiu, Kledi; Kudr, Jiri; Cernei, Natalia; Polanska, Hana; Heger, Zbynek; Masarik, Michal; Kopel, Pavel; Stiborova, Marie; Eckschlager, Tomas; Adam, Vojtech; Kizek, Rene

    2016-04-25

    In this study, enhancement of the electrochemical signals of etoposide (ETO) measured by differential pulse voltammetry (DPV) by modifying a glassy carbon electrode (GCE) with carbon quantum dots (CQDs) is demonstrated. In comparison with a bare GCE, the modified GCE exhibited a higher sensitivity towards electrochemical detection of ETO. The lowest limit of detection was observed to be 5 nM ETO. Furthermore, scanning electron microscopy (SEM), fluorescence microscopy (FM), and electrochemical impedance spectroscopy (EIS) were employed for the further study of the working electrode surface after the modification with CQDs. Finally, the GCE modified with CQDs under optimized conditions was used to analyse real samples of ETO in the prostate cancer cell line PC3. After different incubation times (1, 3, 6, 9, 12, 18 and 24 h), these samples were then prepared prior to electrochemical detection by the GCE modified with CQDs. High performance liquid chromatography with an electrochemical detection method was employed to verify the results from the GCE modified with CQDs.

  11. ELECTROCHEMICAL DETERMINATION OF ETHANOL, 2- PROPANOL AND 1-BUTANOL ON GLASSY CARBON ELECTRODE MODIFIED WITH NICKEL OXIDE FILM

    Directory of Open Access Journals (Sweden)

    A. Benchettara

    2014-12-01

    Full Text Available In this work, we present the modification of a glassy carbon electrode with nickel oxide film which is performed in two successive steps. In the first one, the electrochemical deposition of metallic nickel on the glassy carbon electrode (GCE is achieved in 0.1M boric acid; in the second step, the metallic deposit is anodically oxidized in 0.1M NaOH. These two operations were carried out in a three electrode cell with a filiform platinum auxiliary electrode, a SCE as potential reference and a working microelectrode of modified glassy carbon with nickel oxides. This electrode is characterized by several electrochemical techniques and is used for the catalytic determination of ethanol, 2-propanol and 1-butanol in 0.1 M NaOH. The proposed chemical mechanism shows that NiO2 acts as a mediator.

  12. ELECTROCHEMICAL DETERMINATION OF ETHANOL, 2- PROPANOL AND 1-BUTANOL ON GLASSY CARBON ELECTRODE MODIFIED WITH NICKEL OXIDE FILM

    Directory of Open Access Journals (Sweden)

    A. Benchettara

    2015-07-01

    Full Text Available In this work, we present the modification of a glassy carbon electrode with nickel oxide film which is performed in two successive steps. In the first one, the electrochemical deposition of metallic nickel on the glassy carbon electrode (GCE is achieved in 0.1M boric acid; in the second step, the metallic deposit is anodically oxidized in 0.1M NaOH. These two operations were carried out in a three electrode cell with a filiform platinum auxiliary electrode, a SCE as potential reference and a working microelectrode of modified glassy carbon with nickel oxides. This electrode is characterized by several electrochemical techniques and is used for the catalytic determination of ethanol, 2-propanol and 1-butanol in 0.1 M NaOH. The proposed chemical mechanism shows that NiO2 acts as a mediator.

  13. Electrochemical Glucose Oxidation Using Glassy Carbon Electrodes Modified with Au-Ag Nanoparticles: Influence of Ag Content

    Directory of Open Access Journals (Sweden)

    Nancy Gabriela García-Morales

    2015-01-01

    Full Text Available This paper describes the application of glassy carbon modified electrodes bearing Aux-Agy nanoparticles to catalyze the electrochemical oxidation of glucose. In particular, the paper shows the influence of the Ag content on this oxidation process. A simple method was applied to prepare the nanoparticles, which were characterized by transmission electron microscopy, Ultraviolet-Visible spectroscopy, X-ray diffraction spectroscopy, and cyclic voltammetry. These nanoparticles were used to modify glassy carbon electrodes. The effectiveness of these electrodes for electrochemical glucose oxidation was evaluated. The modified glassy carbon electrodes are highly sensitive to glucose oxidation in alkaline media, which could be attributed to the presence of Aux-Agy nanoparticles on the electrode surface. The voltammetric results suggest that the glucose oxidation speed is controlled by the glucose diffusion to the electrode surface. These results also show that the catalytic activity of the electrodes depends on the Ag content of the nanoparticles. Best results were obtained for the Au80-Ag20 nanoparticles modified electrode. This electrode could be used for Gluconic acid (GA production.

  14. Electrochemical parameters of ethamsylate at multi-walled carbon nanotube modified glassy carbon electrodes.

    Science.gov (United States)

    Wang, Sheng-Fu; Xu, Qiao

    2007-05-01

    In this paper, some electrochemical parameters of ethamsylate at a multi-walled carbon nanotube modified glassy carbon electrode, such as the charge number, exchange current density, standard heterogeneous rate constant and diffusion coefficient, were measured by cyclic voltammetry, chronoamperometry and chronocoulometry. The modified electrode exhibits good promotion of the electrochemical reaction of ethamsylate and increases the standard heterogeneous rate constant of ethamsylate greatly. The differential pulse voltammetry responses of ethamsylate were linearly dependent on its concentrations in a range from 2.0 x 10(-6) to 6.0 x 10(-5) mol L(-1), with a detection limit of 4.0 x 10(-7) mol L(-1).

  15. A 3D Microfluidic Chip for Electrochemical Detection of Hydrolysed Nucleic Bases by a Modified Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Jana Vlachova

    2015-01-01

    Full Text Available Modification of carbon materials, especially graphene-based materials, has wide applications in electrochemical detection such as electrochemical lab-on-chip devices. A glassy carbon electrode (GCE modified with chemically alternated graphene oxide was used as a working electrode (glassy carbon modified by graphene oxide with sulphur containing compounds and Nafion for detection of nucleobases in hydrolysed samples (HCl pH = 2.9, 100 °C, 1 h, neutralization by NaOH. It was found out that modification, especially with trithiocyanuric acid, increased the sensitivity of detection in comparison with pure GCE. All processes were finally implemented in a microfluidic chip formed with a 3D printer by fused deposition modelling technology. As a material for chip fabrication, acrylonitrile butadiene styrene was chosen because of its mechanical and chemical stability. The chip contained the one chamber for the hydrolysis of the nucleic acid and another for the electrochemical detection by the modified GCE. This chamber was fabricated to allow for replacement of the GCE.

  16. A 3D microfluidic chip for electrochemical detection of hydrolysed nucleic bases by a modified glassy carbon electrode.

    Science.gov (United States)

    Vlachova, Jana; Tmejova, Katerina; Kopel, Pavel; Korabik, Maria; Zitka, Jan; Hynek, David; Kynicky, Jindrich; Adam, Vojtech; Kizek, Rene

    2015-01-22

    Modification of carbon materials, especially graphene-based materials, has wide applications in electrochemical detection such as electrochemical lab-on-chip devices. A glassy carbon electrode (GCE) modified with chemically alternated graphene oxide was used as a working electrode (glassy carbon modified by graphene oxide with sulphur containing compounds and Nafion) for detection of nucleobases in hydrolysed samples (HCl pH = 2.9, 100 °C, 1 h, neutralization by NaOH). It was found out that modification, especially with trithiocyanuric acid, increased the sensitivity of detection in comparison with pure GCE. All processes were finally implemented in a microfluidic chip formed with a 3D printer by fused deposition modelling technology. As a material for chip fabrication, acrylonitrile butadiene styrene was chosen because of its mechanical and chemical stability. The chip contained the one chamber for the hydrolysis of the nucleic acid and another for the electrochemical detection by the modified GCE. This chamber was fabricated to allow for replacement of the GCE.

  17. Electrochemical deposition of gold nanoparticles on carbon nanotube coated glassy carbon electrode for the improved sensing of tinidazole

    International Nuclear Information System (INIS)

    Shahrokhian, Saeed; Rastgar, Shokoufeh

    2012-01-01

    The electrochemical reduction of tinidazole (TNZ) is studied on gold-nanoparticle/carbon-nanotubes (AuNP/CNT) modified glassy carbon electrodes using the linear sweep voltammetry. An electrochemical procedure was used for the deposition of gold nanoparticles onto the carbon nanotube film pre-cast on a glassy carbon electrode surface. The resulting nanoparticles were characterized by scanning electron microscopy and cyclic voltammetry. The effect of the electrodeposition conditions, e.g., salt concentration and deposition time on the response of the electrode was studied. Also, the effect of experimental parameters, e.g., potential and time of accumulation, pH of the buffered solutions and the potential sweep rate on the response is examined. Under the optimal conditions, the modified electrode showed a wide linear response toward the concentration of TNZ in the range of 0.1–50 μM with a detection limit of 10 nM. The prepared electrode was successfully applied for the determination of TNZ in pharmaceutical and clinical samples.

  18. Electrochemical characterization of glassy carbon electrode modified with 1,10-phenanthroline groups by two pathways: reduction of the corresponding diazonium ions and reduction of phenanthroline

    International Nuclear Information System (INIS)

    Shul, Galyna; Weissmann, Martin; Bélanger, Daniel

    2015-01-01

    The electrochemical behaviour of 1,10-phenanthroline molecules immobilized on a glassy carbon electrode surface by electrochemical reduction of the corresponding in-situ generated diazonium ions in an aqueous solution was investigated. Firstly, the derivatization of glassy carbon electrode was confirmed by the presence of the barrier effect in the solution of a redox probe. Secondly, atomic force microscopy measurements revealed the deposition of thin (< 2 nm) uniform 1,10-phenanthroline film on the surface of pyrolyzed photoresist film electrode. Thirdly, the initially electrochemically inactive grafted organic film became electroactive after being subjected to electrochemical reduction and oxidation. Fourthly, the electrochemical behaviour of phenanthroline modified electrode by electrochemical reduction of the corresponding diazonium cations was found to be similar to that of electrode modified by electrochemical reduction of only phenanthroline dissolved in an aqueous acid solution. Finally, cyclic voltammetry experiments using various methyl substituted phenanthroline derivatives provided direct evidence that functional groups responsible for the film electroactivity are formed at 5 or/and 6 positions of grafted phenanthroline molecules. On the other hand, a phenanthroline derivative having these positions blocked by methyl groups can also display electroactivity with position 7 being most likely involved in the observed redox process

  19. The electrochemical behavior of some podands at a benzo[c]cinnoline modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Isbir, Aybueke A.; Solak, Ali Osman; Uestuendag, Zafer; Bilge, Selen; Natsagdorj, Amgalan; Kilic, Emine; Kilic, Zeynel

    2005-01-01

    This paper describes the grafting of benzo[c]cinnoline (BCC) molecules on glassy carbon (GC) electrode surface. The attachment of BCC molecules to carbon substrate is induced by the electrochemical reduction of the corresponding diazonium salt. The modification of GC with BCC diazonium salt was done in aprotic solution and proved by blocking of dopamine electron transfer. The presence of BCC at the GC surface was characterized by cyclic voltammetry and X-ray photoelectron spectroscopy (XPS). On modified surface, the electrochemical behavior of two different types of podands and the catalytic effects of the GC-BCC surface were studied. The XPS was used to monitor element characteristics of the adsorbates on the GC surface and confirm the attachment of BCC molecules to the GC surface

  20. Glassy carbon based supercapacitor stacks

    Energy Technology Data Exchange (ETDEWEB)

    Baertsch, M; Braun, A; Koetz, R; Haas, O [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    Considerable effort is being made to develop electrochemical double layer capacitors (EDLC) that store relatively large quantities of electrical energy and possess at the same time a high power density. Our previous work has shown that glassy carbon is suitable as a material for capacitor electrodes concerning low resistance and high capacity requirements. We present the development of bipolar electrochemical glassy carbon capacitor stacks of up to 3 V. Bipolar stacks are an efficient way to meet the high voltage and high power density requirements for traction applications. Impedance and cyclic voltammogram measurements are reported here and show the frequency response of a 1, 2, and 3 V stack. (author) 3 figs., 1 ref..

  1. Sensitive electrochemical sensor of tryptophan based on Ag-C core–shell nanocomposite modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Mao Shuxian; Li Weifeng; Long Yumei; Tu Yifeng; Deng, Anping

    2012-01-01

    Graphical abstract: Ag-C and Colloidal carbon sphere modified glassy carbon electrodes were prepared. It was clear that the Ag-C/GCE exhibited enhanced electrocatalytic activity towards Trp, which could result from the synergistic effect between Ag core and carbon shell. The Ag-C/GCE showed excellent analytical properties in the determination of Trp. Highlights: ► The electrochemical behavior of Ag-C core–shell nanocomposite was firstly proposed. ► Ag-C/GC electrode exhibited favorable electrocatalytic properties towards Trp. ► The good electrocatalysis was due to the synergistic effect of Ag-core and C-shell. ► The Ag-C/GC electrode displayed excellent analytical properties in determining Trp. - Abstract: We here reported a simple electrochemical method for the detection of tryptophan (Trp) based on the Ag-C modified glassy carbon (Ag-C/GC) electrode. The Ag-C core–shell structured nanoparticles were synthesized using one-pot hydrothermal method and characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), and Fourier transform-infrared spectroscopy (FTIR). The electrochemical behaviors of Trp on Ag-C/GC electrode were investigated and exhibited a direct electrochemical process. The favorable electrochemical properties of Ag-C/GC electrode were attributed to the synergistic effect of the Ag core and carbon shell. The carbon shell cannot only protect Ag core but also contribute to the enhanced substrate accessibility and Trp-substrate interactions, while nano-Ag core can display good electrocatalytic activity to Trp at the same time. Under the optimum experimental conditions the oxidation peak current was linearly dependent on the Trp concentration in the range of 1.0 × 10 −7 to 1.0 × 10 −4 M with a detection limit of 4.0 × 10 −8 M (S/N = 3). In addition, the proposed electrode was applied for the determination of Trp concentration in real samples and satisfactory results were obtained. The technique offers

  2. Sensitive Electrochemical Detection of Dopamine With a Nitrogen-doped Graphene Modified Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Wencheng Wang

    2016-09-01

    Full Text Available In this paper nitrogen-doped graphene (NG nanosheets were used as the modifier on the surface of glassy carbon electrode (GCE. The modified electrode (NG/GCE was further applied to the sensitive detection of dopamine (DA by voltammetric method. Due to the unique properties of NG such as large surface area and excellent electrocatalytic activity, electrochemical response of DA was greatly enhanced on NG/GCE with a pair of well-defined redox peaks appeared on cyclic voltammogram. Electrochemical behaviors of DA on NG/GCE were carefully investigated with the electrochemical parameters calculated. Under the selected conditions the oxidation peak currents of DA had a good linear relationship with its concentration in the range from 8.0×10–7 mol L–1 to 8.0×10–4 mol L–1 with a detection limit of 2.55×10–7 mol L–1 (3σ. The proposed method was further applied to the DA injection samples determination with satisfactory results. This work is licensed under a Creative Commons Attribution 4.0 International License.

  3. EDTA modified glassy carbon electrode: Preparation and characterization

    International Nuclear Information System (INIS)

    Ustuendag, Zafer; Solak, Ali Osman

    2009-01-01

    EDTA-phenoxyamide modified glassy carbon electrode (EDTA-GC) was prepared at a glassy carbon electrode by surface synthesis. In the first step, nitrophenyl was grafted to the glassy carbon (GC) surface via the electrochemical reduction of its tetraflouroborate diazonium salt. In the second step, nitrophenyl-modified electrode (NP-GC) was subjected to the cathodic potential scan to reduce the nitro to amine group. p-Aminophenyl modified glassy carbon electrode (AP-GC) was dipped into a EDTA solution containing 1-ethyl-3(3-(dimethlyamino)propyl)-carbodiimide (EDC) as an activating agent. Thus formed ((2-anilino-2-oxoethyl){2-[bis(carboxymethyl)amino]-ethyl}amino)acetic acid modified GC electrode was denoted as EDTA-GC and characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), ellipsometry and X-ray photoelectron spectroscopy (XPS). Complexation of the EDTA-GC surface with Pb 2+ ions was investigated if this electrode could be used as a metal sensor.

  4. EDTA modified glassy carbon electrode: Preparation and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Ustuendag, Zafer [Dumlupinar University, Faculty of Arts and Sciences, Department of Chemistry, Kuetahya (Turkey); Solak, Ali Osman [Ankara University, Faculty of Science, Department of Chemistry, Degol Street, Tandogan, 06100 Ankara (Turkey)], E-mail: osolak@science.ankara.edu.tr

    2009-11-01

    EDTA-phenoxyamide modified glassy carbon electrode (EDTA-GC) was prepared at a glassy carbon electrode by surface synthesis. In the first step, nitrophenyl was grafted to the glassy carbon (GC) surface via the electrochemical reduction of its tetraflouroborate diazonium salt. In the second step, nitrophenyl-modified electrode (NP-GC) was subjected to the cathodic potential scan to reduce the nitro to amine group. p-Aminophenyl modified glassy carbon electrode (AP-GC) was dipped into a EDTA solution containing 1-ethyl-3(3-(dimethlyamino)propyl)-carbodiimide (EDC) as an activating agent. Thus formed ((2-anilino-2-oxoethyl){l_brace}2-[bis(carboxymethyl)amino]-ethyl{r_brace}amino)acetic acid modified GC electrode was denoted as EDTA-GC and characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), ellipsometry and X-ray photoelectron spectroscopy (XPS). Complexation of the EDTA-GC surface with Pb{sup 2+} ions was investigated if this electrode could be used as a metal sensor.

  5. Pre-treatment technology for electrochemical detection of heavy metal lead and cadmium in food

    Directory of Open Access Journals (Sweden)

    Ke YAN

    2015-04-01

    Full Text Available Wet digestion is used as the pre-treatment technology for the electrochemical detection of heavy metals in food, and the complete wet digestion condition of food sample is optimized by electrochemical experiments. The results show that the experimental samples can be digested completely using the Nitric acid-hydrogen peroxide system and is not pre-digested after adding 10 mL nitric acid at 120~140 ℃ and adding 10~15 mL of hydrogen peroxide during the heating process. The correlation coefficient of electrochemical detect is 0.99 for digestion solution of the samples, and the recovery of standard addition is 82%~115%. Wet digestion as a pre-treatment technology of food samples. It can digest sample fully and meet the requirements of electrochemical detection.

  6. Electrochemical Determination of Uric Acid at CdTe Quantum Dot Modified Glassy Carbon Electrodes.

    Science.gov (United States)

    Pan, Deng; Rong, Shengzhong; Zhang, Guangteng; Zhang, Yannan; Zhou, Qiang; Liu, Fenghai; Li, Miaojing; Chang, Dong; Pan, Hongzhi

    2015-01-01

    Cyclic voltammetry and differential pulse voltammetry were used to investigate the electrochemical behavior of uric acid (UA) at a CdTe quantum dot (QD) modified the glassy carbon electrode (GCE). CdTe QDs, as new semiconductor nanocrystals, can greatly improve the peak current of UA. The anodic peak current of UA was linear with its concentration between 1.0×10(-6) and 4.0×10(-4) M in 0.1 M pH 5.0 phosphate buffer solution. The LOD for UA at the CdTe electrode (1.0×10(-7) M) was superior to that of the GCE. In addition, we also determined the effects of scan rate, pH, and interferences of UA for the voltammetric behavior and detection. The results indicated that modified electrode possessed excellent reproducibility and stability. Finally, a new and efficient electrochemical sensor for detecting UA was developed.

  7. Electrochemically Pretreated Carbon Microfiber Electrodes as Sensitive HPLC-EC Detectors

    Directory of Open Access Journals (Sweden)

    Zdenka Bartosova

    2012-01-01

    Full Text Available The paper focuses on the analysis and detection of electroactive compounds using high-performance liquid chromatography (HPLC combined with electrochemical detection (EC. The fabrication and utilization of electrochemically treated carbon fiber microelectrodes (CFMs as highly sensitive amperometric detectors in HPLC are described. The applied pretreatment procedure is beneficial for analytical characteristics of the sensor as demonstrated by analysis of the model set of phenolic acids. The combination of CFM with separation power of HPLC technique allows for improved detection limits due to unique electrochemical properties of carbon fibers. The CFM proved to be a promising tool for amperometric detection in liquid chromatography.

  8. Electrochemical behavior and voltammetric determination of acetaminophen based on glassy carbon electrodes modified with poly(4-aminobenzoic acid)/electrochemically reduced graphene oxide composite films.

    Science.gov (United States)

    Zhu, Wencai; Huang, Hui; Gao, Xiaochun; Ma, Houyi

    2014-12-01

    Poly(4-aminobenzoic acid)/electrochemically reduced graphene oxide composite film modified glassy carbon electrodes (4-ABA/ERGO/GCEs) were fabricated by a two-step electrochemical method. The electrochemical behavior of acetaminophen at the modified electrode was investigated by means of cyclic voltammetry. The results indicated that 4-ABA/ERGO composite films possessed excellent electrocatalytic activity towards the oxidation of acetaminophen. The electrochemical reaction of acetaminophen at 4-ABA/ERGO/GCE is proved to be a surface-controlled process involving the same number of protons and electrons. The voltammetric determination of acetaminophen performed with the 4-ABA/ERGO modified electrode presents a good linearity in the range of 0.1-65 μM with a low detection limit of 0.01 μM (S/N=3). In the case of using the 4-ABA/ERGO/GCE, acetaminophen and dopamine can be simultaneously determined without mutual interference. Furthermore, the 4-ABA/ERGO/GCE has good reproducibility and stability, and can be used to determine acetaminophen in tablets. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Influence of electrochemical pre-treatment on highly reactive carbon nitride thin films deposited on stainless steel for electrochemical applications

    International Nuclear Information System (INIS)

    Benchikh, A.; Debiemme-Chouvy, C.; Cachet, H.; Pailleret, A.; Saidani, B.; Beaunier, L.; Berger, M.H.

    2012-01-01

    In this work, a-CNx films prepared by DC magnetron sputtering on stainless steel substrate have been investigated as electrode materials. While their wide potential window was confirmed as a property shared by boron doped diamond (BDD) electrodes, their electrochemical activity with respect to fast and reversible redox systems, [Ru(NH 3 ) 6 ] 3+/2+ , [Fe(CN) 6 ] 3−/4− and [IrCl 6 ] 2−/3− , was assessed by Electrochemical Impedance Spectroscopy (EIS) after cathodic or anodic electrochemical pre-treatments or for as grown samples. It was shown for the three systems that electrochemical reactivity of the a-CNx films was improved after the cathodic pre-treatment and degraded after the anodic one, the apparent heterogeneous rate constant k 0app being decreased by at least one order of magnitude for the latter case. A high k 0app value of 0.11 cm s −1 for [IrCl 6 ] 2−/3− was obtained, close to the highest values found for BDD electrodes.

  10. Electrochemical determination of mesotrione at organoclay modified glassy carbon electrodes.

    Science.gov (United States)

    Kamga Wagheu, Josephine; Forano, Claude; Besse-Hoggan, Pascale; Tonle, Ignas K; Ngameni, Emmanuel; Mousty, Christine

    2013-01-15

    A natural Cameroonian smectite-type clay (SaNa) was exchanged with cationic surfactants, namely cetyltrimethylammonium (CTA) and didodecyldimethyl ammonium (DDA) modifying its physico-chemical properties. The resulting organoclays that have higher adsorption capacity for mesotrione than the pristine SaNa clay, have been used as modifiers of glassy carbon electrode for the electrochemical detection of this herbicide by square wave voltammetry. The stripping performances of SaNa, SaCTA and SaDDA modified electrodes were therefore evaluated and the experimental parameters were optimized. SaDDA gives the best results in deoxygenated acetate buffer solution (pH 6.0) after 2 min accumulation under open circuit conditions. Under optimal conditions, the reduction current is proportional to mesotrione concentration in the range from 0.25 to 2.5 μM with a detection limit of 0.26 μM. The fabricated electrode was also applied for the commercial formulation CALLISTO, used in European maize market. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Sensitive electrochemical sensor of tryptophan based on Ag-C core-shell nanocomposite modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Mao Shuxian [College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 (China); Li Weifeng, E-mail: liweifeng@suda.edu.cn [College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 (China); Long Yumei, E-mail: yumeilong@suda.edu.cn [College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 (China); Tu Yifeng; Deng, Anping [College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 (China)

    2012-08-13

    Graphical abstract: Ag-C and Colloidal carbon sphere modified glassy carbon electrodes were prepared. It was clear that the Ag-C/GCE exhibited enhanced electrocatalytic activity towards Trp, which could result from the synergistic effect between Ag core and carbon shell. The Ag-C/GCE showed excellent analytical properties in the determination of Trp. Highlights: Black-Right-Pointing-Pointer The electrochemical behavior of Ag-C core-shell nanocomposite was firstly proposed. Black-Right-Pointing-Pointer Ag-C/GC electrode exhibited favorable electrocatalytic properties towards Trp. Black-Right-Pointing-Pointer The good electrocatalysis was due to the synergistic effect of Ag-core and C-shell. Black-Right-Pointing-Pointer The Ag-C/GC electrode displayed excellent analytical properties in determining Trp. - Abstract: We here reported a simple electrochemical method for the detection of tryptophan (Trp) based on the Ag-C modified glassy carbon (Ag-C/GC) electrode. The Ag-C core-shell structured nanoparticles were synthesized using one-pot hydrothermal method and characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), and Fourier transform-infrared spectroscopy (FTIR). The electrochemical behaviors of Trp on Ag-C/GC electrode were investigated and exhibited a direct electrochemical process. The favorable electrochemical properties of Ag-C/GC electrode were attributed to the synergistic effect of the Ag core and carbon shell. The carbon shell cannot only protect Ag core but also contribute to the enhanced substrate accessibility and Trp-substrate interactions, while nano-Ag core can display good electrocatalytic activity to Trp at the same time. Under the optimum experimental conditions the oxidation peak current was linearly dependent on the Trp concentration in the range of 1.0 Multiplication-Sign 10{sup -7} to 1.0 Multiplication-Sign 10{sup -4} M with a detection limit of 4.0 Multiplication-Sign 10{sup -8} M (S/N = 3). In addition

  12. Electrochemical behavior and voltammetric determination of acetaminophen based on glassy carbon electrodes modified with poly(4-aminobenzoic acid)/electrochemically reduced graphene oxide composite films

    International Nuclear Information System (INIS)

    Zhu, Wencai; Huang, Hui; Gao, Xiaochun; Ma, Houyi

    2014-01-01

    Poly(4-aminobenzoic acid)/electrochemically reduced graphene oxide composite film modified glassy carbon electrodes (4-ABA/ERGO/GCEs) were fabricated by a two-step electrochemical method. The electrochemical behavior of acetaminophen at the modified electrode was investigated by means of cyclic voltammetry. The results indicated that 4-ABA/ERGO composite films possessed excellent electrocatalytic activity towards the oxidation of acetaminophen. The electrochemical reaction of acetaminophen at 4-ABA/ERGO/GCE is proved to be a surface-controlled process involving the same number of protons and electrons. The voltammetric determination of acetaminophen performed with the 4-ABA/ERGO modified electrode presents a good linearity in the range of 0.1–65 μM with a low detection limit of 0.01 μM (S/N = 3). In the case of using the 4-ABA/ERGO/GCE, acetaminophen and dopamine can be simultaneously determined without mutual interference. Furthermore, the 4-ABA/ERGO/GCE has good reproducibility and stability, and can be used to determine acetaminophen in tablets. - Highlights: • The 4-ABA/ERGO/GCE was fabricated by a two-step electrochemical method. • Electrochemical behavior of acetaminophen at the 4-ABA/ERGO/GCE was investigated. • The electrochemical sensor exhibited a low detection limit and good selectivity. • This sensor was applied to the detection of acetaminophen in commercial tablets

  13. Electrochemical behavior and voltammetric determination of acetaminophen based on glassy carbon electrodes modified with poly(4-aminobenzoic acid)/electrochemically reduced graphene oxide composite films

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Wencai [Key Laboratory for Colloid and Interface Chemistry of State Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan 250013 (China); Huang, Hui; Gao, Xiaochun [Key Laboratory for Colloid and Interface Chemistry of State Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Ma, Houyi, E-mail: hyma@sdu.edu.cn [Key Laboratory for Colloid and Interface Chemistry of State Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China)

    2014-12-01

    Poly(4-aminobenzoic acid)/electrochemically reduced graphene oxide composite film modified glassy carbon electrodes (4-ABA/ERGO/GCEs) were fabricated by a two-step electrochemical method. The electrochemical behavior of acetaminophen at the modified electrode was investigated by means of cyclic voltammetry. The results indicated that 4-ABA/ERGO composite films possessed excellent electrocatalytic activity towards the oxidation of acetaminophen. The electrochemical reaction of acetaminophen at 4-ABA/ERGO/GCE is proved to be a surface-controlled process involving the same number of protons and electrons. The voltammetric determination of acetaminophen performed with the 4-ABA/ERGO modified electrode presents a good linearity in the range of 0.1–65 μM with a low detection limit of 0.01 μM (S/N = 3). In the case of using the 4-ABA/ERGO/GCE, acetaminophen and dopamine can be simultaneously determined without mutual interference. Furthermore, the 4-ABA/ERGO/GCE has good reproducibility and stability, and can be used to determine acetaminophen in tablets. - Highlights: • The 4-ABA/ERGO/GCE was fabricated by a two-step electrochemical method. • Electrochemical behavior of acetaminophen at the 4-ABA/ERGO/GCE was investigated. • The electrochemical sensor exhibited a low detection limit and good selectivity. • This sensor was applied to the detection of acetaminophen in commercial tablets.

  14. Electrochemical Oxidation of Sulfamethazine on Multi-Walled Nanotube Film Coated Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    L. Fotouhi

    2014-04-01

    Full Text Available The electrochemical oxidation of sulfamethazine (SMZ has been studied at a multi-walled carbon nanotubes modified glassy carbon electrode (MWCNT-GCE by cyclic voltammetry. This modified electrode (MWCNT-GCE exhibited excellent electrocatalytic behavior toward the oxidation of SMZ as evidenced by the enhancement of the oxidation peak current and the shift in the anodic potential to less positive values (170 mV in comparison with the bare GCE. The formal potential, E0', of SMZ is pH dependent with a slope of 54 mV per unit of pH, close to the anticipated Nerstian value of 59 mV for a 2-electron and 2-proton oxidation process. A detailed analysis of cyclic voltammograms gave fundamental electrochemical parameters including the electroactive surface coverage (Г, the transfer coefficient (a, the heterogeneous rate constant (ks. Under the selected conditions, the peak current shows two dynamic linear ranges of 10-200 mM and 300-3000 mM with the detection limit of 6.1 mM. The method was successfully applied to analyze SMZ in serum sample

  15. Differential pulse voltammetric determination of nanomolar concentrations of antiviral drug acyclovir at polymer film modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Dorraji, Parisa S.; Jalali, Fahimeh, E-mail: fjalali@razi.ac.ir

    2016-04-01

    An electrochemical sensor for the sensitive detection of acyclovir was developed by the electropolymerization of Eriochrome black T at a pretreated glassy carbon electrode. The surface morphology of the modified electrode was characterized by field emission scanning electron microscopy. Under the optimized conditions, a significant electrochemical improvement was observed toward the electrooxidation of acyclovir on the modified electrode surface relative to the unmodified electrode. The detection limit of 12 nM and two linear calibration ranges of 0.03–0.3 μM and 0.3–1.5 μM were obtained for acyclovir determination using a differential pulse voltammetric method in acetate buffer (0.1 M, pH 4.0). Real sample studies were carried out in human blood serum and pharmaceutical formulations, which offered good recovery (98–102%). The electrode showed excellent reproducibility, selectivity and antifouling effects. - Graphical abstract: Eriochrome black T (EBT) was electropolymerized at the surface of a pretreated glassy carbon electrode. The modified electrode enhanced the oxidation current of acyclovir, significantly. The sensor was used in the determination of acyclovir in human blood serum samples and pharmaceutical dosages. - Highlights: • Construction of a voltammetric sensor for acyclovir is described. • Eriochrome black T was electropolymerized at the electrode surface. • The sensor improved the sensitivity of the electrode for monitoring acyclovir. • The recoveries and standard deviations were acceptable in spiked human blood serum. • The proposed sensor had good lifetime to be used in biological matrices.

  16. Differential pulse voltammetric determination of nanomolar concentrations of antiviral drug acyclovir at polymer film modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Dorraji, Parisa S.; Jalali, Fahimeh

    2016-01-01

    An electrochemical sensor for the sensitive detection of acyclovir was developed by the electropolymerization of Eriochrome black T at a pretreated glassy carbon electrode. The surface morphology of the modified electrode was characterized by field emission scanning electron microscopy. Under the optimized conditions, a significant electrochemical improvement was observed toward the electrooxidation of acyclovir on the modified electrode surface relative to the unmodified electrode. The detection limit of 12 nM and two linear calibration ranges of 0.03–0.3 μM and 0.3–1.5 μM were obtained for acyclovir determination using a differential pulse voltammetric method in acetate buffer (0.1 M, pH 4.0). Real sample studies were carried out in human blood serum and pharmaceutical formulations, which offered good recovery (98–102%). The electrode showed excellent reproducibility, selectivity and antifouling effects. - Graphical abstract: Eriochrome black T (EBT) was electropolymerized at the surface of a pretreated glassy carbon electrode. The modified electrode enhanced the oxidation current of acyclovir, significantly. The sensor was used in the determination of acyclovir in human blood serum samples and pharmaceutical dosages. - Highlights: • Construction of a voltammetric sensor for acyclovir is described. • Eriochrome black T was electropolymerized at the electrode surface. • The sensor improved the sensitivity of the electrode for monitoring acyclovir. • The recoveries and standard deviations were acceptable in spiked human blood serum. • The proposed sensor had good lifetime to be used in biological matrices.

  17. On the changing electrochemical behaviour of boron-doped diamond surfaces with time after cathodic pre-treatments

    International Nuclear Information System (INIS)

    Salazar-Banda, Giancarlo R.; Andrade, Leonardo S.; Nascente, Pedro A.P.; Pizani, Paulo S.; Rocha-Filho, Romeu C.; Avaca, Luis A.

    2006-01-01

    The electrochemical response of the Fe(CN) 6 4-/3- redox couple on boron-doped diamond (BDD) electrodes immediately after a cathodic pre-treatment and as a function of time exposed to atmospheric conditions is reported here. After this pre-treatment the electrode exhibits a changing electrochemical behaviour, i.e., a loss of the reversibility for the Fe(CN) 6 4-/3- redox couple as a function of time. Raman spectra showed that neither important bulk structural differences nor significant changes in the sp 2 /sp 3 content are introduced into the BDD film by the cathodic pre-treatment indicating that H-terminated sites play an important role in the electrochemical response of the electrodes. Thus, the changing behaviour reflected by a progressive decrease of the electron transfer rate with time must be associated to a loss of superficial hydrogen due to oxidation by oxygen from the air, as confirmed by X-ray photoelectron spectroscopy (XPS) analysis. Moreover, it was also found that this changing electrochemical behaviour is inversely proportional to the doping level, suggesting that the boron content has a stabilizing effect on the H-terminated surface. These results point out the necessity of doing the cathodic pre-treatment just before the electrochemical experiments are carried out in order to ensure reliable and reproducible results

  18. Electrochemical Determination of Glycoalkaloids Using a Carbon Nanotubes-Phenylboronic Acid Modified Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Huiying Wang

    2013-11-01

    Full Text Available A versatile strategy for electrochemical determination of glycoalkaloids (GAs was developed by using a carbon nanotubes-phenylboronic acid (CNTs-PBA modified glassy carbon electrode. PBA reacts with α-solanine and α-chaconine to form a cyclic ester, which could be utilized to detect GAs. This method allowed GA detection from 1 μM to 28 μM and the detection limit was 0.3 μM. Affinity interaction of GAs and immobilized PBA caused an essential change of the peak current. The CNT-PBA modified electrodes were sensitive for detection of GAs, and the peak current values were in quite good agreement with those measured by the sensors.

  19. Electrochemical determination of serotonin in urine samples based on metal oxide nanoparticles/MWCNT on modified glassy carbon electrode

    Directory of Open Access Journals (Sweden)

    Omolola E. Fayemi

    2017-04-01

    Full Text Available The electrochemical response of serotonin on the modified electrode based on multiwalled-carbon-nanotube (MWCNT doped respectively with nickel, zinc and iron oxide nanoparticles coating on glassy carbon electrode (GCE at physiological pH 7 was determined using cyclic voltammetry (CV and square wave voltammetry (SWV. The modified GCE/MWCNT-metal oxide electrodes exhibited excellent electrocatalytic activity towards the detection of serotonin at large peak current and lower oxidation potentials compared to other electrodes investigated. The dynamic range for the serotonin determination was between 5.98 × 10−3 μM to 62.8 μM with detection limits 118, 129 and 166 nM for GCE/MWCNT-NiO, GCE/MWCNT-ZnO and GCE/MWCNT-Fe3O4 sensors respectively. GCE-MWCNT-NiO was the best electrode in terms of serotonin current response, electrode stability, resistance to fouling and limit of detection towards the analyte. The developed sensors were found to be electrochemically stable, reusable, economically effective due to their extremely low operational cost, and have demonstrated good limit of detection, sensitivity and selectivity towards serotonin determination in urine samples. Keywords: Metal oxides nanoparticles, Multiwalled carbon nanotubes, Glassy carbon electrode, Serotonin, Cyclic voltammetry, Square wave voltammetry

  20. Modified glassy carbon electrodes based on carbon nanostructures for ultrasensitive electrochemical determination of furazolidone

    Energy Technology Data Exchange (ETDEWEB)

    Shahrokhian, Saeed, E-mail: shahrokhian@sharif.edu [Department of Chemistry, Sharif University of Technology, Tehran 11155-9516 (Iran, Islamic Republic of); Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Naderi, Leila [Department of Chemistry, Sharif University of Technology, Tehran 11155-9516 (Iran, Islamic Republic of); Ghalkhani, Masoumeh [Department of Chemistry, Faculty of Science, Shahid Rajaee Teacher Training University, Lavizan, Tehran (Iran, Islamic Republic of); Institute for advanced technology, Shahid Rajaee Teacher Training University, Lavizan, Tehran, 16788 (Iran, Islamic Republic of)

    2016-04-01

    The electrochemical behavior of Furazolidone (Fu) was investigated on the surface of the glassy carbon electrode modified with different carbon nanomaterials, including carbon nanotubes (CNTs), carbon nanoparticles (CNPs), nanodiamond-graphite (NDG), graphene oxide (GO), reduced graphene oxide (RGO) and RGO-CNT hybrids (various ratios) using linear sweep voltammetry (LSV). The results of voltammetric studies exhibited a considerable increase in the cathodic peak current of Fu at the RGO modified GCE, compared to other modified electrodes and also bare GCE. The surface morphology and nature of the RGO film was thoroughly characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) techniques. The modified electrode showed two linear dynamic ranges of 0.001–2.0 μM and 2.0–10.0 μM with a detection limit of 0.3 nM for the voltammetric determination of Fu. This sensor was used successfully for Fu determination in pharmaceutical and clinical preparations. - Highlights: • The electrochemical behavior of Furazolidone (Fu) was investigated on the surface of the modified electrode with different carbon nanomaterials by Linear sweep voltammetry. • Two linear dynamic ranges and a low detection limit were obtained. • The modified electrode was applied for the detection of Fu in pharmaceutical and clinical preparations.

  1. Electrochemical mechanism of eugenol at a Cu doped gold nanoparticles modified glassy carbon electrode and its analytical application in food samples

    International Nuclear Information System (INIS)

    Lin, Xiaoyun; Ni, Yongnian; Kokot, Serge

    2014-01-01

    Graphical abstract: A simple one-step electrodeposition method was used to fabricate a Cu doped gold nanoparticles modified glassy carbon electrode. An electrochemical reaction mechanism for o-methoxy phenols was suggested. In addition, the above Cu@AuNPs/GCE was successfully employed for the analysis of eugenol in food samples. - Highlights: • One-step construction of the Cu@AuNPs/GCE electrode. • The modified electrode showed high sensitivity for the analysis of eugenol. • Electrochemical mechanism of eugenol by use of Cu@AuNPs/GCE was inferred. • The novel method was successfully employed for analysis of eugenol in food samples. - Abstract: A simple one-step electrodeposition method was used to construct a glassy carbon electrode (GCE), which has been modified with Cu doped gold nanoparticles (GNPs), i.e. a Cu@AuNPs/GCE. This electrode was characterized with the use of scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. The eugenol was electrocatalytically oxidized at the Cu@AuNPs/GCE. At this electrode, in comparison with the behavior at the GCE alone, the corresponding oxidation peak current was enhanced and the shift of the oxidation potentials to lower values was observed. Electrochemical behavior of eugenol at the Cu@AuNPs/GCE was investigated with the use of the cyclic voltammetry (CV) technique, and additionally, in order to confirm the electrochemical reaction mechanism for o-methoxy phenols, CVs for catechol, guaiacol and vanillin were investigated consecutively. Based on this work, an electrochemical reaction mechanism for o-methoxy phenols was suggested, and in addition, the above Cu@AuNPs/GCE was successfully employed for the analysis of eugenol in food samples

  2. Destination of organic pollutants during electrochemical oxidation of biologically-pretreated dye wastewater using boron-doped diamond anode

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiuping [Department of Environmental Engineering, Peking University, the Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing100871 (China); Ni, Jinren, E-mail: nijinren@iee.pku.edu.cn [Department of Environmental Engineering, Peking University, the Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing100871 (China); Wei, Junjun; Xing, Xuan; Li, Hongna [Department of Environmental Engineering, Peking University, the Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing100871 (China)

    2011-05-15

    Electrochemical oxidation of biologically-pretreated dye wastewater was performed in a boron-doped diamond (BDD) anode system. After electrolysis of 12 h, the COD was decreased from 532 to 99 mg L{sup -1} (<100 mg L{sup -1}, the National Discharge Standard of China). More importantly, the destination of organic pollutants during electrochemical oxidation process was carefully investigated by molecular weight distribution measurement, resin fractionation, ultraviolet-visible spectroscopy, HPLC and GC-MS analysis, and toxicity test. As results, most organic pollutants were completely removed by electrochemical oxidation and the rest was primarily degraded to simpler compounds (e.g., carboxylic acids and short-chain alkanes) with less toxicity, which demonstrated that electrochemical oxidation of biologically-pretreated dye wastewater with BDD anode was very effective and safe. Especially, the performance of BDD anode system in degradation of large molecular organics such as humic substances makes it very promising in practical applications as an advanced treatment of biologically-pretreated wastewaters.

  3. Destination of organic pollutants during electrochemical oxidation of biologically-pretreated dye wastewater using boron-doped diamond anode.

    Science.gov (United States)

    Zhu, Xiuping; Ni, Jinren; Wei, Junjun; Xing, Xuan; Li, Hongna

    2011-05-15

    Electrochemical oxidation of biologically-pretreated dye wastewater was performed in a boron-doped diamond (BDD) anode system. After electrolysis of 12h, the COD was decreased from 532 to 99 mg L(-1) (destination of organic pollutants during electrochemical oxidation process was carefully investigated by molecular weight distribution measurement, resin fractionation, ultraviolet-visible spectroscopy, HPLC and GC-MS analysis, and toxicity test. As results, most organic pollutants were completely removed by electrochemical oxidation and the rest was primarily degraded to simpler compounds (e.g., carboxylic acids and short-chain alkanes) with less toxicity, which demonstrated that electrochemical oxidation of biologically-pretreated dye wastewater with BDD anode was very effective and safe. Especially, the performance of BDD anode system in degradation of large molecular organics such as humic substances makes it very promising in practical applications as an advanced treatment of biologically-pretreated wastewaters. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Destination of organic pollutants during electrochemical oxidation of biologically-pretreated dye wastewater using boron-doped diamond anode

    International Nuclear Information System (INIS)

    Zhu, Xiuping; Ni, Jinren; Wei, Junjun; Xing, Xuan; Li, Hongna

    2011-01-01

    Electrochemical oxidation of biologically-pretreated dye wastewater was performed in a boron-doped diamond (BDD) anode system. After electrolysis of 12 h, the COD was decreased from 532 to 99 mg L -1 ( -1 , the National Discharge Standard of China). More importantly, the destination of organic pollutants during electrochemical oxidation process was carefully investigated by molecular weight distribution measurement, resin fractionation, ultraviolet-visible spectroscopy, HPLC and GC-MS analysis, and toxicity test. As results, most organic pollutants were completely removed by electrochemical oxidation and the rest was primarily degraded to simpler compounds (e.g., carboxylic acids and short-chain alkanes) with less toxicity, which demonstrated that electrochemical oxidation of biologically-pretreated dye wastewater with BDD anode was very effective and safe. Especially, the performance of BDD anode system in degradation of large molecular organics such as humic substances makes it very promising in practical applications as an advanced treatment of biologically-pretreated wastewaters.

  5. Modified glassy carbon electrodes based on carbon nanostructures for ultrasensitive electrochemical determination of furazolidone.

    Science.gov (United States)

    Shahrokhian, Saeed; Naderi, Leila; Ghalkhani, Masoumeh

    2016-04-01

    The electrochemical behavior of Furazolidone (Fu) was investigated on the surface of the glassy carbon electrode modified with different carbon nanomaterials, including carbon nanotubes (CNTs), carbon nanoparticles (CNPs), nanodiamond-graphite (NDG), graphene oxide (GO), reduced graphene oxide (RGO) and RGO-CNT hybrids (various ratios) using linear sweep voltammetry (LSV). The results of voltammetric studies exhibited a considerable increase in the cathodic peak current of Fu at the RGO modified GCE, compared to other modified electrodes and also bare GCE. The surface morphology and nature of the RGO film was thoroughly characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) techniques. The modified electrode showed two linear dynamic ranges of 0.001-2.0 μM and 2.0-10.0 μM with a detection limit of 0.3 nM for the voltammetric determination of Fu. This sensor was used successfully for Fu determination in pharmaceutical and clinical preparations. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Alizarin red S functionalized mesoporous silica modified glassy carbon electrode for electrochemical determination of anthracene

    International Nuclear Information System (INIS)

    Liu, Shan; Wei, Maochao; Zheng, Xiangli; Xu, Shuai; Xia, Fangquan; Zhou, Changli

    2015-01-01

    Highlights: • Alizarin red S-SBA15 composite was prepared and characterized. • A novel sensing platform was constructed for anthracene determination. • The proposed sensor exhibited high sensitivity and low detection limit for detecting anthracene. • This method can be applied to the practical detection of anthracene in waste water. - Abstract: In the paper, a novel and sensitive electrochemical sensor based on modification of electroactive alizarin red S functionalized mesoporous silica material SBA15 onto glassy carbon electrode (ARS-SBA15/GCE) was developed. Alizarin red S, called electrochemical probe that can selectively recognize polycyclic aromatic hydrocarbons (PAHs), as tools for the detection of tricyclic aromatic hydrocarbon anthracene. The morphology and interface property of ARS modified SBA15 (ARS-SBA15) were examined by transmission electron microscopy (TEM) and fourier transform infrared spectroscopy (FTIR). Taking advantage of the π-π stacking force between alizarin red S and anthracene, the ARS-SBA15/GCE sensor could detect anthracene quantitatively in a wide range of 1.0 pM–10.0 nM and a low detection limit of 0.5 pM (S/N = 3). Other PAHs, such as naphthalene, phenanthrene, pyrene, and benzo[a]pyrene show little interference on the detection. Consequently, a simple and sensitive electrochemical method was proposed for the determination of anthracene, which can be used to determine anthracene in waste water samples. The electrochemical method provides a general tool that complements the commonly used spectroscopic methods and immune method for the detection of PAHs

  7. Effective electrochemical method for investigation of hemoglobin unfolding based on the redox property of heme groups at glassy carbon electrodes.

    Science.gov (United States)

    Li, Xianchan; Zheng, Wei; Zhang, Limin; Yu, Ping; Lin, Yuqing; Su, Lei; Mao, Lanqun

    2009-10-15

    This study demonstrates a facile and effective electrochemical method for investigation of hemoglobin (Hb) unfolding based on the electrochemical redox property of heme groups in Hb at bare glassy carbon (GC) electrodes. In the native state, the heme groups are deeply buried in the hydrophobic pockets of Hb with a five-coordinate high-spin complex and thus show a poor electrochemical property at bare GC electrodes. Upon the unfolding of Hb induced by the denaturant of guanidine hydrochloride (GdnHCl), the fifth coordinative bond between the heme groups and the residue of the polypeptides (His-F8) is broken, and as a result, the heme groups initially buried deeply in the hydrophobic pockets dissociate from the polypeptide chains and are reduced electrochemically at GC electrodes, which can be used to probe the unfolding of Hb. The results on the GdnHCl-induced Hb unfolding obtained with the electrochemical method described here well coincide with those studied with other methods, such as UV-vis spectroscopy, fluorescence, and circular dichroism. The application of the as-established electrochemical method is illustrated to study the kinetics of GdnHCl-induced Hb unfolding, the GdnHCl-induced unfolding of another kind of hemoprotein, catalase, and the pH-induced Hb unfolding/refolding.

  8. Development and application of a labmade apparatus using open-source “arduino” hardware for the electrochemical pretreatment of boron-doped diamond electrodes

    International Nuclear Information System (INIS)

    Rosa, Thalles Ramon; Betim, Fernando Silva; Ferreira, Rafael de Queiroz

    2017-01-01

    Highlights: • BDD electrodes use an electrochemical pretreatment (anodic and/or cathodic) to restore their original characteristics and promote the reproduction of previous voltammograms; • Automatic system can carefully reproduce the electrochemical pretreatment of BDD electrode quickly and efficiently; • Open source platform “Arduino” can be used to developed a labmade apparatus to control a BDD electrode pretreatment system for analytical purposes; • The main advantages of this labmade apparatus are: low supporting electrolyte consumption (20 mL), a total time for each pretreatment of 80 seconds and an average cost of production below US$ 200. - Abstract: Every day, new electroanalytical methodologies are developed to supplant the established spectrometric and chromatographic methods due to their versatility, low cost and ability to perform measurements without sample treatment. Electroanalytical techniques have provided an alternative to quantify substances due to the direct relationship between the analyte concentration and some electrical property of the system. However, this ratio between the concentration and peak current is valid only if the electrochemically active area of the working electrode is constant in each electrochemical test. For years, classic polarography ensured the reproducibility of the mercury electrode surface due to its liquid state at room temperature. However, this metal has a high toxicity, driving the search for new inert materials for their replacement, most notably boron-doped diamond (BDD) electrodes. This electrode material has, among other attractive advantages for electroanalysis, a potential range higher than that of the mercury working electrode under the same conditions. Solid electrodes are, in general, polished to promote the reproducibility of their electrochemical performance. For BDD, the use of an electrochemical pretreatment (anodic and/or cathodic) has been sufficient to restore their original

  9. Electrochemically pretreated zeolite-modified carbon-paste electrodes for determination of linuron in an agricultural formulation and water

    International Nuclear Information System (INIS)

    Siara, L.R.; Lima, F. de; Cardoso, C.A.L.; Arruda, G.J.

    2015-01-01

    Highlights: • Cyclic voltammetry, square-wave voltammetry, electrochemical impedance spectroscopic, and scanning electron microscopy were employed. • Kinetic parameters (n, α, k s , and Γ) were calculated. • High sensitivity was observed in the linear concentration range. • Excellent recovery rates were achieved for tap water samples. • The method proved applicable to the determination of linuron in the presence of potential organic and inorganic interferents, none of which affected the results. - Abstract: A simple and inexpensive, yet highly sensitive electrochemical method for quantifying linuron in tap and distilled water and in agricultural formulations was developed using electrochemically pretreated zeolite-modified carbon-paste electrodes (ZMCPEs). Compared with untreated ZMCPEs, the electrochemically pretreated electrodes showed significantly enhanced peak currents for linuron oxidation. Scanning electron microscopy and energy-dispersive x-ray spectroscopy were used to examine the structure of the zeolite-modified and unmodified carbon-paste electrodes (CPEs). ZMCPEs were electrochemically characterized using cyclic voltammetry, chronocoulometry, square-wave voltammetry, and electrochemical impedance spectroscopy. A mechanism for linuron oxidation on ZMCPE surfaces was proposed. The electrochemical variables taken into account were electrode area, number of transferred electrons, electron transfer coefficient, electrode reaction standard rate constant, surface coverage, and capacitance of the electric double layer. Zeolite was found to have a strong influence on these variables. The electrochemical procedure applied to linuron was developed using electrochemically pretreated ZMCPEs under optimal conditions. Linuron oxidation currents exhibited linear concentration in the 87.36 to 625.72 nmol L −1 range, with a limit of detection of 22.57 nmol L −1 . The proposed electrochemical method was employed to quantify linuron in tap and distilled

  10. Electrochemical investigations of Pu(IV)/Pu(III) redox reaction using graphene modified glassy carbon electrodes and a comparison to the performance of SWCNTs modified glassy carbon electrodes

    International Nuclear Information System (INIS)

    Gupta, Ruma; Gamare, Jayashree; Sharma, Manoj K.; Kamat, J.V.

    2016-01-01

    Highlights: • First report of aqueous electrochemistry of Plutonium on graphene modified electrode. • Graphene is best electrocatalytic material for Pu(IV)/Pu(III) redox couple among the reported modifiers viz. reduced graphene oxide (rGO) and SWCNT’s. • The electrochemical reversibility of Pu(IV)/Pu(III) redox couple improves significantly on graphene modified electrode compared to previously reported rGO & SWCNTs modified electrodes • Donnan interaction between plutonium species and graphene surface offers a possibility for designing a highly sensitive sensor for plutonium • Graphene modified electrode shows higher sensitivity for the determination of plutonium compared to glassy carbon and single walled carbon nanotube modified electrode - Abstract: The work reported in this paper demonstrates for the first time that graphene modified glassy carbon electrode (Gr/GC) show remarkable electrocatalysis towards Pu(IV)/Pu(III) redox reaction and the results were compared with that of single-walled carbon nanotubes modified GC (SWCNTs/GC) and glassy carbon (GC) electrodes. Graphene catalyzes the exchange of current of the Pu(IV)/Pu(III) couple by reducing both the anodic and cathodic overpotentials. The Gr/GC electrode shows higher peak currents (i p ) and smaller peak potential separation (ΔE p ) values than the SWCNTs/GC and GC electrodes. The heterogeneous electron transfer rate constants (k s ), charge transfer coefficients (α) and the diffusion coefficients (D) involved in the electrocatalytic redox reaction were determined. Our observations show that graphene is best electrocatalytic material among both the SWCNTs and GC to study Pu(IV)/Pu(III) redox reaction.

  11. Methionine – Au Nanoparticle Modified Glassy Carbon Electrode: a Novel Platform for Electrochemical Detection of Hydroquinone

    Directory of Open Access Journals (Sweden)

    Jiahong HE

    2014-12-01

    Full Text Available A high sensitive electrochemical sensor based on methionine/gold nanoparticles (MET/AuNPs modified glassy carbon electrode (GCE was fabricated for the quantitative detection of hydroquinone (HQ. The as-modified electrode was characterized by scanning electron microscopy (SEM and X-ray diffraction (XRD techniques. The electrochemical performance of the sensor to HQ was investigated by using cyclic and differential pulse voltammetry, which revealed its excellent electrocatalytic activity and reversibility towards HQ. The separation of anodic and cathodic peak (∆Ep was decreased from 471 mV to 75 mV. The anodic peak current achieved under the optimum conditions was linear with the HQ concentration ranging from 8 μM to 400 μM with the detection limit 0.12 μM (3σ. The as-fabricated sensor also showed a good selectivity towards HQ without demonstrating interference from other coexisting species. Furthermore, the sensor showed a good performance for HQ detection in environmental water, which suggests its potential practical application. DOI: http://dx.doi.org/10.5755/j01.ms.20.4.6477

  12. A study on electrochemical redox behavior of nitric acid by using a glassy carbon fiber column electrode system

    International Nuclear Information System (INIS)

    Kim, K. W.; Song, K. C.; Lee, I. H.; Choi, I. K.; You, J. H.

    1999-01-01

    Electrochemical redox behaviors of nitric acid were studied by using a glassy carbon fiber column electrode system, and its reaction mechanism was analyzed in several ways. The electrochemical reaction in less than 2.0 M nitric acid was not observed, but in more than 2.0 M nitric acid, the reduction rate of nitric acid to produce nitrous acid was slow so that the nitric acid solution had to be contacted with electrode enough in order for a apparent reduction current of nitric acid to nitrous acid be to observed. The nitrous acid generated in more than 2.0 M nitric acid was rapidly and easily reduced to NOx through an autocatalytic reaction. Sulfamic acid was confirmed to be effective to destroy the nitrous acid. The sulfamic acid of at least 0.05M was necessary to remove the nitrous acid generated in 3.5 M nitric acid

  13. Electrochemical evaluation and determination of antiretroviral drug fosamprenavir using boron-doped diamond and glassy carbon electrodes.

    Science.gov (United States)

    Gumustas, Mehmet; Ozkan, Sibel A

    2010-05-01

    Fosamprenavir is a pro-drug of the antiretroviral protease inhibitor amprenavir and is oxidizable at solid electrodes. The anodic oxidation behavior of fosamprenavir was investigated using cyclic and linear sweep voltammetry at boron-doped diamond and glassy carbon electrodes. In cyclic voltammetry, depending on pH values, fosamprenavir showed one sharp irreversible oxidation peak or wave depending on the working electrode. The mechanism of the oxidation process was discussed. The voltammetric study of some model compounds allowed elucidation of the possible oxidation mechanism of fosamprenavir. The aim of this study was to determine fosamprenavir levels in pharmaceutical formulations and biological samples by means of electrochemical methods. Using the sharp oxidation response, two voltammetric methods were described for the determination of fosamprenavir by differential pulse and square-wave voltammetry at the boron-doped diamond and glassy carbon electrodes. These two voltammetric techniques are 0.1 M H(2)SO(4) and phosphate buffer at pH 2.0 which allow quantitation over a 4 x 10(-6) to 8 x 10(-5) M range using boron-doped diamond and a 1 x 10(-5) to 1 x 10(-4) M range using glassy carbon electrodes, respectively, in supporting electrolyte. All necessary validation parameters were investigated and calculated. These methods were successfully applied for the analysis of fosamprenavir pharmaceutical dosage forms, human serum and urine samples. The standard addition method was used in biological media using boron-doped diamond electrode. No electroactive interferences from the tablet excipients or endogenous substances from biological material were found. The results were statistically compared with those obtained through an established HPLC-UV technique; no significant differences were found between the voltammetric and HPLC methods.

  14. Carbon nanofiber vs. carbon microparticles as modifiers of glassy carbon and gold electrodes applied in electrochemical sensing of NADH.

    Science.gov (United States)

    Pérez, Briza; Del Valle, Manel; Alegret, Salvador; Merkoçi, Arben

    2007-12-15

    Carbon materials (CMs), such as carbon nanotubes (CNTs), carbon nanofibers (CNFs), and carbon microparticles (CMPs) are used as doping materials for electrochemical sensors. The efficiency of these materials (either before or after acidic treatments) while being used as electrocatalysts in electrochemical sensors is discussed for beta-nicotinamide adenine dinucleotide (NADH) detection using cyclic voltammetry (CV). The sensitivity of the electrodes (glassy carbon (GC) and gold (Au)) modified with both treated and untreated materials have been deeply studied. The response efficiencies of the GC and Au electrodes modified with CNF and CMP, using dimethylformamide (DMF) as dispersing agent are significantly different due to the peculiar physical and chemical characteristics of each doping material. Several differences between the electrocatalytic activities of CMs modified electrodes upon NADH oxidation have been observed. The CNF film promotes better the electron transfer of NADH minimizing the oxidation potential at +0.352 V. Moreover higher currents for the NADH oxidation peak have been observed for these electrodes. The shown differences in the electrochemical reactivities of CNF and CMP modified electrodes should be with interest for future applications in biosensors.

  15. mwnts composite film modified glassy carbon electrode

    African Journals Online (AJOL)

    Preferred Customer

    ABSTRACT: A poly p-aminosalicylic acid (Poly(p-ASA)) and multiwall carbon nanotubes. (MWCNTs) composite modified glassy carbon (GC) electrode was constructed by casting the MWNTs on the GC electrode surface followed by electropolymerization of the p-ASA on the MWCNTs/GCE. The electrochemical behaviours ...

  16. Electrochemical Comparison of the Interaction of 5-Nitrouracil with Single- or Double-Stranded DNA at mercury and glassy carbon electrodes

    OpenAIRE

    Ibrahim, Mohamed Sayed; Ibrahim, Hossieny Sameh Mohamed; Kamal, Moustafa Mohamed; Temerk, Yassin Mohamed

    2014-01-01

    The interaction of the 5-Nitrouracil (5NU), with ss-, and ds-DNA was investigated electrochemically in absence and presence of copper ions by using cyclic voltammetry (CV) and differential pulse stripping voltammetry (DPSV) at hanging mercury drop electrode (HMDE) and glassy carbon electrode (GCE) surfaces. It was found that, in absence of copper ions, the addition of ss- or ds-DNA to a buffered solution of 5NU results in a decrease on the 5NU redox peak current with a remarkable change in th...

  17. Electrochemical oxidation of butein at glassy carbon electrodes.

    Science.gov (United States)

    Tesio, Alvaro Yamil; Robledo, Sebastián Noel; Fernández, Héctor; Zon, María Alicia

    2013-06-01

    The electrochemical oxidation of flavonoid butein is studied at glassy carbon electrodes in phosphate and citrate buffer solutions of different pH values, and 1M perchloric acid aqueous solutions by cyclic and square wave voltammetries. The oxidation peak corresponds to the 2e(-), 2H(+) oxidation of the 3,4-dihydroxy group in B ring of butein, given the corresponding quinone species. The overall electrode process shows a quasi-reversible behavior and an adsorption/diffusion mixed control at high butein bulk concentrations. At low butein concentrations, the electrode process shows mainly an adsorption control. Butein surface concentration values were obtained from the charge associated with the adsorbed butein oxidation peaks, which are in agreement with those values expected for the formation of a monolayer of adsorbate in the concentration range from 1 to 5μM. Square wave voltammetry was used to perform a full thermodynamic and kinetics characterization of the butein surface redox couple. Therefore, from the combination of the "quasi-reversible maximum" and the "splitting of the net square wave voltammetric peak" methods, values of (0.386±0.003) V, (0.46±0.04), and 2.7×10(2)s(-1) were calculated for the formal potential, the anodic transfer coefficient, and the formal rate constant, respectively, of the butein overall surface redox process in pH4.00 citrate buffer solutions. These results will be then used to study the interaction of butein, and other flavonoids with the deoxyribonucleic acid, in order to better understand the potential therapeutic applications of these compounds. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Electrochemical organic destruction in support of Hanford tank waste pretreatment

    International Nuclear Information System (INIS)

    Lawrence, W.E.; Surma, J.E.; Gervais, K.L.; Buehler, M.F.; Pillay, G.; Schmidt, A.J.

    1994-10-01

    The US Department of Energy's Hanford Site in Richland, Washington, has 177 underground storage tanks that contain approximately 61 million gallons of radioactive waste. The current cleanup strategy is to retrieve the waste and separate components into high-level and low-level waste. However, many of the tanks contain organic compounds that create concerns associated with tank safety and efficiency of anticipated separation processes. Therefore, a need exists for technologies that can safely and efficiently destroy organic compounds. Laboratory-scale studies conducted during FY 93 have shown proof-of-principle for electrochemical destruction of organics. Electrochemical oxidation is an inherently safe technology and shows promise for treating Hanford complexant concentrate aqueous/ slurry waste. Therefore, in support of Hanford tank waste pretreatment needs, the development of electrochemical organic destruction (ECOD) technology has been undertaken. The primary objective of this work is to develop an electrochemical treatment process for destroying organic compounds, including tank waste complexants. Electroanalytical analyses and bench-scale flow cell testing will be conducted to evaluate the effect of anode material and process operating conditions on the rate of organic destruction. Cyclic voltammetry will be used to identify oxygen overpotentials for the anode materials and provide insight into reaction steps for the electrochemical oxidation of complexants. In addition, a bench-scale flow cell evaluation will be conducted to evaluate the influence of process operating conditions and anode materials on the rate and efficiency of organic destruction using the nonradioactive a Hanford tank waste simulant

  19. Assembling gold nanorods on a poly-cysteine modified glassy carbon electrode strongly enhance the electrochemical response to tetrabromobisphenol A

    International Nuclear Information System (INIS)

    Wang, Yanying; Liu, Guishen; Hou, Xiaodong; Huang, Yina; Li, Chunya; Wu, Kangbing

    2016-01-01

    Cysteine (Cys) was electrochemically deposited on a glassy carbon electrode (GCE) by cyclic voltammetry. The poly-Cys modified electrode was placed in a solution of gold nanorods (GNRs) to induced self-assembly of the GNRs. The GNRs/poly-Cys/GCEs were characterized by scanning electron microscopy and electrochemical impedance spectroscopy. A voltammetric study on tetrabromobisphenol A (TBBPA) with this GCE showed the current response to be enhanced by a factor of 11 compared to a non-modified GCE. Based on these findings, a square wave voltammetric assay was worked out. Under optimized conditions, a linear relationship between the oxidation peak current and TBBPA is found for the 10 nM to 10 μM concentration range. The detection limit is 3.2 nM (at an S/N ratio of 3). The electrode was successfully applied to the determination of TBBPA in spiked tap water and lake water samples. (author)

  20. Boron ion irradiation induced structural and surface modification of glassy carbon

    International Nuclear Information System (INIS)

    Kalijadis, Ana; Jovanović, Zoran; Cvijović-Alagić, Ivana; Laušević, Zoran

    2013-01-01

    The incorporation of boron into glassy carbon was achieved by irradiating two different types of targets: glassy carbon polymer precursor and carbonized glassy carbon. Targets were irradiated with a 45 keV B 3+ ion beam in the fluence range of 5 × 10 15 –5 × 10 16 ions cm −2 . For both types of targets, the implanted boron was located in a narrow region under the surface. Following irradiation, the polymer was carbonized under the same condition as the glassy carbon samples (at 1273 K) and examined by Raman spectroscopy, temperature programmed desorption, hardness and cyclic voltammetry measurements. Structural analysis showed that during the carbonization process of the irradiated polymers, boron is substitutionally incorporated into the glassy carbon structure, while for irradiated carbonized glassy carbon samples, boron irradiation caused an increase of the sp 3 carbon fraction, which is most pronounced for the highest fluence irradiation. Further analyses showed that different nature of boron incorporation, and thus changed structural parameters, are crucial for obtaining glassy carbon samples with modified mechanical, chemical and electrochemical properties over a wide range

  1. Electrochemical Determination of Chlorpyrifos on a Nano-TiO₂Cellulose Acetate Composite Modified Glassy Carbon Electrode.

    Science.gov (United States)

    Kumaravel, Ammasai; Chandrasekaran, Maruthai

    2015-07-15

    A rapid and simple method of determination of chlorpyrifos is important in environmental monitoring and quality control. Electrochemical methods for the determination of pesticides are fast, sensitive, reproducible, and cost-effective. The key factor in electrochemical methods is the choice of suitable electrode materials. The electrode materials should have good stability, reproducibility, more sensitivity, and easy method of preparation. Mercury-based electrodes have been widely used for the determination of chlorpyrifos. From an environmental point of view mercury cannot be used. In this study a biocompatible nano-TiO2/cellulose acetate modified glassy carbon electrode was prepared by a simple method and used for the electrochemical sensing of chlorpyrifos in aqueous methanolic solution. Electroanalytical techniques such as cyclic voltammetry, differential pulse voltammetry, and amperometry were used in this work. This electrode showed very good stability, reproducibility, and sensitivity. A well-defined peak was obtained for the reduction of chlorpyrifos in cyclic voltammetry and differential pulse voltammetry. A smooth noise-free current response was obtained in amperometric analysis. The peak current obtained was proportional to the concentration of chlorpyrifos and was used to determine the unknown concentration of chlorpyrifos in the samples. Analytical parameters such as LOD, LOQ, and linear range were estimated. Analysis of real samples was also carried out. The results were validated through HPLC. This composite electrode can be used as an alternative to mercury electrodes reported in the literature.

  2. para-Sulfonatocalix[6]arene-modified silver nanoparticles electrodeposited on glassy carbon electrode: preparation and electrochemical sensing of methyl parathion.

    Science.gov (United States)

    Bian, Yinghui; Li, Chunya; Li, Haibing

    2010-05-15

    In this paper, a new electrochemical sensor, based on modified silver nanoparticles, was fabricated using one-step electrodeposition approach. The para-sulfonatocalix[6]arene-modified silver nanoparticles coated on glassy carbon electrode (pSC(6)-Ag NPs/GCE) was characterized by attenuated total reflection IR spectroscopy (ATR-IR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM), etc. The pSC(6) as the host are highly efficient to capture organophosphates (OPs), which dramatically facilitates the enrichment of nitroaromatic OPs onto the electrochemical sensor surface. The combination of the host-guest supramolecular structure and the excellent electrochemical catalytic activities of the pSC(6)-Ag NPs/GCE provides a fast, simple, and sensitive electrochemical method for detecting nitroaromatic OPs. In this work, methyl parathion (MP) was used as a nitroaromatic OP model for testing the proposed sensor. In comparison with Ag NPs-modified electrode, the cathodic peak current of MP was amplified significantly. Differential pulse voltammetry was used for the simultaneous determination of MP. Under optimum conditions, the current increased linearly with the increasing concentration of MP in the range of 0.01-80microM, with a detection limit of 4.0nM (S/N=3). The fabrication reproducibility and stability of the sensor is better than that of enzyme-based electrodes. The possible underlying mechanism is discussed.

  3. Modification of glassy carbon electrode with a polymer/mediator composite and its application for the electrochemical detection of iodate

    International Nuclear Information System (INIS)

    Li, Ta-Jen; Lin, Chia-Yu; Balamurugan, A.; Kung, Chung-Wei; Wang, Jen-Yuan; Hu, Chih-Wei; Wang, Chun-Chieh; Chen, Po-Yen; Vittal, R.; Ho, Kuo-Chuan

    2012-01-01

    Highlights: ► FAD and PEDOT are combined to modify the glassy carbon electrode for IO 3 − sensing. ► The doping of FAD into PEDOT matrix can almost be viewed as an irreversible process. ► The optimal cycle number for preparing the GCE/PEDOT/FAD electrode is found to be 9. ► The detection limit of the GCE/PEDOT/FAD electrode for IO 3 − is found to be 0.16 μM. ► The GCE/PEDOT/FAD electrode possesses enough selectivity toward IO 3 − . - Abstract: A modified glassy carbon electrode was prepared by depositing a composite of polymer and mediator on a glassy carbon electrode (GCE). The mediator, flavin adenine dinucleotide (FAD) and the polymer, poly(3,4-ethylenedioxythiophene) (PEDOT) were electrochemically deposited as a composite on the GCE by applying cyclic voltammetry (CV). This modified electrode is hereafter designated as GCE/PEDOT/FAD. FAD was found to significantly enhance the growth of PEDOT. Electrochemical quartz crystal microbalance (EQCM) analysis was performed to study the mass changes in the electrode during the electrodeposition of PEDOT, with and without the addition of FAD. The optimal cycle number for preparing the modified electrode was determined to be 9, and the corresponding surface coverage of FAD (Γ FAD ) was ca. 5.11 × 10 −10 mol cm −2 . The amperometric detection of iodate was performed in a 100 mM buffer solution (pH 1.5). The GCE/PEDOT/FAD showed a sensitivity of 0.78 μA μM −1 cm −2 , a linear range of 4–140 μM, and a limit of detection of 0.16 μM for iodate. The interference effects of 250-fold Na + , Mg 2+ , Ca 2+ , Zn 2+ , Fe 2+ , Cl − , NO 3 − , I − , SO 4 2− and SO 3 2− , with reference to the concentration of iodate were negligible. The long-term stability of GCE/PEDOT/FAD was also investigated. The GCE/PEDOT/FAD electrode retained 82% of its initial amperometric response to iodate after 7 days. The GCE/PEDOT/FAD was also applied to determine iodate in a commercial salt.

  4. Fabrication of calix[4]pyrrole nanofilms at the glassy carbon surface and their characterization by spectroscopic, optic and electrochemical methods

    International Nuclear Information System (INIS)

    Taner, Bilge; Ozcan, Emine; Ustuendag, Zafer; Keskin, Selda; Solak, Ali Osman; Eksi, Haslet

    2010-01-01

    meso-Octamethylcalix[4]pyrrole (CP) and meso-heptaethylcalix[4]pyrrole-meso-4-aminophenyl (4APCP) modified glassy carbon (GC) electrodes were prepared by the electrochemical oxidation in acetonitrile solution. Binding of the calix[4]pyrroles with the glassy carbon surface was investigated that it is through the etheric linkage revealed from the reflection-absorption infrared spectroscopy (RAIRS). Surface films of CP and 4APCP were investigated by cyclic voltammetry (CV), ellipsometry, X-ray photoelectron spectroscopy, RAIRS and the contact angle measurements. The thicknesses of the films were determined by ellipsometry which confirmed that the film was multilayer and homogeneous over the surface. Ellipsometric measurements also provided that the CP and 4APCP film thicknesses were 2.49 nm and 4.58 nm for 6 CV cycle modification, corresponding to 66 μF/cm 2 and 106 μF/cm 2 capacitances obtained by CV. The wetting behavior was examined by contact angle measurements and found that the hydrophobicity of the GC-4APCP surface was higher than that of GC-CP, probably due to the aromatic meso substituent present in the former.

  5. ELECTROCHEMICAL DETERMINATION OF ETHANOL, 2 ...

    African Journals Online (AJOL)

    2014-12-31

    Dec 31, 2014 ... ABSTRACT. In this work, we present the modification of a glassy carbon electrode with nickel oxide film which is performed in two successive steps. In the first one, the electrochemical deposition of metallic nickel on the glassy carbon electrode (GCE) is achieved in 0.1M boric acid; in the second step, the ...

  6. A novel electrochemical sensor for the analysis of β-agonists: The poly(acid chrome blue K)/graphene oxide-nafion/glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Xiaoyun [State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047 (China); Ni, Yongnian, E-mail: ynni@ncu.edu.cn [State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047 (China); Department of Chemistry, Nanchang University, Nanchang 330031 (China); Kokot, Serge, E-mail: s.kokot@qut.edu.au [School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane 4001 (Australia)

    2013-09-15

    Graphical abstract: A new modified electrode was constructed by the electro-polymerization of acid chrome blue K (ACBK) at a graphene-nafion modified glassy carbon electrode (GCE). The novel electrode was successfully employed for the analysis of eight β-agonist analytes with high sensitivity. -- Highlights: • Construction of the poly-ACBK/graphene-nafion/GCE. •The modified electrode showed high sensitivity for the analysis of the β-agonists. • A novel method was successfully developed for the analysis of clenbuterol in pork. • Research provided a new method of constructing electrodes for biological analysis. -- Abstract: A novel modified electrode was constructed by the electro-polymerization of 4,5-dihydroxy-3-[(2-hydroxy-5-sulfophenyl)azo]-2,7-naphthalenedisulfonic acid trisodium salt (acid chrome blue K (ACBK)) at a graphene oxide (GO)-nafion modified glassy carbon electrode (GCE). The characterization of an electrochemically synthesized poly-ACBK/GO-nafion film was investigated by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), atomic force microscopy (AFM) and scanning electron microscopy (SEM) techniques, and the results were interpreted and compared at each stage of the electrode construction. Electrochemical oxidation of eight β-agonists – clenbuterol, salbutamol, terbutaline, ractopamine, dopamine, dobutamine, adrenaline, and isoprenaline, was investigated by CV at the different electrodes. At the poly-ACBK/GO-nafion/GCE, the linear sweep voltammetry peak currents of the eight β-agonists increased linearly with their concentrations in the range of 1.0–36.0 ng mL{sup −1}, respectively, and their corresponding limits of detection (LODs) were within the 0.58–1.46 ng mL{sup −1} range. This electrode showed satisfactory reproducibility and stability, and was used successfully for the quantitative analysis of clenbuterol in pork samples.

  7. Electrochemical immunoassay for the carcinoembryonic antigen based on the use of a glassy carbon electrode modified with an octahedral Cu2O-gold nanocomposite and staphylococcal protein for signal amplification.

    Science.gov (United States)

    Qin, Zhen; Xu, Wei; Chen, Shuai; Chen, Jun; Qiu, Jing Fu; Li, Chao Rui

    2018-04-24

    The authors describe an electrochemical immunoassay for ultrasensitive direct determination of the carcinoembryonic antigen (CEA). A nanocomposite consisting of octahedral Cu2O nanocrystals covered with gold nanoparticles was utilized to modify a glassy carbon electrode which gives a strongly enhanced chronoamperometric signal for H 2 O 2 which is used as an electrochemical probe. The morphology and elemental composition of the the nanocomposite was studied by field emission scanning electron microscopy and energy dispersive X-ray spectroscopy. In addition, staphylococcal protein A was placed on the electrode for efficient capture of antibody to further enhance the sensitivity of the assay. Under optimal conditions and at a typical working voltage of -0.4 V (vs. Ag/AgCl), the response covers the 2 pg·mL -1 to 20 ng·mL -1 CEA concentration range with a 200 fg·mL -1 lower detection limit. The method was successfully applied to the determination of CEA in (spiked) human serum. Graphical abstract Schematic of the fabrication of an electrochemical immunosensor for ultrasensitive detection the carcinoembryonic antigen. The sensor is based on the use of a glassy carbon electrode modified with an octahedral Cu 2 O-gold nanocomposite and staphylococcal protein A for signal amplification.

  8. Fabrication of calix[4]pyrrole nanofilms at the glassy carbon surface and their characterization by spectroscopic, optic and electrochemical methods

    Energy Technology Data Exchange (ETDEWEB)

    Taner, Bilge; Ozcan, Emine [Selcuk University, Faculty of Science, Dept. of Chemistry, Konya (Turkey); Ustuendag, Zafer [Dumlupinar University, Faculty of Arts and Sciences, Dept. of Chemistry, Kuetahya (Turkey); Keskin, Selda [Middle East Technical University, Central Research Laboratory, Ankara (Turkey); Solak, Ali Osman, E-mail: osolak@science.ankara.edu.t [Ankara University, Faculty of Science, Department of Chemistry, Ankara (Turkey); Eksi, Haslet [Ankara University, Faculty of Science, Department of Chemistry, Ankara (Turkey)

    2010-10-29

    meso-Octamethylcalix[4]pyrrole (CP) and meso-heptaethylcalix[4]pyrrole-meso-4-aminophenyl (4APCP) modified glassy carbon (GC) electrodes were prepared by the electrochemical oxidation in acetonitrile solution. Binding of the calix[4]pyrroles with the glassy carbon surface was investigated that it is through the etheric linkage revealed from the reflection-absorption infrared spectroscopy (RAIRS). Surface films of CP and 4APCP were investigated by cyclic voltammetry (CV), ellipsometry, X-ray photoelectron spectroscopy, RAIRS and the contact angle measurements. The thicknesses of the films were determined by ellipsometry which confirmed that the film was multilayer and homogeneous over the surface. Ellipsometric measurements also provided that the CP and 4APCP film thicknesses were 2.49 nm and 4.58 nm for 6 CV cycle modification, corresponding to 66 {mu}F/cm{sup 2} and 106 {mu}F/cm{sup 2} capacitances obtained by CV. The wetting behavior was examined by contact angle measurements and found that the hydrophobicity of the GC-4APCP surface was higher than that of GC-CP, probably due to the aromatic meso substituent present in the former.

  9. Electrochemical tyrosine sensor based on a glassy carbon electrode modified with a nanohybrid made from graphene oxide and multiwalled carbon nanotubes

    International Nuclear Information System (INIS)

    Li, J.; Kuang, D.; Feng, Y.; Zhang, F.; Xu, Z.; Liu, M.; Wang, D.

    2013-01-01

    We report on a glassy carbon electrode that was modified with a composite made from graphene oxide (GO) and multiwalled carbon nanotubes (MWCNT) that enables highly sensitive determination of L-tyrosine. The sensor was characterized by transmission electron microscopy and electrochemical impedance spectroscopy, and its electrochemical properties by cyclic voltammetry, chronocoulometry and differential pulse voltammetry. The GO/MWCNT hybrid exhibits strong catalytic activity toward the oxidation of L-tyrosine, with a well defined oxidation peak at 761 mV. The respective current serves as the analytical information and is proportional to the L-tyrosine concentration in two ranges of different slope (0.05 to 1.0 μM and 1.0 to 650.0 μM), with limits of detection and quantification as low as 4.4 nM and 14.7 nM, respectively. The method was successfully applied to the analysis of L-tyrosine in human body fluids. The excellent reproducibility, stability, sensitivity and selectivity are believed to be due to the combination of the electrocatalytic properties of both GO and MWCNT. They are making this hybrid electrode a potentially useful electrochemical sensing platform for bioanalysis. (author)

  10. Electrochemical tyrosine sensor based on a glassy carbon electrode modified with a nanohybrid made from graphene oxide and multiwalled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Li, J.; Kuang, D.; Feng, Y.; Zhang, F.; Xu, Z.; Liu, M.; Wang, D., E-mail: junhua325@yahoo.com.cn [Key Laboratory of Functional Organometallic Materials of Hunan Province College, Department of Chemistry and Material Science, Hengyang Normal University, Hunan, Hengyang, 421008 (China)

    2013-01-15

    We report on a glassy carbon electrode that was modified with a composite made from graphene oxide (GO) and multiwalled carbon nanotubes (MWCNT) that enables highly sensitive determination of L-tyrosine. The sensor was characterized by transmission electron microscopy and electrochemical impedance spectroscopy, and its electrochemical properties by cyclic voltammetry, chronocoulometry and differential pulse voltammetry. The GO/MWCNT hybrid exhibits strong catalytic activity toward the oxidation of L-tyrosine, with a well defined oxidation peak at 761 mV. The respective current serves as the analytical information and is proportional to the L-tyrosine concentration in two ranges of different slope (0.05 to 1.0 {mu}M and 1.0 to 650.0 {mu}M), with limits of detection and quantification as low as 4.4 nM and 14.7 nM, respectively. The method was successfully applied to the analysis of L-tyrosine in human body fluids. The excellent reproducibility, stability, sensitivity and selectivity are believed to be due to the combination of the electrocatalytic properties of both GO and MWCNT. They are making this hybrid electrode a potentially useful electrochemical sensing platform for bioanalysis. (author)

  11. Electrochemical Reduction of Oxygen on Anthraquinone/Carbon Nanotubes Nanohybrid Modified Glassy Carbon Electrode in Neutral Medium

    Directory of Open Access Journals (Sweden)

    Zheng Gong

    2013-01-01

    Full Text Available The electrochemical behaviors of monohydroxy-anthraquinone/multiwall carbon nanotubes (MHAQ/MWCNTs nanohybrid modified glassy carbon (MHAQ/MWCNTs/GC electrodes in neutral medium were investigated; also reported was their application in the electrocatalysis of oxygen reduction reaction (ORR. The resulting MHAQ/MWCNTs nanohybrid was characterized by scanning electron microscope (SEM and transmission electron microscope (TEM. It was found that the ORR at the MHAQ/MWCNTs/GC electrode occurs irreversibly at a potential about 214 mV less negative than at a bare GC electrode in pH 7.0 buffer solution. Cyclic voltammetric and rotating disk electrode (RDE techniques indicated that the MHAQ/MWCNTs nanohybrid has high electrocatalytic activity for the two-electron reduction of oxygen in the studied potential range. The kinetic parameters of ORR at the MHAQ/MWCNTs nanohybrid modified GC electrode were also determined by RDE and EIS techniques.

  12. An Easily Fabricated Electrochemical Sensor Based on a Graphene-Modified Glassy Carbon Electrode for Determination of Octopamine and Tyramine

    Science.gov (United States)

    Zhang, Yang; Zhang, Meiqin; Wei, Qianhui; Gao, Yongjie; Guo, Lijuan; Al-Ghanim, Khalid A.; Mahboob, Shahid; Zhang, Xueji

    2016-01-01

    A simple electrochemical sensor has been developed for highly sensitive detection of octopamine and tyramine by electrodepositing reduced graphene oxide (ERGO) nanosheets onto the surface of a glassy carbon electrode (GCE). The electrocatalytic oxidation of octopamine and tyramine is individually investigated at the surface of the ERGO modified glassy carbon electrode (ERGO/GCE) by using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Several essential factors including the deposition cycle of reduced graphene oxide nanosheets and the pH of the running buffer were investigated in order to determine the optimum conditions. Furthermore, the sensor was applied to the quantification of octopamine and tyramine by DPV in the concentration ranges from 0.5 to 40 μM and 0.1 to 25 μM, respectively. In addition, the limits of detection of octopamine and tyramine were calculated to be 0.1 μM and 0.03 μM (S/N = 3), respectively. The sensor showed good reproducibility, selectivity and stability. Finally, the sensor successfully detected octopamine and tyramine in commercially available beer with satisfactory recovery ranges which were 98.5%–104.7% and 102.2%–103.1%, respectively. These results indicate the ERGO/GCE based sensor is suitable for the detection of octopamine and tyramine. PMID:27089341

  13. A reagentless non-enzymatic hydrogen peroxide sensor presented using electrochemically reduced graphene oxide modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Mutyala, Sankararao; Mathiyarasu, Jayaraman, E-mail: al_mathi@yahoo.com

    2016-12-01

    Herein, we report a simple, facile and reproducible non-enzymatic hydrogen peroxide (H{sub 2}O{sub 2}) sensor using electrochemically reduced graphene oxide (ERGO) modified glassy carbon electrode (GCE). The modified electrode was characterized by Fourier transform infrared (FT-IR), UV–Visible, scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques. Cyclic voltammetric (CV) analysis revealed that ERGO/GCE exhibited virtuous charge transfer properties for a standard redox systems and showed excellent performance towards electroreduction of H{sub 2}O{sub 2}. Amperometric study using ERGO/GCE showed high sensitivity (0.3 μA/μM) and faster response upon the addition of H{sub 2}O{sub 2} at an applied potential of − 0.25 V vs. Ag/AgCl. The detection limit is assessed to be 0.7 μM (S/N = 3) and the time to reach a stable study state current is < 3 s for a linear range of H{sub 2}O{sub 2} concentration (1–16 μM). In addition, the modified electrode exhibited good reproducibility and long-term stability. - Graphical abstract: We presented a reagentless non-enzymatic hydrogen peroxide sensor using electrochemically reduced graphene oxide material. - Highlights: • A facile green procedure proposed for high quality graphene synthesis using electrochemical reduction of graphene oxide • A simple, facile and reagentless non-enzymatic hydrogen peroxide sensor developed using ERGO/GCE. • ERGO/GCE exhibited high sensitivity, selectivity and finite limit of detection for H{sub 2}O{sub 2} sensing at low overpotential. • ERGO/GCE exhibited long term stability and good reproducibility.

  14. A reagentless non-enzymatic hydrogen peroxide sensor presented using electrochemically reduced graphene oxide modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Mutyala, Sankararao; Mathiyarasu, Jayaraman

    2016-01-01

    Herein, we report a simple, facile and reproducible non-enzymatic hydrogen peroxide (H 2 O 2 ) sensor using electrochemically reduced graphene oxide (ERGO) modified glassy carbon electrode (GCE). The modified electrode was characterized by Fourier transform infrared (FT-IR), UV–Visible, scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques. Cyclic voltammetric (CV) analysis revealed that ERGO/GCE exhibited virtuous charge transfer properties for a standard redox systems and showed excellent performance towards electroreduction of H 2 O 2 . Amperometric study using ERGO/GCE showed high sensitivity (0.3 μA/μM) and faster response upon the addition of H 2 O 2 at an applied potential of − 0.25 V vs. Ag/AgCl. The detection limit is assessed to be 0.7 μM (S/N = 3) and the time to reach a stable study state current is < 3 s for a linear range of H 2 O 2 concentration (1–16 μM). In addition, the modified electrode exhibited good reproducibility and long-term stability. - Graphical abstract: We presented a reagentless non-enzymatic hydrogen peroxide sensor using electrochemically reduced graphene oxide material. - Highlights: • A facile green procedure proposed for high quality graphene synthesis using electrochemical reduction of graphene oxide • A simple, facile and reagentless non-enzymatic hydrogen peroxide sensor developed using ERGO/GCE. • ERGO/GCE exhibited high sensitivity, selectivity and finite limit of detection for H 2 O 2 sensing at low overpotential. • ERGO/GCE exhibited long term stability and good reproducibility.

  15. A glassy carbon electrode modified with a film composed of cobalt oxide nanoparticles and graphene for electrochemical sensing of H2O2

    International Nuclear Information System (INIS)

    Li, Su-Juan; Du, Ji-Min; Zhang, Jia-Ping; Zhang, Meng-Jie; Chen, Jing

    2014-01-01

    We have prepared a graphene-based hybrid nanomaterial by electrochemical deposition of cobalt oxide nanoparticles (CoOxNPs) on the surface of electrochemically reduced graphene oxide deposited on a glassy carbon electrode (GCE). Scanning electron microscopy and cyclic voltammetry were used to characterize the immobilized nanoparticles. Electrochemical determination of H 2 O 2 is demonstrated with the modified GCE at pH 7. Compared to GCEs modified with CoO x NPs or graphene sheets only, the new electrode displays larger oxidative current response to H 2 O 2 , probably due to the synergistic effects between the graphene sheets and the CoO x NPs. The sensor responds to H 2 O 2 with a sensitivity of 148.6 μA mM −1 cm −2 and a linear response range from 5 μM to 1 mM. The detection limit is 0.2 μM at a signal to noise ratio (SNR) of three. The method was successfully applied to the determination of H 2 O 2 in hydrogen peroxide samples. (author)

  16. Voltammetric Determination of Meloxicam in Pharmaceutical Formulation and Human Serum at Glassy Carbon Electrode Modified by Cysteic Acid Formed by Electrochemical Oxidation of L-cysteine

    Directory of Open Access Journals (Sweden)

    Xiao Ya Hu

    2005-09-01

    Full Text Available The improvement of electrochemical detection of meloxicam is presented bymodification of a glassy carbon electrode with anionic layer of cysteic acid providingelectrostatic accumulation of the analyte onto the electrode surface. The modificationformed by electrochemical oxidation of L-cysteine was performed by cycling potential incysteine solution. The anodic peak current obtained at 1.088 V (vs. Ag/AgCl byvoltammetry was linearly dependent on the meloxicam concentration in the range of 4.3 ×10-8 ~ 8.5 × 10-6 M in the B-R buffer solution (0.04 M, pH 1.86 with a correlationcoefficient of 0.999. The detection limit (S/N = 3 is 1.5 × 10-9 M. The low-cost modifiedelectrode shows good sensitivity, selectivity and stability and has been applied to thedetermination of meloxicam in pharmaceutical formulation and spiked serum withsatisfactory results. The electrochemical reaction mechanism of meloxicam was discussed.

  17. Electrochemical behavior of ruthenium-hexacyanoferrate modified glassy carbon electrode and catalytic activity towards ethanol electro oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Wendell M.; Marques, Aldalea L.B., E-mail: aldalea.ufma@hotmail.com [Universidade Federal do Maranhao (UFMA), Sao Luis, MA (Brazil). Departamento de Quimica Tecnologica; Cardoso, William S.; Marques, Edmar P.; Bezerra, Cicero W.B. [Universidade Federal do Maranhao (UFMA), Sao Luis, MA (Brazil). Departamento de Qumica; Ferreira, Antonio Ap. P. [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Araraquara, SP (Brazil). Instituto de Quimica; Song, Chaojie; Zhang, Jiujun [Energy, Mining and Environment Portfolio, National Research Council of Canada, Vancouver, BC (Canada)

    2013-04-15

    Ruthenium-based hexacyanoferrate (RuHCF) thin film modified glassy carbon electrode was prepared by drop evaporation method. The RuHCF modified electrode exhibited four redox couples in strong acidic solution (pH 1.5) attributed to Fe(CN){sub 6}{sup 3-} ion and three ruthenium forms (Ru(II), Ru(III) and Ru(IV)), characteristic of ruthenium oxide compounds. The modified electrode displayed excellent electrocatalytic activity towards ethanol oxidation in the potential region where electrochemical processes Ru(III)-O-Ru(IV) and Ru(IV)-O-Ru(VI) occur. Impedance spectroscopy data indicated that the charge transfer resistance decreased with the increase of the applied potential and ethanol concentration, indicating the use of the RuHCF modified electrode as an ethanol sensor. Under optimized conditions, the sensor responded linearly and rapidly to ethanol concentration between 0.03 and 0.4 mol L{sup -1} with a limit of detection of 0.76 mmol L{sup -1}, suggesting an adequate sensitivity in ethanol analyses. (author)

  18. Study and Electrochemical Determination of Tyrosine at Graphene Nanosheets Composite Film Modified Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    M. Behpour

    2013-06-01

    Full Text Available A graphene nanosheets (GNS film coated glassy carbon electrode (GCE was fabricated for sensitive determination of tyrosine (Tyr. The GNS-based sensor was characterized by scanning electron microscope and electrochemical impedance spectroscopy. The voltammetric techniques were employed to study electro-oxidation of Tyr. The results revealed that the modified electrode showed an electrocatalytic activity toward the anodic oxidation of Tyr by a marked enhancement in the current intensity and the shift in the oxidation potential to lower values (50 mV in comparison with the bare GCE. Some kinetic parameters such as the electron transfer coefficient (α were also determined for the Tyr oxidation. The detection limit  for Tyr was found to be 2.0×10-8 M (n=9, and the peak current increases linearly with the Tyr concentration within the molar concentration ranges of 5.0 ×10-6 to 1.2 ×10-4 M. The modified electrode shows good sensitivity, selectivity and stability. The prepared electrode was applied for the determination of Tyr in real sample.

  19. The Enhanced Photo-Electrochemical Detection of Uric Acid on Au Nanoparticles Modified Glassy Carbon Electrode

    Science.gov (United States)

    Shi, Yuting; Wang, Jin; Li, Shumin; Yan, Bo; Xu, Hui; Zhang, Ke; Du, Yukou

    2017-07-01

    In this work, a sensitive and novel method for determining uric acid (UA) has been developed, in which the glassy carbon electrode (GCE) was modified with electrodeposition Au nanoparticles and used to monitor the concentration of UA with the assistant of visible light illumination. The morphology of the Au nanoparticles deposited on GCE surface were characterized by scanning electron microscope (SEM) and the nanoparticles were found to be well-dispersed spheres with the average diameter approaching 26.1 nm. A series of cyclic voltammetry (CV) and differential pulse voltammetry (DPV) measurements have revealed that the introduction of visible light can greatly enhance both the strength and stability of response current due to the surface plasmon resonance (SPR). Specifically, the DPV showed a linear relationship between peak current and UA concentration in the range of 2.8 to 57.5 μM with the equation of I pa (μA) = 0.0121 c UA (μM) + 0.3122 ( R 2 = 0.9987). Herein, the visible light illuminated Au/GCE possesses a potential to be a sensitive electrochemical sensor in the future.

  20. Electrochemical determination of ascorbic acid at p-phenylenediamine film-holes modified glassy carbon electrode

    Directory of Open Access Journals (Sweden)

    Olana Bikila Nagasa

    2015-01-01

    Full Text Available In this work the determination of ascorbic acid (AA at glassy carbon electrode (GCE modified with a perforated film produced by reduction of diazonium generated in situ from p-phenylenediamine (PD is reported. Holes were intentionally created in the modifier film by stripping a pre-deposited gold nanoparticles. The modified electrodes were electrochemically characterized by common redox probes: hydroquinone, ferrocyanide and hexamineruthenium(III. The cyclic voltammetric and amperometric response of AA using the modified electrodes was compared with that of bare GCE. The bare GCE showed a linear response to AA in the concentration range of 5 mM to 45 mM with detection limit of 1.656 mM and the modified GCE showed a linear response to AA in the concentration range of 5 μM to 45 μM with detection limit of 0.123 μM. The effect of potential intereferents on amperometric signal of AA at the modified GCE was examined and found to be minimal. The inter-electrode reproducibility, stability, and accuracy were determined. The modified electrode showed excellent inter-electrode reproducibility, accuracy and stability. The modified electrode reported is a promising candidate for use in electroanalysis of AA.

  1. Very sensitive electrochemical determination of diuron on glassy carbon electrode modified with reduced graphene oxide-gold nanoparticle-Nafion composite film.

    Science.gov (United States)

    Zarei, K; Khodadadi, A

    2017-10-01

    In this work, a very sensitive electrochemical sensor based on glassy carbon electrode (GCE) modified with reduced graphene oxide-gold nanoparticles/Nafion (rGO-AuNPs/Nafion) composite film was applied to determine diuron. Synthesized GO was characterized using X-ray diffraction (XRD) and UV-visible spectroscopy. The surface morphology of the rGO-AuNPs/Nafion film was also characterized using scanning electron microscopy and electrochemical impedance spectroscopy. Cyclic voltammetry (CV) and adsorptive differential pulse voltammetry (AdDPV) were applied to investigate the electrochemical response of the diuron on the modified electrode. The electrode showed a linear response at 1.0×10 -9 -1.0×10 -7 M and a detection limit of 0.3nM under the optimized conditions. The effect of some other species on the determination of diuron was investigated and the sensor showed good selectivity for determination of diuron. The constructed sensor was applied to determine diuron in enriched samples of orange juice, mineral and tap water which statistical t-test showed accuracy of method. Also the sensor was applied to obtain diuron content in the tea sample. The reliability of the proposed sensor was confirmed after comparing the results with those obtained using high performance liquid chromatography (HPLC) as a comparative method. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Selective electrochemical determination of homocysteine in the presence of cysteine and glutathione

    International Nuclear Information System (INIS)

    Salehzadeh, Hamid; Mokhtari, Banafsheh; Nematollahi, Davood

    2014-01-01

    Graphical abstract: 3,5-Di-tert-buthylcatechol was used for the selective electrochemical determination of homocysteine in the presence of cysteine and glutathione at the glassy carbon and carbon nanotube modified glassy carbon electrode. - Highlights: • Selective electrochemical determination of homocysteine. • Catalytic electron transfer of 3,5-di-tert-buthylcatechol in the presence of homocysteine. • Michael type addition reaction of electrochemically generated 3,5-di-tert-buthyl-o-benzoquinone with glutathione. - Abstract: The electrochemical oxidation of 3,5-di-tert-buthylcatechol in the presence of homocysteine was used for the selective electrochemical determination of homocysteine in the presence of cysteine and glutathione at a glassy carbon and a glassy carbon electrode modified with carbon nanotube. The results revealed that the electrochemically generated 3,5-di-tert-butylcyclohexa-3,5-diene-1,2-dione exhibits high catalytic activity toward homocysteine oxidation at reduced over-potential and low catalytic activity for oxidation of cysteine. The catalytic activity 3,5-di-tert-butylcyclohexa-3,5-diene-1,2-dione toward cysteine was suppressed in the presence of 4-N,N-dimethylaminocinnamaldehyde. Contrary to homocysteine and cysteine, the reaction of glutathione with 3,5-di-tert-butylcyclohexa-3,5-diene-1,2-dione is a substituation reaction. This method exhibits three dynamic linear ranges of 2.5 to 10 μmol L −1 , 10 to 100 μmol L −1 and 100 to 1000 μmol L −1 , and a lower detection limit (3σ) of 0.89 ± 3.53% μmol L −1 for homocysteine

  3. Electrocatalytic Determination of Isoniazid by a Glassy Carbon Electrode Modified with Poly (Eriochrome Black T)

    OpenAIRE

    Karim Asadpour-Zeynali; Venus Baghalabadi

    2017-01-01

    In this work poly eriochrome black T (EBT) was electrochemically synthesized on the glassy carbon electrode as electrode modifier. On the modified electrode, voltammetric behavior of isoniazid (INH) was investigated. The poly (EBT)-modified glassy carbon electrode has excellent electrocatalytic ability for the electrooxidation of isoniazid. This fact was appeared as a reduced overpotential of INH oxidation in a wide operational pH range from 2 to 13. It has been found that the catalytic peak ...

  4. Electrochemical pretreatment of waste activated sludge: effect of process conditions on sludge disintegration degree and methane production.

    Science.gov (United States)

    Ye, Caihong; Yuan, Haiping; Dai, Xiaohu; Lou, Ziyang; Zhu, Nanwen

    2016-11-01

    Waste activated sludge (WAS) requires a long digestion time because of a rate-limiting hydrolysis step - the first phase of anaerobic digestion (AD). Pretreatment can be used prior to AD to facilitate the hydrolysis step and improve the efficiency of WAS digestion. This study evaluated a novel application of electrochemical (EC) technology employed as the pretreatment method prior to AD of WAS, focusing on the effect of process conditions on sludge disintegration and subsequent AD process. A superior process condition of EC pretreatment was obtained by reaction time of 30 min, electrolysis voltage of 20 V, and electrode distance of 5 cm, under which the disintegration degree of WAS ranged between 9.02% and 9.72%. In the subsequent batch AD tests, 206 mL/g volatile solid (VS) methane production in EC pretreated sludge was obtained, which was 20.47% higher than that of unpretreated sludge. The AD time was 19 days shorter for EC pretreated sludge compared to the unpretreated sludge. Additionally, the EC + AD reactor achieved 41.84% of VS removal at the end of AD. The analysis of energy consumption showed that EC pretreatment could be effective in enhancing sludge AD with reduced energy consumption when compared to other pretreatment methods.

  5. Calix[6]arene mono-diazonium salt synthesis and covalent immobilization onto glassy carbon electrodes

    International Nuclear Information System (INIS)

    Cannizzo, Caroline; Jasmin, Jean-Philippe; Vautrin-Ul, Christine; Chausse, Annie; Wagner, Mathieu; Doizi, Denis; Lamouroux, Christine

    2014-01-01

    This Letter describes the fast synthesis of a mono-aminated calix[6]arene. The immobilization of this macrocycle onto glassy carbon electrodes via diazonium salt chemistry and the electrochemical characterization of the grafted organic layer are also reported. (authors)

  6. Simultaneous Electrochemical Detection of Dopamine and Ascorbic Acid Using an Iron Oxide/Reduced Graphene Oxide Modified Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Teo Peik-See

    2014-08-01

    Full Text Available The fabrication of an electrochemical sensor based on an iron oxide/graphene modified glassy carbon electrode (Fe3O4/rGO/GCE and its simultaneous detection of dopamine (DA and ascorbic acid (AA is described here. The Fe3O4/rGO nanocomposite was synthesized via a simple, one step in-situ wet chemical method and characterized by different techniques. The presence of Fe3O4 nanoparticles on the surface of rGO sheets was confirmed by FESEM and TEM images. The electrochemical behavior of Fe3O4/rGO/GCE towards electrocatalytic oxidation of DA was investigated by cyclic voltammetry (CV and differential pulse voltammetry (DPV analysis. The electrochemical studies revealed that the Fe3O4/rGO/GCE dramatically increased the current response against the DA, due to the synergistic effect emerged between Fe3O4 and rGO. This implies that Fe3O4/rGO/GCE could exhibit excellent electrocatalytic activity and remarkable electron transfer kinetics towards the oxidation of DA. Moreover, the modified sensor electrode portrayed sensitivity and selectivity for simultaneous determination of AA and DA. The observed DPVs response linearly depends on AA and DA concentration in the range of 1–9 mM and 0.5–100 µM, with correlation coefficients of 0.995 and 0.996, respectively. The detection limit of (S/N = 3 was found to be 0.42 and 0.12 µM for AA and DA, respectively.

  7. A sensitive electrochemical sensor for paracetamole based on a glassy carbon electrode modified with multiwalled carbon nanotubes and dopamine nanospheres functionalized with gold nanoparticles

    International Nuclear Information System (INIS)

    Liu, Xue; Wang, Ling-Ling; Wang, Ya-Ya; Zhang, Xiao-Yan

    2014-01-01

    We describe an electrochemical sensor for paracetamole that is based on a glassy carbon electrode modified with multiwalled carbon nanotubes and dopamine nanospheres functionalized with gold nanoparticles. The functionalized nanospheres were prepared by a chemical route and characterized by scanning electron microscopy. The well-dispersed gold nanoparticles were anchored on the dopamine nanosphere via a chemical reduction of the gold precursor. The stepwise fabrication of the modified electrode and its electrochemical response to paracetamole were evaluated using electrochemical impedance spectroscopy and cyclic voltammetry. The modified electrode displayed improved electrocatalytic activity towards paracetamole, a lower oxidation potential (371 mV), and a larger peak current when compared to a bare electrode or other modified electrodes. The kinetic parameters governing the electro-oxidation of paracetamole were studied, and the analytical conditions were optimized. The peak current was linearly related to the concentration of paracetamole in 0.8–400 μM range, and the detection limit was 50 nM (at an SNR of 3). The method was successfully applied to the determination of paracetamole in spiked human urine samples and gave recoveries between 95.3 and 105.2 %. (author)

  8. EIS study of the redox reaction of Fe(CN)63-/4- at glassy carbon electrode via diazonium reduction in aqueous and acetonitrile solutions

    Energy Technology Data Exchange (ETDEWEB)

    Khoshroo, M.; Rostami, A. [Mazandaran Univ., Babolsar (Iran, Islamic Republic of). Dept. of Physical Chemistry

    2008-07-01

    This paper reported on a study that characterized soluble electroactive species by cyclic voltammetry to investigate the presence of grafted films and their blocking properties. In particular, the authority of the glassy carbon electrode modification conditions on the cyclic voltammetric response of Fe(CN)63-/4- oxido-reduction was examined for 2 layers grafted by electrochemical reduction of diazonium salts in acetonitrile and aqueous solutions. PAA and Fast Black K modified glassy carbon electrodes exhibited a significant blocking behaviour for oxidation and reduction reactions of the Fe(CN)63-/4- redox system in aqueous and acetonitrile solutions. The study showed that the blocking effect increased which changes in time and concentration of diazonium salts in acetonitrile solution. Electrochemical impedance spectroscopy (EIS) measurements showed that the physical barrier of grafted layers prevent the access of Fe(CN)63-/4- to the underlying glassy carbon electrode. Therefore the RCT resistance increases during the modification treatment. The substituted phenyl layers are much more compact and less permeable in a nonaqueous solvent than with an aqueous solvent. Electrochemical impedance measurements indicate that the kinetics of electron transfer slow down when the time and the concentration used to modify the glassy carbon electrode increase. 4 refs., 1 fig.

  9. Dopamine and uric acid electrochemical sensor based on a glassy carbon electrode modified with cubic Pd and reduced graphene oxide nanocomposite.

    Science.gov (United States)

    Wang, Jin; Yang, Beibei; Zhong, Jiatai; Yan, Bo; Zhang, Ke; Zhai, Chunyang; Shiraishi, Yukihide; Du, Yukou; Yang, Ping

    2017-07-01

    A cubic Pd and reduced graphene oxide modified glassy carbon electrode (Pd/RGO/GCE) was fabricated to simultaneously detect dopamine (DA) and uric acid (UA) by cyclic voltammetry (CV) and different pulse voltammetry (DPV) methods. Compared with Pd/GCE and RGO/GCE, the Pd/RGO/GCE exhibited excellent electrochemical activity in electrocatalytic behaviors. Performing the Pd/RGO/GCE in CV measurement, the well-defined oxidation peak potentials separation between DA and UA reached to 145mV. By using the differential pulse voltammetry (DPV) technique, the calibration curves for DA and UA were found linear with the concentration range of 0.45-421μM and 6-469.5μM and the detection limit (S/N =3) were calculated to be 0.18μM and 1.6μM, respectively. Furthermore, the Pd/RGO/GCE displayed high selectivity when it was applied into the determination of DA and UA even though in presence of high concentration of interferents. Additionally, the prepared electrochemical sensor of Pd/RGO/GCE demonstrated a practical feasibility in rat urine and serum samples determination. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Sensitive electrochemical determination of α-fetoprotein using a glassy carbon electrode modified with in-situ grown gold nanoparticles, graphene oxide and MWCNTs acting as signal amplifiers

    International Nuclear Information System (INIS)

    Gao, Yan-Sha; Zhu, Xiao-Fei; Yang, Tao-Tao; Xu, Jing-Kun; Zhang, Kai-Xin; Lu, Li-Min

    2015-01-01

    The authors describe an electrochemical immunoassay for α-fetoprotein (α-FP) using a glassy carbon electrode (GCE) modified with a nanocomposite made from gold nanoparticles, graphene oxide and multi-walled carbon nanotubes (AuNPs/GO-MWCNTs) and acting as a signal amplification matrix. The nanocomposite was synthesized in a one-pot redox reaction between GO and HAuCl 4 without using an additional reductant. The stepwise assembly of the immunoelectrode was characterized by means of cyclic voltammetry and electrochemical impedance spectroscopy. The interaction of antigen and antibody on the surface of the electrode creates a barrier for electrons and causes retarded electron transfer, this resulting in decreased signals in differential pulse voltammetry of hexacyanoferrate which is added as an electrochemical probe. Using this strategy and by working at a potential of 0.2 V (vs. SCE), a wide analytical range (0.01 - 100 ng∙mL -1 ) is covered. The correlation coefficient is 0.9929, and the limit of detection is as low as 3 pg∙mL -1 at a signal-to-noise ratio of 3. This electrochemical immunoassay combines the specificity of an immunological detection scheme with the sensitivity of an electrode modified with AuNPs and GO-MWCNTs. (author)

  11. An extensive study of electrochemical behavior of brimonidine and its determination at glassy carbon electrode

    International Nuclear Information System (INIS)

    Aleksić, Mara M.; Radulović, Valentina; Agbaba, Danica; Kapetanović, Vera

    2013-01-01

    Highlights: • The electrochemical behavior of BRIM was investigated by CV, DPV and SWV at GCE. • The effects of pH, scan rate and BRIM concentriation was studied. • The nature of the electrode process, and the mechanism scheme was proposed. • DPV method was developed for the estimation of BRIM in the Alphagan eye drops. -- Abstract: The electrochemical behavior of brimonidine (BRIM), an antiglaucoma agent applied in therapy for lowering high intraocular pressure, was investigated by cyclic voltammetry, differential pulse voltammetry and square wave voltammetry using a glassy carbon electrode (GCE). The reduction of BRIM occurs as one-step quasi-reversible reaction in acid and neutral medium, reaching the full reversibility in alkaline solutions. Reduction process involves the transfer of two electrons and two protons at the pyrazine ring of quinoxaline moiety, forming a dihydro-derivative. In acid and neutral solutions, brimonidine reduction product is partly oxidized to its hydroxy-derivative. BRIM is also oxidized irreversibly with the transfer of one electron and one proton at secondary amine moiety. The effects of pH of the electrolyte solution, scan rate and BRIM concentration were monitored. The nature of the electrode process was found to be controlled by the adsorption at pH > 6 and the total surface concentration of brimonidine adsorbed onto the GCE surface at pH 7, Γ BRIM = 1.35 × 10 −10 mol cm −2 was obtained. Based on this study, differential pulse voltammetric method was developed, validated and suggested for rapid electroanalytical determination of the low concentration of brimonidine. The linearity was achieved within the concentration range from 5 × 10 −7 to 5 × 10 −6 M with LOD = 1.6 × 10 −7 M and LOQ = 5.3 × 10 −7 M. The method was applied for brimonidine determination in pharmaceutical dosage form, eye drops

  12. Glassy carbon electrodes modified with a film of nanodiamond-graphite/chitosan: Application to the highly sensitive electrochemical determination of Azathioprine

    International Nuclear Information System (INIS)

    Shahrokhian, Saeed; Ghalkhani, Masoumeh

    2010-01-01

    A novel modified glassy carbon electrode with a film of nanodiamond-graphite/chitosan is constructed and used for the sensitive voltammetric determination of azathioprine (Aza). The surface morphology and thickness of the film modifier are characterized using atomic force microscopy. The electrochemical response characteristics of the electrode toward Aza are investigated by means of cyclic voltammetry. The modified electrode showed an efficient catalytic role for the electrochemical reduction of Aza, leading to a remarkable decrease in reduction overpotential and enhancement of the kinetics of the electrode reaction with a significant increase of peak current. The effects of experimental variables, such as the deposited amount of modifier suspension, the pH of the supporting electrolyte, the accumulation potential and time were investigated. Under optimal conditions, the modified electrode showed a wide linear response to the concentration of Aza in the range of 0.2-100 μM with a detection limit of 65 nM. The prepared modified electrode showed several advantages: simple preparation method, high stability and uniformity in the composite film, high sensitivity, excellent catalytic activity in physiological conditions and good reproducibility. The modified electrode can be successfully applied to the accurate determination of trace amounts of Aza in pharmaceutical and clinical preparations.

  13. Glassy carbon electrodes modified with a film of nanodiamond-graphite/chitosan: Application to the highly sensitive electrochemical determination of Azathioprine

    Energy Technology Data Exchange (ETDEWEB)

    Shahrokhian, Saeed, E-mail: shahrokhian@sharif.ed [Department of Chemistry, Sharif University of Technology, Tehran 11155-9516 (Iran, Islamic Republic of); Institute for Nanoscience and Technology, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Ghalkhani, Masoumeh [Department of Chemistry, Sharif University of Technology, Tehran 11155-9516 (Iran, Islamic Republic of)

    2010-04-15

    A novel modified glassy carbon electrode with a film of nanodiamond-graphite/chitosan is constructed and used for the sensitive voltammetric determination of azathioprine (Aza). The surface morphology and thickness of the film modifier are characterized using atomic force microscopy. The electrochemical response characteristics of the electrode toward Aza are investigated by means of cyclic voltammetry. The modified electrode showed an efficient catalytic role for the electrochemical reduction of Aza, leading to a remarkable decrease in reduction overpotential and enhancement of the kinetics of the electrode reaction with a significant increase of peak current. The effects of experimental variables, such as the deposited amount of modifier suspension, the pH of the supporting electrolyte, the accumulation potential and time were investigated. Under optimal conditions, the modified electrode showed a wide linear response to the concentration of Aza in the range of 0.2-100 muM with a detection limit of 65 nM. The prepared modified electrode showed several advantages: simple preparation method, high stability and uniformity in the composite film, high sensitivity, excellent catalytic activity in physiological conditions and good reproducibility. The modified electrode can be successfully applied to the accurate determination of trace amounts of Aza in pharmaceutical and clinical preparations.

  14. Science and Technology Text Mining: Electrochemical Power

    Science.gov (United States)

    2003-07-14

    electrodes) and improvements based on component materials (glassy carbon, carbon fibers, aerogels , thin films). A focal point of electrochemical capacitor...performance of carbon aerogels ; and the fabrication and application of Cu-carbon composite (prepared from sawdust) to electrochemical capacitor electrodes. xi...applications require decreases in size and weight, especially for space, aircraft , and individual soldier or small team applications. For large volumes

  15. A novel lable-free electrochemical immunosensor for carcinoembryonic antigen based on gold nanoparticles-thionine-reduced graphene oxide nanocomposite film modified glassy carbon electrode.

    Science.gov (United States)

    Kong, Fen-Ying; Xu, Mao-Tian; Xu, Jing-Juan; Chen, Hong-Yuan

    2011-10-15

    In this paper, gold nanoparticle-thionine-reduced graphene oxide (GNP-THi-GR) nanocomposites were prepared to design a label-free immunosensor for the sensitive detection of carcinoembryonic antigen (CEA). The nanocomposites with good biocompatibility, excellent redox electrochemical activity and large surface area were coated onto the glassy carbon electrode (GCE) surface and then CEA antibody (anti-CEA) was immobilized on the electrode to construct the immunosensor. The morphologies and electrochemistry of the formed nanocomposites were investigated by using scanning electron microscopy (SEM), ultraviolet-visible (UV-vis) spectrometry, electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). CV and differential pulse voltammetry (DPV) studies demonstrated that the formation of antibody-antigen complexes decreased the peak current of THi in the GNP-THi-GR nanocomposites. The decreased currents were proportional to the CEA concentration in the range of 10-500 pg/mL with a detection limit of 4 pg/mL. The proposed method was simple, fast and inexpensive for the determination of CEA at very low levels. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Electrocatalytic reduction of nitrite on tetraruthenated metalloporphyrins/Nafion glassy carbon modified electrode

    Energy Technology Data Exchange (ETDEWEB)

    Calfuman, Karla [Facultad de Ciencias, Departamento de Quimica, Universidad de Chile, Las Palmeras 3425, Casilla 653, Nunoa, Santiago (Chile); Aguirre, Maria Jesus [Facultad de Quimica y Biologia, Departamento de Quimica de los Materiales, Universidad de Santiago de Chile, Santiago (Chile); Canete-Rosales, Paulina; Bollo, Soledad [Facultad de Ciencias Quimicas y Farmaceuticas, Departamento de Quimica Farmacologica y Toxicologica, Universidad de Chile, Santiago (Chile); Llusar, Rosa [Departamento de Quimica Fisica y Analitica, Universidad de Jaume I, Castellon (Spain); Isaacs, Mauricio, E-mail: misaacs@uchile.cl [Facultad de Ciencias, Departamento de Quimica, Universidad de Chile, Las Palmeras 3425, Casilla 653, Nunoa, Santiago (Chile)

    2011-10-01

    Highlights: > Preparation and characterization of modified electrodes with M(II) Tetraruthenated porphyrins onto a Nafion film. > The electrodes were characterized by SEM, TEM, AFM and SECM techniques. > The modified electrodes are active in the electrochemical reduction of nitrite at -660 mV vs Ag/AgCl. > GC/Nf/CoTRP modified electrode is more electrochemically active than their Ni and Zn analogues. - Abstract: This paper describes the electrochemical reduction of nitrite ion in neutral aqueous solution mediated by tetraruthenated metalloporphyrins (Co(II), Ni(II) and Zn(II)) electrostatically assembled onto a Nafion film previously adsorbed on glassy carbon or ITO electrodes. Scanning electron microscope (SEM-EDX) and transmission electron microscopy (TEM) results have shown that on ITO electrodes the macrocycles forms multiple layers with a disordered stacking orientation over the Nafion film occupying hydrophobic and hydrophilic sites in the polyelectrolyte. Atomic force microscopy (AFM) results demonstrated that the Nafion film is 35 nm thick and tetraruthenated metalloporphyrins layers 190 nm thick presenting a thin but compacted morphology. Scanning electrochemical microscopy (SECM) images shows that the Co(II) tetraruthenated porphyrins/Nf/GC modified electrode is more electrochemically active than their Ni and Zn analogues. These modified electrodes are able to reduce nitrite at -660 mV showing enhanced reduction current and a decrease in the required overpotential compared to bare glassy carbon electrode. Controlled potential electrolysis experiments verify the production of ammonia, hydrazine and hydroxylamine at potentials where reduction of solvent is plausible demonstrating some selectivity toward the nitrite ion. Rotating disc electrode voltammetry shows that the factor that governs the kinetics of nitrite reduction is the charge propagation in the film.

  17. Enzyme-Gelatin Electrochemical Biosensors: Scaling Down

    Directory of Open Access Journals (Sweden)

    Hendrik A. Heering

    2012-03-01

    Full Text Available In this article we investigate the possibility of scaling down enzyme-gelatin modified electrodes by spin coating the enzyme-gelatin layer. Special attention is given to the electrochemical behavior of the selected enzymes inside the gelatin matrix. A glassy carbon electrode was used as a substrate to immobilize, in the first instance, horse heart cytochrome c (HHC in a gelatin matrix. Both a drop dried and a spin coated layer was prepared. On scaling down, a transition from diffusion controlled reactions towards adsorption controlled reactions is observed. Compared to a drop dried electrode, a spin coated electrode showed a more stable electrochemical behavior. Next to HHC, we also incorporated catalase in a spin coated gelatin matrix immobilized on a glassy carbon electrode. By spincoating, highly uniform sub micrometer layers of biocompatible matrices can be constructed. A full electrochemical study and characterization of the modified surfaces has been carried out. It was clear that in the case of catalase, gluteraldehyde addition was needed to prevent leaking of the catalase from the gelatin matrix.

  18. Electrochemical Determination of Caffeine Content in Ethiopian Coffee Samples Using Lignin Modified Glassy Carbon Electrode

    OpenAIRE

    Amare, Meareg; Aklog, Senait

    2017-01-01

    Lignin film was deposited at the surface of glassy carbon electrode potentiostatically. In contrast to the unmodified glassy carbon electrode, an oxidative peak with an improved current and overpotential for caffeine at modified electrode showed catalytic activity of the modifier towards oxidation of caffeine. Linear dependence of peak current on caffeine concentration in the range 6 ? 10?6 to 100 ? 10?6?mol?L?1 with determination coefficient and method detection limit (LoD = 3?s/slope) of 0....

  19. 2018-04-06T22:48:29Z https://www.ajol.info/index.php/all/oai oai:ojs ...

    African Journals Online (AJOL)

    article/61361 2018-04-06T22:48:29Z bcse:ART Voltammetric determination of chloramphenicol at electrochemically pretreated glassy carbon electrode Alemu, Hailemichael; Department of Chemistry and Chemical Technology, National University ...

  20. Facile electrochemical pretreatment of multiwalled carbon nanotube - Polydimethylsiloxane paste electrode for enhanced detection of dopamine and uric acid

    Science.gov (United States)

    Buenaventura, Angelo Gabriel E.; Yago, Allan Christopher C.

    2018-05-01

    A facile electrochemical pretreatment via anodization was done on Carbon Paste Electrodes (CPEs) composed of Multiwalled Carbon Nanotubes (MWCNTs) and Polydimethylsiloxane (PDMS) binder to produce `anodized' CPEs (ACPE). Cyclic Voltammetry (CV) technique was used to anodize the CPEs. The anodization step, performed in various solutions (0.2 M NaOH(aq), 0.06 M BR Buffer at pH 7.0, and 0.2 M HNO3(aq)), were found to enhance the electrochemical properties of the ACPEs compared to non-anodized CPE. Electrochemical Impedance Spectroscopy (EIS) measurements revealed a significantly lower charge transfer resistance (Rct) for the ACPEs (4.01-6.25 kΩ) as compared to CPE (25.9 kΩ). Comparison of the reversibility analysis for Fe(CN)63-/4- redox couple showed that the ACPEs have peak current ratio (Ia/Ic) at range of 0.97-1.10 while 1.92 for the CPE; this result indicated better electrochemical reversible behaviors for Fe(CN)63-/4- redox couple using the ACPEs. CV Anodization process was further optimized by varying solution and CV parameters (i.e. pH, composition, number of cycles, and potential range), and the resulting optimized ACPE was used for enhanced detection of Dopamine (DA) and Uric Acid (UA) in the presence of excess Ascorbic Acid (AA). Employing Differential Pulse Voltammetry technique, enhanced voltammetric signal for DA and significant peak separation between DA and UA was obtained. The anodic peak currents for the oxidation of DA and UA appeared at 0.263V and 0.414 V, respectively, and it was observed to be linearly increasing with increasing concentrations of biomolecules (25-100 µM). The detection limit was determined to be 3.86 µM for DA and 5.61 µM for UA. This study showed a quick and cost-effective pretreatment for CPEs based on MWCNT-PDMS composite which lead to significant enhancement on its electrochemical properties.

  1. Electrocatalytic Oxidation of Venlafaxine at a Multiwall Carbon Nanotubes-Ionic Liquid Gel Modified Glassy Carbon Electrode and Its Electrochemical Determination

    Directory of Open Access Journals (Sweden)

    Ling Ding

    2015-03-01

    Full Text Available The electrocatalytic oxidation of venlafaxine (VEN was investigated at a glassy carbon electrode (GCE, the modified electrode by a gel containing multiwall carbon nanotubes (MWCNTs and a room-temperature ionic liquid (RTIL, 1-butyl-3-methylimidazolium hexafluorophate (BMIMPF6 in 0.10 mol L−1 phosphate buffer solution (PBS, pH 6.8. It was found that an irreversible anodic oxidation peak of VEN with the peak potential (Epa as 0.780 V appeared at MWCNTs-RTIL/GCE. The electrode reaction process was a diffusion-controlled one and the electrochemical oxidation involved two electrons transferring and two protons participation. Furthermore, the charge-transfer coefficient (α, and the electrode reaction rate constant (kf of VEN were found to be 0.91 and 3.04×10−2 s−1, respectively. Under the optimized conditions, the electrocatalytic oxidation peak currents were linearly dependent on the concentration of VEN in the concentration range from 2.0×10−6 mol L−1 ~ 2.0×10−3 mol L−1 with the limit of detection (S / N = 3 as 1.69×10−6 mol L−1. The proposed method has been successfully applied in the electrochemical quantitative determination of VEN content in commercial venlafaxine hydrochloride capsules and the determination results could meet the requirement of the quantitative determination.

  2. Electrochemical impedance spectroscopic investigation of the role of alkaline pre-treatment in corrosion resistance of a silane coating on magnesium alloy, ZE41

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty Banerjee, P. [Department of Chemical Engineering, Monash University, Clayton, VIC-3800 (Australia); CAST Cooperative Research Centre, Hawthorn, VIC-3122 (Australia); Singh Raman, R.K., E-mail: raman.singh@eng.monash.edu.a [Department of Chemical Engineering, Monash University, Clayton, VIC-3800 (Australia); Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC-3800 (Australia)

    2011-04-15

    The protective performance of the coatings of bis-1,2-(triethoxysilyl) ethane (BTSE) on ZE41 magnesium alloy with different surface pre-treatments were evaluated using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) in 0.1 M sodium chloride solution. Electrical equivalent circuits were developed based upon hypothetical corrosion mechanisms and simulated to correspond to the experimental data. The morphology and cross section of the alloy subjected to different pre-treatments and coatings were characterized using scanning electron microscope. A specific alkaline pre-treatment of the substrate prior to the coating has been found to improve the corrosion resistance of the alloy.

  3. Electrochemical impedance spectroscopic investigation of the role of alkaline pre-treatment in corrosion resistance of a silane coating on magnesium alloy, ZE41

    International Nuclear Information System (INIS)

    Chakraborty Banerjee, P.; Singh Raman, R.K.

    2011-01-01

    The protective performance of the coatings of bis-1,2-(triethoxysilyl) ethane (BTSE) on ZE41 magnesium alloy with different surface pre-treatments were evaluated using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) in 0.1 M sodium chloride solution. Electrical equivalent circuits were developed based upon hypothetical corrosion mechanisms and simulated to correspond to the experimental data. The morphology and cross section of the alloy subjected to different pre-treatments and coatings were characterized using scanning electron microscope. A specific alkaline pre-treatment of the substrate prior to the coating has been found to improve the corrosion resistance of the alloy.

  4. Graphene oxide-mediated electrochemistry of glucose oxidase on glassy carbon electrodes.

    Science.gov (United States)

    Castrignanò, Silvia; Valetti, Francesca; Gilardi, Gianfranco; Sadeghi, Sheila J

    2016-01-01

    Glucose oxidase (GOD) was immobilized on glassy carbon electrodes in the presence of graphene oxide (GO) as a model system for the interaction between GO and biological molecules. Lyotropic properties of didodecyldimethylammonium bromide (DDAB) were used to stabilize the enzymatic layer on the electrode surface resulting in a markedly improved electrochemical response of the immobilized GOD. Transmission electron microscopy images of the GO with DDAB confirmed the distribution of the GO in a two-dimensional manner as a foil-like material. Although it is known that glassy carbon surfaces are not ideal for hydrogen peroxide detection, successful chronoamperometric titrations of the GOD in the presence of GO with β-d-glucose were performed on glassy carbon electrodes, whereas no current response was detected upon β-d-glucose addition in the absence of GO. The GOD-DDAB-GO system displayed a high turnover efficiency and substrate affinity as a glucose biosensor. The simplicity and ease of the electrode preparation procedure of this GO/DDAB system make it a good candidate for immobilizing other biomolecules for fabrication of amperometric biosensors. © 2015 International Union of Biochemistry and Molecular Biology, Inc.

  5. Kinetic study on electrochemical oxidation of catechols in the ...

    Indian Academy of Sciences (India)

    glassy carbon electrode in different experimental conditions. The electrogenerated ... cancer activities.5 Catechols can be easily oxidized electrochemically to ... from unity and approaches to zero in basic solution. This behavior is related to the ...

  6. Effect of glassy carbon properties on the electrochemical deposition of platinum nano-catalyst and its activity for methanol oxidation

    Directory of Open Access Journals (Sweden)

    SANJA TERZIC

    2007-02-01

    Full Text Available The effects of the properties of glassy carbon on the deposition of platinum particles and the electrocatalytic activity of platinum supported on glassy carbon (GC/Pt for methanol oxidation in alkaline and acidic solutions were studied. Platinum was potentiostatically deposited on two glassy carbon samples, thermally treated at different temperatures, which were either polished or anodicaly polarised in acid (GCOX-AC/Pt and in alkali (GCOX-AL/Pt. Anodic polarisation of glassy carbon, either in alkaline or acidic solution, enhances the activity of both types of GC/Pt electrodes for methanol oxidation. The activity of the catalysts follows the change in the properties of the glassy carbon support upon anodic treatment. The specific activity of the GCOX-AL/Pt electrode for this reaction in alkali is increased only a few times in comparison with the activity of the GC/Pt one. On the other hand, the specific activity of the GCOX-AC/Pt electrode for methanol oxidation in acid is about one order of magnitude higher than that of the GC/Pt electrode. The role of the substrate on the properties of catalyst is discussed in detail.

  7. Fabrication of electrochemical theophylline sensor based on manganese oxide nanoparticles/ionic liquid/chitosan nanocomposite modified glassy carbon electrode

    International Nuclear Information System (INIS)

    MansouriMajd, Samira; Teymourian, Hazhir; Salimi, Abdollah; Hallaj, Rahman

    2013-01-01

    In this study, the preparation of a glassy carbon (GC) electrode modified with chitosan/NH 2 -ionic liquid/manganese oxide nanoparticles (Chit/NH 2 -IL/MnO x ) was described for electrocatalytic detection of theophylline (TP). First, chitosan hydrogel (Chit) was electrodeposited on the GC electrode surface at a constant potential (−1.5 V) in acidic solution. Then, the previously synthesized amine-terminated 1-(3-Aminopropyl)-3-methylimidazolium bromide ionic liquid (NH 2 -IL) was covalently attached to the modified electrode via glutaraldehyde (GA) as linking agent. Finally, manganese oxide (MnO x ) nanoparticles were electrodeposited onto the Chit/NH 2 -IL film by potential cycling between −1.0 and 1.7 V in Mn(CH 3 COO) 2 ·4H 2 O neutral aqueous solution. Electrochemical behavior of the modified electrode was evaluated by cyclic voltammetry (CV) technique. The charge transfer coefficient (α) and electron transfer rate constant (k s ) for MnOOH/MnO 2 redox couple were calculated to be 0.35 and 1.62 s −1 , respectively. The resulting system brings new capabilities for electrochemical sensing through combining the advantages of IL and MnO x nanoparticles. The differential pulse voltammetric (DPV) results indicated the high ability of GC/Chit/NH 2 -IL/MnO x modified electrode to catalyze the oxidation of TP. DPV determination of TP in acetate buffer solution (pH 5) gave linear responses over the concentration range up to 120 μM with the detection limit of 50 nM and sensitivity of 804 nA μM −1 . Furthermore, the applicability of the sensor for TP analysis in pharmaceutical samples has been successfully demonstrated

  8. A novel electrochemical sensor of bisphenol A based on stacked graphene nanofibers/gold nanoparticles composite modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Niu, Xiuli; Yang, Wu; Wang, Guoying; Ren, Jie; Guo, Hao; Gao, Jinzhang

    2013-01-01

    In this paper, a novel and convenient electrochemical sensor based on stacked graphene nanofibers (SGNF) and gold nanoparticles (AuNPs) composite modified glassy carbon electrode (GCE) was developed for the determination of bisphenol A (BPA). The AuNPs/SGNF modified electrode showed an efficient electrocatalytic role for the oxidation of BPA, and the oxidation overpotentials of BPA were decreased significantly and the peak current increased greatly compared with bare GCE and other modified electrode. The transfer electron number (n) and the charge transfer coefficient (α) were calculated with the result as n = 4, α = 0.52 for BPA, which indicated the electrochemical oxidation of BPA on AuNPs/SGNF modified electrode was a four-electron and four-proton process. The effective surface areas of AuNPs/SGNF/GCE increased for about 1.7-fold larger than that of the bare GCE. In addition, the kinetic parameters of the modified electrode were calculated and the apparent heterogeneous electron transfer rate constant (k s ) was 0.51 s −1 . Linear sweep voltammetry was applied as a sensitive analytical method for the determination of BPA and a good linear relationship between the peak current and BPA concentration was obtained in the range from 0.08 to 250 μM with a detection limit of 3.5 × 10 −8 M. The modified electrode exhibited a high sensitivity, long-term stability and remarkable reproducible analytical performance and was successfully applied for the determination of BPA in baby bottles with satisfying results

  9. Electrochemical, morphological and microstructural characterization of carbon film resistor electrodes for application in electrochemical sensors

    International Nuclear Information System (INIS)

    Gouveia-Caridade, Carla; Soares, David M.; Liess, Hans-Dieter; Brett, Christopher M.A.

    2008-01-01

    The electrochemical and microstructural properties of carbon film electrodes made from carbon film electrical resistors of 1.5, 15, 140 Ω and 2.0 kΩ nominal resistance have been investigated before and after electrochemical pre-treatment at +0.9 V vs SCE, in order to assess the potential use of these carbon film electrodes as electrochemical sensors and as substrates for sensors and biosensors. The results obtained are compared with those at electrodes made from previously investigated 2 Ω carbon film resistors. Cyclic voltammetry was performed in acetate buffer and phosphate buffer saline electrolytes and the kinetic parameters of the model redox system Fe(CN) 6 3-/4- obtained. The 1.5 Ω resistor electrodes show the best properties for sensor development with wide potential windows, similar electrochemical behaviour to those of 2 Ω and close-to-reversible kinetic parameters after electrochemical pre-treatment. The 15 and 140 Ω resistor electrodes show wide potential windows although with slower kinetics, whereas the 2.0 kΩ resistor electrodes show poor cyclic voltammetric profiles even after pre-treatment. Electrochemical impedance spectroscopy related these findings to the interfacial properties of the electrodes. Microstructural and morphological studies were carried out using contact mode Atomic Force Microscopy (AFM), Confocal Raman spectroscopy and X-ray diffraction. AFM showed more homogeneity of the films with lower nominal resistances, related to better electrochemical characteristics. X-ray diffraction and Confocal Raman spectroscopy indicate the existence of a graphitic structure in the carbon films

  10. The pharmacokinetic study of rutin in rat plasma based on an electrochemically reduced graphene oxide modified sensor

    Directory of Open Access Journals (Sweden)

    Pei Zhang

    2016-04-01

    Full Text Available An electrochemical method based on a directly electrochemically reduced graphene oxide (ERGO film coated on a glassy carbon electrode (GCE was developed for the rapid and convenient determination of rutin in plasma. ERGO was modified on the surface of GCE by one-step electro-deposition method. Electrochemical behavior of rutin on ERGO/GCE indicated that rutin underwent a surface-controlled quasi-reversible process and the electrochemical parameters such as charge transfer coefficient (α, electron transfer number (n and electrode reaction standard rate constant (ks were 0.53, 2 and 3.4 s−1, respectively. The electrochemical sensor for rutin in plasma provided a wide linear response range of 4.70×10−7−1.25×10−5 M with the detection limit (s/n=3 of 1.84×10−8 M. The assay was successfully used to the pharmacokinetic study of rutin. The pharmacokinetic parameters such as elimination rate half-life (t1/2, area under curve (AUC, and plasma clearance (CL were calculated to be 3.345±0.647 min, 5750±656.0 µg min/mL, and 5.891±0.458 mL/min/kg, respectively. The proposed method utilized a small sample volume of 10 μL and had no complicated sample pretreatment (without deproteinization, which was simple, eco-friendly, and time- and cost-efficient for rutin pharmacokinetic studies.

  11. Boron-doped diamond electrodes for the electrochemical oxidation and cleavage of peptides.

    Science.gov (United States)

    Roeser, Julien; Alting, Niels F A; Permentier, Hjalmar P; Bruins, Andries P; Bischoff, Rainer

    2013-07-16

    Electrochemical oxidation of peptides and proteins is traditionally performed on carbon-based electrodes. Adsorption caused by the affinity of hydrophobic and aromatic amino acids toward these surfaces leads to electrode fouling. We compared the performance of boron-doped diamond (BDD) and glassy carbon (GC) electrodes for the electrochemical oxidation and cleavage of peptides. An optimal working potential of 2000 mV was chosen to ensure oxidation of peptides on BDD by electron transfer processes only. Oxidation by electrogenerated OH radicals took place above 2500 mV on BDD, which is undesirable if cleavage of a peptide is to be achieved. BDD showed improved cleavage yield and reduced adsorption for a set of small peptides, some of which had been previously shown to undergo electrochemical cleavage C-terminal to tyrosine (Tyr) and tryptophan (Trp) on porous carbon electrodes. Repeated oxidation with BDD electrodes resulted in progressively lower conversion yields due to a change in surface termination. Cathodic pretreatment of BDD at a negative potential in an acidic environment successfully regenerated the electrode surface and allowed for repeatable reactions over extended periods of time. BDD electrodes are a promising alternative to GC electrodes in terms of reduced adsorption and fouling and the possibility to regenerate them for consistent high-yield electrochemical cleavage of peptides. The fact that OH-radicals can be produced by anodic oxidation of water at elevated positive potentials is an additional advantage as they allow another set of oxidative reactions in analogy to the Fenton reaction, thus widening the scope of electrochemistry in protein and peptide chemistry and analytics.

  12. Electrochemical behaviors and simultaneous determination of guanine and adenine based on graphene–ionic liquid–chitosan composite film modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Niu Xiuli; Yang Wu; Ren Jie; Guo Hao; Long Shijia; Chen Jiaojiao; Gao Jinzhang

    2012-01-01

    Highlights: ► This work developed a novel electrochemical biosensors for guanine and adenine detection simultaneously. ► A disposable electrode based on graphene sheets, ionic liquid and chitosan was proposed. ► The presented method was also applied to simultaneous determination of guanine and adenine in denatured DNA samples with satisfying results. ► Easy fabrication, high sensitivity, excellent reproducibility and long-term stability. - Abstract: A graphene sheets (GS), ionic liquid (IL) and chitosan (CS) modified electrode was fabricated and the modified electrode displayed excellent electrochemical catalytic activities toward guanine and adenine. The transfer electron number (n) and the charge transfer coefficient (α) were calculated with the result as n = 2, α = 0.58 for guanine, and n = 2, α = 0.51 for adenine, which indicated the electrochemical oxidation of guanine and adenine on GS/IL/CS modified electrode was a two-electron and two-proton process. The oxidation overpotentials of guanine and adenine were decreased significantly compared with those obtained at the bare glassy carbon electrode and multi-walled carbon nanotubes modified electrode. The modified electrode exhibited good analytical performance and was successfully applied for individual and simultaneous determination of guanine and adenine. Low detection limits of 0.75 μM for guanine and 0.45 μM for adenine were obtained, with the linear calibration curves over the concentration range 2.5–150 μM and 1.5–350 μM, respectively. At the same time, the proposed method was successfully applied for the determination of guanine and adenine in denatured DNA samples with satisfying results. Moreover, the GS/IL/CS modified electrode exhibited good sensitivity, long-term stability and reproducibility for the determination of guanine and adenine.

  13. Covalent attachment of pyridine-type molecules to glassy carbon surfaces by electrochemical reduction of in situ generated diazonium salts. Formation of ruthenium complexes on ligand-modified surfaces

    International Nuclear Information System (INIS)

    Yesildag, Ali; Ekinci, Duygu

    2010-01-01

    In this study, pyridine, quinoline and phenanthroline molecules were covalently bonded to glassy carbon (GC) electrode surfaces for the first time using the diazonium modification method. Then, the complexation ability of the modified films with ruthenium metal cations was investigated. The derivatization of GC surfaces with heteroaromatic molecules was achieved by electrochemical reduction of the corresponding in situ generated diazonium salts. X-ray photoelectron spectroscopy (XPS) was used to confirm the attachment of heteroaromatic molecules to the GC surfaces and to determine the surface concentration of the films. The barrier properties of the modified GC electrodes were studied in the presence of redox probes such as Fe(CN) 6 3- and Ru(NH 3 ) 6 3+ by cyclic voltammetry. Additionally, the presence of the resulting organometallic films on the surfaces was verified by XPS after the chemical transformation of the characterized ligand films to the ruthenium complex films. The electrochemical behavior of these films in acetonitrile solution was investigated using voltammetric methods, and the surface coverage of the organometallic films was determined from the reversible metal-based Ru(II)/Ru(III) oxidation waves.

  14. Raman spectra of zinc phthalocyanine monolayers absorbed on glassy carbon and gold electrodes by application of a confocal Raman microspectrometer

    NARCIS (Netherlands)

    Palys-Staron, B.J.; Palys, B.J.; Puppels, G.J.; Puppels, G.J.; van den Ham, D.M.W.; van den Ham, D.M.W.; Feil, D.; Feil, D.

    1992-01-01

    Raman spectra of zinc phthalocyanine monolayers, adsorbed on gold and on glassy carbon surfaces (electrodes), are presented. These spectra have been recorded with the electrodes inside and outside an electrochemical cell filled with an aqueous electrolyte. A confocal Raman microspectrometer was

  15. Resistivity and Passivity Characterization of Ni-Base Glassy Alloys in NaOH Media

    Directory of Open Access Journals (Sweden)

    Khadijah M. Emran

    2018-01-01

    Full Text Available Resistivity and passivation behavior of two Ni-base bulk metallic glasses, with the nominal composition of Ni70Cr21Si0.5B0.5P8C ≤ 0.1Co ≤ 1Fe ≤ 1 (VZ1 and Ni72.65Cr7.3-Si6.7B2.15C ≤ 0.06Fe8.2Mo3 (VZ2, in various concentrations of NaOH solutions were studied. The investigations involved cyclic polarization (CP, electrochemical impedance spectroscopy (EIS, and electrochemical frequency modulation (EFM methods. Cyclic polarization measurements showed spontaneous passivation for both Ni-base glassy alloys at all alkaline concentrations, due to the presence of chromium as an alloying element that formed an oxide film on the alloy surface. The EIS analysis showed that the passive layers grown on the two Ni-base glassy alloy surfaces are formed by a double oxide layer structure. Scanning electron microscope (SEM examinations of the electrode surface showed Cr, Ni, Fe, and O rich corrosion products that reduced the extent of corrosion damage. Atomic force microscopy (AFM imaging technique was used to evaluate the topographic and morphologic features of surface layers formed on the surface of the alloys.

  16. A glassy carbon electrode modified with a multiwalled carbon nanotube-reduced graphene oxide nanoribbon core-shell structure for electrochemical sensing of p-dihydroxybenzene

    International Nuclear Information System (INIS)

    Zhu, Gangbing; Yi, Yinhui; Liu, Zhenjiang; Sun, Jianfan; Wu, Xiangyang; Zou, Bin

    2015-01-01

    Multiwalled carbon nanotubes (MWCNT) were covered with reduced graphene oxide nanoribbons (rGONR) to give a material with a core-shell heterostructure of the type MWCNT-rGONR. It was obtained by (a) longitudinal partial unzipping of MWCNT to form MWCNT-GONR, and (b) subsequent chemical reduction with hydrazine to give MWCNT-rGONR. The MWCNT-rGONR heterostructure was used to modify a glassy carbon electrode (GCE) to obtain an electrochemical sensor for p-dihydroxybenzene (DHB). The synergistic effects of the MWCNT and the rGONR results in a distinctly improved redox current towards DHB compared to a bare GCE, an MWCNT/GCE, and an MWCNT-GONR/GCE. At the working voltage range from −1 00 to 400 mV, it displays a linear response to DHB in the 80 to 3000 nM concentration range with a 20 nM detection limit. (author)

  17. Electrocatalytical oxidation and sensitive determination of acetaminophen on glassy carbon electrode modified with graphene–chitosan composite

    International Nuclear Information System (INIS)

    Zheng, Meixia; Gao, Feng; Wang, Qingxiang; Cai, Xili; Jiang, Shulian; Huang, Lizhang; Gao, Fei

    2013-01-01

    The electrochemical behaviors of acetaminophen (ACOP) on a graphene–chitosan (GR–CS) nanocomposite modified glassy carbon electrode (GCE) were investigated by cyclic voltammetry (CV), chronocoulometry (CC) and differential pulse voltammetry (DPV). Electrochemical characterization showed that the GR–CS nanocomposite had excellent electrocatalytic activity and surface area effect. As compared with bare GCE, the redox signal of ACOP on GR–CS/GCE was greatly enhanced. The values of electron transfer rate constant (k s ), diffusion coefficient (D) and the surface adsorption amount (Γ ⁎ ) of ACOP on GR–CS/GCE were determined to be 0.25 s −1 , 3.61 × 10 −5 cm 2 s −1 and 1.09 × 10 −9 mol cm −2 , respectively. Additionally, a 2e − /2H + electrochemical reaction mechanism of ACOP was deduced based on the acidity experiment. Under the optimized conditions, the ACOP could be quantified in the range from 1.0 × 10 −6 to 1.0 × 10 −4 M with a low detection limit of 3.0 × 10 −7 M based on 3S/N. The interference and recovery experiments further showed that the proposed method is acceptable for the determination of ACOP in real pharmaceutical preparations. Highlights: ► A chitosan–graphene nanocomposite modified glassy carbon electrode was prepared. ► The modified electrode was electrochemically characterized by CV and EIS. ► Electro-oxidation of acetaminophen was examined on the modified electrode. ► Sensing analysis of the modified electrode toward acetaminophen was studied

  18. Square-wave stripping voltammetric determination of caffeic acid on electrochemically reduced graphene oxide-Nafion composite film.

    Science.gov (United States)

    Filik, Hayati; Çetintaş, Gamze; Avan, Asiye Aslıhan; Aydar, Sevda; Koç, Serkan Naci; Boz, İsmail

    2013-11-15

    An electrochemical sensor composed of Nafion-graphene nanocomposite film for the voltammetric determination of caffeic acid (CA) was studied. A Nafion graphene oxide-modified glassy carbon electrode was fabricated by a simple drop-casting method and then graphene oxide was electrochemically reduced over the glassy carbon electrode. The electrochemical analysis method was based on the adsorption of caffeic acid on Nafion/ER-GO/GCE and then the oxidation of CA during the stripping step. The resulting electrode showed an excellent electrocatalytical response to the oxidation of caffeic acid (CA). The electrochemistry of caffeic acid on Nafion/ER-GO modified glassy carbon electrodes (GCEs) were studied by cyclic voltammetry and square-wave adsorption stripping voltammetry (SW-AdSV). At optimized test conditions, the calibration curve for CA showed two linear segments: the first linear segment increased from 0.1 to 1.5 and second linear segment increased up to 10 µM. The detection limit was determined as 9.1×10(-8) mol L(-1) using SW-AdSV. Finally, the proposed method was successfully used to determine CA in white wine samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. In-Vivo Characterization of Glassy Carbon Micro-Electrode Arrays for Neural Applications and Histological Analysis of the Brain Tissue

    Science.gov (United States)

    Vomero, Maria

    The aim of this work is to fabricate and characterize glassy carbon Microelectrode Arrays (MEAs) for sensing and stimulating neural activity, and conduct histological analysis of the brain tissue after the implant to determine long-term performance. Neural applications often require robust electrical and electrochemical response over a long period of time, and for those applications we propose to replace the commonly used noble metals like platinum, gold and iridium with glassy carbon. We submit that such material has the potential to improve the performances of traditional neural prostheses, thanks to better charge transfer capabilities and higher electrochemical stability. Great interest and attention is given in this work, in particular, to the investigation of tissue response after several weeks of implants in rodents' brain motor cortex and the associated materials degradation. As part of this work, a new set of devices for Electrocorticography (ECoG) has been designed and fabricated to improve durability and quality of the previous generation of devices, designed and manufactured by the same research group in 2014. In-vivo long-term impedance measurements and brain activity recordings were performed to test the functionality of the neural devices. In-vitro electrical characterization of the carbon electrodes, as well as the study of the adhesion mechanisms between glassy carbon and different substrates is also part of the research described in this book.

  20. A very low potential electrochemical detection of L-cysteine based on a glassy carbon electrode modified with multi-walled carbon nanotubes/gold nanorods.

    Science.gov (United States)

    Silva, Francisco de Assis dos Santos; da Silva, Monique Gabriella Angelo; Lima, Phabyanno Rodrigues; Meneghetti, Mario Roberto; Kubota, Lauro Tatsuo; Goulart, Marilia Oliveira Fonseca

    2013-12-15

    A nanohybrid platform built with multi-walled carbon nanotubes and gold nanorods, prepared via a cationic surfactant-containing seed-mediated sequential growth process, in aqueous solution, on a glassy carbon substrate has been successfully developed to be used in the electrocatalytic oxidation of L-cysteine (Cys). The nanohybrid was characterized by transmission electron microscopy, Raman spectroscopy and electrochemical measurements. Cyclic voltammetry results had shown that the modified electrode allows the oxidation of Cys at a very low anodic potential (0.00 V vs. Ag/AgCl). The kinetic constant kcat for the catalytic oxidation of Cys was evaluated by chronoamperometry and provided a value of 5.6×10(4) L mol(-1) s(-1). The sensor presents a linear response range from 5.0 up to 200.0 µmol L(-1), detection limit of 8.25 nmol L(-1) and a sensitivity of 120 nA L µmol(-1). Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Probing the electrochemical double layer of an ionic liquid using voltammetry and impedance spectroscopy: a comparative study of carbon nanotube and glassy carbon electrodes in [EMIM](+)[EtSO(4)](-).

    Science.gov (United States)

    Zheng, J P; Goonetilleke, P C; Pettit, C M; Roy, D

    2010-05-15

    Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) are compared as techniques for analyzing double layer capacitances of ionic liquids (ILs) at the surfaces of two carbon-based electrodes. These systems are relevant for energy storage supercapacitors and often are associated with unconventional electrochemical properties. Certain theoretical and experimental aspects of CV and EIS necessary for quantitative evaluation of the capacitance characteristics of such systems are explored. The experiments use 1-ethyl-3-methyl imidazolium ethylsulfate as a model IL electrolyte in combination with a porous electrode of carbon nanotubes (CNTs). The results are compared with those obtained with a nonporous glassy carbon (GC) electrode. The time is constant, and hence the power delivery characteristics of the experimental cell are affected by the electrolyte resistance and residual faradaic reactions of the IL, as well as by the spatially inhomogeneous electrode surfaces. It is shown that adequate characterization of these IL-electrode systems can be achieved by combining CV with EIS. A phenomenological framework for utilizing this combination is discussed.

  2. Covalent attachment of pyridine-type molecules to glassy carbon surfaces by electrochemical reduction of in situ generated diazonium salts. Formation of ruthenium complexes on ligand-modified surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Yesildag, Ali [Department of Chemistry, Faculty of Sciences, Atatuerk University, 25240 Erzurum (Turkey); Ekinci, Duygu, E-mail: dekin@atauni.edu.t [Department of Chemistry, Faculty of Sciences, Atatuerk University, 25240 Erzurum (Turkey)

    2010-09-30

    In this study, pyridine, quinoline and phenanthroline molecules were covalently bonded to glassy carbon (GC) electrode surfaces for the first time using the diazonium modification method. Then, the complexation ability of the modified films with ruthenium metal cations was investigated. The derivatization of GC surfaces with heteroaromatic molecules was achieved by electrochemical reduction of the corresponding in situ generated diazonium salts. X-ray photoelectron spectroscopy (XPS) was used to confirm the attachment of heteroaromatic molecules to the GC surfaces and to determine the surface concentration of the films. The barrier properties of the modified GC electrodes were studied in the presence of redox probes such as Fe(CN){sub 6}{sup 3-} and Ru(NH{sub 3}){sub 6}{sup 3+} by cyclic voltammetry. Additionally, the presence of the resulting organometallic films on the surfaces was verified by XPS after the chemical transformation of the characterized ligand films to the ruthenium complex films. The electrochemical behavior of these films in acetonitrile solution was investigated using voltammetric methods, and the surface coverage of the organometallic films was determined from the reversible metal-based Ru(II)/Ru(III) oxidation waves.

  3. Photogeneration of singlet oxygen by the phenothiazine derivatives covalently bound to the surface-modified glassy carbon

    Energy Technology Data Exchange (ETDEWEB)

    Blacha-Grzechnik, Agata, E-mail: agata.blacha@polsl.pl [Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice (Poland); Piwowar, Katarzyna; Krukiewicz, Katarzyna [Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice (Poland); Koscielniak, Piotr; Szuber, Jacek [Institute of Electronics, Silesian University of Technology, Akademicka 16, 44-100 Gliwice (Poland); Zak, Jerzy K. [Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice (Poland)

    2016-05-15

    Highlights: • The selected group of four NH{sub 2}-derivatives of phenothiazine was grafted to Glassy Carbon (GC) surface. • The grafted phenothiazines are able to generate {sup 1}O{sub 2} when activated by the radiation. • Such modified solid surfaces may find their application in the wastewater treatment. - Abstract: The selected group of four amine-derivatives of phenothiazine was covalently grafted to the glassy carbon surface in the four-step procedure consisting of the electrochemical reduction of the diazonium salt followed by the electrochemical and chemical post-modification steps. The proposed strategy involves the bonding of linker molecule to which the photosensitizer is attached. The synthesized organic layers were characterized by means of cyclic voltammetry, XPS and Raman Spectroscopy. It was shown that the phenothiazines immobilized via proposed strategy retain their photochemical properties and are able to generate {sup 1}O{sub 2} when activated by the laser radiation. The effectiveness of in situ singlet oxygen generation by those new solid photoactive materials was determined by means of UVVis spectroscopy. The reported, covalently modified solid surfaces may find their application as the singlet oxygen photogenerators in the fine chemicals’ synthesis or in the wastewater treatment.

  4. Enhanced host–guest electrochemical recognition of herbicide MCPA using a b-cyclodextrin carbon nanotube sensor

    OpenAIRE

    Rahemi, V.; Vandamme, J.J.; Garrido, J.M.P.J.; Borges, F.; Brett, C.M.A.; Garrido, E.M.P.J.

    2012-01-01

    An electrochemical sensor for the determination of the chlorophenoxy herbicide MCPA has been developed, based on a combination of multi-walled carbon nanotubes with incorporated b-cyclodextrin and a polyaniline film modified glassy carbon electrode. The proposed molecular host–guest recogni-tion based sensor has a high electrochemical sensitivity for the determination of MCPA. The electrochemical behaviour of MCPA at the chemically modified electrode was investigated in detail by cyclic volta...

  5. Synthesis of binary bismuth-cadmium oxide nanorods with sensitive electrochemical sensing performance

    International Nuclear Information System (INIS)

    Wen, Yong; Pei, Lizhai; Wei, Tian

    2017-01-01

    Binary bismuth-cadmium oxide nanorods have been synthesized by a simple hydrothermal process without templates and additives. X-ray diffraction and high-resolution transmission electron microscopy reveal that the nanorods possess single crystalline tetragonal Bi 2 CdO 4 phase. Scanning electron microscopy and transmission electron microscopy images show that the length and diameter of the nanorods are 20-300 nm and 5-10 μm, respectively. The formation of the binary bismuth-cadmium oxide nanorods is closely related to the hydrothermal parameters. The electrochemical sensing performance of the binary bismuth-cadmium oxide nanorods has been investigated using the nanorods as glassy carbon electrode modifiers. The detection limit is 0.19 μM with a linear range of 0.0005-2 mM. The nanorod-modified glassy carbon electrode exhibits good electrocatalytic activity toward L-cysteine and great application potential for electrochemical sensors.

  6. Electrocatalytic oxidation of hydrazine and hydroxylamine by graphene oxide-Pd nanoparticle-modified glassy carbon electrode.

    Science.gov (United States)

    Lee, Eunhee; Kim, Daekun; You, Jung-Min; Kim, Seul Ki; Yun, Mira; Jeon, Seungwon

    2012-12-01

    Pd nanoparticle catalysts supported by thiolated graphene oxide (tGO) on a glassy carbon electrode (GCE), and denoted as tGO-Pd/GCE, are used in this study for the electrochemical determination of hydroxylamine and hydrazine. The physicochemical properties of tGO-Pd were characterized by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS). They showed strong catalytic activity toward the oxidation of hydroxylamine and hydrazine. Cyclic voltammetry (CV) and amperometry were used to characterize the sensors' performances. The detection limits of hydroxylamine and hydrazine by tGO-Pd/GCE were 0.31 and 0.25 microM (s/n = 3), respectively. The sensors' sensitivity, selectivity, and stability were also investigated.

  7. Gold nanoparticles directly modified glassy carbon electrode for non-enzymatic detection of glucose

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Gang; Shu, Honghui; Ji, Kai [Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Faculty of Materials Science and Engineering, Hubei University, No. 368 Youyi Avenue, Wuchang, Wuhan 430062 (China); Oyama, Munetaka [Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8520 (Japan); Liu, Xiong [Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Faculty of Materials Science and Engineering, Hubei University, No. 368 Youyi Avenue, Wuchang, Wuhan 430062 (China); He, Yunbin, E-mail: ybhe@hubu.edu.cn [Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Faculty of Materials Science and Engineering, Hubei University, No. 368 Youyi Avenue, Wuchang, Wuhan 430062 (China)

    2014-01-01

    This work describes controllable preparation of gold nanoparticles on glassy carbon electrodes by using the seed mediated growth method, which contains two steps, namely, nanoseeds attachment and nanocrystals growth. The size and the dispersion of gold nanoparticles grown on glassy carbon electrodes could be easily tuned through the growth time based on results of field-emission scanning electron microscopy. Excellent electrochemical catalytic characteristics for glucose oxidation were observed for the gold nanoparticles modified glassy carbon electrodes (AuNPs/GC), resulting from the extended active surface area provided by the dense gold nanoparticles attached. It exhibited a wide linear range from 0.1 mM to 25 mM with the sensitivity of 87.5 μA cm{sup −2} mM{sup −1} and low detection limit down to 0.05 mM for the sensing of glucose. The common interfering species such as chloride ion, ascorbic acid, uric acid and 4-acetamidophenol were verified having no interference effect on the detection of glucose. It is demonstrated that the seed mediated method is one of the facile approaches for fabricating Au nanoparticles modified substrates, which could work as one kind of promising electrode materials for the glucose nonenzymatic sensing.

  8. Online Monitoring of Electrochemical Degradation of Paracetamol through a Biomimetic Sensor

    OpenAIRE

    Mariana Calora Quintino de Oliveira; Marcos Roberto de Vasconcelos Lanza; José Luis Paz Jara; Maria Del Pilar Taboada Sotomayor

    2011-01-01

    This paper reports, for the first time, the online monitoring to the electrochemical degradation of the paracetamol using a biomimetic sensor coupled to a Flow Injection Analysis (FIA) system. The electrochemical degradation of the drug was carried out in aqueous medium using a flow-by reactor with a DSA anode. The process efficiency was monitored at real time by the biomimetic sensor constructed by modifying a glassy carbon electrode with a Nafion membrane doped with iron tetrapyridinoporphy...

  9. Voltammetric Determination of Acetaminophen in the Presence of Codeine and Ascorbic Acid at Layer-by-Layer MWCNT/Hydroquinone Sulfonic Acid-Overoxidized Polypyrrole Modified Glassy Carbon Electrode

    OpenAIRE

    Shahrokhian, Saeed; Saberi, Reyhaneh-Sadat

    2011-01-01

    A very sensitive electrochemical sensor constructed of a glassy carbon electrode modified with a layer-by-layer MWCNT/doped-overoxidized polypyrrole (oppy/MWCNT /GCE) was used for the determination of acetaminophen (AC) in the presence of codeine and ascorbic acid (AA). In comparison to the bare glassy carbon electrode, a considerable shift in the peak potential together with an increase in the peak current was observed for AC on the surface of oppy/MWCNT/GCE, which can be related to the enla...

  10. Comparison of glassy carbon and boron doped diamond electrodes: Resistance to biofouling

    Energy Technology Data Exchange (ETDEWEB)

    Trouillon, Raphael, E-mail: raphael.trouillon06@imperial.ac.u [Department of Bioengineering, Imperial College London, Royal School of Mines Building, London SW7 2AZ (United Kingdom); O' Hare, Danny [Department of Bioengineering, Imperial College London, Royal School of Mines Building, London SW7 2AZ (United Kingdom)

    2010-09-01

    Carbon based electrodes are widely used for in vivo and in vitro electrochemical studies. In particular, monoamine neurochemistry has been investigated using carbon microfibre electrodes. Similarly, glassy carbon (GC) is the preferred material for many biochemical applications, such as electrochemical detection in chromatography. More recently, boron doped diamond (BDD) has been utilized for biosensing, as its carbon sp{sup 3} structure is expected to provide better resistance to analyte fouling. However, the main factor limiting the use of electrochemical sensors for biological studies is the effect of the biological matrix. Indeed, in vivo or in situ measurements expose the sensor to a complex matrix of proteins, which adsorb on the sensing surface and interfere with the electrochemical measurements. Here, we compare the performance of three carbon based electrodes: GC, GC with low surface oxides and BDD. The redox species ruthenium(III) hexaammine (outer-sphere), ferrocyanide (surface sensitive) and the biologically significant dopamine have been investigated in protein and blood-mimicking matrices. Cyclic voltammetry and electrochemical impedance spectroscopy have been used to examine the effect of spectator molecules and reaction products on electrode mechanisms. Our results show that BDD generally exhibits the best performance for most conditions and reactions and should therefore be preferred for measurements in biologically fouling environments. Furthermore, surface oxides seem also to improve resistance of the GC electrode to biofouling.

  11. Comparison of glassy carbon and boron doped diamond electrodes: Resistance to biofouling

    International Nuclear Information System (INIS)

    Trouillon, Raphael; O'Hare, Danny

    2010-01-01

    Carbon based electrodes are widely used for in vivo and in vitro electrochemical studies. In particular, monoamine neurochemistry has been investigated using carbon microfibre electrodes. Similarly, glassy carbon (GC) is the preferred material for many biochemical applications, such as electrochemical detection in chromatography. More recently, boron doped diamond (BDD) has been utilized for biosensing, as its carbon sp 3 structure is expected to provide better resistance to analyte fouling. However, the main factor limiting the use of electrochemical sensors for biological studies is the effect of the biological matrix. Indeed, in vivo or in situ measurements expose the sensor to a complex matrix of proteins, which adsorb on the sensing surface and interfere with the electrochemical measurements. Here, we compare the performance of three carbon based electrodes: GC, GC with low surface oxides and BDD. The redox species ruthenium(III) hexaammine (outer-sphere), ferrocyanide (surface sensitive) and the biologically significant dopamine have been investigated in protein and blood-mimicking matrices. Cyclic voltammetry and electrochemical impedance spectroscopy have been used to examine the effect of spectator molecules and reaction products on electrode mechanisms. Our results show that BDD generally exhibits the best performance for most conditions and reactions and should therefore be preferred for measurements in biologically fouling environments. Furthermore, surface oxides seem also to improve resistance of the GC electrode to biofouling.

  12. Nitric Oxide Detection with Glassy Carbon Electrodes Coated with Charge-different Polymer Films

    Directory of Open Access Journals (Sweden)

    Jianping Lei

    2005-04-01

    Full Text Available Trace amounts of nitric oxide (NO have been determined in aqueous phosphate buffersolutions (pH=7.4 by using a glassy carbon electrode coated with three charge-different polymerfilms. The glassy carbon electrode was coated first with negatively charged Nafion film containingtetrakis(pentafluorophenylporphyrin iron(III chloride (Fe(IIITPFPP as the NO oxidation catalyst,and then with positively charged poly(acrylamide-co-diallyldimethylammonium chloride (PADDAand with neutral poly(dimethylsiloxane (silicone at the outermost layer. This polymer-coatedelectrode showed an excellent selectivity towards NO against possible concomitants in blood such asnitrite, ascorbic acid, uric acid, and dopamine. All current ratios between each concomitant and NOat the cyclic voltammogram was in 10-3 ~ 10-4. This type of electrode showed a detection limit of80 nM for NO. It was speculated from the electrochemical study in methanol that high-valent oxoiron(IV of Fe(TPFPP participated in the catalytic oxidation of NO.

  13. Boron-Doped Diamond Electrodes for the Electrochemical Oxidation and Cleavage of Peptides

    NARCIS (Netherlands)

    Roeser, Julien; Alting, Niels F. A.; Permentier, Hjalmar P.; Bruins, Andries P.; Bischoff, Rainer

    2013-01-01

    Electrochemical oxidation of peptides and proteins is traditionally performed on carbon-based electrodes. Adsorption caused by the affinity of hydrophobic and aromatic amino acids toward these surfaces leads to electrode fouling. We compared the performance of boron-doped diamond (BDD) and glassy

  14. Functionalization of glassy carbon surface by means of aliphatic and aromatic amino acids. An experimental and theoretical integrated approach

    International Nuclear Information System (INIS)

    Vanossi, Davide; Benassi, Rois; Parenti, Francesca; Tassinari, Francesco; Giovanardi, Roberto; Florini, Nicola; De Renzi, Valentina; Arnaud, Gaelle; Fontanesi, Claudio

    2012-01-01

    Highlights: ► Glassy carbon is functionalized via electrochemical assisted grafting of amino acids. ► The grafting mechanism is suggested to involve the “zwitterionic” species. ► DFT calculations allowed to determine the electroactive species. ► An original grafting mechanism is proposed. - Abstract: Glassy carbon (GC) electrode surfaces are functionalized through electrochemical assisted grafting, in oxidation regime, of six amino acids (AA): β-alanine (β-Ala), L-aspartic acid (Asp), 11-aminoundecanoic acid (UA), 4-aminobenzoic acid (PABA), 4-(4-amino-phenyl)-butyric acid (PFB), 3-(4-amino-phenyl)-propionic acid (PFP). Thus, a GC/AA interface is produced featuring carboxylic groups facing the solution. Electrochemical (cyclic voltammetry and electrochemical impedance spectroscopy) and XPS techniques are used to experimentally characterize the grafting process and the surface state. The theoretical results are compared with the experimental evidence to determine, at a molecular level, the overall grafting mechanism. Ionization potentials, standard oxidation potentials, HOMO and electron spin distributions are calculated at the CCD/6-31G* level of the theory. The comparison of experimental and theoretical data suggests that the main electroactive species is the “zwitterionic” form for the three aliphatic amino acids, while the amino acids featuring the amino group bound to the phenyl aromatic moiety show a different behaviour. The comparison between experimental and theoretical results suggests that both the neutral and the zwitterionic forms are present in the acetonitrile solution in the case of 4-(4-amino-phenyl)-butyric acid (PFB) and 3-(4-amino-phenyl)-propionic acid.

  15. Synthesis of binary bismuth-cadmium oxide nanorods with sensitive electrochemical sensing performance

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Yong [Xinjiang Univ., Xinjiang (China). School of Civil Engineering and Architecture; Pei, Lizhai; Wei, Tian [Anhui Univ. of Technology, Anhui (China). School of Materials Science and Engineering

    2017-07-15

    Binary bismuth-cadmium oxide nanorods have been synthesized by a simple hydrothermal process without templates and additives. X-ray diffraction and high-resolution transmission electron microscopy reveal that the nanorods possess single crystalline tetragonal Bi{sub 2}CdO{sub 4} phase. Scanning electron microscopy and transmission electron microscopy images show that the length and diameter of the nanorods are 20-300 nm and 5-10 μm, respectively. The formation of the binary bismuth-cadmium oxide nanorods is closely related to the hydrothermal parameters. The electrochemical sensing performance of the binary bismuth-cadmium oxide nanorods has been investigated using the nanorods as glassy carbon electrode modifiers. The detection limit is 0.19 μM with a linear range of 0.0005-2 mM. The nanorod-modified glassy carbon electrode exhibits good electrocatalytic activity toward L-cysteine and great application potential for electrochemical sensors.

  16. Molecularly imprinted poly(4-amino-5-hydroxy-2,7-naphthalenedisulfonic acid) modified glassy carbon electrode as an electrochemical theophylline sensor.

    Science.gov (United States)

    Aswini, K K; Vinu Mohan, A M; Biju, V M

    2016-08-01

    Theophylline is an inexpensive drug employed in asthma and chronic obstructive pulmonary disorder medications and is toxic at higher concentration. The development of a molecularly imprinted polymer based theophylline electrochemical sensor on glassy carbon electrode by the electropolymerization of 4-amino-5-hydroxy-2,7-naphthalenedisulfonic acid is being discussed in this work. The MIP modification enhances the theophylline recognition ability and the electron transfer kinetics of the bare electrode. The parameters, controlling the performance of the imprinted polymer based sensor, like number of electropolymerization cycles, composition of the pre-polymerization mixture, pH and immersion time were investigated and optimized. The interaction energy and the most stable conformation of the template-monomer complex in the pre-polymerization mixture were determined computationally using ab initio calculations based on density functional theory. The amperometric measurements showed that the developed sensor has a method detection limit of 0.32μM for the dynamic range of 0.4 to 17μM, at optimized conditions. The transducer possesses appreciable selectivity in the presence of structurally similar interferents such as theobromine, caffeine and doxofylline. The developed sensor showed remarkable stability and reproducibility and was also successfully employed in theophylline detection from commercially available tablets. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. A Graphene-Based Electrochemical Sensor for Rapid Determination of Phenols in Water

    OpenAIRE

    Chen, Kun; Zhang, Zai-Li; Liang, Yong-Mei; Liu, Wei

    2013-01-01

    A glassy carbon electrode (GCE) coated with a graphene/polymer film was fabricated for rapid determination of phenols in aqueous solutions. The electrochemical behavior of different phenols at the graphene/polymer-coated GCE was also investigated. In PBS buffer solution with a pH of 6.5, hydroquinone exhibits a well-defined reduction peak at the modified GCE. Based on this, an electrochemical method for the direct determination of phenols is proposed. Investigating different parameters reveal...

  18. Outstanding resistance and passivation behaviour of new Fe-Co metal-metal glassy alloys in alkaline media.

    Directory of Open Access Journals (Sweden)

    Khadijah M Emran

    Full Text Available The electrochemical behavior of the oxide layers on two metal-metal glassy alloys, Fe78Co9Cr10Mo2Al1 (VX9and Fe49Co49V2 (VX50 (at.%, were studied using electrochemical techniques including electrochemical frequency modulation (EFM, electrochemical impedance spectroscopy (EIS and cyclic polarization (CP measurements. The morphology and composition of the alloy surfaces were investigated using X-ray photoelectron spectroscopy (XPS, scanning electron microscopy (SEM and atomic force microscopy (AFM. The corrosion rate and surface roughness of both alloys increased as the concentration of NaOH in aqueous solution was raised. The presence of some protective elements in the composition of the alloys led to the formation of a spontaneous passive layer on the alloy surface. The higher resistance values of both alloys were associated with the magnitude of the dielectric properties of the passive films formed on their surfaces. Both alloys are classified as having outstanding resistance to corrosion, which results from the formation of a passive film that acts as an efficient barrier to corrosion in alkaline solution.

  19. Gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode as a sensitive voltammetric sensor for the determination of diclofenac sodium.

    Science.gov (United States)

    Afkhami, Abbas; Bahiraei, Atousa; Madrakian, Tayyebeh

    2016-02-01

    A simple and highly sensitive sensor for the determination of diclofenac sodium based on gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode is reported. Scanning electron microscopy along with energy dispersive X-ray spectroscopy, electrochemical impedance spectroscopy, cyclic voltammetry and square wave voltammetry was used to characterize the nanostructure and performance of the sensor and the results were compared with those obtained at the multi-walled carbon nanotube modified glassy carbon electrode and bare glassy carbon electrode. Under the optimized experimental conditions diclofenac sodium gave linear response over the range of 0.03-200μmolL(-1). The lower detection limits were found to be 0.02μmolL(-1). The effect of common interferences on the current response of DS was investigated. The practical application of the modified electrode was demonstrated by measuring the concentration of diclofenac sodium in urine and pharmaceutical samples. This revealed that the gold nanoparticle/multiwalled carbon nanotube modified glassy carbon electrode shows excellent analytical performance for the determination of diclofenac sodium in terms of a very low detection limit, high sensitivity, very good accuracy, repeatability and reproducibility. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Investigation of Electrochemical Behaviour of Quercetin on the Modified Electrode Surfaces with Procaine and Aminophenyl in Non-Aquous Medium

    Directory of Open Access Journals (Sweden)

    Ibrahim Ender Mulazimoglu

    2008-01-01

    Full Text Available In this study, cyclic voltammetry and electrochemical ımpedance spectroscopy have been used to investigate the electrochemical behaviour of quercetin (3,3′,4′,5,7-pentahydroxyflavone on the procaine and aminophenyl modified electrode. The modification of procaine and aminophenyl binded electrode surface with quercetin was performed in +0,3/+2,8 V (for procaine and +0,4/+1,5 V (for aminophenyl potential range using 100 mV s-1 scanning rate having 10 cycle. A solution of 0.1 M tetrabutylammonium tetrafluoroborate in acetonitrile was used as a non-aquous solvent. For the modification process a solution of 1 mM quercetin in 0.1 M tetrabutylammonium tetrafluoroborate was used. In order to obtain these two surface, a solution of 1 mM procaine and 1 mM nitrophenyl diazonium salt in 0.1 M tetrabutylammonium tetrafluoroborate was used. By using these solutions bare glassy carbon electrode surface was modified. Nitrophenyl was reduced to amine group in 0.1 M HCl medium on the nitrophenyl modified glassy carbon elelctrode surface. Procaine modified glassy carbon electrode surface was quite electroactive. Although nitrophenyl modified glassy carbon elelctrode surface was electroinactive, it was activated by reducing nitro group into amine group. For the characterization of the modified surface 1 mM ferrocene in 0.1 M tetrabutylammonium tetrafluoroborate for cyclic voltammetry and 1 mM ferricyanide/ferrocyanide (1:1 mixture in 0,1 M KCl for electrochemical impedance spectroscopy were used.

  1. Electrochemical behavior of boron in LiF-NaF-KF- melts

    DEFF Research Database (Denmark)

    Polyakova, L.P.; Bukatova, G.A.; Polyakova, E.G.

    1996-01-01

    The electrochemical reduction of B(III) to B(0) in KBF4-LiF-NaF-KF melts has been studied by voltammetric and chronopotentiometric methods, Glassy carbon, Pt, and Ag were used as working electrode materials. Only in the case of Ag was the reduction not complicated by interaction between boron...

  2. Electrochemical sensor for the determination of thiourea using a glassy carbon electrode modified with a self-assembled monolayer of an oxadiazole derivative and with silver nanoparticles

    International Nuclear Information System (INIS)

    Moghadam, Masoud Rohani; Akbarzadeh, Sanaz; Nasirizadeh, Navid

    2016-01-01

    This article reports on an electrochemical sensor for thiourea. It is based on a glassy carbon electrode (GCE) modified with a self-assembled monolayer of an oxadiazole derivative and with silver nanoparticles. The modified GCE demonstrated highly catalytic activity in terms of thiourea oxidation. The peak potential is shifted to negative values compared to a GCE coated with silver nanoparticles only. The electrode was characterized by linear sweep voltametry, cyclic voltammetry and chronoamperometry, and thiourea was determined by differential pulse voltammetry in aqueous buffer of pH 7.0 resulting in two linear response ranges of 0.001 − 69.4 and 69.4 − 833.3 μM and the limit of detection of 0.1 nM. The method was applied to the determination of thiourea in copper refinery electrolyte, orange juice and tap water samples. The recoveries ranged from 96.9 to 108.0 %. (author)

  3. Ferromagnetic bulk glassy alloys

    International Nuclear Information System (INIS)

    Inoue, Akihisa; Makino, Akihiro; Mizushima, Takao

    2000-01-01

    This paper deals with the review on the formation, thermal stability and magnetic properties of the Fe-based bulk glassy alloys in as-cast bulk and melt-spun ribbon forms. A large supercooled liquid region over 50 K before crystallization was obtained in Fe-(Al, Ga)-(P, C, B, Si), Fe-(Cr, Mo, Nb)-(Al, Ga)-(P, C, B) and (Fe, Co, Ni)-Zr-M-B (M=Ti, Hf, V, Nb, Ta, Cr, Mo and W) systems and bulk glassy alloys were produced in a thickness range below 2 mm for the Fe-(Al, Ga)-(P, C, B, Si) system and 6 mm for the Fe-Co-(Zr, Nb, Ta)-(Mo, W)-B system by copper-mold casting. The ring-shaped glassy Fe-(Al, Ga)-(P, C, B, Si) alloys exhibit much better soft magnetic properties as compared with the ring-shaped alloy made from the melt-spun ribbon because of the formation of the unique domain structure. The good combination of high glass-forming ability and good soft magnetic properties indicates the possibility of future development as a new bulk glassy magnetic material

  4. Electrochemical Biosensor Based on Boron-Doped Diamond Electrodes with Modified Surfaces

    Directory of Open Access Journals (Sweden)

    Yuan Yu

    2012-01-01

    Full Text Available Boron-doped diamond (BDD thin films, as one kind of electrode materials, are superior to conventional carbon-based materials including carbon paste, porous carbon, glassy carbon (GC, carbon nanotubes in terms of high stability, wide potential window, low background current, and good biocompatibility. Electrochemical biosensor based on BDD electrodes have attracted extensive interests due to the superior properties of BDD electrodes and the merits of biosensors, such as specificity, sensitivity, and fast response. Electrochemical reactions perform at the interface between electrolyte solutions and the electrodes surfaces, so the surface structures and properties of the BDD electrodes are important for electrochemical detection. In this paper, the recent advances of BDD electrodes with different surfaces including nanostructured surface and chemically modified surface, for the construction of various electrochemical biosensors, were described.

  5. Soft landing of bare PtRu nanoparticles for electrochemical reduction of oxygen.

    Science.gov (United States)

    Johnson, Grant E; Colby, Robert; Engelhard, Mark; Moon, Daewon; Laskin, Julia

    2015-08-07

    Magnetron sputtering of two independent Pt and Ru targets coupled with inert gas aggregation in a modified commercial source has been combined with soft landing of mass-selected ions to prepare bare 4.5 nm diameter PtRu nanoparticles on glassy carbon electrodes with controlled size and morphology for electrochemical reduction of oxygen in solution. Employing atomic force microscopy (AFM) it is shown that the nanoparticles bind randomly to the glassy carbon electrode at a relatively low coverage of 7 × 10(4) ions μm(-2) and that their average height is centered at 4.5 nm. Scanning transmission electron microscopy images obtained in the high-angle annular dark field mode (HAADF-STEM) further confirm that the soft-landed PtRu nanoparticles are uniform in size. Wide-area scans of the electrodes using X-ray photoelectron spectroscopy (XPS) reveal the presence of both Pt and Ru in atomic concentrations of ∼9% and ∼33%, respectively. Deconvolution of the high energy resolution XPS spectra in the Pt 4f and Ru 3d regions indicates the presence of both oxidized Pt and Ru. The substantially higher loading of Ru compared to Pt and enrichment of Pt at the surface of the nanoparticles is confirmed by wide-area analysis of the electrodes using time-of-flight medium energy ion scattering (TOF-MEIS) employing both 80 keV He(+) and O(+) ions. The activity of electrodes containing 7 × 10(4) ions μm(-2) of bare 4.5 nm PtRu nanoparticles toward the electrochemical reduction of oxygen was evaluated employing cyclic voltammetry (CV) in 0.1 M HClO4 and 0.5 M H2SO4 solutions. In both electrolytes a pronounced reduction peak was observed during O2 purging of the solution that was not evident during purging with Ar. Repeated electrochemical cycling of the electrodes revealed little evolution in the shape or position of the voltammograms indicating high stability of the nanoparticles supported on glassy carbon. The reproducibility of the nanoparticle synthesis and deposition was

  6. Carbon Nanotube Fiber Pretreatments for Electrodeposition of Copper

    OpenAIRE

    Hannula, Pyry-Mikko; Junnila, Minttu; Janas, Dawid; Aromaa, Jari; Forsén, Olof; Lundström, Mari

    2018-01-01

    There is increasing interest towards developing carbon nanotube-copper (CNT-Cu) composites due to potentially improved properties. Carbon nanotube macroscopic materials typically exhibit high resistivity, low electrochemical reactivity, and the presence of impurities, which impede its use as a substrate for electrochemical deposition of metals. In this research, different CNT fiber pretreatment methods, such as heat treatment, immersion in Watts bath, anodization, and exposure to boric acid (...

  7. Gold nanoparticles embedded electropolymerized thin film of pyrimidine derivative on glassy carbon electrode for highly sensitive detection of l-cysteine.

    Science.gov (United States)

    Kannan, Ayyadurai; Sevvel, Ranganathan

    2017-09-01

    This paper demonstrates the fabrication of novel gold nanoparticles incorporated poly (4-amino-6-hydroxy-2-mercaptopyrimidine) (Nano-Au/Poly-AHMP) film modified glassy carbon electrode and it is employed for highly sensitive detection of l-cysteine (CYS). The modified electrode was characterized by scanning electron microscope (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). SEM images of modified electrode revealed the homogeneous distribution of gold nanoparticles on poly (4-amino-6-hydroxy-2-mercaptopyrimidine) thin film modified glassy carbon electrode. The modified electrode was successfully utilized for highly selective and sensitive determination of l-cysteine at physiological pH7.0. The present electrochemical sensor successfully resolved the voltammetric signals of ascorbic acid (AA) and l-cysteine with peak separation of 0.510V. To the best of our knowledge, this is the first report of larger peak separation between AA and CYS. Wide linear concentration ranges (2μM-500μM), low detection limit (0.020μM), an excellent reproducibility and stability are achieved for cysteine sensing with this Nano-Au/Poly-AHMP/GCE. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Novel Ag@TiO2 nanocomposite synthesized by electrochemically active biofilm for nonenzymatic hydrogen peroxide sensor

    International Nuclear Information System (INIS)

    Khan, Mohammad Mansoob; Ansari, Sajid Ali; Lee, Jintae; Cho, Moo Hwan

    2013-01-01

    A novel nonenzymatic sensor for H 2 O 2 was developed based on an Ag@TiO 2 nanocomposite synthesized using a simple and cost effective approach with an electrochemically active biofilm. The optical, structural, morphological and electrochemical properties of the as-prepared Ag@TiO 2 nanocomposite were examined by UV–vis spectroscopy, X-ray diffraction, transmission electron microscopy and cyclic voltammetry (CV). The Ag@TiO 2 nanocomposite was fabricated on a glassy carbon electrode (GCE) and their electrochemical performance was analyzed by CV, differential pulse voltammetry and electrochemical impedance spectroscopy. The Ag@TiO 2 nanocomposite modified GCE (Ag@TiO 2 /GCE) displayed excellent performance towards H 2 O 2 sensing at − 0.73 V in the linear response range from 0.83 μM to 43.3 μM, within a detection limit and sensitivity of 0.83 μM and ∼ 65.2328 ± 0.01 μAμM −1 cm −2 , respectively. In addition, Ag@TiO 2 /GCE exhibited good operational reproducibility and long term stability. - Graphical abstract: Synthesis of Ag@TiO 2 nanocomposite by electrochemically active biofilm for H 2 O 2 sensing. - Highlights: • Electrochemically active biofilm (EAB) • EAB mediated synthesis of Ag@TiO 2 nanocomposite • Ag@TiO 2 nanocomposite modified glassy carbon electrode • Ag@TiO 2 /GCE for H 2 O 2 sensing • Nonenzymatic sensor for H 2 O 2

  9. Electrochemical behavior of fission palladium in 1-butyl-3-methylimidazolium chloride

    Energy Technology Data Exchange (ETDEWEB)

    Jayakumar, M.; Venkatesan, K.A.; Srinivasan, T.G. [Fuel Chemistry Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India)

    2007-08-01

    Electrochemical behavior of palladium (II) chloride in 1-butyl-3-methylimidazolium chloride has been investigated by various electrochemical transient techniques using glassy carbon working electrode at different temperatures (343-373 K). Cyclic voltammogram consisted of a prominent reduction wave at -0.61 V (vs. Pd) due to the reduction of Pd(II) to Pd, and two oxidation waves at -0.26 and 0.31 V. A nucleation loop is observed at -0.53 V. The diffusion coefficient of palladium (II) in bmimCl ({proportional_to}10{sup -7} cm{sup 2}/s) was determined and the energy of activation (63 kJ/mol) was deduced from the cyclic voltammograms at various temperatures. Nucleation and growth of palladium on glassy carbon working electrode has been investigated by chronoamperometry and chronopotentiometry. The growth and decay of chronocurrents measured for palladium deposition has been found to follow the instantaneous nucleation model with three-dimensional growth of nuclei. The surface morphology of the deposit obtained at various applied potentials revealed the formation of dendrites immediately after nucleation and spread in all the directions with time. (author)

  10. Selective Detection of Serotonin from the Interference by Ascorbic Acid and Uric Acid at Poly(thionine)-modified Glassy Carbon Electrode

    Energy Technology Data Exchange (ETDEWEB)

    Ahammad, A. J. Saleh; Nath, Narayan Chandra Deb; Kim, Sung Hyun [Konkuk University, Seoul (Korea, Republic of); Kim, Young Jun; Lee, Jae Joon [Konkuk University, Chungju (Korea, Republic of)

    2011-03-15

    Various approaches, such as using polymer film modified electrode, applying chemical modification, employing nano materials and molecularly imprinted polymers, have been developed to detect 5-HT selectively from interferences. The polymer-modified electrodes have widely been used because of their enhanced selectivity and sensitivity for many analytes. Previously, we have reported the role of poly(thionine) film (PTH) deposited on the electrochemically preanodized glassy carbon electrode (GCE) for the separation of the voltammetric signal of dopamine (DA) from that of AA and UA. In this communication, we are presenting the preliminary results of the electrochemical signal separation of 5-HT by suppressing those of AA and UA on another type PTH modified GCE (PTHGCE) which is prepared by electrochemical deposition of PTH directly on the mechanically polished GCE.

  11. An electrochemical sensor for rizatriptan benzoate determination using Fe3O4 nanoparticle/multiwall carbon nanotube-modified glassy carbon electrode in real samples.

    Science.gov (United States)

    Madrakian, Tayyebeh; Maleki, Somayeh; Heidari, Mozhgan; Afkhami, Abbas

    2016-06-01

    In this paper a sensitive and selective electrochemical sensor for determination of rizatriptan benzoate (RZB) was proposed. A glassy carbon electrode was modified with nanocomposite of multiwalled carbon nanotubes (MWCNTs) and Fe3O4 nanoparticles (Fe3O4/MWCNTs/GCE). The results obtained clearly show that the combination of MWCNTs and Fe3O4 nanoparticles definitely improves the sensitivity of modified electrode to RZB determination. The morphology and electroanalytical performance of the fabricated sensor were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), square wave voltammetry (SWV) and cyclic voltammetry (CV). Also, the effect of experimental and instrumental parameters on the sensor response was evaluated. The square wave voltammetric response of the electrode to RZB was linear in the range 0.5-100.0 μmol L(-1) with a detection limit of 0.09 μmol L(-1) under the optimum conditions. The investigated method showed good stability, reproducibility and repeatability. The proposed sensor was successfully applied for real life samples of blood serum and RZB determination in pharmaceutical. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Fabrication and electrochemical behavior of single-walled carbon nanotube/graphite-based electrode

    International Nuclear Information System (INIS)

    Moghaddam, Abdolmajid Bayandori; Ganjali, Mohammad Reza; Dinarvand, Rassoul; Razavi, Taherehsadat; Riahi, Siavash; Rezaei-Zarchi, Saeed; Norouzi, Parviz

    2009-01-01

    An electrochemical method for determining the dihydroxybenzene derivatives on glassy carbon (GC) has been developed. In this method, the performance of a single-walled carbon nanotube (SWCNT)/graphite-based electrode, prepared by mixing SWCNTs and graphite powder, was described. The resulting electrode shows an excellent behavior for redox of 3,4-dihydroxybenzoic acid (DBA). SWCNT/graphite-based electrode presents a significant decrease in the overvoltage for DBA oxidation as well as a dramatic improvement in the reversibility of DBA redox behavior in comparison with graphite-based and glassy carbon (GC) electrodes. In addition, scanning electron microscopy (SEM) and atomic force microscopy (AFM) procedures performed for used SWCNTs

  13. Influence of Substrates on the Electrochemical Deposition and Dissolution of Aluminum in NaAlCl4 Melts

    DEFF Research Database (Denmark)

    Li, Qingfeng; Hjuler, Hans Aage; Berg, Rolf W.

    1991-01-01

    The deposition and dissolution of aluminum in NaAlCl4 melts saturated with NaCl have been investigated by voltammetryand potentiometry for different electrode materials at 175°C. The tungsten and glassy carbon electrodes are shownto be electrochemically inert in the melts, whereas copper is elect......The deposition and dissolution of aluminum in NaAlCl4 melts saturated with NaCl have been investigated by voltammetryand potentiometry for different electrode materials at 175°C. The tungsten and glassy carbon electrodes are shownto be electrochemically inert in the melts, whereas copper...... is electrochemically active; it dissolves into the melts at a lowanodic potential. On a nickel substrate, nickel dichloride will be formed at a potential of ca. 1.0 V vs. an aluminum referenceelectrode. The reversibility (of deposition and dissolution of aluminum) is found to be strongly affected by currentdensity...... investigated. Nickel and, to some extent,tungsten electrodes proved to be appropriate as working anodes in the Al/NaCl-AlCl3/Ni battery system....

  14. Electrochemical biosensors for hormone analyses.

    Science.gov (United States)

    Bahadır, Elif Burcu; Sezgintürk, Mustafa Kemal

    2015-06-15

    Electrochemical biosensors have a unique place in determination of hormones due to simplicity, sensitivity, portability and ease of operation. Unlike chromatographic techniques, electrochemical techniques used do not require pre-treatment. Electrochemical biosensors are based on amperometric, potentiometric, impedimetric, and conductometric principle. Amperometric technique is a commonly used one. Although electrochemical biosensors offer a great selectivity and sensitivity for early clinical analysis, the poor reproducible results, difficult regeneration steps remain primary challenges to the commercialization of these biosensors. This review summarizes electrochemical (amperometric, potentiometric, impedimetric and conductometric) biosensors for hormone detection for the first time in the literature. After a brief description of the hormones, the immobilization steps and analytical performance of these biosensors are summarized. Linear ranges, LODs, reproducibilities, regenerations of developed biosensors are compared. Future outlooks in this area are also discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Electrochemical Determination of Caffeine Content in Ethiopian Coffee Samples Using Lignin Modified Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Meareg Amare

    2017-01-01

    Full Text Available Lignin film was deposited at the surface of glassy carbon electrode potentiostatically. In contrast to the unmodified glassy carbon electrode, an oxidative peak with an improved current and overpotential for caffeine at modified electrode showed catalytic activity of the modifier towards oxidation of caffeine. Linear dependence of peak current on caffeine concentration in the range 6×10-6 to 100×10-6 mol L−1 with determination coefficient and method detection limit (LoD = 3 s/slope of 0.99925 and 8.37×10-7 mol L−1, respectively, supplemented by recovery results of 93.79–102.17% validated the developed method. An attempt was made to determine the caffeine content of aqueous coffee extracts of Ethiopian coffees grown in four coffee cultivating localities (Wonbera, Wolega, Finoteselam, and Zegie and hence to evaluate the correlation between users preference and caffeine content. In agreement with reported works, caffeine contents (w/w% of 0.164 in Wonbera coffee; 0.134 in Wolega coffee; 0.097 in Finoteselam coffee; and 0.089 in Zegie coffee were detected confirming the applicability of the developed method for determination of caffeine in a complex matrix environment. The result indicated that users’ highest preference for Wonbera and least preference for Zegie cultivated coffees are in agreement with the caffeine content.

  16. Electrochemical Determination of Caffeine Content in Ethiopian Coffee Samples Using Lignin Modified Glassy Carbon Electrode.

    Science.gov (United States)

    Amare, Meareg; Aklog, Senait

    2017-01-01

    Lignin film was deposited at the surface of glassy carbon electrode potentiostatically. In contrast to the unmodified glassy carbon electrode, an oxidative peak with an improved current and overpotential for caffeine at modified electrode showed catalytic activity of the modifier towards oxidation of caffeine. Linear dependence of peak current on caffeine concentration in the range 6 × 10 -6 to 100 × 10 -6  mol L -1 with determination coefficient and method detection limit (LoD = 3 s/slope) of 0.99925 and 8.37 × 10 -7  mol L -1 , respectively, supplemented by recovery results of 93.79-102.17% validated the developed method. An attempt was made to determine the caffeine content of aqueous coffee extracts of Ethiopian coffees grown in four coffee cultivating localities (Wonbera, Wolega, Finoteselam, and Zegie) and hence to evaluate the correlation between users preference and caffeine content. In agreement with reported works, caffeine contents (w/w%) of 0.164 in Wonbera coffee; 0.134 in Wolega coffee; 0.097 in Finoteselam coffee; and 0.089 in Zegie coffee were detected confirming the applicability of the developed method for determination of caffeine in a complex matrix environment. The result indicated that users' highest preference for Wonbera and least preference for Zegie cultivated coffees are in agreement with the caffeine content.

  17. Voltammetric Determination of Salbutamol Based on Electrochemical Oxidation at Platinum and Glassy Carbon Electrodes

    OpenAIRE

    YILMAZ, Niyazi; ÖZKAN, Sibel A.; USLU, Bengi

    2014-01-01

    The oxidative behavior of salbutamol was studied as a function of pH at platinum and activated glassy carbon electrodes. Between pH 1.9 and 12.0, the drug was characterized by a single oxidation step at both electrodes. The process was found to be dependent on the nature and the pH of the supporting elctrolyte. The procedure yielded a linear concentration range of 1 \\times 10-4 to 1 \\times 10-3 M and 2 \\times 10-5 to 1 \\times 10-3 M in 0.2 M sulphuric acid and a phosphate buffer of pH 6, at p...

  18. Glassy carbon coated graphite for nuclear applications

    International Nuclear Information System (INIS)

    Delpeux S; Cacciaguerra T; Duclaux L

    2005-01-01

    Taking into account the problems caused by the treatment of nuclear wastes, the molten salts breeder reactors are expected to a great development. They use a molten fluorinated salt (mixture of LiF, BeF 2 , ThF 4 , and UF 4 ) as fuel and coolant. The reactor core, made of graphite, is used as a neutrons moderator. Despite of its compatibility with nuclear environment, it appears crucial to improve the stability and inertness of graphite against the diffusion of chemicals species leading to its corrosion. One way is to cover the graphite surface by a protective impermeable deposit made of glassy carbon obtained by the pyrolysis of phenolic resin or polyvinyl chloride precursors. The main difficulty in the synthesis of glassy carbon is to create exclusively, in the primary pyrolysis product, a micro-porosity of about twenty Angstroms which closes later at higher temperature. Therefore, the evacuation of the volatile products occurring mainly between 330 and 600 C, must progress slowly to avoid the material to crack. In this study, the optimal parameters for the synthesis of glassy carbon as well as glassy carbon deposits on nuclear-type graphite pieces are discussed. Both thermal treatment of phenolic and PVC resins have been performed. The structure and micro-texture of glassy carbon have been investigated by X-ray diffraction, scanning and transmission electron microscopies and helium pycno-metry. Glassy carbon samples (obtained at 1200 C) show densities ranging from 1.3 to 1.55 g/cm 3 and closed pores with nano-metric size (∼ 5 to 10 nm) appear clearly on the TEM micrographs. Then, a thermal treatment to 2700 C leads to the shrinkage of the entangled graphene ribbons, in good agreement with the proposed texture model for glassy carbon. Glassy carbon deposits on nuclear graphite have been developed by an impregnation method. The uniformity of the deposit depends clearly on the surface texture and the chemistry of the graphite substrate. The deposit regions where

  19. Glassy carbon coated graphite for nuclear applications

    Energy Technology Data Exchange (ETDEWEB)

    Delpeux, S.; Cacciaguerra, T.; Duclaux, L. [Orleans Univ., CRMD, CNRS, 45 (France)

    2005-07-01

    Taking into account the problems caused by the treatment of nuclear wastes, the molten salts breeder reactors are expected to a great development. They use a molten fluorinated salt (mixture of LiF, BeF{sub 2}, ThF{sub 4}, and UF{sub 4}) as fuel and coolant. The reactor core, made of graphite, is used as a neutrons moderator. Despite of its compatibility with nuclear environment, it appears crucial to improve the stability and inertness of graphite against the diffusion of chemicals species leading to its corrosion. One way is to cover the graphite surface by a protective impermeable deposit made of glassy carbon obtained by the pyrolysis of phenolic resin [1,2] or polyvinyl chloride [3] precursors. The main difficulty in the synthesis of glassy carbon is to create exclusively, in the primary pyrolysis product, a micro-porosity of about twenty Angstroms which closes later at higher temperature. Therefore, the evacuation of the volatile products occurring mainly between 330 and 600 C, must progress slowly to avoid the material to crack. In this study, the optimal parameters for the synthesis of glassy carbon as well as glassy carbon deposits on nuclear-type graphite pieces are discussed. Both thermal treatment of phenolic and PVC resins have been performed. The structure and micro-texture of glassy carbon have been investigated by X-ray diffraction, scanning and transmission electron microscopies and helium pycno-metry. Glassy carbon samples (obtained at 1200 C) show densities ranging from 1.3 to 1.55 g/cm{sup 3} and closed pores with nano-metric size ({approx} 5 to 10 nm) appear clearly on the TEM micrographs. Then, a thermal treatment to 2700 C leads to the shrinkage of the entangled graphene ribbons (Fig 1), in good agreement with the proposed texture model for glassy carbon (Fig 2) [4]. Glassy carbon deposits on nuclear graphite have been developed by an impregnation method. The uniformity of the deposit depends clearly on the surface texture and the chemistry

  20. Electrocatalytic behaviour and application of manganese porphyrin/gold nanoparticle- surface modified glassy carbon electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Sebarchievici, I., E-mail: incemc@incemc.ro [National Institute of Research for Electrochemistry and Condensed Matter, Aurel Paunescu Podeanu Street 144, 300569 Timisoara (Romania); Tăranu, B.O. [National Institute of Research for Electrochemistry and Condensed Matter, Aurel Paunescu Podeanu Street 144, 300569 Timisoara (Romania); Birdeanu, M. [National Institute of Research for Electrochemistry and Condensed Matter, Aurel Paunescu Podeanu Street 144, 300569 Timisoara (Romania); Institute of Chemistry Timisoara of Romanian Academy, M. Viteazul Ave. 24, 300223 Timisoara (Romania); Rus, S.F. [National Institute of Research for Electrochemistry and Condensed Matter, Aurel Paunescu Podeanu Street 144, 300569 Timisoara (Romania); Fagadar-Cosma, E., E-mail: efagadar@yahoo.com [Institute of Chemistry Timisoara of Romanian Academy, M. Viteazul Ave. 24, 300223 Timisoara (Romania)

    2016-12-30

    Highlights: • Mn-porphyrin/gold nanoparticle-modified glassy carbon electrodes were obtained. • AFM investigations of thin films display multilayer of triangular type architecture. • Oxidation and reduction processes of H{sub 2}O{sub 2} are diffusion controled. • There is a linear dependence between H{sub 2}O{sub 2} concentration and the currents intensity. • The modified electrodes show better electrochemical detection ability to H{sub 2}O{sub 2}. - Abstract: The main purpose of this research was to obtain manganese porphyrin/gold nanoparticle-modified glassy carbon electrodes and to use them for the detection of H{sub 2}O{sub 2}. Two sets of modified electrodes were prepared by drop-cast deposition of 5,10,15,20-tetra(4-methyl-phenyl)porphyrinato manganese(III) chloride alone and of the same Mn-porphyrin and gold-colloid solution and comparatively characterized by Raman, UV–vis, ellipsometry, AFM and TEM microscopy, XPS and cyclic voltammetry. XPS spectrum recorded for GC-MnP-nAu modified electrode displayed the characteristic signals of gold nanoparticles. The optical parameters have greater values for GC-MnP-nAu in comparison with GC-MnP, due to increasing charge transfer efficiency. The MnP-nAu film mediates the electron transfer between H{sub 2}O{sub 2} and GC, evidenced by an increase in the current intensity of the anodic peak, and facilitates the electrochemical regeneration of oxidized H{sub 2}O{sub 2} at cathodic potentials. From the cyclic voltammetry experiments a linear relationship between H{sub 2}O{sub 2} concentration vs oxidation and reduction currents was observed. The linear dependence between density of current and the square root of the scan rate indicates that the oxidation and reduction processes of H{sub 2}O{sub 2} are diffusion controlled. The GC-MnP-nAu modified electrode shows great potential as electrochemical sensor for determination of hydrogen peroxide.

  1. Electrochemical performance of Li4Mn5O12 nano-crystallites prepared by spray-drying-assisted solid state reactions

    International Nuclear Information System (INIS)

    Jiang, Y.P.; Xie, J.; Cao, G.S.; Zhao, X.B.

    2010-01-01

    Nanosized Li 4 Mn 5 O 12 has been synthesized by a spray-drying-assisted solid state method. The effect of spray drying and drying temperature on the microstructure and electrochemical performance of the final products has been investigated. The microstructure of the products has been characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The electrochemical performance of the products has been studied by galvanostatic cycling, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). It has been found that the products prepared with a spray-drying pretreatment of the precursor exhibit a smaller grain size and a narrower size distribution than that prepared without the pretreatment. Among the three samples with a precursor pretreatment, that pretreated at 250 o C shows the best electrochemical performance due to the smallest grain size of below 50 nm and the narrowest size distribution.

  2. Thermodynamic picture of the glassy state

    NARCIS (Netherlands)

    Nieuwenhuizen, T.M.

    2000-01-01

    A picture for the thermodynamics of the glassy state is introduced. It assumes that one extra parameter, the effective temperature, is needed to describe the glassy state. This explains the classical paradoxes concerning the Ehrenfest relations and the Prigogine-Defay ratio. As a second feature, the

  3. Peptide methionine sulfoxide reductase A (MsrA): direct electrochemical oxidation on carbon electrodes.

    Science.gov (United States)

    Enache, T A; Oliveira-Brett, A M

    2013-02-01

    The direct electrochemical behaviour of peptide methionine sulfoxide reductase A (MsrA) adsorbed on glassy carbon and boron doped diamond electrodes surface, was studied over a wide pH range by cyclic and differential pulse voltammetry. MsrA oxidation mechanism occurs in three consecutive, pH dependent steps, corresponding to the oxidation of tyrosine, tryptophan and histidine amino acid residues. At the glassy carbon electrode, the first step corresponds to the oxidation of tyrosine and tryptophan residues and occurs for the same potential. The advantage of boron doped diamond electrode was to enable the separation of tyrosine and tryptophan oxidation peaks. On the second step occurs the histidine oxidation, and on the third, at higher potentials, the second tryptophan oxidation. MsrA adsorbs on the hydrophobic carbon electrode surface preferentially through the three hydrophobic domains, C1, C2 and C3, which contain the tyrosine, tryptophan and histidine residues, and tryptophan exists only in these regions, and undergo electrochemical oxidation. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Electrochemical Deposition of Aluminum from NaCl-AlCl3 Melts

    DEFF Research Database (Denmark)

    Li, Qingfeng; Hjuler, H. A.; Berg, Rolf W.

    1990-01-01

    Electrochemical deposition of aluminum from NaAlCl4 melts saturated with NaCl onto a glassy carbon electrode at175°C has been studied by voltammetry, chronoamperometry, and constant current deposition. The deposition of aluminumwas found to proceed via a nucleation/growth mechanism, and the nucle......Electrochemical deposition of aluminum from NaAlCl4 melts saturated with NaCl onto a glassy carbon electrode at175°C has been studied by voltammetry, chronoamperometry, and constant current deposition. The deposition of aluminumwas found to proceed via a nucleation/growth mechanism......, and the nucleation process was found to be progressive.The morphology of aluminum deposits was examined with photomicroscopy. It was shown that depending on the currentdensities (c.d.) applied, three types of aluminum deposits could be obtained, namely, spongy deposits formed at lower c.d.(below 0.7 mA/cm2), smooth...... layers deposited at intermediate c.d. (between 2 and 10 mA/cm2), and dendritic or porous depositsobtained at high c.d. (above 15 mA/cm2). However, the smooth aluminum deposits were about five times more voluminousthan the theoretical value. The spongy deposits were formed due to difficulties...

  5. Glassy carbon electrode modified with multi-walled carbon nanotubes sensor for the quantification of antihistamine drug pheniramine in solubilized systems

    Directory of Open Access Journals (Sweden)

    Rajeev Jain

    2012-02-01

    Full Text Available A sensitive electroanalytical method for quantification of pheniramine in pharmaceutical formulation has been investigated on the basis of the enhanced electrochemical response at glassy carbon electrode modified with multi-walled carbon nanotubes in the presence of sodium lauryl sulfate. The experimental results suggest that the pheniramine in anionic surfactant solution exhibits electrocatalytic effect resulting in a marked enhancement of the peak current response. Peak current response is linearly dependent on the concentration of pheniramine in the range 200–1500 μg/mL with correlation coefficient 0.9987. The limit of detection is 58.31 μg/mL. The modified electrode shows good sensitivity and repeatability. Keywords: Pheniramine, Sodium lauryl sulfate (SLS, Glassy carbon electrode modified with multi-walled carbon nanotubes (GCE-MWCNTs, Solubilized systems, Voltammetric quantification

  6. An electrochemical study of neutral red-DNA interaction

    International Nuclear Information System (INIS)

    Heli, H.; Bathaie, S.Z.; Mousavi, M.F.

    2005-01-01

    Electrochemical methods were used to investigate the interaction of neutral red (NR) with double-stranded calf thymus DNA, in solution as well as using a DNA-modified glassy carbon (GC-DNA) electrode. The results were compared with those obtained from bare glassy carbon (GC) electrode. The formal potential of NR was more positive when GC-DNA electrode was used although the rate of heterogeneous electron transfer is as high as that of using GC electrode. GC-DNA electrode enables preconcentration of NR for chosen times on the electrode surface, despite the fact that the mass transfer effects in the thin DNA layer adsorbed on the surface was still observed using cyclic voltammetry and electrochemical impedance spectroscopy techniques. Parameters, such as the diffusion coefficient of NR, binding site size in base pairs and the ratio of the binding constants for the oxidized and reduced forms of the bound species were obtained. A binding isotherm for NR at GC-DNA electrode was obtained from coulometric titrations and gave an affinity constant equal to 2.76 x 10 4 L mol -1 . From the studies of the interaction in solution, the diffusion coefficient of free and DNA-bound NR, binding constant and binding site size of the DNA-NR complex was also obtained simultaneously by non-linear fitting analysis of voltammetric data

  7. Electrochemical study of nanometric Si on carbon for lithium ion secondary batteries

    Energy Technology Data Exchange (ETDEWEB)

    Doh, Chil-Hoon; Lee, Jung-Hoon; Lee, Duck-Jun; Kim, Ju-Seok; Jin, Bong-Soo; Moon, Seong-In [Korea Electrotechnology Research Institute, Changwon 641-120 (Korea, Republic of); Hwang, Young-Ki [Kyungnam University, Masan 631-701 (Korea, Republic of); Park, Cheol-Wan, E-mail: chdoh@keri.re.k [Sodiff Advanced Materials Co. Ltd, Youngju 750-080 (Korea, Republic of)

    2010-05-01

    The electrochemical and thermochemical properties of a silicon-graphite composite anode for lithium ion batteries were evaluated. The electrochemical properties were varied by the condition of pretreatment. The electrochemical pretreatment of constant current (C/10) and constant potential for 24 h showed specific discharge and charge capacities of 941 and 781 mA h g{sup -1} to give a specific irreversible capacity of 161 mA h g{sup -1} and a coulombic efficiency of 83%. The initial cycle as the next cycle of pretreatment showed a specific charge capacity (Li desertion) of 698 mA h g{sup -1} and a coulombic efficiency of 95%. Coulombic efficiency at the fifth cycle was 97% to clear up almost all of the irreversible capacity. During the pretreatment cycle to the fourth cycle, the average specific charge capacity was 683 mA h g{sup -1} and the cumulative irreversible capacity was 264 mA h g{sup -1}. Exothermic heat values based on the specific capacity of the discharged (Li insertion) electrode of silicon-graphite composite for the temperature range of 50-300 {sup 0}C were 2.09 and 2.21 J mA{sup -1}h{sup -1} for 0 and 2 h as time of pretreatment in the case of just disassembled wet electrodes and 1.43 and 1.01 J mA{sup -1}h{sup -1} for 12 and 24 h as time of pretreatment in the case of dried electrodes, respectively.

  8. Impedimetric PSA aptasensor based on the use of a glassy carbon electrode modified with titanium oxide nanoparticles and silk fibroin nanofibers.

    Science.gov (United States)

    Benvidi, Ali; Banaei, Maryam; Tezerjani, Marzieh Dehghan; Molahosseini, Hosein; Jahanbani, Shahriar

    2017-12-14

    This article describes an impedimetric aptasensor for the prostate specific antigen (PSA), a widely accepted prostate cancer biomarker. A glassy carbon electrode (GCE) was modified with titanium oxide nanoparticles (TiO 2 ) and silk fibroin nanofiber (SF) composite. The aptasensor was obtained by immobilizing a PSA-binding aptamer on the AuNP-modified with 6-mercapto-1-hexanol. The single fabrication steps were characterized by cyclic voltammetry and electrochemical impedance spectroscopy. The assay has two linear response ranges (from 2.5 fg.mL -1 to 25 pg.mL -1 , and from 25 pg.mL -1 to 25 ng.mL -1 ) and a 0.8 fg.mL -1 detection limit. After optimization of experimental conditions, the sensor is highly selective for PSA over bovine serum albumin and lysozyme. It was successfully applied to the detection of PSA in spiked serum samples. Graphical abstract Schematic of the fabrication of an aptasensor for the prostate specific antigen (PSA). It is based on the use of a glassy carbon electrode modified with gold nanoparticles and titanium oxide-silk fibroin. The immobilization process of aptamer and interaction with PSA were followed by electrochemical impedance spectroscopy technique.

  9. Amperometric nitrite sensor based on a glassy carbon electrode modified with multi-walled carbon nanotubes and poly(toluidine blue)

    International Nuclear Information System (INIS)

    Dai, Juan; Deng, Fei; He, Shuang; Deng, Dongli; Yuan, Yali; Zhang, Jinzhong

    2016-01-01

    An amperometric nitrite sensor modified with multi-walled carbon nanotubes (MWCNTs) and poly(toluidine blue) (PTB) on glassy carbon electrode was constructed. The surface morphology of the composite- modified electrode was characterized by scanning electron microscopy, and the electrochemical response behavior and electrocatalytic oxidation mechanism of nitrite were investigated by cyclic voltammetry. The high surface-to-volume ratio of MWCNTs and PTB brings the electrochemical sensing unit and nitrite in full contact. This renders the electrochemical response extremely sensitive to nitrite. Under the optimal measurement conditions and a working voltage of 0.73 V (vs. SCE), a linear relationship is obtained between the oxidation peak current and nitrite concentration in the range of 39 nM–1.1 mM, and the limit of detection is lowered to 19 nM (at an S/N ratio of 3). The sensor was successfully applied to the determination of nitrite in greenhouse soils. (author)

  10. Forecasting approach of electrochemical valorisation of CO2 in alkali molten carbonates

    International Nuclear Information System (INIS)

    Chery, Deborah

    2015-01-01

    Carbon Dioxide is a greenhouse which can be valorised by means of electrochemical valorisation into carbon monoxide. The main goals of the thesis consist in the theoretical determination of the conductive conditions leading to this electrochemical valorisation in alkali molten carbonates along with the study of the feasibility of this electrochemical reduction in binary and ternary eutectics under experimental condition. CO 2 solubility has been determined by manometric measure and increase along with the temperature. CO 2 electrochemical experimental feasibility into CO in eutectics on gold plate electrode and graphite carbon has been proved by cyclic volt-amperometry for temperatures exceeding 550 C, without gold plate electrode pretreatment and with gold plate pretreatment by an pre-electrolysis at potential slightly negative as the CO 2 reduction potential. A global approach of reactional mechanisms implied in CO 2 reduction is proposed. (author)

  11. Impedance aspect of charge storage at graphite and glassy carbon electrodes in potassium hexacyanoferrate (II redox active electrolyte

    Directory of Open Access Journals (Sweden)

    Katja Magdić

    2016-04-01

    Full Text Available Different types of charge storage mechanisms at unmodified graphite vs. glassy carbon electrodes in acid sulphate supporting solution containing potassium hexacyanoferrate (II redox active electrolyte, have been revealed by electrochemical impedance spectroscopy and supported by cyclic voltammetry experiments. Reversible charge transfer of Fe(CN63-/4- redox reaction detected by assessment of CVs of glassy carbon electrode, is in impedance spectra indicated by presence of bulk diffusion impedance and constant double-layer/pseudocapacitive electrode impedance compared to that measured in the pure supporting electrolyte. Some surface retention of redox species detected by assessment of CVs of graphite electrode is in impedance spectra indicated by diffusion impedance coupled in this case by diminishing of double-layer/pseudo­capacitive impedance compared to that measured in the pure supporting electrolyte. This phenomenon is ascribed to contribution of additional pseudocapacitive impedance generated by redox reaction of species confined at the electrode surface.

  12. Scaled-up electrochemical reactor with a fixed bed three-dimensional cathode for electro-Fenton process: Application to the treatment of bisphenol A

    International Nuclear Information System (INIS)

    Chmayssem, Ayman; Taha, Samir; Hauchard, Didier

    2017-01-01

    In this study, we report on the development of an open undivided electrochemical reactor with a compact fixed bed of glassy carbon pellets as three-dimensional cathode for the application of electro-Fenton process. Bisphenol A (BPA) was chosen as model molecule in order to improve its efficiency to the treatment of persistent pollutants. The study of the BPA removal efficiency in function of the applied current intensity was investigated in order to determine the limiting current of O 2 reduction (optimal conditions of H 2 O 2 production at flow rate of 0.36 m 3 .h −1 ) which was 0.8 A (0.5 A/100 g of glassy carbon pellets). Many parameters have been carried out using this electro-Fenton reactor namely degradation kinetics, influence of anodic reactions on DSA, effect of initial pollutant concentration. In the optimal current condition, the global production rate of H 2 O 2 and ·OH was investigated. The yield of electro-Fenton reaction (conversion of H 2 O 2 to ·OH) was very high (> 90%). The absolute rate of BPA degradation was determined as 4.3 × 10 9 M −1 s −1 . COD, TOC and BOD 5 measurements indicated that only few minutes of treatment by electro-Fenton process were needed to eliminate BPA for dilute solutions (10 and 25 mg.L −1 ). In this case, the biodegradability of the treated solutions occurred rapidly. For higher concentration levels, an efficient removal of BPA appeared for treatment time higher than 1 hour and more than 90 minutes were necessary to obtain the biodegradability of BPA solutions. In optimum conditions, the scale-up of the electrochemical reactor applied to electro-Fenton process was suggested and depended on the concentration level of the pollutant. The operating parameters of the scaled-up reactor might be deduced from the new section of each fixed bed exposed to the flow, from values of liquid flow velocity and from the corresponding limiting current density obtained with the reactor at laboratory scale. The compact fixed bed

  13. Integration of Microchip Electrophoresis with Electrochemical Detection Using an Epoxy-Based Molding Method to Embed Multiple Electrode Materials

    Science.gov (United States)

    Johnson, Alicia S.; Selimovic, Asmira; Martin, R. Scott

    2012-01-01

    This paper describes the use of epoxy-encapsulated electrodes to integrate microchip-based electrophoresis with electrochemical detection. Devices with various electrode combinations can easily be developed. This includes a palladium decoupler with a downstream working electrode material of either gold, mercury/gold, platinum, glassy carbon, or a carbon fiber bundle. Additional device components such as the platinum wires for the electrophoresis separation and the counter electrode for detection can also be integrated into the epoxy base. The effect of the decoupler configuration was studied in terms of the separation performance, detector noise, and the ability to analyze samples of a high ionic strength. The ability of both glassy carbon and carbon fiber bundle electrodes to analyze a complex mixture was demonstrated. It was also shown that a PDMS-based valving microchip can be used along with the epoxy embedded electrodes to integrate microdialysis sampling with microchip electrophoresis and electrochemical detection, with the microdialysis tubing also being embedded in the epoxy substrate. This approach enables one to vary the detection electrode material as desired in a manner where the electrodes can be polished and modified in a similar fashion to electrochemical flow cells used in liquid chromatography. PMID:22038707

  14. Sensitive determination of buformin using poly-aminobenzoic acid modified glassy carbon electrode

    Directory of Open Access Journals (Sweden)

    Gui-Ying Jin

    2012-12-01

    Full Text Available Glassy carbon electrode, which is used to electrochemically determine the content of buformin, is modified with an electropolymerized film of p-aminobenzoic acid in pH 7.0 acetate buffer solution (ABS. The polymer showed an excellent electrocatalytic activity for the reduction of buformin. In pH 7.0 ABS, the cathodic peak current increased linearly over three concentration intervals of buformin, and the detection limit (S/N=3 was 2.0×10−9 g/mL. The method was successfully applied to directly determine buformin in tablets with standard addition recoveries of 95.8–102.5%. The proposed method is simple, cheap and highly efficient. Keywords: Chemically modified electrode, Aminobenzoic acid, Buformin

  15. Voltammetric Determination of Flunixin on Molecularly Imprinted Polypyrrole Modified Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Abd-Elgawad Radi

    2016-01-01

    Full Text Available A novel electrochemical sensing approach, based on electropolymerization of a molecularly imprinted polypyrrole (MIPpy film onto a glassy carbon electrode (GCE surface, was developed for the detection of flunixin (FXN. The sensing conditions and the performance of the constructed sensor were assessed by cyclic, differential pulse and (DPV square wave voltammetry (SWV. The sensor exhibited high sensitivity, with linear responses in the range of 5.0 to 50.0 µM with detection limits of 1.5 and 1.0 µM for DPV and SWV, respectively. In addition, the sensor showed high selectivity towards FXN in comparison to other interferents. The sensor was successfully utilized for the direct determination of FXN in buffalo raw milk samples.

  16. Molecularly imprinted poly(4-amino-5-hydroxy-2,7-naphthalenedisulfonic acid) modified glassy carbon electrode as an electrochemical theophylline sensor

    International Nuclear Information System (INIS)

    Aswini, K.K.; Vinu Mohan, A.M.; Biju, V.M.

    2016-01-01

    Theophylline is an inexpensive drug employed in asthma and chronic obstructive pulmonary disorder medications and is toxic at higher concentration. The development of a molecularly imprinted polymer based theophylline electrochemical sensor on glassy carbon electrode by the electropolymerization of 4-amino-5-hydroxy-2,7-naphthalenedisulfonic acid is being discussed in this work. The MIP modification enhances the theophylline recognition ability and the electron transfer kinetics of the bare electrode. The parameters, controlling the performance of the imprinted polymer based sensor, like number of electropolymerization cycles, composition of the pre-polymerization mixture, pH and immersion time were investigated and optimized. The interaction energy and the most stable conformation of the template–monomer complex in the pre-polymerization mixture were determined computationally using ab initio calculations based on density functional theory. The amperometric measurements showed that the developed sensor has a method detection limit of 0.32 μM for the dynamic range of 0.4 to 17 μM, at optimized conditions. The transducer possesses appreciable selectivity in the presence of structurally similar interferents such as theobromine, caffeine and doxofylline. The developed sensor showed remarkable stability and reproducibility and was also successfully employed in theophylline detection from commercially available tablets. - Highlights: • Molecularly imprinted polymer based theophylline sensor was developed. • Imprinted poly(4-amino-5-hydroxy-2,7-naphthalenedisulfonic acid) was electrodeposited. • Most stable template-monomer complex was assigned by computational analysis. • Possessed remarkable selectivity in the presence of structurally similar interferents • Employed for theophylline detection from commercially available tablets

  17. Molecularly imprinted poly(4-amino-5-hydroxy-2,7-naphthalenedisulfonic acid) modified glassy carbon electrode as an electrochemical theophylline sensor

    Energy Technology Data Exchange (ETDEWEB)

    Aswini, K.K., E-mail: aswinikk@ymail.com; Vinu Mohan, A.M.; Biju, V.M., E-mail: vmbiju@ymail.com

    2016-08-01

    Theophylline is an inexpensive drug employed in asthma and chronic obstructive pulmonary disorder medications and is toxic at higher concentration. The development of a molecularly imprinted polymer based theophylline electrochemical sensor on glassy carbon electrode by the electropolymerization of 4-amino-5-hydroxy-2,7-naphthalenedisulfonic acid is being discussed in this work. The MIP modification enhances the theophylline recognition ability and the electron transfer kinetics of the bare electrode. The parameters, controlling the performance of the imprinted polymer based sensor, like number of electropolymerization cycles, composition of the pre-polymerization mixture, pH and immersion time were investigated and optimized. The interaction energy and the most stable conformation of the template–monomer complex in the pre-polymerization mixture were determined computationally using ab initio calculations based on density functional theory. The amperometric measurements showed that the developed sensor has a method detection limit of 0.32 μM for the dynamic range of 0.4 to 17 μM, at optimized conditions. The transducer possesses appreciable selectivity in the presence of structurally similar interferents such as theobromine, caffeine and doxofylline. The developed sensor showed remarkable stability and reproducibility and was also successfully employed in theophylline detection from commercially available tablets. - Highlights: • Molecularly imprinted polymer based theophylline sensor was developed. • Imprinted poly(4-amino-5-hydroxy-2,7-naphthalenedisulfonic acid) was electrodeposited. • Most stable template-monomer complex was assigned by computational analysis. • Possessed remarkable selectivity in the presence of structurally similar interferents • Employed for theophylline detection from commercially available tablets.

  18. Ultra-nanocrystalline diamond nanowires with enhanced electrochemical properties

    International Nuclear Information System (INIS)

    Shalini, Jayakumar; Lin, Yi-Chieh; Chang, Ting-Hsun; Sankaran, Kamatchi Jothiramalingam; Chen, Huang-Chin; Lin, I.-Nan; Lee, Chi-Young; Tai, Nyan-Hwa

    2013-01-01

    The effects of N 2 incorporation in Ar/CH 4 plasma on the electrochemical properties and microstructure of ultra-nanocrystalline diamond (UNCD) films are reported. While the electrical conductivity of the films increased monotonously with increasing N 2 content (up to 25%) in the plasma, the electrochemical behavior was optimized for UNCD films grown in (Ar–10% N 2 )/CH 4 plasma. Transmission electron microscopy showed that the main factor resulting in high conductivity in the films was the formation of needle-like nanodiamond grains and the induction graphite layer encapsulating these grains. The electrochemical process for N 2 -incorporated UNCD films can readily be activated due to the presence of nanographite along the grain boundaries of the films. The formation of needle-like diamond grains was presumably due to the presence of CN species that adhered to the existing nanodiamond clusters, which suppressed radial growth of the nanodiamond crystals, promoting anisotropic growth and the formation of needle-like nanodiamond. The N 2 -incorporated UNCD films outperformed other electrochemical electrode materials, such as boron-doped diamond and glassy carbon, in that the UNCD electrodes could sense dopamine, urea, and ascorbic acid simultaneously in the same mixture with clear resolution

  19. Electrochemical Biosensor Based on Boron-Doped Diamond Electrodes with Modified Surfaces

    OpenAIRE

    Yu, Yuan; Zhou, Yanli; Wu, Liangzhuan; Zhi, Jinfang

    2012-01-01

    Boron-doped diamond (BDD) thin films, as one kind of electrode materials, are superior to conventional carbon-based materials including carbon paste, porous carbon, glassy carbon (GC), carbon nanotubes in terms of high stability, wide potential window, low background current, and good biocompatibility. Electrochemical biosensor based on BDD electrodes have attracted extensive interests due to the superior properties of BDD electrodes and the merits of biosensors, such as specificity, sensitiv...

  20. Silane pre-treatments on copper and aluminium

    International Nuclear Information System (INIS)

    Deflorian, F.; Rossi, S.; Fedrizzi, L.

    2006-01-01

    A large part of aluminium products are coated with an organic layer in order to improve the corrosion resistance. Copper surfaces are also sometimes protected with an organic coating to improve the durability or the aesthetic properties. Examples of industrial applications are household appliances and heat exchanger components. For these applications it is not rare to have the industrial need to treat at the same time components made of aluminium and copper. In order to extend the service life of the organic coated copper a specific surface pre-treatment is often required. Nevertheless, probably because of the limited market of this application, no specific pre-treatments for copper are industrially developed, with the exception of cleaning procedures, but simply extensions of existing pre-treatments optimised for other metals (aluminium, zinc) are used. The application of silane pre-treatments as adhesion promoters for organic coated metals is remarkably increasing in the last decade, because silanes offer very good performance together with high environmental compatibility. The idea is therefore to try to develop a specific silane based pre-treatment for copper. The starting point is the existing silane products for aluminium, optimising the composition and the application conditions (concentration, temperature, pH of the bath, etc.) in order to develop a high performance copper alloy pre-treatment increasing the protective properties and the adhesion of a successively applied organic coating. Moreover these pre-treatments could be used for aluminium alloys too and therefore could be suggested for multi-metals components. The deposits were analysed using FTIR spectroscopy and optical and electron microscopic observations. A careful electrochemical characterisation, mainly by electrochemical impedance spectroscopy measurements (EIS) was carried out to highlight the presence of silane and to evaluate the performance of the different deposits. In order to study an

  1. Selective Determination of Serotonin on Poly(3,4-ethylenedioxy pyrrole)-single-walled Carbon Nanotube-Modified Glassy Carbon Electrodes

    International Nuclear Information System (INIS)

    Kim, Seul Ki; Bae, Si Ra; Ahmed, Mohammad Shamsuddin; You, Jung Min; Jeon, Seung Won

    2011-01-01

    An electrochemically-modified electrode [P(EDOP-SWNTs)/GCE] was prepared by electropolymerization of 3,4-ethylenedioxy pyrrole (EDOP) single-walled carbon nanotubes (SWNTs) on the surface of a glassy carbon electrode (GCE) and characterized by SEM, CV, and DPV. This modified electrode was employed as an electrochemical biosensor for the selective determination of serotonin concentrations at pH 7.4 and exhibited a typical enhanced effect on the current response of serotonin with a lower oxidation overpotential. The linear response was in the range of 1.0 x 10"-"7 to 1.0 x 10"-"5 M, with a correlation coefficient of 0.998 on the anodic current. The lower detection limit was calculated as 5.0 nM. Due to the relatively low currents and difference of potentials in the electrochemical responses of uric acid (UA), ascorbic acid (AA), and dopamine (DA), the modified electrode was a useful and effective sensing device for the selective and sensitive serotonin determination in the presence of UA, AA, and DA

  2. Selective Determination of Serotonin on Poly(3,4-ethylenedioxy pyrrole)-single-walled Carbon Nanotube-Modified Glassy Carbon Electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seul Ki; Bae, Si Ra; Ahmed, Mohammad Shamsuddin; You, Jung Min; Jeon, Seung Won [Chonnam National University, Gwangju (Korea, Republic of)

    2011-04-15

    An electrochemically-modified electrode [P(EDOP-SWNTs)/GCE] was prepared by electropolymerization of 3,4-ethylenedioxy pyrrole (EDOP) single-walled carbon nanotubes (SWNTs) on the surface of a glassy carbon electrode (GCE) and characterized by SEM, CV, and DPV. This modified electrode was employed as an electrochemical biosensor for the selective determination of serotonin concentrations at pH 7.4 and exhibited a typical enhanced effect on the current response of serotonin with a lower oxidation overpotential. The linear response was in the range of 1.0 x 10{sup -7} to 1.0 x 10{sup -5} M, with a correlation coefficient of 0.998 on the anodic current. The lower detection limit was calculated as 5.0 nM. Due to the relatively low currents and difference of potentials in the electrochemical responses of uric acid (UA), ascorbic acid (AA), and dopamine (DA), the modified electrode was a useful and effective sensing device for the selective and sensitive serotonin determination in the presence of UA, AA, and DA.

  3. Electrochemical Deposition and Dissolution of Thallium from Sulfate Solutions

    Directory of Open Access Journals (Sweden)

    Ye. Zh. Ussipbekova

    2015-01-01

    Full Text Available The electrochemical behavior of thallium was studied on glassy carbon electrodes in sulfate solutions. Cyclic voltammetry was used to study the kinetics of the electrode processes and to determine the nature of the limiting step of the cathodic reduction of thallium ions. According to the dependence of current on stirring rate and scan rate, this process is diffusion limited. Chronocoulometry showed that the electrodeposition can be performed with a current efficiency of up to 96% in the absence of oxygen.

  4. Biosensor based on a glassy carbon electrode modified with tyrosinase immobilized on multiwalled carbon nanotubes

    International Nuclear Information System (INIS)

    Ren, J.; Kang, T.F.; Xue, R.; Ge, C.N.; Cheng, S.Y.

    2011-01-01

    We describe a biosensor for phenolic compounds that is based on a glassy carbon electrode modified with tyrosinase immobilized on multiwalled carbon nanotubes (MWNTs). The MWNTs possess excellent inherent electrical conductivity which enhances the electron transfer rate and results in good electrochemical catalytic activity towards the reduction of benzoquinone produced by enzymatic reaction. The biosensor was characterized by cyclic voltammetry, and the experimental conditions were optimized. The cathodic current is linearly related to the concentration of the phenols between 0.4 μM and 10 μM, and the detection limit is 0.2 μM. The method was applied to the determination of phenol in water samples (author)

  5. Electrochemically fabricated polyaniline nanowire-modified electrode for voltammetric detection of DNA hybridization

    International Nuclear Information System (INIS)

    Zhu Ningning; Chang Zhu; He Pingang; Fang Yuzhi

    2006-01-01

    A novel and sensitive electrochemical DNA biosensor based on electrochemically fabricated polyaniline nanowire and methylene blue for DNA hybridization detection is presented. Nanowires of conducting polymers were directly synthesized through a three-step electrochemical deposition procedure in an aniline-containing electrolyte solution, by using the glassy carbon electrode (GCE) as the working electrode. The morphology of the polyaniline films was examined using a field emission scanning electron microscope (SEM). The diameters of the nanowires range from 80 to 100 nm. The polyaniline nanowires-coated electrode exhibited very good electrochemical conductivity. Oligonucleotides with phosphate groups at the 5' end were covalently linked onto the amino groups of polyaniline nanowires on the electrode. The hybridization events were monitored with differential pulse voltammetry (DPV) measurement using methylene blue (MB) as an indicator. The approach described here can effectively discriminate complementary from non-complementary DNA sequence, with a detection limit of 1.0 x 10 -12 mol l -1 of complementary target, suggesting that the polyaniline nanowires hold great promises for sensitive electrochemical biosensor applications

  6. Fabrication of highly sensitive gold nanourchins based electrochemical sensor for nanomolar determination of primaquine

    International Nuclear Information System (INIS)

    Thapliyal, Neeta Bachheti; Chiwunze, Tirivashe Elton; Karpoormath, Rajshekhar; Cherukupalli, Srinivasulu

    2017-01-01

    A gold nanourchins modified glassy carbon electrode (AuNu/GCE) was developed for the determination of antimalarial drug, primaquine (PQ). The surface of AuNu/GCE was characterized by electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and cyclic voltammetry (CV). EIS results indicated that the electron transfer process at AuNu/GCE was faster as compared to the bare electrode. The SEM and TEM image confirmed the presence and uniform dispersion of gold nanourchins on the GCE surface. Upon investigating the electrochemical behavior of PQ at AuNu/GCE, the developed sensor was found to exhibit high electrocatalytic activity towards the oxidation of PQ. Under optimal experimental conditions, the sensor showed fast and sensitive current response to PQ over a linear concentration range of 0.01–1 μM and 0.001–1 μM with a detection limit of 3.5 nM and 0.9 nM using differential pulse voltammetry (DPV) and square wave voltammetry (SWV), respectively. The AuNu/GCE showed good selectivity, reproducibility and stability. Further, the developed sensor was successfully applied to determine the drug in human urine samples and pharmaceutical formulations demonstrating its analytical applicability in clinical analysis as well as quality control. The proposed method thus provides a promising alternative in routine sensing of PQ as well as promotes the application of gold nanourchins in electrochemical sensors. - Graphical abstract: A gold nanourchins modified glassy carbon electrode was fabricated and used as an electrochemical sensing platform for the determination of primaquine. Display Omitted - Highlights: • Gold nanourchins based electrochemical sensor for determination of primaquine • A detection limit of 0.9 nM was obtained using square wave voltammetry. • Proposed method was applied to quantify the drug in tablet and human urine samples. • Fast, simple and low-cost method for trace analysis of

  7. Fabrication of highly sensitive gold nanourchins based electrochemical sensor for nanomolar determination of primaquine

    Energy Technology Data Exchange (ETDEWEB)

    Thapliyal, Neeta Bachheti, E-mail: thapliyaln@ukzn.ac.za; Chiwunze, Tirivashe Elton; Karpoormath, Rajshekhar, E-mail: karpoormath@ukzn.ac.za; Cherukupalli, Srinivasulu

    2017-05-01

    A gold nanourchins modified glassy carbon electrode (AuNu/GCE) was developed for the determination of antimalarial drug, primaquine (PQ). The surface of AuNu/GCE was characterized by electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and cyclic voltammetry (CV). EIS results indicated that the electron transfer process at AuNu/GCE was faster as compared to the bare electrode. The SEM and TEM image confirmed the presence and uniform dispersion of gold nanourchins on the GCE surface. Upon investigating the electrochemical behavior of PQ at AuNu/GCE, the developed sensor was found to exhibit high electrocatalytic activity towards the oxidation of PQ. Under optimal experimental conditions, the sensor showed fast and sensitive current response to PQ over a linear concentration range of 0.01–1 μM and 0.001–1 μM with a detection limit of 3.5 nM and 0.9 nM using differential pulse voltammetry (DPV) and square wave voltammetry (SWV), respectively. The AuNu/GCE showed good selectivity, reproducibility and stability. Further, the developed sensor was successfully applied to determine the drug in human urine samples and pharmaceutical formulations demonstrating its analytical applicability in clinical analysis as well as quality control. The proposed method thus provides a promising alternative in routine sensing of PQ as well as promotes the application of gold nanourchins in electrochemical sensors. - Graphical abstract: A gold nanourchins modified glassy carbon electrode was fabricated and used as an electrochemical sensing platform for the determination of primaquine. Display Omitted - Highlights: • Gold nanourchins based electrochemical sensor for determination of primaquine • A detection limit of 0.9 nM was obtained using square wave voltammetry. • Proposed method was applied to quantify the drug in tablet and human urine samples. • Fast, simple and low-cost method for trace analysis of

  8. Electrochemical study of nitrobenzene reduction using novel Pt nanoparticles/macroporous carbon hybrid nanocomposites

    International Nuclear Information System (INIS)

    Zhang Yufan; Zeng Lijun; Bo Xiangjie; Wang Huan; Guo Liping

    2012-01-01

    Graphical abstract: A one-step microwave-assisted route for rapidly synthesizing Pt nanoparticles ensemble on macroporous carbon hybrid nanocomposites (PNMPC) has been reported. As a novel electrode material, the excellent electrochemical behavior of nitrobenzene was investigated thoroughly at the PNMPC modified glassy carbon electrode. And moreover, the modified electrode was successfully applied to the determination of nitrobenzene in real samples. Highlights: ► One-step microwave-assisted heating synthesis Pt nanoparticles/macroporous carbon hybrid nanocomposites (PNMPC). ► Catalytic rate constant being 3.14 × 10 4 M −1 s −1 for NB in pH 7.0. ► Sensitive electrochemical detection of NB at the PNMPC/Nafion/GC electrode. ► The electrode showing excellent anti-interference ability and good stability for NB. - Abstract: Novel Pt nanoparticles (PN) ensemble on macroporous carbon (MPC) hybrid nanocomposites (PNMPC) were prepared through a rapidly and simple one-step microwave-assisted heating procedure. The obtained PNMPC was characterized by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA) and electrochemical methods. The electrochemical reduction of nitrobenzene (NB) was thoroughly investigated at the PNMPC modified glassy carbon (GC) electrode, and the catalytic rate constant was calculated to be 3.14 × 10 4 M −1 s −1 for NB. A sensitive NB sensor was developed based on the PNMPC/GC electrode, which showed a wide linear range (1–200 μM), low detection limit (50 nM), high sensitivity (6.93 μA μM −1 ), excellent anti-interference ability and good stability. And moreover, the electrode was successfully applied to the determination of NB in real samples.

  9. Layer-by-layer self-assembling copper tetrasulfonated phthalocyanine on carbon nanotube modified glassy carbon electrode for electro-oxidation of 2-mercaptoethanol

    International Nuclear Information System (INIS)

    Shaik, Mahabul; Rao, V.K.; Gupta, Manish; Pandey, P.

    2012-01-01

    This paper describes the electrocatalytic activity of layer-by-layer self-assembled copper tetrasulfonated phthalocyanine (CuPcTS) on carbon nanotube (CNT)-modified glassy carbon (GC) electrode. CuPcTS is immobilized on the negatively charged CNT surface by alternatively assembling a cationic poly(diallyldimethylammonium chloride) (PDDA) layer and a CuPcTS layer. UV–vis absorption spectra and electrochemical measurements suggested the successive linear depositions of the bilayers of CuPcTs and PDDA on CNT. The surface morphology was observed using scanning electron microscopy. The viability of this CuPcTS/PDDA/CNT modified GC electrode as a redox mediator for the anodic oxidation and sensitive amperometric determination of 2-mercaptoethanol (2-ME) in alkaline conditions is described. The effect of number of bilayers of CuPcTS/PDDA and pH on electrochemical oxidation of 2-ME was studied. The proposed electrochemical sensor displayed excellent characteristics towards the determination of 2-ME in 0.1 M NaOH; such as low overpotentials (− 0.15 V vs Ag/AgCl), linear concentration range of 3 × 10 −5 M to 6 × 10 −3 M, and with a detection limit of 2.5 × 10 −5 M using simple amperometry. - Highlights: ► Carbon nanotubes (CNT) were drop-dried on glassy carbon electrode (GCE). ► Copper tetrasulfonated phthalocyanine (CuPcTS) was deposited on CNT/GCE. ► Layer-by-layer self-assembling method is used for depositing CuPcTS. ► Electrocatalytic oxidation of 2-mercaptoethanol (ME) was studied at this electrode ► The detection limit of ME at modified electrode was 25 μM by amperometry.

  10. Dihydropyridine-fused and pyridine-fused coumarins: Reduction on a glassy carbon electrode in dimethylformamide

    International Nuclear Information System (INIS)

    Nuñez-Vergara, Luis J.; Pardo-Jiménez, V.; Barrientos, C.; Olea-Azar, C.A.; Navarrete-Encina, P.A.; Squella, J.A.

    2012-01-01

    In this study, two series of dihydropyridine-fused and pyridine-fused coumarins were synthesised and electrochemically characterised in aprotic medium. In both series, the most easily reducible groups were the endocyclic carbonyl groups. The electrochemical mechanism for both types of compounds is strongly dependent on the experimental time-scale. Cyclic voltammetric (CV) reduction on a glassy carbon electrode (GCE) of the endocyclic carbonyl group of dihydropyridine-fused coumarins involves an ECEC mechanism with two electron transfer steps that are coupled with chemical reactions to produce the corresponding hemiacetal derivative. In the case of pyridine-fused coumarins, CV reduction of the endocyclic carbonyl group involves an EEC mechanism. ESR studies revealed the presence of a stabilised intermediate only for the pyridine-fused derivatives. Our theoretical study showed a spin density map of radical species delocalised mainly within the coumarin ring, indicating the reduction of the endocyclic carbonyl group. In the case of the dihydropyridine-fused derivatives, the mildly acid hydrogen of the dihydropyridine ring destabilises the radical via a father–son type reaction.

  11. Electrochemistry of raloxifene on glassy carbon electrode and its determination in pharmaceutical formulations and human plasma.

    Science.gov (United States)

    Bagheri, Akbar; Hosseini, Hadi

    2012-12-01

    The electrochemical behavior of raloxifene (RLX) on the surface of a glassy carbon electrode (GCE) has been studied by cyclic voltammetry (CV). The CV studies were performed in various supporting electrolytes, wide range of potential scan rates, and pHs. The results showed an adsorption-controlled and quasi-reversible process for the electrochemical reaction of RLX, and a probable redox mechanism was suggested. Under the optimum conditions, differential pulse voltammetry (DPV) was applied for quantitative determination of the RLX in pharmaceutical formulations. The DPV measurements showed that the anodic peak current of the RLX was linear to its concentration in the range of 0.2-50.0μM with a detection limit of 0.0750μM, relative standard deviation (RSD %) below 3.0%, and a good sensitivity. The proposed method was successfully applied for determination of the RLX in pharmaceutical and human plasma samples with a good selectivity and suitable recovery. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. A graphene-based electrochemical sensor for sensitive detection of paracetamol

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Xinhuang; Wang, Jun; Wu, Hong; Liu, Jun; Aksay, Ilhan A.; Lin, Yuehe

    2010-05-15

    An electrochemical sensor based on the electrocatalytic activity of functionalized graphene for sensitive detection of paracetamol is presented. The electrochemical behaviors of paracetamol on graphene-modified glassy carbon electrodes (GCEs) were investigated by cyclic voltammetry and square-wave voltammetry. The results showed that the graphene-modified electrode exhibited excellent electrocatalytic activity to paracetamol. A quasi-reversible redox process of paracetamol at the modified electrode was obtained, and the over-potential of paracetamol decreased significantly compared with that at the bare GCE. Such electrocatalytic behavior of graphene is attributed to its unique physical and chemical properties, e.g., subtle electronic characteristics, attractive π–π interaction, and strong adsorptive capability. The sensor shows great promise for simple, sensitive, and quantitative detection of paracetamol.

  13. Mineralization of 2-chlorophenol by sequential electrochemical reductive dechlorination and biological processes

    Energy Technology Data Exchange (ETDEWEB)

    Arellano-González, Miguel Ángel; González, Ignacio [Universidad Autónoma Metropolitana-Iztapalapa, Departamento de Química, Av. San Rafael Atlixco No. 186, Col. Vicentina, 09340 Mexico D.F. (Mexico); Texier, Anne-Claire, E-mail: actx@xanum.uam.mx [Universidad Autónoma Metropolitana-Iztapalapa, Departamento de Biotecnología, Av. San Rafael Atlixco No. 186, Col. Vicentina, 09340 Mexico, D.F. (Mexico)

    2016-08-15

    Highlights: • Dechlorination of 2-chlorophenol to phenol was 100% efficient on Pd-Ni/Ti electrode. • An ECCOCEL reactor was efficient and selective to obtain phenol from 2-chlorophenol. • Phenol was totally mineralized in a coupled denitrifying biorreactor. • Global time of 2-chlorophenol mineralization in the combined system was 7.5 h. - Abstract: In this work, a novel approach was applied to obtain the mineralization of 2-chlorophenol (2-CP) in an electrochemical-biological combined system where an electrocatalytic dehydrogenation process (reductive dechlorination) was coupled to a biological denitrification process. Reductive dechlorination of 2-CP was conducted in an ECCOCEL-type reactor on a Pd-Ni/Ti electrode at a potential of −0.40 V vs Ag/AgCl{sub (s)}/KCl{sub (sat)}, achieving 100 percent transformation of 2-CP into phenol. The electrochemically pretreated effluent was fed to a rotating cylinder denitrifying bioreactor where the totality of phenol was mineralized by denitrification, obtaining CO{sub 2} and N{sub 2} as the end products. The total time required for 2-CP mineralization in the combined electrochemical-biological process was 7.5 h. This value is close to those previously reported for electrochemical and advanced oxidation processes but in this case, an efficient process was obtained without accumulation of by-products or generation of excessive energy costs due to the selective electrochemical pretreatment. This study showed that the use of electrochemical reductive pretreatment combined with biological processes could be a promising technology for the removal of recalcitrant molecules, such as chlorophenols, from wastewaters by more efficient, rapid, and environmentally friendly processes.

  14. Polyaniline Langmuir-Blodgett film modified glassy carbon electrode as a voltammetric sensor for determination of Ag+ ions

    International Nuclear Information System (INIS)

    Liu Qiongyan; Wang Fei; Qiao Yonghui; Zhang Shusheng; Ye Baoxian

    2010-01-01

    A highly sensitive electrochemical sensor made of a glassy carbon electrode (GCE) coated with a Langmuir-Blodgett film (LB) containing polyaniline (PAn) doped with p-toluenesulfonic acid (PTSA) (LB/PAn-PTSA/GCE) has been used for the detection of trace concentrations of Ag + . UV-vis absorption spectra indicated that the PAn was doped by PTSA. The surface morphology of the PAn LB film was characterized by atomic force microscopy (AFM). The electrochemical properties of this LB/PAn-PTSA/GCE were studied using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry. The LB/PAn-PTSA/GCE was used as a voltammetric sensor for determination of trace Ag + at pH 5.0 using linear scanning stripping voltammetry. Under the optimal experimental conditions, the stripping current was proportional to the Ag + concentration over the range from 6.0 x 10 -10 mol L -1 to 1.0 x 10 -6 mol L -1 , with a detection limit of 4.0 x 10 -10 mol L -1 . The high sensitivity, selectivity, and stability of this LB/PAn-PTSA/GCE also demonstrated its practical utility for simple, rapid and economical determination of Ag + in water samples.

  15. Low temperature thermal conductivities of glassy carbons

    International Nuclear Information System (INIS)

    Anderson, A.C.

    1979-01-01

    The thermal conductivity of glassy carbon in the temperature range 0.1 to 100 0 K appears to depend only on the temperature at which the material was pyrolyzed. The thermal conductivity can be related to the microscopic structure of glassy carbon. The reticulated structure is especially useful for thermal isolation at cryogenic temperatures

  16. Poly(alizarin red)/Graphene modified glassy carbon electrode for simultaneous determination of purine and pyrimidine

    International Nuclear Information System (INIS)

    Ba Xi; Luo Liqiang; Ding Yaping; Zhang Zhen; Chu Yuliang; Wang Bijun; Ouyang Xiaoqian

    2012-01-01

    Graphical abstract: DPVs of PAR/Graphene/GCE (a) and the bare GCE (c) in 0.1 M PBS containing 50.0 μM G, 50.0 μM A, 100.0 μM T and 100.0 μM C, (b) PAR/Graphene/GCE in 0.1 M PBS. Highlights: ► The sensor exhibited well-separated peaks and low detection limit. ► The sensor possesses high sensitivity and wide linear range. ► The sensor was used for simultaneous detection of G, A, T and C successfully. ► The sensor was applied in a fish sperm DNA sample with satisfactory results. ► The proposed sensor has good stability and reproducibility. - Abstract: In this work, a poly(alizarin red)/Graphene composite film modified glassy carbon electrode (PAR/Graphene/GCE) was prepared for simultaneous determination of four DNA bases (guanine, adenine, thymine and cytosine) without any pretreatment. The morphology and interface property of PAR/Graphene films were examined by scanning electron microscopy and electrochemical impedance spectroscopy. The PAR/Graphene/GCE exhibited excellent electrocatalytic activity toward purine (guanine and adenine) and pyrimidine (thymine and cytosine) in 0.1 M phosphate buffer solution (pH 7.4). Under optimum conditions, differential pulse voltammetry was used to detect the oxidation of purine and pyrimidine. The results showed that PAR/Graphene/GCE exhibited well-separated peaks, low detection limit, high sensitivity and wide linear range for simultaneous detection of purine and pyrimidine. The proposed sensor also has good stability and reproducibility. Furthermore, the modified electrode was applied for the detection of DNA bases in a fish sperm DNA sample with satisfactory results.

  17. Voltammetric sensor for caffeine based on a glassy carbon electrode modified with Nafion and graphene oxide

    International Nuclear Information System (INIS)

    Zhao, F.; Wang, F.; Zhao, W.; Zhou, J.; Liu, Y.; Zou, L.; Ye, B.

    2011-01-01

    We report on a voltammetric sensor for caffeine that is based on a glassy carbon electrode modified with Nafion and graphene oxide (GO). It exhibits a good affinity for caffeine (resulting from the presence of Nafion), and excellent electrochemical response (resulting from the pressence of GO) for the oxidation of caffeine. The electrode enables the determination of caffeine in the range from 4.0 x 10 -7 to 8.0 x 10 -5 mol L -1 , with a detection limit of 2.0 x 10 -7 mol L -1 . The sensor displays good stability, reproducibility, and high sensitivity. It was successfully applied to the quantitative determination of caffeine in beverages. (author)

  18. Treatment of early glassy cell carcinoma of uterine cervix

    International Nuclear Information System (INIS)

    Kim, Ok Bae; Kim, Jin Hee; Choi, Tae Jin

    2006-01-01

    The purpose of this study was to investigate the clinical findings, treatment, and outcome of patients with glassy cell carcinoma of cervix. We reviewed all cases of glassy cell carcinoma of the uterine cervix confirmed and treated at the Dongsan Medical Center, Keimyung University, between January 1993 and December 2005. There were 7 cases with histopathologically confirmed gassy cell carcinoma. A tumor was diagnosed as glassy cell carcinoma if over 50% of the tumor cell type displayed glassy cell features. Six patients with stage IB had radical hysterectomy and bilateral pelvic node dissection, and 2 of them received adjuvant external pelvic irradiation with concurrent chemotherapy. Remaining one patient with stage IIA had curative concurrent chemoradiotherapy with external pelvic irradiation and brachytherapy. There were 7 patients diagnosed as glassy cell carcinoma among the 3,745 (0.2%) patients of carcinoma of uterine cervix. The mean age of 7 patients was 44 years with range of 35 to 53 years of age. The most frequent symptom was vaginal bleeding (86%). By the punch biopsy undertaken before treatment of 7 cases, 2 only cases could diagnose as glassy cell carcinoma of uterine cervix, but remaining of them confirmed by surgical pathological examination. The mean follow up duration was 73 months with range of 13 to 150 months. All 7 patients were alive without disease after treatment. Glassy cell carcinoma of the uterine cervix is a distinct clinicopathologic entity that demonstrates an aggressive biologic behavior. However for early-stage disease, we may have more favorable clinical outcome with radical surgery followed by chemoradiotherapy

  19. Online Monitoring of Electrochemical Degradation of Paracetamol through a Biomimetic Sensor

    Directory of Open Access Journals (Sweden)

    Mariana Calora Quintino de Oliveira

    2011-01-01

    Full Text Available This paper reports, for the first time, the online monitoring to the electrochemical degradation of the paracetamol using a biomimetic sensor coupled to a Flow Injection Analysis (FIA system. The electrochemical degradation of the drug was carried out in aqueous medium using a flow-by reactor with a DSA anode. The process efficiency was monitored at real time by the biomimetic sensor constructed by modifying a glassy carbon electrode with a Nafion membrane doped with iron tetrapyridinoporphyrazine (FeTPyPz. Simultaneously, we carried out off-line analysis by liquid chromatography (HPLC during the experiments in order to validate the proposed system. In addition, to investigate the degradation products of the paracetamol electrolysis, we used the techniques of UPLC/MS and GC/MS.

  20. Gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode as a sensitive voltammetric sensor for the determination of diclofenac sodium

    International Nuclear Information System (INIS)

    Afkhami, Abbas; Bahiraei, Atousa; Madrakian, Tayyebeh

    2016-01-01

    A simple and highly sensitive sensor for the determination of diclofenac sodium based on gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode is reported. Scanning electron microscopy along with energy dispersive X-ray spectroscopy, electrochemical impedance spectroscopy, cyclic voltammetry and square wave voltammetry was used to characterize the nanostructure and performance of the sensor and the results were compared with those obtained at the multi-walled carbon nanotube modified glassy carbon electrode and bare glassy carbon electrode. Under the optimized experimental conditions diclofenac sodium gave linear response over the range of 0.03–200 μmol L −1 . The lower detection limits were found to be 0.02 μmol L −1 . The effect of common interferences on the current response of DS was investigated. The practical application of the modified electrode was demonstrated by measuring the concentration of diclofenac sodium in urine and pharmaceutical samples. This revealed that the gold nanoparticle/multiwalled carbon nanotube modified glassy carbon electrode shows excellent analytical performance for the determination of diclofenac sodium in terms of a very low detection limit, high sensitivity, very good accuracy, repeatability and reproducibility. - Highlights: • GCE was modified with multiwalled carbon nanotube and gold nanoparticles. • AuNP/MWCNT/GCE was used for the determination of diclofenac sodium. • Modified electrode was characterized by SEM, EDS and EIS. • The proposed method showed excellent analytical figures of merit. • This sensor was used for the determination of diclofenac sodium in real samples.

  1. Gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode as a sensitive voltammetric sensor for the determination of diclofenac sodium

    Energy Technology Data Exchange (ETDEWEB)

    Afkhami, Abbas, E-mail: afkhami@basu.ac.ir; Bahiraei, Atousa; Madrakian, Tayyebeh

    2016-02-01

    A simple and highly sensitive sensor for the determination of diclofenac sodium based on gold nanoparticle/multi-walled carbon nanotube modified glassy carbon electrode is reported. Scanning electron microscopy along with energy dispersive X-ray spectroscopy, electrochemical impedance spectroscopy, cyclic voltammetry and square wave voltammetry was used to characterize the nanostructure and performance of the sensor and the results were compared with those obtained at the multi-walled carbon nanotube modified glassy carbon electrode and bare glassy carbon electrode. Under the optimized experimental conditions diclofenac sodium gave linear response over the range of 0.03–200 μmol L{sup −1}. The lower detection limits were found to be 0.02 μmol L{sup −1}. The effect of common interferences on the current response of DS was investigated. The practical application of the modified electrode was demonstrated by measuring the concentration of diclofenac sodium in urine and pharmaceutical samples. This revealed that the gold nanoparticle/multiwalled carbon nanotube modified glassy carbon electrode shows excellent analytical performance for the determination of diclofenac sodium in terms of a very low detection limit, high sensitivity, very good accuracy, repeatability and reproducibility. - Highlights: • GCE was modified with multiwalled carbon nanotube and gold nanoparticles. • AuNP/MWCNT/GCE was used for the determination of diclofenac sodium. • Modified electrode was characterized by SEM, EDS and EIS. • The proposed method showed excellent analytical figures of merit. • This sensor was used for the determination of diclofenac sodium in real samples.

  2. Study on the Efficient Disintegration of HTGR Fuel Elements by Electrochemical Method

    International Nuclear Information System (INIS)

    Piao Nan; Chen Ji; Xiao Cuiping; We Mingfen; Che Jing

    2014-01-01

    The spent fuel elements in High- temperature gas-cooled reactor (HTGR) have a special structure, so the head-end process of the spent fuel reprocessing is different from the process of water reactor spent fuel. The first step of head-end process of the HTGR spent fuel reprocessing process is disintegration of the graphite matrix and separation of the coated fuel particles. Electrochemical method with nitrate solution as an electrolyte for fuel element disintegration has been conducted by the Institute of Nuclear and New Energy Technology in Tsinghua University. This method allows a total disintegration of graphite matrix, while still preserving the integrity of TRISO particles. The influences of the pretreatment methods such as heating oxidation of graphite, hydrothermal and oxidants oxidation were investigated in the present work. The experimental results showed that there were no significant effects on increasing the disintegration rate when pretreatment methods were used ahead of electrochemical disintegration. This phenomenon indicated that the fuel elements which were calcined at 1073 K and pressed under 300 MPa are too compact to be broken by these pretreatment methods. And the electrochemical disintegration is an effective but slow method in breaking the graphite matrix. (author)

  3. Electrochemical DNA biosensors based on platinum nanoparticles combined carbon nanotubes

    International Nuclear Information System (INIS)

    Zhu Ningning; Chang Zhu; He Pingang; Fang Yuzhi

    2005-01-01

    Platinum nanoparticles were used in combination with multi-walled carbon nanotubes (MWCNTs) for fabricating sensitivity-enhanced electrochemical DNA biosensor. Multi-walled carbon nanotubes and platinum nanoparticles were dispersed in Nafion, which were used to fabricate the modification of the glassy carbon electrode (GCE) surface. Oligonucleotides with amino groups at the 5' end were covalently linked onto carboxylic groups of MWCNTs on the electrode. The hybridization events were monitored by differential pulse voltammetry (DPV) measurement of the intercalated daunomycin. Due to the ability of carbon nanotubes to promote electron-transfer reactions, the high catalytic activities of platinum nanoparticles for chemical reactions, the sensitivity of presented electrochemical DNA biosensors was remarkably improved. The detection limit of the method for target DNA was 1.0 x 10 -11 mol l -1

  4. Glassy carbon electrode modified with polyanilne/ethylenediamine for detection of copper ions

    Science.gov (United States)

    Patil, Harshada K.; Deshmukh, Megha A.; Bodkhe, Gajanan A.; Shirsat, Mahendra D.

    2018-05-01

    Increasing water pollution is having high concern, since it creates the threats to all leaving organisms of existence. Industrial sewages have not only polluted the main stream lines of water, also the ground level water is having serious contaminations. Heavy metal ions are the pollutants which are not degradable and can be accumulated on living things ultimately the excess accumulation results into the serious concerns. Therefore, it is necessary to develop the sensors which can detect the heavy metal ions up to its maximum contamination limits. Conducting polymers are the materials which possess large application spectra. This investigation reports the electrochemically synthesized polyaniline (PANI) for modification of glassy carbon electrode (GCE). Ethylenediamine (EDA) - chelating ligand used for the modification of polyaniline so as to inculcate the selectivity toward copper ions Cu (II). The electrochemical cyclic voltammetry (CV) was used for the study of redox characteristics of PANI and influence of EDA modification. The result of CV has shown the reduced oxidation and reduction peak currents after modification indicating the domination of EDA. GCE modified with PANI/EDA was then employed for the detection of divalent copper ions and have shown the affinity toward Cu ions. The detection limit achieved was equal to 10mg/lit.

  5. A new strategy for 2,4,6-Trinitrotoluene adsorption and electrochemical reduction on poly(melamine)/graphene oxide modified electrode

    International Nuclear Information System (INIS)

    Cotchim, Suparat; Thavarungkul, Panote; Kanatharana, Proespichaya; Limbut, Warakorn

    2015-01-01

    Highlights: • A new fabrication strategy of a poly(melamine)/graphene oxide (PM/GO) modified glassy carbon electrode (GCE) (PM/GO/GCE) for the detection of ultra-traces of TNT is proposed. • The PM/GO/GCE exhibits excellent adsorption and electrochemical reduction of TNT via the AdCSV technique. • The PM/GO/GCE provides for a high sensitivity, good repeatability and selectivity. • This strategy opens new opportunities for the sensitive detection of TNT aiming at protection of the environmental and homeland securities. - Abstract: A poly(melamine)/graphene oxide (PM/GO) layer modified on a glassy carbon electrode (GCE) was used for the adsorption and electrochemical detection of 2,4,6 trinitrotoluene (TNT). The surface morphology and electrochemical behaviour of the PM/GO/GCE were characterized by scanning electron microscopy (SEM), fourier transform infrared spectroscopy (FT-IR), cyclic voltammetry (CV) and adsorptive cathodic stripping voltammetry (AdCSV). The PM/GO/GCE exhibited excellent adsorption and electrochemical reduction of TNT via the AdCSV technique with two linear ranges, 1–90 μg L −1 and 100–1000 μg L −1 , a detection limit of 0.34 μg L −1 and a quantitation limit of 1.14 μg L −1 . The PM/GO/GCE provided for a high sensitivity, good repeatability and selectivity. This modified electrode was successfully applied to detect TNT in soil samples with good recoveries that ranged from 93 to 99%.

  6. Electrochemical and spectroscopic study on thiolation of polyaniline

    International Nuclear Information System (INIS)

    Blomquist, Maija; Bobacka, Johan; Ivaska, Ari; Levon, Kalle

    2013-01-01

    Highlights: ► We have thiolated and characterized polyaniline films in order to verify that the thiolation process has taken place. ► Such extensive characterization of thiolation of polyaniline has not previously been reported. ► Thiolation alters the electrochemical properties of polyaniline and the process should be understood. ► Through thiolation many reactive groups may covalently be bound to the polymer backbone. ► Possibility of covalent binding makes polyaniline films an attractive substrate for, e.g., biosensors. -- Abstract: Polyaniline (PANI) is a conducting polymer, easily synthesized and lucrative for many electrochemical applications like ion-selective sensors and biosensors. Thiolated molecules, including biological ones, can be bound by nucleophilic attachment to the polyaniline backbone. These covalently bound thiols add functionality to PANI, but also cause changes in the electrochemical properties of PANI. Polyaniline studied in this work was electropolymerized on glassy carbon electrodes. 2-Mercaptoethanol (MCE) and 6-(ferrocenyl)hexanethiol (FCHT) were used as the thiols to form functionalized films. The films were characterized by cyclic voltammetry (CV), ex situ FTIR and Raman spectroscopies, electrochemical impedance spectroscopy (EIS) and X-ray photoelectron spectroscopy (XPS). The goal of this work was to confirm the thiolation by spectroscopic methods and to study the impact of thiolation on the electrochemical properties of PANI. Our study showed that thiolated PANI has different electrochemical properties than PANI. Although the thiolation partially reduced the PANI backbone it still remained conductive after the thiolation. Detailed understanding of the thiolation process can be very useful for future applications of PANI

  7. Electrocatalytic Determination of Isoniazid by a Glassy Carbon Electrode Modified with Poly (Eriochrome Black T

    Directory of Open Access Journals (Sweden)

    Karim Asadpour-Zeynali

    2017-06-01

    Full Text Available In this work poly eriochrome black T (EBT was electrochemically synthesized on the glassy carbon electrode as electrode modifier. On the modified electrode, voltammetric behavior of isoniazid (INH was investigated. The poly (EBT-modified glassy carbon electrode has excellent electrocatalytic ability for the electrooxidation of isoniazid. This fact was appeared as a reduced overpotential of INH oxidation in a wide operational pH range from 2 to 13. It has been found that the catalytic peak current depends on the concentration of INH and solution pH. The number of electrons involved in the rate determining step was found 1. The diffusion coefficient of isoniazid was also estimated using chronoamperometry technique. The experimental results showed that the mediated oxidation peak current of isoniazid is linearly dependent on the concentration of isoniazid in the ranges of 8.0 × 10-6 – 1.18 × 10-3 M and 2.90 × 10-5 M – 1.67× 10-3 M with differential pulse voltammetry (DPV and amperometry methods, respectively. The detection limits (S/N = 3 were found to be 6.0 μM and 16.4 μM by DPV and amperometry methods, respectively. This developed method was applied to the determination of isoniazid in tablet samples with satisfactory results.

  8. Electrochemical sensor for nitrite using a glassy carbon electrode modified with gold-copper nanochain networks

    International Nuclear Information System (INIS)

    Huang, Su-Su; Mei, Li-Ping; Zhou, Jia-Ying; Guo, Fei-Ying; Wang, Ai-Jun; Feng, Jiu-Ju; Liu, Li

    2016-01-01

    Bimetallic gold-copper nanochain networks (AuCu NCNs) were prepared by a single-step wet-chemical approach using metformin as a growth-directing agent. The formation mechanism was investigated in detail, and the AuCu NCNs were characterized by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The nanocrystals were deposited on glassy carbon electrode and this resulted in a highly sensitive sensor for nitrite. Features include a low working potential (best at 0.684 V vs. SCE), fair sensitivity (17.55 μA mM −1 ), a wide linear range (0.01 to 4.0 mM), a low detection limit (0.2 μM, S/N = 3), and superior selectivity as compared to other sensors. (author)

  9. Structural and electrochemical behavior of sol-gel ZrO2 ceramic film on chemically pre-treated AZ91D magnesium alloy

    International Nuclear Information System (INIS)

    Li Qing; Chen Bo; Xu Shuqiang; Gao Hui; Zhang Liang; Liu Chao

    2009-01-01

    In the present investigation sol-gel-based ZrO 2 ceramic film was obtained using zirconium acetate as the precursor material. The film was deposited on AZ91D magnesium alloy by a dip-coating technique. An uniform stannate conversion coating as chemical pretreatment was employed as an intermediate layer prior to deposition of the ZrO 2 film in order to provide advantage for the formation of sol-gel-based ZrO 2 layer. The corrosion properties, structure, composition and morphology of these coatings on AZ91D magnesium alloy were studied by potentiodynamic polarization tests, EIS, XRD, SEM, respectively. According to the electrochemical tests, the corrosion resistance of AZ91D magnesium alloy was found to be greatly improved by means of this new environment-friendly surface treatment.

  10. MIPs-graphene nanoplatelets-MWCNTs modified glassy carbon electrode for the determination of cardiac troponin I.

    Science.gov (United States)

    Ma, Ya; Shen, Xiao-Lei; Wang, Hai-Shui; Tao, Jia; Huang, Jian-Zhi; Zeng, Qiang; Wang, Li-Shi

    2017-03-01

    An electrochemical sensor with high selectivity in addition to sensitivity was developed for the determination of cardiac troponin I (cTnI), based on the modification of cTnI imprinted polymer film on a glassy carbon electrode (GCE). The sensor was fabricated by layer-by-layer assembled graphene nanoplatelets (GS), multiwalled carbon nanotubes (MWCNTs), chitosan (CS), glutaraldehyde (GA) composites, which can increase the electronic transfer rate and the active surface area to capture a larger number of antigenic proteins. MWCNTs/GS based imprinted polymers (MIPs/MWCNTs/GS) were synthesized by means of methacrylic acid (MAA) as the monomer, ethylene glycol dimethacrylate (EGDMA) as the cross linker α,α'-azobisisobutyronitrile (AIBN) as the initiator and cTnI as the template. In comparison with conventional methods, the proposed electrochemical sensor is highly sensitive for cTnI, providing a better linear response range from 0.005 to 60 ng cm -3 and a lower limit of detection (LOD) of 0.0008 ng cm -3 under optimal experimental conditions. In addition, the electrochemical sensor exhibited good specificity, acceptable reproducibility and stability. Moreover, satisfactory results were obtained in real human serum samples, indicating that the developed method has the potential to find application in clinical detection of cTnI as an alternative approach. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Modification of glassy carbon electrode with a bilayer of multiwalled carbon nanotube/tiron-doped polypyrrole: Application to sensitive voltammetric determination of acyclovir

    Energy Technology Data Exchange (ETDEWEB)

    Shahrokhian, Saeed, E-mail: shahrokhian@sharif.edu [Department of Chemistry, Sharif University of Technology, Tehran 11155-3516 (Iran, Islamic Republic of); Institute for Nanoscience and Technology, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Azimzadeh, Mahnaz [Department of Chemistry, Sharif University of Technology, Tehran 11155-3516 (Iran, Islamic Republic of); Amini, Mohammad K. [Department of Chemistry, Isfahan University, Isfahan (Iran, Islamic Republic of)

    2015-08-01

    A novel voltammetric sensor based on glassy carbon electrode (GCE) modified with a thin film of multi-walled carbon nanotubes (MWCNTs) coated with an electropolymerized layer of tiron-doped polypyrrole was developed and the resulting electrode was applied for the determination of acyclovir (ACV). The surface morphology and property of the modified electrode were characterized by field emission scanning electron microscopy and electrochemical impedance spectroscopy techniques. The electrochemical performance of the modified electrode was investigated by means of linear sweep voltammetry (LSV). The effect of several experimental variables, such as pH of the supporting electrolyte, drop size of the cast MWCNTssuspension, number of electropolymerization cycles and accumulation time was optimized by monitoring the LSV response of the modified electrode toward ACV. The best response was observed at pH 7.0 after accumulation at open circuit for 160 s. Under the optimized conditions, a significant electrochemical improvement was observed toward the electrooxidation of ACV on the modified electrode surface relative to the bare GCE, resulting in a wide linear dynamic range (0.03–10.0 μM) and a low detection limit (10.0 nM) for ACV. Besides high sensitivity, the sensor represented high stability and good reproducibility for ACV analysis, and provided satisfactory results for the determination of this compound in pharmaceutical and clinical preparations. - Highlights: • A simple method was employed to construct a thin film modified electrode. • Tiron-doped polypyrrole was electropolymerized on MWCNT precast glassy carbon electrode. • Electrode surface characterization was performed by microscopic and spectroscopic techniques. • The modified electrode showed nano-molar detection limit for acyclovir. • The modified electrode was applied for the detection of ACV in pharmaceutical and clinical preparations.

  12. New model system in radiation cryochemistry:. hyperquenched glassy water

    Science.gov (United States)

    Bednarek, Janusz; Plonka, Andrzej; Hallbrucker, Andreas; Mayer, Erwin

    1999-08-01

    Radicals generated by high-energy irradiation of liquid water, short-lived at ambient temperature, can be studied at cryogenic temperatures after irradiating water and dilute aqueous solutions in their glassy states which can be obtained by so-called hyperquenching of the liquids at cooling rates of ˜10 6-10 7 K s -1. In the glassy states of hyperquenched dilute aqueous solutions there is no problem with phase separation and radiolysis of glassy water is quite distinct from radiolysis of polycrystalline ice obtained from liquid water on slow-cooling in liquid nitrogen.

  13. Electrochemical behavior of sebaconitrile as a cosolvent in the formulation of electrolytes at high potentials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Nanini-Maury, Elise; Światowska, Jolanta; Chagnes, Alexandre; Zanna, Sandrine; Tran-Van, Pierre; Marcus, Philippe; Cassir, Michel

    2014-01-01

    The electrochemical behavior of new high potential electrolyte containing sebaconitrile in LiPF 6 /EC:DMC or LiBF 4 was studied on glassy carbon and LiCoO 2 , LiCoPO 4 as positive electrode materials. The increase of sebaconitrile concentration in EC:DMC electrolyte provides better electrolyte stability at higher potentials on glassy carbon as observed by cyclic voltammetry. Promising electrochemical results showing good reversibility and insertion/deinsertion efficiency have been also obtained on LiCoPO 4 electrode cycled up to 5.3 V vs Li + /Li as upper potential limit. However, the cycling of LiCoPO 4 at higher potential (6 V vs Li + /Li) shows lower reversibility and efficiency of insertion/deinsertion process due to the oxidative decomposition of the electrolyte at high potentials. The surface analysis performed by X-ray photoelectron spectroscopy confirms the formation of a surface layer induced by electrolyte degradation on both types of positive electrodes, which hinder the Li diffusion. The layer composition and morphology vary as a function of electrolyte composition and type of electrode

  14. Electrosynthesis of Clozapine Drug Derivative via an EC Electrochemical Mechanism

    Directory of Open Access Journals (Sweden)

    Esmail Tammari

    2017-12-01

    Full Text Available The fact that oxidation, as one of the main routes of phase I metabolism of drugs, follows by conjugation reactions, and also formation of nitrenium ion as one of the clozapine oxidation products, directed us to investigate the oxidation of clozapine (CLZ in the presence of nucleophile. The oxidation of clozapine (CLZ has been studied on a glassy carbon electrode in the absence and presence of 2-thiobarbituric acid (TBA as nucleophile in aqueous medium by means of cyclic voltammetry and on the graphite rods in controlled-potential coulometry. Cyclic voltammetry studies were realized for CLZ in the pHs 1.0 to 8.0. Results indicate that the electrochemical behavior of CLZ depends on the pH. Based on the obtained electrochemical results, an ECE mechanism was proposed to explain the electrochemical oxidation of CLZ. The results revealed that oxidized CLZ participates in Michael type addition reaction with TBA and via an EC mechanism converts to the corresponding new dibenzodiazepin derivatives. The product has been characterized by IR, 1H NMR, 13C NMR and MS.

  15. Poly(alizarin red)/Graphene modified glassy carbon electrode for simultaneous determination of purine and pyrimidine

    Energy Technology Data Exchange (ETDEWEB)

    Ba Xi; Luo Liqiang [Department of Chemistry, Shanghai University, Shanghai 200444 (China); Ding Yaping, E-mail: wdingyp@sina.com [Department of Chemistry, Shanghai University, Shanghai 200444 (China); Zhang Zhen [Department of Chemistry, Shanghai University, Shanghai 200444 (China); Chu Yuliang [Instrumental Analysis and Research Center, Shanghai University, Shanghai 200444 (China); Wang Bijun; Ouyang Xiaoqian [Department of Chemistry, Shanghai University, Shanghai 200444 (China)

    2012-11-08

    Graphical abstract: DPVs of PAR/Graphene/GCE (a) and the bare GCE (c) in 0.1 M PBS containing 50.0 {mu}M G, 50.0 {mu}M A, 100.0 {mu}M T and 100.0 {mu}M C, (b) PAR/Graphene/GCE in 0.1 M PBS. Highlights: Black-Right-Pointing-Pointer The sensor exhibited well-separated peaks and low detection limit. Black-Right-Pointing-Pointer The sensor possesses high sensitivity and wide linear range. Black-Right-Pointing-Pointer The sensor was used for simultaneous detection of G, A, T and C successfully. Black-Right-Pointing-Pointer The sensor was applied in a fish sperm DNA sample with satisfactory results. Black-Right-Pointing-Pointer The proposed sensor has good stability and reproducibility. - Abstract: In this work, a poly(alizarin red)/Graphene composite film modified glassy carbon electrode (PAR/Graphene/GCE) was prepared for simultaneous determination of four DNA bases (guanine, adenine, thymine and cytosine) without any pretreatment. The morphology and interface property of PAR/Graphene films were examined by scanning electron microscopy and electrochemical impedance spectroscopy. The PAR/Graphene/GCE exhibited excellent electrocatalytic activity toward purine (guanine and adenine) and pyrimidine (thymine and cytosine) in 0.1 M phosphate buffer solution (pH 7.4). Under optimum conditions, differential pulse voltammetry was used to detect the oxidation of purine and pyrimidine. The results showed that PAR/Graphene/GCE exhibited well-separated peaks, low detection limit, high sensitivity and wide linear range for simultaneous detection of purine and pyrimidine. The proposed sensor also has good stability and reproducibility. Furthermore, the modified electrode was applied for the detection of DNA bases in a fish sperm DNA sample with satisfactory results.

  16. Aptamer-based electrochemical assay of 17β-estradiol using a glassy carbon electrode modified with copper sulfide nanosheets and gold nanoparticles, and applying enzyme-based signal amplification

    International Nuclear Information System (INIS)

    Huang, Ke-Jing; Liu, Yu-Jie; Zhang, Ji-Zong

    2015-01-01

    We have developed an electrochemical method for the determination of 17β-estradiol. A glassy carbon electrode was modified with a composite made from copper sulfide nanosheets, gold nanoparticles, and glucose oxidase. The copper sulfide nanosheet was prepared by a single-step hydrothermal process, and its properties were characterized by X-ray powder diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy and transmission electron microscopy. Finally, an estradiol-specific aptamer was assembled on the electrode. The copper sulfide nanosheet on the electrode surface acts as a relatively good electrical conductor. Glucose oxidase acts as an indicator, and the dual modification of glucose oxidase and gold nanoparticles for signal amplification. The determination of 17β-estradiol was performed by differential pulse voltammetry of glucose oxidase because the signal measured at typically −0.43 V depends on the concentration of 17β-estradiol because addition of 17β-estradiol at electrode hinders electron transfer. A linear relationship exists between the peak current and the logarithm of concentration of 17β-estradiol in the 0.5 pM to 5 nM range, with a 60 f. detection limit (at 3σ/S). The method displays good selectivity over bisphenol A, 1-aminoanthraquinone and naphthalene even if present in 100-fold concentrations. (author)

  17. Formation of a glassy phase in ceramic-like coatings

    International Nuclear Information System (INIS)

    Sazonova, M.V.; Gorbatova, G.N.

    1986-01-01

    The authors investigate the synthesis directly in coatings of a borosilicate melt that could fill the role of glassy matrix, thereby avoiding fusion and processing of the glassy material. The effect of added boron on the formation of coatings based on molybdenum disilicide and tungsten disilicide in air at 900 degrees C is presented. Without an additive no coating forms; there is no adhesion to the graphite and a continuous film does not form. As a result of boron oxidation an easily fused glassy matrix forms, which bonds the molybdenum disilicide or tungsten disilicide particles together and ensures adhesion to the graphite

  18. Determination of dopamine using a glassy carbon electrode modified with a graphene and carbon nanotube hybrid decorated with molybdenum disulfide flowers

    International Nuclear Information System (INIS)

    Mani, Veerappan; Govindasamy, Mani; Chen, Shen-Ming; Karthik, Raj; Huang, Sheng-Tung

    2016-01-01

    We describe a hybrid material that consists of molybdenum sulfide flowers placed on graphene nanosheets and multiwalled carbon nanotubes (GNS-CNTs/MoS_2). It was deposited on a glassy carbon electrode (GCE) which then is well suited for sensitive and selective determination of dopamine. The GNS-CNTs/MoS_2 nanocomposite was prepared by a hydrothermal method and characterized by scanning electron and transmission emission microscopies, energy-dispersive X-ray spectroscopy, cyclic voltammetry, differential pulse voltammetry and electrochemical impedance spectroscopy. Electrochemical studies show the composite to possess excellent electrochemical properties such as a large electrochemically active surface, high capacitance current, a wide potential window, high conductivity and large porosity. The electrode displays excellent electrocatalytic ability to oxidize dopamine. The modified GCE, best operated at a working potential as low as 0.15 V (vs. Ag/AgCl), responds linearly to dopamine in the 100 nM to 100 μM concentration range. The detection limit is 50 nM, and the sensitivity is 10.81 (± 0.26) μA⋅μM"−"1⋅cm"−"2. The sensor has good selectivity, appreciable stability, repeatability and reproducibility. It was applied to the determination of dopamine in (spiked) biological and pharmaceutical samples. (author)

  19. The sorption induced glass transition in amorphous glassy polymers

    NARCIS (Netherlands)

    van der Vegt, N.F.A.; Wessling, Matthias; Strathmann, H.; Briels, Willem J.

    1999-01-01

    Sorption of CO2 in both the glassy and the rubbery state of an amorphous polyethylenelike polymer was investigated using molecular dynamics simulations. The temperature was chosen such that the system was in its glassy state at low solute concentrations and its rubbery state at large solute

  20. 3,5-Diamino-1,2,4-triazole@electrochemically reduced graphene oxide film modified electrode for the electrochemical determination of 4-nitrophenol

    International Nuclear Information System (INIS)

    Kumar, Deivasigamani Ranjith; Kesavan, Srinivasan; Baynosa, Marjorie Lara; Shim, Jae-Jin

    2017-01-01

    Highlights: •Triazole film was formed on electrochemically reduced graphene oxide. •pDAT@ERGO/GC was utilized for the electrochemical determination of 4-nitrophenol. •pDAT@ERGO/GC electrode offered wide concentration and nanomolar detection limit. •The fabricated electrode was employed in water sample analyses. -- Abstract: In this study, an eco-friendly benign method for the modification of electrochemically reduced graphene oxide (ERGO) on glassy carbon (GC) surface and electrochemical polymerized 3,5-diamino-1,2,4-triazole (DAT) film composite (pDAT@ERGO/GC) electrode was developed. The surface morphologies of the pDAT@ERGO/GC modified electrode were analyzed by field emission scanning electron microscopy (FESEM). FESEM images indicated that the ERGO supported pDAT has an almost homogeneous morphology structure with a size of 70 to 80 nm. It is due to the water oxidation reaction occurred while pDAT@ERGO/GC fabrication peak at +1.4 V leads to O 2 evolution and oxygen functional group functionalization on ERGO, which confirmed by X-ray photoelectron spectroscopy (XPS). In contrast, the bare GC modified with pDAT showed randomly arranged irregular bulky morphology structure compared to those of pDAT@ERGO/GC. Electrochemical reduction of graphene oxide was confirmed by Raman spectroscopy, XPS, and electrochemical impedance spectroscopy (EIS). The pDAT@ERGO/GC modified electrode was used for the electrochemical determination of 4-nitrophenol (4-NP). The 4-NP oxidation peak was observed at +0.25 V, and the differential pulse voltammetry demonstrated wide concentration range (5–1500 μM), high sensitivity (0.7113 μA μM −1 ), and low limit of detection (37 nM). Moreover, the pDAT@ERGO/GC electrode was applied to real water sample analysis by standard addition method, where in good recoveries (97.8% to 102.4%) were obtained.

  1. A comparison of electrochemically pre-treated and spark-platinized carbon fiber microelectrode. Measurement of 8-oxo-7,8-dihydro-2′-deoxyguanosine in human urine and plasma

    Energy Technology Data Exchange (ETDEWEB)

    Bartosova, Z.; Riman, D. [Department of Analytical Chemistry, Palacky University, Faculty of Science, 17.listopadu 12, CZ-771 46 Olomouc (Czech Republic); Halouzka, V. [Department of Analytical Chemistry, Palacky University, Faculty of Science, 17.listopadu 12, CZ-771 46 Olomouc (Czech Republic); Department of Physics and Materials Engineering, Faculty of Technology, Tomas Bata University in Zlin, nam. T.G. Masaryka 275, CZ-76001 Zlin (Czech Republic); Vostalova, J.; Simanek, V. [Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, CZ-775 15 Olomouc (Czech Republic); Hrbac, J., E-mail: jhrbac@atlas.cz [Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-625 00 Brno (Czech Republic); Jirovsky, D., E-mail: david.jirovsky@upol.cz [Department of Analytical Chemistry, Palacky University, Faculty of Science, 17.listopadu 12, CZ-771 46 Olomouc (Czech Republic)

    2016-09-07

    A novel method of carbon fiber microelectrode activation using spark discharge was demonstrated and compared to conventional electrochemical pretreatment by potential cycling. The spark discharge was performed at 800 V between the microelectrode connected to positive pole of the power supply and platinum counter electrode. Spark discharge led both to trimming of the fiber tip into conical shape and to the modification of carbon fiber microelectrode with platinum, as proven by scanning electron microscopy and electron dispersive X-ray spectroscopy. After the characterization of electrochemical properties using ferricyanide voltammetry, the activated electrodes were used for electrochemical analysis of 8-oxo-7,8-dihydro-2′-deoxyguanosine, an oxidative stress marker. Subnanomolar detection limits (0.55 nmol L{sup −1}) in high-performance liquid chromatography were achieved for spark platinized electrodes incorporated into the flow detection cell. - Highlights: • Novel method of carbon fiber microelectrode activation and platinization using spark discharge. • The activation procedure is efficient, fast and solvent-free. • Modification of the surface and the shape of the carbon fiber microelectrode during the process. • The spark-etched platinized carbon fiber sensors are highly sensitive. • The sensor was successfully applied to HPLC analysis of 8-oxo-7,8-dihydro-2′-deoxyguanosine in plasma and urine.

  2. Modification of glassy carbon electrode with poly(hydroxynaphthol blue)/multi-walled carbon nanotubes composite and construction a new voltammetric sensor for the simultaneous determination of hydroquinone, catechol, and resorcinol

    Science.gov (United States)

    Daneshinejad, Hassan; Arab Chamjangali, Mansour; Goudarzi, Nasser; Hossain Amin, Amir

    2018-03-01

    A novel voltammetric sensor is developed based on a poly(hydroxynaphthol blue)/multi-walled carbon nanotubes-modified glassy carbon electrode for the simultaneous determination of the dihydroxybenzene isomers hydroquinone (HQ), catechol (CC), and resorcinol (RS). The preparation and basic electrochemical performance of the sensor are investigated in details. The electrochemical behavior of the dihydroxybenzene isomers at the sensor is studied by the cyclic and differential pulse voltammetric techniques. The results obtained show that this new electrochemical sensor exhibits an excellent electro-catalytic activity towards oxidation of the three isomers. The mechanism of this electro-catalytic activity is discussed. Using the optimum parameters, limit of detection obtained 0.24, 0.24, and 0.26 μmol L-1 for HQ, CC, and RS, respectively. The modified electrode is also successfully applied to the simultaneous determination of dihydroxybenzene in water samples.

  3. Molecular imprinted polypyrrole modified glassy carbon electrode for the determination of tobramycin

    International Nuclear Information System (INIS)

    Gupta, Vinod Kumar; Yola, Mehmet Lütfi; Özaltın, Nuran; Atar, Necip; Üstündağ, Zafer; Uzun, Lokman

    2013-01-01

    Graphical abstract: Atomic force microscopic images of (A) bare GCE and (B) TOB imprinted PPy/GCE surface. - Highlights: • Glassy carbon electrode based on molecularly imprinted polypyrrole was prepared. • The developed surfaces were characterized by AFM, FTIR, EIS and CV. • The developed nanosensor was applied to egg and milk samples. - Abstract: Over the past two decades, molecular imprinted polymers have attracted a broad interest from scientists in sensor development. In the preparation of molecular imprinted polymers the desired molecule (template) induces the creation of specific recognition sites in the polymer. In this study, the glassy carbon electrode (GCE) based on molecularly imprinted polypyrrole (PPy) was fabricated for the determination of tobramycin (TOB). The developed electrode was prepared by incorporation of a template molecule (TOB) during the electropolymerization of pyrrole on GCE in aqueous solution using cyclic voltammetry (CV) method. The performance of the imprinted and non-imprinted electrodes was evaluated by square wave voltammetry (SWV). The effect of pH, monomer and template concentrations, electropolymerization cycles on the performance of the imprinted and non-imprinted electrodes was investigated and optimized. The non-modified and TOB-imprinted surfaces were characterized by using atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), electrochemical impedance spectroscopy (EIS) and CV. The linearity range of TOB was 5.0 × 10 −10 –1.0 × 10 −8 M with the detection limit of 1.4 × 10 −10 M. The developed nanosensor was applied successfully for the determination of TOB in egg and milk

  4. A glassy carbon electrode modified with an iron N4-macrocycle and reduced graphene oxide for voltammetric sensing of dissolved oxygen

    International Nuclear Information System (INIS)

    Silva, Saimon M.; Aguiar, Lucas F.; Carvalho, Rita M. S.; Tanaka, Auro A.; Damos, Flavio S.; Luz, Rita C. S.

    2016-01-01

    The authors describe a platform for the electrochemical reduction of oxygen. It is based on the use of a glassy carbon electrode (GCE) that was modified in a single-step microwave assisted reaction with a N4-macrocycle containing iron(III) (FeN4) and with reduced graphene oxide. The FeN4/rGO composite was characterized by cyclic voltammetry, differential pulse voltammetry, and scanning electrochemical microscopy (SECM). Cyclic voltammetry showed the composite to enable efficient reduction of O_2 at a very low overpotential (−0.05 V vs. Ag/AgCl). SECM measurements were carried out to map (in the redox competition mode) the activity of a GCE microelectrode modified with FeN4/rGO. Under optimized conditions, the response to dissolved O_2 ranges from 0.8 up to 25 mg⋅L"-"1, and the limit of detection is 0.2 mg⋅L"-"1. (author)

  5. Electrochemical Study of Modified Glassy Carbon Electrode with Carboxyphenyl Diazonium Salt in Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Mariem BOUROUROU

    2014-05-01

    Full Text Available The covalent grafting of carboxyphenyl functionalities to planar carbon substrates by reaction with 2-carboxybenezenediazonium salt has been studied in aqueous acid solution. The surface was characterized, before and after the functionnalization process, by cyclic voltammetry, electrochemical impedance spectroscopy and linear sweep voltammetry (LSV in order to control and to prove the formation of a coating on the carbon surface. The results indicate the presence of substituted phenyl groups on the investigated surface. Electrochemical impedance measurements show that the slowing down of the electron transfer kinetics was more evident by increasing the number of cycles resulting to higher DEp and RCT parameters. Besides, the effect of the pH on the electron transfer processes of the Fe(CN63-/4- at the modified electrode is studied. By changing the solution pH the terminal group’s charge state would vary, based on which the surface pKa value is estimated.

  6. Voltammetric determination of nicotine in cigarette tobacco at ...

    African Journals Online (AJOL)

    The electrochemical behavior of nicotine was investigated using cyclic and square wave voltammetric techniques. Electrochemical activation of glassy carbon electrode significantly increased the oxidation peak current of nicotine compared to the bare glassy carbon. At the activated glassy carbon electrode, the square ...

  7. Disposable screen printed graphite electrode for the direct electrochemical determination of ibuprofen in surface water

    KAUST Repository

    Amin, Sidra; Soomro, M. Tahir; Memon, Najma; Solangi, Amber R.; Sirajuddin; Qureshi, Tahira; Behzad, Ali Reza

    2014-01-01

    The potential of square wave voltammetry (SWV) for the determination of ibuprofen in aqueous solution, applying baseline correction, is reported. A screen printed graphite electrodes (SPGEs), especially pretreated for this purpose, were used to investigate the electrochemical oxidation and detection of ibuprofen. After optimization of SWV parameters, measurements were carried out at 200 Hz modulation frequency, 4 mV step potential and 40 mV pulse amplitude for the determination of ibuprofen. The surfaces of both untreated and pretreated SPGEs were characterized by scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). The electro-catalytic properties of both the electrodes were correlated with the surface treatment. The pretreated screen printed graphite electrode exhibited a high sensitivity toward ibuprofen even in low concentration. The developed method was found rapid, cost-effective and reproducible for in-field ibuprofen detection.

  8. Disposable screen printed graphite electrode for the direct electrochemical determination of ibuprofen in surface water

    KAUST Repository

    Amin, Sidra

    2014-08-01

    The potential of square wave voltammetry (SWV) for the determination of ibuprofen in aqueous solution, applying baseline correction, is reported. A screen printed graphite electrodes (SPGEs), especially pretreated for this purpose, were used to investigate the electrochemical oxidation and detection of ibuprofen. After optimization of SWV parameters, measurements were carried out at 200 Hz modulation frequency, 4 mV step potential and 40 mV pulse amplitude for the determination of ibuprofen. The surfaces of both untreated and pretreated SPGEs were characterized by scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). The electro-catalytic properties of both the electrodes were correlated with the surface treatment. The pretreated screen printed graphite electrode exhibited a high sensitivity toward ibuprofen even in low concentration. The developed method was found rapid, cost-effective and reproducible for in-field ibuprofen detection.

  9. Glassy carbon electrode modified with horse radish peroxidase/organic nucleophilic-functionalized carbon nanotube composite for enhanced electrocatalytic oxidation and efficient voltammetric sensing of levodopa

    Energy Technology Data Exchange (ETDEWEB)

    Shoja, Yalda; Rafati, Amir Abbas, E-mail: aa_rafati@basu.ac.ir; Ghodsi, Javad

    2016-01-01

    A novel and selective enzymatic biosensor was designed and constructed for voltammetric determination of levodopa (L-Dopa) in aqueous media (phosphate buffer solution, pH = 7). Biosensor development was on the basis of to physically immobilizing of horse radish peroxidase (HRP) as electrochemical catalyst by sol–gel on glassy carbon electrode modified with organic nucleophilic carbon nanotube composite which in this composite p-phenylenediamine (pPDA) as organic nucleophile chemically bonded with functionalized MWCNT (MWCNT-COOH). The results of this study suggest that prepared bioorganic nucleophilic carbon nanotube composite (HRP/MWCNT-pPDA) shows fast electron transfer rate for electro oxidation of L-Dopa because of its high electrochemical catalytic activity toward the oxidation of L-Dopa, more −NH{sub 2} reactive sites and large effective surface area. Also in this work we measured L-Dopa in the presence of folic acid and uric acid as interferences. The proposed biosensor was characterized by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), FT-IR spectroscopy and cyclic voltammetry (CV). The differential pulse voltammetry (DPV) was used for determination of L-Dopa from 0.1 μM to 1.9 μM with a low detection limit of 40 nM (for S/N = 3) and sensitivity was about 35.5 μA/μM. Also this biosensor has several advantages such as rapid response, high stability and reproducibility. - Highlights: • Glassy carbon electrode modified by a novel composite in which pPDA as nucleophile is chemically attached to MWCNTs. • The developed biosensor exhibited excellent electrocatalytic activity in electrochemically determination of L-Dopa. • The biosensor showed acceptable sensitivity, reproducibility, detection limit, selectivity and stability. • MWCNT-pPDA provides a good electrical conductivity and large effective surface area for enzyme immobilization.

  10. Synthesis and characterization of manganese diselenide nanoparticles (MnSeNPs): Determination of capsaicin by using MnSeNP-modified glassy carbon electrode.

    Science.gov (United States)

    Sukanya, Ramaraj; Sakthivel, Mani; Chen, Shen-Ming; Chen, Tse-Wei; Al-Hemaid, Fahad M A; Ajmal Ali, M; Elshikh, Mohamed Soliman

    2018-06-02

    A new type of manganese diselenide nanoparticles (MnSeNPs) was synthesized by using a hydrothermal method. Their surface morphology, crystallinity and elemental distribution were characterized by using transmission electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy which scrutinize the formation of the NPs. The NPs were coated on a glassy carbon electrode (GCE), and electrochemical impedance spectroscopy, cyclic voltammetry and differential pulse voltammetry were applied to study the electroanalytical properties towards the oxidation of the food additive capsaicin. The modified GCE displays lower charge transfer resistance (R ct  = 29.52 Ω), a larger active surface area (0.089 cm 2 /g, and more efficient electrochemical oxidation of capsaicin compared to a MnS 2 /GCE and a bare GCE. The oxidation peak potential is 0.43 V (vs. Ag/AgCl) which is lower than that of previously reported GCEs. The sensor has a detection limit as low as 0.05 μM and an electrochemical sensitivity of 2.41 μA μM -1  cm -2 . The method was applied to the determination of capsaicin in pepper samples. Graphical abstract Electrochemical determination of capsaicin in pepper extract by using MnSeNPs modified electrode.

  11. Cyclic voltammetry, square wave voltammetry, electrochemical impedance spectroscopy and colorimetric method for hydrogen peroxide detection based on chitosan/silver nanocomposite

    Directory of Open Access Journals (Sweden)

    Hoang V. Tran

    2018-05-01

    Full Text Available In this paper, we demonstrate a promising method to fabricate a non-enzymatic stable, highly sensitive and selective hydrogen peroxide sensor based on a chitosan/silver nanoparticles (CS/AgNPs hybrid. Using this composite, we elaborated both electrochemical and colorimetric sensors for hydrogen peroxide detection. The colorimetric sensor is based on a homogenous reaction which fades the color of CS/AgNPs solutions from red-orange to colorless depending on hydrogen peroxide concentration. For the electrochemical sensor, CS/AgNPs were immobilized on glassy carbon electrodes and hydrogen peroxide was measured using cyclic voltammetry, square wave voltammetry and electrochemical impedance spectroscopy. The response time is less than 10 s and the detection limit is 5 μM. Keywords: Spectrophotometric detection, Electrochemical impedance spectroscopy, Square wave voltammetry, Cyclic voltammetry, Chitosan/silver nanoparticles (CS/AgNPs hybrid, Hydrogen peroxide

  12. Electrooxidation as the anaerobic pre-treatment of fats: oleate conversion using RuO2 and IrO2 based anodes.

    Science.gov (United States)

    Gonçalves, M; Alves, M M; Correia, J P; Marques, I P

    2008-11-01

    Electrochemical treatment of oleate using RuO2 and IrO2 type dimensionally stable anodes in alkaline medium was performed to develop a feasible anaerobic pre-treatment of fatty effluents. The results showed that the pre-treated solutions over RuO2 were faster degraded by anaerobic consortium than the raw oleate solutions or the electrolysed solutions using IrO2. In batch experiments carried out with pre-treated solutions over RuO2 (100-500mg/L), no lag phases were observed before the methane production onset. On the other hand, raw oleate and pre-treated oleate over IrO2 had originated lag phases of 0-140 and 0-210h, respectively. This study demonstrated that it is advantageous to apply the electrochemical treatment carried out on the RuO2 type DSA in order to achieve a faster biodegradation of lipid-containing effluent and consequently to obtain a faster methane production.

  13. Mild in situ growth of platinum nanoparticles on multiwalled carbon nanotube-poly (vinyl alcohol) hydrogel electrode for glucose electrochemical oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shumin; Zheng, Yudong, E-mail: zhengyudong@mater.ustb.edu.cn; Qiao, Kun [University of Science and Technology Beijing, School of Material Science and Engineering (China); Su, Lei [University of Science and Technology Beijing, School of Chemistry and Biological Engineering (China); Sanghera, Amendeep; Song, Wenhui [University College London, UCL Centre for Nanotechnology & Regenerative Medicine, Division of Surgery and Interventional Science (United Kingdom); Yue, Lina; Sun, Yi [University of Science and Technology Beijing, School of Material Science and Engineering (China)

    2015-12-15

    This investigation describes an effective strategy to fabricate an electrochemically active hybrid hydrogel made from platinum nanoparticles that are highly dense, uniformly dispersed, and tightly embedded throughout the conducting hydrogel network for the electrochemical oxidation of glucose. A suspension of multiwalled carbon nanotubes and polyvinyl alcohol aqueous was coated on glassy carbon electrode by electrophoretic deposition and then physically crosslinked to form a three-dimensional porous conductive hydrogel network by a process of freezing and thawing. The network offered 3D interconnected mass-transport channels (around 200 nm) and confined nanotemplates for in situ growth of uniform platinum nanoparticles via the moderate reduction agent, ascorbic acid. The resulting hybrid hydrogel electrode membrane demonstrates an effective method for loading platinum nanoparticles on multiwalled carbon nanotubes by the electrostatic adsorption between multiwalled carbon nanotubes and platinum ions within porous hydrogel network. The average diameter of platinum nanoparticles is 37 ± 14 nm, which is less than the particle size by only using the moderate reduction agent. The hybrid hydrogel electrode membrane-coated glassy carbon electrode showed excellent electrocatalytic activity and good long-term stability toward glucose electrochemical oxidation. The glucose oxidation current exhibited a linear relationship with the concentration of glucose in the presence of chloride ions, promising for potential applications of implantable biofuel cells, biosensors, and electronic devices.

  14. Use of cyclic voltammetry and electrochemical impedance spectroscopy for determination of active surface area of modified carbon-based electrodes

    International Nuclear Information System (INIS)

    Souza, Leticia Lopes de

    2011-01-01

    Carbon-based electrodes as well the ion exchange electrodes among others have been applied mainly in the treatment of industrial effluents and radioactive wastes. Carbon is also used in fuel cells as substrate for the electrocatalysts, having high surface area which surpasses its geometric area. The knowledge of the total active area is important for the determination of operating conditions of an electrochemical cell with respect to the currents to be applied (current density). In this study it was used two techniques to determine the electrochemical active surface area of glassy carbon, electrodes and ion exchange electrodes: cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The experiments were carried out with KNO 3 0.1 mol.L -1 solutions in a three-electrode electrochemical cell: carbon-based working electrode, platinum auxiliary electrode and Ag/AgCl reference electrode. The glassy carbon and porous carbon electrodes with geometric areas of 3.14 x 10 -2 and 2.83 X 10 -1 cm 2 , respectively, were used. The ion exchange electrode was prepared by mixing graphite, carbon, ion exchange resin and a binder, and this mixture was applied in three layers on carbon felt, using a geometric area of 1.0 cm 2 during the experiments. The capacitance (Cd) of the materials was determined by EIS using Bode diagrams. The value of 172 μF.cm -2 found for the glassy carbon is consistent with the literature data (∼ 200 μF.cm'- 2 ). By VC, varying the scan rate from 0.2 to 2.0 mV.s-1, the capacitance CdS (S = active surface area) in the region of the electric double layer (EDL) of each material was determined. By EIS, the values of C d , 3.0 x 10 -5 μF.cm'- 2 and 11 x 10 3 μF.cm-2, were found for the porous carbon and ion exchange electrodes, respectively, which allowed the determination of active surface areas as 3.73 x 106 cm 2 and 4.72 cm 2 . To sum up, the combined use of EIS and CV techniques is a valuable tool for the calculation of active surface

  15. Electrochemical co-reduction synthesis of graphene/nano-gold composites and its application to electrochemical glucose biosensor

    International Nuclear Information System (INIS)

    Wang, Xiaolin; Zhang, Xiaoli

    2013-01-01

    Graphical abstract: - Highlights: • Graphene/nano-Au composite was synthesized by electrochemical co-reduction method in one step. • Glucose oxidase achieves direct electrochemistry on the graphene/nano-Au composite film. • The glucose biosensor shows a high sensitivity of 56.93 μA mM −1 cm −2 toward glucose. • Glucose was detected with a wide linear range and low detection limit. - Abstract: A simple, green and controllable approach was employed for electrochemical synthesize of the graphene/nano-Au composites. The process was that graphene oxide and HAuCl 4 was electrochemically co-reduced onto the glassy carbon electrode (GCE) by cyclic voltammetry in one step. The obtained graphene/nano-Au/GCE exhibited high electrocatalytic activity toward H 2 O 2 , which resulted in a remarkable decrease in the overpotential of H 2 O 2 electrochemical oxidation compared with bare GCE. Such electrocatalytic behavior of the graphene/nano-Au/GCE permitted effective low-potential amperometric biosensing of glucose via the incorporation of glucose oxidase (GOD) with graphene/nano-Au. An obvious advantage of this enzyme electrode (graphene/nano-Au/GOD/GCE) was that the graphene/nano-Au nanocomposites provided a favorable microenvironment for GOD and facilitated the electron transfer between the active center of GOD and electrode. The immobilized GOD showed a direct, reversible redox reaction. Furthermore, the graphene/nano-Au/GOD/GCE was used as a glucose biosensor, displaying a low detection limit of 17 μM (S/N = 3), a high sensitivity of 56.93 μA mM −1 cm −2 , acceptable reproducibility, very good stability, selectivity and anti-interference ability

  16. Imparting improvements in electrochemical sensors: evaluation of different carbon blacks that give rise to significant improvement in the performance of electroanalytical sensing platforms

    International Nuclear Information System (INIS)

    Vicentini, Fernando Campanhã; Ravanini, Amanda E.; Figueiredo-Filho, Luiz C.S.; Iniesta, Jesús; Banks, Craig E.; Fatibello-Filho, Orlando

    2015-01-01

    Three different carbon black materials have been evaluated as a potential modifier, however, only one demonstrated an improvement in the electrochemical properties. The carbon black structures were characterised with SEM, XPS and Raman spectroscopy and found to be very similar to that of amorphous graphitic materials. The modifications utilised were constructed by three different strategies (using ultrapure water, chitosan and dihexadecylphosphate). The fabricated sensors are electrochemically characterised using N,N,N',N'-tetramethyl-para-phenylenediamine and both inner-sphere and outer-sphere redox probes, namely potassium ferrocyanide(II) and hexaammineruthenium(III) chloride, in addition to the biologically relevant and electroactive analytes, dopamine (DA) and acetaminophen (AP). Comparisons are made with an edge-plane pyrolytic graphite and glassy-carbon electrode and the benefits of carbon black implemented as a modifier for sensors within electrochemistry are explored, as well as the characterisation of their electroanalytical performances. We reveal significant improvements in the electrochemical performance (excellent sensitivity, faster heterogeneous electron transfer rate (HET)) over that of a bare glassy-carbon and edge-plane pyrolytic graphite electrode and thus suggest that there are substantial advantages of using carbon black as modifier in the fabrication of electrochemical based sensors. Such work is highly important and informative for those working in the field of electroanalysis where electrochemistry can provide portable, rapid, reliable and accurate sensing protocols (bringing the laboratory into the field), with particular relevance to those searching for new electrode materials

  17. Thermodynamic behavior of glassy state of structurally related compounds.

    Science.gov (United States)

    Kaushal, Aditya Mohan; Bansal, Arvind Kumar

    2008-08-01

    Thermodynamic properties of amorphous pharmaceutical forms are responsible for enhanced solubility as well as poor physical stability. The present study was designed to investigate the differences in thermodynamic parameters arising out of disparate molecular structures and associations for four structurally related pharmaceutical compounds--celecoxib, valdecoxib, rofecoxib, and etoricoxib. Conventional and modulated temperature differential scanning calorimetry were employed to study glass forming ability and thermodynamic behavior of the glassy state of model compounds. Glass transition temperature of four glassy compounds was in a close range of 327.6-331.8 K, however, other thermodynamic parameters varied considerably. Kauzmann temperature, strength parameter and fragility parameter showed rofecoxib glass to be most fragile of the four compounds. Glass forming ability of the compounds fared similar in the critical cooling rate experiments, suggesting that different factors were determining the glass forming ability and subsequent behavior of the compounds in glassy state. A comprehensive understanding of such thermodynamic facets of amorphous form would help in rationalizing the approaches towards development of stable glassy pharmaceuticals.

  18. Electron transfer study on graphene modified glassy carbon substrate via electrochemical reduction and the application for tris(2,2'-bipyridyl)ruthenium(II) electrochemiluminescence sensor fabrication.

    Science.gov (United States)

    Xu, Yuanhong; Cao, Mengmei; Liu, Huihui; Zong, Xidan; Kong, Na; Zhang, Jizhen; Liu, Jingquan

    2015-07-01

    In this study, electron transfer behavior of the graphene nanosheets attachment on glassy carbon electrode (GCE) via direct electrochemical reduction of graphene oxide (GO) is investigated for the first time. The graphene modified electrode was achieved by simply dipping the GCE in GO suspension, followed by cyclic voltammetric scanning in the potential window from 0V to -1.5V. Tris(2,2'-bipyridyl)ruthenium(II) [Ru(bpy)3(2+)] was immobilized on the graphene modified electrode and used as the redox probe to evaluate the electron transfer behavior. The electron transfer rate constant (Ks) was calculated to be 61.9±5.8s(-1), which is much faster than that of tiled graphene modified GCE (7.1±0.6s(-1)). The enhanced electron transfer property observed with the GCE modified by reductively deposited graphene is probably due to its standing configuration, which is beneficial to the electron transfer comparing with the tiled one. Because the abundant oxygen-containing groups are mainly located at the edges of GO, which should be much easier for the reduction to start from, the reduced GO should tend to stand on the electrode surface as evidenced by scanning electron microscopy analysis. In addition, due to the favored electron transfer and standing configuration, the Ru(bpy)3(2+) electrochemiluminescence sensor fabricated with standing graphene modified GCE provided much higher and more stable efficiency than that fabricated with tiled graphene. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. A novel highly selective and sensitive detection of serotonin based on Ag/polypyrrole/Cu2O nanocomposite modified glassy carbon electrode.

    Science.gov (United States)

    Selvarajan, S; Suganthi, A; Rajarajan, M

    2018-06-01

    A silver/polypyrrole/copper oxide (Ag/PPy/Cu 2 O) ternary nanocomposite was prepared by sonochemical and oxidative polymerization simple way, in which Cu 2 O was decorated with Ag nanoparticles, and covered by polyprrole (PPy) layer. The as prepared materials was characterized by UV-vis-spectroscopy (UV-vis), FT-IR, X-ray diffraction (XRD), thermo-gravimetric analysis (TGA), scanning electron microscopy (SEM) with EDX, high resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS). Sensing of serotonin (5HT) was evaluated electrocatalyst using polypyrrole/glassy carbon electrode (PPy/GCE), polypyrrole/copper oxide/glassy carbon electrode (PPy/Cu 2 O/GCE) and silver/polypyrrole/copper oxide/glassy carbon electrode (Ag/PPy/Cu 2 O/GCE). The Ag/PPy/Cu 2 O/GCE was electrochemically treated in 0.1MPBS solution through cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The peak current response increases linearly with 5-HT concentration from 0.01 to 250 µmol L -1 and the detection limit was found to be 0.0124 μmol L -1 . It exhibits high electrocatalytic activity, satisfactory repeatability, stability, fast response and good selectivity against potentially interfering species, which suggests its potential in the development of sensitive, selective, easy-operation and low-cost serotonin sensor for practical routine analyses. The proposed method is potential to expand the possible applied range of the nanocomposite material for detection of various concerned electro active substances. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. A glassy carbon electrode modified with β-cyclodextin, multiwalled carbon nanotubes and graphene oxide for sensitive determination of 1,3-dinitrobenzene

    International Nuclear Information System (INIS)

    Li, Junhua; Feng, Haibo; Liu, Jinlong; Liu, Youcai; Jiang, Jianbo; Feng, Yonglan; Qian, Dong

    2014-01-01

    We are presenting a host-guest electrochemical platform for sensing the pollutant 1,3-dinitrobenzene. The method is based on the use of a glassy carbon electrode (GCE) covered with a composite made from multiwalled carbon nanotubes and graphene oxide, and functionalized with β-cyclodextrin (β-CD). The resultant composite was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis and electrochemical techniques. The modified GCE was used for the sensitive detection of 1,3-dinitrobenzene (DNB) at working voltages of −355 mV and −483 mV. Due to the specific recognition property of β-CD and the excellent electronic properties of the carbon nanomaterials, the electrode exhibits outstanding supramolecular recognition and enhanced electrochemical response to DNB compared to more conventional electrodes. Under optimum conditions, the peak currents vary linearly with the DNB concentrations in the range from 0.02 to 30.0 μM, and the detection limit is 5.0 nM (at an S/N of 3). The electrode exhibits long-term stability and has been successfully applied to the determination of DNB in spiked soil and water samples. (author)

  1. Glassy Dynamics

    DEFF Research Database (Denmark)

    Jensen, Henrik J.; Sibani, Paolo

    2007-01-01

    The term glassy dynamics is often used to refer to the extremely slow relaxation observed in several types of many component systems. The time span needed to reach a steady, time independent, state will typically be far beyond experimentally accessible time scales. When melted alloys are cooled...... down they typically do not enter a crystalline ordered state. Instead the atoms retain the amorphous arrangement characteristic of the liquid high temperature phase while the mobility of the molecules decreases very many orders of magnitude. This colossal change in the characteristic dynamical time...

  2. Study of the ion-channel behavior on glassy carbon electrode supported bilayer lipid membranes stimulated by perchlorate anion

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhiquan; Shi, Jun; Huang, Weimin, E-mail: huangwm@jlu.edu.cn

    2015-10-01

    In this paper, a kind of didodecyldimethylammonium bromide (DDAB) layer membranes was supported on a glassy carbon electrode (GCE). We studied the ion channel behavior of the supported bilayer lipid membrane by scanning electrochemical microscopy (SCEM) in tris(2,2′-bipyridine) ruthenium(II) solution. Perchlorate anion was used as a presence of stimulus and ruthenium(II) complex cations as the probing ions for the measurement of SECM, the lipid membrane channel was opened and exhibited the behavior of distinct SECM positive feedback curve. The channel was in a closed state in the absence of perchlorate anions while reflected the behavior of SECM negative feedback curve. The rates of electron transfer reaction in the lipid membranes surface were detected and it was dependant on the potential of SECM. - Highlights: • The rates of electron transfer reaction in the lipid membranes surface were detected. • Dynamic investigations of ion-channel behavior of supported bilayer lipid membranes by scanning electrochemical microscopy • A novel way to explore the interaction between molecules and supported bilayer lipid membranes.

  3. Electrocatalytic oxygen reduction and hydrogen evolution reactions on phthalocyanine modified electrodes: Electrochemical, in situ spectroelectrochemical, and in situ electrocolorimetric monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Koca, Atif, E-mail: akoca@eng.marmara.edu.tr [Department of Chemical Engineering, Faculty of Engineering, Marmara University, Goeztepe, 34722 Istanbul (Turkey); Kalkan, Ayfer; Bayir, Zehra Altuntas [Department of Chemistry, Technical University of Istanbul, Maslak, 34469 Istanbul (Turkey)

    2011-06-30

    Highlights: > Electrochemical and in situ spectroelectrochemical characterizations of the metallophthalocyanines were performed. > The presence of O{sub 2} influences both oxygen reduction reaction and the electrochemical behaviors of the complexes. > Homogeneous catalytic ORR process occurs via an 'inner sphere' chemical catalysis process. > CoPc and CuPc coated on a glassy carbon electrode decrease the overpotential of the working electrode for H{sup +} reduction. - Abstract: This study describes electrochemical, in situ spectroelectrochemical, and in situ electrocolorimetric monitoring of the electrocatalytic reduction of molecular oxygen and hydronium ion on the phthalocyanine-modified electrodes. For this purpose, electrochemical and in situ spectroelectrochemical characterizations of the metallophthalocyanines (MPc) bearing tetrakis-[4-((4'-trifluoromethyl)phenoxy)phenoxy] groups were performed. While CoPc gives both metal-based and ring-based redox processes, H{sub 2}Pc, ZnPc and CuPc show only ring-based electron transfer processes. In situ electrocolorimetric method was applied to investigate the color of the electrogenerated anionic and cationic forms of the complexes. The presence of O{sub 2} in the electrolyte system influences both oxygen reduction reaction and the electrochemical and spectral behaviors of the complexes, which indicate electrocatalytic activity of the complexes for the oxygen reduction reaction. Perchloric acid titrations monitored by voltammetry represent possible electrocatalytic activities of the complexes for hydrogen evolution reaction. CoPc and CuPc coated on a glassy carbon electrode decrease the overpotential of the working electrode for H{sup +} reduction. The nature of the metal center changes the electrocatalytic activities for hydrogen evolution reaction in aqueous solution. Although CuPc has an inactive metal center, its electrocatalytic activity is recorded more than CoPc for H{sup +} reduction in aqueous

  4. Comparison of adsorptive with extractive stripping voltammetry in electrochemical determination of retinol

    Directory of Open Access Journals (Sweden)

    Milan Sýs

    2017-01-01

    Full Text Available Adsorptive stripping voltammetry (AdSV of retinol at solid glassy carbon electrode (GCE, carbon paste electrode (CPE covered by thin layer of multi-wall carbon nanotubes (CPE/MWCNTs and carbon paste electrode covered by thin layer of single layer graphene (CPE/Graphene was compared with an extractive stripping voltammetry (ExSV into silicone oil (SO as lipophilic binder of glassy carbon paste electrode (GCPE. All types of selected working electrodes were characterized by a scanning electron microscopy to determine overall morphology of electrode surfaces together with spatial arrangement of used carbon particles. The retinol, also known as vitamin A1, was chosen as a model analyte because it is the most biologically active representative of retinoids which are classified as a significant group of lipophilic vitamins. Based on this comparison, it was observed that electrochemical method with high sensitivity (ExSV at GPCE is generally characterized by shorter linear range of the calibration curve than in case of AdSV at CPE/MWCNTs or CPE/Graphene. Unlike AdSV at solid GCE, all other tested electrochemical methods could represent suitable analytical tools for monitoring of retinoids in different types of foodstuffs. Especially, content of retinol up to tenths milligrams can be easily determined using ExSV. Additionally, negative interference of chemical species present in real samples is minimal in comparison with direct voltammetric methods performed in supporting electrolytes based on organic solvents due to application of accumulation step in "ex-situ" mode.

  5. Effect of amine substituted at ortho and para positions on the electrochemical and electrocatalytic properties of cobalt porphyrins self-assembled on glassy carbon surface

    International Nuclear Information System (INIS)

    Muthukumar, Palanisamy; John, S. Abraham

    2014-01-01

    Highlights: •The self-assembly of ortho and para isomers of Co(II)aminoporphyrin on GCE was studied. •The electrochemical and electrocatalytic properties were examined. •The Co(II)MTpAP showed two redox waves whereas Co(II)MToAP showed a single redox peak. •Both the SAMs greatly catalyzed the dioxigen reduction when compared to GCE. -- Abstract: This work addresses the influence of amine group substituted at para and ortho positions of the phenyl groups on the electrochemical and electrocatalytic properties of cobalt porphyrins self-assembled on glassy carbon electrode (GCE). We have synthesized meso-tetra(para-aminophenyl)porphyrinatocobalt(II) (Co(II)MTpAP) and meso-tetra(ortho-aminophenyl)porphyrinatocobalt(II) (Co(II)MToAP) and were self-assembled on GCE through Michael addition of nucleophilic amine with olefinic GCE surface. Cyclic voltammetry, reflectance spectroscopy and X-ray photoelectron spectroscopy (XPS) techniques were employed to confirm the formation of the self-assembled monolayers (SAMs) of Co(II)MTpAP and Co(II)MToAP on GCEs. Interestingly, the SAM of Co(II)MTpAP in 0.1 M H 2 SO 4 shows two redox waves at 0.37 and 0.60 V whereas the SAM of Co(II)MToAP shows a single redox wave at 0.32 V, indicating the influence of amine group position in the phenyl ring on the redox chemistry of porphyrin. In contrary, the SAMs of the corresponding free base porphyrins prepared under identical conditions show a single redox wave around 0.36 V. Thus, we have assigned the redox wave at 0.37 V to Co(II)Por 1− /Co(II)Por 2− and 0.60 V to Co III/II redox couples for the SAM of Co(II)MTpAP. In the case of Co(II)MToAP, we have assigned the redox wave at 0.32 V due to both Co(II)Por 1− /Co(II)Por 2− and Co III/II . The surface coverage estimated from the charge consumed for the oxidation of Co III/II was used to study the thermodynamics and kinetics of Co(II)MTpAP and Co(II)MToAP self-assembled on GCE. Further, the electrochemical reduction of dioxygen

  6. Electrochemical studies of Pu on prussian blue (PB)-gold nanoparticles (AuNPs) functionalized glassy carbon (GC) electrode

    International Nuclear Information System (INIS)

    Sharma, Manoj K.; Ambolikar, Arvind S.; Aggarwal, Suresh K.

    2011-01-01

    In electrochemical processes, electron transfer across the solid-liquid interface is the elementary step and electron transfer kinetics is significantly influenced by the interfacial properties. Therefore, preparation of well-defined electrochemical interface with highly controllable properties - larger effective surface area, increased mass transport, and better electronic interaction between the analyte and electrode - is significant for both fundamental and applied studies in electrochemistry. In the present work electrochemistry of Pu(IV)/Pu(III) is studied on multilayered AuNPs-PB-AuNPs functionalized electrode

  7. EDTA assisted synthesis of hydroxyapatite nanoparticles for electrochemical sensing of uric acid.

    Science.gov (United States)

    Kanchana, P; Sekar, C

    2014-09-01

    Hydroxyapatite nanoparticles have been synthesized using EDTA as organic modifier by a simple microwave irradiation method and its application for the selective determination of uric acid (UA) has been demonstrated. Electrochemical behavior of uric acid at HA nanoparticle modified glassy carbon electrode (E-HA/GCE) has been investigated by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), linear sweep voltammetry (LSV) and amperometry. The E-HA modified electrode exhibits efficient electrochemical activity towards uric acid sensing without requiring enzyme or electron mediator. Amperometry studies revealed that the fabricated electrode has excellent sensitivity for uric acid with the lowest detection limit of 142 nM over a wide concentration range from 1 × 10(-7) to 3 × 10(-5)M. Moreover, the studied E-HA modified GC electrode exhibits a good reproducibility and long-term stability and an admirable selectivity towards the determination of UA even in the presence of potential interferents. The analytical performance of this sensor was evaluated for the detection of uric acid in human urine and blood serum samples. Copyright © 2014. Published by Elsevier B.V.

  8. The electrochemical behavior of Co(TPTZ)2 complex on different carbon based electrodes modified with TiO2 nanoparticles

    International Nuclear Information System (INIS)

    Ortaboy, Sinem; Atun, Gülten

    2015-01-01

    Electrochemical behavior of cobalt (II) complex with the N-donor ligand 2,2′-bipyridyl-1,3,5-tripyridyl-s-triazine (TPTZ) was investigated to elucidate the electron-proton transfer mechanisms. The electrochemical response of the complex was studied using square-wave voltammetry (SWV) and electrochemical impedance spectroscopy (EIS) techniques. A conventional three-electrode system, consisting of glassy carbon (GCE), TiO 2 modified glassy carbon (T/GCE), carbon paste (CPE) and TiO 2 modified carbon paste (T/CPE) working electrodes were employed. The ligand/metal ratio and stability constant of the complex as well as the mechanisms of the electrode processes were elucidated by examining the effects of pH, ligand concentration and frequency on the voltammograms. The EIS results indicated that the samples modified with TiO 2 had the higher charge transfer resistance than that of the bare electrodes and also suggested that the electroactivity of the electrode surfaces increased in the following order, T/CPE > CPE > T/GCE > GCE. The surface morphology of the working electrodes was also characterized by atomic force microscopy (AFM). The values of surface roughness parameters were found to be consistent with the results obtained by EIS experiments. - Graphical abstract: Schematic illustration of the experimental process. - Highlights: • Electrochemical behavior of Co(TPTZ) 2 complex studied by SWV and EIS techniques. • GCE, CPE T/GCE and T/CPE were used as working electrodes for comparative studies. • The surface morphologies of the electrodes were characterized by AFM. • Mechanisms were proposed from the effects of pH, ligand concentration and frequency. • EIS and morphologic relationships of the surfaces were established successfully

  9. Glassy carbon electrode modified with multi-walled carbon nanotubes sensor for the quantification of antihistamine drug pheniramine in solubilized systems.

    Science.gov (United States)

    Jain, Rajeev; Sharma, Sanjay

    2012-02-01

    A sensitive electroanalytical method for quantification of pheniramine in pharmaceutical formulation has been investigated on the basis of the enhanced electrochemical response at glassy carbon electrode modified with multi-walled carbon nanotubes in the presence of sodium lauryl sulfate. The experimental results suggest that the pheniramine in anionic surfactant solution exhibits electrocatalytic effect resulting in a marked enhancement of the peak current response. Peak current response is linearly dependent on the concentration of pheniramine in the range 200-1500 μg/mL with correlation coefficient 0.9987. The limit of detection is 58.31 μg/mL. The modified electrode shows good sensitivity and repeatability.

  10. Atmospheric pressure plasma treatment of glassy carbon for adhesion improvement

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Mortensen, Henrik Junge; Stenum, Bjarne

    2007-01-01

    density increased with the plasma treatments. Adhesion test of the treated glassy carbon covered with cured epoxy showed cohesive failure, indicating strong bonding after the treatments. This is in contrast to the adhesion tests of untreated samples where the epoxy readily peeled off the glassy carbon....

  11. Label-free electrochemical immunosensor for the carcinoembryonic antigen using a glassy carbon electrode modified with electrodeposited Prussian Blue, a graphene and carbon nanotube assembly and an antibody immobilized on gold nanoparticles

    International Nuclear Information System (INIS)

    Feng, Dexiang; Lu, Xiaocui; Dong, Xiao; Zhang, Yuzhong; Ling, Yunyun

    2013-01-01

    We described a sensitive, label-free electrochemical immunosensor for the detection of carcinoembryonic antigen. It is based on the use of a glassy carbon electrode (GCE) modified with a multi-layer films made from Prussian Blue (PB), graphene and carbon nanotubes by electrodeposition and assembling techniques. Gold nanoparticles were electrostatically absorbed on the surface of the film and used for the immobilization of antibody, while PB acts as signaling molecule. The stepwise assembly process was investigated by differential pulse voltammetry and scanning electron microscopy. It is found that the formation of antibody-antigen complexes partially inhibits the electron transfer of PB and decreased its peak current. Under the optimal conditions, the decrease of intensity of the peak current of PB is linearly related to the concentration of carcinoembryonic antigen in two ranges (0.2–1.0, and 1.0–40.0 ng·mL −1 ), with a detection limit of 60 pg·mL −1 (S/N = 3). The immunosensor was applied to analyze five clinical samples, and the results obtained were in agreement with clinical data. In addition, the immunosensor exhibited good precision, acceptable stability and reproducibility. (author)

  12. Facile preparation of nitrogen-doped porous carbon from waste tobacco by a simple pre-treatment process and their application in electrochemical capacitor and CO2 capture

    International Nuclear Information System (INIS)

    Sha, Yunfei; Lou, Jiaying; Bai, Shizhe; Wu, Da; Liu, Baizhan; Ling, Yun

    2015-01-01

    Highlights: • A pre-treatment process is used to prepared N-doped carbon from waste biomass. • Waste tobaccos, which are limited for the disposal, are used as the raw materials. • The product shows a specific surface area and nitrogen content. • Its electrochemical performance is better than commercial activated carbon. • Its CO 2 sorption performance is also better than commercial activated carbon. - Abstract: Preparing nitrogen-doped porous carbons directly from waste biomass has received considerable interest for the purpose of realizing the atomic economy. In this study, N-doped porous carbons have been successfully prepared from waste tobaccos (WT) by a simple pre-treatment process. The sample calcinated at 700 °C (WT-700) shows a micro/meso-porous structures with a BET surface area of 1104 m 2 g −1 and a nitrogen content of ca. 19.08 wt.% (EDS). Performance studies demonstrate that WT-700 displays 170 F g −1 electrocapacitivity at a current density of 0.5 A g −1 (in 6 M KOH), and a CO 2 capacity of 3.6 mmol g −1 at 0 °C and 1 bar, and a selectivity of ca. 32 for CO 2 over N 2 at 25 °C. Our studies indicate that it is feasible to prepare N-enriched porous carbons from waste natural crops by a pre-treatment process for potential industrial application

  13. Novel Ag@TiO2 nanocomposite synthesized by electrochemically active biofilm for nonenzymatic hydrogen peroxide sensor.

    Science.gov (United States)

    Khan, Mohammad Mansoob; Ansari, Sajid Ali; Lee, Jintae; Cho, Moo Hwan

    2013-12-01

    A novel nonenzymatic sensor for H2O2 was developed based on an Ag@TiO2 nanocomposite synthesized using a simple and cost effective approach with an electrochemically active biofilm. The optical, structural, morphological and electrochemical properties of the as-prepared Ag@TiO2 nanocomposite were examined by UV-vis spectroscopy, X-ray diffraction, transmission electron microscopy and cyclic voltammetry (CV). The Ag@TiO2 nanocomposite was fabricated on a glassy carbon electrode (GCE) and their electrochemical performance was analyzed by CV, differential pulse voltammetry and electrochemical impedance spectroscopy. The Ag@TiO2 nanocomposite modified GCE (Ag@TiO2/GCE) displayed excellent performance towards H2O2 sensing at -0.73 V in the linear response range from 0.83 μM to 43.3 μM, within a detection limit and sensitivity of 0.83 μM and ~65.2328±0.01 μA μM(-1) cm(-2), respectively. In addition, Ag@TiO2/GCE exhibited good operational reproducibility and long term stability. © 2013.

  14. MIP-graphene-modified glassy carbon electrode for the determination of trimethoprim.

    Science.gov (United States)

    da Silva, Hélder; Pacheco, João G; Magalhães, Júlia M C S; Viswanathan, Subramanian; Delerue-Matos, Cristina

    2014-02-15

    A novel sensitive electrochemical sensor was developed by electropolymerization of pyrrole (PY) and molecularly imprinted polymer (MIP) which was synthesized onto a glassy carbon electrode (GCE) in aqueous solution using cyclic voltammetry in the presence of Trimethoprim (TMP) as template molecules. Furthermore, a previous electrode modification was performed by deposition of a suspension of graphene on the electrode's surface. The performance of the imprinted and non-imprinted (NIP) films was evaluated by impedance spectroscopy (EIS) and cyclic voltammetry (CV) of a ferric solution. The molecularly imprinted film exhibited a high selectivity and sensitivity toward TMP. The sensor presented a linear range, between peak current intensity and logarithm of TMP concentration between 1.0 × 10(-6) and 1.0 × 10(-4)M. The results were accurate (with recoveries higher than 94%), precise (with standard deviations less than 5%) and the detection limit was 1.3 × 10(-7)M. The new sensor is selective, simple to construct and easy to operate. The MIP sensor was successfully applied to quantify TMP in urine samples. © 2013 Elsevier B.V. All rights reserved.

  15. Redox Response of Reduced Graphene Oxide-Modified Glassy Carbon Electrodes to Hydrogen Peroxide and Hydrazine

    Directory of Open Access Journals (Sweden)

    Jun-ichi Anzai

    2013-05-01

    Full Text Available The surface of a glassy carbon (GC electrode was modified with reduced graphene oxide (rGO to evaluate the electrochemical response of the modified GC electrodes to hydrogen peroxide (H2O2 and hydrazine. The electrode potential of the GC electrode was repeatedly scanned from −1.5 to 0.6 V in an aqueous dispersion of graphene oxide (GO to deposit rGO on the surface of the GC electrode. The surface morphology of the modified GC electrode was characterized by scanning electron microscopy (SEM and atomic force microscopy (AFM. SEM and AFM observations revealed that aggregated rGO was deposited on the GC electrode, forming a rather rough surface. The rGO-modified electrodes exhibited significantly higher responses in redox reactions of H2O2 as compared with the response of an unmodified GC electrode. In addition, the electrocatalytic activity of the rGO-modified electrode to hydrazine oxidation was also higher than that of the unmodified GC electrode. The response of the rGO-modified electrode was rationalized based on the higher catalytic activity of rGO to the redox reactions of H2O2 and hydrazine. The results suggest that rGO-modified electrodes are useful for constructing electrochemical sensors.

  16. Oxidation of cumene hydroperoxide on glassy carbon electrodes in aqueous solution and its interaction with ascorbic and gallic acids

    International Nuclear Information System (INIS)

    Estévez, Rafael; Mellado, José Miguel Rodríguez; Mayén, Manuel

    2015-01-01

    The cumene hydroperoxide oxidation on glassy carbon electrodes involves an irreversible one-electron transfer to peroxide and phenoxy radicals, being the main end products hydroquinone and acetone. The overall oxidation mechanism occurs in two steps: formation of acetone and a phenoxy radical, and the reaction of this phenoxy radical with water, getting stability by oxidizing into p-benzoquinone The interaction of such radicals with ascorbic and gallic acids decreases the oxidation signal of cumene hydroperoxide in differential pulse voltammetry. This decrease, due to the scavenging of the radicals formed after the electron transfer, is related to the antioxidant activities. So, it is possible to substitute the mercury as a probe for the electrochemical determination of antioxidant activity.

  17. Quasi-equilibrium in glassy dynamics: an algebraic view

    International Nuclear Information System (INIS)

    Franz, Silvio; Parisi, Giorgio

    2013-01-01

    We study a chain of identical glassy systems in a constrained equilibrium, where each bond of the chain is forced to remain at a preassigned distance to the previous one. We apply this description to mean-field glassy systems in the limit of a long chain where each bond is close to the previous one. We show that this construction defines a pseudo-dynamic process that in specific conditions can formally describe real relaxational dynamics for long times. In particular, in mean-field spin glass models we can recover in this way the equations of Langevin dynamics in the long time limit at the dynamical transition temperature and below. We interpret the formal identity as evidence that in these situations the configuration space is explored in a quasi-equilibrium fashion. Our general formalism, which relates dynamics to equilibrium, puts slow dynamics in a new perspective and opens the way to the computation of new dynamical quantities in glassy systems. (paper)

  18. Anomalous Capacitance Maximum of the Glassy Carbon-Ionic Liquid Interface through Dilution with Organic Solvents.

    Science.gov (United States)

    Bozym, David J; Uralcan, Betül; Limmer, David T; Pope, Michael A; Szamreta, Nicholas J; Debenedetti, Pablo G; Aksay, Ilhan A

    2015-07-02

    We use electrochemical impedance spectroscopy to measure the effect of diluting a hydrophobic room temperature ionic liquid with miscible organic solvents on the differential capacitance of the glassy carbon-electrolyte interface. We show that the minimum differential capacitance increases with dilution and reaches a maximum value at ionic liquid contents near 5-10 mol% (i.e., ∼1 M). We provide evidence that mixtures with 1,2-dichloroethane, a low-dielectric constant solvent, yield the largest gains in capacitance near the open circuit potential when compared against two traditional solvents, acetonitrile and propylene carbonate. To provide a fundamental basis for these observations, we use a coarse-grained model to relate structural variations at the double layer to the occurrence of the maximum. Our results reveal the potential for the enhancement of double-layer capacitance through dilution.

  19. Using Poly-L-Histidine Modified Glassy Carbon Electrode to Trace Hydroquinone in the Sewage Water

    Directory of Open Access Journals (Sweden)

    Bin Wang

    2014-01-01

    Full Text Available A sensitive voltammetric method for trace measurements of hydroquinone in the sewage water is described. The poly-L-histidine is prepared to modify the glassy carbon electrode in order to improve the electrochemical catalysis of interesting substances such as hydroquinone. The influence of the base solution, pH value, and scanning speed on the tracing of hydroquinone is discussed, and the experimental procedures and conditions are optimized. The laboratory results show that it is possible to construct a linear calibration curve between the peak current of hydroquinone on modified electrode and its concentration at the level of 0.00001 mol/L. The potential limitation of the method is suggested by a linear peaking shift model as well. The method was successfully applied to the determination of hydroquinone in the actual sample of industrial waste water.

  20. Electrochemical determination of 4-nitrophenol at polycarbazole/N-doped graphene modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Zhang, Yuehua; Wu, Lihua; Lei, Wu; Xia, Xifeng; Xia, Mingzhu; Hao, Qingli

    2014-01-01

    Graphical abstract: - Highlights: • Polycarbazole/N-doping graphene (PCZ/N-GE) composite was fabricated. • The PCZ/N-GE composite shows good electrocatalytic activity to 4-nitrophenol. • PCZ/N-GE modified electrode was used for determination of 4-nitrophenol. • The proposed sensor exhibits good sensitivity, stability and reproducibility. - Abstract: Polycarbazole (PCZ)/nitrogen-doped graphene (N-GE) composite was prepared by electropolymerization of carbazole on the N-GE modified glass carbon electrode (N-GE/GCE) for fabricating a novel electrochemical sensor for 4-nitrophenol (4-NP). The PCZ/N-GE shows high conductivity and well-distributed nanostructure. The redox behavior of 4-NP at a PCZ/N-GE/GCE was investigated in acetate buffer solution by cyclic voltammetry (CV), compared with the bare GCE, reduced graphene oxide (RGO), N-GE and PCZ modified GCEs. The results indicate that all modified electrodes show the enhanced reduction peak currents. However, the PCZ/N-GE/GCE exhibits the highest peak current and most positive reduction potential of 4-NP, which reflects the PCZ/N-GE composite has the best electrocatalytic activity towards 4-NP. The enhanced electrochemical performance of PCZ/N-GE and the electrocatalytic activity to 4-NP are contributed to the synergic effect of PCZ and N-GE with highly conductivity and large surface area, which can greatly facilitate the electron-transfer processes between the electrolyte and electrode. An electrochemical sensor for 4-NP was developed based on the PCZ/N-GE modified electrode under the optimized conditions. The reduction peak current was linear with the concentration of 4-NP in the range of 8 × 10 -7 ∼2 × 10 -5 M. The low detection limit of the sensor was estimated to be 0.062 μM (S/N = 3). The sensor based on PCZ/N-GE/GCE was also applied to the detection of 4-NP in real water samples

  1. Electrochemical oxidation of cholesterol in acetonitrile leads to the formation of cholesta-4,6-dien-3-one

    International Nuclear Information System (INIS)

    Hosokawa, Yu-Ya; Hakamata, Hideki; Murakami, Tomonori; Aoyagi, Sakae; Kuroda, Minpei; Mimaki, Yoshihiro; Ito, Ayumi; Morosawa, Sayaka; Kusu, Fumiyo

    2009-01-01

    Cholesterol was shown to be oxidized at the glassy carbon electrode in an acetonitrile-2-propanol mixture and this oxidation reaction was applied to the determination of serum total cholesterol by high-performance liquid chromatography with electrochemical detection (K. Hojo, H. Hakamata, A. Ito, A. Kotani, C. Furukawa, Y.Y. Hosokawa, F. Kusu, J. Chromatogr. A 1166 (2007) 135-141). To gain insight into the detection mechanisms of cholesterol, an electrolytic product of cholesterol was collected and characterized by infrared spectroscopy, one- and two-dimensional nuclear magnetic resonance, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The three techniques, together with comparisons of literature spectral data, confirmed the formation of cholesta-4,6-dien-3-one. The conversion of cholesterol to cholesta-4,6-dien-3-one, a four-electron, four-proton electrochemical process, has been proposed as an electrochemical oxidation mechanism of cholesterol in acetonitrile.

  2. Aryl Diazonium Chemistry for the Surface Functionalization of Glassy Biosensors.

    Science.gov (United States)

    Zheng, Wei; van den Hurk, Remko; Cao, Yong; Du, Rongbing; Sun, Xuejun; Wang, Yiyu; McDermott, Mark T; Evoy, Stephane

    2016-03-14

    Nanostring resonator and fiber-optics-based biosensors are of interest as they offer high sensitivity, real-time measurements and the ability to integrate with electronics. However, these devices are somewhat impaired by issues related to surface modification. Both nanostring resonators and photonic sensors employ glassy materials, which are incompatible with electrochemistry. A surface chemistry approach providing strong and stable adhesion to glassy surfaces is thus required. In this work, a diazonium salt induced aryl film grafting process is employed to modify a novel SiCN glassy material. Sandwich rabbit IgG binding assays are performed on the diazonium treated SiCN surfaces. Fluorescently labelled anti-rabbit IgG and anti-rabbit IgG conjugated gold nanoparticles were used as markers to demonstrate the absorption of anti-rabbit IgG and therefore verify the successful grafting of the aryl film. The results of the experiments support the effectiveness of diazonium chemistry for the surface functionalization of SiCN surfaces. This method is applicable to other types of glassy materials and potentially can be expanded to various nanomechanical and optical biosensors.

  3. Aryl Diazonium Chemistry for the Surface Functionalization of Glassy Biosensors

    Directory of Open Access Journals (Sweden)

    Wei Zheng

    2016-03-01

    Full Text Available Nanostring resonator and fiber-optics-based biosensors are of interest as they offer high sensitivity, real-time measurements and the ability to integrate with electronics. However, these devices are somewhat impaired by issues related to surface modification. Both nanostring resonators and photonic sensors employ glassy materials, which are incompatible with electrochemistry. A surface chemistry approach providing strong and stable adhesion to glassy surfaces is thus required. In this work, a diazonium salt induced aryl film grafting process is employed to modify a novel SiCN glassy material. Sandwich rabbit IgG binding assays are performed on the diazonium treated SiCN surfaces. Fluorescently labelled anti-rabbit IgG and anti-rabbit IgG conjugated gold nanoparticles were used as markers to demonstrate the absorption of anti-rabbit IgG and therefore verify the successful grafting of the aryl film. The results of the experiments support the effectiveness of diazonium chemistry for the surface functionalization of SiCN surfaces. This method is applicable to other types of glassy materials and potentially can be expanded to various nanomechanical and optical biosensors.

  4. Electrochemically reduced graphene oxide-based electrochemical sensor for the sensitive determination of ferulic acid in A. sinensis and biological samples

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Linjie [School of Pharmacy, Lanzhou University, Lanzhou 730000 (China); Gou, Yuqiang [Lanzhou Military Command Center for Disease Prevention and Control, Lanzhou 730000 (China); Gao, Xia; Zhang, Pei; Chen, Wenxia; Feng, Shilan [School of Pharmacy, Lanzhou University, Lanzhou 730000 (China); Hu, Fangdi, E-mail: hufd@lzu.edu.cn [School of Pharmacy, Lanzhou University, Lanzhou 730000 (China); Li, Yingdong, E-mail: lydj412@163.com [Gansu College of Tradition Chinese Medicine, Lanzhou 730000 (China)

    2014-09-01

    An electrochemically reduced graphene oxide (ERGO) modified glassy carbon electrode (GCE) was used as a new voltammetric sensor for the determination of ferulic acid (FA). The morphology and microstructure of the modified electrodes were characterized by scanning electron microscopy (SEM) and Raman spectroscopy analysis, and the electrochemical effective surface areas of the modified electrodes were also calculated by chronocoulometry method. Sensing properties of the electrochemical sensor were investigated by means of cyclic voltammetry (CV) and differential pulse voltammetry (DPV). It was found that ERGO was electrodeposited on the surface of GCE by using potentiostatic method. The proposed electrode exhibited electrocatalytic activity to the redox of FA because of excellent electrochemical properties of ERGO. The transfer electron number (n), electrode reaction rate constant (k{sub s}) and electron-transfer coefficient (α) were calculated as 1.12, 1.24 s{sup −1}, and 0.40, respectively. Under the optimized conditions, the oxidation peak current was proportional to FA concentration at 8.49 × 10{sup −8} mol L{sup −1} to 3.89 × 10{sup −5} mol L{sup −1} with detection limit of 2.06 × 10{sup −8} mol L{sup −1}. This fabricated sensor also displayed acceptable reproducibility, long-term stability, and high selectivity with negligible interferences from common interfering species. The voltammetric sensor was successfully applied to detect FA in A. sinensis and biological samples with recovery values in the range of 99.91%-101.91%. - Highlights: • A novel ERGO–based electrochemical sensor of FA was successfully fabricated by using one-step electrodeposition method. • The electrode reaction was an adsorption–diffusion mixed controlled process. • The low detection limit with good selectivity and sensitivity were obtained. • This method was applied for the determination of FA in A. sinensis and biological samples.

  5. Diffusion coefficients of tracers in glassy polymer systems prepared by gamma radiolysis

    International Nuclear Information System (INIS)

    Tonge, M.P.; Gilbert, R.G.

    1996-01-01

    Diffusion-controlled reactions are common in free radical polymerisation reactions, especially in glassy polymer matrices. Such reactions commonly have an important influence on the polymerisation process and final polymer properties. For example, the dominant growth-stopping event (bimolecular termination) is generally diffusion-controlled. In glassy polymer systems, where molecular mobility is very low, the chain growth mechanism (propagation) may become diffusion-controlled. At present, the mechanism for propagation in glassy polymers is poorly understood, but it is expected by the Smoluchowski expression applied to propagation to depend strongly on the diffusion coefficient of monomer. The objective of this study is to measure reliable diffusion coefficients of small tracer molecules in glassy polymers, and compare these with propagation rate coefficients in similar systems, by the prediction above. Samples were initially prepared in a sealed sampled cell containing monomer, inert diluent, and tracer dye. After irradiation for several days, complete conversion of monomer to polymer can be obtained. The diffusion coefficients for two tracer dyes have been measured as a function of weight fraction polymer glassy poly(methyl methacrylate) samples

  6. Fabrication of β-cyclodextrin-coated poly (diallyldimethylammonium chloride)-functionalized graphene composite film modified glassy carbon-rotating disk electrode and its application for simultaneous electrochemical determination colorants of sunset yellow and tartrazine.

    Science.gov (United States)

    Ye, Xiaoliang; Du, Yongling; Lu, Daban; Wang, Chunming

    2013-05-24

    We proposed a green and facile approach for the synthesis of β-cyclodextrin-coated poly(diallyldimethylammonium chloride)-functionalized graphene composite film (β-CD-PDDA-Gr) by using L-ascorbic acid (L-AA) as the reducing agent at room temperature. The β-CD-PDDA-Gr composite film modified glassy carbon-rotating disk electrode (GC-RDE) was then developed for the sensitive simultaneous determination of two synthetic food colorants: sunset yellow (SY) and tartrazine (TT). By cyclic voltammetry (CV), the peak currents of SY and TT increased obviously on the developed electrochemical sensor. The kinetic parameters, such as diffusion coefficient D and standard heterogeneous rate constant kb, were estimated by linear sweep voltammetry (LSV). Under the optimal conditions, the differential pulse voltammetry (DPV) signals of SY and TT on the β-CD-PDDA-Gr modified GC-RDE were significantly enhanced. The enhanced anodic peak currents represented the excellent analytical performance of simultaneous detection of SY and TT in the range of 5.0×10(-8) to 2.0×10(-5) mol L(-1), with a low limit of detection (LOD) of 1.25×10(-8) mol L(-1) for SY and 1.43×10(-8) mol L(-1) for TT (SN(-1)=3). This proposed method displayed outstanding selectivity, good stability and acceptable repeatability and reproducibility, and also has been used to simultaneously determine SY and TT in some commercial soft drinks with satisfactory results. The obtained results were compared to HPLC of analysis for those two colorants and no significant differences were found. By the treatment of the experimental data, the electrochemical reaction mechanisms of SY and TT both involved a one-electron-one-proton-transfer process. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. The electrochemical behavior of Co(TPTZ){sub 2} complex on different carbon based electrodes modified with TiO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ortaboy, Sinem, E-mail: ortaboy@istanbul.edu.tr; Atun, Gülten, E-mail: gatun@istanbul.edu.tr

    2015-04-15

    Electrochemical behavior of cobalt (II) complex with the N-donor ligand 2,2′-bipyridyl-1,3,5-tripyridyl-s-triazine (TPTZ) was investigated to elucidate the electron-proton transfer mechanisms. The electrochemical response of the complex was studied using square-wave voltammetry (SWV) and electrochemical impedance spectroscopy (EIS) techniques. A conventional three-electrode system, consisting of glassy carbon (GCE), TiO{sub 2} modified glassy carbon (T/GCE), carbon paste (CPE) and TiO{sub 2} modified carbon paste (T/CPE) working electrodes were employed. The ligand/metal ratio and stability constant of the complex as well as the mechanisms of the electrode processes were elucidated by examining the effects of pH, ligand concentration and frequency on the voltammograms. The EIS results indicated that the samples modified with TiO{sub 2} had the higher charge transfer resistance than that of the bare electrodes and also suggested that the electroactivity of the electrode surfaces increased in the following order, T/CPE > CPE > T/GCE > GCE. The surface morphology of the working electrodes was also characterized by atomic force microscopy (AFM). The values of surface roughness parameters were found to be consistent with the results obtained by EIS experiments. - Graphical abstract: Schematic illustration of the experimental process. - Highlights: • Electrochemical behavior of Co(TPTZ){sub 2} complex studied by SWV and EIS techniques. • GCE, CPE T/GCE and T/CPE were used as working electrodes for comparative studies. • The surface morphologies of the electrodes were characterized by AFM. • Mechanisms were proposed from the effects of pH, ligand concentration and frequency. • EIS and morphologic relationships of the surfaces were established successfully.

  8. Facile preparation of nitrogen-doped porous carbon from waste tobacco by a simple pre-treatment process and their application in electrochemical capacitor and CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    Sha, Yunfei; Lou, Jiaying [Technical Center, Shanghai Tobacco Group Co., Ltd., Shanghai 200082 (China); Bai, Shizhe [Department of Chemistry, Fudan University, Shanghai 200433 (China); Wu, Da, E-mail: wud@sh.tobacco.com.cn [Technical Center, Shanghai Tobacco Group Co., Ltd., Shanghai 200082 (China); Liu, Baizhan [Technical Center, Shanghai Tobacco Group Co., Ltd., Shanghai 200082 (China); Ling, Yun, E-mail: yunling@fudan.edu.cn [Department of Chemistry, Fudan University, Shanghai 200433 (China)

    2015-04-15

    Highlights: • A pre-treatment process is used to prepared N-doped carbon from waste biomass. • Waste tobaccos, which are limited for the disposal, are used as the raw materials. • The product shows a specific surface area and nitrogen content. • Its electrochemical performance is better than commercial activated carbon. • Its CO{sub 2} sorption performance is also better than commercial activated carbon. - Abstract: Preparing nitrogen-doped porous carbons directly from waste biomass has received considerable interest for the purpose of realizing the atomic economy. In this study, N-doped porous carbons have been successfully prepared from waste tobaccos (WT) by a simple pre-treatment process. The sample calcinated at 700 °C (WT-700) shows a micro/meso-porous structures with a BET surface area of 1104 m{sup 2} g{sup −1} and a nitrogen content of ca. 19.08 wt.% (EDS). Performance studies demonstrate that WT-700 displays 170 F g{sup −1} electrocapacitivity at a current density of 0.5 A g{sup −1} (in 6 M KOH), and a CO{sub 2} capacity of 3.6 mmol g{sup −1} at 0 °C and 1 bar, and a selectivity of ca. 32 for CO{sub 2} over N{sub 2} at 25 °C. Our studies indicate that it is feasible to prepare N-enriched porous carbons from waste natural crops by a pre-treatment process for potential industrial application.

  9. Preparation and characterization of AuNPs/CNTs-ErGO electrochemical sensors for highly sensitive detection of hydrazine.

    Science.gov (United States)

    Zhao, Zhenting; Sun, Yongjiao; Li, Pengwei; Zhang, Wendong; Lian, Kun; Hu, Jie; Chen, Yong

    2016-09-01

    A highly sensitive electrochemical sensor of hydrazine has been fabricated by Au nanoparticles (AuNPs) coating of carbon nanotubes-electrochemical reduced graphene oxide composite film (CNTs-ErGO) on glassy carbon electrode (GCE). Cyclic voltammetry and potential amperometry have been used to investigate the electrochemical properties of the fabricated sensors for hydrazine detection. The performances of the sensors were optimized by varying the CNTs to ErGO ratio and the quantity of Au nanoparticles. The results show that under optimal conditions, a sensitivity of 9.73μAμM(-1)cm(-2), a short response time of 3s, and a low detection limit of 0.065μM could be achieved with a linear concentration response range from 0.3μM to 319μM. The enhanced electrochemical performances could be attributed to the synergistic effect between AuNPs and CNTs-ErGO film and the outstanding catalytic effect of the Au nanoparticles. Finally, the sensor was successfully used to analyse the tap water, showing high potential for practical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Geological and technological evaluation of gold-bearing mineral material after photo-electrochemical activation leaching

    Science.gov (United States)

    Manzyrev, DV

    2017-02-01

    The paper reports the lab test results on simulation of heap leaching of unoxidized rebellious ore extracted from deep levels of Pogromnoe open pit mine, with different flowsheets and photo-electrochemically activated solutions. It has been found that pre-treatment of rebellious ore particles -10 mm in size by photo-electrochemically activated solutions at the stage preceding agglomeration with the use of rich cyanide solutions enhances gold recovery by 6%.

  11. A sensitive DNA biosensor fabricated from gold nanoparticles, carbon nanotubes, and zinc oxide nanowires on a glassy carbon electrode

    International Nuclear Information System (INIS)

    Wang Jie; Li Shuping; Zhang Yuzhong

    2010-01-01

    We outline here the fabrication of a sensitive electrochemical DNA biosensor for the detection of sequence-specific target DNA. Zinc oxide nanowires (ZnONWs) were first immobilized on the surface of a glassy carbon electrode. Multi-walled carbon nanotubes (MWCNTs) with carboxyl groups were then dropped onto the surface of the ZnONWs. Gold nanoparticles (AuNPs) were subsequently introduced to the surface of the MWNTs/ZnONWs by electrochemical deposition. A single-stranded DNA probe with a thiol group at the end (HS-ssDNA) was covalently immobilized on the surface of the AuNPs by forming an Au-S bond. Scanning electron microscopy (SEM) and cyclic voltammetry (CV) were used to investigate the film assembly process. Differential pulse voltammetry (DPV) was used to monitor DNA hybridization by measuring the electrochemical signals of [Ru(NH 3 ) 6 ] 3+ bounding to double-stranded DNA (dsDNA). The incorporation of ZnONWs and MWCNTs in this sensor design significantly enhances the sensitivity and the selectivity. This DNA biosensor can detect the target DNA quantitatively in the range of 1.0 x 10 -13 to 1.0 x 10 -7 M, with a detection limit of 3.5 x 10 -14 M (S/N = 3). In addition, the DNA biosensor exhibits excellent selectivity, even for single-mismatched DNA detection.

  12. Electrochemical behaviour of dopamine at covalent modified glassy carbon electrode with l-cysteine: preliminary results

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Martínez-Huitle

    2009-01-01

    Full Text Available The surface of glassy carbon (GC electrode has been modified by oxidation of L-cysteine. The covalent modified GC electrode with L-Cysteine has been studied, according the supporting electrolyte used. Favourable interactions between the L-cysteine film and DA enhance the current response compared to that at the Nafion GC and bare GC electrodes, achieving better performances than those other electrodes. This behaviour was as result of the adsorption of the cysteine layer film, compact and uniform formation; depending on L-cysteine solution (phosphate buffer or chloridric acid supporting electrolyte used for modifying GC surface. In cyclic voltammetric measurements, modified electrodes can successfully separate the oxidation/reduction DA peaks in different buffer solutions, but an evident dependence in the response was obtained as function of pH and modified electrode. The modified electrode prepared with L-cysteine/HCl solution was used to obtain the calibration curve and it exhibited a stable and sensitive response to DA. The results are described and discussed in the light of the existing literature.

  13. Simultaneous voltammetric determination of tramadol and acetaminophen using carbon nanoparticles modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Ghorbani-Bidkorbeh, Fatemeh; Shahrokhian, Saeed; Mohammadi, Ali; Dinarvand, Rassoul

    2010-01-01

    A sensitive and selective electrochemical sensor was fabricated via the drop-casting of carbon nanoparticles (CNPs) suspension onto a glassy carbon electrode (GCE). The application of this sensor was investigated in simultaneous determination of acetaminophen (ACE) and tramadol (TRA) drugs in pharmaceutical dosage form and ACE determination in human plasma. In order to study the electrochemical behaviors of the drugs, cyclic and differential pulse voltammetric studies of ACE and TRA were carried out at the surfaces of the modified GCE (MGCE) and the bare GCE. The dependence of peak currents and potentials on pH, concentration and the potential scan rate were investigated for these compounds at the surface of MGCE. Atomic force microscopy (AFM) was used for the characterization of the film modifier and its morphology on the surface of GCE. The results of the electrochemical investigations showed that CNPs, via a thin layer model based on the diffusion within a porous layer, enhanced the electroactive surface area and caused a remarkable increase in the peak currents. The thin layer of the modifier showed a catalytic effect and accelerated the rate of the electron transfer process. Application of the MGCE resulted in a sensitivity enhancement and a considerable decrease in the anodic overpotential, leading to negative shifts in peak potentials. An optimum electrochemical response was obtained for the sensor in the buffered solution of pH 7.0 and using 2 μL CNPs suspension cast on the surface of GCE. Using differential pulse voltammetry, the prepared sensor showed good sensitivity and selectivity for the determination of ACE and TRA in wide linear ranges of 0.1-100 and 10-1000 μM, respectively. The resulted detection limits for ACE and TRA was 0.05 and 1 μM, respectively. The CNPs modified GCE was successfully applied for ACE and TRA determinations in pharmaceutical dosage forms and also for the determination of ACE in human plasma.

  14. Conductive polymer/reduced graphene oxide/Au nano particles as efficient composite materials in electrochemical supercapacitors

    Science.gov (United States)

    Shabani Shayeh, J.; Ehsani, A.; Ganjali, M. R.; Norouzi, P.; Jaleh, B.

    2015-10-01

    Polyaniline/reduced graphene oxide/Au nano particles (PANI/rGO/AuNPs) as a hybrid supercapacitor were deposited on a glassy carbon electrode (GCE) by cyclic voltammetry (CV) method as ternary composites and their electrochemical performance was evaluated in acidic medium. Scanning electron micrographs clearly revealed the formation of nanocomposites on the surface of the working electrode. Scanning electron micrographs (SEM) clearly revealed the formation of nanocomposites on the surface of working electrode. Different electrochemical methods including galvanostatic charge-discharge (CD) experiments, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were carried out in order to investigate the applicability of the system as a supercapacitor. Based on the cyclic voltammogram results obtained, PANI/rGO/AuNPs gave higher specific capacitance, power and energy values than PANI at a current density of 1 mA cm-2. Specific capacitance (SC) of PANI and PANI/rGO/AuNPs electrodes calculated using CV method are 190 and 303 F g-1, respectively. The present study introduces new nanocomposite materials for electrochemical redox capacitors with advantages including long life cycle and stability due to synergistic effects of each component.

  15. Electrochemical determination of morin in Kiwi and Strawberry fruit samples using vanadium pentoxide nano-flakes.

    Science.gov (United States)

    Sasikumar, Ragu; Govindasamy, Mani; Chen, Shen-Ming; Chieh-Liu, Yu; Ranganathan, Palraj; Rwei, Syang-Peng

    2017-10-15

    Herein, we report the synthesis of Vanadium Pentoxide Nanoflakes (V 2 O 5 NF) using ionic liquid and employed the V 2 O 5 NF in electrochemical determination of Morin (MR) in fruit samples. The V 2 O 5 NF were characterized by Powder X-ray diffraction (PXRD), scanning electron microscope (SEM), energy-dispersive X-ray analyzer (EDX), differential pulse voltammetry (DPV), and cyclic voltammetry (CV). Remarkably, the as-synthesized V 2 O 5 NF exhibited excellent electrochemical behavior and electrochemical ability towards MR. The CV and DPV studies were recognized that the electrochemical performance of V 2 O 5 NF film modified glassy carbon electrode (V 2 O 5 NF/GCE) towards detection of MR is outstanding in comparison with unmodified GCE. The proposed MR sensor shows a wide linear range, high sensitivity, and low limit of detection are 0.05-10.93μm, 1.130μAμM -1 cm -2 , and 9nM respectively. The fabulous analytical parameters of the developed sensor surpassed the previously reported modified electrodes, rendering the potential application of V 2 O 5 NF in environmental, biomedical, and pharmaceutical samples. Copyright © 2017. Published by Elsevier Inc.

  16. Electrochemical reduction of imazamethabenz methyl on mercury and carbon electrodes

    International Nuclear Information System (INIS)

    Ruiz Montoya, Mercedes; Pintado, Sara; Rodriguez Mellado, Jose Miguel

    2010-01-01

    This paper presents polarographic and voltammetric studies of the reduction of the herbicide imazamethabenz methyl (2/3-methyl-(4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)-p-toluate), on mercury and carbon electrodes. The electrochemical studies were performed in strongly acidic media (0.1-2.7 M H 2 SO 4 ) as well as in the pH range of 1-12. The overall reduction process involves the uptake of two electrons. The results obtained in polarography show that there is the reduction of two species, related via an acid-base equilibrium, and having very close reduction potentials. The voltammetric results obtained with a glassy carbon electrode were very similar to those observed on mercury electrodes. The reducible group in the molecule is the imidazolinone ring. In strongly acidic media (pH a ), the reaction mechanism proposed is the reduction of the protonated herbicide by an electrochemical-chemical-electrochemical (ECE) process, being the r.d.s. the second electron transfer. At pH > pK a the neutral form of the herbicide is reduced and the second electron transfer becomes reversible or quasi-reversible. In basic media, the species reduced is the deprotonated imazamethabenz methyl and the r.d.s. is the second electron transfer.

  17. Electrochemical reduction of imazamethabenz methyl on mercury and carbon electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz Montoya, Mercedes, E-mail: mmontoya@uhu.e [Departamento de Ingenieria Quimica, Quimica Fisica y Quimica Organica, Universidad de Huelva, Campus El Carmen, Facultad de Ciencias Experimentales, E-21071 Huelva (Spain); Pintado, Sara; Rodriguez Mellado, Jose Miguel [Departamento de Quimica Fisica y Termodinamica Aplicada, Universidad de Cordoba, Campus Universitario de Rabanales, edificio ' Marie Curie' , E-14014 Cordoba (Spain)

    2010-03-30

    This paper presents polarographic and voltammetric studies of the reduction of the herbicide imazamethabenz methyl (2/3-methyl-(4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)-p-toluate), on mercury and carbon electrodes. The electrochemical studies were performed in strongly acidic media (0.1-2.7 M H{sub 2}SO{sub 4}) as well as in the pH range of 1-12. The overall reduction process involves the uptake of two electrons. The results obtained in polarography show that there is the reduction of two species, related via an acid-base equilibrium, and having very close reduction potentials. The voltammetric results obtained with a glassy carbon electrode were very similar to those observed on mercury electrodes. The reducible group in the molecule is the imidazolinone ring. In strongly acidic media (pH < pK{sub a}), the reaction mechanism proposed is the reduction of the protonated herbicide by an electrochemical-chemical-electrochemical (ECE) process, being the r.d.s. the second electron transfer. At pH > pK{sub a} the neutral form of the herbicide is reduced and the second electron transfer becomes reversible or quasi-reversible. In basic media, the species reduced is the deprotonated imazamethabenz methyl and the r.d.s. is the second electron transfer.

  18. Electrocatalytic oxidation behavior of NADH at Pt/Fe{sub 3}O{sub 4}/reduced-graphene oxide nanohybrids modified glassy carbon electrode and its determination

    Energy Technology Data Exchange (ETDEWEB)

    Roushani, Mahmoud, E-mail: mahmoudroushani@yahoo.com [Department of Chemistry, Faculty of Sciences, Ilam University, Ilam, 69315516 (Iran, Islamic Republic of); Hoseini, S. Jafar [Department of Chemistry, Faculty of Sciences, Yasouj University, Yasouj, 7591874831 (Iran, Islamic Republic of); Azadpour, Mitra [Department of Chemistry, Faculty of Sciences, Ilam University, Ilam, 69315516 (Iran, Islamic Republic of); Heidari, Vahid; Bahrami, Mehrangiz; Maddahfar, Mahnaz [Department of Chemistry, Faculty of Sciences, Yasouj University, Yasouj, 7591874831 (Iran, Islamic Republic of)

    2016-10-01

    We have developed Pt/Fe{sub 3}O{sub 4}/reduced-graphene oxide nanohybrids modified glassy carbon (Pt/Fe{sub 3}O{sub 4}/RGO/GC) electrode as a novel system for the preparation of electrochemical sensing platform. Characterization of as-made composite was determined using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM), atomic force microscopy (AFM) and energy-dispersive analysis of X-ray (EDAX) where the Pt, Fe, Si, O and C elements were observed. The Pt/Fe{sub 3}O{sub 4}/RGO/GC electrode was characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Due to the synergistic effect between Pt, Fe{sub 3}O{sub 4} and RGO, the nanohybrid exhibited excellent performance toward dihydronicotinamide adenine dinucleotide (NADH) oxidation in 0.1 M phosphate buffer solution, pH 7.0, with a low detection limit of 5 nM. - Highlights: • Preparation of a novel electrochemical sensing platform system • Excellent performance of Pt/Fe{sub 3}O{sub 4}/reduced-graphene oxide nanohybrids • Dihydronicotinamide adenine dinucleotide oxidation with a low detection limit of 5 nM.

  19. Pressure-induced transformations in computer simulations of glassy water

    Science.gov (United States)

    Chiu, Janet; Starr, Francis W.; Giovambattista, Nicolas

    2013-11-01

    Glassy water occurs in at least two broad categories: low-density amorphous (LDA) and high-density amorphous (HDA) solid water. We perform out-of-equilibrium molecular dynamics simulations to study the transformations of glassy water using the ST2 model. Specifically, we study the known (i) compression-induced LDA-to-HDA, (ii) decompression-induced HDA-to-LDA, and (iii) compression-induced hexagonal ice-to-HDA transformations. We study each transformation for a broad range of compression/decompression temperatures, enabling us to construct a "P-T phase diagram" for glassy water. The resulting phase diagram shows the same qualitative features reported from experiments. While many simulations have probed the liquid-state phase behavior, comparatively little work has examined the transitions of glassy water. We examine how the glass transformations relate to the (first-order) liquid-liquid phase transition previously reported for this model. Specifically, our results support the hypothesis that the liquid-liquid spinodal lines, between a low-density and high-density liquid, are extensions of the LDA-HDA transformation lines in the limit of slow compression. Extending decompression runs to negative pressures, we locate the sublimation lines for both LDA and hyperquenched glassy water (HGW), and find that HGW is relatively more stable to the vapor. Additionally, we observe spontaneous crystallization of HDA at high pressure to ice VII. Experiments have also seen crystallization of HDA, but to ice XII. Finally, we contrast the structure of LDA and HDA for the ST2 model with experiments. We find that while the radial distribution functions (RDFs) of LDA are similar to those observed in experiments, considerable differences exist between the HDA RDFs of ST2 water and experiment. The differences in HDA structure, as well as the formation of ice VII (a tetrahedral crystal), are a consequence of ST2 overemphasizing the tetrahedral character of water.

  20. Graphene quantum dot modified glassy carbon electrode for the determination of doxorubicin hydrochloride in human plasma

    Directory of Open Access Journals (Sweden)

    Nastaran Hashemzadeh

    2016-08-01

    Full Text Available Low toxic graphene quantum dot (GQD was synthesized by pyrolyzing citric acid in alkaline solution and characterized by ultraviolet--visible (UV–vis spectroscopy, X-ray diffraction (XRD, atomic force microscopy (AFM, spectrofluorimetery and dynamic light scattering (DLS techniques. GQD was used for electrode modification and electro-oxidation of doxorubicin (DOX at low potential. A substantial decrease in the overvoltage (−0.56 V of the DOX oxidation reaction (compared to ordinary electrodes was observed using GQD as coating of glassy carbon electrode (GCE. Differential pulse voltammetry was used to evaluate the analytical performance of DOX in the presence of phosphate buffer solution (pH 4.0 and good limit of detection was obtained by the proposed sensor. Such ability of GQD to promote the DOX electron-transfer reaction suggests great promise for its application as an electrochemical sensor.

  1. Electrochemically replicated smooth aluminum foils for anodic alumina nanochannel arrays

    International Nuclear Information System (INIS)

    Biring, Sajal; Tsai, K-T; Sur, Ujjal Kumar; Wang, Y-L

    2008-01-01

    A fast electrochemical replication technique has been developed to fabricate large-scale ultra-smooth aluminum foils by exploiting readily available large-scale smooth silicon wafers as the masters. Since the adhesion of aluminum on silicon depends on the time of surface pretreatment in water, it is possible to either detach the replicated aluminum from the silicon master without damaging the replicated aluminum and master or integrate the aluminum film to the silicon substrate. Replicated ultra-smooth aluminum foils are used for the growth of both self-organized and lithographically guided long-range ordered arrays of anodic alumina nanochannels without any polishing pretreatment

  2. On the possibility of electrochemical unzipping of multiwalled carbon nanotubes to produce graphene nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Zehtab Yazdi, Alireza; Roberts, Edward P.L.; Sundararaj, Uttandaraman, E-mail: u.sundararaj@ucalgary.ca

    2016-08-15

    Highlights: • MWCNTs synthesized and electrochemically oxidized to study the formation of GNR • HRTEM, Raman and XPS confirmed no successful unzipping occurred after oxidation • Electrochemical oxidation very unlikely facilitate formation of intercalated MWCNTs - Abstract: Multiwalled carbon nanotubes (MWCNTs) with different geometrical characteristics and chemical doping have been synthesized and electrochemically oxidized to study the possibility of unzipping, and creating graphene nanoribbon (GNR) nanostructures. Modified glassy carbon electrodes of the MWCNTs have been tested in an aqueous electrolyte via anodic scans in a wide range of potentials, followed by keeping at the maximum potential for different times. The microstructural features, structural defects, and functional groups and their elements have been then studied using high resolution transmission electron microscopy (HRTEM), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS), respectively. All results have confirmed that no successful unzipping occurs in the MWCNTs after electrochemical oxidation, even for the nitrogen-doped MWCNTs (CN{sub x}-MWCNTs) with reactive nitrogen groups and defective bamboo structures. In contrast to the report by Shinde et al. (J. Am. Chem. Soc. 2011, 133, 4168–4171), it has been concluded that the electrochemical oxidation in aqueous electrolytes is very unlikely to facilitate sufficient incorporation of the intercalated molecules among the walls of the MWCNTs. These molecules are, however, responsible for unzipping of MWCNTs.

  3. Composite of Cu metal nanoparticles-multiwall carbon nanotubes-reduced graphene oxide as a novel and high performance platform of the electrochemical sensor for simultaneous determination of nitrite and nitrate

    Energy Technology Data Exchange (ETDEWEB)

    Bagheri, Hasan, E-mail: h.bagheri@bmsu.ac.ir [Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran (Iran, Islamic Republic of); Hajian, Ali [Laboratory for Sensors, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges Köhler Allee 103, 79110 Freiburg (Germany); Rezaei, Mosayeb; Shirzadmehr, Ali [Young Researchers and Elite Club, Hamedan Branch, Islamic Azad University, Hamedan (Iran, Islamic Republic of)

    2017-02-15

    Highlights: • An electrochemical sensor based on Cu metal nanoparticles-multiwall carbon nanotubes-reduced graphene oxide modified glassy carbon electrode was developed. • Simultaneous electrochemical determination of nitrate and nitrite by fabricated sensor was performed. • Modification improved the sensitivity and detection limit of the method. • It is a useful method for determining of nitrate and nitrite in various real samples. - Abstract: In the present research, we aimed to fabricate a novel electrochemical sensor based on Cu metal nanoparticles on the multiwall carbon nanotubes-reduced graphene oxide nanosheets (Cu/MWCNT/RGO) for individual and simultaneous determination of nitrite and nitrate ions. The morphology of the prepared nanocomposite on the surface of glassy carbon electrode (GCE) was characterized using various methods including scanning electron microscopy (SEM), atomic force microscopy (AFM), and electrochemical impedance spectroscopy. Under optimal experimental conditions, the modified GCE showed excellent catalytic activity toward the electro-reduction of nitrite and nitrate ions (pH = 3.0) with a significant increase in cathodic peak currents in comparison with the unmodified GCE. By square wave voltammetry (SWV) the fabricated sensor demonstrated wide dynamic concentration ranges from 0.1 to 75 μM with detection limits (3S{sub b}/m) of 30 nM and 20 nM method for nitrite and nitrate ions, respectively. Furthermore, the applicability of the proposed modified electrode was demonstrated by measuring the concentration of nitrite and nitrate ions in the tap and mineral waters, sausages, salami, and cheese samples.

  4. Composite of Cu metal nanoparticles-multiwall carbon nanotubes-reduced graphene oxide as a novel and high performance platform of the electrochemical sensor for simultaneous determination of nitrite and nitrate

    International Nuclear Information System (INIS)

    Bagheri, Hasan; Hajian, Ali; Rezaei, Mosayeb; Shirzadmehr, Ali

    2017-01-01

    Highlights: • An electrochemical sensor based on Cu metal nanoparticles-multiwall carbon nanotubes-reduced graphene oxide modified glassy carbon electrode was developed. • Simultaneous electrochemical determination of nitrate and nitrite by fabricated sensor was performed. • Modification improved the sensitivity and detection limit of the method. • It is a useful method for determining of nitrate and nitrite in various real samples. - Abstract: In the present research, we aimed to fabricate a novel electrochemical sensor based on Cu metal nanoparticles on the multiwall carbon nanotubes-reduced graphene oxide nanosheets (Cu/MWCNT/RGO) for individual and simultaneous determination of nitrite and nitrate ions. The morphology of the prepared nanocomposite on the surface of glassy carbon electrode (GCE) was characterized using various methods including scanning electron microscopy (SEM), atomic force microscopy (AFM), and electrochemical impedance spectroscopy. Under optimal experimental conditions, the modified GCE showed excellent catalytic activity toward the electro-reduction of nitrite and nitrate ions (pH = 3.0) with a significant increase in cathodic peak currents in comparison with the unmodified GCE. By square wave voltammetry (SWV) the fabricated sensor demonstrated wide dynamic concentration ranges from 0.1 to 75 μM with detection limits (3S_b/m) of 30 nM and 20 nM method for nitrite and nitrate ions, respectively. Furthermore, the applicability of the proposed modified electrode was demonstrated by measuring the concentration of nitrite and nitrate ions in the tap and mineral waters, sausages, salami, and cheese samples.

  5. A new sensor based on glassy carbon electrode modified with nanocomposite for simultaneous determination of acetaminophen, ascorbic acid and uric acid

    Directory of Open Access Journals (Sweden)

    Mohammad Afrasiabi

    2016-09-01

    Full Text Available A chemically-modified electrode has been constructed based on a single walled carbon nanotube/chitosan/room temperature ionic liquid nanocomposite modified glassy carbon electrode (SWCNTs–CHIT–RTIL/GCE. It was demonstrated that this sensor could be used for simultaneous determination of acetaminophen (ACT, uric acid (URI and ascorbic acid (ASC. The measurements were carried out by application of differential pulse voltammetry (DPV, cyclic voltammetry (CV and chronoamperometry (CA methods. Electrochemical studies suggested that the RTIL and SWCNTs provided a synergistic augmentation that can increase current responses by improvement of electron transfers of these compounds on the electrode surface. The presence of the CHIT in the modified electrode can enhance the repeatability of the sensor by its antifouling effect. The modified electrode showed electrochemical responses with high sensitivity for ACT, URI and ASC determination, which makes it a suitable sensor for simultaneous sub-μmol L−1 detection of ACT, URI and ASC in aqueous solutions. The analytical performance of this sensor has been evaluated for detection of ACT, URI and ASC in human serum and urine with satisfactory results.

  6. Immunoassay for serum amyloid A using a glassy carbon electrode modified with carboxy-polypyrrole, multiwalled carbon nanotubes, ionic liquid and chitosan

    International Nuclear Information System (INIS)

    Xia, Chunyong; Li, Yuan; Yuan, Guolin; Guo, Yanlei; Yu, Chao

    2015-01-01

    We report on a highly sensitive electrochemical immunoassay for the serum inflammation marker amyloid A (SAA). It is making use of a glassy carbon electrode that was modified with carboxy-endcapped polypyrrole (PPy-α-COOH), multiwalled carbon nanotubes (MWCNTs), ionic liquid and chitosan acting as the support platform. The nanocomposite increases the sensitivity and stability of the assay. Antibody against SAA was immobilized on a monolayer surface consisting of PPy-α-COOH. The electrode material was characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectra, cyclic voltammetry, electrochemical impedance spectroscopy and differential pulse voltammetry. The calibration plot for this assay, when operated at 0.16 V (vs. SCE) and applied to spiked serum samples, is linear in the 0.001 to 900 ng mL −1 SAA concentration range, and the detection limit is as low as 0.3 pg mL −1 (at an S/N ratio of 3). The electrode is stable and highly sensitive. The detection scheme is likely to be applicable to numerous other kinds of immunoassays. (author)

  7. Dispositional study of opioids in mice pretreated with sympathomimetic agents.

    Science.gov (United States)

    Dambisya, Y M; Chan, K; Wong, C L

    1992-08-01

    Brain and plasma levels of morphine and codeine were determined by an assay method involving solid-phase extraction and ion-pair reversed phase HPLC. Detection was by a variable wavelength UV-detector (for codeine) and an amperometric electro-chemical detector (for morphine) coupled in series. Ephedrine or phenylpropanolamine pretreatment did not interfere with the plasma disposition of morphine, evidenced by overlapping plasma concentration-time profiles. Brain opioid levels were equally unaffected by sympathomimetic pretreatment. The relative ratios of brain to plasma concentrations at the time corresponding to the respective peak anti-nociceptive activity for morphine and codeine revealed no significant differences. It is concluded that single doses of ephedrine and phenylpropanolamine do not affect the disposition of morphine and codeine in mice.

  8. A glassy carbon electrode modified with a nanocomposite consisting of molybdenum disulfide intercalated into self-doped polyaniline for the detection of bisphenol A

    International Nuclear Information System (INIS)

    Yang, Tao; Chen, Huaiyin; Yang, Ruirui; Jiang, Yuhang; Jiao, Kui; Li, Weihua

    2015-01-01

    Thin-layered molybdenum disulfide (MoS 2 ) was intercalated, via ultrasonic exfoliation, into self-doped polyaniline (SPAN). This material, when placed on a glassy carbon electrode (GCE), exhibits excellent electrical conductivity and synergistic catalytic activity with respect to the detection of bisphenol A (BPA). The electrochemical response of the modified GCE to BPA was investigated by cyclic voltammetry and differential pulse voltammetry. Under optimal conditions, the oxidation peak current (measured best at 446 mV vs. SCE) is related to the concentration of BPA in the range from 1.0 nM to 1.0 μM, and the detection limit is 0.6 nM. (author)

  9. Electrical properties of carbon nanotubes modified GaSe glassy system

    Science.gov (United States)

    Khan, Hana; Khan, Zubair M. S. H.; Islam, Shama; Rahman, Raja Saifu; Husain, M.; Zulfequar, M.

    2018-05-01

    In this paper we report the investigation of the effect of Carbon Nanotubes (CNT) addition on the electrical properties of GaSe Glassy system. Dielectric constant and dielectric loss of GaSe glassy system are found to increase on CNT addition. The conductivity of GaSe glasy systems is also found to increase on CNT addition. This behavior is attributed to the excellent conduction properties of Carbon Nanotube.

  10. MWCNTs/Cu(OH)2 nanoparticles/IL nanocomposite modified glassy carbon electrode as a voltammetric sensor for determination of the non-steroidal anti-inflammatory drug diclofenac

    International Nuclear Information System (INIS)

    Arvand, Majid; Gholizadeh, Tahereh M.; Zanjanchi, Mohammad Ali

    2012-01-01

    This paper describes the development and utilization of a new nanocomposite consisting of Cu(OH) 2 nanoparticles, hydrophobic ionic liquid 1-ethyl-3-methylimidazolium hexafluorophosphate (EMIMPF 6 ) and multiwalled carbon nanotubes for glassy carbon electrode modification. The nanocomposite was characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM) along with energy-dispersive X-ray spectroscopy (EDX). The modified electrode was used for electrochemical characterization of diclofenac. Using differential pulse voltammetry, the prepared sensor showed good sensitivity and selectivity with low overpotential for the determination of diclofenac in the range from 0.18 to 119 μM, with a detection limit of 0.04 μM. Electrochemical studies suggested that the MWCNTs/Cu(OH) 2 nanoparticles/IL nanocomposite modified electrode provided a synergistic augmentation on the voltammetric behavior of electrochemical oxidation of diclofenac, which was indicated by the improvement of anodic peak current. Highlights: ► This work examines oxidation of diclofenac at a nanocomposite modified electrode. ► The salient feature of this electrode is large diffusion coefficient. ► The proposed electrode decreased overpotential of diclofenac electrooxidation. ► The modified electrode has good stability and reproducibility.

  11. Immobilization of CotA, an extremophilic laccase from Bacillus subtilis, on glassy carbon electrodes for biofuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Beneyton, T.; El Harrak, A.; Griffiths, A.D.; Taly, V. [Institut de Science et d' Ingenierie Supramoleculaire, CNRS UMR, Strasbourg (France); Hellwig, P. [Institut de Chimie, Universite de Strasbourg, CNRS UMR, Strasbourg (France)

    2011-01-15

    Thanks to their high stability over a wide range of experimental conditions, extremophilic enzymes represent an interesting alternative to mesophilic enzymes as catalysts for biofuel cell applications. In the present work, we report for the first time the immobilization of a thermophilic laccase (CotA from Bacillus subtilis endospore coat) on glassy carbon electrodes functionalized via electrochemical reduction of in situ generated aminophenyl monodiazonium salts. We compare the performance of CotA-modified electrodes for the reduction of O{sub 2} to mutant variants and demonstrate that the measured electrical current is directly correlated to the catalytic efficiencies (k{sub cat}/K{sub m}) of the immobilized enzyme. CotA-modified electrodes showed an optimal operation temperature of 45-50 C and stable catalytic activity for at least 7 weeks. (author)

  12. Electrochemical sensor based on magnetic molecularly imprinted nanoparticles modified magnetic electrode for determination of Hb.

    Science.gov (United States)

    Sun, Binghua; Ni, Xinjiong; Cao, Yuhua; Cao, Guangqun

    2017-05-15

    A fast and selective electrochemical sensor for determination of hemoglobin (Hb) was developed based on magnetic molecularly imprinted nanoparticles modified on the magnetic glassy carbon electrode. The nanoparticles Fe 3 O 4 @SiO 2 with a magnetic core and a molecularly imprinted shell had regular structures and good monodispersity. Hb could be determined directly by electrochemical oxidization with the modified electrode. A magnetic field increased electrochemical response to Hb by two times. Imprinting Hb on the surface of Fe 3 O 4 @SiO 2 shortened the response time within 7min. Under optimum conditions, the imprinting factor toward the non-imprinted sensor was 2.8, and the separation factor of Hb to horseradish peroxidase was 2.6. The oxidation peak current had a linear relationship with Hb concentration ranged from 0.005mg/ml to 0.1mg/ml with a detection limit (S/N =3) of 0.0010mg/ml. The sensors were successfully applied to analysis of Hb in whole blood samples with recoveries between 95.7% and 105%. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. An electrochemical sensor for rizatriptan benzoate determination using Fe{sub 3}O{sub 4} nanoparticle/multiwall carbon nanotube-modified glassy carbon electrode in real samples

    Energy Technology Data Exchange (ETDEWEB)

    Madrakian, Tayyebeh, E-mail: madrakian@basu.ac.ir; Maleki, Somayeh; Heidari, Mozhgan; Afkhami, Abbas

    2016-06-01

    In this paper a sensitive and selective electrochemical sensor for determination of rizatriptan benzoate (RZB) was proposed. A glassy carbon electrode was modified with nanocomposite of multiwalled carbon nanotubes (MWCNTs) and Fe{sub 3}O{sub 4} nanoparticles (Fe{sub 3}O{sub 4}/MWCNTs/GCE). The results obtained clearly show that the combination of MWCNTs and Fe{sub 3}O{sub 4} nanoparticles definitely improves the sensitivity of modified electrode to RZB determination. The morphology and electroanalytical performance of the fabricated sensor were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), square wave voltammetry (SWV) and cyclic voltammetry (CV). Also, the effect of experimental and instrumental parameters on the sensor response was evaluated. The square wave voltammetric response of the electrode to RZB was linear in the range 0.5–100.0 μmol L{sup −1} with a detection limit of 0.09 μmol L{sup −1} under the optimum conditions. The investigated method showed good stability, reproducibility and repeatability. The proposed sensor was successfully applied for real life samples of blood serum and RZB determination in pharmaceutical. - Highlights: • Simple and sensitive Fe{sub 3}O{sub 4}/MWCNTs/GCE for rizatriptan benzoate determination • The surface morphology of nanocomposite was characterized by SEM and EDS. • Rizatriptan benzoate was measured at 0.09 μmol L{sup −1} with good sensitivity and selectivity. • The electrode has been successfully applied in serum and pharmaceutical samples. • The nanocomposite had excellent electrocatalytic activity and biocompatibility.

  14. Kinetics of oxygen reduction reaction at electrochemically fabricated tin-palladium bimetallic electrocatalyst in acidic media

    Energy Technology Data Exchange (ETDEWEB)

    Miah, Md. Rezwan, E-mail: mrmche@yahoo.co [Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Mail Box G1-5, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502 (Japan); Masud, Jahangir [Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Mail Box G1-5, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502 (Japan); Ohsaka, Takeo, E-mail: ohsaka@echem.titech.ac.j [Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Mail Box G1-5, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502 (Japan)

    2010-12-15

    In the present article, oxygen reduction reaction (ORR) at electrochemically fabricated tin-palladium (Sn-Pd) bimetallic electrocatalyst-modified glassy carbon (GC) electrode (Sn-Pd/GC electrode) in acidic media is addressed. Hydrodynamic voltammetric measurements were employed with a view to evaluating various kinetic parameters of the ORR at the Sn-Pd/GC electrode. The obtained results obviously demonstrated that the Sn-Pd bimetallic electrocatalyt substantially promoted the activity of the GC electrode and drove the ORR through an exclusive one-step four-electron pathway forming H{sub 2}O as the final product.

  15. Kinetics of oxygen reduction reaction at electrochemically fabricated tin-palladium bimetallic electrocatalyst in acidic media

    International Nuclear Information System (INIS)

    Miah, Md. Rezwan; Masud, Jahangir; Ohsaka, Takeo

    2010-01-01

    In the present article, oxygen reduction reaction (ORR) at electrochemically fabricated tin-palladium (Sn-Pd) bimetallic electrocatalyst-modified glassy carbon (GC) electrode (Sn-Pd/GC electrode) in acidic media is addressed. Hydrodynamic voltammetric measurements were employed with a view to evaluating various kinetic parameters of the ORR at the Sn-Pd/GC electrode. The obtained results obviously demonstrated that the Sn-Pd bimetallic electrocatalyt substantially promoted the activity of the GC electrode and drove the ORR through an exclusive one-step four-electron pathway forming H 2 O as the final product.

  16. An enzymatic glucose biosensor based on a glassy carbon electrode modified with cylinder-shaped titanium dioxide nanorods

    International Nuclear Information System (INIS)

    Yang, Zhanjun; Xu, Youbao; Li, Juan; Jian, Zhiqin; Yu, Suhua; Zhang, Yongcai; Hu, Xiaoya; Dionysiou, Dionysios D.

    2015-01-01

    We describe a highly sensitive electrochemical enzymatic glucose biosensor. A glassy carbon electrode was modified with cylinder-shaped titanium dioxide nanorods (TiO 2 -NRs) for the immobilization of glucose oxidase. The modified nanorods and the enzyme biosensor were characterized by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, electrochemical impedance spectroscopy and cyclic voltammetry. The glucose oxidase on the TiO 2 -NRs displays a high activity and undergoes fast surface-controlled electron transfer. A pair of well-defined quasi-reversible redox peaks was observed at −0.394 and −0.450 V. The TiO 2 -NRs provide a good microenvironment to facilitate the direct electron transfer between enzyme and electrode surface. The biosensor has two linear response ranges, viz. from 2.0 to 52 μM, and 0.052 to 2.3 mM. The lower detection limit is 0.5 μM, and the sensitivity is 68.58 mA M −1 cm −2 . The glucose biosensor is selective, well reproducible, and stable. In our perception, the cylindrically shaped TiO 2 -NRs provide a promising support for the immobilization of proteins and pave the way to the development of high-performance biosensors. (author)

  17. Fabrication of an electrochemical nanoaptasensor based on AuNPs for ultrasensitive determination of cocaine in serum sample

    International Nuclear Information System (INIS)

    Roushani, Mahmoud; Shahdost-fard, Faezeh

    2016-01-01

    Herein we describe an ultrasensitive electrochemical nanoaptasensor for the detection of one of the most dangerous narcotic drugs available, cocaine. The nanoaptasensor was constructed by the covalent attachment of a 5′-NH 2 -3′-gold nanoparticles terminated aptamer on the surface of a glassy carbon electrode which was deposited with gold nanoparticles (AuNPs/GCE). It is worth noting that the interaction of the cysteamine stable self-assembled monolayer on the AuNPs/GCE surface and the covalent attachment of terephthalaldehyde via amide coupling with the amine groups in the cysteamine and aptamer, respectively, resulted in the covalent attachment of the aptamer to AuNPs/GCE. The presence of gold nanoparticles both on surface of the glassy carbon electrode and in the end of the aptamer, can provide advantages such as increase of active surface area, high acceleration of the electron transfer and improved electrochemical signal, respectively. The decrease in the peak current of [Fe(CN) 6 ] 3−/4− as the probe redox with increase of cocaine concentration, in differential pulse voltammetry as the measuring technique, from 5 pM up to 5 nM was linear and an unprecedented detection limit of 0.5 pM was yielded. Furthermore, the effect of some common analgesic drugs as the potential interferents were investigated and also, to evaluate practical application of the proposed nanoaptasensor human blood serum sample as a real sample was used. Simple preparation, low operation cost, speed and validity are the decisive factors of this method motivating its application to biosensing investigation. - Highlights: • An electrochemical nanoaptasensor for the detection of cocaine is presented. • An AuNPs terminated aptamer was covalent bonded on the surface of the AuNPs/GCE. • The presence of AuNPs has many advantages and improved electrochemical signal. • Two linear ranges from 5 pM up to 5 nM and an unprecedented LOD of 0.5 pM were yielded. • It will shed light on new

  18. Fabrication of an electrochemical nanoaptasensor based on AuNPs for ultrasensitive determination of cocaine in serum sample

    Energy Technology Data Exchange (ETDEWEB)

    Roushani, Mahmoud, E-mail: mahmoudroushani@yahoo.com; Shahdost-fard, Faezeh

    2016-04-01

    Herein we describe an ultrasensitive electrochemical nanoaptasensor for the detection of one of the most dangerous narcotic drugs available, cocaine. The nanoaptasensor was constructed by the covalent attachment of a 5′-NH{sub 2}-3′-gold nanoparticles terminated aptamer on the surface of a glassy carbon electrode which was deposited with gold nanoparticles (AuNPs/GCE). It is worth noting that the interaction of the cysteamine stable self-assembled monolayer on the AuNPs/GCE surface and the covalent attachment of terephthalaldehyde via amide coupling with the amine groups in the cysteamine and aptamer, respectively, resulted in the covalent attachment of the aptamer to AuNPs/GCE. The presence of gold nanoparticles both on surface of the glassy carbon electrode and in the end of the aptamer, can provide advantages such as increase of active surface area, high acceleration of the electron transfer and improved electrochemical signal, respectively. The decrease in the peak current of [Fe(CN){sub 6}]{sup 3−/4−} as the probe redox with increase of cocaine concentration, in differential pulse voltammetry as the measuring technique, from 5 pM up to 5 nM was linear and an unprecedented detection limit of 0.5 pM was yielded. Furthermore, the effect of some common analgesic drugs as the potential interferents were investigated and also, to evaluate practical application of the proposed nanoaptasensor human blood serum sample as a real sample was used. Simple preparation, low operation cost, speed and validity are the decisive factors of this method motivating its application to biosensing investigation. - Highlights: • An electrochemical nanoaptasensor for the detection of cocaine is presented. • An AuNPs terminated aptamer was covalent bonded on the surface of the AuNPs/GCE. • The presence of AuNPs has many advantages and improved electrochemical signal. • Two linear ranges from 5 pM up to 5 nM and an unprecedented LOD of 0.5 pM were yielded. • It will shed

  19. A low-temperature synthesis of electrochemical active Pt nanoparticles and thin films by atomic layer deposition on Si(111) and glassy carbon surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Rui [Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, CA 91125 (United States); Han, Lihao [Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, CA 91125 (United States); Photovoltaic Materials and Devices (PVMD) Laboratory, Delft University of Technology, P.O. Box 5031, GA Delft 2600 (Netherlands); Huang, Zhuangqun; Ferrer, Ivonne M. [Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, CA 91125 (United States); Division of Chemistry and Chemical Engineering, California Institute of Technology, 210 Noyes Laboratory 127-72, Pasadena, CA 91125 (United States); Smets, Arno H.M.; Zeman, Miro [Photovoltaic Materials and Devices (PVMD) Laboratory, Delft University of Technology, P.O. Box 5031, GA Delft 2600 (Netherlands); Brunschwig, Bruce S., E-mail: bsb@caltech.edu [Beckman Institute, California Institute of Technology, Pasadena, CA 91125 (United States); Lewis, Nathan S., E-mail: nslewis@caltech.edu [Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, CA 91125 (United States); Beckman Institute, California Institute of Technology, Pasadena, CA 91125 (United States); Division of Chemistry and Chemical Engineering, California Institute of Technology, 210 Noyes Laboratory 127-72, Pasadena, CA 91125 (United States); Kavli Nanoscience Institute, California Institute of Technology, Pasadena, CA 91125 (United States)

    2015-07-01

    Atomic layer deposition (ALD) was used to deposit nanoparticles and thin films of Pt onto etched p-type Si(111) wafers and glassy carbon discs. Using precursors of MeCpPtMe{sub 3} and ozone and a temperature window of 200–300 °C, the growth rate was 80–110 pm/cycle. X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and scanning electron microscopy (SEM) were used to analyze the composition, structure, morphology, and thickness of the ALD-grown Pt nanoparticle films. The catalytic activity of the ALD-grown Pt for the hydrogen evolution reaction was shown to be equivalent to that of e-beam evaporated Pt on glassy carbon electrode. - Highlights: • Pure Pt films were grown by atomic layer deposition (ALD) using MeCpPtMe3 and ozone. • ALD-grown Pt thin films had high growth rates of 110 pm/cycle. • ALD-grown Pt films were electrocatalytic for hydrogen evolution from water. • Electrocatalytic activity of the ALD Pt films was equivalent to e-beam deposited Pt. • No carbon species were detected in the ALD-grown Pt films.

  20. A low-temperature synthesis of electrochemical active Pt nanoparticles and thin films by atomic layer deposition on Si(111) and glassy carbon surfaces

    International Nuclear Information System (INIS)

    Liu, Rui; Han, Lihao; Huang, Zhuangqun; Ferrer, Ivonne M.; Smets, Arno H.M.; Zeman, Miro; Brunschwig, Bruce S.; Lewis, Nathan S.

    2015-01-01

    Atomic layer deposition (ALD) was used to deposit nanoparticles and thin films of Pt onto etched p-type Si(111) wafers and glassy carbon discs. Using precursors of MeCpPtMe 3 and ozone and a temperature window of 200–300 °C, the growth rate was 80–110 pm/cycle. X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and scanning electron microscopy (SEM) were used to analyze the composition, structure, morphology, and thickness of the ALD-grown Pt nanoparticle films. The catalytic activity of the ALD-grown Pt for the hydrogen evolution reaction was shown to be equivalent to that of e-beam evaporated Pt on glassy carbon electrode. - Highlights: • Pure Pt films were grown by atomic layer deposition (ALD) using MeCpPtMe3 and ozone. • ALD-grown Pt thin films had high growth rates of 110 pm/cycle. • ALD-grown Pt films were electrocatalytic for hydrogen evolution from water. • Electrocatalytic activity of the ALD Pt films was equivalent to e-beam deposited Pt. • No carbon species were detected in the ALD-grown Pt films

  1. Grain-boundary, glassy-phase identification and possible artifacts

    International Nuclear Information System (INIS)

    Simpson, Y.K.; Carter, C.B.; Sklad, P.; Bentley, J.

    1985-01-01

    Specimen artifacts such as grain boundary grooving, surface damage of the specimen, and Si contamination are shown experimentally to arise from the ion milling used in the preparation of transmission electron microscopy specimens. These artifacts in polycrystalline, ceramic specimens can cause clean grain boundaries to appear to contain a glassy phase when the dark-field diffuse scattering technique, the Fresnel fringe technique, and analytical electron microscopy (energy dispersive spectroscopy) are used to identify glassy phases at a grain boundary. The ambiguity in interpreting each of these techniques due to the ion milling artifacts will be discussed from a theoretical view point and compared to experimental results obtained for alumina

  2. Effect of oxide ion concentration on the electrochemical oxidation of carbon in molten LiCl

    International Nuclear Information System (INIS)

    Yun, J. W.; Choi, I. K.; Park, Y. S.; Kim, W. H.

    2001-01-01

    The continuous measurement of lithium oxide concentration was required in DOR (Direct Oxide Reduction) process, which converts spent nuclear fuel to metal form, for the reactivity monitor and effective control of the process. The concentration of lithium oxide was measured by the electrochemical method, which was based on the phenomenon that carbon atoms of glassy carbon electrode electrochemically react with oxygen ions of lithium oxide in molten LiCl medium. From the results of electrode polarization experiments, the trend of oxidation rate of carbon atoms was classified into two different regions, which were proportional and non-proportional ones, dependent on the amount of lithium oxide. Below about 2.5 wt % Li 2 O, as the carbon atom ionization rate was fast enough for reacting with diffusing lithium oxide to the surface of carbon electrode. In this concentration range, the oxidation rate of carbon atoms was controlled by the diffusion of lithium oxide, and the concentration of lithium oxide could be measured by electrochemical method. But, above 2.5 wt % Li 2 O, the oxidation rate of carbon atoms was controlled by the applied electrochemical potential, because the carbon atom ionization rate was suppressed by the huge amounts of diffusing Li 2 O. Above this concentration, the electrochemical method was not applicable to determine the concentration of lithium oxide

  3. Electrochemical reduction of oxygen on gold and boron-doped diamond electrodes in ambient temperature, molten acetamide-urea-ammonium nitrate eutectic melt

    International Nuclear Information System (INIS)

    Dilimon, V.S.; Venkata Narayanan, N.S.; Sampath, S.

    2010-01-01

    The electrochemical reduction of oxygen has been studied on gold, boron-doped diamond (BDD) and glassy carbon (GC) electrodes in a ternary eutectic mixture of acetamide (CH 3 CONH 2 ), urea (NH 2 CONH 2 ) and ammonium nitrate (NH 4 NO 3 ). Cyclic voltammetry (CV), differential pulse voltammetry (DPV), chronoamperometry and rotating disk electrode (RDE) voltammetry techniques have been employed to follow oxygen reduction reaction (ORR). The mechanism for the electrochemical reduction of oxygen on polycrystalline gold involves 2-step, 2-electron pathways of O 2 to H 2 O 2 and further reduction of H 2 O 2 to H 2 O. The first 2-electron reduction of O 2 to H 2 O 2 passes through superoxide intermediate by 1-electron reduction of oxygen. Kinetic results suggest that the initial 1-electron reduction of oxygen to HO 2 is the rate-determining step of ORR on gold surfaces. The chronoamperometric and RDE studies show a potential dependent change in the number of electrons on gold electrode. The oxygen reduction reaction on boron-doped diamond (BDD) seems to proceed via a direct 4-electron process. The reduction of oxygen on the glassy carbon (GC) electrode is a single step, irreversible, diffusion limited 2-electron reduction process to peroxide.

  4. Multilayer poly(3,4-ethylenedioxythiophene)-dexamethasone and poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate-carbon nanotubes coatings on glassy carbon microelectrode arrays for controlled drug release.

    Science.gov (United States)

    Castagnola, Elisa; Carli, Stefano; Vomero, Maria; Scarpellini, Alice; Prato, Mirko; Goshi, Noah; Fadiga, Luciano; Kassegne, Sam; Ricci, Davide

    2017-07-13

    The authors present an electrochemically controlled, drug releasing neural interface composed of a glassy carbon (GC) microelectrode array combined with a multilayer poly(3,4-ethylenedioxythiophene) (PEDOT) coating. The system integrates the high stability of the GC electrode substrate, ideal for electrical stimulation and electrochemical detection of neurotransmitters, with the on-demand drug-releasing capabilities of PEDOT-dexamethasone compound, through a mechanically stable interlayer of PEDOT-polystyrene sulfonate (PSS)-carbon nanotubes (CNT). The authors demonstrate that such interlayer improves both the mechanical and electrochemical properties of the neural interface, when compared with a single PEDOT-dexamethasone coating. Moreover, the multilayer coating is able to withstand 10 × 10 6 biphasic pulses and delamination test with negligible change to the impedance spectra. Cross-section scanning electron microscopy images support that the PEDOT-PSS-CNT interlayer significantly improves the adhesion between the GC substrate and PEDOT-dexamethasone coating, showing no discontinuities between the three well-interconnected layers. Furthermore, the multilayer coating has superior electrochemical properties, in terms of impedance and charge transfer capabilities as compared to a single layer of either PEDOT coating or the GC substrate alone. The authors verified the drug releasing capabilities of the PEDOT-dexamethasone layer when integrated into the multilayer interface through repeated stimulation protocols in vitro, and found a pharmacologically relevant release of dexamethasone.

  5. Highly improved sensing of dopamine by using glassy carbon electrode modified with MnO2, graphene oxide, carbon nanotubes and gold nanoparticles

    International Nuclear Information System (INIS)

    Rao, Dejiang; Zhang, Xinjin; Sheng, Qinglin; Zheng, Jianbin

    2016-01-01

    A composite material obtained by ultrasonication of graphene oxide (GO) and multi-walled carbon nanotubes (MWCNTs) was loaded with manganese dioxide (MnO 2 ), poly(diallyldimethylammonium chloride) and gold nanoparticles (AuNPs), and the resulting multilayer hybrid films were deposited on a glassy carbon electrode (GCE). The microstructure, composition and electrochemical behavior of the composite and the modified GCE were characterized by transmission electron microscopy, Raman spectra, energy-dispersive X-ray spectroscopy, electrochemical impedance spectroscopy and cyclic voltammetry. The electrode induces efficient electrocatalytic oxidation of dopamine at a rather low working voltage of 0.22 V (vs. SCE) at neutral pH values. The response is linear in the 0.5 μM to 2.5 mM concentration range, the sensitivity is 233.4 μA·mM -1 ·cm -2 , and the detection limit is 0.17 μM at an SNR of 3. The sensor is well reproducible and stable. It displays high selectivity over ascorbic acid, uric acid and glucose even if these are present in comparable concentrations. (author)

  6. Electrochemical DNA biosensor based on avidin-biotin conjugation for influenza virus (type A) detection

    Science.gov (United States)

    Chung, Da-Jung; Kim, Ki-Chul; Choi, Seong-Ho

    2011-09-01

    An electrochemical DNA biosensor (E-DNA biosensor) was fabricated by avidin-biotin conjugation of a biotinylated probe DNA, 5'-biotin-ATG AGT CTT CTA ACC GAG GTC GAA-3', and an avidin-modified glassy carbon electrode (GCE) to detect the influenza virus (type A). An avidin-modified GCE was prepared by the reaction of avidin and a carboxylic acid-modified GCE, which was synthesized by the electrochemical reduction of 4-carboxyphenyl diazonium salt. The current value of the E-DNA biosensor was evaluated after hybridization of the probe DNA and target DNA using cyclic voltammetry (CV). The current value decreased after the hybridization of the probe DNA and target DNA. The DNA that was used follows: complementary target DNA, 5'-TTC GAC CTC GGT TAG AAG ACT CAT-3' and two-base mismatched DNA, 5'-TTC GAC AGC GGT TAT AAG ACT CAT-3'.

  7. Amperometric sensing of nitrite using a glassy carbon electrode modified with a multilayer consisting of carboxylated nanocrystalline cellulose and poly(diallyldimethyl ammonium) ions in a PEDOT host

    International Nuclear Information System (INIS)

    Xu, Guiyun; Liang, Shaoping; Sheng, Ge; Luo, Xiliang; Fan, Jinshi

    2016-01-01

    Negatively charged carboxylated nanocrystalline cellulose (CNCC) and positively charged poly(diallyldimethyl ammonium chloride) (PDDA) were alternatingly assembled on the surface of a glassy carbon electrode to form a relatively uniform polyelectrolyte multilayer nanocomposite (CNCC/PDDA)n. It was then incorporated into a matrix of conducting poly(3,4-ethylenedioxythiophene) (PEDOT) electrodeposited on the surface of the electrode. The nanocomposites were prepared in various ratios of PEDOT and (CNCC/PDDA), and then characterized by transmission electron microscopy, scanning electron microscopy, electrochemical impedance spectroscopy, cyclic voltammetry, and differential pulse voltammetry. The PEDOT/(CNCC/PDDA)4 nanocomposite showed the lowest electrochemical impedance and best electrocatalytic activity towards the oxidation of nitrite. Based on these findings, an amperometric sensor was developed which, if operated at 0.80 V (vs. SCE), can detect nitrite in the 0.2 μM to 1.73 mM concentration range with a 57 nM detection limit. (author)

  8. Thermonuclear reactor materials composed of glassy carbons

    International Nuclear Information System (INIS)

    Kazumata, Yukio.

    1979-01-01

    Purpose: To improve the durability to plasma radiation by the use of glassy carbon as the structural materials for the first wall and the blanket in thermonuclear devices. Constitution: The glassy carbon (glass-like carbon) is obtained by forming specific organic substances into a predetermined configuration and carbonizing them by heat decomposition under special conditions. They are impermeable carbon material of 1.40 - 1.70 specific gravity, less graphitizable and being almost in isotropic crystal forms in which isotropic structure such as in graphite is scarcely observed. They have an extremely high hardness, are less likely to be damaged when exposed to radiation and have great strength and corrosion resistance. Accordingly, the service life of the reactor walls and the likes can remarkably be increased by using the materials. (Horiuchi, T.)

  9. Glassy aerosols with a range of compositions nucleate ice heterogeneously at cirrus temperatures

    Directory of Open Access Journals (Sweden)

    T. W. Wilson

    2012-09-01

    Full Text Available Atmospheric secondary organic aerosol (SOA is likely to exist in a semi-solid or glassy state, particularly at low temperatures and humidities. Previously, it has been shown that glassy aqueous citric acid aerosol is able to nucleate ice heterogeneously under conditions relevant to cirrus in the tropical tropopause layer (TTL. In this study we test if glassy aerosol distributions with a range of chemical compositions heterogeneously nucleate ice under cirrus conditions. Three single component aqueous solution aerosols (raffinose, 4-hydroxy-3-methoxy-DL-mandelic acid (HMMA and levoglucosan and one multi component aqueous solution aerosol (raffinose mixed with five dicarboxylic acids and ammonium sulphate were studied in both the liquid and glassy states at a large cloud simulation chamber. The investigated organic compounds have similar functionality to oxidised organic material found in atmospheric aerosol and have estimated temperature/humidity induced glass transition thresholds that fall within the range predicted for atmospheric SOA. A small fraction of aerosol particles of all compositions were found to nucleate ice heterogeneously in the deposition mode at temperatures relevant to the TTL (<200 K. Raffinose and HMMA, which form glasses at higher temperatures, nucleated ice heterogeneously at temperatures as high as 214.6 and 218.5 K respectively. We present the calculated ice active surface site density, ns, of the aerosols tested here and also of glassy citric acid aerosol as a function of relative humidity with respect to ice (RHi. We also propose a parameterisation which can be used to estimate heterogeneous ice nucleation by glassy aerosol for use in cirrus cloud models up to ~220 K. Finally, we show that heterogeneous nucleation by glassy aerosol may compete with ice nucleation on mineral dust particles in mid-latitudes cirrus.

  10. Positron annihilation study of graphite, glassy carbon and C60/C70 fullerene

    International Nuclear Information System (INIS)

    Hasegawa, Masayuki; Kajino, Masahiro; Yamaguchi, Sadae; Iwata, Tadao; Kuramoto, Eiichi; Takenaka, Minoru.

    1992-01-01

    ACAR (Angular Correlation of Annihilation Radiation) and positron lifetime measurements have been made on, HOPG (Highly Oriented Pyrolytic Graphite), isotropic fine-grained graphite, glassy carbons and C 60 /C 70 powder. HOPG showed marked bimodality along the c-axis and anisotropy in ACAR momentum distribution, which stem from characteristic annihilation between 'interlayer' positrons and π-electrons in graphite. ACAR curves of the isotropic graphite and glassy carbons are even narrower than that of HOPG perpendicular to the c-axis. Positron lifetime of 420 and 390 - 480 psec, much longer than that of 221 psec in HOPG, were observed for the isotropic graphite and glassy carbons respectively, which are due to positron trapping in structural voids in them. Positron lifetime and ACAR width (FWHM) can be well correlated to void sizes (1.7 to 5.0 nm) of glassy carbons which have been determined by small angle neutron (SAN) scattering measurements. ACAR curves and positron lifetime of C 60 /C 70 powder agree well with those of glassy carbons. This shows that positron wave functions extend, as in the voids of glassy carbons, much wider than open spaces of the octahedral interstices of the face-centered cubic (FCC) structure of C 60 crystal and strongly suggests positron trapping in the 'soccer ball' vacancy. Possible positron states in the carbon materials are discussed with a simple model of void volume-trapping. Preliminary results on neutron irradiation damage in HOPG are also presented. (author)

  11. Electrochemical characterisation of novel screen-printed carbon paste electrodes for voltammetric measurements

    Directory of Open Access Journals (Sweden)

    Sýs Milan

    2017-01-01

    Full Text Available This work is focused on the homemade screen-printed carbon paste electrode containing basically graphite powder (or glassy carbon powder, poly(vinylbchloride (PVC and paraffin oil. It compares the electrochemical properties of conventional carbon-based electrodes and prepared screen-printed carbon paste electrodes towards [Fe(CN6]3-/[Fe(CN6]4- and quinone/hydroquinone redox couples. Significant attention is paid to the development of the corresponding carbon inks, printing and the surface characterisation of the resulting electrodes by the scanning electron microscopy. An optimization consisted of the selection of the organic solvent, the optimal content of the used polymer with the chosen paste binder, appropriate isolation of electric contact, etc. Very similar properties of the prepared screen-printed electrodes, containing only corresponding carbon powder and 3 % PVC, with their conventional carbon paste electrode and glassy carbon-based electrodes, were observed during their characterisation. Screen-printed electrodes, with the pasting liquid usually provided satisfactory analytical data. Moreover, they can be used in the flow injection analysis and could undoubtedly replace the carbon paste grooved electrodes. It can be assumed that certain progress in the development of electrode materials was achieved by this research.

  12. Highly sensitive electrochemical determination of Sunset Yellow based on gold nanoparticles/graphene electrode

    International Nuclear Information System (INIS)

    Wang, Jin; Yang, Beibei; Wang, Huiwen; Yang, Ping; Du, Yukou

    2015-01-01

    An electrochemical sensor was prepared using Au nanoparticles and reduced graphene successfully decorated on the glassy carbon electrode (Au/RGO/GCE) through an electrochemical method which was applied to detect Sunset Yellow (SY). The as-prepared electrode was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM) and electrochemical measurements. The results of cyclic voltammetry (CV) proved that Au/RGO/GCE had the highest catalytic activity for the oxidation of SY as compared with GCE, Au/GCE, and RGO/GCE. Differential pulse voltammetry (DPV) showed that the linear calibration curves for SY on Au/RGO/GCE in the range of 0.002 μM–109.14 μM, and the detection limit was estimated to be 2 nM (S/N = 3). These results suggested that the obtained Au/RGO/GCE was applied to detect SY with high sensitivity, low detection limit and good stability, which provided a promising future for the development of portable sensor in food additives. - Highlights: • An Au/RGO composite was fabricated by electrochemical deposition method. • The oxidation current of SY on the composition is up to 10 μA. • The detection range of SY is 0.002–109.14 μM with a detection limit of 2 nM.

  13. Electrochemical preparation of iron cuboid nanoparticles and their catalytic properties for nitrite reduction

    International Nuclear Information System (INIS)

    Chen Yanxin; Chen Shengpei; Chen Qingsong; Zhou Zhiyou; Sun Shigang

    2008-01-01

    Iron cuboid nanoparticles supported on glassy carbon (denoted nm-Fe/GC) were prepared by electrochemical deposition under cyclic voltammetric (CV) conditions. The structure and composition of the Fe nanomaterials were characterized by scanning electron microscopy (SEM), selected area electron diffraction (SAED), X-ray diffraction (XRD) and energy dispersive X-ray analysis (EDX). The results demonstrated that the Fe cuboid nanoparticles are dispersed discretely on GC substrate with an average size ca. 171 nm, and confirmed that the electrochemical synthesized nanocubes are single crystals of pure Fe. The catalytic properties of the Fe cuboid nanoparticles towards nitrite electroreduction were investigated, and enhanced electrocatalytic activity of the Fe nanocubes has been determined. In comparison with the data obtained on a bulk-Fe electrode, the onset potential of nitrite reduction on nm-Fe/GC is positively sifted by 100 mV, and the steady reduction current density is enhanced about 2.4-3.2 times

  14. Fabrication and characterization of electrochemically prepared bioanode (polyaniline/ferritin/glucose oxidase) for biofuel cell application

    Science.gov (United States)

    ul Haque, Sufia; Inamuddin; Nasar, Abu; Asiri, Abdullah M.

    2018-01-01

    Porous matrix of polyaniline (PANI) has been electrodeposited along with the entrapment of biocompatible redox mediator ferritin (Frt) and glucose oxidase (GOx) on the surface of glassy carbon (GC) electrode. The characterizations have been carried out by X-ray Diffraction (XRD) and Transmission electron microscopy (TEM). The enhanced electrochemical signal transfer rate from enzyme to the electrode surface was due to the intimate contact of the enzyme with the electrochemically polymerized conducting PANI matrix. The PANI/Frt/GOx modified GC bioanode was used to investigate the electrocatalytic activity as a function of the concentration of glucose in the range of 10-60 mM. It was confirmed by the electrochemical impedance spectroscopy (EIS), the thick deposition of PANI layer becomes more compact due to which the charge transfer resistance of PANI matrix becomes higher. All the electrochemical measurements of the electrode were carried out by using cyclic voltammetry (CV) and linear sweep voltammetry (LSV). CV curves were recorded at different scan rates (20-100 mV/s) at 50 mM of glucose in 0.3 M potassium ferrocyanide. A normalized saturation current density of 22.3 ± 2 mA/cm2 was observed for the oxidation of 50 mM glucose at a scan rate of 100 mV/s.

  15. Advantages of electrodes with dendrimer-protected platinum nanoparticles and carbon nanotubes for electrochemical methanol oxidation.

    Science.gov (United States)

    Siriviriyanun, Ampornphan; Imae, Toyoko

    2013-04-14

    Electrochemical sensors consisting of electrodes loaded with carbon nanotubes and Pt nanoparticles (PtNPs) protected by dendrimers have been developed using a facile method to fabricate them on two types of disposable electrochemical printed chips with a screen-printed circular gold or a screen-printed circular glassy carbon working electrode. The electrochemical performance of these sensors in the oxidation of methanol was investigated by cyclic voltammetry. It was revealed that such sensors possess stable durability and high electrocatalytic activity: the potential and the current density of an anodic peak in the oxidation of methanol increased with increasing content of PtNPs on the electrodes, indicating the promotion of electrocatalytic activity in relation to the amount of catalyst. The low anodic potential suggests the easy electrochemical reaction, and the high catalyst tolerance supports the almost complete oxidation of methanol to carbon dioxide. The significant performance of these sensors in the detection of methanol oxidation comes from the high electrocatalytic ability of PtNPs, excellent energy transfer of carbon nanotubes and the remarkable ability of dendrimers to act as binders. Thus these systems are effective for a wide range of applications as chemical, biomedical, energy and environmental sensors and as units of direct methanol fuel cells.

  16. The mechanism and kinetics of the electrochemical cleavage of azo bond of 2-hydroxy-5-sulfophenyl-azo-benzoic acids

    International Nuclear Information System (INIS)

    Mandic, Zoran; Nigovic, Biljana; Simunic, Branimir

    2004-01-01

    The electrochemical reduction of 2-hydroxy-5-[(4-sulfophenyl)azo]benzoic acid, 2-hydroxy-5-[(3-sulfophenyl)azo]benzoic acid, 2-hydroxy-5-[(2-sulfophenyl)azo]benzoic acid and 2-hydroxy-5-azo-benzoic acid has been carried out in aqueous solutions at glassy carbon electrode using cyclic voltammetry and chronoamperometry. The position of sulfo substituent relative to azo bridge as well as pH of the solution have significant impact on the electrochemical behavior of these compounds. It has been proposed that these compounds are reduced predominantly as hydrazone tautomers resulting in corresponding hydrazo compounds. The overall electrochemical reduction follows DISP2 mechanism, ultimately leading to the 5-amino salicylic acid and sulfanilic acid. The rate determining step is the homogenous redox reaction between intermediate hydrazo compound and 5-amino salicylic acid quinoneimine. The mechanism is proposed in which activated complex of 5-amino salicylic acid quinoneimine and intermediate hydrazo compound is formed with the simultaneous loss of one proton

  17. Label-free, electrochemical detection of methicillin-resistant staphylococcus aureus DNA with reduced graphene oxide-modified electrodes

    KAUST Repository

    Wang, Zhijuan

    2011-05-01

    Reduced graphene oxide (rGO)-modified glassy carbon electrode is used to detect the methicillin-resistant Staphylococcus aureus (MRSA) DNA by using electrochemical impedance spectroscopy. Our experiments confirm that ssDNA, before and after hybridization with target DNA, are successfully anchored on the rGO surface. After the probe DNA, pre-adsorbed on rGO electrode, hybridizes with target DNA, the measured impedance increases dramatically. It provides a new method to detect DNA with high sensitivity (10-13M, i.e., 100 fM) and selectivity. © 2011 Elsevier B.V.

  18. Sensitive determination of citrinin based on molecular imprinted electrochemical sensor

    Energy Technology Data Exchange (ETDEWEB)

    Atar, Necip [Department of Chemical Engineering, Faculty of Engineering, Pamukkale University, Denizli (Turkey); Yola, Mehmet Lütfi, E-mail: mehmetyola@gmail.com [Department of Metallurgical and Materials Engineering, Faculty of Engineering, Sinop University, Sinop (Turkey); Eren, Tanju [Department of Chemical Engineering, Faculty of Engineering, Pamukkale University, Denizli (Turkey)

    2016-01-30

    Graphical abstract: - Highlights: • Citrinin-imprinted electrochemical sensor is developed for the sensitive detection of citrinin. • The nanomaterial and citrinin-imprinted surfaces were characterized by several methods. • Citrinin-imprinted electrochemical sensor is sensitive and selective in analysis of food. • Citrinin-imprinted electrochemical sensor is preferred to the other methods. - Abstract: In this report, a novel molecular imprinted voltammetric sensor based on glassy carbon electrode (GCE) modified with platinum nanoparticles (PtNPs) involved in a polyoxometalate (H{sub 3}PW{sub 12}O{sub 40}, POM) functionalized reduced graphene oxide (rGO) was prepared for the determination of citrinin (CIT). The developed surfaces were characterized by using scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) method. CIT imprinted GCE was prepared via electropolymerization process of 80.0 mM pyrrole as monomer in the presence of phosphate buffer solution (pH 6.0) containing 20.0 mM CIT. The linearity range and the detection limit of the developed method were calculated as 1.0 × 10{sup −12}–1.0 × 10{sup −10} M and 2.0 × 10{sup −13} M, respectively. In addition, the voltammetric sensor was applied to rye samples. The stability and selectivity of the voltammetric sensor were also reported.

  19. Sensitive determination of citrinin based on molecular imprinted electrochemical sensor

    International Nuclear Information System (INIS)

    Atar, Necip; Yola, Mehmet Lütfi; Eren, Tanju

    2016-01-01

    Graphical abstract: - Highlights: • Citrinin-imprinted electrochemical sensor is developed for the sensitive detection of citrinin. • The nanomaterial and citrinin-imprinted surfaces were characterized by several methods. • Citrinin-imprinted electrochemical sensor is sensitive and selective in analysis of food. • Citrinin-imprinted electrochemical sensor is preferred to the other methods. - Abstract: In this report, a novel molecular imprinted voltammetric sensor based on glassy carbon electrode (GCE) modified with platinum nanoparticles (PtNPs) involved in a polyoxometalate (H_3PW_1_2O_4_0, POM) functionalized reduced graphene oxide (rGO) was prepared for the determination of citrinin (CIT). The developed surfaces were characterized by using scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) method. CIT imprinted GCE was prepared via electropolymerization process of 80.0 mM pyrrole as monomer in the presence of phosphate buffer solution (pH 6.0) containing 20.0 mM CIT. The linearity range and the detection limit of the developed method were calculated as 1.0 × 10"−"1"2–1.0 × 10"−"1"0 M and 2.0 × 10"−"1"3 M, respectively. In addition, the voltammetric sensor was applied to rye samples. The stability and selectivity of the voltammetric sensor were also reported.

  20. Voltammetric quantitation of nitazoxanide by glassy carbon electrode

    Directory of Open Access Journals (Sweden)

    Rajeev Jain

    2013-12-01

    Full Text Available The present study reports voltammetric reduction of nitazoxanide in Britton–Robinson (B–R buffer by cyclic and square-wave voltammetry at glassy carbon electrode. A versatile fully validated voltammetric method for quantitative determination of nitazoxanide in pharmaceutical formulation has been proposed. A squrewave peak current was linear over the nitazoxanide concentration in the range of 20–140 µg/mL. The limit of detection (LOD and limit of quantification (LOQ was calculated to be 5.23 μg/mL and 17.45 μg/mL, respectively. Keywords: Nitazoxanide, Squarewave voltammetry, Glassy carbon electrode, Pharmaceutical formulation

  1. Nanomolar determination of 4-nitrophenol based on a poly(methylene blue)-modified glassy carbon electrode.

    Science.gov (United States)

    Giribabu, Krishnamoorthy; Suresh, Ranganathan; Manigandan, Ramadoss; Munusamy, Settu; Kumar, Sivakumar Praveen; Muthamizh, Selvamani; Narayanan, Vengidusamy

    2013-10-07

    A poly(methylene blue)-modified glassy carbon electrode (PMB/GCE) was fabricated by electropolymerisation of methylene blue on a GCE and further utilized to investigate the electrochemical determination of 4-nitrophenol (4-NP) by cyclic voltammetry (CV), differential pulse voltammetry and chronocoulometry. The morphology of the PMB on GCE was examined using a scanning electron microscope (SEM). An oxidation peak of 4-NP at the PMB modified electrode was observed at 0.28 V, and in the case of bare GCE, no oxidation peak was observed, which indicates that PMB/GCE exhibits a remarkable effect on the electrochemical determination of 4-NP. Due to this remarkable effect of PMB/GCE, a sensitive and simple electrochemical method was proposed for the determination of 4-NP. The effect of the scan rate and pH was investigated to determine the optimum conditions at which the PMB/GCE exhibits a higher sensitivity with a lower detection limit. Moreover, kinetic parameters such as the electron transfer number, proton transfer number and standard heterogeneous rate constant were calculated. Under optimum conditions, the oxidation current of 4-NP is proportional to its concentration in the range of 15-250 nM with a correlation coefficient of 0.9963. The detection limit was found to be 90 nM (S/N = 3). The proposed method based on PMB/GCE is simple, easy and cost effective. To further confirm its possible application, the proposed method was successfully used for the determination of 4-NP in real water samples with recoveries ranging from 97% to 101.6%. The interference due to sodium, potassium, calcium, magnesium, copper, zinc, iron, sulphate, carbonate, chloride, nitrate and phosphate was found to be almost negligible.

  2. Detection of dopamine in non-treated urine samples using glassy carbon electrodes modified with PAMAM dendrimer-Pt composites

    International Nuclear Information System (INIS)

    Garcia, M.G.; Armendariz, G.M.E.; Godinez, Luis A.; Torres, J.; Sepulveda-Guzman, S.; Bustos, E.

    2011-01-01

    Composites of hydroxyl-terminated PAMAM dendrimers, generation 4.0 (64 peripheral OH groups) containing Pt nanoparticles were synthesized at different reaction times using a microwave reactor. The synthetic procedure resulted in dendrimer encapsulated nanoparticles of Pt (DENs-Pt) of 1.53 ± 0.17 nm diameter that was calculated from transmission electron microscopy, and the Pt nanoparticles had single crystal plane in (1 1 1) orientation determinate by selective area diffraction. Each composite was electrochemically immobilized on a pre-functionalized glassy carbon (GC) electrode that was incorporated as a flow injection amperometric (FIA) detector, for the selective detection and quantification of dopamine (DA) in untreated urine samples. Comparison of the analytical performance of the novel electrochemical detector revealed that the DENs-Pt modified GC electrode with the composite synthesized for 30 min in the microwave reactor, showed the best response for the detection of DA in samples of non-treated urine, being the detection and quantification limits smaller (19 and 9 ppb, respectively) than those corresponding to the naked a GC electrode (846 and 423 ppb, respectively) using the FIA detector. In addition, it was found that this electroanalytical approach suffers minimal matrix effects that arise in the analysis of DA in untreated samples of urine.

  3. Detection of dopamine in non-treated urine samples using glassy carbon electrodes modified with PAMAM dendrimer-Pt composites

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, M.G. [Laboratory of Bioelectrochemistry, Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, S. C., Parque Tecnologico, Queretaro, Sanfandila, Pedro Escobedo 76703, Queretaro (Mexico); Department of Chemistry, Universidad de Guanajuato, Cerro de la Venada S/N Col. Pueblito de Rocha, 36040 Guanajuato, Gto (Mexico); Armendariz, G.M.E.; Godinez, Luis A.; Torres, J. [Laboratory of Bioelectrochemistry, Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, S. C., Parque Tecnologico, Queretaro, Sanfandila, Pedro Escobedo 76703, Queretaro (Mexico); Sepulveda-Guzman, S. [Centro de Innovacion, Investigacion y Desarrollo en Ingenieria y Tecnologia, Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, Av. Universidad, San Nicolas de los Garza, Nuevo Leon, 66451 Nuevo Leon (Mexico); Bustos, E., E-mail: ebustos@cideteq.mx [Laboratory of Bioelectrochemistry, Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, S. C., Parque Tecnologico, Queretaro, Sanfandila, Pedro Escobedo 76703, Queretaro (Mexico)

    2011-09-01

    Composites of hydroxyl-terminated PAMAM dendrimers, generation 4.0 (64 peripheral OH groups) containing Pt nanoparticles were synthesized at different reaction times using a microwave reactor. The synthetic procedure resulted in dendrimer encapsulated nanoparticles of Pt (DENs-Pt) of 1.53 {+-} 0.17 nm diameter that was calculated from transmission electron microscopy, and the Pt nanoparticles had single crystal plane in (1 1 1) orientation determinate by selective area diffraction. Each composite was electrochemically immobilized on a pre-functionalized glassy carbon (GC) electrode that was incorporated as a flow injection amperometric (FIA) detector, for the selective detection and quantification of dopamine (DA) in untreated urine samples. Comparison of the analytical performance of the novel electrochemical detector revealed that the DENs-Pt modified GC electrode with the composite synthesized for 30 min in the microwave reactor, showed the best response for the detection of DA in samples of non-treated urine, being the detection and quantification limits smaller (19 and 9 ppb, respectively) than those corresponding to the naked a GC electrode (846 and 423 ppb, respectively) using the FIA detector. In addition, it was found that this electroanalytical approach suffers minimal matrix effects that arise in the analysis of DA in untreated samples of urine.

  4. Fabrication and nano-imprintabilities of Zr-, Pd- and Cu-based glassy alloy thin films

    International Nuclear Information System (INIS)

    Takenaka, Kana; Saidoh, Noriko; Nishiyama, Nobuyuki; Inoue, Akihisa

    2011-01-01

    With the aim of investigating nano-imprintability of glassy alloys in a film form, Zr 49 Al 11 Ni 8 Cu 32 , Pd 39 Cu 29 Ni 13 P 19 and Cu 38 Zr 47 Al 9 Ag 6 glassy alloy thin films were fabricated on Si substrate by a magnetron sputtering method. These films exhibit a very smooth surface, a distinct glass transition phenomenon and a large supercooled liquid region of about 80 K, which are suitable for imprinting materials. Moreover, thermal nano-imprintability of these obtained films is demonstrated by using a dot array mold with a dot diameter of 90 nm. Surface observations revealed that periodic nano-hole arrays with a hole diameter of 90 nm were successfully imprinted on the surface of these films. Among them, Pd-based glassy alloy thin film indicated more precise pattern imprintability, namely, flatter residual surface plane and sharper hole edge. It is said that these glassy alloy thin films, especially Pd-based glassy alloy thin film, are one of the promising materials for fabricating micro-machines and nano-devices by thermal imprinting.

  5. Sensitive warfarin sensor based on cobalt oxide nanoparticles electrodeposited at multi-walled carbon nanotubes modified glassy carbon electrode (CoxOyNPs/MWCNTs/GCE)

    International Nuclear Information System (INIS)

    Gholivand, Mohammad Bagher; Solgi, Mohammad

    2017-01-01

    In this work, cobalt oxide nanoparticles were electrodeposited on multi-walled carbon nanotubes modified glassy carbon electrode (MWCNTs/GCE) to develop a new sensor for warfarin determination. The modified electrodes were characterized by cyclic voltammetry, scanning electron microscopy (SEM) along with energy dispersive x-ray spectroscopy (EDS), and electrochemical impedance spectroscopy (EIS). The presence of cobalt oxide nanoparticles on the electrode surface enhanced the warfarin accumulation and its result was the improvement in the electrochemical response. The effect of various parameters such as pH, scan rate, accumulation potential, accumulation time and pulse amplitude on the sensor response were investigated. Under optimal conditions, the differential pulse adsorptive anodic stripping voltammetric (DPASV) response of the modified electrode was linear in the ranges of 8 nM to 50 μM and 50 μM to 800 μM with correlation coefficients greater than 0.998. The limit of detection of the proposed method was 3.3 nM. The proposed sensor was applied to determine warfarin in urine and plasma samples.

  6. Mechanism of the electrochemical hydrogen reaction on smooth tungsten carbide and tungsten electrodes

    International Nuclear Information System (INIS)

    Wiesener, K.; Winkler, E.; Schneider, W.

    1985-01-01

    The course of the electrochemical hydrogen reaction on smooth tungsten-carbide electrodes in hydrogen saturated 2.25 M H 2 SO 4 follows a electrochemical sorption-desorption mechanism in the potential range of -0.4 to +0.1 V. At potentials greater than +0.1 V the hydrogen oxidation is controlled by a preliminary chemical sorption step. Concluding from the similar behaviour of tungsten-carbide and tungsten electrodes after cathodic pretreatment, different tungsten oxides should be involved in the course of the hydrogen reaction on tungsten carbide electrodes. (author)

  7. Immobilization of DNA at Glassy Ccarbon Electrodes: A Critical Study of Adsorbed Layer

    Directory of Open Access Journals (Sweden)

    G. A. Rivas

    2005-11-01

    Full Text Available In this work we present a critical study of the nucleic acid layer immobilized atglassy carbon electrodes. Different studies were performed in order to assess the nature of theinteraction between DNA and the electrode surface. The adsorption and electrooxidation of DNAdemonstrated to be highly dependent on the surface and nature of the glassy carbon electrode. TheDNA layer immobilized at a freshly polished glassy carbon electrode was very stable even afterapplying highly negative potentials. The electron transfer of potassium ferricyanide, catechol anddopamine at glassy carbon surfaces modified with thin (obtained by adsorption under controlledpotential conditions and thick (obtained by casting the glassy carbon surface with highly concentratedDNA solutions DNA layers was slower than that at the bare glassy carbon electrode, although thiseffect was dependent on the thickness of the layer and was not charge selective. Raman experimentsshowed an important decrease of the vibrational modes assigned to the nucleobases residues,suggesting a strong interaction of these residues with the electrode surface. The hybridization ofoligo(dG21 and oligo(dC21 was evaluated from the guanine oxidation signal and the reduction of theredox indicator Co(phen33+ . In both cases the chronopotentiometric response indicated that thecompromise of the bases in the interaction of DNA with the electrode surface is too strong, preventingfurther hybridization. In summary, glassy carbon is a useful electrode material to detect DNA in adirect and very sensitive way, but not to be used for the preparation of biorecognition layers by directadsorption of the probe sequence on the electrode surface for detecting the hybridization event.

  8. Synthesis and electrochemical probing of water-soluble poly(sodium 4-styrenesulfonate-co-acrylic acid)-grafted multiwalled carbon nanotubes

    International Nuclear Information System (INIS)

    Du Feipeng; Yang Yingkui; Xie Xiaolin; Wu Kangbing; Gan Tian; Liu Lang

    2008-01-01

    Water-soluble poly(sodium 4-styrenesulfonate-co-acrylic acid)-grafted multiwalled carbon nanotubes (MWNT-g-P(SSS-co-AA)) with core-shell nanostructure were successfully synthesized by in situ free radical copolymerization of sodium 4-strenesulfonate (SSS) and acrylic acid (AA) in the presence of MWNTs terminated with vinyl groups; their structure was characterized by FTIR, 1 H NMR, Raman, TGA and TEM. The results showed that the thickness and content of the copolymer layer grafted onto the MWNT surface are about 7-12 nm and 82.3%, respectively. The P(SSS-co-AA) covalently grafted on MWNTs provides MWNT-g-P(SSS-co-AA) with good hydrophilicity and solubility in water. Then a novel MWNT-g-P(SSS-co-AA)-modified glassy carbon electrode was fabricated by coating; its electrochemical properties were evaluated by electrochemical probe of K 3 [Fe(CN) 6 ], and its catalytic behaviors to the electrochemical oxidation processes of dopamine (DA) and serotonin (5-HT) were investigated. Since the MWNT-g-P(SSS-co-AA)-modified electrode possesses strong electron transfer capability, high electrochemical activity and catalytic ability, it can be used in sensitive, selective, rapid and simultaneous monitoring of biomolecules

  9. Non-destructive Patterning of Carbon Electrodes by Using the Direct Mode of Scanning Electrochemical Microscopy.

    Science.gov (United States)

    Stratmann, Lutz; Clausmeyer, Jan; Schuhmann, Wolfgang

    2015-11-16

    Patterning of glassy carbon surfaces grafted with a layer of nitrophenyl moieties was achieved by using the direct mode of scanning electrochemical microscopy (SECM) to locally reduce the nitro groups to hydroxylamine and amino functionalities. SECM and atomic force microscopy (AFM) revealed that potentiostatic pulses applied to the working electrode lead to local destruction of the glassy carbon surface, most likely caused by etchants generated at the positioned SECM tip used as the counter electrode. By applying galvanostatic pulses, and thus, limiting the current during structuring, corrosion of the carbon surface was substantially suppressed. After galvanostatic patterning, unambiguous proof of the formation of the anticipated amino moieties was possible by modulation of the pH value during the feedback mode of SECM imaging. This patterning strategy is suitable for the further bio-modification of microstructured surfaces. Alkaline phosphatase, as a model enzyme, was locally bound to the modified areas, thus showing that the technique can be used for the development of protein microarrays. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. New anode material for lithium-ion cells produced by catalytic graphitization of glassy carbon at 1000 degrees C

    Energy Technology Data Exchange (ETDEWEB)

    Skowronski, J.M. [Poznan Univ. of Technology, Poznan (Poland). Inst. of Chemistry and Technical Electrochemistry; Central Lab. of Batteries and Cells, Poznan (Poland); Knofczynski, K. [Central Lab. of Batteries and Cells, Poznan (Poland)

    2006-10-15

    This study investigated the conversion of glassy carbon into graphite at relatively low temperature of 1000 degrees C under ambient pressure using iron powder as the catalyst. The composite product of reaction was a graphite and turbostratic carbon whose use was then examined in terms of application in lithium-ion cells. Glassy, hard carbon spheres of 10 to 15 {iota}m were prepared from phenolic resin in a nitrogen atmosphere and then subjected to heat treatment with an iron powder mixture. After cooling down to ambient temperature, the carbon/iron mixture was treated with diluted HCl solution to remove metallic additives. The modified carbon was then washed with distilled water until chloride ions disappeared in a filtrate. All samples were characterized using XRD analysis. Working electrodes for electrochemical measurements were made by mixing carbons with PVDF. Cyclic voltammograms recorded for unmodified and modified carbons were consistent with XRD measurements. SEM analysis revealed that the process of graphitization begins at the external regions of glassy carbon spheres where erosion occurs when the carbon reacts with iron particles. The surface destruction of carbon spheres progresses into the interior of the spheres, resulting in their collapse followed by the transformation into pallets resembling a stack of graphite sheets. It was noted that not all unorganized carbon was conversed to graphite. Rather, only 50 per cent of turbostratic carbon existed in the product of heat treatment. The product of graphitization appeared to be a promising material for the preparation of anodes for lithium-ion cells. The discharge capacity for carbon produced by catalytic treatment was found to be approximately 5 times higher, while the discharge/charge reversibility was 23 per cent higher than values obtained for untreated carbon. The study showed that the uptake of lithium ions by the original carbon depends on the insertion/deinsertion mechanism of hard carbon as well

  11. A highly sensitive electrochemical sensor for simultaneous determination of hydroquinone and bisphenol A based on the ultrafine Pd nanoparticle@TiO2 functionalized SiC

    International Nuclear Information System (INIS)

    Yang, Long; Zhao, Hui; Fan, Shuangmei; Li, Bingchan; Li, Can-Peng

    2014-01-01

    Graphical abstract: The illustration of Pd@TiO 2 –SiC nanohybrids simultaneous sensing hydroquinone and bisphenol A by an electrochemical strategy. - Highlights: • TiO 2 –SiC was successfully prepared by a facile generic in situ growth strategy. • Ultrafine Pd NPs with a uniform size of ∼2.3 nm monodispersed on TiO 2 –SiC surface. • Electrochemical simultaneous determination of HQ and BPA was established. • Ultrafine metal NPs@metal oxide–SiC may be extended to other applications. - Abstract: A titanium dioxide–silicon carbide nanohybrid (TiO 2 –SiC) with enhanced electrochemical performance was successfully prepared through a facile generic in situ growth strategy. Monodispersed ultrafine palladium nanoparticles (Pd NPs) with a uniform size of ∼2.3 nm were successfully obtained on the TiO 2 –SiC surface via a chemical reduction method. The Pd-loaded TiO 2 –SiC nanohybrid (Pd@TiO 2 –SiC) was characterized by transmission electron microscopy and X-ray diffractometry. A method for the simultaneous electrochemical determination of hydroquinone (HQ) and bisphenol A (BPA) using a Pd@TiO 2 –SiC nanocomposite-modified glassy carbon electrode was established. Utilizing the favorable properties of Pd NPs, the Pd@TiO 2 –SiC nanohybrid-modified glassy carbon electrode exhibited electrochemical performance superior to those of TiO 2 –SiC and SiC. Differential pulse voltammetry was successfully used to simultaneously quantify HQ and BPA within the concentration range of 0.01–200 μM under optimal conditions. The detection limits (S/N = 3) of the Pd@TiO 2 –SiC nanohybrid electrode for HQ and BPA were 5.5 and 4.3 nM, respectively. The selectivity of the electrochemical sensor was improved by introducing 10% ethanol to the buffer medium. The practical application of the modified electrode was demonstrated by the simultaneous detection of HQ and BPA in tap water and wastewater samples. The simple and straightforward strategy presented in this

  12. The pretreatment cost of a pyroprocess facility in Korea

    International Nuclear Information System (INIS)

    Kim, S. K.; Youn, S. R.; Lee, S. H.; Lee, H. J.; Ko, W. I.

    2015-01-01

    Shale gas still has many disadvantages such as significant technological difficulties and high costs even when the fracking technology is used to extract shale gas since shale gas is dispersed widely. Moreover, it is estimated that the shale gas can be used for about 60 years, which is comparable to the period estimated for oil deposits. Another concern is that the climate may change due to the discharge of harmful gas produced during the gas extraction process. PRIDE facility producing 10 ton/year uranium ingot was set as the cost object for the cost estimation, and it was possible to increase cost calculation's accuracy level since labor cost and expenses incurred in this facility were the costs incurred in actuality. In the end, First-In, First Out process costing method was used to calculate the pretreatment cost of pyroprocess. According to the cost calculation results, the pretreatment cost was estimated as $195/kgHM and the cost share of the pretreatment of pyroprocess was calculated as 20%. Accordingly, electrochemical reduction process is the process requires most cost, followed by the cost of electro-winning process

  13. The pretreatment cost of a pyroprocess facility in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. K.; Youn, S. R.; Lee, S. H.; Lee, H. J.; Ko, W. I. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Shale gas still has many disadvantages such as significant technological difficulties and high costs even when the fracking technology is used to extract shale gas since shale gas is dispersed widely. Moreover, it is estimated that the shale gas can be used for about 60 years, which is comparable to the period estimated for oil deposits. Another concern is that the climate may change due to the discharge of harmful gas produced during the gas extraction process. PRIDE facility producing 10 ton/year uranium ingot was set as the cost object for the cost estimation, and it was possible to increase cost calculation's accuracy level since labor cost and expenses incurred in this facility were the costs incurred in actuality. In the end, First-In, First Out process costing method was used to calculate the pretreatment cost of pyroprocess. According to the cost calculation results, the pretreatment cost was estimated as $195/kgHM and the cost share of the pretreatment of pyroprocess was calculated as 20%. Accordingly, electrochemical reduction process is the process requires most cost, followed by the cost of electro-winning process.

  14. A novel enzymatic glucose sensor based on Pt nanoparticles-decorated hollow carbon spheres-modified glassy carbon electrode

    Science.gov (United States)

    Luhana, Charles; Bo, Xiang-Jie; Ju, Jian; Guo, Li-Ping

    2012-10-01

    A new glucose biosensor was developed based on hollow carbon spheres decorated with platinum nanoparticles (Pt/HCSs)-modified glassy carbon electrode immobilized with glucose oxidase (GOx) with the help of Nafion. The Pt nanoparticles were well dispersed on the HCSs with an average size of 2.29 nm. The detection of glucose was achieved via electrochemical detection of the enzymatically liberated H2O2 at +0.5 V versus Ag/AgCl at physiologic pH of 7.4. The Pt/HCSs-modified electrode exhibited excellent electrocatalytic activities toward both the oxidation and reduction of H2O2. The glucose biosensor showed good electrocatalytic performance in terms of high sensitivity (4.1 μA mM-1), low detection limit (1.8 μM), fast response time tested with this biosensor and a good recovery was achieved for the two spiked serum samples.

  15. Electrochemical determination of 2,4,6-trinitrophenol using a hybrid film composed of a copper-based metal organic framework and electroreduced graphene oxide.

    Science.gov (United States)

    Wang, Yong; Cao, Wei; Wang, Luyao; Zhuang, Qianfen; Ni, Yongnian

    2018-06-04

    A metal organic framework (MOF) of the type copper(II)-1,3,5-benzenetricarboxylic acid (Cu-BTC) was electrodeposited on electroreduced graphene oxide (ERGO) placed on a glassy carbon electrode (GCE). The modified GCE was used for highly sensitive electrochemical determination of 2,4,6-trinitrophenol (TNP). The fabrication process of the modified electrode was characterized by scanning electron microscopy and electrochemical impedance spectroscopy. Differential pulse voltammetry (DPV) demonstrates that the Cu-BTC/ERGO/GCE gives stronger signals for TNP reduction than Cu-BTC/GCE or ERGO/GCE alone. DPV also shows TNP to exhibit three reduction peaks, the first at a potential of -0.42 V (vs. SCE). This potential was selected because the other three similarly-structured compounds (2-nitrophenol, 4-nitrophenol, 2,4-dinitrophenol) do not give a signal at this potential. Response is linear in the 0.2 to 10 μM TNP concentration range, with a 0.1 μM detection limit (at S/N = 3) and a 15.98 μA∙μM -1 ∙cm -2 sensitivity under optimal conditions. The applicability of the sensor was evaluated by detecting TNP in spiked tap water and lake water samples. Recoveries ranged between 95 and 101%. Graphical abstract Schematic presentation of an electrochemical sensor that was fabricated by electrodeposition of the metal-organic framework (MOF) of copper(II)-1,3,5-benzenetricarboxylic acid (Cu-BTC) onto the surface of electroreduced graphene oxide (ERGO) modified glassy carbon electrode (GCE). It was applied to sensitive and selective detection of 2,4,6-trinitrophenol (TNP).

  16. Electrocatalytic Reduction of Hydrogen Peroxide on Palladium-Gold Codeposits on Glassy Carbon: Applications to the Design of Interference-Free Glucose Biosensor

    Directory of Open Access Journals (Sweden)

    Elena Horozova

    2011-01-01

    Full Text Available Following our previous studies on the catalytic activity electrochemically codeposited on graphite Pd-Pt electrocatalysts for hydrogen peroxide electroreduction, a series of glassy carbon electrodes were modified with Pd or (Pd+Au deposits aiming at the development of even more efficient electrocatalysts for the same process. The resulting electrodes were found to be very effective at low applied potentials (−100 and −50 mV versus Ag/AgCl, 1 M KCl. The surface topography of the electrode modified with Pd+Au mixed in proportions 90% : 10%, exhibiting optimal combination of sensitivity and linear dynamic range towards hydrogen peroxide electrochemical reduction, was studied with SEM and AFM. The applicability of the same electrode as transducer in an amperometric biosensor for glucose assay was demonstrated. At an applied potential of −50 mV, the following were determined: detection limit (S/N=3 of 6×10−6 M glucose, electrode sensitivity of 0.15 μA μM−1, and strict linearity up to concentration of 3×10−4 M.

  17. Electrolytic pretreatment of urine

    Science.gov (United States)

    1977-01-01

    Electrolysis has been under evaluation for several years as a process to pretreat urine for ultimate recovery of potable water in manned spacecraft applications. The conclusions that were drawn from this investigation are the following: (1) A platinum alloy containing 10 percent rhodium has been shown to be an effective, corrosion-resistant anode material for the electrolytic pretreatment of urine. Black platinum has been found to be suitable as a cathode material. (2) The mechanism of the reactions occurring during the electrolysis of urine is two-stage: (a) a total Kjeldahl nitrogen and total organic carbon (TOC) removal in the first stage is the result of electrochemical oxidation of urea to CO2, H2O, and ammonia followed by chloride interaction to produce N2 from ammonia, (b) after the urea has been essentially removed and the chloride ions have no more ammonia to interact with, the chloride ions start to oxidize to higher valence states, thus producing perchlorates. (3) Formation of perchlorates can be suppressed by high/low current operation, elevated temperature, and pH adjustment. (4) UV-radiation showed promise in assisting electrolytic TOC removal in beaker tests, but was not substantiated in limited single cell testing. This may have been due to non-optimum configurations of the single cell test rig and the light source.

  18. Amperometric detection of carbohydrates based on the glassy carbon electrode modified with gold nano-flake layer

    Directory of Open Access Journals (Sweden)

    Huy Du Nguyen

    2015-09-01

    Full Text Available An electro-deposition approach was established to incorporate the gold nano-flakes onto the glassy carbon electrode in electrochemical cells (nano-Au/GC/ECCs. Using pulsed amperometric detection (PAD without any gold oxidation for cleaning (non-oxidative PAD, the nano-Au/GC/ECCs were able to maintain their activity for oxidizing of carbohydrates in a normal alkaline medium. The reproducibility of peak area was about 2 relative standard deviation (RSD,% for 6 consecutive injections. A dynamic range of carbohydrates was obtained over a concentration range of 5–80 mg L−1 and the limits of detection (LOD were of 2 mg L−1 for fructose and lactose and 1 mg L−1 for glucose and galactose. Moreover, the nano-Au/GC/ECC using the non-oxidative PAD was able to combine with the internal standard method for determination of lactose in fresh cow milk sample.

  19. Spatially heterogeneous ages in glassy dynamics

    International Nuclear Information System (INIS)

    Castillo, Horacio E.; Chamon, Claudio Chamon; Cugliandolo, Leticia F.; Iguain, Jose Luis; Kennett, Malcolm P.

    2003-09-01

    We construct a framework for the study of fluctuations in the nonequilibrium relaxation of glassy systems with and without quenched disorder. We study two types of two-time local correlators with the aim of characterizing the heterogeneous evolution in these systems: in one case we average the local correlators over histories of the thermal noise, in the other case we simply coarse-grain the local correlators obtained for a given noise realization. We explain why the noise-averaged correlators describe the fingerprint of quenched disorder when it exists, while the coarse-grained correlators are linked to noise-induced mesoscopic fluctuations. We predict constraints on the distribution of the fluctuations of the coarse-grained quantities. In particular, we show that locally defined correlations and responses are connected by a generalized local out-of-equilibrium fluctuation-dissipation relation. We argue that large size heterogeneities in the age of the system survive in the long-time limit. A symmetry of the underlying theory, namely invariance under reparametrizations of the time coordinates, underlies these results. We establish a connection between the probabilities of spatial distributions of local coarse-grained quantities and the theory of dynamic random manifolds. We define, and discuss the behavior of, a two-time dependent correlation length from the spatial decay of the fluctuations in the two-time local functions. We characterize the fluctuations in the system in terms of their fractal properties. For concreteness, we present numerical tests performed on disordered spin models in finite and infinite dimensions. Finally, we explain how these ideas can be applied to the analysis of the dynamics of other glassy systems that can be either spin models without disorder or atomic and molecular glassy systems. (author)

  20. Dielectric relaxation in glassy Se75In25− xPbx alloys

    Indian Academy of Sciences (India)

    In this paper we report the effect of Pb incorporation in the dielectric properties of a-Se75In25 glassy alloy. The temperature and frequency dependence of the dielectric constants and the dielectric losses in glassy Se75In25−Pb ( = 0, 5, 10 and 15) alloys in the frequency range (1 kHz–5 MHz) and temperature range ...

  1. Electrochemical Incineration of Phenolic Compounds from the Hydrocarbon Industry Using Boron-Doped Diamond Electrodes

    Directory of Open Access Journals (Sweden)

    Alejandro Medel

    2012-01-01

    Full Text Available Electrochemical incineration using boron-doped diamond electrodes was applied to samples obtained from a refinery and compared to the photo-electro-Fenton process in order to selectively eliminate the phenol and phenolic compounds from a complex matrix. Due to the complex chemical composition of the sample, a pretreatment to the sample in order to isolate the phenolic compounds was applied. The effects of the pretreatment and of pH on the degradation of the phenolic compounds were evaluated. The results indicate that the use of a boron-doped diamond electrode in an electrochemical incineration process mineralizes 99.5% of the phenolic sample content. Working in acidic medium (pH = 1, and applying 2 A at 298 K under constant stirring for 2 hours, also results in the incineration of the reaction intermediates reflected by 97% removal of TOC. In contrast, the photo-electro-Fenton process results in 99.9% oxidation of phenolic compounds with only a 25.69% removal of TOC.

  2. One pot synthesis of dandelion-like polyaniline coated gold nanoparticles composites for electrochemical sensing applications.

    Science.gov (United States)

    Lu, Zhiwei; Dai, Wanlin; Liu, Baichen; Mo, Guangquan; Zhang, Junjun; Ye, Jiaping; Ye, Jianshan

    2018-04-18

    In this work, we report a facile and green strategy for one pot and in-situ synthesis of a dandelion-like conductive polyaniline coated gold nanoparticle nanocomposites (Au@PANI). The Au@PANI was characterized by SEM, TEM, XRD, TGA, FTIR, UV-vis and conductivity measurement, respectively. Newly-designed Au@PANI materials possessed a significantly high conductivity and strong adsorption capability. Thus, the Au@PANI modified glassy carbon electrode (GCE) was utilized for construct a novel electrochemical sensor for the simultaneous assay of Pb 2+ and Cu 2+ using square wave anodic stripping voltammetry (SWASV). Under the optimized conditions, an excellent electrochemical response in the simultaneous of Pb 2+ and Cu 2+ with detection limit of 0.003 and 0.008 μM (S/N = 3), respectively. Moreover, the prepared sensors realized an excellent reproducibility, repeatability and long term stability, as well as reliable practical assays in real water samples. Besides, the possible formation mechanism and sensing mechanism of Au@PANI nanocomposites have been discussed in detail. We believe this study provides a novel method of fabrication of noble metal nanoparticles decorated conducting polymer materials for the electrochemical sensing applications. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Electrochemical behavior of ruthenium (III), rhodium (III) and palladium (II) in 1-butyl-3-methylimidazolium chloride ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Jayakumar, M.; Venkatesan, K.A. [Fuel Chemistry Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Srinivasan, T.G. [Fuel Chemistry Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India)], E-mail: tgs@igcar.gov.in; Vasudeva Rao, P.R. [Fuel Chemistry Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India)

    2009-11-01

    Electrochemical behavior of ruthenium (III), rhodium (III) and palladium (II) in 1-butyl-3-methylimidazolium chloride (bmimCl) and their ternary and binary solutions in bmimCl was studied at various working electrodes at 373 K by cyclic voltammetry and chronoamperometry. Ruthenium (III) chloride forms a stable solution with bmimCl and the cyclic voltammogram of ruthenium (III) in bmimCl recorded at glassy carbon electrode consisted of several redox waves due to the complex nature of ruthenium to exist in several oxidation states. Electrolysis of ruthenium (III) chloride in bmimCl at the cathodic limit of bmimCl (-1.8 V (vs. Pd)) did not result in ruthenium metal deposition. However, it was deposited from bmimPF{sub 6} and bmimNTf{sub 2} room temperature ionic liquids at -0.8 V (vs. Pd). The electrochemical behavior of ruthenium (III) in bmimCl in the presence of palladium (II) and rhodium (III) was studied by cyclic voltammetry. The presence of palladium (II) in bmimCl favors underpotential deposition of ruthenium metal. The nuclear loop at -0.5 V (vs. Pd) was observed in all solutions when palladium (II) co-existed with other two metal ions. Nucleation and growth of the metal on glassy carbon working electrode was investigated by chronoamperometry. The growth and decay of chronocurrents has been found to follow the instantaneous nucleation model with three-dimensional growth of nuclei.

  4. Electrochemical oxidation of biological pretreated and membrane separated landfill leachate concentrates on boron doped diamond anode

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Bo, E-mail: 357436235@qq.com [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Yu, Zhiming, E-mail: zhiming@csu.edu.cn [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Wei, Qiuping, E-mail: qiupwei@csu.edu.cn [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Long, HangYu, E-mail: 55686385@qq.com [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Xie, Youneng, E-mail: 1187272844@qq.com [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Wang, Yijia, E-mail: 503630433@qq.com [School of Materials Science and Engineering, Central South University, Changsha 410083 (China)

    2016-07-30

    Highlights: • High quality boron-doped diamond film electrodes were synthesized on Nb substrates. • Electrochemical oxidation on boron-doped diamond anode is an effective method for treating landfill leachate concentrates. • Optimal operating conditions for electrochemical oxidation of landfill leachate concentrates is determined. • 87.5% COD removal and 74.06% NH{sub 3}−N removal were achieved after 6 h treatment. - Abstract: In the present study, the high quality boron-doped diamond (BDD) electrodes with excellent electrochemical properties were deposited on niobium (Nb) substrates by hot filament chemical vapor deposition (HFCVD) method. The electrochemical oxidation of landfill leachate concentrates from disc tube reverse osmosis (DTRO) process over a BDD anode was investigated. The effects of varying operating parameters, such as current density, initial pH, flow velocity and cathode material on degradation efficiency were also evaluated following changes in chemical oxygen demand (COD) and ammonium nitrogen (NH{sub 3}−N). The instantaneous current efficiency (ICE) was used to appraise different operating conditions. As a result, the best conditions obtained were as follows, current density 50 mA cm{sup −2}, pH 5.16, flow velocity 6 L h{sup −1}. Under these conditions, 87.5% COD and 74.06% NH{sub 3}−N removal were achieved after 6 h treatment, with specific energy consumption of 223.2 kWh m{sup −3}. In short, these results indicated that the electrochemical oxidation with BDD/Nb anode is an effective method for the treatment of landfill leachate concentrates.

  5. Electrochemical Determination of Baicalin in Traditional Chinese Medicine Based on the Enhancement Effect of MoO3-Reduced Graphene Oxide Nanocomposite

    Science.gov (United States)

    Hu, Weibing; Zhang, Wen; Wang, Meng; Feng, Fu

    2018-02-01

    The nanocomposites of MoO3-reduced graphene oxide (MoO3-RGO) were synthesized by hydrothermal reduction using MoCl5 and graphene oxide as precursors. The resulting composites were characterized with scanning electron microscopy, x-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric analysis and Raman spectra, and were further used to modify the glassy carbon electrode (GCE). After optimizing the parameters, the electrochemical behavior of baicalin on different types of electrodes was investigated. The MoO3-RGO composite-modified GCE exhibited remarkably enhanced electrochemical signals of baicalin. After 90 s, under open circuit potential, oxidation and reduction peaks appeared at 0.207 V and 0.103 V, respectively. A sensitive and simple electrochemical method was proposed for the determination of baicalin in which the calibration curve ranges from 1.0 × 10-9 M to 4.3 × 10-5 M, and the detection limit is 3.81 × 10-10 M.

  6. MWCNTs/Cu(OH){sub 2} nanoparticles/IL nanocomposite modified glassy carbon electrode as a voltammetric sensor for determination of the non-steroidal anti-inflammatory drug diclofenac

    Energy Technology Data Exchange (ETDEWEB)

    Arvand, Majid, E-mail: arvand@guilan.ac.ir; Gholizadeh, Tahereh M.; Zanjanchi, Mohammad Ali

    2012-08-01

    This paper describes the development and utilization of a new nanocomposite consisting of Cu(OH){sub 2} nanoparticles, hydrophobic ionic liquid 1-ethyl-3-methylimidazolium hexafluorophosphate (EMIMPF{sub 6}) and multiwalled carbon nanotubes for glassy carbon electrode modification. The nanocomposite was characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM) along with energy-dispersive X-ray spectroscopy (EDX). The modified electrode was used for electrochemical characterization of diclofenac. Using differential pulse voltammetry, the prepared sensor showed good sensitivity and selectivity with low overpotential for the determination of diclofenac in the range from 0.18 to 119 {mu}M, with a detection limit of 0.04 {mu}M. Electrochemical studies suggested that the MWCNTs/Cu(OH){sub 2} nanoparticles/IL nanocomposite modified electrode provided a synergistic augmentation on the voltammetric behavior of electrochemical oxidation of diclofenac, which was indicated by the improvement of anodic peak current. Highlights: Black-Right-Pointing-Pointer This work examines oxidation of diclofenac at a nanocomposite modified electrode. Black-Right-Pointing-Pointer The salient feature of this electrode is large diffusion coefficient. Black-Right-Pointing-Pointer The proposed electrode decreased overpotential of diclofenac electrooxidation. Black-Right-Pointing-Pointer The modified electrode has good stability and reproducibility.

  7. Comparison of impedimetric detection of DNA hybridization on the various biosensors based on modified glassy carbon electrodes with PANHS and nanomaterials of RGO and MWCNTs.

    Science.gov (United States)

    Benvidi, Ali; Tezerjani, Marzieh Dehghan; Jahanbani, Shahriar; Mazloum Ardakani, Mohammad; Moshtaghioun, Seyed Mohammad

    2016-01-15

    In this research, we have developed lable free DNA biosensors based on modified glassy carbon electrodes (GCE) with reduced graphene oxide (RGO) and carbon nanotubes (MWCNTs) for detection of DNA sequences. This paper compares the detection of BRCA1 5382insC mutation using independent glassy carbon electrodes (GCE) modified with RGO and MWCNTs. A probe (BRCA1 5382insC mutation detection (ssDNA)) was then immobilized on the modified electrodes for a specific time. The immobilization of the probe and its hybridization with the target DNA (Complementary DNA) were performed under optimum conditions using different electrochemical techniques such as cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The proposed biosensors were used for determination of complementary DNA sequences. The non-modified DNA biosensor (1-pyrenebutyric acid-N- hydroxysuccinimide ester (PANHS)/GCE), revealed a linear relationship between ∆Rct and logarithm of the complementary target DNA concentration ranging from 1.0×10(-16)molL(-1) to 1.0×10(-10)mol L(-1) with a correlation coefficient of 0.992, for DNA biosensors modified with multi-wall carbon nanotubes (MWCNTs) and reduced graphene oxide (RGO) wider linear range and lower detection limit were obtained. For ssDNA/PANHS/MWCNTs/GCE a linear range 1.0×10(-17)mol L(-1)-1.0×10(-10)mol L(-1) with a correlation coefficient of 0.993 and for ssDNA/PANHS/RGO/GCE a linear range from 1.0×10(-18)mol L(-1) to 1.0×10(-10)mol L(-1) with a correlation coefficient of 0.985 were obtained. In addition, the mentioned biosensors were satisfactorily applied for discriminating of complementary sequences from noncomplementary sequences, so the mentioned biosensors can be used for the detection of BRCA1-associated breast cancer. Copyright © 2015. Published by Elsevier B.V.

  8. Imprinted electrochemical sensor for dopamine recognition and determination based on a carbon nanotube/polypyrrole film

    International Nuclear Information System (INIS)

    Kan Xianwen; Zhou Hong; Li Chen; Zhu Anhong; Xing Zonglan; Zhao Zhe

    2012-01-01

    An electrochemical sensor combining a molecular imprinted technique and an electropolymerization method was developed in this work. A molecular imprinted polymer (MIP) film was fabricated by electropolymerizing pyrrole in the presence of dopamine (DA) after electrodepositing carboxyl-functionalized multi-walled carbon nanotubes (MWNTs-COOH) onto a glassy carbon electrode (GCE) surface. Scanning electron microscopy (SEM), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS) were employed to characterize the constructed sensor. The effects of pH, the monomer concentration, the number of cycles for the electropolymerization, and the scan rate for the sensor preparation were optimized. The MIP-based sensor displayed an excellent recognition capacity toward DA compared with other structurally similar molecules. Additionally, the DPV peak current was linear to the DA concentration in the range from 6.25 × 10 −7 to 1 × 10 −4 mol/L, with a detection limit of 6 × 10 −8 mol/L. The prepared sensor also showed stable reproducibility and regeneration capacity.

  9. Highly sensitive electrochemical immunoassay for human IgG using double-encoded magnetic redox-active nanoparticles

    International Nuclear Information System (INIS)

    Tang, D.; Tang, J.; Su, B.; Chen, H.; Chen, G.; Huang, J.

    2010-01-01

    A new sandwich-type electrochemical immunoassay was developed for the detection of human IgG using doubly-encoded and magnetic redox-active nanoparticles as recognition elements on the surface of a glassy carbon electrode modified with anti-IgG on nanogold particles. The recognition elements were synthesized by coating magnetic Fe3O4 nanoparticles with Prussian blue nanoparticles and then covered with peroxidase-labeled anti-IgG antibodies (POx-anti-IgG) on Prussian blue nanoparticles. The immunoelectrode displays very good electrochemical properties towards detection of IgG via using double-encoded magnetic redox-active nanoparticles as trace and hydrogen peroxide as enzyme substrate. Its limit of detection (10 pmol.L -1 ) is 10-fold better than that of using plain POx-anti-IgG secondary antibodies. The method was applied to the detection of IgG in serum samples, and an excellent correspondence with the reference values was found. (author)

  10. Cocos nucifera Linn. (Palmae) husk fiber ethanolic extract: antioxidant capacity and electrochemical investigation.

    Science.gov (United States)

    Oliveira, Monika Bezerra dos Santos; Valentim, Iara Barros; de Vasconcelos, Camila Calado; Omena, Cristhiane Maria Bazílio; Bechara, Etelvino José Henriques; da Costa, João Gomes; Freitas, Mikael de Lima; Sant'Ana, Antônio Euzébio Goulart; Goulart, Marília Oliveira Fonseca

    2013-02-01

    The present study aims to determine the antioxidant capacity of the ethanolic extracts of husk fiber of four coconut (Cocos nucifera L.) varieties (yellow dwarf, green dwarf, giant and hybrid) and to evaluate the electrochemical behavior of these extracts on a glassy carbon electrode and on a modified glassy carbon electrode. The highest values of total phenolic content were obtained for the hybrid (531 ± 24 mg GAE g(-1) dry extract) and yellow dwarf (501 ± 29 mg GAE g(-1) dry extract) varieties and the lowest was for the green dwarf variety with 58 ± 9 mg GAE g(-1) dry extract. The ability of the extracts to scavenge DPPH˙ radicals was in the order of giant > yellow dwarf > hybrid > green dwarf and the IC50 values varied from 8.6 to 55.9 μg mL(-1). All varieties showed reducing potential by the use of FRAP and CUPRAC methods, with the lowest performance obtained for the green dwarf variety. Additionally, through the use of mimetic biomembranes, ethanolic extracts of coconut husk were shown to protect lipids against oxidative damage independent of the variety. The main antioxidants identified in the extract of yellow dwarf variety by UPLC-MS were quercetin and catechin. Cyclic voltammetric studies of the ethanolic extracts on glassy carbon electrode confirmed the presence of easily oxidized compounds, and the high antioxidant capacity of the varieties. This capacity was expressed as mg quercetin equivalents g(-1) dry extract and ranged from 25.9 up to 53.5 mg QE g(-1). A poly-xanthurenic acid (poly-Xa)/multi-walled carbon nanotube (MWCNT) / glassy carbon modified electrode (poly-Xa/MWCNT/GCE) was used for this purpose. Our findings suggest that these extracts are potentially important antioxidant supplements for the everyday human diet, pharmaceutical and cosmetic industries, thereby aggregating value to the enormous amount of waste from the coconut industry, mostly used for burning purposes.

  11. Voltammetric pH sensing using carbon electrodes: glassy carbon behaves similarly to EPPG.

    Science.gov (United States)

    Lu, Min; Compton, Richard G

    2014-09-21

    Developing and building on recent work based on a simple sensor for pH determination using unmodified edge plane pyrolytic graphite (EPPG) electrodes, we present a voltammetric method for pH determination using a bare unmodified glassy carbon (GC) electrode. By exploiting the pH sensitive nature of quinones present on carbon edge-plane like sites within the GC, we show how GC electrodes can be used to measure pH. The electro-reduction of surface quinone groups on the glassy carbon electrode was characterised using cyclic voltammetry (CV) and optimised with square-wave voltammetry (SWV) at 298 K and 310 K. At both temperatures, a linear correlation was observed, corresponding to a 2 electron, 2 proton Nernstian response over the aqueous pH range 1.0 to 13.1. As such, unmodified glassy carbon electrodes are seen to be pH dependent, and the Nernstian response suggests its facile use for pH sensing. Given the widespread use of glassy carbon electrodes in electroanalysis, the approach offers a method for the near-simultaneous measurement and monitoring of pH during such analyses.

  12. Electrochemical Detection of Ultratrace (Picomolar) Levels of Hg2+ Using a Silver Nanoparticle-Modified Glassy Carbon Electrode.

    Science.gov (United States)

    Suherman, Alex L; Ngamchuea, Kamonwad; Tanner, Eden E L; Sokolov, Stanislav V; Holter, Jennifer; Young, Neil P; Compton, Richard G

    2017-07-05

    Ultratrace levels of Hg 2+ have been quantified by undertaking linear sweep voltammetry with a silver nanoparticle-modified glassy carbon electrode (AgNP-GCE) in aqueous solutions containing Hg 2+ . This is achieved by monitoring the change in the silver stripping peak with Hg 2+ concentration resulting from the galvanic displacement of silver by mercury: Ag(np) + 1/2Hg 2+ (aq) → Ag + (aq) + 1/2Hg(l). This facile and reproducible detection method exhibits an excellent linear dynamic range of 100.0 pM to 10.0 nM Hg 2+ concentration with R 2 = 0.982. The limit of detection (LoD) based on 3σ is 28 pM Hg 2+ , while the lowest detectable level for quantification purposes is 100.0 pM. This method is appropriate for routine environmental monitoring and drinking water quality assessment since the guideline value set by the US Environmental Protection Agency (EPA) for inorganic mercury in drinking water is 0.002 mg L -1 (10 nM).

  13. Electrocatalytic behaviour of hybrid cobalt–manganese hexacyanoferrate film on glassy carbon electrode

    International Nuclear Information System (INIS)

    Vinu Mohan, A.M.; Rambabu, Gutru; Aswini, K.K.; Biju, V.M.

    2014-01-01

    A thin film of hybrid cobalt–manganese hexacyanoferrate (CoMnHCF), a redox mediator was electrodeposited on a glassy carbon (GC) electrode and was employed as an amperometric sensor towards L-Tryptophan (L-Trp). The hybrid film was characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction technique (XRD), scanning electron microscope–energy dispersive X-ray spectroscopy (SEM–EDAX), and electrochemical techniques. The atomic absorption spectroscopic analysis provided the stoichiometry of the hybrid film to be K 1.74-y Co y Mn 0.78 [Fe(CN) 6 ], y ≤ 0.68. The electrochemical impedance study revealed the excellent charge transfer properties of GC/CoMnHCF electrode. The voltammetric investigations demonstrated exceptional electrocatalytic properties of the hybrid film modified electrode when compared to that of bare GC, GC/CoHCF and GC/MnHCF electrodes, towards the L-Trp oxidation. The kinetic parameters such as electron transfer coefficient, the electron transfer rate constant, the diffusion coefficient and the catalytic rate constant for the electrooxidation process of L-Trp were investigated. The amperometric detection of L-Trp employing GC/CoMnHCF electrode possessed a good sensitivity of 10 × 10 −2 A M −1 cm −2 in a wide range of detection (2–200 μM) at a reduced overpotential of 680 mV. In addition, the proposed amperometric method was applied to the detection of L-Trp in commercial milk samples with reproducible results. - Highlights: • A hybrid cobalt–manganese hexacyanoferrate film was prepared. • The hybrid film possesses excellent charge transfer properties. • The hybrid film exhibits excellent electrocatalytic properties towards Tryptophan. • Tryptophan detection is possible from commercial milk samples

  14. An ac impedance study of the corrosion behaviour of mild steel coated with electrochemically synthesized polyoxyphenylenes

    Energy Technology Data Exchange (ETDEWEB)

    Musiani, M.M.; Mengoli, G.; Pagura, C.

    1985-04-01

    Electrochemically synthesized polyoxphenylene coatings on mild steel exposed to NaCl or H2SO4 solutions were investigated by ac impedance measurements. The influence of coating cohesion, adhesion to substrate, and surface pretreatment on the corrosion behaviour of the samples is clarified.

  15. Nitrogen-doped graphene: effect of graphite oxide precursors and nitrogen content on the electrochemical sensing properties.

    Science.gov (United States)

    Megawati, Monica; Chua, Chun Kiang; Sofer, Zdenek; Klímová, Kateřina; Pumera, Martin

    2017-06-21

    Graphene, produced via chemical methods, has been widely applied for electrochemical sensing due to its structural and electrochemical properties as well as its ease of production in large quantity. While nitrogen-doped graphenes are widely studied materials, the literature showing an effect of graphene oxide preparation methods on nitrogen quantity and chemical states as well as on defects and, in turn, on electrochemical sensing is non-existent. In this study, the properties of nitrogen-doped graphene materials, prepared via hydrothermal synthesis using graphite oxide produced by various classical methods using permanganate or chlorate oxidants Staudenmaier, Hummers, Hofmann and Brodie oxidation methods, were studied; the resulting nitrogen-doped graphene oxides were labeled as ST-GO, HU-GO, HO-GO and BR-GO, respectively. The electrochemical oxidation of biomolecules, such as ascorbic acid, uric acid, dopamine, nicotinamide adenine nucleotide and DNA free bases, was carried out using cyclic voltammetry and differential pulse voltammetry techniques. The nitrogen content in doped graphene oxides increased in the order ST-GO graphene followed this trend, as shown in the cyclic voltammograms. This is a very important finding that provides insight into the electrocatalytic effect of N-doped graphene. The nitrogen-doped graphene materials exhibited improved sensitivity over bare glassy carbon for ascorbic acid, uric acid and dopamine detection. These studies will enhance our understanding of the effects of graphite oxide precursors on the electrochemical sensing properties of nitrogen-doped graphene materials.

  16. Electrochemical determination of xanthine oxidase inhibitor drug in urate lowering therapy using graphene nanosheets modified electrode

    International Nuclear Information System (INIS)

    Raj, M. Amal; John, S. Abraham

    2014-01-01

    We report the electrochemical determination of urate lowering therapeutic drug, allopurinol (AP) using the electrochemically reduced graphene oxide (ERGO) modified glassy carbon electrode (GCE). The ERGO modified GCE was fabricated by self–assembling graphene oxide (GO) on 1,6-hexadiamine (HDA) modified GCE by the electrostatic interaction between the positively charged amine group and the negatively charged GO layers followed by the electrochemical reduction of GO layers at negative potential. XPS results confirmed the attachment of GO and its electrochemical reduction. The electrochemical behavior of AP was examined at ERGO modified electrode in the presence of ascorbic acid (AA) and uric acid (UA). It was found that ERGO modified electrode not only enhanced the oxidation currents of AP, AA and UA but also showed stable signals for them for repetitive potential cycles. The present modified electrode was successfully used to determine these analytes simultaneously in a mixture. Selective determination of AP in the presence of high concentrations of AA and UA was also demonstrated at ERGO modified GCE. Using amperometry, detections of 40 and 200 nM of UA and AP were achieved and the detection limits were found to be 9.0 × 10 −9 M and 1.1 × 10 −7 M, respectively (S/N = 3). Further, the practical application of the present modified electrode was demonstrated by simultaneously determining the concentrations of AA, UA and AP in human blood serum and urine samples

  17. Determination of fenitrothion in water using a voltammetric sensor based on a polymer-modified glassy carbon electrode.

    Science.gov (United States)

    Amare, Meareg; Abicho, Samuel; Admassie, Shimelis

    2014-01-01

    A glassy carbon electrode (GCE) modified with poly(4-amino-3-hydroxynaphthalene sulfonic acid) (poly-AHNSA) was used for the selective and sensitive determination of fenitrothion (FT) organophosphorus pesticide in water. The electrochemical behavior of FT at the bare GCE and the poly-AHNSA/GCE were compared using cyclic voltammetry. Enhanced peak current response and shift to a lower potential at the polymer-modified electrode indicated the electrocatalytic activity of the polymer film towards FT. Under optimized solution and method parameters, the adsorptive stripping square wave voltammetric reductive peak current of FT was linear to FT concentration in the range of 0.001 to 6.6 x 10(-6) M, and the LOD obtained (3delta/m) was 7.95 x 10(-10) M. Recoveries in the range 96-98% of spiked FT in tap water and reproducible results with RSD of 2.6% (n = 5) were obtained, indicating the potential applicability of the method for the determination of trace levels of FT in environmental samples.

  18. Microchip-based electrochemical detection using a 3-D printed wall-jet electrode device.

    Science.gov (United States)

    Munshi, Akash S; Martin, R Scott

    2016-02-07

    Three dimensional (3-D) printing technology has evolved dramatically in the last few years, offering the capability of printing objects with a variety of materials. Printing microfluidic devices using this technology offers various advantages such as ease and uniformity of fabrication, file sharing between laboratories, and increased device-to-device reproducibility. One unique aspect of this technology, when used with electrochemical detection, is the ability to produce a microfluidic device as one unit while also allowing the reuse of the device and electrode for multiple analyses. Here we present an alternate electrode configuration for microfluidic devices, a wall-jet electrode (WJE) approach, created by 3-D printing. Using microchip-based flow injection analysis, we compared the WJE design with the conventionally used thin-layer electrode (TLE) design. It was found that the optimized WJE system enhances analytical performance (as compared to the TLE design), with improvements in sensitivity and the limit of detection. Experiments were conducted using two working electrodes - 500 μm platinum and 1 mm glassy carbon. Using the 500 μm platinum electrode the calibration sensitivity was 16 times higher for the WJE device (as compared to the TLE design). In addition, use of the 1 mm glassy carbon electrode led to limit of detection of 500 nM for catechol, as compared to 6 μM for the TLE device. Finally, to demonstrate the versatility and applicability of the 3-D printed WJE approach, the device was used as an inexpensive electrochemical detector for HPLC. The number of theoretical plates was comparable to the use of commercially available UV and MS detectors, with the WJE device being inexpensive to utilize. These results show that 3-D-printing can be a powerful tool to fabricate reusable and integrated microfluidic detectors in configurations that are not easily achieved with more traditional lithographic methods.

  19. Thermodynamic Modeling of Gas Transport in Glassy Polymeric Membranes.

    Science.gov (United States)

    Minelli, Matteo; Sarti, Giulio Cesare

    2017-08-19

    Solubility and permeability of gases in glassy polymers have been considered with the aim of illustrating the applicability of thermodynamically-based models for their description and prediction. The solubility isotherms are described by using the nonequilibrium lattice fluid (NELF) (model, already known to be appropriate for nonequilibrium glassy polymers, while the permeability isotherms are described through a general transport model in which diffusivity is the product of a purely kinetic factor, the mobility coefficient, and a thermodynamic factor. The latter is calculated from the NELF model and mobility is considered concentration-dependent through an exponential relationship containing two parameters only. The models are tested explicitly considering solubility and permeability data of various penetrants in three glassy polymers, PSf, PPh and 6FDA-6FpDA, selected as the reference for different behaviors. It is shown that the models are able to calculate the different behaviors observed, and in particular the permeability dependence on upstream pressure, both when it is decreasing as well as when it is increasing, with no need to invoke the onset of additional plasticization phenomena. The correlations found between polymer and penetrant properties with the two parameters of the mobility coefficient also lead to the predictive ability of the transport model.

  20. Layer by layer assembly of glucose oxidase and thiourea onto glassy carbon electrode: Fabrication of glucose biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Salimi, Abdollah, E-mail: absalimi@yahoo.com [Department of Chemistry, University of Kurdistsn, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Research Center for Nanotechnology, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Noorbakhsh, Abdollah [Department of Chemistry, University of Kurdistsn, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Department of Nanotechnology Engenering, Faculty of Advanced Science and Technology, University of Isfahan, 81746-73441 (Iran, Islamic Republic of)

    2011-07-01

    Highlights: > Although various enzymes immobilization have been approve for the construction of glucose biosensor, a layer by layer (LBL) technique has attracted more attention due to simplicity of the procedure, wide choice of materials that can be used, controllability of film thickness and unique mechanical properties. > In this paper, we described a novel and simple strategy for developing an amperometric glucose biosensor based on layer-by-layer self assembly of glucose oxidase on the glassy carbon electrode modified by thiourea. > Thiourea has two amino groups that the one can be immobilized on the activated glassy carbon electrode and the other can be used for the coupling of glucose oxidase enzyme. > The biosensor exhibited good performance for electrocatalytic oxidation of glucose, such as high sensitivity, low detection limit, short response time and wide concentration range. > Finally, the new method is strongly recommended for immobilization of many other enzymes or proteins containing carbaldehyde or carboxylic groups for fabricating third generation biosensors and bioelectronics devices. - Abstract: For the first time a novel, simple and facile approach is described to construct highly stable glucose oxidase (GOx) multilayer onto glassy carbon (GC) electrode using thiourea (TU) as a covalent attachment cross-linker. The layer by layer (LBL) attachment process was confirmed by cyclic voltammetry, electrochemical impedance spectroscopy and Fourier transform infrared reflection spectroscopy (FT-IR-RS) techniques. Immobilized GOx shows excellent electrocatalytic activity toward glucose oxidation using ferrocenemethanol as artificial electron transfer mediator and biosensor response was directly correlated to the number of bilayers. The surface coverage of active GOx per bilayer, heterogeneous electron transfer rate constant (k{sub s}) and Michaelis-Menten constant (K{sub M}), of immobilized GOx were 1.50 x 10{sup -12} mol cm{sup -2}, 9.2 {+-} 0.5 s{sup -1

  1. Layer by layer assembly of glucose oxidase and thiourea onto glassy carbon electrode: Fabrication of glucose biosensor

    International Nuclear Information System (INIS)

    Salimi, Abdollah; Noorbakhsh, Abdollah

    2011-01-01

    Highlights: → Although various enzymes immobilization have been approve for the construction of glucose biosensor, a layer by layer (LBL) technique has attracted more attention due to simplicity of the procedure, wide choice of materials that can be used, controllability of film thickness and unique mechanical properties. → In this paper, we described a novel and simple strategy for developing an amperometric glucose biosensor based on layer-by-layer self assembly of glucose oxidase on the glassy carbon electrode modified by thiourea. → Thiourea has two amino groups that the one can be immobilized on the activated glassy carbon electrode and the other can be used for the coupling of glucose oxidase enzyme. → The biosensor exhibited good performance for electrocatalytic oxidation of glucose, such as high sensitivity, low detection limit, short response time and wide concentration range. → Finally, the new method is strongly recommended for immobilization of many other enzymes or proteins containing carbaldehyde or carboxylic groups for fabricating third generation biosensors and bioelectronics devices. - Abstract: For the first time a novel, simple and facile approach is described to construct highly stable glucose oxidase (GOx) multilayer onto glassy carbon (GC) electrode using thiourea (TU) as a covalent attachment cross-linker. The layer by layer (LBL) attachment process was confirmed by cyclic voltammetry, electrochemical impedance spectroscopy and Fourier transform infrared reflection spectroscopy (FT-IR-RS) techniques. Immobilized GOx shows excellent electrocatalytic activity toward glucose oxidation using ferrocenemethanol as artificial electron transfer mediator and biosensor response was directly correlated to the number of bilayers. The surface coverage of active GOx per bilayer, heterogeneous electron transfer rate constant (k s ) and Michaelis-Menten constant (K M ), of immobilized GOx were 1.50 x 10 -12 mol cm -2 , 9.2 ± 0.5 s -1 and 3.42(±0

  2. EDTA assisted synthesis of hydroxyapatite nanoparticles for electrochemical sensing of uric acid

    International Nuclear Information System (INIS)

    Kanchana, P.; Sekar, C.

    2014-01-01

    Hydroxyapatite nanoparticles have been synthesized using EDTA as organic modifier by a simple microwave irradiation method and its application for the selective determination of uric acid (UA) has been demonstrated. Electrochemical behavior of uric acid at HA nanoparticle modified glassy carbon electrode (E-HA/GCE) has been investigated by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), linear sweep voltammetry (LSV) and amperometry. The E-HA modified electrode exhibits efficient electrochemical activity towards uric acid sensing without requiring enzyme or electron mediator. Amperometry studies revealed that the fabricated electrode has excellent sensitivity for uric acid with the lowest detection limit of 142 nM over a wide concentration range from 1 × 10 −7 to 3 × 10 −5 M. Moreover, the studied E-HA modified GC electrode exhibits a good reproducibility and long-term stability and an admirable selectivity towards the determination of UA even in the presence of potential interferents. The analytical performance of this sensor was evaluated for the detection of uric acid in human urine and blood serum samples. - Highlights: • EDTA- hydroxyapatite (HA) nanoparticles have been synthesized by microwave irradiation method. • A novel amperometric Uric Acid biosensor has been fabricated using E-HA/GCE. • The fabricated sensor exhibits a wide linear range, good stability and high reproducibility. • The sensor was applied for the detection of UA in human blood serum and urine

  3. Voltammetric studies on the electrochemical determination of methylmercury in chloride medium at carbon microelectrodes

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, F. [Centro de Electroquimica e Cinetica da Universidade de Lisboa, Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade de Lisboa, Campo Grande, Ed. C8, 1749-016 Lisbon (Portugal); Neto, M.M.M. [Centro de Electroquimica e Cinetica da Universidade de Lisboa, Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade de Lisboa, Campo Grande, Ed. C8, 1749-016 Lisbon (Portugal) and Departamento de Quimica Agricola e Ambiental, Instituto Superior de Agronomia, Tapada da Ajuda, 1349-017 Lisbon (Portugal)]. E-mail: mm.neto@netcabo.pt; Rocha, M.M. [Centro de Electroquimica e Cinetica da Universidade de Lisboa, Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade de Lisboa, Campo Grande, Ed. C8, 1749-016 Lisbon (Portugal); Fonseca, I.T.E. [Centro de Electroquimica e Cinetica da Universidade de Lisboa, Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade de Lisboa, Campo Grande, Ed. C8, 1749-016 Lisbon (Portugal)

    2006-10-10

    Electroanalytical techniques have been used to determine methylmercury at low levels in environmental matrices. The electrochemical behaviour of methylmercury at carbon microelectrodes in a hydrochloric acid medium using cyclic, square wave and fast-scan linear-sweep voltammetric techniques has been investigated. The analytical utility of the methylmercury reoxidation peak has been explored, but the recorded peak currents were found to be poorly reproducible. This is ascribed to two factors: the adsorption of insoluble chloromercury compounds on the electrode surface, which appears to be an important contribution to hinder the voltammetric signal of methylmercury; and the competition between the reoxidation of the methylmercury radical and its dimerization reaction, which limits the reproducibility of the methylmercury peak. These problems were successfully overcome by adopting the appropriate experimental conditions. Fast-scan rates were employed and an efficient electrochemical regeneration procedure of the electrode surface was achieved, under potentiostatic conditions in a mercury-free solution containing potassium thiocyanate-a strong complexing agent. The influence of chloride ion concentration was analysed. Interference by metals, such as lead and cadmium, was considered. Calibration plots were obtained in the micromolar and submicromolar concentration ranges, allowing the electrochemical determination of methylmercury in trace amounts. An estuarine water sample was analysed using the new method with a glassy carbon microelectrode.

  4. Voltammetric studies on the electrochemical determination of methylmercury in chloride medium at carbon microelectrodes

    International Nuclear Information System (INIS)

    Ribeiro, F.; Neto, M.M.M.; Rocha, M.M.; Fonseca, I.T.E.

    2006-01-01

    Electroanalytical techniques have been used to determine methylmercury at low levels in environmental matrices. The electrochemical behaviour of methylmercury at carbon microelectrodes in a hydrochloric acid medium using cyclic, square wave and fast-scan linear-sweep voltammetric techniques has been investigated. The analytical utility of the methylmercury reoxidation peak has been explored, but the recorded peak currents were found to be poorly reproducible. This is ascribed to two factors: the adsorption of insoluble chloromercury compounds on the electrode surface, which appears to be an important contribution to hinder the voltammetric signal of methylmercury; and the competition between the reoxidation of the methylmercury radical and its dimerization reaction, which limits the reproducibility of the methylmercury peak. These problems were successfully overcome by adopting the appropriate experimental conditions. Fast-scan rates were employed and an efficient electrochemical regeneration procedure of the electrode surface was achieved, under potentiostatic conditions in a mercury-free solution containing potassium thiocyanate-a strong complexing agent. The influence of chloride ion concentration was analysed. Interference by metals, such as lead and cadmium, was considered. Calibration plots were obtained in the micromolar and submicromolar concentration ranges, allowing the electrochemical determination of methylmercury in trace amounts. An estuarine water sample was analysed using the new method with a glassy carbon microelectrode

  5. A novel sensor made of Antimony Doped Tin Oxide-silica composite sol on a glassy carbon electrode modified by single-walled carbon nanotubes for detection of norepinephrine.

    Science.gov (United States)

    Wang, Zhao; Wang, Kai; Zhao, Lu; Chai, Shigan; Zhang, Jinzhi; Zhang, Xiuhua; Zou, Qichao

    2017-11-01

    In this study, we designed a novel molecularly imprinted polymer (MIP), Antimony Doped Tin Oxide (ATO)-silica composite sol, which was made using a sol-gel method. Then a sensitive and selective imprinted electrochemical sensor was constructed with the ATO-silica composite sol on a glassy carbon electrode modified by single-walled carbon nanotubes (SWNTs). The introduction of SWNTs increased the sensitivity of the MIP sensor. The surface morphology of the MIP and MIP/SWNTs were characterized by scanning electron microscopy (SEM), and the optimal conditions for detection were determined. The oxidative peak current increased linearly with the concentration of norepinephrine in the range of 9.99×10 -8 M to 1.50×10 -5 M, as detected by cyclic voltammetry (CV), the detection limit was 3.33×10 -8 M (S/N=3). In addition, the proposed electrochemical sensors were successfully applied to detect the norepinephrine concentration in human blood serum samples. The recoveries of the sensors varied from 99.67% to 104.17%, indicating that the sensor has potential for the determination of norepinephrine in clinical tests. Moreover, the imprinted electrochemical sensor was used to selectively detect norepinephrine. The analytical application was conducted successfully and yielded accurate and precise results. Copyright © 2017. Published by Elsevier B.V.

  6. Electrochemical impedance-based DNA sensor using a modified single walled carbon nanotube electrode

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Jessica E. [Department of Mechanical Engineering, University of South Florida, Tampa, FL (United States); Nanomaterials and Nanomanufacturing Research Center, University of South Florida, Tampa, FL (United States); Pillai, Shreekumar [Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL (United States); Ram, Manoj Kumar, E-mail: mkram@usf.edu [Department of Mechanical Engineering, University of South Florida, Tampa, FL (United States); Nanomaterials and Nanomanufacturing Research Center, University of South Florida, Tampa, FL (United States); Kumar, Ashok [Department of Mechanical Engineering, University of South Florida, Tampa, FL (United States); Nanomaterials and Nanomanufacturing Research Center, University of South Florida, Tampa, FL (United States); Singh, Shree R. [Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL (United States)

    2011-07-20

    Carbon nanotubes have become promising functional materials for the development of advanced electrochemical biosensors with novel features which could promote electron-transfer with various redox active biomolecules. This paper presents the detection of Salmonella enterica serovar Typhimurium using chemically modified single walled carbon nanotubes (SWNTs) with single stranded DNA (ssDNA) on a polished glassy carbon electrode. Hybridization with the corresponding complementary ssDNA has shown a shift in the impedance studies due to a higher charge transfer in ssDNA. The developed biosensor has revealed an excellent specificity for the appropriate targeted DNA strand. The methodologies to prepare and functionalize the electrode could be adopted in the development of DNA hybridization biosensor.

  7. Relation between time-temperature transformation and continuous heating transformation diagrams of metallic glassy alloys

    International Nuclear Information System (INIS)

    Louzguine-Luzgin, Dmitri V.; Inoue, Akihisa

    2005-01-01

    The time-temperature transformation (TTT) diagrams for the onset of devitrification of the Ge-Ni-La and Cu-Hf-Ti glassy alloys were calculated from the isothermal differential calorimetry data using an Arrhenius equation. The continuous heating transformation (CHT) diagrams for the onset of devitrification of the glassy alloys were subsequently recalculated from TTT diagrams. The recalculation method used for conversion of the TTT into CHT diagrams produces reasonable results and is not sensitive to the type of the devitrification reaction (polymorphous or primary transformation). The diagrams allow to perform a comparison of the stabilities of glassy alloys on a long-term scale. The relationship between these diagrams is discussed

  8. Impact of acid and alkaline pretreatments on the molecular network of wheat gluten and on the mechanical properties of compression-molded glassy wheat gluten bioplastics.

    Science.gov (United States)

    Jansens, Koen J A; Lagrain, Bert; Brijs, Kristof; Goderis, Bart; Smet, Mario; Delcour, Jan A

    2013-10-02

    Wheat gluten can be converted into rigid biobased materials by high-temperature compression molding at low moisture contents. During molding, a cross-linked protein network is formed. This study investigated the effect of mixing gluten with acid/alkali in 70% ethanol at ambient temperature for 16 h followed by ethanol removal, freeze-drying, and compression molding at 130 and 150 °C on network formation and on types of cross-links formed. Alkaline pretreatment (0-100 mmol/L sodium hydroxide or 25 mmol/L potassium hydroxide) strongly affected gluten cross-linking, whereas acid pretreatment (0-25 mmol/L sulfuric acid or 25 mmol/L hydrochloric acid) had limited effect on the gluten network. Molded alkaline-treated gluten showed enhanced cross-linking but also degradation when treated with high alkali concentrations, whereas acid treatment reduced gluten cross-linking. β-Elimination of cystine and lanthionine formation occurred more pronouncedly at higher alkali concentrations. In contrast, formation of disulfide and nondisulfide cross-links during molding was hindered in acid-pretreated gluten. Bioplastic strength was higher for alkali than for acid-pretreated samples, whereas the flexural modulus was only slightly affected by either alkaline or acid pretreatment. Apparently, the ratio of disulfide to nondisulfide cross-links did not affect the mechanical properties of rigid gluten materials.

  9. Voltammetric determination of sudan ii in food samples at graphene modified glassy carbon electrode based on the enhancement effect of sodium dodecyl sulfate

    International Nuclear Information System (INIS)

    Ma, X.; Chen, M.; Chao, M.

    2013-01-01

    Summary: Herein, a novel electrochemical method was de veloped for the determination of Sudan II based on the electrochemical catalytic activity of graphene modified glassy carbon electrode (GME) and the enhancement effect of sodium dodecyl sulfate (SDS). In a pH 6.0 phosphate buffer solution, Sudan II exhibited a pair of well-defined quasi reversible redox peaks at the GME in the presence of 5.0x10/sup -5/ mol L/sup 1/ SDS. The oxidation peak current of Sudan II was linearly proportional to its concentration in a range from 4.0x10/sup -8/ to 4.0x10/sup -6/ mol L/sup 1/, with a linear regression equation of ipa (A) = 3.35 c + 5.96 x 10/sup -6/, r = 0.9988 and a detection limit of 8.0x10/sup -9/ mol L/sup 1/. The recoveries from the standards fortified blank samples were in the range of 94.7% to 97.5% with RSD lower than 4.0%. The novel method has been successfully used to determine Sudan II in food products with satisfactory results. (author)

  10. Fabrication of an electrochemical sensor based on computationally designed molecularly imprinted polymer for the determination of mesalamine in real samples

    Energy Technology Data Exchange (ETDEWEB)

    Torkashvand, M. [Department of Analytical Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Gholivand, M.B., E-mail: mbgholivand@yahoo.com [Department of Analytical Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Taherkhani, F. [Department of Physical Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of)

    2015-10-01

    A novel electrochemical sensor based on mesalamine molecularly imprinted polymer (MIP) film on a glassy carbon electrode was fabricated. Density functional theory (DFT) in gas and solution phases was developed to study the intermolecular interactions in the pre-polymerization mixture and to find the suitable functional monomers in MIP preparation. On the basis of computational results, o-phenylenediamine (OP), gallic acid (GA) and p-aminobenzoic acid (ABA) were selected as functional monomers. The MIP film was cast on glassy carbon electrode by electropolymerization of solution containing ternary monomers and then followed by Ag dendrites (AgDs) with nanobranch deposition. The surface feature of the modified electrode (AgDs/MIP/GCE) was characterized by scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). Under the optimal experimental conditions, the peak current was proportional to the concentration of mesalamine ranging from 0.05 to 100 μM, with the detection limit of 0.015 μM. The proposed sensor was applied successfully for mesalamine determination in real samples. - Highlights: • The determination of MES using AgDs/MIP/GCE is reported for the first time. • The computer assisted design of terpolymer MIPs was used to screen monomers. • Theoretical results of DFT approach were in agreement with experimental results. • The sensor displayed a high selectivity for template in the presence of interferes. • The developed sensor has been applied to determine mesalamine in real samples.

  11. Fabrication of an electrochemical sensor based on computationally designed molecularly imprinted polymer for the determination of mesalamine in real samples

    International Nuclear Information System (INIS)

    Torkashvand, M.; Gholivand, M.B.; Taherkhani, F.

    2015-01-01

    A novel electrochemical sensor based on mesalamine molecularly imprinted polymer (MIP) film on a glassy carbon electrode was fabricated. Density functional theory (DFT) in gas and solution phases was developed to study the intermolecular interactions in the pre-polymerization mixture and to find the suitable functional monomers in MIP preparation. On the basis of computational results, o-phenylenediamine (OP), gallic acid (GA) and p-aminobenzoic acid (ABA) were selected as functional monomers. The MIP film was cast on glassy carbon electrode by electropolymerization of solution containing ternary monomers and then followed by Ag dendrites (AgDs) with nanobranch deposition. The surface feature of the modified electrode (AgDs/MIP/GCE) was characterized by scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). Under the optimal experimental conditions, the peak current was proportional to the concentration of mesalamine ranging from 0.05 to 100 μM, with the detection limit of 0.015 μM. The proposed sensor was applied successfully for mesalamine determination in real samples. - Highlights: • The determination of MES using AgDs/MIP/GCE is reported for the first time. • The computer assisted design of terpolymer MIPs was used to screen monomers. • Theoretical results of DFT approach were in agreement with experimental results. • The sensor displayed a high selectivity for template in the presence of interferes. • The developed sensor has been applied to determine mesalamine in real samples

  12. Playback interference of glassy-winged sharp shooter communication

    Science.gov (United States)

    Animal communication is vital to reproduction, particularly for securing a mate. Insects commonly communicate by exchanging vibrational signals that are transmitted through host plants. The glassy-winged sharpshooter (GWSS), Homalodisca vitripennis, is an important vector of Xylella fastidiosa, a pl...

  13. Glassy selenium at high pressure: Le Chatelier's principle still works

    Science.gov (United States)

    Brazhkin, V. V.; Tsiok, O. B.

    2017-10-01

    Selenium is the only easily vitrified elementary substance. Numerous experimental studies of glassy Se (g -Se) at high pressures show a large spread in the data on the compressibility and electrical resistivity of g -Se. Furthermore, H. Liu et al. [Proc. Natl. Acad. Sci. USA 105, 13229 (2008), 10.1073/pnas.0806857105] have arrived at the surprising conclusion that the volume of glass increases during pressure-induced crystallization. We have performed high-precision measurements of the specific volume and electrical resistivity of glassy selenium (g -Se) at high hydrostatic pressures up to 9 GPa. The measured bulk modulus at normal pressure is B =(9.0 5 ±0.15 ) GPa and its pressure derivative is BP'=6.4 ±0.2 . In the pressure range P <3 GPa, glassy selenium has an anomalously large negative second derivative of the bulk modulus. The electrical resistivity of g -Se decreases almost exponentially with increasing pressure and reaches 20 Ω cm at a pressure of 8.75 GPa. The inelastic behavior and weak relaxation of the volume for g -Se begin at pressures above 3.5 GPa; the volume and logarithm of the electrical resistivity relax significantly (logarithmically with the time) at pressures above 8 GPa. Bulk measurements certainly indicate that the volume of g -Se glass in the crystallization pressure range is larger than the volumes of both appearing crystalline phases (by 2% and 4%). Therefore, the "volume expansion phenomenon" suggested in [H. Liu et al., Proc. Natl. Acad. Sci. USA 105, 13229 (2008), 10.1073/pnas.0806857105] is not observed, and the pressure-induced crystallization of glassy selenium is consistent with the laws of thermodynamics.

  14. Validated electrochemical and chromatographic quantifications of some antibiotic residues in pharmaceutical industrial waste water.

    Science.gov (United States)

    Ibrahim, Heba K; Abdel-Moety, Mona M; Abdel-Gawad, Sherif A; Al-Ghobashy, Medhat A; Kawy, Mohamed Abdel

    2017-03-01

    Realistic implementation of ion selective electrodes (ISEs) into environmental monitoring programs has always been a challenging task. This could be largely attributed to difficulties in validation of ISE assay results. In this study, the electrochemical response of amoxicillin trihydrate (AMX), ciprofloxacin hydrochloride (CPLX), trimethoprim (TMP), and norfloxacin (NFLX) was studied by the fabrication of sensitive membrane electrodes belonging to two types of ISEs, which are polyvinyl chloride (PVC) membrane electrodes and glassy carbon (GC) electrodes. Linear response for the membrane electrodes was in the concentration range of 10 -5 -10 -2  mol/L. For the PVC membrane electrodes, Nernstian slopes of 55.1, 56.5, 56.5, and 54.0 mV/decade were achieved over a pH 4-8 for AMX, CPLX, and NFLX, respectively, and pH 3-6 for TMP. On the other hand, for GC electrodes, Nernstian slopes of 59.1, 58.2, 57.0, and 58.2 mV/decade were achieved over pH 4-8 for AMX, CPLX, and NFLX, respectively, and pH 3-6 for TMP. In addition to assay validation to international industry standards, the fabricated electrodes were also cross-validated relative to conventional separation techniques; high performance liquid chromatography (HPLC), and thin layer chromatography (TLC)-densitometry. The HPLC assay was applied in concentration range of 0.5-10.0 μg/mL, for all target analytes. The TLC-densitometry was adopted over a concentration range of 0.3-1.0 μg/band, for AMX, and 0.1-0.9 μg/band, for CPLX, NFLX, and TMP. The proposed techniques were successfully applied for quantification of the selected drugs either in pure form or waste water samples obtained from pharmaceutical plants. The actual waste water samples were subjected to solid phase extraction (SPE) for pretreatment prior to the application of chromatographic techniques (HPLC and TLC-densitometry). On the other hand, the fabricated electrodes were successfully applied for quantification of the antibiotic residues in actual

  15. A highly sensitive electrochemical sensor for the determination of methanol based on PdNPs@SBA-15-PrEn modified electrode.

    Science.gov (United States)

    Karimi, Ziba; Shamsipur, Mojtaba; Tabrizi, Mahmoud Amouzadeh; Rostamnia, Sadegh

    2018-05-01

    In this study, a novel electrochemical sensor for the determination of methanol based on palladium nanoparticles supported on Santa barbara amorphous-15- PrNHEtNH 2 (PdNPs@SBA-15-PrEn) as nanocatalysis platform is presented. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and electrochemical methods are employed to characterize the PdNPs@SBA-15-PrEn nanocomposite. The Nafion-Pd@SBA-15-PrEn modified glassy carbon electrode (Nafion-PdNPs@SBA-15-PrEn/GCE) displayed the high electrochemical activity and excellent catalytic characteristic for electro-oxidation of methanol in an alkaline solution. The electro-oxidation performance of the proposed sensor was investigated using cyclic voltammetry (CV) and amperometry. The sensor exhibits a good sensitivity of 0.0905 Amol -1 Lcm -2 , linear range of 20-1000 μM and the corresponding detection limit of 12 μM (3σ). The results demonstrate that the Nafion-PdNPs@SBA-15-PrEn/GCE has potential as an efficient and integrated sensor for methanol detection. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Annealing effects on the migration of ion-implanted cadmium in glassy carbon

    Energy Technology Data Exchange (ETDEWEB)

    Hlatshwayo, T.T., E-mail: thulani.hlatshwayo@up.ac.za [Physics Department, University of Pretoria, Pretoria (South Africa); Sebitla, L.D. [Physics Department, University of Pretoria, Pretoria (South Africa); Physics Department, University of Botswana, Gaborone (Botswana); Njoroge, E.G.; Mlambo, M.; Malherbe, J.B. [Physics Department, University of Pretoria, Pretoria (South Africa)

    2017-03-15

    The migration behaviour of cadmium (Cd) implanted into glassy carbon and the effects of annealing on radiation damage introduced by ion implantation were investigated. The glassy carbon substrates were implanted with Cd at a dose of 2 × 10{sup 16} ions/cm{sup 2} and energy of 360 keV. The implantation was performed at room temperature (RT), 430 °C and 600 °C. The RT implanted samples were isochronally annealed in vacuum at 350, 500 and 600 °C for 1 h and isothermally annealed at 350 °C up to 4 h. The as-implanted and annealed samples were characterized by Raman spectroscopy and Rutherford backscattering spectrometry (RBS). Raman results revealed that implantation at room temperature amorphized the glassy carbon structure while high temperature implantations resulted in slightly less radiation damage. Isochronal annealing of the RT implanted samples resulted in some recrystallization as a function of increasing temperature. The original glassy carbon structure was not achieved at the highest annealing temperature of 600 °C. Diffusion of Cd in glassy carbon was already taking place during implantation at 430 °C. This diffusion of Cd was accompanied by significant loss from the surface during implantation at 600 °C. Isochronal annealing of the room temperature implanted samples at 350 °C for 1 h caused Cd to diffuse towards the bulk while isothermal annealing at 500 and 600 °C resulted in the migration of implanted Cd toward the surface accompanied by a loss of Cd from the surface. Isothermal annealing at 350 °C for 1 h caused Cd to diffuse towards the bulk while for annealing time >1 h Cd diffused towards the surface. These results were interpreted in terms of trapping and de-trapping of implanted Cd by radiation damage.

  17. Amperometric sensing of anti-HIV drug zidovudine on Ag nanofilm-multiwalled carbon nanotubes modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Rafati, Amir Abbas, E-mail: aa_rafati@basu.ac.ir; Afraz, Ahmadreza

    2014-06-01

    The zidovudine (ZDV) is the first drug approved for the treatment of HIV virus infection. The detection and determination of this drug are very importance in human serum because of its undesirable effects. A new ZDV sensor was fabricated on the basis of nanocomposite of silver nanofilm (Ag-NF) and multiwalled carbon nanotubes (MWCNTs) immobilized on glassy carbon electrode (GCE). The modified electrodes were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), cyclic voltammetry (CV), and linear sweep voltammetry (LSV) techniques. Results showed that the electrodeposited silver has a nanofilm structure and further electrochemical studies showed that the prepared nanocomposite has high electrocatalytic activity and is appropriate for using in sensors. The amperometric technique under optimal conditions is used for the determination of ZDV ranging from 0.1 to 400 ppm (0.37 μM–1.5 mM) with a low detection limit of 0.04 ppm (0.15 μM) (S/N = 3) and good sensitivity. The prepared sensor possessed accurate and rapid response to ZDV and shows an average recovery of 98.6% in real samples. - Highlights: • New anti-HIV drug sensor was fabricated on the basis of nanomaterials composite. • The GCE modified by prepared hydrophilic MWCNT silver nanoparticles. • Silver nanofilm electrodeposited on MWCNT/GCE and characterized by SEM, EDX, CV and LSV • Response of electrode to ZDV was thoroughly investigated by electrochemical techniques.

  18. Electrochemical Dissolution of Iridium and Iridium Oxide Particles in Acidic Media: Transmission Electron Microscopy, Electrochemical Flow Cell Coupled to Inductively Coupled Plasma Mass Spectrometry, and X-ray Absorption Spectroscopy Study.

    Science.gov (United States)

    Jovanovič, Primož; Hodnik, Nejc; Ruiz-Zepeda, Francisco; Arčon, Iztok; Jozinović, Barbara; Zorko, Milena; Bele, Marjan; Šala, Martin; Šelih, Vid Simon; Hočevar, Samo; Gaberšček, Miran

    2017-09-13

    Iridium-based particles, regarded as the most promising proton exchange membrane electrolyzer electrocatalysts, were investigated by transmission electron microscopy and by coupling of an electrochemical flow cell (EFC) with online inductively coupled plasma mass spectrometry. Additionally, studies using a thin-film rotating disc electrode, identical location transmission and scanning electron microscopy, as well as X-ray absorption spectroscopy have been performed. Extremely sensitive online time-and potential-resolved electrochemical dissolution profiles revealed that Ir particles dissolve well below oxygen evolution reaction (OER) potentials, presumably induced by Ir surface oxidation and reduction processes, also referred to as transient dissolution. Overall, thermally prepared rutile-type IrO 2 particles are substantially more stable and less active in comparison to as-prepared metallic and electrochemically pretreated (E-Ir) analogues. Interestingly, under OER-relevant conditions, E-Ir particles exhibit superior stability and activity owing to the altered corrosion mechanism, where the formation of unstable Ir(>IV) species is hindered. Due to the enhanced and lasting OER performance, electrochemically pre-oxidized E-Ir particles may be considered as the electrocatalyst of choice for an improved low-temperature electrochemical hydrogen production device, namely a proton exchange membrane electrolyzer.

  19. PdCo porous nanostructures decorated on polypyrrole @ MWCNTs conductive nanocomposite-Modified glassy carbon electrode as a powerful catalyst for ethanol electrooxidation

    Science.gov (United States)

    Fard, Leyla Abolghasemi; Ojani, Reza; Raoof, Jahan Bakhsh; Zare, Ehsan Nazarzadeh; Lakouraj, Moslem Mansour

    2017-04-01

    In the current study, well-defined PdCo porous nanostructure (PdCo PNS) is prepared by a simple one-pot wet-chemical method and polypyrrole@multi-walled carbon nanotubes (PPy@MWCNTs) nanocomposite is used as a catalyst support. The morphology and the structural properties of the prepared catalyst were studied by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The electrocatalytic performance of PdCo PNS/PPy@MWCNTs on glassy carbon electrode has been evaluated by cyclic voltammetry (CV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) techniques. The specific activity of PdCo PNS/PPy@MWCNTs for ethanol electrooxidation (1.65 mA cm-2) is higher than those of other compared electrocatalysts. Also, PdCo PNS/PPy@MWCNTs catalyst represented higher electrocatalytic activity, better long-term stability and high level of poisoning tolerance to the carbonaceous oxidative intermediates for ethanol electrooxidation reaction in alkaline media. Furthermore, the presence of PPY@MWCNTs on the surface of GCE produce a high activity to electrocatalyst, which might be due to the easier charge transfer at polymer/carbon nanotubes interfaces, higher electrochemically accessible surface areas and electronic conductivity. The superior catalytic activity of PdCo PNS/PPy@MWCNTs suggests it to be as a promising electrocatalyst for future direct ethanol fuel cells.

  20. Impedimetric Salmonella aptasensor using a glassy carbon electrode modified with an electrodeposited composite consisting of reduced graphene oxide and carbon nanotubes

    International Nuclear Information System (INIS)

    Jia, Fei; Dai, Ruitong; Duan, Nuo; Wu, Shijia; Wang, Zhouping; Li, Xingmin

    2016-01-01

    We describe a Salmonella biosensor that was obtained by electrochemical immobilization of a nanocomposite consisting of reduced graphene oxide (rGO) and carboxy-modified multi-walled carbon nanotubes (MWCNTs) directly on the surface of a glassy carbon electrode (GCE). An amino-modified aptamer specific for Salmonella was covalently bound to the rGO-MWCNT composite via amide bonds. The morphology of the rGO-MWCNT nanocomposite was characterized by transmission electron microscopy and scanning electron microscopy. Cyclic voltammetry and electrochemical impedance spectroscopy were used to monitor all steps during assembly. When exposed to samples containing Salmonella, the anti-Salmonella aptamer on the electrode captures its target. Hence, electron transfer is blocked, and this results in a large increase in impedance. Salmonella can be quantified by this aptasensor, typically operated at a working voltage of 0.2 V (vs. Ag/AgCl), in the range from 75 to 7.5 × 10 5 cfu⋅mL −1 and detection limit of 25 cfu⋅mL −1 (at an S/N of 3). The method is perceived to have a wide scope in that other bacteria may be detected by analogy to this approach and with very low limits of detection by applying respective analyte-specific aptamers. (author)

  1. Affinity-Mediated Homogeneous Electrochemical Aptasensor on a Graphene Platform for Ultrasensitive Biomolecule Detection via Exonuclease-Assisted Target-Analog Recycling Amplification.

    Science.gov (United States)

    Ge, Lei; Wang, Wenxiao; Sun, Ximei; Hou, Ting; Li, Feng

    2016-02-16

    As is well-known, graphene shows a remarkable difference in affinity toward nonstructured single-stranded (ss) DNA and double-stranded (ds) DNA. This property makes it popular to prepare DNA-based optical sensors. In this work, taking this unique property of graphene in combination with the sensitive electrochemical transducer, we report a novel affinity-mediated homogeneous electrochemical aptasensor using graphene modified glassy carbon electrode (GCE) as the sensing platform. In this approach, the specific aptamer-target recognition is converted into an ultrasensitive electrochemical signal output with the aid of a novel T7 exonuclease (T7Exo)-assisted target-analog recycling amplification strategy, in which the ingeniously designed methylene blue (MB)-labeled hairpin DNA reporters are digested in the presence of target and, then, converted to numerous MB-labeled long ssDNAs. The distinct difference in differential pulse voltammetry response between the designed hairpin reporters and the generated long ssDNAs on the graphene/GCE allows ultrasensitive detection of target biomolecules. Herein, the design and working principle of this homogeneous electrochemical aptasensor were elucidated, and the working conditions were optimized. The gel electrophoresis results further demonstrate that the designed T7Exo-assisted target-analog recycling amplification strategy can work well. This electrochemical aptasensor realizes the detection of biomolecule in a homogeneous solution without immobilization of any bioprobe on electrode surface. Moreover, this versatile homogeneous electrochemical sensing system was used for the determination of biomolecules in real serum samples with satisfying results.

  2. An electrochemical approach: Switching Structures of rare earth metal Praseodymium hexacyanoferrate and its application to sulfite sensor in Red Wine

    International Nuclear Information System (INIS)

    Devadas, Balamurugan; Sivakumar, Mani; Chen, Shen Ming; Cheemalapati, Srikanth

    2015-01-01

    Graphical abstract: Nucleation and growth of PrHCF and its application to sulfite oxidation in wine samples. - Highlights: • Electrochemical synthesis of PrHCF. • Switching structures of PrHCF. • Sulfite electrochemical sensor. • Wide linear range and low limit of detection. • Real sample application. - Abstract: Herein, we report a shape-controlled preparation of Praseodymium hexacyanoferrate (PrHCF) using a simple electrochemical technique. The electrochemically fabricated PrHCF modified glassy carbon electrodes (GCE) shows an excellent electrocatalytic activity towards sulfite oxidation. The morphology of PrHCF particles were controlled by carefully changing various synthesis conditions including electrochemical technique (cyclic voltammetry, amperometry and chemical), cations in the supporting electrolyte (K + , Na + , Li + and H + ), deposition cycles, molar ratio of precursors, and applied potential (-.2,0 and 0.2 V). The morphologies of the PrHCF was elucidated using scanning electron microscopy (SEM). The as-synthesized PrHCF was characterized using X-ray diffraction pattern (XRD), Infra-red (IR) and energy dispersive X-ray spectroscopy (EDX). The electrochemical oxidation of sulfite on PrHCF modified GCE was investigated using cyclic voltammetry (CV) and linear sweep voltammetry (LSV). The sensitivity of the as-developed sulfite sensor was determined to be 0.036 μA μM −1 cm −2 . The low limit of detection was determined to be 2.15 μM. The real time application of PrHCF modified GCE was confirmed through the determination of sulfite from red wine and tap water samples

  3. Apatite layer growth on glassy Zr{sub 48}Cu{sub 36}Al{sub 8}Ag{sub 8} sputtered titanium for potential biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Thanka Rajan, S.; Karthika, M. [Electrochemical Materials Science Division, CSIR-Central Electrochemical Research Institute, Karaikudi 630003 (India); Bendavid, Avi [Plasma Processing & Deposition Team, CSIRO Manufacturing Flagship, LindField, 2070, Sydney (Australia); Subramanian, B., E-mail: subramanianb3@gmail.com [Plasma Processing & Deposition Team, CSIRO Manufacturing Flagship, LindField, 2070, Sydney (Australia); Electrochemical Materials Science Division, CSIR-Central Electrochemical Research Institute, Karaikudi 630003 (India)

    2016-04-30

    Graphical abstract: - Highlights: • Metallic biomaterials are surface modified by Zr based TFMGs. • A bone-like apatite layer was grown on a Ni-free Zr-based TFMG in vitro. • Apatite layer growth confirmed by XRD and XPS analysis indicates its bioactivity. • Electrochemical response of the TFMGs in SBF possesses good corrosion resistance. - Abstract: The bioactivity of magnetron sputtered thin film metallic glasses (TFMGs) of Zr{sub 48}Cu{sub 36}Al{sub 8}Ag{sub 8} (at.%) on titanium substrates was tested for bio implant applications. The structural and elemental compositions of TFMGs were analyzed by XRD, XPS and EDAX. X-ray diffraction analysis displayed a broad hump around the incident angle of 30–50°, suggesting that the coatings possess a glassy structure. An in situ crystal growth of hydroxyapatite was observed by soaking the sputtered specimen in simulated body fluid (SBF). The nucleation and growth of a calcium phosphate (Ca–P) bone-like hydroxyapatite on Zr{sub 48}Cu{sub 36}Al{sub 8}Ag{sub 8} (at.%) TFMG from SBF was investigated by using XRD, AFM and SEM. The presence of calcium and phosphorus elements was confirmed by EDAX and XPS. In vitro electrochemical corrosion studies indicated that the Zr-based TFMG coating sustain in the stimulated body-fluid (SBF), exhibiting superior corrosion resistance with a lower corrosion penetration rate and electrochemical stability than the bare crystalline titanium substrate.

  4. Fabrication of β-cyclodextrin-coated poly (diallyldimethylammonium chloride)-functionalized graphene composite film modified glassy carbon-rotating disk electrode and its application for simultaneous electrochemical determination colorants of sunset yellow and tartrazine

    International Nuclear Information System (INIS)

    Ye, Xiaoliang; Du, Yongling; Lu, Daban; Wang, Chunming

    2013-01-01

    Graphical abstract: -- Highlights: •A green and facile approach for synthesis of β-CD-PDDA-Gr at room temperature. •We present the β-CD-PDDA-Gr modified GC-RDE for simultaneous detection of SY and TT. •SY and TT's electrooxidations are both the one-electron-one-proton-transfer process. •Diffusion coefficients and standard rate constants of SY and TT were discussed. -- Abstract: We proposed a green and facile approach for the synthesis of β-cyclodextrin-coated poly(diallyldimethylammonium chloride)-functionalized graphene composite film (β-CD-PDDA-Gr) by using L-ascorbic acid (L-AA) as the reducing agent at room temperature. The β-CD-PDDA-Gr composite film modified glassy carbon-rotating disk electrode (GC-RDE) was then developed for the sensitive simultaneous determination of two synthetic food colorants: sunset yellow (SY) and tartrazine (TT). By cyclic voltammetry (CV), the peak currents of SY and TT increased obviously on the developed electrochemical sensor. The kinetic parameters, such as diffusion coefficient D and standard heterogeneous rate constant k b , were estimated by linear sweep voltammetry (LSV). Under the optimal conditions, the differential pulse voltammetry (DPV) signals of SY and TT on the β-CD-PDDA-Gr modified GC-RDE were significantly enhanced. The enhanced anodic peak currents represented the excellent analytical performance of simultaneous detection of SY and TT in the range of 5.0 × 10 −8 to 2.0 × 10 −5 mol L −1 , with a low limit of detection (LOD) of 1.25 × 10 −8 mol L −1 for SY and 1.43 × 10 −8 mol L −1 for TT (S N −1 = 3). This proposed method displayed outstanding selectivity, good stability and acceptable repeatability and reproducibility, and also has been used to simultaneously determine SY and TT in some commercial soft drinks with satisfactory results. The obtained results were compared to HPLC of analysis for those two colorants and no significant differences were found. By the treatment of the

  5. Fabrication of β-cyclodextrin-coated poly (diallyldimethylammonium chloride)-functionalized graphene composite film modified glassy carbon-rotating disk electrode and its application for simultaneous electrochemical determination colorants of sunset yellow and tartrazine

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Xiaoliang; Du, Yongling; Lu, Daban; Wang, Chunming, E-mail: wangcm@lzu.edu.cn

    2013-05-24

    Graphical abstract: -- Highlights: •A green and facile approach for synthesis of β-CD-PDDA-Gr at room temperature. •We present the β-CD-PDDA-Gr modified GC-RDE for simultaneous detection of SY and TT. •SY and TT's electrooxidations are both the one-electron-one-proton-transfer process. •Diffusion coefficients and standard rate constants of SY and TT were discussed. -- Abstract: We proposed a green and facile approach for the synthesis of β-cyclodextrin-coated poly(diallyldimethylammonium chloride)-functionalized graphene composite film (β-CD-PDDA-Gr) by using L-ascorbic acid (L-AA) as the reducing agent at room temperature. The β-CD-PDDA-Gr composite film modified glassy carbon-rotating disk electrode (GC-RDE) was then developed for the sensitive simultaneous determination of two synthetic food colorants: sunset yellow (SY) and tartrazine (TT). By cyclic voltammetry (CV), the peak currents of SY and TT increased obviously on the developed electrochemical sensor. The kinetic parameters, such as diffusion coefficient D and standard heterogeneous rate constant k{sub b}, were estimated by linear sweep voltammetry (LSV). Under the optimal conditions, the differential pulse voltammetry (DPV) signals of SY and TT on the β-CD-PDDA-Gr modified GC-RDE were significantly enhanced. The enhanced anodic peak currents represented the excellent analytical performance of simultaneous detection of SY and TT in the range of 5.0 × 10{sup −8} to 2.0 × 10{sup −5} mol L{sup −1}, with a low limit of detection (LOD) of 1.25 × 10{sup −8} mol L{sup −1} for SY and 1.43 × 10{sup −8} mol L{sup −1} for TT (S N{sup −1} = 3). This proposed method displayed outstanding selectivity, good stability and acceptable repeatability and reproducibility, and also has been used to simultaneously determine SY and TT in some commercial soft drinks with satisfactory results. The obtained results were compared to HPLC of analysis for those two colorants and no significant

  6. How Glassy States Affect Brown Carbon Production?

    Science.gov (United States)

    Liu, P.; Li, Y.; Wang, Y.; Bateman, A. P.; Zhang, Y.; Gong, Z.; Gilles, M. K.; Martin, S. T.

    2015-12-01

    Secondary organic material (SOM) can become light-absorbing (i.e. brown carbon) via multiphase reactions with nitrogen-containing species such as ammonia and amines. The physical states of SOM, however, potentially slow the diffusion of reactant molecules in organic matrix under conditions that semisolids or solids prevail, thus inhibiting the browning reaction pathways. In this study, the physical states and the in-particle diffusivity were investigated by measuring the evaporation kinetics of both water and organics from aromatic-derived SOMs using a quartz-crystal-microbalance (QCM). The results indicate that the SOMs derived from aromatic precursors toluene and m-xylene became solid (glassy) and the in particle diffusion was significantly impeded for sufficiently low relative humidity ( toluene-derived SOM after ammonia exposure at varied RHs. The results suggest that the production of light-absorbing nitrogen-containing compounds from multiphase reactions with ammonia was kinetically limited in the glassy organic matrix, which otherwise produce brown carbon. The results of this study have significant implications for production and optical properties of brown carbon in urban atmospheres that ultimately influence the climate and tropospheric photochemistry.

  7. Towards the conception of an amperometric sensor of L-tyrosine based on Hemin/PAMAM/MWCNT modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Ma Qiang; Ai Shiyun; Yin Huanshun; Chen Quanpeng; Tang Tiantian

    2010-01-01

    A novel amperometric sensor was fabricated based on the immobilization of hemin onto the poly (amidoamine)/multi-walled carbon nanotube (PAMAM/MWCNT) nanocomposite film modified glassy carbon electrode (GCE). Electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and ultraviolet visible (UV-vis) adsorption spectroscopy were used to investigate the possible state and electrochemical activity of the immobilized hemin. In the Hemin/PAMAM/MWCNT nanocomposite film, MWCNT layer possessed excellent inherent conductivity to enhance the electron transfer rate, while the layer of PAMAM greatly enlarged the surface average concentration of hemin (Γ) on the modified electrode. Therefore, the nanocomposite film showed enhanced electrocatalytical activity towards the oxidation of L-tyrosine. The kinetic parameters of the modified electrode were investigated. In pH 7.0 phosphate buffer solution (PBS), the sensor exhibits a wide linear range from 0.1 μM to 28.8 μM L-tyrosine with a detection limit of 0.01 μM and a high sensitivity of 0.31 μA μM -1 cm -2 . In addition, the response time of the L-tyrosine sensor is less than 5 s. The excellent performance of the sensor is largely attributed to the electro-generated high reactive oxoiron (IV) porphyrin (O = Fe IV -P) which effectively catalyzed the oxidation of L-tyrosine. A mechanism was herein proposed for the catalytic oxidation of L-tyrosine by oxoiron (IV) porphyrin complexes.

  8. Shear-transformation-zone theory of linear glassy dynamics.

    Science.gov (United States)

    Bouchbinder, Eran; Langer, J S

    2011-06-01

    We present a linearized shear-transformation-zone (STZ) theory of glassy dynamics in which the internal STZ transition rates are characterized by a broad distribution of activation barriers. For slowly aging or fully aged systems, the main features of the barrier-height distribution are determined by the effective temperature and other near-equilibrium properties of the configurational degrees of freedom. Our theory accounts for the wide range of relaxation rates observed in both metallic glasses and soft glassy materials such as colloidal suspensions. We find that the frequency-dependent loss modulus is not just a superposition of Maxwell modes. Rather, it exhibits an α peak that rises near the viscous relaxation rate and, for nearly jammed, glassy systems, extends to much higher frequencies in accord with experimental observations. We also use this theory to compute strain recovery following a period of large, persistent deformation and then abrupt unloading. We find that strain recovery is determined in part by the initial barrier-height distribution, but that true structural aging also occurs during this process and determines the system's response to subsequent perturbations. In particular, we find by comparison with experimental data that the initial deformation produces a highly disordered state with a large population of low activation barriers, and that this state relaxes quickly toward one in which the distribution is dominated by the high barriers predicted by the near-equilibrium analysis. The nonequilibrium dynamics of the barrier-height distribution is the most important of the issues raised and left unresolved in this paper.

  9. Pretreatment of wastewater from triazine manufacturing by coagulation, electrolysis, and internal microelectrolysis.

    Science.gov (United States)

    Cheng, Hefa; Xu, Weipu; Liu, Junliang; Wang, Huanjun; He, Yanqing; Chen, Gang

    2007-07-19

    We studied the pretreatment of concentrated wastewater from triazine manufacturing by coagulation, electrolysis, and internal microelectrolysis. Results show that coagulation by polyaluminum chloride at dosage of 0.5 g/L could remove up to 17.2% chemical oxygen demand (COD) from the wastewater. Electrolysis using iron electrode achieved 33.2% COD removal at current of 2A in 180 min, which was attributed to coagulation and oxidation of the organic contaminants in the wastewater by the radicals (OH and O) and oxidants (O2, O3, and H2O2) produced in electrochemical reactions. Internal microelectrolysis using iron chips and granular activated carbon (GAC) showed that up to 60.5% COD could be removed under the conditions of iron/GAC/wastewater volumetric ratio of 3:2:490, sparge ratio (ratio of air flow rate to volume of wastewater) of 2:490 min(-1), and reaction time of 132 h. COD reduction in internal microelectrolysis was attributed to a combination of chemical and physical processes, mainly oxidation by radicals and oxidants formed in electrochemical reactions, adsorption on, co-precipitation with, and enmeshment in ferrous and ferric hydroxides resulted from Fe2+ released during anode oxidation. The results suggest that internal microelectrolysis using iron chips and GAC is a promising, low-cost alternative for pretreating concentrated wastewater from pesticide manufacturing.

  10. Sensitive electrochemical immunosensor for α-fetoprotein based on graphene/SnO2/Au nanocomposite.

    Science.gov (United States)

    Liu, Junfeng; Lin, Guanhua; Xiao, Can; Xue, Ying; Yang, Ankang; Ren, Hongxuan; Lu, Wensheng; Zhao, Hong; Li, Xiangjun; Yuan, Zhuobin

    2015-09-15

    A label-free electrochemical immunosensor for sensitive detection of α-fetoprotein (AFP) was developed based on graphene/SnO2/Au nanocomposite. The graphene/SnO2/Au nanocomposite modified glassy carbon electrode was used to immobilize α-fetoprotein antibody (anti-AFP) and to construct the immunosensor. Results demonstrated that the peak currents of [Ru(NH3)6](3+) decreased due to the interaction between antibody and antigen on the modified electrode. Thus, a label-free immunosensor for the detection of AFP was realized by monitoring the peak current change of [Ru(NH3)6](3+). The factors influencing the performance of the immunosensor were investigated in details. Under optimal conditions, the peak currents obtained by DPV decreased linearly with the increasing AFP concentrations in the range from 0.02 to 50 ng mL(-1) with a linear coefficient of 0.9959. This electrochemical immunoassay has a low detection limit of 0.01 ng mL(-1) (S/N=3) and was successfully applied to the determination of AFP in serum samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Novel electrochemical xanthine biosensor based on chitosan–polypyrrole–gold nanoparticles hybrid bio-nanocomposite platform

    Directory of Open Access Journals (Sweden)

    Muamer Dervisevic

    2017-07-01

    Full Text Available The aim of this study was the electrochemical detection of the adenosine-3-phosphate degradation product, xanthine, using a new xanthine biosensor based on a hybrid bio-nanocomposite platform which has been successfully employed in the evaluation of meat freshness. In the design of the amperometric xanthine biosensor, chitosan–polypyrrole–gold nanoparticles fabricated by an in situ chemical synthesis method on a glassy carbon electrode surface was used to enhance electron transfer and to provide good enzyme affinity. Electrochemical studies were carried out by the modified electrode with immobilized xanthine oxidase on it, after which the biosensor was tested to ascertain the optimization parameters. The Biosensor exhibited a very good linear range of 1–200 μM, low detection limit of 0.25 μM, average response time of 8 seconds, and was not prone to significant interference from uric acid, ascorbic acid, glucose, and sodium benzoate. The resulting bio-nanocomposite xanthine biosensor was tested with fish, beef, and chicken real-sample measurements.

  12. Preparation and characterization of diethylene glycol bis(2-aminophenyl) ether-modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Isbir, Aybueke A. [Ankara University, Faculty of Science, Department of Chemistry, 06100 Tandogan, Ankara (Turkey); Solak, Ali Osman [Ankara University, Faculty of Science, Department of Chemistry, 06100 Tandogan, Ankara (Turkey)]. E-mail: osolak@science.ankara.edu.tr; Ustuendag, Zafer [Ankara University, Faculty of Science, Department of Chemistry, 06100 Tandogan, Ankara (Turkey); Bilge, Selen [Ankara University, Faculty of Science, Department of Chemistry, 06100 Tandogan, Ankara (Turkey); Kilic, Zeynel [Ankara University, Faculty of Science, Department of Chemistry, 06100 Tandogan, Ankara (Turkey)

    2006-07-28

    Diethylene glycol bis(2-aminophenyl) ether (DGAE) diazonium salt was covalently electrografted on a glassy carbon (GC) surface and behavior of this novel surface was investigated. Synthesis of DGAE diazonium salt (DGAE-DAS) and in situ modification of GC electrode were performed in aqueous media containing NaNO{sub 2}, keeping the temperature below +4 deg. C. For the characterization of the modified electrode surface by cyclic voltammetry, dopamine (DA) was used to prove the attachment of the DGAE-DAS on the GC surface. Raman spectroscopy and electrochemical impedance spectroscopy (EIS) were used to observe the molecular bound properties of the adsorbates at the DGAE-modified GC surface (GC-DGAE). The EIS results were analyzed using the Randles equivalent circuit. The charge transfer resistance on bare GC and the modified surface were calculated using the model equivalent circuit for the ferrocene redox system. Surface coverage was found as 0.4 showing the presence of high pinhole and defects in the modified electrode. The rate constant of electron transfer through the monolayer was calculated for ferrocene. Working potential range and the stability of the DGAE-modified GC electrode was also determined.

  13. Preparation and characterization of diethylene glycol bis(2-aminophenyl) ether-modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Isbir, Aybueke A.; Solak, Ali Osman; Ustuendag, Zafer; Bilge, Selen; Kilic, Zeynel

    2006-01-01

    Diethylene glycol bis(2-aminophenyl) ether (DGAE) diazonium salt was covalently electrografted on a glassy carbon (GC) surface and behavior of this novel surface was investigated. Synthesis of DGAE diazonium salt (DGAE-DAS) and in situ modification of GC electrode were performed in aqueous media containing NaNO 2 , keeping the temperature below +4 deg. C. For the characterization of the modified electrode surface by cyclic voltammetry, dopamine (DA) was used to prove the attachment of the DGAE-DAS on the GC surface. Raman spectroscopy and electrochemical impedance spectroscopy (EIS) were used to observe the molecular bound properties of the adsorbates at the DGAE-modified GC surface (GC-DGAE). The EIS results were analyzed using the Randles equivalent circuit. The charge transfer resistance on bare GC and the modified surface were calculated using the model equivalent circuit for the ferrocene redox system. Surface coverage was found as 0.4 showing the presence of high pinhole and defects in the modified electrode. The rate constant of electron transfer through the monolayer was calculated for ferrocene. Working potential range and the stability of the DGAE-modified GC electrode was also determined

  14. Direct electrodeposition of a biocomposite consisting of reduced graphene oxide, chitosan and glucose oxidase on a glassy carbon electrode for direct sensing of glucose

    International Nuclear Information System (INIS)

    Yang, S.; Lu, Z.; Luo, S.; Liu, C.; Tang, Y.

    2013-01-01

    We have electrodeposited a composite film consisting of graphene oxide, chitosan and glucose oxidase directly on a glassy carbon electrode (GCE) through electrochemical reduction of a solution of the 3 components under controlled direct electrical potential. The procedure takes only several minutes, and the thickness of the resulting film is uniform and controllable. The GOx has uncompromised bioactivity and exhibits reversible 2-proton and 2-electron transfer in presence of glucose. It therefore can be used amperometric sensing of glucose. The biosensor has a fast response (<3 s), a detection limit of 0.4 μM (which is 50-fold lower compared to the biosensor prepared by drop-casting solutions of the same materials onto an GCE), and a linear response in the 0.4 μM to 2 mM concentration range (which again is much better than that of the biosensor prepared by the drop-casting method). Other features include high reproducibility, long-time storage stability, and satisfactory selectivity. We presume that the direct single-step electrodeposition of this nanocomposite offers a promising approach towards novel types of highly sensitive and stable electrochemical biosensors. (author)

  15. Glassy carbon supercapacitor: 100,000 cycles demonstrated

    Energy Technology Data Exchange (ETDEWEB)

    Baertsch, M; Braun, A; Schnyder, B; Koetz, R [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    A 5 V glassy carbon capacitor stack was built consisting of four bipolar and two end-plate electrodes. More than 100,000 charging/discharging cycles were applied to test the stability of the double-layer capacitor. Low and high frequency resistances were measured as a function of the number of cycles. (author) 2 figs., 1 ref.

  16. An ultrasensitive electrochemical sensor for simultaneous determination of xanthine, hypoxanthine and uric acid based on Co doped CeO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Lavanya, N. [Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi 630003, Tamilnadu (India); Sekar, C., E-mail: Sekar2025@gmail.com [Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi 630003, Tamilnadu (India); Murugan, R.; Ravi, G. [Department of Physics, Alagappa University, Karaikudi 630003, Tamilnadu (India)

    2016-08-01

    A novel electrochemical sensor has been fabricated using Co doped CeO{sub 2} nanoparticles for selective and simultaneous determination of xanthine (XA), hypoxanthine (HXA) and uric acid (UA) in a phosphate buffer solution (PBS, pH 5.0) for the first time. The Co-CeO{sub 2} NPs have been prepared by microwave irradiation method and characterized by Powder XRD, Raman spectroscopy, HRTEM and VSM measurements. The electrochemical behaviours of XA, HXA and UA at the Co-CeO{sub 2} NPs modified glassy carbon electrode (GCE) were studied by cyclic voltammetry and square wave voltammetry methods. The modified electrode exhibited remarkably well-separated anodic peaks corresponding to the oxidation of XA, HXA and UA over the concentration range of 0.1–1000, 1–600 and 1–2200 μM with detection limits of 0.096, 0.36, and 0.12 μM (S/N = 3), respectively. For simultaneous detection by synchronous change of the concentrations of XA, HXA and UA, the linear responses were in the range of 1–400 μM each with the detection limits of 0.47, 0.26, and 0.43 μM (S/N = 3), respectively. The fabricated sensor was further applied to the detection of XA, HXA and UA in human urine samples with good selectivity and high reproducibility. - Highlights: • A novel electrochemical sensor has been fabricated for simultaneous determination of purine metabolites xanthine, hypoxanthine, and uric acid based on Co doped CeO{sub 2} nanoparticles. • The Co-CeO{sub 2} modified glassy carbon electrode exhibited wide linear range towards the detection of XA, HXA and UA than ever reported in the literature. • The fabricated sensor was successfully applied for the analysis of human urine samples with satisfactory results.

  17. Observation of glassy state relaxation during annealing of frozen sugar solutions by X-ray computed tomography.

    Science.gov (United States)

    Nakagawa, Kyuya; Tamiya, Shinri; Do, Gabsoo; Kono, Shinji; Ochiai, Takaaki

    2018-06-01

    Glassy phase formation in a frozen product determines various properties of the freeze-dried products. When an aqueous solution is subjected to freezing, a glassy phase forms as a consequence of freeze-concentration. During post-freezing annealing, the relaxation of the glassy phase and the ripening of ice crystals (i.e. Ostwald ripening) spontaneously occur, where the kinetics are controlled by the annealing and glass transition temperatures. This study was motivated to observe the progress of glassy state relaxation separate from ice coarsening during annealing. X-ray computed tomography (CT) was used to observe a frozen and post-freezing annealed solutions by using monochromatized X-ray from the synchrotron radiation. CT images were successfully obtained, and the frozen matrix were analyzed based on the gray level values that were equivalent to the linear X-ray attenuation coefficients of the observed matters. The CT images obtained from rapidly frozen sucrose and dextrin solutions with different concentrations gave clear linear relationships between the linear X-ray attenuation coefficients values and the solute concentrations. It was confirmed that the glassy state relaxation progressed as increasing annealing time, and this trend was larger in the order of the glass transition temperature of the maximally freeze-concentrated phase. The sucrose-water system required nearly 20 h of annealing time at -5 °C for the completion of the glassy phase relaxation, whereas dextrin-water systems required much longer periods because of their higher glass transition temperatures. The trends of ice coarsening, however, did not perfectly correspond to the trends of the relaxation, suggesting that the glassy phase relaxation and Ostwald ripening would jointly control the ice crystal growth/ripening kinetics, and the dominant mechanism differed by the annealing stage. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Conductive polymer/reduced graphene oxide/Au nano particles as efficient composite materials in electrochemical supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Shabani Shayeh, J. [Center of Excellence in Electrochemistry, University of Tehran, Tehran (Iran, Islamic Republic of); Ehsani, A., E-mail: a.ehsani@qom.ac.ir [Department of Chemistry, Faculty of Science, University of Qom, P.O. Box 37185-359, Qom (Iran, Islamic Republic of); Ganjali, M.R.; Norouzi, P. [Center of Excellence in Electrochemistry, University of Tehran, Tehran (Iran, Islamic Republic of); Endocrinology & Metabolism Research Center, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Jaleh, B. [Physics Department, Bu-Ali Sina University, Hamedan 65174 (Iran, Islamic Republic of)

    2015-10-30

    Graphical abstract: - Highlights: • PANI/rGO/AuNPs as a ternary composite synthesized by electrodeposition. • Presence of rGO/AuNPs caused increasing the stability of electrodes. • Composite represented high specific capacitance, specific power and specific energy values than PANI. - Abstract: Polyaniline/reduced graphene oxide/Au nano particles (PANI/rGO/AuNPs) as a hybrid supercapacitor were deposited on a glassy carbon electrode (GCE) by cyclic voltammetry (CV) method as ternary composites and their electrochemical performance was evaluated in acidic medium. Scanning electron micrographs clearly revealed the formation of nanocomposites on the surface of the working electrode. Scanning electron micrographs (SEM) clearly revealed the formation of nanocomposites on the surface of working electrode. Different electrochemical methods including galvanostatic charge–discharge (CD) experiments, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were carried out in order to investigate the applicability of the system as a supercapacitor. Based on the cyclic voltammogram results obtained, PANI/rGO/AuNPs gave higher specific capacitance, power and energy values than PANI at a current density of 1 mA cm{sup −2}. Specific capacitance (SC) of PANI and PANI/rGO/AuNPs electrodes calculated using CV method are 190 and 303 F g{sup −1}, respectively. The present study introduces new nanocomposite materials for electrochemical redox capacitors with advantages including long life cycle and stability due to synergistic effects of each component.

  19. In situ generation of diazonium cations in organic electrolyte for electrochemical modification of electrode surface

    International Nuclear Information System (INIS)

    Baranton, Steve; Belanger, Daniel

    2008-01-01

    The modification of glassy carbon electrode was achieved by electrochemical reduction of in situ generated diazonium cations in acetonitrile. The in situ generation of 4-nitrophenyl diazonium cations in acetonitrile was investigated by spectroscopic methods. UV-visible spectroscopy revealed slow kinetics for the reaction of 4-nitroaniline with tert-butylnitrite in acetonitrile to form the corresponding diazonium cation. As a result, a coupling reaction, which implies a consumption of the amine and loss of the already formed diazonium cations, was evidenced by 1 H NMR spectroscopy. This spectroscopic study allowed the optimization of the in situ diazonium cations generation prior to the modification step. The electrochemical modification of the carbon electrodes with 4-nitrophenyl, 4-bromophenyl and anthraquinone groups was characterized by cyclic voltammetry and the resulting grafted layer were characterized by electrochemical techniques. The cyclic voltammetric behaviour during the electrochemical grafting was very similar to the one observed for an isolated diazonium salt dissolved in acetonitrile. In the case of the anthraquinone-modified electrode, the use of acetonitrile, into which the corresponding amine is soluble but not in aqueous media, allowed for its grafting by the in situ approach. The barrier properties of these grafted layers are similar to those obtained from isolated diazonium salts. Finally, the chemical composition of the grafted layers was determined by X-ray photoelectron spectroscopy and surface coverage in the range 5-7 x 10 -10 mol cm -2 was estimated for films grown in our experimental conditions

  20. In situ generation of diazonium cations in organic electrolyte for electrochemical modification of electrode surface

    Energy Technology Data Exchange (ETDEWEB)

    Baranton, Steve [Departement de Chimie, Universite du Quebec a Montreal, Case Postale 8888, succursale Centre-Ville, Montreal (Quebec), H3C 3P8 (Canada); Belanger, Daniel [Departement de Chimie, Universite du Quebec a Montreal, Case Postale 8888, succursale Centre-Ville, Montreal (Quebec), H3C 3P8 (Canada)], E-mail: belanger.daniel@uqam.ca

    2008-10-01

    The modification of glassy carbon electrode was achieved by electrochemical reduction of in situ generated diazonium cations in acetonitrile. The in situ generation of 4-nitrophenyl diazonium cations in acetonitrile was investigated by spectroscopic methods. UV-visible spectroscopy revealed slow kinetics for the reaction of 4-nitroaniline with tert-butylnitrite in acetonitrile to form the corresponding diazonium cation. As a result, a coupling reaction, which implies a consumption of the amine and loss of the already formed diazonium cations, was evidenced by {sup 1}H NMR spectroscopy. This spectroscopic study allowed the optimization of the in situ diazonium cations generation prior to the modification step. The electrochemical modification of the carbon electrodes with 4-nitrophenyl, 4-bromophenyl and anthraquinone groups was characterized by cyclic voltammetry and the resulting grafted layer were characterized by electrochemical techniques. The cyclic voltammetric behaviour during the electrochemical grafting was very similar to the one observed for an isolated diazonium salt dissolved in acetonitrile. In the case of the anthraquinone-modified electrode, the use of acetonitrile, into which the corresponding amine is soluble but not in aqueous media, allowed for its grafting by the in situ approach. The barrier properties of these grafted layers are similar to those obtained from isolated diazonium salts. Finally, the chemical composition of the grafted layers was determined by X-ray photoelectron spectroscopy and surface coverage in the range 5-7 x 10{sup -10} mol cm{sup -2} was estimated for films grown in our experimental conditions.

  1. Conductive polymer/reduced graphene oxide/Au nano particles as efficient composite materials in electrochemical supercapacitors

    International Nuclear Information System (INIS)

    Shabani Shayeh, J.; Ehsani, A.; Ganjali, M.R.; Norouzi, P.; Jaleh, B.

    2015-01-01

    Graphical abstract: - Highlights: • PANI/rGO/AuNPs as a ternary composite synthesized by electrodeposition. • Presence of rGO/AuNPs caused increasing the stability of electrodes. • Composite represented high specific capacitance, specific power and specific energy values than PANI. - Abstract: Polyaniline/reduced graphene oxide/Au nano particles (PANI/rGO/AuNPs) as a hybrid supercapacitor were deposited on a glassy carbon electrode (GCE) by cyclic voltammetry (CV) method as ternary composites and their electrochemical performance was evaluated in acidic medium. Scanning electron micrographs clearly revealed the formation of nanocomposites on the surface of the working electrode. Scanning electron micrographs (SEM) clearly revealed the formation of nanocomposites on the surface of working electrode. Different electrochemical methods including galvanostatic charge–discharge (CD) experiments, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were carried out in order to investigate the applicability of the system as a supercapacitor. Based on the cyclic voltammogram results obtained, PANI/rGO/AuNPs gave higher specific capacitance, power and energy values than PANI at a current density of 1 mA cm"−"2. Specific capacitance (SC) of PANI and PANI/rGO/AuNPs electrodes calculated using CV method are 190 and 303 F g"−"1, respectively. The present study introduces new nanocomposite materials for electrochemical redox capacitors with advantages including long life cycle and stability due to synergistic effects of each component.

  2. SUPERNOVA SHOCK-WAVE-INDUCED CO-FORMATION OF GLASSY CARBON AND NANODIAMOND

    Energy Technology Data Exchange (ETDEWEB)

    Stroud, Rhonda [Naval Research Laboratory, Washington, D.C.; Chisholm, Matthew F [ORNL; Heck, Phillipp [The Field Museum, Chicago, IL; Alexander, Conel [Carnegie Institution of Washington; Nittler, Larry [Carnegie Institution of Washington

    2011-01-01

    Nanodiamond (ND) was the first extrasolar dust phase to be identified in meteorites. However, the 2 nm average size of the NDs precludes isotopic analysis of individual particles, and thus their origin(s) remains controversial. Using electron microscopy with subnanometer resolution, we show that ND separates from the Allende and Murchison meteorites are actually a two-phase mixture of ND and glassy carbon. This phase mixture is likely the product of supernova shock-wave transformation of pre-formed organics in the interstellar medium (ISM). The glassy carbon ND mixture is also a plausible contributor to the 2175 extinction feature in the diffuse ISM.

  3. Electrooxidation of Indomethacin at Multiwalled Carbon Nanotubes-Modified GCE and Its Determination in Pharmaceutical Dosage Form and Human Biological Fluids

    OpenAIRE

    Sataraddi, Sanjeevaraddi R.; Patil, Shreekant M.; Bagoji, Atmanand M.; Pattar, Vijay P.; Nandibewoor, Sharanappa T.

    2014-01-01

    A simple, rapid, selective, and sensitive electrochemical method for the direct determination of indomethacin was developed. The electrochemical behavior of indomethacin was carried at multiwalled carbon nanotube- (MWCNTs-) modified glassy carbon electrode (GCE). The cyclic voltammetric results indicated that MWCNT-modified glassy carbon electrode remarkably enhanced electrocatalytic activity towards the oxidation of indomethacin in slightly acidic solutions. It led to a considerable improvem...

  4. Morphological and electrochemical studies of spherical boron doped diamond electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Mendes de Barros, R.C. [IQ/USP, Av. Lineu Prestes, 748, Bloco 2 Superior, Cidade Universitaria, Sao Paulo/SP, 05508-900 (Brazil); Ferreira, N.G. [LAS/INPE, Av. dos Astronautas, 1758, Jardim da Granja, Sao Jose dos Campos/SP, 12245-970 (Brazil); Azevedo, A.F. [LAS/INPE, Av. dos Astronautas, 1758, Jardim da Granja, Sao Jose dos Campos/SP, 12245-970 (Brazil); Corat, E.J. [LAS/INPE, Av. dos Astronautas, 1758, Jardim da Granja, Sao Jose dos Campos/SP, 12245-970 (Brazil); Sumodjo, P.T.A. [IQ/USP, Av. Lineu Prestes, 748, Bloco 2 Superior, Cidade Universitaria, Sao Paulo/SP, 05508-900 (Brazil); Serrano, S.H.P. [IQ/USP, Av. Lineu Prestes, 748, Bloco 2 Superior, Cidade Universitaria, Sao Paulo/SP, 05508-900 (Brazil)]. E-mail: shps@iq.usp.br

    2006-08-14

    Morphological and electrochemical characteristics of boron doped diamond electrode in new geometric shape are presented. The main purpose of this study is a comparison among voltammetric behavior of planar glassy carbon electrode (GCE), planar boron doped diamond electrode (PDDE) and spherical boron doped diamond electrode (SDDE), obtained from similar experimental parameters. SDDE was obtained by the growth of boron doped film on textured molybdenum tip. This electrode does not present microelectrode characteristics. However, its voltammetric peak current, determined at low scan rates, is largest associated to the smallest {delta}E {sub p} values for ferrocyanide system when compared with PDDE or GCE. In addition, the capacitance is about 200 times smaller than that for GCE. These results show that the analytical performance of boron doped diamond electrodes can be implemented just by the change of sensor geometry, from plane to spherical shape.

  5. Electrochemical detection of ultratrace nitroaromatic explosives using ordered mesoporous carbon

    Energy Technology Data Exchange (ETDEWEB)

    Zang Jianfeng; Guo Chunxian; Hu Fengping [School of Chemical and Biomedical Engineering and Center for Advanced Bionanosystems, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457 (Singapore); Yu Lei [Department of Chemical, Materials and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269 (United States); Li Changming, E-mail: ecmli@ntu.edu.sg [School of Chemical and Biomedical Engineering and Center for Advanced Bionanosystems, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457 (Singapore)

    2011-01-10

    A sensitive electrochemical sensor has been fabricated to detect ultratrace nitroaromatic explosives using ordered mesoporus carbon (OMC). OMC was synthesized and characterized by scanning electron microscopy, transmission electron microscopy and nitrogen adsorption/desorption measurements. Glassy carbon electrodes functionalized with OMC show high sensitivity of 62.7 {mu}A cm{sup -2} per ppb towards 2,4,6-trinitrotoluene (TNT). By comparison with other materials such as carbon nanotubes and ordered mesoporous silica, it is found that the high performance of OMC toward sensing TNT is attributed to its large specific surface area and fast electron transfer capability. As low as 0.2 ppb TNT, 1 ppb 2,4-dinitrotoluene and 1 ppb 1,3-dinitrobenzene can be detected on OMC based electrodes. This work renders new opportunities to detect ultratrace explosives for applications of environment protections and home securities against chemical warfare agents.

  6. Solvated electron structure in glassy matrices

    International Nuclear Information System (INIS)

    Kevan, L.

    1981-01-01

    Current knowledge of the detailed geometrical structure of solvated electrons in aqueous and organic media is summarized. The geometry of solvated electrons in glassy methanol, ethanol, and 2-methyltetrahydrofuran is discussed. Advanced electron magnetic resonance methods and development of new methods of analysis of electron spin echo modulation patterns, second moment line shapes, and forbidden photon spin-flip transitions for paramagnetic species in these disordered systems are discussed. 66 references are cited

  7. Highly selective determination of dopamine in the presence of ascorbic acid and serotonin at glassy carbon electrodes modified with carbon nanotubes dispersed in polyethylenimine.

    Science.gov (United States)

    Rodríguez, Marcela C; Rubianes, María D; Rivas, Gustavo A

    2008-11-01

    We report the highly selective and sensitive voltammetric dopamine quantification in the presence of ascorbic acid and serotonin by using glassy carbon electrodes modified with a dispersion of multi-wall carbon nanotubes (MWCNT) in polyethylenimine, PEI (GCE/MWCNT-PEI). The electrocatalytic activity of the MWCNT deposited on the glassy carbon electrode has allowed an important decrease in the overvoltages for the oxidation of ascorbic acid and dopamine, making possible a clear definition of dopamine, serotonin and ascorbic acid oxidation processes. The sensitivities for dopamine in the presence and absence of 1.0 mM ascorbic acid and serotonin were (2.18 +/- 0.03) x 10(5) microAM(-1) (r = 0.9998); and (2.10 +/- 0.07) x 10(5) miroAM(-1) (r=0.9985), respectively, demonstrating the excellent performance of the GCE/MWCNT-PEI. The detection limit for dopamine in the mixture was 9.2 x 10(-7) M. The R. S. D. for the determination of 50 microM dopamine using four different electrodes was 3.9% when modified with the same MWCNT/PEI dispersion, and 4.6% when using four different dispersions. The modified electrode has been successfully applied for recovery assays of dopamine in human blood serum. Therefore, the new sensor represents an interesting and promising alternative for the electrochemical quantification of neurotransmitters and other analytes of clinical interest.

  8. Highly sensitive electrochemical determination of 1-naphthol based on high-index facet SnO2 modified electrode

    International Nuclear Information System (INIS)

    Huang Xiaofeng; Zhao Guohua; Liu Meichuan; Li Fengting; Qiao Junlian; Zhao Sichen

    2012-01-01

    Highlights: ► It is the first time to employ high-index faceted SnO 2 in electrochemical analysis. ► High-index faceted SnO 2 has excellent electrochemical activity toward 1-naphthol. ► Highly sensitive determination of 1-naphthol is realized on high-index faceted SnO 2 . ► The detection limit of 1-naphthol is as low as 5 nM on high-index faceted SnO 2 . ► Electro-oxidation kinetics for 1-napthol on the novel electrode is discussed. - Abstract: SnO 2 nanooctahedron with {2 2 1} high-index facet (HIF) was synthesized by a simple hydrothermal method, and was firstly employed to sensitive electrochemical sensing of a typical organic pollutant, 1-naphthol (1-NAP). The constructed HIF SnO 2 modified glassy carbon electrode (HIF SnO 2 /GCE) possessed advantages of large effective electrode area, high electron transfer rate, and low charge transfer resistance. These improved electrochemical properties allowed the high electrocatalytic performance, high effective active sites and high adsorption capacity of 1-NAP on HIF SnO 2 /GCE. Cyclic voltammetry (CV) results showed that the electrochemical oxidation of 1-NAP obeyed a two-electron transfer process and the electrode reaction was under diffusion control on HIF SnO 2 /GCE. By adopting differential pulse voltammetry (DPV), electrochemical detection of 1-NAP was conducted on HIF SnO 2 /GCE with a limit of detection as low as 5 nM, which was relatively low compared to the literatures. The electrode also illustrated good stability in comparison with those reported value. Satisfactory results were obtained with average recoveries in the range of 99.7–103.6% in the real water sample detection. A promising device for the electrochemical detection of 1-NAP with high sensitivity has therefore been provided.

  9. Corrosion fatigue studies on a bulk glassy Zr-based alloy under three-point bending

    Science.gov (United States)

    Grell, Daniel; Wilkin, Yannic; Gostin, Petre F.; Gebert, Annett; Kerscher, Eberhard

    2016-12-01

    Corrosion fatigue (CF) tests were carried out on bulk glassy Zr52.5Cu17.9Al10Ni14.6Ti5 (Vitreloy 105) samples under load-controlled three-point bending conditions with a load ratio of R = 0.1 in 0.01 M Na2SO4 + 0.01 M NaCl electrolyte. During cyclic testing, the bar-shaped specimens were polarized in situ at constant potentials and the current was monitored. Three different anodic potentials within the interval between the pitting potential EP and the repassivation potential ER, and three different load amplitudes were applied. In some cases, in situ microscopic observations revealed the formation of black corrosion products in the vicinity of the crack tip during anodic polarization. Fractographic analysis revealed a clear distinction between two modes of crack growth characterized by smooth dissolution induced regions on the one hand and slim fast fracture areas on the other hand. Both alternating features contributed to a broad striated corrosion fatigue fracture surface. Moreover, further fatigue tests were carried out under free corrosion conditions yielding additional information on crack initiation and crack propagation period by means of the open circuit potential (OCP) changes. Thereby, a slight increase in OCP was detected after rupture of the passive layer due to bare metal exposed to the electrolyte. The electrochemical response increased continuously according to stable crack propagation until fracture occurred. Finally, the fracture surfaces of the corrosion fatigue samples were investigated by energy dispersive X-ray with the objective of analyzing the elemental distribution after anodic dissolution. Interestingly, anodic polarization at a near repassivation potential of -50 mV vs. SCE (Saturated Calomel Electrode, E = 0.241 V vs. SHE, Standard Hydrogen Electrode) led to favorable effects on the fatigue lifetime. In conclusion, all results are conflated to a corrosion fatigue model for bulk glassy Vitreloy 105 under anodic polarization in chloride

  10. Electrochemical behavior of antioxidants: Part 3. Electrochemical studies of caffeic Acid–DNA interaction and DNA/carbon nanotube biosensor for DNA damage and protection

    Directory of Open Access Journals (Sweden)

    Refat Abdel-Hamid

    2016-05-01

    Full Text Available Multi-walled carbon nanotubes-modified glassy carbon electrode biosensor was used for electrochemical studies of caffeic acid–dsDNA interaction in phosphate buffer solution at pH 2.12. Caffeic acid, CAF, shows a well-defined cyclic voltammetric wave. Its anodic peak current decreases and the peak potential shifts positively on the addition of dsDNA. This behavior was ascribed to an interaction of CAF with dsDNA giving CAF–dsDNA complex by intercalative binding mode. The apparent binding constant of CAF–dsDNA complex was determined using amperometric titrations. The oxidative damage caused to DNA was detected using the biosensor. The damage caused by the reactive oxygen species, hydroxyl radical (·−OH generated by the Fenton system on the DNA-biosensor was detected. It was found that CAF has the capability of scavenging the hydroxide radical and protecting the DNA immobilized on the GCE surface.

  11. Characterization and electrochemical studies of Nafion/nano-TiO2 film modified electrodes

    International Nuclear Information System (INIS)

    Yuan Shuai; Hu Shengshui

    2004-01-01

    A nano-TiO 2 film from stable aqueous dispersion has been modified on a glassy carbon electrode (GCE), and was characterized by scanning electron microscopy (SEM) and surface-enhanced Raman spectroscopy (SERS). This nanostructured film exhibits an ability to improve the electron-transfer rate between electrode and dopamine (DA), and electrocatalyze the redox of DA. The electrocatalytical behavior of DA was examined by cyclic voltammetry (CV). Combined with Nafion, the bilayer-modified electrode (N/T/GCE) gives a sensitive voltammetric response of DA regardless of excess ascorbic acid (AA). Electrochemical impedance spectroscopy (EIS) at a fixed potential was performed at variously treated GCEs. The mechanism of the electrode reaction of DA at N/T/GCE and the equivalent circuits of different GCEs have been proposed

  12. EDTA assisted synthesis of hydroxyapatite nanoparticles for electrochemical sensing of uric acid

    Energy Technology Data Exchange (ETDEWEB)

    Kanchana, P.; Sekar, C., E-mail: Sekar2025@gmail.com

    2014-09-01

    Hydroxyapatite nanoparticles have been synthesized using EDTA as organic modifier by a simple microwave irradiation method and its application for the selective determination of uric acid (UA) has been demonstrated. Electrochemical behavior of uric acid at HA nanoparticle modified glassy carbon electrode (E-HA/GCE) has been investigated by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), linear sweep voltammetry (LSV) and amperometry. The E-HA modified electrode exhibits efficient electrochemical activity towards uric acid sensing without requiring enzyme or electron mediator. Amperometry studies revealed that the fabricated electrode has excellent sensitivity for uric acid with the lowest detection limit of 142 nM over a wide concentration range from 1 × 10{sup −7} to 3 × 10{sup −5} M. Moreover, the studied E-HA modified GC electrode exhibits a good reproducibility and long-term stability and an admirable selectivity towards the determination of UA even in the presence of potential interferents. The analytical performance of this sensor was evaluated for the detection of uric acid in human urine and blood serum samples. - Highlights: • EDTA- hydroxyapatite (HA) nanoparticles have been synthesized by microwave irradiation method. • A novel amperometric Uric Acid biosensor has been fabricated using E-HA/GCE. • The fabricated sensor exhibits a wide linear range, good stability and high reproducibility. • The sensor was applied for the detection of UA in human blood serum and urine.

  13. Adsorptive stripping differential pulse voltammetric determination of venlafaxine and desvenlafaxine employing Nafion-carbon nanotube composite glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Sanghavi, Bankim J. [Department of Chemistry, University of Mumbai, Vidyanagari, Santacruz (East), Mumbai 400 098, Maharashtra (India); Srivastava, Ashwini K., E-mail: aksrivastava@chem.mu.ac.i [Department of Chemistry, University of Mumbai, Vidyanagari, Santacruz (East), Mumbai 400 098, Maharashtra (India)

    2011-04-15

    A Nafion-carbon nanotube-modified glassy carbon electrode (NAF-CNT-GCE) was developed for the determination of venlafaxine (VF) and desvenlafaxine (DVF). The electrochemical behavior of both these molecules was investigated employing cyclic voltammetry (CV), chronocoulometry (CC), electrochemical impedance spectroscopy (EIS) and adsorptive stripping differential pulse voltammetry (AdSDPV). The surface morphology of the electrodes has been studied by means of scanning electron microscopy (SEM). These studies revealed that the oxidation of VF and DVF is facilitated at NAF-CNT-GCE. After optimization of analytical conditions employing this electrode at pH 7.0 in Britton-Robinson buffer (0.05 M) for VF and pH 5.0 in acetate buffer (0.1 M) for DVF, the peak currents for both the molecules were found to vary linearly with their concentrations in the range of 3.81 x 10{sup -8}-6.22 x 10{sup -5} M for VF and 5.33 x 10{sup -8}-3.58 x 10{sup -5} M for DVF. The detection limits (S/N = 3) of 1.24 x 10{sup -8} and 2.11 x 10{sup -8} M were obtained for VF and DVF, respectively, using AdSDPV. The prepared modified electrode showed several advantages, such as simple preparation method, high sensitivity, very low detection limits and excellent reproducibility. The proposed method was employed for the determination of VF and DVF in pharmaceutical formulations, urine and blood serum samples.

  14. Flow injection analysis of sulphide based on its photoelectrocatalytic oxidation at poly-methylene blue modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Dilgin, Yusuf; Canarslan, Seda; Ayyildiz, Onder; Ertek, Bensu; Nişli, Gürel

    2012-01-01

    A new approach for photoelectrocatalytic determination of sulphide in a flow injection analysis (FIA) system was studied using a poly-methylene blue modified glassy carbon electrode (poly-MB/GCE). Results from electrochemical measurements have revealed that poly-MB/GCE is capable of signalling electrocatalytic and photoelectrocatalytic activity towards sulphide oxidation. When the surface of poly-MB/GCE was irradiated with a light source (250 W Halogen lamp), the electrocatalytic current increased substantially. A homemade flow electrochemical cell with a suitable transparent window for the irradiation of the electrode surface was used to perform the photoelectrocatalytic determination of sulphide in FIA system. The currents obtained from the photoamperometric measurements in the FIA system at optimum conditions (carrier solution: pH 9.0 Britton Robinson buffer solution containing 0.1 M KCl; flow rate: 1.3 mL min −1 ; transmission tubing length: 10 cm; injection volume: 100 μL; and constant applied potential: +150 mV vs. Ag/AgCl/KCl sat ) were linearly correlated with the sulphide concentration. The calibration curves were obtained for sulphide concentrations in a range of 0.5–500 μM. The detection limits were found to be 0.27 and 0.15 μM for amperometric and photoamperometric methods, respectively. The proposed method was successfully applied to different wastewaters such as municipal sewage or tannery wastewater. Finally, results from the sulphide measurements by poly-MB/GCE were in good agreement with those attained using spectrophotometric method.

  15. Ultrasensitive molecularly imprinted electrochemical sensor based on magnetism graphene oxide/β-cyclodextrin/Au nanoparticles composites for chrysoidine analysis

    International Nuclear Information System (INIS)

    Wang, Xiaojiao; Li, Xiangjun; Luo, Chuannan; Sun, Min; Li, Leilei; Duan, Huimin

    2014-01-01

    Highlights: • Synthesis and application of MGO/β-CD@AuNPs as a sensor for chrysoidine analysis. • The synthesized polymer had a laminar structure with high surface. • The propose sensor showed high selectivity and good sensitivity. - Abstract: A imprinted electrochemical sensor based on glassy carbon electrode (GCE) for ultrasensitive detection of chrysoidine was fabricated. A GCE was modified by magnetic graphene oxide/β-cyclodextrin/gold nanoparticles composites (MGO/β-CD@AuNPs). The sensing surface area and electronic transmission rate were increased, which was benefited from the distribution property of MGO/β-CD@AuNPs. The MGO/β-CD@AuNPs composite improved electrochemical response and sensitivity of the sensor. The molecularly imprinted electrochemical sensor was prepared by electropolymerization on modified electrode. Chrysoidine and pyrrole were used as template molecule and functional monomer, respectively. Under the optimization experimental conditions, the electrochemical sensor exhibited excellent analytical performance: the detection of chrysoidine ranged from 5.0 × 10 −8 mol/L to 5.0 × 10 −6 mol/L with the detection limit of 1.7 × 10 −8 mol/L. The sensor was applied to determine chrysoidine in spiked water samples and showed high selectivity, good sensitivity and acceptable reproducibility. The proposed method provides a promising platform for trace amount detection of other food additives

  16. Electrochemical Synthesis of Polypyrrole, Reduced Graphene Oxide, and Gold Nanoparticles Composite and Its Application to Hydrogen Peroxide Biosensor

    Directory of Open Access Journals (Sweden)

    Baoyan Wu

    2016-11-01

    Full Text Available Here we report a facile eco-friendly one-step electrochemical approach for the fabrication of a polypyrrole (PPy, reduced graphene oxide (RGO, and gold nanoparticles (nanoAu biocomposite on a glassy carbon electrode (GCE. The electrochemical behaviors of PPy–RGO–nanoAu and its application to electrochemical detection of hydrogen peroxide were investigated by cyclic voltammetry. Graphene oxide and pyrrole monomer were first mixed and casted on the surface of a cleaned GCE. After an electrochemical processing consisting of the electrooxidation of pyrrole monomer and simultaneous electroreduction of graphene oxide and auric ions (Au3+ in aqueous solution, a PPy–RGO–nanoAu biocomposite was synthesized on GCE. Each component of PPy–RGO–nanoAu is electroactive without non-electroactive substance. The obtained PPy–RGO–nanoAu/GCE exhibited high electrocatalytic activity toward hydrogen peroxide, which allows the detection of hydrogen peroxide at a negative potential of about −0.62 V vs. SCE. The amperometric responses of the biosensor displayed a sensitivity of 40 µA/mM, a linear range of 32 µM–2 mM, and a detection limit of 2.7 µM (signal-to-noise ratio = 3 with good stability and acceptable reproducibility and selectivity. The results clearly demonstrate the potential of the as-prepared PPy–RGO–nanoAu biocomposite for use as a highly electroactive matrix for an amperometric biosensor.

  17. A glassy carbon electrode modified with an amphiphilic, electroactive and photosensitive polymer and with multi-walled carbon nanotubes for simultaneous determination of dopamine and paracetamole

    International Nuclear Information System (INIS)

    Liu, Ren; Zeng, Xuebiao; Liu, Jingcheng; Luo, Jing; Zheng, Yuanyi; Liu, Xiaoya

    2016-01-01

    The article describes an electrochemical sensor for simultaneous determination of dopamine (DA) and paracetamole (PAT). It is based on the use of an electroactive polymer (referred to as BPVCM) to functionalize multi-walled carbon nanotubes. BPVCM is a branched amphiphilic photo-sensitive and electroactive polymer that was obtained by copolymerization of a vinyl benzyl carbazole, maleic acid anhydride, 4-vinyl benzylthiol and a vinylbenzyl oxycoumarin. BPVCM efficiently disperses MWCNT in aqueous solution. The electropolymerization of the carbazole moieties of the BPVCM enhances the current response. It also facilitates electron transfer in the MWCNT-BPVCM hybrid as evidenced by cyclic voltammetry and electrochemical impedance spectroscopy. A glassy carbon electrode modified with the nanocomposite displays outstanding electrocatalytic activity towards DA and PAT. DA can be determined, best at a working voltage of 0.2 V (vs. SCE), in the 5 to 1000 μM concentration range with a 2.3 μM detection limit. PAT can be determined in parallel, at a working voltage of 0.39 V (vs. SCE), in the same concentration range with a 3.5 μM detection limit. This analytical range of this method is wider than that of most alternative methods. (author)

  18. Highly efficient electrocatalytic vapor generation of methylmercury based on the gold particles deposited glassy carbon electrode: A typical application for sensitive mercury speciation analysis in fish samples.

    Science.gov (United States)

    Shi, Meng-Ting; Yang, Xin-An; Qin, Li-Ming; Zhang, Wang-Bing

    2018-09-26

    A gold particle deposited glassy carbon electrode (Au/GCE) was first used in electrochemical vapor generation (ECVG) technology and demonstrated to have excellent catalytic property for the electrochemical conversion process of aqueous mercury, especially for methylmercury (CH 3 Hg + ), to gaseous mercury. Systematical research has shown that the highly consistent or distinct difference between the atomic fluorescence spectroscopy signals of CH 3 Hg + and Hg 2+ can be achieved by controlling the electrolytic parameters of ECVG. Hereby, a new green and accurate method for mercury speciation analysis based on the distinguishing electrochemical reaction behavior of Hg 2+ and CH 3 Hg +  on the modified electrode was firstly established. Furthermore, electrochemical impedance spectra and the square wave voltammetry displayed that the ECVG reaction of CH 3 Hg +  may belong to the electrocatalytic mechanism. Under the selected conditions, the limits of detection of Hg 2+ and CH 3 Hg +  are 5.3 ng L -1 and 4.4 ng L -1 for liquid samples and 0.53 pg mg -1 and 0.44 pg mg -1 for solid samples, respectively. The precision of the 5 measurements is less than 6% within the concentration of Hg 2+ and CH 3 Hg +  ranging from 0.2 to 15.0 μg L -1 . The accuracy and practicability of the proposed method was verified by analyzing the mercury content in the certified reference material and several fish as well as water samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Synthesis of netlike gold nanoparticles using ampicillin as a stabilizing reagent and its application

    International Nuclear Information System (INIS)

    Song, Y.Z.; Zhou, J.F.; Song, Y.; Cheng, Z.P.; Xu, J.

    2012-01-01

    Graphical abstract: Electrochemical deposition of netlike gold nanoparticles (GNPs) on the surface of glassy carbon electrode and preparation of netlike GNPs in aqueous solution using ampicillin as a stabilizing reagent were proposed. The catalytic properties of netlike gold nanoparticles on the glassy carbon electrode for dopamine were demonstrated. The results indicate that the netlike gold nanoparticle modified electrode has an excellent repeatability and reproducibility. Display Omitted Highlights: ► Synthesis of netlike gold nanoparticles using ampicillin as a stabilizing reagent. ► Excellent repeatability and reproducibility of netlike gold nanoparticle modified glassy carbon electrode. ► The catalytic properties of netlike gold nanoparticle for dopamine. -- Abstract: Electrochemical deposition of netlike gold nanoparticles on the surface of glassy carbon electrode and preparation of netlike GNPs in aqueous solution using ampicillin as a stabilizing reagent were proposed. The netlike gold nanoparticles were characterized by scanning electron microscope, transmission electron microscope, infrared spectrometer, UV spectrophotometer, powder X-ray diffractometer and electrochemical analyzer. The catalysis of the netlike gold nanoparticles on the glassy carbon electrode for dopamine was demonstrated. The results indicate that the gold nanoparticle modified electrode has an excellent repeatability and reproducibility.

  20. How mechanical behavior of glassy polymers enables us to characterize melt deformation: elastic yielding in glassy state after melt stretching?

    Science.gov (United States)

    Wang, Shi-Qing; Zhao, Zhichen; Tsige, Mesfin; Zheng, Yexin

    Fast melt deformation well above the glass transition temperature Tg is known to produce elastic stress in an entangled polymer due to the chain entropy loss at the length scale of the network mesh size. Here chains of high molecular weight are assumed to form an entanglement network so that such a polymer behaves transiently like vulcanized rubber capable of affine deformation. We consider quenching a melt-deformed glassy polymer to well below Tg to preserve the elastic stress. Upon heating such a sample to Tg, the sample can return to the shape it took before melt deformation. This is the basic principle behind the design of all polymer-based shape-memory materials. This work presents intriguing evidence based on both experiment and computer simulation that the chain network, deformed well above Tg, can drive the glassy polymer to undergo elastic yielding. Our experimental systems include polystyrene, poly(methyl methacrylate) and polycarbonate; the molecular dynamics simulation is based on Kremer-Grest bead-spring model. National Science Foundation (DMR-1444859 and DMR-1609977).

  1. SUPERNOVA SHOCK-WAVE-INDUCED CO-FORMATION OF GLASSY CARBON AND NANODIAMOND

    International Nuclear Information System (INIS)

    Stroud, Rhonda M.; Chisholm, Matthew F.; Heck, Philipp R.; Alexander, Conel M. O'D.; Nittler, Larry R.

    2011-01-01

    Nanodiamond (ND) was the first extrasolar dust phase to be identified in meteorites. However, the 2 nm average size of the NDs precludes isotopic analysis of individual particles, and thus their origin(s) remains controversial. Using electron microscopy with subnanometer resolution, we show that ND separates from the Allende and Murchison meteorites are actually a two-phase mixture of ND and glassy carbon. This phase mixture is likely the product of supernova shock-wave transformation of pre-formed organics in the interstellar medium (ISM). The glassy carbon-ND mixture is also a plausible contributor to the 2175 A extinction feature in the diffuse ISM.

  2. Status of test results of electrochemical organic oxidation of a tank 241-SY-101 simulated waste

    International Nuclear Information System (INIS)

    Colby, S.A.

    1994-06-01

    This report presents scoping test results of an electrochemical waste pretreatment process to oxidize organic compounds contained in the Hanford Site's radioactive waste storage tanks. Electrochemical oxidation was tested on laboratory scale to destroy organics that are thought to pose safety concerns, using a nonradioactive, simulated tank waste. Minimal development work has been applied to alkaline electrochemical organic destruction. Most electrochemical work has been directed towards acidic electrolysis, as in the metal purification industry, and silver catalyzed oxidation. Alkaline electrochemistry has traditionally been associated with the following: (1) inefficient power use, (2) electrode fouling, and (3) solids handling problems. Tests using a laboratory scale electrochemical cell oxidized surrogate organics by applying a DC electrical current to the simulated tank waste via anode and cathode electrodes. The analytical data suggest that alkaline electrolysis oxidizes the organics into inorganic carbonate and smaller carbon chain refractory organics. Electrolysis treats the waste without adding chemical reagents and at ambient conditions of temperature and pressure. Cell performance was not affected by varying operating conditions and supplemental electrolyte additions

  3. Electrochemical sensor for bisphenol A based on a nanoporous polymerized ionic liquid interface

    International Nuclear Information System (INIS)

    Ma, Ming; Tu, Xiaojing; Zhan, Guoqing; Li, Chunya; Zhang, Shenghui

    2014-01-01

    The ionic liquid 1-butyl -3-[3-(N-pyrrole)-propyl]imidazolium tetrafluoroborate was employed to fabricate a glassy carbon electrode (GCE) modified with a porous film of a polymerized ionic liquid. The resulting film electrode was treated with sodium dodecyl sulfonate solution to exchange the terafluoroborate anions by dodecyl sulfonate groups. This was confirmed by X-ray photoelectron spectroscopy. The morphology of the modified GCE was characterized by scanning electron microscopy and revealed a nanoporous surface. The electrochemical properties of this film electrode were studied by electrochemical impedance spectroscopy using the hexacyanoferrate(II/III) system as an electroactive probe. The response to bisphenol A was investigated by voltammetry. Compared to the unmodified GCE, the oxidation potential is positively shifted, and the oxidation peak current is strongly increased. Experimental conditions were optimized and resulted in an oxidation peak current that is linearly related to concentration of bisphenol A in the 10 nM to ∼ 10 μM range. The detection limit is 8.0 nM (at S/N = 3). The electrode was successfully applied to the determination of bisphenol A in leachates of plastic drinking bottles, and its accuracy was verified by independent assays via HPLC. (author)

  4. Self-cleaned electrochemical protein imprinting biosensor basing on a thermo-responsive memory hydrogel.

    Science.gov (United States)

    Wei, Yubo; Zeng, Qiang; Hu, Qiong; Wang, Min; Tao, Jia; Wang, Lishi

    2018-01-15

    Herein, the self-cleaned electrochemical protein imprinting biosensor basing on a thermo-responsive memory hydrogel was constructed on a glassy carbon electrode (GCE) with a free radical polymerization method. Combining the advantages of thermo-responsive molecular imprinted polymers and electrochemistry, the resulted biosensor presents a novel self-cleaned ability for bovine serum albumin (BSA) in aqueous media. As a temperature controlled gate, the hydrogel film undergoes the adsorption and desorption of BSA basing on a reversible structure change with the external temperature stimuli. In particular, these processes have been revealed by the response of cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) of electroactive [Fe(CN) 6 ] 3-/4- . The results have been supported by the evidences of scanning electron microscopy (SEM) and contact angles measurements. Under the optimal conditions, a wide detection range from 0.02μmolL -1 to 10μmolL -1 with a detection limit of 0.012 μmolL -1 (S/N = 3) was obtained for BSA. This proposed BSA sensor also possesses high selectivity, excellent stability, acceptable recovery and good reproducibility in its practical applications. Copyright © 2017. Published by Elsevier B.V.

  5. A study of the electro-catalytic oxidation of methanol on a cobalt hydroxide modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Jafarian, M.; Mahjani, M.G.; Heli, H.; Gobal, F.; Khajehsharifi, H.; Hamedi, M.H.

    2003-01-01

    Cobalt hydroxide modified glassy carbon electrodes (CHM/GC) prepared by the anodic deposition in presence of tartrate ions have been used for the electro-catalytic oxidation of methanol in alkaline solutions where the methods of cyclic voltammetery (CV), chronoamperometry (CA) and impedance spectroscopy (IS) have been employed. In CV studies, in the presence of methanol the peak current of the oxidation of cobalt hydroxide increase is followed by a decrease in the corresponding cathodic current. This suggests that the oxidation of methanol is being catalysed through the mediated electron transfer across the cobalt hydroxide layer comprising of cobalt ions of various valence states. A mechanism based on the electro-chemical generation of Co(IV) active sites and their subsequent consumptions by methanol have been discussed and the corresponding rate law under the control of charge transfer has been developed and kinetic parameters have been derived. In this context the charge transfer resistance accessible both theoretically and through the IS studies have been used as a criteria. Under the CA regimes the reaction followed a Cottrellian behaviour

  6. Irradiation-induced defects in graphite and glassy carbon studied by positron annihilation

    International Nuclear Information System (INIS)

    Hasegawa, M.; Kajino, M.; Kuwahara, H.; Yamaguchi, S.; Kuramoto, E.; Takenaka, M.

    1992-01-01

    ACAR and positron lifetime measurements have been made on, HOPG, isotropic fine-grained graphites, glassy carbons and C 60 /C 70 . HOPG showed a marked bimodal ACAR distribution along the c-axis. By irradiation of 1.0 X 10 19 fast neutrons/cm 2 remarkable narrowing in the ACAR curves and disappearance of the bimodal distribution were observed. Lifetime in HOPG increased from 225 psec to 289 psec (positron-lifetime in vacancies and their small clusters) by the irradiation. The irradiation on isotropic graphites and glassy carbons, however, gave slight narrowing in ACAR curves and decrease in lifetimes (360 psec → 300psec). This suggests irradiation-induced vacancy trapping in crystallites. In C 60 /C 70 powder two lifetime components were detected: τ 1 =177psec, τ 2 =403psec (I 2 =58%). The former is less than the bulk lifetime of HOPG, while the latter being very close to lifetimes in the isotropic graphites and glassy carbons. This and recent 2D-ACAR study of HOPG surface [15] strongly suggest free and defect surface states around ''soccer ball'' cages

  7. Permeation of Mixed Penetrants through Glassy Polymer Membranes.

    Science.gov (United States)

    1985-03-15

    and LOPE. Also, ESCA was used in conjunction with plasma etching to determine the effects of the gas phase fluorine concentration and fluorination...at 35 3C. ARD-AISS5 65 PERMEATION OF MIXED PENETRANTS THROUGH GLASSY POLYMER 213 MENBRANES (U) NORTH CAROLINA STATE UNIV AT RALEIGH R T CHERN ET AL. 15

  8. A novel electrochemical sensor for detecting hyperin with a nanocomposite of ZrO2-SDS-SWCNTs as decoration.

    Science.gov (United States)

    Li, Shuo; Lei, Sheng; Yu, Qian; Zou, Lina; Ye, Baoxian

    2018-08-01

    A novel high-sensitive electrochemical sensor with glassy carbon electrode (GCE) as support for hyperin determination is successfully designed and constructed, and the well-shaped nano-meter modified material is synthesized via a one-step and facile route. Functionalized with surfactant sodium dodecyl sulfate (SDS), Single-Walled Carbon Nanotubes (SWCNTs) are synchronously grafted with ZrO 2 nanoparticles to develop into the as-prepared nano-composite (ZrO 2 -SDS-SWCNTs). Compared to the previous reports related with hyperin detection, the linear range gets wider and detection limit (LOD) becomes lower with the aid of this novel nano-composite modified glassy carbon electrode (ZrO 2 -SDS-SWCNTs/GCE). The crystalline phases and functionalization of the preparation process has been investigated by X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) instrument analysis, respectively, and the micro-morphology of related modified materials is also visibly characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM). In addition, electrochemical properties of the modified materials are comparably explored by means of impedance spectroscopy (EIS) and cyclic voltammograms (CV). According to the established calibration curve under optimized condition, the peak current (Differential pulse voltammetry (DPV) signal) keeps a linear relationship with hyperin concentration in the ranges of 1.0 × 10 -9 - 3.0 × 10 -7 mol L -1 , meanwhile detection limit reaches as low as 5 × 10 -10 mol L -1 (S/N = 3). As for practical applications, the proposed sensor has also worked well on sensitive hyperin determination in real species Abelmoschus manihot. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Pretreatment of whole blood using hydrogen peroxide and UV irradiation. Design of the advanced oxidation process.

    Science.gov (United States)

    Bragg, Stefanie A; Armstrong, Kristie C; Xue, Zi-Ling

    2012-08-15

    A new process to pretreat blood samples has been developed. This process combines the Advanced Oxidation Process (AOP) treatment (using H(2)O(2) and UV irradiation) with acid deactivation of the enzyme catalase in blood. A four-cell reactor has been designed and built in house. The effect of pH on the AOP process has been investigated. The kinetics of the pretreatment process shows that at high C(H(2)O(2),t=0), the reaction is zeroth order with respect to C(H(2)O(2)) and first order with respect to C(blood). The rate limiting process is photon flux from the UV lamp. Degradation of whole blood has been compared with that of pure hemoglobin samples. The AOP pretreatment of the blood samples has led to the subsequent determination of chromium and zinc concentrations in the samples using electrochemical methods. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Electrocatalytic reduction of oxygen at glassy carbon electrode modified by polypyrrole/anthraquinones composite film in various pH media

    International Nuclear Information System (INIS)

    Valarselvan, S.; Manisankar, P.

    2011-01-01

    Graphical abstract: The electrocatalytic reduction of dioxygen by one mono and four dihydroxy derivatives of 9,10-anthraquinone (AQ) incorporated in polypyrrole (PPy) matrix on glassy carbon electrode has been investigated. AQ and PPy composite film showed excellent electrocatalytic performance for the reduction of O 2 to H 2 O 2 . Highlights: → Hydroxyl derivatives of anthraquinones as electrocatalysts for dioxygen reduction. → AQ/PPy composite film on GC electrode exhibits potent electrocatalytic activity. → Substituent groups influence electrocatalytic dioxygen reduction. → Surface coverage varies the rate of electrocatalytic dioxygen reduction. - Abstract: The electrocatalytic reduction of dioxygen by one mono and four dihydroxy derivatives of 9,10-anthraquinone (AQ) incorporated in polypyrrole (PPy) matrix on glassy carbon electrode has been investigated. The electrochemical behaviour of the modified electrodes was examined in various pH media and both the formal potential of anthraquinones and reduction potential of dioxygen exhibited pH dependence. AQ and PPy composite film showed excellent electrocatalytic performance for the reduction of O 2 to H 2 O 2 . pH 6.0 was chosen as the most suitable medium to study the electrocatalysis by comparing the peak potential of oxygen reduction and enhancement in peak current for oxygen reduction. The diffusion coefficient values of AQ at the modified electrodes and the number of electrons involved in AQ reduction were evaluated by chronoamperometric and chronocoulometric techniques, respectively. In addition, hydrodynamic voltammetric studies showed the involvement of two electrons in O 2 reduction. The mass specific activity of AQ used, the diffusion coefficient of oxygen and the heterogeneous rate constants for the oxygen reduction at the surface of modified electrodes were also determined by rotating disk voltammetry.

  11. A glassy carbon electrode modified with a polyaniline doped with silicotungstic acid and carbon nanotubes for the sensitive amperometric determination of ascorbic acid

    International Nuclear Information System (INIS)

    Zhang, X.; Lai, G.; Zhang, H.; Yu, A.

    2013-01-01

    We report on an electrochemical sensor for the sensitive amperometric determination of ascorbic acid (AA). Aniline containing suspended silicotungstic acid and carbon nanotubes was electropolymerized on the surface of a glassy carbon electrode in a single step which provides a simple and controllable method and greatly improves the electrocatalytic oxidation of AA. The effects of scan rate, solution pH and working potential were studied. A linear relationship exists between the current measured and the concentration of AA in the range from 1 μM to 10 μM and 0.01 mM to 9 mM, with a limit of detection as low as 0.51 μM (S/N = 3). The sensor is selective, stable and satisfyingly reliable in real sample experiments. In our eyes, it has a large potential for practical applications. (author)

  12. Amplified electrochemical determination of maltol in food based on graphene oxide-wrapped tin oxide@carbon nanospheres.

    Science.gov (United States)

    Gan, Tian; Sun, Junyong; Yu, Miaomiao; Wang, Kaili; Lv, Zhen; Liu, Yanming

    2017-01-01

    The study presents a new approach for rapid and ultrasensitive detection of maltol using a glassy carbon electrode (GCE) modified with graphene oxide-wrapped tin oxide@carbon nanospheres (SnO2@C@GO). The morphological and components properties of SnO2@C@GO nanocomposites were investigated by means of X-ray diffraction spectroscopy, Raman spectroscopy, field emission scanning electron microscopy, high resolution transmission electron microscopy, and electrochemical impedance spectroscopy. SnO2@C@GO nanocomposite on a GCE had a synergetic effect on the electrochemical oxidation of maltol by means of square wave voltammetry. Under the optimum conditions, anodic peak current response of maltol was linear with its concentration in the range of 80nM-10μM, and a detection limit of 12nM was achieved for maltol. The experiment results presented that the method showed good selectivity, sensitivity, reproducibility, and long-term stability, as well as excellent potential for use as an ideal inexpensive voltammetric method applicable for complex food matrices. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Electrochemical studies of nevirapine, an anti-HIV drug, and its assay in tablets and biological samples

    Directory of Open Access Journals (Sweden)

    JALDAPPAGARI SEETHARAMAPPA

    2012-06-01

    Full Text Available The electrochemical oxidation of nevirapine, an anti-HIV drug, at a glassy carbon electrode has been studied by voltammetric techniques. Nevirapine showed one well defined irreversible oxidation peak with a potential of 0.749 V in phosphate buffer at pH 10. The effects of different electrolytes, pH and scan rate on the electrochemical behaviour of nevira¬pine were examined to determine the optimum reaction conditions. The oxidation peak current was found to vary linearly with the concentration of nevirapine in the range of 5.0 – 350 µM. The limit of detection and limit of quantification values were calculated and found to be 1.026 µM and 3.420 µM, respectively. The low relative standard deviation values of inter-day and intra-day assays highlighted the good reproducibility of the proposed m¬ethod for assay of nevirapine. Further, a sensitive and accurate differential pulse voltammetric method was developed for the determination of nevirapine concentrations in pharma¬ceutical formulations.

  14. Effect of TiB2 Pretreatment on Pt/TiB2 Catalyst Performance

    International Nuclear Information System (INIS)

    Huang, Zhen; Lin, Rui; Fan, Renjie; Fan, Qinbai; Ma, Jianxin

    2014-01-01

    Highlights: • We pretreated Titanium diboride by different acids and alkali. • We synthesis the Pt/as-pretreated TiB 2 catalysts by a colloid route. • We investigated the effects of TiB 2 Pretreatment on Pt/TiB 2 Catalyst Performance. • The BET surface area and defects on the surface have a close relationship with the deposition of Pt nanoparticles. - Abstract: Carbon support corrosion of traditional Pt/C catalyst is one of the major contributors causing poor durability of proton exchange membrane fuel cells (PEMFC). Titanium diboride (TiB 2 ) has high electrical conductivity and considerable chemical stability, which making it as a good candidate for catalyst support in PEMFC. In this work, TiB 2 was pretreated by different acid and alkali. The as-obtained samples were characterized by Ex-situ microscopy (ESM) and X-ray diffraction (XRD). The pore size distribution (PSD) was analyzed by using DFT method. The PSD shows distinct volume in mesopore regions (less than 50 nm). The TiB2 pretreated by H 2 O 2 shows the biggest BET surface area of 57 m 2 g −1 and its PSD focus on mesoporous (1.5-8 nm) region, which resulted to high dispersion and better loading of Pt particles. The Hydrogen oxidization reaction (HOR) and oxygen reduction reaction (ORR) activity was characterized by Rotating Disk Electrode (RDE). The Pt/TiB 2 prepared by H 2 O 2 -pretreated TiB 2 using the colloidal method showed better half-cell electrochemical performance. Facile synthetic for the development of Pt/TiB 2 catalysts was developed

  15. A novel sandwich-type electrochemical aptasensor based on GR-3D Au and aptamer-AuNPs-HRP for sensitive detection of oxytetracycline.

    Science.gov (United States)

    Liu, Su; Wang, Yu; Xu, Wei; Leng, Xueqi; Wang, Hongzhi; Guo, Yuna; Huang, Jiadong

    2017-02-15

    In this paper, a novel sandwich-type electrochemical aptasensor has been fabricated and applied for sensitive and selective detection of antibiotic oxytetracycline (OTC). This sensor was based on graphene-three dimensional nanostructure gold nanocomposite (GR-3D Au) and aptamer-AuNPs-horseradish peroxidase (aptamer-AuNPs-HRP) nanoprobes as signal amplification. Firstly, GR-3D Au film was modified on glassy carbon electrode only by one-step electrochemical coreduction with graphite oxide (GO) and HAuCl 4 at cathodic potentials, which enhanced the electron transfer and loading capacity of biomolecules. Then the aptamer and HRP modified Au nanoparticles provide high affinity and ultrasensitive electrochemical probe with excellent specificity for OTC. Under the optimized conditions, the peak current was linearly proportional to the concentration of OTC in the range of 5×10 -10 -2×10 -3 gL -1 , with a detection limit of 4.98×10 -10 gL -1 . Additionally, this aptasensor had the advantages in high sensitivity, superb specificity and showed good recovery in synthetic samples. Hence, the developed sandwich-type electrochemical aptasensor might provide a useful and practical tool for OTC determination and related food safety analysis and clinical diagnosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Effects of nymphal diet and adult feeding on allocation of resources to glassy-winged sharpshooter egg production

    Science.gov (United States)

    The glassy-winged sharpshooter is an invasive insect capable of transmitting the bacterial pathogen Xylella fastidiosa. Pre-oviposition periods of laboratory reared glassy-winged sharpshooters are variable. Here, two questions were addressed: does nymphal diet affect pre-oviposition period and how d...

  17. Simultaneous determination of mycophenolate mofetil and its active metabolite, mycophenolic acid, by differential pulse voltammetry using multi-walled carbon nanotubes modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Madrakian, Tayyebeh, E-mail: madrakian@basu.ac.ir; Soleimani, Mohammad; Afkhami, Abbas

    2014-09-01

    A highly sensitive electrochemical sensor for the simultaneous determination of mycophenolate mofetil (MPM) and mycophenolic acid (MPA) was fabricated by multi-walled carbon nanotubes modified glassy carbon electrode (MWCNTs/GCE). The electrochemical behavior of these two drugs was studied at the modified electrode using cyclic voltammetry and adsorptive differential pulse voltammetry. MPM and MPA were oxidized at the GCE during an irreversible process. DPV analysis showed two oxidation peaks at 0.87 V and 1.1 V vs. Ag/AgCl for MPM and an oxidation peak at 0.87 V vs. Ag/AgCl for MPA in phosphate buffer solution of pH 5.0. The MWCNTs/GCE displayed excellent electrochemical activities toward oxidation of MPM and MPA relative to the bare GCE. The experimental design algorithm was used for optimization of DPV parameters. The electrode represents linear responses in the range 5.0 × 10{sup −6} to 1.6 × 10{sup −4} mol L{sup −1} and 2.5 × 10{sup −6} mol L{sup −1} to 6.0 × 10{sup −5} mol L{sup −1} for MPM and MPA, respectively. The detection limit was found to be 9.0 × 10{sup −7} mol L{sup −1} and 4.0 × 10{sup −7} mol L{sup −1} for MPM and MPA, respectively. The modified electrode showed a good sensitivity and stability. It was successfully applied to the simultaneous determination of MPM and MPA in plasma and urine samples. - Highlights: • A new modified electrochemical sensor was constructed and used. • Multiwalled carbon nanotubes were used as the modifiers. • MPM and MPA were measured simultaneously at the low levels. • The sensor was used to the determination of MPA and MPM in real samples.

  18. Pseudobinary glassy compositions (AsSex)1-y(AsTex)y

    International Nuclear Information System (INIS)

    El Mously, M.K.; El Dem, M.B.

    1987-09-01

    The ternery glassy composition of the general formula (AsSe x ) 1-y (AsTe x ) y can be considered as a pseudobinary system at x=1, 3/2 and 5/2 and 0 ≤ y ≤ 1. The results of DTA, electrical conductivity measurements, density of such glasses as well as the X-ray diffraction of the crystallized samples have been used to confirm this point of view and to explain the presence of new phases not shown in the simple binary systems As-Se and As-Te. The possibility of transformation of the glassy network from partially polymerized state MCN (molecular cluster network) to completely polymerized state CRN (continuous random network) by mixing two structural units was also discussed. (author). 12 refs, 7 figs, 2 tabs

  19. Formation of glassy carbon structure and its change under neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kurolenkin, E.I.; Lopato, Yu.S.; Virgil' ev, Yu.S.; Khakimova, D.K.; Aksenov, S.I.

    1981-01-01

    The changes of glassy carbon structure, which is prepared of phenol-formaldehyde and furfurol-phenol-formaldehyde resins in the process of irradiation with 5.3x10/sup 20/ cm/sup -2/ neutron fluence with the energy E>0.18 MeV in the temperature range of 90-540 deg C are studied. It is established the irradiation results in the shrinkage of the samples. The compression of the samples increases with the irradiation temperature and neutron fluence. The thermal annealing does not result in the restoration of the volume of samples. The sample shrinkage, caused by more compact package of globular structures and the destruction of film structures, decrease gas permeability of glassy carbon.

  20. Characterization of poly(5-hydroxytryptamine)-modified glassy carbon electrode and applications to sensing of norepinephrine and uric acid in preparations and human urines

    International Nuclear Information System (INIS)

    Shi, Peiying; Miao, Xiaoqing; Yao, Hong; Lin, Sijie; Wei, Biyu; Chen, Jianji; Lin, Xinhua; Tang, Yuhai

    2013-01-01

    Graphical abstract: A 5-hydroxytryptamine (5-HT) modified electrode was fabricated by electro-polymerization of 5-HT on a glassy carbon electrode (GCE) by cyclic voltammetry (CV) in 0.05 M PBS (pH 7). The characterization of the modified electrode was carried out by atomic force microscopy (AFM), voltammetry and electrochemical impedance spectroscopy (EIS). The mechanism of electro-deposition of 5-HT at GCE was discussed based on electrochemical studies and quantum chemical calculations. The poly(5-HT)-modified electrode could separately detect NE and UA, even in the presence of 10-fold concentration of ascorbic acid (AA) and was applied successfully to the analysis of NE preparations and healthy human urines. Due to the favorable functionalized groups (-NH 2 and -OH), electroactivity, biocompatibility and stability, the poly(5-HT) film could be a promising immobilization matrix for anchoring interested biological molecules in the fabrication of sensors and biosensors. Highlights: ► A poly(5-HT)-modified electrode was fabricated originally by CV. ► The electro-deposition mechanism of 5-HT at GCE was proposed. ► The polymer film shows favorable electrocatalytic properties to NE and UA. ► The modified GCE was applied to the sensing analysis of real samples. -- Abstract: A poly(5-hydroxytryptamine) (poly(5-HT)) modified electrode was fabricated by electropolymerization of 5-hydroxytryptamine (5-HT) on a glassy carbon electrode (GCE) by cyclic voltammetry (CV) in 0.05 M PBS (pH 7). The characterization of poly(5-HT)-modified electrode was carried out by atomic force microscopy (AFM), voltammetry and electrochemical impedance spectroscopy (EIS). Results showed that a brown and heterogeneous film was formed on the surface of the modified electrode. The mechanism of electro-deposition of 5-HT at GCE was discussed. The modified electrode showed good affinity and electrocatalytic properties to some species, such as norepinephrine (NE) and uric acid (UA). Furthermore

  1. Electrochemical sensing of glucose by reduced graphene oxide-zinc ferrospinels

    Energy Technology Data Exchange (ETDEWEB)

    Shahnavaz, Zohreh, E-mail: zohreh.shahnavaz@siswa.um.edu.my [Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Woi, Pei Meng, E-mail: pmwoi@um.edu.my [Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Center of Ionic Liquids, University of Malaya, 50603 Kuala Lumpur (Malaysia); Alias, Yatimah, E-mail: yatimah70@um.edu.my [Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Center of Ionic Liquids, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2016-08-30

    Highlights: • A facile in situ hydrothermal method for ZnFe{sub 2}O{sub 4} nanoparticles incorporation into graphene oxide sheets. • Excellent selectivity, reproducibility and stability properties compared to others Zn-based glucose sensor. • Amount of reduced graphene oxide directly affected the electro-catalytic activity of ZnFe{sub 2}O{sub 4}/rGO nanocomposite towards glucose detection. - Abstract: We have developed ZnFe{sub 2}O{sub 4} magnetic nanoparticles/reduced graphene oxide nanosheets modified glassy carbon (ZnFe{sub 2}O{sub 4}/rGO/GCE) electrode as a novel system for the electrochemical glucose sensing. Via a facile in situ hydrothermal route, the reduction of GO and the formation of ZnFe{sub 2}O{sub 4} nanoparticles occurred simultaneously. This enables the ZnFe{sub 2}O{sub 4} nanoparticles dispersed on the reduced graphene sheet. Characterization of nanocomposite by X-ray diffraction (XRD) and transmission electron microscopy (TEM) clearly demonstrate the successful attachment of ZnFe{sub 2}O{sub 4} nanoparticles to graphene sheets. Electrochemical studies revealed that the ZnFe{sub 2}O{sub 4}/rGO/GCE possess excellent electrocatalytic activities toward the oxidation of glucose and the performance of sensor is enhanced by integration of graphene nanosheets with ZnFe{sub 2}O{sub 4} nanoparticles.

  2. Copper nanoparticle modified carbon electrode for determination of dopamine

    International Nuclear Information System (INIS)

    Oztekin, Yasemin; Tok, Mutahire; Bilici, Esra; Mikoliunaite, Lina; Yazicigil, Zafer; Ramanaviciene, Almira; Ramanavicius, Arunas

    2012-01-01

    This paper reports the synthesis and characterization of copper nanoparticles (CuNPs) and application of copper nanoparticle-modified glassy carbon electrode for the electrochemical determination of dopamine. Electrochemical measurements were performed using differently modified glassy carbon (GC) electrodes. Bare, oxidized before modification and copper nanoparticle-modified glassy carbon electrodes (bare-GC, ox-GC and CuNP/GC electrodes, respectively) were characterized by cyclic voltammetry and electrochemical impedance spectroscopy in the presence of redox probes. Atomic force microscopy was used for the visualization of electrode surfaces. The CuNP/GC electrode was found to be suitable for the selective determination of dopamine even in the presence of ascorbic acid, uric acid, and p-acetamidophenol. The observed linear range of CuNP/GC for dopamine was from 0.1 nM to 1.0 μM while the detection limit was estimated to be 50 pM. It was demonstrated that here reported glassy carbon electrode modified by copper nanoparticles is suitable for the determination of dopamine in real samples such as human blood serum.

  3. Effect of pretreatments on electrodeposited epoxy coatings for electronic industries

    Directory of Open Access Journals (Sweden)

    Sironmani Palraj

    2016-02-01

    Full Text Available Waterborne epoxy coatings were prepared on aluminium (Al surfaces by cathodic electro-deposition on the pretreated surface of pickling, phosphating, chromating and anodizing. The electro-deposition experiments were done at two different voltages, 15 V and 25 V at room temperature in 10% epoxy coating formulations. Corrosion and thermal behavior of these coatings were investigated using electrochemical impedance spectroscopy (EIS and thermo gravimetric analysis (TGA. The coating exhibits better corrosion resistance in anodized Al surface than the other. But, TGA studies show that the thermal stability is higher in anodized and chromated Al surfaces. The surface morphology of these coatings were analyzed by SEM and AFM studies.

  4. Ice cloud processing of ultra-viscous/glassy aerosol particles leads to enhanced ice nucleation ability

    Directory of Open Access Journals (Sweden)

    R. Wagner

    2012-09-01

    Full Text Available The ice nucleation potential of airborne glassy aqueous aerosol particles has been investigated by controlled expansion cooling cycles in the AIDA aerosol and cloud chamber of the Karlsruhe Institute of Technology at temperatures between 247 and 216 K. Four different solutes were used as proxies for oxygenated organic matter found in the atmosphere: raffinose, 4-hydroxy-3-methoxy-DL-mandelic acid (HMMA, levoglucosan, and a multi-component mixture of raffinose with five dicarboxylic acids and ammonium sulphate. Similar to previous experiments with citric acid aerosols, all particles were found to nucleate ice heterogeneously before reaching the homogeneous freezing threshold provided that the freezing cycles were started well below the respective glass transition temperatures of the compounds; this is discussed in detail in a separate article. In this contribution, we identify a further mechanism by which glassy aerosols can promote ice nucleation below the homogeneous freezing limit. If the glassy aerosol particles are probed in freezing cycles started only a few degrees below their respective glass transition temperatures, they enter the liquid regime of the state diagram upon increasing relative humidity (moisture-induced glass-to-liquid transition before being able to act as heterogeneous ice nuclei. Ice formation then only occurs by homogeneous freezing at elevated supersaturation levels. When ice forms the remaining solution freeze concentrates and re-vitrifies. If these ice cloud processed glassy aerosol particles are then probed in a second freezing cycle at the same temperature, they catalyse ice formation at a supersaturation threshold between 5 and 30% with respect to ice. By analogy with the enhanced ice nucleation ability of insoluble ice nuclei like mineral dusts after they nucleate ice once, we refer to this phenomenon as pre-activation. We propose a number of possible explanations for why glassy aerosol particles that have re

  5. A novel voltammetric sensor for sensitive detection of mercury(II) ions using glassy carbon electrode modified with graphene-based ion imprinted polymer

    Energy Technology Data Exchange (ETDEWEB)

    Ghanei-Motlagh, Masoud, E-mail: m.ghaneimotlagh@yahoo.com [Young Researchers and Elite Club, Kerman Branch, Islamic Azad University, Kerman (Iran, Islamic Republic of); Taher, Mohammad Ali; Heydari, Abolfazl [Department of Chemistry, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Ghanei-Motlagh, Reza [Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of); Gupta, Vinod K. [Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667 (India); Department of Applied Chemistry, University of Johannesburg, Johannesburg (South Africa)

    2016-06-01

    In this paper, a novel strategy was proposed to prepare ion-imprinted polymer (IIP) on the surface of reduced graphene oxide (RGO). Polymerization was performed using methacrylic acid (MAA) as the functional monomer, ethylene glycol dimethacrylate (EGDMA) as the cross-linker, 2,2′–((9E,10E)–1,4–dihydroxyanthracene–9,10–diylidene) bis(hydrazine–1–carbothioamide) (DDBHCT) as the chelating agent and ammonium persulfate (APS) as initiator, via surface imprinted technique. The RGO–IIP was characterized by means of Fourier transform infrared spectroscopy (FT–IR), field emission scanning electron microscopy (FE–SEM), transmission electron microscopy (TEM) and thermogravimetric analysis (TGA). The electrochemical procedure was based on the accumulation of Hg(II) ions at the surface of a modified glassy carbon electrode (GCE) with RGO–IIP. The prepared RGO–IIP sensor has higher voltammetric response compared to the non-imprinted polymer (NIP), traditional IIP and RGO. The RGO–IIP modified electrode exhibited a linear relationship toward Hg(II) concentrations ranging from 0.07 to 80 μg L{sup −1}. The limit of detection (LOD) was found to be 0.02 μg L{sup −1} (S/N = 3), below the guideline value from the World Health Organization (WHO). The applicability of the proposed electrochemical sensor to determination of mercury(II) ions in different water samples was reported. - Highlights: • The novel Hg(II)-imprinted polymer was synthesized and characterized. • The resulting RGO–IIP was applied for electrochemical monitoring of Hg(II) ions. • The proposed sensor was successfully applied for determination of Hg(II) in real water samples.

  6. Development of an electrochemical ascorbic acid sensor based on the incorporation of a ferricyanide mediator with a polyelectrolyte-calcium carbonate microsphere

    International Nuclear Information System (INIS)

    Li Feng; Tang Chenfei; Liu Shufeng; Ma Guangran

    2010-01-01

    A novel electro-active material was successfully prepared with Fe(CN) 6 3- ions loaded by electrostatic interaction onto the layer of poly(allylamine) hydrochloride (PAH), which was first assembled on prepared poly(sodium 4-styrenesulfonate) (PSS)-doped porous calcium carbonate (CaCO 3 ) microspheres. Further, an electrochemical sensor for use in ascorbic acid (AA) detection was constructed with the use of the above electro-active materials embedded into a chitosan (CS) sol-gel matrix as an electron mediator. The electrocatalytic oxidation of AA by ferricyanide was observed at the potential of 0.27 V, which was negative-shifted compared with that by direct electrochemical oxidation of AA on a glassy carbon electrode. The experimental parameters, including the pH value of testing solution and the applied potential for detection of AA, were optimized. The current electrochemical sensor not only exhibited a good reproducibility and storage stability, but also showed a fast amperometric response to AA in a linear range (1.0 x 10 -6 to 2.143 x 10 -3 M), a low detection limit (7.0 x 10 -7 M), a fast response time ( -1 ).

  7. Poly(3,4-ethylenedioxythiophene-co-(5-amino-2-naphthalenesulfonic acid)) (PEDOT-PANS) film modified glassy carbon electrode for selective detection of dopamine in the presence of ascorbic acid and uric acid

    International Nuclear Information System (INIS)

    Balamurugan, A.; Chen Shenming

    2007-01-01

    Poly(3,4-ethylenedioxythiophene-co-(5-amino-2-naphthalenesulfonic acid)) (PEDOT-PANS) film modified glassy carbon electrode was prepared by electrochemical polymerization technique. The properties of modified electrode was studied. It was found that the electrochemical properties of modified electrode was very much dependent on the experimental conditions, such as monomer oxidation potential and pH. The modified electrode surface was characterized by scanning electron microscopy (SEM). The PEDOT-PANS film modified electrode shows electrocatalytic activity toward oxidation of dopamine (DA) in acetate buffer solution (pH 5.0) and results in a marked enhancement of the current response. The linear sweep voltammetric (LSV) peak heights are linear with DA concentration from 2 x 10 -6 to 1 x 10 -5 M. The detection limit is 5 x 10 -7 M. More over, the interferences of ascorbic acid (AA) and uric acid (UA) were effectively diminished. This work provides a simple and easy approach for selective determination of dopamine in the presence of ascorbic acid and uric acid

  8. Electrochemical methods as a tool for determining the antioxidant capacity of food and beverages: A review.

    Science.gov (United States)

    Hoyos-Arbeláez, Jorge; Vázquez, Mario; Contreras-Calderón, José

    2017-04-15

    The growing interest in functional foods had led to the use of analytical techniques to quantify some properties, among which is the antioxidant capacity (AC). In order to identify and quantify this capacity, some techniques are used, based on synthetic radicals capture; and they are monitored by UV-vis spectrophotometry. Electrochemical techniques are emerging as alternatives, given some of the disadvantages faced by spectrophotometric methods such as the use of expensive reagent not environmentally friendly, undefined reaction time, long sample pretreatment, and low precision and sensitivity. This review focuses on the four most commonly used electrochemical techniques (cyclic voltammetry, differential pulse voltammetry, square wave voltammetry and chronoamperometry). Some of the applications to determine AC in foods and beverages are presented, as well as the correlation between both spectrophotometric and electrochemical techniques that have been reported. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Synthesis, Characterizations and Investigation of Electrochemical Behaviours of 4-[(2-Hydroxyphenyliminomethyl]benzene-1,3-diol

    Directory of Open Access Journals (Sweden)

    Aysen D. Mulazimoglu

    2009-01-01

    Full Text Available This Schiff base ligand, 4-[(2-hydroxyphenylimino methyl]benzene-1,3-diol (HIBD was synthesized by reaction of 2-aminophenol and 2,4-dihydroxybenzaldehyde. The ligand was characterized by elemental analysis, FT-IR and 1H-NMR. Electrochemical behaviors were investigated on the glassy carbon electrode (GC surface with cyclic voltammetry (CV. The modification of HIBD on the GC was performed in +0.3 V and +2,8 V potential range using 100 mV s-1 scanning rate having 5 cycle. For the characterization of the modified surfaces 1 mM ferrocene redox probe in 0,1 M tetrabutylammonium tetrafluoroborate (TBATFB and 1 mM ferricyanide redox probe in 0.1 M H2SO4 were used.

  10. Pulsed amperometric detection at glassy carbon electrodes: A new waveform for sensitive and reproducible determination of electroactive compounds.

    Science.gov (United States)

    Nardiello, Donatella; Palermo, Carmen; Natale, Anna; Quinto, Maurizio; Centonze, Diego

    2015-09-24

    In this work, the application of a new pulsed amperometric detection (PAD) waveform at a glassy carbon electrode, operating in typical chromatographic mobile phases, is proposed for the sensitive and reproducible determination of arylethanolaminic and phenolic moiety based compounds (e.g. beta-agonists and polyphenols). Preliminary experiments by cyclic voltammetry were carried out to investigate the electrochemical behaviour and to select the detection and cleaning electrode potentials. The proposed potential-time profile was designed to prevent the carbon electrode fouling under repeated analyses, thus ensuring a reproducible and sensitive quantitative determination, without the need of any mechanical or chemical electrode cleaning procedure. The waveform electrochemical parameters, including detection and delay times, were optimized in terms of sensitivity, limit of detection and response stability. The optimized waveform allowed the sensitive and stable detection of model compounds, such as clenbuterol and caffeic acid, that showed detection limits of 0.1 μg L(-1) and 14 μg L(-1), quantification limits of 0.4 μg L(-1) and 46 μg L(-1), and linearity up to 100 μg L(-1) (r = 0.9993) and 10 mg L(-1) (r = 0.9998), respectively. Similar results were obtained for other compounds of the same classes, with precision values under repeatability conditions ranging from 3.0 to 5.9%. The proposed method can be then considered as an excellent alternative to the post-column detection of beta-agonists, phenols and polyphenols. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Electrochemical and DFT study of an anticancer and active anthelmintic drug at carbon nanostructured modified electrode.

    Science.gov (United States)

    Ghalkhani, Masoumeh; Beheshtian, Javad; Salehi, Maryam

    2016-12-01

    The electrochemical response of mebendazole (Meb), an anticancer and effective anthelmintic drug, was investigated using two different carbon nanostructured modified glassy carbon electrodes (GCE). Although, compared to unmodified GCE, both prepared modified electrodes improved the voltammetric response of Meb, the carbon nanotubes (CNTs) modified GCE showed higher sensitivity and stability. Therefore, the CNTs-GCE was chosen as a promising candidate for the further studies. At first, the electrochemical behavior of Meb was studied by cyclic voltammetry and differential pulse and square wave voltammetry. A one step reversible, pH-dependent and adsorption-controlled process was revealed for electro-oxidation of Meb. A possible mechanism for the electrochemical oxidation of Meb was proposed. In addition, electronic structure, adsorption energy, band gap, type of interaction and stable configuration of Meb on the surface of functionalized carbon nanotubes were studied by using density functional theory (DFT). Obtained results revealed that Meb is weakly physisorbed on the CNTs and that the electronic properties of the CNTs are not significantly changed. Notably, CNTs could be considered as a suitable modifier for preparation of the modified electrode for Meb analysis. Then, the experimental parameters affecting the electrochemical response of Meb were optimized. Under optimal conditions, high sensitivity (b(Meb)=dIp,a(Meb)/d[Meb]=19.65μAμM(-1)), a low detection limit (LOD (Meb)=19nM) and a wide linear dynamic range (0.06-3μM) was resulted for the voltammetric quantification of Meb. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Electrochemical impedance spectroscopy for analytical determination of paraquat in meconium samples using an immunosensor modified with fullerene, ferrocene and ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Sun Xiulan [State Key Laboratory of Food Science and Technology, Wuxi 214122 (China); Li Zaijun, E-mail: zaijunli@263.ne [School of Chemical and Materials Engineering, Jiangnan University, Lihu Road 1800, Wuxi 214122 (China); Cai, Yan; Wei, Zhilei [School of Chemical and Materials Engineering, Jiangnan University, Lihu Road 1800, Wuxi 214122 (China); Fang Yinjun; Ren Guoxiao; Huang Yaru [Zhejiang Zanyu Technology Limited Corporation, Hangzhou 311215 (China)

    2011-01-01

    The paper reports a highly sensitive electrochemical immunosensor for the detection of paraquat. The immunosensor bases on glassy carbon electrode modified with a composite made from fullerene, ferrocene and the ionic liquid. The components were immobilized on the electrode surface by chitosan. The antibody of paraquat was covalently conjugated to the surface which was then blocked with bovine serum albumin. Analytical characteristics of the immunosensor were investigated by electrochemical impedance spectroscopy. It offers good repeatability (RSD = 1.5%), a stability of more than 150 days, an impedimetric response to paraquat in the range from 3.89 x 10{sup -11} to 4.0 x 10{sup -8} mol L{sup -1}, and a detection limit (S/N = 3) of 9.0 x 10{sup -12} mol L{sup -1}. The effects of omitting fullerene and the ionic liquid were well tested. The results indicated that sensitivity of the immunosensor is 3.7-fold better if fullerene and ionic liquid are used. This demonstrates that fullerene facilitates electron transfer on surface of the electrode due to unique electrochemical properties, while the ionic liquid provides biocompatible microenvironment for the antibody, which results in the enhanced sensitivity and stability. Moreover, surface morphology feature and electrochemical properties of the electrode were also examined. The method was satisfactorily applied to the determination of paraquat in meconium.

  13. Glassy slags as novel waste forms for remediating mixed wastes with high metal contents

    International Nuclear Information System (INIS)

    Feng, X.; Wronkiewicz, D.J.; Bates, J.K.; Brown, N.R.; Buck, E.C.; Gong, M.; Ebert, W.L.

    1994-01-01

    Argonne National Laboratory (ANL) is developing a glassy slag final waste form for the remediation of low-level radioactive and mixed wastes with high metal contents. This waste form is composed of various crystalline and metal oxide phases embedded in a silicate glass phase. This work indicates that glassy slag shows promise as final waste form because (1) it has similar or better chemical durability than high-level nuclear waste (HLW) glasses, (2) it can incorporate large amounts of metal wastes, (3) it can incorporate waste streams having low contents of flux components (boron and alkalis), (4) it has less stringent processing requirements (e.g., viscosity and electric conductivity) than glass waste forms, (5) its production can require little or no purchased additives, which can result in greater reduction in waste volume and overall treatment costs. By using glassy slag waste forms, minimum additive waste stabilization approach can be applied to a much wider range of waste streams than those amenable only to glass waste forms

  14. Versatile charge transfer through anthraquinone films for electrochemical sensing applications

    International Nuclear Information System (INIS)

    Venarusso, Luna B.; Tammeveski, Kaido; Maia, Gilberto

    2011-01-01

    Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were employed to study the effect of anthraquinone (AQ) films on the charge transfer rate of β-nicotinamide adenine dinucleotide (NAD + ), dopamine (DA), and ferricyanide on glassy carbon (GC) electrodes in solutions of different pH. Maximum blocking action on the Fe(CN) 6 3- redox probe was observed at pH 7 and open-circuit potential (OCP). However, maximum electron hopping effect was observed at pH 9 at both -0.58 V and -0.85 V for Fe(CN) 6 3- , pH 7 at -0.58 V for NAD + , and pH 9 at -0.58 V for DA, suggesting that electron hopping in AQ films on a GC surface is dependent on both pH and electrode potential. These findings lend support for the application of these films in the detection of soluble redox probes such as NAD + and DA at biological pH values (from 7 to 9).

  15. Flower-Like Nanoparticles of Pt-BiIII Assembled on Agmatine Sulfate Modified Glassy Carbon Electrode and Their Electrocatalysis of H2O2

    Science.gov (United States)

    Xiao, Mingshu; Yan, Yuhua; Feng, Kai; Tian, Yanping; Miao, Yuqing

    2015-04-01

    A new electrochemical technique to detect hydrogen peroxide (H2O2) was developed. The Pt nanoparticles and BiIII were subsequently assembled on agmatine sulfate (AS) modified glassy carbon electrode (GCE) and the prepared GCE-AS-Pt-BiIII was characterized by scanning electron microscopy (SEM) with result showing that the flower-like nanostructure of Pt-BiIII was yielded. Compared with Pt nanoparticles, the flower-like nanostructure of Pt-BiIII greatly enhanced the electrocatalysis of GCE-AS-Pt-BiIII towards H2O2, which is ascribed to more Pt-OH obtained on GCE-AS-Pt-BiIII surface for the presence of BiIII. Based on its high electrocatalysis, GCE-AS-Pt-BiIII was used to determine the content of H2O2 in the sample of sheet bean curd with standard addition method. Meantime, its electrocatalytic activity also was studied.

  16. Electrochemical and DFT study of an anticancer and active anthelmintic drug at carbon nanostructured modified electrode

    International Nuclear Information System (INIS)

    Ghalkhani, Masoumeh; Beheshtian, Javad; Salehi, Maryam

    2016-01-01

    The electrochemical response of mebendazole (Meb), an anticancer and effective anthelmintic drug, was investigated using two different carbon nanostructured modified glassy carbon electrodes (GCE). Although, compared to unmodified GCE, both prepared modified electrodes improved the voltammetric response of Meb, the carbon nanotubes (CNTs) modified GCE showed higher sensitivity and stability. Therefore, the CNTs-GCE was chosen as a promising candidate for the further studies. At first, the electrochemical behavior of Meb was studied by cyclic voltammetry and differential pulse and square wave voltammetry. A one step reversible, pH-dependent and adsorption-controlled process was revealed for electro-oxidation of Meb. A possible mechanism for the electrochemical oxidation of Meb was proposed. In addition, electronic structure, adsorption energy, band gap, type of interaction and stable configuration of Meb on the surface of functionalized carbon nanotubes were studied by using density functional theory (DFT). Obtained results revealed that Meb is weakly physisorbed on the CNTs and that the electronic properties of the CNTs are not significantly changed. Notably, CNTs could be considered as a suitable modifier for preparation of the modified electrode for Meb analysis. Then, the experimental parameters affecting the electrochemical response of Meb were optimized. Under optimal conditions, high sensitivity (b(Meb) = dI p,a (Meb) / d[Meb] = 19.65 μA μM −1 ), a low detection limit (LOD (Meb) = 19 nM) and a wide linear dynamic range (0.06–3 μM) was resulted for the voltammetric quantification of Meb. - Highlights: • Electrochemical oxidation mechanism of Meb was investigated. • A carbon nanostructure modified electrode was developed for the determination of Meb. • The modified electrode surface was characterized by SEM and impedance studies. • This study provides an effective chemically modified electrode with satisfactory repeatability and reproducibility

  17. Optical, Nanomechanical and Electrochemical Sensing on a DVD Disc

    DEFF Research Database (Denmark)

    Boisen, Anja

    2014-01-01

    platform in order to study and count larger objects such as cells. In this way it will be possible to analyze a given sample for several parameters simultaneously. Electrodes can also be integrated on the spinning platform [4] and hereby it is possible to perform electrochemical measurements at the same...... combined with sensitive and compact read-out possibilities from optical pick-up heads makes it possible to realize full sample pretreatment and read-out in a both fast and compact manner. References: 1. M. Madou et al., Lab on a CD, Annual Review of Biomedical Engineering, Vol. 8: 601-628, 2016 2. F...

  18. Conducting polymer‐coated, palladium‐functionalized multi‐walled carbon nanotubes for the electrochemical sensing of hydroxylamine

    International Nuclear Information System (INIS)

    Lee, Eunhee; Ahmed, Mohammad Shamsuddin; You, Jung-Min; Kim, Seul Ki; Jeon, Seungwon

    2012-01-01

    Electrochemical sensors of hydroxylamine were fabricated on glassy carbon electrodes (GCEs) by the electropolymerization of 3,4‐ethylenedioxypyrrole (EDOP) and 3,4‐ethylenedioxythiophene (EDOT) on palladium (Pd) nanoparticles attached to thiolated multi‐walled carbon nanotubes (MWCNTs), denoted as PEDOP/MWCNT‐Pd/GCE and PEDOT/MWCNT‐Pd/GCE. The sensors were characterized by field emission scanning electron microscopy and electrochemical impedance spectroscopy. They showed strong catalytic activity toward the oxidation of hydroxylamine. Cyclic voltammetry and amperometry were used to characterize the sensors' performances. The detection limits of hydroxylamine by PEDOP/MWCNT‐Pd/GCE and PEDOT/MWCNT‐Pd/GCE were 0.22 and 0.24 μM (S/N = 3), respectively. The sensors' sensitivity, selectivity, and stability were also investigated. - Highlights: ► Multi-wall carbon nanotubes-Pd nanoparticles (MWCNT-Pd) based electrodes. ► Electropolymerized electrodes by poly3,4-ethylenedioxythiophene(PEDOT). ► PEDOT/MWCNT-Pd has a low detection limit of 0.24 µM for hydroxylamine. ► PEDOT/MWCNT-Pd exhibits a wide linear range from 1 µM to 6 mM hydroxylamine. ► The resulting sensor shows fast response and good stability.

  19. Synthesis of feather-like CeO2 microstructures and enzymatic electrochemical catalysis for trichloroacetic acid

    Science.gov (United States)

    Xiao, Xin; Zhang, Dong En; Zhang, Fan; Gong, Jun Yan; Zhang, Xiao Bo; Wang, Yi Hui; Ma, Juan Juan; Tong, Zhi Wei

    Novel feather-like CeO2 microstructures were achieved by a thermal decomposition approach of Ce(OH)CO3 precursor. The Ce(OH)CO3 was obtained from a solvothermal method employing Ce(NO3)3.6H2O with C6H12N4 and C16H33(CH3)3NBr (CTAB) at 190∘C in a water-PEG-200 mixed solution. The feather-like CeO2 dendrite was obtained by thermal conversion of the feather-like Ce(OH)CO3 at 650∘C in air. A reasonable growth mechanism was proposed with the soft-template effect of PEG-200. The electrochemical behavior and enzyme activity of myoglobin (Mb) immobilized on CeO2-Nafion modified glassy carbon electrode (GCE) are demonstrated by cyclic voltammetric measurements. The results indicate that CeO2 can obviously promote the direct electron transfer between the Mb redox centers and the electrode. The Mb on CeO2-Nafion behaves as an elegant performance on the electrochemical reduction of trichloroacetic acid (TCA) from 0.32μM to 2.28μM. The detection limit is estimated to be 0.08μM.

  20. Biomass pretreatment

    Science.gov (United States)

    Hennessey, Susan Marie; Friend, Julie; Elander, Richard T; Tucker, III, Melvin P

    2013-05-21

    A method is provided for producing an improved pretreated biomass product for use in saccharification followed by fermentation to produce a target chemical that includes removal of saccharification and or fermentation inhibitors from the pretreated biomass product. Specifically, the pretreated biomass product derived from using the present method has fewer inhibitors of saccharification and/or fermentation without a loss in sugar content.

  1. Dielectric relaxation and AC conductivity studies of Se90Cd10−xInx glassy alloys

    Directory of Open Access Journals (Sweden)

    Nitesh Shukla

    2016-06-01

    Full Text Available Chalcogenide glassy alloys of Se90Cd10−xInx (x = 2, 4, 6, 8 are synthesized by melt quench technique. The prepared glassy alloys have been characterized by techniques such as differential scanning calorimetry (DSC, scanning electron microscopy (SEM and energy dispersive X-ray (EDAX. Dielectric properties of Se90Cd10−xInx (x = 2, 4, 6, 8 chalcogenide glassy system have been studied using impedance spectroscopic technique in the frequency range 42 Hz to 5 MHz at room temperature. It is found that the dielectric constants ɛ′, dielectric loss factor ɛ″ and loss angle Tan δ depend on frequency. ɛ′, ɛ″ and loss angle Tan δ are found to be decreasing with the In content in Se90Cd10−xInx glassy system. AC conductivity of the prepared sample has also been studied. It is found that AC conductivity increases with frequency where as it has decreasing trend with increasing In content in Se–Cd matrix. The semicircles observed in the Cole–Cole plots indicate a single relaxation process.

  2. Morphology-dependent Electrochemical Enhancements of Porous Carbon as Sensitive Determination Platform for Ascorbic Acid, Dopamine and Uric Acid

    Science.gov (United States)

    Cheng, Qin; Ji, Liudi; Wu, Kangbing; Zhang, Weikang

    2016-02-01

    Using starch as the carbon precursor and different-sized ZnO naoparticles as the hard template, a series of porous carbon materials for electrochemical sensing were prepared. Experiments of scanning electron microscopy, transmission electron microscopy and Nitrogen adsorption-desorption isotherms reveal that the particle size of ZnO has big impacts on the porous morphology and surface area of the resulting carbon materials. Through ultrasonic dispersion of porous carbon and subsequent solvent evaporation, different sensing interfaces were constructed on the surface of glassy carbon electrode (GCE). The electrochemical behaviors of ascorbic acid (AA), dopamine (DA) and uric acid (UA) were studied. On the surface of porous carbon materials, the accumulation efficiency and electron transfer ability of AA, DA and UA are improved, and consequently their oxidation signals enhance greatly. Moreover, the interface enhancement effects of porous carbon are also controlled by the particle size of hard template. The constructed porous carbon interface displays strong signal amplification ability and holds great promise in constructing a sensitive platform for the simultaneous determination of AA, DA and UA.

  3. Electrochemical detection of L-cysteine using a boron-doped carbon nanotube-modified electrode

    International Nuclear Information System (INIS)

    Deng Chunyan; Chen Jinhua; Chen Xiaoli; Wang Mengdong; Nie Zhou; Yao Shouzhuo

    2009-01-01

    A boron-doped carbon nanotube (BCNT)-modified glassy carbon (GC) electrode was constructed for the detection of L-cysteine (L-CySH). The electrochemical behavior of BCNTs in response to L-cysteine oxidation was investigated. The response current of L-CySH oxidation at the BCNT/GC electrode was obviously higher than that at the bare GC electrode or the CNT/GC electrode. This finding may be ascribed to the excellent electrochemical properties of the BCNT/GC electrode. Moreover, on the basis of this finding, a determination of L-CySH at the BCNT/GC electrode was carried out. The effects of pH, scan rate and interferents on the response of L-CySH oxidation were investigated. Under the optimum experimental conditions, the detection response for L-CySH on the BCNT/GC electrode was fast (within 7 s). It was found to be linear from 7.8 x 10 -7 to 2 x 10 -4 M (r = 0.998), with a high sensitivity of 25.3 ± 1.2 nA mM -1 and a low detection limit of 0.26 ± 0.01 μM. The BCNT/GC electrode exhibited high stability and good resistance against interference by other oxidizable amino acids (tryptophan and tyrosine)

  4. Connection between NMR and electrical conductivity in glassy chalcogenide fast ionic conductors

    International Nuclear Information System (INIS)

    Kim, K.H.

    1995-01-01

    The work documented in this thesis follows the traditional order. In this chapter a general discussion of ionic conduction and of glassy materials are followed by a brief outline of the experimental techniques for the investigation of fast ionic conduction in glassy materials, including NMR and impedance spectroscopy techniques. A summary of the previous and present studies is presented in the last section of this introductory chapter. The details of the background theory and models are found in the Chapter II, followed by the description of the experimental details in Chapter III. Chapter IV of the thesis describes the experimental results and the analysis of the experimental observations followed by the conclusions in chapter V

  5. Electrochemical Effect of Different Modified Glassy Carbon Electrodes on the Values of Diffusion Coefficient for Some Heavy Metal Ions

    International Nuclear Information System (INIS)

    Radhi, M M; Alwan, S H; Amir, Y K A; Tee, T W

    2013-01-01

    Glassy carbon electrode (GCE) was modified with carbon nanotubes (CNT), C 60 and activated carbon (AC) by mechanical attachment method and solution evaporation technique to preparation CNT/GCE, C 60 /GCE and AC/GCE, these electrodes were modified in Li + solution via cyclic voltammetry (CV) potential cycling to preparing CNT/Li + /GCE, C 60 /Li + /GCE and AC/Li + /GCE. The sensing characteristics of the modified film electrodes, demonstrated in the application study for different heavy metal ions such as Hg 2+ , Cd 2+ , and Mn 2+ . Cyclic voltammetric effect by chronoamperometry (CA) technique was investigated to determination the diffusion coefficient (D f ) values from Cottrell equation at these ions. Based on Cottrell equation (diffusion coefficient) of the redox current peaks of different heavy metal ions at different modified electrodes were studied to evaluate the sensing of these electrodes by the diffusion coefficient values. The modification of GCE with nano materials and Li + act an enhancement for the redox current peaks to observe that the diffusion process are high at CNT/Li + /GCE, C 60 /Li + /GCE and AC/Li+/GCE, but it has low values at unmodified GCE.

  6. Orbital physics in sulfur spinels: ordered, liquid and glassy ground states

    International Nuclear Information System (INIS)

    Buettgen, N; Hemberger, J; Fritsch, V; Krimmel, A; Muecksch, M; Nidda, H-A Krug von; Lunkenheimer, P; Fichtl, R; Tsurkan, V; Loidl, A

    2004-01-01

    Measurements of magnetization M(T, H), heat capacity C(T), NMR lineshift K(T) and linewidth Δ(T), neutron scattering S(Q, ω, T) and broadband dielectric spectroscopy ε(ω, T) provide experimental evidence of the different orbital ground states in the cubic sulfur spinels under investigation. In all compounds, the tetrahedrally coordinated Jahn-Teller ions Fe 2+ are characterized by a degeneracy of the orbital degrees of freedom. Particularly, we found a long-range orbital ordering in polycrystalline (PC) FeCr 2 S 4 , and a glassy freezing of the orbital degrees of freedom in FeCr 2 S 4 (single crystals) (SCs). In contrast, FeSc 2 S 4 belongs to the rare class of spin-orbital liquids, where quantum fluctuations accompanying the glassy freezing of the orbitals suppress long-range magnetic order

  7. Immobilization of Ni-Pd/core-shell nanoparticles through thermal polymerization of acrylamide on glassy carbon electrode for highly stable and sensitive glutamate detection.

    Science.gov (United States)

    Yu, Huicheng; Ma, Zhenzhen; Wu, Zhaoyang

    2015-10-08

    The preparation of a persistently stable and sensitive biosensor is highly important for practical applications. To improve the stability and sensitivity of glutamate sensors, an electrode modified with glutamate dehydrogenase (GDH)/Ni-Pd/core-shell nanoparticles was developed using the thermal polymerization of acrylamide (AM) to immobilize the synthesized Ni-Pd/core-shell nanoparticles onto a glassy carbon electrode (GCE). The modified electrode was characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). Electrochemical data showed that the prepared biosensor had remarkably enhanced electrocatalytic activity toward glutamate. Moreover, superior reproducibility and excellent stability were observed (relative average deviation was 2.96% after continuous use of the same sensor for 60 times, and current responses remained at 94.85% of the initial value after 60 d). The sensor also demonstrated highly sensitive amperometric detection of glutamate with a low limit of detection (0.052 μM, S/N = 3), high sensitivity (4.768 μA μM(-1) cm(-2)), and a wide, useful linear range (0.1-500 μM). No interference from potential interfering species such as l-cysteine, ascorbic acid, and l-aspartate were noted. The determination of glutamate levels in actual samples achieved good recovery percentages. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Rapid diagnosis of multidrug resistance in cancer by electrochemical sensor based on carbon nanotubes-drug supramolecular nanocomposites.

    Science.gov (United States)

    Zhang, Haijun; Jiang, Hui; Sun, Feifei; Wang, Huangping; Zhao, Juan; Chen, Baoan; Wang, Xuemei

    2011-03-15

    The multidrug resistance (MDR) in cancer is a major chemotherapy obstacle, rendering many currently available chemotherapeutic drugs ineffective. The aim of this study was to explore the new strategy to early diagnose the MDR by electrochemical sensor based on carbon nanotubes-drug supramolecular interaction. The carbon nanotubes modified glassy carbon electrodes (CNTs/GCE) were directly immersed into the cells suspension of the sensitive leukemia cells K562 and/or its MDR cells K562/A02 to detect the response of the electrochemical probe of daunorubicin (DNR) residues after incubated with cells for 1h. The fresh evidence from the electrochemical studies based on CNTs/GCE demonstrated that the homogeneous, label-free strategy could directly measure the function of cell membrane transporters in MDR cancer cells, identify the cell phenotype (sensitive or MDR). When the different ratios of the sensitive leukemia cells K562 and its MDR ones K562/A02 were applied as a model of MDR levels to simulate the MDR occurrence in cancer, the cathodic peak current showed good linear response to the fraction of MDR with a correlation coefficient of 0.995. Therefore, the MDR fraction can be easily predicted based on the calibration curve of the cathodic peak current versus the fraction of MDR. These results indicated that the sensing strategy could provide a powerful tool for assessment of MDR in cancer. The new electrochemical sensor based on carbon nanotubes-drug supramolecular nanocomposites could represent promising approach in the rapid diagnosis of MDR in cancer. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Chemical attachment of functionalized multiwalled carbon nanotubes on glassy carbon electrode for electrocatalytic application

    International Nuclear Information System (INIS)

    Rajalakshmi, K.; Abraham John, S.

    2015-01-01

    Highlights: • FMWCNTs were covalently attached on GC surface with the aid of alkyldiamine. • The attached FMWCNTs were stable for a wide potential window due to the robust C−N bond. • The composite electrode was prepared by electropolymerizing thiadiazole on FMWCNTs. • The detection limit of 0.27 μM (S/N = 3) of GMP was achieved using composite modified electrode. - Abstract: The covalent attachment of acid functionalized multiwalled carbon nanotubes (FMWCNTs) on glassy carbon (GC) electrode using 1,8-octanediamine (OD) as a linker via carbodiimide chemistry was described. The attachment of FMWCNTs on GC electrode were confirmed by attenuated total reflectance Fourier transform infra-red (ATR-FT-IR) spectroscopy, Raman, scanning electron microscopy (SEM) and electrochemical impedance studies. Raman spectrum of FMWCNTs modified surface shows the characteristic G and D bands at 1563 cm −1 and 1340 cm −1 , respectively. This confirmed the successful attachment of FMWCNTs on the OD modified GC surface. Further, the attachment of FMWCNTs on OD modified surface via amide linkage was confirmed from the observed characteristic peak at 1681 cm −1 in the ATR-FT-IR spectrum. The SEM images showed that the covalently attached FMWCNTs retained their morphology similar to powder and the average diameter of them was found to be 58 nm. Unlike modification of FMWCNTs on gold substrates with the aid of conventional thiol linkers (Au−S bond), modification of them by the present method was stable for a wide positive potential window due to the robust C−N bond. To demonstrate the electrochemical stability of the MWCNTs modified electrode at more positive potential, guanosine 5′-monophosphate (GMP) was selected as a representative probe because its oxidation occurs at more than 1 V. It was found that the FMWCNTs modified electrode not only showed a stable signal for GMP but also enhanced its oxidation current when compared to bare GC electrode. Further, the

  10. Glassy behavior in the layered perovskites La2−xSrxCoO4(1.1≤x≤1.3)

    International Nuclear Information System (INIS)

    Mukherjee, S.; Mukherjee, Rajarshi; Banerjee, S.; Ranganathan, R.; Kumar, Uday

    2012-01-01

    The glassy behavior of the phase segregated state in the layered cobaltite La 2−x Sr x CoO 4 has been studied. The role of the inter-cluster interactions as well as the disordered spins at the paramagnetic–ferromagnetic interface, behind the observed glassy behavior have been investigated. The disordered spins at the interface appear to be strongly pinned, and they contribute little to the observed glassy behavior. On the other hand, the inter-cluster interactions play the key role. Both the Co 4+ and Co 3+ ions are in the intermediate spin state. - Highlights: ► Phase segregated state of cobaltite La 2−x Sr x CoO 4 for (1.1≤x≤1.3) to find the origin of the observed glassy behavior. ► Result of the frequency dependent ac susceptibility measurement excludes the possibility of any spin glass phase, hints strong inter-cluster interactions. ► Relaxation experiments confirm the system to be a collection of clusters with two preferred sizes. ► The glassy behavior originates from strong inter-cluster interactions.

  11. Glassy slag from rotary hearth vitrification

    International Nuclear Information System (INIS)

    Eschenbach, R.C.; Simpson, M.D.; Paulson, W.S.; Whitworth, C.G.

    1995-01-01

    Use of a Plasma Arc Centrifugal Treatment (PACT) system for treating mixed wastes containing significant quantities of soil results in formation of a glassy slag which melts at significantly higher temperatures than the borosilicate glasses. The slag typically contains mostly crystalline material, frequently in an amorphous matrix, thus the appellation open-quotes glassy slag.close quotes Details of the PACT process are given. The process will be used for treating buried wastes from Pit 9 at the Idaho National Engineering Laboratory and low-level mixed wastes from nuclear power plants in Switzerland. Properties of the slag after cooling to room temperature are reported, in particular the Product Consistency Test, for a number of different feedstocks. In almost all cases, the results compare favorably with conventional borosilicate glasses. In the PACT system, a transferred arc carries current from the plasma torch to a rotating molten bed of slag, which is the material being heated. Thus this transferred arc adds energy where it is needed - at and near the surface of the molten bath. Material is fed into the furnace through a sealed feeder, and falls into a rotating tub which is heated by the arc. Any organic material is quickly vaporized into the space above the slag bed and burned by the oxygen in the furnace. Metal oxides in the charge are melted into the slag. Metal in the feed tends to melt and collect as a separate phase underneath the slag, but can be oxidized if desired. When oxidized, it unites with other constituents forming a homogeneous slag

  12. Generation of fine hydromagmatic ash by growth and disintegration of glassy rinds

    Science.gov (United States)

    Mastin, L.G.

    2007-01-01

    The deposits of mafic hydromagmatic eruptions are more fine grained and variable in vesicularity than dry magmatic deposits. Blocky, equant shapes of many hydromagmatic clasts also contrast with droplet, thread, and bubble wall morphology of dry magmatic fragments. Small (disintegration of glassy rinds on pyroclast surfaces as they deform within turbulent flows. This process, termed "turbulent shedding", may occur during the expansion phase of vapor explosions or during turbulent but nonexplosive mixing of magma with water, steam, or water sprays. The occurrence of turbulent shedding and the resulting fragment sizes depend on the timescale for rind growth and the timescale between disturbances that remove or disintegrate glassy rinds. Turbulent shedding is directly observable in some small littoral jets at Kilauea. Calculations suggest that, in the presence of liquid water or water sprays, glassy rinds having a thickness of microns to millimeters should form in milliseconds to seconds. This is similar to the timescale between turbulent velocity fluctuations that can shred lava globules and remove such rinds. The fraction of a deposit consisting of fine ash should increase with the duration of this process: Large-scale Surtseyan jets generate hundreds or thousands of shedding events; bubble bursts or tephra jets at Kilauea's coast may produce only a few.

  13. Protection of nuclear graphite toward fluoride molten salt by glassy carbon deposit

    International Nuclear Information System (INIS)

    Bernardet, V.; Gomes, S.; Delpeux, S.; Dubois, M.; Guerin, K.; Avignant, D.; Renaudin, G.; Duclaux, L.

    2009-01-01

    Molten salt reactor represents one of the promising future Generation IV nuclear reactors families where the fuel, a liquid molten fluoride salt, is circulating through the graphite reactor core. The interactions between nuclear graphite and fluoride molten salt and also the graphite surface protection were investigated in this paper by powder X-ray diffraction, micro-Raman spectroscopy and scanning electron microscopy coupled with X-ray microanalysis. Nuclear graphite discs were covered by two kinds of protection deposit: a glassy carbon coating and a double coating of pyrolitic carbon/glassy carbon. Different behaviours have been highlighted according to the presence and the nature of the coated protection film. Intercalation of molten salt between the graphite layers did not occur. Nevertheless the molten salt adhered more or less to the surface of the graphite disc, filled more or less the graphite surface porosity and perturbed more or less the graphite stacking order at the disc surface. The behaviour of unprotected graphite was far to be satisfactory after two days of immersion of graphite in molten salt at 500 deg. C. The best protection of the graphite disc surface, with the maximum of inertness towards molten salt, has been obtained with the double coating of pyrolitic carbon/glassy carbon

  14. A novel sensitive Cu(II) and Cd(II) nanosensor platform: Graphene oxide terminated p-aminophenyl modified glassy carbon surface

    International Nuclear Information System (INIS)

    Gupta, Vinod Kumar; Yola, Mehmet Lütfi; Atar, Necip; Ustundag, Zafer; Solak, Ali Osman

    2013-01-01

    Graphical abstract: - Highlights: • We electrochemically prepared sensor based on graphene oxide. • The prepared electrode was characterized by using various techniques. • The proposed nanosensor showed good stability, selectivity and high sensitivity. • The proposed nanosensor electrode was used for the analysis of Cd(II) and Cu(II). - Abstract: Graphene oxide (GO) based glassy carbon (GC) electrode has been prepared. Firstly, p-nitrophenyl (NP) modified GC (NP/GC) electrode was prepared via the electrochemical reduction of its tetraflouroborate diazonium salt. After the formation of NP/GC electrode, the negative potential was applied to NP/GC electrode to reduce the nitro groups to amine. p-Aminophenyl (AP) modified GC (AP/GC) electrode was immersed into a graphene oxide solution containing 1-ethyl-3(3-(dimethlyamino)propyl)-carbodiimide. Hence, we constructed GO terminated AP modified GC (GO/AP/GC) electrode. NP/GC, AP/GC and GO/AP/GC electrodes were characterized sequentially using cyclic voltammetry (CV) in the presence of 1.0 mM of potassium ferricyanide in 0.1 M KCl. In addition, GO and GO/AP/GC surfaces were characterized by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The GO/AP/GC electrode was used for the analysis of Cd(II) and Cu(II) ions by adsorptive stripping voltammetry. The linearity range and the detection limit of Cd(II) and Cu(II) ions were 1.0 × 10 −11 –5.0 × 10 −10 M and 3.3 × 10 −12 M (S/N = 3), respectively

  15. The impact of electrochemical reduction potentials on the electrocatalytic activity of graphene oxide toward the oxygen reduction reaction in an alkaline medium

    International Nuclear Information System (INIS)

    Toh, Shaw Yong; Loh, Kee Shyuan; Kamarudin, Siti Kartom; Daud, Wan Ramli Wan

    2016-01-01

    We report the synthesis of graphene via the electrochemical reduction of graphene oxide (GO). In this study, GO nanosheets from aqueous dispersion were pre-assembled on a glassy carbon (GC) electrode and then electrochemically reduced in 1 M KOH under various constant reduction potentials in the range of −0.6 V to −1.5 V (vs. Ag/AgCl). X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy analyses revealed that the graphitic structure was substantially restored in the resulting electrochemically reduced graphene oxide (ERGO). The ERGO electrodes exhibited significantly enhanced catalytic activity toward the oxygen reduction reaction (ORR) in an alkaline medium compared with the initial GO electrode. Of the ERGO electrodes produced at various cathodic potentials, the ERGO-1.2 V electrode, which was produced at a reduction potential of −1.2 V, demonstrated the best catalytic activity toward the ORR in an alkaline medium. The ORR on GO and ERGO electrodes was shown to proceed via a two-electron mechanism at low overpotentials. The agreement between the spectroscopy results and electrochemical measurements provide strong evidence that the enhanced ORR catalytic activity is mainly attributed to the restoration of GO’s graphitic structure. Furthermore, the ERGO-1.2 V electrode showed excellent tolerance to the methanol poisoning effect compared with a Pt/C catalyst electrode.

  16. Electro-oxidation nitrite based on copper calcined layered double hydroxide and gold nanoparticles modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Cui Lin; Meng Xiaomeng; Xu Minrong; Shang Kun [College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong (China); Ai Shiyun, E-mail: ashy@sdau.edu.cn [College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong (China); Liu Yinping [College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong (China)

    2011-11-30

    Highlights: > A nitrite sensor fabricated based on copper calcined layered double hydroxides and gold nanoparticles modified electrode. > This sensor exhibited excellent electrocatalytic oxidation to nitrite. > This nitrite sensor exhibited very good analytical performance with low cost, convenient preparation and rapid detection. - Abstract: In this paper, a novel nitrite sensor was constructed based on electrodeposition of gold nanoparticles (AuNPs) on a copper calcined layered double hydroxide (Cu-CLDH) modified glassy carbon electrode. Electrochemical experiments showed that AuNPs/CLDH composite film exhibited excellent electrocatalytic oxidation activity with nitrite due to the synergistic effect of the Cu-CLDH with AuNPs. The fabricated sensor exhibited excellent performance for nitrite detection within a wide concentration interval of 1-191 {mu}M and with a detection limit of 0.5 {mu}M. The superior electrocatalytic response to nitrite was mainly attributed to the large surface area, minimized diffusion resistance, and enhanced electron transfer of the Cu-CLDH and AuNPs composition film. This platform offers a novel route for nitrite sensing with wide analytical applications and will supply the practical applications for a variety of simple, robust, and easy-to-manufacture analytical approaches in the future.

  17. Electro-oxidation nitrite based on copper calcined layered double hydroxide and gold nanoparticles modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Cui Lin; Meng Xiaomeng; Xu Minrong; Shang Kun; Ai Shiyun; Liu Yinping

    2011-01-01

    Highlights: → A nitrite sensor fabricated based on copper calcined layered double hydroxides and gold nanoparticles modified electrode. → This sensor exhibited excellent electrocatalytic oxidation to nitrite. → This nitrite sensor exhibited very good analytical performance with low cost, convenient preparation and rapid detection. - Abstract: In this paper, a novel nitrite sensor was constructed based on electrodeposition of gold nanoparticles (AuNPs) on a copper calcined layered double hydroxide (Cu-CLDH) modified glassy carbon electrode. Electrochemical experiments showed that AuNPs/CLDH composite film exhibited excellent electrocatalytic oxidation activity with nitrite due to the synergistic effect of the Cu-CLDH with AuNPs. The fabricated sensor exhibited excellent performance for nitrite detection within a wide concentration interval of 1-191 μM and with a detection limit of 0.5 μM. The superior electrocatalytic response to nitrite was mainly attributed to the large surface area, minimized diffusion resistance, and enhanced electron transfer of the Cu-CLDH and AuNPs composition film. This platform offers a novel route for nitrite sensing with wide analytical applications and will supply the practical applications for a variety of simple, robust, and easy-to-manufacture analytical approaches in the future.

  18. Simple electrochemical sensor for caffeine based on carbon and Nafion-modified carbon electrodes.

    Science.gov (United States)

    Torres, A Carolina; Barsan, Madalina M; Brett, Christopher M A

    2014-04-15

    A simple, economic, highly sensitive and highly selective method for the detection of caffeine has been developed at bare and Nafion-modified glassy carbon electrodes (GCE). The electrochemical behaviour of caffeine was examined in electrolyte solutions of phosphate buffer saline, sodium perchlorate, and in choline chloride plus oxalic acid, using analytical determinations by fixed potential amperometry, phosphate buffer saline being the best. Modifications of the GCE surface with poly(3,4-ethylenedioxythiophene) (PEDOT), Nafion, and multi-walled carbon nanotubes were tested in order to evaluate possible sensor performance enhancements, Nafion giving the most satisfactory results. The effect of interfering compounds usually found in samples containing caffeine was examined at GCE without and with Nafion coating, to exclude interferences, and the sensors were successfully applied to determine the caffeine content in commercial beverages and drugs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Simple and label-free electrochemical impedance Amelogenin gene hybridization biosensing based on reduced graphene oxide.

    Science.gov (United States)

    Benvidi, Ali; Rajabzadeh, Nooshin; Mazloum-Ardakani, Mohammad; Heidari, Mohammad Mehdi; Mulchandani, Ashok

    2014-08-15

    The increasing desire for sensitive, easy, low-cost, and label free methods for the detection of DNA sequences has become a vital matter in biomedical research. For the first time a novel label-free biosensor for sensitive detection of Amelogenin gene (AMEL) using reduced graphene oxide modified glassy carbon electrode (GCE/RGO) has been developed. In this work, detection of DNA hybridization of the target and probe DNA was investigated by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The optimum conditions were found for the immobilization of probe on RGO surface and its hybridization with the target DNA. CV and EIS carried out in an aqueous solution containing [Fe(CN)6](3-/4-) redox pair have been used for the biosensor characterization. The biosensor has a wide linear range from 1.0×10(-20) to 1.0×10(-14)M with the lower detection limit of 3.2×10(-21)M. Moreover, the present electrochemical detection offers some unique advantages such as ultrahigh sensitivity, simplicity, and feasibility for apparatus miniaturization in analytical tests. The excellent performance of the biosensor is attributed to large surface-to-volume ratio and high conductivity of RGO, which enhances the probe absorption and promotes direct electron transfer between probe and the electrode surface. This electrochemical DNA sensor could be used for the detection of specific ssDNA sequence in real biological samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Direct electrochemistry and electrocatalysis of lobetyolin via magnetic functionalized reduced graphene oxide film fabricated electrochemical sensor

    International Nuclear Information System (INIS)

    Sun, Bolu; Gou, Xiaodan; Bai, Ruibin; Abdelmoaty, Ahmed Attia Ahmed; Ma, Yuling; Zheng, Xiaoping; Hu, Fangdi

    2017-01-01

    A novel lobetyolin electrochemical sensor based on a magnetic functionalized reduced graphene oxide/Nafion nanohybrid film has been introduced in this work. The magnetic functionalized reduced graphene oxide was characterized by fourier transform infrared spectroscopy, atomic force microscope, X-ray diffraction, transmission electron microscopy and thermogravimetric analysis. The scanning electron microscopy characterized the morphology and microstructure of the prepared sensors, and the electrochemical effective surface areas of the prepared sensors were also calculated by chronocoulometry method. The electrochemical behavior of lobetyolin on the magnetic functionalized reduced graphene oxide/Nafion nanohybrid modified glassy carbon electrode was investigated by cyclic voltammetry and differential pulse voltammetry in a phosphate buffer solution of pH 6.0. The electron-transfer coefficient (α), electron transfer number (n), and electrode reaction rate constant (Κs) were calculated as 0.78, 0.73, and 4.63 s −1 , respectively. Under the optimized conditions, the sensor based on magnetic functionalized reduced graphene oxide/Nafion showed a linear voltammetric response to the lobetyolin concentration at 1.0 × 10 −7 to 1.0 × 10 −4 mol/L with detection limit (S/N = 3)of 4.3 × 10 −8 mol/L. The proposed sensor also displayed acceptable reproducibility, long-term stability, and high selectivity, and performs well for analysis of lobetyolin in real samples. The voltammetric sensor was successfully applied to detect lobetyolin in Codonopsis pilosula with recovery values in the range of 96.12% –102.66%. - Graphical abstract: Schematic diagram of the synthesis of MrGO hybrid and the fabrication process of the MrGO/Nafion/GCE for determination of lobetyolin. Display Omitted - Highlights: • The MrGO/Nafion@GCE electrochemical sensor was successfully fabricated. • The prepared MrGO was characterized by AFM, XRD, FTIR, VSM, TEM and SEM. • The proposed

  1. Direct electrochemistry and electrocatalysis of lobetyolin via magnetic functionalized reduced graphene oxide film fabricated electrochemical sensor

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Bolu [School of Pharmacy, Lanzhou University, Lanzhou 730000 (China); Gou, Xiaodan [School of Chemistry and Chemical Engineering, Nanjing University, 210046 (China); Bai, Ruibin; Abdelmoaty, Ahmed Attia Ahmed; Ma, Yuling; Zheng, Xiaoping [School of Pharmacy, Lanzhou University, Lanzhou 730000 (China); Hu, Fangdi, E-mail: hufd@lzu.edu.cn [School of Pharmacy, Lanzhou University, Lanzhou 730000 (China)

    2017-05-01

    A novel lobetyolin electrochemical sensor based on a magnetic functionalized reduced graphene oxide/Nafion nanohybrid film has been introduced in this work. The magnetic functionalized reduced graphene oxide was characterized by fourier transform infrared spectroscopy, atomic force microscope, X-ray diffraction, transmission electron microscopy and thermogravimetric analysis. The scanning electron microscopy characterized the morphology and microstructure of the prepared sensors, and the electrochemical effective surface areas of the prepared sensors were also calculated by chronocoulometry method. The electrochemical behavior of lobetyolin on the magnetic functionalized reduced graphene oxide/Nafion nanohybrid modified glassy carbon electrode was investigated by cyclic voltammetry and differential pulse voltammetry in a phosphate buffer solution of pH 6.0. The electron-transfer coefficient (α), electron transfer number (n), and electrode reaction rate constant (Κs) were calculated as 0.78, 0.73, and 4.63 s{sup −1}, respectively. Under the optimized conditions, the sensor based on magnetic functionalized reduced graphene oxide/Nafion showed a linear voltammetric response to the lobetyolin concentration at 1.0 × 10{sup −7} to 1.0 × 10{sup −4} mol/L with detection limit (S/N = 3)of 4.3 × 10{sup −8} mol/L. The proposed sensor also displayed acceptable reproducibility, long-term stability, and high selectivity, and performs well for analysis of lobetyolin in real samples. The voltammetric sensor was successfully applied to detect lobetyolin in Codonopsis pilosula with recovery values in the range of 96.12% –102.66%. - Graphical abstract: Schematic diagram of the synthesis of MrGO hybrid and the fabrication process of the MrGO/Nafion/GCE for determination of lobetyolin. Display Omitted - Highlights: • The MrGO/Nafion@GCE electrochemical sensor was successfully fabricated. • The prepared MrGO was characterized by AFM, XRD, FTIR, VSM, TEM and SEM.

  2. Voltammetric Determination of Acetaminophen in the Presence of Codeine and Ascorbic Acid at Layer-by-Layer MWCNT/Hydroquinone Sulfonic Acid-Overoxidized Polypyrrole Modified Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Saeed Shahrokhian

    2011-01-01

    Full Text Available A very sensitive electrochemical sensor constructed of a glassy carbon electrode modified with a layer-by-layer MWCNT/doped-overoxidized polypyrrole (oppy/MWCNT /GCE was used for the determination of acetaminophen (AC in the presence of codeine and ascorbic acid (AA. In comparison to the bare glassy carbon electrode, a considerable shift in the peak potential together with an increase in the peak current was observed for AC on the surface of oppy/MWCNT/GCE, which can be related to the enlarged microscopic surface area of the electrode. The effect of the experimental conditions on the electrode response, such as types of counter ion, pyrrole and counter ion concentration, potential and number of cycles in the polymerization procedure, amount of MWCNT, and the pH, were investigated. Under the optimized conditions, the calibration curve was obtained over two concentration ranges of 2 × 10−7–6 × 10−6 M and 4 × 10−5–1 × 10−4 M of AC with a linear correlation coefficient (R2 of 0.9959 and 0.9947, respectively. The estimated detection limit (3σ for AC was obtained as 5 × 10−8 M. The developed method was successfully applied to analyze the pharmaceutical preparations of AC, and a recovery of 95% with a relative standard deviation of 0.98% was obtained for AC.

  3. Covalent attachment of aptamer onto nanocomposite as a high performance electrochemical sensing platform: Fabrication of an ultra-sensitive ibuprofen electrochemical aptasensor

    Energy Technology Data Exchange (ETDEWEB)

    Roushani, Mahmoud, E-mail: mahmoudroushani@yahoo.com; Shahdost-fard, Faezeh

    2016-11-01

    In the present study, we report a selective electrochemical aptasensor for the ultrasensitive detection of an anti-inflammatory drug, ibuprofen (IBP). The proposed system was achieved by the modification of a glassy carbon electrode (GCE) with multiwalled carbon nanotubes/ionic liquid/chitosan (MWCNTs/IL/Chit) nanocomposite and the covalent immobilization of the IBP specific aptamer (Apt) onto the modified electrode surface followed by methylene blue (MB) intercalated onto the Apt as the electrochemical redox marker. Upon the incubation of the IBP as a target in the proposed aptasensor, the peak current of MB decreases due to the formation of the Apt-IBP complex and the displacement of MB from the immobilized Apt onto the modified electrode surface. The nanocomposite not only increases the electrode surface area and accelerate the electron transfer kinetics but also it provides a highly stable matrix to enhance the loading amount of the Apt DNA sequence. Through differential pulse voltammetry (DPV) experiments, it was found that the proposed aptasensor could detect the IBP with a linear range (70 pM up to 6 μM) and the detection limit (LOD) as low as 20 pM. The results showed that the aptasensor had good sensitivity, stability, reproducibility, and specificity to detect the IBP. The proposed aptasensor was successfully applied for measuring the IBP concentration in real samples. Based on our experiments we can say that the present method proposes new horizons for the development of other aptasensors for diagnostic application in biosensing. - Highlights: • An electrochemical aptasensor is developed for ultrasensitive detection of IBP. • The aptasensor is made by covalent immobilization of aptamer on a modified GCE. • A nanocomposite as a modifier provides a specific surface with high conductivity. • This nanocomposite leads to a high density of the DNA sequence on the GCE surface. • This method proposes new horizons for development other aptasensors for

  4. Covalent attachment of aptamer onto nanocomposite as a high performance electrochemical sensing platform: Fabrication of an ultra-sensitive ibuprofen electrochemical aptasensor

    International Nuclear Information System (INIS)

    Roushani, Mahmoud; Shahdost-fard, Faezeh

    2016-01-01

    In the present study, we report a selective electrochemical aptasensor for the ultrasensitive detection of an anti-inflammatory drug, ibuprofen (IBP). The proposed system was achieved by the modification of a glassy carbon electrode (GCE) with multiwalled carbon nanotubes/ionic liquid/chitosan (MWCNTs/IL/Chit) nanocomposite and the covalent immobilization of the IBP specific aptamer (Apt) onto the modified electrode surface followed by methylene blue (MB) intercalated onto the Apt as the electrochemical redox marker. Upon the incubation of the IBP as a target in the proposed aptasensor, the peak current of MB decreases due to the formation of the Apt-IBP complex and the displacement of MB from the immobilized Apt onto the modified electrode surface. The nanocomposite not only increases the electrode surface area and accelerate the electron transfer kinetics but also it provides a highly stable matrix to enhance the loading amount of the Apt DNA sequence. Through differential pulse voltammetry (DPV) experiments, it was found that the proposed aptasensor could detect the IBP with a linear range (70 pM up to 6 μM) and the detection limit (LOD) as low as 20 pM. The results showed that the aptasensor had good sensitivity, stability, reproducibility, and specificity to detect the IBP. The proposed aptasensor was successfully applied for measuring the IBP concentration in real samples. Based on our experiments we can say that the present method proposes new horizons for the development of other aptasensors for diagnostic application in biosensing. - Highlights: • An electrochemical aptasensor is developed for ultrasensitive detection of IBP. • The aptasensor is made by covalent immobilization of aptamer on a modified GCE. • A nanocomposite as a modifier provides a specific surface with high conductivity. • This nanocomposite leads to a high density of the DNA sequence on the GCE surface. • This method proposes new horizons for development other aptasensors for

  5. Relook on fitting of viscosity with undercooling of glassy liquids

    Indian Academy of Sciences (India)

    Department of Materials Science and Engineering, Indian Institute of Technology, Kanpur ... The present approach is on the modification of viscosity fitting of undercooled liquid as a function of ... behaviour of glassy alloys and organic and ionic compounds ...... the present method is applied to calculate the analytical solu-.

  6. Electrical resistivity in Zr48Nb8Cu12Fe8Be24 glassy and crystallized alloys

    Science.gov (United States)

    Bai, H. Y.; Tong, C. Z.; Zheng, P.

    2004-02-01

    The electrical resistivity of Zr48Nb8Cu12Fe8Be24 bulk metallic glassy and crystallized alloys in the temperature range of 4.2-293 K is investigated. It is found that the resistivity in glassy and crystallized states shows opposite temperature coefficients. For the metallic glass, the resistivity shows a negative logarithmic dependence at temperatures below 16 K, whereas it has more normal behavior for the crystallized alloy. At higher temperatures, the resistivity in both glassy and crystallized alloys shows dependence upon both T and T2, but the signs of the T and T2 terms are opposite. The results are interpreted in terms of scattering from two-level tunneling states in glasses and the generalized Ziman diffraction model.

  7. Electrochemical and Electron Paramagnetic Resonance Study of the Mechanism of Oxidation of Phenazine-di-N-oxide in the Presence of Isopropyl alcohol at Glassy Carbon and Single-Walled Carbon Nanotube Electrodes

    International Nuclear Information System (INIS)

    Kulakovskaya, S.I.; Kulikov, A.V.; Sviridova, L.N.; Stenina, E.V.

    2014-01-01

    Graphical abstract: - Highlights: • The mechanism of oxidation of phenazine-di-N-oxide in the presence of isopropyl alcohol was studied. • The results are explained in terms of the E 1 C 1 E 2 C 2 mechanism of the two-stage electrode process. • The total two-electron catalytic oxidation of i-PrOH in the complex with the phenazine-di-N-oxide radical cation was assumed to occur. - Abstract: The mechanism of oxidation of phenazine-di-N-oxide in the presence of isopropyl alcohol was studied by cyclic voltammetry at glassy carbon (GC) and single-walled carbon nanotubes (SWCNT) electrodes in 0.1 M LiClO 4 solutions in acetonitrile. The adsorption of phenazine-di-N-oxide at SWCNT electrode in 0.1 M LiClO 4 solution in acetonitrile was investigated by measurement of the dependence of the differential double layer capacitance of the electrode C on potential E. The effect of isopropyl alcohol on the shape of cyclic voltammograms (CVs) of phenazine-di-N-oxide and the intensity of Electron Paramagnetic Resonance (EPR) signal of its radical cation was investigated. The catalytic currents were recorded at the oxidation of phenazine-di-N-oxide at SWCNT and GC electrodes in the presence of isopropyl alcohol. The results were explained in terms of the E 1 C 1 E 2 C 2 mechanism of two-stage electrode process characterized by catalytic current recorded at the second electrode stage. The overall two-electron catalytic oxidation of isopropyl alcohol in complex with the phenazine-di-N-oxide radical cation was assumed to occur. It was shown that SWCNT electrodes can be used in the electrocatalytic oxidation of organic compounds in the presence of electrochemically generated phenazine-di-N-oxide radical cation

  8. Electrochemistry of actinide on electrochemically reduced graphene oxide: Electrocatalysis of Np(VI)O22+/Np(V)O2+ in nitric acid solution

    International Nuclear Information System (INIS)

    Ambolikar, Arvind S.; Guin, Saurav K.; Kasar, U.M.; Kamat, J.V.

    2015-01-01

    Highlights: • First report of aqueous electrochemistry of neptunium on electrochemically reduced graphene oxide (ERGNO). • First report on the electrochemical impedance spectroscopy of Np (VI) O 2 2+ /Np (V) O 2 + . • The electrochemical reversibility of Np (VI) O 2 2+ /Np (V) O 2 + redox couple improves on ERGNO compared to GC. • ERGNO shows higher sensitivity for the determination of Np compared to bare GC electrode. • The efficiency of detection of Np by ERGNO is improved by virtue of the electrocatalysis. - Abstract: Driven by the academic interest, we have studied the aqueous electrochemistry of neptunium (Np) in 1 M nitric acid solution on the electrochemically reduced graphene oxide (ERGNO) modified glassy carbon (GC) electrode. Similar to our previous experiences on the electrocatalytic action of ERGNO on the electrochemistry of uranium(VI)/uranium(IV) and plutonium(IV)/plutonium(III) redox couples, the present study confirms the robust electrocatalytic ability of ERGNO for the redox reaction of Np (VI) O 2 2+ /Np (V) O 2 + in acidic solution even at high anodic working potentials. The extent of the electrochemical reversibility of Np (VI) O 2 2+ /Np (V) O 2 + redox couple increases on ERGNO compared to the bare GC electrode. For the first time, the electron transfer reaction of Np (VI) O 2 2+ /Np (V) O 2 + redox couple is investigated by electrochemical impedance spectroscopy. The improved sensitivity as well as the lower limit of detection of Np by anodic square wave voltammetry on ERGNO compared to bare GC opens up the application of ERGNO in the nuclear science and technology.

  9. A stability comparison of redox-active layers produced by chemical coupling of an osmium redox complex to pre-functionalized gold and carbon electrodes

    International Nuclear Information System (INIS)

    Boland, Susan; Foster, Kevin; Leech, Donal

    2009-01-01

    The production of stable redox active layers on electrode surfaces is a key factor for the development of practical electronic and electrochemical devices. Here, we report on a comparison of the stability of redox layers formed by covalently coupling an osmium redox complex to pre-functionalized gold and graphite electrode surfaces. Pre-treatment of gold and graphite electrodes to provide surface carboxylic acid groups is achieved via classical thiolate self-assembled monolayer formation on gold surfaces and the electro-reduction of an in situ generated aryldiazonium salt from 4-aminobenzoic acid on gold, glassy carbon and graphite surfaces. These surfaces have been characterized by AFM and electrochemical blocking studies. The surface carboxylate is then used to tether an osmium complex, [Os(2,2'-bipyridyl) 2 (4-aminomethylpyridine)Cl]PF 6 , to provide a covalently bound redox active layer, E 0 '' of 0.29 V (vs. Ag/AgCl in phosphate buffer, pH 7.4), on the pre-treated electrodes. The aryldiazonium salt-treated carbon-based surfaces showed the greatest stability, represented by a decrease of <5% in the peak current for the Os(II/III) redox transition of the immobilized complex over a 3-day period, compared to a decrease of 19% and 14% for the aryldiazonium salt treated and thiolate treated gold surfaces, respectively, over the same period

  10. Sensitive methanol sensor based on PMMA-G-CNTs nanocomposites deposited onto glassy carbon electrodes.

    Science.gov (United States)

    Rahman, Mohammed M; Hussein, Mahmoud A; Alamry, Khalid A; Al Shehry, Faten M; Asiri, Abdullah M

    2016-04-01

    A new series of polymethyl methacrylate-graphene-carbon nanotubes crossbred nanocomposites in the form of PMMA-G-CNTs has been synthesized using simple dissolution procedure in organic media. The desired nanocomposites have been prepared using different loading (2 ∼ 30%) from consequently mixed GNPs/CNTs ratio and confirmed by various characterization techniques utilized to corroborate the assembly of these new hybrid series including X-ray diffraction analysis, Fourier transform infrared spectroscopy and scanning electron microscopy. The PMMA-G-CNTs nanocomposites were deposited on flat glassy carbon electrodes (GCE) to result in a sensor that has a fast response toward methanol in the phosphate buffer phase. Features including high sensitivity, low-sample volume, reliability, reproducibility, ease of integration, long-term stability, and enhanced electrochemical responses are investigated. The calibration plot is linear (r(2)=0.9895) over the 1.0 nmol L(-1) to 10.0 mmol L(-1) methanol concentration ranges. The sensitivity and detection limit is 13.491 µA cm(-2) mmol L(-2) and 0.39 ± 0.1 nmol L(-1) (at a signal-to-noise-ratio, SNR of 3), respectively. With such excellent features of analytical parameters, the developed sensor provides a new strategy for determination of methanol in biomedical and environmental analytes with satisfactory results. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. A new electrochemical sensor containing a film of chitosan-supported ruthenium: detection and quantification of sildenafil citrate and acetaminophen

    International Nuclear Information System (INIS)

    Delolo, Fabio Godoy; Rodrigues, Claudia; Silva, Monize Martins da; Batista, Alzir Azevedo; Dinelli, Luis Rogerio; Delling, Felix Nicolai; Zukerman-Schpector, Julio

    2014-01-01

    This work presents the construction of a novel electrochemical sensor for detection of organic analytes, using a glassy carbon electrode (GCE) modified with a chitosan-supported ruthenium film. The ruthenium-chitosan film was obtained starting from the mer-[RuCl 3 (dppb)(H 2 O)] complex as a [1,4-bis(diphenylphosphine)butane] (dppb) precursor, and chitosan (QT). The structure of the chitosan-supported ruthenium film on the surface of the glassy carbon electrode was characterized by UV-Vis spectroscopy, electron paramagnetic resonance (EPR), scanning electron microscopy (SEM), atomic force microscopy (AFM), powder X-ray diffraction (XRD) and atomic absorption spectroscopy (AAS) techniques. The glassy carbon electrode was modified with a film formed from the evaporation of 5 μL of a solution composed of 5 mg chitosan-supported ruthenium (RuQT) in 10 mL of 0.1 mol L -1 acetic acid. The modified electrode was tested as a sensor for sildenafil citrate (Viagra® 50 mg) and acetaminophen (Tylenol®) detection. The technique utilized for these analyses was differential pulse voltammetry (DPV) in 0.1 mol L -1 H 2 SO 4 (pH 1.0) and 0.1 mol L -1 CH 3 COOK (pH 6.5) as supporting electrolyte. All analyses were carried out during a month using the same electrode. The electrode was washed only with water in between the analyses, keeping it in the refrigerator when it was not in use. This electrode was stable during the period utilized showing no degradation and presenting a linear response over the evaluated concentration interval (1.25 × 10 -5 to 4.99 × 10 -4 mol L -1 ). (author)

  12. Label-free electrochemical detection of singlet oxygen protein damage

    International Nuclear Information System (INIS)

    Vargová, Veronika; Giménez, Rodrigo E.; Černocká, Hana; Trujillo, Diana Chito; Tulli, Fiorella; Zanini, Verónica I. Paz; Paleček, Emil; Borsarelli, Claudio D.; Ostatná, Veronika

    2016-01-01

    Oxidative damage of proteins results in changes of their structures and functions. In this work, the singlet oxygen ( 1 O 2 )-mediated oxidation of bovine serum albumin (BSA) and urease by blue-light photosensitization of the tris(2,2′-bipyridine)ruthenium(II) cation [Ru(bpy) 3 ] 2+ was studied by square wave voltammetry at glassy carbon electrode and by constant current chronopotentiometry at mercury electrode. Small changes in voltammetric oxidation Tyr and Trp peaks did not indicate significant changes in the BSA structure after photo-oxidation at carbon electrode. On the other hand chronopotentiometric peak H of BSA at HMDE increased during blue-light photosensitization, indicating that photo-oxidized BSA was more susceptible to the electric field-induced denaturation than non-oxidized native BSA. Similar results were obtained for urease, where enzymatic activity was also evaluated. The present results show the capability of label- and reagent-free electrochemical methods to detect oxidative changes in proteins. We believe that these methods will become important tools for detection of various protein damages.

  13. Some Recent Developments in Structure and Glassy Behavior of Proteins

    Science.gov (United States)

    Hu, Chin-Kun

    2012-02-01

    We have used ARVO developed by us to find that the ratio of volume and surface area of proteins in Protein Data Bank distributed in a very narrow region [1]. Such result is useful for the determination of protein 3D structures. It has been widely known that a spin glass model can be used to understand the slow relaxation behavior of a glass at low temperatures [2]. We have used molecular dynamics and simple models of polymer chains to study relaxation and aggregation of proteins under various conditions and found that polymer chains with neighboring monomers connected by rigid bonds can relax very slowly and show glassy behavior [3]. We have also found that native collagen fibrils show glassy behavior at room temperatures [4]. The results of [3] and [4] about the glassy behavior of polymers or proteins are useful for understanding the mechanism for a biological system to maintain in a non-equilibrium state, including the ancient seed [5], which can maintain in a non-equilibrium state for a very long time. (1) M.-C. Wu, M. S. Li, W.-J. Ma, M. Kouza, and C.-K. Hu, EPL, in press (2011); (2) C. Dasgupta, S.-K. Ma, and C.-K. Hu. Phys. Rev. B 20, 3837-3849 (1979); (3) W.-J. Ma and C.-K. Hu, J. Phys. Soc. Japan 79, 024005, 024006, 054001, and 104002 (2010), C.-K. Hu and W.-J. Ma, Prog. Theor. Phys. Supp. 184, 369 (2010); S. G. Gevorkian, A. E. Allahverdyan, D. S. Gevorgyan and C.-K. Hu, EPL 95, 23001 (2011); S. Sallon, et al. Science 320, 1464 (2008).

  14. A Molecularly Imprinted Electrochemical Gas Sensor to Sense Butylated Hydroxytoluene in Air

    Directory of Open Access Journals (Sweden)

    Shadi Emam

    2018-01-01

    Full Text Available Alzheimer’s disease (AD is a neurodegenerative disease, which affects millions of people worldwide. Curing this disease has not gained much success so far. Exhaled breath gas analysis offers an inexpensive, noninvasive, and immediate method for detecting a large number of diseases, including AD. In this paper, a new method is proposed to detect butylated hydroxytoluene (BHT in the air, which is one of the chemicals found in the breath print of AD patients. A three-layer sensor was formed through deposition of a thin layer of graphene onto a glassy carbon substrate. Selective binding of the analyte was facilitated by electrochemically initiated polymerization of a solution containing the desired target molecule. Subsequent polymerization and removal of the analyte yielded a layer of polypyrrole, a conductive polymer, on top of the sensor containing molecularly imprinted cavities selective for the target molecule. Two sets of sensors have been developed. First, the graphene sensor has been fabricated with a layer of reduced graphene oxide (RGO and tested over 5–100 part per million (ppm. For the second batch, Prussian blue was added to graphene before polymerization, mainly for enhancing the electrochemical properties. The sensor was tested over 0.02-1 parts per billion (ppb level of concentration while the sensor resistance has been monitored.

  15. Flexible supercapacitor based on electrochemically synthesized pyrrole formyl pyrrole copolymer coated on carbon microfibers

    International Nuclear Information System (INIS)

    Gholami, Mehrdad; Moozarm Nia, Pooria; Narimani, Leila; Sokhakian, Mehran; Alias, Yatimah

    2016-01-01

    Highlights: • A Flexible supercapacitor prepared by carbon microfibers coated with P(Py-co-FPy). • The variation of capacitance with different mole ratio of monomers is investigated. • The capacitance measured by different electrochemical methods. • This flexible supercapacitor can be discharged in higher currents for longer time. - Abstract: The main objective of this work is to prepare a flexible supercapacitor using electrochemically synthesized pyrrole formyl pyrrole copolymer P(Py-co-FPy) coated on the carbon microfibers. Due to difficulties of working with carbon microfibers, glassy carbon was used to find out optimized conditions by varying mole ratio of pyrrole and formyl pyrrole monomers on the capacitance value. The prepared electrodes were characterized using Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscope (FESEM), Brunauer–Emmett–Teller (BET) analysis, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Then the X-ray photoelectron spectroscopy (XPS) was used to characterize the optimized electrode. The specific capacitance is calculated using cyclic voltammetry, charge/discharge method, and impedance spectroscopy. The charge/discharge study reveals that the best specific capacitance is estimated to be 220.3 mF cm"−"2 for equal mole fraction of pyrrole and formyl pyrrole Py (0.1)-FP (0.1) at discharge current of 3 × 10"−"4 A. This optimized electrode keeps about 92% of its capacitance value in high current of discharging. The specific capacitances calculated by all the mentioned methods are in agreement with each other. Finally, the found optimized conditions were successfully applied to produce a flexible supercapacitor on the surface of carbon microfibers.

  16. Amperometric sensing of NADH and ethanol using a hybrid film electrode modified with electrochemically fabricated zirconia nanotubes and poly (acid fuchsin)

    International Nuclear Information System (INIS)

    Liu, X.; Li, B.; Zhan, G.; Liu, C.; Li, C.; Ma, M.

    2012-01-01

    We report on a glassy carbon electrode (GCE) modified with a film of chitosin containing acid fuchsin (AF) adsorbed onto zirconia nanotubes. The mixture was polymerized by cyclic voltammetric scannings in the potential range from - 0. 8 V to +1. 3 V in buffer solution to produce a hybrid film electrode (nano-ZrO 2 /PAF/GCE). The morphology of the hybrid film electrode surface was characterized by scanning electron microscopy. Its electrochemical properties were studied via electrochemical impedance spectroscopy. The electrochemical response of nicotinamide adenine dinucleotide (NADH) was investigated by differential pulse voltammetry and amperometry. The results indicated that the nano-ZrO 2 /PAF/GCE possesses well synergistic catalytic activity towards NADH. Compared to an unmodified GCE, the oxidation overpotential is negatively shifted by 224 mV, and the oxidation current is significantly increased. Under optimal conditions, the amperometric response is linearly proportional to the concentration of NADH in the 1. 0 - 100. 0 μM concentration range. Ethanol also can be determined by amperometry if alcohol dehydrogenase and NADH are added to the sample. Two linear relationships between current and alcohol concentration were obtained. They cover the range from 0. 03 to 1. 0 mM, and from 1. 0 to 12. 0 mM. (author)

  17. Glassy carbon electrode modified with gold nanoparticles and hemoglobin in a chitosan matrix for improved pH-switchable sensing of hydrogen peroxide

    International Nuclear Information System (INIS)

    Liu, Yang; Shi, Liang; Gong, Jin; Fang, Yu-Ting; Bao, Ning; Gu, Hai-Ying; Zeng, Jiang

    2015-01-01

    Hemoglobin (Hb) has been demonstrated to endow electrochemical sensors with pH-switchable response because of the presence of carboxyl and amino groups. Hb was deposited in a chitosan matrix on a glassy carbon electrode (GCE) that was previously coated with clustered gold nanoparticles (Au-NPs) by electrodeposition. The switching behavior is active (“on”) to the negatively charged probe [Fe(CN) 6 3− ] at pH 4.0, but inactive (“off”) to the probe at pH 8.0. This switch is fully reversible by simply changing the pH value of the solution and can be applied for pH-controlled reversible electrochemical reduction of H 2 O 2 catalyzed by Hb. The modified electrode was tested for its response to the different electroactive probes. The response to these species strongly depends on pH which was cycled between 4 and 8. The effect is also attributed to the presence of pH dependent charges on the surface of the electrode which resulted in either electrostatic attraction or repulsion of the electroactive probes. The presence of Hb, in turn, enhances the pH-controllable response, and the electrodeposited Au-NPs improve the capability of switching. This study reveals the potential of protein based pH-switchable materials and also provides a simple and effective strategy for fabrication of switchable chemical sensors as exemplified in a pH-controllable electrode for hydrogen peroxide. (author)

  18. Equation-free dynamic renormalization in a glassy compaction model

    International Nuclear Information System (INIS)

    Chen, L.; Kevrekidis, I. G.; Kevrekidis, P. G.

    2006-01-01

    Combining dynamic renormalization with equation-free computational tools, we study the apparently asymptotically self-similar evolution of void distribution dynamics in the diffusion-deposition problem proposed by Stinchcombe and Depken [Phys. Rev. Lett. 88, 125701 (2002)]. We illustrate fixed point and dynamic approaches, forward as well as backward in time; these can be used to accelerate simulators of glassy dynamic phenomena

  19. Equation-free dynamic renormalization in a glassy compaction model

    Science.gov (United States)

    Chen, L.; Kevrekidis, I. G.; Kevrekidis, P. G.

    2006-07-01

    Combining dynamic renormalization with equation-free computational tools, we study the apparently asymptotically self-similar evolution of void distribution dynamics in the diffusion-deposition problem proposed by Stinchcombe and Depken [Phys. Rev. Lett. 88, 125701 (2002)]. We illustrate fixed point and dynamic approaches, forward as well as backward in time; these can be used to accelerate simulators of glassy dynamic phenomena.

  20. Voltammetric determination of the endocrine disruptor diethylstilbestrol by using a glassy carbon electrode modified with a composite consisting of platinum nanoparticles and multiwalled carbon nanotubes

    International Nuclear Information System (INIS)

    Hu, Xiaobin; Zhang, Rongfei

    2016-01-01

    A nanocomposite consisting of multi-walled carbon nanotubes (MWCNTs) decorated with Pt nanoparticles (Pt-NPs) was synthesized via an ionic liquid-assisted method. The composite was characterized by transmission electron microscopy, X-ray diffraction patterns, and X-ray photo-electron spectroscopy. The results showed the Pt-NPs to be evenly deposited on the surface of the MWCNTs, with diameters ranging from about 2 nm to 3 nm. The nanocomposite was used to modify a glassy carbon electrode which then revealed a substantial catalytic activity for the oxidation of diethylstilbestrol (DES), best at a working potential of 0.73 V (vs. Ag/AgCl) at pH 7. The electrochemical oxidation mechanism is discussed. The peak current in square wave voltammetry is linearly related to the concentration of DES in the 0.1 to 25 μM range. The limit of detection (at an SNR of 3) is 12 nM. (author)