WorldWideScience

Sample records for electrochemically prepared rough

  1. A mathematical model for surface roughness of fluidic channels produced by grinding aided electrochemical discharge machining (G-ECDM

    Directory of Open Access Journals (Sweden)

    Ladeesh V. G.

    2017-01-01

    Full Text Available Grinding aided electrochemical discharge machining is a hybrid technique, which combines the grinding action of an abrasive tool and thermal effects of electrochemical discharges to remove material from the workpiece for producing complex contours. The present study focuses on developing fluidic channels on borosilicate glass using G-ECDM and attempts to develop a mathematical model for surface roughness of the machined channel. Preliminary experiments are conducted to study the effect of machining parameters on surface roughness. Voltage, duty factor, frequency and tool feed rate are identified as the significant factors for controlling surface roughness of the channels produced by G-ECDM. A mathematical model was developed for surface roughness by considering the grinding action and thermal effects of electrochemical discharges in material removal. Experiments are conducted to validate the model and the results obtained are in good agreement with that predicted by the model.

  2. Preparation of anti-adhesion surfaces on aluminium substrates of rubber plastic moulds using a coupling method of liquid plasma and electrochemical machining

    Science.gov (United States)

    Meng, Jianbing; Dong, Xiaojuan; Wei, Xiuting; Yin, Zhanmin

    2014-03-01

    Hard anti-adhesion surfaces, with low roughness and wear resistance, on aluminium substrates of rubber plastic moulds were fabricated via a new coupling method of liquid plasma and electrochemical machining. With the aid of liquid plasma thermal polishing and electrochemical anodic dissolution, micro/nano-scale binary structures were prepared as the base of the anti-adhesion surfaces. The anti-adhesion behaviours of the resulting aluminium surfaces were analysed by a surface roughness measuring instrument, a scanning electron microscope (SEM), a Fourier-transform infrared spectrophotometer (FTIR), an X-ray diffractometer (XRD), an optical contact angle meter, a digital Vickers micro-hardness (Hv) tester, and electronic universal testing. The results show that, after the liquid plasma and electrochemical machining, micro/nano-scale binary structures composed of micro-scale pits and nano-scale elongated boss structures were present on the sample surfaces. As a result, the anti-adhesion surfaces fabricated by the above coupling method have good anti-adhesion properties, better wear resistance and lower roughness.

  3. Preparation of anti-adhesion surfaces on aluminium substrates of rubber plastic moulds using a coupling method of liquid plasma and electrochemical machining

    Directory of Open Access Journals (Sweden)

    Jianbing Meng

    2014-02-01

    Full Text Available Hard anti-adhesion surfaces, with low roughness and wear resistance, on aluminium substrates of rubber plastic moulds were fabricated via a new coupling method of liquid plasma and electrochemical machining. With the aid of liquid plasma thermal polishing and electrochemical anodic dissolution, micro/nano-scale binary structures were prepared as the base of the anti-adhesion surfaces. The anti-adhesion behaviours of the resulting aluminium surfaces were analysed by a surface roughness measuring instrument, a scanning electron microscope (SEM, a Fourier-transform infrared spectrophotometer (FTIR, an X-ray diffractometer (XRD, an optical contact angle meter, a digital Vickers micro-hardness (Hv tester, and electronic universal testing. The results show that, after the liquid plasma and electrochemical machining, micro/nano-scale binary structures composed of micro-scale pits and nano-scale elongated boss structures were present on the sample surfaces. As a result, the anti-adhesion surfaces fabricated by the above coupling method have good anti-adhesion properties, better wear resistance and lower roughness.

  4. Preparation of anti-adhesion surfaces on aluminium substrates of rubber plastic moulds using a coupling method of liquid plasma and electrochemical machining

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Jianbing, E-mail: jianbingmeng@126.com; Dong, Xiaojuan; Wei, Xiuting; Yin, Zhanmin [School of Mechanical Engineering, Shandong University of Technology, Zibo, 255049 (China)

    2014-03-15

    Hard anti-adhesion surfaces, with low roughness and wear resistance, on aluminium substrates of rubber plastic moulds were fabricated via a new coupling method of liquid plasma and electrochemical machining. With the aid of liquid plasma thermal polishing and electrochemical anodic dissolution, micro/nano-scale binary structures were prepared as the base of the anti-adhesion surfaces. The anti-adhesion behaviours of the resulting aluminium surfaces were analysed by a surface roughness measuring instrument, a scanning electron microscope (SEM), a Fourier-transform infrared spectrophotometer (FTIR), an X-ray diffractometer (XRD), an optical contact angle meter, a digital Vickers micro-hardness (Hv) tester, and electronic universal testing. The results show that, after the liquid plasma and electrochemical machining, micro/nano-scale binary structures composed of micro-scale pits and nano-scale elongated boss structures were present on the sample surfaces. As a result, the anti-adhesion surfaces fabricated by the above coupling method have good anti-adhesion properties, better wear resistance and lower roughness.

  5. Electrochemical preparation of poly(methylene blue)/graphene nanocomposite thin films

    International Nuclear Information System (INIS)

    Erçarıkcı, Elif; Dağcı, Kader; Topçu, Ezgi; Alanyalıoğlu, Murat

    2014-01-01

    Highlights: • Poly(MB)/graphene thin films are prepared by a simple electrochemical approach. • Graphene layers in the film show a broad band in visible region of absorbance spectra. • Morphology of composite films indicates both disordered and ordered regions. • XRD reveals that nanocomposite films include rGO layers after electropolymerization process. • Chemically prepared graphene is better than electrochemically prepared graphene for electrooxidation of nitrite. - Abstract: Poly(methylene blue)/graphene nanocomposite thin films were prepared by electropolymerization of methylene blue in the presence of graphene which have been synthesized by two different methods of a chemical oxidation process and an electrochemical approach. Synthesized nanocomposite thin films were characterized by using cyclic voltammetry, UV–vis. absorption spectroscopy, powder X-ray diffraction, and scanning tunneling microscopy techniques. Electrocatalytical properties of prepared poly(methylene blue)/graphene nanocomposite films were compared toward electrochemical oxidation of nitrite. Under optimized conditions, electrocatalytical effect of nanocomposite films of chemically prepared graphene through electrochemical oxidation of nitrite was better than that of electrochemically prepared graphene

  6. Facile preparation of self-healing superhydrophobic CeO2 surface by electrochemical processes

    Science.gov (United States)

    Nakayama, Katsutoshi; Hiraga, Takuya; Zhu, Chunyu; Tsuji, Etsushi; Aoki, Yoshitaka; Habazaki, Hiroki

    2017-11-01

    Herein we report simple electrochemical processes to fabricate a self-healing superhydrophobic CeO2 coating on Type 304 stainless steel. The CeO2 surface anodically deposited on flat stainless steel surface is hydrophilic, although high temperature-sintered and sputter-deposited CeO2 surface was reported to be hydrophobic. The anodically deposited hydrophilic CeO2 surface is transformed to hydrophobic during air exposure. Specific accumulation of contaminant hydrocarbon on the CeO2 surface is responsible for the transformation to hydrophobic state. The deposition of CeO2 on hierarchically rough stainless steel surface produces superhydrophobic CeO2 surface, which also shows self-healing ability; the surface changes to superhydrophilic after oxygen plasma treatment but superhydrophobic state is recovered repeatedly by air exposure. This work provides a facile method for preparing a self-healing superhydrophobic surface using practical electrochemical processes.

  7. Effects of Nanowire Length and Surface Roughness on the Electrochemical Sensor Properties of Nafion-Free, Vertically Aligned Pt Nanowire Array Electrodes

    Directory of Open Access Journals (Sweden)

    Zhiyang Li

    2015-09-01

    Full Text Available In this paper, vertically aligned Pt nanowire arrays (PtNWA with different lengths and surface roughnesses were fabricated and their electrochemical performance toward hydrogen peroxide (H2O2 detection was studied. The nanowire arrays were synthesized by electroplating Pt in nanopores of anodic aluminum oxide (AAO template. Different parameters, such as current density and deposition time, were precisely controlled to synthesize nanowires with different surface roughnesses and various lengths from 3 μm to 12 μm. The PtNWA electrodes showed better performance than the conventional electrodes modified by Pt nanowires randomly dispersed on the electrode surface. The results indicate that both the length and surface roughness can affect the sensing performance of vertically aligned Pt nanowire array electrodes. Generally, longer nanowires with rougher surfaces showed better electrochemical sensing performance. The 12 μm rough surface PtNWA presented the largest sensitivity (654 μA·mM−1·cm−2 among all the nanowires studied, and showed a limit of detection of 2.4 μM. The 12 μm rough surface PtNWA electrode also showed good anti-interference property from chemicals that are typically present in the biological samples such as ascorbic, uric acid, citric acid, and glucose. The sensing performance in real samples (river water was tested and good recovery was observed. These Nafion-free, vertically aligned Pt nanowires with surface roughness control show great promise as versatile electrochemical sensors and biosensors.

  8. Electrochemically grown rough-textured nanowires

    International Nuclear Information System (INIS)

    Tyagi, Pawan; Postetter, David; Saragnese, Daniel; Papadakis, Stergios J.; Gracias, David H.

    2010-01-01

    Nanowires with a rough surface texture show unusual electronic, optical, and chemical properties; however, there are only a few existing methods for producing these nanowires. Here, we describe two methods for growing both free standing and lithographically patterned gold (Au) nanowires with a rough surface texture. The first strategy is based on the deposition of nanowires from a silver (Ag)-Au plating solution mixture that precipitates an Ag-Au cyanide complex during electrodeposition at low current densities. This complex disperses in the plating solution, thereby altering the nanowire growth to yield a rough surface texture. These nanowires are mass produced in alumina membranes. The second strategy produces long and rough Au nanowires on lithographically patternable nickel edge templates with corrugations formed by partial etching. These rough nanowires can be easily arrayed and integrated with microscale devices.

  9. Concatenation of electrochemical grafting with chemical or electrochemical modification for preparing electrodes with specific surface functionality

    International Nuclear Information System (INIS)

    Verma, Pallavi; Maire, Pascal; Novak, Petr

    2011-01-01

    Surface modified electrodes are used in electro-analysis, electro-catalysis, sensors, biomedical applications, etc. and could also be used in batteries. The properties of modified electrodes are determined by the surface functionality. Therefore, the steps involved in the surface modification of the electrodes to obtain specific functionality are of prime importance. We illustrate here bridging of two routes of surface modifications namely electrochemical grafting, and chemical or electrochemical reduction. First, by electrochemical grafting an organic moiety is covalently immobilized on the surface. Then, either by chemical or by electrochemical route the terminal functional group of the grafted moiety is transformed. Using the former route we prepared lithium alkyl carbonate (-O(CH 2 ) 3 OCO 2 Li) modified carbon with potential applications in batteries, and employing the latter we prepared phenyl hydroxyl amine (-C 6 H 4 NHOH) modified carbon which may find application in biosensors. Benzyl alcohol (-C 6 H 4 CH 2 OH) modified carbon was prepared by both chemical as well as electrochemical route. We report combinations of conjugating the two steps of surface modifications and show how the optimal route of terminal functional group modification depends on the chemical nature of the moiety attached to the surface in the electrochemical grafting step.

  10. Concatenation of electrochemical grafting with chemical or electrochemical modification for preparing electrodes with specific surface functionality

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Pallavi; Maire, Pascal [Paul Scherrer Institut, Electrochemistry Laboratory, Section Electrochemical Energy Storage, CH-5232 Villigen PSI (Switzerland); Novak, Petr, E-mail: petr.novak@psi.c [Paul Scherrer Institut, Electrochemistry Laboratory, Section Electrochemical Energy Storage, CH-5232 Villigen PSI (Switzerland)

    2011-04-01

    Surface modified electrodes are used in electro-analysis, electro-catalysis, sensors, biomedical applications, etc. and could also be used in batteries. The properties of modified electrodes are determined by the surface functionality. Therefore, the steps involved in the surface modification of the electrodes to obtain specific functionality are of prime importance. We illustrate here bridging of two routes of surface modifications namely electrochemical grafting, and chemical or electrochemical reduction. First, by electrochemical grafting an organic moiety is covalently immobilized on the surface. Then, either by chemical or by electrochemical route the terminal functional group of the grafted moiety is transformed. Using the former route we prepared lithium alkyl carbonate (-O(CH{sub 2}){sub 3}OCO{sub 2}Li) modified carbon with potential applications in batteries, and employing the latter we prepared phenyl hydroxyl amine (-C{sub 6}H{sub 4}NHOH) modified carbon which may find application in biosensors. Benzyl alcohol (-C{sub 6}H{sub 4}CH{sub 2}OH) modified carbon was prepared by both chemical as well as electrochemical route. We report combinations of conjugating the two steps of surface modifications and show how the optimal route of terminal functional group modification depends on the chemical nature of the moiety attached to the surface in the electrochemical grafting step.

  11. Preparation and characterization of porphyrin-polythiophene stacked films as prepared by electrochemical method under stirring condition

    International Nuclear Information System (INIS)

    Sugawa, Kosuke; Akiyama, Tsuyoshi; Yamada, Sunao

    2008-01-01

    Porphyrin-polythiophene (pTh) stacked films consisting of meso-tetrathienylporphyrin (TThP) and bithiophene (BiTh) were prepared on transparent indium-tin-oxide (ITO) electrodes by sequential electrochemical scanning of applied potential between 0 and + 2 V vs Ag wire in the electrolyte solution of BiTh and TThP under stirring condition. First, the pTh films were prepared by electrochemical polymerization and then TThP was incorporated into the as-prepared pTh film by subsequent electrochemical scanning as described above in the TThP solution. The operation of solution stirring during electrochemical scanning achieved the formation of robust stacked films. UV/Vis and fluorescence spectra confirmed that the amount of TThP moiety increased with increasing the number of electrochemical scanning cycles in the TThP solution. In order to evaluate the incorporation profile of TThP, surface analyses and depth profiles of stacked films were carried out by XPS spectroscopy. The results suggested that all films formed porphyrin-polythiophene stacked structure precisely, and that TThP was exclusively incorporated around the outermost region of the pTh film

  12. Preparation, Modification, Characterization, and Biosensing Application of Nanoporous Gold Using Electrochemical Techniques.

    Science.gov (United States)

    Bhattarai, Jay K; Neupane, Dharmendra; Nepal, Bishal; Mikhaylov, Vasilii; Demchenko, Alexei V; Stine, Keith J

    2018-03-16

    Nanoporous gold (np-Au), because of its high surface area-to-volume ratio, excellent conductivity, chemical inertness, physical stability, biocompatibility, easily tunable pores, and plasmonic properties, has attracted much interested in the field of nanotechnology. It has promising applications in the fields of catalysis, bio/chemical sensing, drug delivery, biomolecules separation and purification, fuel cell development, surface-chemistry-driven actuation, and supercapacitor design. Many chemical and electrochemical procedures are known for the preparation of np-Au. Recently, researchers are focusing on easier and controlled ways to tune the pores and ligaments size of np-Au for its use in different applications. Electrochemical methods have good control over fine-tuning pore and ligament sizes. The np-Au electrodes that are prepared using electrochemical techniques are robust and are easier to handle for their use in electrochemical biosensing. Here, we review different electrochemical strategies for the preparation, post-modification, and characterization of np-Au along with the synergistic use of both electrochemistry and np-Au for applications in biosensing.

  13. Preparation, Modification, Characterization, and Biosensing Application of Nanoporous Gold Using Electrochemical Techniques

    Directory of Open Access Journals (Sweden)

    Jay K. Bhattarai

    2018-03-01

    Full Text Available Nanoporous gold (np-Au, because of its high surface area-to-volume ratio, excellent conductivity, chemical inertness, physical stability, biocompatibility, easily tunable pores, and plasmonic properties, has attracted much interested in the field of nanotechnology. It has promising applications in the fields of catalysis, bio/chemical sensing, drug delivery, biomolecules separation and purification, fuel cell development, surface-chemistry-driven actuation, and supercapacitor design. Many chemical and electrochemical procedures are known for the preparation of np-Au. Recently, researchers are focusing on easier and controlled ways to tune the pores and ligaments size of np-Au for its use in different applications. Electrochemical methods have good control over fine-tuning pore and ligament sizes. The np-Au electrodes that are prepared using electrochemical techniques are robust and are easier to handle for their use in electrochemical biosensing. Here, we review different electrochemical strategies for the preparation, post-modification, and characterization of np-Au along with the synergistic use of both electrochemistry and np-Au for applications in biosensing.

  14. Preparation and electrochemical characterization of MnOOH nanowire-graphene oxide

    International Nuclear Information System (INIS)

    Wang Lin; Wang Dianlong

    2011-01-01

    Highlights: → MnOOH nanowire-graphene oxide composites are prepared by hydrothermal reaction in distilled water or 5% ammonia aqueous solution at 130 deg. C, with MnO 2 -graphene oxide composites which are synthesized by a redox reaction between KMnO 4 and graphene oxide. → MnO 2 is deoxidized to MnOOH on graphene oxide through hydrothermal reaction without any extra reductants. → It is found that the electrochemical resistance of MnOOH nanowire-graphene oxide composites decreases and the capacitance increases to 76 F g -1 when hydrothermal reaction is conducted in ammonia aqueous solution. → MnOOH nanowire-graphene oxide composites prepared by hydrothermal reaction in 5% ammonia aqueous solution have excellent capacitance retention ratio at scan rate from 5 mV s -1 to 40 mV s -1 . - Abstract: MnOOH nanowire-graphene oxide composites are prepared by hydrothermal reaction in distilled water or 5% ammonia aqueous solution at 130 deg. C with MnO 2 -graphene oxide composites which are synthesized by a redox reaction between KMnO 4 and graphene oxide. Powder X-ray diffraction (XRD) analyses and energy dispersive X-ray analyses (EDAX) show MnO 2 is deoxidized to MnOOH on graphene oxide through hydrothermal reaction without any extra reductants. The electrochemical capacitance of MnOOH nanowire-graphene oxide composites prepared in 5% ammonia aqueous solution is 76 F g -1 at current density of 0.1 A g -1 . Moreover, electrochemical impedance spectroscopy (EIS) suggests the electrochemical resistance of MnOOH nanowire-graphene oxide composites is reduced when hydrothermal reaction is conducted in ammonia aqueous solution. The relationship between the electrochemical capacitance and the structure of MnOOH nanowire-graphene oxide composites is characterized by cyclic voltammetry (CV) and field emission scanning electron microscopy (FESEM). The results indicate the electrochemical performance of MnOOH nanowire-graphene oxide composites strongly depends on their

  15. Electrochemical Polishing Applications and EIS of a Vitamin B4-Based Ionic Liquid

    International Nuclear Information System (INIS)

    Wixtrom, Alex I.; Buhler, Jessica E.; Reece, Charles E.; Abdel-Fattah, Tarek M.

    2013-01-01

    Modern particle accelerators require minimal interior surface roughness for Niobium superconducting radio frequency (SRF) cavities. Polishing of the Nb is currently achieved via electrochemical polishing with concentrated mixtures of sulfuric and hydrofluoric acids. This acid-based approach is effective at reducing the surface roughness to acceptable levels for SRF use, but due to acid-related hazards and extra costs (including safe disposal of used polishing solutions), an acid-free method would be preferable. This study focuses on an alternative electrochemical polishing method for Nb, using a novel ionic liquid solution containing choline chloride, also known as Vitamin B 4 (VB 4 ). Potentiostatic electrochemical impedance spectroscopy (EIS) was also performed on the VB4-based system. Nb polished using the VB4-based method was found to have a final surface roughness comparable to that achieved via the acid-based method, as assessed by atomic force microscopy (AFM). These findings indicate that acid-free VB 4 -based electrochemical polishing of Nb represents a promising replacement for acid-based methods of SRF cavity preparation

  16. Rupture preparation process controlled by surface roughness on meter-scale laboratory fault

    Science.gov (United States)

    Yamashita, Futoshi; Fukuyama, Eiichi; Xu, Shiqing; Mizoguchi, Kazuo; Kawakata, Hironori; Takizawa, Shigeru

    2018-05-01

    We investigate the effect of fault surface roughness on rupture preparation characteristics using meter-scale metagabbro specimens. We repeatedly conducted the experiments with the same pair of rock specimens to make the fault surface rough. We obtained three experimental results under the same experimental conditions (6.7 MPa of normal stress and 0.01 mm/s of loading rate) but at different roughness conditions (smooth, moderately roughened, and heavily roughened). During each experiment, we observed many stick-slip events preceded by precursory slow slip. We investigated when and where slow slip initiated by using the strain gauge data processed by the Kalman filter algorithm. The observed rupture preparation processes on the smooth fault (i.e. the first experiment among the three) showed high repeatability of the spatiotemporal distributions of slow slip initiation. Local stress measurements revealed that slow slip initiated around the region where the ratio of shear to normal stress (τ/σ) was the highest as expected from finite element method (FEM) modeling. However, the exact location of slow slip initiation was where τ/σ became locally minimum, probably due to the frictional heterogeneity. In the experiment on the moderately roughened fault, some irregular events were observed, though the basic characteristics of other regular events were similar to those on the smooth fault. Local stress data revealed that the spatiotemporal characteristics of slow slip initiation and the resulting τ/σ drop for irregular events were different from those for regular ones even under similar stress conditions. On the heavily roughened fault, the location of slow slip initiation was not consistent with τ/σ anymore because of the highly heterogeneous static friction on the fault, which also decreased the repeatability of spatiotemporal distributions of slow slip initiation. These results suggest that fault surface roughness strongly controls the rupture preparation process

  17. Preparation and Electrochemical Properties of Silver Doped Hollow Carbon Nanofibers

    Directory of Open Access Journals (Sweden)

    LI Fu

    2016-11-01

    Full Text Available Silver doped PAN-based hollow carbon nanofibers were prepared combining co-electrospinning with in situ reduction technique subsequently heat treatment to improve the electrochemical performances of carbon based supercapacitor electrodes. The morphology, structure and electrochemical performances of the resulted nanofiber were studied. The results show that the silver nanoparticles can be doped on the surface of hollow carbon nanofibers and the addition of silver favors the improvement of the electrochemical performances, exhibiting the enhanced reversibility of electrode reaction and the capacitance and the reduced charge transfer impedance.

  18. Effect of preparation methods on dispersion stability and electrochemical performance of graphene sheets

    International Nuclear Information System (INIS)

    Chen, Li; Li, Na; Zhang, Mingxia; Li, Pinnan; Lin, Zhengping

    2017-01-01

    Chemical exfoliation is one of the most important strategies for preparing graphene. The aggregation of graphene sheets severely prevents graphene from exhibiting excellent properties. However, there are no attempts to investigate the effect of preparation methods on the dispersity of graphene sheets. In this study, three chemical exfoliation methods, including Hummers method, modified Hummers method, and improved method, were used to prepare graphene sheets. The influence of preparation methods on the structure, dispersion stability in organic solvents, and electrochemical properties of graphene sheets were investigated. Fourier transform infrared microscopy, Raman spectra, transmission electron microscopy, and UV–vis spectrophotometry were employed to analyze the structure of the as-prepared graphene sheets. The results showed that graphene prepared by improved method exhibits excellent dispersity and stability in organic solvents without any additional stabilizer or modifier, which is attributed to the completely exfoliation and regular structure. Moreover, cyclic voltammetric and electrochemical impedance spectroscopy measurements showed that graphene prepared by improved method exhibits superior electrochemical properties than that prepared by the other two methods. - Graphical abstract: Graphene oxides with different oxidation degree were obtained via three methods, and then graphene with different crystal structures were created by chemical reduction of exfoliated graphene oxides. - Highlights: • Graphene oxides with different oxidation degree were obtained via three oxidation methods. • The influence of oxidation methods on microstructure of graphene was investigated. • The effect of oxidation methods on dispersion stability of graphene was investigated. • The effect of oxidation methods on electrochemical properties of graphene was discussed.

  19. Effect of preparation methods on dispersion stability and electrochemical performance of graphene sheets

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Li, E-mail: chenli1981@lut.cn; Li, Na; Zhang, Mingxia; Li, Pinnan; Lin, Zhengping

    2017-05-15

    Chemical exfoliation is one of the most important strategies for preparing graphene. The aggregation of graphene sheets severely prevents graphene from exhibiting excellent properties. However, there are no attempts to investigate the effect of preparation methods on the dispersity of graphene sheets. In this study, three chemical exfoliation methods, including Hummers method, modified Hummers method, and improved method, were used to prepare graphene sheets. The influence of preparation methods on the structure, dispersion stability in organic solvents, and electrochemical properties of graphene sheets were investigated. Fourier transform infrared microscopy, Raman spectra, transmission electron microscopy, and UV–vis spectrophotometry were employed to analyze the structure of the as-prepared graphene sheets. The results showed that graphene prepared by improved method exhibits excellent dispersity and stability in organic solvents without any additional stabilizer or modifier, which is attributed to the completely exfoliation and regular structure. Moreover, cyclic voltammetric and electrochemical impedance spectroscopy measurements showed that graphene prepared by improved method exhibits superior electrochemical properties than that prepared by the other two methods. - Graphical abstract: Graphene oxides with different oxidation degree were obtained via three methods, and then graphene with different crystal structures were created by chemical reduction of exfoliated graphene oxides. - Highlights: • Graphene oxides with different oxidation degree were obtained via three oxidation methods. • The influence of oxidation methods on microstructure of graphene was investigated. • The effect of oxidation methods on dispersion stability of graphene was investigated. • The effect of oxidation methods on electrochemical properties of graphene was discussed.

  20. MnO2 prepared by hydrothermal method and electrochemical performance as anode for lithium-ion battery.

    Science.gov (United States)

    Feng, Lili; Xuan, Zhewen; Zhao, Hongbo; Bai, Yang; Guo, Junming; Su, Chang-Wei; Chen, Xiaokai

    2014-01-01

    Two α-MnO2 crystals with caddice-clew-like and urchin-like morphologies are prepared by the hydrothermal method, and their structure and electrochemical performance are characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), galvanostatic cell cycling, cyclic voltammetry, and electrochemical impedance spectroscopy (EIS). The morphology of the MnO2 prepared under acidic condition is urchin-like, while the one prepared under neutral condition is caddice-clew-like. The identical crystalline phase of MnO2 crystals is essential to evaluate the relationship between electrochemical performances and morphologies for lithium-ion battery application. In this study, urchin-like α-MnO2 crystals with compact structure have better electrochemical performance due to the higher specific capacity and lower impedance. We find that the relationship between electrochemical performance and morphology is different when MnO2 material used as electrochemical supercapacitor or as anode of lithium-ion battery. For lithium-ion battery application, urchin-like MnO2 material has better electrochemical performance.

  1. Investigation of the electrochemical behaviour of thermally prepared ...

    African Journals Online (AJOL)

    Different IrO2 electrodes in which the molar percentage of platinum (Pt) varies from 0 %mol Pt to 100 %mol Pt were prepared on titanium (Ti) substrate by thermal decomposition techniques. The electrodes were characterized physically (SEM, XPS) and electrochemically and then applied to methanol oxidation. The SEM ...

  2. ELECTROCHEMICAL OXIDATION OF ETHANOL USING Ni-Co-PVC COMPOSITE ELECTRODE

    Directory of Open Access Journals (Sweden)

    Riyanto Riyanto

    2011-07-01

    Full Text Available The morphological characteristics and electrochemical behavior of nickel metal foil (Ni, nickel-polyvinyl chloride (Ni-PVC and nickel-cobalt-polyvinyl chloride (Ni-Co-PVC electrodes in alkaline solution has been investigated. The morphological characteristics of the electrode surface were studied using SEM and EDS, while the electrochemical behavior of the electrodes was studied using cyclic voltammetry (CV. It was found that composite electrodes (Ni-PVC and Ni-Co-PVC have a porous, irregular and rough surface. In situ studies using electrochemical technique using those three electrodes exhibited electrochemical activity for redox system, as well as selectivity in the electrooxidation of ethanol to acetic acid. The studies also found that an electrokinetics and electrocatalytic activity behaviors of the electrodes prepared were Ni metal foil

  3. Electrochemical preparation of technetium hydroxyethylidene diphosphonate radiopharmaceuticals

    International Nuclear Information System (INIS)

    Scott, R.B.

    1984-01-01

    This work describes the liquid chromatographic and electrochemical analysis of electrogenerated technetium hydroxyethylidene diphosphonate (HEDP) complexes, and studies the effectiveness of the resulting bone imaging agents. Anion exchange High Performance Liquid Chromatography is used to separate components, and γ emission is used as the detection mode. The reaction mixtures were prepared at a series of reduction potentials and pH values, at both carrier added and no carrier added technetium levels. The results indicate that all three parameters affect the final complex composition to varying degrees. By optimizing the conditions, a preparation was made which results in a high percentage of a Tc-HEDP complex thought to be a very good home imager. This component was isolated chromatographically and injected into female Sprague-Dawley rats. Comparisons were run on the uptake for seven tissue types at two incubation times. Mercury and Reticulated Vitreous Carbon were used as the working electrode materials, and it is shown how reduced technetium will significantly alter the electrode characteristics, where a conditioned electrode will produce different complexes from those produced at fresh electrode material. By employing coulometric analysis as the preparation was reduced, an n value of 4 was calculated for a particular complex. This procedure involved tracking the radioactive technetium species carefully to account for all electrons used in the system. Finally, an electrochemical detection method for HEDP was explored, utilizing the property of mercury complexation. Anodic sweep Differential Pulse Polarography gives an analytical signal for HEDP at +0.250 V vs Ag/AgCl

  4. Porous MnO2 prepared by sol-gel method for electrochemical supercapacitor

    Science.gov (United States)

    Bazzi, K.; Kumar, A.; Jayakumar, O. D.; Nazri, G. A.; Naik, V. M.; Naik, R.

    2015-03-01

    MnO2 has attracted great attention as material for electrochemical pseudocapacitor due to its high theoretical specific faradic capacitance (~ 1370 F .g-1) , environmental friendliness and wide potential window in both aqueous and nonaqueous electrolytes. However, the MnO2 has a low surface area which depresses its electrochemical performance. The amorphous α-MnO2 composite was synthesized by sol gel method in the presence of the tri-block copolymer P123. Our aim is to investigate the role of P123 on the electrochemical performance of MnO2. The samples with and without P123 were prepared and characterized by x-ray diffraction (XRD), SEM, TEM and Brunauer-Emmett-Teller (BET) method. The electrochemical performances of the amorphous MnO2 composites as the electrode materials for supercapacitors were evaluated by cyclic voltammetry and AC impedance measurements in a 1M Na2SO4 solution. The results show that the sample prepared without P123 exhibited a relatively low specific capacitance of 28F .g-1, whereas the porous MnO2 prepared with P123 exhibited 117 F .g-1at 5 mV/s. The results of crystalline MnO2 composites will also be presented. The authors acknowledge the support from the Richard J. Barber Foundation for Interdisciplinary Research.

  5. Synthesis and electrochemical analysis of polyaniline/TiO2 composites prepared with various molar ratios between aniline monomer and para-toluenesulfonic acid

    International Nuclear Information System (INIS)

    Oh, Misoon; Kim, Seok

    2012-01-01

    Graphical abstract: Polyaniline (PANI)/TiO 2 composites were prepared by in situ polymerization using para-toluenesulfonic acid (p-TSA). The composites showed different morphology and specific capacitances as a function of aniline concentration, which are related to the morphology (shape or size) of particles. Scheme of the formation of composites consisting of PANI film and the micelle structures is shown. Highlights: ► PANI/TiO 2 composite were prepared with a different concentration of monomer and dopant. ► Aniline/acid ratio influenced the morphological and electrochemical properties. ► The composites showed different capacitances as a function of aniline concentrations. ► Aniline/acid ratio could influence on the dispersion and surface roughness of particles. - Abstract: Polyaniline (PANI)/titanium dioxide (TiO 2 ) composites were prepared with a chemical oxidation polymerization of aniline monomer (ANI) with various molar ratios between ANI and para toluenesulfonic acid (p-TSA). To find an effect of the [ANI]:[p-TSA] molar ratio on the electrochemical properties of the prepared PANI/TiO 2 composites, the composites were synthesized under same conditions except the p-TSA concentrations. The prepared composite films had more homogeneous TiO 2 dispersion with changing [ANI]:[p-TSA] molar ratios from 6:1 to 1:1. p-TSA surfactant-like doping acid helped the dispersion of TiO 2 particles in the PANI matrix. PANI covering the TiO 2 surfaces was confirmed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Prepared PANI films on the TiO 2 particles had the smoothest surface when the ANI and p-TSA had 1:1 molar ratio in the reaction solution. The composite prepared with molar ratio [ANI]:[p-TSA] of 3:1 had the highest capacitance (800 F g −1 ) among the prepared composites.

  6. Characterization of electro-conductive fabrics prepared by in situ chemical and electrochemical polymerization of pyrrole onto polyester fabric

    Energy Technology Data Exchange (ETDEWEB)

    Maiti, Syamal; Das, Dipayan; Sen, Kushal, E-mail: kushal@textile.iitd.ernet.in

    2014-09-15

    Highlights: • Surface resistivity of the fabrics decreased rapidly with an increase in add-on. • Add-on and resistivity were not correlated below a resistivity value of about 200 Ω. • Higher add-on but lower surface roughness resulted in lower surface resistivity. • The voltage–current and voltage–temperature behaviours were found to be non-linear. • Electro-conductive fabric exhibited 98% electromagnetic shielding efficiency. - Abstract: This paper reports a study on electro-conductive fabrics prepared by a combined in situ chemical and electrochemical polymerization of pyrrole. Specific observations are made to establish the roles of add-on and surface roughness on the surface resistivity of the electro-conductive fabrics. The performance characteristics of the fabrics are reported in terms of electrical conductivity, voltage–current and voltage–temperature characteristics and electromagnetic interference (EMI) shielding capability. The surface resistivity of the fabric was found to be as low as 11.79 Ω. The voltage–current profile of the fabric is observed to be non-ohmic as well as the voltage–temperature curve is found to be exponential. The EMI shielding efficiency of the fabric was found to be about 98%.

  7. Characterization of electro-conductive fabrics prepared by in situ chemical and electrochemical polymerization of pyrrole onto polyester fabric

    International Nuclear Information System (INIS)

    Maiti, Syamal; Das, Dipayan; Sen, Kushal

    2014-01-01

    Highlights: • Surface resistivity of the fabrics decreased rapidly with an increase in add-on. • Add-on and resistivity were not correlated below a resistivity value of about 200 Ω. • Higher add-on but lower surface roughness resulted in lower surface resistivity. • The voltage–current and voltage–temperature behaviours were found to be non-linear. • Electro-conductive fabric exhibited 98% electromagnetic shielding efficiency. - Abstract: This paper reports a study on electro-conductive fabrics prepared by a combined in situ chemical and electrochemical polymerization of pyrrole. Specific observations are made to establish the roles of add-on and surface roughness on the surface resistivity of the electro-conductive fabrics. The performance characteristics of the fabrics are reported in terms of electrical conductivity, voltage–current and voltage–temperature characteristics and electromagnetic interference (EMI) shielding capability. The surface resistivity of the fabric was found to be as low as 11.79 Ω. The voltage–current profile of the fabric is observed to be non-ohmic as well as the voltage–temperature curve is found to be exponential. The EMI shielding efficiency of the fabric was found to be about 98%

  8. Preparation of the electrochemically formed spinel-lithium manganese oxides

    Energy Technology Data Exchange (ETDEWEB)

    Katakura, Katsumi; Wada, Kohei; Kajiki, Yoshiyuki; Yamamoto, Akiko [Department of Chemical Engineering, Nara National College of Technology, 22 Yata-cho Yamotokoriyama, Nara 639-1080 (Japan); Ogumi, Zempachi [Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan)

    2009-04-01

    Electrochemically formed spinel-lithium manganese oxides were synthesized from manganese hydroxides prepared by a cathodic electrochemical precipitation from various concentrations of manganese nitrate solutions. Two types of manganese hydroxides were formed from diluted and concentrated Mn(NO{sub 3}){sub 2} aqueous solutions. Uniform and equi-sized disk shaped Mn(OH){sub 2} crystals of 0.2-5 {mu}m in diameter were obtained on a Pt substrate after the electrochemical precipitation from lower concentration of ranging from 2 mmol dm{sup -3} to 2 mol dm{sup -3} Mn(NO{sub 3}){sub 2} aq., while the grass blade-like precipitate which is ascribed to manganese hydroxide with 20-80 {mu}m long and 1-5 {mu}m wide were formed from concentrated Mn(NO{sub 3}){sub 2} aq. Both manganese hydroxides gave the electrochemically formed spinel-LiMn{sub 2}O{sub 4} onto a Pt sheet, which is ready for electrochemical measurement, after calcination of the Li incorporated precipitate at 750 C without any additives. While the shape and size of the secondary particle frameworks (aggregates) of the electrochemically formed spinel-LiMn{sub 2}O{sub 4} can be controlled by the electrolysis conditions, the nanostructured primary crystals of 200 nm in diameter were obtained in all cases except that the fiber-like nanostructured spinel-LiMn{sub 2}O{sub 4} crystals with 200 nm in diameter were obtained from concentrated Mn(NO{sub 3}){sub 2} aq. Though these two types of electrochemically formed spinel-LiMn{sub 2}O{sub 4} showed well-shaped CVs even in higher scan rates, it would be suitable for high power density battery applications. These behaviors are assumed to be ascribed to the crystal size and shape of the processed spinel-LiMn{sub 2}O{sub 4}. (author)

  9. Enzyme-Free Electrochemical Glucose Sensors Prepared by Dealloying Pd-Ni-P Metallic Glasses

    Directory of Open Access Journals (Sweden)

    Yuqiao Zeng

    2014-01-01

    Full Text Available We report the formation of enzyme-free electrochemical glucose sensors by electrochemical dealloying palladium-containing Pd-Ni-P metallic glasses. When metallic glasses with different Pd contents are used as the dealloying precursor alloys, palladium-based nanoporous metals with different ligament and pore sizes can be obtained. The chemical compositions of the nanoporous metals also vary according to the different precursor compositions. All the as-obtained nanoporous metals exhibit electrochemical catalytic activity towards the oxidation of d-glucose, indicating that the nanoporous metals prepared by dealloying the Pd-Ni-P metallic glasses are promising materials for enzyme-free electrochemical glucose sensor.

  10. Preparing the key metabolite of Z-ligustilide in vivo by a specific electrochemical reaction.

    Science.gov (United States)

    Duan, Feipeng; Xu, Wenjuan; Liu, Jie; Jia, Zhixin; Chen, Kuikui; Chen, Yijun; Wang, Mingxia; Ma, Kaiyue; Dong, Jiaojiao; Chen, Lianming; Xiao, Hongbin

    2018-04-16

    The key in vivo metabolites of a drug play an important role in its efficacy and toxicity. However, due to the low content and instability of these metabolites, they are hard to obtain through in vivo methods. Electrochemical reactions can be an efficient alternative to biotransformation in vivo for the preparation of metabolites. Accordingly, in this study, the metabolism of Z-ligustilide was investigated in vitro by electrochemistry coupled online to mass spectrometry. This work showed that five oxidation products of the electrochemical reaction were detected and that two of the oxidation products (senkyunolide I and senkyunolide H) were identified from liver microsomal incubation as well. Furthermore, after intragastric administration of Z-ligustilide in rats, senkyunolide I and senkyunolide H were detected in the rat plasma and liver, while 6,7-epoxyligustilide, a key intermediate metabolite of Z-ligustilide, was difficult to detect in vivo. By contrast, 6,7-epoxyligustilide was obtained from the electrochemical reaction. In addition, for the first time, 6 mg of 6,7-epoxyligustilide was prepared from 120 mg of Z-ligustilide. Therefore, electrochemical reactions represent an efficient laboratory method for preparing key drug metabolites. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Preparation and characterization of a new carbonaceous material for electrochemical systems

    Directory of Open Access Journals (Sweden)

    ZI JI LIN

    2010-02-01

    Full Text Available A new carbonaceous material was successfully prepared by the py-rolysis of scrap tire rubber at 600 °C under a nitrogen atmosphere. The physical characteristics of the prepared carbonaceous material were studied by scanning electron microscopy (SEM, X-ray powder diffraction (XRD and X-ray photoelectron spectroscopy (XPS. It was proved that the carbonaceous material had a disordered structure and spherical morphology with an average particle size about 100 nm. The prepared carbonaceous material was also used as electrodes in electrochemical systems to examine its electrochemical performances. It was demonstrated that it delivered a lithium insertion capacity of 658 mA h g-1 during the first cycle with a coulombic efficiency of 68 %. Cyclic voltammograms test results showed that a redox reaction occurred during the cycles. The chemical diffusion coefficient based on the impedance diagram was about 10-10 cm2 s-1. The pyrolytic carbonaceous material derived from scrap tire rubber is therefore considered to be a potential anode material in lithium secondary batteries or capacitors. Furthermore, it is advantageous for environmental protection.

  12. Cold pressure welding of aluminium-steel blanks: Manufacturing process and electrochemical surface preparation

    Science.gov (United States)

    Schmidt, Hans Christian; Homberg, Werner; Orive, Alejandro Gonzalez; Grundmeier, Guido; Hordych, Illia; Maier, Hans Jürgen

    2018-05-01

    In this study the manufacture of aluminium-steel blanks by cold pressure welding and their preparation for a welding process through electrochemical surface treatment are investigated and discussed. The cold pressure welding process was done with an incremental rolling tool that allows for the partial pressure welding of two blanks along a prepared path. The influence of the surface preparation by electrochemical deposition of bond promoting organosilane-based agents and roughening on a nano-scale is investigated and compared to conventional surface treatments. Coating the surfaces with a thin organosilane-based film incorporating specific functional groups should promote additional bonding between the mating oxide layers; its influence on the total weld strength is studied. Pressure welding requires suitable process strategies, and the current advances in the proposed incremental rolling process for the combination of mild steel and aluminium are presented.

  13. Mechanochemical preparation of polydiphenylamine and its electrochemical performance in hybrid supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Palaniappan, SP. [Department of Industrial Chemistry, School of Chemistry, Alagappa University, Alagappapuram, Karaikudi 630003, Tamil Nadu (India); Manisankar, P., E-mail: pms11@rediffmail.com [Department of Industrial Chemistry, School of Chemistry, Alagappa University, Alagappapuram, Karaikudi 630003, Tamil Nadu (India)

    2011-07-01

    Highlights: > For the first time, a simple to adopt, greener, rapid and efficient alternative route was successfully developed for preparing different PDPA salts. > For the first time, a judicial attempt was made to evaluate the performance of mechanochemically prepared PDPA-H{sub 2}SO{sub 4} as cathode material in asymmetric hybrid supercapacitors. > The results obtained are highly promising and the physicochemical properties of PDPA salts could be fine-tuned in the future for large scale applications in energy storage devices. - Abstract: A simple mechanochemical route for the synthesis of high quality inorganic anion doped polydiphenylamines (PDPAs) is reported in this article. Elemental analysis performed for the PDPAs indicated the presence of dopant anions in the polymeric chain. PDPA prepared in the presence of 96 wt% H{sub 2}SO{sub 4} (PDPA-H{sub 2}SO{sub 4}) was found to be better doped than the other polymeric salts. Spectroscopic profiles of the polymers showed that the PDPAs were in a doped conducting state. The X-ray diffraction (XRD) pattern of the as-prepared polymeric powders revealed the presence of more crystalline phases in PDPA-H{sub 2}SO{sub 4}. Field emission scanning electron microscopic (FESEM) images highlighted the formation of inorganic anion doped PDPA particles with different sizes (80-100 nm). Electrochemical studies performed for the polymeric particles depicted the redox behavior and good electrochemical activity of PDPA salts. Thermogravimetric analysis (TGA)/differential thermal analysis (DTA) proved that all the PDPA salts were thermally stable up to 300 deg. C. The electrochemical performance of PDPA-H{sub 2}SO{sub 4} in hybrid supercapacitors was evaluated due to its superior physicochemical properties. The maximum specific capacitance of the hybrid supercapacitor constructed out of PDPA-H{sub 2}SO{sub 4} powder was found to be 108 F g{sup -1}.

  14. Poly(vinyl Alcohol) Borate Gel Polymer Electrolytes Prepared by Electrodeposition and Their Application in Electrochemical Supercapacitors.

    Science.gov (United States)

    Jiang, Mengjin; Zhu, Jiadeng; Chen, Chen; Lu, Yao; Ge, Yeqian; Zhang, Xiangwu

    2016-02-10

    Gel polymer electrolytes (GPEs) have been studied for preparing flexible and compact electrochemical energy storage devices. However, the preparation and use of GPEs are complex, and most GPEs prepared through traditional methods do not have good wettability with the electrodes, which retard them from achieving their performance potential. In this study, these problems are addressed by conceiving and implementing a simple, but effective, method of electrodepositing poly(vinyl alcohol) potassium borate (PVAPB) GPEs directly onto the surfaces of active carbon electrodes for electrochemical supercapacitors. PVAPB GPEs serve as both the electrolyte and the separator in the assembled supercapacitors, and their scale and shape are determined solely by the geometry of the electrodes. PVAPB GPEs have good bonding to the active electrode materials, leading to excellent and stable electrochemical performance of the supercapacitors. The electrochemical performance of PVAPB GPEs and supercapacitors can be manipulated simply by adjusting the concentration of KCl salt used during the electrodeposition process. With a 0.9 M KCl concentration, the as-prepared supercapacitors deliver a specific capacitance of 65.9 F g(-1) at a current density of 0.1 A g(-1) and retain more than 95% capacitance after 2000 charge/discharge cycles at a current density of 1 A g(-1). These supercapacitors also exhibit intelligent high voltage self-protection function due to the electrolysis-induced cross-linking effect of PVAPB GPEs.

  15. Electrochemical Preparation of Polyaniline Nanowires with the Used Electrolyte Solution Treated with the Extraction Process and Their Electrochemical Performance

    Directory of Open Access Journals (Sweden)

    Ying Wu

    2018-02-01

    Full Text Available Electrochemical polymerization of aniline is one of the most promising methods to prepare polyaniline (PANI materials. However, during this process, the electrolyte solution must be replaced after electropolymerization of a certain time because of the generation and the accumulation of the by-products, which have significant effects on the morphology, purity and properties of PANI products. Treatment and recycling of the used electrolyte solution are worthwhile to study to reduce the high treatment cost of the used electrolyte solution containing aniline and its polymerization by-products. Here, the composition of the used electrolyte solution was separated and determined by high performance liquid chromatography coupled with diode array detection (HPLC-DAD in the range of ultraviolet and visible (UV-Vis light. The analysis results revealed that the used electrolyte solution consisted of aniline, p-hydroquinone (HQ, p-benzoquinone (BQ, co-oligomers of aniline and p-benzoquinone (CAB and acid. Then, n-octanol and 2-octanone were selected as extracts to remove HQ, BQ and CAB from the used electrolyte solution. Following that, the recycled electrolyte solution was prepared by adjusting the concentration of aniline and acid of the aqueous phase, and the electrochemical polymerization process was conducted. Finally, the obtained PANI was characterized by scanning electron microscope (SEM and electrochemical methods. The experimental results clearly demonstrate that the morphology and specific capacitance of PANI produced from the recycled electrolyte solution can be recovered completely. This research paves the way for reusing the used electrolyte solution for aniline electrochemical polymerization.

  16. Electrochemical Preparation of Polyaniline Nanowires with the Used Electrolyte Solution Treated with the Extraction Process and Their Electrochemical Performance.

    Science.gov (United States)

    Wu, Ying; Wang, Jixiao; Ou, Bin; Zhao, Song; Wang, Zhi; Wang, Shichang

    2018-02-12

    Electrochemical polymerization of aniline is one of the most promising methods to prepare polyaniline (PANI) materials. However, during this process, the electrolyte solution must be replaced after electropolymerization of a certain time because of the generation and the accumulation of the by-products, which have significant effects on the morphology, purity and properties of PANI products. Treatment and recycling of the used electrolyte solution are worthwhile to study to reduce the high treatment cost of the used electrolyte solution containing aniline and its polymerization by-products. Here, the composition of the used electrolyte solution was separated and determined by high performance liquid chromatography coupled with diode array detection (HPLC-DAD) in the range of ultraviolet and visible (UV-Vis) light. The analysis results revealed that the used electrolyte solution consisted of aniline, p-hydroquinone (HQ), p-benzoquinone (BQ), co-oligomers of aniline and p-benzoquinone (CAB) and acid. Then, n-octanol and 2-octanone were selected as extracts to remove HQ, BQ and CAB from the used electrolyte solution. Following that, the recycled electrolyte solution was prepared by adjusting the concentration of aniline and acid of the aqueous phase, and the electrochemical polymerization process was conducted. Finally, the obtained PANI was characterized by scanning electron microscope (SEM) and electrochemical methods. The experimental results clearly demonstrate that the morphology and specific capacitance of PANI produced from the recycled electrolyte solution can be recovered completely. This research paves the way for reusing the used electrolyte solution for aniline electrochemical polymerization.

  17. Influence of surface roughness on the corrosion behaviour of magnesium alloy

    International Nuclear Information System (INIS)

    Walter, R.; Kannan, M. Bobby

    2011-01-01

    Research highlights: → Surface roughness of AZ91 magnesium alloy plays a critical role in the passivation behaviour of the alloy. → The passivation behaviour of the alloy influences the pitting tendency. → Increase in surface roughness of AZ91 magnesium alloy increases the pitting tendency of the alloy. -- Abstract: In this study, the influence of surface roughness on the passivation and pitting corrosion behaviour of AZ91 magnesium alloy in chloride-containing environment was examined using electrochemical techniques. Potentiodynamic polarisation and electrochemical impedance spectroscopy tests suggested that the passivation behaviour of the alloy was affected by increasing the surface roughness. Consequently, the corrosion current and the pitting tendency of the alloy also increased with increase in the surface roughness. Scanning electron micrographs of 24 h immersion test samples clearly revealed pitting corrosion in the highest surface roughness (Sa 430) alloy, whereas in the lowest surface roughness (Sa 80) alloy no evidence of pitting corrosion was observed. Interestingly, when the passivity of the alloy was disturbed by galvanostatically holding the sample at anodic current for 1 h, the alloy underwent high pitting corrosion irrespective of their surface roughness. Thus the study suggests that the surface roughness plays a critical role in the passivation behaviour of the alloy and hence the pitting tendency.

  18. Electrochemical performance of multi-element doped α-nickel hydroxide prepared by supersonic co-precipitation method

    International Nuclear Information System (INIS)

    Zhang, Z.J.; Zhu, Y.J.; Bao, J.; Lin, X.R.; Zheng, H.Z.

    2011-01-01

    Highlights: → The α-nickel hydroxides doped with several elements were prepared by supersonic co-precipitation method. → Cyclic voltammetry and electrochemical impedance spectroscopy show sample C has the best electrochemical performance. → The charge/discharge tests show that the 0.5 C discharge capacity (346 mAh/g) of sample C is even larger than that (337 mAh/g) at 0.1 C rate, while the discharge capacity at 0.5 C rate is much lower than that at 0.1 C rate for samples A and B. - Abstract: The multi-element doped α-nickel hydroxides have been prepared by supersonic co-precipitation method. Three kinds of samples A, B, C were prepared by chemically coprecipitating Ni, Al, Co, Y, Zn. It was found that sample C produced better performance than the others. The cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements indicated that sample C has better electrochemical performance, such as better reaction reversibility, higher proton diffusion coefficient and lower charge-transfer resistance, than those of samples A and B. The charge-discharge tests showed that the discharge capacity (346 mA h/g) of sample C is even larger at 0.5 C rate than that (337mAh/g) at 0.1 C rate, while the discharge capacity at 0.5 C rate is much lower than that at 0.1 C rate for samples A and B. It indicates that all doped elements can produce the synergic effect and further improve the electrochemical properties of the active materials.

  19. Method of preparing an electrochemical cell in uncharged state

    Science.gov (United States)

    Shimotake, Hiroshi; Bartholme, Louis G.; Arntzen, John D.

    1977-02-01

    A secondary electrochemical cell is assembled in an uncharged state for the preparation of a lithium alloy-transition metal sulfide cell. The negative electrode includes a material such as aluminum or silicon for alloying with lithium as the cell is charged. The positive electrode is prepared by blending particulate lithium sulfide, transition metal powder and electrolytic salt in solid phase. The mixture is simultaneously heated to a temperature in excess of the melting point of the electrolyte and pressed onto an electrically conductive substrate to form a plaque. The plaque is assembled as a positive electrode within the cell. During the first charge cycle lithium alloy is formed within the negative electrode and transition metal sulfide such as iron sulfide is produced within the positive electrode.

  20. Binder-free carbon nanotube electrode for electrochemical removal of chromium.

    Science.gov (United States)

    Wang, Haitao; Na, Chongzheng

    2014-11-26

    Electrochemical treatment of chromium-containing wastewater has the advantage of simultaneously reducing hexavalent chromium (CrVI) and reversibly adsorbing the trivalent product (CrIII), thereby minimizing the generation of waste for disposal and providing an opportunity for resource reuse. The application of electrochemical treatment of chromium is often limited by the available electrochemical surface area (ESA) of conventional electrodes with flat surfaces. Here, we report the preparation and evaluation of carbon nanotube (CNT) electrodes consisting of vertically aligned CNT arrays directly grown on stainless steel mesh (SSM). We show that the 3-D organization of CNT arrays increases ESA up to 13 times compared to SSM. The increase of ESA is correlated with the length of CNTs, consistent with a mechanism of roughness-induced ESA enhancement. The increase of ESA directly benefits CrVI reduction by proportionally accelerating reduction without compromising the electrode's ability to adsorb CrIII. Our results suggest that the rational design of electrodes with hierarchical structures represents a feasible approach to improve the performance of electrochemical treatment of contaminated water.

  1. Combining Electrochemical Sensors with Miniaturized Sample Preparation for Rapid Detection in Clinical Samples

    Science.gov (United States)

    Bunyakul, Natinan; Baeumner, Antje J.

    2015-01-01

    Clinical analyses benefit world-wide from rapid and reliable diagnostics tests. New tests are sought with greatest demand not only for new analytes, but also to reduce costs, complexity and lengthy analysis times of current techniques. Among the myriad of possibilities available today to develop new test systems, amperometric biosensors are prominent players—best represented by the ubiquitous amperometric-based glucose sensors. Electrochemical approaches in general require little and often enough only simple hardware components, are rugged and yet provide low limits of detection. They thus offer many of the desirable attributes for point-of-care/point-of-need tests. This review focuses on investigating the important integration of sample preparation with (primarily electrochemical) biosensors. Sample clean up requirements, miniaturized sample preparation strategies, and their potential integration with sensors will be discussed, focusing on clinical sample analyses. PMID:25558994

  2. The Electrochemical Characteristics of Hybrid Capacitor Prepared by Chemical Activation of NaOH

    International Nuclear Information System (INIS)

    Choi, Jeong Eun; Bae, Ga Yeong; Yang, Jeong Min; Lee, Jong Dae

    2013-01-01

    Active carbons with high specific surface area and micro pore structure were prepared from the coconut shell char using the chemical activation method of NaOH. The preparation process has been optimized through the analysis of experimental variables such as activating chemical agents to char ratio and the flow rate of gas during carbonization. The active carbons with the surface area (2,481m 2 /g) and mean pore size (2.32 nm) were obtained by chemical activation with NaOH. The electrochemical performances of hybrid capacitor were investigated using LiMn 2 O 4 , LiCoO 2 as the positive electrode and prepared active carbon as the negative electrode. The electrochemical behaviors of hybrid capacitor using organic electrolytes (LiPF 6 , TEABF 4 ) were characterized by constant current charge/discharge, cyclic voltammetry, cycle and leakage tests. The hybrid capacitor using LiMn 2 O 4 /AC electrodes had better capacitance than other hybrid systems and was able to deliver a specific energy as high as 131 Wh/kg at a specific power of 1,448 W/kg

  3. Uniform β-Co(OH)2 disc-like nanostructures prepared by low-temperature electrochemical rout as an electrode material for supercapacitors

    Science.gov (United States)

    Aghazadeh, Mustafa; Shiri, Hamid Mohammad; Barmi, Abbas-Ali Malek

    2013-05-01

    Uniform nanostructures of cobalt hydroxide were successfully prepared by a low-temperature electrochemical method via galvanostatically deposition from a 0.005 M Co(NO3)3 bath at 10 °C. The XRD and FT-IR analyses showed that the prepared sample has a single crystalline hexagonal phase of the brucite-like Co(OH)2. Morphological characterization by SEM and TEM revealed that the prepared β-Co(OH)2 was composed of uniform compact disc-like nanostructures with diameters of 40-50 nm. The electrochemical performance of the prepared β-Co(OH)2 was evaluated using cyclic voltammetry and charge-discharge tests. A maximum specific capacitance of 736.5 F g-1 was obtained in aqueous 1 M KOH with the potential range of -0.2-0.5 V (vs. Ag/AgCl) at the scan rate of 10 mV s-1, suggesting the potential application of the prepared nanostructures as an electrode material in electrochemical supercapacitors. The results of this work showed that the low-temperature cathodic electrodeposition method can be recognized as a new and facile route for the synthesis of cobalt hydroxide nanodiscs as a promising candidate for the electrochemical supercapacitors.

  4. Preparation and property study of MnO2/CNPs as electrode materials of electrochemical supercapacitors

    Directory of Open Access Journals (Sweden)

    JIANG Chao

    2016-12-01

    Full Text Available MnO2 nanorods deposited on carbon nanospheres (MnO2/CNPs as electrode materials of electrochemical supercapacitors have been synthesized via a hydrothermal synthesis.The micro morphologies and phases of the as-prepared MnO2/CNPs were characterized by field emission scanning electro microscopy(FESEM and X-ray diffraction(XRD.The electrochemical properties of nanomaterials were tested by cyclic voltammetry and galvanostatic charge-discharge.At a current density of 0.1 A/g using 1 mol/L Na2SO4 as electrolyte,the as-prepared MnO2/CNPs exhibit excellent specific capacitance of 305.6 F/g,far larger than carbon nanospheres (49.3 F/g.At a current density of 5 A/g,the specific capacitance of MnO2/CNPs is 235 F/g,which is 76.9% of the specific capacitance under 1 A/g current density.These results demonstrated that MnO2/CNPs may show potential application for electrode materials in electrochemical supercapacitors.

  5. Facile fabrication of superhydrophobic surfaces with low roughness on Ti–6Al–4V substrates via anodization

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Yuze; Sun, Yuwen, E-mail: ywsun@dlut.edu.cn; Guo, Dongming

    2014-09-30

    Highlights: • A facile and efficient method for fabricating low-roughness superhydrophobic titanium alloy surfaces is successfully developed. • Formation mechanism of micro-scale pore structures built by a novel anodic oxidation is carefully analyzed. • The prepared superhydrophobic surface possesses good durability and abrasion resistance. - Abstract: The combination of suitable micro-scale structures and low surface energy modification plays a vital role in fabricating superhydrophobic surfaces on hydrophilic metal substrates. This work proposes a simple, facile and efficient method of fabricating superhydrophobic titanium alloy surfaces with low surface roughness. Complex micro-pore structures are generated on titanium alloy surfaces by anodic oxidation in the NaOH and H{sub 2}O{sub 2} mixed solution. Fluoroalkylsilane (FAS) is used to reduce the surface energy of the electrochemically oxidized surface. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), Zygogpi-xp6 (ZYGO) and contact angle measurements are performed to determine the morphological features, chemical composition, surface roughness and wettability. The formation mechanism of micro-scale rough structures, wettability of the superhydrophobic surfaces and the relationship between reaction time with wettability and roughness of the superhydrophobic surfaces are also analyzed in detail. The as-prepared titanium alloy surfaces not only show low roughness Ra = 0.669 μm and good superhydrophobicity with a water contact angle of 158.5° ± 1.9° as well as a water tilting angle of 5.3° ± 1.1°, but also possess good long-term stability and abrasion resistance.

  6. Electrochemical carbon dioxide reduction on rough copper surfaces

    NARCIS (Netherlands)

    Kas, Recep

    2016-01-01

    Sustainable development and climate change is considered to be one of the top challenges of humanity. Electrochemical carbon dioxide (CO2) reduction to fuels or fuel precursor using renewable electricity is a very promising way to recycle CO2 and store the electricity. This would also provide

  7. Nanoporous gold microelectrode prepared from potential modulated electrochemical alloying–dealloying in ionic liquid

    International Nuclear Information System (INIS)

    Jiang, Junhua; Wang, Xinying; Zhang, Lei

    2013-01-01

    Highlights: • A green chemistry method for producing nanoporous gold microelectrode was studied. • An ionic liquid plating bath was utilized for electrochemical alloying–dealloying. • Nanostructures of gold surface layers can be tuned by modulating potential. • Nanoporous gold microelectrode has high surface area and merit of a microelectrode. • Nitrite oxidation and reduction on nanoporous gold microelectrode were studied. -- Abstract: Nanoporous gold (NPG) microelectrodes with high surface area and open pore network were successfully prepared by applying modulated potential to a polycrystalline Au-disk microelectrode in ionic liquid electrolyte containing ZnCl 2 at elevated temperature. During cathodic process, Zn is electrodeposited and interacted with Au microdisk substrate to form a AuZn alloy phase. During subsequent anodic process, Zn is selectively dissolved from the alloy phase, leading to the formation of a NPG layer which can grow with repetitive potential modulation. Scanning-electron microscope and energy dispersive X-ray microscope measurements show that the NPG microelectrodes possessing nanoporous structures can be tuned via potential modulation, and chemically contain a small amount of Zn whose presence has no obvious influence on electrochemical responses of the electrodes. Steady-state and cyclic voltammetric studies suggest that the NPG microelectrodes have high surface area and keep diffusional properties of a microelectrode. Electrochemical nitrite reduction and oxidation are studied as model reactions to demonstrate potential applications of the NPG microelectrodes in electrocatalysis and electroanalysis. These facts suggest that the potential-modulated electrochemical alloying/dealloying in ionic liquid electrolyte offers a convenient green-chemistry method for the preparation of nanoporous microelectrodes

  8. The Electrochemical Characteristics of Hybrid Capacitor Prepared by Chemical Activation of NaOH

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jeong Eun; Bae, Ga Yeong; Yang, Jeong Min; Lee, Jong Dae [Chungbuk National Univ., Chungju (Korea, Republic of)

    2013-06-15

    Active carbons with high specific surface area and micro pore structure were prepared from the coconut shell char using the chemical activation method of NaOH. The preparation process has been optimized through the analysis of experimental variables such as activating chemical agents to char ratio and the flow rate of gas during carbonization. The active carbons with the surface area (2,481m{sup 2}/g) and mean pore size (2.32 nm) were obtained by chemical activation with NaOH. The electrochemical performances of hybrid capacitor were investigated using LiMn{sub 2}O{sub 4}, LiCoO{sub 2} as the positive electrode and prepared active carbon as the negative electrode. The electrochemical behaviors of hybrid capacitor using organic electrolytes (LiPF{sub 6}, TEABF{sub 4}) were characterized by constant current charge/discharge, cyclic voltammetry, cycle and leakage tests. The hybrid capacitor using LiMn{sub 2}O{sub 4}/AC electrodes had better capacitance than other hybrid systems and was able to deliver a specific energy as high as 131 Wh/kg at a specific power of 1,448 W/kg.

  9. Pseudocapacitive properties of nano-structured anhydrous ruthenium oxide thin film prepared by electrostatic spray deposition and electrochemical lithiation/delithiation

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.H.; Kim, J.Y.; Kim, K.B. [Division of Materials Science and Engineering, Yonsei University, Seoul (Korea, Republic of)

    2010-10-15

    Nano-structured anhydrous ruthenium oxide (RuO{sub 2}) thin films were prepared using an electrostatic spray deposition (ESD) technique followed by electrochemical lithiation and delithiation. During the electrochemical lithiation process, RuO{sub 2} decomposed to nano-structured metallic ruthenium Ru with the concomitant formation of Li{sub 2}O. Nano-structured RuO{sub 2} was formed upon subsequent electrochemical extraction of Li from the Ru/Li{sub 2}O nanocomposite. Electrochemical lithiation/deliathiation at different charge/discharge rates (C-rate) was used to control the nano-structure of the anhydrous RuO{sub 2}. Electrochemical lithiation/delithiation of the RuO{sub 2} thin film electrode at different C-rates was closely related to the specific capacitance and high rate capability of the nano-structured anhydrous RuO{sub 2} thin film. Nano-structured RuO{sub 2} thin films prepared by electrochemical lithiation and delithiation at 2C rate showed the highest specific capacitance of 653 F g{sup -1} at 20 mV s{sup -1}, which is more than two times higher than the specific capacitance of 269 F g{sup -1} for the as-prepared RuO{sub 2}. In addition, it showed 14% loss in specific capacitance from 653 F g{sup -1} at 20 mV s{sup -1} to 559 F g{sup -1} at 200 mV s{sup -1}, indicating significant improvement in the high rate capability compared to the 26% loss of specific capacitance of the as-prepared RuO{sub 2} electrode from 269 F g{sup -1} at 20 mV s{sup -1} to 198 F g{sup -1} at 200 mV s{sup -1} for the same change in scan rate. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  10. Preparation of Atomically Flat Si(111)-H Surfaces in Aqueous Ammonium Fluoride Solutions Investigated by Using Electrochemical, In Situ EC-STM and ATR-FTIR Spectroscopic Methods

    International Nuclear Information System (INIS)

    Bae, Sang Eun; Oh, Mi Kyung; Min, Nam Ki; Paek, Se Hwan; Hong, Suk In; Lee, Chi-Woo J.

    2004-01-01

    Electrochemical, in situ electrochemical scanning tunneling microscope (EC-STM), and attenuated total reflectance-FTIR (ATR-FTIR) spectroscopic methods were employed to investigate the preparation of atomically flat Si(111)-H surface in ammonium fluoride solutions. Electrochemical properties of atomically flat Si(111)-H surface were characterized by anodic oxidation and cathodic hydrogen evolution with the open circuit potential (OCP) of ca. .0.4 V in concentrated ammonium fluoride solutions. As soon as the natural oxide-covered Si(111) electrode was immersed in fluoride solutions, OCP quickly shifted to near .1 V, which was more negative than the flat band potential of silicon surface, indicating that the surface silicon oxide had to be dissolved into the solution. OCP changed to become less negative as the oxide layer was being removed from the silicon surface. In situ EC-STM data showed that the surface was changed from the initial oxide covered silicon to atomically rough hydrogen-terminated surface and then to atomically flat hydrogen terminated surface as the OCP moved toward less negative potentials. The atomically flat Si(111)-H structure was confirmed by in situ EC-STM and ATR-FTIR data. The dependence of atomically flat Si(111)-H terrace on mis-cut angle was investigated by STM, and the results agreed with those anticipated by calculation. Further, the stability of Si(111)-H was checked by STM in ambient laboratory conditions

  11. Graphene prepared by one-pot solvent exfoliation as a highly sensitive platform for electrochemical sensing

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Can; Cheng, Qin [Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Wu, Kangbing, E-mail: kbwu@hust.edu.cn [Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Wu, Gang [Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Li, Qing, E-mail: qing_li_2@brown.edu [Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2014-05-01

    Highlights: • Graphene was prepared by one-step solvent exfoliation as superior electrode material. • Compared with RGO, prepared graphene exhibited stronger signal enhancement. • A widespread and highly-sensitive electrochemical sensing platform was constructed. - Abstract: Graphene was easily obtained via one-step ultrasonic exfoliation of graphite powder in N-methyl-2-pyrrolidone. Scanning electron microscopy, transmission electron microscopy, Raman and particle size measurements indicated that the exfoliation efficiency and the amount of produced graphene increased with ultrasonic time. The electrochemical properties and analytical applications of the resulting graphene were systematically studied. Compared with the predominantly-used reduced graphene oxides, the obtained graphene by one-step solvent exfoliation greatly enhanced the oxidation signals of various analytes, such as ascorbic acid (AA), dopamine (DA), uric acid (UA), xanthine (XA), hypoxanthine (HXA), bisphenol A (BPA), ponceau 4R, and sunset yellow. The detection limits of AA, DA, UA, XA, HXA, BPA, ponceau 4R, and sunset yellow were evaluated to be 0.8 μM, 7.5 nM, 2.5 nM, 4 nM, 10 nM, 20 nM, 2 nM, and 1 nM, which are much lower than the reported values. Thus, the prepared graphene via solvent exfoliation strategy displays strong signal amplification ability and holds great promise in constructing a universal and sensitive electrochemical sensing platform.

  12. A comparison of the microstructures and electrochemical capacitive properties of 2 graphenes prepared by arc discharge method and chemical method

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H.; Yang, Y. [Research Inst. of Chemical Defense, Beijing (China); Univ. of Science and Technology, Beijing (China); Cao, G.; Xu, B. [Research Inst. of Chemical Defense, Beijing (China)

    2010-07-01

    In this study, 2 kinds of graphene materials were prepared using both arc discharge and chemical methods. The pore structures and electrochemical capacitive properties of the materials were investigated. A mesopore structure was obtained for the graphene prepared using the arc discharge method, with a capacitance of 12.9 F/g and a high rate capability when used in electrochemical applications. The graphene prepared with the chemical method demonstrated a more highly developed micropore structure and capacitances greater than 70 F/g. However, rate performance for the graphene was normal. 2 figs.

  13. Electrochemical performance of Li4Mn5O12 nano-crystallites prepared by spray-drying-assisted solid state reactions

    International Nuclear Information System (INIS)

    Jiang, Y.P.; Xie, J.; Cao, G.S.; Zhao, X.B.

    2010-01-01

    Nanosized Li 4 Mn 5 O 12 has been synthesized by a spray-drying-assisted solid state method. The effect of spray drying and drying temperature on the microstructure and electrochemical performance of the final products has been investigated. The microstructure of the products has been characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The electrochemical performance of the products has been studied by galvanostatic cycling, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). It has been found that the products prepared with a spray-drying pretreatment of the precursor exhibit a smaller grain size and a narrower size distribution than that prepared without the pretreatment. Among the three samples with a precursor pretreatment, that pretreated at 250 o C shows the best electrochemical performance due to the smallest grain size of below 50 nm and the narrowest size distribution.

  14. Electrochemical Oxidation of Cyanide Using Platinized Ti Electrodes

    Directory of Open Access Journals (Sweden)

    Aušra VALIŪNIENĖ

    2013-12-01

    Full Text Available The cyanide-containing effluents are dangerous ecological hazards and must be treated before discharging into the environment. Anodic oxidation is one of the best ways to degrade cyanides. Pt anodes as the most efficient material for the cyanide electrochemical degradation are widely used. However, these electrodes are too expensive for industrial purposes. In this work Ti electrodes covered with nano-sized Pt particle layer were prepared and used for the anodic oxidation of cyanide ions. Surface images of Ti electrodes and Ti electrodes covered with different thickness layer of Pt were compared and characterized by the atomic force microscopy (AFM. The products formed in the solution during the CN- ions electrooxidation were examined by the Raman spectroscopy. An electrochemical Fast Fourier transformation (FFT impedance spectroscopy was used to estimate the parameters that reflect real surface roughness of Pt-modified Ti electrodes.DOI: http://dx.doi.org/10.5755/j01.ms.19.4.2514

  15. Preparation and electrochemical characteristics of porous hollow spheres of NiO nanosheets as electrodes of supercapacitors

    Science.gov (United States)

    Yu, Wei; Jiang, Xinbing; Ding, Shujiang; Li, Ben Q.

    2014-06-01

    Porous hollow nanospheres (or spherical shells) made of NiO nanosheets are synthesized and tested for the electrochemical performance of the electrodes made of these materials for supercapacitors. Preparation of the NiO sheet hollow spheres starts with synthesis of polystyrene nanospheres with carboxyl groups (CPS), followed by a two-step activation procedure and the subsequent nucleation and growth by electroless deposition of Ni on the CPS core to obtain CPS@Ni core-shell nanoparticles. The CPS core is eliminated and metallic Ni nanoshell is converted into NiO by calcinations at high temperatures. The material properties of as-prepared hollow NiO nanospheres are characterized by TEM, XRD and N2-absorption measurements. The electrochemical characteristics of the electrodes made of these nanostructured NiO materials are determined by the CV and galvanostatic measurements. These electrochemical tests indicate that electrodes made of the NiO nanosheet hollow spheres exhibit an improved reversible capacitance of 600 F g-1 after 1000 cycles at a high current density of 10 A g-1. It is believed that the good electrochemical performance of these electrodes is attributed to the improved OH- transport in the porous network structures associated with the hollow spheres of randomly oriented NiO nanosheets.

  16. Novel Graphene-Gold Hybrid Nanostructures Constructed via Sulfur Modified Graphene: Preparation and Characterization by Surface and Electrochemical Techniques

    International Nuclear Information System (INIS)

    Shervedani, Reza Karimi; Amini, Akbar

    2014-01-01

    range, from 1.0 to 12.0 mM and 0.1 to 8.0 mM glucose, with a detection limit of 9.3 and 4.1 μM and high sensitivity, 47.6 μA mM −1 cm −2 and 45.0 kΩ/log(C glucose /mM) obtained by voltammetry and electrochemical impedance spectroscopy (EIS), respectively. According to the results obtained by analysis of the EIS experimental data, the source of enhanced activity was found to be originated from the synergistic effect of GNs and AuNPs, the role of ATP mediating assembling of GNs-AuNPs hybrid on GCE, and the increase in the surface roughness. This work opens up a new and facile way for direct preparation of metal nanoparticles embedded in GNs, which will enable exciting opportunities in advanced applications based on graphene-metal hybrids like electrocatalysis for energy conversion and highly sensitive modifier films for electrochemical sensors and biosensors

  17. Photoinducedly electrochemical preparation of Prussian blue film and electrochemical modification of the film with cetyltrimethylammonium cation

    Energy Technology Data Exchange (ETDEWEB)

    Liu Shouqing, E-mail: shouqing_liu@hotmail.co [Key Laboratory of Environmental Functional Materials of Jiangsu Province, College of Chemistry and Bioengineering, Suzhou University of Science and Technology, Suzhou 215009 (China); Li Hua; Sun Weihui; Wang Xiaomei; Chen Zhigang [Key Laboratory of Environmental Functional Materials of Jiangsu Province, College of Chemistry and Bioengineering, Suzhou University of Science and Technology, Suzhou 215009 (China); Xu Jingjuan; Ju Huangxian; Chen Hongyuan [Key Laboratory of Analytical Chemistry for Life Science, Ministry of Education, Nanjing University, Nanjing 210093 (China)

    2011-04-15

    Research highlights: {yields} Cetyltrimethylammonium cations work as counter ions in Prussian blue film was observed and confirmed by cyclic voltammetry, Fourier transform infrared spectroscopy, X-ray powder diffraction measurements, scanning electronic microscopy and transmission electron microscope for the first time. {yields} Because the cetyltrimethylammonium cations in Prussian blue film are hydrophobic, the Prussian blue film is very stable even in alkali solution, which provides a technical basis for fabrication of stable biosensors. - Abstract: This work presents a photoinducedly electrochemical preparation of Prussian blue from a single sodium nitroprusside and insertion of cetyltrimethylammonium cations into Prussian blue as counter ions. The product of photoinducedly electrochemical reactions has a couple of voltammetric peaks at E{sup o} = 0.266 V in 0.2 mol l{sup -1} KCl solution, the measurements of X-ray powder diffraction and FT-IR spectroscopy show that it is Prussian blue (PB). The formation mechanism of a pre-photochemical reaction and subsequent electrochemical reaction is suggested. The cyclic voltammetric treatment of the freshly as-prepared PB film in 1.0 mmol l{sup -1} cetyltrimethylammonium (CTA) bromide solution leads to the insertion of cetyltrimethylammonium cations into the channels of Prussian blue, which substitutes for potassium ions as counter ions in Prussian blue. The Prussian blue containing CTA counter ions shows two couples of voltammetric peaks at E{sup o} = -0.106 V and E{sup o} = 0.249 V in 0.2 mol l{sup -1} KCl solution containing 1.0 mmol l{sup -1} cetyltrimethylammonium bromide. Compared with the electrochemical behaviors of KFeFe(CN){sub 6} in 0.1 mol l{sup -1} KOH alkali solution, CTAFeFe(CN){sub 6} shows relatively durable voltammetric currents due to the hydrophobic effects of cetyltrimethylammonium. The diffusion coefficients for CTA and potassium cations were estimated to be D{sub CTA} 1.25 x 10{sup -12} cm{sup 2} s

  18. Spray pyrolysed Ru:TiO2 thin film electrodes prepared for electrochemical supercapacitor

    Science.gov (United States)

    Fugare, B. Y.; Thakur, A. V.; Kore, R. M.; Lokhande, B. J.

    2018-04-01

    Ru doped TiO2 thin films are prepared by using 0.06 M aqueous solution of potassium titanium oxalate (pto), and 0.005 M aqueous solution of ruthenium tri chloride (RuCl3) precursors. The deposition was carried on stainless steel (SS) by using well known ultrasonic spray pyrolysis technique (USPT) at 723° K by maintaining the spray rate 12 cc/min and compressed air flow rate 10 Lmin-1. Prepared Ru:TiO2 thin films were characterized by structurally, morphologically and electrochemically. Deposited RuO2 shows amorphous structure and TiO2 shows tetragonal crystal structure with rutile as prominent phase at very low decomposition temperature. SEM micrographs of RuO2 exhibits porous, interconnected, spherical grains type morphology and TiO2 shows porous, nanorods and nanoplates like morphology and also Ru doped TiO2 shows porous, spherical, granular and nanorods type morphology. The electrochemical cyclic voltammetery shows mixed capacitive behavior. The achieved highest value of specific capacitance 2692 F/g was Ru doped TiO2 electrode in 0.5 M H2SO4.

  19. Preparation and electrochemical properties of polyaniline nanofibers using ultrasonication

    Energy Technology Data Exchange (ETDEWEB)

    Manuel, James [Department of Chemical and Biological Engineering and Research Institute for Green Energy Convergence Technology, Gyeongsang National University, 900, Gajwa-dong, Jinju 660-701 (Korea, Republic of); Kim, Miso [Department of Materials Engineering and Convergence Technology, Gyeongsang National University, 900, Gajwa-dong, Jinju 660-701 (Korea, Republic of); Fapyane, Deby; Chang, In Seop [School of Environmental Science and Engineering, Gwangju Institute of Science and Technology, 261 Cheomdan Gwagi-ro, Buk-gu, Gwangju 500-712 (Korea, Republic of); Ahn, Hyo-Jun, E-mail: ahj@gnu.ac.kr [Department of Materials Engineering and Convergence Technology, Gyeongsang National University, 900, Gajwa-dong, Jinju 660-701 (Korea, Republic of); Ahn, Jou-Hyeon, E-mail: jhahn@gnu.ac.kr [Department of Chemical and Biological Engineering and Research Institute for Green Energy Convergence Technology, Gyeongsang National University, 900, Gajwa-dong, Jinju 660-701 (Korea, Republic of); Department of Materials Engineering and Convergence Technology, Gyeongsang National University, 900, Gajwa-dong, Jinju 660-701 (Korea, Republic of)

    2014-10-15

    Highlights: • Nanofibrous structured polyaniline (PANI) was prepared by simple ultrasonication. • PANI nanofibers prepared at 5 °C are uniform with an average diameter of 50 nm. • The conductivity is increased by 2 × 10{sup 8} times after doping with LiClO{sub 4}. • The cell with PANI-LiClO{sub 4} shows good cycle performance at high current densities. - Abstract: Polyaniline nanofibers have been successfully prepared by applying ultrasonic irradiation during oxidative polymerization of aniline in dilute hydrochloric acid and evaluated for suitability in lithium cells after doping with lithium perchlorate salt. Polyaniline nanofibers are confirmed by Fourier transform infrared spectroscopy, Fourier transform Raman spectroscopy, and transmission electron microscopy, and the efficiency of doping is confirmed by DC conductivity measurements at different temperatures. Electrochemical properties of nanofibers are evaluated, of which a remarkable increase in cycle stability is achieved when compared to polyaniline prepared by simple oxidative polymerization of aniline. The cell with nanofibrous polyaniline doped with LiClO{sub 4} delivers an initial discharge capacity value of 86 mA h g{sup −1} at 1 C-rate which is about 60% of theoretical capacity, and the capacity is slightly lowered during cycle and reaches 50% of theoretical capacity after 40 cycles. The cell delivers a stable and higher discharge capacity even at 2 C-rate compared to that of the cell prepared with bulk polyaniline doped with LiClO{sub 4}.

  20. Gamma radiation grafting process for preparing separator membranes for electrochemical cells

    International Nuclear Information System (INIS)

    Agostino, V.F. D'; Lee, J.Y.

    1982-01-01

    An irradiation grafting process for preparing separator membranes for use in electrochemical cells, comprises contacting a polymeric base film with an aqueous solution of a hydrophilic monomer and a polymerization retardant; and irradiating said contacted film to form a graft membrane having low electrical resistivity and having monomer molecules uniformly grafted thereon. In the examples (meth) acrylic acid is grafted on to polyethylene, polypropylene and polytetrafluoroethylene in the presence of ferrous sulphate or cupric sulphate as polymerization retardants. (author)

  1. Electrochemical Preparation of Polyaniline Nanowires with the Used Electrolyte Solution Treated with the Extraction Process and Their Electrochemical Performance

    OpenAIRE

    Ying Wu; Jixiao Wang; Bin Ou; Song Zhao; Zhi Wang; Shichang Wang

    2018-01-01

    Electrochemical polymerization of aniline is one of the most promising methods to prepare polyaniline (PANI) materials. However, during this process, the electrolyte solution must be replaced after electropolymerization of a certain time because of the generation and the accumulation of the by-products, which have significant effects on the morphology, purity and properties of PANI products. Treatment and recycling of the used electrolyte solution are worthwhile to study to reduce the high tr...

  2. Preparing electrochemical active hierarchically porous carbons for detecting nitrite in drinkable water

    KAUST Repository

    Ding, Baojun

    2016-01-13

    A class of hierarchically porous carbons were prepared by a facile dual-templating approach. The obtained samples were characterized by scanning electron microscopy, X-ray diffraction, Raman spectroscopy, Brunaner-Emmett-Teller measurement and electrochemical work station, respectively. The porous carbons could possess large specific surface area, interconnected pore structures, high conductivity and graphitizing degree. The resulting materials were used to prepare integrated modified electrodes. Based on the experimental results, the as-prepared hierarchically porous graphite (HPG) modified electrode showed the best electroactive performances toward the detection of nitrite with a detection limit of 8.1 × 10-3 mM. This HPG electrode was also repeatable and stable for 6 weeks. Moreover, this electrode was used for the determination of nitrite in drinkable water, and had acceptable recoveries. © The Royal Society of Chemistry 2016.

  3. Preparation and electrochemical characterization of polyaniline/activated carbon composites as an electrode material for supercapacitors.

    Science.gov (United States)

    Oh, Misoon; Kim, Seok

    2012-01-01

    Polyaniline (PANI)/activated carbon (AC) composites were prepared by a chemical oxidation polymerization. To find an optimum ratio between PANI and AC which shows superior electrochemical properties, the preparation was carried out in changing the amount of added aniline monomers. The morphology of prepared composites was investigated by scanning electron microscopy (SEM) and transmission electron microscope (TEM). The structural and thermal properties were investigated by Fourier transform infrared spectra (FT-IR) and thermal gravimetric analysis (TGA), respectively. The electrochemical properties were characterized by cyclic voltammetry (CV). Composites showed a summation of capacitances that consisted of two origins. One is double-layer capacitance by ACs and the other is faradic capacitance by redox reaction of PANI. Fiber-like PANIs are coated on the surface of ACs and they contribute to the large surface for redox reaction. The vacancy among fibers provided the better diffusion and accessibility of ion. High capacitances of composites were originated from the network structure having vacancy made by PANI fibers. It was found that the composite prepared with 5 ml of aniline monomer and 0.25 g of AC showed the highest capacitance. Capacitance of 771 F/g was obtained at a scan rate of 5 mV/s.

  4. Electrochemical preparation of MnO2 nanobelts through pulse base-electrogeneration and evaluation of their electrochemical performance

    Science.gov (United States)

    Aghazadeh, Mustafa; Maragheh, Mohammad Ghannadi; Ganjali, Mohammad Reza; Norouzi, Parviz; Faridbod, Farnoush

    2016-02-01

    Cathodic electrodeposition of MnO2 from a nitrate solution, via pulsed base (OH-) electrogeneration was performed for the first time. The deposition experiments were performed in a pulse current mode in typical on-times and off-times (i.e. ton = 1 s and toff = 1 s) with a peak current density of 2 mA cm-2 (Ia = 2 mA cm-2). The structural characterizations conducted by XRD and FTIR techniques revealed that the prepared MnO2 is composed of both α and γ phases. Morphological observation by SEM and TEM showed that the prepared MnO2 is made up of nanobelts with uniform shapes (an average diameter and length of 50 nm and 1 μm, respectively). Further electrochemical measurements by cyclic voltammetry and charge-discharge techniques revealed that the prepared MnO2 nanostructures have excellent capacitive behaviors, like a specific capacitance of 235.5 F g-1 and capacity retention of 91.3% after 1000 cycling at the scan rate of 25 mV s-1.

  5. Preparation and electrochemical performances of nanoporous/cracked cobalt oxide layer for supercapacitors

    Science.gov (United States)

    Gobal, Fereydoon; Faraji, Masoud

    2014-12-01

    Nanoporous/cracked structures of cobalt oxide (Co3O4) electrodes were successfully fabricated by electroplating of zinc-cobalt onto previously formed TiO2 nanotubes by anodizing of titanium, leaching of zinc in a concentrated alkaline solution and followed by drying and annealing at 400 °C. The structure and morphology of the obtained Co3O4 electrodes were characterized by X-ray diffraction, EDX analysis and scanning electron microscopy. The results showed that the obtained Co3O4 electrodes were composed of the nanoporous/cracked structures with an average pore size of about 100 nm. The electrochemical capacitive behaviors of the nanoporous Co3O4 electrodes were investigated by cyclic voltammetry, galvanostatic charge-discharge studies and electrochemical impedance spectroscopy in 1 M NaOH solution. The electrochemical data demonstrated that the electrodes display good capacitive behavior with a specific capacitance of 430 F g-1 at a current density of 1.0 A g-1 and specific capacitance retention of ca. 80 % after 10 days of being used in electrochemical experiments, indicating to be promising electroactive materials for supercapacitors. Furthermore, in comparison with electrodes prepared by simple cathodic deposition of cobalt onto TiO2 nanotubes(without dealloying procedure), the impedance studies showed improved performances likely due to nanoporous/cracked structures of electrodes fabricated by dealloying of zinc, which provide fast ion and electron transfer routes and large reaction surface area with the ensued fast reaction kinetics.

  6. Investigation of the electrochemical behaviour of thermally prepared Pt-IrO2 electrodes

    Directory of Open Access Journals (Sweden)

    Konan Honoré Kondro

    2008-04-01

    Full Text Available Different IrO2 electrodes in which the molar percentage of platinum (Pt varies from 0 %mol Pt to 100 %mol Pt were prepared on titanium (Ti substrate by thermal decomposition techniques. The electrodes were characterized physically (SEM, XPS and electrochemically and then applied to methanol oxidation. The SEM micrographs indicated that the electrodes present different morphologies depending on the amount of platinum in the deposit and the cracks observed on the 0 %mol Pt electrode diminish in size tending to a compact and rough surface for 70 %mol Pt electrode. XPS results indicate good quality of the coating layer deposited on the titanium substrate. The voltammetric investigations in the supporting electrolyte indicate that the electrodes with low amount of platinum (less than 10 %mol Pt behave as pure IrO2. But in the case of electrodes containing more than 40 %mol Pt, the voltammograms are like that of platinum. Electrocatalytic activity towards methanol oxidation was observed with the electrodes containing high amount of platinum. Its oxidation begins at a potential of about 210 mV lower on such electrodes than the pure platinum electrode (100 %mol Pt. But for electrode containing low quantity of Pt, the surface of the coating is essentially composed of IrO2 and methanol oxidation occurs in the domain of water decomposition solely. The increase of the electrocatalytic behaviour of the electrodes containing high amount of Pt towards methanol oxidation is due to the bifunctional behaviour of the electrodes.

  7. Electrochemical and Thermal Studies of Prepared Conducting Chitosan Biopolymer Film

    International Nuclear Information System (INIS)

    Hlaing Hlaing Oo; Kyaw Naing; Kyaw Myo Naing; Tin Tin Aye; Nyunt Wynn

    2005-09-01

    In this paper, chitosan based conducting bipolymer films were prepared by casting and solvent evaporating technique. All prepared chitosan films were of pale yellow colour, transparent, and smooth. Sulphuric acid was chosen as the cross-linking agent. It enhanced conduction pathway in cross-linked chitosan films. Mechanical properties, solid-state, and thermal behavior of prepared chitosan fimls were studied by means of a material testing machine, powder X-ray diffractometry (XRD), thermogravimetric analysis (TG-DTG), and differential scanning calorimetry (DSC). By the XRD diffraction pattern, high molecular weight of chitosan product indicates the semi-crystalline nature, but the prepared chitosan film and doped chitosan film indicate significantly lower in crystallinity prove which of the amorphous characteristics. In addition, DSC thermogram of pure chitosan film exhibited exothermic peak around at 300 C, indicating polymer decomposition of chitosan molecules in chitosan films. Furthermore, these DSC thermograms clearly showed that while pure chitosan film display exothermal decomposition, the doped chitosan films mainly endothermic characteristics. The ionic conductivity of doped chitosan films were in the order of 10 to 10 S cm , which is in the range of semi-conductor. These results showed that cross-linked chitoson films may be used as polymer electrolyte film to fabricate solid state electrochemical cells

  8. Preparation of iron-deposited graphite surface for application as cathode material during electrochemical vat-dyeing process

    International Nuclear Information System (INIS)

    Anbu Kulandainathan, M.; Kiruthika, K.; Christopher, G.; Babu, K. Firoz; Muthukumaran, A.; Noel, M.

    2008-01-01

    Iron-deposited graphite surfaces were prepared, characterized and employed as cathode materials for electrochemical vat-dyeing process containing very low concentration of sodium dithionite. The electrodeposition, in presence of ammonium thiocyanate and gelatin or animal glue as binding additives, were found to give finer iron deposits for improved electrochemical dyeing application. The electrodeposits were characterized using scanning electron microscopy, electron-dispersive X-ray spectroscopy and X-ray diffraction methods, before and after electrochemical dyeing process. The electrochemical activity of the iron-deposited graphite electrodes always stored in water seems to depend on the surface-bound Fe 3+ /Fe 2+ redox species. Vat dyes like C.I. Vat Violet 1, C.I. Vat Green 1 and C.I. Vat Blue 4 could be efficiently dyed employing these above electrode materials. The colour intensity and washing fastness of the dyed fabrics were found to be equal with conventionally dyed fabrics. The electrodes could also be reused for the dyeing process

  9. Preparation of RuO2-TiO2/Nano-graphite composite anode for electrochemical degradation of ceftriaxone sodium.

    Science.gov (United States)

    Li, Dong; Guo, Xiaolei; Song, Haoran; Sun, Tianyi; Wan, Jiafeng

    2018-06-05

    Graphite-like material is widely used for preparing various electrodes for wastewater treatment. To enhance the electrochemical degradation efficiency of Nano-graphite (Nano-G) anode, RuO 2 -TiO 2 /Nano-G composite anode was prepared through the sol-gel method and hot-press technology. RuO 2 -TiO 2 /Nano-G composite was characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy and N 2 adsorption-desorption. Results showed that RuO 2 , TiO 2 and Nano-G were composited successfully, and RuO 2 and TiO 2 nanoparticles were distributed uniformly on the surface of Nano-G sheet. Specific surface area of RuO 2 -TiO 2 /Nano-G composite was higher than that of TiO 2 /Nano-G composite and Nano-G. Electrochemical performances of RuO 2 -TiO 2 /Nano-G anode were investigated by cyclic voltammetry, electrochemical impedance spectroscopy. RuO 2 -TiO 2 /Nano-G anode was applied to electrochemical degradation of ceftriaxone. The generation of hydroxyl radical (OH) was measured. Results demonstrated that RuO 2 -TiO 2 /Nano-G anode displayed enhanced electrochemical degradation efficiency towards ceftriaxone and yield of OH, which is derived from the synergetic effect between RuO 2 , TiO 2 and Nano-G, which enhance the specific surface area, improve the electrochemical oxidation activity and lower the charge transfer resistance. Besides, the possible degradation intermediates and pathways of ceftriaxone sodium were identified. This study may provide a viable and promising prospect for RuO 2 -TiO 2 /Nano-G anode towards effective electrochemical degradation of antibiotics from wastewater. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Preparation of Graphene Sheets by Electrochemical Exfoliation of Graphite in Confined Space and Their Application in Transparent Conductive Films.

    Science.gov (United States)

    Wang, Hui; Wei, Can; Zhu, Kaiyi; Zhang, Yu; Gong, Chunhong; Guo, Jianhui; Zhang, Jiwei; Yu, Laigui; Zhang, Jingwei

    2017-10-04

    A novel electrochemical exfoliation mode was established to prepare graphene sheets efficiently with potential applications in transparent conductive films. The graphite electrode was coated with paraffin to keep the electrochemical exfoliation in confined space in the presence of concentrated sodium hydroxide as the electrolyte, yielding ∼100% low-defect (the D band to G band intensity ratio, I D /I G = 0.26) graphene sheets. Furthermore, ozone was first detected with ozone test strips, and the effect of ozone on the exfoliation of graphite foil and the microstructure of the as-prepared graphene sheets was investigated. Findings indicate that upon applying a low voltage (3 V) on the graphite foil partially coated with paraffin wax that the coating can prevent the insufficiently intercalated graphite sheets from prematurely peeling off from the graphite electrode thereby affording few-layer (graphene sheets in a yield of as much as 60%. Besides, the ozone generated during the electrochemical exfoliation process plays a crucial role in the exfoliation of graphite, and the amount of defect in the as-prepared graphene sheets is dependent on electrolytic potential and electrode distance. Moreover, the graphene-based transparent conductive films prepared by simple modified vacuum filtration exhibit an excellent transparency and a low sheet resistance after being treated with NH 4 NO 3 and annealing (∼1.21 kΩ/□ at ∼72.4% transmittance).

  11. Preparation and characterization of poly(vinylidene fluoride) based composite electrolytes for electrochemical devices

    International Nuclear Information System (INIS)

    Karabelli, D.; Leprêtre, J.-C.; Cointeaux, L.; Sanchez, J.-Y.

    2013-01-01

    Highlights: • Macroporous PVdF based membranes for electrochemical applications were prepared with support materials. • Woven PET and PA fabrics and non-woven cellulose paper are used as support materials. • Porous structure of PVdF was obtained on the support material. • Interaction between the electrolyte solvent and the composite material played an important role on the mechanical properties. • Compared to the pure PVdF separators, enhanced mechanical strength was obtained for composite separators, without decreasing the ionic conductivity. -- Abstract: PVdF-based separators are very promising materials in electrochemical energy storage systems but they suffer from fairly poor mechanical properties. To overcome this drawback, composite PVdF separators were fabricated and characterized in electrolytes of Li-ion batteries and supercapacitors. Macroporous PVdF composite separators were prepared by phase inversion method using PA and PET, and non-woven cellulose as support layers. Ionic conductivity and thermomechanical analyses were performed using electrolytes of Li-ion batteries and supercapacitors. The composite approach allowed a tremendous increase of the mechanical performances of the separator (between 340 and 750 MPa) compared to the unreinforced PVdF separator (56 MPa), without compromising the ionic conductivities (up to 15.6 mS cm −1 )

  12. Sample preparation and electrochemical data of Co3O4 working electrode for seawater splitting

    Directory of Open Access Journals (Sweden)

    Malkeshkumar Patel

    2017-10-01

    Full Text Available In this data article, we presented the electrochemical data of the working electrode made of Co3O4 semi-transparent film. Electrochemically stable, porous nature of Kirkendall-diffusion grown Co3O4 films were applied to generate hydrogen from the seawater splitting (Patel et al., 2017 [1]. The data presented in this article includes the photograph of prepared samples, polarization curves for water oxidation and Tafel plot, linear sweep voltammetry measurements under the pulsed light condition in 0.1 M Na2S2O3 electrolyte, and transient photoresponses with natural sea water. Moreover, seawater splitting using the Co3O4 working electrode is demonstrated.

  13. Electrochemical preparation of hematite nanostructured films for solar hydrogen production

    Directory of Open Access Journals (Sweden)

    Ebadzadeh T.

    2012-10-01

    Full Text Available Photoelectrochemical water splitting is a clean and promising technique for using a renewable source of energy, i.e., solar energy, to produce hydrogen. In this work electrochemical formation of iron oxyhydroxide and its conversion to hematite (α- Fe2O3 through thermal treatment have been studied. Oxyhydroxide iron compounds have been prepared onto SnO2/F covered glass substrate by potential cycling with two different potential sweep rate values; then calcined at 520 °C in air to obtain α-Fe2O3 nanostrutured films for their implementation as photoanode in a photoelectrochemical cell. X-ray diffraction analysis allowed finding that iron oxides films have nanocrystalline character. Scanning electron microscopy revealed that films have nanostructured morphology. The obtained results are discussed considering the influence of potential sweep rate employed during the preparation of iron oxyhydroxide film on optical, structural and morphological properties of hematite nanostructured films. Results show that films have acceptable characteristics as photoanode in a photoelectrochemical cell for hydrogen generation from water.

  14. The preparation and electrochemical performances of LiFePO4-multiwalled nanotubes composite cathode materials for lithium ion batteries

    International Nuclear Information System (INIS)

    Feng Yan

    2010-01-01

    LiFePO 4 -MWCNTs (multi-walled carbon nanotubes) composite cathode materials were prepared by mixing LiFePO 4 and MWCNTs in ethanol followed by heat-treatment at 500 deg. C for 5 h. The structural, morphology and electrochemical performances of LiFePO 4 -MWCNTs composite materials were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), galvanostatic charge-discharge cycle tests, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The results indicated that MWCNTs adding improved the electronic conductivity, the discharge capacity, cycle stability and lithium ion diffusion kinetics of LiFePO 4 , but MWCNTs adding did not charge the orthorhombic olivine-type structure of LiFePO 4 . In all these prepared LiFePO 4 with x wt.% MWCNTs (x = 4, 7, 10) composites, 7 wt.% MWCNTs adding composite cathode shows the best electrochemical performance, which gets an initial discharge capacity of 152.7 mAh g -1 at 0.18 C discharge rates with capacity retention ratio of 97.77% after 100 cycles.

  15. Palladium nanoparticles in electrochemical sensing of trace terazosin in human serum and pharmaceutical preparations

    Energy Technology Data Exchange (ETDEWEB)

    Sefid-sefidehkhan, Yasaman [Department of Chemistry, University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of); Nekoueian, Khadijeh [Laboratory of Green Chemistry, Faculty of Technology, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland); Amiri, Mandana, E-mail: mandanaamiri@uma.ac.ir [Department of Chemistry, University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of); Sillanpaa, Mika [Laboratory of Green Chemistry, Faculty of Technology, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland); Eskandari, Habibollah [Department of Chemistry, University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of)

    2017-06-01

    In this approach, palladium nanoparticle film was simply fabricated on the surface of carbon paste electrode by electrochemical deposition method. The film was characterized using scanning electron microscopy, electrochemical impedance spectroscopy and cyclic voltammetry. The prepared electrode exhibited an excellent electrocatalytic activity toward detection of trace amounts of terazosin, which is an antihypertensive drug. Under the optimum experimental conditions, a linear range of 1.0 × 10{sup −8}–1.0 × 10{sup −3} mol L{sup −1} with a detection limit of 1.9 × 10{sup −9} mol L{sup −1} was obtained for determination of terazosin using differential pulse voltammetry as a sensitive method. The efficiency of palladium nanoparticle film on the surface of carbon paste electrode successfully proved for determination of terazosin in pharmaceutical sample and human serum sample with promising recovery results. The effect of some foreign species has been studied. - Highlights: • PdNPs were simply fabricated by electrochemical deposition. • PdNPs exhibited an excellent electrocatalytic activity toward oxidation of terazosin. • Terazosin has been determined in pharmaceutical sample and human serum sample.

  16. Method of preparing porous, rigid ceramic separators for an electrochemical cell. [Patent application

    Science.gov (United States)

    Bandyopadhyay, G.; Dusek, J.T.

    Porous, rigid separators for electrochemical cells are prepared by first calcining particles of ceramic material at temperatures above about 1200/sup 0/C for a sufficient period of time to reduce the sinterability of the particles. A ceramic powder that has not been calcined is blended with the original powder to control the porosity of the completed separator. The ceramic blend is then pressed into a sheet of the desired shape and sintered at a temperature somewhat lower than the calcination temperature. Separator sheets of about 1 to 2.5 mm thickness and 30 to 70% porosity can be prepared by this technique. Ceramics such as yttria, magnesium oxide, and magnesium-aluminium oxide have advantageously been used to form separators by this method.

  17. Cellulose-based graft copolymers prepared by simplified electrochemically mediated ATRP

    Directory of Open Access Journals (Sweden)

    P. Chmielarz

    2017-02-01

    Full Text Available Brush-shaped block copolymer with a dual hydrophilic poly(acrylic acid-block-poly(oligo(ethylene glycol acrylate (PAA-b-POEGA arms was synthesized for the first time via a simplified electrochemically mediated ATRP (seATRP under both constant potential electrolysis and constant current electrolysis conditions, utilizing only 30 ppm of catalyst complex. The polymerization conditions were optimized to provide fast reactions while employing low catalyst concentrations and preparation of cellulose-based brush-like copolymers with narrow molecular weight distributions. The results from proton nuclear magnetic resonance (1H NMR spectral studies support the formation of cellulose-based graft (copolymers. It is expected that these new polymer brushes may find application as pH- and thermo-sensitive drug delivery systems.

  18. Electrochemical preparation of iron cuboid nanoparticles and their catalytic properties for nitrite reduction

    International Nuclear Information System (INIS)

    Chen Yanxin; Chen Shengpei; Chen Qingsong; Zhou Zhiyou; Sun Shigang

    2008-01-01

    Iron cuboid nanoparticles supported on glassy carbon (denoted nm-Fe/GC) were prepared by electrochemical deposition under cyclic voltammetric (CV) conditions. The structure and composition of the Fe nanomaterials were characterized by scanning electron microscopy (SEM), selected area electron diffraction (SAED), X-ray diffraction (XRD) and energy dispersive X-ray analysis (EDX). The results demonstrated that the Fe cuboid nanoparticles are dispersed discretely on GC substrate with an average size ca. 171 nm, and confirmed that the electrochemical synthesized nanocubes are single crystals of pure Fe. The catalytic properties of the Fe cuboid nanoparticles towards nitrite electroreduction were investigated, and enhanced electrocatalytic activity of the Fe nanocubes has been determined. In comparison with the data obtained on a bulk-Fe electrode, the onset potential of nitrite reduction on nm-Fe/GC is positively sifted by 100 mV, and the steady reduction current density is enhanced about 2.4-3.2 times

  19. The preparation and properties of a novel electrolyte of electrochemical double layer capacitors based on LiPF6 and acetamide

    International Nuclear Information System (INIS)

    Li Qi; Zuo Xiaoxi; Liu Jiansheng; Xiao Xin; Shu Dong; Nan Junmin

    2011-01-01

    A novel electrolyte applied in electrochemical double-layer capacitors (EDLCs) has been prepared based on lithium hexafluorophosphate (LiPF 6 ) and acetamide and subsequently characterized by differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), electrochemical techniques and so on. The mixtures of LiPF 6 and acetamide at the molar ratios of 1:4 to 1:6 exist as liquids below 25 °C, which is attributed to the melting point depression of mixture and the coordination of the polar groups (C=O and NH groups) of acetamide with Li + and PF 6 − ions. The strong interaction between LiPF 6 and acetamide results in the rupture of the electrovalent bond of LiPF 6 and the breakage of hydrogen bonds among the acetamide molecules, leading to the formation of a liquid electrolyte. The LiPF 6 /acetamide electrolyte with a molar ratio of 1:5.5 exhibits a 5.2 V electrochemical window and suitable ionic conductivity at room temperature. In particular, the coin-type cells with carbon electrodes and LiPF 6 /acetamide electrolyte possess high thermal stability and electrochemical properties, showing that the as-prepared LiPF 6 /acetamide electrolyte is a promising candidate for EDLCs.

  20. A new way for preparing superconducting materials: the electrochemical oxidation of La2CuO4

    International Nuclear Information System (INIS)

    Wattiaux, A.; Park, J.C.; Grenier, J.C.; Pouchard, M.

    1990-01-01

    The electrochemical oxidation in alkaline medium is described as a new way for preparing superconducting oxides at room temperature. The application of this method to La 2 CuO 4 gave rise to a metallic material with a superconducting behaviour below 39 K and whose physical and chemical features appear as quite promising [fr

  1. Electrochemical performance of trimethylolpropane trimethylacrylate-based gel polymer electrolyte prepared by in situ thermal polymerization

    International Nuclear Information System (INIS)

    Zhou, Dong; Fan, Li-Zhen; Fan, Huanhuan; Shi, Qiao

    2013-01-01

    Cross-linked trimethylolpropane trimethylacrylate-based gel polymer electrolytes (GPE) were prepared by in situ thermal polymerization. The ionic conductivity of the GPEs are >10 −3 S cm −1 at 25 °C, and continuously increased with the increase of liquid electrolyte content. The GPEs have excellent electrochemical stability up to 5.0 V versus Li/Li + . The LiCoO 2 |TMPTMA-based GPE|graphite cells exhibit an initial discharge capacity of 129 mAh g −1 at the 0.2C, and good cycling stability with around 83% capacity retention after 100 cycles. Both the simple fabricating process of polymer cell and outstanding electrochemical performance of such new GPE make it potentially one of the most promising electrolyte materials for next generation lithium ion batteries

  2. A highly selective copper-indium bimetallic electrocatalyst for the electrochemical reduction of aqueous CO2to CO

    KAUST Repository

    Rasul, Shahid

    2014-12-23

    The challenge in the electrochemical reduction of aqueous carbon dioxide is in designing a highly selective, energy-efficient, and non-precious-metal electrocatalyst that minimizes the competitive reduction of proton to form hydrogen during aqueous CO2 conversion. A non-noble metal electrocatalyst based on a copper-indium (Cu-In) alloy that selectively converts CO2 to CO with a low overpotential is reported. The electrochemical deposition of In on rough Cu surfaces led to Cu-In alloy surfaces. DFT calculations showed that the In preferentially located on the edge sites rather than on the corner or flat sites and that the d-electron nature of Cu remained almost intact, but adsorption properties of neighboring Cu was perturbed by the presence of In. This preparation of non-noble metal alloy electrodes for the reduction of CO2 provides guidelines for further improving electrocatalysis.

  3. Electro-chemical deposition of nano hydroxyapatite-zinc coating on titanium metal substrate.

    Science.gov (United States)

    El-Wassefy, N A; Reicha, F M; Aref, N S

    2017-08-13

    Titanium is an inert metal that does not induce osteogenesis and has no antibacterial properties; it is proposed that hydroxyapatite coating can enhance its bioactivity, while zinc can contribute to antibacterial properties and improve osseointegration. A nano-sized hydroxyapatite-zinc coating was deposited on commercially pure titanium using an electro-chemical process, in order to increase its surface roughness and enhance adhesion properties. The hydroxyapatite-zinc coating was attained using an electro-chemical deposition in a solution composed of a naturally derived calcium carbonate, di-ammonium hydrogen phosphate, with a pure zinc metal as the anode and titanium as the cathode. The applied voltage was -2.5 for 2 h at a temperature of 85 °C. The resultant coating was characterized for its surface morphology and chemical composition using a scanning electron microscope (SEM), energy dispersive x-ray spectroscope (EDS), and Fourier transform infrared (FT-IR) spectrometer. The coated specimens were also evaluated for their surface roughness and adhesion quality. Hydroxyapatite-zinc coating had shown rosette-shaped, homogenous structure with nano-size distribution, as confirmed by SEM analysis. FT-IR and EDS proved that coatings are composed of hydroxyapatite (HA) and zinc. The surface roughness assessment revealed that the coating procedure had significantly increased average roughness (Ra) than the control, while the adhesive tape test demonstrated a high-quality adhesive coat with no laceration on tape removal. The developed in vitro electro-chemical method can be employed for the deposition of an even thickness of nano HA-Zn adhered coatings on titanium substrate and increases its surface roughness significantly.

  4. Rapid preparation of α-FeOOH and α-Fe2O3 nanostructures by microwave heating and their application in electrochemical sensors

    International Nuclear Information System (INIS)

    Marinho, J.Z.; Montes, R.H.O.; Moura, A.P. de; Longo, E.; Varela, J.A.; Munoz, R.A.A.; Lima, R.C.

    2014-01-01

    Graphical abstract: - Highlights: • Simple microwave method leads to the rapid formation of the goethite and hematite. • Homogenous nucleation and growth of particles are controlled by synthesis time. • Modified electrode with α-FeOOH nanoplates improved the electrochemical response. • The sample is directly heated by microwaves and its crystallization is accelerated. • Fe 3+ nanostructures are promising for development of electrochemical sensors. - Abstract: α-FeOOH (goethite) and α-Fe 2 O 3 (hematite) nanostructures have been successfully synthesized using the microwave-assisted hydrothermal (MAH) method and by the rapid burning in a microwave oven of the as-prepared goethite, respectively. The orthorhombic α-FeOOH to rhombohedralα-Fe 2 O 3 structural transformation was observed by X-ray diffraction (XRD) and Raman spectroscopy results. Plates-like α-FeOOH prepared in 2 min and rounded and quasi-octahedral shaped α-Fe 2 O 3 particles obtained in 10 min were observed using field emission gun scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The use of microwave heating allowed iron oxides to be prepared with shorter reaction times when compared to other synthesis methods. α-FeOOH nanoplates were incorporated into graphite-composite electrodes, which presented electrocatalytic properties towards the electrochemical oxidation of ascorbic acid in comparison with unmodified electrodes. This result demonstrates that such α-FeOOH nanostructures are very promising chemical modifiers for the development of improved electrochemical sensors

  5. Preparation and electrochemical behaviour of Sb sub 2 O sub 5 films

    Energy Technology Data Exchange (ETDEWEB)

    Badawy, W.A. (Chemistry Dept., Faculty of Science, Univ. of Cairo, Giza (Egypt))

    1990-04-01

    Sb{sub 2}O{sub 5} films of various thicknesses were prepared on glass or glassy carbon using a chemical vapour deposition-spraying technique. A 0.5 M SbCl{sub 5}-ethyl acetate solution was used as a spray. This evaporated in front of the heated substrate and the hydrolysis reaction 2SbCl{sub 5} + 5 H{sub 2}O{yields}Sb{sub 2}O{sub 5} + 10HCl took place, leaving a homogeneous antimony oxide film adherent to the substrate surface. The effect of the thickness of the prepared film on its physical properties was studied. The electrochemical behaviour of electrodes of the oxide film in three different redox couples was investigated. The results reveal that the charge transfer reaction occurring at the electrode-electrode interface takes place via tunnelling of the electrons through the barrier formed by the space charge layer into the Sb{sub 2}O{sub 5} conduction band. (orig.).

  6. Synthesis of nitrogen doped microporous carbons prepared by activation-free method and their high electrochemical performance

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki-Seok [Department of Chemistry, Inha University, Incheon 402-751 (Korea, Republic of); Park, Soo-Jin, E-mail: sjpark@inha.ac.kr [Department of Chemistry, Inha University, Incheon 402-751 (Korea, Republic of)

    2011-11-30

    Graphical abstract: This describes the increase of specific capacitance in hybrid electrodes as a function of melamine content. Display Omitted Highlights: > For N-enriched hybrid carbons, co-precursors, PVDF/melamine composites, were used. > Microporous carbons were formed by only carbonization without chemical activation. > The nitrogen content of microporous carbons was controlled by melamine content. > N-doped carbons showed higher specific capacitance compared to microporous carbons. > It was attributed to the easy electron transfer and pseudocapacitance. - Abstract: Nitrogen-doped microporous carbons (N-MCs) were prepared by the carbonization of the polyvinylidene fluoride (PVDF)/melamine mixture without chemical activation. The electrochemical performance of the N-MCs was investigated as a function of PVDF/melamine ratio. It was found that, without additional activation, the N-MCs had a high specific surface area (greater than 560 m{sup 2}/g) because of the micropore formation by the release of fluorine groups. In addition, although the specific surface area decreased, nitrogen groups were increased with increasing melamine content, leading to an enhanced electrochemical performance. Indeed, the N-MCs showed a better electrochemical performance than that of microporous carbons (MCs) prepared by PVDF alone, and the highest specific capacitance (310 F/g) was obtained at a current density of 0.5 A/g, as compared to a value of 248 F/g for MCs. These results indicate that the microporous features of N-MC lead to feasible ion transfer during charge/discharge duration and the presence of nitrogen groups as strong electron donor on the N-MC electrode in electrolyte could provide a pseudocapacitance by the redox reaction.

  7. Preparation of silver nanoparticles/graphene nanosheets as a catalyst for electrochemical oxidation of methanol

    Energy Technology Data Exchange (ETDEWEB)

    Han, Kun; Miao, Peng; Tang, Yuguo, E-mail: tangyg@sibet.ac.cn [Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Tong, Hui; Zhu, Xiaoli [Laboratory of Biosensing Technology, School of Life Sciences, Shanghai University, Shanghai 200444 (China); Liu, Tao; Cheng, Wenbo [Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163 (China)

    2014-02-03

    In this report, silver nanoparticles (AgNPs) decorated graphene nanosheets have been prepared based on the reduction of Ag ions by hydroquinone, and their catalytic performance towards the electrochemical oxidation of methanol is investigated. The synthesis of the nano-composite is confirmed by transmission electron microscope measurements and UV-vis absorption spectra. Excellent electrocatalytic performance of the material is demonstrated by cyclic voltammograms. This material also contributes to the low peak potential of methanol oxidation compared with most of the other materials.

  8. Influence of carbon conductive additives on electrochemical double-layer supercapacitor parameters

    Science.gov (United States)

    Kiseleva, E. A.; Zhurilova, M. A.; Kochanova, S. A.; Shkolnikov, E. J.; Tarasenko, A. B.; Zaitseva, O. V.; Uryupina, O. V.; Valyano, G. V.

    2018-01-01

    Electrochemical double-layer capacitors (EDLC) offer energy storage technology, highly demanded for rapid transition processes in transport and stationary applications, concerned with fast power fluctuations. Rough structure of activated carbon, widely used as electrode material because of its high specific area, leads to poor electrode conductivity. Therefore there is the need for conductive additive to decrease internal resistance and to achieve high specific power and high specific energy. Usually carbon blacks are widely used as conductive additive. In this paper electrodes with different conductive additives—two types of carbon blacks and single-walled carbon nanotubes—were prepared and characterized in organic electrolyte-based EDLC cells. Electrodes are based on original wood derived activated carbon produced by potassium hydroxide high-temperature activation at Joint Institute for High Temperatures RAS. Electrodes were prepared from slurry by cold-rolling. For electrode characterization cyclic voltammetry, impedance spectra analysis, equivalent series resistance measurements and galvanostatic charge-discharge were used.

  9. Preparation and electrochemical capacitance performances of super-hydrophilic conducting polyaniline

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xingwei; Li, Xiaohan; Dai, Na; Wang, Gengchao; Wang, Zhun [Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai 200237 (China)

    2010-08-15

    Super-hydrophilic conducting polyaniline was prepared by surface modification of polyaniline using tetraethyl orthosilicate in water/ethanol solution, whereas its conductivity was 4.16 S cm{sup -1} at 25 C. And its electrochemical capacitance performances as an electrode material were evaluated by the cyclic voltammetry and galvanostatic charge/discharge test in 0.1 M H{sub 2}SO{sub 4} aqueous solution. Its initial specific capacitance was 500 F g{sup -1} at a constant current density of 1.5 A g{sup -1}, and the capacitance still reached about 400 F g{sup -1} after 5000 consecutive cycles. Moreover, its capacitance retention ratio was circa 70% with the growth of current densities from 1.5 to 20 A g{sup -1}, indicating excellent rate capability. It would be a promising electrode material for aqueous redox supercapacitors. (author)

  10. Preparation of Superhydrophobic Film on Ti Substrate and Its Anticorrosion Property.

    Science.gov (United States)

    Zhu, Min; Tang, Wenchuan; Huang, Luyao; Zhang, Dawei; Du, Cuiwei; Yu, Gaohong; Chen, Ming; Chowwanonthapunya, Thee

    2017-06-08

    Superhydrophobic films were fabricated on a titanium substrate with or without anodizing by using a self-assembling method. Firstly, the pretreatments of mechanical polishing/anodizing or mechanical polishing only were conducted, respectively. Subsequently, the preparation of polydopamine film layer, deposition of nano-silver particles, and post modification of 1H,1H,2H,2H-perfluorodecanethiol were performed on the surface of the pretreated substrate. The surface morphologies, compositions, wettability, and corrosion resistance of the films were investigated with scanning electron microscopy (SEM), energy-dispersive spectrometry (EDS), water contact angle measurements, and electrochemical tests, respectively. Meanwhile, the effect of the deposition time in the silver nitrate solution on the hydrophobicity of the specimen surface was investigated. The result showed that with the increase of deposition time, the hydrophobic property enhanced gradually. The surface deposited for 7 h exhibited an optimum hydrophobic effect, which was characterized with a large water contact angle (WCA) of 154°, and the surface was rather rough and covered by a relatively uniform layer of micro-nano silver particles. The excellent hydrophobicity was attributed to a rough stratified microstructure along with the low surface energy. The electrochemical measurements showed that the existence of the superhydrophobic film can effectively enhance the corrosion resistance of Ti samples.

  11. Preparation of Superhydrophobic Film on Ti Substrate and Its Anticorrosion Property

    Directory of Open Access Journals (Sweden)

    Min Zhu

    2017-06-01

    Full Text Available Superhydrophobic films were fabricated on a titanium substrate with or without anodizing by using a self-assembling method. Firstly, the pretreatments of mechanical polishing/anodizing or mechanical polishing only were conducted, respectively. Subsequently, the preparation of polydopamine film layer, deposition of nano-silver particles, and post modification of 1H,1H,2H,2H-perfluorodecanethiol were performed on the surface of the pretreated substrate. The surface morphologies, compositions, wettability, and corrosion resistance of the films were investigated with scanning electron microscopy (SEM, energy-dispersive spectrometry (EDS, water contact angle measurements, and electrochemical tests, respectively. Meanwhile, the effect of the deposition time in the silver nitrate solution on the hydrophobicity of the specimen surface was investigated. The result showed that with the increase of deposition time, the hydrophobic property enhanced gradually. The surface deposited for 7 h exhibited an optimum hydrophobic effect, which was characterized with a large water contact angle (WCA of 154°, and the surface was rather rough and covered by a relatively uniform layer of micro-nano silver particles. The excellent hydrophobicity was attributed to a rough stratified microstructure along with the low surface energy. The electrochemical measurements showed that the existence of the superhydrophobic film can effectively enhance the corrosion resistance of Ti samples.

  12. Preparation of Superhydrophobic Film on Ti Substrate and Its Anticorrosion Property

    Science.gov (United States)

    Zhu, Min; Tang, Wenchuan; Huang, Luyao; Zhang, Dawei; Du, Cuiwei; Yu, Gaohong; Chen, Ming; Chowwanonthapunya, Thee

    2017-01-01

    Superhydrophobic films were fabricated on a titanium substrate with or without anodizing by using a self-assembling method. Firstly, the pretreatments of mechanical polishing/anodizing or mechanical polishing only were conducted, respectively. Subsequently, the preparation of polydopamine film layer, deposition of nano-silver particles, and post modification of 1H,1H,2H,2H-perfluorodecanethiol were performed on the surface of the pretreated substrate. The surface morphologies, compositions, wettability, and corrosion resistance of the films were investigated with scanning electron microscopy (SEM), energy-dispersive spectrometry (EDS), water contact angle measurements, and electrochemical tests, respectively. Meanwhile, the effect of the deposition time in the silver nitrate solution on the hydrophobicity of the specimen surface was investigated. The result showed that with the increase of deposition time, the hydrophobic property enhanced gradually. The surface deposited for 7 h exhibited an optimum hydrophobic effect, which was characterized with a large water contact angle (WCA) of 154°, and the surface was rather rough and covered by a relatively uniform layer of micro-nano silver particles. The excellent hydrophobicity was attributed to a rough stratified microstructure along with the low surface energy. The electrochemical measurements showed that the existence of the superhydrophobic film can effectively enhance the corrosion resistance of Ti samples. PMID:28772987

  13. Preparation of MnO2 electrodes coated by Sb-doped SnO2 and their effect on electrochemical performance for supercapacitor

    International Nuclear Information System (INIS)

    Zhang, Yuqing; Mo, Yan

    2014-01-01

    Highlights: • Sb-doped SnO 2 coated MnO 2 electrodes (SS-MnO 2 electrodes) are prepared. • The capacitive property and stability of SS-MnO 2 electrode is superior to uncoated MnO 2 electrode and SnO 2 coated MnO 2 electrode. • Sb-doped SnO 2 coating enhances electrochemical performance of MnO 2 effectively. • SS-MnO 2 electrodes are desirable to become a novel electrode material for supercapacitor. - Abstract: To enhance the specific capacity and cycling stability of manganese binoxide (MnO 2 ) for supercapacitor, antimony (Sb) doped tin dioxide (SnO 2 ) is coated on MnO 2 through a sol-gel method to prepare MnO 2 electrodes, enhancing the electrochemical performance of MnO 2 electrode in sodium sulfate electrolytes. The structure and composition of SS-MnO 2 electrode are characterized by using scanning electron microscope (SEM), transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FT-IR) and X-Ray diffraction spectroscopy (XRD). The electrochemical performances are evaluated and researched by galvanostatic charge-discharge test, cyclic voltammogram (CV) and electrochemical impedance spectroscopy (EIS). The results show that SS-MnO 2 electrodes hold porous structure, displaying superior cycling stability at large current work condition in charge-discharge tests and good capacity performance at high scanning rate in CV tests. The results of EIS show that SS-MnO 2 electrodes have small internal resistance. Therefore, the electrochemical performances of MnO 2 electrodes are enhanced effectively by Sb-doped SnO 2 coating

  14. Electrochemical characterization of screen-printed and conventional carbon paste electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Fanjul-Bolado, Pablo; Hernandez-Santos, David; Lamas-Ardisana, Pedro Jose [Departamento de Quimica Fisica y Analitica, Universidad de Oviedo, 33006 Oviedo, Asturias (Spain); Martin-Pernia, Alberto [Departamento de Ingenieria Electrica, Electronica de Computadores y Sistemas, Universidad de Oviedo, 33204 Gijon, Asturias (Spain); Costa-Garcia, Agustin [Departamento de Quimica Fisica y Analitica, Universidad de Oviedo, 33006 Oviedo, Asturias (Spain)], E-mail: costa@fq.uniovi.es

    2008-04-01

    This work compares the electroactivity of a conventional carbon paste electrode and non-pretreated commercially available screen-printed carbon electrodes (from Alderon Biosciences, University of Florence and DropSens) towards some benchmark redox couples like hexaammineruthenium (III), ferricyanide, p-aminophenol and hydroquinone. While cyclic voltammograms of Ru{sup 3+} did not show significative electron transfer reactivity differences between the electrodes tested, the other redox systems exhibited higher reversible behaviours on DropSens electrodes. Scanning electron microscopy and roughness analysis with a profilometer were applied to detect the surface morphology of the working electrodes. The roughness evaluated of the screen-printed carbon working electrodes increased in this order Alderon < University of Florence < DropSens. Finally, the most electrochemically active and rough unpretreated electrode (DropSens commercial screen-printed electrode) was used to study the electrochemical-chemical reaction mechanism of indigo carmine oxidation in 0.1 M sulphuric acid. This study showed that the adsorption of the oxidation product of indigo carmine is stabilized when it is adsorbed on the surface of the electrode.

  15. Electrochemical characterization of screen-printed and conventional carbon paste electrodes

    International Nuclear Information System (INIS)

    Fanjul-Bolado, Pablo; Hernandez-Santos, David; Lamas-Ardisana, Pedro Jose; Martin-Pernia, Alberto; Costa-Garcia, Agustin

    2008-01-01

    This work compares the electroactivity of a conventional carbon paste electrode and non-pretreated commercially available screen-printed carbon electrodes (from Alderon Biosciences, University of Florence and DropSens) towards some benchmark redox couples like hexaammineruthenium (III), ferricyanide, p-aminophenol and hydroquinone. While cyclic voltammograms of Ru 3+ did not show significative electron transfer reactivity differences between the electrodes tested, the other redox systems exhibited higher reversible behaviours on DropSens electrodes. Scanning electron microscopy and roughness analysis with a profilometer were applied to detect the surface morphology of the working electrodes. The roughness evaluated of the screen-printed carbon working electrodes increased in this order Alderon < University of Florence < DropSens. Finally, the most electrochemically active and rough unpretreated electrode (DropSens commercial screen-printed electrode) was used to study the electrochemical-chemical reaction mechanism of indigo carmine oxidation in 0.1 M sulphuric acid. This study showed that the adsorption of the oxidation product of indigo carmine is stabilized when it is adsorbed on the surface of the electrode

  16. Preparation and Characterization of a PEDOT-Manganese Oxide Composite, and Its Application to Electrochemical Sensing

    International Nuclear Information System (INIS)

    Arena, A.

    2016-01-01

    Stable and transparent aqueous dispersions of a hybrid organic-inorganic composite, are prepared by electrochemically doping Manganese Oxide into Polyethylendioxythiophene (PEDOT). Films deposited from the PEDOT-MnOx dispersions, are characterized by means of electrical and optical measurements, and by means of Atomic Force Microscopy (AFM) investigations. The PEDOT-MnOx composite is then used to modify one of the gold electrodes of a simple electrochemical cell, in which Nafion is used as a solid electrolyte. The cell is characterized using time domain electrical measurements. It is found that distinguishable redox peaks arise in the current-voltage loops of the cell, as nanomolar amounts of either acetic acid and ammonia, are added to the deionized water into which the cell is immersed. The intensity of such current peaks, is linearly related to the concentration of the analytes, in the nanomolar range of concentrations. (paper)

  17. Influence of Monomer Concentration on the Morphologies and Electrochemical Properties of PEDOT, PANI, and PPy Prepared from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Shalini Kulandaivalu

    2016-01-01

    Full Text Available Poly(3,4-ethylenedioxyhiophene (PEDOT, polyaniline (PANI, and polypyrrole (PPy were prepared on indium tin oxide (ITO substrate via potentiostatic from aqueous solutions containing monomer and lithium perchlorate. The concentration of monomers was varied between 1 and 10 mM. The effects of monomer concentration on the polymers formation were investigated and compared by using Fourier transform infrared spectroscopy (FTIR, Raman spectroscopy, scanning electron microscopy (SEM, cyclic voltammetry (CV, and electrochemical impedance spectroscopy (EIS measurements. FTIR and Raman spectra showed no changes in the peaks upon the increment of the concentration. Based on the SEM images, the increment in monomer concentration gives significant effect on morphologies and eventually affects the electrochemical properties. PEDOT electrodeposited from 10 mM solution showed excellent electrochemical properties with the highest specific capacitance value of 12.8 mF/cm2.

  18. Synthesis of nitrogen doped microporous carbons prepared by activation-free method and their high electrochemical performance

    International Nuclear Information System (INIS)

    Kim, Ki-Seok; Park, Soo-Jin

    2011-01-01

    Graphical abstract: This describes the increase of specific capacitance in hybrid electrodes as a function of melamine content. Display Omitted Highlights: → For N-enriched hybrid carbons, co-precursors, PVDF/melamine composites, were used. → Microporous carbons were formed by only carbonization without chemical activation. → The nitrogen content of microporous carbons was controlled by melamine content. → N-doped carbons showed higher specific capacitance compared to microporous carbons. → It was attributed to the easy electron transfer and pseudocapacitance. - Abstract: Nitrogen-doped microporous carbons (N-MCs) were prepared by the carbonization of the polyvinylidene fluoride (PVDF)/melamine mixture without chemical activation. The electrochemical performance of the N-MCs was investigated as a function of PVDF/melamine ratio. It was found that, without additional activation, the N-MCs had a high specific surface area (greater than 560 m 2 /g) because of the micropore formation by the release of fluorine groups. In addition, although the specific surface area decreased, nitrogen groups were increased with increasing melamine content, leading to an enhanced electrochemical performance. Indeed, the N-MCs showed a better electrochemical performance than that of microporous carbons (MCs) prepared by PVDF alone, and the highest specific capacitance (310 F/g) was obtained at a current density of 0.5 A/g, as compared to a value of 248 F/g for MCs. These results indicate that the microporous features of N-MC lead to feasible ion transfer during charge/discharge duration and the presence of nitrogen groups as strong electron donor on the N-MC electrode in electrolyte could provide a pseudocapacitance by the redox reaction.

  19. Enhanced Properties of Porous GaN Prepared by UV Assisted Electrochemical Etching

    International Nuclear Information System (INIS)

    Ainorkhilah Mahmood; Ainorkhilah Mahmood; Siang, C.L.

    2011-01-01

    The structural and optical properties of porous GaN films on sapphire (0001) prepared by UV assisted electrochemical etching were reported in this study. SEM micrographs indicated that the shapes of the pores for both porous samples are nearly hexagonal. XRD revealed that the broadening in spectrum is due to the small size crystallites. As compared to the as grown GaN films, porous layers exhibit a substantial photoluminescence (PL) intensity enhancement with red-shifted band-edge PL peaks associated with the relaxation of compressive stress. The shift of E2(high) to the lower frequency in Raman spectra of the porous GaN films further confirms such a stress relaxation. (author)

  20. Rough Finite State Automata and Rough Languages

    Science.gov (United States)

    Arulprakasam, R.; Perumal, R.; Radhakrishnan, M.; Dare, V. R.

    2018-04-01

    Sumita Basu [1, 2] recently introduced the concept of a rough finite state (semi)automaton, rough grammar and rough languages. Motivated by the work of [1, 2], in this paper, we investigate some closure properties of rough regular languages and establish the equivalence between the classes of rough languages generated by rough grammar and the classes of rough regular languages accepted by rough finite automaton.

  1. Non-aqueous electrochemical deposition of lead zirconate titanate films for flexible sensor applications

    Science.gov (United States)

    Joseph, Sherin; Kumar, A. V. Ramesh; John, Reji

    2017-11-01

    Lead zirconate titanate (PZT) is one of the most important piezoelectric materials widely used for underwater sensors. However, PZTs are hard and non-compliant and hence there is an overwhelming attention devoted toward making it flexible by preparing films on flexible substrates by different routes. In this work, the electrochemical deposition of composition controlled PZT films over flexible stainless steel (SS) foil substrates using non-aqueous electrolyte dimethyl sulphoxide (DMSO) was carried out. Effects of various key parameters involved in electrochemical deposition process such as current density and time of deposition were studied. It was found that a current density of 25 mA/cm2 for 5 min gave a good film. The morphology and topography evaluation of the films was carried out by scanning electron microscopy (SEM) and atomic force microscopy (AFM), respectively, which showed a uniform morphology with a surface roughness of 2 nm. The PZT phase formation was studied using X-ray diffraction (XRD) and corroborated with Raman spectroscopic studies. The dielectric constant, dielectric loss, hysteresis and I-V characteristics of the film was evaluated.

  2. Preparation of Ti/IrO2 Anode with Low Iridium Content by Thermal Decomposition Process: Electrochemical removal of organic pollutants in water

    Science.gov (United States)

    Yaqub, Asim; Isa, Mohamed Hasnain; Ajab, Huma; Kutty, S. R. M.; Ezechi, Ezerie H.; Farooq, Robina

    2018-04-01

    In this study IrO2 (Iridium oxide) was coated onto a titanium plate anode from a dilute (50 mg/10 ml) IrCl3×H2O salt solution. Coating was done at high temperature (550∘C) using thermal decomposition. Surface morphology and characteristics of coated surface of Ti/IrO2 anode were examined by FESEM and XRD. The coated anode was applied for electrochemical removal of organic pollutants from synthetic water samples in 100 mL compartment of batch electrochemical cell. About 50% COD removal was obtained at anode prepared with low Ir content solution while 72% COD removal was obtained with anode prepared at high Ir content. Maximum COD removal was obtained at 10 mA/cm2 current density.

  3. Facile preparation of polypyrrole/graphene oxide nanocomposites with large areal capacitance using electrochemical codeposition for supercapacitors

    Science.gov (United States)

    Zhou, Haihan; Han, Gaoyi; Xiao, Yaoming; Chang, Yunzhen; Zhai, Hua-Jin

    2014-10-01

    A simple and low-cost electrochemical codeposition method has been introduced to fabricate polypyrrole/graphene oxide (PPy/GO) nanocomposites and the areal capacitance of conducting polymer/GO composites is reported for the first time. Fourier transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) are implemented to determine the PPy/GO nanocomposites are successfully prepared and the interaction between PPy and GO. The as-prepared PPy/GO nanocomposites show the curly sheet-like morphology, superior capacitive behaviors and cyclic stability. Furthermore, the varying deposition time is implemented to investigate the impact of the loading amount on electrochemical behavior of the composites, and a high areal capacitance of 152 mF cm-2 is achieved at 10 mV s-1 CV scan. However, the thicker films caused by the long deposition time would result in larger diffusion resistance of electrolyte ions, consequently exhibit the relatively lower capacitance value at the high current density. The GCD tests indicate moderate deposition time is more suitable for the fast charge/discharge. Considering the very simple and effective synthetic process, the PPy/GO nanocomposites with relatively high areal capacitance are competitive candidate for supercapacitor application, and its capacitive performances can be easily tuned by varying the deposition time.

  4. Preparation and electrochemical performance of polyaniline-based carbon nanotubes as electrode material for supercapacitor

    International Nuclear Information System (INIS)

    Yang Miaomiao; Cheng Bin; Song Huaihe; Chen Xiaohong

    2010-01-01

    Nitrogen-containing carbon nanotubes (CNTs) with open end and low specific surface area were prepared via the carbonization of polyaniline (PANI) nanotubes synthesized by a rapidly mixed reaction. On the basis of analyzing the morphologies and structures of the original and carbonized PANI nanotubes, the electrochemical properties of PANI-based CNTs obtained at different temperatures as electrode materials for supercapacitors using 30 wt.% aqueous solution of KOH as electrolyte were investigated by galvanostatic charge/discharge and cyclic voltammetry. It was found that the carbonized PANI nanotubes at 700 o C exhibit high specific capacitance of 163 F g -1 at a current density of 0.1 A g -1 and excellent rate capability in KOH solution. Using X-ray photoelectron spectroscopy measurement the nitrogen state and content in PANI-CNTs were analysed, which could play important roles for the enhancement of electrochemical performance. When the appropriate content of nitrogen is present, the presence of pyrrole or pyridone and quaternary nitrogen is beneficial for the improvement of electron mobility and the wettability of electrode.

  5. Electrochemical performance of Sn-Sb-Cu film anodes prepared by layer-by-layer electrodeposition

    International Nuclear Information System (INIS)

    Jiang Qianlei; Xue Ruisheng; Jia Mengqiu

    2012-01-01

    A novel layer-by-layer electrodeposition and heat-treatment approach was attempted to obtain Sn-Sb-Cu film anode for lithium ion batteries. The preparation of Sn-Sb-Cu anodes started with galvanostatic electrochemically depositing antimony and tin sequentially on the substrate of copper foil collector. Sn-Sb and Cu-Sb alloys were formed when heated. The SEM analysis showed that the crystalline grains become bigger and the surface of the Sn-Sb-Cu anode becomes more denser after annealing. The energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) analysis showed the antimony, tin and copper were alloyed to form SnSb and Cu 2 Sb after heat treatment. The X-ray photoelectron spectroscopy (XPS) analysis showed the surface of the Sn-Sb-Cu electrode was covered by a thin oxide layer. Electrochemical measurements showed that the annealed Sn-Sb-Cu anode has high reversible capacity and good capacity retention. It exhibited a reversible capacity of about 962 mAh/g in the initial cycle, which still remained 715 mAh/g after 30 cycles.

  6. Preparation and electrochemical performance of polyaniline-based carbon nanotubes as electrode material for supercapacitor

    Energy Technology Data Exchange (ETDEWEB)

    Yang Miaomiao; Cheng Bin [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Song Huaihe, E-mail: songhh@mail.buct.edu.c [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Chen Xiaohong [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 (China)

    2010-09-30

    Nitrogen-containing carbon nanotubes (CNTs) with open end and low specific surface area were prepared via the carbonization of polyaniline (PANI) nanotubes synthesized by a rapidly mixed reaction. On the basis of analyzing the morphologies and structures of the original and carbonized PANI nanotubes, the electrochemical properties of PANI-based CNTs obtained at different temperatures as electrode materials for supercapacitors using 30 wt.% aqueous solution of KOH as electrolyte were investigated by galvanostatic charge/discharge and cyclic voltammetry. It was found that the carbonized PANI nanotubes at 700 {sup o}C exhibit high specific capacitance of 163 F g{sup -1} at a current density of 0.1 A g{sup -1} and excellent rate capability in KOH solution. Using X-ray photoelectron spectroscopy measurement the nitrogen state and content in PANI-CNTs were analysed, which could play important roles for the enhancement of electrochemical performance. When the appropriate content of nitrogen is present, the presence of pyrrole or pyridone and quaternary nitrogen is beneficial for the improvement of electron mobility and the wettability of electrode.

  7. Rapid preparation of α-FeOOH and α-Fe{sub 2}O{sub 3} nanostructures by microwave heating and their application in electrochemical sensors

    Energy Technology Data Exchange (ETDEWEB)

    Marinho, J.Z.; Montes, R.H.O. [Universidade Federal de Uberlândia, Instituto de Química, 38400-902 Uberlândia, MG (Brazil); Moura, A.P. de; Longo, E.; Varela, J.A. [Universidade Estadual Paulista, Instituto de Química, 14800-900 Araraquara, SP (Brazil); Munoz, R.A.A. [Universidade Federal de Uberlândia, Instituto de Química, 38400-902 Uberlândia, MG (Brazil); Lima, R.C., E-mail: rclima@iqufu.ufu.br [Universidade Federal de Uberlândia, Instituto de Química, 38400-902 Uberlândia, MG (Brazil)

    2014-01-01

    Graphical abstract: - Highlights: • Simple microwave method leads to the rapid formation of the goethite and hematite. • Homogenous nucleation and growth of particles are controlled by synthesis time. • Modified electrode with α-FeOOH nanoplates improved the electrochemical response. • The sample is directly heated by microwaves and its crystallization is accelerated. • Fe{sup 3+} nanostructures are promising for development of electrochemical sensors. - Abstract: α-FeOOH (goethite) and α-Fe{sub 2}O{sub 3} (hematite) nanostructures have been successfully synthesized using the microwave-assisted hydrothermal (MAH) method and by the rapid burning in a microwave oven of the as-prepared goethite, respectively. The orthorhombic α-FeOOH to rhombohedralα-Fe{sub 2}O{sub 3} structural transformation was observed by X-ray diffraction (XRD) and Raman spectroscopy results. Plates-like α-FeOOH prepared in 2 min and rounded and quasi-octahedral shaped α-Fe{sub 2}O{sub 3} particles obtained in 10 min were observed using field emission gun scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The use of microwave heating allowed iron oxides to be prepared with shorter reaction times when compared to other synthesis methods. α-FeOOH nanoplates were incorporated into graphite-composite electrodes, which presented electrocatalytic properties towards the electrochemical oxidation of ascorbic acid in comparison with unmodified electrodes. This result demonstrates that such α-FeOOH nanostructures are very promising chemical modifiers for the development of improved electrochemical sensors.

  8. High-performance Electrochemical Energy Storage Electrodes Based on Nickel Oxide-coated Nickel Foam Prepared by Sparking Method

    International Nuclear Information System (INIS)

    Chuminjak, Yaowamarn; Daothong, Suphaporn; Kuntarug, Aekapong; Phokharatkul, Ditsayut; Horprathum, Mati; Wisitsoraat, Anurat; Tuantranont, Adisorn; Jakmunee, Jaroon; Singjai, Pisith

    2017-01-01

    Highlights: • NiO particles (3-10 nm) were sparked on Ni foams with varying times (45-180 min). • Larger NiO nanoparticles were aggregated to foam-like structure at a longer time. • The optimal time of 45 min led to a high specific capacity of 920 C/g at 1 A/g. • The specific capacity remained as high as 699 (76% of 920) C/g at 20 A/g. • The optimal electrode exhibited 96% capacity retention after 1000 cycles at 4 A/g. - Abstract: In this work, high-performance electrochemical energy storage electrodes were developed based on nickel oxide (NiO)-coated nickel (Ni) foams prepared by a sparking method. NiO nanoparticles deposited on Ni foams with varying sparking times from 45 to 180 min were structurally characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and Raman spectroscopy. In addition, the electrochemical energy storage characteristics of the electrodes were evaluated by cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy. It was found that NiO nanoparticles sparked on Ni foam with a longer time would be agglomerated and formed a foam-like network with large pore sizes and a lower surface area, leading to inferior charge storage behaviors. The NiO/Ni foam electrode prepared with the shortest sparking of 45 min displayed high specific capacities of 920 C g"-"1 (1840 F g"-"1) at 1 A g"-"1 and 699 (76% of 920) C g"-"1 at 20 A g"-"1 in a potential window of 0-0.5 V vs. Ag/AgCl as well as a good cycling performance with 96% capacity retention at 4 A g"-"1 after 1000 cycles and a low equivalent series resistance of 0.4 Ω. Therefore, NiO/Ni foam electrodes prepared by the sparking method are highly promising for high-capacity energy storage applications.

  9. Photoluminescence and electrochemical properties of transparent CeO{sub 2}-ZnO nanocomposite thin films prepared by Pechini method

    Energy Technology Data Exchange (ETDEWEB)

    Sani, Z.K.; Ghodsi, F.E.; Mazloom, J. [University of Guilan, Department of Physics, Faculty of Science, Namjoo Ave, P.O. Box 41335-1914, Rasht (Iran, Islamic Republic of)

    2017-02-15

    Nanocomposite thin films of CeO{sub 2}-ZnO with different molar ratios of Zn/Ce (=0, 0.25, 0.5, 0.75 and 1) were prepared by the Pechini sol-gel route. Various spectroscopic and electrochemical techniques were applied to investigate the films. XRD patterns of all the samples exhibited the peaks corresponding to cubic fluorite structure of ceria and the (101) and (103) peaks of ZnO with hexagonal structure was just observed in the sample with molar ratio of 1. EDS confirmed the presence of constituent of element in the samples. FESEM images of the films showed a surface composed of nanograins. AFM analysis revealed that root mean square roughness was enhanced as molar ratio of Zn/Ce increased. Moreover, fractal dimension of surfaces were calculated by cube counting approach. Optical measurements indicated that the film with molar ratio of 1 has the highest transmission and lowest reflectivity. The optical band gap values varied between 2.95 and 3.42 eV. The compositional dependence of refractive index and extinction coefficient were reported. The UV and blue emission appeared in PL spectra. The highest photoluminescence emission intensity was observed in the 1:1 molar ratio sample. The cyclic voltammetry measurements indicated the highest charge density (9.75 mC cm{sup -2}) and diffusion coefficient (3.507 x 10{sup -17} cm{sup 2} s{sup -1}) belonged to the Ce/Zn (1:1) thin film. (orig.)

  10. Electrochemical and structural characterization of carbon-supported Pt-Pd bimetallic electrocatalysts prepared by electroless deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, Masato; Beard, Kevin D.; Ma Shuguo; Blom, Douglas A.; St-Pierre, Jean; Van Zee, John W. [Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208 (United States); Monnier, John R., E-mail: monnier@cec.sc.ed [Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208 (United States)

    2010-10-01

    Electrochemical and structural characteristics of various Pt-Pd/C bimetallic catalysts prepared by electroless deposition (ED) methods have been investigated. Structural analysis was conducted by X-ray diffraction spectroscopy, X-ray photoelectron spectroscopy, scanning transmission electron microscopy, and energy dispersive X-ray spectroscopy (EDS). Monometallic Pt or Pd particles were not detected by EDS, indicating the ED methodology formed only bimetallic particles. The size of the Pt-Pd bimetallic particles was smaller than those of a commercially available Pt/C catalyst. The morphology of the Pt on Pd/C catalysts was identified and corresponded to Pd particles partially encapsulated by Pt. The electrochemical characteristics of the lowest Pd loading catalyst (7.0% Pt on 0.5% Pd/C) for the oxygen reduction reaction (ORR) have been investigated by the rotating ring disk electrode technique. The electrochemical activity was equal or lower than the commercially available Pt/C catalyst; however, the amount of hydrogen peroxide observed at the ring was reduced by the Pd, suggesting that such a catalyst has the potential to decrease ionomer degradation in applications. The Pt on Pd/C catalysts also show a higher tolerance to ripening induced by potential cycling. Therefore, catalyst suitability cannot be judged solely by its initial performance; information related to specific degradation mechanisms is also needed for a more complete assessment.

  11. Performance of flexible capacitors based on polypyrrole/carbon fiber electrochemically prepared from various phosphate electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Wei; Han, Gaoyi, E-mail: han_gaoyis@sxu.edu.cn; Chang, Yunzhen; Li, Miaoyu; Xiao, Yaoming, E-mail: ymxiao@sxu.edu.cn; Zhou, Haihan; Zhang, Ying; Li, Yanping

    2016-11-30

    Highlights: • PPy/CFs have been fabricated by electrodepositing polypyrrole on carbon fibers. • The electrolytes in deposition solution have effect on PPy/CFs’ capacitive behavior. • Cells of PPy/CFs obtained from NaH{sub 2}PO{sub 4} electrolyte has good stability in PVA/H{sub 3}PO{sub 4}. - Abstract: In order to investigate the influence of electrolytes in electro-deposition solution on the capacitive properties of polypyrrole (PPy), we have chosen phosphoric acid, phosphate, hydrogen phosphate and dihydrogen phosphate as electrolyte in deposition solution respectively and electrochemically deposited PPy on carbon fibers (CFs) via galvanostatic method. The morphologies of the PPy/CFs samples have been characterized by scanning electron microscope. The specific capacitance of PPy/CFs samples has been evaluated in different electrolytes through three-electrode test system. The assembled flexible capacitors by using PPy/CFs as electrodes and H{sub 3}PO{sub 4}/polyvinyl alcohol as gel electrolyte have been systematically measured by cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectroscopy. The results show that the electrochemical capacitors based on PPy/CFs prepared from deposition solution containing NaH{sub 2}PO{sub 4}·2H{sub 2}O electrolyte exhibit higher specific capacitance, flexibility and excellent stability (retaining 96.8% of initial capacitance after 13,000 cycles), and that three cells connected in series can power a light-emitting diode.

  12. Particle roughness in magnetorheology: effect on the strength of the field-induced structures

    International Nuclear Information System (INIS)

    Vereda, F; Segovia-Gutiérrez, J P; De Vicente, J; Hidalgo-Alvarez, R

    2015-01-01

    We report a study on the effect of particle roughness on the strength of the field-induced structures of magnetorheological (MR) fluids in the quasi-static regime. We prepared one set of MR fluids with carbonyl iron particles and another set with magnetite particles, and in both sets we had particles with different degrees of surface roughness. Small amplitude oscillatory shear (SAOS) magnetosweeps and steady shear (SS) tests were carried out on the suspensions to measure their elastic modulus (G′) and static yield stress (τ static ). Results for both the iron and the magnetite sets of suspensions were consistent: for the MR fluids prepared with rougher particles, G′ increased at smaller fields and τ static was ca. 20% larger than for the suspensions prepared with relatively smooth particles. In addition to the experimental study, we carried out finite element method calculations to assess the effect of particle roughness on the magnetic interaction between particles. These calculations showed that roughness can facilitate the magnetization of the particles, thus increasing the magnetic energy of the system for a given field, but that this effect depends on the concrete morphology of the surface. For our real systems, no major differences were observed between the magnetization cycles of the MR fluids prepared with particles with different degree of roughness, which implied that the effect of roughness on the measured G′ and τ static was due mainly to friction between the solid surfaces of adjacent particles. (paper)

  13. Preparation of RGO/Fe{sub 3}O{sub 4}/poly (acrylic acid) hydrogel nanocomposites with improved magnetic, thermal and electrochemical properties

    Energy Technology Data Exchange (ETDEWEB)

    Didehban, K.H., E-mail: Didehban95@gmail.com; Mohammadi, L.; Azimvand, J.

    2017-07-01

    A hydrogel nanocomposite composed of reduced graphene oxide (RGO), iron oxide (Fe{sub 3}O{sub 4}) nanoparticles, and polyacrylic acid (PAA) was prepared using radical polymerization. Different percentages of RGO, Fe{sub 3}O{sub 4}, and PAA were used to prepare the nanocomposite. Fourier transform infrared spectroscopy (FTIR) results confirmed the formation of the nanocomposite’s chemical structure. X-ray power diffraction (XRD) patterns revealed the principal peak’s 2θ value to be 77.39° with the size of the nanocomposite particles estimated at 96 nm. Results indicated that the electrochemical capacity of the nanocomposites was controlled by the weight percentage of RGO. Increases to the potential scan rate reduced porosity and surface area, thereby decreasing the electrochemical capacity of the nanocomposites. Moreover, increasing the percentage of Fe{sub 3}O{sub 4} nanoparticles in the nanocomposites improved their magnetic characteristics and thermal properties. The latter also improved when the RGO percentage increased. - Highlights: • A hydrogel nanocomposite composed of RGO/Fe{sub 3}O{sub 4}/PAA was synthesized successfully. • Increasing the percentage of iron nanoparticles improved magnetic properties. • Increasing the percentage of RGO improved thermal and electrochemical capacity. • The Fe{sub 3}O{sub 4} nanoparticles directly affected magnetic properties.

  14. Graphene-based electrochemical supercapacitors

    Indian Academy of Sciences (India)

    Graphenes prepared by three different methods have been investigated as electrode materials in electrochemical supercapacitors. The samples prepared by exfoliation of graphitic oxide and by the transformation of nanodiamond exhibit high specific capacitance in aq. H2SO4, the value reaching up to 117 F/g. By using an ...

  15. Preparation and electrochemical properties of mesoporous NiCo2O4 double-hemisphere used as anode for lithium-ion battery.

    Science.gov (United States)

    Yang, Yue; Huang, Guo Yong; Sun, Hongyu; Ahmad, Mashkoor; Mou, Qinyao; Zhang, Hongmei

    2018-06-19

    NiCo 2 O 4 is a potential anode material for lithium ion battery due to its many advantages, such as high theoretical capacitance, low cost, and good electrochemical activity. In this study, mesoporous NiCo 2 O 4 double-hemisphere (3-5 μm) with high surface area (270.68 m 2 ·g -1 ) and excellent electrochemical performances has been synthesized through a facile precipitation method followed with thermal treatment process. The prepared NiCo 2 O 4 is pure phase and can be indexed as a face-centered-cubic with a typical spinel structure. Electrochemical tests show the prepared material has high specific capacities (910 mAh·g -1 at 100 mA·g -1 ), excellent cyclicity (908  mAh·g -1 at 100 mA·g -1 after 60 cycles) and remarkable high rate performance (after 100 cycles, 585 mAh·g -1 at 400 mAh·g -1 , 415 mAh·g -1 at 800 mAh·g -1 and 320 mAh·g -1 at 1600 mAh·g -1 with coulombic efficiencies of almost 100%). The excellent performances of prepared NiCo 2 O 4 are mainly caused by the unique double-hemisphere structure, which has large surface area, gives material more opportunity to contact with electrolyte and facilitates lithium ion spreading into the material along the radical direction, resulting in a promising application for next-generation lithium-ion batteries. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Preparation and electrochemical properties of lamellar MnO{sub 2} for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Jun; Wei, Tong [Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China); Cheng, Jie [Research Institute of Chemical Defense, Beijing 100083 (China); Fan, Zhuangjun, E-mail: fanzhj666@163.com [Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China); Zhang, Milin [Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001 (China)

    2010-02-15

    Lamellar birnessite-type MnO{sub 2} materials were prepared by changing the pH of the initial reaction system via hydrothermal synthesis. The interlayer spacing of MnO{sub 2} with a layered structure increased gradually when the initial pH value varied from 12.43 to 2.81, while the MnO{sub 2}, composed of {alpha}-MnO{sub 2} and {gamma}-MnO{sub 2}, had a rod-like structure at pH 0.63. Electrochemical studies indicated that the specific capacitance of birnessite-type MnO{sub 2} was much higher than that of rod-like MnO{sub 2} at high discharge current densities due to the lamellar structure with fast intercalation/deintercalation of protons and high utilization of MnO{sub 2}. The initial specific capacitance of MnO{sub 2} prepared at pH 2.81 was 242.1 F g{sup -1} at 2 mA cm{sup -2} in 2 mol L{sup -1} (NH{sub 4}){sub 2}SO{sub 4} aqueous electrolyte. The capacitance increased by about 8.1% of initial capacitance after 200 cycles at a current density of 100 mA cm{sup -2}.

  17. Preparation of octahedral CuO micro/nanocrystals and electrochemical performance as anode for lithium-ion battery

    International Nuclear Information System (INIS)

    Feng, Lili; Xuan, Zhewen; Bai, Yang; Zhao, Hongbo; Li, Li; Chen, Yashun; Yang, Xianqin; Su, Changwei; Guo, Junming; Chen, Xiaokai

    2014-01-01

    Highlights: • Octahedral cupric oxides with hollow structure were prepared. • No hard template was used in the preparation of hollow cupric oxides. • The cupric oxides show good reversible capacity. - Abstract: Herein we report that three octahedral CuO samples with hollow or solid structure are successfully prepared by firstly preparation of Cu 2 O products using a chemical reduction method, then by calcination in a muffle furnace at 300 °C for 3 h in air atmosphere. The obtained CuO samples serve as a good model system for the study as anodes for lithium ion batteries. All the three CuO samples have high discharge specific capacity and good cycling stability from the 2nd cycling to the 50th cycling. Octahedral CuO hollow crystals with 400 nm in size have the highest reversible capacity and the smallest resistance. So their electrochemical performances are partly related to their morphologies. The results suggest that the as-prepared CuO samples, especially the 400 nm hollow octahedral CuO crystals could be a promising material for the anode of lithium-ion battery

  18. Electro-Optical and Electrochemical Properties of a Conjugated Polymer Prepared by the Cyclopolymerization of Diethyl Dipropargylmalonate

    Directory of Open Access Journals (Sweden)

    Yeong-Soon Gal

    2008-01-01

    Full Text Available The electro-optical and electrochemical properties of poly(diethyl dipropargylmalonate were measured and discussed. Poly(diethyl dipropargylmalonate prepared by (NBDPdCl2 catalyst was used for study. The chemical structure of poly(diethyl dipropargylmalonate was characterized by such instrumental methods as NMR (1H-, 13C-, IR, and UV-visible spectroscopies to have the conjugated cyclopolymer backbone system. The microstructure analysis of polymer revealed that this polymer have the six-membered ring moieties majorly. The photoluminescence peak of polymer was observed at 543 nm, which is corresponded to the photon energy of 2.51 eV. The cyclovoltamograms of the polymer exhibited the irreversible electrochemical behaviors between the doping and undoping peaks. It was found that the kinetics of the redox process of this conjugated cyclopolymer might be controlled by the diffusion-control process from the experiment of the oxidation current density of polymer versus the scan rate.

  19. Preparation of mesoporous NiO with a bimodal pore size distribution and application in electrochemical capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Wang Dengchao; Ni Wenbin; Pang Huan; Lu Qingyi; Huang Zhongjie [Key Laboratory of Analytical Chemistry for Life Science (MOE), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210008 (China); Zhao Jianwei, E-mail: zhaojw@nju.edu.c [Key Laboratory of Analytical Chemistry for Life Science (MOE), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210008 (China)

    2010-09-01

    Mesoporous nickel oxide with a porous structure exhibiting a bimodal pore size distribution (2.6 and 30.3 nm diameter pores) has been synthesized in this paper. Firstly, a mesoporous precursor of coordination complex Ni{sub 3}(btc){sub 2}.12H{sub 2}O (btc = 1,3,5-benzenrtricarboxylic acid) is synthesized based on the metal-organic coordination mechanism by a hydrothermal method. Then mesoporous NiO with a bimodal size distribution is obtained by calcining the precursor in the air, and characterized by transmission electron microscopy and N{sub 2} adsorption measurements. Such unique multiple porous structure indicates a promising application of the obtained NiO as electrode materials for supercapacitors. The electrochemical behavior has been investigated by cyclic voltammogram, electrochemical impedance spectra and chronopotentiometry in 3 wt.% KOH aqueous electrolyte. The results reveal that the prepared NiO has high-capacitance retention at high scan rate and exhibits excellent cycle-life stability due to its special mesoporous character with bimodal size distribution.

  20. Supercapacitive characteristics of electrochemically active porous materials

    Directory of Open Access Journals (Sweden)

    VLADIMIR V. PANIC

    2008-06-01

    Full Text Available The results of an investigation of the capacitive characteristics of sol–gel-processed titanium- and carbon-supported electrochemically active noble metal oxides, as representatives of porous electrode materials, are presented in the lecture. The capacitive properties of these materials were correlated to their composition, the preparation conditions of the oxides and coatings, the properties of the carbon support and to the composition of the electrolyte. The results of the electrochemical test methods, cyclic voltammetry and electrochemical impedance spectroscopy, were employed to resolve the possible physical structures of the mentioned porous materials, which are governed by the controlled conditions of the preparation of the oxide by the sol–gel process.

  1. Synthesis, Optical and Electrochemical Properties of Y2O3 Nanoparticles Prepared by Co-Precipitation Method.

    Science.gov (United States)

    Saravanan, Thulasingam; Raj, Srinivasan Gokul; Chandar, Nagamuthu Raja Krishna; Jayavel, Ramasamy

    2015-06-01

    Y2O3 nanoparticles were synthesized by co-precipitation route using yttrium nitrate hexahydrate and ammonium hydroxide as precursors. The prepared sample was calcined at 500 degrees C and subjected to various characterization studies like thermal analysis (TG/DTA), X-ray diffraction (XRD), transmission electron microscope (TEM), UV-visible (UV-Vis) and photoluminescence (PL) spectroscopy. The XRD pattern showed the cubic fluorite structure of Y2O3 without any impurity peaks, revealing high purity of the prepared sample. TEM images revealed that the calcined Y2O3 nanoparticles consist of spherical-like morphology with an average particle size of 12 nm. The absorption spectrum of calcined samples shows blue-shift compared to the as-prepared sample, which was further confirmed by PL studies. The possible formation mechanism of Y2O3 nanoparticles has been discussed based on the experimental results. Electrochemical behavior of Y2O3 nanoparticles was studied by cyclic voltammetry to assess their suitability for supercapacitor applications.

  2. One-step electrochemical deposition of a graphene-ZrO2 nanocomposite: Preparation, characterization and application for detection of organophosphorus agents

    Energy Technology Data Exchange (ETDEWEB)

    Du, Dan; Liu, Juan; Zhang, Xiao-Yan; Cui, Xiao-Li; Lin, Yuehe

    2011-04-27

    This paper described the preparation, characterization, and electrochemical properties of a graphene-ZrO2 nanocomposite (GZN) and its application for both the enrichment and detection of methyl parathion (MP). GZN was fabricated using electrochemical deposition and characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), which showed the successful formation of nanocomposites. Due to the strong affinity to the phosphoric group and the fast electron-transfer kinetics of GZN, both the extraction and electrochemical detection of organophosphorus (OP) agents at the same GZN modified electrochemical sensor was possible. The combination of solid-phase extraction and stripping voltammetric analysis allowed fast, sensitive, and selective determination of MP in garlic samples. The stripping response was highly linear over the MP concentrations ranging from 0.5 ng mL-1 to 100 ng mL-1, with a detection limit of 0.1 ng mL-1. This new nanocomposite-based electrochemical sensor provides an opportunity to develop a field-deployable, sensitive, and quantitative method for monitoring exposure to OPs.

  3. A facile electrode preparation method for accurate electrochemical measurements of double-side-coated electrode from commercial Li-ion batteries

    Science.gov (United States)

    Zhou, Ge; Wang, Qiyu; Wang, Shuo; Ling, Shigang; Zheng, Jieyun; Yu, Xiqian; Li, Hong

    2018-04-01

    The post mortem electrochemical analysis, including charge-discharge and electrochemical impedance spectroscopy (EIS) measurements, are critical steps for revealing the failure mechanisms of commercial lithium-ion batteries (LIBs). These post measurements usually require the reassembling of coin-cell with electrode which is often double-side-coated in commercial LIBs. It is difficult to use such double-side-coated electrode to perform accurate electrochemical measurements because the back side of the electrode is coated with active materials, rather than single-side-coated electrode that is often used in coin-cell measurements. In this study, we report a facile tape-covering sample preparation method, which can effectively suppress the influence of back side of the double-side-coated electrodes on capacity and EIS measurements in coin-cells. By tape-covering the unwanted side, the areal capacity of the desired investigated side of the electrode has been accurately measured with an experimental error of about 0.5% at various current densities, and accurate EIS measurements and analysis have been conducted as well.

  4. Progress in the electrochemical modification of graphene-based materials and their applications

    International Nuclear Information System (INIS)

    Chakrabarti, M.H.; Low, C.T.J.; Brandon, N.P.; Yufit, V.; Hashim, M.A.; Irfan, M.F.; Akhtar, J.; Ruiz-Trejo, E.; Hussain, M.A.

    2013-01-01

    Highlights: • Six means of functionalizing graphene electrochemically is reviewed. • Electrochemical functionalization is relatively new to other standard methods. • The technique is expected to improve graphene's application range considerably. -- Abstract: Graphene is a 2D allotrope of carbon with exciting properties such as extremely high electronic conductivity and superior mechanical strength. It has considerable potential for applications in fields such as bio-sensors, electrochemical energy storage and electronics. In most cases, graphene has been functionalized and modified with other materials to prepare composites. This work reviews the electrochemical modification of graphene. Commencing with a brief history, a summary of several different means of modifying graphene to effect diverse applications is provided. This is followed by a discussion on different composite materials that have been prepared with reduced graphene oxide prior to moving onto a detailed consideration of six different methods of electrochemically modifying graphene to prepare composite materials. These methods involve cathodic reduction of graphene oxide, electrophoretic deposition, electro-deposition techniques, electrospinning, electrochemical doping and electrochemical polymerization. Finally a consideration on the applications of electrochemically modified graphene composite materials in various fields is presented prior to discussing some prospects in enhancing the electrochemical process to realize excellent and economic composite materials in bulk

  5. Mapping the antioxidant activity of apple peels with soft probe scanning electrochemical microscopy

    OpenAIRE

    Lin, Tzu-En; Lesch, Andreas; Li, Chi-Lin; Girault, Hubert

    2017-01-01

    We present a non-invasive electrochemical strategy for mapping the antioxidant (AO) activity of apple peels, which counterbalances oxidative stress caused by various external effectors. Soft carbon microelectrodes were used for soft probe scanning electrochemical microscopy (SECM) enabling the gentle and scratch-free in contact mode scanning of the rough and delicate apple peels in an electrolyte solution. The SECM feedback mode was applied using ferrocene methanol (FcMeOH) as redox mediator ...

  6. Effect of Amine Adlayer on Electrochemical Uric Acid Sensor Conducted on Electrochemically Reduced Graphene Oxide

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sumi; Kim, Kyuwon [Incheon National University, Incheon (Korea, Republic of)

    2016-03-15

    The electrochemical biosensing efficiency of uric acid (UA) detection on an electrochemically reduced graphene oxide (ERGO)-decorated electrode surface was studied by using various amine linkers used to immobilize ERGO. The amine linkers aminoethylphenyldiazonium , 2,2'-(ethylenedioxy)bis(ethylamine), 3-aminopro-pyltriethoxysilane, and polyethyleneimine were coated on indium-tin-oxide electrode surfaces through chemical or electrochemical deposition methods. ERGO-decorated surfaces were prepared by the electrochemical reduction of graphene oxide (GO), which was immobilized on the amine-coated electrode surfaces through the electrostatic interaction between GO and the ammonium ion of the linker on the surface. We monitored the sensing results of electrochemical UA detection with differential pulse voltammetry. The ERGO-modified surface presented electrocatalytic oxidation of UA and ascorbic acid. Among the different amines tested, 3-aminopropyltriethoxysilane provided the best biosensing performance in terms of sensitivity and reproducibility.

  7. Effect of Amine Adlayer on Electrochemical Uric Acid Sensor Conducted on Electrochemically Reduced Graphene Oxide

    International Nuclear Information System (INIS)

    Park, Sumi; Kim, Kyuwon

    2016-01-01

    The electrochemical biosensing efficiency of uric acid (UA) detection on an electrochemically reduced graphene oxide (ERGO)-decorated electrode surface was studied by using various amine linkers used to immobilize ERGO. The amine linkers aminoethylphenyldiazonium , 2,2'-(ethylenedioxy)bis(ethylamine), 3-aminopro-pyltriethoxysilane, and polyethyleneimine were coated on indium-tin-oxide electrode surfaces through chemical or electrochemical deposition methods. ERGO-decorated surfaces were prepared by the electrochemical reduction of graphene oxide (GO), which was immobilized on the amine-coated electrode surfaces through the electrostatic interaction between GO and the ammonium ion of the linker on the surface. We monitored the sensing results of electrochemical UA detection with differential pulse voltammetry. The ERGO-modified surface presented electrocatalytic oxidation of UA and ascorbic acid. Among the different amines tested, 3-aminopropyltriethoxysilane provided the best biosensing performance in terms of sensitivity and reproducibility.

  8. Influence of roughness parameters on coefficient of friction under ...

    Indian Academy of Sciences (India)

    Surface texture and thus roughness parameters influence coefficient of friction during sliding. In the present ... It was observed that the surface roughness parameter, namely, R a , for different textured surfaces was comparable to one another although they were prepared by different machining techniques. It was also ...

  9. Preparation and electrochemical application of a new biosensor ...

    Indian Academy of Sciences (India)

    The electrocatalytic behaviour of oxidized acetaminophen was studied at the surface of the biosensor, using various electrochemical methods. The advantages of this ..... each case, a few ml of methanol was added to sample, and then it was ...

  10. Preparation of carbonaceous electrodes and evaluation of their performance by electrochemical techniques

    International Nuclear Information System (INIS)

    Sharma, H.S.; Manolkar, R.B.; Kamat, J.V.; Marathe, S.G.; Biswas, A.R.; Kulkarni, P.G.

    1994-01-01

    Carbonaceous electrodes, from glassy carbon (GC), graphite rod or graphite powder, have been prepared for coulometric and voltammetric investigation. Beaker type graphite electrode of larger surface area was used as working electrode for the analysis of uranium and plutonium in solution by coulometry. Results have shown usefulness of the electrode for both uranium and plutonium analysis. Thus the graphite electrode can be used in place of mercury for uranium analysis and in place of platinum gauze for plutonium analysis. GC electrode ( from French and Indian material ), graphite or carbon paste electrode of smaller surface area prepared here have also been found to give satisfactory performance as could be observed from cyclic voltammetric (cv) patterns for standard K 9 Fe(CN) 6 /K 4 Fe(CN) 6 redox system. Especially the GC electrode, (French) polished to 1μ finish with diamond paste gave very low values (1μ amp.) of background current in 1M KCl and the difference in cathodic and anodic peak potentials (δE values) was close to 60 mV from one electron transfer. Therefore the electrode can be used for various types of electrochemical studies relating to redox potentials, reaction mechanism, kinetic parameters etc. of different electrode processes. (author). 20 refs., 3 tabs., 10 figs., 8 photographs

  11. Preparation and electrochemical properties of gold nanoparticles containing carbon nanotubes-polyelectrolyte multilayer thin films

    International Nuclear Information System (INIS)

    Yu Aimin; Zhang Xing; Zhang Haili; Han, Deyan; Knight, Allan R.

    2011-01-01

    Highlights: → Gold nanoparticles containing carbon nanotubes-polyelectrolyte multilayer thin films were prepared via layer-by-layer self-assembly technique. → The electron transfer behaviour of the hybrid thin films were investigated using an electrochemical probe. → The resulting thin films exhibited an electrocatalytic activity towards the oxidation of nitric oxide. - Abstract: Multi-walled carbon nanotubes (MWCNT)/polyelectrolyte (PE) hybrid thin films were fabricated by alternatively depositing negatively charged MWCNT and positively charged (diallyldimethylammonium chloride) (PDDA) via layer-by-layer (LbL) assembly technique. The stepwise growth of the multilayer films of MWCNT and PDDA was characterized by UV-vis spectroscopy. Scanning electron microscopy (SEM) images indicated that the MWCNT were uniformly embedded in the film to form a network and the coverage density of MWCNT increased with layer number. Au nanoparticles (NPs) could be further adsorbed onto the film to form PE/MWCNT/Au NPs composite films. The electron transfer behaviour of multilayer films with different compositions were studied by cyclic voltammetry using [Fe(CN) 6 ] 3-/4- as an electrochemical probe. The results indicated that the incorporation of MWCNT and Au NPs not only greatly improved the electronic conductivity of pure polyelectrolyte films, but also provided excellent electrocatalytic activity towards the oxidation of nitric oxide (NO).

  12. Nonlinear optical properties measurement of polypyrrole -carbon nanotubes prepared by an electrochemical polymerization method

    Directory of Open Access Journals (Sweden)

    Shahriari

    2017-02-01

    Full Text Available In this work, the optical properties dependence of Multi-Walled Carbon Nanotubes (MWNT on concentration was discussed. MWNT samples were prepared in polypyrrole by an electrochemical polymerization of monomers, in the presence of different concentrations of MWNTs, using Sodium Dodecyl-Benzen-Sulfonate (SDBS as surfactant at room temperature. The nonlinear refractive and nonlinear absorbtion indices were measured using a low power CW laser beam operated at 532 nm using z-scan method. The results show that nonlinear refractive and nonlinear absorbtion indices tend to be increased with increasing the concentration of carbon nanotubes. Optical properties of  carbone nanotubes indicate that they are good candidates for nonlinear optical devices

  13. Preparation of silicon-substituted hydroxyapatite coatings on Ti–30Nb–xTa alloys using cyclic electrochemical deposition method

    International Nuclear Information System (INIS)

    Kim, Eun-Sil; Jeong, Yong-Hoon; Choe, Han-Cheol; Brantley, William A.

    2014-01-01

    Silicon-substituted hydroxyapatite coatings on Ti–30Nb–xTa alloys, prepared using a cyclic electrochemical deposition method, have been investigated using a variety of surface analytical experimental methods. The silicon-substituted hydroxyapatite (Si-HA) coatings were prepared by electrolytic deposition in electrolytes containing Ca 2+ , PO 4 3− and SiO 3 2− ions. The deposited layers were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), and a wettability test. Phase transformation from (α″ + β) to largely β occurred with increasing Ta content in the Ti –30Nb–xTa alloys, yielding larger grain size. The morphology of the Si-HA coatings was changed by increasing the number of deposition cycles, with the initial plate-like structures changing to mixed rod-like and plate-like shapes, and finally to a rod-like structure. From the ATR-FTIR spectra, Si existed in the form of SiO 4 4− groups in Si-HA coating layer. The lowest aqueous contact angles and best wettability were found for the Si-HA coatings prepared with 30 deposition cycles. - Highlights: • Electrochemically deposited Si-HA coatings on Ti –30Nb–xTa alloys were investigated. • The Si-HA coatings were initially precipitated along the martensitic structure. • The morphology of the Si-HA coating changed with the deposition cycles. • Si existed in the form of SiO 4 4− groups in the Si-HA coating

  14. Electrochemical preparation of uniform CuO/Cu2O heterojunction on β-cyclodextrin-modified carbon fibers

    KAUST Repository

    Chen, Fang-Ping

    2016-01-18

    Abstract: In this work, a uniform heterojunction of cupric oxide/cuprous oxide was decorated on the surface of carbon fibers by electrochemical method (CuO/Cu2O/CDs/CFs). Methyl-β-cyclodextrin was first grafted on the surface of carbon fibers (CDs/CFs). Cubic cuprous oxide was electrodeposited on the surface of (Cu2O/CDs/CFs) in 0.1 M KNO3, the cuprous oxide was then partly anodized to cupric oxide to form a heterojunction of cupric oxide/cuprous oxide with a burr shape (CuO/Cu2O/CDs/CFs). The obtained materials were characterized by field emission scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and electrochemical techniques. The potential application in pollution treatment was further investigated, and the prepared CuO/Cu2O/CDs/CFs could be a promising adsorbent/photocatalyst toward the uptake and degradation of 2, 6-dichlorophenol (2, 6-DCP). Graphical Abstract: [Figure not available: see fulltext.] © 2016 Springer Science+Business Media Dordrecht

  15. Electrochemical Analysis of Neurotransmitters

    Science.gov (United States)

    Bucher, Elizabeth S.; Wightman, R. Mark

    2015-07-01

    Chemical signaling through the release of neurotransmitters into the extracellular space is the primary means of communication between neurons. More than four decades ago, Ralph Adams and his colleagues realized the utility of electrochemical methods for the study of easily oxidizable neurotransmitters, such as dopamine, norepinephrine, and serotonin and their metabolites. Today, electrochemical techniques are frequently coupled to microelectrodes to enable spatially resolved recordings of rapid neurotransmitter dynamics in a variety of biological preparations spanning from single cells to the intact brain of behaving animals. In this review, we provide a basic overview of the principles underlying constant-potential amperometry and fast-scan cyclic voltammetry, the most commonly employed electrochemical techniques, and the general application of these methods to the study of neurotransmission. We thereafter discuss several recent developments in sensor design and experimental methodology that are challenging the current limitations defining the application of electrochemical methods to neurotransmitter measurements.

  16. Effect of substrate roughness and working pressure on photocatalyst of N-doped TiOx films prepared by reactive sputtering with air

    International Nuclear Information System (INIS)

    Lee, Seon-Hong; Yamasue, Eiji; Okumura, Hideyuki; Ishihara, Keiichi N.

    2015-01-01

    Highlights: • Effect of substrate roughness and working pressure on the physical properties and the photocatalytic properties of the N-doped TiO x films are investigated. • Surface roughness of glass substrate has little influence on the film properties, but significant influence on the photocatalytic ability. • Working pressure has little influence on the produced phases and the atomic bonding configurations, but significant influence on the atomic concentration of the N-doped TiO x film. • High photocatalysis of N-doped TiO x film requires the permissible range of the N doping concentration which shows the interstitial complex N doping states in TiO 2 . - Abstract: N-doped TiO x films on the glass substrate were prepared by radio-frequency (RF) magnetron reactive sputtering of Ti target in a mixed gas of argon and dry air. The effect of substrate roughness and working pressure on the physical properties and the photocatalytic properties of the N-doped TiO x films was investigated. The surface roughness of glass substrate has little influence on the film properties such as produced phases, lattice parameters, introduced nitrogen contents, and atomic bonding configurations, but significant influence on the surface roughness of film resulting in the variation of the photocatalytic ability. The working pressure has little influence on the produced phases and the atomic bonding configurations, but significant influence on the atomic concentration of the N-doped TiO x film, resulting in the large variation of optical, structural, and photocatalytic properties. It is suggested that the high photocatalysis of N-doped TiO x film requires a certain range of the N doping concentration which shows the interstitial complex N doping states in TiO 2

  17. Modeling and Parameter Optimization for Surface Roughness and Residual Stress in Dry Turning Process

    Directory of Open Access Journals (Sweden)

    M. H. El-Axir

    2017-10-01

    Full Text Available The influence of some turning variables and tool overhang on surface roughness parameters and residual stress induced due to machining 6061-T6 aluminum alloy is investigated in this paper. Four input parameters (cutting speed, feed rate, depth of cut and tool overhang are considered. Tests are carried out by precision turning operation on a lathe. Design of experiment techniques, i.e. response surface methodology (RSM and Taguchi's technique have been used to accomplish the objective of the experimental study. Surface roughness parameters are measured using a portable surface roughness device while residual stresses are measured employing deflection-etching technique using electrochemical analysis. The results obtained reveal that feed and rotational speed play significant role in determining the average surface roughness. Furthermore, the depth of cut and tool overhang are less significant parameters, whereas tool overhang interacts with feed rate. The best result of surface roughness was obtained using low or medium values of overhang with low speed and /or feed rate. Minimum maximum tensile residual stress can be obtained with a combination of tool overhang of 37 mm with very low depth of cut, low rotational speed and feed rate of 0.188 mm/rev.

  18. Controlling of morphology and electrocatalytic properties of cobalt oxide nanostructures prepared by potentiodynamic deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Hallaj, Rahman [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Akhtari, Keivan [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Research Center for Nanotechnology, University of Kurdistan, P.O.Box 416, Sanandaj (Iran, Islamic Republic of); Salimi, Abdollah, E-mail: absalimi@uok.ac.ir [Department of Chemistry, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of); Research Center for Nanotechnology, University of Kurdistan, P.O.Box 416, Sanandaj (Iran, Islamic Republic of); Soltanian, Saied [Department of Physics, University of Kurdistan, P.O. Box 416, Sanandaj (Iran, Islamic Republic of)

    2013-07-01

    Electrodeposited cobalt oxide nanostructures were prepared by Repetitive Triangular Potential Scans (RTPS) as a simple, remarkably fast and scalable potentiodynamic method. Electrochemical deposition of cobalt oxide nanostructures onto GC electrode was performed from aqueous Co(NO{sub 3}){sub 2}, (pH 6) solution using cyclic voltammetry method. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to characterize the morphology of fabricated nanostructures. The evaluation of electrochemical properties of deposited films was performed using cyclic voltametry (CV) and impedance spectroscopy (IS) techniques. The analysis of the experimental data clearly showed that the variations of potential scanning ranges during deposition process have drastic effects on the geometry, chemical structure and particle size of cobalt oxide nanoparticles. In addition, the electrochemical and electrocatalytic properties of prepared nanostructures can be controlled through applying different potential windows in electrodeposition process. The imaging and voltammetric studies suggested to the existence of at least three different shapes of cobalt-oxide nanostructures in various potential windows applied for electrodeposition. With enlarging the applied potential window, the spherical-like cobalt oxide nanoparticles with particles sizes about 30–50 nm changed to the grain-like structures (30 nm × 80 nm) and then to the worm-like cobalt oxide nanostructures with 30 nm diameter and 200–400 nm in length. Furthermore, the roughness of the prepared nanostructures increased with increasing positive potential window. The GC electrodes modified with cobalt oxide nanostructures shows excellent electrocatalytic activity toward H{sub 2}O{sub 2} and As (III) oxidation. The electrocatalytic activity of cobalt oxide nanostructures prepared at more positive potential window toward hydrogen peroxide oxidation was increased, while for As(III) oxidation the electrocatalytic

  19. Controlling of morphology and electrocatalytic properties of cobalt oxide nanostructures prepared by potentiodynamic deposition method

    International Nuclear Information System (INIS)

    Hallaj, Rahman; Akhtari, Keivan; Salimi, Abdollah; Soltanian, Saied

    2013-01-01

    Electrodeposited cobalt oxide nanostructures were prepared by Repetitive Triangular Potential Scans (RTPS) as a simple, remarkably fast and scalable potentiodynamic method. Electrochemical deposition of cobalt oxide nanostructures onto GC electrode was performed from aqueous Co(NO 3 ) 2 , (pH 6) solution using cyclic voltammetry method. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to characterize the morphology of fabricated nanostructures. The evaluation of electrochemical properties of deposited films was performed using cyclic voltametry (CV) and impedance spectroscopy (IS) techniques. The analysis of the experimental data clearly showed that the variations of potential scanning ranges during deposition process have drastic effects on the geometry, chemical structure and particle size of cobalt oxide nanoparticles. In addition, the electrochemical and electrocatalytic properties of prepared nanostructures can be controlled through applying different potential windows in electrodeposition process. The imaging and voltammetric studies suggested to the existence of at least three different shapes of cobalt-oxide nanostructures in various potential windows applied for electrodeposition. With enlarging the applied potential window, the spherical-like cobalt oxide nanoparticles with particles sizes about 30–50 nm changed to the grain-like structures (30 nm × 80 nm) and then to the worm-like cobalt oxide nanostructures with 30 nm diameter and 200–400 nm in length. Furthermore, the roughness of the prepared nanostructures increased with increasing positive potential window. The GC electrodes modified with cobalt oxide nanostructures shows excellent electrocatalytic activity toward H 2 O 2 and As (III) oxidation. The electrocatalytic activity of cobalt oxide nanostructures prepared at more positive potential window toward hydrogen peroxide oxidation was increased, while for As(III) oxidation the electrocatalytic activity decreased

  20. Preparation and Electrochemical Properties of Graphene/Epoxy Resin Composite Coating

    Science.gov (United States)

    Liao, Zijun; Zhang, Tianchi; Qiao, Sen; Zhang, Luyihang

    2017-11-01

    The multilayer graphene powder as filler, epoxy modified silicone resin as film-forming agent, anticorrosion composite coating has been created using sand dispersion method, the electrochemical performance was compared with different content of graphene composite coating and pure epoxy resin coating. The open circuit potential (OCP), potentiodynamic polarization curves (Tafel Plot) and electrochemical impedance spectroscopy (EIS) were tested. The test results showed that the anti-corrosion performance of multilayer graphene added has improved greatly, and the content of the 5% best corrosion performance of graphene composite coating.

  1. Study of the electrochemical behavior at low temperatures of green anodes for Lithium ion batteries prepared with anatase TiO2 and water soluble sodium carboxymethyl cellulose binder

    International Nuclear Information System (INIS)

    Mancini, M.; Nobili, F.; Tossici, R.; Marassi, R.

    2012-01-01

    Highlights: ► Water soluble CMC and PVDF binders are used to prepare anatase TiO 2 electrodes. ► The electrochemical behavior of the different electrodes is studied between 20 and −30 °C. ► CMC/TiO 2 anodes show lower ICL, lower polarization and higher low-temperature capacity at high rates than PVDF/TiO 2 anodes. ► Electrochemical Impedance Spectroscopy results show better kinetics for CMC/TiO 2 electrodes. - Abstract: The electrochemical behavior at low temperatures of anatase TiO 2 electrodes for Lithium ion batteries have been evaluated by galvanostatic cycles in the temperature range 20 to −30 °C. Two different manufacturing processes have been used to prepare anatase anodes containing water soluble sodium carboxymethyl cellulose (CMC) or poly(vinilydene fluoride) (PVDF) as binder. The low temperature performances at different charge/discharge rates of TiO 2 /CMC and TiO 2 /PVDF electrodes are compared and discussed in terms of irreversible capacity loss (ICL) at the first cycle, capacity retention and reversible capacity. The kinetics of the electrodes containing CMC or PVDF is evaluated by Electrochemical Impedance Spectroscopy.

  2. Electrochemical preparation and characteristics of Ni-Co-LaNi5 composite coatings as electrode materials for hydrogen evolution

    International Nuclear Information System (INIS)

    Wu Gang; Li Ning; Dai Changsong; Zhou Derui

    2004-01-01

    Electrocatalytic activity for the hydrogen evolution reaction on Ni-Co-LaNi 5 composite electrodes prepared by electrochemical codeposition technique was evaluated. The relationship between the current density for hydrogen evolution reaction and the amount of LaNi 5 particles in Ni-Co baths is like the well-known 'volcano plot'. The Surface morphology and microstructure of Ni-Co-LaNi 5 coatings were determined by means of scanning electron microscopy (SEM) and X-ray diffraction (XRD). The kinetic parameters were determined from electrochemical steady-state Tafel polarization and electrochemical impedance spectroscopy technology in 1 M NaOH solution. The values obtained for the apparent energies of activation are 32.48, 46.29 and 57.03 kJ mol -1 for the Ni-Co-LaNi 5 , Ni-Co and Ni electrodes, respectively. The hydrogen evolution reaction on Ni-Co-LaNi 5 proceeds via Volmer-Tafel reaction route with the mixed rate determining characteristics. The composite coating Ni-Co-LaNi 5 is catalytically more active than Ni and Ni-Co electrodes due to the increase in its real surface areas and the decrease in the apparent free energy of activation caused by the electrocatalytic synergistic effect of the Ni-Co alloys and the hydrogen storage intermetallic particles on the electrode surface

  3. Time-dependent behavior of rough discontinuities under shearing conditions

    Science.gov (United States)

    Wang, Zhen; Shen, Mingrong; Ding, Wenqi; Jang, Boan; Zhang, Qingzhao

    2018-02-01

    The mechanical properties of rocks are generally controlled by their discontinuities. In this study, the time-dependent behavior of rough artificial joints under shearing conditions was investigated. Based on Barton’s standard profile lines, samples with artificial joint surfaces were prepared and used to conduct the shear and creep tests. The test results showed that the shear strength of discontinuity was linearly related to roughness, and subsequently an empirical equation was established. The long-term strength of discontinuity can be identified using the inflection point of the isocreep-rate curve, and it was linearly related to roughness. Furthermore, the ratio of long-term and instantaneous strength decreased with the increase of roughness. The shear-stiffness coefficient increased with the increase of shear rate, and the influence of shear rate on the shear stiffness coefficient decreased with the decrease of roughness. Further study of the mechanism revealed that these results could be attributed to the different time-dependent behavior of intact and joint rocks.

  4. Effect of surface roughness on the in vitro degradation behaviour of a biodegradable magnesium-based alloy

    Science.gov (United States)

    Walter, R.; Kannan, M. Bobby; He, Y.; Sandham, A.

    2013-08-01

    In this study, the in vitro degradation behaviour of AZ91 magnesium alloy with two different surface finishes was investigated using electrochemical impedance spectroscopy (EIS) in simulated body fluid (SBF). The polarisation resistance (Rp) of the rough surface alloy immersed in SBF for 3 h was ~30% lower as compared to that of the smooth surface alloy. After 12 h immersion in SBF, the Rp values for both the surface finishes decreased and were also similar. However, localised degradation occurred sooner, and to a noticeably higher severity in the rough surface alloy as compared to the smooth surface alloy.

  5. Effect of nanometer scale surface roughness of titanium for osteoblast function

    Directory of Open Access Journals (Sweden)

    Satoshi Migita

    2017-02-01

    Full Text Available Surface roughness is an important property for metallic materials used in medical implants or other devices. The present study investigated the effects of surface roughness on cellular function, namely cell attachment, proliferation, and differentiation potential. Titanium (Ti discs, with a hundred nanometer- or nanometer-scale surface roughness (rough and smooth Ti surface, respectively were prepared by polishing with silicon carbide paper. MC3T3-E1 mouse osteoblast-like cells were cultured on the discs, and their attachment, spreading area, proliferation, and calcification were analyzed. Cells cultured on rough Ti discs showed reduced attachment, proliferation, and calcification ability suggesting that the surface inhibited osteoblast function. The findings can provide a basis for improving the biocompatibility of medical devices.

  6. Bibliographical study for the development of an electrochemical preparation of plutonium molten salts; Etude bibliographique en vue de la mise au point d'une preparation electrochimique en sels fondus du plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Lefevre, J.

    1957-01-15

    Based on an analogy with methods of electrochemical preparation of uranium molten salts, this bibliographical study reports data of physical properties of plutonium (melting point, density, ranges of existence of the different plutonium phases, resistivity, resistivity variation coefficient), discusses the search for an electrolytic bath (properties of plutonium bromides, chlorides and fluorides), and the required apparatus (an electrolysis cell)

  7. Preparation of activated carbon from sorghum pith and its structural and electrochemical properties

    Energy Technology Data Exchange (ETDEWEB)

    Senthilkumar, S.T.; Senthilkumar, B. [Solid State Ionics and Energy Devices Laboratory, Department of Physics, Bharathiar University, Coimbatore 641046 (India); Balaji, S. [Materials Laboratory, Thiagarajar Advanced Research Center, Thiagarajar College of Engineering, Madurai 625015 (India); Sanjeeviraja, C. [Department of Physics, Alagappa University, Karaikudi 630003 (India); Kalai Selvan, R., E-mail: selvankram@buc.edu.in [Solid State Ionics and Energy Devices Laboratory, Department of Physics, Bharathiar University, Coimbatore 641046 (India)

    2011-03-15

    Research highlights: {yields} Sorghum pith as the cost effective raw material for activated carbon preparation. {yields} Physicochemical method/KOH activation for preparation of activated carbon is inexpensive. {yields} Activated carbon having lower surface area surprisingly delivered a higher specific capacitance. {yields} Treated at 500 {sup o}C activated carbon exceeds maximum specific capacitances of 320.6 F/g at 10 mV/s. -- Abstract: The cost effective activated carbon (AC) has been prepared from sorghum pith by NaOH activation at various temperatures, including 300 {sup o}C (AC1), 400 {sup o}C (AC2) and 500 {sup o}C (AC3) for the electrodes in electric double layer capacitor (EDLC) applications. The amorphous nature of the samples has been observed from X-ray diffraction and Raman spectral studies. Subsequently, the surface functional groups, surface morphology, pore diameter and specific surface area have been identified through FT-IR, SEM, histogram and N{sub 2} adsorption/desorption isotherm methods. The electrochemical characterization of AC electrodes has been examined using cyclic voltammetry technique in the potential range of -0.1-1.2 V in 1.0 M H{sub 2}SO{sub 4} electrolyte at different scan rates (10, 20, 30, 40, 50 and 100 mV/s). The maximum specific capacitances of 320.6 F/g at 10 mV/s and 222.1 F/g at 100 mV/s have been obtained for AC3 electrode when compared with AC1 and AC2 electrodes. Based on the characterization studies, it has been inferred that the activated carbon prepared from sorghum pith may be one of the innovative carbon electrode materials for EDLC applications.

  8. Electrochemical polymerization of pyrrole over AZ31 Mg alloy for biomedical applications

    International Nuclear Information System (INIS)

    Srinivasan, A.; Ranjani, P.; Rajendran, N.

    2013-01-01

    Highlights: ► Polymerization of pyrrole over AZ31 Mg was carried out using cyclic voltammetry. ► Pyrrole concentration was optimized to accomplish the adherent and uniform coating. ► Effect of monomer concentration on the surface morphology was discussed. ► Corrosion resistance of AZ31 Mg in SBF was studied as a function of Py concentration. ► PPy coated AZ31 Mg alloy exhibited enhanced corrosion resistance at 0.25 M of Py. -- Abstract: Electrochemical polymerization of pyrrole (Py) from aqueous salicylate solution over AZ31 Mg alloy was carried out using cyclic voltammetry (CV). The effect of monomer concentration on the surface and electrochemical corrosion in simulated body fluid (SBF) were analysed. Attenuated total reflection-infrared (ATR-IR) spectra showed the characteristic ring stretching peaks for polypyrrole (PPy). Scanning electron microscopy (SEM) and atomic force microscopy (AFM) studies exhibited typical cauliflower morphology with rough surface for PPy coated AZ31 Mg alloy. Open circuit potential measurement and potentiodynamic polarization studies revealed that the coating prepared using 0.25 M of Py had positive shift of about 120 mV in corrosion potential and lower corrosion current density (0.03 mA/cm 2 ) compared to other concentrations and uncoated AZ31 Mg alloy (0.25 mA/cm 2 ). Electrochemical impedance spectroscopic (EIS) studies of uncoated and PPy coated Mg alloy in SBF revealed three-time constants behaviour with about one order of increment in impedance value for 0.25 M of Py

  9. Preparation of silicon-substituted hydroxyapatite coatings on Ti–30Nb–xTa alloys using cyclic electrochemical deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun-Sil [Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University (Korea, Republic of); Jeong, Yong-Hoon [Biomechanics and Tissue Engineering Laboratory, Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH (United States); Choe, Han-Cheol, E-mail: hcchoe@chosun.ac.kr [Department of Dental Materials, Research Center of Nano-Interface Activation for Biomaterials, School of Dentistry, Chosun University (Korea, Republic of); Brantley, William A. [Division of Restorative Science and Prosthodontics, College of Dentistry, The Ohio State University, Columbus, OH (United States)

    2014-12-01

    Silicon-substituted hydroxyapatite coatings on Ti–30Nb–xTa alloys, prepared using a cyclic electrochemical deposition method, have been investigated using a variety of surface analytical experimental methods. The silicon-substituted hydroxyapatite (Si-HA) coatings were prepared by electrolytic deposition in electrolytes containing Ca{sup 2+}, PO{sub 4}{sup 3−} and SiO{sub 3}{sup 2−} ions. The deposited layers were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), and a wettability test. Phase transformation from (α″ + β) to largely β occurred with increasing Ta content in the Ti –30Nb–xTa alloys, yielding larger grain size. The morphology of the Si-HA coatings was changed by increasing the number of deposition cycles, with the initial plate-like structures changing to mixed rod-like and plate-like shapes, and finally to a rod-like structure. From the ATR-FTIR spectra, Si existed in the form of SiO{sub 4}{sup 4−} groups in Si-HA coating layer. The lowest aqueous contact angles and best wettability were found for the Si-HA coatings prepared with 30 deposition cycles. - Highlights: • Electrochemically deposited Si-HA coatings on Ti –30Nb–xTa alloys were investigated. • The Si-HA coatings were initially precipitated along the martensitic structure. • The morphology of the Si-HA coating changed with the deposition cycles. • Si existed in the form of SiO{sub 4}{sup 4−} groups in the Si-HA coating.

  10. One-step electrochemical composite polymerization of polypyrrole integrated with functionalized graphene/carbon nanotubes nanostructured composite film for electrochemical capacitors

    International Nuclear Information System (INIS)

    Ding Bing; Lu Xiangjun; Yuan Changzhou; Yang Sudong; Han Yongqin; Zhang Xiaogang; Che Qian

    2012-01-01

    Graphical abstract: A novel one-step electrochemical co-deposition strategy was first proposed to prepare unique polypyrrole/reduced graphene oxide/carbon nanotubes (PPy/F-RGO/CNTs) ternary composites, where F-RGO, CNTs, and PPy were electrodeposited simultaneously to construct a three-dimensional (3-D) highly porous film electrode. Highlights: ► Isolated, water-soluble graphene was obtained through benzenesulfonic functionalization. ► PPy/F-RGO/CNTs ternary composite film was prepared via one-step electrochemical co-deposition route. ► PPy/F-RGO/CNTs film shows 3-D highly porous nanostructure and high electrical conductivity. ► PPy/F-RGO/CNTs film exhibits high capacitance, good high-rate performance with a remarkable cycling stability. - Abstract: A novel one-step electrochemical composite polymerization strategy was first proposed to prepare unique polypyrrole/reduced graphene oxide/carbon nanotubes (PPy/F-RGO/CNTs) ternary composites, where F-RGO, CNTs, and PPy were electrodeposited simultaneously to construct a three-dimensional (3-D) highly porous film electrode. Such ternary composite film electrode exhibits a high specific capacitance of 300 F g −1 at 1 A g −1 as well as a remarkable cycling stability at high rates, which is related to its unique nanostructure and high electrical conductivity. F-RGO and CNTs act as an electron-transporting backbone of a 3-D porous nanostructure, leaving adequate working space for facile electrolyte penetration and better faradaic utilization of the electro-active PPy. Furthermore, the straightforward approach proposed here can be readily extended to prepare other composite film electrodes with good electrochemical performance for energy storage.

  11. Electrochemical Performance of Ni-MOFs for Supercapacitors

    Science.gov (United States)

    Li, Yujuan; Song, Lili; Han, Yinghui; Wang, Guangyou

    2018-03-01

    In this work, the Ni-MOFs of electrode material has been synthesized, characterized and studied for the electrochemical properties of electrode materials. The effects of the doping amount of Ni, calcination temperature and time were studied in detail. The results suggested that the electrochemical properties were obviously improved by the Ni-MOFs of electrode material and the best preparation conditions can also improve the electrochemical properties of electrode materials. These results open a way for the design of tailored MOFs as electrode materials for supercapacitors.

  12. Electrochemical synthesis of mesoporous Pt-Au binary alloys with tunable compositions for enhancement of electrochemical performance.

    Science.gov (United States)

    Yamauchi, Yusuke; Tonegawa, Akihisa; Komatsu, Masaki; Wang, Hongjing; Wang, Liang; Nemoto, Yoshihiro; Suzuki, Norihiro; Kuroda, Kazuyuki

    2012-03-21

    Mesoporous Pt-Au binary alloys were electrochemically synthesized from lyotropic liquid crystals (LLCs) containing corresponding metal species. Two-dimensional exagonally ordered LLC templates were prepared on conductive substrates from diluted surfactant solutions including water, a nonionic surfactant, ethanol, and metal species by drop-coating. Electrochemical synthesis using such LLC templates enabled the preparation of ordered mesoporous Pt-Au binary alloys without phase segregation. The framework composition in the mesoporous Pt-Au alloy was controlled simply by changing the compositional ratios in the precursor solution. Mesoporous Pt-Au alloys with low Au content exhibited well-ordered 2D hexagonal mesostructures, reflecting those of the original templates. With increasing Au content, however, the mesostructural order gradually decreased, thereby reducing the electrochemically active surface area. Wide-angle X-ray diffraction profiles, X-ray photoelectron spectra, and elemental mapping showed that both Pt and Au were atomically distributed in the frameworks. The electrochemical stability of mesoporous Pt-Au alloys toward methanol oxidation was highly improved relative to that of nonporous Pt and mesoporous Pt films, suggesting that mesoporous Pt-Au alloy films are potentially applicable as electrocatalysts for direct methanol fuel cells. Also, mesoporous Pt-Au alloy electrodes showed a highly sensitive amperometric response for glucose molecules, which will be useful in next-generation enzyme-free glucose sensors.

  13. Synthesis and electrochemical properties of olivine LiFePO{sub 4} prepared by a carbothermal reduction method

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hui-ping; Wang, Zhi-xing; Li, Xin-hai; Guo, Hua-jun; Peng, Wen-jie; Zhang, Yun-he; Hu, Qi-yang [School of Metallurgical Science and Engineering, Central South University, Changsha 410083 (China)

    2008-10-01

    LiFePO{sub 4}/C composite cathode material was prepared by carbothermal reduction method, which uses NH{sub 4}H{sub 2}PO{sub 4}, Li{sub 2}CO{sub 3} and cheap Fe{sub 2}O{sub 3} as starting materials, acetylene black and glucose as carbon sources. The precursor of LiFePO{sub 4}/C was characterized by differential thermal analysis and thermogravimetry. X-ray diffraction (XRD), scanning electron microscopy (SEM) micrographs showed that the LiFePO{sub 4}/C is olivine-type phase, and the addition of the carbon reduced the LiFePO{sub 4} grain size. The carbon is dispersed between the grains, ensuring a good electronic contact. The products sintered at 700 C for 8 h with glucose as carbon source possessed excellent electrochemical performance. The synthesized LiFePO{sub 4} composites showed a high electrochemical capacity of 159.3 mAh g{sup -1} at 0.1C rate, and the capacity fading is only 2.2% after 30 cycles. (author)

  14. Characterization of electrochemically and chemically generated technetium diphosphonate radiopharmaceuticals

    International Nuclear Information System (INIS)

    Martin, J.L. Jr.

    1987-01-01

    Tc-Methylene diphosphonate, (MDP), the skeletal imaging ligand is most use in radiopharmacies, is the first metal-ligand complex prepared electrochemically in this work. A similar systematic evaluation of electrochemically reduced Tc-dimethylaminomethylene diphosphonate (DMAD) is presented. DMAD as well as MDP have been characterized by anion exchange HPLC following NaBH4 reduction. The goal is twofold. First, the effect of varying the applied potential on the resultant chromatographic distribution of complexes is investigated. Secondly, the combination(s) of applied potential and preparation pH which preferentially directs the formation of technetium diphosphonate complexes previously shown to be superior skeletal imaging agents is determined. EXAFS, extended x-ray absorption fine structure spectroscopy, is applied to the analysis of dilute solutions (10mM) of electrochemically and chemically reduced Tc-MDP complexes. Further characterizations of electrochemically and chemically generated complexes are performed using in-vitro and in-vivo physiological techniques of biodistribution and blood clearance studies on Sprague Dawley rats and beagle dogs respectively. Finally, in-vitro and in-vivo dilution studies were performed using water, human and dog urine, to determine the influence of the physiological environment on clinically prepared and injected radiopharmaceuticals

  15. Generalizing roughness: experiments with flow-oriented roughness

    Science.gov (United States)

    Trevisani, Sebastiano

    2015-04-01

    Surface texture analysis applied to High Resolution Digital Terrain Models (HRDTMs) improves the capability to characterize fine-scale morphology and permits the derivation of useful morphometric indexes. An important indicator to be taken into account in surface texture analysis is surface roughness, which can have a discriminant role in the detection of different geomorphic processes and factors. The evaluation of surface roughness is generally performed considering it as an isotropic surface parameter (e.g., Cavalli, 2008; Grohmann, 2011). However, surface texture has often an anisotropic character, which means that surface roughness could change according to the considered direction. In some applications, for example involving surface flow processes, the anisotropy of roughness should be taken into account (e.g., Trevisani, 2012; Smith, 2014). Accordingly, we test the application of a flow-oriented directional measure of roughness, computed considering surface gravity-driven flow. For the calculation of flow-oriented roughness we use both classical variogram-based roughness (e.g., Herzfeld,1996; Atkinson, 2000) as well as an ad-hoc developed robust modification of variogram (i.e. MAD, Trevisani, 2014). The presented approach, based on a D8 algorithm, shows the potential impact of considering directionality in the calculation of roughness indexes. The use of flow-oriented roughness could improve the definition of effective proxies of impedance to flow. Preliminary results on the integration of directional roughness operators with morphometric-based models, are promising and can be extended to more complex approaches. Atkinson, P.M., Lewis, P., 2000. Geostatistical classification for remote sensing: an introduction. Computers & Geosciences 26, 361-371. Cavalli, M. & Marchi, L. 2008, "Characterization of the surface morphology of an alpine alluvial fan using airborne LiDAR", Natural Hazards and Earth System Science, vol. 8, no. 2, pp. 323-333. Grohmann, C

  16. An electrochemical method to prepare of Pd/Cu2O/MWCNT nanostructure as an anode electrocatalyst for alkaline direct ethanol fuel cells

    International Nuclear Information System (INIS)

    Rostami, Hussein; Rostami, Abbas Ali; Omrani, Abdollah

    2016-01-01

    This study reports an electrochemical method to fabrication of palladium nanoparticles (Pd NPs) promoted with cuprous oxide (Cu 2 O) supported on multi-walled carbon nanotube (Pd/Cu 2 O/MWCNT). First, Cu 2 O is electrodeposited on treated MWCNTs in the optimum deposition conditions. Then, the Pd nanostructure is electrochemically fabricated on Cu 2 O/MWCNT electrode by cycling the potential between +0.5 to −1.0 V in negative direction. The prepared electrodes are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and transmission electron microscopy (TEM). The electrocatalytic performance of Pd/Cu 2 O/MWCNT electrocatalyst for ethanol oxidation reaction (EOR) is investigated by cyclic voltammetric (CV), electrochemical impedance spectroscopy (EIS), and chronoamperometry (CA) measurements. The formation of the Pd/Cu 2 O/MWCNT is confirmed by EDX and XRD techniques. The onset potential of Pd/Cu 2 O/MWCNT shifts to negative values by 120 mV compared to the onset potential of Pd/MWCNT. Much higher I f /I b value is obtained for Pd/Cu 2 O/MWCNT compared to other Pd-based catalysts indicating Cu 2 O could significantly enhance the stability and CO poisoning tolerance of the Pd towards ethanol electrooxidation. The results revealed that the prepared Pd/Cu 2 O/MWCNT catalyst can be a promising anode catalyst for alkaline direct ethanol fuel cells.

  17. Science and Technology Text Mining: Electrochemical Power

    Science.gov (United States)

    2003-07-14

    electrodes) and improvements based on component materials (glassy carbon, carbon fibers, aerogels , thin films). A focal point of electrochemical capacitor...performance of carbon aerogels ; and the fabrication and application of Cu-carbon composite (prepared from sawdust) to electrochemical capacitor electrodes. xi...applications require decreases in size and weight, especially for space, aircraft , and individual soldier or small team applications. For large volumes

  18. Synthesis of graphene platelets by chemical and electrochemical route

    Energy Technology Data Exchange (ETDEWEB)

    Ramachandran, Rajendran; Felix, Sathiyanathan [Centre for Nanotechnology Research, VIT University, Vellore 632014, Tamil Nadu (India); Joshi, Girish M. [Materials Physics Division, School of Advanced Sciences, VIT University, Vellore 632014, Tamil Nadu (India); Raghupathy, Bala P.C., E-mail: balapraveen2000@yahoo.com [Centre for Nanotechnology Research, VIT University, Vellore 632014, Tamil Nadu (India); Research and Advanced Engineering Division (Materials), Renault Nissan Technology and Business Center India (P) Ltd., Chennai, Tamil Nadu (India); Jeong, Soon Kwan, E-mail: jeongsk@kier.re.kr [Climate Change Technology Research Division, Korea Institute of Energy Research, Yuseong-gu, Daejeon 305-343 (Korea, Republic of); Grace, Andrews Nirmala, E-mail: anirmalagrace@vit.ac.in [Centre for Nanotechnology Research, VIT University, Vellore 632014, Tamil Nadu (India); Climate Change Technology Research Division, Korea Institute of Energy Research, Yuseong-gu, Daejeon 305-343 (Korea, Republic of)

    2013-10-15

    Graphical abstract: A schematic showing the overall reduction process of graphite to reduced graphene platelets by chemical and electrochemical route. - Highlights: • Graphene was prepared by diverse routes viz. chemical and electrochemical methods. • NaBH{sub 4} was effective for removing oxygen functional groups from graphene oxide. • Sodium borohydride reduced graphene oxide (SRGO) showed high specific capacitance. • Electrochemical rendered a cheap route for production of graphene in powder form. - Abstract: Graphene platelets were synthesized from graphene oxide by chemical and electrochemical route. Under the chemical method, sodium borohydride and hydrazine chloride were used as reductants to produce graphene. In this paper, a novel and cost effective electrochemical method, which can simplify the process of reduction on a larger scale, is demonstrated. The electrochemical method proposed in this paper produces graphene in powder form with good yield. The atomic force microscopic images confirmed that the graphene samples prepared by all the routes have multilayers of graphene. The electrochemical process provided a new route to make relatively larger area graphene sheets, which will have interest for further patterning applications. Attempt was made to quantify the quantum of reduction using cyclic voltammetry and choronopotentiometry techniques on reduced graphene samples. As a measure in reading the specific capacitance values, a maximum specific capacitance value of 265.3 F/g was obtained in sodium borohydride reduced graphene oxide.

  19. Synthesis of graphene platelets by chemical and electrochemical route

    International Nuclear Information System (INIS)

    Ramachandran, Rajendran; Felix, Sathiyanathan; Joshi, Girish M.; Raghupathy, Bala P.C.; Jeong, Soon Kwan; Grace, Andrews Nirmala

    2013-01-01

    Graphical abstract: A schematic showing the overall reduction process of graphite to reduced graphene platelets by chemical and electrochemical route. - Highlights: • Graphene was prepared by diverse routes viz. chemical and electrochemical methods. • NaBH 4 was effective for removing oxygen functional groups from graphene oxide. • Sodium borohydride reduced graphene oxide (SRGO) showed high specific capacitance. • Electrochemical rendered a cheap route for production of graphene in powder form. - Abstract: Graphene platelets were synthesized from graphene oxide by chemical and electrochemical route. Under the chemical method, sodium borohydride and hydrazine chloride were used as reductants to produce graphene. In this paper, a novel and cost effective electrochemical method, which can simplify the process of reduction on a larger scale, is demonstrated. The electrochemical method proposed in this paper produces graphene in powder form with good yield. The atomic force microscopic images confirmed that the graphene samples prepared by all the routes have multilayers of graphene. The electrochemical process provided a new route to make relatively larger area graphene sheets, which will have interest for further patterning applications. Attempt was made to quantify the quantum of reduction using cyclic voltammetry and choronopotentiometry techniques on reduced graphene samples. As a measure in reading the specific capacitance values, a maximum specific capacitance value of 265.3 F/g was obtained in sodium borohydride reduced graphene oxide

  20. Structure, morphology and electrochemical behaviour of manganese oxides prepared by controlled decomposition of permanganate

    Energy Technology Data Exchange (ETDEWEB)

    Donne, S.W.; Jones, B.C. [Discipline of Chemistry, University of Newcastle, Callaghan, NSW 2308 (Australia); Hollenkamp, A.F. [CSIRO Energy Technology, Box 312, Clayton South, Vic. 3169 (Australia)

    2010-01-01

    Hydrothermal decomposition of permanganate, conducted in a range of pH-controlled solutions (from strongly acidic to strongly basic), is used to prepare manganese dioxides that are well-suited for use as supercapacitor electrode materials. While permanganate is thermodynamically unstable, the kinetics of its decomposition in an aqueous environment are very slow, until the temperature is raised to {proportional_to}200 C. Although the resultant materials are relatively crystalline and have low total pore volume, their prominent meso-porosity leads to good electrochemical performance. Best behaviour is obtained for material from permanganate decomposition in 0.01 M H{sub 2}SO{sub 4} solution, for which composite electrodes (150 {mu}m thick) yield {proportional_to}150 F g{sup -1} at 5 mV s{sup -1} in a 9 M KOH electrolyte. (author)

  1. A facile approach to prepare crumpled CoTMPyP/electrochemically reduced graphene oxide nanohybrid as an efficient electrocatalyst for hydrogen evolution reaction

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Juanjuan, E-mail: majj0518@hotmail.com [Department of Chemical Engineering, Huaihai Institute of Technology, Lianyungang 222005 (China); School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore (Singapore); Liu, Lin; Chen, Qian; Yang, Min [Department of Chemical Engineering, Huaihai Institute of Technology, Lianyungang 222005 (China); Wang, Danping [School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore (Singapore); Tong, Zhiwei [Department of Chemical Engineering, Huaihai Institute of Technology, Lianyungang 222005 (China); Chen, Zhong, E-mail: aszchen@ntu.edu.sg [School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore (Singapore)

    2017-03-31

    Highlights: • Crumpled CoTMPyP/ERGO hybrid was successfully prepared by a facile two-step process. • CoTMPyP nanoaggregates are homogeneously distributed over the graphene surface. • CoTMPyP/ERGO hybrid film shows good electrocatalytic activity and stability for HER. - Abstract: Elaborate design and synthesis of efficient and stable non-Pt electrocatalysts for some renewable energy related conversion/storage processes are one of the major goals of sustainable chemistry. Herein, we report a facile method to fabricate Co porphyrin functionalized electrochemically reduced graphene oxide (CoTMPyP/ERGO) thin film by direct assembly of oppositely charged tetrakis(N-methylpyridyl) porphyrinato cobalt (CoTMPyP) and GO nanosheets under mild conditions followed by an electrochemical reduction procedure. STEM analysis confirms that CoTMPyP nanoaggregates are homogeneously distributed over the graphene surface. The electrochemical properties of CoTMPyP/ERGO were investigated by cyclic voltammetry, linear sweep voltammetry and electrochemical impedance spectroscopy. The results demonstrate that CoTMPyP/ERGO nanohybrid film can serve as excellent electrocatalyst for hydrogen evolution in alkaline solution with high activity and stability. The intimate contact and efficient electron transfer between CoTMPyP and ERGO, as well as the crumpled structure, contribute to the improvement of the electrocatalytic performance.

  2. Graphene-based electrochemical supercapacitors

    Indian Academy of Sciences (India)

    WINTEC

    been great interest in graphene, which constitutes an entirely new class of carbon. Electrical characteriza- tion of single-layer graphene has been reported. 12,13. We have investigated the use of graphene as elec- trode material in electrochemical supercapacitors. For this purpose, we have employed graphene prepared.

  3. Improved electrochemical performances of CuO nanotube array prepared via electrodeposition as anode for lithium ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Anguo, E-mail: hixiaoanguo@126.com; Zhou, Shibiao; Zuo, Chenggang; Zhuan, Yongbing; Ding, Xiang

    2015-10-15

    Graphical abstract: CuO nanotube array electrodes prepared by electrodeposition method exhibit an excellent lithium ion storage ability as anode of Li-ion battery. - Highlights: • CuO nanotube arrays are synthesized by an electrodeposition method. • CuO nanotube shows a high-rate performance. • CuO nanotube shows an excellent cycling performance. - Abstract: We report a facile strategy to prepared CuO nanotube arrays directly grown on Cu plate through the electrodeposition method. The as-prepared CuO nanotubes show a quasi-cylinder nanostructure with internal diameters of ca. ∼100 nm, external diameters of ca. ∼120 nm, and average length of ∼3 μm. As an anode for lithium ion batteries, the electrochemical properties of the CuO nanotube arrays are investigated by cyclic voltammetry (CV) and galvanostatic charge/discharge tests. Due to the unique nanotube nanostructure, the as-prepared CuO electrodes exhibit good rate performance (550 mAh g{sup −1} at 0.1 C and 464 mAh g{sup −1} at 1 C) and cycling performance (581 mAh g{sup −1} at 0.1 C and 538 mAh g{sup −1} at 0.5 C)

  4. Electrochemically formed passive layers on titanium - preparation and biocompatibility assessment in Hank's balanced salt solution

    International Nuclear Information System (INIS)

    Zhao, B.; Jerkiewicz, G.

    2006-01-01

    Uniform and crack-free passive layers on Ti are prepared using AC voltage in 7.5 wt.% aq. NH 4 ·BF 4 at 25 o C. The passive layers possess coloration (wide spectrum of colors) that depends on the experimental conditions. The biocompatibility of such prepared passive layers is evaluated using corrosion science and analytical techniques. Their corrosion behavior, Ti-ion release, surface roughness, and wettability in Hank's Balanced Salt Solution (HBSS) at 37 o C are the main focus of this work. Open-circuit potential and polarization measurements demonstrate that the corrosion potential (E corr ) of the passive layers becomes more positive than that of the untreated Ti. The value of E corr increases as we increase the AC voltage (VAC). Their corrosion rate (CR) is lower than that of the untreated Ti, and they reduced the Ti-ion release level from 230 to 15 ppb. An increase in the AC voltage frequency (f) leads to a slightly higher level of the Ti-ion release (∼50 ppb). Surface profilometry, optical microscopy, and scanning electron microscopy (SEM) analyses show that prolonged exposure of the passive layers to HBSS results in changes to their surface topography. The passive layers prepared by the application of AC voltage are rougher and more hydrophilic than the untreated Ti. Our methodology of preparing biocompatible passive layers on Ti might be applied as a new surface treatment procedure for Ti implants. (author)

  5. A facile and cost-effective approach to engineer surface roughness for preparation of large-scale superhydrophobic substrate with high adhesive force

    Science.gov (United States)

    Zhou, Bingpu; Tian, Jingxuan; Wang, Cong; Gao, Yibo; Wen, Weijia

    2016-12-01

    This study presents a convenient avenue to fabricate polydimethylsiloxane (PDMS) with controllable surface morphologies and wetting characteristics via standard molding technique. The templates with engineered surface roughness were simply prepared by combinations of microfluidics and photo-polymerization of N-Isopropylacrylamide (NIPAM). The surface morphology of mold could be adjusted via ultraviolet-curing duration or the grafting density, which means that the surface of PDMS sample replicated from the mold could also be easily controlled based on the proposed method. Furthermore, via multiple grafting and replication processes, we have successfully demonstrated that hydrophobicity properties of prepared PDMS samples could be swiftly enhanced to ∼154° with highly adhesive force with resident water droplets. The obtained PDMS samples exhibited well resistance to external mechanical deformation even up to 100 cycles. The proposed scheme is timesaving, cost-effective and suitable for large-scale production of superhydrophobic PDMS substrates. We believe that the presented approach can provide a promising method for preparing superhydrophobic surface with highly adhesive force for on-chip liquid transport, localized reaction, etc.

  6. Electrochemical Performance of a Carbon Nanotube/La-Doped TiO2 Nanocomposite and its Use for Preparation of an Electrochemical Nicotinic Acid Sensor

    Directory of Open Access Journals (Sweden)

    Hanxing Liu

    2008-11-01

    Full Text Available A carbon nanotube/La-doped TiO2 (La-TiO2 nanocomposite (CLTN was prepared by a procedure similar to a complex/adsorption process. Scanning electron microscopy (SEM images show that the La-TiO2 distributes on the carbon nanotube walls. The CLTN was mixed with paraffin to form a CLTN paste for the CLTN paste electrode (CLTNPE. The electrochemical characteristics of CLTNPE were compared with that of conventional carbon electrodes such as the carbon paste electrode (CPE and glass carbon electrode (GC. The CLTNPE exhibits electrochemical activity and was used to investigate the electrochemistry of nicotinic acid (NA. The modified electrode has a strong electrocatalytic effect on the redox of NA. The cyclic voltammetry (CV redox potential of NA at the CLTNPE is 320 mV. The oxidation process of NA on the CLTNPE is pH dependent. A sensitive chronoamperometric response for NA was obtained covering a linear range from 1.0×10-6 mol·L-1 to 1.2×10-4 mol·L-1, with a detection limit of 2.7×10-7 mol·L-1. The NA sensor displays a remarkable sensitivity and stability. The mean recovery of NA in the human urine is 101.8%, with a mean variation coefficient (RSD of 2.6%.

  7. Preparation of TiO{sub 2}/boron-doped diamond/Ta multilayer films and use as electrode materials for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Chao, E-mail: sc_sq1988@163.com [Tianjin Key Laboratory of Film Electronic and Communicate Devices, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin 300384 (China); Li, Hongji, E-mail: hongjili@yeah.net [Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384 (China); Li, Cuiping, E-mail: licp226@126.com [Tianjin Key Laboratory of Film Electronic and Communicate Devices, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin 300384 (China); Li, Mingji, E-mail: limingji@163.com [Tianjin Key Laboratory of Film Electronic and Communicate Devices, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin 300384 (China); Qu, Changqing, E-mail: quchangqing@tjut.edu.cn [Tianjin Key Laboratory of Film Electronic and Communicate Devices, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin 300384 (China); Yang, Baohe, E-mail: bhyang207@163.com [Tianjin Key Laboratory of Film Electronic and Communicate Devices, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin 300384 (China)

    2015-12-01

    Highlights: • BDD film was deposited on Ta substrate by hot filament CVD method. • Ti layer was deposited on BDD film by radio frequency magnetron sputtering. • Nanostructured TiO{sub 2}/BDD/nanoporous Ta films were prepared. • The films exhibit good capacitance performance and excellent stability. - Abstract: We report nanostructured TiO{sub 2}/boron-doped diamond (BDD)/Ta multilayer films and their electrochemical performances as supercapacitor electrodes. The BDD films were grown on Ta substrates using electron-assisted hot filament chemical vapor deposition. Ti metal layers were deposited on the BDD surfaces by radio frequency magnetron sputtering, and nanostructured TiO{sub 2}/BDD/Ta thin films were prepared by electrochemical etching and thermal annealing. The successful formation of TiO{sub 2} and Ta layered nanostructures was demonstrated using scanning electron and transmission electron microscopies. The electrochemical responses of these electrodes were evaluated by examining their use as electrical double-layer capacitors, using cyclic voltammetry, and galvanostatic charge/discharge and impedance measurements. When the TiO{sub 2}/BDD/Ta film was used as the working electrode with 0.1 M Na{sub 2}SO{sub 4} as the electrolyte, the capacitor had a specific capacitance of 5.23 mF cm{sup −2} at a scan rate of 5 mV s{sup −1} for a B/C ratio of 0.1% w/w. Furthermore, the TiO{sub 2}/BDD/Ta film had improved electrochemical stability, with a retention of 89.3% after 500 cycles. This electrochemical behavior is attributed to the quality of the BDD, the surface roughness and electrocatalytic activities of the TiO{sub 2} layer and Ta nanoporous structures, and the synergies between them. These results show that TiO{sub 2}/BDD/Ta films are promising as capacitor electrodes for special applications.

  8. Preparation and Performance of Sb-SnO2 / Ti Electrode Modified with Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    WEI Jin-zhi

    2017-06-01

    Full Text Available In order to improve the electro-catalytic oxidation activity and stability of Sb-SnO2 /Ti electrode,the CNTs-Sb-SnO2 /Ti electrode was prepared by sol-gel-thermal decomposition method. The microstructure and electrochemical properties of the modified electrode was characterized via SEM electrochemical impedance spectroscope ( EIS ,polarization curve and congo red degradation experiments. Furthermore,its the stability was investigated by accelerated life test. The results indicate that when the optimal doping amount of CNTs is 2. 0 g /L the congo red removal rate increases by 14. 7% using the CNTs-Sb-SnO2 /Ti electrode compared with the Sb-SnO2 /Ti electrode. Meanwhile pore structure appears and roughness increases on the surface of modified electrodes leading to larger specific surface area of electrode. Then the modified electrodes exhibit higher oxygen evolution potential and lower charge transfer resistance. Additionally,accelerated life tests reveal that the modified electrode has better electro-catalytic stability while the service life increases by

  9. Information Measures of Roughness of Knowledge and Rough Sets for Incomplete Information Systems

    Institute of Scientific and Technical Information of China (English)

    LIANG Ji-ye; QU Kai-she

    2001-01-01

    In this paper we address information measures of roughness of knowledge and rough sets for incomplete information systems. The definition of rough entropy of knowledge and its important properties are given. In particular, the relationship between rough entropy of knowledge and the Hartley measure of uncertainty is established. We show that rough entropy of knowledge decreases monotonously as granularity of information become smaller. This gives an information interpretation for roughness of knowledge. Based on rough entropy of knowledge and roughness of rough set. a definition of rough entropy of rough set is proposed, and we show that rough entropy of rough set decreases monotonously as granularity of information become smaller. This gives more accurate measure for roughness of rough set.

  10. Poly arginine-graphene quantum dots as a biocompatible and non-toxic nanocomposite: Layer-by-layer electrochemical preparation, characterization and non-invasive malondialdehyde sensory application in exhaled breath condensate

    Energy Technology Data Exchange (ETDEWEB)

    Hasanzadeh, Mohammad, E-mail: hasanzadehm@tbzmed.ac.ir [Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 51664 (Iran, Islamic Republic of); Mokhtari, Fozieh [Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz (Iran, Islamic Republic of); Department of Biochemistry, Higher Education Institute of Rab-Rashid, Tabriz (Iran, Islamic Republic of); Shadjou, Nasrin [Department of Nanochemistry, Nano Technology Research Center, Urmia University, Urmia 57154 (Iran, Islamic Republic of); Department of Nano Technology, Faculty of Science, Urmia University, Urmia 57154 (Iran, Islamic Republic of); Eftekhari, Aziz [Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tabriz University of Medical Sciences, 51664-14766 Tabriz (Iran, Islamic Republic of); Mokhtarzadeh, Ahad [Department of Biochemistry, Higher Education Institute of Rab-Rashid, Tabriz (Iran, Islamic Republic of); School of Medicine, Gonabad University of Medical Sciences, Gonabad (Iran, Islamic Republic of); Jouyban-Gharamaleki, Vahid [Department of Mechatronic Engineering, International Campus, University of Tabriz, Tabriz (Iran, Islamic Republic of); Mahboob, Soltanali [Department of Biochemistry, Higher Education Institute of Rab-Rashid, Tabriz (Iran, Islamic Republic of)

    2017-06-01

    This study reports on the electropolymerization of a low toxic and biocompatible polymer with entitle poly arginine-graphene quantum dots (PARG-GQDs) as a novel strategy for surface modification of glassy carbon (GC) surface and preparation a new interface for biomedical application. The fabrication of PARG-GQDs on GCE was performed using Layer-by-layer regime. Scanning electron microscopy (SEM) was confirmed dispersion of GQDs on the surface of PARG which lead to increase of surface coverage of PARG. The redox behavior of prepared sensor was then characterized by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and chronoamperometry (CHA), square wave voltammetry (SWV), linear sweep voltammetry (LSV). The electroactivity of PARG-GQDs coating towards detection and determination of malondialdehyde (MDA) as one of the most common biomarkers of oxidative stress, was then studied. Then, application of prepared sensor for the detection of MDA in exhaled breath condensate (EBC) is described. Electrochemical based sensor shows the lower limit of quantification (LLOQ) were 0.329 nanomolar. This work is the first report on the integration of GQDs to poly amino acids. Further development can lead to monitoring of MDA or other exhaled breath biomarkers by GQDs functionalized poly amino acids in EBC using electrochemical methods. - Highlights: • Simple and one pot electropolymerization was used to preparation of Poly arginine-graphene quantum dots. • PARG-GQDs-GCE shows an excellent electroactivity towards malondialdehyde. • High sensitivity and efficiency is achieved through a simple method of modification. • MDA electrochemical sensor for a direct evaluation of oxidative stress in EBC media is possible.

  11. Poly arginine-graphene quantum dots as a biocompatible and non-toxic nanocomposite: Layer-by-layer electrochemical preparation, characterization and non-invasive malondialdehyde sensory application in exhaled breath condensate

    International Nuclear Information System (INIS)

    Hasanzadeh, Mohammad; Mokhtari, Fozieh; Shadjou, Nasrin; Eftekhari, Aziz; Mokhtarzadeh, Ahad; Jouyban-Gharamaleki, Vahid; Mahboob, Soltanali

    2017-01-01

    This study reports on the electropolymerization of a low toxic and biocompatible polymer with entitle poly arginine-graphene quantum dots (PARG-GQDs) as a novel strategy for surface modification of glassy carbon (GC) surface and preparation a new interface for biomedical application. The fabrication of PARG-GQDs on GCE was performed using Layer-by-layer regime. Scanning electron microscopy (SEM) was confirmed dispersion of GQDs on the surface of PARG which lead to increase of surface coverage of PARG. The redox behavior of prepared sensor was then characterized by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and chronoamperometry (CHA), square wave voltammetry (SWV), linear sweep voltammetry (LSV). The electroactivity of PARG-GQDs coating towards detection and determination of malondialdehyde (MDA) as one of the most common biomarkers of oxidative stress, was then studied. Then, application of prepared sensor for the detection of MDA in exhaled breath condensate (EBC) is described. Electrochemical based sensor shows the lower limit of quantification (LLOQ) were 0.329 nanomolar. This work is the first report on the integration of GQDs to poly amino acids. Further development can lead to monitoring of MDA or other exhaled breath biomarkers by GQDs functionalized poly amino acids in EBC using electrochemical methods. - Highlights: • Simple and one pot electropolymerization was used to preparation of Poly arginine-graphene quantum dots. • PARG-GQDs-GCE shows an excellent electroactivity towards malondialdehyde. • High sensitivity and efficiency is achieved through a simple method of modification. • MDA electrochemical sensor for a direct evaluation of oxidative stress in EBC media is possible.

  12. Recent Progress in Electrochemical Biosensors for Glycoproteins

    Directory of Open Access Journals (Sweden)

    Uichi Akiba

    2016-12-01

    Full Text Available This review provides an overview of recent progress in the development of electrochemical biosensors for glycoproteins. Electrochemical glycoprotein sensors are constructed by combining metal and carbon electrodes with glycoprotein-selective binding elements including antibodies, lectin, phenylboronic acid and molecularly imprinted polymers. A recent trend in the preparation of glycoprotein sensors is the successful use of nanomaterials such as graphene, carbon nanotube, and metal nanoparticles. These nanomaterials are extremely useful for improving the sensitivity of glycoprotein sensors. This review focuses mainly on the protocols for the preparation of glycoprotein sensors and the materials used. Recent improvements in glycoprotein sensors are discussed by grouping the sensors into several categories based on the materials used as recognition elements.

  13. Activated carbon/ZnO composites prepared using hydrochars as intermediate and their electrochemical performance in supercapacitor

    International Nuclear Information System (INIS)

    Li, Yueming; Liu, Xi

    2014-01-01

    We report a new methodology to prepare activated carbon and activated carbons/ZnO composites from walnut shell-derived hydrothermal carbons (hydrochars), which were prepared under hydrothermal condition in presence of ZnCl 2 . For this method, activated carbon/ZnO composites were prepared via heat treatment of hydrochars under inert environment and activated carbons were prepared by removing the ZnO in activated carbon/ZnO composites. The chemical structure of walnut shell, hydrochars, activated carbon/ZnO and activated carbon was investigated by Fourier transform infrared spectroscopy, Raman, X-ray powder diffraction, thermogravimetric analysis and N 2 adsorption/desorption measurements. It is found ZnCl 2 plays multiple roles, i.e., helping to remove the oxygen-containing groups during hydrothermal stage, improving the surface area of activated carbon and acting as the precursor of ZnO in heat-treatment stage. The specific surface areas up to 818.9 and 1072.7 m 2  g −1 have been achieved for activated carbon/ZnO composites and activated carbon, respectively. The activated carbon/ZnO as electrode materials for supercapacitors showed that specific capacitance of up to 117.4 F g −1 at a current density of 0.5 A g −1 in KOH aqueous solution can be achieved and keeps stable in 1000 cycles. - Highlights: • Hydrochars as intermediate to prepare activated carbon/ZnO composites. • Activated carbon/ZnO showed excellent electrochemical performance in supercapacitors. • Activated carbon with large surface area can be obtained by removing ZnO

  14. Preparation and electrochemical performance of AgxLi1-xV3O8

    International Nuclear Information System (INIS)

    Sun Junli; Jiao Lifang; Yuan Huatang; Liu Li; Wei Xin; Miao Yanli; Yang Lin; Wang Yongmei

    2009-01-01

    We report here the preparation of Ag-doped LiV 3 O 8 for use as a cathode material in rechargeable lithium ion batteries. Synthesis was carried out by sol-gel methods and low temperature calcination using V 2 O 5 wet gel, LiOH.H 2 O, and AgNO 3 as raw materials. The product was characterized by X-ray diffraction (XRD), and its electrochemical behavior as a cathode material was studied by galvanostatic charge-discharge, cyclic voltammetry, and ac impedance techniques. The experimental results show that Ag-doped LiV 3 O 8 cathodes have greater initial discharge capacity than undoped cathode. And those Ag-doped LiV 3 O 8 electrodes, especially Ag 0.04 Li 0.96 V 3 O 8 , show the best long-life cycling performance. All of the doped powders show better stability at the 2.6 V plateau efficiency, due to their more stable cell impedance

  15. Electrochemical preparation and characteristics of Ni-Co-LaNi{sub 5} composite coatings as electrode materials for hydrogen evolution

    Energy Technology Data Exchange (ETDEWEB)

    Wu Gang; Li Ning; Dai Changsong; Zhou Derui

    2004-02-15

    Electrocatalytic activity for the hydrogen evolution reaction on Ni-Co-LaNi{sub 5} composite electrodes prepared by electrochemical codeposition technique was evaluated. The relationship between the current density for hydrogen evolution reaction and the amount of LaNi{sub 5} particles in Ni-Co baths is like the well-known 'volcano plot'. The Surface morphology and microstructure of Ni-Co-LaNi{sub 5} coatings were determined by means of scanning electron microscopy (SEM) and X-ray diffraction (XRD). The kinetic parameters were determined from electrochemical steady-state Tafel polarization and electrochemical impedance spectroscopy technology in 1 M NaOH solution. The values obtained for the apparent energies of activation are 32.48, 46.29 and 57.03 kJ mol{sup -1} for the Ni-Co-LaNi{sub 5}, Ni-Co and Ni electrodes, respectively. The hydrogen evolution reaction on Ni-Co-LaNi{sub 5} proceeds via Volmer-Tafel reaction route with the mixed rate determining characteristics. The composite coating Ni-Co-LaNi{sub 5} is catalytically more active than Ni and Ni-Co electrodes due to the increase in its real surface areas and the decrease in the apparent free energy of activation caused by the electrocatalytic synergistic effect of the Ni-Co alloys and the hydrogen storage intermetallic particles on the electrode surface.

  16. Ordered ZnO/AZO/PAM nanowire arrays prepared by seed-layer-assisted electrochemical deposition

    International Nuclear Information System (INIS)

    Shen, Yu-Min; Pan, Chih-Huang; Wang, Sheng-Chang; Huang, Jow-Lay

    2011-01-01

    An Al-doped ZnO (AZO) seed layer is prepared on the back side of a porous alumina membrane (PAM) substrate by spin coating followed by annealing in a vacuum at 400 °C. Zinc oxide in ordered arrays mediated by a high aspect ratio and an ordered pore array of AZO/PAM is synthesized. The ZnO nanowire array is prepared via a 3-electrode electrochemical deposition process using ZnSO 4 and H 2 O 2 solutions at a potential of − 1 V (versus saturated calomel electrode) and temperatures of 65 and 80 °C. The microstructure and chemical composition of the AZO seed layer and ZnO/AZO/PAM nanowire arrays are characterized by field emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HR-TEM), and energy-dispersive X-ray spectroscopy (EDS). Results indicate that the ZnO/AZO/PAM nanowire arrays were assembled in the nanochannel of the porous alumina template with diameters of 110–140 nm. The crystallinity of the ZnO nanowires depends on the AZO seed layer during the annealing process. The nucleation and growth process of ZnO/AZO/PAM nanowires are interpreted by the seed-layer-assisted growth mechanism.

  17. Preparation of TiO2/boron-doped diamond/Ta multilayer films and use as electrode materials for supercapacitors

    Science.gov (United States)

    Shi, Chao; Li, Hongji; Li, Cuiping; Li, Mingji; Qu, Changqing; Yang, Baohe

    2015-12-01

    We report nanostructured TiO2/boron-doped diamond (BDD)/Ta multilayer films and their electrochemical performances as supercapacitor electrodes. The BDD films were grown on Ta substrates using electron-assisted hot filament chemical vapor deposition. Ti metal layers were deposited on the BDD surfaces by radio frequency magnetron sputtering, and nanostructured TiO2/BDD/Ta thin films were prepared by electrochemical etching and thermal annealing. The successful formation of TiO2 and Ta layered nanostructures was demonstrated using scanning electron and transmission electron microscopies. The electrochemical responses of these electrodes were evaluated by examining their use as electrical double-layer capacitors, using cyclic voltammetry, and galvanostatic charge/discharge and impedance measurements. When the TiO2/BDD/Ta film was used as the working electrode with 0.1 M Na2SO4 as the electrolyte, the capacitor had a specific capacitance of 5.23 mF cm-2 at a scan rate of 5 mV s-1 for a B/C ratio of 0.1% w/w. Furthermore, the TiO2/BDD/Ta film had improved electrochemical stability, with a retention of 89.3% after 500 cycles. This electrochemical behavior is attributed to the quality of the BDD, the surface roughness and electrocatalytic activities of the TiO2 layer and Ta nanoporous structures, and the synergies between them. These results show that TiO2/BDD/Ta films are promising as capacitor electrodes for special applications.

  18. Surfactant-assisted electrochemical deposition of {alpha}-cobalt hydroxide for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Ting [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Jiang, Hao; Ma, Jan [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Temasek Laboratories, Nanyang Technological University, Singapore 637553 (Singapore)

    2011-01-15

    A N-methylpyrrolidone (NMP) assisted electrochemical deposition route has been developed to realize the synthesis of a dense {alpha}-Co(OH){sub 2} layered structure, which is composed of nanosheets, each with a thickness of 10 nm. The capacitive characteristics of the as-obtained {alpha}-Co(OH){sub 2} are investigated by means of cyclic voltammetry (CV), charge/discharge characterization, and electrochemical impedance spectroscopy (EIS), in 1 M KOH electrolyte. The results indicate that {alpha}-Co(OH){sub 2} prepared in the presence of 20 vol.% NMP has denser and thin layered structure which promotes an increased surface area and a shortened ion diffusion path. The as-prepared {alpha}-Co(OH){sub 2} shows better electrochemical performance with specific capacitance of 651 F g{sup -1} in a potential range of -0.1 to 0.45 V. These findings suggest that the surfactant-assisted electrochemical deposition is a promising process for building densely packed material systems with enhanced properties, for application in supercapacitors. (author)

  19. Calcium phosphate/porous silicon biocomposites prepared by cyclic deposition methods: Spin coating vs electrochemical activation

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Montelongo, J., E-mail: jacobo.hernandez@uam.es [Departamento de Física Aplicada, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Gallach, D.; Naveas, N.; Torres-Costa, V. [Departamento de Física Aplicada, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Climent-Font, A. [Departamento de Física Aplicada, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Centro de Microanálisis de Materiales (CMAM), Universidad Autónoma de Madrid, Madrid 28049 (Spain); García-Ruiz, J.P. [Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049 (Spain); Manso-Silvan, M. [Departamento de Física Aplicada, Universidad Autónoma de Madrid, 28049 Madrid (Spain)

    2014-01-01

    Porous silicon (PSi) provides an excellent platform for bioengineering applications due to its biocompatibility, biodegradability, and bioresorbability. However, to promote its application as bone engineering scaffold, deposition of calcium phosphate (CaP) ceramics in its hydroxyapatite (HAP) phase is in progress. In that sense, this work focuses on the synthesis of CaP/PSi composites by means of two different techniques for CaP deposition on PSi: Cyclic Spin Coating (CSC) and Cyclic Electrochemical Activation (CEA). Both techniques CSC and CEA consisted on alternate Ca and P deposition steps on PSi. Each technique produced specific morphologies and CaP phases using the same independent Ca and P stem-solutions at neutral pH and at room temperature. The brushite (BRU) phase was favored with the CSC technique and the hydroxyapatite (HAP) phase was better synthesized using the CEA technique. Analyses by elastic backscattering spectroscopy (EBS) on CaP/PSi structures synthesized by CEA supported that, by controlling the CEA parameters, an HAP coating with the required Ca/P atomic ratio of 1.67 can be promoted. Biocompatibility was evaluated by bone-derived progenitor cells, which grew onto CaP/PSi prepared by CSC technique with a long-shaped actin cytoskeleton. The density of adhered cells was higher on CaP/PSi prepared by CEA, where cells presented a normal morphological appearance and active mitosis. These results can be used for the design and optimization of CaP/PSi composites with enhanced biocompatibility for bone-tissue engineering. - Highlights: • Proposed cyclic methods produce specific morphologies and CaP phases in biocomposites. • The brushite phase is favored in the biocomposite produced by Cyclic Spin Coating. • The hydroxyapatite phase is favored in the biocomposite produced by Cyclic Electrochemical Activation. • The Ca/P atomic ratio of hydroxyapatite was validated by elastic backscattering spectroscopy. • Cells grown showed morphological and

  20. Calcium phosphate/porous silicon biocomposites prepared by cyclic deposition methods: Spin coating vs electrochemical activation

    International Nuclear Information System (INIS)

    Hernandez-Montelongo, J.; Gallach, D.; Naveas, N.; Torres-Costa, V.; Climent-Font, A.; García-Ruiz, J.P.; Manso-Silvan, M.

    2014-01-01

    Porous silicon (PSi) provides an excellent platform for bioengineering applications due to its biocompatibility, biodegradability, and bioresorbability. However, to promote its application as bone engineering scaffold, deposition of calcium phosphate (CaP) ceramics in its hydroxyapatite (HAP) phase is in progress. In that sense, this work focuses on the synthesis of CaP/PSi composites by means of two different techniques for CaP deposition on PSi: Cyclic Spin Coating (CSC) and Cyclic Electrochemical Activation (CEA). Both techniques CSC and CEA consisted on alternate Ca and P deposition steps on PSi. Each technique produced specific morphologies and CaP phases using the same independent Ca and P stem-solutions at neutral pH and at room temperature. The brushite (BRU) phase was favored with the CSC technique and the hydroxyapatite (HAP) phase was better synthesized using the CEA technique. Analyses by elastic backscattering spectroscopy (EBS) on CaP/PSi structures synthesized by CEA supported that, by controlling the CEA parameters, an HAP coating with the required Ca/P atomic ratio of 1.67 can be promoted. Biocompatibility was evaluated by bone-derived progenitor cells, which grew onto CaP/PSi prepared by CSC technique with a long-shaped actin cytoskeleton. The density of adhered cells was higher on CaP/PSi prepared by CEA, where cells presented a normal morphological appearance and active mitosis. These results can be used for the design and optimization of CaP/PSi composites with enhanced biocompatibility for bone-tissue engineering. - Highlights: • Proposed cyclic methods produce specific morphologies and CaP phases in biocomposites. • The brushite phase is favored in the biocomposite produced by Cyclic Spin Coating. • The hydroxyapatite phase is favored in the biocomposite produced by Cyclic Electrochemical Activation. • The Ca/P atomic ratio of hydroxyapatite was validated by elastic backscattering spectroscopy. • Cells grown showed morphological and

  1. Improved electrochemical properties of morphology-controlled titania/titanate nanostructures prepared by in-situ hydrothermal surface modification of self-source Ti substrate for high-performance supercapacitors.

    Science.gov (United States)

    Banerjee, Arghya Narayan; Anitha, V C; Joo, Sang W

    2017-10-16

    Ti substrate surface is modified into two-dimensional (2D) TiO 2 nanoplatelet or one-dimensional (1D) nanorod/nanofiber (or a mixture of both) structure in a controlled manner via a simple KOH-based hydrothermal technique. Depending on the KOH concentration, different types of TiO 2 nanostructures (2D platelets, 1D nanorods/nanofibers and a 2D+1D mixed sample) are fabricated directly onto the Ti substrate surface. The novelty of this technique is the in-situ modification of the self-source Ti surface into titania nanostructures, and its direct use as the electrochemical microelectrode without any modifications. This leads to considerable improvement in the interfacial properties between metallic Ti and semiconducting TiO 2 . Since interfacial states/defects have profound effect on charge transport properties of electronic/electrochemical devices, therefore this near-defect-free interfacial property of Ti-TiO 2 microelectrode has shown high supercapacitive performances for superior charge-storage devices. Additionally, by hydrothermally tuning the morphology of titania nanostructures, the electrochemical properties of the electrodes are also tuned. A Ti-TiO 2 electrode comprising of a mixture of 2D-platelet+1D-nanorod structure reveals very high specific capacitance values (~7.4 mF.cm -2 ) due to the unique mixed morphology which manifests higher active sites (hence, higher utilization of the active materials) in terms of greater roughness at the 2D-platelet structures and higher surface-to-volume-ratio in the 1D-nanorod structures.

  2. Electrochemical performance of 3D porous Ni-Co oxide with electrochemically exfoliated graphene for asymmetric supercapacitor applications

    International Nuclear Information System (INIS)

    Kim, Dae Kyom; Hwang, Minsik; Ko, Dongjin; Kang, Jeongmin; Seong, Kwang-dong; Piao, Yuanzhe

    2017-01-01

    Graphical abstract: The paper reported the Ni-Co oxide/electrochemically exfoliated graphene nanocomposites with 3D porous nano-architectures (NC-EEG) using a simple low temperature solution method combined with a thermal annealing treatment. 3D porous architectures provide large surface areas and shorten electron diffusion pathways for high performance asymmetric supercapacitors. Display Omitted -- Highlights: •A simple low temperature solution method was used for preparing NC-EEG. •Graphene sheets were obtained by electrochemically exfoliation process. •A high capacity of NC-EEG in a three-electrode system, as high as 649 C g −1 , was recorded. •Asymmetric supercapacitor based on NC-EEG exhibited excellent energy density and power density. -- Abstract: Ni-Co oxide, one of the binary metal oxides, has many advantages for use in high-performance supercapacitor electrode materials due to its relatively high electronic conductivity and improved electrochemical performance. In this work, Ni-Co oxide/electrochemically exfoliated graphene nanocomposites (NC-EEG) are successfully synthesized using a simple low temperature solution method combined with a thermal annealing treatment. Graphene sheets are directly obtained by an electrochemical exfoliation process with graphite foil, which is very simple, environmentally friendly, and has a relatively short reaction time. This electrochemically exfoliated graphene (EEG) can improve the electrical conductivity of the Ni-Co oxide nanostructures. The as-prepared NC-EEG nanocomposites have 3D porous architectures that can provide large surface areas and shorten electron diffusion pathways. Electrochemical properties were performed by cyclic voltammetry and galvanostatic charge/discharge in a 6 M KOH electrolyte. The NC-EEG nanocomposites exhibited a high capacity value of 649 C g −1 at a current density of 1.0 A g −1 . The asymmetric supercapacitors, manufactured on the basis of NC-EEG nanocomposites as a positive

  3. Nickel-cobalt hydroxide nanosheets: Synthesis, morphology and electrochemical properties.

    Science.gov (United States)

    Schneiderová, Barbora; Demel, Jan; Zhigunov, Alexander; Bohuslav, Jan; Tarábková, Hana; Janda, Pavel; Lang, Kamil

    2017-08-01

    This paper reports the synthesis, characterization, and electrochemical performance of nickel-cobalt hydroxide nanosheets. The hydroxide nanosheets of approximately 0.7nm thickness were prepared by delamination of layered nickel-cobalt hydroxide lactate in water and formed transparent colloids that were stable for months. The nanosheets were deposited on highly oriented pyrolytic graphite by spin coating, and their electrochemical behavior was investigated by cyclic voltammetry in potassium hydroxide electrolyte. Our method of electrode preparation allows for studying the electrochemistry of nanosheets where the majority of the active centers can participate in the charge transfer reaction. The observed electrochemical response was ascribed to mutual compensation of the cobalt and nickel response via electron sharing between these metals in the hydroxide nanosheets, a process that differentiates the behavior of nickel-cobalt hydroxide nanosheets from single nickel hydroxide or cobalt hydroxide nanosheets or their physical mixture. The presence of cobalt in the nickel-cobalt hydroxide nanosheets apparently decreases the time of electrochemical activation of the nanosheet layer, which for the nickel hydroxide nanosheets alone requires more potential sweeps. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. A Fast, Sensitive and Label Free Electrochemical DNA Sensor

    International Nuclear Information System (INIS)

    Chen Yu; Elling; Lee Yokeling; Chong Serchoong

    2006-01-01

    A label free and sensitive DNA/RNA silicon based electrochemical microsensor array was developed by using thin film of the conducting polymer polypyrrole doped with an oligonucleotide probe. The electrochemical potential pulse amperometry technique was used for a biowarfare pathogen target DNA detection. The electrical potential assistanted DNA hybridisation method was applied. The sensor signal was increased by increasing the electrical potential assistanted DNA hybridisation time. It was possible to detect 0.34pmol and 0.072fmol of complementary oligonucleotide target in 0.1ml in seconds by using unpolished and polished gold electrode respectively. The probe preparation was also in seconds time, comparing indirect electrochemical DNA sensor, it has a fast sensor preparation as well as sensor response and label free advantages. The silicon microfabrication technique was used for this sensor array fabrication, which holds the potential to integrate with sensor electrical circuits. The conducting polymer polypyrrole was electrochemically deposited on each electrode respectively which has a possibility to dope the different DNA probe into the individual electrode to form a sensor array

  5. Some physico-chemical and radiation properties of plutonium-238 metal prepared by electrochemical amalgamation

    Energy Technology Data Exchange (ETDEWEB)

    Peretrukhin, V.F. [A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31 Leninsky Prospect, Moscow 119991 (Russian Federation)], E-mail: vperet@ipc.rssi.ru; Rovny, S.I. [Production Association ' Mayak' , 31 Prospect Lenin, Ozersk, Chelyabinsk Region 456784 (Russian Federation); Maslennikov, A.G. [A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31 Leninsky Prospect, Moscow 119991 (Russian Federation); Ershov, V.V.; Chinenov, P.P.; Kapitonov, V.I.; Kuvaev, V.L. [Production Association ' Mayak' , 31 Prospect Lenin, Ozersk, Chelyabinsk Region 456784 (Russian Federation)

    2007-10-11

    Pu-238 metal was prepared by electrolytic amalgamation from Pu(III) acetate aqueous solution and by followed by the thermal decomposition of the Pu amalgam. The density, specific heat power, {gamma}-spectra, neutron flux, and corrosion kinetics in dry air at ambient temperature of the prepared {sup 238}Pu metal were measured. The neutron flux and {gamma}-spectra from {sup 238}Pu metal have been attributed to spontaneous and induced fission and to ({alpha},{alpha}'{gamma}), ({alpha},p{gamma}), and ({alpha},n{gamma}) nuclear reactions on light nuclei. The electrochemically prepared {sup 238}Pu metal was shown to generate fewer neutrons, produce less gamma radiation, and contains lower {sup 10}B, {sup 19}F, and {sup 28}Si impurities in comparison with biomedical {sup 238}PuO{sub 2}. The increase of neutron flux from the sample due to the reaction {sup 18}O({alpha},n{gamma}) {sup 21}Ne was shown to be proportional to the increase of the mass of the {sup 238}Pu metal with time due to corrosion in dry air. {sup 238}Pu metal corrosion rate maximum and average values (1.1 x 10{sup -2} and 4.7 x 10{sup -3} mg cm{sup -2} h{sup -1}, respectively) obtained in dry air were an order of magnitude higher than the rates published for {sup 239}Pu under similar experiment conditions. The difference between the {sup 239}Pu and {sup 238}Pu metal corrosion rate and mechanism is proposed to be due to the greater radiation effects and temperature on the {sup 238}Pu surface.

  6. Topographic and Electrochemical Ti6Al4V Alloy Surface Characterization in Dry and Wet Reciprocating Sliding

    Directory of Open Access Journals (Sweden)

    Z. Doni

    2013-09-01

    Full Text Available This present paper shows the behavior of functional integrity of the state Ti6Al4V alloy under reciprocating sliding wear conditions in acomparative way for two different counter materials, steel and ceramicballs in dry and corrosive environment (3.5% NaCl. The surface integrity analysis of the dry reciprocating wear tests was based on the evolution of The roughness parameters with the applied load. In the case of reciprocating wear tests in corrosive environment the surface integrity analysis was based on electrochemical parameters. Comparative analysis of the evolution of the roughness parameters with the applied load shows a higher stability of the Ti6Al4V/Al2O3 contact pair, while from the point of view of the electrochemical parameters the Tribological properties are worse than Ti6Al4V/steel ball contact pair.

  7. Modified porous silicon for electrochemical sensor of para-nitrophenol

    International Nuclear Information System (INIS)

    Belhousse, S.; Belhaneche-Bensemra, N.; Lasmi, K.; Mezaache, I.; Sedrati, T.; Sam, S.; Tighilt, F.-Z.; Gabouze, N.

    2014-01-01

    Highlights: • Hybrid device based on Porous silicon (PSi) and polythiophene (PTh) was prepared. • Three types of PSi/PTh hybrid structures were elaborated: PSi/PTh, oxide/PSi/PTh and Amino-propyltrimethoxysilane (APTMES)/oxide/PSi/PTh. • PTh was grafted on PSi using electrochemical polymerization. • The electrodetection of para-nitrophenol (p-NPh) was performed by cyclic voltammetry. • Oxide/PSi/PTh and APTMES/oxide/PSi/PTh, based electrochemical sensor showed a good response toward p-NPh. - Abstract: Hybrid structures based on polythiophene modified porous silicon was used for the electrochemical detection of para-nitrophenol, which is a toxic derivative of parathion insecticide and it is considered as a major toxic pollutant. The porous silicon was prepared by anodic etching in hydrofluodic acid. Polythiophene films were then grown by electropolymerisation of thiophene monomer on three different surfaces: hydrogenated PSi, oxidized PSi and amine-terminated PSi. The morphology of the obtained structures were observed by scanning electron microscopy and characterized by spectroscopy (FTIR). Cyclic voltammetry was used to study the electrochemical response of proposed structures to para-nitrophenol. The results show a high sensitivity of the sensor and a linearity of the electrochemical response in a large concentration interval ranging from 1.5 × 10 −8 M to the 3 × 10 −4 M

  8. Spectroscopic and electrochemical characterization of nanostructured optically transparent carbon electrodes.

    Science.gov (United States)

    Benavidez, Tomás E; Garcia, Carlos D

    2013-07-01

    The present paper describes the results related to the optical and electrochemical characterization of thin carbon films fabricated by spin coating and pyrolysis of AZ P4330-RS photoresist. The goal of this paper is to provide comprehensive information allowing for the rational selection of the conditions to fabricate optically transparent carbon electrodes (OTCE) with specific electrooptical properties. According to our results, these electrodes could be appropriate choices as electrochemical transducers to monitor electrophoretic separations. At the core of this manuscript is the development and critical evaluation of a new optical model to calculate the thickness of the OTCE by variable angle spectroscopic ellipsometry. Such data were complemented with topography and roughness (obtained by atomic force microscopy), electrochemical properties (obtained by cyclic voltammetry), electrical properties (obtained by electrochemical impedance spectroscopy), and structural composition (obtained by Raman spectroscopy). Although the described OTCE were used as substrates to investigate the effect of electrode potential on the real-time adsorption of proteins by ellipsometry, these results could enable the development of other biosensors that can be then integrated into various CE platforms. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Electrochemical deposition and characterization of platinum on carbon paper and Ni foam

    CSIR Research Space (South Africa)

    Louw, E

    2013-04-01

    Full Text Available There are various methods used to prepare fuel cell (FC) catalysts. The electrochemical deposition method is well known for the fabrication of nanostructured catalysts for energy materials. Electrochemical atomic layer deposition (ECALD) method...

  10. Electrochemical redox reactions in solvated silica sol-gel glass

    International Nuclear Information System (INIS)

    Opallo, M.

    2002-01-01

    The studies of electrochemical redox reactions in solvated silica sol-gel glass were reviewed. The methodology of the experiments with emphasis on the direct preparation of the solid electrolyte and the application ultra microelectrodes was described. Generally, the level of the electrochemical signal is not much below that observed in liquid electrolyte. The current depends on time elapsed after gelation, namely the longer time, the smaller current. The differences between electrochemical behaviour of the redox couples in monoliths and thin layers were described. (author)

  11. Activated carbon/ZnO composites prepared using hydrochars as intermediate and their electrochemical performance in supercapacitor

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yueming, E-mail: liyueming@ysu.edu.cn; Liu, Xi

    2014-11-14

    We report a new methodology to prepare activated carbon and activated carbons/ZnO composites from walnut shell-derived hydrothermal carbons (hydrochars), which were prepared under hydrothermal condition in presence of ZnCl{sub 2}. For this method, activated carbon/ZnO composites were prepared via heat treatment of hydrochars under inert environment and activated carbons were prepared by removing the ZnO in activated carbon/ZnO composites. The chemical structure of walnut shell, hydrochars, activated carbon/ZnO and activated carbon was investigated by Fourier transform infrared spectroscopy, Raman, X-ray powder diffraction, thermogravimetric analysis and N{sub 2} adsorption/desorption measurements. It is found ZnCl{sub 2} plays multiple roles, i.e., helping to remove the oxygen-containing groups during hydrothermal stage, improving the surface area of activated carbon and acting as the precursor of ZnO in heat-treatment stage. The specific surface areas up to 818.9 and 1072.7 m{sup 2} g{sup −1} have been achieved for activated carbon/ZnO composites and activated carbon, respectively. The activated carbon/ZnO as electrode materials for supercapacitors showed that specific capacitance of up to 117.4 F g{sup −1} at a current density of 0.5 A g{sup −1} in KOH aqueous solution can be achieved and keeps stable in 1000 cycles. - Highlights: • Hydrochars as intermediate to prepare activated carbon/ZnO composites. • Activated carbon/ZnO showed excellent electrochemical performance in supercapacitors. • Activated carbon with large surface area can be obtained by removing ZnO.

  12. Preparation, characterization, and electrochemical application of mesoporous copper oxide

    International Nuclear Information System (INIS)

    Cheng, Liang; Shao, Mingwang; Chen, Dayan; Zhang, Yuzhong

    2010-01-01

    Mesoporous CuO was successfully synthesized via thermal decomposition of CuC 2 O 4 precursors. These products had ring-like morphology, which was made up of nanoparticles with the average diameter of 40 nm. The electrochemical experiments showed that the mesoporous CuO decreased the overvoltage of the electrode and increased electron transference in the measurement of dopamine.

  13. Preparation of Carbon-Chitosan-Polyvinyl Chloride (CC-PVC) Material and its Application to Electrochemical Degradation of Methylene Blue in Sodium Chloride Solution

    Science.gov (United States)

    Riyanto; Prawidha, A. D.

    2018-01-01

    Electrochemical degradation of methylene blue using Carbon-Chitosan-Polyvinyl Chloride (CC-PVC) electrode in sodium chloride have been done. The aim of this work was to degradation of methylene blue using Carbon-Chitosan-Polyvinyl Chloride (CC-PVC). Carbon chitosan composite electrode was preparing by Carbon and Chitosan powder and PVC in 4 mL tetrahydrofuran (THF) solvent and swirled flatly to homogeneous followed by drying in an oven at 100 °C for 3 h. The mixture was placed in stainless steel mould and pressed at 10 ton/cm2. Sodium chloride was used electrolyte solution. The effects of the current and electrolysis time were investigated using spectrophotometer UV-Visible. The experimental results showed that the carbon-chitosan composite electrode have higher effect in the electrochemical degradation of methylene blue in sodium chloride. Based on UV-visible spectra analysis shows current and electrolysis time has high effect to degradation of methylene blue in sodium chloride. Chitosan and polyvinyl chloride can strengthen the bond between the carbons so that the material has the high stability and conductivity. As conclusions is Carbon-Chitosan-Polyvinyl Chloride (CC-PVC) electrode have a high electrochemical activity for degradation of methylene blue in sodium chloride.

  14. Electrochemical surface modification of titanium in dentistry.

    Science.gov (United States)

    Kim, Kyo-Han; Ramaswamy, Narayanan

    2009-01-01

    Titanium and its alloys have good biocompatibility with body cells and tissues and are widely used for implant applications. However, clinical procedures place more stringent and tough requirements on the titanium surface necessitating artificial surface treatments. Among the many methods of titanium surface modification, electrochemical techniques are simple and cheap. Anodic oxidation is the anodic electrochemical technique while electrophoretic and cathodic depositions are the cathodic electrochemical techniques. By anodic oxidation it is possible to obtain desired roughness, porosity and chemical composition of the oxide. Anodic oxidation at high voltages can improve the crystallinity of the oxide. The chief advantage of this technique is doping of the coating of the bath constituents and incorporation of these elements improves the properties of the oxide. Electrophoretic deposition uses hydroxyapatite (HA) powders dispersed in a suitable solvent at a particular pH. Under these operating conditions these particles acquire positive charge and coatings are obtained on the cathodic titanium by applying an external electric field. These coatings require a post-sintering treatment to improve the coating properties. Cathodic deposition is another type of electrochemical method where HA is formed in situ from an electrolyte containing calcium and phosphate ions. It is also possible to alter structure and/or chemistry of the obtained deposit. Nano-grained HA has higher surface energy and greater biological activity and therefore emphasis is being laid to produce these coatings by cathodic deposition.

  15. Lunar terrain mapping and relative-roughness analysis

    Science.gov (United States)

    Rowan, Lawrence C.; McCauley, John F.; Holm, Esther A.

    1971-01-01

    Terrain maps of the equatorial zone (long 70° E.-70° W. and lat 10° N-10° S.) were prepared at scales of 1:2,000,000 and 1:1,000,000 to classify lunar terrain with respect to roughness and to provide a basis for selecting sites for Surveyor and Apollo landings as well as for Ranger and Lunar Orbiter photographs. The techniques that were developed as a result of this effort can be applied to future planetary exploration. By using the best available earth-based observational data and photographs 1:1,000,000-scale and U.S. Geological Survey lunar geologic maps and U.S. Air Force Aeronautical Chart and Information Center LAC charts, lunar terrain was described by qualitative and quantitative methods and divided into four fundamental classes: maria, terrae, craters, and linear features. Some 35 subdivisions were defined and mapped throughout the equatorial zone, and, in addition, most of the map units were illustrated by photographs. The terrain types were analyzed quantitatively to characterize and order their relative-roughness characteristics. Approximately 150,000 east-west slope measurements made by a photometric technique (photoclinometry) in 51 sample areas indicate that algebraic slope-frequency distributions are Gaussian, and so arithmetic means and standard deviations accurately describe the distribution functions. The algebraic slope-component frequency distributions are particularly useful for rapidly determining relative roughness of terrain. The statistical parameters that best describe relative roughness are the absolute arithmetic mean, the algebraic standard deviation, and the percentage of slope reversal. Statistically derived relative-relief parameters are desirable supplementary measures of relative roughness in the terrae. Extrapolation of relative roughness for the maria was demonstrated using Ranger VII slope-component data and regional maria slope data, as well as the data reported here. It appears that, for some morphologically homogeneous

  16. Preparation of porous lead from shape-controlled PbO bulk by in situ electrochemical reduction in ChCl-EG deep eutectic solvent

    Science.gov (United States)

    Ru, Juanjian; Hua, Yixin; Xu, Cunying; Li, Jian; Li, Yan; Wang, Ding; Zhou, Zhongren; Gong, Kai

    2015-12-01

    Porous lead with different shapes was firstly prepared from controlled geometries of solid PbO bulk by in situ electrochemical reduction in choline chloride-ethylene glycol deep eutectic solvents at cell voltage 2.5 V and 353 K. The electrochemical behavior of PbO powders on cavity microelectrode was investigated by cyclic voltammetry. It is indicated that solid PbO can be directly reduced to metal in the solvent and a nucleation loop is apparent. Constant voltage electrolysis demonstrates that PbO pellet can be completely converted to metal for 13 h, and the current efficiency and specific energy consumption are about 87.79% and 736.82 kWh t-1, respectively. With the electro-deoxidation progress on the pellet surface, the reduction rate reaches the fastest and decreases along the distance from surface to inner center. The morphologies of metallic products are porous and mainly consisted of uniform particles which connect with each other by finer strip-shaped grains to remain the geometry and macro size constant perfectly. In addition, an empirical model of the electro-deoxidation process from spherical PbO bulk to porous lead is also proposed. These findings provide a novel and simple route for the preparation of porous metals from oxide precursors in deep eutectic solvents at room temperature.

  17. Influencing Mechanism of Electrochemical Treatment on Preparation of CNTs-grafted on Carbon Fibers

    Directory of Open Access Journals (Sweden)

    SONG Lei

    2017-11-01

    Full Text Available Based on electrochemical anodic oxidation, an innovative technique was developed to efficiently obtain the uniform catalyst coating on continuous carbon fibers. Through systematic investigation on the effect of electrochemical modified strength on the physical and chemical characteristics of carbon fiber surface, catalyst particles and the morphology of CNTs-grafted carbon fibers, tensile strength of multi-scale reinforcement and the interlaminar shear strength of its reinforced composites, the electrochemical modification process on carbon fibre surface was optimized. The results show that the morphology and distribution of catalyst particles not only affect the morphology of CNTs deposited on the surface of carbon fibres,but also affect the mechanical properties of multi-scale reinforcement and its reinforced composites of CNTs-grafted carbon fibers.

  18. Impact of roughness, wettability and hydrodynamic conditions on the incrustation on stainless steel surfaces

    International Nuclear Information System (INIS)

    Bogacz, Wojciech; Lemanowicz, Marcin; Al-Rashed, Mohsen H.; Nakonieczny, Damian; Piotrowski, Tomasz; Wójcik, Janusz

    2017-01-01

    Highlights: • Steel plates (X5CrNi18-10) with different roughness and wettability were prepared. • Incrustation of MgSO 4 ·7H 2 O under laminar flow (Re = 59–178) was investigated. • Influence of surface properties and fluid velocity on incrustation was found. • Wettability and surface roughness cannot be considered separately. • Analysis of heat transfer and incrustation time-lapse videos are presented. - Abstract: The goal of this work was to investigate the influence of the stainless steel surface roughness and wettability on incrustation of MgSO 4 ·7H 2 O from aqueous solutions and resulting heat transfer resistance. The experiments were done for laminar flow (Re = 59–178) which is characteristic for regions of apparatus where fouling usually begin. A series of steel plates (X5CrNi18-10) were prepared and used as a heat transfer surfaces. Their properties, i.e. roughness, wettability and elementary composition of surfaces were determined. The experiments were done using specially designed flow cell equipped with Peltier element. Each incrustation measurement lasted for two hours, during which heat transfer resistance was measured as a function of time. After the experiments the mass of crystalline deposit was weighted. It was proved that wettability as well as surface roughness cannot be considered separately in the case of incrustation phenomenon. The knowledge of surface roughness is insufficient due to the fact, that it is possible to obtain surfaces with similar roughness but substantially different wettability for the same material.

  19. Novel MnOOH–graphene nanocomposites: Preparation, characterization and electrochemical properties for supercapacitors

    International Nuclear Information System (INIS)

    Mei, Jun; Zhang, Long

    2015-01-01

    In this paper, we report a simple and controlled synthesis of novel MnOOH–graphene nanocomposites with a one-step facile hydrothermal method. It is template-free and easy to reproduce. Electrochemical properties are investigated in different media. The values of specific capacitance achieved are 112 F g −1 in 1 M Na 2 SO 4 and 165 F g −1 in 6 M KOH electrolyte, respectively. The assembly of multiple branched MnOOH and graphene flakes results in synergistic effects, forming new electron transfer channels to accelerate electron transfer and provide the pseudocapacitance to increase the overall capacitance. The novel composites have potential applications in the fields of supercapacitors, lithium battery and so on. - Graphical abstract: The MnOOH–graphene nanocomposites shows better specific capacitance with the values achieved 112 F g −1 in 1 M Na 2 SO 4 and 165 F g −1 in 6 M KOH electrolyte, respectively. - Highlights: • Novel MnOOH–graphene nanocomposites were prepared by a one-step hydrothermal method. • The assembly can form new electron transfer channels to accelerate electron transfer. • The capacitive and rate performances are enhanced in both neutral and alkaline medium

  20. Effects of carbon source and carbon content on electrochemical performances of Li{sub 4}Ti{sub 5}O{sub 12}/C prepared by one-step solid-state reaction

    Energy Technology Data Exchange (ETDEWEB)

    Hu Xuebu [College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610066 (China); Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, Sichuan 610041 (China); Lin Ziji [China National Quality Supervision and Inspection Center for Alcoholic Beverage Products and Processed Food, Luzhou, Sichuan 646100 (China); Yang Kerun [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, Sichuan 610041 (China); Hua, Yongjian [China Aviation Lithium Battery Co. Ltd., Luoyang, Henan 471009 (China); Deng Zhenghua, E-mail: zhdeng@cioc.ac.cn [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, Sichuan 610041 (China)

    2011-05-30

    Highlights: > A simple route to prepare the Li{sub 4}Ti{sub 5}O{sub 12}/C by one-step solid-state reaction. > Carbon source and carbon content are two important factors on the electrochemical performances of Li{sub 4}Ti{sub 5}O{sub 12}/C. > As-prepared Li{sub 4}Ti{sub 5}O{sub 12}/C under optimized conditions shows excellent electrochemical performances. - Abstract: Li{sub 4}Ti{sub 5}O{sub 12}/C composites were synthesized by one-step solid-state reaction method using four commonly used organic compounds or organic polymers as carbon source, i.e., polyacrylate acid (PAA), citric acid (CA), maleic acid (MA) and polyvinyl alcohol (PVA). The physical characteristics of Li{sub 4}Ti{sub 5}O{sub 12}/C composites were investigated by X-ray diffraction, electron microscopy, Raman spectroscopy, particle size distribution and thermogravimetry-derivative thermogravimetry techniques. Their electrochemical properties were characterized by cyclic voltammograms, electrochemical impedance spectra, constant current charge-discharge and rate charge-discharge. These analyses indicated that the carbon source and carbon content have a great effect on the physical and electrochemical performances of Li{sub 4}Ti{sub 5}O{sub 12}/C composites. An ideal carbon source and appropriate carbon content effectively improved the electrical contact between the Li{sub 4}Ti{sub 5}O{sub 12} particles, which enhanced the discharge capacity and rate capability of Li{sub 4}Ti{sub 5}O{sub 12}/C composites. PAA was the best carbon source for the synthesis of Li{sub 4}Ti{sub 5}O{sub 12}/C composites. When the carbon content was 3.49 wt.% (LiOH.H{sub 2}O/PAA molar ratio of 1), as-prepared Li{sub 4}Ti{sub 5}O{sub 12}/C showed the maximum discharge capacity. At 0.2 C, initial capacity of the optimized sample was 168.6 mAh g{sup -1} with capacity loss of 2.8% after 50 cycles. At 8 and 10 C, it showed discharge capacities of 143.5 and 132.7 mAh g{sup -1}, with capacity loss of 8.7 and 9.9% after 50 cycles

  1. Nanodiamond Films for Applications in Electrochemical Systems

    Directory of Open Access Journals (Sweden)

    A. F. Azevedo

    2012-01-01

    Full Text Available The purpose of the present paper is to give an overview on the current development status of nanocrystalline diamond electrodes for electrochemical applications. Firstly, we describe a brief comparison between the general properties of nanocrystalline diamond (undoped and boron-doped and boron-doped microcrystalline diamond films. This is followed by a summary of the nanodiamond preparation methods. Finally, we present a discussion about the undoped and boron-doped nanocrystalline diamond and their characteristics, electrochemical properties, and practical applications.

  2. Electropolishing effect on roughness metrics of ground stainless steel: a length scale study

    Science.gov (United States)

    Nakar, Doron; Harel, David; Hirsch, Baruch

    2018-03-01

    Electropolishing is a widely-used electrochemical surface finishing process for metals. The electropolishing of stainless steel has vast commercial application, such as improving corrosion resistance, improving cleanness, and brightening. The surface topography characterization is performed using several techniques with different lateral resolutions and length scales, from atomic force microscopy in the nano-scale (filter are adopted. While the commonly used roughness amplitude parameters (Ra, Rq and Rz) fail to characterize electropolished textures, the root mean square slope (RΔq) is found to better describe the electropolished surfaces and to be insensitive to scale.

  3. Electrochemical behavior and biological response of Mesenchymal Stem Cells on cp-Ti after N-ions implantation

    Energy Technology Data Exchange (ETDEWEB)

    Rizwan, M.; Ahmad, A. [Department of Metallurgical and Materials Engineering, University of Engineering and Technology, 54890 Lahore (Pakistan); Deen, K.M. [Corrosion Control Research Cell, Department of Metallurgy and Materials Engineering, CEET, University of the Punjab, 54590 Lahore (Pakistan); Haider, W., E-mail: haiderw@utpa.edu [Mechanical Engineering Department, University of Texas Pan American, Edinburg, TX 78539 (United States)

    2014-11-30

    Highlights: • Nitrogen ions of known dosage were implanted on cp-Ti. • Increase in surface roughness with increase in ions dose was confirmed by AFM. • TiN{sub 0.3} and Ti{sub 3}N{sub 2−x} nitride phases were formed and validated by XRD. • The ions implantation reduced the corrosion rate and stabilized the passive film. • Surface roughness greatly affected the morphology and growth of Mesenchymal Stem Cells. - Abstract: Titanium and its alloys are most widely used as implant materials due to their excellent biocompatibility, mechanical properties and chemical stability. In this study Nitrogen ions of known dosage were implanted over cp-Ti by Pelletron accelerator with beam energy of 0.25 MeV.The atomic force microscopy of bare and nitrogen implanted specimens confirmed increase in surface roughness with increase in nitrogen ions concentration. X-ray diffraction patterns of ions implanted surfaces validated the formation of TiN{sub 0.3} and Ti{sub 3}N{sub 2-x}nitride phases. The tendency to form passive film and electrochemical behavior of these surfaces in ringer lactate (RL) solution was evaluated by Potentiodynamic polarization and electrochemical impedance spectroscopy respectively. It is proved that nitrogen ions implantation was beneficial to reduce corrosion rate and stabilizing passive film by increasing charge transfer resistance in RL. It was concluded that morphology and proliferation of Mesenchymal Stem Cells on nitrogen ions implanted surfaces strongly depends on surface roughness and nitride phases.

  4. Modified porous silicon for electrochemical sensor of para-nitrophenol

    Energy Technology Data Exchange (ETDEWEB)

    Belhousse, S., E-mail: all_samia_b@yahoo.fr [Centre de Recherche en Technologie des Semi-conducteurs pour l’Energétique (CRTSE), Division Thin Films-Surface and Interface, 2, Bd. Frantz Fanon, B.P. 140, Alger-7 merveilles, Algiers (Algeria); Belhaneche-Bensemra, N., E-mail: nbelhaneche@yahoo.fr [Ecole Nationale Polytechnique (ENP), 10, Avenue Hassen Badi, B.P. 182, 16200, El Harrach, Algiers (Algeria); Lasmi, K., E-mail: kahinalasmi@yahoo.fr [Centre de Recherche en Technologie des Semi-conducteurs pour l’Energétique (CRTSE), Division Thin Films-Surface and Interface, 2, Bd. Frantz Fanon, B.P. 140, Alger-7 merveilles, Algiers (Algeria); Mezaache, I., E-mail: lyeso_44@hotmail.fr [Ecole Nationale Polytechnique (ENP), 10, Avenue Hassen Badi, B.P. 182, 16200, El Harrach, Algiers (Algeria); Sedrati, T., E-mail: tarek_1990m@hotmail.fr [Ecole Nationale Polytechnique (ENP), 10, Avenue Hassen Badi, B.P. 182, 16200, El Harrach, Algiers (Algeria); Sam, S., E-mail: Sabrina.sam@polytechnique.edu [Centre de Recherche en Technologie des Semi-conducteurs pour l’Energétique (CRTSE), Division Thin Films-Surface and Interface, 2, Bd. Frantz Fanon, B.P. 140, Alger-7 merveilles, Algiers (Algeria); Tighilt, F.-Z., E-mail: mli_zola@yahoo.fr [Centre de Recherche en Technologie des Semi-conducteurs pour l’Energétique (CRTSE), Division Thin Films-Surface and Interface, 2, Bd. Frantz Fanon, B.P. 140, Alger-7 merveilles, Algiers (Algeria); Gabouze, N., E-mail: ngabouze@yahoo.fr [Centre de Recherche en Technologie des Semi-conducteurs pour l’Energétique (CRTSE), Division Thin Films-Surface and Interface, 2, Bd. Frantz Fanon, B.P. 140, Alger-7 merveilles, Algiers (Algeria)

    2014-11-15

    Highlights: • Hybrid device based on Porous silicon (PSi) and polythiophene (PTh) was prepared. • Three types of PSi/PTh hybrid structures were elaborated: PSi/PTh, oxide/PSi/PTh and Amino-propyltrimethoxysilane (APTMES)/oxide/PSi/PTh. • PTh was grafted on PSi using electrochemical polymerization. • The electrodetection of para-nitrophenol (p-NPh) was performed by cyclic voltammetry. • Oxide/PSi/PTh and APTMES/oxide/PSi/PTh, based electrochemical sensor showed a good response toward p-NPh. - Abstract: Hybrid structures based on polythiophene modified porous silicon was used for the electrochemical detection of para-nitrophenol, which is a toxic derivative of parathion insecticide and it is considered as a major toxic pollutant. The porous silicon was prepared by anodic etching in hydrofluodic acid. Polythiophene films were then grown by electropolymerisation of thiophene monomer on three different surfaces: hydrogenated PSi, oxidized PSi and amine-terminated PSi. The morphology of the obtained structures were observed by scanning electron microscopy and characterized by spectroscopy (FTIR). Cyclic voltammetry was used to study the electrochemical response of proposed structures to para-nitrophenol. The results show a high sensitivity of the sensor and a linearity of the electrochemical response in a large concentration interval ranging from 1.5 × 10{sup −8} M to the 3 × 10{sup −4}M.

  5. Electrochemical behavior and biological response of Mesenchymal Stem Cells on cp-Ti after N-ions implantation

    Science.gov (United States)

    Rizwan, M.; Ahmad, A.; Deen, K. M.; Haider, W.

    2014-11-01

    Titanium and its alloys are most widely used as implant materials due to their excellent biocompatibility, mechanical properties and chemical stability. In this study Nitrogen ions of known dosage were implanted over cp-Ti by Pelletron accelerator with beam energy of 0.25 MeV.The atomic force microscopy of bare and nitrogen implanted specimens confirmed increase in surface roughness with increase in nitrogen ions concentration. X-ray diffraction patterns of ions implanted surfaces validated the formation of TiN0.3 and Ti3N2-xnitride phases. The tendency to form passive film and electrochemical behavior of these surfaces in ringer lactate (RL) solution was evaluated by Potentiodynamic polarization and electrochemical impedance spectroscopy respectively. It is proved that nitrogen ions implantation was beneficial to reduce corrosion rate and stabilizing passive film by increasing charge transfer resistance in RL. It was concluded that morphology and proliferation of Mesenchymal Stem Cells on nitrogen ions implanted surfaces strongly depends on surface roughness and nitride phases.

  6. Rough multiple objective decision making

    CERN Document Server

    Xu, Jiuping

    2011-01-01

    Rough Set TheoryBasic concepts and properties of rough sets Rough Membership Rough Intervals Rough FunctionApplications of Rough SetsMultiple Objective Rough Decision Making Reverse Logistics Problem with Rough Interval Parameters MODM based Rough Approximation for Feasible RegionEVRMCCRMDCRM Reverse Logistics Network Design Problem of Suji Renewable Resource MarketBilevel Multiple Objective Rough Decision Making Hierarchical Supply Chain Planning Problem with Rough Interval Parameters Bilevel Decision Making ModelBL-EVRM BL-CCRMBL-DCRMApplication to Supply Chain Planning of Mianyang Co., LtdStochastic Multiple Objective Rough Decision Multi-Objective Resource-Constrained Project Scheduling UnderRough Random EnvironmentRandom Variable Stochastic EVRM Stochastic CCRM Stochastic DCRM Multi-Objective rc-PSP/mM/Ro-Ra for Longtan Hydropower StationFuzzy Multiple Objective Rough Decision Making Allocation Problem under Fuzzy Environment Fuzzy Variable Fu-EVRM Fu-CCRM Fu-DCRM Earth-Rock Work Allocation Problem.

  7. The electrochemical reduction processes of solid compounds in high temperature molten salts.

    Science.gov (United States)

    Xiao, Wei; Wang, Dihua

    2014-05-21

    Solid electrode processes fall in the central focus of electrochemistry due to their broad-based applications in electrochemical energy storage/conversion devices, sensors and electrochemical preparation. The electrolytic production of metals, alloys, semiconductors and oxides via the electrochemical reduction of solid compounds (especially solid oxides) in high temperature molten salts has been well demonstrated to be an effective and environmentally friendly process for refractory metal extraction, functional materials preparation as well as spent fuel reprocessing. The (electro)chemical reduction of solid compounds under cathodic polarizations generally accompanies a variety of changes at the cathode/melt electrochemical interface which result in diverse electrolytic products with different compositions, morphologies and microstructures. This report summarizes various (electro)chemical reactions taking place at the compound cathode/melt interface during the electrochemical reduction of solid compounds in molten salts, which mainly include: (1) the direct electro-deoxidation of solid oxides; (2) the deposition of the active metal together with the electrochemical reduction of solid oxides; (3) the electro-inclusion of cations from molten salts; (4) the dissolution-electrodeposition process, and (5) the electron hopping process and carbon deposition with the utilization of carbon-based anodes. The implications of the forenamed cathodic reactions on the energy efficiency, chemical compositions and microstructures of the electrolytic products are also discussed. We hope that a comprehensive understanding of the cathodic processes during the electrochemical reduction of solid compounds in molten salts could form a basis for developing a clean, energy efficient and affordable production process for advanced/engineering materials.

  8. Fissure sealants: in vitro evaluation of abrasion wear and superficial roughness

    Directory of Open Access Journals (Sweden)

    Vanessa Pardi

    2008-06-01

    Full Text Available The aim of this study was to compare the in vitro wear and superficial roughness of four materials (Delton Dyract Flow, Dentsply; Filtek Flow, Vitremer, 3M ESPE used as fissure sealant in 32 extracted human molars divided in four groups (n = 8 after abrasion with toothbrush/dentifrice. Impressions of each occlusal surface were made to analyze wear and circular specimens were prepared to analyze the roughness. Teeth and specimens were mounted in a toothbrushing machine. The replicas were observed using a SEM to determine the superficial wear. Wear: there were no statistically significant differences either between Delton and Filtek Flow or between Dyract Flow and Vitremer. Roughness: there were no statistical differences between Filtek Flow and Dyract Flow, Dyract Flow and Vitremer, Vitremer and Delton., Considering the clinical practice, if caries activity is present the use of Vitremer is suggested not only for its well known fluoride release, but it presented good roughness results.

  9. Electrochemical and mass variation behaviour of rhodium oxide electrodes prepared by the polymeric precursor method

    International Nuclear Information System (INIS)

    Santos, M.C.; Oliveira, R.T.S.; Pereira, E.C.; Bulhoes, L.O.S.

    2005-01-01

    This paper describes an investigation of the charging processes of Rh 2 O 3 electrodes in acidic medium using Electrochemical Quartz Crystal Microbalance. The Rh 2 O 3 was prepared by the Pechini method. The microstructural characterization of the rhodium oxide was performed using Scanning Electron Microscopy and the structure was determined by X-ray diffraction. The Rh 2 O 3 oxidizes at potentials higher than 0.8 V. A mass loss of 60 ng was observed during the anodic sweep. The same amount is gained during the cathodic sweep indicating that the process is reversible. From the mass versus charge plots a slope of 8.5 g mol -1 is calculated. Considering a process that involves a two-electron transfer, the oxidation of Rh 2 O 3 to RhO 2 with the loss of a water molecule (18 g mol -1 ) is proposed

  10. Cooperative Robot Teams Applied to the Site Preparation Task

    International Nuclear Information System (INIS)

    Parker, LE

    2001-01-01

    Prior to human missions to Mars, infrastructures on Mars that support human survival must be prepared. robotic teams can assist in these advance preparations in a number of ways. This paper addresses one of these advance robotic team tasks--the site preparation task--by proposing a control structure that allows robot teams to cooperatively solve this aspect of infrastructure preparation. A key question in this context is determining how robots should make decisions on which aspect of the site preparation t6ask to address throughout the mission, especially while operating in rough terrains. This paper describes a control approach to solving this problem that is based upon the ALLIANCE architecture, combined with performance-based rough terrain navigation that addresses path planning and control of mobile robots in rough terrain environments. They present the site preparation task and the proposed cooperative control approach, followed by some of the results of the initial testing of various aspects of the system

  11. Electrochemical preparation of Al–Sm intermetallic compound whisker in LiCl–KCl Eutectic Melts

    International Nuclear Information System (INIS)

    Ji, De−Bin; Yan, Yong−De; Zhang, Mi−Lin; Li, Xing; Jing, Xiao−Yan; Han, Wei; Xue, Yun; Zhang, Zhi−Jian; Hartmann, Thomas

    2015-01-01

    Highlights: • The reduction process of Sm(III) was investigated in LiCl–KCl melt on an aluminum electrode at 773 K. • Al–Sm alloy with different phase structure (Al 2 Sm and Al 3 Sm) was prepared by potentiostatic electrolysis on an aluminum electrode with the change of electrolytic potentials and time in LiCl–KCl–SmCl 3 melts. • Al − Sm alloy containing whiskers (Al 4 Sm) was obtained by potentiostatic electrolysis (−2.10 V) on an aluminum electrode for 7 hours with the change of electrolytic temperature and cooling rate in LiCl–KCl–SmCl 3 (16.5 wt. %) melts. The results from micro–hardness test and potentiodynamic polarization test show the micro hardness and corrosion property are remarkably improved with the help of Al–Sm intermetallic compound whiskers. - Abstract: This work presents the electrochemical study of Sm(III) on an aluminum electrode in LiCl–KCl melts at 773 K by different electrochemical methods. Three electrochemical signals in cyclic voltammetry, square wave voltammetry, open circuit chronopotentiometry, and cathode polarization curve are attributed to different kinds of Al–Sm intermetallic compounds, Al 2 Sm, Al 3 Sm, and Al 4 Sm, respectively. Al–Sm alloy with different phase structure (Al 2 Sm and Al 3 Sm) could be obtained by the potentiostatic electrolysis with the change of electrolytic potentials and time. Al–Sm alloy containing whiskers (Al 4 Sm) was obtained by potentiostatic electrolysis (−2.10 V) on an aluminum electrode for 7 hours with the change of electrolytic temperature and cooling rate in LiCl–KCl–SmCl 3 (16.5 wt. %) melts. The XRD and SEM&EDS were employed to investigate the phase composition and microstructure of Al–Sm alloy. SEM analysis shows that lots of needle−like precipitates formed in Al–Sm alloy, and their ratios of length to diameter are found to be greater than 10 to 1. The TEM and electron diffraction pattern were performed to investigate the crystal structure of the

  12. Electrochemical Study of Bromide in the Presence of 1,3-Indandione. Application to the Electrochemical Synthesis of Bromo Derivatives of 1,3-Indandione

    OpenAIRE

    Nematollahi, D.; Akaberi, N.

    2001-01-01

    The electrochemical oxidation of bromide in the presence of 1,3-indandione (1) in water/acetic acid and methanol/acetic acid mixtures has been studied by cyclic voltammetry and controlled-potential coulometry. The results indicate the participation of 1,3-indandione in the bromination reaction. On the basis of the electroanalytical and preparative results a reaction mechanism including electron transfer, chemical reaction and regeneration of bromide was discussed. The electrochemical synthesi...

  13. Raman Spectroscopy and Electrochemical Investigations of Pt Electrocatalyst Supported on Carbon Prepared through Plasma Pyrolysis of Natural Gas

    Directory of Open Access Journals (Sweden)

    Tereza Cristina Santos Evangelista

    2015-01-01

    Full Text Available Physicochemical and electrochemical characterisations of Pt-based electrocatalysts supported on carbon (Vulcan carbon, C1, and carbon produced by plasma pyrolysis of natural gas, C2 toward ethanol electrooxidation were investigated. The Pt20/C180 and Pt20/C280 electrocatalysts were prepared by thermal decomposition of polymeric precursors at 350°C. The electrochemical and physicochemical characterisations of the electrocatalysts were performed by means of X-ray diffraction (XRD, transmission electron microscope (TEM, Raman scattering, cyclic voltammetry, and chronoamperometry tests. The XRD results show that the Pt-based electrocatalysts present platinum metallic which is face-centered cubic structure. The results indicate that the Pt20/C180 electrocatalyst has a smaller particle size (10.1–6.9 nm compared with the Pt20/C280 electrocatalyst; however, the Pt20/C280 particle sizes are similar (12.8–10.4 nm and almost independent of the reflection planes, which suggests that the Pt crystallites grow with a radial shape. Raman results reveal that both Vulcan carbon and plasma carbon are graphite-like materials consisting mostly of sp2 carbon. Cyclic voltammetry and chronoamperometry data obtained in this study indicate that the deposition of Pt on plasma carbon increases its electrocatalytic activity toward ethanol oxidation reaction.

  14. Electrical, thermal and electrochemical properties of disordered carbon prepared from palygorskite and cane molasses

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, Edelio Danguillecourt, E-mail: edelioalvarez42@gmail.com [Instituto Superior Minero Metalúrgico (ISMM), Moa 83300 (Cuba); Laffita, Yodalgis Mosqueda, E-mail: yodalgis@imre.uh.cu [Institute of Materials Science and Technology-Havana University, La Habana 10400 (Cuba); Montoro, Luciano Andrey, E-mail: landrey.montoro@gmail.com [Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901 (Brazil); Della Santina Mohallem, Nelcy, E-mail: nelcydsm@gmail.com [Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901 (Brazil); Cabrera, Humberto, E-mail: hcabrera@ictp.it [SPIE-ICTP Anchor Research in Optics Program Laboratory, International Centre for Theoretical Physics (ICTP), Strada Costiera 11, Trieste 34151 (Italy); Centro Multidisciplinario de Ciencias, Instituto Venezolano de Investigaciones Científicas (IVIC), 5101 Mérida (Venezuela, Bolivarian Republic of); Pérez, Guillermo Mesa, E-mail: guille@ceaden.edu.cu [National Center for Technological Research (CEADEN), La Habana 10400 (Cuba); Frutis, Miguel Aguilar, E-mail: mafrutis@yahoo.es [CICATA-IPN, Legaria 694, Col. Irrigacion, Del., Miguel Hidalgo CP 11500 (Mexico); Cappe, Eduardo Pérez, E-mail: cappe@imre.uh.cu [Institute of Materials Science and Technology-Havana University, La Habana 10400 (Cuba)

    2017-02-15

    We have synthesized and electrochemically tested a carbon sample that was suitable as anode for lithium secondary battery. The synthesis was based on the use of the palygorskite clay as template and sugar cane molasses as carbon source. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, Brunauer–Emmett–Teller (BET) measurements and High Resolution Transmission Electron Microscope (HRTEM) analysis showed that the nanometric carbon material has a highly disordered graphene-like wrinkled structure and large specific surface area (467 m{sup 2} g{sup −1}). The compositional characterization revealed a 14% of heteroatoms-containing groups (O, H, N, S) doping the as-prepared carbon. Thermophysical measurements revealed the good thermal stability and an acceptable thermal diffusivity (9·10{sup −7} m{sup 2} s{sup −1}) and conductivity (1.1 W m{sup −1} K{sup −1}) of this carbon. The electrical properties showed an electronic conductivity of hole-like carriers of approximately one S/cm in a 173–293 K range. The testing of this material as anodes in a secondary lithium battery displayed a high specific capacity and excellent performance in terms of number of cycles. A high reversible capacity of 356 mA h g{sup −1} was reached. - Graphical abstract: TEM image and electrochemistry behavior of a new graphene oxide-like carbon. - Highlights: • A high disordered graphene oxide-like conducting carbon is reported. • The synthesis was based on palygorskite and sugar cane molasses as precursors. • The disordered conducting carbon is composed of doped- graphene heterogeneous domains. • This material combines a large specific surface area and high electric conductivity. • The thermophysical and electrochemical properties of this material reveal adequate behavior.

  15. Electrical, thermal and electrochemical properties of disordered carbon prepared from palygorskite and cane molasses

    International Nuclear Information System (INIS)

    Alvarez, Edelio Danguillecourt; Laffita, Yodalgis Mosqueda; Montoro, Luciano Andrey; Della Santina Mohallem, Nelcy; Cabrera, Humberto; Pérez, Guillermo Mesa; Frutis, Miguel Aguilar; Cappe, Eduardo Pérez

    2017-01-01

    We have synthesized and electrochemically tested a carbon sample that was suitable as anode for lithium secondary battery. The synthesis was based on the use of the palygorskite clay as template and sugar cane molasses as carbon source. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, Brunauer–Emmett–Teller (BET) measurements and High Resolution Transmission Electron Microscope (HRTEM) analysis showed that the nanometric carbon material has a highly disordered graphene-like wrinkled structure and large specific surface area (467 m 2 g −1 ). The compositional characterization revealed a 14% of heteroatoms-containing groups (O, H, N, S) doping the as-prepared carbon. Thermophysical measurements revealed the good thermal stability and an acceptable thermal diffusivity (9·10 −7 m 2 s −1 ) and conductivity (1.1 W m −1 K −1 ) of this carbon. The electrical properties showed an electronic conductivity of hole-like carriers of approximately one S/cm in a 173–293 K range. The testing of this material as anodes in a secondary lithium battery displayed a high specific capacity and excellent performance in terms of number of cycles. A high reversible capacity of 356 mA h g −1 was reached. - Graphical abstract: TEM image and electrochemistry behavior of a new graphene oxide-like carbon. - Highlights: • A high disordered graphene oxide-like conducting carbon is reported. • The synthesis was based on palygorskite and sugar cane molasses as precursors. • The disordered conducting carbon is composed of doped- graphene heterogeneous domains. • This material combines a large specific surface area and high electric conductivity. • The thermophysical and electrochemical properties of this material reveal adequate behavior.

  16. CuO nanoparticle sensor for the electrochemical determination of dopamine

    International Nuclear Information System (INIS)

    Reddy, Sathish; Kumara Swamy, B.E.; Jayadevappa, H.

    2012-01-01

    Highlights: ► The MCPE prepared from flake-shaped CuO nanoparticles exhibits good electrocatalytic activity for DA compared with MCPE prepared from rod-shaped CuO nanoparticles. ► The MCPE prepared from SDS/polyglycine/flake-shaped CuO nanoparticles strong electrocatalytic enhancement of redox peak currents for DA and large peak potential separation between E AA − E DA . ► Analysis of DA shows linearly increase in anodic peak current in presence of excess ascorbic acid. ► Ease of preparation and good analytical response supports its claim for use as a potential dopamine sensor. - Abstract: In the present work, different shaped CuO nanoparticles were synthesized using cetyl trimethyl ammonium bromide (CTAB) and sodium dodecyl sulfate (SDS) in a co-precipitation method. The CuO nanoparticles were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), infrared absorption spectroscopy (IR) and UV–visible absorption spectroscopy (UV–vis). The prepared CuO nanoparticles were used for the preparation of modified carbon-paste electrodes (MCPE) for the electrochemical detection of dopamine (DA) at pH 6.0. The MCPE prepared from flake-shaped CuO nanoparticles exhibited an enhanced current response for DA. Electrochemical parameters, such as the surface area of the electrode, the heterogeneous rate constant (k s ) and the lower detection limit (5.5 × 10 −8 M), were calculated and compared with those of the MCPE prepared from rod-shaped CuO nanoparticles. The MCPE prepared from SDS/polyglycine/flake-shaped CuO nanoparticles exhibited a further improved current response for DA and a high selectivity (E AA − E DA = 0.28 V) for the simultaneous investigation of DA and ascorbic acid (AA) at pH 6.0. The modified carbon-paste electrochemical sensors were compared, and the MCPE prepared from SDS/polyglycine/flake-shaped CuO nanoparticles exhibited better performance than the MCPE prepared from CTAB

  17. Novel MnOOH–graphene nanocomposites: Preparation, characterization and electrochemical properties for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Mei, Jun; Zhang, Long, E-mail: zhanglongzhl@163.com

    2015-01-15

    In this paper, we report a simple and controlled synthesis of novel MnOOH–graphene nanocomposites with a one-step facile hydrothermal method. It is template-free and easy to reproduce. Electrochemical properties are investigated in different media. The values of specific capacitance achieved are 112 F g{sup −1} in 1 M Na{sub 2}SO{sub 4} and 165 F g{sup −1} in 6 M KOH electrolyte, respectively. The assembly of multiple branched MnOOH and graphene flakes results in synergistic effects, forming new electron transfer channels to accelerate electron transfer and provide the pseudocapacitance to increase the overall capacitance. The novel composites have potential applications in the fields of supercapacitors, lithium battery and so on. - Graphical abstract: The MnOOH–graphene nanocomposites shows better specific capacitance with the values achieved 112 F g{sup −1} in 1 M Na{sub 2}SO{sub 4} and 165 F g{sup −1} in 6 M KOH electrolyte, respectively. - Highlights: • Novel MnOOH–graphene nanocomposites were prepared by a one-step hydrothermal method. • The assembly can form new electron transfer channels to accelerate electron transfer. • The capacitive and rate performances are enhanced in both neutral and alkaline medium.

  18. Prediction of Optimal Designs for Material Removal Rate and Surface Roughness Characteristics

    Directory of Open Access Journals (Sweden)

    Maheswara Rao Ch

    2016-12-01

    Full Text Available The present work involves in finding the optimal combination of cutting parameters, in dry turning of EN19 steel using a tungsten carbide tool of nose radius 0.4 mm. The experiments were conducted on a CNC turret lathe as per the designed L9 (3^3 orthogonal array. In order to optimize the Material Removal Rate (MRR, Arithmetic Average Roughness (Ra and Average Peak-to-Valley Height Roughness (Rz individually, Single objective Taguchi method has been employed. From the results, the optimal combination of cutting parameters for MRR is found at: 225 m/min, 0.15 mm/rev and 0.6 mm. Optimal combination of Ra and Rz is found at: 225 m/min, 0.05 mm/rev and 0.6 mm. Analysis of variance (ANOVA is used to find the influence of cutting parameters on the responses. ANOVA results revealed that speed and feed has high influence on MRR. Speed has high influence in affecting the Roughness parameters. Linear regression models for the responses were prepared using the MINITAB-16 software. From the results, it is found that the models prepared are more significant and accurate.

  19. Electrochemically cathodic exfoliation of graphene sheets in room temperature ionic liquids N-butyl, methylpyrrolidinium bis(trifluoromethylsulfonyl)imide and their electrochemical properties

    International Nuclear Information System (INIS)

    Yang, Yingchang; Lu, Fang; Zhou, Zhou; Song, Weixin; Chen, Qiyuan; Ji, Xiaobo

    2013-01-01

    Graphical abstract: Electrochemically cathodic exfoliation of graphite into few-layer graphene sheets in room temperature ionic liquids (RTILs) N-butyl, methylpyrrolidinium bis(trifluoromethylsulfonyl)-imide (BMPTF 2 N). -- Highlights: • Few-layer graphene sheets were prepared through electrochemically cathodic exfoliation in room temperature ionic liquids. • The mechanism of cathodic exfoliation in ionic liquids was proposed. • The derived activated graphene sheets show enhanced electrochemical properties. -- Abstract: Electrochemically cathodic exfoliation in room temperature ionic liquids N-butyl, methylpyrrolidinium bis(trifluoromethylsulfonyl)-imide (BMPTF 2 N) has been developed for few-layer graphene sheets, demonstrating low levels of oxygen (2.7 at% of O) with a nearly perfect structure (I D /I G 2 N involves the intercalation of ionic liquids cation [BMP] + under highly negatively charge followed by graphite expansion. Porous activated graphene sheets were also obtained by activation of graphene sheets in KOH. Transmission electron microscopy, X-ray photoelectron spectroscopy and Raman spectroscopy were used to characterize these graphene materials. The electrochemical performances of the graphene sheets and porous activated graphene sheets for lithium-ion battery anode materials were evaluated using cyclic voltammetry, galvanostatic charge–discharge cycling, and electrochemical impedance spectroscopy

  20. Seed-mediated electrochemical growth of gold nanostructures on indium tin oxide thin films

    International Nuclear Information System (INIS)

    Praig, Vera G.; Piret, Gaelle; Manesse, Mael; Castel, Xavier; Boukherroub, Rabah; Szunerits, Sabine

    2008-01-01

    Two-dimensional gold nanostructures (Au NSs) were fabricated on amine-terminated indium tin oxide (ITO) thin films using constant potential electrolysis. By controlling the deposition time and by choosing the appropriate ITO surface, Au NSs with different shapes were generated. When Au NSs were formed directly on aminosilane-modified ITO, the surface roughness of the interface was largely enhanced. Modification of such Au NSs with n-tetradecanethiol resulted in a highly hydrophobic interface with a water contact angle of 144 deg. Aminosilane-modified ITO films further modified with colloidal Au seeds before electrochemical Au NSs formation demonstrated interesting optical properties. Depending on the deposition time, surface colors ranging from pale pink to beatgold-like were observed. The optical properties and the chemical stability of the interfaces were characterized using UV-vis absorption spectroscopy. Well-defined localized surface plasmon resonance signals were recorded on Au-seeded interfaces with λ max = 675 ± 2 nm (deposition time 180 s). The prepared interfaces exhibited long-term stability in various solvents and responded linearly to changes in the corresponding refractive indices

  1. Seed-mediated electrochemical growth of gold nanostructures on indium tin oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Praig, Vera G.; Szunerits, Sabine [Laboratoire d' Electrochimie et de Physicochimie des Materiaux et des Interfaces (LEPMI), CNRS-INPG-UJF, 1130 rue de la piscine, BP 75, 38402 St. Martin d' Heres Cedex (France); Institut de Recherche Interdisciplinaire (IRI), USR CNRS 3078 and Institut d' Electronique, de Microelectronique et de Nanotechnologie (IEMN),UMR CNRS-8520, Cite Scientifique, Avenue Poincare, BP 60069, 59652 Villeneuve d' Ascq (France); Piret, Gaelle; Boukherroub, Rabah [Institut de Recherche Interdisciplinaire (IRI), USR CNRS 3078 and Institut d' Electronique, de Microelectronique et de Nanotechnologie (IEMN),UMR CNRS-8520, Cite Scientifique, Avenue Poincare, BP 60069, 59652 Villeneuve d' Ascq (France); Manesse, Mael [Laboratoire d' Electrochimie et de Physicochimie des Materiaux et des Interfaces (LEPMI), CNRS-INPG-UJF, 1130 rue de la piscine, BP 75, 38402 St. Martin d' Heres Cedex (France); Castel, Xavier [Institut d' Electronique et de Telecommunications de Rennes (IETR), UMR CNRS 6164, 18 rue H. Wallon, BP 406, 22004 Saint-Brieuc Cedex 1 (France)

    2008-11-15

    Two-dimensional gold nanostructures (Au NSs) were fabricated on amine-terminated indium tin oxide (ITO) thin films using constant potential electrolysis. By controlling the deposition time and by choosing the appropriate ITO surface, Au NSs with different shapes were generated. When Au NSs were formed directly on aminosilane-modified ITO, the surface roughness of the interface was largely enhanced. Modification of such Au NSs with n-tetradecanethiol resulted in a highly hydrophobic interface with a water contact angle of 144 . Aminosilane-modified ITO films further modified with colloidal Au seeds before electrochemical Au NSs formation demonstrated interesting optical properties. Depending on the deposition time, surface colors ranging from pale pink to beatgold-like were observed. The optical properties and the chemical stability of the interfaces were characterized using UV-vis absorption spectroscopy. Well-defined localized surface plasmon resonance signals were recorded on Au-seeded interfaces with {lambda}{sub max}=675{+-} 2 nm (deposition time 180 s). The prepared interfaces exhibited long-term stability in various solvents and responded linearly to changes in the corresponding refractive indices. (author)

  2. One-pot preparation of PEDOT:PSS-reduced graphene decorated with Au nanoparticles for enzymatic electrochemical sensing of H{sub 2}O{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Mercante, Luiza A., E-mail: lamercante@gmail.com [National Laboratory for Nanotechnology in Agribusiness (LNNA), Embrapa Instrumentation, 13560-970, São Carlos, SP (Brazil); Facure, Murilo H.M. [National Laboratory for Nanotechnology in Agribusiness (LNNA), Embrapa Instrumentation, 13560-970, São Carlos, SP (Brazil); Center for Exact Sciences and Technology, Federal University of São Carlos (UFSCar), 13565-905, São Carlos, SP (Brazil); Sanfelice, Rafaela C.; Migliorini, Fernanda L.; Mattoso, Luiz H.C. [National Laboratory for Nanotechnology in Agribusiness (LNNA), Embrapa Instrumentation, 13560-970, São Carlos, SP (Brazil); Correa, Daniel S., E-mail: daniel.correa@embrapa.br [National Laboratory for Nanotechnology in Agribusiness (LNNA), Embrapa Instrumentation, 13560-970, São Carlos, SP (Brazil); Center for Exact Sciences and Technology, Federal University of São Carlos (UFSCar), 13565-905, São Carlos, SP (Brazil)

    2017-06-15

    Highlights: • Hybrid ternary nanocomposite PEDOT:PSS-rGO-AuNPs is developed by a one-step approach. • Horseradish peroxidase is used to build a novel hybrid biomaterial. • The PEDOT:PSS-rGO-AuNPs-HRP displays excellent electrochemical activity toward the reduction of H{sub 2}O{sub 2}. • A significant low detection limit of 0.08 μM and wider linear range is achieved. • The constructed electrode is used detecting H{sub 2}O{sub 2} in real samples. - Abstract: The development of novel graphene-based nanocomposites is a hotspot in materials science due to their unique optical, electronic, thermal, mechanical and catalytic properties for varied applications. The present work reports on the development of a graphene-based ternary nanocomposite of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate), reduced graphene oxide and gold nanoparticles (PEDOT:PSS-rGO-AuNPs) for the detection of hydrogen peroxide (H{sub 2}O{sub 2}). The hybrid nanocomposite showed superior electrochemical properties and higher stability compared to each individual component as electrode materials, showing a synergistic effect between PEDOT, rGO and AuNPs. The nanocomposite was obtained via a facile one-step approach and was assembly with horseradish peroxidase (HRP). The PEDOT:PSS-rGO-AuNPs-HRP modified electrode has been used for the amperometric detection of H{sub 2}O{sub 2} and exhibited a high sensitivity of up to 677 μA mM{sup −1} cm{sup −2}, with a wide linear range from 5 to 400 μM and a low detection limit of 0.08 μM (S/N = 3). This developed enzymatic biosensor showed to be highly stable and unresponsive to potentially interfering substances, and it could be used for sensing H{sub 2}O{sub 2} in real samples, including tap water and bovine milk samples. These enhanced sensing performance could be ascribed to the intimate contact of AuNPs onto the rough surface of the PEDOT:PSS-rGO nanocomposite, which has a high electrical conductivity and large surface area, providing

  3. Nanostructured core-shell electrode materials for electrochemical capacitors

    Science.gov (United States)

    Jiang, Long-bo; Yuan, Xing-zhong; Liang, Jie; Zhang, Jin; Wang, Hou; Zeng, Guang-ming

    2016-11-01

    Core-shell nanostructure represents a unique system for applications in electrochemical energy storage devices. Owing to the unique characteristics featuring high power delivery and long-term cycling stability, electrochemical capacitors (ECs) have emerged as one of the most attractive electrochemical storage systems since they can complement or even replace batteries in the energy storage field, especially when high power delivery or uptake is needed. This review aims to summarize recent progress on core-shell nanostructures for advanced supercapacitor applications in view of their hierarchical architecture which not only create the desired hierarchical porous channels, but also possess higher electrical conductivity and better structural mechanical stability. The core-shell nanostructures include carbon/carbon, carbon/metal oxide, carbon/conducting polymer, metal oxide/metal oxide, metal oxide/conducting polymer, conducting polymer/conducting polymer, and even more complex ternary core-shell nanoparticles. The preparation strategies, electrochemical performances, and structural stabilities of core-shell materials for ECs are summarized. The relationship between core-shell nanostructure and electrochemical performance is discussed in detail. In addition, the challenges and new trends in core-shell nanomaterials development have also been proposed.

  4. Preparation of three-dimensional nitrogen-doped graphene layers by gas foaming method and its electrochemical capactive behavior

    International Nuclear Information System (INIS)

    Hao, Junnan; Shu, Dong; Guo, Songtao; Gao, Aimei; He, Chun; Zhong, Yayun; Liao, Yuqing; Huang, Yulan; Zhong, Jie

    2016-01-01

    Highlights: • A three-dimensional porous graphene layers was prepared via a gas foaming method. • Melamine was the nitrogen source to synthesize the N-doped 3D graphene layers. • The specific surface area of 3D N-doped graphene material is as high as 1196 m 2 g −1 . • The 3D N-doped graphene specific capacitance is 335 F g −1 in three-electrode system. • The energy density of 3D N-doped graphene reaches 58.1 Wh kg −1 in a symmetric cell. - Abstract: A porous graphene layers with a three-dimensional structure (3DG) was prepared via a gas foaming method based on a polymeric predecessor. This intimately interconnected 3DG structure not only significantly increases the specific surface area but also provides more channels to facilitate electron transport. In addition, 3D N-doped (3DNG) layers materials were synthesized using melamine as a nitrogen source. The nitrogen content in the 3DNG layers significantly influenced the electrochemical performance. The sample denoted as 3DNG-2 exhibited a specific capacitance of 335.2 F g −1 at a current density of 1 A g −1 in a three-electrode system. Additionally, 3DNG-2 exhibited excellent electrochemical performance in aqueous and organic electrolytes using a two-electrode symmetric cell. An energy density of 58.1 Wh kg −1 at a power density of 2500 W kg −1 was achieved, which is approximately 3 times that (19.6 Wh kg −1 ) in an aqueous electrolyte in a two-electrode system. After 1000 cycles, the capacity retention in aqueous electrolyte was more than 99.0%, and this retention in organic electrolytes was more than 89.4%, which demonstrated its excellent cycle stability. This performance makes 3DNG-2 a promising candidate as an electrode material in high-power and high-energy supercapacitor applications.

  5. Studies of non-contact methods for roughness measurements on wood surfaces

    International Nuclear Information System (INIS)

    Lundberg, I.A.S.; Porankiewicz, B.

    1995-01-01

    The quality of wood surfaces after different kinds of machining processes is a property of great importance for the wood processing industries. Present work is a study, whose objective was to evaluate different non-contact methods, for measurement of the quality of the wood surfaces by correlating them with stylus tracing. A number of Scots Pine samples were prepared by different kinds of wood machining processing. Surface roughness measurements were performed, utilizing two optical noncontact methods. The results indicate that the laser scan method can measure surface roughness on sawn wood with a sufficient degree of accuracy. (author) [de

  6. Electrochemical treatment of an oxide material, application to superconductors, and obtained superconductors

    International Nuclear Information System (INIS)

    Grenier, J.C.; Pouchard, M.; Wattiaux, A.

    1991-01-01

    The present invention describes the electrochemical treatment of a superconductor oxide so as to modify its stoichiometry. These materials comprise in their anionic lattice oxygenated and hydrogenated species. These treated materials are prepared by an electrochemical process in which the oxide is an electrode in a liquid electrolysis. 3 refs., 3 figs

  7. Optical and structural properties of porous zinc oxide fabricated via electrochemical etching method

    International Nuclear Information System (INIS)

    Ching, C.G.; Lee, S.C.; Ooi, P.K.; Ng, S.S.; Hassan, Z.; Hassan, H. Abu; Abdullah, M.J.

    2013-01-01

    Highlights: • Hillock like porous structure zinc oxide was obtained via electrochemical etching. • Anisotropic dominance etching process by KOH etchant. • Reststrahlen features are sensitive to multilayer porous structure. • Determination of porosity from IR reflectance spectrum. -- Abstract: We investigated the optical and structural properties of porous zinc oxide (ZnO) thin film fabricated by ultraviolet light-assisted electrochemical etching. This fabrication process used 10 wt% potassium hydroxide solution as an electrolyte. Hillock-like porous ZnO films were successfully fabricated according to the field emission scanning electron microscopy results. The cross-sectional study of the sample indicated that anisotropic-dominated etching process occurred. However, the atomic force microscopic results showed an increase in surface roughness of the sample after electrochemical etching. A resonance hump induced by the porous structure was observed in the infrared reflectance spectrum. Using theoretical modeling technique, ZnO porosification was verified, and the porosity of the sample was determined

  8. Electrochemical Dissolution of Iridium and Iridium Oxide Particles in Acidic Media: Transmission Electron Microscopy, Electrochemical Flow Cell Coupled to Inductively Coupled Plasma Mass Spectrometry, and X-ray Absorption Spectroscopy Study.

    Science.gov (United States)

    Jovanovič, Primož; Hodnik, Nejc; Ruiz-Zepeda, Francisco; Arčon, Iztok; Jozinović, Barbara; Zorko, Milena; Bele, Marjan; Šala, Martin; Šelih, Vid Simon; Hočevar, Samo; Gaberšček, Miran

    2017-09-13

    Iridium-based particles, regarded as the most promising proton exchange membrane electrolyzer electrocatalysts, were investigated by transmission electron microscopy and by coupling of an electrochemical flow cell (EFC) with online inductively coupled plasma mass spectrometry. Additionally, studies using a thin-film rotating disc electrode, identical location transmission and scanning electron microscopy, as well as X-ray absorption spectroscopy have been performed. Extremely sensitive online time-and potential-resolved electrochemical dissolution profiles revealed that Ir particles dissolve well below oxygen evolution reaction (OER) potentials, presumably induced by Ir surface oxidation and reduction processes, also referred to as transient dissolution. Overall, thermally prepared rutile-type IrO 2 particles are substantially more stable and less active in comparison to as-prepared metallic and electrochemically pretreated (E-Ir) analogues. Interestingly, under OER-relevant conditions, E-Ir particles exhibit superior stability and activity owing to the altered corrosion mechanism, where the formation of unstable Ir(>IV) species is hindered. Due to the enhanced and lasting OER performance, electrochemically pre-oxidized E-Ir particles may be considered as the electrocatalyst of choice for an improved low-temperature electrochemical hydrogen production device, namely a proton exchange membrane electrolyzer.

  9. Optimization of the use of carbon paste electrodes (CPE for electrochemical study of the chalcopyrite

    Directory of Open Access Journals (Sweden)

    Daniela G. Horta

    2009-01-01

    Full Text Available The use of carbon paste electrodes (CPE of mineral sulfides can be useful for electrochemical studies to overcome problems by using massive ones. Using CPE-chalcopyrite some variables were electrochemically evaluated. These variables were: (i the atmosphere of preparation (air or argon of CPE and elapsed time till its use; (ii scan rate for voltammetric measurements and (iii chalcopyrite concentration in the CPE. Based on cyclic voltammetry, open-circuit potential and electrochemical impedance results the recommendations are: oxygen-free atmosphere to prepare and kept the CPE until around two ours, scan rates from 10 to 40 mV s-1, and chalcopyrite concentrations > 20%.

  10. Highly reproducible surface-enhanced Raman scattering-active Au nanostructures prepared by simple electrodeposition: origin of surface-enhanced Raman scattering activity and applications as electrochemical substrates.

    Science.gov (United States)

    Choi, Suhee; Ahn, Miri; Kim, Jongwon

    2013-05-24

    The fabrication of effective surface-enhanced Raman scattering (SERS) substrates has been the subject of intensive research because of their useful applications. In this paper, dendritic gold (Au) rod (DAR) structures prepared by simple one-step electrodeposition in a short time were examined as an effective SERS-active substrate. The SERS activity of the DAR surfaces was compared to that of other nanostructured Au surfaces with different morphologies, and its dependence on the structural variation of DAR structures was examined. These comparisonal investigations revealed that highly faceted sharp edge sites present on the DAR surfaces play a critical role in inducing a high SERS activity. The SERS enhancement factor was estimated to be greater than 10(5), and the detection limit of rhodamine 6G at DAR surfaces was 10(-8)M. The DAR surfaces exhibit excellent spot-to-spot and substrate-to-substrate SERS enhancement reproducibility, and their long-term stability is very good. It was also demonstrated that the DAR surfaces can be effectively utilized in electrochemical SERS systems, wherein a reversible SERS behavior was obtained during the cycling to cathodic potential regions. Considering the straightforward preparation of DAR substrates and the clean nature of SERS-active Au surfaces prepared in the absence of additives, we expect that DAR surfaces can be used as cost-effective SERS substrates in analytical and electrochemical applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. The influence of surface roughness on the hydrogen permeation of type API 5L-X52 steel

    International Nuclear Information System (INIS)

    Requiz, R.; Vera, N.; Camero, S.

    2004-01-01

    The influence of surface roughness on the corrosion and hydrogen permeation behaviour was evaluated on a type API 5L-52 steel in dearated 0.1M NaSO 4 at pH=2. Potentiodynamic polarization curves were employed to determine the electrochemical behaviour of the steel, while the Devanathan-Stachurski technique was used to estimate the hydrogen permeation rate. Additionally, the surface roughness profiles were obtained in order to correlate the changes in the hydrogen perkeation rate with different metal surface finishings. The obtained results clearly demonstrate that when the roughness parameters have larger values, the cathodic current of hydrogen evolution increases while the hydrogen entry rate decreases. This effect can be attributed to the microstructural defects induced at the steel surface, such as dislocations, which increase the catalytic activity of the atomic hydrogen favouring its recombination. Also, these defects could allow the atomic hydrogen to remain adsorbed on the steel surface. Both effects could hinder the hydrogen diffusion into the metal since the possibility for this atom of becoming absorbed has been reduced. (Author) 16 refs

  12. Synthesis and characterization of electrochemically-reduced graphene

    Indian Academy of Sciences (India)

    Graphene has superior electrical conductivity than graphite and other allotropes of carbon because of its high surface area and chemical tolerance. Electrochemically processed graphene sheets were obtained through the reduction of graphene oxide from hydrazine hydrate. The prepared samples were heated to different ...

  13. Fabrication and characterization of nanostructured anatase TiO{sub 2} films prepared by electrochemical anodization and their photocatalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Yurddaskal, Metin [Dokuz Eylul University, The Graduate School of Natural and Applied Sciences, Buca 35390, Izmir (Turkey); Dokuz Eylul University, Center for Fabrication and Applications of Electronic Materials (EMUM), Buca, 35390, Izmir (Turkey); Dikici, Tuncay, E-mail: tuncay.dikici@ikc.edu.tr [Dokuz Eylul University, The Graduate School of Natural and Applied Sciences, Buca 35390, Izmir (Turkey); Izmir Katip Celebi University, Department of Materials Science and Engineering, Cigli 35620, Izmir (Turkey); Yildirim, Serdar [Dokuz Eylul University, The Graduate School of Natural and Applied Sciences, Buca 35390, Izmir (Turkey); Dokuz Eylul University, Center for Fabrication and Applications of Electronic Materials (EMUM), Buca, 35390, Izmir (Turkey); Yurddaskal, Melis [Celal Bayar University, Department of Mechanical Engineering, Muradiye, 45140 Manisa (Turkey); Toparli, Mustafa; Celik, Erdal [Dokuz Eylul University, Center for Fabrication and Applications of Electronic Materials (EMUM), Buca, 35390, Izmir (Turkey); Dokuz Eylul University, Department of Metallurgical and Materials Engineering, Buca 35390, Izmir (Turkey)

    2015-12-05

    In this study, nanostructured anatase titanium dioxide (TiO{sub 2}) films were fabricated by electrochemical anodization of titanium first, and then annealed at 500 °C for 2 h. Effect of electrolyte concentration, anodization time and electrolyte temperature on the surface morphology of the resulting TiO{sub 2} thin films were investigated. The phase structures, surface morphology and chemical composition were analyzed using X-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The photocatalytic activity tests of the samples were evaluated by the degradation of aqueous methylene blue (MB) solutions under UV light illumination for different periods of time. The results showed that the structure of nanostructured TiO{sub 2} films depended strongly on the anodization parameters. It was found that there were micro-scale pores (<10 μm) and nano-scale pores (diameter in the range from 40 to 70 nm) on the anodized titanium surfaces. This study indicated that structures, surface morphology, and surface area of the nanostructured anatase TiO{sub 2} films played an important role on their photocatalytic performance. The results clearly proved that nanostructured anatase TiO{sub 2} film prepared with optimum process parameters resulted in enhancement of the photocatalytic activity. - Highlights: • TiO{sub 2} thin films were prepared on titanium substrates by electrochemical anodization at 30 V. • Effect of various anodization parameters on the photocatalytic activity of titanium was investigated. • Micro- and nanoscale TiO{sub 2} pores formed on the titanium by anodizing. • Surface morphology of the TiO{sub 2} films plays an important role on the photocatalytic performance. • The sample anodized for 240 min showed the highest photocatalytic activity.

  14. Assessment of Electrodes Prepared from Wafers of Boron-doped Diamond for the Electrochemical Oxidation of Waste Lubricants

    International Nuclear Information System (INIS)

    Taylor, G.T.; Sullivan, I.A.; Newey, A.W.E.

    2006-01-01

    Electrochemical oxidation using boron-doped diamond electrodes is being investigated as a treatment process for radioactively contaminated oily wastes. Previously, it was shown that electrodes coated with a thin film of diamond were able to oxidise a cutting oil but not a mineral oil. These tests were inconclusive, because the electrodes lost their diamond coating during operation. Accordingly, an electrode prepared from a 'solid' wafer of boron-doped diamond is being investigated to determine whether it will oxidise mineral oils. The electrode has been tested with sucrose, a cutting oil and an emulsified mineral oil. Before and after each test, the state of the electrode was assessed by cyclic voltammetry with the ferro/ferricyanide redox couple. Analysis of the cyclic voltammogram suggested that material accumulated on the surface of the electrode during the tests. The magnitude of the effect was in the order: - emulsified mineral oil > cutting oil > sucrose. Despite this, the results indicated that the electrode was capable of oxidising the emulsified mineral oil. Confirmatory tests were undertaken in the presence of alkali to trap the carbon dioxide, but they had to be abandoned when the adhesive holding the diamond in the electrode was attacked by the alkali. Etching of the diamond wafer was also observed at the end of the tests. Surface corrosion is now regarded as an intrinsic part of the electrochemical oxidation on diamond, and it is expected that the rate of attack will determine the service life of the electrodes. (authors)

  15. Experimental studies on improving the performance of electrochemical machining of high carbon, high chromium die steel using jet patterns

    Directory of Open Access Journals (Sweden)

    V. Sathiyamoorthy

    2014-03-01

    Full Text Available Electrochemical machining (ECM is a non-traditional process used mainly to cut hard or difficult-to-cut metals, where the application of a more traditional process is not convenient. Stiff market competition and ever-growing demand for better, durable and reliable products has brought about a material revolution, which has greatly expanded the families of difficult-to-machine materials namely highcarbon,high-chromium die steel; stainless steel and superalloys. This investigation attempts to analyze the effect of electrolyte distribution on material removal rate (MRR and surface roughness (SR on electrochemical machining of high-carbon, high-chromium die steel using NaCl aqueous solution. Three electrolyte jet patterns namely straight jet in circular, inclined jet in circular and straight jet in spiral were used for this experimentation. The results reveal that electrolyte distribution significantly improves the performance of ECM and the straight jet in spiral pattern performs satisfactorily in obtaining better MRR and surface roughness.

  16. Electrochemical machining of internal built-up surfaces of large-sized vessels for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Ryabchenko, N N; Pulin, V Ya [Vsesoyuznyj Proektno-Tekhnologicheskij Inst. Atomnogo Mashinostroeniya i Kotlostroeniya, Rostov-na-Donu (USSR)

    1977-01-01

    Electrochemical machining (ECM) has been employed for finishing of mechanically processed inner surfaces of large lateral parts of construction bodies with welded 0Kh18N10T steel overlayer. The finishing technology developed reduces the surface roughness from 10 mcm to the standard 2.5 mcm at the efficiency of machining of 2-4 m/sup 2/ per hour.

  17. Influence of electrochemical pre-treatment on highly reactive carbon nitride thin films deposited on stainless steel for electrochemical applications

    International Nuclear Information System (INIS)

    Benchikh, A.; Debiemme-Chouvy, C.; Cachet, H.; Pailleret, A.; Saidani, B.; Beaunier, L.; Berger, M.H.

    2012-01-01

    In this work, a-CNx films prepared by DC magnetron sputtering on stainless steel substrate have been investigated as electrode materials. While their wide potential window was confirmed as a property shared by boron doped diamond (BDD) electrodes, their electrochemical activity with respect to fast and reversible redox systems, [Ru(NH 3 ) 6 ] 3+/2+ , [Fe(CN) 6 ] 3−/4− and [IrCl 6 ] 2−/3− , was assessed by Electrochemical Impedance Spectroscopy (EIS) after cathodic or anodic electrochemical pre-treatments or for as grown samples. It was shown for the three systems that electrochemical reactivity of the a-CNx films was improved after the cathodic pre-treatment and degraded after the anodic one, the apparent heterogeneous rate constant k 0app being decreased by at least one order of magnitude for the latter case. A high k 0app value of 0.11 cm s −1 for [IrCl 6 ] 2−/3− was obtained, close to the highest values found for BDD electrodes.

  18. Biomass derived porous nitrogen doped carbon for electrochemical devices

    Directory of Open Access Journals (Sweden)

    Litao Yan

    2017-04-01

    Full Text Available Biomass derived porous nanostructured nitrogen doped carbon (PNC has been extensively investigated as the electrode material for electrochemical catalytic reactions and rechargeable batteries. Biomass with and without containing nitrogen could be designed and optimized to prepare PNC via hydrothermal carbonization, pyrolysis, and other methods. The presence of nitrogen in carbon can provide more active sites for ion absorption, improve the electronic conductivity, increase the bonding between carbon and sulfur, and enhance the electrochemical catalytic reaction. The synthetic methods of natural biomass derived PNC, heteroatomic co- or tri-doping into biomass derived carbon and the application of biomass derived PNC in rechargeable Li/Na batteries, high energy density Li–S batteries, supercapacitors, metal-air batteries and electrochemical catalytic reaction (oxygen reduction and evolution reactions, hydrogen evolution reaction are summarized and discussed in this review. Biomass derived PNCs deliver high performance electrochemical storage properties for rechargeable batteries/supercapacitors and superior electrochemical catalytic performance toward hydrogen evolution, oxygen reduction and evolution, as promising electrodes for electrochemical devices including battery technologies, fuel cell and electrolyzer. Keywords: Biomass, Nitrogen doped carbon, Batteries, Fuel cell, Electrolyzer

  19. Surface roughness of composite resins subjected to hydrochloric acid.

    Science.gov (United States)

    Roque, Ana Carolina Cabral; Bohner, Lauren Oliveira Lima; de Godoi, Ana Paula Terossi; Colucci, Vivian; Corona, Silmara Aparecida Milori; Catirse, Alma Blásida Concepción Elizaur Benitez

    2015-01-01

    The purpose of this study was to determine the influence of hydrochloric acid on surface roughness of composite resins subjected to brushing. Sixty samples measuring 2 mm thick x 6 mm diameter were prepared and used as experimental units. The study presented a 3x2 factorial design, in which the factors were composite resin (n=20), at 3 levels: microhybrid composite (Z100), nanofilled composite (FiltekTM Supreme), nanohybrid composite (Ice), and acid challenge (n=10) at 2 levels: absence and presence. Acid challenge was performed by immersion of specimens in hydrochloric acid (pH 1.2) for 1 min, 4 times per day for 7 days. The specimens not subjected to acid challenge were stored in 15 mL of artificial saliva at 37 oC. Afterwards, all specimens were submitted to abrasive challenge by a brushing cycle performed with a 200 g weight at a speed of 356 rpm, totaling 17.8 cycles. Surface roughness measurements (Ra) were performed and analyzed by ANOVA and Tukey test (p≤0.05). Surface roughness values were higher in the presence (1.07±0.24) as compared with the absence of hydrochloric acid (0.72±0.04). Surface roughness values were higher for microhybrid (1.01±0.27) compared with nanofilled (0.68 ±0.09) and nanohybrid (0.48±0.15) composites when the specimens were not subjects to acid challenge. In the presence of hydrochloric acid, microhybrid (1.26±0.28) and nanofilled (1.18±0,30) composites presents higher surface roughness values compared with nanohybrid (0.77±0.15). The hydrochloric acid affected the surface roughness of composite resin subjected to brushing.

  20. Electrochemical behaviour of rhenium-graphite electrode

    International Nuclear Information System (INIS)

    Varypaev, V.N.; Krasikov, V.L.

    1980-01-01

    Electrochemical behaviour of combination electrode from graphite with electrodeposited thin coating of electrolytic rhenium is studied. Solution of 0.5 m NaCl+0.04 m AlCl 3 served as an electrolite. Polarization galvanostatic curves of hydrogen evolution upon electrodes with conditional rhenium thickness of 3.5 and 0.35 μm, 35 and 3.5 nm are obtained. Possibility of preparation of rhenium-graphite cathode with extremely low rhenium consume, electro-chemical properties of which are simu-lar to purely rhenium cathode is shown. Such electrode is characterized with stable in time low cathode potential of hydrogen evolution in chloride electrolyte and during cathode polarization it is not affected by corrosion

  1. Electrochemical properties of CuO hollow nanopowders prepared from formless Cu–C composite via nanoscale Kirkendall diffusion process

    Energy Technology Data Exchange (ETDEWEB)

    Won, Jong Min [Department of Materials Science and Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136-713 (Korea, Republic of); Kim, Jong Hwa [Daegu Center, Korea Basic Science Institute, 80 Daehakro Bukgu, Daegu 702-701 (Korea, Republic of); Choi, Yun Ju [Suncheon Center, Korea Basic Science Institute, Suncheon 540-742 (Korea, Republic of); Cho, Jung Sang [Department of Materials Science and Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136-713 (Korea, Republic of); Kang, Yun Chan, E-mail: yckang@korea.ac.kr [Department of Materials Science and Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136-713 (Korea, Republic of)

    2016-06-25

    Hollow CuO nanopowders are prepared using a simple spray drying process that relied on nanoscale Kirkendall diffusion; these nanopowders have potential applications in lithium-ion batteries. Citric acid is used as both the carbon source material and chelating agent and plays a key role in the preparation of the hollow nanopowders. The formless Cu–C composite that formed as an intermediate product transforms into slightly aggregated CuO hollow nanopowders after post-treatment at 300 and 400 °C under an air atmosphere. The CuO hollow nanopowders exhibit higher initial discharge capacities and better cycling performances than those of the filled-structured CuO nanopowders, which are prepared at a post-treatment temperature of 500 °C under an air atmosphere. The discharge capacities of the CuO nanopowders post-treated at 300, 400, and 500 °C for the 150{sup th} cycle at a current density of 1 A g{sup −1} are 793, 632, and 464 mA h g{sup −1}, respectively, and their capacity retentions calculated from the maximum discharge capacities are 88, 80, and 73%, respectively. The CuO nanopowders with hollow structures exhibit better structural stability for repeated lithium insertion and desertion processes than those with filled structures. - Highlights: • Hollow CuO nanopowders are prepared using a simple spray drying process. • Cu–C composite transforms into CuO hollow nanopowders by Kirkendall diffusion. • Hollow CuO nanopowders show good electrochemical properties for lithium-ion storage.

  2. Influence of fabrication procedure on the electrochemical performance of Ag/AgCl reference electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Stoica, Daniela [Department of Biomedical and Inorganic Chemistry, Laboratoire National de Metrologie et d' Essais, 1 Rue Gaston Boissier, 75015 Paris (France); Brewer, Paul J., E-mail: paul.brewer@npl.co.uk [Analytical Science Division, National Physical Laboratory, Teddington, Middlesex TW11 0LW (United Kingdom); Brown, Richard J.C. [Analytical Science Division, National Physical Laboratory, Teddington, Middlesex TW11 0LW (United Kingdom); Fisicaro, Paola [Department of Biomedical and Inorganic Chemistry, Laboratoire National de Metrologie et d' Essais, 1 Rue Gaston Boissier, 75015 Paris (France)

    2011-11-30

    The influence of several parameters in the preparation procedure of thermal-electrolytic Ag/AgCl electrodes on the resulting electrode performance has been studied. In particular, we report the effect on electrode performance of subtle variations in the preparation of silver oxide paste used for electrode manufacture, in thermal annealing conditions employed and in the procedure for electrochemically converting a fraction of the electrode from silver to silver chloride. Scanning electron microscopy and electrochemical impedance spectroscopy have been used to study the characteristics of the electrodes produced. This work reveals a correlation between the electrochemical behaviour and surface physical characteristics - in particular electrode porosity. The outputs of this study have positive implications for improving the accuracy and comparability of primary pH measurement.

  3. Effect of storage in water and thermocycling on hardness and roughness of resin materials for temporary restorations

    Directory of Open Access Journals (Sweden)

    Jerusa Cleci de Oliveira

    2010-09-01

    Full Text Available PURPOSE: This study evaluated the effect of storage in water and thermocycling on hardness and roughness of resin materials for temporary restorations. MATERIAL AND METHODS: Three acrylic resins (Dencor-De, Duralay-Du, and Vipi Cor-VC were selected and one composite resin (Opallis-Op was used as a parameter for comparison. The materials were prepared according to the manufacturers' instructions and were placed in stainless steel moulds (20 mm in diameter and 5 mm thick. Thirty samples of each resin were made and divided into three groups (n = 10 according to the moment of Vickers hardness (VHN and roughness (Ra analyses: C (control group: immediately after specimen preparation; Sw: after storage in distilled water at 37 °C for 24 hours; Tc: after thermocycling (3000 cycles; 5-55 °C, 30 seconds dwell time. Data were submitted to 2-way ANOVA followed by Tukey's test (α = 0.05. RESULTS: Op resin had higher surface hardness values (p 0.05 in roughness among materials (De = 0.31 ± 0.07; Du = 0.51 ± 0.20; VC = 0.41 ± 0.15; Op = 0.42 ± 0.18. Storage in water did not change hardness and roughness of the tested materials (p > 0.05. There was a significant increase in roughness after thermocycling (p < 0.05, except for material Du, which showed no significant change in roughness in any evaluated period (p = 0.99. CONCLUSION: Thermocycling increased the roughness in most tested materials without affecting hardness, while storage in water had no significant effect in the evaluated properties.

  4. Effects of laser shock processing on electrochemical corrosion resistance of ANSI 304 stainless steel weldments after cavitation erosion

    International Nuclear Information System (INIS)

    Zhang, L.; Zhang, Y.K.; Lu, J.Z.; Dai, F.Z.; Feng, A.X.; Luo, K.Y.; Zhong, J.S.; Wang, Q.W.; Luo, M.; Qi, H.

    2013-01-01

    Highlights: ► Weldments were done with laser shock processing impacts after cavitation erosion. ► Laser shock processing enhanced the erosion and corrosion resistance of weldments. ► Tensile residual stress and surface roughness decreased by laser shock processing. ► Microstructure was observed to explain the improvement by laser shock processing. ► Obvious passivation areas occurred with laser shock processing impacts. - Abstract: Effects of laser shock processing (LSP) on electrochemical corrosion resistance of weldments after cavitation erosion were investigated by X-ray diffraction (XRD) technology, scanning electron microscope (SEM), roughness tester and optical microscope (OM). Some main factors to influence erosion and corrosion of weldments, residual stresses, surface roughness, grain refinements and slip, were discussed in detail. Results show that LSP impacts can induce compressive residual stresses, decrease surface roughness, refine grains and generate the slip. Thus, the erosion and corrosion resistance with LSP impacts is improved.

  5. Photocatalytic degradation of textile dyestuffs using TiO{sub 2} nanotubes prepared by sonoelectrochemical method

    Energy Technology Data Exchange (ETDEWEB)

    Tekin, Derya, E-mail: deryatekin@atauni.edu.tr

    2014-11-01

    Highlights: • TiO{sub 2} nanotubes prepared by electrochemical and sonoelectrochemical method. • More regular TiO{sub 2} nanotubes diameters prepared by sonoelectrochemical method. • Obtained nanotubes were used in the photocatalytic degradation of Orange G dye. • TiO{sub 2} nanotubes prepared by sonoelectrochemical method showed 10% faster degradation of Orange G dye compared with the one by electrochemical method. - Abstract: TiO{sub 2} nanotubes were prepared by anodization of Ti plates by conventional electrochemical technique as well as by an emerging sonoelectrochemical technique. Scanning electron miscroscope (SEM) analysis showed that ultrasound assisted anodization yielded more ordered and controllable TiO{sub 2} tube banks with higher tube diameter. The photocatalytical activities of TiO{sub 2} nanotubes were tested in the photocatalytical degradation of Orange G dye. The results showed that sonoelectrochemically prepared TiO{sub 2} tubes exhibited 10% higher photocatalytic performance than the electrochemical prepared ones, and more than 18% higher activity than the other TiO{sub 2} samples.

  6. Skin friction measurements of systematically-varied roughness: Probing the role of roughness amplitude and skewness

    Science.gov (United States)

    Barros, Julio; Flack, Karen; Schultz, Michael

    2017-11-01

    Real-world engineering systems which feature either external or internal wall-bounded turbulent flow are routinely affected by surface roughness. This gives rise to performance degradation in the form of increased drag or head loss. However, at present there is no reliable means to predict these performance losses based upon the roughness topography alone. This work takes a systematic approach by generating random surface roughness in which the surface statistics are closely controlled. Skin friction and roughness function results will be presented for two groups of these rough surfaces. The first group is Gaussian (i.e. zero skewness) in which the root-mean-square roughness height (krms) is varied. The second group has a fixed krms, and the skewness is varied from approximately -1 to +1. The effect of the roughness amplitude and skewness on the skin friction will be discussed. Particular attention will be paid to the effect of these parameters on the roughness function in the transitionally-rough flow regime. For example, the role these parameters play in the monotonic or inflectional nature of the roughness function will be addressed. Future research into the details of the turbulence structure over these rough surfaces will also be outlined. Research funded by U.S. Office of Naval Research (ONR).

  7. Optical and electrochemical studies of polyaniline/SnO2 fibrous nanocomposites

    International Nuclear Information System (INIS)

    Manivel, P.; Ramakrishnan, S.; Kothurkar, Nikhil K.; Balamurugan, A.; Ponpandian, N.; Mangalaraj, D.; Viswanathan, C.

    2013-01-01

    Graphical abstract: Fiber with porous like structure of PANI/SnO 2 nanocomposites were prepared by simplest in situ chemical polymerization method. The PL emission spectra revealed that the band from 404 and 436 nm which is related with oxygen vacancies. The excellent electrochemical properties of composite electrode show the specific capacitance of 173 F/g at a scan rate of 25 m V/s. Display Omitted Highlights: ► Self assembled PANI/SnO 2 nanocomposites were synthesized by simple polymerization method. ► Electrochemical behavior of PANI/SnO 2 nanocomposites electrode was analyzed by CV. ► Nanocomposites exhibit a higher specific capacitance of 173 F/g, compared with pure SnO 2 . -- Abstract: Polyaniline (PANI)/tin oxide (SnO 2 ) fibrous nanocomposites were successfully prepared by an in situ chemical polymerization method with suitable conditions. The obtained composites were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy, photoluminescence (PL), electrical conductivity and cyclic voltammetry studies (CV). The XRD pattern of the as-prepared sample shows the presence of tetragonal SnO 2 and the crystalline structure of SnO 2 was not affected with the incorporation of PANI. The FTIR analysis confirms the uniform attachment of PANI on the surface of SnO 2 nanostructures. SEM images show a fibrous agglomerated structure of PANI/SnO 2 . The PL emission spectra revealed that the band from 404 and 436 nm which is related with oxygen vacancies. The electrochemical behavior of the PANI/SnO 2 composite electrode was evaluated in a H 2 SO 4 solution using cyclic voltammetry. The composite electrode exhibited a specific capacitance of 173 F/g at a scan rate 25 mV/s. Thus the as-prepared PANI/SnO 2 composite shows excellent electrochemical properties, suggesting that this composite is a promising material for supercapacitors.

  8. Colloidal CuInSe2 nanocrystals thin films of low surface roughness

    International Nuclear Information System (INIS)

    Kergommeaux, Antoine de; Fiore, Angela; Faure-Vincent, Jérôme; Pron, Adam; Reiss, Peter

    2013-01-01

    Thin-film processing of colloidal semiconductor nanocrystals (NCs) is a prerequisite for their use in (opto-)electronic devices. The commonly used spin-coating is highly materials consuming as the overwhelming amount of deposited matter is ejected from the substrate during the spinning process. Also, the well-known dip-coating and drop-casting procedures present disadvantages in terms of the surface roughness and control of the film thickness. We show that the doctor blade technique is an efficient method for preparing nanocrystal films of controlled thickness and low surface roughness. In particular, by optimizing the deposition conditions, smooth and pinhole-free films of 11 nm CuInSe 2 NCs have been obtained exhibiting a surface roughness of 13 nm root mean square (rms) for a 350 nm thick film, and less than 4 nm rms for a 75 nm thick film. (paper)

  9. Mn3O4 nanoparticles embedded into graphene nanosheets: Preparation, characterization, and electrochemical properties for supercapacitors

    International Nuclear Information System (INIS)

    Wang Bei; Park, Jinsoo; Wang Chengyin; Ahn, Hyojun; Wang, Guoxiu

    2010-01-01

    Mn 3 O 4 /graphene nanocomposites were synthesized by mixing graphene suspension in ethylene glycol with MnO 2 organosol, followed by subsequent ultrasonication processing and heat treatment. The as-prepared product consists of nanosized Mn 3 O 4 particles homogeneously distributed on graphene nanosheets, which has been confirmed by field emission scanning electron microscopy and transmission electron microscopy analysis. Atomic force microscope analysis further identified the distribution of dense Mn 3 O 4 nanoparticles on graphene nanosheets. When used as electrode materials in supercapacitors, Mn 3 O 4 /graphene nanocomposites exhibited a high specific capacitance of 175 F g -1 in 1 M Na 2 SO 4 electrolyte and 256 F g -1 in 6 M KOH electrolyte, respectively. The enhanced supercapacitance of Mn 3 O 4 /graphene nanocomposites could be ascribed to both electrochemical contributions of Mn 3 O 4 nanoparticles, functional groups attached to graphene nanosheets, and significantly increased specific surface area.

  10. Calibrating the Truax Rough Rider seed drill for restoration plantings

    Science.gov (United States)

    Loren St. John; Brent Cornforth; Boyd Simonson; Dan Ogle; Derek Tilley

    2008-01-01

    The purpose of this technical note is to provide a step-by-step approach to calibrating the Truax Rough Rider range drill, a relatively new, state-of-the-art rangeland drill. To achieve the desired outcome of a seeding project, an important step following proper weed control and seedbed preparation is the calibration of the seeding equipment to ensure the recommended...

  11. Electrical, thermal and electrochemical properties of disordered carbon prepared from palygorskite and cane molasses

    Science.gov (United States)

    Alvarez, Edelio Danguillecourt; Laffita, Yodalgis Mosqueda; Montoro, Luciano Andrey; Della Santina Mohallem, Nelcy; Cabrera, Humberto; Pérez, Guillermo Mesa; Frutis, Miguel Aguilar; Cappe, Eduardo Pérez

    2017-02-01

    We have synthesized and electrochemically tested a carbon sample that was suitable as anode for lithium secondary battery. The synthesis was based on the use of the palygorskite clay as template and sugar cane molasses as carbon source. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, Brunauer-Emmett-Teller (BET) measurements and High Resolution Transmission Electron Microscope (HRTEM) analysis showed that the nanometric carbon material has a highly disordered graphene-like wrinkled structure and large specific surface area (467 m2 g-1). The compositional characterization revealed a 14% of heteroatoms-containing groups (O, H, N, S) doping the as-prepared carbon. Thermophysical measurements revealed the good thermal stability and an acceptable thermal diffusivity (9·10-7 m2 s-1) and conductivity (1.1 W m-1 K-1) of this carbon. The electrical properties showed an electronic conductivity of hole-like carriers of approximately one S/cm in a 173-293 K range. The testing of this material as anodes in a secondary lithium battery displayed a high specific capacity and excellent performance in terms of number of cycles. A high reversible capacity of 356 mA h g-1 was reached.

  12. Electrochemical preparation and characterization of CuInSe2 thin films for photovoltaic applications

    International Nuclear Information System (INIS)

    Guillen Arqueros, C.

    1992-01-01

    The objective of this work has been to investigate the electrodeposition as a low-cost, large-area fabrication process to obtain CuInSe 2 this films for efficient photovoltaic devices. this objective entails the elucidation of thin film deposition mechanism, the study of the fundamental properties of electrodeposited material, and also the modification of their physical and chemical parameters for photovoltaic applications. CuInSe 2 thin films have been successfully electrodeposited from a citric was characterized by compositional, structural, electrical, optical and electrochemical measurements, relating their properties with the preparation parameters and also studying the effect of various thermal and chemical treatments. The results showed post-deposition treatment are needed for optimizing these films for solar cells fabrication: first, an annealing in inert atmosphere at temperatures above 400 degrees celsius to obtain a high recrystallization in the chalcopyrite structure, and after a chemical etching in KCN solution to remove secondary phases of Cu x Se and Se which are frequently electrodeposited with the CuInSe 2 . The treated samples showed appropriate photovoltaic activity in a semiconductor-electrolite liquid junction. (author) 193 ref

  13. Variations in roughness predictions (flume experiments)

    NARCIS (Netherlands)

    Noordam, Daniëlle; Blom, Astrid; van der Klis, H.; Hulscher, Suzanne J.M.H.; Makaske, A.; Wolfert, H.P.; van Os, A.G.

    2005-01-01

    Data of flume experiments with bed forms are used to analyze and compare different roughness predictors. In this study, the hydraulic roughness consists of grain roughness and form roughness. We predict the grain roughness by means of the size of the sediment. The form roughness is predicted by

  14. Thickness and roughness measurements of nano thin films by interference

    Directory of Open Access Journals (Sweden)

    A Sabzalipour

    2011-06-01

    Full Text Available In the standard optical interference fringes approach, by measuring shift of the interference fringes due to step edge of thin film on substrate, thickness of the layer has already been measured. In order to improve the measurement precision of this popular method, the interference fringes intensity curve was extracted and analyzed before and after the step preparation. By this method, one can measure a few nanometers films thickness. In addition, using the interference fringes intensity curve and its fluctuations, the roughness of surface is measured within a few nanometers accuracy. Comparison of our results with some direct methods of thickness and roughness measurements, i.e. using surface profilemeter and atomic force microscopy confirms the accuracy of the suggested improvements.

  15. Chitosan/graphene oxide nanocomposite films with enhanced interfacial interaction and their electrochemical applications

    International Nuclear Information System (INIS)

    He, Linghao; Wang, Hongfang; Xia, Guangmei; Sun, Jing; Song, Rui

    2014-01-01

    Graphical abstract: Nanocomposites by introducing graphene oxide (GO) into chitosan (CS) matrix were prepared and the effect of GO on the crystallization, thermal stability and mechanical properties of the films were investigated. In addition, the electrochemical behavior of the CS/GO modified electrode was comparatively studied with that of the neat CS-modified electrode. - Highlights: • Graphene oxide (GO) with well dispersion in the biopolymer chitosan (CS) matrix. • Detectable interactions do exist between the GO nanosheets and CS segments. • The addition of minor GO can improve the electrochemical activity of the neat CS. - Abstract: A series of chitosan (CS) nanocomposites incorporated with graphene oxide (GO) nanosheets were facilely prepared by sonochemical method. Characterized by scanning electron microscopy, the obtained nanocomposites showed fine dispersion of GO in the CS matrix. Meanwhile, a marked interfacial interaction was also revealed as the values of glass transition temperature, the decomposition temperature and the storage modulus were significantly increased with the addition of GO. Furthermore, the well dispersed GO nanosheets could significantly improve the electrochemical activity of the CS as demonstrated by the electrochemical behaviors of pure CS and the GO/CS composite electrodes. Hence, the GO/CS nanocomposites film could be a promising candidate in the fabrication of electrochemical biosensors

  16. Fabrication of Electrochemically Reduced Graphene Oxide Modified Gas Diffusion Electrode for In-situ Electrochemical Advanced Oxidation Process under Mild Conditions

    International Nuclear Information System (INIS)

    Dong, Heng; Su, Huimin; Chen, Ze; Yu, Han; Yu, Hongbing

    2016-01-01

    With aim to develop an efficient heterogeneous metal-free cathodic electrochemical advance oxidation process (CEAOP) for persistent organic pollutants (POPs) removal from wastewater under mild conditions, electrochemically reduced graphene oxide (ERGO)-modified gas diffusion electrode (GDE) was prepared for oxygen-containing radicals production via electrochemical oxygen reduction reaction (ORR). A detailed physical characterization was carried out by SEM, Raman spectroscopy, XRD and XPS. The electrocatalytic behavior for ORR was investigated by electrochemical measurements and electrolysis experiments under constant current density. Bisphenol A (BPA) of 20 mg L −1 was used as a model of POPs to evaluate the performance of the CEAOP with ERGO-modified GDE. The results showed that the defects concentration and electrochemical active sites of the ERGO was increased as the reduction time (30 min, 60 min and 120 min), leading to different catalysis on ORR. ·O 2 generation via one-electron ORR was found under the electrocatalysis of ERGO (60 min and 120 min), contributing to a complete degradation of BPA within 20 min and a mineralization current efficiency (MCE) of 74.60%. An alternative metal-free CEAOP independent of Fenton reaction was established based on ERGO-modified GDE for POPs removal from wastewater under mild conditions.

  17. AFM Surface Roughness and Topography Analysis of Lithium Disilicate Glass Ceramic

    Directory of Open Access Journals (Sweden)

    M. Pantić

    2015-12-01

    Full Text Available The aim of this study is presenting AFM analysis of surface roughness of Lithium disilicate glass ceramic (IPS e.max CAD under different finishing procedure (techniques: polishing, glazing and grinding. Lithium disilicate glass ceramics is all-ceramic dental system which is characterized by high aesthetic quality and it can be freely said that properties of material provide all prosthetic requirements: function, biocompatibility and aesthetic. Experimental tests of surface roughness were investigated on 4 samples with dimensions: 18 mm length, 14 mm width and 12 mm height. Contact surfaces of three samples were treated with different finishing procedure (polishing, glazing and grinding, and the contact surface of the raw material is investigated as a fourth sample. Experimental measurements were done using the Atomic Force Microscopy (AFM of NT-MDT manufacturers, in the contact mode. All obtained results of different prepared samples are presented in the form of specific roughness parameters (Rа, Rz, Rmax, Rq and 3D surface topography.

  18. An Electrochemical Investigation of Nano Cerium Oxide/Graphene as an Electrode Material for Supercapacitors

    Directory of Open Access Journals (Sweden)

    Mohammadreza Shishesaz

    2015-01-01

    In this paper, the effect of cationic and anionic ion sizes on the charge storage capability of graphene nanosheets, is investigated. Electrochemical properties of produced electrode are studied using cyclic voltammetry (CV and electrochemical impedance spectroscopy (EIS techniques, in 3M NaCl, NaOH and KOH electrolytes. Scanning electron microscopy (SEM is used to characterize the microstructure and nature of prepared electrode. SEM images and XRD patterns confirm the layered structure (12 nm thickness of the used graphene with an interlayer distance of 3.36 (Å. The electrochemical results and the ratio of q*O/q*T confirm a good charge storage and charge delivering capability of prepared electrode in 3M NaCl electrolyte. Charge/discharge cycling test shows a good reversibility and confirms that solution resistance will increase after 500 cycles.

  19. Preparation and electrochemical performance of copper foam-supported amorphous silicon thin films for rechargeable lithium-ion batteries

    International Nuclear Information System (INIS)

    Li Haixia; Cheng Fangyi; Zhu Zhiqiang; Bai Hongmei; Tao Zhanliang; Chen Jun

    2011-01-01

    Research highlights: → Amorphous Si thin films have been deposited on copper foam substrate by radio-frequency (rf) magnetron sputtering. → The as-prepared Si/Cu films with interconnected 3-dimensional structure are employed as anode materials of rechargeable lithium-ion batteries, showing that the electrode properties are greatly affected by the deposition temperature. → The film electrode deposited at an optimum temperature of 300 deg. C delivers a specific capacity of ∼2900 mAh/g and a coulombic efficiency above 95% at charge/discharge current density of 0.2C after 30 cycles. → The Li + diffusion coefficiency in copper foam-supported Si thin films is determined to be 2.36 x 10 -9 cm 2 /s. → The combination of rf magnetron sputtering and cooper foam substrate is an efficient route to prepare amorphous Si films with high capacity and cyclability due to the efficient ionic diffusion and interface contact with a good conductive current collector. - Abstract: Amorphous Si thin films, which have been deposited on copper foam by radio-frequency (rf) magnetron sputtering, are employed as anode materials of rechargeable lithium-ion batteries. The morphologies and structures of the as-prepared Si thin films are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray powder diffraction (XRD). Electrochemical performance of lithium-ion batteries with the as-prepared Si films as the anode materials is investigated by cyclic voltammetry and charge-discharge measurements. The results show that the electrode properties of the prepared amorphous Si films are greatly affected by the deposition temperature. The film electrode deposited at an optimum temperature of 300 deg. C can deliver a specific capacity of ∼2900 mAh/g and a coulombic efficiency above 95% at charge/discharge current density of 0.2C after 30 cycles. The Li + diffusion coefficiency in copper foam-supported Si thin films is determined to be 2.36 x 10 -9 cm

  20. Effect of different surface treatments on roughness of IPS Empress 2 ceramic.

    Science.gov (United States)

    Kara, Haluk Baris; Dilber, Erhan; Koc, Ozlem; Ozturk, A Nilgun; Bulbul, Mehmet

    2012-03-01

    The aim of this study was to evaluate the influence of different surface treatments (air abrasion, acid etching, laser irradiation) on the surface roughness of a lithium-disilicate-based core ceramic. A total of 40 discs of lithium disilicate-based core ceramic (IPS Empress 2; Ivoclar Vivadent, Schaan, Liechtenstein) were prepared (10 mm in diameter and 1 mm in thickness) according to the manufacturer's instructions. Specimens were divided into four groups (n = 10), and the following treatments were applied: air abrasion with alumina particles (50 μm), acid etching with 5% hydrofluoric acid, Nd:YAG laser irradiation (1 mm distance, 100 mJ, 20 Hz, 2 W) and Er:YAG laser irradiation (1 mm distance, 500 mJ, 20 Hz, 10 W). Following determination of surface roughness (R(a)) by profilometry, specimens were examined with atomic force microscopy. The data were analysed by one-way analysis of variance (ANOVA) and Tukey HSD test (α = 0.05). One-way ANOVA indicated that surface roughness following air abrasion was significantly different from the surface roughness following laser irradiation and acid etching (P 0.05). Air abrasion increased surface roughness of lithium disilicate-based core ceramic surfaces more effectively than acid-etching and laser irradiation.

  1. One-pot preparation of conducting composite containing abundant amino groups on electrode surface for electrochemical detection of von willebrand factor

    Science.gov (United States)

    Wang, Wen; Ma, Chao; Li, Yi; Liu, Baihui; Tan, Liang

    2018-03-01

    A one-pot protocol based on cyclic voltammetric scan was employed to prepare new conducting composite that was abundant in amino groups. The scanning electron microscope, atomic force microscope, X-ray photoelectron spectroscopy and infrared spectrum characterization demonstrate that poly(azure A), gold nanoparticles, chitosan and cysteine were immobilized simultaneously on glassy carbon electrode surface. Von Willebrand factor (vWF) antibody (Ab) was subsequently assembled by using glutaraldehyde to construct the Ab/composite-modified electrode. The capture of vWF could inhibit the charge transfer between the ferri-/ferrocyanide probe and the electrode and exert the negative effect on the electrochemical response of the dye polymer in the conducting composite due to the strong steric hindrance effect. The DPV peak current change before and after the immunoreaction was found to be proportional to the logarithm of the vWF concentration from 0.001 to 100 μg mL-1 with a detection limit of 0.4 ng mL-1. The proposed label-free electrochemical method was employed in the investigation on the release of vWF by oxidation-injured vascular endothelial cells. The experimental results exhibit that the vWF content in growth medium was increased when the oxidation injury of the cells was intensified in the presence of H2O2.

  2. Electrochemical depth profiling of multilayer metallic structures: An aluminum brazing sheet

    DEFF Research Database (Denmark)

    Afshar, F. Norouzi; Ambat, R.; Kwakernaak, C.

    2012-01-01

    Combinatory localized electrochemical cell and glow discharge optical emission spectrometry (GDOES) measurements were performed to obtain a thorough in depth electrochemical characterization of an aluminum brazing sheet. By defining electrochemical criteria i.e. breakdown potential, corrosion...... potential, cathodic and anodic reactivities, and tracking their changes as a function of depth, the evolution of electrochemical responses through out the material thickness were analyzed and correlated to the corresponding microstructural features. Polarization curves in 1wt% NaCl solution at pH 2.8 were...... obtained at different depths from the surface using controlled sputtering in a glow discharge optical emission spectrometer as a sample preparation technique. The anodic and cathodic reactivity of the top surface areas were significantly higher than that of the bulk, thus indicating these areas to be more...

  3. Preparation and electrochemical property of TiO_2/Nano-graphite composite anode for electro-catalytic degradation of ceftriaxone sodium

    International Nuclear Information System (INIS)

    Guo, Xiaolei; Li, Dong; Wan, Jiafeng; Yu, Xiujuan

    2015-01-01

    Titanium dioxide/Nano-graphite (TiO_2/Nano-G) composite was synthesized by a sol-gel method and TiO_2/Nano-G electrode was prepared in hot-press approach. The composite was characterized by X-ray photoelectron spectroscopy (XPS), fourier transform infrared (FT-IR), scanning electrons microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The electrochemical performance of the TiO_2/Nano-G anode electrode was investigated through cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The electro-catalytic performance was evaluated by the yield of ·OH radicals, degradation of methyl orange and ceftriaxone sodium. The results demonstrated that TiO_2 nanoparticles were dispersed on the surface and interlamination of the Nano-G uniformly, TiO_2/Nano-G electrode owned higher electro-catalytic oxidation activity and stability than Nano-G electrode. Degradation rate of ceftriaxone sodium within 120 min by TiO_2(40)/Nano-G electrode was 97.7%. And ·OH radicals given by TiO_2/Nano-G electrode was higher than that of Nano-G electrode and DSA (Ti/IrO_2-RuO_2) electrode. The excellent electro-catalytic performance could be ascribed to the admirable conductive property of the Nano-G and more production of ·OH offered by TiO_2(40)/Nano-G electrode.

  4. Turbulent boundary layer over roughness transition with variation in spanwise roughness length scale

    Science.gov (United States)

    Westerweel, Jerry; Tomas, Jasper; Eisma, Jerke; Pourquie, Mathieu; Elsinga, Gerrit; Jonker, Harm

    2016-11-01

    Both large-eddy simulations (LES) and water-tunnel experiments, using simultaneous stereoscopic PIV and LIF were done to investigate pollutant dispersion in a region where the surface changes from rural to urban roughness. This consists of rectangular obstacles where we vary the spanwise aspect ratio of the obstacles. A line source of passive tracer was placed upstream of the roughness transition. The objectives of the study are: (i) to determine the influence of the aspect ratio on the roughness-transition flow, and (ii) to determine the dominant mechanisms of pollutant removal from street canyons in the transition region. It is found that for a spanwise aspect ratio of 2 the drag induced by the roughness is largest of all considered cases, which is caused by a large-scale secondary flow. In the roughness transition the vertical advective pollutant flux is the main ventilation mechanism in the first three streets. Furthermore, by means of linear stochastic estimation the mean flow structure is identied that is responsible for exchange of the fluid between the roughness obstacles and the outer part of the boundary layer. Furthermore, it is found that the vertical length scale of this structure increases with increasing aspect ratio of the obstacles in the roughness region.

  5. Preparation of nitrogen-doped cotton stalk microporous activated carbon fiber electrodes with different surface area from hexamethylenetetramine-modified cotton stalk for electrochemical degradation of methylene blue

    Directory of Open Access Journals (Sweden)

    Kunquan Li

    Full Text Available Cotton-stalk activated carbon fibers (CSCFs with controllable micropore area and nitrogen content were prepared as an efficient electrode from hexamethylenetetramine-modified cotton stalk by steam/ammonia activation. The influence of microporous area, nitrogen content, voltage and initial concentration on the electrical degradation efficiency of methylene blue (MB was evaluated by using CSCFs as anode. Results showed that the CSCF electrodes exhibited excellent MB electrochemical degradation ability including decolorization and COD removal. Increasing micropore surface area and nitrogen content of CSCF anode leaded to a corresponding increase in MB removal. The prepared CSCF-800-15-N, which has highest N content but lowest microporous area, attained the best degradation effect with 97% MB decolorization ratio for 5 mg/L MB at 12 V in 4 h, implying the doped nitrogen played a prominent role in improving the electrochemical degradation ability. The electrical degradation reaction was well described by first-order kinetics model. Overall, the aforesaid findings suggested that the nitrogen-doped CSCFs were potential electrode materials, and their electrical degradation abilities could be effectively enhanced by controlling the nitrogen content and micropore surface area. Keywords: Cotton stalk, Nitrogen content, Electrode, Surface area, Methylene blue

  6. A multi-step electrochemical etching process for a three-dimensional micro probe array

    International Nuclear Information System (INIS)

    Kim, Yoonji; Youn, Sechan; Cho, Young-Ho; Park, HoJoon; Chang, Byeung Gyu; Oh, Yong Soo

    2011-01-01

    We present a simple, fast, and cost-effective process for three-dimensional (3D) micro probe array fabrication using multi-step electrochemical metal foil etching. Compared to the previous electroplating (add-on) process, the present electrochemical (subtractive) process results in well-controlled material properties of the metallic microstructures. In the experimental study, we describe the single-step and multi-step electrochemical aluminum foil etching processes. In the single-step process, the depth etch rate and the bias etch rate of an aluminum foil have been measured as 1.50 ± 0.10 and 0.77 ± 0.03 µm min −1 , respectively. On the basis of the single-step process results, we have designed and performed the two-step electrochemical etching process for the 3D micro probe array fabrication. The fabricated 3D micro probe array shows the vertical and lateral fabrication errors of 15.5 ± 5.8% and 3.3 ± 0.9%, respectively, with the surface roughness of 37.4 ± 9.6 nm. The contact force and the contact resistance of the 3D micro probe array have been measured to be 24.30 ± 0.98 mN and 2.27 ± 0.11 Ω, respectively, for an overdrive of 49.12 ± 1.25 µm.

  7. Enzyme-Gelatin Electrochemical Biosensors: Scaling Down

    Directory of Open Access Journals (Sweden)

    Hendrik A. Heering

    2012-03-01

    Full Text Available In this article we investigate the possibility of scaling down enzyme-gelatin modified electrodes by spin coating the enzyme-gelatin layer. Special attention is given to the electrochemical behavior of the selected enzymes inside the gelatin matrix. A glassy carbon electrode was used as a substrate to immobilize, in the first instance, horse heart cytochrome c (HHC in a gelatin matrix. Both a drop dried and a spin coated layer was prepared. On scaling down, a transition from diffusion controlled reactions towards adsorption controlled reactions is observed. Compared to a drop dried electrode, a spin coated electrode showed a more stable electrochemical behavior. Next to HHC, we also incorporated catalase in a spin coated gelatin matrix immobilized on a glassy carbon electrode. By spincoating, highly uniform sub micrometer layers of biocompatible matrices can be constructed. A full electrochemical study and characterization of the modified surfaces has been carried out. It was clear that in the case of catalase, gluteraldehyde addition was needed to prevent leaking of the catalase from the gelatin matrix.

  8. Electrochemical characterization of praseodymia doped zircon. Catalytic effect on the electrochemical reduction of molecular oxygen in polar organic solvents

    Energy Technology Data Exchange (ETDEWEB)

    Domenech, Antonio, E-mail: antonio.domenech@uv.es [Departament de Quimica Analitica, Universitat de Valencia, Dr. Moliner, 50, 46100 Burjassot, Valencia (Spain); Montoya, Noemi; Alarcon, Javier [Departament de Quimica Inorganica, Universitat de Valencia, Dr. Moliner, 50, 46100 Burjassot, Valencia (Spain)

    2011-08-01

    Highlights: > Electrochemical characterization of Pr centers in praseodymia-doped zircon. > Study of the catalytic effect on the reduction of peroxide radical anion in nonaqueous solvents. > Assessment of non-uniform distribution of Pr centers in the zircon grains. - Abstract: The voltammetry of microparticles and scanning electrochemical microscopy methodologies are applied to characterize praseodymium centers in praseodymia-doped zircon (Pr{sub x}Zr{sub (1-y)}Si{sub (1-z)}O{sub 4}; y + z = x; 0.02 < x < 0.10) specimens prepared via sol-gel synthetic routes. In contact with aqueous electrolytes, two overlapping Pr-centered cathodic processes, attributable to the Pr (IV) to Pr (III) reduction of Pr centers in different sites are obtained. In water-containing, air-saturated acetone and DMSO solutions as solvent, Pr{sub x}Zr{sub (1-y)}Si{sub (1-z)}O{sub 4} materials produce a significant catalytic effect on the electrochemical reduction of peroxide radical anion electrochemically generated. These electrochemical features denote that most of the Pr centers are originally in its 4+ oxidation state in the parent Pr{sub x}Zr{sub (1-y)}Si{sub (1-z)}O{sub 4} specimens. The variation of the catalytic performance of such specimens with potential scan rate, water concentration and Pr loading suggests that Pr is not uniformly distributed within the zircon grains, being concentrated in the outer region of such grains.

  9. Fabrication and characterization of electrochemically prepared bioanode (polyaniline/ferritin/glucose oxidase) for biofuel cell application

    Science.gov (United States)

    ul Haque, Sufia; Inamuddin; Nasar, Abu; Asiri, Abdullah M.

    2018-01-01

    Porous matrix of polyaniline (PANI) has been electrodeposited along with the entrapment of biocompatible redox mediator ferritin (Frt) and glucose oxidase (GOx) on the surface of glassy carbon (GC) electrode. The characterizations have been carried out by X-ray Diffraction (XRD) and Transmission electron microscopy (TEM). The enhanced electrochemical signal transfer rate from enzyme to the electrode surface was due to the intimate contact of the enzyme with the electrochemically polymerized conducting PANI matrix. The PANI/Frt/GOx modified GC bioanode was used to investigate the electrocatalytic activity as a function of the concentration of glucose in the range of 10-60 mM. It was confirmed by the electrochemical impedance spectroscopy (EIS), the thick deposition of PANI layer becomes more compact due to which the charge transfer resistance of PANI matrix becomes higher. All the electrochemical measurements of the electrode were carried out by using cyclic voltammetry (CV) and linear sweep voltammetry (LSV). CV curves were recorded at different scan rates (20-100 mV/s) at 50 mM of glucose in 0.3 M potassium ferrocyanide. A normalized saturation current density of 22.3 ± 2 mA/cm2 was observed for the oxidation of 50 mM glucose at a scan rate of 100 mV/s.

  10. The Effects of Fresh Detox Juices on Color Stability and Roughness of Resin-Based Composites.

    Science.gov (United States)

    Yikilgan, İhsan; Akgul, Sinem; Hazar, Ahmet; Kedıcı Alp, Cemile; Baglar, Serdar; Bala, Oya

    2018-02-27

    To evaluate the effects of three fresh detox juices, including an orange, green, and red beverage, on the color stability and surface roughness of three anterior esthetic resin-based composites (RBCs). Disk-shaped specimens were prepared with three different esthetic RBCs (Amaris, G-aenial Anterior, Clearfil Majesty ES-2) according to the manufacturers' instructions. Forty specimens were prepared for each RBC, and all specimens were stored in artificial saliva at 37°C for 24 hours. The initial color values and surface roughness measurements of the specimens were taken using a spectrophotometer and a profilometer. The specimens were then divided into 4 subgroups (n = 10). All specimens except the control specimens were immersed in their designated fresh detox juices (green, red, or orange) for 10 minutes twice a day. Color and surface roughness measurements were taken on day 15 and day 30, and the results were analyzed by one-way ANOVA and Tukey HSD test. The association between color change and surface roughness was evaluated by Spearman's Rank Correlation analysis. Color changes and surface roughness increased upon exposure to fresh detox juices for 15 and 30 days for all of the RBCs. All of the G-aenial and Amaris groups displayed color changes above the threshold of acceptability, whereas Clearfil Majesty ES-2 displayed a color change above the threshold of acceptability only after exposure to the red beverage for 30 days (ΔE > 3.7). With regard to surface roughness, Clearfil Majesty ES-2 outperformed the other RBCs (p  0.001). Exposure to the fresh detox juices used in this study led to similar color changes in the RBCs used in this study. © 2018 by the American College of Prosthodontists.

  11. Electrochemical formation of uranium-zirconium alloy in LiCl-KCl melts

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Tsuyoshi, E-mail: m-tsuyo@criepi.denken.or.j [Central Research Institute of Electric Power Industry (CRIEPI), Komae-shi, Tokyo 201-8511 (Japan); Kato, Tetsuya; Kurata, Masaki [Central Research Institute of Electric Power Industry (CRIEPI), Komae-shi, Tokyo 201-8511 (Japan); Yamana, Hajimu [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan)

    2009-11-15

    Since zirconium is considered an electrochemically active species under practical conditions of the electrorefining process, it is crucial to understand the electrochemical behavior of zirconium in LiCl-KCl melts containing actinide ions. In this study, the electrochemical codeposition of uranium and zirconium on a solid cathode was performed. It was found that the delta-(U, Zr) phase, which is the only intermediate phase of the uranium-zirconium binary alloy system, was deposited on a tantalum substrate by potentiostatic electrolysis at -1.60 V (vs. Ag{sup +}/Ag) in LiCl-KCl melts containing 0.13 in mol% UCl{sub 3} and 0.23 in mol% ZrCl{sub 4} at 773 K. To our knowledge, this is the first report on the electrochemical formation of the delta-(U, Zr) phase. The relative partial molar properties of uranium in the delta-(U, Zr) phase were evaluated by measuring the open-circuit-potentials of the electrochemically prepared delta-phase electrode.

  12. Electrochemical formation of uranium-zirconium alloy in LiCl-KCl melts

    International Nuclear Information System (INIS)

    Murakami, Tsuyoshi; Kato, Tetsuya; Kurata, Masaki; Yamana, Hajimu

    2009-01-01

    Since zirconium is considered an electrochemically active species under practical conditions of the electrorefining process, it is crucial to understand the electrochemical behavior of zirconium in LiCl-KCl melts containing actinide ions. In this study, the electrochemical codeposition of uranium and zirconium on a solid cathode was performed. It was found that the δ-(U, Zr) phase, which is the only intermediate phase of the uranium-zirconium binary alloy system, was deposited on a tantalum substrate by potentiostatic electrolysis at -1.60 V (vs. Ag + /Ag) in LiCl-KCl melts containing 0.13 in mol% UCl 3 and 0.23 in mol% ZrCl 4 at 773 K. To our knowledge, this is the first report on the electrochemical formation of the δ-(U, Zr) phase. The relative partial molar properties of uranium in the δ-(U, Zr) phase were evaluated by measuring the open-circuit-potentials of the electrochemically prepared δ-phase electrode.

  13. Ordered mesoporous carbon for electrochemical sensing: A review

    Energy Technology Data Exchange (ETDEWEB)

    Ndamanisha, Jean Chrysostome [Faculty of Chemistry, Northeast Normal University, Changchun 130024 (China); Universite du Burundi, Institut de pedagogie appliquee, B.P. 5223, Bujumbura (Burundi); Guo Liping, E-mail: guolp078@nenu.edu.cn [Faculty of Chemistry, Northeast Normal University, Changchun 130024 (China)

    2012-10-17

    Highlights: Black-Right-Pointing-Pointer The preparation and functionalization of ordered mesoporous carbon. Black-Right-Pointing-Pointer Their applications as electrochemical sensors with high electrocatalytic activity. Black-Right-Pointing-Pointer A promising electrode material based on its interesting properties. - Abstract: With its well-ordered pore structure, high specific surface area and tunable pore diameters in the mesopore range, ordered mesoporous carbon (OMC) is suitable for applications in catalysis and sensing. We report recent applications of OMC in electrochemical sensors and biosensors. After a brief description of the electrochemical properties, the functionalization of the OMC for improvement of the electrocatalytic properties is then presented. We show how the ordered mesostructure of OMC is very important in those applications. The high density of edge plane-like defective sites (EDSs), oxygen-containing groups and a large surface area on OMC may provide many favorable sites for electron transfer to compounds, which makes OMC a potential novel material for an investigation of the electrochemical behavior of substances. Moreover, the structural capabilities of OMC at the scale of a few nanometers agree with immobilization of other electrocataytic substances. Interesting properties of this material may open up a new approach to study the electrochemical determination of other biomolecules.

  14. Nitrogen-Doped Three Dimensional Graphene for Electrochemical Sensing.

    Science.gov (United States)

    Yan, Jing; Chen, Ruwen; Liang, Qionglin; Li, Jinghong

    2015-07-01

    The rational assembly and doping of graphene play an crucial role in the improvement of electrochemical performance for analytical applications. Covalent assembly of graphene into ordered hierarchical structure provides an interconnected three dimensional conductive network and large specific area beneficial to electrolyte transfer on the electrode surface. Chemical doping with heteroatom is a powerful tool to intrinsically modify the electronic properties of graphene due to the increased free charge-carrier densities. By incorporating covalent assembly and nitrogen doping strategy, a novel nitrogen doped three dimensional reduced graphene oxide nanostructure (3D-N-RGO) was developed with synergetic enhancement in electrochemical behaviors. The as prepared 3D-N-RGO was further applied for catechol detection by differential pulse voltammetry. It exhibits much higher electrocatalytic activity towards catechol with increased peak current and decreased potential difference between the oxidation and reduction peaks. Owing to the improved electro-chemical properties, the response of the electrochemical sensor varies linearly with the catechol concentrations ranging from 5 µM to 100 µM with a detection limit of 2 µM (S/N = 3). This work is promising to open new possibilities in the study of novel graphene nanostructure and promote its potential electrochemical applications.

  15. Preparation of biomimetic nano-structured films with multi-scale roughness

    Science.gov (United States)

    Shelemin, A.; Nikitin, D.; Choukourov, A.; Kylián, O.; Kousal, J.; Khalakhan, I.; Melnichuk, I.; Slavínská, D.; Biederman, H.

    2016-06-01

    Biomimetic nano-structured films are valuable materials in various applications. In this study we introduce a fully vacuum-based approach for fabrication of such films. The method combines deposition of nanoparticles (NPs) by gas aggregation source and deposition of overcoat thin film that fixes the nanoparticles on a surface. This leads to the formation of nanorough surfaces which, depending on the chemical nature of the overcoat, may range from superhydrophilic to superhydrophobic. In addition, it is shown that by proper adjustment of the amount of NPs it is possible to tailor adhesive force on superhydrophobic surfaces. Finally, the possibility to produce NPs in a wide range of their size (45-240 nm in this study) makes it possible to produce surfaces not only with single scale roughness, but also with bi-modal or even multi-modal character. Such surfaces were found to be superhydrophobic with negligible water contact angle hysteresis and hence truly slippery.

  16. Preparation of biomimetic nano-structured films with multi-scale roughness

    International Nuclear Information System (INIS)

    Shelemin, A; Nikitin, D; Choukourov, A; Kylián, O; Kousal, J; Khalakhan, I; Melnichuk, I; Slavínská, D; Biederman, H

    2016-01-01

    Biomimetic nano-structured films are valuable materials in various applications. In this study we introduce a fully vacuum-based approach for fabrication of such films. The method combines deposition of nanoparticles (NPs) by gas aggregation source and deposition of overcoat thin film that fixes the nanoparticles on a surface. This leads to the formation of nanorough surfaces which, depending on the chemical nature of the overcoat, may range from superhydrophilic to superhydrophobic. In addition, it is shown that by proper adjustment of the amount of NPs it is possible to tailor adhesive force on superhydrophobic surfaces. Finally, the possibility to produce NPs in a wide range of their size (45–240 nm in this study) makes it possible to produce surfaces not only with single scale roughness, but also with bi-modal or even multi-modal character. Such surfaces were found to be superhydrophobic with negligible water contact angle hysteresis and hence truly slippery. (paper)

  17. Preparation of hollow Zn2SnO4 boxes@C/graphene ternary composites with a triple buffering structure and their electrochemical performance for lithium-ion batteries

    International Nuclear Information System (INIS)

    Huang, Haijian; Huang, Ying; Wang, Mingyue; Chen, Xuefang; Zhao, Yang; Wang, Ke; Wu, Haiwei

    2014-01-01

    Highlights: • A new hollow Zn 2 SnO 4 boxes@C/graphene ternary composites were synthesized through two hydrothermal processes followed by a calcined process for the first time. • The structure, morphology and electrochemical properties of the ternary composites were investigated by means of XRD, FTIR, Raman, BET, BJH, SEM, TEM, and electrochemical measurements. • The hollow Zn 2 SnO 4 boxes@C/graphene ternary composites were proved to have a triple buffering nanostructure. The hollow interior of the Zn 2 SnO 4 boxes, the carbon coating layer on the surface of the boxes and the 3D carbon network constructed by the graphene sheets can work together to effectively improve the electrochemical performance of the material. • The hollow Zn 2 SnO 4 boxes@C/graphene ternary composites show an enhanced electrochemical performance (726.9 mAh g −1 at a current density of 300 mA g −1 after 50 cycles) and high rate capability compared with the hollow Zn 2 SnO 4 boxes@graphene binary composites, the hollow Zn 2 SnO 4 boxes@C binary composites, the hollow Zn 2 SnO 4 boxes and the solid Zn 2 SnO 4 cubes. - Abstract: Hollow Zn 2 SnO 4 boxes@C/graphene ternary composites with a three-dimensional triple buffering structure are prepared by two hydrothermal processes followed by a calcined process. The structure, morphology and electrochemical properties of the ternary composites were investigated by means of XRD, FTIR, Raman, BET, BJH, SEM, TEM, and electrochemical measurements. The hollow Zn 2 SnO 4 boxes are coated with carbon layer and then supported by graphene sheets to form a 3D carbon conductive network. Compared with the hollow Zn 2 SnO 4 boxes@graphene binary composites, the hollow Zn 2 SnO 4 boxes@C binary composites, the hollow Zn 2 SnO 4 boxes and the solid Zn 2 SnO 4 cubes, the hollow Zn 2 SnO 4 boxes@C/graphene ternary composites show an enhanced electrochemical performance (726.9 mAh g −1 at a current density of 300 mA g −1 after 50 cycles) and high rate

  18. Effect of counterface roughness on the friction of bionic wall-shaped microstructures for gecko-like attachments.

    Science.gov (United States)

    Kasem, Haytam; Cohen, Yossi

    2017-08-04

    Hairy adhesive systems involved in gecko locomotion have drawn the interest of many researchers regarding the development of bionic solutions for fast and reversible adhesive technologies. To date, despite extensive efforts to design gecko-inspired adhesive surfaces, adhesion and friction capacities are often evaluated using smooth and rigid counterfaces, in general glass, whereas most natural and artificial surfaces inevitably have a certain level of roughness. For that reason, in this study experiments tested the effects of the substrate roughness on the friction of bionic wale-shaped microstructures for gecko-like attachments. To this end, 12 substrates with different isotropic roughness were prepared using the same Epoxy material. Friction force was measured under various normal loads. It was concluded that classical roughness parameters, considered separately, are not appropriate to explain roughness-related variations in friction force. This has led us to develop a new integrative roughness parameter that combines characteristics of the surface. The parameter is capable of classifying the obtained experimental results in a readable way. An analytical model based on the experimental results has been developed to predict the variation of the friction force as a function of counterface roughness and applied normal load.

  19. The possibility of multi-layer nanofabrication via atomic force microscope-based pulse electrochemical nanopatterning

    Science.gov (United States)

    Kim, Uk Su; Morita, Noboru; Lee, Deug Woo; Jun, Martin; Park, Jeong Woo

    2017-05-01

    Pulse electrochemical nanopatterning, a non-contact scanning probe lithography process using ultrashort voltage pulses, is based primarily on an electrochemical machining process using localized electrochemical oxidation between a sharp tool tip and the sample surface. In this study, nanoscale oxide patterns were formed on silicon Si (100) wafer surfaces via electrochemical surface nanopatterning, by supplying external pulsed currents through non-contact atomic force microscopy. Nanoscale oxide width and height were controlled by modulating the applied pulse duration. Additionally, protruding nanoscale oxides were removed completely by simple chemical etching, showing a depressed pattern on the sample substrate surface. Nanoscale two-dimensional oxides, prepared by a localized electrochemical reaction, can be defined easily by controlling physical and electrical variables, before proceeding further to a layer-by-layer nanofabrication process.

  20. Composite Electrodes for Electrochemical Supercapacitors

    OpenAIRE

    Li, Jun; Yang, QuanMin; Zhitomirsky, Igor

    2010-01-01

    Abstract Manganese dioxide nanofibers with length ranged from 0.1 to 1 μm and a diameter of about 4–6 nm were prepared by a chemical precipitation method. Composite electrodes for electrochemical supercapacitors were fabricated by impregnation of the manganese dioxide nanofibers and multiwalled carbon nanotubes (MWCNT) into porous Ni plaque current collectors. Obtained composite electrodes, containing 85% of manganese dioxide and 15 mass% of MWCNT, as a conductive additive, with to...

  1. Notions of Rough Neutrosophic Digraphs

    Directory of Open Access Journals (Sweden)

    Nabeela Ishfaq

    2018-01-01

    Full Text Available [-3]Graph theory has numerous applications in various disciplines, including computer networks, neural networks, expert systems, cluster analysis, and image capturing. Rough neutrosophic set (NS theory is a hybrid tool for handling uncertain information that exists in real life. In this research paper, we apply the concept of rough NS theory to graphs and present a new kind of graph structure, rough neutrosophic digraphs. We present certain operations, including lexicographic products, strong products, rejection and tensor products on rough neutrosophic digraphs. We investigate some of their properties. We also present an application of a rough neutrosophic digraph in decision-making.

  2. Human roughness perception and possible factors effecting roughness sensation.

    Science.gov (United States)

    Aktar, Tugba; Chen, Jianshe; Ettelaie, Rammile; Holmes, Melvin; Henson, Brian

    2017-06-01

    Surface texture sensation is significant for business success, in particular for solid surfaces for most of the materials; including foods. Mechanisms of roughness perception are still unknown, especially under different conditions such as lubricants with varying viscosities, different temperatures, or under different force loads during the observation of the surface. This work aims to determine the effect of those unknown factors, with applied sensory tests on 62 healthy participants. Roughness sensation of fingertip was tested under different lubricants including water and diluted syrup solutions at room temperature (25C) and body temperature (37C) by using simple pair-wise comparison to observe the just noticeable difference threshold and perception levels. Additionally, in this research applied force load during roughness observation was tested with pair-wise ranking method to illustrate its possible effect on human sensation. Obtained results showed that human's capability of roughness discrimination reduces with increased viscosity of the lubricant, where the influence of the temperature was not found to be significant. Moreover, the increase in the applied force load showed an increase in the sensitivity of roughness discrimination. Observed effects of the applied factors were also used for estimating the oral sensation of texture during eating. These findings are significant for our fundamental understanding to texture perception, and for the development of new food products with controlled textural features. Texture discrimination ability, more specifically roughness discrimination capability, is a significant factor for preference and appreciation for a wide range of materials, including food, furniture, or fabric. To explore the mechanism of sensation capability through tactile senses, it is necessary to identify the relevant factors and define characteristics that dominate the process involved. The results that will be obtained under these principles

  3. Electrochemical treatment of tannery wastewater using DSA electrodes

    International Nuclear Information System (INIS)

    Costa, Carla Regina; Botta, Clarice M.R.; Espindola, Evaldo L.G.; Olivi, Paulo

    2008-01-01

    In this work we studied the electrochemical treatment of a tannery wastewater using dimensionally stable anodes (DSA) containing tin, iridium, ruthenium, and titanium. The electrodes were prepared by thermal decomposition of the polymeric precursors. The electrolyses were performed under galvanostatic conditions, at room temperature. Effects of the oxide composition, current density, and effluent conductivity were investigated, and the current efficiency was calculated as a function of the time for the performed electrolyses. Results showed that all the studied electrodes led to a decrease in the content of both total phenolic compounds and total organic carbon (TOC), as well as lower absorbance in the UV-vis region. Toxicity tests using Daphnia similis demonstrated that the electrochemical treatment reduced the wastewater toxicity. The use of DSA type electrodes in the electrochemical treatment of tannery wastewater proved to be useful since it can promote a decrease in total phenolic compounds, TOC, absorbance, and toxicity

  4. Electrochemical treatment of tannery wastewater using DSA electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Carla Regina [Departamento de Quimica, Faculdade de Filosofia, Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo, CEP 14049-901 Ribeirao Preto, SP (Brazil); Botta, Clarice M.R.; Espindola, Evaldo L.G. [Nucleo de Estudos em Ecossistemas Aquaticos, Centro de Recursos Hidricos e Ecologia Aplicada, Escola de Engenharia de Sao Carlos, Universidade de Sao Paulo, CP 292, CEP 13560-970 Sao Carlos, SP (Brazil); Olivi, Paulo [Departamento de Quimica, Faculdade de Filosofia, Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo, CEP 14049-901 Ribeirao Preto, SP (Brazil)], E-mail: olivip@ffclrp.usp.br

    2008-05-01

    In this work we studied the electrochemical treatment of a tannery wastewater using dimensionally stable anodes (DSA) containing tin, iridium, ruthenium, and titanium. The electrodes were prepared by thermal decomposition of the polymeric precursors. The electrolyses were performed under galvanostatic conditions, at room temperature. Effects of the oxide composition, current density, and effluent conductivity were investigated, and the current efficiency was calculated as a function of the time for the performed electrolyses. Results showed that all the studied electrodes led to a decrease in the content of both total phenolic compounds and total organic carbon (TOC), as well as lower absorbance in the UV-vis region. Toxicity tests using Daphnia similis demonstrated that the electrochemical treatment reduced the wastewater toxicity. The use of DSA type electrodes in the electrochemical treatment of tannery wastewater proved to be useful since it can promote a decrease in total phenolic compounds, TOC, absorbance, and toxicity.

  5. Preparation of sulfonated graphene/polypyrrole solid-phase microextraction coating by in situ electrochemical polymerization for analysis of trace terpenes.

    Science.gov (United States)

    Zhang, Chengjiang; Zhang, Zhuomin; Li, Gongke

    2014-06-13

    In this study, a novel sulfonated graphene/polypyrrole (SG/PPy) solid-phase microextraction (SPME) coating was prepared and fabricated on a stainless-steel wire by a one-step in situ electrochemical polymerization method. Crucial preparation conditions were optimized as polymerization time of 15min and SG doping amount of 1.5mg/mL. SG/PPy coating showed excellent thermal stability and mechanical durability with a long lifespan of more than 200 stable replicate extractions. SG/PPy coating demonstrated higher extraction selectivity and capacity to volatile terpenes than commonly-used commercial coatings. Finally, SG/PPy coating was practically applied for the analysis of volatile components from star anise and fennel samples. The majority of volatile components identified were terpenes, which suggested the ultra-high extraction selectivity of SG/PPy coating to terpenes during real analytical projects. Four typical volatile terpenes were further quantified to be 0.2-27.4μg/g from star anise samples with good recoveries of 76.4-97.8% and 0.1-1.6μg/g from fennel samples with good recoveries of 80.0-93.1%, respectively. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Electrochemical Sensor for Explosives Precursors’ Detection in Water

    Directory of Open Access Journals (Sweden)

    Cloé Desmet

    2017-03-01

    Full Text Available Although all countries are intensifying their efforts against terrorism and increasing their mutual cooperation, terrorist bombing is still one of the greatest threats to society. The discovery of hidden bomb factories is of primary importance in the prevention of terrorism activities. Criminals preparing improvised explosives (IE use chemical substances called precursors. These compounds are released in the air and in the waste water during IE production. Tracking sources of precursors by analyzing air or wastewater can then be an important clue for bomb factories’ localization. We are reporting here a new multiplex electrochemical sensor dedicated to the on-site simultaneous detection of three explosive precursors, potentially used for improvised explosive device preparation (hereafter referenced as B01, B08, and B15, for security disclosure reasons and to avoid being detrimental to the security of the counter-explosive EU action. The electrochemical sensors were designed to be disposable and to combine ease of use and portability in a screen-printed eight-electrochemical cell array format. The working electrodes were modified with different electrodeposited metals: gold, palladium, and platinum. These different coatings giving selectivity to the multi-sensor through a “fingerprint”-like signal subsequently analyzed using partial least squares-discriminant analysis (PLS-DA. Results are given regarding the detection of the three compounds in a real environment and in the presence of potentially interfering species.

  7. The electrochemical property of the electrodeposited magnetite electrode with different pH values

    International Nuclear Information System (INIS)

    Kim, Myong-Jin; Kim, Dong Jin; Kim, Hong Pyo

    2014-01-01

    Flow accelerated corrosion (FAC) is influenced by many factors such as the water chemistry (temperature, pH, dissolved oxygen (D.O.) in a solution, and etc.), chemical composition of carbon steel, and fluid dynamics. Magnetite is formed at the inner surface of carbon steel, and protects the integrity of pipes from damage. The magnetite has a stable state at each equilibrium condition, so that it can be dissolved into the fluid under conditions that satisfy the equilibrium state. The iron solubility can be calculated by considering the reaction equilibrium constants for prediction of the change in the magnetite layer. On the other hand, it is necessary to measure the experimental solubility to compare the theoretical data and the experimental data. In addition, the solubility of magnetite can be predicted by measuring the electrochemical experiments. However, there are few studies related to the electrochemical property of magnetite owing to the difficulty of the electrode fabrication. In the present work, a magnetite electrode was prepared using the electrochemical-assisted precipitation method, and the electrochemical property of the fabricated magnetite electrode was measured in an alkaline solution. The magnetite electrode was fabricated by using the electrochemical-assisted precipitation method for the measurement of the solubility of the magnetite. The prepared magnetite electrode showed the characteristic of the magnetite by an XRD spectrum

  8. Electrodeposition synthesis and electrochemical properties of nanostructured γ-MnO 2 films

    Science.gov (United States)

    Chou, Shulei; Cheng, Fangyi; Chen, Jun

    The thin films of carambola-like γ-MnO 2 nanoflakes with about 20 nm in thickness and at least 200 nm in width were prepared on nickel sheets by combination of potentiostatic and cyclic voltammetric electrodeposition techniques. The as-prepared MnO 2 nanomaterials, which were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS), were used as the active material of the positive electrode for primary alkaline Zn/MnO 2 batteries and electrochemical supercapacitors. Electrochemical measurements showed that the MnO 2 nanoflake films displayed high potential plateau (around 1.0 V versus Zn) in primary Zn/MnO 2 batteries at the discharge current density of 500 mA g -1 and high specific capacitance of 240 F g -1 at the current density of 1 mA cm -2. This indicated the potential application of carambola-like γ-MnO 2 nanoflakes in high-power batteries and electrochemical supercapacitors. The growth process for the one- and three-dimensional nanostructured MnO 2 was discussed on the basis of potentiostatic and cyclic voltammetric techniques. The present synthesis method can be extended to the preparation of other nanostructured metal-oxide films.

  9. Chemical etching of stainless steel 301 for improving performance of electrochemical capacitors in aqueous electrolyte

    Science.gov (United States)

    Jeżowski, P.; Nowicki, M.; Grzeszkowiak, M.; Czajka, R.; Béguin, F.

    2015-04-01

    The main purpose of the study was to increase the surface roughness of stainless steel 301 current collectors by etching, in order to improve the electrochemical performance of electrical double-layer capacitors (EDLC) in 1 mol L-1 lithium sulphate electrolyte. Etching was realized in 1:3:30 (HNO3:HCl:H2O) solution with times varying up to 10 min. For the considered 15 μm thick foil and a mass loss around 0.4 wt.%, pitting was uniform, with diameter of pits ranging from 100 to 300 nm. Atomic force microscopy (AFM) showed an increase of average surface roughness (Ra) from 5 nm for the as-received stainless steel foil to 24 nm for the pitted material. Electrochemical impedance spectroscopy realized on EDLCs with coated electrodes either on as-received or pitted foil in 1 mol L-1 Li2SO4 gave equivalent distributed resistance (EDR) of 8 Ω and 2 Ω, respectively, demonstrating a substantial improvement of collector/electrode interface after pitting. Correlatively, the EDLCs with pitted collector displayed a better charge propagation and low ohmic losses even at relatively high current of 20 A g-1. Hence, chemical pitting of stainless steel current collectors is an appropriate method for optimising the performance of EDLCs in neutral aqueous electrolyte.

  10. Effect of CaO addition on preparation of ferrotitanium from ilmenite by electrochemical reduction in CaCl_2−NaCl molten salt

    International Nuclear Information System (INIS)

    Xiong, Li; Hua, Yixin; Xu, Cunying; Li, Jian; Li, Yan; Zhang, Qibo; Zhou, Zhongren; Zhang, Yadong; Ru, Juanjian

    2016-01-01

    Ferro-titanium (FeTi) alloy was prepared successfully from synthesized ilmenite through electrochemical reduction method in equal-molar CaCl_2−NaCl molten salt at 973 K and a cell voltage of 3.2 V under inert atmosphere, where molybdenum rod and graphite were used as cathode and anode respectively. It is indicated that the CaO content in the molten salt has an appreciable effect on the phase transformation of reactants occurring in the electrolytic process. The optimized CaO content in the molten salt is 1 mol% and this suitable content of CaO can significantly improve the reduction rate of ilmenite. The micromorphology of the ferrotitanium product is porous with the amount of 1 mol%CaO addition. It is observed that the particles of ferrotitanium had a uniform size in the initial period of time. Along with the electrolysis time extension, however, the particles connected with each other to generate strips and then form a honeycomb structure. These findings provide a basis for scientifically discussion on the optimization of CaO addition amount during the electrochemical reduction of ilmenite and other oxides in molten salts. - Highlights: • Ferro-titanium was prepared from synthesized ilmenite in CaCl_2−NaCl molten salt. • CaO content has appreciable effect on the phase transformation of ilmenite reactant. • The optimized CaO content is 1 mol% which can significantly improve reaction rate. • The products are connected with each other to form strips as electrolysis time.

  11. Effects of ion implantation on the electrochemical characteristics of carbon electrodes

    International Nuclear Information System (INIS)

    Takahashi, Katsuo; Iwaki, Masaya

    1994-01-01

    Various carbon materials are important electrode materials for electrochemical field. By ion implantation, the surface layer reforming of carbon materials (mainly galssy carbon) was carried out, and the effect that it exerts to their electrode characteristics was investigated. As the results of the ion implantation of Li, N, O, K, Ti, Zn, Cd and others performed so far, it was found that mainly by the change of the surface layer to amorphous state, there were the effects of the lowering of base current and the lowering of electrode reaction rate, and it was known that the surface layers of carbon materials doped with various kinds of ions showed high chemical stability. The use of carbon materials as electrodes in electrochemistry is roughly divided into the electrodes for electrolytic industry and fuel cells for large current and those for the measurement in electrochemical reaction for small current. The structure of carbon materials and electrode characteristics, and the reforming effect by ion implantation are reported. (K.I.)

  12. Influence of the atomic force microscope tip on the multifractal analysis of rough surfaces

    International Nuclear Information System (INIS)

    Klapetek, Petr; Ohlidal, Ivan; Bilek, Jindrich

    2004-01-01

    In this paper, the influence of atomic force microscope tip on the multifractal analysis of rough surfaces is discussed. This analysis is based on two methods, i.e. on the correlation function method and the wavelet transform modulus maxima method. The principles of both methods are briefly described. Both methods are applied to simulated rough surfaces (simulation is performed by the spectral synthesis method). It is shown that the finite dimensions of the microscope tip misrepresent the values of the quantities expressing the multifractal analysis of rough surfaces within both the methods. Thus, it was concretely shown that the influence of the finite dimensions of the microscope tip changed mono-fractal properties of simulated rough surface to multifractal ones. Further, it is shown that a surface reconstruction method developed for removing the negative influence of the microscope tip does not improve the results obtained in a substantial way. The theoretical procedures concerning both the methods, i.e. the correlation function method and the wavelet transform modulus maxima method, are illustrated for the multifractal analysis of randomly rough gallium arsenide surfaces prepared by means of the thermal oxidation of smooth gallium arsenide surfaces and subsequent dissolution of the oxide films

  13. Colloidal CuInSe2 nanocrystals thin films of low surface roughness

    Science.gov (United States)

    de Kergommeaux, Antoine; Fiore, Angela; Faure-Vincent, Jérôme; Pron, Adam; Reiss, Peter

    2013-03-01

    Thin-film processing of colloidal semiconductor nanocrystals (NCs) is a prerequisite for their use in (opto-)electronic devices. The commonly used spin-coating is highly materials consuming as the overwhelming amount of deposited matter is ejected from the substrate during the spinning process. Also, the well-known dip-coating and drop-casting procedures present disadvantages in terms of the surface roughness and control of the film thickness. We show that the doctor blade technique is an efficient method for preparing nanocrystal films of controlled thickness and low surface roughness. In particular, by optimizing the deposition conditions, smooth and pinhole-free films of 11 nm CuInSe2 NCs have been obtained exhibiting a surface roughness of 13 nm root mean square (rms) for a 350 nm thick film, and less than 4 nm rms for a 75 nm thick film. Invited talk at the 6th International Workshop on Advanced Materials Science and Nanotechnology, 30 October-2 November 2012, Ha Long, Vietnam.

  14. Electrochemical sensing platforms based on the different carbon derivative incorporated interface.

    Science.gov (United States)

    Dervisevic, Muamer; Çevik, Emre; Durmuş, Zehra; Şenel, Mehmet

    2016-01-01

    their effects on the properties of these biosensors. Biosensors were prepared by Horseradish peroxidase (HRP) immobilization on the composite electrodes composed of carbon black, carbon nanofiber (CNF), extended graphite, multiwalled carbon nanotube (MWCNT), reduced graphene oxide (REGO) and poly(glycidyl methacrylateco-vinylferrocene) (P(GMA-co-VFc)) as mediator, covalent linker, and host matrix for carbon derivatives. The modified pencil graphite electrode (PGE) was used for the detection of hydrogen peroxide and to follow electrochemical behavior of different carbon derivatives which were recorded. The electrochemical characterization was investigated by cyclic voltammetry and electrochemical impedance spectroscopy methods. Amperometric measurements showed that the REGO and MWCNT modified electrodes have excellent performance in comparison with other carbon derivatives studied.

  15. Roughness-based monitoring of transparency and conductivity in boron-doped ZnO thin films prepared by spray pyrolysis

    International Nuclear Information System (INIS)

    Gaikwad, Rajendra S.; Bhande, Sambhaji S.; Mane, Rajaram S.; Pawar, Bhagwat N.; Gaikwad, Sanjay L.; Han, Sung-Hwan; Joo, Oh-Shim

    2012-01-01

    Graphical abstract: Display Omitted Highlights: ► We report surface roughness dependent transparency and conductivity in ZnO films. ► The surface roughness with respected to boron doping concentrations is studied. ► Boron doped and pristine Zinc oxide thin films have showed ≥95% transmittance. ► Increased carrier concentration of 9.21 × 10 21 cm −3 revealed from Hall measurement. -- Abstract: Sprayed polycrystalline ZnO and boron-doped ZnO thin films composed of spherical grains of 25–32 nm in diameters are used in roughness measurement and further correlated with the transparency and the conductivity characteristics. The surface roughness is increased up to Zn 0.98 B 0.02 O and then declined at higher boron concentrations. The sprayed ZnO films revealed ≥95% transmittance in the visible wavelength range, 1.956 × 10 −4 Ω cm electrical resistivity, 46 cm 2 /V s Hall mobility and 9.21 × 10 21 cm −3 charge carrier concentration. The X-ray photoelectron spectroscopy study has confirmed 0.15 eV binding energy change for Zn 2p 3/2 when 2 at% boron content is mixed without altering electro-optical properties substantially. Finally, using soft modeling importance of these textured ZnO over non-textured films for enhancing the solar cells performance is explored.

  16. Electrochemical deposition of mineralized BSA/collagen coating

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Junjun [School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); Lin, Jun; Li, Juan; Wang, Huiming [The First Affiliated Hospital of Medical College, Zhejiang University, Hangzhou 310003 (China); Cheng, Kui [School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); Weng, Wenjian, E-mail: wengwj@zju.edu.cn [School of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); The Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China)

    2016-09-01

    In this work, mineralized collagen coatings with different loading quantity of bovine serum albumin (BSA) were prepared via in situ electrochemical deposition on titanium substrate. The microstructure and BSA loading quantity of the coatings could be controlled by the electrochemical deposition parameters, such as deposition potential, BSA concentration and its adding sequence in the electrolyte. The BSA loading quantity in the coatings was obtained in the range of 0.0170–0.173 mg/cm{sup 2}, enhancing the cell adhesion and proliferation of the coatings with the simultaneous release. The distinct release behaviors of BSA were attributed to their gradient distribution with different mineralization degrees, which could be adjusted by the deposition process. These results suggest that in situ electrochemical deposition is a promising way to incorporate functional molecules into the mineralized collagen coatings and the mineralized BSA/collagen coatings are highly promising for improving the rhBMP-2 loading capability (1.8-fold). - Highlights: • BSA is incorporated into mineralized collagen coating by electrochemical deposition. • The loading amount of BSA in coatings can be adjusted in the range of 0-173 ng. • The BSA/collagen coating shows good cytocompatibility with free-albumin culture. • The incorporation process is put forward for some other molecules deposition.

  17. Recent advances in polymer supporting layered double hydroxides nanocomposite for electrochemical biosensors

    Science.gov (United States)

    Dhanasekaran, T.; Padmanaban, A.; Gnanamoorthy, G.; Manigandan, R.; Praveen Kumar, S.; Stephen, A.; Narayanan, V.

    2018-01-01

    In recent years, layered double hydroxides (LDHs) materials having emerging due to their ability of intercalate a variety of anions, either organic or inorganic molecules. The most significance of the LDHs has been found potential applications in catalysis, wastewater treatment, and electrochemical sensors. The Mg-Al LDHs (MAL) and Poly-o-phenylenediamine @ Mg-Al LDHs (P-MAL) was prepared via simple one step hydrothermal method. As prepared material was characterized using many techniques such as, the structural and crystal phase was determined from XRD and Raman analyses. The functional groups were depicted using FT-IR spectroscopy. The optical propertied studied using diffuse reflectance spectroscopy UV-vis spectroscopy and the emission property were analyzed from Photoluminescence spectroscopy. The surface morphology and average particle size was analyzed using FESEM microscopy. The prepared polymer composite material P-MAL was further used for highly sensitive electrochemical detection towards dopamine (DA).

  18. Turbulence modifications in a turbulent boundary layer over a rough wall with spanwise-alternating roughness strips

    Science.gov (United States)

    Bai, H. L.; Kevin, Hutchins, N.; Monty, J. P.

    2018-05-01

    Turbulence modifications over a rough wall with spanwise-varying roughness are investigated at a moderate Reynolds number Reτ ≈ 2000 (or Reθ ≈ 6400), using particle image velocimetry (PIV) and hotwire anemometry. The rough wall is comprised of spanwise-alternating longitudinal sandpaper strips of two different roughness heights. The ratio of high- and low-roughness heights is 8, and the ratio of high- and low-roughness strip width is 0.5. PIV measurements are conducted in a wall-parallel plane located in the logarithmic region, while hotwire measurements are made throughout the entire boundary layer in a cross-stream plane. In a time-average sense, large-scale counter-rotating roll-modes are observed in the cross-stream plane over the rough wall, with downwash and upwash common-flows displayed over the high- and low-roughness strips, respectively. Meanwhile, elevated and reduced streamwise velocities occur over the high- and low-roughness strips, respectively. Significant modifications in the distributions of mean vorticities and Reynolds stresses are observed, exhibiting features of spatial preference. Furthermore, spatial correlations and conditional average analyses are performed to examine the alterations of turbulence structures over the rough wall, revealing that the time-invariant structures observed are resultant from the time-average process of instantaneous turbulent events that occur mostly and preferentially in space.

  19. Measurement of the Ru surface content of electrodeposited PtRu electrodes with the electrochemical quartz crystal microbalance: implications for methanol and CO electrooxidation

    NARCIS (Netherlands)

    Frelink, T.; Visscher, W.; Veen, van J.A.R.

    1996-01-01

    To obtain the surface content of Ru in rough electrocodeposited PtRu electrodes, the mass change of a Pt electrode during Ru deposition was measured with the electrochemical quartz crystal microbalance (EQCMB). It is shown that there is a correlation between the potential of the surface oxide

  20. Graphene Ink Film Based Electrochemical Detector for Paracetamol Analysis

    Directory of Open Access Journals (Sweden)

    Li Fu

    2018-01-01

    Full Text Available Graphene ink is a commercialized product in the graphene industry with promising potential application in electronic device design. However, the limitation of the graphene ink is its low electronic performance due to the ink preparation protocol. In this work, we proposed a simple post-treatment of graphene ink coating via electrochemical oxidation. The electronic conductivity of the graphene ink coating was enhanced as expected after the treatment. The proposed electrochemical oxidation treatment also exposes the defects of graphene and triggered an electrocatalytic reaction during the sensing of paracetamol (PA. The overpotential of redox is much lower than conventional PA redox potential, which is favorable for avoiding the interference species. Under optimum conditions, the graphene ink-based electrochemical sensor could linearly detect PA from 10 to 500 micro molar (μM, with a limit of detection of 2.7 μM.

  1. Improvement of the process for electrochemical impregnation of nickel hydroxide electrodes

    Science.gov (United States)

    Comtat, M.; Lafage, B.; Leonardi, J.

    1986-01-01

    Nickel hydroxide electrodes containing 11g/dsqm hydroxide, with capacities of 3.6 to 3.8 Ah/dsqm were prepared at 353 K by electrochemical impregnation. The reproducibility of the results is obtained by readjusting the pH before each preparation. The control of each electrode is done during two cycles of charge and discharge following the manufacture by a potential relaxation method.

  2. Electrochemical Synthesis of a Microporous Conductive Polymer Based on a Metal-Organic Framework Thin Film

    KAUST Repository

    Lu, Chunjing; Ben, Teng; Xu, Shixian; Qiu, Shilun

    2014-01-01

    A new approach to preparing 3D microporous conductive polymer has been demonstrated in the electrochemical synthesis of a porous polyaniline network with the utilization of a MOF thin film supported on a conducting substrate. The prepared porous

  3. Electrochemical Study of Bromide in the Presence of 1,3-Indandione. Application to the Electrochemical Synthesis of Bromo Derivatives of 1,3-Indandione

    Directory of Open Access Journals (Sweden)

    N. Akaberi

    2001-06-01

    Full Text Available The electrochemical oxidation of bromide in the presence of 1,3-indandione (1 in water/acetic acid and methanol/acetic acid mixtures has been studied by cyclic voltammetry and controlled-potential coulometry. The results indicate the participation of 1,3-indandione in the bromination reaction. On the basis of the electroanalytical and preparative results a reaction mechanism including electron transfer, chemical reaction and regeneration of bromide was discussed. The electrochemical synthesis of bromo derivatives of 1,3-indandione (2-3 has been successfully performed at constant current, in an undivided cell, in good yield and purity.

  4. Electrochemical sensing of etoposide using carbon quantum dot modified glassy carbon electrode.

    Science.gov (United States)

    Nguyen, Hoai Viet; Richtera, Lukas; Moulick, Amitava; Xhaxhiu, Kledi; Kudr, Jiri; Cernei, Natalia; Polanska, Hana; Heger, Zbynek; Masarik, Michal; Kopel, Pavel; Stiborova, Marie; Eckschlager, Tomas; Adam, Vojtech; Kizek, Rene

    2016-04-25

    In this study, enhancement of the electrochemical signals of etoposide (ETO) measured by differential pulse voltammetry (DPV) by modifying a glassy carbon electrode (GCE) with carbon quantum dots (CQDs) is demonstrated. In comparison with a bare GCE, the modified GCE exhibited a higher sensitivity towards electrochemical detection of ETO. The lowest limit of detection was observed to be 5 nM ETO. Furthermore, scanning electron microscopy (SEM), fluorescence microscopy (FM), and electrochemical impedance spectroscopy (EIS) were employed for the further study of the working electrode surface after the modification with CQDs. Finally, the GCE modified with CQDs under optimized conditions was used to analyse real samples of ETO in the prostate cancer cell line PC3. After different incubation times (1, 3, 6, 9, 12, 18 and 24 h), these samples were then prepared prior to electrochemical detection by the GCE modified with CQDs. High performance liquid chromatography with an electrochemical detection method was employed to verify the results from the GCE modified with CQDs.

  5. Modelling dynamic roughness during floods

    NARCIS (Netherlands)

    Paarlberg, Andries; Dohmen-Janssen, Catarine M.; Hulscher, Suzanne J.M.H.; Termes, A.P.P.

    2007-01-01

    In this paper, we present a dynamic roughness model to predict water levels during floods. Hysteresis effects of dune development are explicitly included. It is shown that differences between the new dynamic roughness model, and models where the roughness coefficient is calibrated, are most

  6. Reduction of Secondary Electron Yied (SEY) Figures on Smooth Metallic Surfaces by Means of Magnetic Roughness

    CERN Document Server

    Montero, I; Caspers, F; Mensi, M; Taborelli, M

    2013-01-01

    High secondary electron yield of metallic surfaces used in accelerator and also in space applications is of general concern. In addition to several well-known coating preparation techniques and microscopic or macroscopic mechanical roughness (grooves) which may significantly increase microwave losses the concept of magnetic surface roughness has been proposed recently to lower the effective secondary electron yield (SEY). In this concept a smooth and very good conducting surface with low microwave losses is maintained, but underneath this surface a large number of tiny permanent magnets are located to build a rough magnetic equipotential structure. In this paper we present and discuss measurement of the SEY and the improvement in terms of SEY for different parameter ranges.

  7. Electrochemical aptasensor for detecting tetracycline in milk

    International Nuclear Information System (INIS)

    Le, Thi Hanh; Pham, Van Phuc; La, Thi Huyen; Le, Quang Huan; Phan, Thi Binh

    2016-01-01

    A rapid, simple and sensitive biosensor system for tetracycline detection is very important in food safety. In this paper we developed a label-free aptasensor for electrochemical detection of tetracycline. According to the electrochemical impendence spectroscopy (EIS) analysis, there was a linear relationship between the concentration of tetracycline and the electron transfer resistance from 10 to 3000 ng ml −1 of the tetracycline concentration. The detection limit was 10 ng ml −1 in 15 min detection duration. The prepared aptasensor showed a good reproducibility with an acceptable stability in tetracycline detection. The recoveries of tetracycline in spiked milk samples were in the range of 88.1%–94.2%. The aptasensor has sensitivity 98% and specificity of 100%. (paper)

  8. Formation of novel polymeric films derived from 4-hydroxybenzoic acid

    International Nuclear Information System (INIS)

    Ferreira, Lucas F.; Souza, Leticia M.; Franco, Diego L.; Castro, Ana C.H.; Oliveira, Alex A.; Boodts, Julien F.C.; Brito-Madurro, Ana G.; Madurro, Joao M.

    2011-01-01

    Highlights: → Graphite electrodes modified with poly(4-hydroxybenzoic acid) prepared in pH 0.5, 7.0 and 12.0. → Electron transport was higher in poly(4-hydroxybenzoic acid) prepared in acid medium. → Poly(4-HBA) prepared in pH 12.0 presents higher charge transfer resistance. → Polymers prepared in pH 0.5 and 7.0 present globular morphology and in pH 0.5 higher roughness. - Abstract: This work reports electrochemical and morphological studies of formation of poly(4-hydroxybenzoic acid), prepared in different pH, on the graphite surface. Cyclic voltammetry, electrochemical impedance spectroscopy (EIS), electrochemical quartz crystal microbalance (EQCM) and atomic force microscopy (AFM) have been carried out to study the modified electrodes formed. The electrodes modified with poly(4-HBA), prepared in pH 0.5 and 7.0, presented oxidation/reduction peaks, but no peak was detected to modified electrodes prepared in pH 12.0. Voltammetric studies showed decrease in oxidation/reduction currents and slower electron transport across the polymer for all pH values, however, the electron transport was higher when the polymer was prepared in acid medium. EIS analysis indicated that the charge transfer resistance for poly(4-HBA) electropolymerized at pH 12.0 was about 2 and 1.4 times higher when compared to pH 0.5 and 7.0, respectively. Studies through EQCM showed higher amount of polymer mass deposited in acid medium. Images by AFM indicated that the topography is affected by pH value, whereas films prepared in acidic pH conditions presented higher roughness.

  9. Roughness Effects on Fretting Fatigue

    Science.gov (United States)

    Yue, Tongyan; Abdel Wahab, Magd

    2017-05-01

    Fretting is a small oscillatory relative motion between two normal loaded contact surfaces. It may cause fretting fatigue, fretting wear and/or fretting corrosion damage depending on various fretting couples and working conditions. Fretting fatigue usually occurs at partial slip condition, and results in catastrophic failure at the stress levels below the fatigue limit of the material. Many parameters may affect fretting behaviour, including the applied normal load and displacement, material properties, roughness of the contact surfaces, frequency, etc. Since fretting damage is undesirable due to contacting, the effect of rough contact surfaces on fretting damage has been studied by many researchers. Experimental method on this topic is usually focusing on rough surface effects by finishing treatment and random rough surface effects in order to increase fretting fatigue life. However, most of numerical models on roughness are based on random surface. This paper reviewed both experimental and numerical methodology on the rough surface effects on fretting fatigue.

  10. Influence of Mechanical and Chemical Degradation in the Surface Roughness, Gloss, and Color of Microhybrid Composites.

    Science.gov (United States)

    Lemos, Cleidiel Aa; Mauro, Silvio J; Dos Santos, Paulo H; Briso, Andre Lf; Fagundes, Ticiane C

    2017-04-01

    The aim of this study was to investigate the association of different degradations on the roughness, gloss, and color changes of microhybrid composites. Ten specimens were prepared for Charisma, Amelogen Plus, Point 4, and Opallis resins. Surfaces were polished and baseline measurements of roughness, gloss, and color were recorded. Specimens were then submitted to chemical and mechanical challenges, and the specimens were reevaluated. Roughness and gloss were analyzed by Kruskal -Wallis and Dunn's test (p one-way analysis of variance and Tukey's tests (p gloss (p gloss, there was no difference between composites before challenges. However, all composites showed a significant increase of roughness after challenges, with highest values for Charisma. The gloss was influenced by challenges, evidencing the best gloss for Point 4. Charisma showed the highest value of color change. There was no correlation between surface roughness and gloss for the initial analysis, and after the challenges. Composites were influenced by association of challenges, and Charisma showed the highest changes for roughness, gloss, and color. The type of composite resin influenced the properties of materials, which are surface roughness, gloss, and color change. The dentist should be aware of the performance of different brands, to choose the correct required composite resin for each type of patient or region to be restored.

  11. Polycarbonate-based ordered arrays of electrochemical nanoelectrodes obtained by e-beam lithography

    Energy Technology Data Exchange (ETDEWEB)

    Moretto, L M; De Leo, M; Ugo, P [Department of Molecular Sciences and Nanosystems, University Ca' Foscari of Venice, Santa Marta 2137, 30123 Venice (Italy); Tormen, M; Carpentiero, A, E-mail: ugo@unive.it [CNR-IOM, TASC Laboratory, Basovizza S S 14 km 163.5, 34149 Trieste (Italy)

    2011-05-06

    Ordered arrays of nanoelectrodes for electrochemical use are prepared by electron beam lithography (EBL) using polycarbonate as a novel e-beam resist. The nanoelectrodes are fabricated by patterning arrays of holes in a thin film of polycarbonate spin-coated on a gold layer on Si/Si{sub 3}N{sub 4} substrate. Experimental parameters for the successful use of polycarbonate as high resolution EBL resist are optimized. The holes can be filled partially or completely by electrochemical deposition of gold. This enables the preparation of arrays of nanoelectrodes with different recession degree and geometrical characteristics. The polycarbonate is kept on-site and used as the insulator that separates the nanoelectrodes. The obtained nanoelectrode arrays (NEAs) exhibit steady state current controlled by pure radial diffusion in cyclic voltammetry for scan rates up to approximately 50 mV s{sup -1}. Electrochemical results showed satisfactory agreement between experimental voltammograms and suitable theoretical models. Finally, the peculiarities of NEAs versus ensembles of nanoelectrodes, obtained by membrane template synthesis, are critically evaluated.

  12. Nanostructured CuO thin film electrodes prepared by spray pyrolysis: a simple method for enhancing the electrochemical performance of CuO in lithium cells

    International Nuclear Information System (INIS)

    Morales, Julian; Sanchez, Luis; Martin, Francisco; Ramos-Barrado, Jose R.; Sanchez, Miguel

    2004-01-01

    Nanostructured CuO thin films were prepared by using a spray pyrolysis method, copper acetate as precursor and stainless steel as substrate. The textural and structural properties of the films were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The SEM images revealed thorough coating of the substrate and thickness of 450-1250 nm; the average particle size as determined from the AFM images ranged from 30 to 160 nm. The XRD patterns revealed the formation of CuO alone and the XPS spectra confirmed the presence of Cu 2+ as the main oxidation state on the surface. The films were tested as electrodes in lithium cells and their electrochemical properties evaluated from galvanostatic and step potential electrochemical spectroscopy (SPES) measurements. The discharge STEP curves exhibited various peaks consistent with the processes CuO Cu 2 O Cu and with decomposition of the electrolyte, a reversible process in the light of the AFM images. The best electrode exhibited capacity values of 625 Ah kg -1 over more than 100 cycles. This value, which involves a CuO Cu reversible global reaction, is ca. 50% higher than that reported for bulk CuO. The nanosize of the particles and the good adherence of the active material to the substrate are thought to be the key factors accounting for the enhanced electrochemical activity found

  13. Investigation of electrochemical actuation by polyaniline nanofibers

    Science.gov (United States)

    Mehraeen, Shayan; Alkan Gürsel, Selmiye; Papila, Melih; Çakmak Cebeci, Fevzi

    2017-09-01

    Polyaniline nanofibers have shown promising electrical and electrochemical properties which make them prominent candidates in the development of smart systems employing sensors and actuators. Their electrochemical actuation potential is demonstrated in this study. A trilayer composite actuator based on polyaniline nanofibers was designed and fabricated. Cross-linked polyvinyl alcohol was sandwiched between two polyaniline nanofibrous electrodes as ion-containing electrolyte gel. First, electrochemical behavior of a single electrode was studied, showing reversible redox peak pairs in 1 M HCl using a cyclic voltammetry technique. High aspect ratio polyaniline nanofibers create a porous network which facilitates ion diffusion and thus accelerates redox reactions. Bending displacement of the prepared trilayer actuator was then tested and reported under an AC potential stimulation as low as 0.5 V in a variety of frequencies from 50 to 1000 mHz, both inside 1 M HCl solution and in air. Decay of performance of the composite actuator in air is investigated and it is reported that tip displacement in a solution was stable and repeatable for 1000 s in all selected frequencies.

  14. Rough mill simulator version 3.0: an analysis tool for refining rough mill operations

    Science.gov (United States)

    Edward Thomas; Joel Weiss

    2006-01-01

    ROMI-3 is a rough mill computer simulation package designed to be used by both rip-first and chop-first rough mill operators and researchers. ROMI-3 allows users to model and examine the complex relationships among cutting bill, lumber grade mix, processing options, and their impact on rough mill yield and efficiency. Integrated into the ROMI-3 software is a new least-...

  15. Preparation of Li4Ti5O12 by solution ion-exchange of sodium titanate nanotube and evaluation of electrochemical performance

    International Nuclear Information System (INIS)

    Zhang, Jingwei; Zhang, Fenli; Li, Jiuhe; Cai, Wei; Zhang, Jiwei; Yu, Laigui; Jin, Zhensheng; Zhang, Zhijun

    2013-01-01

    Nano-sized spinel lithium titanate (Li 4 Ti 5 O 12 ) was synthesized using sodium titanate nanotube as precursor via a facile solution ion-exchange method in association with subsequent calcination treatment at relatively low temperature. The influences of precursors, ion-exchange condition, and calcination temperature on the microstructure and electrochemical performance of the products were studied. Results indicate that pure-phase Li 4 Ti 5 O 12 can be harvested from sodium titanate nanotube precursor through an ion-exchanging at room temperature and calcination at 500 °C. The products exhibit a better performance as Li-ion battery anode material than the counterparts prepared from protonic titanate nanotube (H-titanate) precursor. The reason may lie in that sodium titanate nanotube is easier than protonic titanate nanotube to synthesize lithium titanate without TiO 2 impurity, resulting in reduced electron transfer ability and Li-ion transport ability. The capacity of Li 4 Ti 5 O 12 prepared from sodium titanate nanotube is 146 mAh/g at 10 C, and it has only 0.7 % decay after 200 charge/discharge cycles

  16. Electrochemical capacitive performances of nanoporous carbon derived from sunflower seed shell

    Energy Technology Data Exchange (ETDEWEB)

    Li, X; Xing, W.; Zhuo, S.; Zhou, J. [Shandong Univ. of Technology, Zibo (China). School of Chemical Engineering

    2010-07-01

    Electrochemical double-layer capacitances (EDLCs) are used in applications were high power density and long cycle life are required. Nanoporous materials are typically used to prepare EDLC electrodes due to their high surface area, good physicochemical stability, and high conductivity. In this study, nanoporous carbon materials were prepared from sunflower seed shells and used as an electrode material for an EDLC. The surface and structural properties of the carbon materials were analyzed using N{sub 2} adsorption and scanning electron microscopy (SEM) techniques. The study showed that AC-X-Y carbons prepared using the impregnation-activation process had a better capacitive behaviour and higher capacitance retention ratio at fast charge-discharge rates than carbons made using the carbonization-activation process. The improved electrochemical performance of the carbons was attributed to the abundant macroscopic pores and decreased interior micropore surface. The specific capacitances of the carbon was approximately twice that of a hard-templated mesoporous carbon in all current densities ranging from 0.25 to 10 A per g. Results indicated that sunflower seed shells can be used to prepare EDLCs. 2 refs., 1 fig.

  17. Electrochemical properties of Ti3+ doped Ag-Ti nanotube arrays coated with hydroxyapatite

    Science.gov (United States)

    Zhang, Hangzhou; Shi, Xiaoguo; Tian, Ang; Wang, Li; Liu, Chuangwei

    2018-04-01

    Ag-Ti nanotube array was prepared by simple anodic oxidation method and uniform hydroxyapatite were electrochemically deposited on the nanotubes, and then characterized by SEM, XRD, XPS and EIS. In order to investigate the influence of Ti3+ on the electrochemical deposition of hydroxyapatite on the nanotubes, the Ag-Ti nanotube array self-doped with Ti3+ was prepared by one step reduction method. The experiment results revealed that the Ti3+ can promote the grow rate of hydroxyapatite coatings on nanotube surface. The hydroxyapatite coated Ag-Ti nanotube arrays with Ti3+ exhibit excellent stability and higher corrosion resistance. Moreover, the compact and dense hydroxyapatite coating can also prevent the Ag atom erosion from the Ag-Ti nanotube.

  18. Cu-Hemin Metal-Organic-Frameworks/Chitosan-Reduced Graphene Oxide Nanocomposites with Peroxidase-Like Bioactivity for Electrochemical Sensing

    International Nuclear Information System (INIS)

    Wang, Li; Yang, Han; He, Juan; Zhang, Yayun; Yu, Jie; Song, Yonghai

    2016-01-01

    Graphical abstract: A simple, sensitive and effective method to detect hydrogen peroxide based on a hybrid Cu-hemin metal-organic-frameworks (MOFs)/chitosan-functionalized reduced graphene oxide (CS-rGO) nanocomposite was achieved via Cu-hemin MOFs constructing with CS-rGO in room temperature. The Cu-hemin MOFs/CS-rGO nanomaterials exhibited a unique peroxidase-like activity and good electrical conductivity as well as some novel properties. And the as-prepared electrode resulted in a perfect electrochemical performance towards reduction of hydrogen peroxide which was superior to natural enzymes and some inorganic mimic enzymes. - Highlights: • A hybrid Cu-hemin MOF/CS-rGO with a unique peroxidase-like activity was prepared. • The CS-rGO improved electrical conductivity of the nanocomposites greatly. • The 3D porous structure enhanced the catalytic activity of hemin for H 2 O 2 . • A novel sensitive electrochemical biosensing for H 2 O 2 detection was achieved. - Abstract: Herein, a Cu-hemin metal-organic-frameworks (MOFs)/chitosan (CS)-reduced graphene oxide (CS-rGO) nanocomposite with unique peroxidase-like bioactivity and good electrical conductivity was prepared for electrochemical H 2 O 2 sensing for the first time. The prepared Cu-hemin MOFs/CS-rGO nanocomposites were well characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, thermogravimetric analysis, Fourier transform infrared spectroscopy, X-ray powder diffraction, UV–vis spectroscopy and electrochemical techniques. The results showed that after the Cu-hemin MOFs were formed on the CS-rGO surface, the crystalline structure of the Cu-hemin MOFs was kept while the size of Cu-hemin MOFs was decreased and the electrical conductivity of the nanocomposites was enhanced greatly as compared with that of Cu-hemin MOFs. The unique peroxidase-like bioactivity and good electrical conductivity as well as some novel properties of Cu-hemin MOFs/CS-rGO nanocomposites resulted in

  19. Preparing cuprous oxide nanomaterials by electrochemical method for non-enzymatic glucose biosensor

    Science.gov (United States)

    Nguyen, Thu-Thuy; Huy, Bui The; Hwang, Seo-Young; Vuong, Nguyen Minh; Pham, Quoc-Thai; Nghia, Nguyen Ngoc; Kirtland, Aaron; Lee, Yong-Ill

    2018-05-01

    Cuprous oxide (Cu2O) nanostructure has been synthesized using an electrochemical method with a two-electrode system. Cu foils were used as electrodes and NH2(OH) was utilized as the reducing agent. The effects of pH and applied voltages on the morphology of the product were investigated. The morphology and optical properties of Cu2O particles were characterized using scanning electron microscopy, x-ray diffraction, and diffuse reflectance spectra. The synthesized Cu2O nanostructures that formed in the vicinity of the anode at 2 V and pH = 11 showed high uniform distribution, small size, and good electrochemical sensing. These Cu2O nanoparticles were coated on an Indium tin oxide substrate and applied to detect non-enzyme glucose as excellent biosensors. The non-enzyme glucose biosensors exhibited good performance with high response, good selectivity, wide linear detection range, and a low detection limit at 0.4 μM. Synthesized Cu2O nanostructures are potential materials for a non-enzyme glucose biosensor.

  20. Electrochemically Generated cis-Carboxylato-Coordinated Iron(IV) Oxo Acid-Base Congeners as Promiscuous Oxidants of Water Pollutants

    DEFF Research Database (Denmark)

    de Sousa, David P; Miller, Christopher J; Chang, Yingyue

    2017-01-01

    The nonheme iron(IV) oxo complex [FeIV(O)(tpenaH)]2+ and its conjugate base [FeIV(O)(tpena)]+ [tpena- = N,N,N'-tris(2-pyridylmethyl)ethylenediamine-N'-acetate] have been prepared electrochemically in water by bulk electrolysis of solutions prepared from [FeIII2(μ-O)(tpenaH)2](ClO4)4 at potentials...... of the electrochemically generated iron(IV) oxo complexes, in terms of the broad range of substrates examined, represents an important step toward the goal of cost-effective electrocatalytic water purification....

  1. Influence of electrode preparation on the electrochemical performance of LiNi0.8Co0.15Al0.05O2 composite electrodes for lithium-ion batteries

    Science.gov (United States)

    Tran, Hai Yen; Greco, Giorgia; Täubert, Corina; Wohlfahrt-Mehrens, Margret; Haselrieder, Wolfgang; Kwade, Arno

    2012-07-01

    The electrode manufacturing for lithium-ion batteries is based on a complex process chain with several influencing factors. A proper tailoring of the electrodes can greatly improve both the electrochemical performances and the energy density of the battery. In the present work, some significant parameters during the preparation of LiNi0.8Co0.15Al0.05O2-based cathodes were investigated. The active material was mixed with a PVDF-binder and two conductive additives in different ratios. The electrode thickness, the degree of compacting and the conductive agent type and mixing ratio have proven to have a strong impact on the electrochemical performances of the composite electrodes, especially on their behaviour at high C-rates. Further it has been shown that the compacting has an essential influence on the mechanical properties of NCA coatings, according to their total, ductile and elastic deformation behaviour.

  2. Electrochemical Study of Hydrocarbon-Derived Electrolytes for Supercapacitors

    Science.gov (United States)

    Noorden, Zulkarnain A.; Matsumoto, Satoshi

    2013-10-01

    In this paper, we evaluate the essential electrochemical properties - capacitive and resistive behaviors - of hydrocarbon-derived electrolytes for supercapacitor application using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The electrolytes were systematically prepared from three hydrocarbon-derived compounds, which have different molecular structures and functional groups, by treatment with high-concentration sulfuric acid (H2SO4) at room temperature. Two-electrode cells were assembled by sandwiching an electrolyte-containing glass wool separator with two active electrodes of activated carbon sheets. The dc electrical properties of the tested cells in terms of their capacitive behavior were investigated by CV, and in order to observe the frequency characteristics of the constructed cells, EIS was carried out. Compared with the tested cell with only high-concentration H2SO4 as the electrolyte, the cell with the derived electrolytes exhibit a capacitance as high as 135 F/g with an improved overall internal resistance of 2.5 Ω. Through the use of a simple preparation method and low-cost precursors, hydrocarbon-derived electrolytes could potentially find large-scale and higher-rating supercapacitor applications.

  3. Preparation and characterization of AuNPs/CNTs-ErGO electrochemical sensors for highly sensitive detection of hydrazine.

    Science.gov (United States)

    Zhao, Zhenting; Sun, Yongjiao; Li, Pengwei; Zhang, Wendong; Lian, Kun; Hu, Jie; Chen, Yong

    2016-09-01

    A highly sensitive electrochemical sensor of hydrazine has been fabricated by Au nanoparticles (AuNPs) coating of carbon nanotubes-electrochemical reduced graphene oxide composite film (CNTs-ErGO) on glassy carbon electrode (GCE). Cyclic voltammetry and potential amperometry have been used to investigate the electrochemical properties of the fabricated sensors for hydrazine detection. The performances of the sensors were optimized by varying the CNTs to ErGO ratio and the quantity of Au nanoparticles. The results show that under optimal conditions, a sensitivity of 9.73μAμM(-1)cm(-2), a short response time of 3s, and a low detection limit of 0.065μM could be achieved with a linear concentration response range from 0.3μM to 319μM. The enhanced electrochemical performances could be attributed to the synergistic effect between AuNPs and CNTs-ErGO film and the outstanding catalytic effect of the Au nanoparticles. Finally, the sensor was successfully used to analyse the tap water, showing high potential for practical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Electrodeposition synthesis and electrochemical properties of nanostructured {gamma}-MnO{sub 2} films

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Shulei; Cheng, Fangyi; Chen, Jun [Institute of New Energy Material Chemistry, Nankai University, Tianjin 300071 (China)

    2006-11-08

    The thin films of carambola-like {gamma}-MnO{sub 2} nanoflakes with about 20nm in thickness and at least 200nm in width were prepared on nickel sheets by combination of potentiostatic and cyclic voltammetric electrodeposition techniques. The as-prepared MnO{sub 2} nanomaterials, which were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS), were used as the active material of the positive electrode for primary alkaline Zn/MnO{sub 2} batteries and electrochemical supercapacitors. Electrochemical measurements showed that the MnO{sub 2} nanoflake films displayed high potential plateau (around 1.0V versus Zn) in primary Zn/MnO{sub 2} batteries at the discharge current density of 500mAg{sup -1} and high specific capacitance of 240Fg{sup -1} at the current density of 1mAcm{sup -2}. This indicated the potential application of carambola-like {gamma}-MnO{sub 2} nanoflakes in high-power batteries and electrochemical supercapacitors. The growth process for the one- and three-dimensional nanostructured MnO{sub 2} was discussed on the basis of potentiostatic and cyclic voltammetric techniques. The present synthesis method can be extended to the preparation of other nanostructured metal-oxide films. (author)

  5. Anomalous roughness of turbulent interfaces with system size dependent local roughness exponent

    International Nuclear Information System (INIS)

    Balankin, Alexander S.; Matamoros, Daniel Morales

    2005-01-01

    In a system far from equilibrium the system size can play the role of control parameter that governs the spatiotemporal dynamics of the system. Accordingly, the kinetic roughness of interfaces in systems far from equilibrium may depend on the system size. To get an insight into this problem, we performed a detailed study of rough interfaces formed in paper combustion experiments. Using paper sheets of different width λ, we found that the turbulent flame fronts display anomalous multi-scaling characterized by non-universal global roughness exponent α and by the system size dependent spectrum of local roughness exponents, ζ q (λ)=ζ 1 (1)q -ω λ φ q =0.93q -0.15 . The structure factor of turbulent flame fronts also exhibits unconventional scaling dependence on λ. These results are expected to apply to a broad range of far from equilibrium systems when the kinetic energy fluctuations exceed a certain critical value.

  6. Electro-chemical deposition of zinc oxide nanostructures by using two electrodes

    Directory of Open Access Journals (Sweden)

    B. A. Taleatu

    2011-09-01

    Full Text Available One of the most viable ways to grow nanostructures is electro deposition. However, most electrodeposited samples are obtained by three-electrode electrochemical cell. We successfully use a much simpler two-electrode cell to grow different ZnO nanostructures from common chemical reagents. Concentration, pH of the electrolytes and growth parameters like potentials at the electrodes, are tailored to allow fast growth without complexity. Morphology and surface roughness are investigated by Scanning Electron and Air Force Microscopy (SEM and AFM respectively, crystal structure by X-Ray Diffraction measurements (XRD and ZnO stoichiometry by core level photoemission spectroscopy (XPS.

  7. Effect of CaO addition on preparation of ferrotitanium from ilmenite by electrochemical reduction in CaCl{sub 2}−NaCl molten salt

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Li [Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093 (China); State Key Lab of Complex Nonferrous Metal Resources Clean Utilization, Kunming 650093 (China); Hua, Yixin, E-mail: yxhua@kmust.edu.cn [Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093 (China); State Key Lab of Complex Nonferrous Metal Resources Clean Utilization, Kunming 650093 (China); Xu, Cunying; Li, Jian; Li, Yan; Zhang, Qibo; Zhou, Zhongren; Zhang, Yadong [Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093 (China); State Key Lab of Complex Nonferrous Metal Resources Clean Utilization, Kunming 650093 (China); Ru, Juanjian [Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China)

    2016-08-15

    Ferro-titanium (FeTi) alloy was prepared successfully from synthesized ilmenite through electrochemical reduction method in equal-molar CaCl{sub 2}−NaCl molten salt at 973 K and a cell voltage of 3.2 V under inert atmosphere, where molybdenum rod and graphite were used as cathode and anode respectively. It is indicated that the CaO content in the molten salt has an appreciable effect on the phase transformation of reactants occurring in the electrolytic process. The optimized CaO content in the molten salt is 1 mol% and this suitable content of CaO can significantly improve the reduction rate of ilmenite. The micromorphology of the ferrotitanium product is porous with the amount of 1 mol%CaO addition. It is observed that the particles of ferrotitanium had a uniform size in the initial period of time. Along with the electrolysis time extension, however, the particles connected with each other to generate strips and then form a honeycomb structure. These findings provide a basis for scientifically discussion on the optimization of CaO addition amount during the electrochemical reduction of ilmenite and other oxides in molten salts. - Highlights: • Ferro-titanium was prepared from synthesized ilmenite in CaCl{sub 2}−NaCl molten salt. • CaO content has appreciable effect on the phase transformation of ilmenite reactant. • The optimized CaO content is 1 mol% which can significantly improve reaction rate. • The products are connected with each other to form strips as electrolysis time.

  8. The effect of copper substrate’s roughness on graphene growth process via PECVD

    Science.gov (United States)

    Fan, Tengfei; Yan, Cuixia; Lu, Jianchen; Zhang, Lianchang; Cai, Jinming

    2018-04-01

    Despite many excellent properties, the synthesis of high quality graphene with low-cost way is still a challenge, thus many different factors have been researched. In this work, the effect of surface roughness to the graphene quality was studied. Graphene was synthesized by plasma enhanced chemical vapor deposition (PECVD) method on copper substrates with different roughness from 0.074 μm to 0.339 μm, which were prepared via annealing, corrosion or polishing, respectively. Ar+ plasma cleaning was applied before graphene growth in order to accommodate similar surface chemical reactivity to each other. Scanning electron microscope and Raman spectroscope were employed to investigate the effect of surface roughness, which reveals that the graphene quality decrease first and then increase again according to the ratio of ID/IG in Raman spectroscopy. When the ratio of ID/IG reaches the largest number, the substrate roughness is 0.127 μm, where is the graphene quality changing point. First principle calculation was applied to explain the phenomenon and revealed that it is strongly affected by the graphene grain size and quantity which can induce defects. This strategy is expected to guide the industrial production of graphene.

  9. Fabrication and electrochemical performance of graphene—ZnO nanocomposites

    International Nuclear Information System (INIS)

    Li Zhen-Peng; Men Chuan-Ling; Wang Wan; Cao Jun

    2014-01-01

    Graphene—ZnO nanocomposites were synthesized successfully through a one-step solvothermal approach. The morphology, structure, and composition of the prepared nanocomposites were investigated by scanning electron microscopy (SEM), transmission electron microscope (TEM), laser micro Raman spectroscopy, and Fourier transform infra-red spectroscopy (FT-IR). The outcomes confirmed that this approach is comparatively steady, practicable, and operable compared with other reported methods. The electrochemical performance of the graphene-ZnO electrodes was analyzed through cyclic voltammetry, altering-current (AC) impedance, and chronopotentiometry tests. The graphene—ZnO electrodes exhibited an improved electrode performance with higher specific capacitance (115 F·g −1 ), higher electrochemical stability, and higher energy density than the graphene electrodes and most reported graphene—ZnO electrodes. Graphene—ZnO nanocomposites have a steady reversible charge/discharge behavior, which makes them promising candidates for electrochemical capacitors (ECs). (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  10. Electrochemically shape-controlled synthesis in deep eutectic solvents of Pt nanoflowers with enhanced activity for ethanol oxidation

    International Nuclear Information System (INIS)

    Wei Lu; Fan Youjun; Wang Honghui; Tian Na; Zhou Zhiyou; Sun Shigang

    2012-01-01

    Highlights: ► The electrochemically shape-controlled synthesis in deep eutectic solvents (DESs) has been applied to produce the uniform Pt nanoflowers with sharp single crystal petals and high density of atomic steps. ► The as-prepared Pt nanoflowers exhibit higher electrocatalytic activity and stability than commercial Pt black catalyst toward ethanol electrooxidation. ► The growth of Pt nanoflowers in DESs by the simple electrochemical route is straightforward and controllable in terms of nanoflowers’ shape and size. - Abstract: The electrochemically shape-controlled synthesis in deep eutectic solvents (DESs) has been applied to produce the electrocatalyst of Pt nanoflowers. The uniform Pt nanoflowers with sharp single crystal petals and high density of atomic steps were characterized by SEM, TEM, XRD, XPS and electrochemical tests. The results illustrated that the as-prepared Pt nanoflowers exhibit higher electrocatalytic activity and stability than commercial Pt black catalyst toward ethanol electrooxidation. The growth of Pt nanoflowers in DESs by the simple electrochemical route is straightforward and controllable in terms of nanoflowers’ shape and size, which can be applied in shape-controlled synthesis of other noble metal nanoparticles with high catalytic activity.

  11. An electrochemical immunosensor for brain natriuretic peptide prepared with screen-printed carbon electrodes nanostructured with gold nanoparticles grafted through aryl diazonium salt chemistry.

    Science.gov (United States)

    Serafín, V; Torrente-Rodríguez, R M; González-Cortés, A; García de Frutos, P; Sabaté, M; Campuzano, S; Yáñez-Sedeño, P; Pingarrón, J M

    2018-03-01

    A sensitive amperometric immunosensor has been prepared by immobilization of capture antibodies onto gold nanoparticles (AuNPs) grafted on a screen-printed carbon electrode (SPCE) through aryl diazonium salt chemistry using 4-aminothiophenol (AuNPs-S-Phe-SPCE). The immunosensor was designed for the accurate determination of clinically relevant levels of B-type natriuretic peptide (BNP) in human serum samples. The nanostructured electrochemical platform resulted in an ordered layer of AuNPs onto SPCEs which combined the advantages of high conductivity and improved stability of immobilized biomolecules. The resulting disposable immunosensor used a sandwich type immunoassay involving a peroxidase-labeled detector antibody. The amperometric transduction was carried out at -0.20V (vs the Ag pseudo-reference electrode) upon the addition of hydroquinone (HQ) as electron transfer mediator and H 2 O 2 as the enzyme substrate. The nanostructured immunosensors show a storage stability of at least 25 days, a linear range between 0.014 and 15ngmL -1 , and a LOD of 4pgmL -1 , which is 100 times lower than the established cut-off value for heart failure (HF) diagnosis. The performance of the immunosensor is advantageously compared with that provided with immunosensors prepared by grafting SPCE with p-phenylendiamine (H 2 N-Phe-SPCE) and attaching AuNPs by immersion into an AuNPs suspension or by electrochemical deposition, as well as with immunosensors constructed using commercial AuNPs-modified SPCEs. The developed immunosensor was applied to the successful analysis of human serum from heart failure (HF) patients upon just a 10-times dilution as sample treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Preparation, electrochemical characterization and charge-discharge of reticulated vitreous carbon/polyaniline composite electrodes

    International Nuclear Information System (INIS)

    Dalmolin, Carla; Biaggio, Sonia R.; Rocha-Filho, Romeu C.; Bocchi, Nerilso

    2009-01-01

    Polyaniline was electrodeposited onto reticulated vitreous carbon - RVC - in order to obtain a tridimensional composite electrode. Three variations of these electrodes were analysed: a small-anion-doped polyaniline (RVC/Pani), a polyanion-doped polyaniline (RVC/PaniPSS) and a bi-layer type formed by an inner layer of the first electrode and an outer layer of the second one (RVC/Pani/PaniPSS). These composites were characterized by cyclic voltammetry, scanning electronic microscopy and electrochemical impedance spectroscopy. Photomicrographies, voltammetric profiles and impedance data pointed to different morphological and electrochemical characteristics for polyaniline doped with small or large anions, and a mixed behavior for the bi-layer electrodes. Charge-discharge tests for these tridimensional (3D) electrodes, employed as the cathode in lithium batteries, indicated better performance for the RVC/Pani electrode. These RVC composites presented higher specific capacities when compared with those obtained for Pani deposited onto bidimensional substrates.

  13. Preparation and Characterization of Electrochemical Devices for Energy Storage and Debonding

    OpenAIRE

    Leijonmarck, Simon

    2013-01-01

    Within the framework of this thesis, three innovative electrochemical devices have been studied. A part of the work is devoted to an already existing device, laminates which are debonded by the application of a voltage. This type of material can potentially be used in a wide range of applications, including adhesive joints in vehicles to both reduce the total weight and to simplify the disassembly after end-of-life, enabling an inexpensive recycling process. Although already a functioning dev...

  14. Rapid preparation of high electrochemical performance LiFePO4/C composite cathode material with an ultrasonic-intensified micro-impinging jetting reactor.

    Science.gov (United States)

    Dong, Bin; Huang, Xiani; Yang, Xiaogang; Li, Guang; Xia, Lan; Chen, George

    2017-11-01

    A joint chemical reactor system referred to as an ultrasonic-intensified micro-impinging jetting reactor (UIJR), which possesses the feature of fast micro-mixing, was proposed and has been employed for rapid preparation of FePO 4 particles that are amalgamated by nanoscale primary crystals. As one of the important precursors for the fabrication of lithium iron phosphate cathode, the properties of FePO 4 nano particles significantly affect the performance of the lithium iron phosphate cathode. Thus, the effects of joint use of impinging stream and ultrasonic irradiation on the formation of mesoporous structure of FePO 4 nano precursor particles and the electrochemical properties of amalgamated LiFePO 4 /C have been investigated. Additionally, the effects of the reactant concentration (C=0.5, 1.0 and 1.5molL -1 ), and volumetric flow rate (V=17.15, 51.44, and 85.74mLmin -1 ) on synthesis of FePO 4 ·2H 2 O nucleus have been studied when the impinging jetting reactor (IJR) and UIJR are to operate in nonsubmerged mode. It was affirmed from the experiments that the FePO 4 nano precursor particles prepared using UIJR have well-formed mesoporous structures with the primary crystal size of 44.6nm, an average pore size of 15.2nm, and a specific surface area of 134.54m 2 g -1 when the reactant concentration and volumetric flow rate are 1.0molL -1 and 85.74mLmin -1 respectively. The amalgamated LiFePO 4 /C composites can deliver good electrochemical performance with discharge capacities of 156.7mAhg -1 at 0.1C, and exhibit 138.0mAhg -1 after 100 cycles at 0.5C, which is 95.3% of the initial discharge capacity. Copyright © 2017. Published by Elsevier B.V.

  15. Water/ionic liquid/organic three-phase interfacial synthesis of coral-like polypyrrole toward enhanced electrochemical capacitance

    International Nuclear Information System (INIS)

    Hou Linrui; Yuan Changzhou; Li Diankai; Yang Long; Shen Laifa; Zhang Fang; Zhang Xiaogang

    2011-01-01

    Highlights: → Interfacial synthesis strategies are proposed to synthesize PPy samples. → Water/ionic liquid /organic three-phase interface for preparing coral-like PPy. → Coral-like PPy with more ordered structure and better electronic conductivity. → Coral-like PPy owns higher rate performance and better electrochemical stability. - Abstract: Two interfacial synthesis strategies are proposed to synthesize polypyrrole samples for electrochemical capacitors (ECs). In contrast to water/organic two-phase route, unique water/ionic liquid (IL)/organic three-phase interface strategy is first performed to prepare coral-like polypyrrole with even better electrochemical capacitance, where 1-Ethyl-3-methylimidazolium tetrafluoroborate IL, as a 'buffering zone', is set between the water and organic phases to control the morphology and micro-structure of the polypyrrole phase during polymerization. The polypyrrole synthesized by three-phase interfacial route owns more ordered structure, less charge transfer resistance and better electronic conductivity, compared with two-phase method, and delivers larger specific capacitance, higher rate performance and better electrochemical stability at large current densities in 3 M KCl aqueous electrolyte.

  16. A silicon-based electrochemical sensor for highly sensitive, specific, label-free and real-time DNA detection

    International Nuclear Information System (INIS)

    Guo, Yuanyuan; Su, Shao; Wei, Xinpan; Zhong, Yiling; Su, Yuanyuan; He, Yao; Huang, Qing; Fan, Chunhai

    2013-01-01

    We herein present a new kind of silicon-based electrochemical sensor using a gold nanoparticles-decorated silicon wafer (AuNPs@Si) as a high-performance electrode, which is facilely prepared via in situ AuNPs growth on a silicon wafer. Particularly significantly, the resultant electrochemical sensor is efficacious for label-free DNA detection with high sensitivity due to the unique merits of the prepared silicon-based electrode. Typically, DNA at remarkably low concentrations (1–10 fM) could be readily detected without requiring additional signal-amplification procedures, which is better than or comparable to the lowest DNA concentration ever detected via well-studied signal-amplification-assisted electrochemical sensors. Moreover, the silicon-based sensor features high specificity, allowing unambiguous discrimination of single-based mismatches. We further show that real-time DNA assembly is readily monitored via recording the intensity changes of current signals due to the robust thermal stability of the silicon-based electrode. The unprecedented advantages of the silicon-based electrochemical sensor would offer new opportunities for myriad sensing applications. (paper)

  17. Manganese oxide/graphene oxide composites for high-energyaqueous asymmetric electrochemical capacitors

    CSIR Research Space (South Africa)

    Jafta, CJ

    2013-11-01

    Full Text Available A high-energy aqueous asymmetric electrochemical capacitor was developed using manganese diox-ide ( -MnO2)/graphene oxide (GO) nanocomposites. The nanostructured -MnO2was prepared frommicron-sized commercial electrolytic manganese dioxide (EMD) via...

  18. Electrochemical fabrication of CdS/Co nanowire arrays in porous aluminum oxide templates

    CERN Document Server

    Yoon, C H

    2002-01-01

    A procedure for preparing semiconductor/metal nanowire arrays is described, based on a template method which entails electrochemical deposition into nanometer-wide parallel pores of anodic aluminum oxide films on aluminum. Aligned CdS/Co heterostructured nanowires have been prepared by ac electrodeposition in the anodic aluminum oxide templates. By varying the preparation conditions, a variety of CdS/Co nanowire arrays were fabricated, whose dimensional properties could be adjusted.

  19. Electrochemical Synthesis of Graphene/MnO2 Nano-Composite for Application to Supercapacitor Electrode.

    Science.gov (United States)

    Jeong, Kwang Ho; Lee, Hyeon Jeong; Simpson, Michael F; Jeong, Mun

    2016-05-01

    Graphene/MnO2 nano-composite was electrochemically synthesized for application to an electrode material for electrochemical supercapacitors. The nanosized needle-like MnO2 was obtained by use of a graphene substrate. The prepared composite exhibited an ideal supercapacitive behavior. A capacitance retention of 94% was achieved with a 4 h deposition time (an initial capacitance of 574 mF/cm2 at a scan rate of 20 mV/s) and the retention declined with further deposition time. The results demonstrate enhanced contact between the electrode and electrolyte and improved power density as an electrochemical capacitor.

  20. One step paired electrochemical synthesis of iron and iron oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Ordoukhanian Juliet

    2016-09-01

    Full Text Available In this study, a new one step paired electrochemical method is developed for simultaneous synthesis of iron and iron oxide nanoparticles. iron and iron oxide are prepared as cathodic and anodic products from iron (ii sulfate aqueous solution in a membrane divided electrolytic cell by the pulsed current electrosynthesis. Because of organic solvent-free and electrochemical nature of the synthesis, the process could be considered as green and environmentally friendly. The reduction of energy consumption and low cost are the other significant advantages of this new method that would have a great application potential in the chemical industry. The nanostructure of prepared samples was characterized by Fourier transform infrared spectroscopy (FT-IR, X-ray diffraction (XRD, scanning electron microscopy (SEM and transmission electron microscopy (TEM. The magnetic properties were studied by vibrating sample magnetometer (VsM.

  1. Preparation of Nickel Cobalt Sulfide Hollow Nanocolloids with Enhanced Electrochemical Property for Supercapacitors Application

    Science.gov (United States)

    Chen, Zhenhua; Wan, Zhanghui; Yang, Tiezhu; Zhao, Mengen; Lv, Xinyan; Wang, Hao; Ren, Xiuli; Mei, Xifan

    2016-01-01

    Nanostructured functional materials with hollow interiors are considered to be good candidates for a variety of advanced applications. However, synthesis of uniform hollow nanocolloids with porous texture via wet chemistry method is still challenging. In this work, nickel cobalt precursors (NCP) in sub-micron sized spheres have been synthesized by a facile solvothermal method. The subsequent sulfurization process in hydrothermal system has changed the NCP to nickel cobalt sulfide (NCS) with porous texture. Importantly, the hollow interiors can be tuned through the sulfurization process by employing different dosage of sulfur source. The derived NCS products have been fabricated into supercapacitor electrodes and their electrochemical performances are measured and compared, where promising results were found for the next-generation high-performance electrochemical capacitors. PMID:27114165

  2. Optical and electrochemical studies of polyaniline/SnO{sub 2} fibrous nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Manivel, P. [Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641 046, Tamil Nadu (India); Ramakrishnan, S.; Kothurkar, Nikhil K. [Department of Chemical Engineering and Material Science, Amrita Vishwa Vidyapeetham, Coimbatore 641 112, Tamil Nadu (India); Balamurugan, A.; Ponpandian, N.; Mangalaraj, D. [Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641 046, Tamil Nadu (India); Viswanathan, C., E-mail: viswanathan@buc.edu.in [Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641 046, Tamil Nadu (India)

    2013-02-15

    Graphical abstract: Fiber with porous like structure of PANI/SnO{sub 2} nanocomposites were prepared by simplest in situ chemical polymerization method. The PL emission spectra revealed that the band from 404 and 436 nm which is related with oxygen vacancies. The excellent electrochemical properties of composite electrode show the specific capacitance of 173 F/g at a scan rate of 25 m V/s. Display Omitted Highlights: ► Self assembled PANI/SnO{sub 2} nanocomposites were synthesized by simple polymerization method. ► Electrochemical behavior of PANI/SnO{sub 2} nanocomposites electrode was analyzed by CV. ► Nanocomposites exhibit a higher specific capacitance of 173 F/g, compared with pure SnO{sub 2}. -- Abstract: Polyaniline (PANI)/tin oxide (SnO{sub 2}) fibrous nanocomposites were successfully prepared by an in situ chemical polymerization method with suitable conditions. The obtained composites were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy, photoluminescence (PL), electrical conductivity and cyclic voltammetry studies (CV). The XRD pattern of the as-prepared sample shows the presence of tetragonal SnO{sub 2} and the crystalline structure of SnO{sub 2} was not affected with the incorporation of PANI. The FTIR analysis confirms the uniform attachment of PANI on the surface of SnO{sub 2} nanostructures. SEM images show a fibrous agglomerated structure of PANI/SnO{sub 2}. The PL emission spectra revealed that the band from 404 and 436 nm which is related with oxygen vacancies. The electrochemical behavior of the PANI/SnO{sub 2} composite electrode was evaluated in a H{sub 2}SO{sub 4} solution using cyclic voltammetry. The composite electrode exhibited a specific capacitance of 173 F/g at a scan rate 25 mV/s. Thus the as-prepared PANI/SnO{sub 2} composite shows excellent electrochemical properties, suggesting that this composite is a promising material for supercapacitors.

  3. Measurement of surface roughness

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo

    This document is used in connection with two 3 hours laboratory exercises that are part of the course GEOMETRICAL METROLOGY AND MACHINE TESTING. The laboratories include a demonstration of the function of roughness measuring instruments plus a series of exercises illustrating roughness measurement...

  4. One-Step Hydrothermal-Electrochemical Route to Carbon-Stabilized Anatase Powders

    Science.gov (United States)

    Tao, Ying; Yi, Danqing; Zhu, Baojun

    2013-04-01

    Black carbon-stabilized anatase particles were prepared by a simple one-step hydrothermal-electrochemical method using glucose and titanium citrate as the carbon and titanium source, respectively. Morphological, chemical, structural, and electrochemical characterizations of these powders were carried out by Raman spectroscopy, Fourier-transform infrared spectroscopy, x-ray diffraction, scanning electron microscopy, and cyclic voltammetry. It was revealed that 200-nm carbon/anatase TiO2 was homogeneously dispersed, and the powders exhibited excellent cyclic performance at high current rates of 0.05 V/s. The powders are interesting potential materials that could be used as anodes for lithium-ion batteries.

  5. Preparation and characterization of zinc oxide nanoparticles and their sensor applications for electrochemical monitoring of nucleic acid hybridization.

    Science.gov (United States)

    Yumak, Tugrul; Kuralay, Filiz; Muti, Mihrican; Sinag, Ali; Erdem, Arzum; Abaci, Serdar

    2011-09-01

    In this study, ZnO nanoparticles (ZNP) of approximately 30 nm in size were synthesized by the hydrothermal method and characterized by X-ray diffraction (XRD), Braun-Emmet-Teller (BET) N2 adsorption analysis and transmission electron microscopy (TEM). ZnO nanoparticles enriched with poly(vinylferrocenium) (PVF+) modified single-use graphite electrodes were then developed for the electrochemical monitoring of nucleic acid hybridization related to the Hepatitis B Virus (HBV). Firstly, the surfaces of polymer modified and polymer-ZnO nanoparticle modified single-use pencil graphite electrodes (PGEs) were characterized using scanning electron microscopy (SEM). The electrochemical behavior of these electrodes was also investigated using differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). Subsequently, the polymer-ZnO nanoparticle modified PGEs were evaluated for the electrochemical detection of DNA based on the changes at the guanine oxidation signals. Various modifications in DNA oligonucleotides and probe concentrations were examined in order to optimize the electrochemical signals that were generated by means of nucleic acid hybridization. After the optimization studies, the sequence-selective DNA hybridization was investigated in the case of a complementary amino linked probe (target), or noncomplementary (NC) sequences, or target and mismatch (MM) mixture in the ratio of (1:1). Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Preparation, characterization, and application of Ti/TiO2-NTs/Sb-SnO2 electrode in photo-electrochemical treatment of industrial effluents under mild conditions.

    Science.gov (United States)

    Subba Rao, Anantha N; Venkatarangaiah, Venkatesha T

    2018-04-01

    Ti/TiO 2 -NTs/Sb-SnO 2 electrode was prepared by gradient pulsed electrodeposition, and its electrochemical properties were evaluated. The catalytic activity and reusability of the electrode were tested by electrochemical oxidation (EO) and photoelectrochemical oxidation (PEO) of organics present in textile industry wastewater (TWW) and coffee bean processing industry wastewater (CWW). COD removal of ~ 41% was achieved after 5-h electrolysis under a constant applied current density of 30 mA cm -2 for TWW and 50 mA cm -2 for CWW. Nearly 14 and 18% increment in COD removal was observed under PEO for TWW and CWW, respectively. The turbidity of TWW reduced from 15 to ~ 3 NTU and the turbidity of CWW reduced from 27 to ~ 3 NTU by both EO and PEO. The % COD removal observed after 5-h electrolysis remained consistent for 7 repeated cycles; however, the catalytic activity of the electrode reduced gradually. These results suggested that the Ti/TiO 2 -NTs/Sb-SnO 2 can be a potential electrode for the treatment of industrial wastewater.

  7. Comparative evaluation of effect of different polishing systems on surface roughness of composite resin: An in vitro study.

    Science.gov (United States)

    Chour, Rashmi G; Moda, Aman; Arora, Arpana; Arafath, Muhmmed Y; Shetty, Vikram K; Rishal, Yousef

    2016-08-01

    Satisfactory composite restoration depends upon its smooth finish, quality of polishing agents, type of composite material used, and its composition. The present study evaluated the effect of different polishing systems on the surface roughness of composite resin. Forty discs of composite were prepared and equally subjected to different finishing and polishing procedures; (i) unpolished control group, (ii) sof-lex discs, (iii) diamond tips, and (iv) Astrobrush groups. Later, the surface roughness for the entire specimen was evaluated using Profilomotor. Data were tabulated and statistically analyzed using analysis of variance and Tukey's test at significance level of 0.001. Composite surface roughness after polishing was statistically significant between the groups. Sof-lex group produced lesser surface roughness compared to control, Astrobrush, and diamond group. The present study indicated that diamond tips can be used to remove rough surface whereas sof-lex can be used for final finish and polish of the composite restoration.

  8. Effect of sealer coating and storage methods on the surface roughness of soft liners.

    Science.gov (United States)

    Usta Kutlu, Ilknur; Yanikoğlu, Nuran Dinckal; Kul, Esra; Duymuş, Zeynep Yesïl; Sağsöz, Nurdan Polat

    2016-03-01

    A soft lining is applied under a removable prosthesis for various reasons. The porosity of the lining material may increase colonization by microorganisms and cause tissue inflammation. The purpose of this in vitro study was to evaluate the effect of sealer coating on the surface roughness of soft lining materials under 4 different conditions. A total of 125 specimens were prepared. One high-temperature silicone-based soft lining material and 2 room-temperature-polymerized soft lining materials (1 silicone-based and 1 methacrylate-based) were used. Twenty-five specimens of each room-temperature soft lining material were coated with 2 layers of surface sealer. Additionally, 5 specimens of each material were stored in either distilled water, Coca-Cola, denture cleanser, saliva, or air. The surface roughness was measured at baseline and after 1, 7, 14, and 28 days. Surface roughness values were analyzed with repeated measures analysis of variance, and the Bonferroni multiple comparison test was performed using time-dependent groups and storage methods. In the time-dependent groups, methacrylate-based sealer-coated soft liners exhibited a significant increase in roughness (1.74-2.09 μm, P.05). Therefore, the sealer coating was not effective in reducing surface roughness. Among the time-dependent storage methods, the denture cleanser exhibited an almost significant increase in roughness (1.83-1.99 μm, P=.054). Coca-Cola and artificial saliva did not show a significant difference (P>.05). However, a significant decrease in roughness was found with distilled water (P=.02) and air (P<.001). Statistically significant differences in surface roughness were found among the different types of soft liners. The sealer coating had no significant effect, and denture cleanser slightly increased the surface roughness. Contrary to expectations, the roughness did not increase in all groups over time. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry

  9. Excellent electrochemical performance of graphene-silver nanoparticle hybrids prepared using a microwave spark assistance process

    International Nuclear Information System (INIS)

    Shanmugharaj, A.M.; Ryu, Sung Hun

    2012-01-01

    Highlights: ► A simple synthesis route is explored in preparing graphene-metal nanoparticle hybrids using cost effective microwave radiation process. ► Electrochemical performance of the synthesized graphene-silver nanoparticle hybrids have been compared with graphite and silver nanoparticle based anode materials. ► Graphene-silver nanoparticle hybrid exhibits stable charge/discharge characteristics of 714 mAh g −1 and it is significantly higher compared to natural graphite and silver based electrodes. - Abstract: A simple method is described for the synthesis of graphene-silver nanoparticle hybrids from graphite and silver precursors using microwave spark ignition process. Adding ecofriendly free radical initiators, in the presence of hydrogen peroxide solution leads to the expansion of graphite to graphene nanosheets. Simultaneously, silver ions intercalated between the graphene layers are reduced to silver nanocrystals leading to the development of graphene-silver nanoparticle hybrids. Transmission electron microscopic (TEM) studies reveal the successful formation of graphene-silver nanoparticle hybrids. X-ray diffraction (XRD) shows that the silver nanoparticles formed on the graphene surfaces are face centered cubic crystals. The surface composition and functional groups present on the graphene-silver nanoparticle hybrids are corroborated using X-ray photoelectron spectroscopy (XPS) and Fourier Transform Infrared Spectroscopy (FT-IR). The lithium storage capacity of the synthesized material, when used as an anode material for rechargeable lithium secondary batteries is investigated. Its first specific discharge capacity is observed to be 580 mAh g −1 and this has been increased to 827 mAh g −1 , by incorporating the silver nanoparticles between the graphene platelets. The reversible capacity of the graphene-silver nanoparticle hybrids is observed to be 714 mAh g −1 , which is significantly higher compared to that of graphene (420 mAh g −1

  10. Scanning electron microscopy and roughness study of dental composite degradation.

    Science.gov (United States)

    Soares, Luís Eduardo Silva; Cortez, Louise Ribeiro; Zarur, Raquel de Oliveira; Martin, Airton Abrahão

    2012-04-01

    Our aim was to test the hypothesis that the use of mouthwashes, consumption of soft drinks, as well as the type of light curing unit (LCU), would change the surface roughness (Ra) and morphology of a nanofilled composite resin (Z350® 3M ESPE). Samples (80) were divided into eight groups: Halogen LCU, group 1, saliva (control); group 2, Pepsi Twist®; group 3, Listerine®; group 4, Colgate Plax®; LED LCU, group 5, saliva; group 6, Pepsi Twist®; group 7, Listerine®; group 8, Colgate Plax®. Ra values were measured at baseline, and after 7 and 14 days. One specimen of each group was prepared for scanning electron microscopy analysis after 14 days. The data were subjected to multifactor analysis of variance at a 95% confidence followed by Tukey's honestly significant difference post-hoc test. All the treatments resulted in morphological changes in composite resin surface, and the most significant change was in Pepsi Twist® groups. The samples of G6 had the greatest increase in Ra. The immersion of nanofilled resin in mouthwashes with alcohol and soft drink increases the surface roughness. Polymerization by halogen LCU (reduced light intensity) associated with alcohol contained mouthwash resulted in significant roughness on the composite.

  11. Preparation and evaluation of a novel molecularly imprinted polymer coating for selective extraction of indomethacin from biological samples by electrochemically controlled in-tube solid phase microextraction

    Energy Technology Data Exchange (ETDEWEB)

    Asiabi, Hamid [Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran (Iran, Islamic Republic of); Yamini, Yadollah, E-mail: yyamini@modares.ac.ir [Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran (Iran, Islamic Republic of); Seidi, Shahram; Ghahramanifard, Fazel [Department of Analytical Chemistry, Faculty of Chemistry, K.N. Toosi University of Technology, Tehran (Iran, Islamic Republic of)

    2016-03-24

    In the present work, an automated on-line electrochemically controlled in-tube solid-phase microextraction (EC-in-tube SPME) coupled with HPLC-UV was developed for the selective extraction and preconcentration of indomethacin as a model analyte in biological samples. Applying an electrical potential can improve the extraction efficiency and provide more convenient manipulation of different properties of the extraction system including selectivity, clean-up, rate, and efficiency. For more enhancement of the selectivity and applicability of this method, a novel molecularly imprinted polymer coated tube was prepared and applied for extraction of indomethacin. For this purpose, nanostructured copolymer coating consisting of polypyrrole doped with ethylene glycol dimethacrylate was prepared on the inner surface of a stainless-steel tube by electrochemical synthesis. The characteristics and application of the tubes were investigated. Electron microscopy provided a cross linked porous surface and the average thickness of the MIP coating was 45 μm. Compared with the non-imprinted polymer coated tubes, the special selectivity for indomethacin was discovered with the molecularly imprinted coated tube. Moreover, stable and reproducible responses were obtained without being considerably influenced by interferences commonly existing in biological samples. Under the optimal conditions, the limits of detection were in the range of 0.07–2.0 μg L{sup −1} in different matrices. This method showed good linearity for indomethacin in the range of 0.1–200 μg L{sup −1}, with coefficients of determination better than 0.996. The inter- and intra-assay precisions (RSD%, n = 3) were respectively in the range of 3.5–8.4% and 2.3–7.6% at three concentration levels of 7, 70 and 150 μg L{sup −1}. The results showed that the proposed method can be successfully applied for selective analysis of indomethacin in biological samples. - Graphical abstract: An automated on

  12. Enhanced electrochemical performance of LiVPO4F/f-graphene composite electrode prepared via ionothermal process

    KAUST Repository

    Rangaswamy, Puttaswamy

    2016-10-13

    Abstract: In this article, we report the synthesis of 1,2-dimethyl-3-(3-hydroxypropyl) imidazolium dicyanamide ionic liquid and its used as a reaction medium for low-temperature synthesis of triclinic LiVPOF electrode material. Structural and morphological features of LiVPOF were characterized using X-ray diffraction and scanning electron microscopy techniques. The electrochemical studies have been investigated using cyclic voltammetry, galvanostatic charge/discharge studies, and electrochemical impedance spectroscopic techniques. The ionothermally obtained LiVPOF is modified to LiVPOF/f-graphene composite electrode to obtain high specific capacity, better rate performance, and longer cycle life. Even after 250 cycles, the LiVPOF/f-graphene composite electrode exhibited a specific capacity more than 84 % with good reversible de-intercalation/intercalation of Li-ions. This article also provides the comparative electrochemical performances of LiVPOF/f-graphene composite, LiVPOF/carbon, and LiVPOF/graphene composite electrodes in a nonaqueous rechargeable Li-ion battery system. Graphical Abstract: [Figure not available: see fulltext.

  13. Enhanced electrochemical performance of LiVPO4F/f-graphene composite electrode prepared via ionothermal process

    KAUST Repository

    Rangaswamy, Puttaswamy; Shetty, Vijeth Rajshekar; Suresh, Gurukar Shivappa; Mahadevan, Kittappa Malavalli; Nagaraju, Doddahalli H.

    2016-01-01

    Abstract: In this article, we report the synthesis of 1,2-dimethyl-3-(3-hydroxypropyl) imidazolium dicyanamide ionic liquid and its used as a reaction medium for low-temperature synthesis of triclinic LiVPOF electrode material. Structural and morphological features of LiVPOF were characterized using X-ray diffraction and scanning electron microscopy techniques. The electrochemical studies have been investigated using cyclic voltammetry, galvanostatic charge/discharge studies, and electrochemical impedance spectroscopic techniques. The ionothermally obtained LiVPOF is modified to LiVPOF/f-graphene composite electrode to obtain high specific capacity, better rate performance, and longer cycle life. Even after 250 cycles, the LiVPOF/f-graphene composite electrode exhibited a specific capacity more than 84 % with good reversible de-intercalation/intercalation of Li-ions. This article also provides the comparative electrochemical performances of LiVPOF/f-graphene composite, LiVPOF/carbon, and LiVPOF/graphene composite electrodes in a nonaqueous rechargeable Li-ion battery system. Graphical Abstract: [Figure not available: see fulltext.

  14. Towards predictive models for transitionally rough surfaces

    Science.gov (United States)

    Abderrahaman-Elena, Nabil; Garcia-Mayoral, Ricardo

    2017-11-01

    We analyze and model the previously presented decomposition for flow variables in DNS of turbulence over transitionally rough surfaces. The flow is decomposed into two contributions: one produced by the overlying turbulence, which has no footprint of the surface texture, and one induced by the roughness, which is essentially the time-averaged flow around the surface obstacles, but modulated in amplitude by the first component. The roughness-induced component closely resembles the laminar steady flow around the roughness elements at the same non-dimensional roughness size. For small - yet transitionally rough - textures, the roughness-free component is essentially the same as over a smooth wall. Based on these findings, we propose predictive models for the onset of the transitionally rough regime. Project supported by the Engineering and Physical Sciences Research Council (EPSRC).

  15. Nanosized Ni-Mn Oxides Prepared by the Citrate Gel Process and Performances for Electrochemical Capacitors

    Institute of Scientific and Technical Information of China (English)

    Jianxin ZHOU; Xiangqian SHEN; Maoxiang JING

    2006-01-01

    Nanosized Ni-Mn oxide powders have been successfully prepared by thermal decomposition of the Ni-Mn citrate gel precursors. The powder materials derived from calcination of the gel precursors with various molar ratios of nickel and manganese at different temperatures and time were characterized using thermal analysis (TG-DSC), scanning electron microscopy (SEM), X-ray diffraction (XRD) and Brunauer-Emmet-Teller (BET).The optimized processing conditions of calcination at 400℃ for 1 h with Ni/Mn molar ratio 6 were proved to produce the nanosized Ni-Mn oxide powders with a high specific surface area of 109.62 m2/g and nanometer particle sizes of 15~30 nm. The capacitance characteristics of the nanosized Ni-Mn oxide electrode in various concentrations of KOH solutions were studied by the cyclic voltammetry (CV) and exhibited both a doublelayer capacitance and a Faradaic capacitance which could be attributed to the electrode consisting of Ni-Mn oxides and residual carbons from the organic gel thermal decomposition. A specific capacitance of 194.8 F/g was obtained for the electrode at the sweep rate of 10 mV/s in 4 mol/L KOH electrolyte and the capacitor showed quite high cyclic stability and is promising for advanced electrochemical capacitors.

  16. Electrochemical depth profiling of multilayer metallic structures: An aluminum brazing sheet

    International Nuclear Information System (INIS)

    Afshar, F. Norouzi; Ambat, R.; Kwakernaak, C.; Wit, J.H.W. de; Mol, J.M.C.; Terryn, H.

    2012-01-01

    Highlights: ► Localized electrochemical cell and glow discharge optical emission spectrometry were used. ► An electrochemical depth profile of an aluminum brazing sheet was obtained. ► The electrochemical responses were correlated to the microstructural features. - Abstract: Combinatory localized electrochemical cell and glow discharge optical emission spectrometry (GDOES) measurements were performed to obtain a thorough in depth electrochemical characterization of an aluminum brazing sheet. By defining electrochemical criteria i.e. breakdown potential, corrosion potential, cathodic and anodic reactivities, and tracking their changes as a function of depth, the evolution of electrochemical responses through out the material thickness were analyzed and correlated to the corresponding microstructural features. Polarization curves in 1 wt% NaCl solution at pH 2.8 were obtained at different depths from the surface using controlled sputtering in a glow discharge optical emission spectrometer as a sample preparation technique. The anodic and cathodic reactivity of the top surface areas were significantly higher than that of the bulk, thus indicating these areas to be more susceptible to localized attack. Consistent with this, optical microscopy and scanning electron microscope analysis revealed a relatively high density of fine intermetallic and silicon particles at these areas. The corrosion mechanism of the top layers was identified to be intergranular and pitting corrosion, while lower sensitivity to these localized attacks were detected toward the brazing sheet core. The results highlight the successful application of the electrochemical depth profiling approach in prediction of the corrosion behavior of the aluminum brazing sheet and the importance of the electrochemical activity of the outer 10 μm in controlling the corrosion performance of the aluminum brazing sheet.

  17. Powder, paper and foam of few-layer graphene prepared in high yield by electrochemical intercalation exfoliation of expanded graphite.

    Science.gov (United States)

    Wu, Liqiong; Li, Weiwei; Li, Peng; Liao, Shutian; Qiu, Shengqiang; Chen, Mingliang; Guo, Yufen; Li, Qi; Zhu, Chao; Liu, Liwei

    2014-04-09

    A facile and high-yield approach to the preparation of few-layer graphene (FLG) by electrochemical intercalation exfoliation (EIE) of expanded graphite in sulfuric acid electrolyte is reported. Stage-1 H2SO4-graphite intercalation compound is used as a key intermediate in EIE to realize the efficient exfoliation. The yield of the FLG sheets (papers made of the FLG flakes retain excellent conductivity (≈24,500 S m(-1)). Three-dimensional (3D) graphene foams with light weight are fabricated from the FLG flakes by the use of Ni foams as self-sacrifice templates. Furthermore, 3D graphene/Ni foams without any binders, which are used as supercapacitor electrodes in aqueous electrolyte, provide the specific capacitance of 113.2 F g(-1) at a current density of 0.5 A g(-1), retaining 90% capacitance after 1000 cycles. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Sol-gel Technology and Advanced Electrochemical Energy Storage Materials

    Science.gov (United States)

    Chu, Chung-tse; Zheng, Haixing

    1996-01-01

    Advanced materials play an important role in the development of electrochemical energy devices such as batteries, fuel cells, and electrochemical capacitors. The sol-gel process is a versatile solution for use in the fabrication of ceramic materials with tailored stoichiometry, microstructure, and properties. This processing technique is particularly useful in producing porous materials with high surface area and low density, two of the most desirable characteristics for electrode materials. In addition,the porous surface of gels can be modified chemically to create tailored surface properties, and inorganic/organic micro-composites can be prepared for improved material performance device fabrication. Applications of several sol-gel derived electrode materials in different energy storage devices are illustrated in this paper. V2O5 gels are shown to be a promising cathode material for solid state lithium batteries. Carbon aerogels, amorphous RuO2 gels and sol-gel derived hafnium compounds have been studied as electrode materials for high energy density and high power density electrochemical capacitors.

  19. Applications of Silver Nanowires on Transparent Conducting Film and Electrode of Electrochemical Capacitor

    Directory of Open Access Journals (Sweden)

    Yuan-Jun Song

    2014-01-01

    Full Text Available Silver nanowire has potential applications on transparent conducting film and electrode of electrochemical capacitor due to its excellent conductivity. Transparent conducting film (G-film was prepared by coating silver nanowires on glass substrate using Meyer rod method, which exhibited better performance than carbon nanotube and graphene. The conductivity of G-film can be improved by increasing sintering temperature. Electrode of electrochemical capacitor (I-film was fabricated through the same method with G-film on indium tin oxide (ITO. CV curves of I-film under different scanning rates had obvious redox peaks, which indicated that I-film exhibited excellent electrochemical pseudocapacitance performance and good reversibility during charge/discharge process. In addition, the specific capacitance of I-film was measured by galvanostatic charge/discharge experiments, indicating that I-film exhibits high special capacitance and excellent electrochemical stability.

  20. Preparing the generalized Harvey–Shack rough surface scattering method for use with the discrete ordinates method

    DEFF Research Database (Denmark)

    Johansen, Villads Egede

    2015-01-01

    The paper shows how to implement the generalized Harvey–Shack (GHS) method for isotropic rough surfaces discretized in a polar coordinate system and approximated using Fourier series. This is particularly relevant for the use of the GHS method as a boundary condition for radiative transfer proble...

  1. Electrochemical Behaviour of Ni and Ni-PVC Electrodes for the Electroxidation of Ethanol

    International Nuclear Information System (INIS)

    Mohd Syafiq Hamdan; Norazzizi Nordin; Siti Fathrita Mohd Amir; Riyanto; Mohamed Rozali Othman

    2011-01-01

    In this study, two nickel based electrodes were prepared; nickel foil and nickel-polyvinylchloride (Ni-PVC), in order to study their electrochemical behavior using cyclic voltammetry, CV and chronocoulometry, CC. Ni electrode was prepared from Ni metal foil while Ni-PVC electrode was prepared by mixing a weighed portion of Ni powder and PVC in THF solvent, swirled until the suspension was homogeneous and drying the suspension in an oven at 50 degree Celsius for 3 h. The dry sample was then placed in a 1 cm diameter stainless steel mould and pressed at 10 ton/ cm 2 . From CV data, Ni-PVC electrode showed a better electrochemical behavior compared to Ni metal foil electrode. The use of Ni-PVC electrode at higher concentration of supporting electrolyte (1.0 M KOH) was better than at lower concentration of the same supporting electrolyte in electroxidation of ethanol. In addition to acetic acid, the oxidation of ethanol also produced ethyl acetate and acetaldehyde. (author)

  2. Axis Problem of Rough 3-Valued Algebras

    Institute of Scientific and Technical Information of China (English)

    Jianhua Dai; Weidong Chen; Yunhe Pan

    2006-01-01

    The collection of all the rough sets of an approximation space has been given several algebraic interpretations, including Stone algebras, regular double Stone algebras, semi-simple Nelson algebras, pre-rough algebras and 3-valued Lukasiewicz algebras. A 3-valued Lukasiewicz algebra is a Stone algebra, a regular double Stone algebra, a semi-simple Nelson algebra, a pre-rough algebra. Thus, we call the algebra constructed by the collection of rough sets of an approximation space a rough 3-valued Lukasiewicz algebra. In this paper,the rough 3-valued Lukasiewicz algebras, which are a special kind of 3-valued Lukasiewicz algebras, are studied. Whether the rough 3-valued Lukasiewicz algebra is a axled 3-valued Lukasiewicz algebra is examined.

  3. Ultrasonic backward radiation on painted rough interface

    International Nuclear Information System (INIS)

    Kwon, Yong Gyu; Yoon, Seok Soo; Kwon, Sung Duck

    2002-01-01

    The angular dependence(profile) of backscattered ultrasound was measured for steel and brass specimens with periodical surface roughness (1-71μm). Backward radiations showed more linear dependency than normal profile. Direct amplitude increased and averaging amplitude decreased with surface roughness. Painting treatment improved the linearity in direct backward radiation below roughness of 0.03. Scholte and Rayleigh-like waves were observed in the spectrum of averaging backward radiation on periodically rough surface. Painting on periodically rough surface could be used in removing the interface mode effect by periodic roughness.

  4. Preparation of lithium indium oxide via a rheological phase route and its electrochemical characteristics in LiOH and Li{sub 2}SO{sub 4} solutions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guo-Qing [Department of Chemistry and Environment Science of Yangtze Normal University, 408100 Chongqing (China); College of Chemistry and Chemical Engineering of Chongqing University, Chongqing 400030 (China); Zhang, Sheng-Tao [College of Chemistry and Chemical Engineering of Chongqing University, Chongqing 400030 (China); Wu, Xing-Fa [Department of Chemistry and Environment Science of Yangtze Normal University, 408100 Chongqing (China)

    2010-01-15

    Submicrometer-sized lithium indium oxide (LiInO{sub 2}) powder via a rheological phase method using trilithium citrate tetra hydrate (C{sub 6}H{sub 5}Li{sub 3}O{sub 7} . 4H{sub 2}O) and indium oxide (In{sub 2}O{sub 3}) has been prepared in this work for the first time. The optimal pyrolyzing temperature range to prepare crystalline LiInO{sub 2} is between 650 and 900 C, which was confirmed by thermal gravimetric and differential thermogravimetric analysis of the precursor and X-ray diffraction analysis. The pure phase LiInO{sub 2} sample obtained has a uniform particle morphology and submicrosize, which was observed by scanning electron microscopy. The electrochemical studies show that a new pair of cathodic and anodic peaks at 0.23 and 0.38 V (vs. saturated calomel electrode) was obviously observed from the cyclic voltammetry curve of LiInO{sub 2} in 1 M LiOH solution, indicating a battery characteristic of the material in this electrolyte. While in 1 M Li{sub 2}SO{sub 4} solution, the sample presents a supercapacitive characteristic within the same potential range. The reasons for different electrochemical behaviors in these two electrolytes can be attributed to the fact that the reaction of lithium ion insertion/extraction into/out of a LiInO{sub 2} electrode takes place in the bulk material in LiOH electrolyte solution, whereas it takes place on the electrode/electrolyte interface for Li{sub 2}SO{sub 4} electrolyte case. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  5. In situ one-pot preparation of reduced graphene oxide/polyaniline composite for high-performance electrochemical capacitors

    International Nuclear Information System (INIS)

    Chen, Nali; Ren, Yapeng; Kong, Peipei; Tan, Lin; Feng, Huixia; Luo, Yongchun

    2017-01-01

    Highlights: • A new method to prepare reduced graphene oxide/polyaniline composite is developed. • Aniline serves as a reduction for graphene oxide under weak alkali condition. • Different characterizations confirm that GO can be effectively reduced by aniline. • A high specific capacitance of 524.4 F·g"−"1 is obtained at 0.5 A·g"−"1. - Abstract: Reduced graphene oxide/polyaniline (rGO/PANI) composites are prepared through an effective in situ one-pot synthesis route that includes the reduction of graphene oxide (GO) by aniline under weak alkali condition via hydrothermal method and then followed by in situ polymerization of aniline. X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, ultraviolet-visible spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscope and transmission electron microscope are employed to reveal that GO is successfully reduced by aniline under weak alkali condition and PANI can be deposited on the surfaces of reduced graphene oxide (rGO) sheets. The effect of rGO is optimized by tuning the mass ratios of aniline to GO to improve the electrochemical performance of rGO/PANI composites. The maximum specific capacitance of rGO/PANI composites achieves 524.4 F/g with a mass ratio of aniline to GO 10:1 at a current density of 0.5 A/g, in comparison to the specific capacitance of 397 F/g at the same current density of pure PANI. Particularly, the specific capacity retention rate is 81.1% after 2000 cycles at 100 mv/s scan rate, which is an improvement over that of pure PANI (55.5%).

  6. In situ one-pot preparation of reduced graphene oxide/polyaniline composite for high-performance electrochemical capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Nali [College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, Gansu (China); State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, Gansu (China); Ren, Yapeng; Kong, Peipei; Tan, Lin [College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, Gansu (China); Feng, Huixia, E-mail: fenghx@lut.cn [College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, Gansu (China); Luo, Yongchun, E-mail: luoyc@lut.cn [State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, Gansu (China)

    2017-01-15

    Highlights: • A new method to prepare reduced graphene oxide/polyaniline composite is developed. • Aniline serves as a reduction for graphene oxide under weak alkali condition. • Different characterizations confirm that GO can be effectively reduced by aniline. • A high specific capacitance of 524.4 F·g{sup −1} is obtained at 0.5 A·g{sup −1}. - Abstract: Reduced graphene oxide/polyaniline (rGO/PANI) composites are prepared through an effective in situ one-pot synthesis route that includes the reduction of graphene oxide (GO) by aniline under weak alkali condition via hydrothermal method and then followed by in situ polymerization of aniline. X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, ultraviolet-visible spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscope and transmission electron microscope are employed to reveal that GO is successfully reduced by aniline under weak alkali condition and PANI can be deposited on the surfaces of reduced graphene oxide (rGO) sheets. The effect of rGO is optimized by tuning the mass ratios of aniline to GO to improve the electrochemical performance of rGO/PANI composites. The maximum specific capacitance of rGO/PANI composites achieves 524.4 F/g with a mass ratio of aniline to GO 10:1 at a current density of 0.5 A/g, in comparison to the specific capacitance of 397 F/g at the same current density of pure PANI. Particularly, the specific capacity retention rate is 81.1% after 2000 cycles at 100 mv/s scan rate, which is an improvement over that of pure PANI (55.5%).

  7. Measurement of surface roughness changes of unpolished and polished enamel following erosion.

    Directory of Open Access Journals (Sweden)

    Francesca Mullan

    Full Text Available To determine if Sa roughness data from measuring one central location of unpolished and polished enamel were representative of the overall surfaces before and after erosion.Twenty human enamel sections (4x4 mm were embedded in bis-acryl composite and randomised to either a native or polishing enamel preparation protocol. Enamel samples were subjected to an acid challenge (15 minutes 100 mL orange juice, pH 3.2, titratable acidity 41.3mmol OH/L, 62.5 rpm agitation, repeated for three cycles. Median (IQR surface roughness [Sa] was measured at baseline and after erosion from both a centralised cluster and four peripheral clusters. Within each cluster, five smaller areas (0.04 mm2 provided the Sa roughness data.For both unpolished and polished enamel samples there were no significant differences between measuring one central cluster or four peripheral clusters, before and after erosion. For unpolished enamel the single central cluster had a median (IQR Sa roughness of 1.45 (2.58 μm and the four peripheral clusters had a median (IQR of 1.32 (4.86 μm before erosion; after erosion there were statistically significant reductions to 0.38 (0.35 μm and 0.34 (0.49 μm respectively (p<0.0001. Polished enamel had a median (IQR Sa roughness 0.04 (0.17 μm for the single central cluster and 0.05 (0.15 μm for the four peripheral clusters which statistically significantly increased after erosion to 0.27 (0.08 μm for both (p<0.0001.Measuring one central cluster of unpolished and polished enamel was representative of the overall enamel surface roughness, before and after erosion.

  8. Surface Forces Apparatus measurements of interactions between rough and reactive calcite surfaces.

    Science.gov (United States)

    Dziadkowiec, Joanna; Javadi, Shaghayegh; Bratvold, Jon Einar; Nilsen, Ola; Røyne, Anja

    2018-05-28

    Nm-range forces acting between calcite surfaces in water affect macroscopic properties of carbonate rocks and calcite-based granular materials, and are significantly influenced by calcite surface recrystallization. We suggest that the repulsive mechanical effects related to nm-scale surface recrystallization of calcite in water could be partially responsible for the observed decrease of cohesion in calcitic rocks saturated with water. Using the Surface Forces Apparatus (SFA), we simultaneously followed the calcite reactivity and measured the forces in water in two surface configurations: between two rough calcite surfaces (CC), or between rough calcite and a smooth mica surface (CM). We used nm-scale rough, polycrystalline calcite films prepared by Atomic Layer Deposition (ALD). We measured only repulsive forces in CC in CaCO 3 -saturated water, which was related to roughness and possibly to repulsive hydration effects. Adhesive or repulsive forces were measured in CM in CaCO 3 -saturated water depending on calcite roughness, and the adhesion was likely enhanced by electrostatic effects. The pull-off adhesive force in CM became stronger with time and this increase was correlated with a decrease of roughness at contacts, which parameter could be estimated from the measured force-distance curves. That suggested a progressive increase of real contact areas between the surfaces, caused by gradual pressure-driven deformation of calcite surface asperities during repeated loading-unloading cycles. Reactivity of calcite was affected by mass transport across nm to µm-thick gaps between the surfaces. Major roughening was observed only for the smoothest calcite films, where gaps between two opposing surfaces were nm-thick over µm-sized areas, and led to force of crystallization that could overcome confining pressures of the order of MPa. Any substantial roughening of calcite caused a significant increase of the repulsive mechanical force contribution.

  9. Surface roughness and hardness of a composite resin: influence of finishing and polishing and immersion methods

    Directory of Open Access Journals (Sweden)

    Ana Luísa Botta Martins de Oliveira

    2010-09-01

    Full Text Available This study evaluated the finishing and polishing effect on the surface roughness and hardness of the Filtek Supreme XT, in fluoride solutions. Specimens were prepared (n = 140 with half of the samples finished and polished with Super-Snap® disks. The experimental groups were divided according to the presence or absence of finishing and polishing and immersion solutions (artificial saliva, sodium fluoride solution at 0.05% - manipulated, Fluordent Reach, Oral B, Fluorgard. The specimens remained immersed in artificial saliva for 24 hours and were then subjected to initial analysis (baseline of surface roughness and Vickers microhardness. Next, they were immersed in different fluoride solutions for 1 min/day, for 60 days. Afterwards, a new surface roughness and microhardness reading was conducted. The data were submitted to a two-way ANOVA and Tukey's test (5% significance level. For the comparison of mean roughness and hardness at baseline and after 60 days, the paired Student t test was used. The results showed that the surface roughness and microhardness of the Filtek Supreme XT were influenced by the finishing and polishing procedure, independently of the immersion methods.

  10. Highly sensitive electrochemical determination of Sunset Yellow based on gold nanoparticles/graphene electrode

    International Nuclear Information System (INIS)

    Wang, Jin; Yang, Beibei; Wang, Huiwen; Yang, Ping; Du, Yukou

    2015-01-01

    An electrochemical sensor was prepared using Au nanoparticles and reduced graphene successfully decorated on the glassy carbon electrode (Au/RGO/GCE) through an electrochemical method which was applied to detect Sunset Yellow (SY). The as-prepared electrode was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM) and electrochemical measurements. The results of cyclic voltammetry (CV) proved that Au/RGO/GCE had the highest catalytic activity for the oxidation of SY as compared with GCE, Au/GCE, and RGO/GCE. Differential pulse voltammetry (DPV) showed that the linear calibration curves for SY on Au/RGO/GCE in the range of 0.002 μM–109.14 μM, and the detection limit was estimated to be 2 nM (S/N = 3). These results suggested that the obtained Au/RGO/GCE was applied to detect SY with high sensitivity, low detection limit and good stability, which provided a promising future for the development of portable sensor in food additives. - Highlights: • An Au/RGO composite was fabricated by electrochemical deposition method. • The oxidation current of SY on the composition is up to 10 μA. • The detection range of SY is 0.002–109.14 μM with a detection limit of 2 nM.

  11. Profilometry of thin films on rough substrates by Raman spectroscopy

    KAUST Repository

    Ledinský, Martin

    2016-12-06

    Thin, light-absorbing films attenuate the Raman signal of underlying substrates. In this article, we exploit this phenomenon to develop a contactless thickness profiling method for thin films deposited on rough substrates. We demonstrate this technique by probing profiles of thin amorphous silicon stripes deposited on rough crystalline silicon surfaces, which is a structure exploited in high-efficiency silicon heterojunction solar cells. Our spatially-resolved Raman measurements enable the thickness mapping of amorphous silicon over the whole active area of test solar cells with very high precision; the thickness detection limit is well below 1 nm and the spatial resolution is down to 500 nm, limited only by the optical resolution. We also discuss the wider applicability of this technique for the characterization of thin layers prepared on Raman/photoluminescence-active substrates, as well as its use for single-layer counting in multilayer 2D materials such as graphene, MoS2 and WS2.

  12. Profilometry of thin films on rough substrates by Raman spectroscopy

    KAUST Repository

    Ledinský , Martin; Paviet-Salomon, Bertrand; Vetushka, Aliaksei; Geissbü hler, Jonas; Tomasi, Andrea; Despeisse, Matthieu; De Wolf, Stefaan; Ballif  , Christophe; Fejfar, Antoní n

    2016-01-01

    Thin, light-absorbing films attenuate the Raman signal of underlying substrates. In this article, we exploit this phenomenon to develop a contactless thickness profiling method for thin films deposited on rough substrates. We demonstrate this technique by probing profiles of thin amorphous silicon stripes deposited on rough crystalline silicon surfaces, which is a structure exploited in high-efficiency silicon heterojunction solar cells. Our spatially-resolved Raman measurements enable the thickness mapping of amorphous silicon over the whole active area of test solar cells with very high precision; the thickness detection limit is well below 1 nm and the spatial resolution is down to 500 nm, limited only by the optical resolution. We also discuss the wider applicability of this technique for the characterization of thin layers prepared on Raman/photoluminescence-active substrates, as well as its use for single-layer counting in multilayer 2D materials such as graphene, MoS2 and WS2.

  13. Effect of simulated mastication on the surface roughness of three ceramic systems.

    Science.gov (United States)

    Amer, Rafat; Kürklü, Duygu; Johnston, William

    2015-08-01

    Zirconia complete coverage crowns are being widely used as restorations because of their high strength and improved esthetics. Data are sparse about the change in surface roughness of this ceramic material after repeated mastication cycles of opposing enamel. The purpose of this study was to investigate changes in the surface roughness after being subjected to 3-body wear-opposing human enamel of 3 types of ceramics: dense sintered yttrium-stabilized zirconia (Z); lithium disilicate (L); and a conventional low-fusing feldspathic porcelain (P) treated to impart a rough, smooth, or glazed surface. Twenty-four specimens of each of the Z and L ceramic were sectioned from computer-aided design and computer-aided manufacturing blocks into rectangular plates (15×12×2 mm). Twenty-four specimens of the feldspathic porcelain were formed into disks (12-mm diameter) from powders compressed in a silicone mold. All specimens (n=72) were prepared according to the manufacturers' recommendations. Specimens of each ceramic group were placed into 1 of 3 groups: group R, rough surface finish; group S, smooth surface finish; and group G, glazed surface finish. A total of 72 specimens (9 groups with 8 specimens each) was placed in a 3-body wear simulator, with standardized enamel specimens (n=72) acting as the substrate. The changes in surface roughness of the ceramic specimens were evaluated after 50,000 cycles. Data were analyzed by a repeated measures 3-way ANOVA mixed procedure with the Satterthwaite method for degrees of freedom and maximum likelihood estimation of the covariance parameters (α=.05). Data showed that the PS group exhibited the largest change in surface roughness, becoming significantly rougher (P<.004). The LR group became significantly smoother (P=.012). The surfaces of monolithic zirconia ceramic and lithium disilicate did not become as rough as the surface of conventional feldspathic porcelain after enamel wear. Copyright © 2015 Editorial Council for the

  14. Graphene-based Electrochemical Energy Conversion and Storage: Fuel cells, Supercapacitors and Lithium Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Junbo; Shao, Yuyan; Ellis, Michael A.; Moore, Robert; Yi, Baolian

    2011-09-14

    Graphene has attracted extensive research interest due to its strictly 2-dimensional (2D) structure, which results in its unique electronic, thermal, mechanical, and chemical properties and potential technical applications. These remarkable characteristics of graphene, along with the inherent benefits of a carbon material, make it a promising candidate for application in electrochemical energy devices. This article reviews the methods of graphene preparation, introduces the unique electrochemical behavior of graphene, and summarizes the recent research and development on graphene-based fuel cells, supercapacitors and lithium ion batteries. In addition, promising areas are identified for the future development of graphene-based materials in electrochemical energy conversion and storage systems.

  15. 3D, chemical and electrochemical characterization of blasted TI6Al4V surfaces: Its influence on the corrosion behaviour

    International Nuclear Information System (INIS)

    Barranco, V.; Escudero, M.L.; Garcia-Alonso, M.C.

    2007-01-01

    The blasting process to increase the roughness of the surface of metallic biomaterials is widely used. As a consequence, one can produce a renewed surface with different topography and chemical composition compared to the original one, which can alter the general corrosion behaviour of the samples. With this idea, the aim of this work is not only the topographical and compositional characterization of blasted surfaces of Ti6Al4V alloy but mainly its influence on the corrosion behaviour of these modified surfaces. The surfaces of Ti6Al4V alloys were blasted with SiO 2 /ZrO 2 and Al 2 O 3 particles of different size in order to obtain different roughnesses. To carry out the microstructural and topographical characterization of the blasted surfaces, the scanning electron microscopy (SEM) coupled with an energy dispersive X-ray (EDX), the contact profilometry method and the 3D characterization by means of stereo-Fe-SEM have been used. By means of stereo-Fe-SEM, the roughness and the real surface area of the rough surfaces have been calculated. The microstructural, topographical and compositional results have been correlated with the corrosion behaviour of the samples immersed in Hank's solution and studied by means of electrochemical impedance spectroscopy (EIS). The blasting process alters topographical and chemically the surface of the samples. These modifications induce to an increase in the capacitance values of the roughened samples due to the prevalence of the effect of electrochemically active areas of Ti6Al4V surface over the effect of the presence of Al 2 O 3 and ZrO 2 particles on the blasted surfaces. However, the general corrosion behaviour of the samples is not drastically changed

  16. Sensitive determination of citrinin based on molecular imprinted electrochemical sensor

    Energy Technology Data Exchange (ETDEWEB)

    Atar, Necip [Department of Chemical Engineering, Faculty of Engineering, Pamukkale University, Denizli (Turkey); Yola, Mehmet Lütfi, E-mail: mehmetyola@gmail.com [Department of Metallurgical and Materials Engineering, Faculty of Engineering, Sinop University, Sinop (Turkey); Eren, Tanju [Department of Chemical Engineering, Faculty of Engineering, Pamukkale University, Denizli (Turkey)

    2016-01-30

    Graphical abstract: - Highlights: • Citrinin-imprinted electrochemical sensor is developed for the sensitive detection of citrinin. • The nanomaterial and citrinin-imprinted surfaces were characterized by several methods. • Citrinin-imprinted electrochemical sensor is sensitive and selective in analysis of food. • Citrinin-imprinted electrochemical sensor is preferred to the other methods. - Abstract: In this report, a novel molecular imprinted voltammetric sensor based on glassy carbon electrode (GCE) modified with platinum nanoparticles (PtNPs) involved in a polyoxometalate (H{sub 3}PW{sub 12}O{sub 40}, POM) functionalized reduced graphene oxide (rGO) was prepared for the determination of citrinin (CIT). The developed surfaces were characterized by using scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) method. CIT imprinted GCE was prepared via electropolymerization process of 80.0 mM pyrrole as monomer in the presence of phosphate buffer solution (pH 6.0) containing 20.0 mM CIT. The linearity range and the detection limit of the developed method were calculated as 1.0 × 10{sup −12}–1.0 × 10{sup −10} M and 2.0 × 10{sup −13} M, respectively. In addition, the voltammetric sensor was applied to rye samples. The stability and selectivity of the voltammetric sensor were also reported.

  17. Sensitive determination of citrinin based on molecular imprinted electrochemical sensor

    International Nuclear Information System (INIS)

    Atar, Necip; Yola, Mehmet Lütfi; Eren, Tanju

    2016-01-01

    Graphical abstract: - Highlights: • Citrinin-imprinted electrochemical sensor is developed for the sensitive detection of citrinin. • The nanomaterial and citrinin-imprinted surfaces were characterized by several methods. • Citrinin-imprinted electrochemical sensor is sensitive and selective in analysis of food. • Citrinin-imprinted electrochemical sensor is preferred to the other methods. - Abstract: In this report, a novel molecular imprinted voltammetric sensor based on glassy carbon electrode (GCE) modified with platinum nanoparticles (PtNPs) involved in a polyoxometalate (H_3PW_1_2O_4_0, POM) functionalized reduced graphene oxide (rGO) was prepared for the determination of citrinin (CIT). The developed surfaces were characterized by using scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) method. CIT imprinted GCE was prepared via electropolymerization process of 80.0 mM pyrrole as monomer in the presence of phosphate buffer solution (pH 6.0) containing 20.0 mM CIT. The linearity range and the detection limit of the developed method were calculated as 1.0 × 10"−"1"2–1.0 × 10"−"1"0 M and 2.0 × 10"−"1"3 M, respectively. In addition, the voltammetric sensor was applied to rye samples. The stability and selectivity of the voltammetric sensor were also reported.

  18. Removable partial or complete dentures exposed to beverages and mouthwashes: evaluation of microhardness and roughness

    Directory of Open Access Journals (Sweden)

    Fernanda Alves Feitosa

    Full Text Available AbstractPurposeTo evaluate microhardness and roughness of denture base polymethylmethacrylate resinn exposed to acid beverages and mouthwashes.Material and methodRectangular samples (n=80 were prepared from poly (methyl methacrylate (PMMA. They were divided into 8 groups and had the initial microhardness and Knoop roughness measured. Samples of each group were immersed for 10 min into a test solution (coffee, lemon juice, chlorhexidine gluconate, red wine, cola-based soft drink, vinegar or antiseptic with and without alcohol and after stored in artificial saliva for 23 h and 50 min, completing a period of 24 h. This procedure was performed for 14 consecutive days and after this period the microhardness and surface roughness measurements were made again. Data were statistically analyzed using ANOVA non parametric, Kruskal-Walis and the Dunn´s test for microhardness and the t-Student and ANOVA for roughness.ResultFor microhardness there were found statistically significant differences among the chlorhexidine gluconate solution, antiseptic without alcohol and cola-based soft drink. For roughness was observed that the mean values between the initial period and after immersion in the test products differed statistically in all groups, without difference among groups.ConclusionThe microhardness of poly(methyl methacrylate was affected by continue exposition to chlorhexidine gluconate, antiseptic without alcohol and cola-based soft drink. The roughness of poly(methyl methacrylate is negatively influenced by the exposure to all tested products. It may be concluded that both, microhardness and roughness, were affected by the treatments.

  19. Preparation of graphene-enhanced nickel-phosphorus composite films by ultrasonic-assisted electroless plating

    Science.gov (United States)

    Yu, Qian; Zhou, Tianfeng; Jiang, Yonggang; Yan, Xing; An, Zhonglie; Wang, Xibin; Zhang, Deyuan; Ono, Takahito

    2018-03-01

    To improve the mechanical properties of nickel-phosphorus (Ni-P) mold material for glass molding, an ultrasonic-assisted electroless plating method is proposed for the synthesis of graphene-enhanced nickel-phosphorus (G-Ni-P) composite films on heat-resistant stainless steel (06Cr25Ni20). Graphene flakes are prepared by an electrochemical exfoliation method. The surface roughness of the as-plated G-Ni-P composite plating is Ra 2.84 μm, which is higher than that of the Ni-P plating deposited using the same method. After annealing at 400 ºC for 2 h, the main phase of the G-Ni-P composite is transformed to crystalline Ni3P with an average grain size of 32.8 nm. The Vickers hardness and Young's modulus of the G-Ni-P composite are increased by 8.0% and 8.2% compared with the values of Ni-P, respectively. The detailed plating process is of great significance for the fabrication of G-Ni-P mold materials with enhanced mechanical properties.

  20. Study on micro fabricated stainless steel surface to anti-biofouling using electrochemical fabrication

    Science.gov (United States)

    Hwang, Byeong Jun; Lee, Sung Ho

    2017-12-01

    Biofilm formed on the surface of the object by the microorganism resulting in fouling organisms. This has led to many problems in daily life, medicine, health and industrial community. In this study, we tried to prevent biofilm formation on the stainless steel (SS304) sheet surface with micro fabricated structure. After then forming the microscale colloid patterns on the surface of stainless steel by using an electrochemical etching forming a pattern by using a FeCl3 etching was further increase the surface roughness. Culturing the Pseudomonas aeruginosa on the stainless steel fabricated with a micro structure on the surface was observed a relationship between the surface roughness and the biological fouling of the micro structure. As a result, the stainless steel surface with a micro structure was confirmed to be the biological fouling occurs less. We expect to be able to solve the problems caused by biological fouling in various fields such as medicine, engineering, using this research.

  1. Active and inactive buffering effect on the electrochemical behavior of Sn–Ni/MWCNT composite anodes prepared by pulse electrodeposition for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Uysal, Mehmet, E-mail: mehmet_uys@yahoo.com; Cetinkaya, Tugrul; Alp, Ahmet; Akbulut, Hatem

    2015-10-05

    Highlights: • Sn–Ni/MWCNT anodes were produced by pulse electrodeposition. • The effect of MWCNT studied on electrochemical properties of composite electrodes. • A high reversible capacity, and good cyclability were achieved for Sn–Ni/MWCNT (10 g L{sup −1}). - Abstract: Cycling stability of pure tin electrodes was aimed to improve by using suitable combination of nickel and multiwalled carbon nanotubes (MWCNTs). Nanocrystalline Sn–Ni/MWCNT composite was prepared by ultrasonic-pulse electrodeposition on a copper substrate in a pyrophosphate bath containing different concentrations of multi-walled carbon nanotubes. Surface morphology of produced Sn–Ni/MWCNT composites were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) was conducted to understand the elemental surface composition of composites. X-ray diffraction analysis was carried out to investigate structure of Sn–Ni/MWCNT composites. The electrochemical performances of Sn–Ni/MWCNT composite electrodes have been investigated by charge/discharge tests, cyclic voltammetric experiments and the ac impedance technique. These cells discharge capacity cyclically tested by a battery tester at a constant current in voltage range between 0.02 V and 1.5 V. The concentrations of MWCNTs were shown to be a crucial factor to improve Sn–Ni/MWCNT composite anodes for cyclability and reversible capacity.

  2. Ultrasensitive and simultaneous detection of hydroquinone, catechol and resorcinol based on the electrochemical co-reduction prepared Au-Pd nanoflower/reduced graphene oxide nanocomposite

    International Nuclear Information System (INIS)

    Chen, Yuan; Liu, Xiaoying; Zhang, Si; Yang, Liuqing; Liu, Meiling; Zhang, Youyu; Yao, Shouzhuo

    2017-01-01

    A simple and efficient eletrochemical sensing platform for simultaneous detection of hydroquinone (HQ), catechol (CC) and resorcinol (RC) based on the Au-Pd bimetallic and graphene is described in this paper. The Au-Pd reduced graphene oxide (Au-Pd NF/rGO) was prepared by the electrochemical co-reduction deposition via cyclic voltammetry method (CV). The Au-Pd NF/rGO nanocomposite was examined by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and electrochemical methods CV and differential pulse voltammety (DPV) study showed that the three dihydroxybenzene isomers can be catalytically oxidized and discriminated simultaneously on the Au-Pd NF/rGO/GCE. The presence of Pd makes the performance of the sensor superior to that of in the absence of it. Owing to the integrated superior conductivity and excellent catalytic property of Au-Pd NF/rGO, the sensitive and simultaneous detection of HQ, CC and RC was realized in the individual or triple-components solution based on the as proposed Au-Pd NF/rGO/GCE, which shows wide linear range and low detection limit. The detection of them in tap water, river water and lake water were also successfully performed and good recovery was obtained.

  3. Quadrilateral Micro-Hole Array Machining on Invar Thin Film: Wet Etching and Electrochemical Fusion Machining

    Directory of Open Access Journals (Sweden)

    Woong-Kirl Choi

    2018-01-01

    Full Text Available Ultra-precision products which contain a micro-hole array have recently shown remarkable demand growth in many fields, especially in the semiconductor and display industries. Photoresist etching and electrochemical machining are widely known as precision methods for machining micro-holes with no residual stress and lower surface roughness on the fabricated products. The Invar shadow masks used for organic light-emitting diodes (OLEDs contain numerous micro-holes and are currently machined by a photoresist etching method. However, this method has several problems, such as uncontrollable hole machining accuracy, non-etched areas, and overcutting. To solve these problems, a machining method that combines photoresist etching and electrochemical machining can be applied. In this study, negative photoresist with a quadrilateral hole array pattern was dry coated onto 30-µm-thick Invar thin film, and then exposure and development were carried out. After that, photoresist single-side wet etching and a fusion method of wet etching-electrochemical machining were used to machine micro-holes on the Invar. The hole machining geometry, surface quality, and overcutting characteristics of the methods were studied. Wet etching and electrochemical fusion machining can improve the accuracy and surface quality. The overcutting phenomenon can also be controlled by the fusion machining. Experimental results show that the proposed method is promising for the fabrication of Invar film shadow masks.

  4. Sub-Patch Roughness in Earthquake Rupture Investigations

    KAUST Repository

    Zielke, Olaf; Mai, Paul Martin

    2016-01-01

    Fault geometric complexities exhibit fractal characteristics over a wide range of spatial scales (<µm to >km) and strongly affect the rupture process at corresponding scales. Numerical rupture simulations provide a framework to quantitatively investigate the relationship between a fault's roughness and its seismic characteristics. Fault discretization however introduces an artificial lower limit to roughness. Individual fault patches are planar and sub-patch roughnessroughness at spatial scales below fault-patch size– is not incorporated. Does negligence of sub-patch roughness measurably affect the outcome of earthquake rupture simulations? We approach this question with a numerical parameter space investigation and demonstrate that sub-patch roughness significantly modifies the slip-strain relationship –a fundamental aspect of dislocation theory. Faults with sub-patch roughness induce less strain than their planar-fault equivalents at distances beyond the length of a slipping fault. We further provide regression functions that characterize the stochastic effect sub-patch roughness.

  5. Sub-Patch Roughness in Earthquake Rupture Investigations

    KAUST Repository

    Zielke, Olaf

    2016-02-13

    Fault geometric complexities exhibit fractal characteristics over a wide range of spatial scales (<µm to >km) and strongly affect the rupture process at corresponding scales. Numerical rupture simulations provide a framework to quantitatively investigate the relationship between a fault\\'s roughness and its seismic characteristics. Fault discretization however introduces an artificial lower limit to roughness. Individual fault patches are planar and sub-patch roughnessroughness at spatial scales below fault-patch size– is not incorporated. Does negligence of sub-patch roughness measurably affect the outcome of earthquake rupture simulations? We approach this question with a numerical parameter space investigation and demonstrate that sub-patch roughness significantly modifies the slip-strain relationship –a fundamental aspect of dislocation theory. Faults with sub-patch roughness induce less strain than their planar-fault equivalents at distances beyond the length of a slipping fault. We further provide regression functions that characterize the stochastic effect sub-patch roughness.

  6. Rough set classification based on quantum logic

    Science.gov (United States)

    Hassan, Yasser F.

    2017-11-01

    By combining the advantages of quantum computing and soft computing, the paper shows that rough sets can be used with quantum logic for classification and recognition systems. We suggest the new definition of rough set theory as quantum logic theory. Rough approximations are essential elements in rough set theory, the quantum rough set model for set-valued data directly construct set approximation based on a kind of quantum similarity relation which is presented here. Theoretical analyses demonstrate that the new model for quantum rough sets has new type of decision rule with less redundancy which can be used to give accurate classification using principles of quantum superposition and non-linear quantum relations. To our knowledge, this is the first attempt aiming to define rough sets in representation of a quantum rather than logic or sets. The experiments on data-sets have demonstrated that the proposed model is more accuracy than the traditional rough sets in terms of finding optimal classifications.

  7. Rough Sets and Intelligent Systems - Professor Zdzisław Pawlak in Memoriam Volume 2

    CERN Document Server

    Suraj, Zbigniew

    2013-01-01

    This book is dedicated to the memory of Professor Zdzis{\\l}aw Pawlak who passed away almost six year ago. He is the founder of the Polish school of Artificial Intelligence and one of the pioneers in Computer Engineering and Computer Science with worldwide influence. He was a truly great scientist, researcher, teacher and a human being. This book prepared in two volumes contains more than 50 chapters. This demonstrates that the scientific approaches  discovered by of Professor Zdzis{\\l}aw Pawlak, especially the rough set approach as a tool for dealing with imperfect knowledge, are vivid and intensively explored by many researchers in many places throughout the world. The submitted papers prove that interest in rough set research is growing and is possible to see many new excellent results both on theoretical foundations and applications of rough sets alone or in combination with other approaches. We are proud to offer the readers this book.

  8. Rough Sets and Intelligent Systems - Professor Zdzisław Pawlak in Memoriam Volume 1

    CERN Document Server

    Suraj, Zbigniew

    2013-01-01

    This book is dedicated to the memory of Professor Zdzis{\\l}aw Pawlak who passed away almost six year ago. He is the founder of the Polish school of Artificial Intelligence and one of the pioneers in Computer Engineering and Computer Science with worldwide influence. He was a truly great scientist, researcher, teacher and a human being. This book prepared in two volumes contains more than 50 chapters. This demonstrates that the scientific approaches  discovered by of Professor Zdzis{\\l}aw Pawlak, especially the rough set approach as a tool for dealing with imperfect knowledge, are vivid and intensively explored by many researchers in many places throughout the world. The submitted papers prove that interest in rough set research is growing and is possible to see many new excellent results both on theoretical foundations and applications of rough sets alone or in combination with other approaches. We are proud to offer the readers this book.

  9. Wall roughness induces asymptotic ultimate turbulence

    Science.gov (United States)

    Zhu, Xiaojue; Verschoof, Ruben A.; Bakhuis, Dennis; Huisman, Sander G.; Verzicco, Roberto; Sun, Chao; Lohse, Detlef

    2018-04-01

    Turbulence governs the transport of heat, mass and momentum on multiple scales. In real-world applications, wall-bounded turbulence typically involves surfaces that are rough; however, characterizing and understanding the effects of wall roughness on turbulence remains a challenge. Here, by combining extensive experiments and numerical simulations, we examine the paradigmatic Taylor-Couette system, which describes the closed flow between two independently rotating coaxial cylinders. We show how wall roughness greatly enhances the overall transport properties and the corresponding scaling exponents associated with wall-bounded turbulence. We reveal that if only one of the walls is rough, the bulk velocity is slaved to the rough side, due to the much stronger coupling to that wall by the detaching flow structures. If both walls are rough, the viscosity dependence is eliminated, giving rise to asymptotic ultimate turbulence—the upper limit of transport—the existence of which was predicted more than 50 years ago. In this limit, the scaling laws can be extrapolated to arbitrarily large Reynolds numbers.

  10. Graphene/VO2 hybrid material for high performance electrochemical capacitor

    International Nuclear Information System (INIS)

    Deng, Lingjuan; Zhang, Gaini; Kang, Liping; Lei, Zhibin; Liu, Chunling; Liu, Zong-Huai

    2013-01-01

    Graphical abstract: Graphene/VO 2 hybrid materials are prepared by one-step simultaneous hydrothermal reduction technology. The prepared graphene (1.0)/VO 2 hybrid material shows a specific capacitances of 225 F g −1 in 0.5 mol L −1 K 2 SO 4 solution. Furthermore, an asymmetric electrochemical capacitor with graphene (1.0)/VO 2 as a positive electrode and graphene as a negative electrode is assembled, and it can work in a cell voltage of 1.7 V and show excellent capacitive property. - Highlights: • Graphene/VO 2 hybrid material has been prepared by one-step hydrothermal reduction. • Graphene/VO 2 hybrid material exhibits high specific capacitance. • An asymmetric capacitor working at 1.7 V in aqueous solution is assembled based on graphene/VO 2 electrode. • The asymmetric capacitor exhibits high energy density. - Abstract: Vanadium oxides have attracted significant attention for electrochemical capacitor because of their extensive multifunctional properties. In the present work, graphene/VO 2 (RG/VO 2 ) hybrid materials with different RG amounts are prepared in a mixture of ammonium vanadate, formic acid and graphite oxide (GO) nanosheets by one-step simultaneous hydrothermal reduction technology. The hydrothermal treatment makes the reduction of GO into RG and the formation of VO 2 particles with starfruit morphology. The starfruit-like VO 2 particles are uniformly embedded in the hole constructed by RG nanosheets, which makes the electrode–electrolyte contact better. A high specific capacitance of 225 F g −1 has been achieved for RG(1.0)/VO 2 electrode with RG content of 26 wt% in 0.5 mol L −1 K 2 SO 4 electrolyte. An asymmetrical electrochemical capacitor is assembled by using RG(1.0)/VO 2 as positive electrode and RG as negative electrode, and it can be reversibly charged–discharged at a cell voltage of 1.7 V in 0.5 mol L −1 K 2 SO 4 electrolyte. The asymmetrical capacitor can deliver an energy density of 22.8 Wh kg −1 at a power density

  11. Rock discontinuity surface roughness variation with scale

    Science.gov (United States)

    Bitenc, Maja; Kieffer, D. Scott; Khoshelham, Kourosh

    2017-04-01

    ABSTRACT: Rock discontinuity surface roughness refers to local departures of the discontinuity surface from planarity and is an important factor influencing the shear resistance. In practice, the Joint Roughness Coefficient (JRC) roughness parameter is commonly relied upon and input to a shear strength criterion such as developed by Barton and Choubey [1977]. The estimation of roughness by JRC is hindered firstly by the subjective nature of visually comparing the joint profile to the ten standard profiles. Secondly, when correlating the standard JRC values and other objective measures of roughness, the roughness idealization is limited to a 2D profile of 10 cm length. With the advance of measuring technologies that provide accurate and high resolution 3D data of surface topography on different scales, new 3D roughness parameters have been developed. A desirable parameter is one that describes rock surface geometry as well as the direction and scale dependency of roughness. In this research a 3D roughness parameter developed by Grasselli [2001] and adapted by Tatone and Grasselli [2009] is adopted. It characterizes surface topography as the cumulative distribution of local apparent inclination of asperities with respect to the shear strength (analysis) direction. Thus, the 3D roughness parameter describes the roughness amplitude and anisotropy (direction dependency), but does not capture the scale properties. In different studies the roughness scale-dependency has been attributed to data resolution or size of the surface joint (see a summary of researches in [Tatone and Grasselli, 2012]). Clearly, the lower resolution results in lower roughness. On the other hand, have the investigations of surface size effect produced conflicting results. While some studies have shown a decrease in roughness with increasing discontinuity size (negative scale effect), others have shown the existence of positive scale effects, or both positive and negative scale effects. We

  12. Morphologies and wetting properties of copper film with 3D porous micro-nano hierarchical structure prepared by electrochemical deposition

    International Nuclear Information System (INIS)

    Wang, Hongbin; Wang, Ning; Hang, Tao; Li, Ming

    2016-01-01

    Highlights: • A 3D porous micro-nano hierarchical structure Cu films were prepared. • The evolution of morphology and wettability with deposition time was reported. • The effects of EDA on the microscopic morphology were revealed. • A high contact angle of 162.1° was measured when deposition time is 5 s. • The mechanism of super-hydrophobicity was illustrated by two classical models. - Abstract: Three-dimensional porous micro-nano hierarchical structure Cu films were prepared by electrochemical deposition with the Hydrogen bubble dynamic template. The morphologies of the deposited films characterized by Scanning Electronic Microscopy (SEM) exhibit a porous micro-nano hierarchical structure, which consists of three levels in different size scales, namely the honeycomb-like microstructure, the dendritic substructure and the nano particles. Besides, the factors which influenced the microscopic morphology were studied, including the deposition time and the additive Ethylene diamine. By measuring the water contact angle, the porous copper films were found to be super-hydrophobic. The maximum of the contact angles could reach as high as 162.1°. An empirical correlation between morphologies and wetting properties was revealed for the first time. The pore diameter increased simultaneously with the deposition time while the contact angle decreased. The mechanism was illustrated by two classical models. Such super-hydrophobic three-dimensional hierarchical micro-nano structure is expected to have practical application in industry.

  13. Nano rough micron patterned titanium for directing osteoblast morphology and adhesion

    Directory of Open Access Journals (Sweden)

    Sabrina Puckett

    2008-06-01

    Full Text Available Sabrina Puckett, Rajesh Pareta, Thomas J WebsterDivision of Engineering, Brown University, Providence, RI, USAAbstract: Previous studies have demonstrated greater functions of osteoblasts (bone-forming cells on nanophase compared with conventional metals. Nanophase metals possess a biologically inspired nanostructured surface that mimics the dimensions of constituent components in bone, including collagen and hydroxyapatite. Not only do these components possess dimensions on the nanoscale, they are aligned in a parallel manner creating a defined orientation in bone. To date, research has yet to evaluate the effect that organized nanosurface features can have on the interaction of osteoblasts with material surfaces. Therefore, to determine if surface orientation of features can mediate osteoblast adhesion and morphology, this study investigated osteoblast function on patterned titanium substrates containing alternating regions of micron rough and nano rough surfaces prepared by novel electron beam evaporation techniques. This study was also interested in determining whether or not the size of the patterned regions had an effect on osteoblast behavior and alignment. Results indicated early controlled osteoblast alignment on these patterned materials as well as greater osteoblast adhesion on the nano rough regions of these patterned substrates. Interestingly, decreasing the width of the nano rough regions (from 80 µm to 22 µm on these patterned substrates resulted in a decreased number of osteoblasts adhering to these areas. Changes in the width of the nano rough regions also resulted in changes in osteoblast morphology, thus, suggesting there is an optimal pattern dimension that osteoblasts prefer. In summary, results of this study provided evidence that aligned nanophase metal features on the surface of titanium improved early osteoblast functions (morphology and adhesion promising for their long term functions, criteria necessary to improve

  14. Surface excitation parameter for rough surfaces

    International Nuclear Information System (INIS)

    Da, Bo; Salma, Khanam; Ji, Hui; Mao, Shifeng; Zhang, Guanghui; Wang, Xiaoping; Ding, Zejun

    2015-01-01

    Graphical abstract: - Highlights: • Instead of providing a general mathematical model of roughness, we directly use a finite element triangle mesh method to build a fully 3D rough surface from the practical sample. • The surface plasmon excitation can be introduced to the realistic sample surface by dielectric response theory and finite element method. • We found that SEP calculated based on ideal plane surface model are still reliable for real sample surface with common roughness. - Abstract: In order to assess quantitatively the importance of surface excitation effect in surface electron spectroscopy measurement, surface excitation parameter (SEP) has been introduced to describe the surface excitation probability as an average number of surface excitations that electrons can undergo when they move through solid surface either in incoming or outgoing directions. Meanwhile, surface roughness is an inevitable issue in experiments particularly when the sample surface is cleaned with ion beam bombardment. Surface roughness alters not only the electron elastic peak intensity but also the surface excitation intensity. However, almost all of the popular theoretical models for determining SEP are based on ideal plane surface approximation. In order to figure out whether this approximation is efficient or not for SEP calculation and the scope of this assumption, we proposed a new way to determine the SEP for a rough surface by a Monte Carlo simulation of electron scattering process near to a realistic rough surface, which is modeled by a finite element analysis method according to AFM image. The elastic peak intensity is calculated for different electron incident and emission angles. Assuming surface excitations obey the Poisson distribution the SEPs corrected for surface roughness are then obtained by analyzing the elastic peak intensity for several materials and for different incident and emission angles. It is found that the surface roughness only plays an

  15. Large-scale preparation of hollow graphitic carbon nanospheres

    International Nuclear Information System (INIS)

    Feng, Jun; Li, Fu; Bai, Yu-Jun; Han, Fu-Dong; Qi, Yong-Xin; Lun, Ning; Lu, Xi-Feng

    2013-01-01

    Hollow graphitic carbon nanospheres (HGCNSs) were synthesized on large scale by a simple reaction between glucose and Mg at 550 °C in an autoclave. Characterization by X-ray diffraction, Raman spectroscopy and transmission electron microscopy demonstrates the formation of HGCNSs with an average diameter of 10 nm or so and a wall thickness of a few graphenes. The HGCNSs exhibit a reversible capacity of 391 mAh g −1 after 60 cycles when used as anode materials for Li-ion batteries. -- Graphical abstract: Hollow graphitic carbon nanospheres could be prepared on large scale by the simple reaction between glucose and Mg at 550 °C, which exhibit superior electrochemical performance to graphite. Highlights: ► Hollow graphitic carbon nanospheres (HGCNSs) were prepared on large scale at 550 °C ► The preparation is simple, effective and eco-friendly. ► The in situ yielded MgO nanocrystals promote the graphitization. ► The HGCNSs exhibit superior electrochemical performance to graphite.

  16. Direct electrochemistry and electrocatalysis of lobetyolin via magnetic functionalized reduced graphene oxide film fabricated electrochemical sensor

    International Nuclear Information System (INIS)

    Sun, Bolu; Gou, Xiaodan; Bai, Ruibin; Abdelmoaty, Ahmed Attia Ahmed; Ma, Yuling; Zheng, Xiaoping; Hu, Fangdi

    2017-01-01

    A novel lobetyolin electrochemical sensor based on a magnetic functionalized reduced graphene oxide/Nafion nanohybrid film has been introduced in this work. The magnetic functionalized reduced graphene oxide was characterized by fourier transform infrared spectroscopy, atomic force microscope, X-ray diffraction, transmission electron microscopy and thermogravimetric analysis. The scanning electron microscopy characterized the morphology and microstructure of the prepared sensors, and the electrochemical effective surface areas of the prepared sensors were also calculated by chronocoulometry method. The electrochemical behavior of lobetyolin on the magnetic functionalized reduced graphene oxide/Nafion nanohybrid modified glassy carbon electrode was investigated by cyclic voltammetry and differential pulse voltammetry in a phosphate buffer solution of pH 6.0. The electron-transfer coefficient (α), electron transfer number (n), and electrode reaction rate constant (Κs) were calculated as 0.78, 0.73, and 4.63 s −1 , respectively. Under the optimized conditions, the sensor based on magnetic functionalized reduced graphene oxide/Nafion showed a linear voltammetric response to the lobetyolin concentration at 1.0 × 10 −7 to 1.0 × 10 −4 mol/L with detection limit (S/N = 3)of 4.3 × 10 −8 mol/L. The proposed sensor also displayed acceptable reproducibility, long-term stability, and high selectivity, and performs well for analysis of lobetyolin in real samples. The voltammetric sensor was successfully applied to detect lobetyolin in Codonopsis pilosula with recovery values in the range of 96.12% –102.66%. - Graphical abstract: Schematic diagram of the synthesis of MrGO hybrid and the fabrication process of the MrGO/Nafion/GCE for determination of lobetyolin. Display Omitted - Highlights: • The MrGO/Nafion@GCE electrochemical sensor was successfully fabricated. • The prepared MrGO was characterized by AFM, XRD, FTIR, VSM, TEM and SEM. • The proposed

  17. Direct electrochemistry and electrocatalysis of lobetyolin via magnetic functionalized reduced graphene oxide film fabricated electrochemical sensor

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Bolu [School of Pharmacy, Lanzhou University, Lanzhou 730000 (China); Gou, Xiaodan [School of Chemistry and Chemical Engineering, Nanjing University, 210046 (China); Bai, Ruibin; Abdelmoaty, Ahmed Attia Ahmed; Ma, Yuling; Zheng, Xiaoping [School of Pharmacy, Lanzhou University, Lanzhou 730000 (China); Hu, Fangdi, E-mail: hufd@lzu.edu.cn [School of Pharmacy, Lanzhou University, Lanzhou 730000 (China)

    2017-05-01

    A novel lobetyolin electrochemical sensor based on a magnetic functionalized reduced graphene oxide/Nafion nanohybrid film has been introduced in this work. The magnetic functionalized reduced graphene oxide was characterized by fourier transform infrared spectroscopy, atomic force microscope, X-ray diffraction, transmission electron microscopy and thermogravimetric analysis. The scanning electron microscopy characterized the morphology and microstructure of the prepared sensors, and the electrochemical effective surface areas of the prepared sensors were also calculated by chronocoulometry method. The electrochemical behavior of lobetyolin on the magnetic functionalized reduced graphene oxide/Nafion nanohybrid modified glassy carbon electrode was investigated by cyclic voltammetry and differential pulse voltammetry in a phosphate buffer solution of pH 6.0. The electron-transfer coefficient (α), electron transfer number (n), and electrode reaction rate constant (Κs) were calculated as 0.78, 0.73, and 4.63 s{sup −1}, respectively. Under the optimized conditions, the sensor based on magnetic functionalized reduced graphene oxide/Nafion showed a linear voltammetric response to the lobetyolin concentration at 1.0 × 10{sup −7} to 1.0 × 10{sup −4} mol/L with detection limit (S/N = 3)of 4.3 × 10{sup −8} mol/L. The proposed sensor also displayed acceptable reproducibility, long-term stability, and high selectivity, and performs well for analysis of lobetyolin in real samples. The voltammetric sensor was successfully applied to detect lobetyolin in Codonopsis pilosula with recovery values in the range of 96.12% –102.66%. - Graphical abstract: Schematic diagram of the synthesis of MrGO hybrid and the fabrication process of the MrGO/Nafion/GCE for determination of lobetyolin. Display Omitted - Highlights: • The MrGO/Nafion@GCE electrochemical sensor was successfully fabricated. • The prepared MrGO was characterized by AFM, XRD, FTIR, VSM, TEM and SEM.

  18. Preparation of submicrocrystal LiMn2O4 used Mn3O4 as precursor and its electrochemical performance for lithium ion battery

    International Nuclear Information System (INIS)

    Liu, Bao-Sheng; Wang, Zhen-Bo; Zhang, Yin; Yu, Fu-Da; Xue, Yuan; Ke, Ke; Li, Fang-Fei

    2015-01-01

    Graphical abstract: Spinal LiMn 2 O 4 particles synthesized at 800 °C for 12 h has the best crystallinity with a submicron size and smallest cation disorder, resulting in a superior capacity retention ratio of 90.4% after 200 cycles at 1 °C at room temperature, which possesses an initial capacity of 106.8 mA h/g. - Highlights: • High purity spinel LiMn 2 O 4 was synthesized from industrial grade raw materials. • LiMn 2 O 4 prepared by optimal conditions has the smallest cation mixing. • Optimized LiMn 2 O 4 has the highest initial capacity with 112.9 mA h/g. • Capacity retention of optimized LiMn 2 O 4 is 90.4% after 200 cycles at 1 °C. - Abstract: Spinel LiMn 2 O 4 has been synthesized by solid state reaction with industrial grade Mn 3 O 4 and Li 2 CO 3 as precursors without purification, and its electrochemical performance for lithium ion battery has been investigated by CR2025 coin cell. The results of X-ray diffraction (XRD) patterns and scanning electron microscope (SEM) images show that the size of LiMn 2 O 4 particles grow up with increasing temperature of calcination, and the sample synthesized at 800 °C for 12 h has the best crystallinity with a submicron size. It can deliver initial capacity of 112.9 mA h/g with capacity retention ratio of 89.1% after 200 cycles at charge/discharge rate of 1 C. The results of cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) also show that it has the highest electrochemical activity and lowest charge transfer impedance

  19. The Development of Non-Enzymatic Glucose Biosensors Based on Electrochemically Prepared Polypyrrole–Chitosan–Titanium Dioxide Nanocomposite Films

    Directory of Open Access Journals (Sweden)

    Ali M. A. Abdul Amir AL-Mokaram

    2017-05-01

    Full Text Available The performance of a modified electrode of nanocomposite films consisting of polypyrrole–chitosan–titanium dioxide (Ppy-CS-TiO2 has been explored for the developing a non-enzymatic glucose biosensors. The synergy effect of TiO2 nanoparticles (NPs and conducting polymer on the current responses of the electrode resulted in greater sensitivity. The incorporation of TiO2 NPs in the nanocomposite films was confirmed by X-ray photoelectron spectroscopy (XPS spectra. FE-SEM and HR-TEM provided more evidence for the presence of TiO2 in the Ppy-CS structure. Glucose biosensing properties were determined by amperommetry and cyclic voltammetry (CV. The interfacial properties of nanocomposite electrodes were studied by electrochemical impedance spectroscopy (EIS. The developed biosensors showed good sensitivity over a linear range of 1–14 mM with a detection limit of 614 μM for glucose. The modified electrode with Ppy-CS nanocomposite also exhibited good selectivity and long-term stability with no interference effect. The Ppy-CS-TiO2 nanocomposites films presented high electron transfer kinetics. This work shows the role of nanomaterials in electrochemical biosensors and describes the process of their homogeneous distribution in composite films by a one-step electrochemical process, where all components are taken in a single solution in the electrochemical cell.

  20. Simplified Approach to Predicting Rough Surface Transition

    Science.gov (United States)

    Boyle, Robert J.; Stripf, Matthias

    2009-01-01

    Turbine vane heat transfer predictions are given for smooth and rough vanes where the experimental data show transition moving forward on the vane as the surface roughness physical height increases. Consiste nt with smooth vane heat transfer, the transition moves forward for a fixed roughness height as the Reynolds number increases. Comparison s are presented with published experimental data. Some of the data ar e for a regular roughness geometry with a range of roughness heights, Reynolds numbers, and inlet turbulence intensities. The approach ta ken in this analysis is to treat the roughness in a statistical sense , consistent with what would be obtained from blades measured after e xposure to actual engine environments. An approach is given to determ ine the equivalent sand grain roughness from the statistics of the re gular geometry. This approach is guided by the experimental data. A roughness transition criterion is developed, and comparisons are made with experimental data over the entire range of experimental test co nditions. Additional comparisons are made with experimental heat tran sfer data, where the roughness geometries are both regular as well a s statistical. Using the developed analysis, heat transfer calculatio ns are presented for the second stage vane of a high pressure turbine at hypothetical engine conditions.

  1. Computer simulations of a rough sphere fluid

    International Nuclear Information System (INIS)

    Lyklema, J.W.

    1978-01-01

    A computer simulation is described on rough hard spheres with a continuously variable roughness parameter, including the limits of smooth and completely rough spheres. A system of 500 particles is simulated with a homogeneous mass distribution at 8 different densities and for 5 different values of the roughness parameter. For these 40 physically different situations the intermediate scattering function for 6 values of the wave number, the orientational correlation functions and the velocity autocorrelation functions have been calculated. A comparison has been made with a neutron scattering experiment on neopentane and agreement was good for an intermediate value of the roughness parameter. Some often made approximations in neutron scattering experiments are also checked. The influence of the variable roughness parameter on the correlation functions has been investigated and three simple stochastic models studied to describe the orientational correlation function which shows the most pronounced dependence on the roughness. (Auth.)

  2. Electrochemical capacitance performance of titanium nitride nanoarray

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yibing, E-mail: ybxie@seu.edu.cn [School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); Suzhou Research Institute of Southeast University, Suzhou 215123 (China); Wang, Yong [School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); Du, Hongxiu [School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); Suzhou Research Institute of Southeast University, Suzhou 215123 (China)

    2013-12-01

    Highlights: • TiN nanoarray is formed by a nitridation process of TiO{sub 2} in ammonia atmosphere. • TiN nanoarray exhibits much higher EDLC capacitance than TiO{sub 2} nanoarray. • The specific capacitance of TiN nanoarray achieves a high level of 99.7 mF cm{sup −2}. • A flexible solid-state supercapacitor is constructed by TiN nanoarray and PVA gel. -- Abstract: In this study, titanium nitride (TiN) nanoarrays with a short nanotube and long nanopore structure have been prepared by an anodization process of ultra thin titanium foil in ethylene glycol (EG) solution containing ammonium fluoride, subsequent calcination process in an air atmosphere, and final nitridation process in an ammonia atmosphere. The morphology and microstructure characterization has been conducted using field emission scanning electron microscope and X-ray diffraction. The electrochemical properties have been investigated through cyclic voltammetry and electrochemical impedance spectrum measurements. The electrochemical capacitance performance has been investigated by galvanostatic charge–discharge measurements in the acidic, neural and alkali electrolyte solution. Well-defined TiN nanoarrays contribute a much higher capacitance performance than titania (TiO{sub 2}) in the supercapacitor application due to the extraordinarily improved electrical conductivity. Such an electrochemical capacitance can be further enhanced by increasing aspect ratio of TiN nanoarray from short nanotubes to long nanopores. A flexible supercapacitor has been constructed using two symmetrical TiN nanoarray electrodes and a polyvinyl alcohol (PVA) gel electrolyte with H{sub 2}SO{sub 4}–KCl–H{sub 2}O–EG. Such a supercapacitor has a highly improved potential window and still keeps good electrochemical energy storage. TiN nanoarray with a high aspect ratio can act well as an ultra thin film electrode material of flexible supercapacitor to contribute a superior capacitance performance.

  3. Electrochemical and DFT study of an anticancer and active anthelmintic drug at carbon nanostructured modified electrode

    International Nuclear Information System (INIS)

    Ghalkhani, Masoumeh; Beheshtian, Javad; Salehi, Maryam

    2016-01-01

    The electrochemical response of mebendazole (Meb), an anticancer and effective anthelmintic drug, was investigated using two different carbon nanostructured modified glassy carbon electrodes (GCE). Although, compared to unmodified GCE, both prepared modified electrodes improved the voltammetric response of Meb, the carbon nanotubes (CNTs) modified GCE showed higher sensitivity and stability. Therefore, the CNTs-GCE was chosen as a promising candidate for the further studies. At first, the electrochemical behavior of Meb was studied by cyclic voltammetry and differential pulse and square wave voltammetry. A one step reversible, pH-dependent and adsorption-controlled process was revealed for electro-oxidation of Meb. A possible mechanism for the electrochemical oxidation of Meb was proposed. In addition, electronic structure, adsorption energy, band gap, type of interaction and stable configuration of Meb on the surface of functionalized carbon nanotubes were studied by using density functional theory (DFT). Obtained results revealed that Meb is weakly physisorbed on the CNTs and that the electronic properties of the CNTs are not significantly changed. Notably, CNTs could be considered as a suitable modifier for preparation of the modified electrode for Meb analysis. Then, the experimental parameters affecting the electrochemical response of Meb were optimized. Under optimal conditions, high sensitivity (b(Meb) = dI p,a (Meb) / d[Meb] = 19.65 μA μM −1 ), a low detection limit (LOD (Meb) = 19 nM) and a wide linear dynamic range (0.06–3 μM) was resulted for the voltammetric quantification of Meb. - Highlights: • Electrochemical oxidation mechanism of Meb was investigated. • A carbon nanostructure modified electrode was developed for the determination of Meb. • The modified electrode surface was characterized by SEM and impedance studies. • This study provides an effective chemically modified electrode with satisfactory repeatability and reproducibility

  4. Electrochemical biosensors

    CERN Document Server

    Cosnier, Serge

    2015-01-01

    "This is an excellent book on modern electrochemical biosensors, edited by Professor Cosnier and written by leading international experts. It covers state-of-the-art topics of this important field in a clear and timely manner."-Prof. Joseph Wang, UC San Diego, USA  "This book covers, in 13 well-illustrated chapters, the potential of electrochemical methods intimately combined with a biological component for the assay of various analytes of biological and environmental interest. Particular attention is devoted to the description of electrochemical microtools in close contact with a biological cell for exocytosis monitoring and to the use of nanomaterials in the electrochemical biosensor architecture for signal improvement. Interestingly, one chapter describes the concept and design of self-powered biosensors derived from biofuel cells. Each topic is reviewed by experts very active in the field. This timely book is well suited for providing a good overview of current research trends devoted to electrochemical...

  5. Improved Electrochemical Performance of Biomass-Derived Nanoporous Carbon/Sulfur Composites Cathode for Lithium-Sulfur Batteries by Nitrogen Doping

    International Nuclear Information System (INIS)

    Geng, Zhen; Xiao, Qiangfeng; Wang, Dabin; Yi, Guanghai; Xu, Zhigang; Li, Bing; Zhang, Cunman

    2016-01-01

    A two-step method with high-efficiency is developed to prepare nitrogen doped activated carbons (NACs) with high surface area and nitrogen content. Based on the method, series of NACs with similar surface area and pore texture but different nitrogen content and nitrogen group species are successfully prepared. The influence of nitrogen doping on electrochemical performance of carbon/sulfur composites cathode is studied deeply under the conditions of similar surface area and pore texture. It presents the directly experimental demonstration that both nitrogen content and nitrogen group species play crucial roles on electrochemical performance of carbon/sulfur composites cathode. NAC/sulfur composites show the much improved cycling performance, which is about 3.5 times as that of nitrogen free carbon. Improved electrochemical performance is due to synergistic effects between nitrogen content and effective nitrogen groups, which enables effective trapping of lithium polysulfides within carbon framework. Besides, it is found that oxygen groups exist in carbon materials obviously influence electrochemical performance of cathode, which could be ignored in most of studies. Based on above, it can be concluded that enhanced chemisorption to lithium polysulfides by functional groups modification is the effective route to improve the electrochemical performance of Li-S battery.

  6. Mn{sub 3}O{sub 4} nanoparticles embedded into graphene nanosheets: Preparation, characterization, and electrochemical properties for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Wang Bei [School of Mechanical, Materials and Mechatronic Engineering and Institute for Superconducting and Electronic Materials, University of Wollongong, NSW 2522 (Australia)] [Department of Chemistry and Forensic Science, University of Technology, Sydney, City Campus, Broadway, Sydney, NSW 2007 (Australia); Park, Jinsoo [School of Materials Science and Engineering, Gyeongsang National University, 900 Gazwa-dong, Jinju, Gyeongnam 660 -701 (Korea, Republic of); Wang Chengyin [Department of Chemistry and Forensic Science, University of Technology, Sydney, City Campus, Broadway, Sydney, NSW 2007 (Australia); Ahn, Hyojun [School of Materials Science and Engineering, Gyeongsang National University, 900 Gazwa-dong, Jinju, Gyeongnam 660 -701 (Korea, Republic of); Wang, Guoxiu, E-mail: Guoxiu.Wang@uts.edu.a [School of Mechanical, Materials and Mechatronic Engineering and Institute for Superconducting and Electronic Materials, University of Wollongong, NSW 2522 (Australia)] [Department of Chemistry and Forensic Science, University of Technology, Sydney, City Campus, Broadway, Sydney, NSW 2007 (Australia)

    2010-09-01

    Mn{sub 3}O{sub 4}/graphene nanocomposites were synthesized by mixing graphene suspension in ethylene glycol with MnO{sub 2} organosol, followed by subsequent ultrasonication processing and heat treatment. The as-prepared product consists of nanosized Mn{sub 3}O{sub 4} particles homogeneously distributed on graphene nanosheets, which has been confirmed by field emission scanning electron microscopy and transmission electron microscopy analysis. Atomic force microscope analysis further identified the distribution of dense Mn{sub 3}O{sub 4} nanoparticles on graphene nanosheets. When used as electrode materials in supercapacitors, Mn{sub 3}O{sub 4}/graphene nanocomposites exhibited a high specific capacitance of 175 F g{sup -1} in 1 M Na{sub 2}SO{sub 4} electrolyte and 256 F g{sup -1} in 6 M KOH electrolyte, respectively. The enhanced supercapacitance of Mn{sub 3}O{sub 4}/graphene nanocomposites could be ascribed to both electrochemical contributions of Mn{sub 3}O{sub 4} nanoparticles, functional groups attached to graphene nanosheets, and significantly increased specific surface area.

  7. Graphene-based electrochemical energy conversion and storage: fuel cells, supercapacitors and lithium ion batteries.

    Science.gov (United States)

    Hou, Junbo; Shao, Yuyan; Ellis, Michael W; Moore, Robert B; Yi, Baolian

    2011-09-14

    Graphene has attracted extensive research interest due to its strictly 2-dimensional (2D) structure, which results in its unique electronic, thermal, mechanical, and chemical properties and potential technical applications. These remarkable characteristics of graphene, along with the inherent benefits of a carbon material, make it a promising candidate for application in electrochemical energy devices. This article reviews the methods of graphene preparation, introduces the unique electrochemical behavior of graphene, and summarizes the recent research and development on graphene-based fuel cells, supercapacitors and lithium ion batteries. In addition, promising areas are identified for the future development of graphene-based materials in electrochemical energy conversion and storage systems. This journal is © the Owner Societies 2011

  8. Electrochemical analysis in a liposome suspension using lapachol as a hydrophobic electro active species.

    Science.gov (United States)

    Okumura, Noriko; Wakamatsu, Shiori; Uno, Bunji

    2014-01-01

    This study demonstrated that the electro-chemical analysis of hydrophobic quinones can be performed in liposome suspension systems. We prepared and analyzed liposome suspensions containing lapachol, which is a quinone-based anti-tumor activity compound. In this suspension system, a simple one redox couple of lapachol is observed. These results are quite different from those obtained in organic solvents. In addition, the pH dependence of redox behaviors of lapachol could be observed in multilamellar vesicle (MLV) suspension system. This MLV suspension system method may approximate the electrochemical behavior of hydrophobic compounds in aqueous conditions. A benefit of this liposome suspension system for electrochemical analysis is that it enables to observe water-insoluble compounds without using organic solvents.

  9. Fuzzy Rough Ring and Its Prop erties

    Institute of Scientific and Technical Information of China (English)

    REN Bi-jun; FU Yan-ling

    2013-01-01

    This paper is devoted to the theories of fuzzy rough ring and its properties. The fuzzy approximation space generated by fuzzy ideals and the fuzzy rough approximation operators were proposed in the frame of fuzzy rough set model. The basic properties of fuzzy rough approximation operators were analyzed and the consistency between approximation operators and the binary operation of ring was discussed.

  10. ELECTROCHEMICAL TECHNOLOGIES FOR OBTAINING MOULDS FOR SOLES OF SHOES

    Directory of Open Access Journals (Sweden)

    Cornelia LUCA

    2013-05-01

    Full Text Available The paper presents contributions in the designing of some electrochemical technologiesfor the manufacturing of the moulds used in the footwear soles obtaining. There are presented a fewmethods for the moulds obtaining, using electro-deposit processes. There are presented thetechnological phases of the obtaining process of the electrolytes and electrodes preparing and thetechnological stages of the moulds manufacturing.

  11. Asymmetric electrochemical supercapacitor, based on polypyrrole coated carbon nanotube electrodes

    International Nuclear Information System (INIS)

    Su, Y.; Zhitomirsky, I.

    2015-01-01

    Highlights: • Polypyrrole (PPy) coated multiwalled carbon nanotubes (MWCNT) were prepared. • New method is based on the use of new electrochemically active dopants for PPy. • The dopans provided dispersion of MWCNT and promoted PPy coating formation. • Symmetric PPy–MWCNT supercapacitors showed high capacitance and low resistance. • Asymmetric PPy–MWCNT/VN–MWCNT devices and modules allowed larger voltage window. - Abstract: Conductive polypyrrole (PPy) polymer – multiwalled carbon nanotubes (MWCNT) composites were synthesized using sulfanilic acid azochromotrop (SPADNS) and sulfonazo III sodium salt (CHR-BS) as anionic dopants for chemical polymerization of PPy. The composites were tested for application in electrodes of electrochemical supercapacitors (ES). Sedimentation tests, electrophoretic deposition experiments and Fourier transform infrared spectroscopy (FTIR) investigations showed that strong adsorption of anionic CHR-BS on MWCNT provided MWCNT dispersion. The analysis of scanning and transmission electron microscopy data demonstrated that the use of CHR-BS allowed the formation of PPy coatings on MWCNT. As a result, the composites, prepared using CHR-BS, showed higher capacitance, compared to the composites, prepared using SPADNS. The electrodes, containing MWCNT, coated with PPy showed a capacitance of 179 F g −1 for active mass loading of 10 mg cm −2 , good capacitance retention at scan rates in the range of 2–100 mV s −1 and excellent cyclic stability. Asymmetric ES devices, containing positive PPy–MWCNT electrodes and negative vanadium nitride (VN)–MWCNT electrodes showed significant improvement in energy storage performance, compared to the symmetric ES due to the larger voltage window. The low impedance and high capacitance of the individual cells paved the way to the development of modules with higher voltage, which showed good electrochemical performance

  12. Study on the electrochemical of the metal deposition from ionic liquids for lithium, titanium and dysprosium

    International Nuclear Information System (INIS)

    Berger, Claudia A.

    2017-01-01

    The thesis was aimed to the characterization of electrochemically deposited film of lithium, titanium and dysprosium on Au(111) from different ionic liquids, finally dysprosium on neodymium-iron-boron magnate for industrial applications. The investigation of the deposits were performed using cyclic voltametry, in-situ scanning tunneling microscopy, electrochemical quartz microbalance, XPS and Auger electron spectroscopy. The sample preparation is described in detail. The deposition rate showed a significant temperature dependence.

  13. Total synthesis of TMG-chitotriomycin based on an automated electrochemical assembly of a disaccharide building block.

    Science.gov (United States)

    Isoda, Yuta; Sasaki, Norihiko; Kitamura, Kei; Takahashi, Shuji; Manmode, Sujit; Takeda-Okuda, Naoko; Tamura, Jun-Ichi; Nokami, Toshiki; Itoh, Toshiyuki

    2017-01-01

    The total synthesis of TMG-chitotriomycin using an automated electrochemical synthesizer for the assembly of carbohydrate building blocks is demonstrated. We have successfully prepared a precursor of TMG-chitotriomycin, which is a structurally-pure tetrasaccharide with typical protecting groups, through the methodology of automated electrochemical solution-phase synthesis developed by us. The synthesis of structurally well-defined TMG-chitotriomycin has been accomplished in 10-steps from a disaccharide building block.

  14. Synthesis and electrochemical properties of layered structure Li[Ni0.5Co0.25Mn0.25]O2 cathode material

    International Nuclear Information System (INIS)

    Prathibha, G.; Rosaiah, P.; Reddy, B. Purusottam; Ganesh, K. Sivajee; Hussain, O. M.

    2015-01-01

    Lithium ion (Li-ion) batteries are currently the energy source of choice for cell phones, laptops, and other mobile electronic devices due to their balance of high energy density with high power density compared to other electrochemical energy carriers. In the present study, mixed hydroxide method is used to prepare Li[Ni 0.5 Co 0.25 Mn 0.25 ]O 2 from the precursors and analyze qualitatively and studied the electrochemical properties. The XRD spectrum exhibited predominant (003) orientation at 2θ =18.39 o corresponding to hexagonal layered structure of R3m symmetry with evaluated lattice parameters are a= 2.84 Å, c= 14.43 Å. Raman measurements were performed to understand the microstructure and vibrational modes of the prepared sample. From the electrochemical (EC) studies an initial discharge capacity of about 140 mAhg −1 with good cyclic stability was observed for the prepared sample in the potential range 0.0 −1.0V in aqueous medium

  15. Surface-treated commercially pure titanium for biomedical applications: Electrochemical, structural, mechanical and chemical characterizations

    International Nuclear Information System (INIS)

    Ogawa, Erika S.; Matos, Adaias O.; Beline, Thamara; Marques, Isabella S.V.; Sukotjo, Cortino; Mathew, Mathew T.; Rangel, Elidiane C.; Cruz, Nilson C.; Mesquita, Marcelo F.; Consani, Rafael X.

    2016-01-01

    Modified surfaces have improved the biological performance and biomechanical fixation of dental implants compared to machined (polished) surfaces. However, there is a lack of knowledge about the surface properties of titanium (Ti) as a function of different surface treatment. This study investigated the role of surface treatments on the electrochemical, structural, mechanical and chemical properties of commercial pure titanium (cp-Ti) under different electrolytes. Cp-Ti discs were divided into 6 groups (n = 5): machined (M—control); etched with HCl + H_2O_2 (Cl), H_2SO_4 + H_2O_2 (S); sandblasted with Al_2O_3 (Sb), Al_2O_3 followed by HCl + H_2O_2 (SbCl), and Al_2O_3 followed by H_2SO_4 + H_2O_2 (SbS). Electrochemical tests were conducted in artificial saliva (pHs 3; 6.5 and 9) and simulated body fluid (SBF—pH 7.4). All surfaces were characterized before and after corrosion tests using atomic force microscopy, scanning electron microscopy, energy dispersive microscopy, X-ray diffraction, surface roughness, Vickers microhardness and surface free energy. The results indicated that Cl group exhibited the highest polarization resistance (R_p) and the lowest capacitance (Q) and corrosion current density (I_c_o_r_r) values. Reduced corrosion stability was noted for the sandblasted groups. Acidic artificial saliva decreased the R_p values of cp-Ti surfaces and produced the highest I_c_o_r_r values. Also, the surface treatment and corrosion process influenced the surface roughness, Vickers microhardness and surface free energy. Based on these results, it can be concluded that acid-etching treatment improved the electrochemical stability of cp-Ti and all treated surfaces behaved negatively in acidic artificial saliva. - Highlights: • Characterization of surface treatment for biomedical implants was investigated. • Sandblasting reduced the corrosion stability of cp-Ti. • Acid etching is a promising dental implants surface treatment.

  16. Surface-treated commercially pure titanium for biomedical applications: Electrochemical, structural, mechanical and chemical characterizations

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Erika S.; Matos, Adaias O.; Beline, Thamara [Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903 (Brazil); IBTN/Br—Institute of Biomaterials, Tribocorrosion and Nanomedicine—Brazilian Branch (Brazil); Marques, Isabella S.V. [Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903 (Brazil); Sukotjo, Cortino [Department of Restorative Dentistry, University of Illinois at Chicago, College of Dentistry, 801 S Paulina, Chicago, IL, USA, 60612 (United States); IBTN—Institute of Biomaterials, Tribocorrosion and Nanomedicine (United States); Mathew, Mathew T. [IBTN—Institute of Biomaterials, Tribocorrosion and Nanomedicine (United States); Department of Biomedical Sciences, University of Illinois, College of Medicine at Rockford, 1601 Parkview Avenue, Rockford, IL, USA, 61107 (United States); Rangel, Elidiane C.; Cruz, Nilson C. [IBTN/Br—Institute of Biomaterials, Tribocorrosion and Nanomedicine—Brazilian Branch (Brazil); Laboratory of Technological Plasmas, Engineering College, Univ Estadual Paulista (UNESP), Av Três de Março, 511, Sorocaba, São Paulo 18087-180 (Brazil); Mesquita, Marcelo F.; Consani, Rafael X. [Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903 (Brazil); and others

    2016-08-01

    Modified surfaces have improved the biological performance and biomechanical fixation of dental implants compared to machined (polished) surfaces. However, there is a lack of knowledge about the surface properties of titanium (Ti) as a function of different surface treatment. This study investigated the role of surface treatments on the electrochemical, structural, mechanical and chemical properties of commercial pure titanium (cp-Ti) under different electrolytes. Cp-Ti discs were divided into 6 groups (n = 5): machined (M—control); etched with HCl + H{sub 2}O{sub 2} (Cl), H{sub 2}SO{sub 4} + H{sub 2}O{sub 2} (S); sandblasted with Al{sub 2}O{sub 3} (Sb), Al{sub 2}O{sub 3} followed by HCl + H{sub 2}O{sub 2} (SbCl), and Al{sub 2}O{sub 3} followed by H{sub 2}SO{sub 4} + H{sub 2}O{sub 2} (SbS). Electrochemical tests were conducted in artificial saliva (pHs 3; 6.5 and 9) and simulated body fluid (SBF—pH 7.4). All surfaces were characterized before and after corrosion tests using atomic force microscopy, scanning electron microscopy, energy dispersive microscopy, X-ray diffraction, surface roughness, Vickers microhardness and surface free energy. The results indicated that Cl group exhibited the highest polarization resistance (R{sub p}) and the lowest capacitance (Q) and corrosion current density (I{sub corr}) values. Reduced corrosion stability was noted for the sandblasted groups. Acidic artificial saliva decreased the R{sub p} values of cp-Ti surfaces and produced the highest I{sub corr} values. Also, the surface treatment and corrosion process influenced the surface roughness, Vickers microhardness and surface free energy. Based on these results, it can be concluded that acid-etching treatment improved the electrochemical stability of cp-Ti and all treated surfaces behaved negatively in acidic artificial saliva. - Highlights: • Characterization of surface treatment for biomedical implants was investigated. • Sandblasting reduced the corrosion stability of cp

  17. The effect of sidewall roughness on line edge roughness in top-down scanning electron microscopy images

    Science.gov (United States)

    Verduin, T.; Lokhorst, S. R.; Kruit, P.; Hagen, C. W.

    2015-03-01

    We have investigated in a numerical study the determination of sidewall roughness (SWR) from top down scanning electron microscopy (SEM) images. In a typical metrology application, top-down SEM images are acquired in a (critical-dimension) SEM and the roughness is analyzed. However, the true size, shape and roughness characteristics of resist features are not fully investigated in the analysis of top-down SEM images. In reality, rough resist features are complex three-dimensional structures and the characterization naturally extends to the analysis of SWR. In this study we randomly generate images of rough lines and spaces, where the lines are made of PMMA on a silicon substrate. The lines that we study have a length of 2 µm, a width of 32nm and a height of 32 nm. The SWR is modeled by using the power spectral density (PSD) function of Palasantzas, which characterizes roughness by the standard deviation σ, correlation length ξ and roughness exponent α . The actual roughness is generated by application of the method of Thorsos in two dimensions. The images are constructed by using a home-built program for simulating electron-specimen interactions. The program that we have developed is optimized for complex arbitrary geometries and large number of incident low energy primary electrons by using multi-core CPUs and GPUs. The program uses the dielectric function model for inelastic scattering events and has an implementation specifically for low energy electrons. A satisfactory comparison is made between the secondary electron yields from the home-built program and another program found in literature. In order to reduce the risk of shrinkage, we use a beam energy of 300 eV and a spot size of 3 nm. Each pixel is exposed with 20 electrons on average (≍ 276 µC/cm2), following the Poisson distribution to account for illumination shot noise. We have assumed that the detection of electrons is perfect and does not introduce additional noise. We measure line edge

  18. Inner-outer interactions in a rough wall turbulent boundary layer over hemispherical roughness using PIV

    Science.gov (United States)

    Pathikonda, Gokul; Clark, Caitlyn; Christensen, Kenneth T.

    2017-11-01

    Inner-outer interactions over rough-wall boundary layer were investigated using high frame-rate, PIV measurements in a Refractive index-matched (RIM) facility. Flows over canonical smooth-wall and hexagonally-packed hemispherical roughness under transitionally rough flow conditions (and with Reτ 1500) were measured using a dual camera PIV system with different fields of view (FOVs) and operating simultaneously. The large FOV measures the large scales and boundary layer parameters, while the small FOV measures the small scales very close to the wall with high spatial ( 7y*) and temporal ( 2.5t*) resolutions. Conditional metrics were formulated to investigate these scale interactions in a spatio-temporal sense using the PIV data. It was found that the observations complement the interaction structure made via hotwire experiments and DNS in previous studies over both smooth and rough-wall flows, with a strong correlation between the large scales and small scale energies indicative of the amplitude modulation interactions. Additionally, frequency and scale modulations were also investigated with limited success. These experiments highlight the similarities and differences in these interactions between the smooth- and rough-wall flows.

  19. Effect of different solutions on electrochemical deposition of ZnO

    International Nuclear Information System (INIS)

    Asil, H.; Chinar, K.; Gur, E.; Tuzemen, S.

    2010-01-01

    ZnO thin films were grown by electrochemical deposition (ECD) onto indium tin oxide using different compounds such as Zn(NO 3 ) 2 , Zn(C 2 H 3 O 2 ) 2 , ZnCl 2 , Zn(ClO 4 ) 2 and different solvents such as dimethylsulfoxide (DMSO) and 18 M deionized water. Furthermore, solutions were prepared using different electrolytes and concentrations in order to determine the optimum deposition parameters of ZnO. All the grown films were characterized by X-ray diffraction, optical absorption and photoluminescence measurement techniques. It is indicated that films grown by using Zn(ClO 4 ) 2 show high crystallinity and optical quality. The X-ray diffraction analysis showed that ZnO thin films which were grown electrochemically in a non-aqueous solution (DMSO) prepared by Zn(ClO 4 ) 2 have highly c-axis preferential orientation. PL measurements showed that ZnO thin films grown in Zn(ClO 4 ) 2 indicates high quality emission characteristics compared to the thin films grown by other solutions

  20. The study of optimal conditions of electrochemical etching of tunnel electron microscopy tungsten tips

    International Nuclear Information System (INIS)

    Anguiano, E.; Aguilar, M.; Olivar, A.I.

    1996-01-01

    We present the experimental results obtained during the study made in the electrochemical etching of tunneling electron microscopy tungsten tips. The experiments was made using DC and two usual electrolytes: KOH and NaOH. For the tip preparation we used a electrochemical cell with stainless steel cathode and the tungsten wire as anode. the electrodes was introduced in a glass recipient containing the electrolytic solution. We study the effects of applied voltage, polish time, tip length and electrolyte concentration as process relevant parameters. The best condition for tip preparation was obtained with a metallurgical microscope and with a SEM.EDX and Auger analysis was made. The results shown the better tips was made with KOH as electrolyte with a limited concentration range (2-4 normal) and applied voltage (2-6 volts) (Author) 20 refs

  1. SYSTEMIC APPROACH AND ROUGHNESS APPLICATION TO CAUSE EMERGING PROPERTIES IN THE RESTORATION OF DEGRADED SOILS

    Directory of Open Access Journals (Sweden)

    Juarês José Aumond

    2014-09-01

    Full Text Available http://dx.doi.org/10.5902/1980509815737Based on the general systems theory, an ecological model for the restoration of ecosystems has been developed, which soils are highly degraded, and treating the ecosystem as a complex dynamic system, hyper-sensitive to initial conditions of soil preparation. Assuming that degraded ecosystems are sensitive to initial conditions of soil preparation, the technique of roughness was evaluated (relief variations alternating between concave and convex surfaces to trigger over time emergent properties that accelerate the process of ecological restoration. The degraded ecosystems can be understood as organizationally open systems, as a dissipative structure, in which irreversibly matter and energy flow. The main task in ecological restoration in areas that had the soil degraded is to achieve the internalization of matter and energy to induce the system to organizational closure. The roughness, represented by soil micro-topography is an effective technique in the internalization of matter, retaining water, sediment, organic matter, nutrients and seeds. Variations of relief trigger environmental changes over time in a dynamic and heterogeneous way, which influence the interactions between solar radiation, moisture and nutrients, creating different opportunities for plants and animal species. There must be an oriented concentration to flow structures and processes between the degraded ecosystem (system and the environment (neighborhood. In this approach, a particular concentration on the interrelationships between the system and the environment is dedicated. For ecological restoration, whose area is with degraded soil, such as mining and ranching, a new integrative degraded systemic approach is proposed, in which the roughness of the soil might trigger spatial and temporal patterns and emergent environmental properties due to the hyper-sensitivity to initial conditions of the land preparation.

  2. Facile synthesis of reduced graphene oxide/CoWO4 nanocomposites with enhanced electrochemical performances for supercapacitors

    International Nuclear Information System (INIS)

    Xu, Xiaowei; Shen, Jianfeng; Li, Na; Ye, Mingxin

    2014-01-01

    Highlights: • RGO/CoWO 4 composites were successfully prepared through a facile hydrothermal method. • RGO/CoWO 4 composites show much higher specific capacitances than pure CoWO 4 . • Enhanced electrical conductivity leads to superior electrochemical performance. - Abstract: A facile one-pot hydrothermal method was provided for synthesis of the reduced graphene oxide-cobalt tungstate (RGO/CoWO 4 ) nanocomposites with the enhanced electrochemical performances for supercapacitors for the first time. The resulting nanocomposites are comprised of CoWO 4 nanospheres that are well-anchored on graphene sheets by in situ reducing. The prepared RGO/CoWO 4 nanocomposites have been thoroughly characterized by Fourier–transform infrared spectroscopy, X-ray diffraction, Raman spectroscopy, Thermogravimetric analysis, Scanning electron microscopy, Transmission electron microscopy, X-ray photoelectron spectroscopy, and N 2 adsorption–desorption. Importantly, the prepared nanocomposites exhibit superior electrochemical performance to CoWO 4 as electrodes for supercapacitors. As a result, RGO/CoWO 4 nanocomposites with 91.6 wt% CoWO 4 content achieved a specific capacitance about 159.9 F g −1 calculated from the CV curves at 5 mV s −1 , which was higher than that of CoWO 4 (60.6 F g −1 ). The good electrochemical performance can be attributed to the increased electrical conductivity and the creation of new active sites due to the synergetic effect of RGO and CoWO 4 nanospheres. The cyclic stability tests demonstrated capacitance retention of about 94.7% after 1000 cycles, suggesting the potential application of RGO/CoWO 4 nanocomposites in energy-storage devices

  3. Electrochemical energy generation

    International Nuclear Information System (INIS)

    Kreysa, G.; Juettner, K.

    1993-01-01

    The proceedings encompass 40 conference papers belonging to the following subject areas: Baseline and review papers; electrochemical fuel cells; batteries: Primary and secondary cells; electrochemical, regenerative systems for energy conversion; electrochemical hydrogen generation; electrochemistry for nuclear power plant; electrochemistry for spent nuclear fuel reprocessing; energy efficiency in electrochemical processes. There is an annex listing the authors and titles of the poster session, and compacts of the posters can be obtained from the office of the Gesellschaft Deutscher Chemiker, Abteilung Tagungen. (MM) [de

  4. Nitrogen-doped graphene: effect of graphite oxide precursors and nitrogen content on the electrochemical sensing properties.

    Science.gov (United States)

    Megawati, Monica; Chua, Chun Kiang; Sofer, Zdenek; Klímová, Kateřina; Pumera, Martin

    2017-06-21

    Graphene, produced via chemical methods, has been widely applied for electrochemical sensing due to its structural and electrochemical properties as well as its ease of production in large quantity. While nitrogen-doped graphenes are widely studied materials, the literature showing an effect of graphene oxide preparation methods on nitrogen quantity and chemical states as well as on defects and, in turn, on electrochemical sensing is non-existent. In this study, the properties of nitrogen-doped graphene materials, prepared via hydrothermal synthesis using graphite oxide produced by various classical methods using permanganate or chlorate oxidants Staudenmaier, Hummers, Hofmann and Brodie oxidation methods, were studied; the resulting nitrogen-doped graphene oxides were labeled as ST-GO, HU-GO, HO-GO and BR-GO, respectively. The electrochemical oxidation of biomolecules, such as ascorbic acid, uric acid, dopamine, nicotinamide adenine nucleotide and DNA free bases, was carried out using cyclic voltammetry and differential pulse voltammetry techniques. The nitrogen content in doped graphene oxides increased in the order ST-GO graphene followed this trend, as shown in the cyclic voltammograms. This is a very important finding that provides insight into the electrocatalytic effect of N-doped graphene. The nitrogen-doped graphene materials exhibited improved sensitivity over bare glassy carbon for ascorbic acid, uric acid and dopamine detection. These studies will enhance our understanding of the effects of graphite oxide precursors on the electrochemical sensing properties of nitrogen-doped graphene materials.

  5. Comparison of vegetation roughness descriptions

    NARCIS (Netherlands)

    Augustijn, Dionysius C.M.; Huthoff, Freek; van Velzen, E.H.; Altinakar, M.S.; Kokpinar, M.A.; Aydin, I.; Cokgor, S.; Kirkgoz, S.

    2008-01-01

    Vegetation roughness is an important parameter in describing flow through river systems. Vegetation impedes the flow, which affects the stage-discharge curve and may increase flood risks. Roughness is often used as a calibration parameter in river models, however when vegetation is allowed to

  6. Fingerprinting the type of line edge roughness

    Science.gov (United States)

    Fernández Herrero, A.; Pflüger, M.; Scholze, F.; Soltwisch, V.

    2017-06-01

    Lamellar gratings are widely used diffractive optical elements and are prototypes of structural elements in integrated electronic circuits. EUV scatterometry is very sensitive to structure details and imperfections, which makes it suitable for the characterization of nanostructured surfaces. As compared to X-ray methods, EUV scattering allows for steeper angles of incidence, which is highly preferable for the investigation of small measurement fields on semiconductor wafers. For the control of the lithographic manufacturing process, a rapid in-line characterization of nanostructures is indispensable. Numerous studies on the determination of regular geometry parameters of lamellar gratings from optical and Extreme Ultraviolet (EUV) scattering also investigated the impact of roughness on the respective results. The challenge is to appropriately model the influence of structure roughness on the diffraction intensities used for the reconstruction of the surface profile. The impact of roughness was already studied analytically but for gratings with a periodic pseudoroughness, because of practical restrictions of the computational domain. Our investigation aims at a better understanding of the scattering caused by line roughness. We designed a set of nine lamellar Si-gratings to be studied by EUV scatterometry. It includes one reference grating with no artificial roughness added, four gratings with a periodic roughness distribution, two with a prevailing line edge roughness (LER) and another two with line width roughness (LWR), and four gratings with a stochastic roughness distribution (two with LER and two with LWR). We show that the type of line roughness has a strong impact on the diffuse scatter angular distribution. Our experimental results are not described well by the present modelling approach based on small, periodically repeated domains.

  7. Synthesis and characterization of a nanocomposite of goethite nanorods and reduced graphene oxide for electrochemical capacitors

    International Nuclear Information System (INIS)

    Shou Qingliang; Cheng Jipeng; Zhang Li; Nelson, Bradley J.; Zhang Xiaobin

    2012-01-01

    We report a one-step synthesis of a nanocomposite of goethite (α-FeOOH) nanorods and reduced graphene oxide (RGO) using a solution method in which ferrous cations serve as a reducing agent of graphite oxide (GO) to graphene and a precursor to grow goethite nanorods. As-prepared goethite nanorods have an average length of 200 nm and a diameter of 30 nm and are densely attached on both sides of the RGO sheets. The electrochemical properties of the nanocomposite were characterized by cyclic voltammetry (CV) and chronopotentiometry (CP) charge–discharge tests. The results showed that goethite/RGO composites have a high electrochemical capacitance of 165.5 F g −1 with an excellent recycling capability making the material promising for electrochemical capacitors. - Graphical abstract: The reduced graphene oxide sheets are decorated with goethite nanorods. The as-prepared composite exhibits a high electrochemical capacitance with good recycling capability, which is promising for supercapacitor applications. Higlights: ► Ferrous ions act as reductant of graphite oxide and precursor of goethite nanorods. ► Goethite nanorods are attached on both sides of the reduced graphene oxide sheets. ► Composite exhibits a high specific capacitance and a good recycling capability. ► Composite is promising for supercapacitor applications.

  8. Uniform manganese hexacyanoferrate hydrate nanocubes featuring superior performance for low-cost supercapacitors and nonenzymatic electrochemical sensors

    Science.gov (United States)

    Pang, Huan; Zhang, Yizhou; Cheng, Tao; Lai, Wen-Yong; Huang, Wei

    2015-09-01

    Uniform manganese hexacyanoferrate hydrate nanocubes are prepared via a simple chemical precipitation method at room temperature. Due to both micro/mesopores of the Prussian blue analogue and nanocubic structures, the manganese hexacyanoferrate hydrate nanocubes allow the efficient charge transfer and mass transport for electrolyte solution and chemical species. Thus, the manganese hexacyanoferrate hydrate nanocube electrode shows a good rate capability and cycling stability for electrochemical capacitors. Furthermore, electrodes modified with manganese hexacyanoferrate hydrate nanocubes demonstrate a sensitive electrochemical response to hydrogen peroxide (H2O2) in buffer solutions with a high selectivity.Uniform manganese hexacyanoferrate hydrate nanocubes are prepared via a simple chemical precipitation method at room temperature. Due to both micro/mesopores of the Prussian blue analogue and nanocubic structures, the manganese hexacyanoferrate hydrate nanocubes allow the efficient charge transfer and mass transport for electrolyte solution and chemical species. Thus, the manganese hexacyanoferrate hydrate nanocube electrode shows a good rate capability and cycling stability for electrochemical capacitors. Furthermore, electrodes modified with manganese hexacyanoferrate hydrate nanocubes demonstrate a sensitive electrochemical response to hydrogen peroxide (H2O2) in buffer solutions with a high selectivity. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04322k

  9. Wave-current generated turbulence over hemisphere bottom roughness

    Science.gov (United States)

    Barman, Krishnendu; Roy, Sayahnya; Debnath, Koustuv

    2018-03-01

    The present paper explores the effect of wave-current interaction on the turbulence characteristics and the distribution of eddy structure over artificially crammed rough bed prepared with hemispheres. The effect of the surface wave on temporal and spatial-averaged mean velocity, intensity, Reynolds shear stress over, within cavity and above the hemispherical bed are discussed. Detailed three-dimensional time series velocity components were measured in a tilting flume using 3-D Micro-Acoustic Doppler Velocimeter (ADV) at a Reynolds number, 62 × 103. This study reports the fractional contributions of burst-sweep cycles dominating the total shear stress near hemispherical rough surface both for current only flow as well as for wave-induced cases. Wavelet analysis of the fluctuating velocity signal shows that the superimposed wave of frequency 1 Hz is capable of modulating the energy containing a range of velocity fluctuations at the mid-depth of the cavity region (formed due to the crammed arrangement of the hemispheres). As a result, the large-scale eddies (with large values of wavelet coefficients) are concentrated at a pseudo-frequency which is equal to the wave oscillating frequency. On the other hand, it is observed that the higher wave frequency (2 Hz) is incapable of modulating the eddy structures at that particular region.

  10. Crystallite size effects in stacking faulted nickel hydroxide and its electrochemical behaviour

    International Nuclear Information System (INIS)

    Ramesh, T.N.

    2009-01-01

    β-Nickel hydroxide comprises a long range periodic arrangement of atoms with a stacking sequence of AC AC AC-having an ideal composition Ni(OH) 2 . Variation in the preparative conditions can lead to the changes in the stacking sequence (AC AC BA CB AC AC or AC AC AB AC AC). This type of variation in stacking sequence can result in the formation of stacking fault in nickel hydroxide. The stability of the stacking fault depends on the free energy content of the sample. Stacking faults in nickel hydroxide is essential for better electrochemical activity. Also there are reports correlating particle size to the better electrochemical activity. Here we present the effect of crystallite size on the stacking faulted nickel hydroxide samples. The electrochemical performance of stacking faulted nickel hydroxide with small crystallite size exchanges 0.8e/Ni, while the samples with larger crystallite size exchange 0.4e/Ni. Hence a right combination of crystallite size and stacking fault content has to be controlled for good electrochemical activity of nickel hydroxide

  11. Investigation of surface roughness on etched glass surfaces

    International Nuclear Information System (INIS)

    Papa, Z.; Budai, J.; Farkas, B.; Toth, Z.

    2011-01-01

    Roughening the surface of solar cells is a common practice within the photovoltaic industry as it reduces reflectance, and thus enhances the performance of devices. In this work the relationship between reflectance characterized by the haze parameter, surface roughness and optical properties was investigated. To achieve this goal, model samples were prepared by hydrofluoric acid etching of glass for various times and measured by optical microscopy, spectroscopic ellipsometry, scanning electron microscopy, and atomic force microscopy. Our investigation showed that the surface reflectance was decreased not only by the roughening of the surface but also by the modification of the depth profile and lowering of the refractive index of the surface domain of the samples.

  12. The effect of polishing technique on 3-D surface roughness and gloss of dental restorative resin composites.

    Science.gov (United States)

    Ereifej, N S; Oweis, Y G; Eliades, G

    2013-01-01

    The aim of this study was to compare surface roughness and gloss of resin composites polished using different polishing systems. Five resin composites were investigated: Filtek Silorane (FS), IPS Empress Direct (IP), Clearfil Majesty Posterior (CM), Premise (PM), and Estelite Sigma (ES). Twenty-five disk specimens were prepared from each material, divided into five groups, each polished with one of the following methods: Opti1Step (OS), OptiDisc (OD), Kenda CGI (KD), Pogo (PG), or metallurgical polishing (ML). Gloss and roughness parameters (Sa, Sz, Sq, and St) were evaluated by 60°-angle glossimetry and white-light interferometric profilometry. Two-way analysis of variance was used to detect differences in different materials and polishing techniques. Regression and correlation analyses were performed to examine correlations between roughness and gloss. Significant differences in roughness parameters and gloss were found according to the material, type of polishing, and material/polishing technique (pgloss was recorded for PM/ML (88.4 [2.3]) and lowest for FS/KD (30.3 [5.7]). All roughness parameters were significantly correlated with gloss (r= 0.871, 0.846, 0.713, and 0.707 for Sa, Sq, Sz, St, and gloss, respectively). It was concluded that the polishing procedure and the type of composite can have significant impacts on surface roughness and gloss of resin composites.

  13. Electrochemical Insights into Platinum Catalysts for Fuel Cells

    DEFF Research Database (Denmark)

    Jensen, Kim Degn

    . A preliminary electrochemical study of in-house synthesized Pt-Y nanoparticles have also been presented revealing specific mass actives of 0.3 ± 0.1A/mgPt in HClO4. The study revealed that extensive optimizations of the Pt-Y nanoparticles are required and their performance is severely impeded by poor......Development of sustainable energy production, conversion and storage technologies must be considered one of the major challenges of the 21st century. Insight and understanding of the oxygen reduction reaction is imperative in these pursuits. In this work electrochemical investigations and physical...... characterization of various model systems ranging from extended surfaces, to thin films and nanoparticle electrocatalysts have been presented and discussed. This have been done with a special focus on governing factors controlling the electroreduction of oxygen. Preparation of Cu/Pt(111) near-surface alloys...

  14. One-pot hydrothermal synthesis, characterization and electrochemical properties of CuS nanoparticles towards supercapacitor applications

    International Nuclear Information System (INIS)

    Krishnamoorthy, Karthikeyan; Rao, Alluri Nagamalleswara; Jae Kim, Sang; Kumar Veerasubramani, Ganesh

    2014-01-01

    In this article, we have investigated the electrochemical properties of CuS nanoparticles for supercapacitor applications. The CuS nanoparticles are prepared by a facile one-pot hydrothermal approach using copper nitrate and thiourea as starting materials. The x-ray diffraction study revealed the formation of covellite CuS. The field-emission scanning electron microscope studies suggested the formation of cubic shaped CuS nanoparticles. The electrochemical studies such as cyclic voltammetry, galvanostatic charge-discharge analysis and electrochemical impedance spectroscopy confirmed the pseudocapacitive nature of the CuS electrodes. The CuS electrode shows a specific capacitance of about 101.34 F g −1 from the cyclic voltammetry at a scan rate of 5 mV s −1 . The electrochemical impedance spectra analyzed using Nyquist plot confirmed the pseudocapacitive behavior of the CuS electrodes. (paper)

  15. Preparation and characterization of green-nano-composite material based on polyaniline, multiwalled carbon nano tubes and carboxymethyl cellulose: For electrochemical sensor applications.

    Science.gov (United States)

    Gautam, Vineeta; Singh, Karan Pratap; Yadav, Vijay Laxmi

    2018-06-01

    In this paper, we are presenting the preparation and characterization of "polyaniline/multiwalled carbon nanotubes/carboxymethyl cellulose" based novel composite material. It's morphological, thermal, structural, and electrochemical properties were investigated by using different instrumental techniques. During the in-situ chemical polymerization of aniline in the aqueous suspension of CMC and MWCNTs, the particle size change in two different ways "top to bottom" (low molecular weight oligomers grows in size) and "bottom to top" (long fibers of CMC fragmented in the reaction mixture). The combination of these two processes facilitated the fabrication of an integrated green-nano-composite material. In addition, a little amount of conductive nanofillers (MWCNTs) boosts the electrical and electrocatalytic properties of the material. Electron-rich centers of benzenoid rings exhibited π-π stacking with sp 2 carbon of MWCNTs. CMC dominantly impact on the properties of PANI, negatively charged carboxylate group of CMC ionically bonded with protonated amine/imine. FTIR and Raman analysis confirmed that the material has dominated quinoid units and effective charge transfer. Hydroxyl and carboxyl groups and bonded water molecules of CMC results in a network of hydrogen bonds (which induced directional property). PANI/MWCNTs/CMC have nanobead-like structures (TEM analysis), large surface area, large pore volume, small pore diameter (BET and BJH studies) and good dispersion ability in the aqueous phase. Nanostructures of aligned PANI exhibited excellent electrochemical properties have attracted increasing attention. Modified carbon paste electrode was used for electrocatalytic detection of ascorbic acid (as a model analyte). The sensor exhibited a linear range 0.05 mM-5 mM, sensitivity 100.63 μA mM -1  cm -2 , and limit of detection 0.01 mM. PANI/MWCNTs/CMC is suitable nanocomposite material for apply electroactive/conducting ink and membrane (which could be

  16. High-temperature electrochemical performance of low-cost La–Ni–Fe based hydrogen storage alloys with different preparation methods

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qiannan [Department of Advanced Energy Materials, College of Materials Science and Engineering, Sichuan University, Chengdu 610065 (China); Zhu, Ding [Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610065 (China); Zhou, Wanhai; Zhong, Chenglin; Wu, Chaoling [Department of Advanced Energy Materials, College of Materials Science and Engineering, Sichuan University, Chengdu 610065 (China); Chen, Yungui, E-mail: ygchen60@aliyun.com [Department of Advanced Energy Materials, College of Materials Science and Engineering, Sichuan University, Chengdu 610065 (China); Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610065 (China)

    2016-04-15

    Highlights: • Effects of four different preparation processes were studied at 20/60 °C. • All NS + HT, RS and RS + HT processes can optimize the thermodynamic performance. • The HT process can provoke the precipitation of A{sub 2}B{sub 7} and leads to a poor cycling life. • Al exhibits the most remarkable dissolution for all the alloys, especially at 60 °C. - Abstract: In order to optimize the microstructure and high temperature electrochemical performances of low-cost AB{sub 5}-type Ml(NiMnAl){sub 4.2}Co{sub 0.3}Fe{sub 0.5} hydrogen storage electrode alloys, four different preparation methods including normal solidification (NS), normal solidification and 900 °C heat treatment (NS + HT), rapid solidification (RS), rapid solidification and 900 °C heat treatment (RS + HT) were adopted in this work. All alloys exhibit CaCu{sub 5} type hexagonal structure and there is a small amount of A{sub 2}B{sub 7} phase in NS + HT and RS + HT alloys. It is found the using of HT process can decrease the hydrogen equilibrium plateau pressure, the plateau slope and hysteresis at 40, 60 and 80 °C. The NS + HT and RS + HT alloys also possess better activation, high rate discharge performance, larger discharge capacity, but poor cycling performance due to the existence of A{sub 2}B{sub 7} phase which can accelerate dissolution of Ni, Mn and Fe elements in KOH alkaline electrolyte. The RS process can make alloy exhibit the best cycling performance especially at 60 °C.

  17. Bankruptcy Prediction with Rough Sets

    NARCIS (Netherlands)

    J.C. Bioch (Cor); V. Popova (Viara)

    2001-01-01

    textabstractThe bankruptcy prediction problem can be considered an or dinal classification problem. The classical theory of Rough Sets describes objects by discrete attributes, and does not take into account the order- ing of the attributes values. This paper proposes a modification of the Rough Set

  18. Roughness-induced streaming in turbulent wave boundary layers

    DEFF Research Database (Denmark)

    Fuhrman, David R.; Sumer, B. Mutlu; Fredsøe, Jørgen

    2011-01-01

    -averaged streaming characteristics induced by bottom roughness variations are systematically assessed. The effects of variable roughness ratio, gradual roughness transitions, as well as changing flow orientation in plan are all considered. As part of the latter, roughness-induced secondary flows are predicted...

  19. Three-tier rough superhydrophobic surfaces

    International Nuclear Information System (INIS)

    Cao, Yuanzhi; Yuan, Longyan; Hu, Bin; Zhou, Jun

    2015-01-01

    A three-tier rough superhydrophobic surface was fabricated by growing hydrophobic modified (fluorinated silane) zinc oxide (ZnO)/copper oxide (CuO) hetero-hierarchical structures on silicon (Si) micro-pillar arrays. Compared with the other three control samples with a less rough tier, the three-tier surface exhibits the best water repellency with the largest contact angle 161° and the lowest sliding angle 0.5°. It also shows a robust Cassie state which enables the water to flow with a speed over 2 m s"−"1. In addition, it could prevent itself from being wetted by the droplet with low surface tension (mixed water and ethanol 1:1 in volume) which reveals a flow speed of 0.6 m s"−"1 (dropped from the height of 2 cm). All these features prove that adding another rough tier on a two-tier rough surface could futher improve its water-repellent properties. (paper)

  20. Mitigating mask roughness via pupil filtering

    Science.gov (United States)

    Baylav, B.; Maloney, C.; Levinson, Z.; Bekaert, J.; Vaglio Pret, A.; Smith, B.

    2014-03-01

    The roughness present on the sidewalls of lithographically defined patterns imposes a very important challenge for advanced technology nodes. It can originate from the aerial image or the photoresist chemistry/processing [1]. The latter remains to be the dominant group in ArF and KrF lithography; however, the roughness originating from the mask transferred to the aerial image is gaining more attention [2-9], especially for the imaging conditions with large mask error enhancement factor (MEEF) values. The mask roughness contribution is usually in the low frequency range, which is particularly detrimental to the device performance by causing variations in electrical device parameters on the same chip [10-12]. This paper explains characteristic differences between pupil plane filtering in amplitude and in phase for the purpose of mitigating mask roughness transfer under interference-like lithography imaging conditions, where onedirectional periodic features are to be printed by partially coherent sources. A white noise edge roughness was used to perturbate the mask features for validating the mitigation.

  1. One step electrochemical synthesis of bimetallic PdAu supported on nafion–graphene ribbon film for ethanol electrooxidation

    Energy Technology Data Exchange (ETDEWEB)

    Shendage, Suresh S., E-mail: sureshsshendage@gmail.com; Singh, Abilash S.; Nagarkar, Jayashree M., E-mail: jm.nagarkar@ictmumbai.edu.in

    2015-10-15

    Highlights: • Electrochemical deposition of bimetallic PdAu NPs. • Highly loaded PdAu NPs are obtained. • Nafion–graphene supported PdAu NPs shows good activity for ethanol electrooxidation. - Abstract: A nafion–graphene ribbon (Nf–GR) supported bimetallic PdAu nanoparticles (PdAu/Nf–GR) catalyst was prepared by electrochemical codeposition of Pd and Au at constant potential. The prepared catalyst was characterized by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), transmission electron microscopy (TEM) and X-ray diffraction analysis (XRD). The average particle size of PdAu nanoparticles (NPs) determined from XRD was 3.5 nm. The electrocatalytic activity of the PdAu/Nf–GR catalyst was examined by cyclic voltametry. It was observed that the as prepared catalyst showed efficient activity and good stability for ethanol electrooxidation in alkaline medium.

  2. Investigation of rare elements by electrochemical methods

    International Nuclear Information System (INIS)

    Zarinskij, V.A.

    1988-01-01

    The use of electrochemical methods for the study of complexing, separation of rare element mixtures, their preparation in lower oxidation states, and also for the development of highly sensitive methods of the element determination, is considered in the review. Voltammetric methods of Pt, Au, Re determination are considered, as well as Re preparation in oxidation states +5, +3 by electrolytic methods. The possibility to use electrodialysis methods for purification of insoluble compounds of rare earths (RE) from impurities, and for separation of Re and Mo with simultaneous purification of Re from K and other elements is shown. The application of high-frequency conductometry to analytic chemistry and to the study of Th, In, RE complexing and kinetics of the reactions is considered

  3. Electrochemical assessment of magnetite anti corrosive paints

    International Nuclear Information System (INIS)

    Escobar, D. M.; Arroyave, C.; Jaramillo, F.; Mattos, O. R.; Margarit, I. c.; Calderon, J.

    2003-01-01

    With the purpose of deepening in the understanding of the mechanisms of protection of anticorrosive pigments based on iron oxides, this work has been carried out on the production of pure magnetite, and copper and chromium doped magnetite, which were evaluated by different characterization techniques. The paints were prepared with a solvent less epoxy resin maintaining the Pigment volume Content near the Practical Critical value (CPVC), established for each pigment. The paints were applied on polished steel and monitored with electrochemical techniques at total immersion conditions. Permeability and impedance measurements of free films were also done. Impedance data were simulated with the Boukamp software. Results show that the paints pigmented with doped magnetite present better behaviour than a paint prepared with commercial hematite. (Author) 8 refs

  4. Physico-Chemical Characterization and Interfacial Electrochemical Properties of Nanoparticles of Anatase-TiO2 Prepared by the Sol-Gel Method

    Directory of Open Access Journals (Sweden)

    Ikram Daou

    2013-07-01

    Full Text Available In this work, we prepared by the sol-gel method titanium dioxide nanoparticles having a large specific area (SBET = 218 m2/g. The isotherm of N2 adsorption-desorption at 77K revealed that it concerns a mesoporous solid with a maximum pore diameter of 43 Å. The X-ray diffraction showed that the solid is constituted of the anatase phase. The transmission electron microscopy revealed us that the synthesized grains of TiO2 are of nanometric sizes (diameter between 8 and 20 nm and manifest under agglomerated shape. The study of its solubility in dispersing phase, by conductometric titrations, showed that the prepared solid is totally insoluble in all the domain of the studied pH. The measured inter-facial electrochemical properties, based on the isotherms of ionic adsorption and the conductometric titrations, are: the point of zero charge found equal to 6,2±0,1, the total number of sites of surface found equal to 5,8 OH/nm2 and the nature of action of the dispersed phase on the dispersing phase which is found organizer of the structure of water. Besides, the difference of the ionizationconstants pK is found superior to 4 for all the adsorbed ions and the constants of surface complexation are independent from the nature of the adsorbed ion.

  5. Effects of water plasma immersion ion implantation on surface electrochemical behavior of NiTi shape memory alloys in simulated body fluids

    International Nuclear Information System (INIS)

    Liu, X.M.; Wu, S.L.; Chu, Paul K.; Chung, C.Y.; Chu, C.L.; Yeung, K.W.K.; Lu, W.W.; Cheung, K.M.C.; Luk, K.D.K.

    2007-01-01

    Water plasma immersion ion implantation (PIII) was conducted on orthopedic NiTi shape memory alloy to enhance the surface electrochemical characteristics. The surface composition of the NiTi alloy before and after H 2 O-PIII was determined by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) was utilized to determine the roughness and morphology of the NiTi samples. Potentiodynamic polarization tests and electrochemical impedance spectroscopy (EIS) were carried out to investigate the surface electrochemical behavior of the control and H 2 O-PIII NiTi samples in simulated body fluids (SBF) at 37 deg. C as well as the mechanism. The H 2 O-PIII NiTi sample showed a higher breakdown potential (E b ) than the control sample. Based on the AFM results, two different physical models with related equivalent electrical circuits were obtained to fit the EIS data and explain the surface electrochemical behavior of NiTi in SBF. The simulation results demonstrate that the higher resistance of the oxide layer produced by H 2 O-PIII is primarily responsible for the improvement in the surface corrosion resistance

  6. Total synthesis of TMG-chitotriomycin based on an automated electrochemical assembly of a disaccharide building block

    Directory of Open Access Journals (Sweden)

    Yuta Isoda

    2017-05-01

    Full Text Available The total synthesis of TMG-chitotriomycin using an automated electrochemical synthesizer for the assembly of carbohydrate building blocks is demonstrated. We have successfully prepared a precursor of TMG-chitotriomycin, which is a structurally-pure tetrasaccharide with typical protecting groups, through the methodology of automated electrochemical solution-phase synthesis developed by us. The synthesis of structurally well-defined TMG-chitotriomycin has been accomplished in 10-steps from a disaccharide building block.

  7. Electrochemical affinity biosensors for detection of mycotoxins: A review.

    Science.gov (United States)

    Vidal, Juan C; Bonel, Laura; Ezquerra, Alba; Hernández, Susana; Bertolín, Juan R; Cubel, Carlota; Castillo, Juan R

    2013-11-15

    This review discusses the current state of electrochemical biosensors in the determination of mycotoxins in foods. Mycotoxins are highly toxic secondary metabolites produced by molds. The acute toxicity of these results in serious human and animal health problems, although it has been only since early 1960s when the first studied aflatoxins were found to be carcinogenic. Mycotoxins affect a broad range of agricultural products, most important cereals and cereal-based foods. A majority of countries, mentioning especially the European Union, have established preventive programs to control contamination and strict laws of the permitted levels in foods. Official methods of analysis of mycotoxins normally requires sophisticated instrumentation, e.g. liquid chromatography with fluorescence or mass detectors, combined with extraction procedures for sample preparation. For about sixteen years, the use of simpler and faster analytical procedures based on affinity biosensors has emerged in scientific literature as a very promising alternative, particularly electrochemical (i.e., amperometric, impedance, potentiometric or conductimetric) affinity biosensors due to their simplicity and sensitivity. Typically, electrochemical biosensors for mycotoxins use specific antibodies or aptamers as affinity ligands, although recombinant antibodies, artificial receptors and molecular imprinted polymers show potential utility. This article deals with recent advances in electrochemical affinity biosensors for mycotoxins and covers complete literature from the first reports about sixteen years ago. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Thriving rough sets 10th anniversary : honoring professor Zdzisław Pawlak's life and legacy & 35 years of rough sets

    CERN Document Server

    Skowron, Andrzej; Yao, Yiyu; Ślęzak, Dominik; Polkowski, Lech

    2017-01-01

    This special book is dedicated to the memory of Professor Zdzisław Pawlak, the father of rough set theory, in order to commemorate both the 10th anniversary of his passing and 35 years of rough set theory. The book consists of 20 chapters distributed into four sections, which focus in turn on a historical review of Professor Zdzisław Pawlak and rough set theory; a review of the theory of rough sets; the state of the art of rough set theory; and major developments in rough set based data mining approaches. Apart from Professor Pawlak’s contributions to rough set theory, other areas he was interested in are also included. Moreover, recent theoretical studies and advances in applications are also presented. The book will offer a useful guide for researchers in Knowledge Engineering and Data Mining by suggesting new approaches to solving the problems they encounter.

  9. Hydrothermal synthesis of flower-like MoS2 nanospheres for electrochemical supercapacitors.

    Science.gov (United States)

    Zhou, Xiaoping; Xu, Bin; Lin, Zhengfeng; Shu, Dong; Ma, Lin

    2014-09-01

    Flower-like MoS2 nanospheres were synthesized by a hydrothermal route. The structure and surface morphology of the as-prepared MoS2 was characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The supercapacitive behavior of MoS2 in 1 M KCl electrolyte was studied by means of cyclic voltammetry (CV), constant current charge-discharge cycling (CD) and electrochemical impedance spectroscopy (EIS). The XRD results indicate that the as-prepared MoS2 has good crystallinity. SEM images show that the MoS2 nanospheres have uniform sizes with mean diameter about 300 nm. Many nanosheets growing on the surface make the MoS2 nanospheres to be a flower-like structure. The specific capacitance of MoS2 is 122 F x g(-1) at 1 A x g(-1) or 114 F x g(-1) at 2 mv s(-1). All the experimental results indicate that MoS2 is a promising electrode material for electrochemical supercapacitors.

  10. A host-guest-recognition-based electrochemical aptasensor for thrombin detection.

    Science.gov (United States)

    Fan, Hao; Li, Hui; Wang, Qingjiang; He, Pingang; Fang, Yuzhi

    2012-05-15

    A sensitive electrochemical aptasensor for thrombin detection is presented based on the host-guest recognition technique. In this sensing protocol, a 15 based thrombin aptamer (ab. TBA) was dually labeled with a thiol at its 3' end and a 4-((4-(dimethylamino)phenyl)azo) benzoic acid (dabcyl) at its 5' end, respectively, which was previously immobilized on one Au electrode surface by AuS bond and used as the thrombin probe during the protein sensing procedure. One special electrochemical marker was prepared by modifying CdS nanoparticle with β-cyclodextrins (ab. CdS-CDs), which employed as electrochemical signal provider and would conjunct with the thrombin probe modified electrode through the host-guest recognition of CDs to dabcyl. In the absence of thrombin, the probe adopted linear structure to conjunct with CdS-CDs. In present of thrombin, the TBA bond with thrombin and transformed into its special G-quarter structure, which forced CdS-CDs into the solution. Therefore, the target-TBA binding event can be sensitively transduced via detecting the electrochemical oxidation current signal of Cd of CdS nanoparticles in the solution. Using this method, as low as 4.6 pM thrombin had been detected. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Dissolution of minerals with rough surfaces

    Science.gov (United States)

    de Assis, Thiago A.; Aarão Reis, Fábio D. A.

    2018-05-01

    We study dissolution of minerals with initial rough surfaces using kinetic Monte Carlo simulations and a scaling approach. We consider a simple cubic lattice structure, a thermally activated rate of detachment of a molecule (site), and rough surface configurations produced by fractional Brownian motion algorithm. First we revisit the problem of dissolution of initial flat surfaces, in which the dissolution rate rF reaches an approximately constant value at short times and is controlled by detachment of step edge sites. For initial rough surfaces, the dissolution rate r at short times is much larger than rF ; after dissolution of some hundreds of molecular layers, r decreases by some orders of magnitude across several time decades. Meanwhile, the surface evolves through configurations of decreasing energy, beginning with dissolution of isolated sites, then formation of terraces with disordered boundaries, their growth, and final smoothing. A crossover time to a smooth configuration is defined when r = 1.5rF ; the surface retreat at the crossover is approximately 3 times the initial roughness and is temperature-independent, while the crossover time is proportional to the initial roughness and is controlled by step-edge site detachment. The initial dissolution process is described by the so-called rough rates, which are measured for fixed ratios between the surface retreat and the initial roughness. The temperature dependence of the rough rates indicates control by kink site detachment; in general, it suggests that rough rates are controlled by the weakest microscopic bonds during the nucleation and formation of the lowest energy configurations of the crystalline surface. Our results are related to recent laboratory studies which show enhanced dissolution in polished calcite surfaces. In the application to calcite dissolution in alkaline environment, the minimal values of recently measured dissolution rate spectra give rF ∼10-9 mol/(m2 s), and the calculated rate

  12. Polarization characteristics of composite electrodes in electrochemical cells with solid electrolytes based on CeO2 and LaGaO3

    International Nuclear Information System (INIS)

    Yaroslavtsev, I. Yu.; Kuzin, B. L.; Bronin, D. I.; Bogdanovich, N. M.

    2005-01-01

    For two types of electrochemical cells with oxygen-conducting solid electrolytes based on lanthanum gallate (LSGM) and cerium oxide (SDC) studied are the temperature dependences of the polarization conductivity of air electrodes prepared from lanthanum strontium manganite (LSM) and composites LSM-LSGM, LSM-SDC, and LSM-SSZ (SSZ is zirconium dioxide-based electrolyte). Effect of praseodymium oxide, added into these electrodes as a modifier, on their electrochemical properties is examined. Electrochemical systems with an LSM/LSGM interface exhibit low electrochemical activity toward the oxygen reaction, because during the formation of electrodes, LSM interacts with LSGM to form a poorly conducting product [ru

  13. Fractal approach to surface roughness of TiO{sub 2}/WO{sub 3} coatings formed by plasma electrolytic oxidation process

    Energy Technology Data Exchange (ETDEWEB)

    Rožić, L.J., E-mail: ljrozic@nanosys.ihtmbg.ac.rs [University of Belgrade, IChTM-Department of Catalysis and Chemical Engineering, Njegoševa 12, Belgrade (Serbia); Petrović, S.; Radić, N. [University of Belgrade, IChTM-Department of Catalysis and Chemical Engineering, Njegoševa 12, Belgrade (Serbia); Stojadinović, S. [University of Belgrade, Faculty of Physics, Studentski trg 12-16, Belgrade (Serbia); Vasilić, R. [Faculty of Environmental Governance and Corporate Responsibility, Educons University, Vojvode Putnika 87, Sremska Kamenica (Serbia); Stefanov, P. [Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113 (Bulgaria); Grbić, B. [University of Belgrade, IChTM-Department of Catalysis and Chemical Engineering, Njegoševa 12, Belgrade (Serbia)

    2013-07-31

    In this study, we have shown that atomic force microscopy is a powerful technique to study the fractal parameters of TiO{sub 2}/WO{sub 3} coatings prepared by plasma electrolytic oxidation (PEO) process. Since the surface roughness of obtained oxide coatings affects their physical properties, an accurate description of roughness parameters is highly desirable. The surface roughness, described by root mean squared and arithmetic average values, is analyzed considering the scans of a series of atomic force micrographs. The results show that the oxide coatings exhibit lower surface roughness in initial stage of PEO process. Also, the surfaces of TiO{sub 2}/WO{sub 3} coatings exhibit fractal behavior. Positive correlation between the fractal dimension and surface roughness of the surfaces of TiO{sub 2}/WO{sub 3} coatings in initial stage of PEO process was found. - Highlights: • TiO{sub 2}/WO{sub 3} coatings were obtained by plasma electrolytic oxidation. • Oxide coatings exhibit lower surface roughness in initial stage of process. • The surfaces of TiO{sub 2}/WO{sub 3} coatings exhibit fractal behavior.

  14. Synthesis and electrochemical properties of Ti-doped DLC films by a hybrid PVD/PECVD process

    Science.gov (United States)

    Jo, Yeong Ju; Zhang, Teng Fei; Son, Myoung Jun; Kim, Kwang Ho

    2018-03-01

    Low electrical conductivity and poor adhesion to metallic substrates are the main drawbacks of diamond-like carbon (DLC) films when used in electrode applications. In this study, Ti-doped DLC films with various Ti contents were synthesized on metal Ti substrates by a hybrid PVD/PECVD process, where PECVD was used for deposition of DLC films and PVD was used for Ti doping. The effects of the Ti doping ratio on the microstructure, adhesion strength, and electrical and electrochemical properties of the DLC films were systematically investigated. An increase in the Ti content led to increased surface roughness and a higher sp2/sp3 ratio of the Ti-DLC films. Ti atoms existed as amorphous-phase Ti carbide when the Ti doping ratio was less than 2.8 at.%, while the nanocrystalline TiC phase was formed in DLC films when the Ti doping ratio was exceeded 4.0 at.%. The adhesion strength, electrical resistivity, electrochemical activity and reversibility of the DLC films were greatly improved by Ti doping. The influence of Ti doping ratio on the electrical and electrochemical properties of the DLC films were also investigated and the best performance was obtained at a Ti content of 2.8 at.%.

  15. Facile synthesis of polypyrrole nanofiber and its enhanced electrochemical performances in different electrolytes

    Directory of Open Access Journals (Sweden)

    C. K. Das

    2012-12-01

    Full Text Available A porous nanocomposite based on polypyrrole (PPy and sodium alginate (SA has been synthesized by easy, inexpensive, eco-friendly method. As prepared nanocomposite showed fibrillar morphology in transmission electron microscopic (TEM analysis. The average diameter of ~100 nm for the nanofibers was observed from scanning electron microscopic (SEM analysis. As prepared nanofiber, was investigated as an electrode material for supercapacitor application in different aqueous electrolyte solutions. PPy nanofiber showed enhanced electrochemical performances in 1M KCl solution as compared to 1M Na2SO4 solution. Maximum specific capacitance of 284 F/g was found for this composite in 1 M KCl electrolyte. It showed 76% specific capacitance retention after 600 cycles in 1 M KCl solution. Electrochemical Impedance Spectra showed moderate capacitive behavior of the composite in both the electrolytes. Further PPy nanofiber demonstrated higher thermal stability as compared to pure PPy.

  16. Interferometric microscopy study of the surface roughness of Portland cement under the action of different irrigants.

    Science.gov (United States)

    Ballester-Palacios, Maria L; Berástegui-Jimeno, Esther M; Parellada-Esquius, Neus; Canalda-Sahli, Carlos

    2013-09-01

    Some investigations suggested common Portland cement (PC) as a substitute material for MTA for endodontic use; both MTA and PC have a similar composition. The aim of this study was to determine the surface roughness of common PC before and after the exposition to different endodontic irrigating solutions: 10% and 20% citric acid, 17% ethylenediaminetetraacetic (EDTA) and 5% sodium hypochlorite. Fifty PC samples in the form of cubes were prepared. PC was mixed with distilled water (powder/liquid ratio 3:1 by weight). The samples were immersed for one minute in 10% and 20% citric acid, 17% EDTA and 5% sodium hypochlorite. After gold coating, PC samples were examined using the New View 100 Zygo interferometric microscope. It was used to examine and register the surface roughness and the profile of two different areas of each sample. Analysis of variance (ANOVA) was carried out, and as the requirements were not met, use was made of the Kruskal-Wallis test for analysis of the results obtained, followed by contrasts using Tukey's contrast tests. Sodium hypochlorite at a concentration of 5% significantly reduced the surface roughness of PC, while 20% citric acid significantly increased surface roughness. The other evaluated citric acid concentration (10%) slightly increased the surface roughness of PC, though statistical significance was not reached. EDTA at a concentration of 17% failed to modify PC surface roughness. Irrigation with 5% sodium hypochlorite and 20% citric acid lowered and raised the roughness values, respectively. The surface texture of PC is modified as the result of treatment with different irrigating solutions commonly used in endodontics, depending on their chemical composition and concentration.

  17. Large-scale preparation of hollow graphitic carbon nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Jun; Li, Fu [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Bai, Yu-Jun, E-mail: byj97@126.com [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); State Key laboratory of Crystal Materials, Shandong University, Jinan 250100 (China); Han, Fu-Dong; Qi, Yong-Xin; Lun, Ning [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Lu, Xi-Feng [Lunan Institute of Coal Chemical Engineering, Jining 272000 (China)

    2013-01-15

    Hollow graphitic carbon nanospheres (HGCNSs) were synthesized on large scale by a simple reaction between glucose and Mg at 550 Degree-Sign C in an autoclave. Characterization by X-ray diffraction, Raman spectroscopy and transmission electron microscopy demonstrates the formation of HGCNSs with an average diameter of 10 nm or so and a wall thickness of a few graphenes. The HGCNSs exhibit a reversible capacity of 391 mAh g{sup -1} after 60 cycles when used as anode materials for Li-ion batteries. -- Graphical abstract: Hollow graphitic carbon nanospheres could be prepared on large scale by the simple reaction between glucose and Mg at 550 Degree-Sign C, which exhibit superior electrochemical performance to graphite. Highlights: Black-Right-Pointing-Pointer Hollow graphitic carbon nanospheres (HGCNSs) were prepared on large scale at 550 Degree-Sign C Black-Right-Pointing-Pointer The preparation is simple, effective and eco-friendly. Black-Right-Pointing-Pointer The in situ yielded MgO nanocrystals promote the graphitization. Black-Right-Pointing-Pointer The HGCNSs exhibit superior electrochemical performance to graphite.

  18. Electrodeposited nickel oxide and graphene modified carbon ionic liquid electrode for electrochemical myglobin biosensor

    International Nuclear Information System (INIS)

    Sun, Wei; Gong, Shixing; Deng, Ying; Li, Tongtong; Cheng, Yong; Wang, Wencheng; Wang, Lei

    2014-01-01

    By using ionic liquid 1-hexylpyridinium hexafluorophosphate based carbon ionic liquid electrode (CILE) as the substrate electrode, graphene (GR) and nickel oxide (NiO) were in situ electrodeposited step by step to get a NiO/GR nanocomposite modified CILE. Myoglobin (Mb) was further immobilized on the surface of NiO/GR/CILE with a Nafion film to get the electrochemical sensor denoted as Nafion/Mb/NiO/GR/CILE. Cyclic voltammetric experiments indicated that a pair of well-defined quasi-reversible redox peaks appeared in pH 3.0 phosphate buffer solution with the formal peak potential (E 0′ ) located at − 0.188 V (vs. SCE), which was the typical characteristics of Mb Fe(III)/Fe(II) redox couples. So the direct electron transfer of Mb was realized and promoted due to the presence of the NiO/GR nanocomposite on the electrode. Based on the cyclic voltammetric data, the electrochemical parameters of Mb on the modified electrode were calculated. The Mb modified electrode showed an excellent electrocatalytic activity towards the reduction of different substrates including trichloroacetic acid and H 2 O 2 . Therefore a third-generation electrochemical Mb biosensor based on NiO/GR/CILE was constructed with good stability and reproducibility. - Highlights: • Graphene and nickel oxide nanocomposites were prepared by electrodeposition. • Electrochemical myoglobin sensor was prepared on a nanocomposite modified electrode. • Direct electrochemistry and electrocatalysis of myglobin were realized

  19. The Effect of Prophylactic Polishing Pastes on Surface Roughness of Indirect Restorative Materials

    Directory of Open Access Journals (Sweden)

    Esra Can Say

    2014-01-01

    Full Text Available The purpose of this study was to evaluate the influence of prophylactic polishing pastes (PPP; Detartrine (DT, Topex (TP on surface roughness (Ra of indirect composites (IRC; Tescera (TES, Gradia (GRD, and Estenia C&B (EST, a glass ceramic (Empress 2 layering (E2, and a leucite reinforced glass ceramic (Empress Esthetic (EE with two different (glazed (G; polished (P surface preparations. A total of 90 IRC and 120 ceramic discs, 8 mm in diameter and 2 mm thick, were prepared. E2 and EE specimens were randomly divided into two groups (n=30. One group was glazed (GE2; GEE, while the other group was polished (PE2; PEE the same as the IRCs. The specimens in each group were subsequently divided into three subgroups: control (C, DT, and TP. Ra (μm was evaluated with a profilometer. Data were analyzed by Kruskal Wallis, followed by the Dunn's multiple comparison tests P0.05. PE2 and PEE were not affected by DT or TP P>0.05, while GE2 and GEE exhibited significant roughening after TP P<0.05. Surface roughness of IRCs and glazed ceramics can be affected by PPP applications.

  20. Electrochemical preparation of uniform CuO/Cu2O heterojunction on β-cyclodextrin-modified carbon fibers

    KAUST Repository

    Chen, Fang-Ping; Jin, Guan-Ping; Su, Jing-Yu; Feng, Xiaoshuang

    2016-01-01

    materials were characterized by field emission scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and electrochemical techniques. The potential application in pollution treatment

  1. The Impact of Hydrocalumites Additives on the Electrochemical Performance of Zinc-Nickel Secondary Cells

    International Nuclear Information System (INIS)

    Wen, Xing; Yang, Zhanhong; Xiao, Xiang; Yang, Huan; Xie, Xiaoe; Huang, Jianhang

    2016-01-01

    Hydrocalumites additives are synthesized and proposed as an anodic additive for Zinc/Nickel alkaline secondary batteries. The as-prepared additives are characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscopy (SEM). And the results illustrate that hydrocalumites additives are successfully prepared and have the typical structure of layered double hydroxides (LDHs). The effects of hydrocalumites additives on electrochemical performances of ZnO have been investigated by cyclic voltammetry (CV), tafel polarization tests, electrochemical impedance spectroscopy (EIS) and galvanostatic charge and discharge. Compared to the electrode with pure ZnO, the electrodes containing hydrocalumites additives show better reversibility, reveal better anti-corrosion property and exhibit more stable cycle performance. Especially when the electrode added with 12% (wt.) hydrocalumites, it exhibits the best cycle performance than the other electrodes. And its discharge capacity is about 450 mAh g −1 all the time, and hardly declines over all the 400 cycles. Based on these observations, the prepared hydrocalumites may be a promising and efficient additive for the ZnO electrode.

  2. Synergy of Nyquist and Bode electrochemical impedance spectroscopy studies to particle size effect on the electrochemical properties of LiNi0.5Co0.2Mn0.3O2

    International Nuclear Information System (INIS)

    Liang, Chenghao; Liu, Lianbao; Jia, Zheng; Dai, Changsong; Xiong, Yueping

    2015-01-01

    To study the mechanism of material particle size effects on the electrochemical properties of LiNi 0.5 Co 0.2 Mn 0.3 O 2 , two kinds of materials with particle size of 300 nm and 1 μm were prepared, based on the electrospinning method and sol-gel method, respectively. The capacity differences of the two materials at 20 mA/g discharge current were unapparent, in the potential range of 2.8V–4.3 V, but become gigantic at 1000 mA/g discharge current. Electrochemical impedance spectroscopy (EIS) was employed to analysis the differences caused by particle size, and frequency responses of every electrochemical process were analyzed in detail through Bode plots, which proved the electrospinning material had an excellent performance caused by a shorter lithium ion and electron diffusion distance.

  3. A new way for preparing superconducting materials: the electrochemical oxidation of La sub 2 CuO sub 4. Une nouvelle voie d'acces aux oxydes supraconducteurs: l'oxydation electrochimique de La sub 2 CuO sub 4

    Energy Technology Data Exchange (ETDEWEB)

    Wattiaux, A; Park, J C; Grenier, J C; Pouchard, M [Bordeaux-1 Univ., 33 - Talence (FR)

    1990-04-01

    The electrochemical oxidation in alkaline medium is described as a new way for preparing superconducting oxides at room temperature. The application of this method to La{sub 2}CuO{sub 4} gave rise to a metallic material with a superconducting behaviour below 39 K and whose physical and chemical features appear as quite promising.

  4. Covalent organic framework-derived microporous carbon nanoparticles coated with conducting polypyrrole as an electrochemical capacitor

    Science.gov (United States)

    Kim, Dong Jun; Yoon, Jung Woon; Lee, Chang Soo; Bae, Youn-Sang; Kim, Jong Hak

    2018-05-01

    We report a high-performance electrochemical capacitor based on covalent organic framework (COF)-derived microporous carbon (MPC) nanoparticles and electrochemically polymerized polypyrrole (Ppy) as a pseudocapacitive material. The COF, Schiff-based network-1 (SNW-1) nanoparticles are prepared via a condensation reaction between melamine and terephthalaldehyde, and the resultant MPC film is prepared via a screen-printing method. The MPC film exhibits a bimodal porous structure with micropores and macropores, resulting in both a large surface area and good electrolyte infiltration. Ppy is synthesized potentio-statically (0.8 V vs. Ag/AgCl) by varying the reaction time, and successful synthesis of Ppy is confirmed via Raman spectroscopy. The specific capacitance with the Ppy coating is enhanced by up to 2.55 F cm-2 due to the synergetic effect of pseudocapacitance and reduced resistance.

  5. Roughness as classicality indicator of a quantum state

    Science.gov (United States)

    Lemos, Humberto C. F.; Almeida, Alexandre C. L.; Amaral, Barbara; Oliveira, Adélcio C.

    2018-03-01

    We define a new quantifier of classicality for a quantum state, the Roughness, which is given by the L2 (R2) distance between Wigner and Husimi functions. We show that the Roughness is bounded and therefore it is a useful tool for comparison between different quantum states for single bosonic systems. The state classification via the Roughness is not binary, but rather it is continuous in the interval [ 0 , 1 ], being the state more classic as the Roughness approaches to zero, and more quantum when it is closer to the unity. The Roughness is maximum for Fock states when its number of photons is arbitrarily large, and also for squeezed states at the maximum compression limit. On the other hand, the Roughness approaches its minimum value for thermal states at infinite temperature and, more generally, for infinite entropy states. The Roughness of a coherent state is slightly below one half, so we may say that it is more a classical state than a quantum one. Another important result is that the Roughness performs well for discriminating both pure and mixed states. Since the Roughness measures the inherent quantumness of a state, we propose another function, the Dynamic Distance Measure (DDM), which is suitable for measure how much quantum is a dynamics. Using DDM, we studied the quartic oscillator, and we observed that there is a certain complementarity between dynamics and state, i.e. when dynamics becomes more quantum, the Roughness of the state decreases, while the Roughness grows as the dynamics becomes less quantum.

  6. Skin friction measurements of mathematically generated roughness in the transitionally- to fully-rough regimes

    Science.gov (United States)

    Barros, Julio; Schultz, Michael; Flack, Karen

    2016-11-01

    Engineering systems are affected by surface roughness which cause an increase in drag leading to significant performance penalties. One important question is how to predict frictional drag purely based upon surface topography. Although significant progress has been made in recent years, this has proven to be challenging. The present work takes a systematic approach by generating surface roughness in which surfaces parameters, such as rms , skewness, can be controlled. Surfaces were produced using the random Fourier modes method with enforced power-law spectral slopes. The surfaces were manufactured using high resolution 3D-printing. In this study three surfaces with constant amplitude and varying slope, P, were investigated (P = - 0 . 5 , - 1 . 0 , - 1 . 5). Skin-friction measurements were conducted in a high Reynolds number turbulent channel flow facility, covering a wide range of Reynolds numbers, from hydraulic-smooth to fully-rough regimes. Results show that some long wavelength roughness scales do not contribute significantly to the frictional drag, thus highlighting the need for filtering in the calculation of surface statistics. Upon high-pass filtering, it was found that krms is highly correlated with the measured ks.

  7. Road roughness evaluation using in-pavement strain sensors

    Science.gov (United States)

    Zhang, Zhiming; Deng, Fodan; Huang, Ying; Bridgelall, Raj

    2015-11-01

    The international roughness index (IRI) is a characterization of road roughness or ride quality that transportation agencies most often report. The prevalent method of acquiring IRI data requires instrumented vehicles and technicians with specialized training to interpret the results. The extensive labor and high cost requirements associated with the existing approaches limit data collection to at most once per year for portions of the national highway system. Agencies characterize roughness only for some secondary roads but much less frequently, such as once every five years, resulting in outdated roughness information. This research developed a real-time roughness evaluation approach that links the output of durable in-pavement strain sensors to prevailing indices that summarize road roughness. Field experiments validated the high consistency of the approach by showing that it is within 3.3% of relative IRI estimates. After their installation and calibration during road construction, the ruggedized strain sensors will report road roughness continuously. Thus, the solution will provide agencies a real-time roughness monitoring solution over the remaining service life of road assets.

  8. Preparation of AAO-CeO2 nanotubes and their application in electrochemical oxidation desulfurization of diesel

    Science.gov (United States)

    Du, Xiaoqing; Yang, Yumeng; Yi, Chenxi; Chen, Yu; Cai, Chao; Zhang, Zhao

    2017-02-01

    The coaxial arrays of AAO-CeO2 NTs have been successfully galvanostatically deposited on an anode, characterized and adopted as a catalyst for removing organic sulfurs from diesel. The influence of the main electrochemical oxidation factors on the efficiency of desulfurization have also been investigated. The results show that the fabrication process of AAO-CeO2 NTs is accompanied by the formation of a new phase, namely Al3Ce, and the main oxidation products of the diesel are soluble inorganic sulphides, especially Ce2(SO4)3. When compared with dibenzothiophene and 4, 6-dimethyldibenzothiophene, benzothiophene is much more easily removed, with a removal efficiency that reaches 87.2%. Finally, a possible electrochemical oxidation desulfurization pathway for diesel is proposed.

  9. Skin-Attachable, Stretchable Electrochemical Sweat Sensor for Glucose and pH Detection.

    Science.gov (United States)

    Oh, Seung Yun; Hong, Soo Yeong; Jeong, Yu Ra; Yun, Junyeong; Park, Heun; Jin, Sang Woo; Lee, Geumbee; Oh, Ju Hyun; Lee, Hanchan; Lee, Sang-Soo; Ha, Jeong Sook

    2018-04-25

    As part of increased efforts to develop wearable healthcare devices for monitoring and managing physiological and metabolic information, stretchable electrochemical sweat sensors have been investigated. In this study, we report on the fabrication of a stretchable and skin-attachable electrochemical sensor for detecting glucose and pH in sweat. A patterned stretchable electrode was fabricated via layer-by-layer deposition of carbon nanotubes (CNTs) on top of patterned Au nanosheets (AuNS) prepared by filtration onto stretchable substrate. For the detection of glucose and pH, CoWO 4 /CNT and polyaniline/CNT nanocomposites were coated onto the CNT-AuNS electrodes, respectively. A reference electrode was prepared via chlorination of silver nanowires. Encapsulation of the stretchable sensor with sticky silbione led to a skin-attachable sweat sensor. Our sensor showed high performance with sensitivities of 10.89 μA mM -1 cm -2 and 71.44 mV pH -1 for glucose and pH, respectively, with mechanical stability up to 30% stretching and air stability for 10 days. The sensor also showed good adhesion even to wet skin, allowing the detection of glucose and pH in sweat from running while being attached onto the skin. This work suggests the application of our stretchable and skin-attachable electrochemical sensor to health management as a high-performance healthcare wearable device.

  10. MIP sensors--the electrochemical approach.

    Science.gov (United States)

    Malitesta, Cosimino; Mazzotta, Elisabetta; Picca, Rosaria A; Poma, Alessandro; Chianella, Iva; Piletsky, Sergey A

    2012-02-01

    This review highlights the importance of coupling molecular imprinting technology with methodology based on electrochemical techniques for the development of advanced sensing devices. In recent years, growing interest in molecularly imprinted polymers (MIPs) in the preparation of recognition elements has led researchers to design novel formats for improvement of MIP sensors. Among possible approaches proposed in the literature on this topic, we will focus on the electrosynthesis of MIPs and on less common hybrid technology (e.g. based on electrochemistry and classical MIPs, or nanotechnology). Starting from the early work reported in this field, an overview of the most innovative and successful examples will be reviewed.

  11. Electrochemical Measurements on Supported Phospholipid Bilayers: Preparation, Properties and Ion Transport Using Incorporated Ionophores

    Czech Academy of Sciences Publication Activity Database

    Navrátil, Tomáš; Šestáková, Ivana; Štulík, Karel; Mareček, Vladimír

    2010-01-01

    Roč. 22, 17-18 (2010), s. 2043-2050 ISSN 1040-0397. [International Conference on Modern Electroanalytical Methods. Prague, 09.12.2009-14.12.2009] R&D Projects: GA AV ČR IAA400400806 Institutional research plan: CEZ:AV0Z40400503 Keywords : voltammetry * phospholipid bilayers * Electrochemical impedance spectroscopy Subject RIV: CG - Electrochemistry Impact factor: 2.721, year: 2010

  12. Studies on the preparation of Caro’s acid by ultrasonic enhanced electrochemistry

    Science.gov (United States)

    Li, Linbo; Yu, Zeli; Hong, Tao; Fang, Zhao; Peng, Jishi; Yang, Zhao

    2017-06-01

    Ultrasonic cavitation effects can generate hydroxyl radicals and high energy, which is widely applied in the field of oxidation currently. Ultrasound-enhanced electrochemical is used to prepare Caro’s acid, which improves the generate rate of Caro’s acid. In this article, the influences of ultrasonic frequency and ultrasonic power on the electrolysis voltage, electrolyte temperature, electrolyte concentration and the concentration of additive in the process of electrochemical preparation of Caro’s acid was studied. And the optimal production conditions were determined. The research results showed that ultrasonic can significantly improve the production of Caro’s acid and the product can increase by about 20 g/L under the best condition.

  13. Construction and Characterization of a Chitosan-Immobilized-Enzyme and β-Cyclodextrin-Included-Ferrocene-Based Electrochemical Biosensor for H2O2 Detection

    Directory of Open Access Journals (Sweden)

    Wenbo Dong

    2017-07-01

    Full Text Available An electrochemical detection biosensor was prepared with the chitosan-immobilized-enzyme (CTS-CAT and β-cyclodextrin-included-ferrocene (β-CD-FE complex for the determination of H2O2. Ferrocene (FE was included in β-cyclodextrin (β-CD to increase its stability. The structure of the β-CD-FE was characterized. The inclusion amount, inclusion rate, and electrochemical properties of inclusion complexes were determined to optimize the reaction conditions for the inclusion. CTS-CAT was prepared by a step-by-step immobilization method, which overcame the disadvantages of the conventional preparation methods. The immobilization conditions were optimized to obtain the desired enzyme activity. CTS-CAT/β-CD-FE composite electrodes were prepared by compositing the CTS-CAT with the β-CD-FE complex on a glassy carbon electrode and used for the electrochemical detection of H2O2. It was found that the CTS-CAT could produce a strong reduction peak current in response to H2O2 and the β-CD-FE could amplify the current signal. The peak current exhibited a linear relationship with the H2O2 concentration in the range of 1.0 × 10−7–6.0 × 10−3 mol/L. Our work provided a novel method for the construction of electrochemical biosensors with a fast response, good stability, high sensitivity, and a wide linear response range based on the composite of chitosan and cyclodextrin.

  14. Synthesis of palladium nanoparticle modified reduced graphene oxide and multi-walled carbon nanotube hybrid structures for electrochemical applications

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jie, E-mail: hujie@tyut.edu.cn [Micro and Nano System Research Center, Key Lab of Advanced Transducers and Intelligent Control System (Ministry of Education) & College of Information Engineering, Taiyuan University of Technology, Taiyuan, 030024, Shanxi (China); Zhao, Zhenting; Zhang, Jun; Li, Gang; Li, Pengwei; Zhang, Wendong [Micro and Nano System Research Center, Key Lab of Advanced Transducers and Intelligent Control System (Ministry of Education) & College of Information Engineering, Taiyuan University of Technology, Taiyuan, 030024, Shanxi (China); Lian, Kun, E-mail: liankun@tyut.edu.cn [Micro and Nano System Research Center, Key Lab of Advanced Transducers and Intelligent Control System (Ministry of Education) & College of Information Engineering, Taiyuan University of Technology, Taiyuan, 030024, Shanxi (China); School of Nano-Science and Nano-Engineering, Suzhou & Collaborative Innovation Center of Suzhou Nano Science and Technology, Xi' an Jiaotong University, Xi' an, 710049 (China); Center for Advanced Microstructures and Devices, Louisiana State University, LA, 70806 (United States)

    2017-02-28

    Graphical abstract: A sensitive hydrazine electrochemical sensor was fabricated by using palladium (Pd) nanoparticle functionalized reduced graphene oxide (rGO) and multi-walled carbon nanotube (MWCNTs) hybrid structures (Pd/rGO-MWCNTs). - Highlights: • rGO-MWCNTs hybrid structures and Pd nanoparticles are prepared using electrochemical methods. • rGO-MWCNTs hybrid films are used as supports and co-catalysts for Pd nanoparticles. • The Pd/rGO-MWCNTs hybrid structure based sensor shows an ultra-high sensitivity of 7.09 μA μM{sup −1} cm{sup −2} and a low detection limit of 0.15 μM. • The proposed electrochemical sensor exhibits excellent selectivity. - Abstract: In this work, palladium (Pd) nanoparticles functionalized reduced graphene oxide (rGO) and multi-walled carbon nanotubes (MWCNTs) hybrid structures (Pd/rGO-MWCNTs) were successfully prepared by a combination of electrochemical reduction with electrodeposition method. The morphology, structure, and composition of the Pd/rGO-MWCNTs hybrid were characterized by scanning electron microscopy, transmission electron microscopy and energy dispersive spectroscopy. The as-synthesized hybrid structures were modified on the glassy carbon electrode (GCE) and further utilized for hydrazine sensing. Electrochemical impedance spectroscopic, cyclic voltammetry and single-potential amperometry experiments were carried out on Pd/rGO-MWCNTs hybrid structures to investigate the interface properties and sensing performance. The measured results demonstrate that the fabricated Pd/rGO-MWCNTs/GCE sensor show a high sensitivity of 7.09 μA μM{sup −1} cm{sup −2} in a large concentration range of 1.0 to 1100 μM and a low detection limit of 0.15 μM. Moreover, the as-prepared sensor exhibits good selectivity and stability for the determination of hydrazine under interference conditions.

  15. Synthesis of palladium nanoparticle modified reduced graphene oxide and multi-walled carbon nanotube hybrid structures for electrochemical applications

    International Nuclear Information System (INIS)

    Hu, Jie; Zhao, Zhenting; Zhang, Jun; Li, Gang; Li, Pengwei; Zhang, Wendong; Lian, Kun

    2017-01-01

    Graphical abstract: A sensitive hydrazine electrochemical sensor was fabricated by using palladium (Pd) nanoparticle functionalized reduced graphene oxide (rGO) and multi-walled carbon nanotube (MWCNTs) hybrid structures (Pd/rGO-MWCNTs). - Highlights: • rGO-MWCNTs hybrid structures and Pd nanoparticles are prepared using electrochemical methods. • rGO-MWCNTs hybrid films are used as supports and co-catalysts for Pd nanoparticles. • The Pd/rGO-MWCNTs hybrid structure based sensor shows an ultra-high sensitivity of 7.09 μA μM"−"1 cm"−"2 and a low detection limit of 0.15 μM. • The proposed electrochemical sensor exhibits excellent selectivity. - Abstract: In this work, palladium (Pd) nanoparticles functionalized reduced graphene oxide (rGO) and multi-walled carbon nanotubes (MWCNTs) hybrid structures (Pd/rGO-MWCNTs) were successfully prepared by a combination of electrochemical reduction with electrodeposition method. The morphology, structure, and composition of the Pd/rGO-MWCNTs hybrid were characterized by scanning electron microscopy, transmission electron microscopy and energy dispersive spectroscopy. The as-synthesized hybrid structures were modified on the glassy carbon electrode (GCE) and further utilized for hydrazine sensing. Electrochemical impedance spectroscopic, cyclic voltammetry and single-potential amperometry experiments were carried out on Pd/rGO-MWCNTs hybrid structures to investigate the interface properties and sensing performance. The measured results demonstrate that the fabricated Pd/rGO-MWCNTs/GCE sensor show a high sensitivity of 7.09 μA μM"−"1 cm"−"2 in a large concentration range of 1.0 to 1100 μM and a low detection limit of 0.15 μM. Moreover, the as-prepared sensor exhibits good selectivity and stability for the determination of hydrazine under interference conditions.

  16. Cobalt hexacyanoferrate modified multi-walled carbon nanotubes/graphite composite electrode as electrochemical sensor on microfluidic chip

    International Nuclear Information System (INIS)

    Li Xinchun; Chen Zuanguang; Zhong Yuwen; Yang Fan; Pan Jianbin; Liang Yajing

    2012-01-01

    Highlights: ► CoHCF nanoparticles modified MWCNTs/graphite electrode use for electrochemistry on electrophoresis microchip for the first time. ► Simultaneous, rapid, and sensitive electrochemical detection of hydrazine and isoniazid in real samples. ► An exemplary work of CME sensor assembly onto microchip for determination of analytes with environmental significance. ► Manifestation of the applicability and flexibility of CME sensor for electroanalysis on microfluidic chip. - Abstract: Nanomaterial-based electrochemical sensor has received significant interest. In this work, cobalt hexacyanoferrate modified multi-walled carbon nanotubes/graphite composite electrode was electrochemically prepared and exploited as an amperometric detector for microchip electrophoresis. The prepared sensor displayed rapid and sensitive response towards hydrazine and isoniazid oxidation, which was attributed to synergetic electrocatalytic effect of cobalt hexacyanoferrate and multi-walled carbon nanotubes. The sensitivity enhancement with nearly two orders of magnitude was gained, compared with the bare carbon paste electrode, with the detection limit of 0.91 μM (S/N = 3) for hydrazine. Acceptable repeatability of the microanalysis system was verified by consecutive eleven injections of hydrazine without chip and electrode treatments, the RSDs for peak current and migration time were 3.4% and 2.1%, respectively. Meanwhile, well-shaped electrophoretic peaks were observed, mainly due to fast electron transfer of electroactive species on the modified electrode. The developed microchip-electrochemistry setup was successfully applied to the determination of hydrazine and isoniazid in river water and pharmaceutical preparation, respectively. Several merits of the novel electrochemical sensor coupled with microfluidic platform, such as comparative stability, easy fabrication and high sensitivity, hold great potential for hydrazine compounds assay in the lab-on-a-chip system.

  17. Superficial roughness on composite surface, composite enamel and composite dentin junctions after different finishing and polishing procedures. Part I: roughness after treatments with tungsten carbide vs diamond burs.

    Science.gov (United States)

    Ferraris, Federico; Conti, Alessandro

    2014-01-01

    The aim of this study is to investigate different instruments for finishing composite restorations, as well as examining different surfaces and interfaces of the same restoration. The null hypothesis is represented by the fact that there are no significant differences on roughness of composite restorations finishing between tungsten carbide and diamond burs, furthermore the null hypothesis is that there are no significant differences on roughness between finishing on composite surfaces (C), compositeenamel (CE) and composite-dentin (CD) interfaces. The study was performed on 28 teeth, and class V cavities were prepared on the extracted teeth. Restorations were done in Filtek XTE nanofilled composite (3M Espe) in a standardized method, to then be finished. A comparison was made in the phase 1 between tungsten carbide burs (16 blades), diamond burs (46 μm), with a similar shape by the same manufacturer (Komet). Each surface received 5 bur applications. Consequently, an analysis with a profilometer was performed. Phase 2 involved further confrontation of ulterior finishing with ultrafine tungsten carbide burs (30 blades) and with extra and ultrafine diamond burs (25 and 8 μm) (the same shape as previously mentioned). A second analysis was then performed with a profilometer. All measurements were taken on C surfaces, CE and CD interfaces. Statistical analyses were carried out with c2 test (a = 0.05). The finishing procedures with fine grit or toothing burs gave a better smoothness with tungsten carbide burs compared to diamond burs. While with the ultrafine grit no significant differences were noted between tungsten carbide and diamond burs on the CE and CD interfaces, the diamond bur left less superficial roughness on the C surfaces. With regards to the superficial roughness of the different areas of restoration, it can be concluded that: minor roughness was detected on C surfaces, while the CD interface had the most superficial roughness, regardless of whether the

  18. Polymer-directed synthesis of metal oxide-containing nanomaterials for electrochemical energy storage

    Science.gov (United States)

    Mai, Yiyong; Zhang, Fan; Feng, Xinliang

    2013-12-01

    Metal oxide-containing nanomaterials (MOCNMs) of controllable structures at the nano-scale have attracted considerable interest because of their great potential applications in electrochemical energy storage devices, such as lithium-ion batteries (LIBs) and supercapacitors. Among many structure-directing agents, polymers and macromolecules, including block copolymers (BCPs) and graphene, exhibit distinct advantages in the template-assisted synthesis of MOCNMs. In this feature article, we introduce the controlled preparation of MOCNMs employing BCPs and graphene as structure-directing agents. Typical synthetic strategies are presented for the control of structures and sizes as well as the improvement of physical properties and electrochemical performance of MOCNMs in LIBs and supercapacitors.

  19. Electrochemical system for the control of oxigen atmospheres in UO2 sintering

    International Nuclear Information System (INIS)

    Caneiro, Alberto; Abriata, J.P.

    1980-01-01

    The behaviour of an electrochemical pump and of an oxygen sensor, allowing a precise control of the UO 2 stoichiometry in the preparation and analysis of gaseous mixtures of low oxygen contents is described. The correct functioning of the system can be tested by applying Faraday's law. The oxygen partial pressures can be continuously controlled by the sole varation of the current applied to the electrochemical pump. The partial pressure of the system is within the range between x 10 -1 atm and 10 -27 atm at 800 deg C. This system may be utilized for sintering experiments at a laboratory scale. (M.E.L) [es

  20. Electrochemical investigations of ion-implanted oxide films

    International Nuclear Information System (INIS)

    Schultze, J.W.; Danzfuss, B.; Meyer, O.; Stimming, U.

    1985-01-01

    Oxide films (passive films) of 40-50 nm thickness were prepared by anodic polarization of hafnium and titanium electrodes up to 20 V. Multiple-energy ion implantation of palladium, iron and xenon was used in order to obtain modified films with constant concentration profiles of the implanted ions. Rutherford backscattering, X-ray photoelectron spectroscopy measurements and electrochemical charging curves prove the presence of implanted ions, but electrochemical and photoelectrochemical measurements indicate that the dominating effect of ion implantation is the disordering of the oxide film. The capacity of hafnium electrodes increases as a result of an increase in the dielectric constant D. For titanium the Schottky-Mott analysis shows that ion implantation causes an increase in D and the donor concentration N. Additional electronic states in the band gap which are created by the implantation improve the conductivity of the semiconducting or insulating films. This is seen in the enhancement of electron transfer reactions and its disappearance during repassivation and annealing. Energy changes in the band gap are derived from photoelectrochemical measurements; the absorption edge of hafnium oxide films decreases by approximately 2 eV because of ion implantation, but it stays almost constant for titanium oxide films. All changes in electrochemical behavior caused by ion implantation show little variation with the nature of the implanted ion. Hence the dominating effect seems to be a disordering of the oxide. (Auth.)

  1. Suppression of intrinsic roughness in encapsulated graphene

    DEFF Research Database (Denmark)

    Thomsen, Joachim Dahl; Gunst, Tue; Gregersen, Søren Schou

    2017-01-01

    Roughness in graphene is known to contribute to scattering effects which lower carrier mobility. Encapsulating graphene in hexagonal boron nitride (hBN) leads to a significant reduction in roughness and has become the de facto standard method for producing high-quality graphene devices. We have...... fabricated graphene samples encapsulated by hBN that are suspended over apertures in a substrate and used noncontact electron diffraction measurements in a transmission electron microscope to measure the roughness of encapsulated graphene inside such structures. We furthermore compare the roughness...... of these samples to suspended bare graphene and suspended graphene on hBN. The suspended heterostructures display a root mean square (rms) roughness down to 12 pm, considerably less than that previously reported for both suspended graphene and graphene on any substrate and identical within experimental error...

  2. Modeling surface roughness scattering in metallic nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Moors, Kristof, E-mail: kristof@itf.fys.kuleuven.be [KU Leuven, Institute for Theoretical Physics, Celestijnenlaan 200D, B-3001 Leuven (Belgium); IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Sorée, Bart [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Physics Department, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium); KU Leuven, Electrical Engineering (ESAT) Department, Kasteelpark Arenberg 10, B-3001 Leuven (Belgium); Magnus, Wim [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Physics Department, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium)

    2015-09-28

    Ando's model provides a rigorous quantum-mechanical framework for electron-surface roughness scattering, based on the detailed roughness structure. We apply this method to metallic nanowires and improve the model introducing surface roughness distribution functions on a finite domain with analytical expressions for the average surface roughness matrix elements. This approach is valid for any roughness size and extends beyond the commonly used Prange-Nee approximation. The resistivity scaling is obtained from the self-consistent relaxation time solution of the Boltzmann transport equation and is compared to Prange-Nee's approach and other known methods. The results show that a substantial drop in resistivity can be obtained for certain diameters by achieving a large momentum gap between Fermi level states with positive and negative momentum in the transport direction.

  3. Electrochemical Properties of Graphene Oxide/Resol Composites as Electrode Materials for Supercapacitor Applications.

    Science.gov (United States)

    Park, Geon Woo; Jeon, Sang Kwon; Yang, Jin Yong; Choi, Sung Dae; Kim, Geon Joong

    2016-05-01

    RGO/Resol carbon composites were prepared from a mixture of reduced GO and a low-molecular-weight phenolic resin (Resol) solution. The effects of the calcination temperature, amount of Resol added and KOH treatment on the electrochemical performance of the RGO/Resol composites were investigated. The physical and electrochemical properties of the composite materials were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Brunauer, Emmett and Teller (BET) surface areas measurements, and cyclic voltammetry (CV). The relationships between their physical properties and their electrochemical performance were examined for use as super-capacitors (SCs). The RGO/Resol composite calcined at 400 degrees C after the KOH loading showed dramatically improved electrochemical properties, showing a high BET surface and capacitance of 2190 m2/g and 220 F/g, respectively. The RGO/Resol composites calcined after the KOH treatment showed much better capacitor performance than those treated only thermally at the same temperature without KOH impregnation. The fabrication of high surface electrodes was essential for improving the SCs properties.

  4. Ion sensors based on novel fiber organic electrochemical transistors for lead ion detection.

    Science.gov (United States)

    Wang, Yuedan; Zhou, Zhou; Qing, Xing; Zhong, Weibing; Liu, Qiongzhen; Wang, Wenwen; Li, Mufang; Liu, Ke; Wang, Dong

    2016-08-01

    Fiber organic electrochemical transistors (FECTs) based on polypyrrole and nanofibers have been prepared for the first time. FECTs exhibited excellent electrical performances, on/off ratios up to 10(4) and low applied voltages below 2 V. The ion sensitivity behavior of the fiber organic electrochemical transistors was investigated. It exhibited that the transfer curve of FECTs shifted to lower gate voltage with increasing cations concentration, the sensitivity reached to 446 μA/dec in the 10(-5)-10(-2) M Pb(2+) concentration range. The ion selective properties of the FECTs have also been systematically studied for the detection of potassium, calcium, aluminum, and lead ions. The devices with different cations showed great difference in response curves. It was suitable for selectively monitoring Pb(2+) with respect to other cations. The results indicated FECTs were very effective for electrochemical sensing of lead ion, which opened a promising perspective for wearable electronics in healthcare and biological application. Graphical Abstract The schematic diagram of fiber organic electrochemical transistors based on polypyrrole and nanofibers for ion sensing.

  5. Highly-sensitive electrochemical sensing platforms for food colourants based on the property-tuning of porous carbon

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Qin [Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074 (China); Xia, Shanhong; Tong, Jianhua [State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Science, Beijing, 100190 (China); Wu, Kangbing, E-mail: kbwu@hust.edu.cn [Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074 (China)

    2015-08-05

    It is very challenging to develop highly-sensitive analytical platforms for toxic synthetic colourants that widely added in food samples. Herein, a series of porous carbon (PC) was prepared using CaCO{sub 3} nanoparticles (nano-CaCO{sub 3}) as the hard template and starch as the carbon precursor. Characterizations of scanning electron microscopy and transmission electron microscopy indicated that the morphology and porous structure were controlled by the weight ratio of starch and nano-CaCO{sub 3}. The electrochemical behaviours of four kinds of widely-used food colourants, Sunset yellow, Tartrazine, Ponceau 4R and Allura red, were studied. On the surface of PC samples, the oxidation signals of colourants enhanced obviously, and more importantly, the signal enhancement abilities of PC were also dependent on the starch/nano-CaCO{sub 3} weight ratio. The greatly-increased electron transfer ability and accumulation efficiency were the main reason for the enhanced signals of colourants, as confirmed by electrochemical impedance spectroscopy and chronocoulometry. The prepared PC-2 sample by 1:1 starch/nano-CaCO{sub 3} weight ratio was more active for the oxidation of food colourtants, and increased the signals by 89.4-fold, 79.3-fold, 47.3-fold and 50.7-fold for Sunset yellow, Tartrazine, Ponceau 4R and Allura red. As a result, a highly-sensitive electrochemical sensing platform was developed, and the detection limits were 1.4, 3.5, 2.1 and 1.7 μg L{sup −1} for Sunset yellow, Tartrazine, Ponceau 4R and Allura red. The practical application of this new sensing platform was demonstrated using drink samples, and the detected results consisted with the values that obtained by high-performance liquid chromatography. - Highlights: • PC samples with different morphology and electrochemical activities were prepared. • Highly sensitive electrochemical sensing platform was developed for food colourants. • The accuracy and practicability was testified to be good by HPLC.

  6. Highly-sensitive electrochemical sensing platforms for food colourants based on the property-tuning of porous carbon

    International Nuclear Information System (INIS)

    Cheng, Qin; Xia, Shanhong; Tong, Jianhua; Wu, Kangbing

    2015-01-01

    It is very challenging to develop highly-sensitive analytical platforms for toxic synthetic colourants that widely added in food samples. Herein, a series of porous carbon (PC) was prepared using CaCO 3 nanoparticles (nano-CaCO 3 ) as the hard template and starch as the carbon precursor. Characterizations of scanning electron microscopy and transmission electron microscopy indicated that the morphology and porous structure were controlled by the weight ratio of starch and nano-CaCO 3 . The electrochemical behaviours of four kinds of widely-used food colourants, Sunset yellow, Tartrazine, Ponceau 4R and Allura red, were studied. On the surface of PC samples, the oxidation signals of colourants enhanced obviously, and more importantly, the signal enhancement abilities of PC were also dependent on the starch/nano-CaCO 3 weight ratio. The greatly-increased electron transfer ability and accumulation efficiency were the main reason for the enhanced signals of colourants, as confirmed by electrochemical impedance spectroscopy and chronocoulometry. The prepared PC-2 sample by 1:1 starch/nano-CaCO 3 weight ratio was more active for the oxidation of food colourtants, and increased the signals by 89.4-fold, 79.3-fold, 47.3-fold and 50.7-fold for Sunset yellow, Tartrazine, Ponceau 4R and Allura red. As a result, a highly-sensitive electrochemical sensing platform was developed, and the detection limits were 1.4, 3.5, 2.1 and 1.7 μg L −1 for Sunset yellow, Tartrazine, Ponceau 4R and Allura red. The practical application of this new sensing platform was demonstrated using drink samples, and the detected results consisted with the values that obtained by high-performance liquid chromatography. - Highlights: • PC samples with different morphology and electrochemical activities were prepared. • Highly sensitive electrochemical sensing platform was developed for food colourants. • The accuracy and practicability was testified to be good by HPLC

  7. Electrochemical machining of burn-resistant Ti40 alloy

    Directory of Open Access Journals (Sweden)

    Xu Zhengyang

    2015-08-01

    Full Text Available This study investigates the feasibility of using electrochemical machining (ECM to produce critical aeroengine components from a new burn-resistant titanium alloy (Ti40, thereby reducing costs and improving efficiency relative to conventional mechanical machining. Through this, it is found that an aqueous mix of sodium chloride and potassium bromide provides the optimal electrolyte and that the surface quality of the Ti40 workpiece is improved by using a pulsed current of 1 kHz rather than a direct current. Furthermore, the quality of cavities produced by ECM and the overall material removal rate are determined to be dependent on a combination of operating voltage, electrolyte inlet pressure, cathode feeding rate and electrolyte concentration. By optimizing these parameters, a surface roughness of 0.371 μm has been achieved in conjunction with a specific removal rate of more than 3.1 mm3/A·min.

  8. Fabrication of an electrically conductive mixed self-assembled monolayer and its application in an electrochemical immunosensor

    International Nuclear Information System (INIS)

    Lee, Jung Bae; Namgung, Miok; Lee, Sang-Baek; Oh, Se Young

    2008-01-01

    Oligophenylethynylene thiol containing carboxylic acid in the tail group as a conducting wire bioreceptor was synthesized, and then its electrical property was investigated from the measurement of scanning tunneling microscopy (STM). Mixed self-assembled monolayer (SAM) consisting of 4-(2-(4-acetylthio)phenyl)ethynyl) benzoic acid (APBA) and butanethiol was fabricated in order to improve the electrical conductivity owing to the molecular orientation. We have examined the molecular orientation and the electrochemical activity of mixed SAM via X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV). Especially, the prepared mixed SAM used as a bioreceptor in electrochemical prostate specific antigen (PSA) immunosensor showed higher electrochemical activity than that of the other SAMs

  9. Spectro-electrochemical and DFT study of tenoxicam metabolites formed by electrochemical oxidation

    International Nuclear Information System (INIS)

    Ramírez-Silva, M.T.; Guzmán-Hernández, D.S.; Galano, A.; Rojas-Hernández, A.; Corona-Avendaño, S.; Romero-Romo, M.; Palomar-Pardavé, M.

    2013-01-01

    Highlights: • Tenoxicam deprotonation and electrochemical oxidation were studied. • Both spectro-electrochemical and theoretical DFT studies were considered. • It was found that the ampholitic species of tenoxicam is a zwitterion. • Electrochemical oxidation of tenoxicam yields two non-electroactive products. • The nature of these fragments was further confirmed by a chromatography study. -- Abstract: From experimental (spectro-electrochemical) and theoretical (DFT) studies, the mechanisms of tenoxicam deprotonation and electrochemical oxidation were assessed. From these studies, new insights on the nature of the ampholitic species involved during tenoxicam's deprotonation in aqueous solution are presented; see scheme A. Moreover, it is shown that, after the analysis of two different reaction schemes that involve up to 10 different molecules and 12 reaction paths, the electrochemical oxidation of tenoxicam, yields two non-electroactive products that are predominately formed by its fragmentation, after the loss of two electrons. The nature of these fragments was further confirmed by a chromatography study

  10. ROMI 4.0: Updated Rough Mill Simulator

    Science.gov (United States)

    Timo Grueneberg; R. Edward Thomas; Urs Buehlmann

    2012-01-01

    In the secondary hardwood industry, rough mills convert hardwood lumber into dimension parts for furniture, cabinets, and other wood products. ROMI 4.0, the US Department of Agriculture Forest Service's ROugh-MIll simulator, is a software package designed to simulate the cut-up of hardwood lumber in rough mills in such a way that a maximum possible component yield...

  11. Regular use of a hand cream can attenuate skin dryness and roughness caused by frequent hand washing

    Directory of Open Access Journals (Sweden)

    Kampf Günter

    2006-02-01

    Full Text Available Abstract Background Aim of the study was to determine the effect of the regular use of a hand cream after washing hands on skin hydration and skin roughness. Methods Twenty-five subjects washed hands and forearms with a neutral soap four times per day, for 2 minutes each time, for a total of two weeks. One part of them used a hand cream after each hand wash, the others did not (cross over design after a wash out period of two weeks. Skin roughness and skin hydration were determined on the forearms on days 2, 7, 9 and 14. For skin roughness, twelve silicon imprint per subject and time point were taken from the stratum corneum and assessed with a 3D skin analyzer for depth of the skin relief. For skin hydration, five measurements per subject and time point were taken with a corneometer. Results Washing hands lead to a gradual increase of skin roughness from 100 (baseline to a maximum of 108.5 after 9 days. Use of a hand cream after each hand wash entailed a decrease of skin roughness which the lowest means after 2 (94.5 and 14 days (94.8. Skin hydration was gradually decreased after washing hands from 79 (baseline to 65.5 after 14 days. The hand wash, followed by use of a hand cream, still decreased skin hydration after 2 days (76.1. Over the next 12 days, however, skin hydration did not change significantly (75.6 after 14 days. Conclusion Repetitive and frequent hand washing increases skin dryness and roughness. Use of a hand cream immediately after each hand wash can confine both skin dryness and skin roughness. Regular use of skin care preparations should therefore help to prevent both dry and rough skin among healthcare workers in clinical practice.

  12. Electrochemical properties of Li2 FeSiO4 /C nanocomposites prepared by sol-gel and hydrothermal methods

    Science.gov (United States)

    Kumar, Ajay; Jayakumar, O. D.; Naik, Vaman M.; Nazri, Gholam A.; Naik, Ratna

    Li2FeSiO4 is considered as potential cathode material for next generation lithium ion batteries because of its high specific theoretical capacity, low cost, and safety. However, it suffers from poor electronic conductivity and slow lithium ion diffusion in the solid phase. To address these issues, we have studied mesoporous Li2FeSiO4/C composites synthesized by sol-gel (SG) and hydrothermal (HT) methods using tri-block copolymer (P123) as carbon source and structure directing agent. The structure and morphology of the composites were characterized by XRD, SEM and TEM and the surface area and pore size distribution were measured by using N2 adsorption/desorption. Galvanostatic cycling, electrochemical impedance spectroscopy, and cyclic voltammetry were used to evaluate the electrochemical performance of the Li2FeSiO4/C composites. The Li2FeSiO4/C (HT) composites show a superior electrochemical performance compared to Li2FeSiO4/C (SG). At C/30 rate, the discharge capacity of Li2FeSiO4/C (HT) reached ~276 mAh/g in the 1.5-4.6 V window and shows better rate capability and stability at high rates. We attribute the improved electrochemical performance of Li2FeSiO4/C (HT) to its large surface area and reduced particle size. The details of the study will be presented.

  13. More on neutrosophic soft rough sets and its modification

    Directory of Open Access Journals (Sweden)

    Emad Marei

    2015-12-01

    Full Text Available This paper aims to introduce and discuss anew mathematical tool for dealing with uncertainties, which is a combination of neutrosophic sets, soft sets and rough sets, namely neutrosophic soft rough set model. Also, its modification is introduced. Some of their properties are studied and supported with proved propositions and many counter examples. Some of rough relations are redefined as a neutrosophic soft rough relations. Comparisons among traditional rough model, suggested neutrosophic soft rough model and its modification, by using their properties and accuracy measures are introduced. Finally, we illustrate that, classical rough set model can be viewed as a special case of suggested models in this paper.

  14. Preparation and characterization of RuO2/polyaniline/polymer binder composite electrodes for supercapacitor applications

    Directory of Open Access Journals (Sweden)

    SUZANA SOPČIĆ

    2012-03-01

    Full Text Available The composite electrodes consisting of amorphous and hydrous RuO2, polyaniline and polymeric binder, Nafion® or poly(vinilydene fluoride were prepared. The electro¬chem-ical and pseudocapacitive properties of the prepared electrodes were investigated by cyclic voltammetry and electrochemical impedance spectroscopy. The results show that the responses of composite electrodes are very sensitive to the presence of individual components and their respective ratio in the mixture. The difference in the electro-chemical behavior was explained by the different physico-chemical properties of the polymeric binders.

  15. Roughness Sensitivity Comparisons of Wind Turbine Blade Sections

    Energy Technology Data Exchange (ETDEWEB)

    Wilcox, Benjamin J. [Texas A & M Univ., College Station, TX (United States). Dept. of Aerospace Engineering; White, Edward B. [Texas A & M Univ., College Station, TX (United States). Dept. of Aerospace Engineering; Maniaci, David Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Wind Energy Technologies Dept.

    2017-10-01

    One explanation for wind turbine power degradation is insect roughness. Historical studies on insect-induced power degradation have used simulation methods which are either un- representative of actual insect roughness or too costly or time-consuming to be applied to wide-scale testing. Furthermore, the role of airfoil geometry in determining the relations between insect impingement locations and roughness sensitivity has not been studied. To link the effects of airfoil geometry, insect impingement locations, and roughness sensitivity, a simulation code was written to determine representative insect collection patterns for different airfoil shapes. Insect collection pattern data was then used to simulate roughness on an NREL S814 airfoil that was tested in a wind tunnel at Reynolds numbers between 1.6 x 106 and 4.0 x 106. Results are compared to previous tests of a NACA 633 -418 airfoil. Increasing roughness height and density results in decreased maximum lift, lift curve slope, and lift-to-drag ratio. Increasing roughness height, density, or Reynolds number results in earlier bypass transition, with critical roughness Reynolds numbers lying within the historical range. Increased roughness sensitivity on the 25% thick NREL S814 is observed compared to the 18% thick NACA 63 3 -418. Blade-element-momentum analysis was used to calculate annual energy production losses of 4.9% and 6.8% for a NACA 633 -418 turbine and an NREL S814 turbine, respectively, operating with 200 μm roughness. These compare well to historical field measurements.

  16. Facile preparation and electrochemical characterization of poly (4-methoxytriphenylamine)-modified separator as a self-activated potential switch for lithium ion batteries

    International Nuclear Information System (INIS)

    Zhang, Haiyan; Cao, Yuliang; Yang, Hanxi; Lu, Shigang; Ai, Xinping

    2013-01-01

    Highlights: • A potential-sensitive separator is prepared by incorporating an electroactive poly (4-methoxytriphenylamine) (PMOTPA) into the micropores of a commercial porous polyolefin film. • This separator can be used as an internal and self-actuating voltage control device to provide overcharge protection for LiFePO 4 /Li 4 Ti 5 O 12 lithium ion batteries. • This type of the separators works reversibly and has no any discernable impact on the battery performances. -- Abstract: A potential-sensitive separator is prepared by incorporating an electroactive poly (4-methoxytriphenylamine) (PMOTPA) into the micropores of a commercial porous polyolefin film and tested as an internal voltage control device for overcharge protection of LiFePO 4 /Li 4 Ti 5 O 12 lithium ion batteries. The experimental results demonstrate that the PMOTPA polymer embedded in the separator can be electrochemically p-doped at overcharged voltages into an electrically conductive state, producing an internal conducting bypass for shunting the charge current to maintain the charge voltage of LiFePO 4 /Li 4 Ti 5 O 12 cells at a safety value less than 2.6 V, thus protecting the cell from voltage runaway. Since this type of the separators works reversibly and has no any discernable impact on the battery performances, it may offer a self-protection mechanism for development of safer lithium ion batteries

  17. Surface roughness effects on turbulent Couette flow

    Science.gov (United States)

    Lee, Young Mo; Lee, Jae Hwa

    2017-11-01

    Direct numerical simulation of a turbulent Couette flow with two-dimensional (2-D) rod roughness is performed to examine the effects of the surface roughness. The Reynolds number based on the channel centerline laminar velocity (Uco) and channel half height (h) is Re =7200. The 2-D rods are periodically arranged with a streamwise pitch of λ = 8 k on the bottom wall, and the roughness height is k = 0.12 h. It is shown that the wall-normal extent for the logarithmic layer is significantly shortened in the rough-wall turbulent Couette flow, compared to a turbulent Couette flow with smooth wall. Although the Reynolds stresses are increased in a turbulent channel flow with surface roughness in the outer layer due to large-scale ejection motions produced by the 2-D rods, those of the rough-wall Couette flow are decreased. Isosurfaces of the u-structures averaged in time suggest that the decrease of the turbulent activity near the centerline is associated with weakened large-scale counter-rotating roll modes by the surface roughness. This research was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1A09000537) and the Ministry of Science, ICT & Future Planning (NRF-2017R1A5A1015311).

  18. Electrochemical preparation of photoelectrochemically active CuI thin films from room temperature ionic liquid

    International Nuclear Information System (INIS)

    Huang, Hsin-Yi; Chien, Da-Jean; Huang, Genin-Gary; Chen, Po-Yu

    2012-01-01

    Highlights: ► CuI film can be formed by anodization of Cu in ionic liquid containing iodide. ► Coordinating strength of anion in ionic liquid determine the formation of CuI. ► Photocurrent of the CuI film can be observed in aqueous solution and in ionic liquid. ► Cu layer coated on conductive substrates can be converted to CuI. - Abstract: Cuprous iodide (CuI) thin films with photoelectrochemical activity were prepared by anodizing copper wire or copper-electrodeposited tungsten wire in the room temperature ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate (BMI-PF 6 RTIL) containing N-butyl-N-methylpyrrolidinium iodide (BMP-I). A copper coating was formed on the tungsten wire by potentiostatic electrodeposition in BMP-dicyanamide (BMP-DCA) RTIL containing copper chloride (CuCl). The CuI films formed using this method were compact, fine-grained and exhibited good adhesion. The characteristic diffraction signals of CuI were observed by powder X-ray diffractometry (XRD). X-ray photoelectron spectroscopy (XPS) also confirmed the formation of a CuI compound semiconductor. The CuI films demonstrated an apparent and stable photocurrent under white light illumination in aqueous solutions and in a RTIL. This method has enabled the electrochemical formation of CuI from a RTIL for the first time, and the first observation of a photocurrent produced from CuI in a RTIL. The coordinating strength of the anions of the RTIL is the key to the successful formation of the CuI thin film. If the coordinating strength of the anions of the RTIL is too strong, no CuI formation is observed.

  19. Pseudocapacitive Oxides and Sulfides for High-Performance Electrochemical Energy Storage

    KAUST Repository

    Xia, Chuan

    2018-03-22

    The intermittent nature of several sustainable energy sources such as solar and wind energy has ignited the demand of electrochemical energy storage devices in the form of batteries and electrochemical capacitors. The future generation of electrochemical capacitors will in large part depend on the use of pseudocapacitive materials in one or both electrodes. Developing pseudocapacitors to have both high energy and power density is crucial for future energy storage systems. This dissertation evaluates two different material systems to achieve high energy density pseudocapacitive energy storage. This research presents the successful preparation and application of ternary NiCo2S4, which is based on the surface redox mechanism, in the area of pseudocapacitive energy storage. Attention has been paid to understanding its basic physical properties which can impact its electrochemical behavior. Well-defined single- and double-shell NiCo2S4 hollow spheres were fabricated for pseudocapacitor applications, showing much improved electrochemical storage performance with good energy and power densities, as well as excellent cycling stability. To overcome the complexity of the preparation methods of NiCo2S4 nanostructures, a one-step approach was developed for the first time. Asymmetric pseudocapacitors using NiCo2S4 as cathode and graphene as anode were also fabricated to extend the operation voltage in aqueous electrolyte, and thus enhance the overall capacity of the cells. Furthermore, high-performance on-chip pseudocapacitive energy storage was demonstrated using NiCo2S4 as electrochemically active materials. This dissertation also involves another material system, intercalation pseudocapacitive VO2 (B), that displays a different charge storage mechanism from NiCo2S4. By constructing high-quality, atomically-thin two-dimensional (2D) VO2 (B) sheets using a general monomer-assisted approach, we demonstrate that a rational design of atomically thin, 2D nanostructures of

  20. Numerical Investigation of Effect of Surface Roughness in a Microchannel

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Myung Seob; Byun, Sung Jun; Yoon, Joon Yong [Hanyang University, Seoul (Korea, Republic of)

    2010-05-15

    In this paper, lattice Boltzmann method(LBM) results for a laminar flow in a microchannel with rough surface are presented. The surface roughness is modeled as an array of rectangular modules placed on the top and bottom surface of a parallel-plate channel. The effects of relative surface roughness, roughness distribution, and roughness size are presented in terms of the Poiseuille number. The roughness distribution characterized by the ratio of the roughness height to the spacing between the modules has a negligible effect on the flow and friction factors. Finally, a significant increase in the Poiseuille number is observed when the surface roughness is considered, and the effects of roughness on the microflow field mainly depend on the surface roughness.