WorldWideScience

Sample records for electrochemical thin films

  1. Electrochemical preparation of poly(methylene blue)/graphene nanocomposite thin films

    International Nuclear Information System (INIS)

    Erçarıkcı, Elif; Dağcı, Kader; Topçu, Ezgi; Alanyalıoğlu, Murat

    2014-01-01

    Highlights: • Poly(MB)/graphene thin films are prepared by a simple electrochemical approach. • Graphene layers in the film show a broad band in visible region of absorbance spectra. • Morphology of composite films indicates both disordered and ordered regions. • XRD reveals that nanocomposite films include rGO layers after electropolymerization process. • Chemically prepared graphene is better than electrochemically prepared graphene for electrooxidation of nitrite. - Abstract: Poly(methylene blue)/graphene nanocomposite thin films were prepared by electropolymerization of methylene blue in the presence of graphene which have been synthesized by two different methods of a chemical oxidation process and an electrochemical approach. Synthesized nanocomposite thin films were characterized by using cyclic voltammetry, UV–vis. absorption spectroscopy, powder X-ray diffraction, and scanning tunneling microscopy techniques. Electrocatalytical properties of prepared poly(methylene blue)/graphene nanocomposite films were compared toward electrochemical oxidation of nitrite. Under optimized conditions, electrocatalytical effect of nanocomposite films of chemically prepared graphene through electrochemical oxidation of nitrite was better than that of electrochemically prepared graphene

  2. Synthesis, Characterization, and Electrochemical Properties of Polyaniline Thin Films

    Science.gov (United States)

    Rami, Soukaina

    Conjugated polymers have been used in various applications (battery, supercapacitor, electromagnetic shielding, chemical sensor, biosensor, nanocomposite, light-emitting-diode, electrochromic display etc.) due to their excellent conductivity, electrochemical and optical properties, and low cost. Polyaniline has attracted the researchers from all disciplines of science, engineering, and industry due to its redox properties, environmental stability, conductivity, and optical properties. Moreover, it is a polymer with fast electroactive switching and reversible properties displayed at low potential, which is an important feature in many applications. The thin oriented polyaniline films have been fabricated using self-assembly, Langmuir-Blodgett, in-situ self-assembly, layer-by-layer, and electrochemical technique. The focus of this thesis is to synthesize and characterize polyaniline thin films with and without dyes. Also, the purpose of this thesis is to find the fastest electroactive switching PANI electrode in different electrolytic medium by studying their electrochemical properties. These films were fabricated using two deposition techniques: in-situ self-assembly and electrochemical deposition. The characterization of these films was done using techniques such as Fourier Transform Infrared Spectroscopy (FTIR), UV-spectroscopy, Scanning Electron Microscope (SEM), and X-Ray Diffraction (XRD). FTIR and UV-spectroscopy showed similar results in the structure of the polyaniline films. However, for the dye incorporated films, since there was an addition in the synthesis of the material, peak locations shifted, and new peaks corresponding to these materials appeared. The 1 layer PANI showed compact film morphology, comparing to other PANI films, which displayed a fiber-like structure. Finally, the electrochemical properties of these thin films were studied using cyclic voltammetry (CV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS) in

  3. Method for the manufacture of a thin film electrochemical energy source and device

    NARCIS (Netherlands)

    2008-01-01

    The invention relates to a method for the manuf. of a thin film electrochem. energy source. The invention also relates to a thin film electrochem. energy source. The invention also relates to an elec. device comprising such a thin film electrochem. energy source. The invention enables a more rapid

  4. Nanoporous MnO{sub x} thin-film electrodes synthesized by electrochemical lithiation/delithiation for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Hui; Lai, Man On; Lu, Li [Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576 (Singapore)

    2011-02-15

    Nanoporous MnO{sub x} thin-film electrodes are synthesized using a combination of pulsed laser deposition (PLD) and electrochemical lithiation/delithiation methods. A dense Mn{sub 3}O{sub 4} thin-film deposited by PLD can transform into a nanoporous MnO{sub x} thin-film after electrochemical lithiation/delithiation. A nanoporous MnO{sub x} thin-film electrode exhibits significantly improved supercapacitive performance compared with an as-deposited Mn{sub 3}O{sub 4} thin-film electrode. A MnO{sub x} thin-film finally transforms into a MnO{sub 2} thin-film through an electrochemical oxidation process during continuous cyclic voltammetry scanning. (author)

  5. Structural and Electrochemical Properties of Lithium Nickel Oxide Thin Films

    Directory of Open Access Journals (Sweden)

    Gyu-bong Cho

    2014-01-01

    Full Text Available LiNiO2 thin films were fabricated by RF magnetron sputtering. The microstructure of the films was determined by X-ray diffraction and field-emission scanning electron microscopy. The electrochemical properties were investigated with a battery cycler using coin-type half-cells. The LiNiO2 thin films annealed below 500°C had the surface carbonate. The results suggest that surface carbonate interrupted the Li intercalation and deintercalation during charge/discharge. Although the annealing process enhanced the crystallization of LiNiO2, the capacity did not increase. When the annealing temperature was increased to 600°C, the FeCrNiO4 oxide phase was generated and the discharge capacity decreased due to an oxygen deficiency in the LiNiO2 thin film. The ZrO2-coated LiNiO2 thin film provided an improved discharge capacity compared to bare LiNiO2 thin film suggesting that the improved electrochemical characteristic may be attributed to the inhibition of surface carbonate by ZrO2 coating layer.

  6. Electrochemical fabrication of nanoporous polypyrrole thin films

    Energy Technology Data Exchange (ETDEWEB)

    Li Mei [Key Laboratory of Organic Optoelectronics and Molecular Engineering (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084 (China); Yuan Jinying [Key Laboratory of Organic Optoelectronics and Molecular Engineering (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084 (China)], E-mail: yuanjy@mail.tsinghua.edu.cn; Shi Gaoquan [Key Laboratory of Organic Optoelectronics and Molecular Engineering (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084 (China)], E-mail: gshi@mail.tsinghua.edu.cn

    2008-04-30

    Polypyrrole thin films with pores in nanometer scale were synthesized by direct electrochemical oxidation of pyrrole in a mixed electrolyte of isopropyl alcohol, boron trifluoride diethyl etherate, sodium dodecylsulfonate and poly(ethylene glycol) using well-aligned ZnO nanowires arrays as templates. The thin films exhibit high conductivity of ca. {sigma}{sub rt} {approx} 20.5 s/cm and can be driven to bend during redox processes in 1.0 M lithium perchlorate aqueous solution. The movement rate of an actuator based on this nanoporous film was measured to be over 90{sup o}/s at a driving potential of 0.8 V (vs. Ag/AgCl)

  7. Electrochemical fabrication of nanoporous polypyrrole thin films

    International Nuclear Information System (INIS)

    Li Mei; Yuan Jinying; Shi Gaoquan

    2008-01-01

    Polypyrrole thin films with pores in nanometer scale were synthesized by direct electrochemical oxidation of pyrrole in a mixed electrolyte of isopropyl alcohol, boron trifluoride diethyl etherate, sodium dodecylsulfonate and poly(ethylene glycol) using well-aligned ZnO nanowires arrays as templates. The thin films exhibit high conductivity of ca. σ rt ∼ 20.5 s/cm and can be driven to bend during redox processes in 1.0 M lithium perchlorate aqueous solution. The movement rate of an actuator based on this nanoporous film was measured to be over 90 o /s at a driving potential of 0.8 V (vs. Ag/AgCl)

  8. Electrochemically synthesized nanocrystalline spinel thin film for high performance supercapacitor

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Vinay [Carbon Technology Unit, Engineering Materials Division, National Physical Laboratory, New-Delhi, 110012 (India); Art, Science and Technology Center for Cooperative Research, Kyushu University, Kasuga-shi, Fukuoka, 816-8580 (Japan); Japan Science and Technology Agency, Kawaguchi-shi, Saitama, 332-0012 (Japan); Gupta, Shubhra; Miura, Norio [Art, Science and Technology Center for Cooperative Research, Kyushu University, Kasuga-shi, Fukuoka, 816-8580 (Japan)

    2010-06-01

    Spinels are not known for their supercapacitive nature. Here, we have explored electrochemically synthesized nanostructured NiCo{sub 2}O{sub 4} spinel thin-film electrode for electrochemical supercapacitors. The nanostructured NiCo{sub 2}O{sub 4} spinel thin film exhibited a high specific capacitance value of 580 F g{sup -1} and an energy density of 32 Wh kg{sup -1} at the power density of 4 kW kg{sup -1}, accompanying with good cyclic stability. (author)

  9. Cuprous oxide thin films grown by hydrothermal electrochemical deposition technique

    International Nuclear Information System (INIS)

    Majumder, M.; Biswas, I.; Pujaru, S.; Chakraborty, A.K.

    2015-01-01

    Semiconducting cuprous oxide films were grown by a hydrothermal electro-deposition technique on metal (Cu) and glass (ITO) substrates between 60 °C and 100 °C. X-ray diffraction studies reveal the formation of cubic cuprous oxide films in different preferred orientations depending upon the deposition technique used. Film growth, uniformity, grain size, optical band gap and photoelectrochemical response were found to improve in the hydrothermal electrochemical deposition technique. - Highlights: • Cu 2 O thin films were grown on Cu and glass substrates. • Conventional and hydrothermal electrochemical deposition techniques were used. • Hydrothermal electrochemical growth showed improved morphology, thickness and optical band gap

  10. Thin film microelectrodes for electrochemical detection of neurotransmitters

    DEFF Research Database (Denmark)

    Larsen, Simon Tylsgaard

    An important signaling process in the nervous system is the release of chemical messengers called neurotransmitters from neurons. In this thesis alternative thin film electrode materials for applications targeting electrochemical detection of neurotransmitters in chip devices were evaluated...... and conductive polymer microelectrodes made of Pedot:Pss were also fabricated and used successfully to measure transmitter release from cells. The use of different thin film electrodes for low-noise amperometric measurements of single events of transmitter release from neuronal cells was studied....... For this application a very low current noise is needed together with a large temporal resolution. It was shown, that resistive and capacitive properties of thin film electrode materials are determining their usefulness in low-noise amperometric measurements. An analytical expression for the noise was derived...

  11. Electrochemically assisted photocatalysis using nanocrystalline semiconductor thin films

    Energy Technology Data Exchange (ETDEWEB)

    Vinodgopal, K [Department of Chemistry, Indiana University Northwest, Gary, Indiana (United States); Kamat, Prashant V [Notre Dame Radiation Laboratory, Notre Dame, Indiana (United States)

    1995-08-01

    The principle and usefulness of electrochemically assisted photocatalysis has been illustrated with the examples of 4-chlorophenol and Acid Orange 7 degradation in aqueous solutions. Thin nanocrystalline semiconductor films coated on a conducting glass surface when employed as a photoelectrode in an electrochemical cell are effective for degradation of organic contaminants. The degradation rate can be greatly improved even in the absence of oxygen by applying an anodic bias to the TiO{sub 2} film electrodes. A ten-fold enhancement in the degradation rate was observed when TiO{sub 2} particles were coupled with SnO{sub 2} nanocrystallites at an applied bias potential of 0.83 V versus SCE

  12. Nanocrystalline CdTe thin films by electrochemical synthesis

    Directory of Open Access Journals (Sweden)

    Ramesh S. Kapadnis

    2013-03-01

    Full Text Available Cadmium telluride thin films were deposited onto different substrates as copper, Fluorine-doped tin oxide (FTO, Indium tin oxide (ITO, Aluminum and zinc at room temperature via electrochemical route. The morphology of the film shows the nanostructures on the deposited surface of the films and their growth in vertical direction. Different nanostructures developed on different substrates. The X-ray diffraction study reveals that the deposited films are nanocrystalline in nature. UV-Visible absorption spectrum shows the wide range of absorption in the visible region. Energy-dispersive spectroscopy confirms the formation of cadmium telluride.

  13. Characterization of thin CeO{sub 2} films electrochemically deposited on HOPG

    Energy Technology Data Exchange (ETDEWEB)

    Faisal, Firas [Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen (Germany); Toghan, Arafat, E-mail: arafat.toghan@yahoo.com [Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen (Germany); Chemistry Department, Faculty of Science, South Valley University, 83523 Qena (Egypt); Khalakhan, Ivan; Vorokhta, Mykhailo; Matolin, Vladimír [Department of Surface and Plasma Science, Charles University in Prague, V Holešovičkách 747/2, 180 00 Prague 8 (Czech Republic); Libuda, Jörg [Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen (Germany); Erlangen Catalysis Resource Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen (Germany)

    2015-09-30

    Graphical abstract: - Highlights: • Preparation of proton exchange membrane fuel cells catalyst using electrochemical thin film deposition. • Electrodeposition thin films of CeO{sub 2} on HOPG substrates. • The samples were characterized by in-situ AFM and ex-situ XPS. • XPS results reveal that the electrochemically deposited cerium oxide films are stoichiometric. • Exposing the films to ambient air, cracking structures are formed. - Abstract: Electrodeposition is widely used for industrial applications to deposit thin films, coatings, and adhesion layers. Herein, CeO{sub 2} thin films were deposited on a highly oriented pyrolytic graphite (HOPG) substrate by cathodic electrodeposition. The influence of the deposition parameters on the yield and on the film morphology is studied and discussed. Morphology and composition of the electrodeposited films were characterized by in-situ atomic force microscopy (AFM), scanning electron microscopy (SEM), Energy Dispersive X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS). By AFM we show that the thickness of CeO{sub 2} films can be controlled via the Ce{sup 3+} concentration in solution and the deposition time. After exposing the films to ambient air, cracking structures are formed, which were analyzed by AFM in detail. The chemical composition of the deposits was analyzed by XPS indicating the formation of nearly stoichiometric CeO{sub 2}.

  14. The influence of monomer concentration on the optical properties of electrochemically synthesized polypyrrole thin films

    International Nuclear Information System (INIS)

    Thombare, J. V.; Fulari, V. J.; Rath, M. C.; Han, S. H.

    2013-01-01

    Polypyrrole (PPy) thin films were deposited on stainless steel and ITO coated glass substrate at a constant deposition potential of 0.8 V versus saturated calomel electrode (SCE) by using the electrochemical polymerization method. The PPy thin films were deposited at room temperature at various monomer concentrations ranging from 0.1 M to 0.3 M pyrrole. The structural and optical properties of the polypyrrole thin films were investigated using an X-ray diffractometer (XRD), FTIR spectroscopy, scanning electron microscopy (SEM), and ultraviolet—visible (UV—vis) spectroscopy. The XRD results show that polypyrrole thin films have a semi crystalline structure. Higher monomer concentration results in a slight increase of crystallinity. The polypyrrole thin films deposited at higher monomer concentration exhibit high visible absorbance. The refractive indexes of the polypyrrole thin films are found to be in the range of 1 to 1.3 and vary with monomer concentration as well as wavelength. The extinction coefficient decreases slightly with monomer concentration. The electrochemically synthesized polypyrrole thin film shows optical band gap energy of 2.14 eV. (semiconductor materials)

  15. Structural and electrochemical analysis of chemically synthesized microcubic architectured lead selenide thin films

    Science.gov (United States)

    Bhat, T. S.; Shinde, A. V.; Devan, R. S.; Teli, A. M.; Ma, Y. R.; Kim, J. H.; Patil, P. S.

    2018-01-01

    The present work deals with the synthesis of lead selenide (PbSe) thin films by simple and cost-effective chemical bath deposition method with variation in deposition time. The structural, morphological, and electrochemical properties of as-deposited thin films were examined using characterization techniques such as X-ray diffraction spectroscopy (XRD), field-emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), galvanostatic charge-discharge and electrochemical impedance spectroscopy. XRD reveals formation of rock salt phase cubic structured PbSe. FE-SEM images show the formation of microcubic structured morphology. The existence of the PbSe is confirmed from the XPS analysis. On the other hand, CV curves show four reaction peaks corresponding to oxidation [PbSe and Pb(OH)2] and reduction (PbO2 and Pb(OH)2) at the surface of PbSe thin films. The PbSe:2 sample deposited for 80 min. shows maximum specific capacitance of 454 ± 5 F g- 1 obtained at 0.25 mA cm- 2 current density. The maximum energy density of 69 Wh kg- 1 was showed by PbSe:2 electrode with a power density of 1077 W kg- 1. Furthermore, electrochemical impedance studies of PbSe:2 thin film show 80 ± 3% cycling stability even after 500 CV cycles. Such results show the importance of microcubic structured PbSe thin film as an anode in supercapacitor devices.

  16. SILAR deposited Bi2S3 thin film towards electrochemical supercapacitor

    Science.gov (United States)

    Raut, Shrikant S.; Dhobale, Jyotsna A.; Sankapal, Babasaheb R.

    2017-03-01

    Bi2S3 thin film electrode has been synthesized by simple and low cost successive ionic layer adsorption and reaction (SILAR) method on stainless steel (SS) substrate at room temperature. The formation of interconnected nanoparticles with nanoporous surface morphology has been achieved and which is favourable to the supercapacitor applications. Electrochemical supercapacitive performance of Bi2S3 thin film electrode has been performed through cyclic voltammetry, charge-discharge and stability studies in aqueous Na2SO4 electrolyte. The Bi2S3 thin film electrode exhibits the specific capacitance of 289 Fg-1 at 5 mVs-1 scan rate in 1 M Na2SO4 electrolyte.

  17. Preparation and electrochemical properties of gold nanoparticles containing carbon nanotubes-polyelectrolyte multilayer thin films

    International Nuclear Information System (INIS)

    Yu Aimin; Zhang Xing; Zhang Haili; Han, Deyan; Knight, Allan R.

    2011-01-01

    Highlights: → Gold nanoparticles containing carbon nanotubes-polyelectrolyte multilayer thin films were prepared via layer-by-layer self-assembly technique. → The electron transfer behaviour of the hybrid thin films were investigated using an electrochemical probe. → The resulting thin films exhibited an electrocatalytic activity towards the oxidation of nitric oxide. - Abstract: Multi-walled carbon nanotubes (MWCNT)/polyelectrolyte (PE) hybrid thin films were fabricated by alternatively depositing negatively charged MWCNT and positively charged (diallyldimethylammonium chloride) (PDDA) via layer-by-layer (LbL) assembly technique. The stepwise growth of the multilayer films of MWCNT and PDDA was characterized by UV-vis spectroscopy. Scanning electron microscopy (SEM) images indicated that the MWCNT were uniformly embedded in the film to form a network and the coverage density of MWCNT increased with layer number. Au nanoparticles (NPs) could be further adsorbed onto the film to form PE/MWCNT/Au NPs composite films. The electron transfer behaviour of multilayer films with different compositions were studied by cyclic voltammetry using [Fe(CN) 6 ] 3-/4- as an electrochemical probe. The results indicated that the incorporation of MWCNT and Au NPs not only greatly improved the electronic conductivity of pure polyelectrolyte films, but also provided excellent electrocatalytic activity towards the oxidation of nitric oxide (NO).

  18. Facile synthesis and photo electrochemical performance of SnSe thin films

    Science.gov (United States)

    Pusawale, S. N.; Jadhav, P. S.; Lokhande, C. D.

    2018-05-01

    Orthorhombic structured SnSe thin films are synthesized via SILAR (successive ionic layer adsorption and reaction) method on glass substrates. The structural properties of thin films are characterized by x-ray diffraction, scanning electron microscopy studies from which nanoparticles with an elongated shape and hydrophilic behavior are observed. UV -VIS absorption spectroscopy study showed the maximum absorption in the visible region with a direct band gap of 1.55 eV. The photo electrochemical study showed p-type electrical conductivity.

  19. Nonlinear dielectric thin films for high-power electric storage with energy density comparable with electrochemical supercapacitors.

    Science.gov (United States)

    Yao, Kui; Chen, Shuting; Rahimabady, Mojtaba; Mirshekarloo, Meysam Sharifzadeh; Yu, Shuhui; Tay, Francis Eng Hock; Sritharan, Thirumany; Lu, Li

    2011-09-01

    Although batteries possess high energy storage density, their output power is limited by the slow movement of charge carriers, and thus capacitors are often required to deliver high power output. Dielectric capacitors have high power density with fast discharge rate, but their energy density is typically much lower than electrochemical supercapacitors. Increasing the energy density of dielectric materials is highly desired to extend their applications in many emerging power system applications. In this paper, we review the mechanisms and major characteristics of electric energy storage with electrochemical supercapacitors and dielectric capacitors. Three types of in-house-produced ferroic nonlinear dielectric thin film materials with high energy density are described, including (Pb(0.97)La(0.02))(Zr(0.90)Sn(0.05)Ti(0.05))O(3) (PLZST) antiferroelectric ceramic thin films, Pb(Zn(1/3)Nb(2/3))O(3-)Pb(Mg(1/3)Nb(2/3))O(3-)PbTiO(3) (PZN-PMN-PT) relaxor ferroelectric ceramic thin films, and poly(vinylidene fluoride) (PVDF)-based polymer blend thin films. The results showed that these thin film materials are promising for electric storage with outstandingly high power density and fairly high energy density, comparable with electrochemical supercapacitors.

  20. Controllable Electrochemical Synthesis of Reduced Graphene Oxide Thin-Film Constructed as Efficient Photoanode in Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Soon Weng Chong

    2016-01-01

    Full Text Available A controllable electrochemical synthesis to convert reduced graphene oxide (rGO from graphite flakes was introduced and investigated in detail. Electrochemical reduction was used to prepare rGO because of its cost effectiveness, environmental friendliness, and ability to produce rGO thin films in industrial scale. This study aimed to determine the optimum applied potential for the electrochemical reduction. An applied voltage of 15 V successfully formed a uniformly coated rGO thin film, which significantly promoted effective electron transfer within dye-sensitized solar cells (DSSCs. Thus, DSSC performance improved. However, rGO thin films formed in voltages below or exceeding 15 V resulted in poor DSSC performance. This behavior was due to poor electron transfer within the rGO thin films caused by poor uniformity. These results revealed that DSSC constructed using 15 V rGO thin film exhibited high efficiency (η = 1.5211% attributed to its higher surface uniformity than other samples. The addition of natural lemon juice (pH ~ 2.3 to the electrolyte accelerated the deposition and strengthened the adhesion of rGO thin film onto fluorine-doped tin oxide (FTO glasses.

  1. Improved electrochemical performances of oxygen plasma treated LiMn2O4 thin films

    International Nuclear Information System (INIS)

    Chen, C C; Chiu, K-F; Lin, K M; Lin, H C; Yang, C-R; Wang, F M

    2007-01-01

    LiMn 2 O 4 spinel thin films were deposited by radio frequency (rf) magnetron sputtering followed by annealing at 600 0 C in air.The films were then post-treated with an rf driven oxygen plasma. The crystallization and surface morphology of LiMn 2 O 4 thin films were seen to change with rf power. The treated samples were tested under harsh conditions such as deep discharge to 1.5 V and cycling at elevated temperature of 60 0 C to verify the electrochemical performances of LiMn 2 O 4 cathodes. The oxygen plasma treatments improved the electrochemical properties of LiMn 2 O 4 thin films significantly. As the cells were cycled in the range of 4.5-2.0 V at 60 0 C, the samples treated at a proper rf power of 50 W exhibited an initial capacity greater than ∼400 mAh g -1 with reasonable cycling stability. The results were attributed to the change of morphology and the formation of a surface layer induced by the oxygen plasma irradiation

  2. The investigation on electrochemical reaction mechanism of CuF2 thin film with lithium

    International Nuclear Information System (INIS)

    Cui Yanhua; Xue Mingzhe; Zhou Yongning; Peng Shuming; Wang Xiaolin; Fu Zhengwen

    2011-01-01

    Crystalline CuF 2 thin films were prepared by pulsed laser deposition under room temperature. The physical and electrochemical properties of the as-deposited thin films have been investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), galvanostatic cycling and cyclic voltammetry (CV). Reversible capacity of 544 mAh g -1 was achieved in the potential range of 1.0-4.0 V. A reversible couple of redox peaks at 3.0 V and 3.7 V was firstly observed. By using ex situ XRD and TEM techniques, an insertion process followed by a fully conversion reaction to Cu and LiF was revealed in the lithium electrochemical reaction of CuF 2 thin film electrode. The reversible insertion reaction above 2.8 V could provide a capacity of about 125 mAh g -1 , which makes CuF 2 a potential cathode material for rechargeable lithium batteries.

  3. DC magnetron sputtering prepared Ag-C thin film anode for thin film lithium ion microbatteries

    International Nuclear Information System (INIS)

    Li, Y.; Tu, J.P.; Shi, D.Q.; Huang, X.H.; Wu, H.M.; Yuan, Y.F.; Zhao, X.B.

    2007-01-01

    An Ag-C thin film was prepared by DC magnetron co-sputtering, using pure silver and graphite as the targets. The microstructure and morphology of the deposited thin film were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Electrochemical performances of the Ag-C thin film anode were investigated by means of discharge/charge and cyclic voltammogram (CV) tests in model cells. The electrochemical impedance spectrum (EIS) characteristics and the chemical diffusion coefficient, D Li of the Ag-C thin film electrode at different discharging states were discussed. It was believed that the excellent cycling performance of the Ag-C electrode was ascribed to the good conductivity of silver and the volume stability of the thin film

  4. Raman spectra of TiO2 thin films deposited electrochemically and by spray pyrolysis

    International Nuclear Information System (INIS)

    Shishiyanu, S.; Vartic, V.; Shishiyanu, T.; Stratan, Gh.; Rusu, E.; Zarrelli, M.; Giordano, M.

    2013-01-01

    In this paper we present our experimental results concerning the fabrication of TiO 2 thin films by spray pyrolysis and electrochemical deposition method onto different substrates - Corning glass, Si and optical fibers. The surface morphology of the TiO 2 thin films have been investigated by Atomic Force Microscopy. Raman shift spectra measurements have been done for the optical characterization of the fabricated titania thin films. The post-growth rapid photothermal processing (RPP) at temperatures of 100-800 degrees Celsius for 1-3 min have been applied. Our experimental results prove that by the application of post-growth RPP is possible to essentially improve the crystallinity of the deposited TiO 2 films. (authors)

  5. Electrochemical reaction of lithium with orthorhombic bismuth tungstate thin films fabricated by radio-frequency sputtering

    International Nuclear Information System (INIS)

    Li Chilin; Sun Ke; Yu Le; Fu Zhengwen

    2009-01-01

    Bi 2 WO 6 thin films with fast deposition rate have been fabricated by radio-frequency (R.F.) sputtering deposition, and are used as positive electrodes in rechargeable thin film lithium batteries. An initial discharge capacity of 113 μAh/cm 2 -μm is obtainable for Bi 2 WO 6 film electrode with good capacity reversibility. A multiple-center reactive mechanism associated with both Bi 3+ /Bi 0 and W 6+ /W x+ (x 2 WO 6 electrochemical performance with those of Bi 2 O 3 and WO 3 thin films. A possible explanation about smooth capacity loss of Bi 2 WO 6 after long-term cycling is suggested from the incomplete reaction of Bi component. The advantages of Bi 2 WO 6 thin films over the singer-center Bi 2 O 3 or WO 3 thin films are shown in both the aspects of volumetric capacity and cycling life.

  6. Electrochemical Energy Storage Applications of CVD Grown Niobium Oxide Thin Films.

    Science.gov (United States)

    Fiz, Raquel; Appel, Linus; Gutiérrez-Pardo, Antonio; Ramírez-Rico, Joaquín; Mathur, Sanjay

    2016-08-24

    We report here on the controlled synthesis, characterization, and electrochemical properties of different polymorphs of niobium pentoxide grown by CVD of new single-source precursors. Nb2O5 films deposited at different temperatures showed systematic phase evolution from low-temperature tetragonal (TT-Nb2O5, T-Nb2O5) to high temperature monoclinic modifications (H-Nb2O5). Optimization of the precursor flux and substrate temperature enabled phase-selective growth of Nb2O5 nanorods and films on conductive mesoporous biomorphic carbon matrices (BioC). Nb2O5 thin films deposited on monolithic BioC scaffolds produced composite materials integrating the high surface area and conductivity of the carbonaceous matrix with the intrinsically high capacitance of nanostructured niobium oxide. Heterojunctions in Nb2O5/BioC composites were found to be beneficial in electrochemical capacitance. Electrochemical characterization of Nb2O5/BioC composites showed that small amounts of Nb2O5 (as low as 5%) in conjunction with BioCarbon resulted in a 7-fold increase in the electrode capacitance, from 15 to 104 F g(-1), while imparting good cycling stability, making these materials ideally suited for electrochemical energy storage applications.

  7. Electrochemical Water Oxidation by a Catalyst-Modified Metal-Organic Framework Thin Film

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Shaoyang; Pineda-Galvan, Yuliana; Maza, William A.; Epley, Charity C.; Zhu, Jie; Kessinger, Matthew C.; Pushkar, Yulia; Morris, Amanda J. (VP); (Purdue)

    2016-12-15

    Water oxidation, a key component in artificial photosynthesis, requires high overpotentials and exhibits slow reaction kinetics that necessitates the use of stable and efficient heterogeneous water-oxidation catalysts (WOCs). Here, we report the synthesis of UiO-67 metal–organic framework (MOF) thin films doped with [Ru(tpy)(dcbpy)OH2]2+ (tpy=2,2':6',2''-terpyridine, dcbpy=5,5'-dicarboxy-2,2'-bipyridine) on conducting surfaces and their propensity for electrochemical water oxidation. The electrocatalyst oxidized water with a turnover frequency (TOF) of (0.2±0.1) s-1 at 1.71 V versus the normal hydrogen electrode (NHE) in buffered solution (pH~7) and exhibited structural and electrochemical stability. The electroactive sites were distributed throughout the MOF thin film on the basis of scan-ratedependent voltammetry studies. This work demonstrates a promising way to immobilize large concentrations of electroactive WOCs into a highly robust MOF scaffold and paves the way for future photoelectrochemical water-splitting systems.

  8. Facile chemical synthesis of nanoporous layered δ-MnO{sub 2} thin film for high-performance flexible electrochemical capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Yu; Wang, Jun; Jiang, Xionghua; Zheng, Yanfeng [The Key Laboratory of Low-Carbon Chemistry and Energy Conservation of Guangdong Province, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Chen, Zhenxing, E-mail: chenzx65@mail.sysu.edu.cn [The Key Laboratory of Low-Carbon Chemistry and Energy Conservation of Guangdong Province, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275 (China)

    2013-04-15

    Layered δ-MnO{sub 2} thin films with a three-dimensional nanostructure are successfully fabricated on stainless steel foil substrates for flexible electrochemical capacitors by a facile and effective chemical bath deposition technology from ethanol and potassium permanganate solution at 15 °C. The as-prepared thin films display nanoporous morphology and a water contact angle of 20°. Energy-dispersive X-ray spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy analyses reveal that the thin films are composed of δ-MnO{sub 2}. Electrochemical data demonstrate that the δ-MnO{sub 2} thin film electrodes can deliver a high special capacitance of 447 F/g at 2 mV/s, and provide a good capacitance retention ratio of 87% after 1000 continuous cycles at 10 mV/s in 0.5 M Na{sub 2}SO{sub 4}. Compressive and tensile bending tests show that the as-prepared electrodes can steadily work over a wide range of applied curvatures between −2.5 cm{sup −1} (tension) and 2.5 cm{sup −1} (compression). Only a small decrease in special capacitance (0.9% at a curvature of 2.5 cm{sup −1} under compressive strain, or 1.2% at a curvature of −2.5 cm{sup −1} under tensile strain) is observed even after bending for 200 cycles, indicating the excellent mechanical flexibility and electrochemical stability of the δ-MnO{sub 2} thin film electrodes.

  9. Electron transport determines the electrochemical properties of tetrahedral amorphous carbon (ta-C) thin films

    International Nuclear Information System (INIS)

    Palomäki, Tommi; Wester, Niklas; Caro, Miguel A.; Sainio, Sami; Protopopova, Vera; Koskinen, Jari; Laurila, Tomi

    2017-01-01

    Amorphous carbon based electrodes are very promising for electrochemical sensing applications. In order to better understand their structure-function relationship, the effect of film thickness on the electrochemical properties of tetrahedral amorphous carbon (ta-C) electrodes was investigated. ta-C thin films of 7, 15, 30, 50 and 100 nm were characterized in detail with Raman spectroscopy, transmission electron microscopy (TEM), conductive atomic force microscopy (c-AFM), scanning tunneling spectroscopy (STS) and X-ray absorption spectroscopy (XAS) to assess (i) the surface properties of the films, (ii) the effect of film thickness on their structure and electrical properties and (iii) the subsequent correlation with their electrochemistry. The electrochemical properties were investigated by cyclic voltammetry (CV) using two different outer-sphere redox probes, Ru(NH 3 ) 6 3+/2+ and FcMeOH, and by electrochemical impedance spectroscopy (EIS). Computational simulations using density functional theory (DFT) were carried out to rationalize the experimental findings. The characterization results showed that the sp 2 /sp 3 ratio increased with decreasing ta-C film thickness. This correlated with a decrease in mobility gap value and an increase in the average current through the films, which was also consistent with the computational results. XAS indicated that the surface of the ta-C films was always identical and composed of a sp 2 -rich layer. The CV measurements indicated reversible reaction kinetics for both outer-sphere redox probes at 7 and 15 nm ta-C films with a change to quasi-reversible behavior at a thickness of around 30 nm. The charge transfer resistance, obtained from EIS measurements, decreased with decreasing film thickness in accordance with the CV results. Based on the characterization and electrochemical results, we conclude that the reaction kinetics in the case of outer-sphere redox systems is determined mainly by the electron transport through the

  10. Pseudocapacitive properties of nano-structured anhydrous ruthenium oxide thin film prepared by electrostatic spray deposition and electrochemical lithiation/delithiation

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.H.; Kim, J.Y.; Kim, K.B. [Division of Materials Science and Engineering, Yonsei University, Seoul (Korea, Republic of)

    2010-10-15

    Nano-structured anhydrous ruthenium oxide (RuO{sub 2}) thin films were prepared using an electrostatic spray deposition (ESD) technique followed by electrochemical lithiation and delithiation. During the electrochemical lithiation process, RuO{sub 2} decomposed to nano-structured metallic ruthenium Ru with the concomitant formation of Li{sub 2}O. Nano-structured RuO{sub 2} was formed upon subsequent electrochemical extraction of Li from the Ru/Li{sub 2}O nanocomposite. Electrochemical lithiation/deliathiation at different charge/discharge rates (C-rate) was used to control the nano-structure of the anhydrous RuO{sub 2}. Electrochemical lithiation/delithiation of the RuO{sub 2} thin film electrode at different C-rates was closely related to the specific capacitance and high rate capability of the nano-structured anhydrous RuO{sub 2} thin film. Nano-structured RuO{sub 2} thin films prepared by electrochemical lithiation and delithiation at 2C rate showed the highest specific capacitance of 653 F g{sup -1} at 20 mV s{sup -1}, which is more than two times higher than the specific capacitance of 269 F g{sup -1} for the as-prepared RuO{sub 2}. In addition, it showed 14% loss in specific capacitance from 653 F g{sup -1} at 20 mV s{sup -1} to 559 F g{sup -1} at 200 mV s{sup -1}, indicating significant improvement in the high rate capability compared to the 26% loss of specific capacitance of the as-prepared RuO{sub 2} electrode from 269 F g{sup -1} at 20 mV s{sup -1} to 198 F g{sup -1} at 200 mV s{sup -1} for the same change in scan rate. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  11. Mechanical and electrochemical characterization of vanadium nitride (VN) thin films

    Energy Technology Data Exchange (ETDEWEB)

    Caicedo, J.C., E-mail: Jcesarca@calima.univalle.edu.co [Grupo de Peliculas Delgadas, Departamento de Fisica, Universidad del Valle, Cali (Colombia); Zambrano, G. [Grupo de Peliculas Delgadas, Departamento de Fisica, Universidad del Valle, Cali (Colombia); Aperador, W. [Ingenieria Mecatronica, Universidad Militar Nueva Granada, Bogota (Colombia); Escobar-Alarcon, L.; Camps, E. [Departamento de Fisica, Instituto Nacional de Investigaciones Nucleares, Apdo. Postal 18-1027, Mexico, DF 11801 (Mexico)

    2011-10-15

    Vanadium nitride (V-N) thin films were grown using a reactive d.c. magnetron sputtering process, from a vanadium target (99.999%) in an Ar/N{sub 2} gas mixture at different deposition bias voltage. Films were deposited onto silicon (1 0 0) and RUS-3 steel substrates at 400 deg. C. Structural, compositional, mechanical and electrochemical characterizations were performed by X-ray diffraction (XRD), elastic forward analysis (EFA), nanoindentation, electrochemical impedance spectroscopy (EIS), and Tafel polarization curves, respectively. X-ray diffraction patterns show the presence of (1 1 1) and (2 0 0) crystallographic orientations associated to the V-N cubic phase. Nanoindentation measurements revealed that when the bias voltage increases from 0 V to -150 V the hardness and elastic modulus are increased from 11 GPa to 20 GPa and from 187 GPa to 221 GPa, respectively. EIS and Tafel curves showed that the corrosion rate of steel, coated with V-N single layer films deposited without bias voltage, diminishes 90% compared to the steel without this coating. On the other hand, when the V-N coating was deposited at the highest d.c. bias voltage (-150 V), the corrosion rate was greater than in the steel coated with zero-voltage (0 V) V-N films. This last result could be attributed to the formation of porosities produced by the ion bombardment during the deposition process.

  12. Mechanical and electrochemical characterization of vanadium nitride (VN) thin films

    International Nuclear Information System (INIS)

    Caicedo, J.C.; Zambrano, G.; Aperador, W.; Escobar-Alarcon, L.; Camps, E.

    2011-01-01

    Vanadium nitride (V-N) thin films were grown using a reactive d.c. magnetron sputtering process, from a vanadium target (99.999%) in an Ar/N 2 gas mixture at different deposition bias voltage. Films were deposited onto silicon (1 0 0) and RUS-3 steel substrates at 400 deg. C. Structural, compositional, mechanical and electrochemical characterizations were performed by X-ray diffraction (XRD), elastic forward analysis (EFA), nanoindentation, electrochemical impedance spectroscopy (EIS), and Tafel polarization curves, respectively. X-ray diffraction patterns show the presence of (1 1 1) and (2 0 0) crystallographic orientations associated to the V-N cubic phase. Nanoindentation measurements revealed that when the bias voltage increases from 0 V to -150 V the hardness and elastic modulus are increased from 11 GPa to 20 GPa and from 187 GPa to 221 GPa, respectively. EIS and Tafel curves showed that the corrosion rate of steel, coated with V-N single layer films deposited without bias voltage, diminishes 90% compared to the steel without this coating. On the other hand, when the V-N coating was deposited at the highest d.c. bias voltage (-150 V), the corrosion rate was greater than in the steel coated with zero-voltage (0 V) V-N films. This last result could be attributed to the formation of porosities produced by the ion bombardment during the deposition process.

  13. Electrochemical Synthesis of a Microporous Conductive Polymer Based on a Metal-Organic Framework Thin Film

    KAUST Repository

    Lu, Chunjing; Ben, Teng; Xu, Shixian; Qiu, Shilun

    2014-01-01

    A new approach to preparing 3D microporous conductive polymer has been demonstrated in the electrochemical synthesis of a porous polyaniline network with the utilization of a MOF thin film supported on a conducting substrate. The prepared porous

  14. Investigation of Physical Properties and Electrochemical Behavior of Nitrogen-Doped Diamond-Like Carbon Thin Films

    Directory of Open Access Journals (Sweden)

    Rattanakorn Saensak

    2014-03-01

    Full Text Available This work reports characterizations of diamond-like carbon (DLC films used as electrodes for electrochemical applications. DLC thin films are prepared on glass slides and silicon substrates by radio frequency plasma enhanced chemical vapor deposition (RF-PECVD using a gas mixture of methane and hydrogen. In addition, the DLC films are doped with nitrogen in order to reduce electrical resistivity. Compared to the undoped DLC films, the electrical resistivity of nitrogen-doped (N-doped DLC films is decreased by three orders of magnitude. Raman spectroscopy and UV/Vis spectroscopy analyses show the structural transformation in N-doped DLC films that causes the reduction of band gap energy. Contact angle measurement at N-doped DLC films indicates increased hydrophobicity. The results obtained from the cyclic voltammetry measurements with Fe(CN63-/Fe(CN64- redox species exhibit the correlation between the physical properties and electrochemical behavior of DLC films.

  15. Spray pyrolysed Ru:TiO2 thin film electrodes prepared for electrochemical supercapacitor

    Science.gov (United States)

    Fugare, B. Y.; Thakur, A. V.; Kore, R. M.; Lokhande, B. J.

    2018-04-01

    Ru doped TiO2 thin films are prepared by using 0.06 M aqueous solution of potassium titanium oxalate (pto), and 0.005 M aqueous solution of ruthenium tri chloride (RuCl3) precursors. The deposition was carried on stainless steel (SS) by using well known ultrasonic spray pyrolysis technique (USPT) at 723° K by maintaining the spray rate 12 cc/min and compressed air flow rate 10 Lmin-1. Prepared Ru:TiO2 thin films were characterized by structurally, morphologically and electrochemically. Deposited RuO2 shows amorphous structure and TiO2 shows tetragonal crystal structure with rutile as prominent phase at very low decomposition temperature. SEM micrographs of RuO2 exhibits porous, interconnected, spherical grains type morphology and TiO2 shows porous, nanorods and nanoplates like morphology and also Ru doped TiO2 shows porous, spherical, granular and nanorods type morphology. The electrochemical cyclic voltammetery shows mixed capacitive behavior. The achieved highest value of specific capacitance 2692 F/g was Ru doped TiO2 electrode in 0.5 M H2SO4.

  16. Optimization studies of HgSe thin film deposition by electrochemical atomic layer epitaxy (EC-ALE)

    CSIR Research Space (South Africa)

    Venkatasamy, V

    2006-06-01

    Full Text Available Studies of the optimization of HgSe thin film deposition using electrochemical atomic layer epitaxy (EC-ALE) are reported. Cyclic voltammetry was used to obtain approximate deposition potentials for each element. These potentials were then coupled...

  17. Preparation and properties of antimony thin film anode materials

    Institute of Scientific and Technical Information of China (English)

    SU Shufa; CAO Gaoshao; ZHAO Xinbing

    2004-01-01

    Metallic antimony thin films were deposited by magnetron sputtering and electrodeposition. Electrochemical properties of the thin film as anode materials for lithium-ion batteries were investigated and compared with those of antimony powder. It was found that both magnetron sputtering and electrodeposition are easily controllable processes to deposit antimony films with fiat charge/discharge potential plateaus. The electrochemical performances of antimony thin films, especially those prepared with magnetron sputtering, are better than those of antimony powder. The reversible capacities of the magnetron sputtered antimony thin film are above 400 mA h g-1 in the first 15 cycles.

  18. XPS-nanocharacterization of organic layers electrochemically grafted on the surface of SnO_2 thin films to produce a new hybrid material coating

    International Nuclear Information System (INIS)

    Drevet, R.; Dragoé, D.; Barthés-Labrousse, M.G.; Chaussé, A.; Andrieux, M.

    2016-01-01

    Graphical abstract: An innovative hybrid material layer is synthesized by combining two processes. SnO_2 thin films are deposited by MOCVD on Si substrates and an organic layer made of carboxyphenyl moieties is electrochemically grafted by the reduction of a diazonium salt. XPS characterizations are carried out to assess the efficiency of the electrochemical grafting. Display Omitted - Highlights: • An innovative hybrid material layer is synthesized by combining two processes. • SnO_2 thin films are deposited by MOCVD on Si substrates. • An organic layer is electrochemically grafted by the reduction of a diazonium salt. • The efficiency of the grafting is accurately assessed by XPS. • Three electrochemical grafting models are proposed. - Abstract: This work presents the synthesis and the characterization of hybrid material thin films obtained by the combination of two processes. The electrochemical grafting of organic layers made of carboxyphenyl moieties is carried out from the reduction of a diazonium salt on tin dioxide (SnO_2) thin films previously deposited on Si substrates by metal organic chemical vapor deposition (MOCVD). Since the MOCVD experimental parameters impact the crystal growth of the SnO_2 layer (i.e. its morphology and its texturation), various electrochemical grafting models can occur, producing different hybrid materials. In order to evidence the efficiency of the electrochemical grafting of the carboxyphenyl moieties, X-ray Photoelectron Spectroscopy (XPS) is used to characterize the first nanometers in depth of the synthesized hybrid material layer. Then three electrochemical grafting models are proposed.

  19. Scanning electrochemical microscopy of graphene/polymer hybrid thin films as supercapacitors: Physical-chemical interfacial processes

    Directory of Open Access Journals (Sweden)

    Sanju Gupta

    2015-10-01

    Full Text Available Hybrid electrode comprising an electric double-layer capacitor of graphene nanosheets and a pseudocapacitor of the electrically conducting polymers namely, polyaniline; PAni and polypyrrole; PPy are constructed that exhibited synergistic effect with excellent electrochemical performance as thin film supercapacitors for alternative energy. The hybrid supercapacitors were prepared by layer-by-layer (LbL assembly based on controlled electrochemical polymerization followed by reduction of graphene oxide electrochemically producing ErGO, for establishing intimate electronic contact through nanoscale architecture and chemical stability, producing a single bilayer of (PAni/ErGO1, (PPy/ErGO1, (PAni/GO1 and (PPy/GO1. The rationale design is to create thin films that possess interconnected graphene nanosheets (GNS with polymer nanostructures forming well-defined tailored interfaces allowing sufficient surface adsorption and faster ion transport due to short diffusion distances. We investigated their electrochemical properties and performance in terms of gravimetric specific capacitance, Cs, from cyclic voltammograms. The LbL-assembled bilayer films exhibited an excellent Cs of ≥350 F g−1 as compared with constituents (∼70 F g−1 at discharge current density of 0.3 A g−1 that outperformed many other hybrid supercapacitors. To gain deeper insights into the physical-chemical interfacial processes occurring at the electrode/electrolyte interface that govern their operation, we have used scanning electrochemical microscopy (SECM technique in feedback and probe approach modes. We present our findings from viewpoint of reinforcing the role played by heterogeneous electrode surface composed of nanoscale graphene sheets (conducting and conducting polymers (semiconducting backbone with ordered polymer chains via higher/lower probe current distribution maps. Also targeted is SECM imaging that allowed to determine electrochemical (reactivity of surface ion

  20. Scanning electrochemical microscopy of graphene/polymer hybrid thin films as supercapacitors: Physical-chemical interfacial processes

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Sanju, E-mail: sanju.gupta@wku.edu; Price, Carson [Department of Physics and Astronomy, Western Kentucky University, 1906 College Heights Blvd., Bowling Green, KY 42101-3576 (United States)

    2015-10-15

    Hybrid electrode comprising an electric double-layer capacitor of graphene nanosheets and a pseudocapacitor of the electrically conducting polymers namely, polyaniline; PAni and polypyrrole; PPy are constructed that exhibited synergistic effect with excellent electrochemical performance as thin film supercapacitors for alternative energy. The hybrid supercapacitors were prepared by layer-by-layer (LbL) assembly based on controlled electrochemical polymerization followed by reduction of graphene oxide electrochemically producing ErGO, for establishing intimate electronic contact through nanoscale architecture and chemical stability, producing a single bilayer of (PAni/ErGO){sub 1}, (PPy/ErGO){sub 1}, (PAni/GO){sub 1} and (PPy/GO){sub 1}. The rationale design is to create thin films that possess interconnected graphene nanosheets (GNS) with polymer nanostructures forming well-defined tailored interfaces allowing sufficient surface adsorption and faster ion transport due to short diffusion distances. We investigated their electrochemical properties and performance in terms of gravimetric specific capacitance, C{sub s}, from cyclic voltammograms. The LbL-assembled bilayer films exhibited an excellent C{sub s} of ≥350 F g{sup −1} as compared with constituents (∼70 F g{sup −1}) at discharge current density of 0.3 A g{sup −1} that outperformed many other hybrid supercapacitors. To gain deeper insights into the physical-chemical interfacial processes occurring at the electrode/electrolyte interface that govern their operation, we have used scanning electrochemical microscopy (SECM) technique in feedback and probe approach modes. We present our findings from viewpoint of reinforcing the role played by heterogeneous electrode surface composed of nanoscale graphene sheets (conducting) and conducting polymers (semiconducting) backbone with ordered polymer chains via higher/lower probe current distribution maps. Also targeted is SECM imaging that allowed to determine

  1. Scanning electrochemical microscopy of graphene/polymer hybrid thin films as supercapacitors: Physical-chemical interfacial processes

    Science.gov (United States)

    Gupta, Sanju; Price, Carson

    2015-10-01

    Hybrid electrode comprising an electric double-layer capacitor of graphene nanosheets and a pseudocapacitor of the electrically conducting polymers namely, polyaniline; PAni and polypyrrole; PPy are constructed that exhibited synergistic effect with excellent electrochemical performance as thin film supercapacitors for alternative energy. The hybrid supercapacitors were prepared by layer-by-layer (LbL) assembly based on controlled electrochemical polymerization followed by reduction of graphene oxide electrochemically producing ErGO, for establishing intimate electronic contact through nanoscale architecture and chemical stability, producing a single bilayer of (PAni/ErGO)1, (PPy/ErGO)1, (PAni/GO)1 and (PPy/GO)1. The rationale design is to create thin films that possess interconnected graphene nanosheets (GNS) with polymer nanostructures forming well-defined tailored interfaces allowing sufficient surface adsorption and faster ion transport due to short diffusion distances. We investigated their electrochemical properties and performance in terms of gravimetric specific capacitance, Cs, from cyclic voltammograms. The LbL-assembled bilayer films exhibited an excellent Cs of ≥350 F g-1 as compared with constituents (˜70 F g-1) at discharge current density of 0.3 A g-1 that outperformed many other hybrid supercapacitors. To gain deeper insights into the physical-chemical interfacial processes occurring at the electrode/electrolyte interface that govern their operation, we have used scanning electrochemical microscopy (SECM) technique in feedback and probe approach modes. We present our findings from viewpoint of reinforcing the role played by heterogeneous electrode surface composed of nanoscale graphene sheets (conducting) and conducting polymers (semiconducting) backbone with ordered polymer chains via higher/lower probe current distribution maps. Also targeted is SECM imaging that allowed to determine electrochemical (re)activity of surface ion adsorption sites

  2. Electrochemical deposition of iron sulfide thin films and heterojunction diodes with zinc oxide

    Directory of Open Access Journals (Sweden)

    Shoichi Kawai

    2014-03-01

    Full Text Available Iron sulfide thin films were fabricated by the electrochemical deposition method from an aqueous solution containing FeSO4 and Na2S2O3. The composition ratio obtained was Fe:S:O = 36:56:8. In the photoelectrochemical measurement, a weak negative photo-current was observed for the iron sulfide films, which indicates that its conduction type is p-type. No peaks were observed in X-ray diffraction pattern, and thus the deposited films were considered to be amorphous. For a heterojunction with ZnO, rectification properties were confirmed in the current-voltage characteristics. Moreover, the current was clearly enhanced under AM1.5 illumination.

  3. XPS-nanocharacterization of organic layers electrochemically grafted on the surface of SnO{sub 2} thin films to produce a new hybrid material coating

    Energy Technology Data Exchange (ETDEWEB)

    Drevet, R., E-mail: richarddrevet@yahoo.fr [Univ. Paris Sud, SP2M-ICMMO, CNRS UMR 8182, Bât. 410, 91405 Orsay Cedex (France); Université d’Evry Val d’Essonne, LAMBE, CNRS-CEA UMR 8587, Boulevard François Mitterrand, 91025 Evry Cedex (France); Dragoé, D.; Barthés-Labrousse, M.G. [Univ. Paris Sud, SP2M-ICMMO, CNRS UMR 8182, Bât. 410, 91405 Orsay Cedex (France); Chaussé, A. [Université d’Evry Val d’Essonne, LAMBE, CNRS-CEA UMR 8587, Boulevard François Mitterrand, 91025 Evry Cedex (France); Andrieux, M. [Univ. Paris Sud, SP2M-ICMMO, CNRS UMR 8182, Bât. 410, 91405 Orsay Cedex (France)

    2016-10-30

    Graphical abstract: An innovative hybrid material layer is synthesized by combining two processes. SnO{sub 2} thin films are deposited by MOCVD on Si substrates and an organic layer made of carboxyphenyl moieties is electrochemically grafted by the reduction of a diazonium salt. XPS characterizations are carried out to assess the efficiency of the electrochemical grafting. Display Omitted - Highlights: • An innovative hybrid material layer is synthesized by combining two processes. • SnO{sub 2} thin films are deposited by MOCVD on Si substrates. • An organic layer is electrochemically grafted by the reduction of a diazonium salt. • The efficiency of the grafting is accurately assessed by XPS. • Three electrochemical grafting models are proposed. - Abstract: This work presents the synthesis and the characterization of hybrid material thin films obtained by the combination of two processes. The electrochemical grafting of organic layers made of carboxyphenyl moieties is carried out from the reduction of a diazonium salt on tin dioxide (SnO{sub 2}) thin films previously deposited on Si substrates by metal organic chemical vapor deposition (MOCVD). Since the MOCVD experimental parameters impact the crystal growth of the SnO{sub 2} layer (i.e. its morphology and its texturation), various electrochemical grafting models can occur, producing different hybrid materials. In order to evidence the efficiency of the electrochemical grafting of the carboxyphenyl moieties, X-ray Photoelectron Spectroscopy (XPS) is used to characterize the first nanometers in depth of the synthesized hybrid material layer. Then three electrochemical grafting models are proposed.

  4. Nanocomposite Thin Film of Poly(3-aminobenzoic acid and Multiwalled Carbon Nanotubes Fabricated through an Electrochemical Method

    Directory of Open Access Journals (Sweden)

    Paphawadee Netsuwan

    2014-01-01

    Full Text Available The composite thin films of poly(3-aminobenzoic acid (PABA and multiwalled carbon nanotubes (MWNTs are successfully fabricated through an electrochemical method. The composite mixtures containing 50 mM of 3-aminobenzoic acid with various concentrations of MWNTs (1.0, 2.5, 5.0, 7.5, and 10 mg/mL in 0.5 M H2SO4 were prepared and used in this study. Cyclic voltammetry (CV was used for fabrication and monitoring the electropolymerization of the composite thin films with potential range of 0 to 1100 mV for 5 cycles at scan rate of 20 mV/s on indium tin oxide- (ITO-coated glass substrate. UV-vis absorption spectroscopy, atomic force microscopy (AFM, and scanning electron microscopy (SEM techniques were employed to characterize the obtained composite thin films. It was found that MWNTs can enhance the peak current of CV traces of the PABA/MWNTs composite thin films without affecting the UV-vis absorption spectra. The surface morphology of the thin films can be studied using AFM and SEM techniques.

  5. Passivation of Si(111) surfaces with electrochemically grafted thin organic films

    Science.gov (United States)

    Roodenko, K.; Yang, F.; Hunger, R.; Esser, N.; Hinrichs, K.; Rappich, J.

    2010-09-01

    Ultra thin organic films (about 5 nm thick) of nitrobenzene and 4-methoxydiphenylamine were deposited electrochemically on p-Si(111) surfaces from benzene diazonium compounds. Studies based on atomic force microscopy, infrared spectroscopic ellipsometry and x-ray photoelectron spectroscopy showed that upon exposure to atmospheric conditions the oxidation of the silicon interface proceed slower on organically modified surfaces than on unmodified hydrogen passivated p-Si(111) surfaces. Effects of HF treatment on the oxidized organic/Si interface and on the organic layer itself are discussed.

  6. Luminescence evolution of porous GaN thin films prepared via UV-assisted electrochemical etching

    International Nuclear Information System (INIS)

    Cheah, S.F.; Lee, S.C.; Ng, S.S.; Yam, F.K.; Abu Hassan, H.; Hassan, Z.

    2015-01-01

    Porous gallium nitride (GaN) thin films with different surface morphologies and free carriers properties were fabricated from Si-doped GaN thin films using ultra-violet assisted electrochemical etching approach under various etching voltages. Fluctuation of luminescence signals was observed in the photoluminescence spectra of porous GaN thin films. Taking advantage of the spectral sensitivity of infrared attenuated total reflection spectroscopy on semiconductor materials, roles of free carriers and porous structure in controlling luminescence properties of GaN were investigated thoroughly. The results revealed that enhancement in luminescence signal is not always attained upon porosification. Although porosification is correlated to the luminescence enhancement, however, free carrier is the primary factor to enhance luminescence intensity. Due to unavoidable significant reduction of free carriers from Si-doped GaN in the porosification process, control of etching depth (i.e., thickness of porous layer formed from the Si-doped layer) is critical in fabricating porous GaN thin film with enhanced luminescence response. - Highlights: • Various pore morphologies with free carrier properties are produced by Si-doped GaN. • Free carriers are important to control the luminescence signal of porous GaN. • Enhancement of luminescence signal relies on the pore depth of Si-doped layer

  7. Electrochemical deposition of molybdenum sulfide thin films on conductive plastic substrates as platinum-free flexible counter electrodes for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Chao-Kuang; Hsieh, Chien-Kuo, E-mail: jack_hsieh@mail.mcut.edu.tw

    2015-06-01

    In this study, pulsed electrochemical deposition (pulsed ECD) was used to deposit molybdenum sulfide (MoS{sub x}) thin films on indium tin oxide/polyethylene naphthalate (ITO/PEN) substrates as flexible counter electrodes (CEs) for dye-sensitized solar cells (DSSCs). The surface morphologies and elemental distributions of the prepared MoS{sub x} thin films were examined using field-emission scanning electron microscope (FE-SEM) equipped with energy-dispersive X-ray spectroscopy. The chemical states and crystallinities of the prepared MoS{sub x} thin films were examined by X-ray photoelectron spectroscopy and X-ray diffraction, respectively. The optical transmission (T (%)) properties of the prepared MoS{sub x} samples were determined by ultraviolet–visible spectrophotometry. Cyclic voltammetry (CV) and Tafel-polarization measurements were performed to analyze the electrochemical properties and catalytic activities of the thin films for redox reactions. The FE-SEM results showed that the MoS{sub x} thin films were deposited uniformly on the ITO/PEN flexible substrates via the pulsed ECD method. The CV and Tafel-polarization curve measurements demonstrated that the deposited MoS{sub x} thin films exhibited excellent performances for the reduction of triiodide ions. The photoelectric conversion efficiency (PCE) of the DSSC produced with the pulsed ECD MoS{sub x} thin-film CE was examined by a solar simulator. In combination with a dye-sensitized TiO{sub 2} working electrode and an iodine-based electrolyte, the DSSC with the MoS{sub x} flexible CE showed a PCE of 4.39% under an illumination of AM 1.5 (100 mW cm{sup −2}). Thus, we report that the MoS{sub x} thin films are active catalysts for triiodide reduction. The MoS{sub x} thin films are prepared at room temperature and atmospheric pressure and in a simple and rapid manner. This is an important practical contribution to the production of flexible low-cost thin-film CEs based on plastic substrates. The MoS{sub x

  8. In situ electrochemical XRD study of (de)hydrogenation of MgyTi100-y thin films

    NARCIS (Netherlands)

    Vermeulen, P.; Wondergem, H.J.; Graat, P.C.J.; Borsa, D.M.; Schreuders, H.; Dam, B.; Griessen, R.; Notten, P.H.L.

    2008-01-01

    X-ray diffraction and electrochemical (de)hydrogenation were performed in situ to monitor the symmetry of the unit cells of MgyTi100-y thin film alloys (with 70 to 90 at.% Mg) along the pressure composition isotherms at room temperature. The diffraction patterns show that the crystal structures of

  9. Microstructural, photocatalysis and electrochemical investigations on CeTi2O6 thin films

    International Nuclear Information System (INIS)

    Verma, Amita; Goyal, Anshu; Sharma, R.K.

    2008-01-01

    The properties of sol-gel derived CeTi 2 O 6 thin films deposited using a solution of cerium chloride heptahydrate and titanium propoxide in ethanol are discussed. The effect of annealing temperature on structural, optical, photoluminescence, photocatalysis and electrochemical characteristics has been examined. Lowest annealing temperature for the formation of crystalline CeTi 2 O 6 phase in these samples is identified as 580 deg. C. The optical transmittance of the films is observed to be independent of the annealing temperature. The optical energy bandgap of the 600 deg. C annealed film for indirect transition is influenced by the presence of anatase phase of TiO 2 in its structure. Fourier transform infrared spectroscopy investigations have evidenced increased bond strength of the Ti-O-Ti network in the films as a function of annealing temperature. The photoluminescence intensity of the films has shown dependence on the annealing temperature with the films fired at 450 deg. C exhibiting the maximum photoluminescence activity. The decomposition of methyl orange and eosin (yellow) under UV-visible light irradiation in the presence of crystalline CeTi 2 O 6 films shows the presence of photoactivity in these films. The photocatalytic response of CeTi 2 O 6 films is found to be superior to the TiO 2 films. In comparison to crystalline films, the amorphous films have shown superior electrochemical characteristics. The 500 deg. C annealed amorphous films have exhibited the most appropriate properties for incorporation in electrochromic devices comprising tungsten oxide as the primary electrochromic electrode

  10. Phase Competition Induced Bio-Electrochemical Resistance and Bio-Compatibility Effect in Nanocrystalline Zr x -Cu100-x Thin Films.

    Science.gov (United States)

    Badhirappan, Geetha Priyadarshini; Nallasivam, Vignesh; Varadarajan, Madhuri; Leobeemrao, Vasantha Priya; Bose, Sivakumar; Venugopal, Elakkiya; Rajendran, Selvakumar; Angleo, Peter Chrysologue

    2018-07-01

    Nano-crystalline Zrx-Cu100-x (x = 20-100 at.%) thin films with thickness ranging from 50 to 185 nm were deposited by magnetron co-sputtering with individual Zr and Cu targets. The as-sputtered thin films were characterized by Field Emission Scanning Electron Microscope (FE-SEM), Atomic Force Microscopy (AFM) and Glancing Incidence X-ray Diffraction (GIXRD) for structural and morphological properties. The crystallite size was found to decrease from 57 nm to 37 nm upon increasing the Zr content from 20 to 30 at.% with slight increase in the lattice strain from 0.17 to 0.33%. Further, increase in Zr content to 40 at.% leads to increase in the crystallite size to 57 nm due to stabilization of C10Zr7 phase along with the presence of nanocrystalline Cu-Zr phase. A bimodal distribution of grain size was observed from FE-SEM micrograph was attributed to the highest surface roughness in Zr30Cu70 thin films comprised of Cu10Zr7, Cu9Zr2, Cu-Zr intermetallic phases. In-vitro electrochemical behaviors of nano-crystalline Zrx-Cu100-x thin films in simulated body fluid (SBF) were investigated using potentiodynamic polarization studies. Electrochemical impedance spectroscopy (EIS) data fitting by equivalent electrical circuit fit model suggests that inner bulk layer contributes to high bio-corrosion resistance in Zrx-Cu100-x thin films with increase in Zr content. The results of cyto-compatibility assay suggested that Zr-Cu thin film did not introduce cytotoxicity to osteoblast cells, indicating its suitability as a bio-coating for minimally invasive medical devices.

  11. Thin-film voltammetry and its analytical applications: A review

    International Nuclear Information System (INIS)

    Tian, Huihui; Li, Yunchao; Shao, Huibo; Yu, Hua-Zhong

    2015-01-01

    Highlights: • Electrochemistry at immiscible liquid–liquid interfaces is fundamentally important. • Methods for studying redox processes at liquid–liquid interfaces are reviewed. • Thin-film voltammetry is simple in experimental operation and kinetic data analysis. • Thin-film voltammetry’s analytical applications are prevailing and comprehensive. - Abstract: Electrochemical reactions at the interfaces of immiscible electrolyte solutions (ITIES) are of fundamental importance in the fields of chemical, biological and pharmaceutical sciences. Four-electrode cell setup, scanning electrochemical microscopy (SECM) and thin-film voltammetry are the three most frequently used methods for studying the electrochemical processes at these interfaces. The principle, experimental design, advantages and challenges of the three methods are described and compared. The thin-film voltammetry is highlighted for its simplicity in experimental operation and kinetic data analysis. Its versatile analytical applications are discussed in detail, including the study of redox properties of hydrophobic compounds, evaluation of interfacial electron transfer kinetics, synthesis of nanoparticles/nanostructures, and illustration of cross-membrane ion transport phenomena

  12. Cathodic electrochemical deposition of Magnéli phases TinO2n−1 thin films at different temperatures in acetonitrile solution

    International Nuclear Information System (INIS)

    Ertekin, Zeliha; Tamer, Uğur; Pekmez, Kadir

    2015-01-01

    Highlights: • TiO x films were prepared by cathodic electrodeposition in acetonitrile. • One-step electrodeposition of TiO x films without heat treatment process. • Different crystalline Ti n O 2n−1 films (γTi 3 O 5 , λTi 3 O 5 , Ti 4 O 7 , Ti 5 O 9 ) were obtained. - Abstract: The Magnéli phase titanium oxide films prepared by cathodic electrodeposition on indium–tin-oxide coated glass substrates from saturated peroxo-titanium solution in acetonitrile. Electrodeposited brownish semi-conductor thin films were identified via X-ray diffraction, Raman spectroscopy, UV–vis spectroscopy and scanning electron microscopy (SEM). The effects of different potentials and temperatures on the crystallinity of the thin films have been discussed. Ti 3 O 5 , Ti 4 O 7 and Ti 5 O 9 as the most favorable forms of the Ti n O 2n−1 were electrodeposited on ITO electrode at electrochemical deposition potentials and different temperatures. The present investigation reveals that the electrochemical deposition of crystalline Ti n O 2n−1 films by a simple one-step electrodeposition method (without any heat treatment) in acetonitrile solution is possible and very promising as a preparation method for electrochemical applications

  13. Iridium Oxide-reduced Graphene Oxide Nanohybrid Thin Film Modified Screen-printed Electrodes as Disposable Electrochemical Paper Microfluidic pH Sensors.

    Science.gov (United States)

    Yang, Jiang; Kwak, Tae-Joon; Zhang, Xiaodong; McClain, Robert; Chang, Woo-Jin; Gunasekaran, Sundaram

    2016-11-22

    A facile, controllable, inexpensive and green electrochemical synthesis of IrO2-graphene nanohybrid thin films is developed to fabricate an easy-to-use integrated paper microfluidic electrochemical pH sensor for resource-limited settings. Taking advantages from both pH meters and strips, the pH sensing platform is composed of hydrophobic barrier-patterned paper micropad (µPAD) using polydimethylsiloxane (PDMS), screen-printed electrode (SPE) modified with IrO2-graphene films and molded acrylonitrile butadiene styrene (ABS) plastic holder. Repetitive cathodic potential cycling was employed for graphene oxide (GO) reduction which can completely remove electrochemically unstable oxygenated groups and generate a 2D defect-free homogeneous graphene thin film with excellent stability and electronic properties. A uniform and smooth IrO2 film in nanoscale grain size is anodically electrodeposited onto the graphene film, without any observable cracks. The resulting IrO2-RGO electrode showed slightly super-Nernstian responses from pH 2-12 in Britton-Robinson (B-R) buffers with good linearity, small hysteresis, low response time and reproducibility in different buffers, as well as low sensitivities to different interfering ionic species and dissolved oxygen. A simple portable digital pH meter is fabricated, whose signal is measured with a multimeter, using high input-impedance operational amplifier and consumer batteries. The pH values measured with the portable electrochemical paper-microfluidic pH sensors were consistent with those measured using a commercial laboratory pH meter with a glass electrode.

  14. Synthesis and characterization of spray deposited CZTS thin films for photo-electrochemical application

    Science.gov (United States)

    Chavda, Arvind; Patel, Biren; Mukhopadhyay, Priyanka Marathey Indrajit; Ray, Abhijit

    2018-05-01

    Cu2ZnSnS4 (CZTS) is one of the most promising light absorber materials for photovoltaic and photo-electrochemical applications. We synthesized CZTS thin films on a F:SnO2 and soda lime glass substrates by very simple, cost effective and highly scalable spray pyrolysis technique. The films were post treated by rapid thermal processing route of sulfurization to enhance the stoichiometry and crystallinity of the film. The structural, morphological, optical and electrical properties of RTP sulfurized films were studied. The X-ray diffraction (XRD) pattern revealed the formation of tetragonal CZTS phase, which confirmed by Raman analysis with a major peak at 336 cm-1 without the presence of the principle vibration mode of any other secondary phases, such as Cu2SnS3, CuxS(x=1.8,2) etc. The sulfurized film exhibited increased crystallinity and better stoichiometry. The optical and electrical data reveal the direct optical band gap, bulk carrier concentration and resistivity of 1.5 eV, 2.28×1018 cm-3 and 1.21 Ω/cm2, respectively. Finally the photoactivity of CZTS thin films was tested by forming photoelectrochemical cell in 0.1M Na2S2O3 electrolyte (pH=7.72), showing a cathodic photocurrent of nearly 20 µA/cm2 at 0V RHE.

  15. Nanostructured tungsten trioxide thin films synthesized for photoelectrocatalytic water oxidation: a review.

    Science.gov (United States)

    Zhu, Tao; Chong, Meng Nan; Chan, Eng Seng

    2014-11-01

    The recent developments of nanostructured WO3 thin films synthesized through the electrochemical route of electrochemical anodization and cathodic electrodeposition for the application in photoelectrochemical (PEC) water splitting are reviewed. The key fundamental reaction mechanisms of electrochemical anodization and cathodic electrodeposition methods for synthesizing nanostructured WO3 thin films are explained. In addition, the effects of metal oxide precursors, electrode substrates, applied potentials and current densities, and annealing temperatures on size, composition, and thickness of the electrochemically synthesized nanostructured WO3 thin films are elucidated in detail. Finally, a summary is given for the general evaluation practices used to calculate the energy conversion efficiency of nanostructured WO3 thin films and a recommendation is provided to standardize the presentation of research results in the field to allow for easy comparison of reported PEC efficiencies in the near future. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Electrochemical Deposition of Lanthanum Telluride Thin Films and Nanowires

    Science.gov (United States)

    Chi, Su (Ike); Farias, Stephen; Cammarata, Robert

    2013-03-01

    Tellurium alloys are characterized by their high performance thermoelectric properties and recent research has shown nanostructured tellurium alloys display even greater performance than bulk equivalents. Increased thermoelectric efficiency of nanostructured materials have led to significant interests in developing thin film and nanowire structures. Here, we report on the first successful electrodeposition of lanthanum telluride thin films and nanowires. The electrodeposition of lanthanum telluride thin films is performed in ionic liquids at room temperature. The synthesis of nanowires involves electrodepositing lanthanum telluride arrays into anodic aluminum oxide (AAO) nanoporous membranes. These novel procedures can serve as an alternative means of simple, inexpensive and laboratory-environment friendly methods to synthesize nanostructured thermoelectric materials. The thermoelectric properties of thin films and nanowires will be presented to compare to current state-of-the-art thermoelectric materials. The morphologies and chemical compositions of the deposited films and nanowires are characterized using SEM and EDAX analysis.

  17. Synthesis of electro-active manganese oxide thin films by plasma enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Merritt, Anna R. [Energetics Research Division, Naval Air Warfare Center Weapons Division, China Lake, CA 93555 (United States); Rajagopalan, Ramakrishnan [Department of Engineering, The Pennsylvania State University, Dubois, PA 15801 (United States); Materials Research Institute, The Pennsylvania State University, University Park, PA 16802 (United States); Carter, Joshua D. [Energetics Research Division, Naval Air Warfare Center Weapons Division, China Lake, CA 93555 (United States)

    2014-04-01

    The good stability, cyclability and high specific capacitance of manganese oxide (MnO{sub x}) has recently promoted a growing interest in utilizing MnO{sub x} in asymmetric supercapacitor electrodes. Several literature reports have indicated that thin film geometries of MnO{sub x} provide specific capacitances that are much higher than bulk MnO{sub x} powders. Plasma enhanced chemical vapor deposition (PECVD) is a versatile technique for the production of metal oxide thin films with high purity and controllable thickness. In this work, MnO{sub x} thin films deposited by PECVD from a methylcyclopentadienyl manganese tricarbonyl precursor are presented and the effect of processing conditions on the quality of MnO{sub x} films is described. The film purity and oxidation state of the MnO{sub x} films were studied by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Preliminary electrochemical testing of MnO{sub x} films deposited on carbon fiber electrodes in aqueous electrolytes indicates that the PECVD synthesized films are electrochemically active. - Highlights: • Plasma enhanced chemical vapor deposition of manganese oxide thin films. • Higher plasma power and chamber pressure increase deposition rate. • Manganese oxide thin films are electrochemically active. • Best electrochemical performance observed for pure film with low stress • Lower capacitance observed at higher scan rates despite thin film geometry.

  18. Electrochemical preparation and characterization of CuInSe2 thin films for photovoltaic applications

    International Nuclear Information System (INIS)

    Guillen Arqueros, C.

    1992-01-01

    The objective of this work has been to investigate the electrodeposition as a low-cost, large-area fabrication process to obtain CuInSe 2 this films for efficient photovoltaic devices. this objective entails the elucidation of thin film deposition mechanism, the study of the fundamental properties of electrodeposited material, and also the modification of their physical and chemical parameters for photovoltaic applications. CuInSe 2 thin films have been successfully electrodeposited from a citric was characterized by compositional, structural, electrical, optical and electrochemical measurements, relating their properties with the preparation parameters and also studying the effect of various thermal and chemical treatments. The results showed post-deposition treatment are needed for optimizing these films for solar cells fabrication: first, an annealing in inert atmosphere at temperatures above 400 degrees celsius to obtain a high recrystallization in the chalcopyrite structure, and after a chemical etching in KCN solution to remove secondary phases of Cu x Se and Se which are frequently electrodeposited with the CuInSe 2 . The treated samples showed appropriate photovoltaic activity in a semiconductor-electrolite liquid junction. (author) 193 ref

  19. Water-mediated electrochemical nano-writing on thin ceria films

    International Nuclear Information System (INIS)

    Yang, Nan; Doria, Sandra; Tebano, Antonello; Licoccia, Silvia; Balestrino, Giuseppe; Kumar, Amit; Arruda, Thomas M; Jesse, Stephen; Ivanov, Ilia N; Baddorf, Arthur P; Strelcov, Evgheni; Kalinin, Sergei V; Jang, Jae Hyuck; Borisevich, Albina Y

    2014-01-01

    Bias dependent mechanisms of irreversible cathodic and anodic processes on a pure CeO 2 film are studied using modified atomic force microscopy (AFM). For a moderate positive bias applied to the AFM tip an irreversible electrochemical reduction reaction is found, associated with significant local volume expansion. By changing the experimental conditions we are able to deduce the possible role of water in this process. Simultaneous detection of tip height and current allows the onset of conductivity and the electrochemical charge transfer process to be separated, further elucidating the reaction mechanism. The standard anodic/cathodic behavior is recovered in the high bias regime, where a sizable transport current flows between the tip and the film. These studies give insight into the mechanisms of the tip-induced electrochemical reactions as mediated by electronic currents, and into the role of water in these processes, as well as providing a different approach for electrochemical nano-writing. (paper)

  20. Fast electrochemical deposition of Ni(OH)2 precursor involving water electrolysis for fabrication of NiO thin films

    Science.gov (United States)

    Koyama, Miki; Ichimura, Masaya

    2018-05-01

    Ni(OH)2 precursor films were deposited by galvanostatic electrochemical deposition (ECD), and NiO thin films were fabricated by annealing in air. The effects of the deposition current densities were studied in a range that included current densities high enough to electrolyze water and generate hydrogen bubbles. The films fabricated by ECD involving water electrolysis had higher transparency and smoother surface morphology than those deposited with lower current densities. In addition, the annealed NiO films clearly had preferred (111) orientation when the deposition was accompanied by water electrolysis. p-type conduction was confirmed for the annealed films.

  1. Influence of the substrate texture on the structural and electrochemical properties of sputtered LiCoO2 thin films

    International Nuclear Information System (INIS)

    Jung, Ki-Taek; Cho, Gyu-Bong; Kim, Ki-Won; Nam, Tae-Hyun; Jeong, Hyo-Min; Huh, Sun-Chul; Chung, Han-Shik; Noh, Jung-Pil

    2013-01-01

    LiCoO 2 thin films were fabricated on textured and annealed STS304 substrates by direct current magnetron sputtering method. The effects of the substrate texture on the structural and electrochemical properties of the LiCoO 2 thin film deposited on both the substrates have been investigated. The crystal structures and surface morphologies of the deposited films were analyzed by X-ray diffractometry (XRD), Raman spectroscopy, and field emission scanning electron microscopy (FE-SEM). Based on the XRD analysis, the LiCoO 2 thin film deposited on the textured substrate was found to exhibit (003) preferred orientation, while the film deposited on annealed substrate exhibited (104) preferred orientation. In addition, SEM analysis revealed that the film deposited on the textured substrate showed a smooth morphology. On the other hand, the film deposited on the annealed substrate exhibited a very rough surface morphology, which resulted in a higher surface area. Consequently, the initial discharge capacity of the film deposited on the annealed substrate was higher than that of the film deposited on the textured substrate. The film deposited on the textured substrate exhibited a good cyclic performance compared to the film deposited on the annealed substrate. - Highlights: • The sputtered LiCoO 2 thin films were influenced by the substrate texture. • The film deposited on the annealed substrate exhibited (104) preferred orientation. • The film deposited on the textured substrate exhibited a good cyclic performance

  2. Preparation of electrochromic thin films by transformation of manganese(II) carbonate

    Science.gov (United States)

    Stojkovikj, Sasho; Najdoski, Metodija; Koleva, Violeta; Demiri, Sani

    2013-10-01

    A new chemical bath method for deposition of manganese(II) carbonate thin film on electroconductive FTO glass substrates is designed. The homogeneous thin films with thickness in the range of 70 to 500 nm are deposited at about 98 °C from aqueous solution containing urea and MnCl2. The chemical process is based on a low temperature hydrolysis of the manganese complexes with urea. Three types of films are under consideration: as-deposited, annealed and electrochemically transformed thin films. The structure of the films is studied by XRD, IR and Raman spectroscopy. Electrochemical and optical properties are examined in eight different electrolytes (neutral and alkaline) and the best results are achieved in two component aqueous solution of 0.1 M KNO3 and 0.01 M KOH. It is established that the as-deposited MnCO3 film undergoes electrochemically transformation into birnessite-type manganese(IV) oxide films, which exhibit electrochromic color changes (from bright brown to pale yellow and vice versa) with 30% difference in the transmittance of the colored and bleached state at 400 nm.

  3. Synthesis and morphological modification of semiconducting Mg(Zn)Al(Ga)–LDH/ITO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Valente, Jaime S., E-mail: jsanchez@imp.mx [Instituto Mexicano del Petróleo, Eje Central # 152, 07730 México D.F. (Mexico); López-Salinas, Esteban [Instituto Mexicano del Petróleo, Eje Central # 152, 07730 México D.F. (Mexico); Prince, Julia [Universidad Anáhuac México Norte, Av. Universidad Anáhuac # 46, Huixquilucan, Edo. de México 52786 (Mexico); González, Ignacio; Acevedo-Peña, Prospero [Universidad Autónoma Metropolitana-Iztapalapa, Departamento de Química, Apdo. Postal 55-534, 09340 México D.F. (Mexico); Ángel, Paz del [Instituto Mexicano del Petróleo, Eje Central # 152, 07730 México D.F. (Mexico)

    2014-09-15

    Layered double hydroxide (LDH) thin films with different chemical compositions (MgZnAl, MgZnGa, MgGaAl) and varying thicknesses were easily prepared by sol–gel method followed by dip-coating. Films were chemically uniform, transparent and well adhered to a conductive indium tin oxide (ITO) substrate. Structure, chemical composition and morphology of the thin films were characterized by XRD-GADDS, SEM-EDS and AFM. Additionally, the semiconducting properties of all the prepared films were studied through the Mott–Schottky relationship; such properties were closely related to the chemical compositions of the film. The films were characterized after electrochemical treatment and important modifications regarding surface morphology, particle and crystal sizes were observed. An in-depth study was conducted in order to investigate the effect of several different electrochemical treatments on the morphology, particle size distribution and crystal size of LDH thin films. Upon electrochemical treatment, the films' surface became smooth and the particles forming the films were transformed from flaky open LDH platelets to uniformly distributed close-packed LDH nanoparticles. - Highlights: • Semiconducting Mg(Zn)Al(Ga)–LDH/ITO thin films prepared by sol–gel. • LDH thin films show a turbostratic morphology made up of porous flakes. • Electrochemical treatments change the flaky structure into a nanoparticle array.

  4. Optical properties of electrochemically deposited CuInSe sub 2 thin films

    Energy Technology Data Exchange (ETDEWEB)

    Guillen, C; Herrero, J [Inst. de Energias Renovables (CIEMAT), Madrid (Spain)

    1991-11-01

    Polycrystalline thin films of CuInSe{sub 2} within a wide composition range have been electrochemically deposited. Their optical properties in the near-infrared and visible range, 400-2000 nm, have been studied in relation to the deposition potential and film thickness. An absorption coefficient ({alpha}) as high as 10{sup 5} cm{sup -1} is observed at short wavelength ({lambda} < 700 nm), but near the band edge {alpha} has a value about 10{sup 4} cm{sup -1}. The observed absorption coefficient variation is due to an allowed direct transition with an energy in the range 0.88-0.96 eV and an additional forbidden direct transition with an energy in the range 1.32-1.41 eV, where the absorption coefficient depends on the deposition potential, and the possible phase nature of the material, with band gap narrowing when the potential becomes anodic. The values of {alpha} and transition energies also depend on the film thickness for samples up to 0.6 {mu}m thick. (orig.).

  5. Quadrilateral Micro-Hole Array Machining on Invar Thin Film: Wet Etching and Electrochemical Fusion Machining

    Directory of Open Access Journals (Sweden)

    Woong-Kirl Choi

    2018-01-01

    Full Text Available Ultra-precision products which contain a micro-hole array have recently shown remarkable demand growth in many fields, especially in the semiconductor and display industries. Photoresist etching and electrochemical machining are widely known as precision methods for machining micro-holes with no residual stress and lower surface roughness on the fabricated products. The Invar shadow masks used for organic light-emitting diodes (OLEDs contain numerous micro-holes and are currently machined by a photoresist etching method. However, this method has several problems, such as uncontrollable hole machining accuracy, non-etched areas, and overcutting. To solve these problems, a machining method that combines photoresist etching and electrochemical machining can be applied. In this study, negative photoresist with a quadrilateral hole array pattern was dry coated onto 30-µm-thick Invar thin film, and then exposure and development were carried out. After that, photoresist single-side wet etching and a fusion method of wet etching-electrochemical machining were used to machine micro-holes on the Invar. The hole machining geometry, surface quality, and overcutting characteristics of the methods were studied. Wet etching and electrochemical fusion machining can improve the accuracy and surface quality. The overcutting phenomenon can also be controlled by the fusion machining. Experimental results show that the proposed method is promising for the fabrication of Invar film shadow masks.

  6. Preparation and electrochemical performance of copper foam-supported amorphous silicon thin films for rechargeable lithium-ion batteries

    International Nuclear Information System (INIS)

    Li Haixia; Cheng Fangyi; Zhu Zhiqiang; Bai Hongmei; Tao Zhanliang; Chen Jun

    2011-01-01

    Research highlights: → Amorphous Si thin films have been deposited on copper foam substrate by radio-frequency (rf) magnetron sputtering. → The as-prepared Si/Cu films with interconnected 3-dimensional structure are employed as anode materials of rechargeable lithium-ion batteries, showing that the electrode properties are greatly affected by the deposition temperature. → The film electrode deposited at an optimum temperature of 300 deg. C delivers a specific capacity of ∼2900 mAh/g and a coulombic efficiency above 95% at charge/discharge current density of 0.2C after 30 cycles. → The Li + diffusion coefficiency in copper foam-supported Si thin films is determined to be 2.36 x 10 -9 cm 2 /s. → The combination of rf magnetron sputtering and cooper foam substrate is an efficient route to prepare amorphous Si films with high capacity and cyclability due to the efficient ionic diffusion and interface contact with a good conductive current collector. - Abstract: Amorphous Si thin films, which have been deposited on copper foam by radio-frequency (rf) magnetron sputtering, are employed as anode materials of rechargeable lithium-ion batteries. The morphologies and structures of the as-prepared Si thin films are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray powder diffraction (XRD). Electrochemical performance of lithium-ion batteries with the as-prepared Si films as the anode materials is investigated by cyclic voltammetry and charge-discharge measurements. The results show that the electrode properties of the prepared amorphous Si films are greatly affected by the deposition temperature. The film electrode deposited at an optimum temperature of 300 deg. C can deliver a specific capacity of ∼2900 mAh/g and a coulombic efficiency above 95% at charge/discharge current density of 0.2C after 30 cycles. The Li + diffusion coefficiency in copper foam-supported Si thin films is determined to be 2.36 x 10 -9 cm

  7. Structure, adhesive strength and electrochemical performance of nitrogen doped diamond-like carbon thin films deposited via DC magnetron sputtering.

    Science.gov (United States)

    Khun, N W; Liu, E; Krishna, M D

    2010-07-01

    Nitrogen doped diamond-like carbon (DLC:N) thin films were deposited on p-Si (100) substrates by DC magnetron sputtering with different nitrogen flow rates at a substrate temperature of about 100 degrees C. The chemical bonding structure of the films was characterized by X-ray photoelectron spectroscopy (XPS) and micro-Raman spectroscopy. The adhesive strength and surface morphology of the films were studied using micro-scratch tester and scanning electron microscope (SEM), respectively. The electrochemical performance of the films was evaluated by potentiodynamic polarization testing and linear sweep voltammetry. The electrolytes used for the electrochemical tests were deaerated and unstirred 0.47 M KCl aqueous solution for potentiodynamic polarization testing and 0.2 M KOH and 0.1 M KCl solutions for voltammetric analysis. It was found that the DLC:N films could well passivate the underlying substrates though the corrosion resistance of the films decreased with increased nitrogen content in the films. The DLC:N films showed wide potential windows in the KOH solution, in which the detection ability of the DLC:N films to trace lead of about 1 x 10(-3) M Pb(2+) was also tested.

  8. Chemically grown, porous, nickel oxide thin-film for electrochemical supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Inamdar, A.I.; Kim, YoungSam; Im, Hyunsik [Department of Semiconductor Science, Dongguk University, Seoul 100-715 (Korea, Republic of); Pawar, S.M.; Kim, J.H. [Department of Materials Science and Engineering, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Kim, Hyungsang [Department of Physics, Dongguk University, Seoul 100-715 (Korea, Republic of)

    2011-02-15

    A porous nickel oxide film is successfully synthesized by means of a chemical bath deposition technique from an aqueous nickel nitrate solution. The formation of a rock salt NiO structure is confirmed with XRD measurements. The electrochemical supercapacitor properties of the nickel oxide film are examined using cyclic voltammetery (CV), galvanostatic and impedance measurements in two different electrolytes, namely, NaOH and KOH. A specific capacitance of {proportional_to}129.5 F g{sup -1} in the NaOH electrolyte and {proportional_to}69.8 F g{sup -1} in the KOH electrolyte is obtained from a cyclic voltammetery study. The electrochemical stability of the NiO electrode is observed for 1500 charge-discharge cycles. The capacitative behaviour of the NiO electrode is confirmed from electrochemical impedance measurements. (author)

  9. Preparation of LiMn2O4 cathode thin films for thin film lithium secondary batteries by a mist CVD process

    International Nuclear Information System (INIS)

    Tadanaga, Kiyoharu; Yamaguchi, Akihiro; Sakuda, Atsushi; Hayashi, Akitoshi; Tatsumisago, Masahiro; Duran, Alicia; Aparacio, Mario

    2014-01-01

    Highlights: • LiMn 2 O 4 thin films were prepared by using the mist CVD process. • An aqueous solution of lithium and manganese acetates is used for the precursor solution. • The cell with the LiMn 2 O 4 thin films exhibited a capacity of about 80 mAh/g. • The cell showed good cycling performance during 10 cycles. - Abstract: LiMn 2 O 4 cathode thin films for thin film lithium secondary batteries were prepared by using so-called the “mist CVD process”, employing an aqueous solution of lithium acetate and manganese acetate, as the source of Li and Mn, respectively. The aqueous solution of starting materials was ultrasonically atomized to form mist particles, and mists were transferred by nitrogen gas to silica glass substrate to form thin films. FE-SEM observation revealed that thin films obtained by this process were dense and smooth, and thin films with a thickness of about 750 nm were obtained. The electrochemical cell with the thin films obtained by sintering at 700 °C exhibited a capacity of about 80 mAh/g, and the cell showed good cycling performance during 10 cycles

  10. Structural, optical and electrochemical properties of F-doped vanadium oxide transparent semiconducting thin films

    Energy Technology Data Exchange (ETDEWEB)

    Mousavi, M.; Khorrami, G.H. [University of Bojnord, Department of Physics, Faculty of Basic Science, Bojnord (Iran, Islamic Republic of); Kompany, A. [Ferdowsi University of Mashhad, Department of Physics, Mashhad (Iran, Islamic Republic of); Yazdi, S.T. [Payame Noor University (PNU), Department of Physics, Tehran (Iran, Islamic Republic of)

    2017-12-15

    In this study, F-doped vanadium oxide thin films with doping levels up to 60 at % were prepared by spray pyrolysis method on glass substrates. To measure the electrochemical properties, some films were deposited on fluorine-tin oxide coated glass substrates. The effect of F-doping on the structural, electrical, optical and electrochemical properties of vanadium oxide samples was investigated. The X-ray diffractographs analysis has shown that all the samples grow in tetragonal β-V{sub 2}O{sub 5} phase structure with the preferred orientation of [200]. The intensity of (200) peak belonging to β-V{sub 2}O{sub 5} phase was strongest in the undoped vanadium oxide film. The scanning electron microscopy images show that the samples have nanorod- and nanobelt-shaped structure. The size of the nanobelts in the F-doped vanadium oxide films is smaller than that in the pure sample and the width of the nanobelts increases from 30 to 70 nm with F concentration. With increasing F-doping level from 10 to 60 at %, the resistivity, the transparency and the optical band gap decrease from 111 to 20 Ω cm, 70 to 50% and 2.4 to 2.36 eV, respectively. The cyclic voltammogram (CV) results show that the undoped sample has the most extensive CV and by increasing F-doping level from 20 to 60 at %, the area of the CV is expanded. The anodic and cathodic peaks in F-doped samples are stronger. (orig.)

  11. Electrochemical growth and studies of CuInSe2 thin films

    International Nuclear Information System (INIS)

    Prasher, Dixit; Chandel, Tarun; Rajaram, Poolla

    2014-01-01

    Thin films of CuInSe 2 were grown on fluorine doped tin oxide (<10 Ω/□) coated glass using the electrodeposition technique. The electrodeposition was carried out potentiostatically using an aqueous bath consisting of solutions of CuCl 2 , InCl 3 and SeO 2 with ethylenediamine-dihydrochloride (EDC) added for complexation. CuInSe 2 films were also deposited without using any complexing agent in the bath. To improve the crystallinity the CuInSe 2 films were annealed in vaccum at 300 °C for one hour. The annealed films were analyzed by x-ray diffraction, transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive analysis of x-rays (EDAX), atomic force microscopy (AFM) and optical spectra. The results obtained in this work show that by adding a suitable complexing agent to the electrochemical bath, nanocrystalline CuInSe 2 , 20 nm to 30 nm in size, can be grown. The composition of the CuInSe 2 films can be controlled by means of the bath composition and stoichiometric films can be obtained for a bath with ionic Cu:In:Se composition close to 1:4:2. AFM micrographs show that the particles are generally oval shaped for near stoichiometric compositions. However for extreme copper rich layers, the morphology is completely different, the particles in this case appearing in the form of nanoflakes. Each flake has a thickness in the nano range, but the surface extends to a length of several microns. (papers)

  12. Screen-printed carbon electrode modified on its surface with amorphous carbon nitride thin film: Electrochemical and morphological study

    Energy Technology Data Exchange (ETDEWEB)

    Ghamouss, F. [Universite de Nantes, UMR 6006-CNRS, FR-2465-CNRS, Laboratoire d' Analyse isotopique et Electrochimique de Metabolismes (LAIEM) (France); Tessier, P.-Y. [Universite de Nantes, UMR CNRS 6502, Institut des Materiaux Jean Rouxel - IMN Faculte des Sciences and des Techniques de Nantes, 2 rue de la Houssiniere, 44322 Nantes Cedex 3 (France); Djouadi, A. [Universite de Nantes, UMR CNRS 6502, Institut des Materiaux Jean Rouxel - IMN Faculte des Sciences and des Techniques de Nantes, 2 rue de la Houssiniere, 44322 Nantes Cedex 3 (France); Besland, M.-P. [Universite de Nantes, UMR CNRS 6502, Institut des Materiaux Jean Rouxel - IMN Faculte des Sciences and des Techniques de Nantes, 2 rue de la Houssiniere, 44322 Nantes Cedex 3 (France); Boujtita, M. [Universite de Nantes, UMR 6006-CNRS, FR-2465-CNRS, Laboratoire d' Analyse isotopique et Electrochimique de Metabolismes (LAIEM) (France)]. E-mail: mohammed.boujtita@univ-nantes.fr

    2007-04-20

    The surface of a screen-printed carbon electrode (SPCE) was modified by using amorphous carbon nitride (a-CN {sub x}) thin film deposited by reactive magnetron sputtering. Scanning electron microscopy and photoelectron spectroscopy measurements were used to characterise respectively the morphology and the chemical structure of the a-CN {sub x} modified electrodes. The incorporation of nitrogen in the amorphous carbon network was demonstrated by X ray photoelectron spectroscopy. The a-CN {sub x} layers were deposited on both carbon screen-printed electrode (SPCE) and silicon (Si) substrates. A comparative study showed that the nature of substrate, i.e. SPCE and Si, has a significant effect on both the surface morphology of deposited a-CN {sub x} film and their electrochemical properties. The improvement of the electrochemical reactivity of SPCE after a-CN {sub x} film deposition was highlighted both by comparing the shapes of voltammograms and calculating the apparent heterogeneous electron transfer rate constant.

  13. Study of the electrodeposition of rhenium thin films by electrochemical quartz microbalance and X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Schrebler, R.; Cury, P.; Suarez, C.; Munoz, E.; Vera, F.; Cordova, R.; Gomez, H.; Ramos-Barrado, J.R.; Leinen, D.; Dalchiele, E.A.

    2005-01-01

    Rhenium thin films were prepared by electrodeposition from an aqueous solution containing 0.1 M Na 2 SO 4 +H 2 SO 4 , pH 2 in presence of y mM HReO 4 . As substrates polycrystalline gold (y=0.75 mM HReO 4 ) and monocrystalline n-Si(100) (y=40 mM HReO 4 ) were used. The electrochemical growth of rhenium was studied by cyclic voltammetry and electrochemical quartz microbalance on gold electrodes. The results found in the potential region before the hydrogen evolution reaction (her) showed that ReO 3 , ReO 2 and Re 2 O 3 with different hydration grades can be formed. In the potential region where the her is occurring, either on gold or n-Si(100) the electrodeposition of metallic rhenium takes place. On both substrates, rhenium films were formed by electrolysis at constant potential and X-ray photoelectron spectroscopy technique was used to characterise these deposits. It was concluded that the electrodeposited films were of metallic rhenium and only the uppermost atomic layer contained rhenium oxide species

  14. Nanostructured thin films as functional coatings

    Energy Technology Data Exchange (ETDEWEB)

    Lazar, Manoj A; Tadvani, Jalil K; Tung, Wing Sze; Lopez, Lorena; Daoud, Walid A, E-mail: Walid.Daoud@sci.monash.edu.au [School of Applied Sciences and Engineering, Monash University, Churchill, VIC 3842 (Australia)

    2010-06-15

    Nanostructured thin films is one of the highly exploiting research areas particularly in applications such as photovoltaics, photocatalysis and sensor technologies. Highly tuned thin films, in terms of thickness, crystallinity, porosity and optical properties, can be fabricated on different substrates using the sol-gel method, chemical solution deposition (CSD), electrochemical etching, along with other conventional methods such as chemical vapour deposition (CVD) and physical vapour deposition (PVD). The above mentioned properties of these films are usually characterised using surface analysis techniques such as XRD, SEM, TEM, AFM, ellipsometry, electrochemistry, SAXS, reflectance spectroscopy, STM, XPS, SIMS, ESCA, X-ray topography and DOSY-NMR. This article presents a short review of the preparation and characterisation of thin films of nanocrystalline titanium dioxide and modified silicon as well as their application in solar cells, water treatment, water splitting, self cleaning fabrics, sensors, optoelectronic devices and lab on chip systems.

  15. Differences observed in the surface morphology and microstructure of Ni-Fe-Cu ternary thin films electrochemically deposited at low and high applied current densities

    International Nuclear Information System (INIS)

    Sarac, U; Kaya, M; Baykul, M C

    2016-01-01

    In this research, nanocrystalline Ni-Fe-Cu ternary thin films using electrochemical deposition technique were produced at low and high applied current densities onto Indium Tin Oxide (ITO) coated conducting glass substrates. Change of surface morphology and microstructural properties of the films were investigated. Energy dispersive X-ray spectroscopy (EDX) measurements showed that the Ni-Fe-Cu ternary thin films exhibit anomalous codeposition behaviour during the electrochemical deposition process. From the X-ray diffraction (XRD) analyses, it was revealed that there are two segregated phases such as Cu- rich and Ni-rich within the films. The crystallographic structure of the films was face-centered cubic (FCC). It was also observed that the film has lower lattice micro-strain and higher texture degree at high applied current density. Scanning electron microscopy (SEM) studies revealed that the films have rounded shape particles on the base part and cauliflower-like structures on the upper part. The film electrodeposited at high current density had considerably smaller rounded shape particles and cauliflower-like structures. From the atomic force microscopy (AFM) analyses, it was shown that the film deposited at high current density has smaller particle size and surface roughness than the film grown at low current density. (paper)

  16. GOX-functionalized nanodiamond films for electrochemical biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Villalba, Pedro [Department of Chemical and Biomedical Engineering, University of South Florida (United States); Departamento de Medicina, Universidad del Norte, Barranquilla (Colombia); Ram, Manoj K., E-mail: mkram@usf.edu [Department of Mechanical Engineering, University of South Florida, 4202 E Fowler Avenue, Tampa, FL, 33620-5350 (United States); Nanotechnology Research and Education Center, University of South Florida (United States); Gomez, Humberto [Department of Mechanical Engineering, University of South Florida, 4202 E Fowler Avenue, Tampa, FL, 33620-5350 (United States); Departamento de Medicina, Universidad del Norte, Barranquilla (Colombia); Kumar, Amrita [Department of Physiology, Emory University. Atlanta GA (United States); Bhethanabotla, Venkat [Department of Chemical and Biomedical Engineering, University of South Florida (United States); Kumar, Ashok [Department of Mechanical Engineering, University of South Florida, 4202 E Fowler Avenue, Tampa, FL, 33620-5350 (United States); Nanotechnology Research and Education Center, University of South Florida (United States)

    2011-07-20

    The importance of nanodiamond in biological and technological applications has been recognized recently, and applied in drug delivery, biochip, sensors and biosensors. Under this investigation, nanodiamond (ND) and nitrogen doped nanodiamond (NND) were deposited on n-type silicon films, and later functionalized with enzyme Glucose oxidase (GOX). The GOX functionalized doped and undoped ND films were characterized using combination of several techniques; i.e. FTIR spectroscopy, Raman spectroscopy, atomic force microscopy (AFM) and electrochemical techniques. ND/GOX and NND/GOX thin films on n-type silicon have been found to provide sensitive glucose sensor. GOX has been chosen as a model enzyme system to functionalize with ND at molecular level to understand the glucose biosensor. - Research highlights: {yields} Nanodiamond (ND) films were used as an enzyme electrode for glucose quantification. {yields} Electrochemical behavior of doped and intrinsic films was analyzed. {yields} Electrode demonstrates sensitivity to glucose concentration in dynamic condition. {yields} Linear behavior was observed upto 8mM before saturation condition.

  17. GOX-functionalized nanodiamond films for electrochemical biosensor

    International Nuclear Information System (INIS)

    Villalba, Pedro; Ram, Manoj K.; Gomez, Humberto; Kumar, Amrita; Bhethanabotla, Venkat; Kumar, Ashok

    2011-01-01

    The importance of nanodiamond in biological and technological applications has been recognized recently, and applied in drug delivery, biochip, sensors and biosensors. Under this investigation, nanodiamond (ND) and nitrogen doped nanodiamond (NND) were deposited on n-type silicon films, and later functionalized with enzyme Glucose oxidase (GOX). The GOX functionalized doped and undoped ND films were characterized using combination of several techniques; i.e. FTIR spectroscopy, Raman spectroscopy, atomic force microscopy (AFM) and electrochemical techniques. ND/GOX and NND/GOX thin films on n-type silicon have been found to provide sensitive glucose sensor. GOX has been chosen as a model enzyme system to functionalize with ND at molecular level to understand the glucose biosensor. - Research highlights: → Nanodiamond (ND) films were used as an enzyme electrode for glucose quantification. → Electrochemical behavior of doped and intrinsic films was analyzed. → Electrode demonstrates sensitivity to glucose concentration in dynamic condition. → Linear behavior was observed upto 8mM before saturation condition.

  18. Electrochemical Synthesis of a Microporous Conductive Polymer Based on a Metal-Organic Framework Thin Film

    KAUST Repository

    Lu, Chunjing

    2014-05-22

    A new approach to preparing 3D microporous conductive polymer has been demonstrated in the electrochemical synthesis of a porous polyaniline network with the utilization of a MOF thin film supported on a conducting substrate. The prepared porous polyaniline with well-defined uniform micropores of 0.84 nm exhibits a high BET surface area of 986 m2 g−1 and a high electric conductivity of 0.125 S cm−1 when doped with I2, which is superior to existing porous conducting materials of porous MOFs, CMPs, and COFs.

  19. Electrochemical preparation of photoelectrochemically active CuI thin films from room temperature ionic liquid

    International Nuclear Information System (INIS)

    Huang, Hsin-Yi; Chien, Da-Jean; Huang, Genin-Gary; Chen, Po-Yu

    2012-01-01

    Highlights: ► CuI film can be formed by anodization of Cu in ionic liquid containing iodide. ► Coordinating strength of anion in ionic liquid determine the formation of CuI. ► Photocurrent of the CuI film can be observed in aqueous solution and in ionic liquid. ► Cu layer coated on conductive substrates can be converted to CuI. - Abstract: Cuprous iodide (CuI) thin films with photoelectrochemical activity were prepared by anodizing copper wire or copper-electrodeposited tungsten wire in the room temperature ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate (BMI-PF 6 RTIL) containing N-butyl-N-methylpyrrolidinium iodide (BMP-I). A copper coating was formed on the tungsten wire by potentiostatic electrodeposition in BMP-dicyanamide (BMP-DCA) RTIL containing copper chloride (CuCl). The CuI films formed using this method were compact, fine-grained and exhibited good adhesion. The characteristic diffraction signals of CuI were observed by powder X-ray diffractometry (XRD). X-ray photoelectron spectroscopy (XPS) also confirmed the formation of a CuI compound semiconductor. The CuI films demonstrated an apparent and stable photocurrent under white light illumination in aqueous solutions and in a RTIL. This method has enabled the electrochemical formation of CuI from a RTIL for the first time, and the first observation of a photocurrent produced from CuI in a RTIL. The coordinating strength of the anions of the RTIL is the key to the successful formation of the CuI thin film. If the coordinating strength of the anions of the RTIL is too strong, no CuI formation is observed.

  20. Resistive Switching Characteristics in Electrochemically Synthesized ZnO Films

    Directory of Open Access Journals (Sweden)

    Shuhan Jing

    2015-04-01

    Full Text Available The semiconductor industry has long been seeking a new kind of non-volatile memory technology with high-density, high-speed, and low-power consumption. This study demonstrated the electrochemical synthesis of ZnO films without adding any soft or hard templates. The effect of deposition temperatures on crystal structure, surface morphology and resistive switching characteristics were investigated. Our findings reveal that the crystallinity, surface morphology and resistive switching characteristics of ZnO thin films can be well tuned by controlling deposition temperature. A conducting filament based model is proposed to explain the switching mechanism in ZnO thin films.

  1. Mechanism of manganese (mono and di) telluride thin-film formation and properties

    Science.gov (United States)

    Sharma, Raj Kishore; Singh, Gurmeet; Shul, Yong Gun; Kim, Hansung

    2007-03-01

    Mechanistic studies on the electrocrystallization of manganese telluride (MnTe) thin film are reported using aqueous acidic solution containing MnSO 4 and TeO 2. Tartaric acid was used for the inhibition of hydrated manganese oxide anodic growth at counter electrode. A detailed study on the mechanistic aspect of electrochemical growth of MnTe using cyclic voltametry is carried out. Conditions for electrochemical growth of manganese mono and di telluride thin films have been reported using cyclic voltammetric scans for Mn 2+, Te 4+ and combined Mn 2+ and Te 4+. X-ray diffraction showed the formation of polycrystalline MnTe films with cubic, hexagonal and orthorhombic mixed phases. MnTe film morphology was studied using scanning electron microscope. Susceptibility and electrical characterization supports the anti-ferromagnetic behavior of the as-deposited MnTe thin film.

  2. Electrochemical Behavior of TiO2 Nanoparticle Doped WO3 Thin Films

    Directory of Open Access Journals (Sweden)

    Suvarna R. Bathe

    2014-01-01

    Full Text Available Nanoparticle TiO2 doped WO3 thin films by pulsed spray pyrolysis technique have been studied on fluorine tin doped (FTO and glass substrate. XRD shows amorphous nature for undoped and anatase phase of TiO2 having (101 plane for nanoparticle TiO2 doped WO3 thin film. SEM shows microfibrous reticulated porous network for WO3 with 600 nm fiber diameter and nanocrystalline having size 40 nm for TiO2 nanoparticle doped WO3 thin film. TiO2 nanoparticle doped WO3 thin film shows ~95% reversibility due to may be attributed to nanocrystalline nature of the film, which helpful for charge insertion and deinsertion process. The diffusion coefficient for TiO2 nanoparticle doped WO3 film is less than undoped WO3.

  3. Electrochemically deposited sol-gel-derived silicate films as a viable alternative in thin-film design.

    Science.gov (United States)

    Deepa, P N; Kanungo, Mandakini; Claycomb, Greg; Sherwood, Peter M A; Collinson, Maryanne M

    2003-10-15

    Sol-gel-derived silicate films were electrochemically deposited on conducting surfaces from a sol consisting of tetramethoxysilane (TMOS). In this method, a sufficiently negative potential is applied to the electrode surface to reduce oxygen to hydroxyl ions, which serves as the catalyst for the hydrolysis and condensation of TMOS. The electrodeposition process was followed by the electrochemical quartz crystal microbalance and cyclic voltammetry. The electrodeposited films were characterized for their surface morphology, porosity, and film thickness using atomic force microscopy, electrochemical probe techniques, surface area and pore size analysis, and profilometry. The electrodeposited films were found to have a completely different surface structure and to be significantly rougher relative to spin-coated films. This is likely due in part to the separation of the gelation and evaporation stages of film formation. The electrodeposited films were found to be permeable to simple redox molecules, such as ruthenium(III) hexaammine and ferrocene methanol. Film thickness can be easily varied from 15 microm by varying the electrode potential from -600 mV to more than -1000 mV, respectively. The electrodeposition process was further applied for the electroencapsulation of redox molecules and organic dyes within the silicate network. Cyclic voltammograms for the gel-entrapped ferrocene methanol (FcCH2OH) and ruthenium(II) tris(bipyridine) (Ru(bpy)3(2+)) exhibited the characteristic redox behavior of the molecules. The electroencapsulation of organic dyes in their "native" form proved to be more difficult because these species typically contain reducible functionalities that change the structure of the dye.

  4. The annealing temperature dependences of microstructures and magnetic properties in electro-chemical deposited CoNiFe thin films

    International Nuclear Information System (INIS)

    Suharyadi, Edi; Riyanto, Agus; Abraha, Kamsul

    2016-01-01

    CoNiFe thin films with various compositions had been successfully fabricated using electro-chemical deposition method. The crystal structure of Co_6_5Ni_1_5Fe_2_0, Co_6_2Ni_1_5Fe_2_3, and Co_5_5Ni_1_5Fe_3_0 thin films was fcc, bcc-fcc mix, and bcc, respectively. The difference crystal structure results the difference in magnetic properties. The saturation magnetic flux density (Bs) of Co_6_5Ni_1_5Fe_2_0, Co_6_2Ni_1_5Fe_2_3, and Co_5_5Ni_1_5Fe_3_0 thin films was 1.89 T, 1.93 T, and 2.05 T, respectively. An optimal annealing temperature was determined for controlling the microstructure and magnetic properties of CoNiFe thin films. Depending on annealing temperature, the ratio of bcc and fcc structure varied without changing the film composition. By annealing at temperature of T ≥ 350°C, the intensity ratio of X-ray diffraction peaks for bcc(110) to fcc(111) increased. The increase of phase ratio of bcc(110) to fcc(111) caused the increase of Bs, from 1.89 T to 1.95 T. Coercivity (Hc) also increased after annealing, from 2.6 Oe to 18.6 Oe for fcc phase thin films, from 2.0 Oe to 12.0 Oe for fcc-bcc mix phase thin films, and 7.8 Oe to 8 Oe for bcc phase thin films. The changing crystal structures during annealing process indicated that the thermal treatment at high temperature cause the changing crystallinity and atomic displacement. The TEM bright-field images with corresponding selected-area electron diffraction (SAED) patterns showed that there are strongly effects of thermal annealing on the size of fcc and bcc phase crystalline grain as described by size of individual spot and discontinuous rings. The size of crystalline grains increased by thermal annealing. The evolution of bcc and fcc structures of CoNiFe during annealing is though to be responsible for the change of magnetic properties.

  5. Investigations of Si Thin Films as Anode of Lithium-Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qingliu [Department of Chemical; Shi, Bing; Bareño, Javier; Liu, Yuzi; Maroni, Victor A.; Zhai, Dengyun; Dees, Dennis W.; Lu, Wenquan

    2018-01-22

    Amorphous silicon thin films having various thicknesses were investigated as a negative electrode material for lithium-ion batteries. Electrochemical characterization of the 20 nm thick thin silicon film revealed a very low first cycle Coulombic efficiency, which can be attributed to the silicon oxide layer formed on both the surface of the as-deposited Si thin film and the interface between the Si and the substrate. Among the investigated films, the 100 nm Si thin film demonstrated the best performance in terms of first cycle efficiency and cycle life. Observations from scanning electron microscopy demonstrated that the generation of cracks was inevitable in the cycled Si thin films, even as the thickness of the film was as little as 20 nm, which was not predicted by previous modeling work. However, the cycling performance of the 20 and 100 nm silicon thin films was not detrimentally affected by these cracks. The poor capacity retention of the 1 mu m silicon thin film was attributed to the delamination.

  6. Electrochemically modified crystal orientation, surface morphology and optical properties using CTAB on Cu2O thin films

    Directory of Open Access Journals (Sweden)

    Karupanan Periyanan Ganesan

    Full Text Available Cuprous oxide (Cu2O thin films with different crystal orientations were electrochemically deposited in the presence of various molar concentrations of cetyl trimethyl ammonium bromide (CTAB on fluorine doped tin oxide (FTO glass substrate using standard three electrodes system. X-ray diffraction (XRD studies reveal cubic structure of Cu2O with (111 plane orientation, after addition of CTAB in deposition solution, the orientation of crystal changes from (111 into (200 plane. Scanning electron microscope (SEM images explored significant variation on morphology of Cu2O thin films deposited with addition of CTAB compared to without addition of CTAB. Photoluminescence (PL spectra illustrate that the emission peak around at 650 nm is attributed to near band edge emission, and the film prepared at the 3 mM of CTAB exhibits much higher intensity than that of the all other films. UV–Visible spectra show optical absorption in the range of 480–610 nm and the highest transparency of Cu2O film prepared at the concentration of 3 mM CTAB. The optical band gap is increased in the range between 2.16 and 2.45 eV with increasing the CTAB concentrations. Keywords: Cuprous oxide, Crystal orientation, Electrodeposition and cubic structure

  7. Degradation of zinc oxide thin films in aqueous environment. Pt. II. Coated films

    Energy Technology Data Exchange (ETDEWEB)

    Rosa, L. de; Mitton, D.B.; Monetta, T.; Bellucci, F. [Naples Univ. (Italy). Dept. of Materials and Production Engineering; Springer, J. [Zentrum fuer Sonnenenergie- und Wasserstoff-Forschung Baden-Wuerttemberg (ZSW), Stuttgart (Germany)

    2001-12-01

    cn Part I of this research, the degradation mechanism of two different bare ZnO thin films was assessed. Degradation of the electrical properties of ZnO as well as changes in morphology were observed for both films. In the current paper, the degradation of zinc oxide thin films coated with protective acrylic paint is addressed during exposure to (i) an aqueous 3.5% NaCl solution at 85 C and (ii) a standard damp heat test at 85% R.H. and 85 C. Electrical and electrochemical techniques were employed to monitor zinc oxide degradation during exposure to the test environments. Electrochemical Impedance Spectroscopy was employed to investigate the delamination phenomena at the ZnO/coating interface and a simple equivalent circuit was developed to quantitatively measure the delamination ratio. The effect of different silane based adhesion promoters (glycidil-oxypropyl-trimethoxy-silane and aminopropyl-trimethoxy-silane) was also investigated. (orig.)

  8. Stabilized thin film heterostructure for electrochemical applications

    DEFF Research Database (Denmark)

    2015-01-01

    The invention provides a method for the formation of a thin film multi-layered heterostructure upon a substrate, said method comprising the steps of: a. providing a substrate; b. depositing a buffer layer upon said substrate, said buffer layer being a layer of stable ionic conductor (B); c. depos...

  9. In situ fabrication of electrochemically grown mesoporous metallic thin films by anodic dissolution in deep eutectic solvents.

    Science.gov (United States)

    Renjith, Anu; Roy, Arun; Lakshminarayanan, V

    2014-07-15

    We describe here a simple electrodeposition process of forming thin films of noble metallic nanoparticles such as Au, Ag and Pd in deep eutectic solvents (DES). The method consists of anodic dissolution of the corresponding metal in DES followed by the deposition on the cathodic surface. The anodic dissolution process in DES overcomes the problems associated with copious hydrogen and oxygen evolution on the electrode surface when carried out in aqueous medium. The proposed method utilizes the inherent abilities of DES to act as a reducing medium while simultaneously stabilizing the nanoparticles that are formed. The mesoporous metal films were characterized by SEM, XRD and electrochemical techniques. Potential applications of these substrates in surface enhanced Raman spectroscopy and electrocatalysis have been investigated. A large enhancement of Raman signal of analyte was achieved on the mesoporous silver substrate after removing all the stabilizer molecules from the surface by calcination. The highly porous texture of the electrodeposited film provides superior electro catalytic performance for hydrogen evolution reaction (HER). The mechanisms of HER on the fabricated substrates were studied by Tafel analysis and electrochemical impedance spectroscopy (EIS). Copyright © 2014 Elsevier Inc. All rights reserved.

  10. High Thermoelectric Power Factor Organic Thin Films through Combination of Nanotube Multilayer Assembly and Electrochemical Polymerization.

    Science.gov (United States)

    Culebras, Mario; Cho, Chungyeon; Krecker, Michelle; Smith, Ryan; Song, Yixuan; Gómez, Clara M; Cantarero, Andrés; Grunlan, Jaime C

    2017-02-22

    In an effort to produce effective thermoelectric nanocomposites with multiwalled carbon nanotubes (MWCNT), layer-by-layer assembly was combined with electrochemical polymerization to create synergy that would produce a high power factor. Nanolayers of MWCNT stabilized with poly(diallyldimethylammonium chloride) or sodium deoxycholate were alternately deposited from water. Poly(3,4-ethylene dioxythiophene) [PEDOT] was then synthesized electrochemically by using this MWCNT-based multilayer thin film as the working electrode. Microscopic images show a homogeneous distribution of PEDOT around the MWCNT. The electrical resistance, conductivity (σ) and Seebeck coefficient (S) were measured before and after the PEDOT polymerization. A 30 bilayer MWCNT film (<1 μm thick) infused with PEDOT is shown to achieve a power factor (PF = S 2 σ) of 155 μW/m K 2 , which is the highest value ever reported for a completely organic MWCNT-based material and competitive with lead telluride at room temperature. The ability of this MWCNT-PEDOT film to generate power was demonstrated with a cylindrical thermoelectric generator that produced 5.5 μW with a 30 K temperature differential. This unique nanocomposite, prepared from water with relatively inexpensive ingredients, should open up new opportunities to recycle waste heat in portable/wearable electronics and other applications where low weight and mechanical flexibility are needed.

  11. Preparation of LiMn{sub 2}O{sub 4} cathode thin films for thin film lithium secondary batteries by a mist CVD process

    Energy Technology Data Exchange (ETDEWEB)

    Tadanaga, Kiyoharu, E-mail: tadanaga@chem.osakafu-u.ac.jp [Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka, 599-8531 (Japan); Yamaguchi, Akihiro; Sakuda, Atsushi; Hayashi, Akitoshi; Tatsumisago, Masahiro [Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka, 599-8531 (Japan); Duran, Alicia; Aparacio, Mario [Instituto de Cerámica y Vidrio, Consejo Superior de Investigaciones Científicas, Kelsen 5 (Campus de Cantoblanco), Madrid, 28049 (Spain)

    2014-05-01

    Highlights: • LiMn{sub 2}O{sub 4} thin films were prepared by using the mist CVD process. • An aqueous solution of lithium and manganese acetates is used for the precursor solution. • The cell with the LiMn{sub 2}O{sub 4} thin films exhibited a capacity of about 80 mAh/g. • The cell showed good cycling performance during 10 cycles. - Abstract: LiMn{sub 2}O{sub 4} cathode thin films for thin film lithium secondary batteries were prepared by using so-called the “mist CVD process”, employing an aqueous solution of lithium acetate and manganese acetate, as the source of Li and Mn, respectively. The aqueous solution of starting materials was ultrasonically atomized to form mist particles, and mists were transferred by nitrogen gas to silica glass substrate to form thin films. FE-SEM observation revealed that thin films obtained by this process were dense and smooth, and thin films with a thickness of about 750 nm were obtained. The electrochemical cell with the thin films obtained by sintering at 700 °C exhibited a capacity of about 80 mAh/g, and the cell showed good cycling performance during 10 cycles.

  12. Oxygen Reduction Reaction Activity of Platinum Thin Films with Different Densities

    Energy Technology Data Exchange (ETDEWEB)

    Ergul, Busra; Begum, Mahbuba; Kariuki, Nancy; Myers, Deborah J.; Karabacak, Tansel

    2017-08-24

    Platinum thin films with different densities were grown on glassy carbon electrodes by high pressure sputtering deposition and evaluated as oxygen reduction reaction catalysts for polymer electrolyte fuel cells using cyclic voltammetry and rotating disk electrode techniques in aqueous perchloric acid electrolyte. The electrochemically active surface area, ORR mass activity (MA) and specific activity (SA) of the thin film electrodes were obtained. MA and SA were found to be higher for low-density films than for high-density film.

  13. Electrochromic properties of nanocrystalline MoO3 thin films

    International Nuclear Information System (INIS)

    Hsu, C.-S.; Chan, C.-C.; Huang, H.-T.; Peng, C.-H.; Hsu, W.-C.

    2008-01-01

    Electrochromic MoO 3 thin films were prepared by a sol-gel spin-coating technique. The spin-coated films were initially amorphous; they were calcined, producing nanocrystalline MoO 3 thin films. The effects of annealing temperatures ranging from 100 o C to 500 o C were investigated. The electrochemical and electrochromic properties of the films were measured by cyclic voltammetry and by in-situ optical transmittance techniques in 1 M LiClO 4 /propylene carbonate electrolyte. Experimental results showed that the transmittance of MoO 3 thin films heat-treated at 350 o C varied from 80% to 35% at λ = 550 nm (ΔT = ∼ 45%) and from 86% to 21% at λ ≥ 700 nm (ΔT = ∼ 65%) after coloration. Films heat-treated at 350 deg. C exhibited the best electrochromic properties in the present study

  14. Thin Film Microbatteries

    International Nuclear Information System (INIS)

    Dudney, Nancy J.

    2008-01-01

    Thin film batteries are built layer by layer by vapor deposition. The resulting battery is formed of parallel plates, much as an ordinary battery construction, just much thinner. The figure (Fig. 1) shows an example of a thin film battery layout where films are deposited symmetrically onto both sides of a supporting substrate. The full stack of films is only 10 to 15 (micro)m thick, but including the support at least doubles the overall battery thickness. When the support is thin, the entire battery can be flexible. At least six companies have commercialized or are very close to commercializing such all-solid-state thin film batteries and market research predicts a growing market and a variety of applications including sensors, RFID tags, and smarter cards. In principle with a large deposition system, a thin film battery might cover a square meter, but in practice, most development is targeting individual cells with active areas less than 25 cm 2 . For very small battery areas, 2 , microfabrication processes have been developed. Typically the assembled batteries have capacities from 0.1 to 5 mAh. The operation of a thin film battery is depicted in the schematic diagram (Fig. 2). Very simply, when the battery is allowed to discharge, a Li + ion migrates from the anode to the cathode film by diffusing through the solid electrolyte. When the anode and cathode reactions are reversible, as for an intercalation compound or alloy, the battery can be recharged by reversing the current. The difference in the electrochemical potential of the lithium determines the cell voltage. Most of the thin films used in current commercial variations of this thin film battery are deposited in vacuum chambers by RF and DC magnetron sputtering and by thermal evaporation onto unheated substrates. In addition, many publications report exploring a variety of other physical and chemical vapor deposition processes, such as pulsed laser deposition, electron cyclotron resonance sputtering, and

  15. Electrochemical Characterization of La0.58Sr0.4Co0.2Fe0.8O3-δ Thin Film Electrodes Prepared by Pulsed Laser Deposition

    DEFF Research Database (Denmark)

    Plonczak, Pawel; Søgaard, Martin; Bieberle-Hütter, Anja

    2012-01-01

    Electrochemical properties of La0.58Sr0.4Co0.2Fe0.8O3-δ (LSCF) thin films with well defined microstructures have been investigated. Symmetrical cells were characterized by impedance spectroscopy in the temperature range from 625 to 750°C and the oxygen partial pressure, range from 10-2 to 1 atm...... have only an area specific resistance of 0.38 Ω cm2. It is shown that the polarization resistance of thin films is approximately proportional to the inverse of the surface area of the porous cathodes in the temperature regime 625 to 750°C. The activation energy of the surface oxygen exchange process...... depends on the thin film microstructure as it decreased from 2.4 eV for dense films to 1.6 eV for porous films....

  16. Morphology, structural and optical properties of iron oxide thin film photoanodes in photoelectrochemical cell: Effect of electrochemical oxidation

    OpenAIRE

    Maabong Kelebogile; Machatine Augusto G.; Hu Yelin; Braun Artur; Nambala Fred J.; Diale Mmantsae

    2016-01-01

    Abstract Hematite (a Fe2O3) is a promising semiconductor as photoanode in solar hydrogen production from photoelectrolysis of water due to its appropriate band gap low cost and high electrochemical stability in aqueous caustic electrolytes. Operation of such photoanode in a biased photoelectrochemical cell constitutes an anodization with consequent redox reactions at the electrode surface. a Fe2O3 thin film photoanodes were prepared by simple and inexpensive dip coating method on fluorine dop...

  17. Seed-mediated electrochemical growth of gold nanostructures on indium tin oxide thin films

    International Nuclear Information System (INIS)

    Praig, Vera G.; Piret, Gaelle; Manesse, Mael; Castel, Xavier; Boukherroub, Rabah; Szunerits, Sabine

    2008-01-01

    Two-dimensional gold nanostructures (Au NSs) were fabricated on amine-terminated indium tin oxide (ITO) thin films using constant potential electrolysis. By controlling the deposition time and by choosing the appropriate ITO surface, Au NSs with different shapes were generated. When Au NSs were formed directly on aminosilane-modified ITO, the surface roughness of the interface was largely enhanced. Modification of such Au NSs with n-tetradecanethiol resulted in a highly hydrophobic interface with a water contact angle of 144 deg. Aminosilane-modified ITO films further modified with colloidal Au seeds before electrochemical Au NSs formation demonstrated interesting optical properties. Depending on the deposition time, surface colors ranging from pale pink to beatgold-like were observed. The optical properties and the chemical stability of the interfaces were characterized using UV-vis absorption spectroscopy. Well-defined localized surface plasmon resonance signals were recorded on Au-seeded interfaces with λ max = 675 ± 2 nm (deposition time 180 s). The prepared interfaces exhibited long-term stability in various solvents and responded linearly to changes in the corresponding refractive indices

  18. Seed-mediated electrochemical growth of gold nanostructures on indium tin oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Praig, Vera G.; Szunerits, Sabine [Laboratoire d' Electrochimie et de Physicochimie des Materiaux et des Interfaces (LEPMI), CNRS-INPG-UJF, 1130 rue de la piscine, BP 75, 38402 St. Martin d' Heres Cedex (France); Institut de Recherche Interdisciplinaire (IRI), USR CNRS 3078 and Institut d' Electronique, de Microelectronique et de Nanotechnologie (IEMN),UMR CNRS-8520, Cite Scientifique, Avenue Poincare, BP 60069, 59652 Villeneuve d' Ascq (France); Piret, Gaelle; Boukherroub, Rabah [Institut de Recherche Interdisciplinaire (IRI), USR CNRS 3078 and Institut d' Electronique, de Microelectronique et de Nanotechnologie (IEMN),UMR CNRS-8520, Cite Scientifique, Avenue Poincare, BP 60069, 59652 Villeneuve d' Ascq (France); Manesse, Mael [Laboratoire d' Electrochimie et de Physicochimie des Materiaux et des Interfaces (LEPMI), CNRS-INPG-UJF, 1130 rue de la piscine, BP 75, 38402 St. Martin d' Heres Cedex (France); Castel, Xavier [Institut d' Electronique et de Telecommunications de Rennes (IETR), UMR CNRS 6164, 18 rue H. Wallon, BP 406, 22004 Saint-Brieuc Cedex 1 (France)

    2008-11-15

    Two-dimensional gold nanostructures (Au NSs) were fabricated on amine-terminated indium tin oxide (ITO) thin films using constant potential electrolysis. By controlling the deposition time and by choosing the appropriate ITO surface, Au NSs with different shapes were generated. When Au NSs were formed directly on aminosilane-modified ITO, the surface roughness of the interface was largely enhanced. Modification of such Au NSs with n-tetradecanethiol resulted in a highly hydrophobic interface with a water contact angle of 144 . Aminosilane-modified ITO films further modified with colloidal Au seeds before electrochemical Au NSs formation demonstrated interesting optical properties. Depending on the deposition time, surface colors ranging from pale pink to beatgold-like were observed. The optical properties and the chemical stability of the interfaces were characterized using UV-vis absorption spectroscopy. Well-defined localized surface plasmon resonance signals were recorded on Au-seeded interfaces with {lambda}{sub max}=675{+-} 2 nm (deposition time 180 s). The prepared interfaces exhibited long-term stability in various solvents and responded linearly to changes in the corresponding refractive indices. (author)

  19. The Effect of Normal Force on Tribocorrosion Behaviour of Ti-10Zr Alloy and Porous TiO2-ZrO2 Thin Film Electrochemical Formed

    Science.gov (United States)

    Dănăilă, E.; Benea, L.

    2017-06-01

    The tribocorrosion behaviour of Ti-10Zr alloy and porous TiO2-ZrO2 thin film electrochemical formed on Ti-10Zr alloy was evaluated in Fusayama-Mayer artificial saliva solution. Tribocorrosion experiments were performed using a unidirectional pin-on-disc experimental set-up which was mechanically and electrochemically instrumented, under various solicitation conditions. The effect of applied normal force on tribocorrosion performance of the tested materials was determined. Open circuit potential (OCP) measurements performed before, during and after sliding tests were applied in order to determine the tribocorrosion degradation. The applied normal force was found to greatly affect the potential during tribocorrosion experiments, an increase in the normal force inducing a decrease in potential accelerating the depassivation of the materials studied. The results show a decrease in friction coefficient with gradually increasing the normal load. It was proved that the porous TiO2-ZrO2 thin film electrochemical formed on Ti-10Zr alloy lead to an improvement of tribocorrosion resistance compared to non-anodized Ti-10Zr alloy intended for biomedical applications.

  20. Rf-sputtered vanadium oxide thin films: effect of oxygen partial pressure on structural and electrochemical properties

    CERN Document Server

    Park, Y J; Ryu, K S; Chang, S H; Park, S C; Yoon, S M; Kim, D K

    2001-01-01

    Vanadium oxide thin films with thickness of about 2000 A have been prepared by radio frequency sputter deposition using a V sub 2 O sub 5 target in a mixed argon and oxygen atmosphere with different Ar/O sub 2 ratio ranging from 99/1 to 90/10. X-ray diffraction and X-ray absorption near edge structure spectroscopic studies show that the oxygen content higher than 5% crystallizes a stoichiometric V sub O sub 5 phase, while oxygen deficient phase is formed in the lower oxygen content. The oxygen content in the mixed Ar + O sub 2 has a significant influence on electrochemical lithium insertion/deinsertion property. The discharge-charge capacity of vanadium oxide film increases with increasing the reactive oxygen content. The V sub O sub 5 film deposited at the Ar/O sub 2 ratio of 90/10 exhibits high discharge capacity of 100 mu Ah/cm sup 2 -mu m along with good cycle performance.

  1. Molecular and electronic structure of thin films of protoporphyrin(IX)Fe(III)Cl

    Science.gov (United States)

    Snyder, Shelly R.; White, Henry S.

    1991-11-01

    Electrochemical, scanning tunneling microscopy (STM), and tunneling spectroscopy studies of the molecular and electronic properties of thin films of protoporphyrin(IX)Fe(III)Cl (abbreviated as PP(IX)Fe(III)Cl) on highly oriented pyrolytic graphite (HOPG) electrodes are reported. PP(IX)Fe(III)Cl films are prepared by two different methods: (1) adsorption, yielding an electrochemically-active film, and (2) irreversible electrooxidative polymerization, yielding an electrochemically-inactive film. STM images, in conjunction with electro-chemical results, indicate that adsorption of PP(IX)Fe(III)Cl from aqueous solutions onto freshly cleaved HOPG results in a film comprised of molecular aggregates. In contrast, films prepared by irreversible electrooxidative polymerization of PP(IX)Fe(III)Cl have a denser, highly structured morphology, including what appear to be small pinholes (approx. 50A diameter) in an otherwise continuous film.

  2. Deposition and characterisation of epitaxial oxide thin films for SOFCs

    KAUST Repository

    Santiso, José

    2010-10-24

    This paper reviews the recent advances in the use of thin films, mostly epitaxial, for fundamental studies of materials for solid oxide fuel cell (SOFC) applications. These studies include the influence of film microstructure, crystal orientation and strain in oxide ionic conducting materials used as electrolytes, such as fluorites, and in mixed ionic and electronic conducting materials used as electrodes, typically oxides with perovskite or perovskite-related layered structures. The recent effort towards the enhancement of the electrochemical performance of SOFC materials through the deposition of artificial film heterostructures is also presented. These thin films have been engineered at a nanoscale level, such as the case of epitaxial multilayers or nanocomposite cermet materials. The recent progress in the implementation of thin films in SOFC devices is also reported. © 2010 Springer-Verlag.

  3. Fabrication of Cu–Zn–Sn–S–O Thin Films by the Electrochemical Deposition Method and Application to Heterojunction Cells

    Directory of Open Access Journals (Sweden)

    Kai Yang

    2012-01-01

    Full Text Available A new multinary semiconductor Cu2ZnSnS4−O (CZTSO, which does not contain toxic elements and expensive rare metals, was fabricated by the electrochemical deposition (ECD method. CZTSO thin films were deposited onto indium tin oxide (ITO- coated glass substrates by DC and two-step pulsed ECD from aqueous solutions containing CuSO4, ZnSO4, SnSO4, and Na2S2O3. The films deposited by pulsed ECD contained smaller amount of oxygen than those deposited by DC ECD. The films had band gap energies in a range from 1.5 eV and 2.1 eV. By a photoelectrochemical measurement, it was confirmed that CZTSO films showed p-type conduction and photosensitivity. CZTSO/ZnO heterojunctions exhibited rectification properties in a current-voltage measurement.

  4. Structural transformation of sputtered o-LiMnO2 thin-film cathodes induced by electrochemical cycling

    International Nuclear Information System (INIS)

    Fischer, J.; Chang, K.; Ye, J.; Ulrich, S.; Ziebert, C.; Music, D.; Hallstedt, B.; Seifert, H.J.

    2013-01-01

    Orthorhombic LiMnO 2 (o-LiMnO 2 ) thin films were produced by non-reactive r.f. magnetron sputtering in combination with thermal post-annealing. Oxide phase formation was investigated by X-ray diffraction and Raman spectroscopy. In order to assign the X-ray signals and estimate the grain size, a simulation of the diffraction pattern was performed and compared with experimental data. The density of the films was determined to be 3.39 g/cm 3 using X-ray reflectivity. Electrochemical characterization was carried out by galvanostatic cycling and cyclic voltammetry of Li/o-LiMnO 2 half cells. There are distinct redox reactions at approx. 3 V and 4 V, whereas the latter splits into multiple peaks. Using ab initio calculations and thermodynamic models, Gibbs energies of o-LiMnO 2 and c-LiMn 2 O 4 were determined. The relation between these energies explains the irreversible phase transformation that has been observed during the cycling of the Li/o-LiMnO 2 half cell. - Highlights: • Quantitative, thermodynamic modeling of the o-LiMnO 2 /c-LiMn 2 O 4 phase transformation • First CV-investigations on magnetron sputtered nanocrystalline o-LiMnO 2 thin films • Synthesis of o-LiMnO 2 planar model systems for protective coating and SEI development

  5. Mott-Schottky analysis of thin ZnO films

    International Nuclear Information System (INIS)

    Windisch, Charles F. Jr.; Exarhos, Gregory J.

    2000-01-01

    Thin ZnO films, both native and doped with secondary metal ions, have been prepared by sputter deposition and also by casting from solutions containing a range of precursor salts. The conductivity and infrared reflectivity of these films are subsequently enhanced chemically following treatment in H 2 gas at 400 degree sign C or by cathodic electrochemical treatment in a neutral (pH=7) phosphate buffer solution. While Hall-type measurements usually are used to evaluate the electrical properties of such films, the present study investigated whether a conventional Mott-Schottky analysis could be used to monitor the change in concentration of free carriers in these films before and after chemical and electrochemical reduction. The Mott-Schottky approach would be particularly appropriate for electrochemically modified films since the measurements could be made in the same electrolyte used for the post-deposition electrochemical processing. Results of studies on sputtered pure ZnO films in ferricyanide solution were promising. Mott-Schottky plots were linear and gave free carrier concentrations typical for undoped semiconductors. Film thicknesses estimated from the Mott-Schottky data were also reasonably close to thicknesses calculated from reflectance measurements. Studies on solution-deposited films were less successful. Mott-Schottky plots were nonlinear, apparently due to film porosity. A combination of dc polarization and atomic force microscopy measurements confirmed this conclusion. The results suggest that Mott-Schottky analysis would be suitable for characterizing solution-deposited ZnO films only after extensive modeling was performed to incorporate the effects of film porosity on the characteristics of the space-charge region of the semiconductor. (c) 2000 American Vacuum Society

  6. Electrodeposited Cu2ZnSnS4 thin films

    CSIR Research Space (South Africa)

    Valdes, M

    2014-05-01

    Full Text Available Cu(sub2)ZnSnS(sub4)(CZTS) thin films have been prepared using Electrochemical Atomic Layer Deposition (EC-ALD)and also by one-step conventional constant potential electrodeposition. Optimal deposition conditionswere investigated using cyclic...

  7. Electrosynthesis and characterization of ZnO nanoparticles as inorganic component in organic thin-film transistor active layers

    International Nuclear Information System (INIS)

    Picca, Rosaria Anna; Sportelli, Maria Chiara; Hötger, Diana; Manoli, Kyriaki; Kranz, Christine; Mizaikoff, Boris; Torsi, Luisa; Cioffi, Nicola

    2015-01-01

    Highlights: • PSS-capped ZnO NPs were synthesized via a green electrochemical-thermal method • The influence of electrochemical conditions and temperature was studied • Spectroscopic data show that PSS functionalities are retained in the annealed NPs • Nanostructured ZnO improved the performance of P3HT-based thin film transistors - Abstract: ZnO nanoparticles have been prepared via a green electrochemical synthesis method in the presence of a polymeric anionic stabilizer (poly-sodium-4-styrenesulfonate, PSS), and then applied as inorganic component in poly-3-hexyl-thiophene thin-film transistor active layers. Different parameters (i.e. current density, electrolytic media, PSS concentration, and temperature) influencing nanoparticle synthesis have been studied. The resulting nanomaterials have been investigated by transmission electron microscopy (TEM) and spectroscopic techniques (UV-Vis, infrared, and x-ray photoelectron spectroscopies), assessing the most suitable conditions for the synthesis and thermal annealing of nanostructured ZnO. The proposed ZnO nanoparticles have been successfully coupled with a poly-3-hexyl-thiophene thin-film resulting in thin-film transistors with improved performance.

  8. Dataset on electro-optically tunable smart-supercapacitors based on oxygen-excess nanograin tungsten oxide thin film

    Directory of Open Access Journals (Sweden)

    Akbar I. Inamdar

    2017-10-01

    Full Text Available The dataset presented here is related to the research article entitled “Highly Efficient Electro-optically Tunable Smart-supercapacitors Using an Oxygen-excess Nanograin Tungsten Oxide Thin Film” (Akbar et al., 2017 [9] where we have presented a nanograin WO3 film as a bifunctional electrode for smart supercapacitor devices. In this article we provide additional information concerning nanograin tungsten oxide thin films such as atomic force microscopy, Raman spectroscopy, and X-ray diffraction spectroscopy. Moreover, their electrochemical properties such as cyclic voltammetry, electrochemical supercapacitor properties, and electrochromic properties including coloration efficiency, optical modulation and electrochemical impedance spectroscopy are presented.

  9. Electrochemical impedance spectroscopy analysis of a thin polymer film-based micro-direct methanol fuel cell

    Science.gov (United States)

    Schulz, Tobias; Weinmüller, Christian; Nabavi, Majid; Poulikakos, Dimos

    A single cell micro-direct methanol fuel cell (micro-DMFC) was investigated using electrochemical impedance spectroscopy. The electrodes consisted of thin, flexible polymer (SU8) film microchannel structures fabricated in-house using microfabrication techniques. AC impedance spectroscopy was used to separate contributions to the overall cell polarization from the anode, cathode and membrane. A clear distinction between the different electrochemical phenomena occurring in the micro-DMFC, especially the distinction between double layer charging and Faradaic reactions was shown. The effect of fuel flow rate, temperature, and anode flow channel structure on the impedance of the electrode reactions and membrane/electrode double layer charging were investigated. Analysis of impedance data revealed that the performance of the test cell was largely limited by the presence of intermediate carbon monoxide in the anode reaction. Higher temperatures increase cell performance by enabling intermediate CO to be oxidized at much higher rates. The results also revealed that serpentine anode flow microchannels show a lower tendency to intermediate CO coverage and a more stable cell behavior than parallel microchannels.

  10. Low-density silicon thin films for lithium-ion battery anodes

    Energy Technology Data Exchange (ETDEWEB)

    Demirkan, M.T., E-mail: tmdemirkan@ualr.edu [Department of Physics and Astronomy, University of Arkansas at Little Rock, Little Rock, AR 72204 (United States); Department of Materials Science and Engineering, Gebze Technical University, Kocaeli (Turkey); Trahey, L. [Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Karabacak, T. [Department of Physics and Astronomy, University of Arkansas at Little Rock, Little Rock, AR 72204 (United States)

    2016-02-01

    Density of sputter deposited silicon (Si) thin films was changed by a simple working gas pressure control process, and its effects on the cycling performance of Si films in Li-ion batteries as anodes was investigated. Higher gas pressure results in reduced film densities due to a shadowing effect originating from lower mean free path of sputter atoms, which leads to a wider angular distribution of the incoming flux and formation of a porous film microstructure. Si thin film anodes of different densities ranging from 2.27 g/cm{sup 3} (film porosity ~ 3%) down to 1.64 g/cm{sup 3} (~ 30% porosity) were fabricated by magnetron sputtering at argon pressures varying from 0.2 Pa to 2.6 Pa, respectively. High density Si thin film anodes of 2.27 g/cm{sup 3} suffered from an unstable cycling behavior during charging/discharging depicted by a continuous reduction in specific down to ~ 830 mAh/g at the 100th cycle. Electrochemical properties of lower density films with 1.99 g/cm{sup 3} (~ 15% porosity) and 1.77 g/cm{sup 3} (~ 24% porosity) got worse resulting in only ~ 100 mAh/g capacity at 100th cycle. On the other hand, as the density of anode was further reduced down to about 1.64 g/cm{sup 3} (~ 30% porosity), cycling stability and capacity retention significantly improved resulting in specific capacity values ~ 650 mAh/g at 100th cycle with coulombic efficiencies of > 98%. Enhancement in our low density Si film anodes are believed to mainly originate from the availability of voids for volumetric expansion during lithiation and resulting compliant behavior that provides superior mechanical and electrochemical stability. - Highlights: • Low density Si thin films were studied as Li-ion battery anodes. • Low density Si films were fabricated by magnetron sputter deposition. • Density of Si films reduced down to as low as ~ 1.64 g/cm{sup 3} with a porosity of ~ 30% • Low density Si films presented superior mechanical properties during cycling.

  11. Electrochemical synthesis of photoactive In/sub 2/Se/sub 3/ thin films

    Energy Technology Data Exchange (ETDEWEB)

    Herrero, J; Ortega, J

    1987-12-01

    In/sub 2/Se/sub 3/ thin films were grown by alternate electrodeposition of selenium and indium from separate baths onto titanium substrates with subsequent thermal annealing. The influence of annealing temperature on the properties of the obtained films was examined. The results of X-ray diffraction patterns led to the conclusion that films were ..beta..-phase when the temperature ranged between 300 and 500/sup 0/C. At 600/sup 0/C the thin film loses Se and the ratio Se/In decreases. Only photoanodic response, n-type thin films, was observed when the samples were tested in a photoelectrochemical cell with a sulfite/sulfate redox couple. Values of the photocurrent on the spectra response were increased when the annealing temperature was also increased, showing the best photocurrent values at 500/sup 0/C, and the films that were annealed at 600/sup 0/C showed no photoactivity. Spectral responses after chemical etching of the samples showed a significant increase of the photocurrent. Application of Gaertner-Butler's model to the interface semiconductor-electrolyte makes it possible to obtain the semiconductor energy gap, on samples heated at 500/sup 0/C, corresponding to a direct allowed band transition.

  12. A novel in situ electrochemical NMR cell with a palisade gold film electrode

    Science.gov (United States)

    Ni, Zu-Rong; Cui, Xiao-Hong; Cao, Shuo-Hui; Chen, Zhong

    2017-08-01

    In situ electrochemical nuclear magnetic resonance (EC-NMR) has attracted considerable attention because of its ability to directly observe real-time electrochemical processes. Therefore, minimizing the incompatibility between the electrochemical device and NMR detection has become an important challenge. A circular thin metal film deposited on the outer surface of a glass tube with a thickness considerably less than the metal skin depth is considered to be the ideal working electrode. In this study, we demonstrate that such a thin film electrode still has a great influence on the radio frequency field homogeneity in the detective zone of the NMR spectrometer probe and provide theoretical and experimental confirmation of its electromagnetic shielding. Furthermore, we propose a novel palisade gold film device to act as the working electrode. The NMR nutation behavior of protons shows that the uniformity of the radio frequency field is greatly improved, increasing the sensitivity in NMR detection. Another advantage of the proposed device is that an external reference standard adapted to the reaction compound can be inserted as a probe to determine the fluctuation of the physico-chemical environment and achieve high-accuracy quantitative NMR analysis. A three-chamber electrochemical device based on the palisade gold film design was successfully fabricated and the in situ electrochemical NMR performance was validated in a standard 5 mm NMR probe by acquiring voltammograms and high-resolution NMR spectra to characterize the electrochemically generated species. The evolution of in situ EC-NMR spectrum monitoring of the redox transformation between p-benzoquinone and hydroquinone demonstrates the ability of the EC-NMR device to simultaneously quantitatively determine the reactants and elucidate the reaction mechanism at the molecular level.

  13. A novel in situ electrochemical NMR cell with a palisade gold film electrode

    Directory of Open Access Journals (Sweden)

    Zu-Rong Ni

    2017-08-01

    Full Text Available In situ electrochemical nuclear magnetic resonance (EC-NMR has attracted considerable attention because of its ability to directly observe real-time electrochemical processes. Therefore, minimizing the incompatibility between the electrochemical device and NMR detection has become an important challenge. A circular thin metal film deposited on the outer surface of a glass tube with a thickness considerably less than the metal skin depth is considered to be the ideal working electrode. In this study, we demonstrate that such a thin film electrode still has a great influence on the radio frequency field homogeneity in the detective zone of the NMR spectrometer probe and provide theoretical and experimental confirmation of its electromagnetic shielding. Furthermore, we propose a novel palisade gold film device to act as the working electrode. The NMR nutation behavior of protons shows that the uniformity of the radio frequency field is greatly improved, increasing the sensitivity in NMR detection. Another advantage of the proposed device is that an external reference standard adapted to the reaction compound can be inserted as a probe to determine the fluctuation of the physico-chemical environment and achieve high-accuracy quantitative NMR analysis. A three-chamber electrochemical device based on the palisade gold film design was successfully fabricated and the in situ electrochemical NMR performance was validated in a standard 5 mm NMR probe by acquiring voltammograms and high-resolution NMR spectra to characterize the electrochemically generated species. The evolution of in situ EC-NMR spectrum monitoring of the redox transformation between p-benzoquinone and hydroquinone demonstrates the ability of the EC-NMR device to simultaneously quantitatively determine the reactants and elucidate the reaction mechanism at the molecular level.

  14. Investigation of water content in electrolyte solution on electrochromic properties of WO3 thin Films

    Directory of Open Access Journals (Sweden)

    Zahra Abadi

    2017-05-01

    Full Text Available Tungsten oxide thin films were prepared by a cathodic electrodeposition method at -0.450 mV in order to investigate how water content affects their electrochromic properties. FESEM images exhibit that WO3 thin films consist of 65 nm uniform grains. Thin Films were electrochemically investigated in 0.1M LiClO4 in propylene carbonate electrolyte with and without 5vol% water content by cyclic voltammetry and chronoamperometry. The results indicate that tungsten oxide thin films exhibit faster switching time between coloration and bleaching states and also higher coloration efficiency in hydrated electrolyte.  

  15. The optical and electrochemical properties of electrochromic films: WO3+xV2O5

    Science.gov (United States)

    Li, Zhuying; Liu, Hui; Liu, Ye; Yang, Shaohong; Liu, Yan; Wang, Chong

    2010-05-01

    Since Deb's experiment in 1973 on the electrochromic effect, transmissive electrochromic films exhibit outstanding potential as energy efficient window controls which allow dynamic control of the solar energy transmission. These films with non-volatile memory, once in the coloured state, remain in the same state even after removal of the field. The optical and electrochemical properties of electrochromic films using magnetron sputter deposition tungsten oxide thin films and vanadium oxide doped tungsten-vanadium oxide thin films on ITO coated glass were investigated. From the UV region of the transmittance spectra, the optical band gap energy from the fundamental absorption edge can be determined. And the Cyclic voltammograms of these thin films in 1 mol LiClO4 propylene carbonate electrolyte (LIPC) were measured and analysed. The anode electrochromic V2O5 doped cathode electrochromic WO3 could make films colour changing while the transmittance of films keeped invariance. These performance characteristics make tungstenvanadium oxide colour changeably thin films are suitable for electrochromic windows applications.

  16. Modification of low temperature deposited LiMn2O4 thin film cathodes by oxygen plasma irradiation

    International Nuclear Information System (INIS)

    Chen, Chen Chung; Chiu, Kuo-Feng; Lin, Kun Ming; Lin, Hsin Chih

    2009-01-01

    Lithium manganese oxides have been deposited by radio frequency magnetron sputter deposition with relatively lower annealing temperatures and then post-treated with a radio frequency (rf) driven oxygen plasma. Following oxygen plasma irradiation, the film properties were modified, and the performance of the thin film cathode has been enhanced. The electrochemical properties of the treated thin-film cathodes were characterized and compared. The results showed that the samples with moderate plasma treatment also maintained good cyclic properties as cycled at a wide range potential window of 2.0 V-4.5 V. Its electrochemical properties were significantly improved by this process, even though the films were prepared under low annealing temperature.

  17. The optical properties of plasma polymerized polyaniline thin films

    Energy Technology Data Exchange (ETDEWEB)

    Goktas, Hilal, E-mail: hilal_goktas@yahoo.com [Canakkale Onsekiz Mart University, Physics Department, 17020 Canakkale (Turkey); Demircioglu, Zahide; Sel, Kivanc [Canakkale Onsekiz Mart University, Physics Department, 17020 Canakkale (Turkey); Gunes, Taylan [Yalova University, Energy Systems Engineering Department, 77100 Yalova (Turkey); Kaya, Ismet [Canakkale Onsekiz Mart University, Chemistry Department, 17020 Canakkale (Turkey)

    2013-12-02

    We report herein the characterizations of polyaniline thin films synthesized using double discharge plasma system. Quartz glass substrates were coated at a pressure of 80 Pa, 19.0 kV pulsed and 1.5 kV dc potential. The substrates were located at different regions in the reactor to evaluate the influence of the position on the morphological and molecular structure of the obtained thin films. The molecular structure of the thin films was investigated by Fourier transform infrared (FTIR) and UV–visible photospectrometers (UV–vis), and the morphological studies were carried out by scanning electron microscope. The FTIR and UV–vis data revealed that the molecular structures of the synthesized thin films were in the form of leuocoemeraldine and exhibited similar structures with the films produced via chemical or electrochemical methods. The optical energy band gap values of the as-grown samples ranged from 2.5 to 3.1 eV, which indicated that these materials have potential applications in semiconductor devices. The refractive index in the transparent region (from 650 to 1000 nm) steadily decreased from 1.9 to 1.4 and the extinction coefficient was found to be on order of 10{sup −4}. The synthesized thin films showed various degrees of granular morphologies depending on the location of the substrate in the reactor. - Highlights: • Polyaniline thin films were synthesized for the first time via double discharge plasma system. • The films have similar structure to that of the chemically synthesized films. • The morphology of the films could be tuned by this technique. • These materials would have potential applications at semiconductor devices.

  18. Synthesis and characterization of electrochemically deposited nanocrystalline CdTe thin films

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Ragini Raj, E-mail: raginirajsingh@gmail.com [Department of Physics, Bhopal University, Bhopal-462026 (India); Department of Physical Electronics, Iby and Aladar Fleishman Faculty of Engineering, Tel-Aviv University, Tel-Aviv-69978 (Israel); Painuly, Diksha [Centre for Nanoscience and Nanotechnology, University of Kerala, Thiruanantpuram, Kerala (India); Pandey, R.K. [Department of Physics, Bhopal University, Bhopal-462026 (India)

    2009-07-15

    Electrodeposition is emerging as a method for the synthesis of semiconductor thin films and nanostructures. In this work we prepared the nanocrystalline CdTe thin films on indium tin oxide coated glass substrate from aqueous acidic bath at the deposition temperature 50 {+-} 1 deg. C. The films were grown potentiostatically from -0.60 V to -0.82 V with respect to saturated calomel reference electrode. The structural, compositional, morphological and optical properties were investigated using X-ray diffraction (XRD), energy dispersive analysis by X-rays (EDAX), atomic force microscopy (AFM), and UV-vis spectroscopy respectively and cyclic voltammetery. The structural and optical studies revealed that films are nanocrystalline in nature and possess cubic phase, also the films are preferentially oriented along the cubic (1 1 1) plane. The effect of cadmium composition on the deposited morphology was also investigated. The size dependent blue shift in the experimentally determined absorption edge has been compared with the theoretical predictions based on the effective mass approximation and tight binding approximation. It is shown that the experimentally determined absorption edges depart from the theoretically calculated values.

  19. All-solid-state thin film battery based on well-aligned slanted LiCoO{sub 2} nanowires fabricated by glancing angle deposition

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Miyoung [Department of Materials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Lee, Seunghwan [High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Department of Energy Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Lee, Daehee [Department of Materials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Kim, Joosun, E-mail: joosun@kist.re.kr [High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Moon, Jooho, E-mail: jmoon@yonsei.ac.kr [Department of Materials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2017-08-01

    Graphical abstract: We successfully fabricated well-aligned slanted LiCoO{sub 2} nanowires as a one-dimensional nanostructured cathode by glancing angle deposition to enhance the electrochemical performance of all-solid-state thin film batteries. - Highlights: • Well-aligned slanted LiCoO{sub 2} nanowires are fabricated by glancing angle deposition. • One-dimensional nanostructured LiCoO{sub 2} cathode enlarges the contact area. • All-solid-state thin film battery exhibits enhances rate capability and cycling stability. - Abstract: We fabricated all-solid-state thin film batteries based on well-aligned slanted LiCoO{sub 2} nanowires by glancing angle deposition, as a facile template-free method in order to increase the electrochemically active site, i.e., the contact area between the solid electrolyte and the electrode. A highly porous thin film composed of well-separated slanted LiCoO{sub 2} nanowires not only facilitates the penetration of solid electrolyte phase into the cathode, but also alleviates the thermally and mechanically induced stresses during post-annealing and electrochemical cycling. The all-solid-state thin film battery based on the well-aligned slanted LiCoO{sub 2} nanowires, whose contact area between electrolyte and electrode was three times as high as that of a dense thin film, could provide additional migration pathways for lithium ion diffusion due to the enlarged reaction sites. This resulted in enhanced electrochemical kinetics, thereby leading to better rate capability and long-term cyclic stability as compared to the dense LiCoO{sub 2} thin film.

  20. Synthesis of layered birnessite-type manganese oxide thin films on plastic substrates by chemical bath deposition for flexible transparent supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Hu Yu; Zhu Hongwei; Wang Jun [School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Chen Zhenxing, E-mail: chenzx65@mail.sysu.edu.cn [School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275 (China)

    2011-10-20

    Highlights: > Layered birnessite-type MnO{sub 2} thin films are fabricated on ITO/PET substrates through a facile chemical bath deposition at room temperature. > The transmittance of the MnO{sub 2} thin films at 550 nm is up to 77.4%. > MnO{sub 2} thin films exhibit a special capacitance of 229.2 F g{sup -1} and 9.2 mF cm{sup -2}. > MnO{sub 2} thin films show a capacitance retention ratio of 83% after 1000 CV cycles. > MnO{sub 2} thin film electrodes show great mechanical flexibility and electrochemical stability even after 200 tensile and compressive bending cycles. - Abstract: Layered birnessite-type manganese oxide thin films are successfully fabricated on indium tin oxide coated polyethylene terephthalate substrates for flexible transparent supercapacitors by a facile, effective and inexpensive chemical bath deposition technology from an alkaline KMnO{sub 4} aqueous solution at room temperature. The effects of deposition conditions, including KMnO{sub 4} concentration, initial molar ratio of NH{sub 3}.H{sub 2}O and KMnO{sub 4}, bath temperature, and reaction time, on the electrochemical properties of MnO{sub 2} thin films are investigated. Layered birnessite-type MnO{sub 2} thin films deposited under optimum conditions display three-dimensional porous morphology, high hydrophilicity, and a transmittance of 77.4% at 550 nm. A special capacitance of 229.2 F g{sup -1} and a capacitance retention ratio of 83% are obtained from the films after 1000 cycles at 10 mV s{sup -1} in 1 M Na{sub 2}SO{sub 4}. Compressive and tensile bending tests show that as-prepared MnO{sub 2} thin film electrodes possess excellent mechanical flexibility and electrochemical stability.

  1. Electrochemical Study of (La0.6Sr0.4)0.99CoO3-δ Thin Film Microelectrodes

    DEFF Research Database (Denmark)

    Kreka, Kosova; Hansen, Karin Vels; Jacobsen, Torben

    layer was deposited a (La0.6Sr0.4)0.99CoO3-δ(LSC40) using pulsed laser deposition (PLD). The thin CGO film (~100 nm) was deposited to avoid any reaction between the YSZ and LSC40 (250 nm). Subsequently, using photolithography and ion beam etching the microelectrode arrays with varying diameters (from...... 100 µm to 5 µm) were produced. Each sample has 4 macro-electrodes which were used as counter-electrode while performing electrochemical measurements. To observe the effect of temperature on the film microstructure and chemistry one sample was heat treated for 16 hours. SEM images, AFM and To......F-SIMS reveal similar behavior for both heat treated and as-deposited films. ToF-SIMS depth profiling reveals a Sr and Co rich surface compared to the bulk of the LSC40 for both samples. The difference between the two samples are in the distribution of common impurities, such as silica. After the heat treatment...

  2. Nanoscale reduction of graphene oxide thin films and its characterization

    KAUST Repository

    Lorenzoni, M.; Giugni, Andrea; Di Fabrizio, Enzo M.; Pé rez-Murano, Francesc; Mescola, A.; Torre, Bruno

    2015-01-01

    In this paper, we report on a method to reduce thin films of graphene oxide (GO) to a spatial resolution better than 100 nm over several tens of micrometers by means of an electrochemical scanning probe based lithography. In situ tip

  3. Paper-based transparent flexible thin film supercapacitors

    Science.gov (United States)

    Gao, Kezheng; Shao, Ziqiang; Wu, Xue; Wang, Xi; Zhang, Yunhua; Wang, Wenjun; Wang, Feijun

    2013-05-01

    Paper-based transparent flexible thin film supercapacitors were fabricated using CNF-[RGO]n hybrid paper as an electrode material and charge collector. Owing to the self-anti-stacking of distorted RGO nanosheets and internal electrolyte nanoscale-reservoirs, the device exhibited good electrochemical performance (about 1.73 mF cm-2), and a transmittance of about 56% (at 550 nm).Paper-based transparent flexible thin film supercapacitors were fabricated using CNF-[RGO]n hybrid paper as an electrode material and charge collector. Owing to the self-anti-stacking of distorted RGO nanosheets and internal electrolyte nanoscale-reservoirs, the device exhibited good electrochemical performance (about 1.73 mF cm-2), and a transmittance of about 56% (at 550 nm). Electronic supplementary information (ESI) available: Experimental, TEM image, IR spectra, and XRD spectra of cellulose nanofibers, TEM image, and XRD spectra of RGO, graphite, GO nanosheets, CNF paper, and CNF-[RGO]20 hybrid paper, high-resolution C1s spectra of GO, Raman spectra of GO nanosheets, cross-sectional FESEM image of CNF-[RGO]20 hybrid paper and stress-strain curve of T-SC-20. See DOI: 10.1039/c3nr00674c

  4. Photoluminescence and electrochemical properties of transparent CeO{sub 2}-ZnO nanocomposite thin films prepared by Pechini method

    Energy Technology Data Exchange (ETDEWEB)

    Sani, Z.K.; Ghodsi, F.E.; Mazloom, J. [University of Guilan, Department of Physics, Faculty of Science, Namjoo Ave, P.O. Box 41335-1914, Rasht (Iran, Islamic Republic of)

    2017-02-15

    Nanocomposite thin films of CeO{sub 2}-ZnO with different molar ratios of Zn/Ce (=0, 0.25, 0.5, 0.75 and 1) were prepared by the Pechini sol-gel route. Various spectroscopic and electrochemical techniques were applied to investigate the films. XRD patterns of all the samples exhibited the peaks corresponding to cubic fluorite structure of ceria and the (101) and (103) peaks of ZnO with hexagonal structure was just observed in the sample with molar ratio of 1. EDS confirmed the presence of constituent of element in the samples. FESEM images of the films showed a surface composed of nanograins. AFM analysis revealed that root mean square roughness was enhanced as molar ratio of Zn/Ce increased. Moreover, fractal dimension of surfaces were calculated by cube counting approach. Optical measurements indicated that the film with molar ratio of 1 has the highest transmission and lowest reflectivity. The optical band gap values varied between 2.95 and 3.42 eV. The compositional dependence of refractive index and extinction coefficient were reported. The UV and blue emission appeared in PL spectra. The highest photoluminescence emission intensity was observed in the 1:1 molar ratio sample. The cyclic voltammetry measurements indicated the highest charge density (9.75 mC cm{sup -2}) and diffusion coefficient (3.507 x 10{sup -17} cm{sup 2} s{sup -1}) belonged to the Ce/Zn (1:1) thin film. (orig.)

  5. Tracking polaron generation in electrochemically doped polyaniline thin films

    Science.gov (United States)

    Kalagi, S. S.; Patil, P. S.

    2018-04-01

    Electrochemically deposited polyaniline films on ITO substrates have been studied for their optical properties. π-π*transitions inducing the formation of polarons and bipolarons have been studied from the optical spectra. The generation of these quasiparticles and the corresponding quantum of energy stored has been analysed and calculated from the experimental data. The evolution of polaron with increased levels of protonation has been identified and the necessary energy required for the transitions have been explained with the help of band structure diagram.

  6. Growth of LiMn{sub 2}O{sub 4} thin films by pulsed-laser deposition and their electrochemical properties in lithium microbatteries

    Energy Technology Data Exchange (ETDEWEB)

    Julien, C. [Univ. Pierre et Marie Curie, Paris (France). LMDH; Haro-Poniatowski, E. [Laboratorio de Optica Cuantica, Universidad Autonoma Metropolitana Iztapalapa, Apdo. Postal 55-534, Mexico (Mexico); Camacho-Lopez, M.A. [LMDH, UMR 7603, Universite Pierre et Marie Curie, 4 place Jussieu, 75252, Paris (France); Escobar-Alarcon, L. [Departamento de Fisica, Instituto Nacional de Investigaciones Nucleares, Apdo. Postal 18-1027, Mexico (Mexico); Jimenez-Jarquin, J. [Laboratorio de Optica Cuantica, Universidad Autonoma Metropolitana Iztapalapa, Apdo. Postal 55-534, Mexico (Mexico)

    2000-03-01

    Films of LiMn{sub 2}O{sub 4} were grown by pulsed-laser deposition (PLD) onto silicon wafers using sintered targets which consisted in the mixture of LiMn{sub 2}O{sub 4} and Li{sub 2}O powders. The film formation has been studied as a function of the preparation conditions, i.e. composition of the target, substrate temperature, and oxygen partial pressure in the deposition chamber. Composition, morphology and structural properties of PLD films have been investigated using Rutherford backscattering spectroscopy, scanning electron microscopy, X-ray diffraction and Raman scattering spectroscopy. The films deposited from target LiMn{sub 2}O{sub 4}+15% Li{sub 2}O have an excellent crystallinity when deposited onto silicon substrate maintained at 300 C in an oxygen partial pressure of 100 mTorr. It is found that such a film crystallizes in the spinel structure (Fd3m symmetry) as evidenced by X-ray diffraction. Well-textured polycrystalline films exhibit crystallite size of 300 nm. Pulsed-laser deposited LiMn{sub 2}O{sub 4} thin films obtained with a polycrystalline morphology were successfully used as cathode materials in lithium microbatteries. The Li//LiMn{sub 2}O{sub 4} thin film cells have been tested by cyclic voltammetry and galvanostatic charge-discharge techniques in the potential range 3.0-4.2 V. Specific capacity as high as 120 mC/cm{sup 2} {mu}m was measured on polycrystalline films. The chemical diffusion coefficients for the Li{sub x}Mn{sub 2}O{sub 4} thin films appear to be in the range of 10{sup -11}-10{sup -12} cm{sup 2}/s. Electrochemical measurements show a good cycleability of PLD films when cells are charged-discharged at current densities of 5-25 {mu}A/cm{sup 2}. (orig.)

  7. Influence of electrochemical pre-treatment on highly reactive carbon nitride thin films deposited on stainless steel for electrochemical applications

    International Nuclear Information System (INIS)

    Benchikh, A.; Debiemme-Chouvy, C.; Cachet, H.; Pailleret, A.; Saidani, B.; Beaunier, L.; Berger, M.H.

    2012-01-01

    In this work, a-CNx films prepared by DC magnetron sputtering on stainless steel substrate have been investigated as electrode materials. While their wide potential window was confirmed as a property shared by boron doped diamond (BDD) electrodes, their electrochemical activity with respect to fast and reversible redox systems, [Ru(NH 3 ) 6 ] 3+/2+ , [Fe(CN) 6 ] 3−/4− and [IrCl 6 ] 2−/3− , was assessed by Electrochemical Impedance Spectroscopy (EIS) after cathodic or anodic electrochemical pre-treatments or for as grown samples. It was shown for the three systems that electrochemical reactivity of the a-CNx films was improved after the cathodic pre-treatment and degraded after the anodic one, the apparent heterogeneous rate constant k 0app being decreased by at least one order of magnitude for the latter case. A high k 0app value of 0.11 cm s −1 for [IrCl 6 ] 2−/3− was obtained, close to the highest values found for BDD electrodes.

  8. Structural transformation of sputtered o-LiMnO{sub 2} thin-film cathodes induced by electrochemical cycling

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, J., E-mail: Julian.Fischer@kit.edu [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials – Applied Materials Physics (IAM-AWP), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Chang, K. [RWTH Aachen University, Materials Chemistry, Kopernikusstrasse 10, 52074 Aachen (Germany); Ye, J.; Ulrich, S.; Ziebert, C. [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials – Applied Materials Physics (IAM-AWP), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Music, D.; Hallstedt, B. [RWTH Aachen University, Materials Chemistry, Kopernikusstrasse 10, 52074 Aachen (Germany); Seifert, H.J. [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials – Applied Materials Physics (IAM-AWP), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2013-12-31

    Orthorhombic LiMnO{sub 2} (o-LiMnO{sub 2}) thin films were produced by non-reactive r.f. magnetron sputtering in combination with thermal post-annealing. Oxide phase formation was investigated by X-ray diffraction and Raman spectroscopy. In order to assign the X-ray signals and estimate the grain size, a simulation of the diffraction pattern was performed and compared with experimental data. The density of the films was determined to be 3.39 g/cm{sup 3} using X-ray reflectivity. Electrochemical characterization was carried out by galvanostatic cycling and cyclic voltammetry of Li/o-LiMnO{sub 2} half cells. There are distinct redox reactions at approx. 3 V and 4 V, whereas the latter splits into multiple peaks. Using ab initio calculations and thermodynamic models, Gibbs energies of o-LiMnO{sub 2} and c-LiMn{sub 2}O{sub 4} were determined. The relation between these energies explains the irreversible phase transformation that has been observed during the cycling of the Li/o-LiMnO{sub 2} half cell. - Highlights: • Quantitative, thermodynamic modeling of the o-LiMnO{sub 2}/c-LiMn{sub 2}O{sub 4} phase transformation • First CV-investigations on magnetron sputtered nanocrystalline o-LiMnO{sub 2} thin films • Synthesis of o-LiMnO{sub 2} planar model systems for protective coating and SEI development.

  9. Growth, structure and stability of sputter-deposited MoS2 thin films

    Directory of Open Access Journals (Sweden)

    Reinhard Kaindl

    2017-05-01

    Full Text Available Molybdenum disulphide (MoS2 thin films have received increasing interest as device-active layers in low-dimensional electronics and also as novel catalysts in electrochemical processes such as the hydrogen evolution reaction (HER in electrochemical water splitting. For both types of applications, industrially scalable fabrication methods with good control over the MoS2 film properties are crucial. Here, we investigate scalable physical vapour deposition (PVD of MoS2 films by magnetron sputtering. MoS2 films with thicknesses from ≈10 to ≈1000 nm were deposited on SiO2/Si and reticulated vitreous carbon (RVC substrates. Samples deposited at room temperature (RT and at 400 °C were compared. The deposited MoS2 was characterized by macro- and microscopic X-ray, electron beam and light scattering, scanning and spectroscopic methods as well as electrical device characterization. We find that room-temperature-deposited MoS2 films are amorphous, of smooth surface morphology and easily degraded upon moderate laser-induced annealing in ambient conditions. In contrast, films deposited at 400 °C are nano-crystalline, show a nano-grained surface morphology and are comparatively stable against laser-induced degradation. Interestingly, results from electrical transport measurements indicate an unexpected metallic-like conduction character of the studied PVD MoS2 films, independent of deposition temperature. Possible reasons for these unusual electrical properties of our PVD MoS2 thin films are discussed. A potential application for such conductive nanostructured MoS2 films could be as catalytically active electrodes in (photo-electrocatalysis and initial electrochemical measurements suggest directions for future work on our PVD MoS2 films.

  10. Determination of diffusion coefficients in polypyrrole thin films using a current pulse relaxation method

    Science.gov (United States)

    Penner, Reginald M.; Vandyke, Leon S.; Martin, Charles R.

    1987-01-01

    The current pulse E sub oc relaxation method and its application to the determination of diffusion coefficients in electrochemically synthesized polypyrrole thin films is described. Diffusion coefficients for such films in Et4NBF4 and MeCN are determined for a series of submicron film thicknesses. Measurement of the double-layer capacitance, C sub dl, and the resistance, R sub u, of polypyrrole thin films as a function of potential obtained with the galvanostatic pulse method is reported. Measurements of the electrolyte concentration in reduced polypyrrole films are also presented to aid in the interpretation of the data.

  11. Chemical synthesis of α-La{sub 2}S{sub 3} thin film as an advanced electrode material for supercapacitor application

    Energy Technology Data Exchange (ETDEWEB)

    Patil, S.J.; Kumbhar, V.S.; Patil, B.H.; Bulakhe, R.N.; Lokhande, C.D., E-mail: l_chandrakant@yahoo.com

    2014-10-25

    Highlights: • The simple, chemical method used for synthesis of lanthanum sulphide thin films. • The lanthanum sulphide thin film surface exhibited porous microstructure. • The lanthanum sulphide thin film electrode is used for supercapacitor application. - Abstract: α-La{sub 2}S{sub 3} thin films have been synthesized for the first time by successive ionic layer adsorption and reaction (SILAR) method and used for supercapacitor application. These films are characterized for crystal structure, surface morphology and wettability studies using X-ray diffraction (XRD), Fourier Transform-Raman (FT-Raman) spectroscopy, scanning electron microscopy (SEM) and contact angle measurements. The electrochemical supercapacitive performance of α-La{sub 2}S{sub 3} electrode is evaluated by cyclic voltammetry (CV), galvanostatic charge discharge (GCD) and electrochemical impedance spectroscopy (EIS) techniques. From the electrochemical study, it is seen that α-La{sub 2}S{sub 3} electrode delivers high specific capacitance of 256 F g{sup −1} at scan rate of 5 mV s{sup −1} with cycling stability of 85% over 1000 cycles. Such La{sub 2}S{sub 3} electrode has great application in supercapacitor device for energy storage.

  12. Thin-film calorimetry. In-situ characterization of materials for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Omelcenko, Alexander; Wulfmeier, Hendrik; Albrecht, Daniel; Fritze, Holger [Clausthal Univ. of Technology, Goslar (Germany). Inst. of Energy Research and Physical Technologies; El Mofid, Wassima; Ivanov, Svetlozar; Bund, Andreas [Ilmenau Univ. of Technology (Germany). Dept. of Electrochemistry

    2017-11-15

    Thin-film calorimetry allows for qualitative and quantitative in-situ analysis of thermodynamic properties of thin films and thin-film systems from room temperature up to 1000 C. It is based on highly sensitive piezoelectric langasite resonators which serve simultaneously as planar temperature sensors and substrates for the films of interest. Generation or consumption of heat during phase transformations of the films cause deviations from the regular course of the resonance frequency. Thermodynamic data such as phase transformation temperatures and enthalpies are extracted from these deviations. Thin-film calorimetry on Sn and Al thin films is performed to prove the concept. The results demonstrate high reproducibility of the measurement approach and are in agreement with literature data obtained by established calorimetric techniques. The calibration of the system is done in different atmospheres by application of defined heat pulses via heating structures. The latter replace the films of interest and simulate phase transformations to provide detailed analysis of the heat transfer mechanisms occurring in the measurement system. Based on this analysis, a data evaluation concept is developed. Application-relevant studies are performed on thin films of the lithium-ion battery materials NMC(A), NCA, LMO, and MoS{sub 2}. Their phase transformation temperatures and enthalpies are evaluated in oxidizing and reducing atmospheres. Furthermore, their thermodynamic stability ranges are presented. Finally, measurements on all-solid-state thin-film batteries during electrochemical cycling are performed. They demonstrate the suitability of the system for in-situ investigations.

  13. Hybrid thin films based on bilayer heterojunction of titania nanocrystals/polypyrrole/natural dyes (Kappaphycus alvarezii) materials

    Science.gov (United States)

    Ghazali, Salmah Mohd; Salleh, Hasiah; Dagang, Ahmad Nazri; Ghazali, Mohd Sabri Mohd; Ali, Nik Aziz Nik; Rashid, Norlaily Abdul; Kamarulzaman, Nurul Huda; Ahmad, Wan Almaz Dhafina Che Wan

    2017-09-01

    In this research, hybrid thin films which consist of a combination of organic red seaweed (RS) (Kappaphycus alvarezii) and polypyrrole (PPy) with inorganic titania nanocrystals (TiO2 NCs) materials were fabricated. These hybrid thin films were fabricated accordingly with bilayer heterojunction of ITO/TiO2 NCs/PPy/RS via electrochemical method using Electrochemical Impedance Spectroscopy (EIS). The effect of number of scans (thickness) of titania on optical and electrical properties of hybrid thin films were studied. TiO2 NCs function as an electron acceptor and electronic conductor. Meanwhile, PPy acts as holes conductor and RS dye acts as a photosensitizer enhances the optical and electrical properties of the thin films. The UV absorption spectrum of TiO2 NCs, PPy and RS are characterized by UV-Visible spectroscopy, while the functional group of RS was characterized by Fourier transform infrared spectroscopy (FTIR). The UV-Vis spectra showed that TiO2 NCs, PPy and RS were absorbed over a wide range of light spectrum which were 200-300 nm, 300-900 nm and 250-900 nm; respectively. The FTIR spectra of the RS showed the presence of hydroxyl group which was responsible for a good sensitizer for these hybrid solar cells. The electrical conductivity of these hybrid thin films were measured by using four point probes. The electrical conductivity of ITO/ (1)TiO2 NCs/PPy/RS thin film under the radiation of 100 Wm-2 was 0.062 Scm-1, hence this hybrid thin films can be applied in solar cell application.

  14. The effect of solution pH on the electrochemical performance of nanocrystalline metal ferrites MFe2O4 (M=Cu, Zn, and Ni) thin films

    Science.gov (United States)

    Elsayed, E. M.; Rashad, M. M.; Khalil, H. F. Y.; Ibrahim, I. A.; Hussein, M. R.; El-Sabbah, M. M. B.

    2016-04-01

    Nanocrystalline metal ferrite MFe2O4 (M=Cu, Zn, and Ni) thin films have been synthesized via electrodeposition-anodization process. Electrodeposited (M)Fe2 alloys were obtained from aqueous sulfate bath. The formed alloys were electrochemically oxidized (anodized) in aqueous (1 M KOH) solution, at room temperature, to the corresponding hydroxides. The parameters controlling the current efficiency of the electrodeposition of (M)Fe2 alloys such as the bath composition and the current density were studied and optimized. The anodized (M)Fe2 alloy films were annealed in air at 400 °C for 2 h. The results revealed the formation of three ferrite thin films were formed. The crystallite sizes of the produced films were in the range between 45 and 60 nm. The microstructure of the formed film was ferrite type dependent. The corrosion behavior of ferrite thin films in different pH solutions was investigated using open circuit potential (OCP) and potentiodynamic polarization measurements. The open circuit potential indicates that the initial potential E im of ZnFe2O4 thin films remained constant for a short time, then sharply increased in the less negative direction in acidic and alkaline medium compared with Ni and Cu ferrite films. The values of the corrosion current density I corr were higher for the ZnFe2O4 films at pH values of 1 and 12 compared with that of NiFe2O4 and CuFe2O4 which were higher only at pH value 1. The corrosion rate was very low for the three ferrite films when immersion in the neutral medium. The surface morphology recommended that Ni and Cu ferrite films were safely used in neutral and alkaline medium, whereas Zn ferrite film was only used in neutral atmospheres.

  15. Hydrogen absorption in thin ZnO films prepared by pulsed laser deposition

    International Nuclear Information System (INIS)

    Melikhova, O.; Čížek, J.; Lukáč, F.; Vlček, M.; Novotný, M.; Bulíř, J.; Lančok, J.; Anwand, W.; Brauer, G.; Connolly, J.; McCarthy, E.; Krishnamurthy, S.; Mosnier, J.-P.

    2013-01-01

    Highlights: ► Thin ZnO films and high quality ZnO crystal were electrochemically doped with hydrogen. ► Hydrogen absorbed in ZnO causes plastic deformation both in ZnO crystal and thin films. ► In ZnO crystal a sub-surface region with very high density of defects was formed. ► Moreover, plastic deformation causes specific surface modification of ZnO crystal. ► In ZnO films hydrogen-induced plastic deformation introduced defects in the whole film. -- Abstract: ZnO films with thickness of ∼80 nm were grown by pulsed laser deposition (PLD) on MgO (1 0 0) single crystal and amorphous fused silica (FS) substrates. Structural studies of ZnO films and a high quality reference ZnO single crystal were performed by slow positron implantation spectroscopy (SPIS). It was found that ZnO films exhibit significantly higher density of defects than the reference ZnO crystal. Moreover, the ZnO film deposited on MgO substrate exhibits higher concentration of defects than the film deposited on amorphous FS substrate most probably due to a dense network of misfit dislocations. The ZnO films and the reference ZnO crystal were subsequently loaded with hydrogen by electrochemical cathodic charging. SPIS characterizations revealed that absorbed hydrogen introduces new defects into ZnO

  16. Hydrogen absorption in thin ZnO films prepared by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Melikhova, O., E-mail: oksivmel@yahoo.com [Charles University in Prague, Faculty of Mathematics and Physics, V Holesovickach 2, CZ-180 00 Praha 8 (Czech Republic); Čížek, J.; Lukáč, F.; Vlček, M. [Charles University in Prague, Faculty of Mathematics and Physics, V Holesovickach 2, CZ-180 00 Praha 8 (Czech Republic); Novotný, M.; Bulíř, J.; Lančok, J. [Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21 Prague (Czech Republic); Anwand, W.; Brauer, G. [Institut für Strahlenphysik, Helmholtz-Zentrum Dresden-Rossendorf, PO Box 510 119, D-01314 Dresden (Germany); Connolly, J.; McCarthy, E.; Krishnamurthy, S.; Mosnier, J.-P. [National Centre for Plasma Science and Technology, School of Physical Sciences, Glasnevin, Dublin 9 (Ireland)

    2013-12-15

    Highlights: ► Thin ZnO films and high quality ZnO crystal were electrochemically doped with hydrogen. ► Hydrogen absorbed in ZnO causes plastic deformation both in ZnO crystal and thin films. ► In ZnO crystal a sub-surface region with very high density of defects was formed. ► Moreover, plastic deformation causes specific surface modification of ZnO crystal. ► In ZnO films hydrogen-induced plastic deformation introduced defects in the whole film. -- Abstract: ZnO films with thickness of ∼80 nm were grown by pulsed laser deposition (PLD) on MgO (1 0 0) single crystal and amorphous fused silica (FS) substrates. Structural studies of ZnO films and a high quality reference ZnO single crystal were performed by slow positron implantation spectroscopy (SPIS). It was found that ZnO films exhibit significantly higher density of defects than the reference ZnO crystal. Moreover, the ZnO film deposited on MgO substrate exhibits higher concentration of defects than the film deposited on amorphous FS substrate most probably due to a dense network of misfit dislocations. The ZnO films and the reference ZnO crystal were subsequently loaded with hydrogen by electrochemical cathodic charging. SPIS characterizations revealed that absorbed hydrogen introduces new defects into ZnO.

  17. Vanadium nitride as a novel thin film anode material for rechargeable lithium batteries

    International Nuclear Information System (INIS)

    Sun Qian; Fu Zhengwen

    2008-01-01

    Vanadium mononitride (VN) thin films have been successfully fabricated by magnetron sputtering. Its electrochemical behaviour with lithium was examined by galvanostatic cell cycling and cyclic voltammetry. The capacity of VN was found to be stable above 800 mAh g -1 after 50 cycles. By using ex situ X-ray diffraction, high-resolution transmission electron microscopy and selected area electron diffraction as well as in situ spectroelectrochemical measurements, the electrochemical reaction mechanism of VN with lithium was investigated. The reversible conversion reaction of VN into metal V and Li 3 N was revealed. The high reversible capacity and good stable cycle of VN thin film electrode made it a new promising lithium-ion storage material for future rechargeable lithium batteries

  18. Cycling-induced degradation of LiCoO2 thin-film cathodes at elevated temperature

    International Nuclear Information System (INIS)

    Van Sluytman, J.S.; West, W.C.; Whitacre, J.F.; Alamgir, F.M.; Greenbaum, S.G.

    2006-01-01

    The cycle life of LiCoO 2 -based all solid-state thin-film cells has been studied at room temperature, and at elevated temperatures of 50, 100, and 150 deg. C. X-ray diffraction, as well as Raman analysis, has been used to complement the electrochemical data in examining structural and chemical changes. XRD and Raman spectroscopy data indicate that elevated temperature soaks of the thin-film batteries in the quiescent state causes no discernable changes in the LiCoO 2 cathode layer. However, when the thin-film batteries are cycled at elevated temperatures, decreases in average grain size of the LiCoO 2 film occur with dramatic concomitant charge and discharge capacity loss

  19. Electrochemical processing of high-Tc Bi (Pb)–Sr–Ca–CuO thin films

    Indian Academy of Sciences (India)

    The different preparative parameters such as deposition potential, deposition time were studied and optimized. These films were then oxidized electrochemically at room temperature in an alkaline (1 N KOH) solution, and also at 600°C temperature in an oxygen atmosphere. The films showed the superconducting behaviour ...

  20. SEM and XPS study of layer-by-layer deposited polypyrrole thin films

    Science.gov (United States)

    Pigois-Landureau, E.; Nicolau, Y. F.; Delamar, M.

    1996-01-01

    Layer-by-layer deposition of thin films (a few nm) of polypyrrole was carried out on various substrates such as silver, platinum, electrochemically oxidized aluminum and pretreated glass. SEM micrographs showed that the deposited layers nucleate by an island-type mechanism on hydrated alumina and KOH-pretreated (hydrophilic) glass before forming a continuous film. However, continuous thin films are obtained on chromic acid pretreated (hydrophobic) glass and sputtered Ag or Pt on glass after only 3-4 deposition cycles. The mean deposition rate evaluated by XPS for the first deposition cycles on Ag and Pt is 3 and 4 nm/cycle, respectively, in agreement with previous gravimetric determinations on thicker films, proving the constancy of the deposition rate. The XPS study of the very thin films obtained by a few deposition cycles shows that the first polypyrrole layers are dedoped by hydroxydic (basic) substrate surfaces.

  1. Deposition of antimony telluride thin film by ECALE

    Institute of Scientific and Technical Information of China (English)

    GAO; Xianhui; YANG; Junyou; ZHU; Wen; HOU; Jie; BAO; Siqian; FAN; Xi'an; DUAN; Xingkai

    2006-01-01

    The process of Sb2Te3 thin film growth on the Pt substrate by electrochemical atomic layer epitaxy (ECALE) was studied. Cyclic voltammetric scanning was performed to analyze the electrochemical behavior of Te and Sb on the Pt substrate. Sb2Te3 film was formed using an automated flow deposition system by alternately depositing Te and Sb atomic layers for 400 circles. The deposited Sb2Te3 films were characterized by XRD, EDX, FTIR and FESEM observation. Sb2Te3 compound structure was confirmed by XRD pattern and agreed well with the results of EDX quantitative analysis and coulometric analysis. FESEM micrographs showed that the deposit was composed of fine nano particles with size of about 20 nm. FESEM image of the cross section showed that the deposited films were very smooth and dense with thickness of about 190 nm. The optical band gap of the deposited Sb2Te3 film was determined as 0.42 eV by FTIR spectroscopy, and it was blue shifted in comparison with that of the bulk Sb2Te3 single crystal due to its nanocrystalline microstructure.

  2. Biocorrosion investigation of two shape memory nickel based alloys: Ni-Mn-Ga and thin film NiTi.

    Science.gov (United States)

    Stepan, L L; Levi, D S; Gans, E; Mohanchandra, K P; Ujihara, M; Carman, G P

    2007-09-01

    Thin film nitinol and single crystal Ni-Mn-Ga represent two new shape memory materials with potential to be used as percutaneously placed implant devices. However, the biocompatibility of these materials has not been adequately assessed. Immersion tests were conducted on both thin film nitinol and single crystal Ni-Mn-Ga in Hank's balanced salt solution at 37 degrees C and pH 7.4. After 12 h, large pits were found on the Ni-Mn-Ga samples while thin film nitinol displayed no signs of corrosion. Further electrochemical tests on thin film nitinol samples revealed breakdown potentials superior to a mechanically polished nitinol disc. These results suggest that passivation or electropolishing of thin film nitinol maybe unnecessary to promote corrosion resistance.

  3. Optical Properties and Electrochemical Performance of LiFePO4 Thin Films Deposited on Transparent Current Collectors.

    Science.gov (United States)

    Lee, HyunSeok; Yim, Haena; Kim, Kwang-Bum; Choi, Ji-Won

    2015-11-01

    LiFePO4 thin film cathodes are deposited on various transparent conducting oxide thin films on glass, which are used as cathode current collectors. The XRD patterns show that the thin films have the phase of LiFePO4 with an ordered olivine structure indexed to the orthorhombic Pmna space group. LiFePO4 thin film deposited on various TCO glass substrates exhibits transmittance of about 53%. The initial specific discharge capacities of LiFePO4 thin films are 25.0 μAh/cm2 x μm on FTO, 33.0 μAh/cm2 x μm on ITO, and 13.0 μAh/cm2 x μm on AZO coated glass substrates. Interestingly, the retention capacities of LiFePO4 thin films are 76.0% on FTO, 31.2% on ITO, and 37.7% on AZO coated glass substrates at 20th cycle. The initial specific discharge capacity of the LiFePO4/FTO electrode is slightly lower, but the discharge capacities of the LiFePO4/FTO electrode relatively decrease less than those of the others such as LiFePO4/ITO and LiFePO4/AZO with cycling. The results reported here provide the high transparency of LiFePO4 thin films cathode materials and the good candidate as FTO current collector of the LiFePO4 thin film cathode of transparent thin film rechargeable batteries due to its high transparency and cyclic retention.

  4. Development of graphene oxide/poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) thin film-based electrochemical surface plasmon resonance immunosensor for detection of human immunoglobulin G

    Science.gov (United States)

    Pothipor, Chammari; Lertvachirapaiboon, Chutiparn; Shinbo, Kazunari; Kato, Keizo; Kaneko, Futao; Ounnunkad, Kontad; Baba, Akira

    2018-02-01

    An electrochemically synthesized graphene oxide (GO)/poly(3,4-ethylenedioxythiophene) (PEDOT)/poly(styrene sulfonate) (PSS) thin film-based electrochemical surface plasmon resonance (EC-SPR) sensor chip was developed and employed for the detection of human immunoglobulin G (IgG). GO introduced the carboxylic group on the film surface, which also allowed electrochemical control, for the immobilization of the anti-IgG antibody via covalent bonding through amide coupling reaction. The SPR sensitivity of the detection was improved under the control by applying an electrochemical potential, by which the sensitivity was increased by the increment in applied potential. Among the open-circuit and different applied potentials in the range of -1.0 to 0.50 V, the EC-SPR immunosensor at an applied potential of 0.50 V exhibited the highest sensitivity of 6.08 × 10-3 mL µg-1 cm-2 and linearity in the human IgG concentration range of 1.0 to 10 µg mL-1 with a relatively low detection limit of 0.35 µg mL-1. The proposed sensor chip is promising for immunosensing at the physiological level.

  5. Electrochemical behavior of thin anodic oxide films on Zircaloy-4: Role of the mobile defects

    International Nuclear Information System (INIS)

    Salot, R.; Lefebvre-Joud, F.; Baroux, B.

    1996-01-01

    The first stages of the electrochemical oxidation of Zircaloy-4 are investigated using simple electrochemical tests and modeling the passive film modifications occurring as a result of contact with the electrolyte. Variations in electrode potential (open-circuit conditions) or current density (potentiodynamic scans) can be simply explained by a high field (F ∼ 10 6 V/cm) assisted passive film growth. Under open-circuit conditions, this field does not vary with exposure time (in the 2 h to 48 h range). The minimum electric field for the onset of high-field behavior is also evaluated and found smaller than the theoretical value which can be explained by a variation in the concentration of mobile defects throughout the film. Measurements of the electrode potential decay after a potentiodynamic scan confirm this model, allowing interpretation of the film modification as a combination of two separate phenomena: film growth under a high electric field and point defect annihilation

  6. Morphology dependent dye-sensitized solar cell properties of nanocrystalline zinc oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, S.K., E-mail: sanjeevlrs732000@yahoo.co.in [Department of Information and Communication, Cheju Halla College, Jeju City 690 708 (Korea, Republic of); Inamdar, A.I.; Im, Hyunsik [Department of Semiconductor Science, Dongguk University, Seoul 100 715 (Korea, Republic of); Kim, B.G. [Department of Information and Communication, Cheju Halla College, Jeju City 690 708 (Korea, Republic of); Patil, P.S. [Thin Film Materials Laboratory, Department of Physics, Shivaji University, Kolhapur 416 004 (India)

    2011-02-03

    Research highlights: > Nano-crystalline zinc oxide thin films were electrosynthesized from an aqueous zinc acetate [Zn(CH{sub 3}COO){sub 2}.2H{sub 2}O] solution onto FTO coated conducting glass substrates using two different electrochemical routes, namely (i) without an organic surfactant and (ii) with an organic surfactant, viz. PVA (poly-vinyl alcohol) or SDS (sodium dodecyl sulfate). > The reproducibility of the catalytic activity of the SDS and PVA surfactants in the modification of the morphologies was observed. > Vertically aligned nest-like and compact structures were observed from the SDS and PVA mediated films, respectively, while the grain size in the ZnO thin films without an organic surfactant was observed to be {approx}150 nm. > The dye sensitized ZnO electrodes displayed excellent properties in the conversion process from light to electricity. The efficiencies of the surfactant mediated nanocrystalline ZnO thin films, viz. ZnO:SDS and ZnO:PVA, sensitized with ruthenium-II (N3) dye were observed to be 0.49% and 0.27%, respectively. - Abstract: Nano-crystalline zinc oxide thin films were electrosynthesized with an aqueous zinc acetate [Zn(CH{sub 3}COO){sub 2}.2H{sub 2}O] solution on to FTO coated glass substrates. Two different electrochemical baths were used, namely (i) without an organic surfactant and (ii) with an organic surfactant, viz. PVA (poly-vinyl alcohol) and SDS (sodium dodecyl sulfate). The organic surfactants played an important role in modifying the surface morphology, which influenced the size of the crystallites and dye-sensitized solar cell (DSSC) properties. The vertically aligned thin and compact hexagonal crystallites were observed with SDS mediated films, while the grain size in the films without an organic surfactant was observed to be {approx}150 nm. The conversion efficiencies of the ZnO:SDS:Dye and ZnO:PVA:Dye thin films were observed to be 0.49% and 0.27%, respectively.

  7. Preparation and characterization of poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) composite thin films highly loaded with platinum nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chao-Ching, E-mail: ccchang@tku.edu.tw [Department of Chemical and Materials Engineering, Tamkang University, No. 151, Yingzhuan Rd., Danshui Dist., New Taipei City 25137, Taiwan (China); Energy and Opto-Electronic Materials Research Center, Tamkang University, No. 151, Yingzhuan Rd., Danshui Dist., New Taipei City 25137, Taiwan (China); Jiang, Ming-Tai [Department of Chemical and Materials Engineering, Tamkang University, No. 151, Yingzhuan Rd., Danshui Dist., New Taipei City 25137, Taiwan (China); Chang, Chen-Liang; Lin, Cheng-Lan [Department of Chemical and Materials Engineering, Tamkang University, No. 151, Yingzhuan Rd., Danshui Dist., New Taipei City 25137, Taiwan (China); Energy and Opto-Electronic Materials Research Center, Tamkang University, No. 151, Yingzhuan Rd., Danshui Dist., New Taipei City 25137, Taiwan (China)

    2011-06-15

    Research highlights: {yields} Nano-sized and mono-dispersed Pt nanoparticles were synthesized by a polyol method. {yields} A thin film of PEDOT:PSS loaded with high concentration of Pt nanoparticles has been prepared. {yields} The PEDOT:PSS-Pt modified electrode has good potential to serve as a counter electrode in DSSC. - Abstract: In this work, we propose a simple and efficient, low-temperature ({approx}120 deg. C) process to prepare transparent thin films of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) loaded with high concentration (up to 22.5 wt%) of platinum (Pt) nanoparticles. Firstly, an improved polyol method was modified to synthesize nano-sized ({approx}5 nm) and mono-dispersed Pt particles. These nanoparticles were incorporated into the matrix of PEDOT:PSS thin films via a spin coating/drying procedure. The electrochemical activities of the PEDOT:PSS thin film modified electrodes with respect to the I{sup -}/I{sub 3}{sup -} redox reactions were investigated. It was found that the modified electrode of PEDOT:PSS thin film containing 22.5 wt% Pt exhibited the electrochemical activity comparable to the conventional Pt thin film electrode, suggesting that this electrode has good potential to serve as a counter electrode in dye-sensitized solar cells.

  8. Deposition of a thin electro-polymerized organic film on iron surface

    International Nuclear Information System (INIS)

    Lecayon, Gerard

    1980-01-01

    We use an electrochemical method to prepare a polymerized thin film, obtained from acrylonitrile in a solution of acetonitrile and tetraethylammonium perchlorate. The films are deposited on oxidized iron electrodes, with a surface area varying from a few mm to several cm, their thickness ranges from ten A to thousand A. This result is obtained by controlling the evolution of reactions: duplication, hydrogenation, polymerization which occur during the electrochemical reduction of acrylonitrile. The choice of suitable experimental conditions enhances the polymerization and increases the adherence of the polymer on the electrode. The usual methods of surface studies: S.E.M., A.E.S., S.I.M.S., permit the characterization of the electrode surface and the chemical composition of the deposit films. The molecular structure of polymer, and its evolution under aging or heating was studied by infrared multi-reflection spectroscopy. Very good correlation exists between the electrochemical characteristic: I = f(t), the initial surface state of the electrodes, and the homogeneity of the electro-polymerized films. Diagrams corresponding to mechanisms of different stages of electro-polymerization are proposed. (author) [fr

  9. Solid thin film materials for use in thin film charge-coupled devices

    International Nuclear Information System (INIS)

    Lynch, S.J.

    1983-01-01

    Solid thin films deposited by vacuum deposition were evaluated to ascertain their effectiveness for use in the manufacturing of charge-coupled devices (CCDs). Optical and electrical characteristics of tellurium and Bi 2 Te 3 solid thin films were obtained in order to design and to simulate successfully the operation of thin film (TF) CCDs. In this article some of the material differences between single-crystal material and the island-structured thin film used in TFCCDs are discussed. The electrical parameters were obtained and tabulated, e.g. the mobility, conductivity, dielectric constants, permittivity, lifetime of holes and electrons in the thin films and drift diffusion constants. The optical parameters were also measured and analyzed. After the design was complete, experimental TFCCDs were manufactured and were successfully operated utilizing the aforementioned solid thin films. (Auth.)

  10. SEM and XPS study of layer-by-layer deposited polypyrrole thin films

    International Nuclear Information System (INIS)

    Pigois-Landureau, E.; Nicolau, Y.F.; Delamar, M.

    1996-01-01

    Layer-by-layer deposition of thin films (a few nm) of polypyrrole was carried out on various substrates such as silver, platinum, electrochemically oxidized aluminum and pretreated glass. SEM micrographs showed that the deposited layers nucleate by an island-type mechanism on hydrated alumina and KOH-pretreated (hydrophilic) glass before forming a continuous film. However, continuous thin films are obtained on chromic acid pretreated (hydrophobic) glass and sputtered Ag or Pt on glass after only 3 endash 4 deposition cycles. The mean deposition rate evaluated by XPS for the first deposition cycles on Ag and Pt is 3 and 4 nm/cycle, respectively, in agreement with previous gravimetric determinations on thicker films, proving the constancy of the deposition rate. The XPS study of the very thin films obtained by a few deposition cycles shows that the first polypyrrole layers are dedoped by hydroxydic (basic) substrate surfaces. copyright 1996 American Institute of Physics

  11. Enhanced electrochromic coloration in Ag nanoparticle decorated WO3 thin films

    International Nuclear Information System (INIS)

    Kharade, Rohini R.; Mali, Sawanta S.; Patil, Satish P.; Patil, Kashinath R.; Gang, Myong G.; Patil, Pramod S.; Kim, Jin H.; Bhosale, Popatrao N.

    2013-01-01

    Highlights: • Electrochromic WO 3 /Ag nanocomposites prepared by hybrid physico-chemical route. • XRD and XPS results confirm formation of Ag 8 W 4 O 16 phase. • WO 3 /Ag thin films showed good optical transmittance change and coloration efficiency. • SPR enhanced coloration and bleaching mechanism is well explained for electrochromism. • Color stimuli are quantified using CIE chromaticity principles. -- Abstract: WO 3 /Ag composite thin films were prepared by microwave assisted sol–gel synthesis (MW-SGS) of WO 3 followed by vacuum evaporation of Ag nanoparticles and their enhanced electrochromic coloration was investigated. The composition and morphology of WO 3 thin films with different thickness of Ag layer obtained by vacuum evaporation were investigated. Distinct plasmon absorption bands of Ag nanoparticle thin films were obtained. The optical band gap energy of WO 3 /Ag films decreased with increasing the Ag layer thickness. The surface of these films has been examined using X-ray photoelectron spectroscopy (XPS) to gain information about the chemical states of species present at surfaces. Experimental results indicated that the conductivity of the films increased after surface modification by Ag layer. To investigate the origin of enhanced electrochromic absorption in optical properties, working electrode consisting of WO 3 /Ag thin film was used and observed the optical properties during electrochemical reaction. It was found that composite electrode shows enhancement in electrochromic properties in terms of optical modulation (ΔOD) and coloration efficiency (η)

  12. Thin-film photovoltaic technology

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, R.N. [National Renewable Energy Laboratory, Golden, CO (United States)

    2010-07-01

    The high material and processing costs associated with single-crystal and polycrystalline silicon wafers that are commonly used in photovoltaic cells render these modules expensive. This presentation described thin-film solar cell technology as a promising alternative to silicon solar cell technology. Cadmium telluride (CdTe) thin films along with copper, indium, gallium, and selenium (CIGS) thin films have become the leaders in this field. Their large optical absorption coefficient can be attributed to a direct energy gap that allows the use of thin layers (1-2 {mu}m) of active material. The efficiency of thin-film solar cell devices based on CIGS is 20 per cent, compared to 16.7 per cent for thin-film solar cell devices based on CdTe. IBM recently reported an efficiency of 9.7 per cent for a new type of inorganic thin-film solar cell based on a Cu{sub 2}ZnSn(S, Se){sub 4} compound. The efficiency of an organic thin-film solar cell is 7.9 per cent. This presentation included a graph of PV device efficiencies and discussed technological advances in non-vacuum deposited, CIGS-based thin-film solar cells. 1 fig.

  13. Study of CdTe and HgCdTe thin films obtained by electrochemical methods

    International Nuclear Information System (INIS)

    Guillen, C.

    1990-01-01

    Cadmium telluride polycrystalline thin films were fabricated on SnO 2 -coated glass substrates by potentiostatic electrodeposition and characterized by X-ray diffraction, energy dispersive X-ray analyses (EDAX), optical and electrical measurements. The films dseposited at potentials more positive than -0.65 V vs.SCE were p-type but those deposited at more negative potentials were n-type. All CdTe thin films showed a band-gap energy about 1.45 eV and a large absorption coeffici-ent (a=10 5 cm -1 ) above de band edge. The addition of even small amounts of mercury to the CdTe produces higuer conductivity values and lower band-gap energies. We have prepared HgCdTe thin films where the band-gap energies ranged between 0.93 and 0.88 eV depending on the ratio of mercury to cadmium. Heat treatment at 300 0 C increases the crystalline diameter and alter the composition of the electrodeposited films, a decrease of the resistivity values was also observed. (Author)

  14. Benchmarking Pt and Pt-lanthanide sputtered thin films for oxygen electroreduction

    DEFF Research Database (Denmark)

    Zamburlini, Eleonora; Jensen, Kim Degn; Stephens, Ifan E.L.

    2017-01-01

    Platinum-lanthanide alloys are very promising as active and stable catalysts for the oxygen reduction reaction (ORR) in low-temperature fuel cells. We have fabricated Pt and Pt5Gd metallic thin films via (co-)sputtering deposition in an ultra-high vacuum (UHV) chamber. The electrochemical ORR...

  15. Electrochemical and structural characterization of nanocomposite Agy:TiNx thin films for dry bioelectrodes: the effect of the N/Ti ratio and Ag content

    International Nuclear Information System (INIS)

    Pedrosa, P.; Machado, D.; Fiedler, P.; Alves, E.; Barradas, N.P.; Haueisen, J.; Vaz, F.; Fonseca, C.

    2015-01-01

    Highlights: • Ag y :TiN x thin films were sputtered with different N/Ti atomic ratios and Ag contents. • The electroactive area increases (1000-fold) with increasing N/Ti atomic ratios. • The films display impedances <10 kΩ at the 1–50 Hz interval (EEG range). • No Ag surface segregation was visible in the under-stoichiometric samples. • The samples with N/Ti atomic ratio = 0.3 (15 at.% Ag) and 0.7 (32 at.% Ag) are the most appropriate for bioelectrode applications. - ABSTRACT: Ag y :TiN x nanocomposite thin films sputtered with different N/Ti atomic ratios and Ag atomic contents were characterized from the structural and morphological points of view. Their electrochemical behaviour was studied in a synthetic sweat solution, aiming at selecting a suitable material for biolectrode applications. An increase of the N/Ti atomic ratio, which is accompanied by an increase of the Ag atomic content, leads to a substantial increase of the roughness and porosity of the samples, especially for N/Ti ratios >0.2. For N/Ti atomic ratios up to 0.3 (15 at.% Ag) no metallic Ag segregation is visible in the TiN x matrix. Hence, the possible formation of TiAg and Ti 2 Ag intermetallics or even a Ag/TiAg/Ti 2 Ag phase mixture, although not demonstrated, should not be disregarded. As for the N/Ti atomic ratio = 0.7 (32 at.% Ag) sample, the Ag phases are predominantly concentrated near the interface with the substrate. The amount of Ag phases at the surface of the films remains somewhat low for all TiN under-stoichiometric films, even for Ag atomic contents up to 32 at.%. When the TiN x matrix reaches the stoichiometric condition (sample with N/Ti atomic ratio = 1 and 20 at.% Ag), Ag segregation occurs and metallic Ag aggregates are visible at the surface of the film, leading to a substantially different electrochemical behaviour. The impedance of the Ag y :TiN x films in synthetic sweat solution is mainly ruled by the roughness/porosity variation, thus the higher the N

  16. Thin film processes II

    CERN Document Server

    Kern, Werner

    1991-01-01

    This sequel to the 1978 classic, Thin Film Processes, gives a clear, practical exposition of important thin film deposition and etching processes that have not yet been adequately reviewed. It discusses selected processes in tutorial overviews with implementation guide lines and an introduction to the literature. Though edited to stand alone, when taken together, Thin Film Processes II and its predecessor present a thorough grounding in modern thin film techniques.Key Features* Provides an all-new sequel to the 1978 classic, Thin Film Processes* Introduces new topics, and sever

  17. Improved stability of titanium based boron-doped chemical vapor deposited diamond thin-film electrode by modifying titanium substrate surface

    International Nuclear Information System (INIS)

    Lim, P.Y.; Lin, F.Y.; Shih, H.C.; Ralchenko, V.G.; Varnin, V.P.; Pleskov, Yu.V.; Hsu, S.F.; Chou, S.S.; Hsu, P.L.

    2008-01-01

    The film quality and electrochemical properties of BDD (boron-doped diamond) thin films grown by hot-filament chemical vapor deposition technique on titanium substrates that had been subjected to a range of pre-treatment processes were evaluated. The pre-roughened Ti-substrates are shown to support more adherent BDD films. It is evident that acid-etching the Ti-substrate involves surface hydrogenation that enhances nucleation and formation of diamond thereon. The prepared BDD film exhibits wide potential window and electrochemical reversibility. It also demonstrated a better long-term electrochemical stability based on the low variation in voltametric background current upon the exposing of the electrodes to repeated cycles of electrochemical metal deposition/stripping process

  18. Non-destructive electrochemical graphene transfer from reusable thin-film catalysts

    DEFF Research Database (Denmark)

    Pizzocchero, Filippo; Jessen, Bjarke Sørensen; Whelan, Patrick Rebsdorf

    2015-01-01

    We demonstrate an electrochemical method - which we term oxidative decoupling transfer (ODT) - for transferring chemical vapor deposited graphene from physically deposited copper catalyst layers. This copper oxidation-based transfer technique is generally applicable to copper surfaces...... - up to 100 mm diameter films are demonstrated here - and exhibit a low Raman D:G peak ratio and a homogenous and continuous distribution of sheet conductance mapped by THz time-domain spectroscopy. By applying a fixed potential of -0.4 V vs. an Ag/AgCl reference electrode - significantly below...

  19. Chemical synthesis of porous web-structured CdS thin films for photosensor applications

    Energy Technology Data Exchange (ETDEWEB)

    Gosavi, S.R., E-mail: srgosavi.taloda@gmail.com [C. H. C. Arts, S. G. P. Commerce, and B. B. J. P. Science College, Taloda, Dist., Nandurbar 425413, M. S. (India); Nikam, C.P. [B.S.S.P.M.S. Arts, Commerce and Science College, Songir, Dist., Dhule 424309, M. S. (India); Shelke, A.R.; Patil, A.M. [Department of Physics, Shivaji University, Kolhapur 416004, M.S. (India); Ryu, S.-W. [Department of Physics, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Bhat, J.S. [Department of Physics, Karnatak University, Dharwad 580003 (India); Deshpande, N.G., E-mail: nicedeshpande@yahoo.co.in [Department of Physics, Shivaji University, Kolhapur 416004, M.S. (India)

    2015-06-15

    The photo-activity of chemically deposited cadmium sulphide (CdS) thin film has been studied. The simple chemical route nucleates the CdS films with size up to the mean free path of the electron. Growth Kinematics of crystalline hexagonal CdS phase in the thin film form was monitored using X-ray diffraction. The time limitation set for the formation of the amorphous/nano-crystalline material is 40 and 60 min. Thereafter enhancement of the crystalline orientation along the desired plane was identified. Web-like porous structured surface morphology of CdS thin film over the entire area is observed. With decrease in synthesis time, increase of band gap energy i.e., a blue spectral shift was seen. The activation energy of CdS thin film at low and high temperature region was examined. It is considered that this activation energy corresponds to the donor levels associated with shallow traps or surface states of CdS thin film. The photo-electrochemical performance of CdS thin films in polysulphide electrolyte showed diode-like characteristics. Exposure of light on the CdS electrode increases the photocurrent. This suggests the possibility of production of free carriers via excited ions and also the light harvesting mechanism due to porous web-structured morphology. These studies hint that the obtained CdS films can work as a photosensor. - Highlights: • Photoactivity of chemically synthesized cadmium sulphide (CdS) thin films was studied. • Web-like porous structured surface morphology of CdS thin film over the entire area was observed. • Blue spectral shift with lowering of the synthesis time suggests films can act as a window layer over the absorber layer. • Porous web-structured CdS thin films can be useful in light harvesting.

  20. Chemical synthesis of porous web-structured CdS thin films for photosensor applications

    International Nuclear Information System (INIS)

    Gosavi, S.R.; Nikam, C.P.; Shelke, A.R.; Patil, A.M.; Ryu, S.-W.; Bhat, J.S.; Deshpande, N.G.

    2015-01-01

    The photo-activity of chemically deposited cadmium sulphide (CdS) thin film has been studied. The simple chemical route nucleates the CdS films with size up to the mean free path of the electron. Growth Kinematics of crystalline hexagonal CdS phase in the thin film form was monitored using X-ray diffraction. The time limitation set for the formation of the amorphous/nano-crystalline material is 40 and 60 min. Thereafter enhancement of the crystalline orientation along the desired plane was identified. Web-like porous structured surface morphology of CdS thin film over the entire area is observed. With decrease in synthesis time, increase of band gap energy i.e., a blue spectral shift was seen. The activation energy of CdS thin film at low and high temperature region was examined. It is considered that this activation energy corresponds to the donor levels associated with shallow traps or surface states of CdS thin film. The photo-electrochemical performance of CdS thin films in polysulphide electrolyte showed diode-like characteristics. Exposure of light on the CdS electrode increases the photocurrent. This suggests the possibility of production of free carriers via excited ions and also the light harvesting mechanism due to porous web-structured morphology. These studies hint that the obtained CdS films can work as a photosensor. - Highlights: • Photoactivity of chemically synthesized cadmium sulphide (CdS) thin films was studied. • Web-like porous structured surface morphology of CdS thin film over the entire area was observed. • Blue spectral shift with lowering of the synthesis time suggests films can act as a window layer over the absorber layer. • Porous web-structured CdS thin films can be useful in light harvesting

  1. Electrochemical characterization of Zr-based thin film metallic glass in hydrochloric aqueous solution

    International Nuclear Information System (INIS)

    Chuang, Ching-Yen; Liao, Yi-Chia; Lee, Jyh-Wei; Li, Chia-Lin; Chu, Jinn P.; Duh, Jenq-Gong

    2013-01-01

    Recently thin film metallic glass represents a class of promising engineering materials for structural applications. In this work, the Zr-based thin film metallic glass (TFMG) was fabricated on the Si and AISI 420 substrates using a Zr–Cu–Ni–Al alloy and pure Zr metal targets by a pulsed DC magnetron sputtering system. The chemical compositions, crystalline structures, microstructures and corrosion behavior in hydrochloric (HCl) aqueous solutions of Zr-based TFMGs were investigated. The results showed that the surface morphologies of Zr-based TFMG were very smooth. A compact and dense structure without columnar structure was observed. The amorphous structure of Zr-based TFMG was characterized by the X-ray diffractometer and transmission electron microscopy analyses. After the potentiodynamic polarization test, the better corrosion resistance was achieved for the Zr-based TFMG coated AISI 420 in 1 mM HCl aqueous solution. Based on the surface morphologies and chemical analysis results of the corroded surfaces, the pitting, crevice corrosion and filiform corrosion were found. The corrosion mechanisms of the Zr-based TFMG were discussed in this work. - Highlights: ► Zr-based thin film metallic glass with amorphous structure. ► Better corrosion resistance of Zr-based thin film metallic glass observed. ► Pitting, crevice and filiform corrosion reactions revealed. ► The Cu-rich corrosion products found in the pit. ► Nanowire and flaky corrosion products formed adjacent to the filiform corrosion path

  2. Electrochemical Deposition of CdTe Semiconductor Thin Films for Solar Cell Application Using Two-Electrode and Three-Electrode Configurations: A Comparative Study

    Directory of Open Access Journals (Sweden)

    O. K. Echendu

    2016-01-01

    Full Text Available Thin films of CdTe semiconductor were electrochemically deposited using two-electrode and three-electrode configurations in potentiostatic mode for comparison. Cadmium sulphate and tellurium dioxide were used as cadmium and tellurium sources, respectively. The layers obtained using both configurations exhibit similar structural, optical, and electrical properties with no specific dependence on any particular electrode configuration used. These results indicate that electrochemical deposition (electrodeposition of CdTe and semiconductors in general can equally be carried out using two-electrode system as well as the conventional three-electrode system without compromising the essential qualities of the materials produced. The results also highlight the advantages of the two-electrode configuration in process simplification, cost reduction, and removal of a possible impurity source in the growth system, especially as the reference electrode ages.

  3. An Investigation of Nanocrystalline and Electrochemically Grown Cu2ZnSnS4 Thin Film Using Redox Couples of Different Band Offset

    Directory of Open Access Journals (Sweden)

    Prashant K. Sarswat

    2013-01-01

    Full Text Available Alternative electrolytes were examined to evaluate photoelectrochemical response of Cu2ZnSnS4 films at different biasing potential. Selections of the electrolytes were made on the basis of relative Fermi level position and standard reduction potential. Our search was focused on some cost-effective electrolytes, which can produce good photocurrent during illumination. Thin films were grown on FTO substrate using ink of nanocrystalline Cu2ZnSnS4 particles as well as electrodeposition-elevated temperature sulfurization approach. Our investigations suggest that photoelectrochemical response is mostly due to conduction band-mediated process. Surface topography and phase purity were investigated after each electrochemical test, in order to evaluate film quality and reactivity of electrolytes. Raman examination of film and nanocrystals was conducted for comparison. The difference in photocurrent response was explained due to various parameters such as change in charge transfer rate constant, presence of dangling bond, difference in concentration of adsorbed species in electrode.

  4. Non-enzymatic hydrogen peroxide detection at NiO nanoporous thin film- electrodes prepared by physical vapor deposition at oblique angles

    International Nuclear Information System (INIS)

    Salazar, Pedro; Rico, Victor; González-Elipe, Agustín R.

    2017-01-01

    Highlights: • A non-enzymatic sensor for H 2 O 2 detection based on nickel thin film is reported. • Nanostructured nickel thin films are prepared by physical vapor deposition at oblique angles. • Main analytical parameters were obtained under optimal operation conditions. • Sensors depict an outstanding selectivity and a high stability. • Sensors are successfully used to determine H 2 O 2 in antiseptic solutions. - Abstract: In this work we report a non-enzymatic sensor for hydrogen peroxide (H 2 O 2 ) detection based on nanostructured nickel thin films prepared by physical vapor deposition at oblique angles. Porous thin films deposited on ITO substrates were characterized by X-ray diffraction analysis, scanning electron microcopy (SEMs), X-ray photoelectron spectroscopy (XPS) and electrochemical techniques such as Cyclic Voltammetry (CV) and Constant Potential Amperometry (CPA). The microstructure of the thin films consisted of inclined and separated Ni nanocolumns forming a porous thin layer of about 500 nm thickness. Prior to their use, the films surface was electrochemically modified and the chemical state studied by CV and XPS analysis. These techniques also showed that Ni 2+ /Ni 3+ species were involved in the electrochemical oxidation and detection of H 2 O 2 in alkaline medium. Main analytical parameters such as sensitivity (807 mA M −1 cm −2 ), limit of detection (3.22 μM) and linear range (0.011–2.4 mM) were obtained under optimal operation conditions. Sensors depicted an outstanding selectivity and a high stability and they were successfully used to determine H 2 O 2 concentration in commercial antiseptic solutions.

  5. Cycling-induced degradation of LiCoO{sub 2} thin-film cathodes at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Van Sluytman, J.S.; Alamgir, F.M.; Greenbaum, S.G. [Department of Physics and Astronomy, Hunter College of the City University of New York, 695 Park Avenue, New York, NY 10021 (United States); West, W.C.; Whitacre, J.F. [Electrochemical Technologies Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2006-04-01

    The cycle life of LiCoO{sub 2}-based all solid-state thin-film cells has been studied at room temperature, and at elevated temperatures of 50, 100, and 150{sup o}C. X-ray diffraction, as well as Raman analysis, has been used to complement the electrochemical data in examining structural and chemical changes. XRD and Raman spectroscopy data indicate that elevated temperature soaks of the thin-film batteries in the quiescent state causes no discernible changes in the LiCoO{sub 2} cathode layer. However, when the thin-film batteries are cycled at elevated temperatures, decreases in average grain size of the LiCoO{sub 2} film occur with dramatic concomitant charge and discharge capacity loss. (author)

  6. Effect of post annealing treatment on electrochromic properties of spray deposited niobium oxide thin films

    International Nuclear Information System (INIS)

    Mujawar, S.H.; Inamdar, A.I.; Betty, C.A.; Ganesan, V.; Patil, P.S.

    2007-01-01

    Niobium oxide thin films were deposited on the glass and fluorine doped tin oxide (FTO) coated glass substrates using simple and inexpensive spray pyrolysis technique. During deposition of the films various process parameters like nozzle to substrate distance, spray rate, concentration of sprayed solution were optimized to obtain well adherent and transparent films. The films prepared were further annealed and effect of post annealing on the structural, morphological, optical and electrochromic properties was studied. Structural and morphological characterizations of the films were carried out using scanning electron microscopy, atomic force microscopy and X-ray diffraction techniques. Electrochemical properties of the niobium oxide thin films were studied by using cyclic-voltammetry, chronoamperometry and chronocoulometry

  7. Pyrolyzed thin film carbon

    Science.gov (United States)

    Tai, Yu-Chong (Inventor); Liger, Matthieu (Inventor); Harder, Theodore (Inventor); Konishi, Satoshi (Inventor); Miserendino, Scott (Inventor)

    2010-01-01

    A method of making carbon thin films comprises depositing a catalyst on a substrate, depositing a hydrocarbon in contact with the catalyst and pyrolyzing the hydrocarbon. A method of controlling a carbon thin film density comprises etching a cavity into a substrate, depositing a hydrocarbon into the cavity, and pyrolyzing the hydrocarbon while in the cavity to form a carbon thin film. Controlling a carbon thin film density is achieved by changing the volume of the cavity. Methods of making carbon containing patterned structures are also provided. Carbon thin films and carbon containing patterned structures can be used in NEMS, MEMS, liquid chromatography, and sensor devices.

  8. Polythiophene thin films electrochemically deposited on sol-gel based TiO2 for photovoltaic applications

    International Nuclear Information System (INIS)

    Valaski, R.; Yamamoto, N.A.D.; Canestraro, C.D.; Micaroni, L.; Mello, R.M.Q.; Quirino, W.G.; Legani, C.; Achete, C.A.; Roman, L.S.; Cremona, M.

    2010-01-01

    In this work, the influence of titanium dioxide (TiO 2 ) thin films on the efficiency of organic photovoltaic devices based on electrochemically synthesized polythiophene (PT) was investigated. TiO 2 films were produced by sol-gel methods with controlled thickness. The best TiO 2 annealing condition was determined through the investigation of the temperature influence on the electron charge mobility and resistivity in a range between 723 K and 923 K. The PT films were produced by chronoamperometric method in a 3-electrode cell under a controlled atmosphere. High quality PT films were produced onto 40 nm thick TiO 2 layer previously deposited onto fluorine doped tin oxide (FTO) substrate. The morphology of PT films grown on both substrates and its strong influence on the device performance and PT minimum thickness were also investigated. The maximum external quantum efficiency (IPCE) reached was 9% under monochromatic irradiation (λ = 610 nm; 1 W/m 2 ) that is three orders of magnitude higher than that presented by PT-homolayer devices with similar PT thickness. In addition, the open-circuit voltage (V oc ) was about 700 mV and the short-circuit current density (J sc ) was 0.03 A/m 2 (λ = 610 nm; 7 W/m 2 ). However, as for the PT-homolayer also the TiO 2 /PT based devices are characterized by antibatic response when illuminated through FTO. Finally, the Fill Factor (FF) of these devices is low (25%), indicating that the series resistance (R s ), which is strongly dependent of the PT thickness, is too large. This large R s value is compensated by TiO 2 /PT interface morphology and by FTO/TiO 2 and TiO 2 /PT interface phenomena producing preferential paths in which the internal electrical field is higher, improving the device efficiency.

  9. Preparation of Cu2Sn3S7 Thin-Film Using a Three-Step Bake-Sulfurization-Sintering Process and Film Characterization

    Directory of Open Access Journals (Sweden)

    Tai-Hsiang Lui

    2015-01-01

    Full Text Available Cu2Sn3S7 (CTS can be used as the light absorbing layer for thin-film solar cells due to its good optical properties. In this research, the powder, baking, sulfur, and sintering (PBSS process was used instead of vacuum sputtering or electrochemical preparation to form CTS. During sintering, Cu and Sn powders mixed in stoichiometric ratio were coated to form the thin-film precursor. It was sulfurized in a sulfur atmosphere to form CTS. The CTS film metallurgy mechanism was investigated. After sintering at 500°C, the thin film formed the Cu2Sn3S7 phase and no impurity phase, improving its energy band gap. The interface of CTS film is continuous and the formation of intermetallic compound layer can increase the carrier concentration and mobility. Therefore, PBSS process prepared CTS can potentially be used as a solar cell absorption layer.

  10. thin films

    Indian Academy of Sciences (India)

    microscopy (SEM) studies, respectively. The Fourier transform ... Thin films; chemical synthesis; hydrous tin oxide; FTIR; electrical properties. 1. Introduction ... dehydrogenation of organic compounds (Hattori et al 1987). .... SEM images of (a) bare stainless steel and (b) SnO2:H2O thin film on stainless steel substrate at a ...

  11. The dynamic behavior of thin-film ionic transition metal complex-based light-emitting electrochemical cells

    Energy Technology Data Exchange (ETDEWEB)

    Meier, Sebastian B., E-mail: sebastian.meier@belectric.com, E-mail: wiebke.sarfert@siemens.com [Department of Materials Science VI: Materials for Electronics and Energy Technology, Friedrich-Alexander-University of Erlangen-Nuremberg, 91058 Erlangen (Germany); Siemens AG, Corporate Technology, CT RTC MAT IEC-DE, 91058 Erlangen (Germany); Hartmann, David; Sarfert, Wiebke, E-mail: sebastian.meier@belectric.com, E-mail: wiebke.sarfert@siemens.com [Siemens AG, Corporate Technology, CT RTC MAT IEC-DE, 91058 Erlangen (Germany); Winnacker, Albrecht [Department of Materials Science VI: Materials for Electronics and Energy Technology, Friedrich-Alexander-University of Erlangen-Nuremberg, 91058 Erlangen (Germany)

    2014-09-14

    Light-emitting electrochemical cells (LECs) have received increasing attention during recent years due to their simple architecture, based on solely air-stabile materials, and ease of manufacture in ambient atmosphere, using solution-based technologies. The LEC's active layer offers semiconducting, luminescent as well as ionic functionality resulting in device physical processes fundamentally different as compared with organic light-emitting diodes. During operation, electrical double layers (EDLs) form at the electrode interfaces as a consequence of ion accumulation and electrochemical doping sets in leading to the in situ development of a light-emitting p-i-n junction. In this paper, we comment on the use of impedance spectroscopy in combination with complex nonlinear squares fitting to derive key information about the latter events in thin-film ionic transition metal complex-based light-emitting electrochemical cells based on the model compound bis-2-phenylpyridine 6-phenyl-2,2´-bipyridine iridium(III) hexafluoridophosphate ([Ir(ppy)₂(pbpy)][PF₆]). At operating voltages below the bandgap potential of the ionic complex used, we obtain the dielectric constant of the active layer, the conductivity of mobile ions, the transference numbers of electrons and ions, and the thickness of the EDLs, whereas the transient thickness of the p-i-n junction is determined at voltages above the bandgap potential. Most importantly, we find that charge transport is dominated by the ions when carrier injection from the electrodes is prohibited, that ion movement is limited by the presence of transverse internal interfaces and that the width of the intrinsic region constitutes almost 60% of the total active layer thickness in steady state at a low operating voltage.

  12. Application of V2O5 thin films deposited by laser ablation in micron batteries of solid state

    International Nuclear Information System (INIS)

    Escobar A, L.; Camps, E.; Haro P, E.; Camacho L, M.A.; Julien, C.

    2001-01-01

    The obtained results from synthesizing V 2 O 5 thin films by laser ablation are presented. Depending on the deposit conditions V 2 O 5 thin films have been grown as amorphous as a crystalline ones with preferential orientation. The results of the electrochemical characterization of one of the synthesized layers are presented when being manufactured joint with it a micron battery. (Author)

  13. Morphology, structural and optical properties of iron oxide thin film photoanodes in photoelectrochemical cell: Effect of electrochemical oxidation

    Science.gov (United States)

    Maabong, Kelebogile; Machatine, Augusto G.; Hu, Yelin; Braun, Artur; Nambala, Fred J.; Diale, Mmantsae

    2016-01-01

    Hematite (α-Fe2O3) is a promising semiconductor as photoanode in solar hydrogen production from photoelectrolysis of water due to its appropriate band gap, low cost and high electrochemical stability in aqueous caustic electrolytes. Operation of such photoanode in a biased photoelectrochemical cell constitutes an anodization with consequent redox reactions at the electrode surface. α-Fe2O3 thin film photoanodes were prepared by simple and inexpensive dip coating method on fluorine doped tin oxide (FTO) glass substrate, annealed in air at 500 °C for 2 h, then electrochemically oxidized (anodized) in 1 M KOH at 500 mV for 1 min in dark and light conditions. Changes in structural properties and morphology of α-Fe2O3 nanoparticles films were investigated by XRD, Raman spectroscopy and a high resolution FE-SEM. The average grain size was observed to increase from 57 nm for pristine samples to 73 and 77 nm for anodized samples in dark and light respectively. Broadening and red shift in Raman spectra in anodized samples may be attributed to lattice expansion upon oxidation. The UV-visible measurements revealed enhanced absorption in the photoanodes after the treatment. The findings suggest that the anodization of the photoelectrode in a biased cell causes not only changes of the molecular structure at the surface, but also changes in the crystallographic structure which can be detected with x-ray diffractometry.

  14. Morphology, structural and optical properties of iron oxide thin film photoanodes in photoelectrochemical cell: Effect of electrochemical oxidation

    International Nuclear Information System (INIS)

    Maabong, Kelebogile; Machatine, Augusto G.; Hu, Yelin; Braun, Artur; Nambala, Fred J.; Diale, Mmantsae

    2016-01-01

    Hematite (α-Fe_2O_3) is a promising semiconductor as photoanode in solar hydrogen production from photoelectrolysis of water due to its appropriate band gap, low cost and high electrochemical stability in aqueous caustic electrolytes. Operation of such photoanode in a biased photoelectrochemical cell constitutes an anodization with consequent redox reactions at the electrode surface. α-Fe_2O_3 thin film photoanodes were prepared by simple and inexpensive dip coating method on fluorine doped tin oxide (FTO) glass substrate, annealed in air at 500 °C for 2 h, then electrochemically oxidized (anodized) in 1 M KOH at 500 mV for 1 min in dark and light conditions. Changes in structural properties and morphology of α-Fe_2O_3 nanoparticles films were investigated by XRD, Raman spectroscopy and a high resolution FE-SEM. The average grain size was observed to increase from ~57 nm for pristine samples to 73 and 77 nm for anodized samples in dark and light respectively. Broadening and red shift in Raman spectra in anodized samples may be attributed to lattice expansion upon oxidation. The UV–visible measurements revealed enhanced absorption in the photoanodes after the treatment. The findings suggest that the anodization of the photoelectrode in a biased cell causes not only changes of the molecular structure at the surface, but also changes in the crystallographic structure which can be detected with x-ray diffractometry.

  15. Morphology, structural and optical properties of iron oxide thin film photoanodes in photoelectrochemical cell: Effect of electrochemical oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Maabong, Kelebogile [Department of Physics, University of Pretoria, Pretoria 0002 (South Africa); Laboratory of High Ceramics, Empa, Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf (Switzerland); Department of Physics, University of Botswana, Private Bag 002, Gaborone (Botswana); Machatine, Augusto G. [Department of Physics, University of Pretoria, Pretoria 0002 (South Africa); Hu, Yelin [Laboratory of High Ceramics, Empa, Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf (Switzerland); Laboratory for Photonics and Interfaces, EPFL, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland); Braun, Artur [Laboratory of High Ceramics, Empa, Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf (Switzerland); Nambala, Fred J. [Department of Physics, University of Pretoria, Pretoria 0002 (South Africa); University of Zambia, Box 32379, Great East Road Campus, Lusaka (Zambia); Diale, Mmantsae, E-mail: mmantsae.diale@up.ac.za [Department of Physics, University of Pretoria, Pretoria 0002 (South Africa); Laboratory of High Ceramics, Empa, Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf (Switzerland)

    2016-01-01

    Hematite (α-Fe{sub 2}O{sub 3}) is a promising semiconductor as photoanode in solar hydrogen production from photoelectrolysis of water due to its appropriate band gap, low cost and high electrochemical stability in aqueous caustic electrolytes. Operation of such photoanode in a biased photoelectrochemical cell constitutes an anodization with consequent redox reactions at the electrode surface. α-Fe{sub 2}O{sub 3} thin film photoanodes were prepared by simple and inexpensive dip coating method on fluorine doped tin oxide (FTO) glass substrate, annealed in air at 500 °C for 2 h, then electrochemically oxidized (anodized) in 1 M KOH at 500 mV for 1 min in dark and light conditions. Changes in structural properties and morphology of α-Fe{sub 2}O{sub 3} nanoparticles films were investigated by XRD, Raman spectroscopy and a high resolution FE-SEM. The average grain size was observed to increase from ~57 nm for pristine samples to 73 and 77 nm for anodized samples in dark and light respectively. Broadening and red shift in Raman spectra in anodized samples may be attributed to lattice expansion upon oxidation. The UV–visible measurements revealed enhanced absorption in the photoanodes after the treatment. The findings suggest that the anodization of the photoelectrode in a biased cell causes not only changes of the molecular structure at the surface, but also changes in the crystallographic structure which can be detected with x-ray diffractometry.

  16. Layer-by-layer assembled polyaniline nanofiber/multiwall carbon nanotube thin film electrodes for high-power and high-energy storage applications.

    Science.gov (United States)

    Hyder, Md Nasim; Lee, Seung Woo; Cebeci, Fevzi Ç; Schmidt, Daniel J; Shao-Horn, Yang; Hammond, Paula T

    2011-11-22

    Thin film electrodes of polyaniline (PANi) nanofibers and functionalized multiwall carbon nanotubes (MWNTs) are created by layer-by-layer (LbL) assembly for microbatteries or -electrochemical capacitors. Highly stable cationic PANi nanofibers, synthesized from the rapid aqueous phase polymerization of aniline, are assembled with carboxylic acid functionalized MWNT into LbL films. The pH-dependent surface charge of PANi nanofibers and MWNTs allows the system to behave like weak polyelectrolytes with controllable LbL film thickness and morphology by varying the number of bilayers. The LbL-PANi/MWNT films consist of a nanoscale interpenetrating network structure with well developed nanopores that yield excellent electrochemical performance for energy storage applications. These LbL-PANi/MWNT films in lithium cell can store high volumetric capacitance (~238 ± 32 F/cm(3)) and high volumetric capacity (~210 mAh/cm(3)). In addition, rate-dependent galvanostatic tests show LbL-PANi/MWNT films can deliver both high power and high energy density (~220 Wh/L(electrode) at ~100 kW/L(electrode)) and could be promising positive electrode materials for thin film microbatteries or electrochemical capacitors. © 2011 American Chemical Society

  17. Nanostructured CuO thin film electrodes prepared by spray pyrolysis: a simple method for enhancing the electrochemical performance of CuO in lithium cells

    International Nuclear Information System (INIS)

    Morales, Julian; Sanchez, Luis; Martin, Francisco; Ramos-Barrado, Jose R.; Sanchez, Miguel

    2004-01-01

    Nanostructured CuO thin films were prepared by using a spray pyrolysis method, copper acetate as precursor and stainless steel as substrate. The textural and structural properties of the films were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The SEM images revealed thorough coating of the substrate and thickness of 450-1250 nm; the average particle size as determined from the AFM images ranged from 30 to 160 nm. The XRD patterns revealed the formation of CuO alone and the XPS spectra confirmed the presence of Cu 2+ as the main oxidation state on the surface. The films were tested as electrodes in lithium cells and their electrochemical properties evaluated from galvanostatic and step potential electrochemical spectroscopy (SPES) measurements. The discharge STEP curves exhibited various peaks consistent with the processes CuO Cu 2 O Cu and with decomposition of the electrolyte, a reversible process in the light of the AFM images. The best electrode exhibited capacity values of 625 Ah kg -1 over more than 100 cycles. This value, which involves a CuO Cu reversible global reaction, is ca. 50% higher than that reported for bulk CuO. The nanosize of the particles and the good adherence of the active material to the substrate are thought to be the key factors accounting for the enhanced electrochemical activity found

  18. Controlling the dimensionality of charge transport in organic thin-film transistors

    Science.gov (United States)

    Laiho, Ari; Herlogsson, Lars; Forchheimer, Robert; Crispin, Xavier; Berggren, Magnus

    2011-01-01

    Electrolyte-gated organic thin-film transistors (OTFTs) can offer a feasible platform for future flexible, large-area and low-cost electronic applications. These transistors can be divided into two groups on the basis of their operation mechanism: (i) field-effect transistors that switch fast but carry much less current than (ii) the electrochemical transistors which, on the contrary, switch slowly. An attractive approach would be to combine the benefits of the field-effect and the electrochemical transistors into one transistor that would both switch fast and carry high current densities. Here we report the development of a polyelectrolyte-gated OTFT based on conjugated polyelectrolytes, and we demonstrate that the OTFTs can be controllably operated either in the field-effect or the electrochemical regime. Moreover, we show that the extent of electrochemical doping can be restricted to a few monolayers of the conjugated polyelectrolyte film, which allows both high current densities and fast switching speeds at the same time. We propose an operation mechanism based on self-doping of the conjugated polyelectrolyte backbone by its ionic side groups. PMID:21876143

  19. Room temperature chemical synthesis of Cu(OH)2 thin films for supercapacitor application

    International Nuclear Information System (INIS)

    Gurav, K.V.; Patil, U.M.; Shin, S.W.; Agawane, G.L.; Suryawanshi, M.P.; Pawar, S.M.; Patil, P.S.; Lokhande, C.D.; Kim, J.H.

    2013-01-01

    Highlights: •Cu(OH) 2 is presented as the new supercapacitive material. •The novel room temperature method used for the synthesis of Cu(OH) 2 . •The hydrous, nanograined Cu(OH) 2 shows higher specific capacitance of 120 F/g. -- Abstract: Room temperature soft chemical synthesis route is used to grow nanograined copper hydroxide [Cu(OH) 2 ] thin films on glass and stainless steel substrates. The structural, morphological, optical and wettability properties of Cu(OH) 2 thin films are studied by means of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), UV–vis spectrophotometer and water contact angle measurement techniques. The results showed that, room temperature chemical synthesis route allows to form the nanograined and hydrophilic Cu(OH) 2 thin films with optical band gap energy of 3.0 eV. The electrochemical properties of Cu(OH) 2 thin films are studied in an aqueous 1 M NaOH electrolyte using cyclic voltammetry. The sample exhibited supercapacitive behavior with 120 F/g specific capacitance

  20. Performance of a polymer electrolyte membrane fuel cell with thin film catalyst electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Young Gab; Kim, Chang Soo; Peck, Dong Hyun; Shin, Dong Ryul [Korea Institute of Energy Research, Taejon (Korea, Republic of)

    1998-03-15

    In order to develop a kW-class polymer electrolyte membrane fuel cell (PEMFC), several electrodes have been fabricated by different catalyst layer preparation procedures and evaluated based on the cell performance. Conventional carbon paper and carbon cloth electrodes were fabricated using a ptfe-bonded Pt/C electrol catalyst by coating and rolling methods. Thin-film catalyst/ionomer composite layers were also formed on the membrane by direct coating and transfer printing techniques. The performance evaluation with catalyst layer preparation methods was carried out using a large or small electrode single cell. Conventional and thin film membrane and electrode assemblies (MEAs) with small electrode area showed a performance of 350 and 650 mA/cm{sup 2} at 0.6 V, respectively. The performance of direct coated thin film catalyst layer with 300 cm{sup 2} MEAs was higher than those of the conventional and transfer printing technique MEAs. The influence of some characteristic parameters of the thin film electrode on electrochemical performance was examined. Various other aspects of overall operation of PEMFC stacks were also discussed. (orig.)

  1. Plasma properties during magnetron sputtering of lithium phosphorous oxynitride thin films

    DEFF Research Database (Denmark)

    Christiansen, Ane Sælland; Stamate, Eugen; Thydén, Karl Tor Sune

    2015-01-01

    The nitrogen dissociation and plasma parameters during radio frequency sputtering of lithium phosphorus oxynitride thin films in nitrogen gas are investigated by mass appearance spectrometry, electrostatic probes and optical emission spectroscopy, and the results are correlated with electrochemical...... properties and microstructure of the films. Low pressure and moderate power are associated with lower plasma density, higher electron temperature, higher plasma potential and larger diffusion length for sputtered particles. This combination of parameters favors the presence of more atomic nitrogen, a fact...

  2. Ceramic Composite Thin Films

    Science.gov (United States)

    Ruoff, Rodney S. (Inventor); Stankovich, Sasha (Inventor); Dikin, Dmitriy A. (Inventor); Nguyen, SonBinh T. (Inventor)

    2013-01-01

    A ceramic composite thin film or layer includes individual graphene oxide and/or electrically conductive graphene sheets dispersed in a ceramic (e.g. silica) matrix. The thin film or layer can be electrically conductive film or layer depending the amount of graphene sheets present. The composite films or layers are transparent, chemically inert and compatible with both glass and hydrophilic SiOx/silicon substrates. The composite film or layer can be produced by making a suspension of graphene oxide sheet fragments, introducing a silica-precursor or silica to the suspension to form a sol, depositing the sol on a substrate as thin film or layer, at least partially reducing the graphene oxide sheets to conductive graphene sheets, and thermally consolidating the thin film or layer to form a silica matrix in which the graphene oxide and/or graphene sheets are dispersed.

  3. Hydrogenated amorphous silicon thin film anode for proton conducting batteries

    Science.gov (United States)

    Meng, Tiejun; Young, Kwo; Beglau, David; Yan, Shuli; Zeng, Peng; Cheng, Mark Ming-Cheng

    2016-01-01

    Hydrogenated amorphous Si (a-Si:H) thin films deposited by chemical vapor deposition were used as anode in a non-conventional nickel metal hydride battery using a proton-conducting ionic liquid based non-aqueous electrolyte instead of alkaline solution for the first time, which showed a high specific discharge capacity of 1418 mAh g-1 for the 38th cycle and retained 707 mAh g-1 after 500 cycles. A maximum discharge capacity of 3635 mAh g-1 was obtained at a lower discharge rate, 510 mA g-1. This electrochemical discharge capacity is equivalent to about 3.8 hydrogen atoms stored in each silicon atom. Cyclic voltammogram showed an improved stability 300 mV below the hydrogen evolution potential. Both Raman spectroscopy and Fourier transform infrared spectroscopy studies showed no difference to the pre-existing covalent Si-H bond after electrochemical cycling and charging, indicating a non-covalent nature of the Si-H bonding contributing to the reversible hydrogen storage of the current material. Another a-Si:H thin film was prepared by an rf-sputtering deposition followed by an ex-situ hydrogenation, which showed a discharge capacity of 2377 mAh g-1.

  4. Study of electrochemical properties of thin film materials obtained using plasma technologies for production of electrodes for pacemakers

    International Nuclear Information System (INIS)

    Obrezkov, O I; Vinogradov, V P; Krauz, V I; Mozgrin, D V; Guseva, I A; Andreev, E S; Zverev, A A; Starostin, A L

    2016-01-01

    Studies of thin film materials (TFM) as coatings of tips of pacemaker electrodes implanted into the human heart have been performed. TFM coatings were deposited in vacuum by arc magnetron discharge plasma, by pulsed discharge of “Plasma Focus”, and by electron beam evaporation. Simulation of electric charge transfer to the heart in physiological blood- imitator solution and determination of electrochemical properties of the coatings were carried out. TFM of highly developed surface of contact with tissue was produced by argon plasma spraying of titanium powder with subsequent coating by titanium nitride in vacuum arc assisted by Ti ion implantation. The TFM coatings of pacemaker electrode have passed necessary clinical tests and were used in medical practice. They provide low voltage myocardium stimulation thresholds within the required operating time. (paper)

  5. Nanocrystalline LiMn2O4 thin film cathode material prepared by polymer spray pyrolysis method for Li-ion battery

    International Nuclear Information System (INIS)

    Karthick, S.N.; Richard Prabhu Gnanakan, S.; Subramania, A.; Kim, Hee-Je

    2010-01-01

    Nanocrystalline cubic spinel lithium manganese oxide thin film was prepared by a polymer spray pyrolysis method using lithium acetate and manganese acetate precursor solution and polyethylene glycol-4000 as a polymeric binder. The substrate temperature was selected from the thermogravimetric analysis by finding the complete crystallization temperature of LiMn 2 O 4 precursor sample. The deposited LiMn 2 O 4 thin films were annealed at 450, 500 and 600 o C for 30 min. The thin film annealed at 600 o C was found to be the sufficient temperature to form high phase pure nanocrystalline LiMn 2 O 4 thin film. The formation of cubic spinel thin film was confirmed by X-ray diffraction study. Scanning electron microscopy and atomic force microscopy analysis revealed that the thin film annealed at 600 o C was found to be nanocrystalline in nature and the surface of the films were uniform without any crack. The electrochemical charge/discharge studies of the prepared LiMn 2 O 4 film was found to be better compared to the conventional spray pyrolysed thin film material.

  6. Electrosynthesis and characterization of Fe doped CdSe thin films from ethylene glycol bath

    International Nuclear Information System (INIS)

    Pawar, S.M.; Moholkar, A.V.; Rajpure, K.Y.; Bhosale, C.H.

    2007-01-01

    The CdSe and Fe doped CdSe (Fe:CdSe) thin films have been electrodeposited potentiostatically onto the stainless steel and fluorine doped tin oxide (FTO) glass substrates, from ethylene glycol bath containing (CH 3 COO) 2 .Cd.2H 2 O, SeO 2 , and FeCl 3 at room temperature. The doping concentration of Fe is optimized by using (photo) electrochemical (PEC) characterization technique. The deposition mechanism and Fe incorporation are studied by cyclic voltammetry. The structural, surface morphological and optical properties of the deposited CdSe and Fe:CdSe thin films have been studied by X-ray diffraction, scanning electron microscopy (SEM) and optical absorption techniques respectively. The PEC study shows that Fe:CdSe thin films are more photosensitive than that of undoped CdSe thin films. The X-ray diffraction analysis shows that the films are polycrystalline with hexagonal crystal structure. SEM studies reveal that the films with uniformly distributed grains over the entire surface of the substrate. The complete surface morphology has been changed after doping. Optical absorption study shows the presence of direct transition and a considerable decrease in bandgap, E g from 1.95 to 1.65 eV

  7. Experimental and ab initio investigations on textured Li–Mn–O spinel thin film cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, J., E-mail: Julian.Fischer@kit.edu [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Music, D. [RWTH Aachen University, Materials Chemistry, Kopernikusstrasse 10, 52074 Aachen (Germany); Bergfeldt, T.; Ziebert, C.; Ulrich, S.; Seifert, H.J. [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2014-12-01

    This paper describes the tailored preparation of nearly identical lithium–manganese–oxide thin film cathodes with different global grain orientations. The thin films were synthesized by rf magnetron sputtering from a LiMn{sub 2}O{sub 4}-target in a pure argon plasma. Under appropriate processing conditions, thin films with a cubic spinel structure and a nearly similar density and surface topography but different grain orientation, i.e. (111)- and (440)-textured films, were achieved. The chemical composition was determined by inductively coupled plasma optical emission spectroscopy and carrier gas hot extraction. The constitution- and microstructure were evaluated by X-ray diffraction and Raman spectroscopy. The surface morphology and roughness were investigated by scanning electron and atomic force microscopy. The differently textured films represent an ideal model system for studying potential effects of grain orientation on the lithium ion diffusion and electrochemical behavior in LiMn{sub 2}O{sub 4}-based thin films. They are nearly identical in their chemical composition, atomic bonding behavior, surface-roughness, morphology and thickness. Our initial ab initio molecular dynamics data indicate that Li ion transport is faster in (111)-textured structure than in (440)-textured one. - Highlights: • Thin film model system of differently textured cubic Li–Mn–O spinels. • Investigation of the Li–Mn–O thin film mass density by X-ray reflectivity. • Ab initio molecular dynamics simulation on Li ion diffusion in LiMn{sub 2}O{sub 4}.

  8. Experimental and ab initio investigations on textured Li–Mn–O spinel thin film cathodes

    International Nuclear Information System (INIS)

    Fischer, J.; Music, D.; Bergfeldt, T.; Ziebert, C.; Ulrich, S.; Seifert, H.J.

    2014-01-01

    This paper describes the tailored preparation of nearly identical lithium–manganese–oxide thin film cathodes with different global grain orientations. The thin films were synthesized by rf magnetron sputtering from a LiMn 2 O 4 -target in a pure argon plasma. Under appropriate processing conditions, thin films with a cubic spinel structure and a nearly similar density and surface topography but different grain orientation, i.e. (111)- and (440)-textured films, were achieved. The chemical composition was determined by inductively coupled plasma optical emission spectroscopy and carrier gas hot extraction. The constitution- and microstructure were evaluated by X-ray diffraction and Raman spectroscopy. The surface morphology and roughness were investigated by scanning electron and atomic force microscopy. The differently textured films represent an ideal model system for studying potential effects of grain orientation on the lithium ion diffusion and electrochemical behavior in LiMn 2 O 4 -based thin films. They are nearly identical in their chemical composition, atomic bonding behavior, surface-roughness, morphology and thickness. Our initial ab initio molecular dynamics data indicate that Li ion transport is faster in (111)-textured structure than in (440)-textured one. - Highlights: • Thin film model system of differently textured cubic Li–Mn–O spinels. • Investigation of the Li–Mn–O thin film mass density by X-ray reflectivity. • Ab initio molecular dynamics simulation on Li ion diffusion in LiMn 2 O 4

  9. A study for anticorrosion and tribological behaviors of thin/thick diamond-like carbon films in seawater

    Science.gov (United States)

    Ye, Yewei; Jia, Shujuan; Zhang, Dawei; Liu, Wei; Zhao, Haichao

    2018-03-01

    The thin and thick diamond-like carbon (DLC) films were prepared by unbalanced magnetron sputtering technique on 304L stainless steels and (100) silicon wafers. Microstructure, mechanical, corrosion and tribological properties were systematically investigated by SEM, Raman, nanoindenter, scratch tester, modulab electrochemical workstation and R-tec multifunctional tribological tester. Results showed that the adhesion force presented a descending trend with the growth in soaking time. The adhesion force of the thin DLC film with high residual compressive stress (‑3.72 GPa) was higher than that of the thick DLC film (‑2.96 GPa). During the corrosion test, the thick DLC film showed a higher impendence and a lower corrosion current density than the thin DLC film, which is attributed to the barrier action of large thickness. Compared to bare 304L substrate, the friction coefficients and wear rates of DLC films in seawater were obviously decreased. Meanwhile, the thin DLC film with ideal residual compressive stress, super adhesion force and good plastic deformation resistance revealed an excellent anti-wear ability in seawater.

  10. Corrosion of thin, magnetron sputtered Nb_2O_5 films

    International Nuclear Information System (INIS)

    Pillis, Marina Fuser; Geribola, Guilherme Altomari; Scheidt, Guilherme; Gonçalves de Araújo, Edval; Lopes de Oliveira, Mara Cristina; Antunes, Renato Altobelli

    2016-01-01

    Highlights: • Niobium oxide based films were obtained by DC magnetron sputtering. • Different deposition times were tested. • The best corrosion resistance was obtained for the Nb_2O_5 film produced at 15′. • Film porosity determines the corrosion resistance. - Abstract: Niobium oxide based thin films were deposited on AISI 316 stainless steel substrates using reactive DC magnetron sputtering. Structure, composition and corrosion resistance of the niobium oxide films were studied. The corrosion behavior of the specimens was evaluated by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization. The concentration of niobium and oxygen in the films was obtained by Rutherford backscattering spectroscopy (RBS). The film structure was analyzed by X-ray diffractometry. The corrosion resistance of the substrate was improved by the Nb_2O_5 layers. The best protective performance was achieved for the deposition time of 15 min.

  11. Hydrogen storage in thin film magnesium-scandium alloys

    International Nuclear Information System (INIS)

    Niessen, R.A. H.; Notten, P.H. L.

    2005-01-01

    Thorough electrochemical materials research has been performed on thin films of novel magnesium-scandium hydrogen storage alloys. It was found that palladium-capped thin films of Mg x Sc (1-x) with different compositions (ranging from x=0.50 -0.90) show an increase in hydrogen storage capacity of more than 5-20% as compared to their bulk equivalents using even higher discharge rates. The maximum reversible hydrogen storage capacity at the optimal composition (Mg 80 Sc 20 ) amounts to 1795-bar mAh/g corresponding to a hydrogen content of 2.05 H/M or 6.7-bar wt.%, which is close to five times that of the commonly used hydride-forming materials in commercial NiMH batteries. Galvanostatic intermittent titration technique (GITT) measurements show that the equilibrium pressure during discharge is lower than that of bulk powders by one order of magnitude (10 -7 -bar mbar versus 10 -6 -bar mbar, respectively)

  12. Host thin films incorporating nanoparticles

    Science.gov (United States)

    Qureshi, Uzma

    The focus of this research project was the investigation of the functional properties of thin films that incorporate a secondary nanoparticulate phase. In particular to assess if the secondary nanoparticulate material enhanced a functional property of the coating on glass. In order to achieve this, new thin film deposition methods were developed, namely use of nanopowder precursors, an aerosol assisted transport technique and an aerosol into atmospheric pressure chemical vapour deposition system. Aerosol assisted chemical vapour deposition (AACVD) was used to deposit 8 series of thin films on glass. Five different nanoparticles silver, gold, ceria, tungsten oxide and zinc oxide were tested and shown to successfully deposit thin films incorporating nanoparticles within a host matrix. Silver nanoparticles were synthesised and doped within a titania film by AACVD. This improved solar control properties. A unique aerosol assisted chemical vapour deposition (AACVD) into atmospheric pressure chemical vapour deposition (APCVD) system was used to deposit films of Au nanoparticles and thin films of gold nanoparticles incorporated within a host titania matrix. Incorporation of high refractive index contrast metal oxide particles within a host film altered the film colour. The key goal was to test the potential of nanopowder forms and transfer the suspended nanopowder via an aerosol to a substrate in order to deposit a thin film. Discrete tungsten oxide nanoparticles or ceria nanoparticles within a titanium dioxide thin film enhanced the self-cleaning and photo-induced super-hydrophilicity. The nanopowder precursor study was extended by deposition of zinc oxide thin films incorporating Au nanoparticles and also ZnO films deposited from a ZnO nanopowder precursor. Incorporation of Au nanoparticles within a VO: host matrix improved the thermochromic response, optical and colour properties. Composite VC/TiC and Au nanoparticle/V02/Ti02 thin films displayed three useful

  13. Optically Transparent Thin-Film Electrode Chip for Spectroelectrochemical Sensing

    Energy Technology Data Exchange (ETDEWEB)

    Branch, Shirmir D.; Lines, Amanda M.; Lynch, John A.; Bello, Job M.; Heineman, William R.; Bryan, Samuel A.

    2017-07-03

    The electrochemical and spectroelectrochemical applications of an optically transparent thin film electrode chip are investigated. The working electrode is composed of indium tin oxide (ITO); the counter and quasi-reference electrodes are composed of platinum. The stability of the platinum quasi-reference electrode is modified by coating it with a planar, solid state Ag/AgCl layer. The Ag/AgCl reference is characterized with scanning electron microscopy and energy-dispersive X-ray spectroscopy. Open circuit potential measurements indicate that the potential of the planar Ag/AgCl electrode varies a maximum of 20 mV over four days. Cyclic voltammetry measurements show that the electrode chip is comparable to a standard electrochemical cell. Randles-Sevcik analysis of 10 mM K3[Fe(CN)6] in 0.1 M KCl using the electrode chip shows a diffusion coefficient of 1.59 × 10-6 cm2/s, in comparison to the standard electrochemical cell value of 2.38 × 10-6 cm2/s. By using the electrode chip in an optically transparent thin layer electrode (OTTLE), the spectroelectrochemical modulation of [Ru(bpy)3]2+ florescence was demonstrated, achieving a detection limit of 36 nM.

  14. Characterization of carrier states in CuWO₄ thin-films at elevated temperatures using conductometric analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Carlos M., E-mail: carlosmiguelgg@yahoo.com [Energy Mining and Environment Portfolio, National Research Council of Canada, 1200 Montreal Road, Ottawa, Ontario, Canada, K1A 0R6 (Canada); Dunford, Jeffrey L.; Du, Xiaomei; Post, Michael L. [Energy Mining and Environment Portfolio, National Research Council of Canada, 1200 Montreal Road, Ottawa, Ontario, Canada, K1A 0R6 (Canada)

    2013-05-01

    CuWO₄ thin-films were deposited by pulsed laser deposition onto an insulating substrate. The temperature dependence of the electronic conductivity of CuWO₄ thin-films was determined over 100–500 °C temperature range in a synthetic air atmosphere. Additionally, variations of conductivity at 300 °C and 500 °C have been measured for oxygen partial pressures (0.1 atmthin-films reveals the operation of two temperature-dependent oxygen states. The effect of varying oxygen concentration on the electronic properties is discussed in detail. The electrochemical nature of the operating oxygen states for 100–500 °C temperature range is deduced using a physicochemical model that relates electronic conductivity with oxygen partial pressure and temperature. - Graphical abstract: Formation of oxygen states in n-type semiconducting metal-oxides and its effect on the surface electrochemical potential and electron transport. Highlights: • The study of surface species in CuWO₄ thin-films was carried using conductometry. • The determination of the apparent activation energy of conduction with temperature is outlined. • Temperature and O₂ concentration effects on the oxygen states was established. • For the ranges of temperature studied, the identified operating oxygen states were O₂⁻ and O⁻.

  15. NMR characterization of thin films

    Science.gov (United States)

    Gerald II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2010-06-15

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  16. NMR characterization of thin films

    Science.gov (United States)

    Gerald, II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2008-11-25

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  17. Enhancement of bioactivity of titanium carbonitride nanocomposite thin films on steels with biosynthesized hydroxyapatite

    Directory of Open Access Journals (Sweden)

    Thampi VV

    2015-10-01

    Full Text Available VV Anusha Thampi,1 P Dhandapani,2 Geetha Manivasagam, B Subramanian11Electrochemical Materials Science Division, Central Electrochemical Research Institute, Karaikudi, 2Corrosion and Materials Protection Division, Central Electrochemical Reserach Institute, Karaikudi, 3Centre for Bio-Materials Science and Technology, VIT University, Vellore, IndiaAbstract: Thin films of titanium carbonitride (TiCN were fabricated by DC magnetron sputtering on medical grade steel. The biocompatibility of the coating was further enhanced by growing hydroxyapatite crystals over the TiCN-coated substrates using biologically activated ammonia from synthetic urine. The coatings were characterized using X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy (SEM-energy dispersive spectroscopy, and Raman spectroscopy. The electrochemical behavior of the coatings was determined in simulated body fluid. In addition, hemocompatibility was assessed by monitoring the attachment of platelets on the coating using SEM. The wettability of the coatings was measured in order to correlate with biocompatibility results. Formation of a coating with granular morphology and the preferred orientation was confirmed by SEM and X-ray diffraction results. The hydroxyapatite coating led to a decrease in thrombogenicity, resulting in controlled blood clot formation, hence demonstrating the hemocompatibility of the coating.Keywords: titanium carbonitride thin films, magnetron sputtering, ureolytic bacteria, biocompatibility

  18. Handbook of thin film technology

    CERN Document Server

    Frey, Hartmut

    2015-01-01

    “Handbook of Thin Film Technology” covers all aspects of coatings preparation, characterization and applications. Different deposition techniques based on vacuum and plasma processes are presented. Methods of surface and thin film analysis including coating thickness, structural, optical, electrical, mechanical and magnetic properties of films are detailed described. The several applications of thin coatings and a special chapter focusing on nanoparticle-based films can be found in this handbook. A complete reference for students and professionals interested in the science and technology of thin films.

  19. Electrodeposition synthesis and electrochemical properties of nanostructured γ-MnO 2 films

    Science.gov (United States)

    Chou, Shulei; Cheng, Fangyi; Chen, Jun

    The thin films of carambola-like γ-MnO 2 nanoflakes with about 20 nm in thickness and at least 200 nm in width were prepared on nickel sheets by combination of potentiostatic and cyclic voltammetric electrodeposition techniques. The as-prepared MnO 2 nanomaterials, which were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS), were used as the active material of the positive electrode for primary alkaline Zn/MnO 2 batteries and electrochemical supercapacitors. Electrochemical measurements showed that the MnO 2 nanoflake films displayed high potential plateau (around 1.0 V versus Zn) in primary Zn/MnO 2 batteries at the discharge current density of 500 mA g -1 and high specific capacitance of 240 F g -1 at the current density of 1 mA cm -2. This indicated the potential application of carambola-like γ-MnO 2 nanoflakes in high-power batteries and electrochemical supercapacitors. The growth process for the one- and three-dimensional nanostructured MnO 2 was discussed on the basis of potentiostatic and cyclic voltammetric techniques. The present synthesis method can be extended to the preparation of other nanostructured metal-oxide films.

  20. Modification of Patterned Nanoporous Gold Thin Film Electrodes via Electro-annealing and Electrochemical Etching

    Science.gov (United States)

    Dorofeeva, Tatiana

    Nanostructured materials have had a major impact on various fields, including medicine, catalysis, and energy storage, for the major part due to unique phenomena that arise at nanoscale. For this reason, there is a sustained need for new nanostructured materials, techniques to pattern them, and methods to precisely control their nanostructure. To that end, the primary focus of this dissertation is to demonstrate novel techniques to fabricate and tailor the morphology of a class of nanoporous metals, obtained by a process known as dealloying. In this process, while the less noble constituent of an alloy is chemically dissolved, surface-diffusion of the more noble constituent leads to self-assembly of a bicontinuous ligament network with characteristic porosity of ˜70% and ligament diameter of 10s of nanometers. As a model material produced by dealloying, this work employ nanoporous gold (np-Au), which has attracted significant attention of desirable features, such as high effective surface area, electrical conductivity, well-defined thiol-based surface modification strategies, microfabrication-compatibility, and biocompatibility. The most commonly method used to modify the morphology of np-Au is thermal treatment, where the enhanced diffusivity of the surface atoms leads to ligament (and consequently pore) coarsening. This method, however, is not conducive to modifying the morphology of thin films at specific locations on the film, which is necessary for creating devices that may need to contain different morphologies on a single device. In addition, coarsening attained by thermal treatment also leads to an undesirable reduction in effective surface area. In response to these challenges, this work demonstrates two different techniques that enables in situ modification of np-Au thin film electrodes obtained by sputter-deposition of a precursors silver-rich gold-silver alloy. The first method, referred to as electro-annealing, is achieved by injecting electrical

  1. Rare Earth Oxide Thin Films

    CERN Document Server

    Fanciulli, Marco

    2007-01-01

    Thin rare earth (RE) oxide films are emerging materials for microelectronic, nanoelectronic, and spintronic applications. The state-of-the-art of thin film deposition techniques as well as the structural, physical, chemical, and electrical properties of thin RE oxide films and of their interface with semiconducting substrates are discussed. The aim is to identify proper methodologies for the development of RE oxides thin films and to evaluate their effectiveness as innovative materials in different applications.

  2. Thin-film solar cells

    International Nuclear Information System (INIS)

    Aberle, Armin G.

    2009-01-01

    The rapid progress that is being made with inorganic thin-film photovoltaic (PV) technologies, both in the laboratory and in industry, is reviewed. While amorphous silicon based PV modules have been around for more than 20 years, recent industrial developments include the first polycrystalline silicon thin-film solar cells on glass and the first tandem solar cells based on stacks of amorphous and microcrystalline silicon films ('micromorph cells'). Significant thin-film PV production levels are also being set up for cadmium telluride and copper indium diselenide.

  3. Room temperature chemical synthesis of Cu(OH){sub 2} thin films for supercapacitor application

    Energy Technology Data Exchange (ETDEWEB)

    Gurav, K.V. [Thin Film Photonic and Electronics Lab, Department of Materials Science and Engineering, Chonnam National University, 300 Yongbong-dong, Puk-Gu, Gwangju 500-757 (Korea, Republic of); Patil, U.M. [Thin Film Physics Laboratory, Department of Physics, Shivaji University, Kolhapur 416 007 (M.S.) (India); Shin, S.W.; Agawane, G.L.; Suryawanshi, M.P.; Pawar, S.M.; Patil, P.S. [Thin Film Photonic and Electronics Lab, Department of Materials Science and Engineering, Chonnam National University, 300 Yongbong-dong, Puk-Gu, Gwangju 500-757 (Korea, Republic of); Lokhande, C.D. [Thin Film Physics Laboratory, Department of Physics, Shivaji University, Kolhapur 416 007 (M.S.) (India); Kim, J.H., E-mail: jinhyeok@chonnam.ac.kr [Thin Film Photonic and Electronics Lab, Department of Materials Science and Engineering, Chonnam National University, 300 Yongbong-dong, Puk-Gu, Gwangju 500-757 (Korea, Republic of)

    2013-10-05

    Highlights: •Cu(OH){sub 2} is presented as the new supercapacitive material. •The novel room temperature method used for the synthesis of Cu(OH){sub 2}. •The hydrous, nanograined Cu(OH){sub 2} shows higher specific capacitance of 120 F/g. -- Abstract: Room temperature soft chemical synthesis route is used to grow nanograined copper hydroxide [Cu(OH){sub 2}] thin films on glass and stainless steel substrates. The structural, morphological, optical and wettability properties of Cu(OH){sub 2} thin films are studied by means of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), UV–vis spectrophotometer and water contact angle measurement techniques. The results showed that, room temperature chemical synthesis route allows to form the nanograined and hydrophilic Cu(OH){sub 2} thin films with optical band gap energy of 3.0 eV. The electrochemical properties of Cu(OH){sub 2} thin films are studied in an aqueous 1 M NaOH electrolyte using cyclic voltammetry. The sample exhibited supercapacitive behavior with 120 F/g specific capacitance.

  4. Modified voltammetric, impedimetric and optical behavior of polymer- assisted sol-gel MgFe2O4 nanostructured thin films

    International Nuclear Information System (INIS)

    Bazhan, Z.; Ghodsi, F.E.; Mazloom, J.

    2017-01-01

    Highlights: •Electrochemical properties of spinel PEG/PVP MgFe 2 O 4 thin films prepared by spin coating technique have been investigated. •PSD analysis indicated that spectral roughness of films decreased by polymer incorporation. •Optical calculations exhibited a blue shift on optical band gap by polymer addition. •CV curves revealed that ion storage capacitance of PEG/MgFe 2 O 4 is two times higher than MgFe 2 O 4 thin films. •EIS analysis confirmed that incorporation of appropriate amount of PEG reduced the charge transfer resistance. -- Abstract: The effect of polyethylene glycol (PEG) and polyvinylpyrrolidone (PVP) on physical properties of sol-gel prepared magnesium ferrite (MF) thin films was investigated. The X-ray diffraction (XRD) results showed the formation of cubic spinel magnesium ferrite for all samples. The surface morphology of films changed and average surface roughness decreased by polymer addition. The height-height correlation function and fractal dimension were evaluated using cube counting and triangulation methods from atomic force microscopy (AFM) images. The refractive index and extinction coefficient of MF thin films decreased by adding polymer while the band gap value increased from 2.24 to 2.72 eV. The PEG addition enhanced the electrochemical performance while PVP addition didn’t have significant effect on cyclic voltammetry (CV) of magnesium ferrite thin films. The sample with highest value of PEG showed the maximum specific capacitance (68.5 mF cm −2 ) and the smallest charge transfer resistance (565 Ω) among all samples.

  5. Process for forming thin film, heat treatment process of thin film sheet, and heat treatment apparatus therefor

    International Nuclear Information System (INIS)

    Watanabe, S.

    1984-01-01

    The invention provides a process for forming a magnetic thin film on a base film, a heat treatment process of a thin film sheet consisting of the base film and the magnetic thin film, and an apparatus for performing heat treatment of the thin film sheet. Tension applied to the thin film sheet is substantially equal to that applied to the base film when the magnetic thin film is formed thereon. Then, the thin film sheet is treated with heat. The thin film sheet is heated with a given temperature gradient to a reactive temperature at which heat shrinkage occurs, while the tension is being applied thereto. Thereafter, the thin film sheet to which the tension is still applied is cooled with substantially the same temperature gradient as applied in heating. The heat treatment apparatus has a film driving unit including a supply reel, a take-up reel, a drive source and guide rollers; a heating unit including heating plates, heater blocks and a temperature controller for heating the sheet to the reactive temperature; and a heat insulating unit including a thermostat and another temperature controller for maintaining the sheet at the nonreactive temperature which is slightly lower than the reactive temperature

  6. Electrochemical synthesis of nanoplatelets-like CuS0.2Se0.8 thin film for photoluminescence applications

    Directory of Open Access Journals (Sweden)

    Sharma A. K.

    2015-06-01

    Full Text Available Copper sulfide-selenide (CuS0.2Se0.8 thin films were deposited on FTO coated glass substrate (fluorine doped tin oxide and stainless steel substrates using electrodeposition technique. Deposited thin films were characterized using different characterization techniques viz. X-ray diffraction (XRD, scanning electron microscopy (SEM, UV-Vis spectroscopy, photoluminescence spectroscopy and surface wettability. XRD study showed polycrystalline nature with cubic phase of the films. Scanning electron microscopy showed that the surface area of the substrate was covered by the nanoplatelets structure of a thickness of 140 to 150 nm and optical study showed that the direct band gap was ~1.90 eV. Surface wettability showed hydrophobic nature of the CuS0.2Se0.8 thin films.

  7. Ion beam-based characterization of multicomponent oxide thin films and thin film layered structures

    International Nuclear Information System (INIS)

    Krauss, A.R.; Rangaswamy, M.; Lin, Yuping; Gruen, D.M.; Schultz, J.A.; Schmidt, H.K.; Chang, R.P.H.

    1992-01-01

    Fabrication of thin film layered structures of multi-component materials such as high temperature superconductors, ferroelectric and electro-optic materials, and alloy semiconductors, and the development of hybrid materials requires understanding of film growth and interface properties. For High Temperature Superconductors, the superconducting coherence length is extremely short (5--15 Angstrom), and fabrication of reliable devices will require control of film properties at extremely sharp interfaces; it will be necessary to verify the integrity of thin layers and layered structure devices over thicknesses comparable to the atomic layer spacing. Analytical techniques which probe the first 1--2 atomic layers are therefore necessary for in-situ characterization of relevant thin film growth processes. However, most surface-analytical techniques are sensitive to a region within 10--40 Angstrom of the surface and are physically incompatible with thin film deposition and are typically restricted to ultra high vacuum conditions. A review of ion beam-based analytical methods for the characterization of thin film and multi-layered thin film structures incorporating layers of multicomponent oxides is presented. Particular attention will be paid to the use of time-of-flight techniques based on the use of 1- 15 key ion beams which show potential for use as nondestructive, real-time, in-situ surface diagnostics for the growth of multicomponent metal and metal oxide thin films

  8. Behaviour of nickel and nickel oxide thin films in chloride media; Comportamiento de peliculas delgadas de niquel y oxido de niquel en NaCl al 3%

    Energy Technology Data Exchange (ETDEWEB)

    Magana, C. R.; Angeles, M. E.; Rodriguez, F. J.

    2006-07-01

    The aim of this work is to study the behaviour of both: a nickel thin film deposited on steel AISI 1018 (UNS G 10180) and a superior nickel oxide electrochemically obtained on the film; with the purpose of decreasing the corrosion rate of low carbon steel immersed in a solution of NaCl 3% wt, thus efficient anti corrosive protection could be obtained. Two film deposition techniques were used, electrochemical and magnetron DC sputtering; and the protective properties of deposited films exposed to the aggressive media, were evaluated. The characterization of different films was carried out by using electrochemical techniques: polarization curves and electrochemical impedance. (Author)

  9. Optical properties of n-CdSe sub 1-x Te sub x polycrystalline thin films

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, M T [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, Madrid (Spain). Inst. de Energias Renovables

    1991-01-01

    Absorption coefficient, {alpha}({lambda}), and energy gap, E{sub g}, of CdSe{sub 1-x}Te{sub x} thin films were determined from the measured transmittance and reflectance at normal incidence of light in the wavelength range 450-2500 nm. The thin film were electrochemically prepared on glass plates coated with conducting thin films of SnO{sub 2}. A combined method from Goodman and Lubberts was used to determine the absorption coefficient and its dependence on the wavelength. The evolution of the optical gap versus the composition of Te in CdSe{sub 1-x}Te{sub x} was made and a value of 1.4 eV of the optical gap was obtained for the composition of CdSe{sub 0.65}Te{sub 0.35}. (orig.).

  10. Basic electrochemical properties of sputtered gold film electrodes

    International Nuclear Information System (INIS)

    Libansky, Milan; Zima, Jiri; Barek, Jiri; Reznickova, Alena; Svorcik, Vaclav; Dejmkova, Hana

    2017-01-01

    Gold nanolayers made by sputtering of pure gold (physical vapour deposition) are commonly used for many biophysical and material applications. However, the use of sputtering method for fabrication of working electrodes for electroanalytical purposes is less common. This paper focuses on the testing and characterization of sputtered working roughened gold nanostructured film electrodes, which fall into category of upcoming desirable new generation of nanostructured gold working electrodes. Gold nanostructured films (80 nm thin) were sputtered onto 50 μm thin PTFE substrates with three different types of treatment: pristine, plasma treated, and plasma treated and subsequently spontaneously grafted with biphenyl-4,4′-dithiol. The characterization of gold nanostructured film electrodes was carried out by examination of the electrode reaction of standard redox probes (ferrocyanide/ferricyanide, hydroquinone/benzoquinone) in different types of supporting electrolytes (BR buffers of various pH, KCl, KNO 3 , H 2 SO 4 ), by exploration of the electrode surface by scanning electron microscopy, by atomic force microscopy accompanied by elementary analysis and contact angle measurements. The testing of electrodes was complemented by an attempt to calculate their real surface areas from Randles-Sevcik equation. All results were compared to conventional bulk gold electrode. The practical applicability of the nanostructured gold electrodes as sensors for the determination of environmental pollutants was verified by voltammetric determination of hydroquinone as a model electrochemically oxidisable organic environmental pollutant.

  11. Effect of annealing temperature on the supercapacitor behaviour of β-V{sub 2}O{sub 5} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jeyalakshmi, K. [Department of Physics, PSNA College of Engineering and Technology, Dindigul 624622 (India); Vijayakumar, S.; Nagamuthu, S. [Department of Physics, Gandhigram Rural Institute, Deemed University, Gandhigram 624302 (India); Muralidharan, G., E-mail: muralg@rediffmail.com [Department of Physics, Gandhigram Rural Institute, Deemed University, Gandhigram 624302 (India)

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ► Structural, optical, supercapacitor properties of β-V{sub 2}O{sub 5} thin films are reported. ► Influence of annealing temperature on β-V{sub 2}O{sub 5} thin films have been studied. ► Film annealed at 300 °C exhibit lower charge transfer resistance. -- Abstract: Vanadium pentoxide thin films are prepared via sol–gel spin coating method. The films coated on FTO and glass substrates are treated at different temperatures ranging from 250 °C to 400 °C. The structural, optical and electrochemical investigations are made. X-ray diffraction analysis shows the film to be composed of V{sub 2}O{sub 5} in β-phase up to annealing temperature of 350 °C and at 400 °C the structural transformation to α-phase is observed. FTIR spectrum shows the formation of V-O bond. The SEM images reveal the formation of nanopores. Optical absorption studies indicate a band gap of 2.2–2.4 eV. The supercapacitor behaviour is studied using cyclic voltammetery technique and electrochemical impedance analysis. The vanadium pentoxide films annealed at 300 °C for an hour exhibits a maximum specific capacitance of 346 F g{sup −1} at a scan rate of 5 mV s{sup −1}.

  12. Characterization of the porosity of silicon nitride thin layers by Electrochemical Impedance Spectroscopy

    International Nuclear Information System (INIS)

    Barrès, T.; Tribollet, B.; Stephan, O.; Montigaud, H.; Boinet, M.; Cohin, Y.

    2017-01-01

    Silicon nitride thin films are widely used as diffusion barriers within stacks in the glass industry but turn out to be porous at the nanometric scale. EIS measurements were conducted on SiNx thin layers deposited on a gold layer. An electrochemical model was established to fit the EIS measurements making use of data from other complementary techniques. In particular, Transmission Electron Microscopy was performed on these thin layers to determine the diameter and the qualitative morphology of the pores. A quantitative determination of the through-porosity of the layer was deduced from the EIS model and was in good agreement with TEM measurements. Moreover, combining EIS with local observations enabled inhomogeneities in the layer to be probed by highlighting a specific region in the layer.

  13. Thin film growth studies using time-resolved x-ray scattering

    Science.gov (United States)

    Kowarik, Stefan

    2017-02-01

    Thin-film growth is important for novel functional materials and new generations of devices. The non-equilibrium growth physics involved is very challenging, because the energy landscape for atomic scale processes is determined by many parameters, such as the diffusion and Ehrlich-Schwoebel barriers. We review the in situ real-time techniques of x-ray diffraction (XRD), x-ray growth oscillations and diffuse x-ray scattering (GISAXS) for the determination of structure and morphology on length scales from Å to µm. We give examples of time resolved growth experiments mainly from molecular thin film growth, but also highlight growth of inorganic materials using molecular beam epitaxy (MBE) and electrochemical deposition from liquids. We discuss how scaling parameters of rate equation models and fundamental energy barriers in kinetic Monte Carlo methods can be determined from fits of the real-time x-ray data.

  14. Electrochemical Characterization of Nanoporous Nickel Oxide Thin Films Spray-Deposited onto Indium-Doped Tin Oxide for Solar Conversion Scopes

    Directory of Open Access Journals (Sweden)

    Muhammad Awais

    2015-01-01

    Full Text Available Nonstoichiometric nickel oxide (NiOx has been deposited as thin film utilizing indium-doped tin oxide as transparent and electrically conductive substrate. Spray deposition of a suspension of NiOx nanoparticles in alcoholic medium allowed the preparation of uniform NiOx coatings. Sintering of the coatings was conducted at temperatures below 500°C for few minutes. This scalable procedure allowed the attainment of NiOx films with mesoporous morphology and reticulated structure. The electrochemical characterization showed that NiOx electrodes possess large surface area (about 1000 times larger than their geometrical area. Due to the openness of the NiOx morphology, the underlying conductive substrate can be contacted by the electrolyte and undergo redox processes within the potential range in which NiOx is electroactive. This requires careful control of the conditions of polarization in order to prevent the simultaneous occurrence of reduction/oxidation processes in both components of the multilayered electrode. The combination of the open structure with optical transparency and elevated electroactivity in organic electrolytes motivated us to analyze the potential of the spray-deposited NiOx films as semiconducting cathodes of dye-sensitized solar cells of p-type when erythrosine B was the sensitizer.

  15. Thin films of lithium manganese oxide spinel as cathode materials for secondary lithium batteries

    International Nuclear Information System (INIS)

    Shui, J.L.; Jiang, G.S.; Xie, S.; Chen, C.H.

    2004-01-01

    The miniaturization of rechargeable lithium-ion batteries requires high quality thin-film electrodes. Electrostatic spray deposition (ESD) technique was used to fabricate LiMn 2 O 4 thin-film electrodes with three different morphologies: sponge-like porous, fractal-like porous, and dense structures. X-ray diffraction (XRD) and scanning electron microscopy were used to analyze the structures of the electrodes. These electrodes were made into coin cells against metallic lithium for electrochemical characterization. Galvanostatic cycling of the cells revealed different rate capability for the cells with LiMn 2 O 4 electrodes of different morphologies. It is found that the cells with LiMn 2 O 4 electrodes of porous, especially the sponge-like porous, morphology better rate capability than those with dense LiMn 2 O 4 electrodes. Electrochemical impedance spectroscopy (EIS) study indicates that the large surface area of the porous electrodes should be attributed to the smaller interfacial resistance and better rate capability

  16. Performance evaluation of symmetric supercapacitor based on cobalt hydroxide [Co(OH)2] thin film electrodes

    International Nuclear Information System (INIS)

    Jagadale, A.D.; Kumbhar, V.S.; Dhawale, D.S.; Lokhande, C.D.

    2013-01-01

    In the present investigation, we have successfully assembled symmetric supercapacitor device based on cobalt hydroxide [Co(OH) 2 ] thin film electrodes using 1 M KOH as an electrolyte. Initially, potentiodynamic electrodeposition method is employed for the preparation of Co(OH) 2 thin films onto stainless steel substrate. These films are characterized for structural and morphological elucidations using X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The XRD reveals formation of β-Co(OH) 2 material with hexagonal crystal structure. The SEM images show formation of nanoflakes like microstructure with average flake width 100 nm. Electrochemical characterizations of Co(OH) 2 based symmetric supercapacitor cell are carried out using cyclic voltammetry, charge–discharge and electrochemical impedance spectroscopy (EIS) techniques. In the performance evaluation the maximum values of specific capacitance, specific energy and specific power are encountered as 44 F g −1 , 3.96 Wh kg −1 and 42 kW kg −1 . The value of equivalent series resistance (ESR) is estimated as 2.3 Ω using EIS

  17. Electrochemical, morphological and microstructural characterization of carbon film resistor electrodes for application in electrochemical sensors

    International Nuclear Information System (INIS)

    Gouveia-Caridade, Carla; Soares, David M.; Liess, Hans-Dieter; Brett, Christopher M.A.

    2008-01-01

    The electrochemical and microstructural properties of carbon film electrodes made from carbon film electrical resistors of 1.5, 15, 140 Ω and 2.0 kΩ nominal resistance have been investigated before and after electrochemical pre-treatment at +0.9 V vs SCE, in order to assess the potential use of these carbon film electrodes as electrochemical sensors and as substrates for sensors and biosensors. The results obtained are compared with those at electrodes made from previously investigated 2 Ω carbon film resistors. Cyclic voltammetry was performed in acetate buffer and phosphate buffer saline electrolytes and the kinetic parameters of the model redox system Fe(CN) 6 3-/4- obtained. The 1.5 Ω resistor electrodes show the best properties for sensor development with wide potential windows, similar electrochemical behaviour to those of 2 Ω and close-to-reversible kinetic parameters after electrochemical pre-treatment. The 15 and 140 Ω resistor electrodes show wide potential windows although with slower kinetics, whereas the 2.0 kΩ resistor electrodes show poor cyclic voltammetric profiles even after pre-treatment. Electrochemical impedance spectroscopy related these findings to the interfacial properties of the electrodes. Microstructural and morphological studies were carried out using contact mode Atomic Force Microscopy (AFM), Confocal Raman spectroscopy and X-ray diffraction. AFM showed more homogeneity of the films with lower nominal resistances, related to better electrochemical characteristics. X-ray diffraction and Confocal Raman spectroscopy indicate the existence of a graphitic structure in the carbon films

  18. Effects of accelerated degradation on metal supported thin film-based solid oxide fuel cell

    DEFF Research Database (Denmark)

    Reolon, R. P.; Sanna, S.; Xu, Yu

    2018-01-01

    A thin film-based solid oxide fuel cell is deposited on a Ni-based metal porous support by pulsed laser deposition with a multi-scale-graded microstructure design. The fuel cell, around 1 μm in thickness, is composed of a stabilized-zirconia/doped-ceria bi-layered dense electrolyte and nanostruct......A thin film-based solid oxide fuel cell is deposited on a Ni-based metal porous support by pulsed laser deposition with a multi-scale-graded microstructure design. The fuel cell, around 1 μm in thickness, is composed of a stabilized-zirconia/doped-ceria bi-layered dense electrolyte......, electrochemical performances are steady, indicating the stability of the cell. Under electrical load, a progressive degradation is activated. Post-test analysis reveals both mechanical and chemical degradation of the cell. Cracks and delamination of the thin films promote a significant nickel diffusion and new...

  19. Thin films of amorphous nitrogenated carbon a-CN{sub x}: Electron transfer and surface reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Tamiasso-Martinhon, P.; Cachet, H.; Debiemme-Chouvy, C.; Deslouis, C. [Universite Pierre et Marie Curie-Paris 6, Laboratoire Interfaces et Systemes Electrochimiques, CNRS, UPR15-LISE, 4 Place Jussieu, Paris F-75005 (France)

    2008-08-01

    The electrochemical behaviour of thin films of nitrogenated amorphous carbon a-CN{sub x} is similar to that of boron-doped diamond, with a wide potential window in aqueous media. They are elaborated by cathodic sputtering of a graphite target in an Ar-N{sub 2} active plasma for varying nitrogen contents, determined by XPS (0.06 {<=} x {<=} 0.39). Their electrochemical reactivity is sensitive to the surface state. The present study reports on the influence of electrochemical pre treatment on the electronic transfer rate of a fast redox system ferri-ferrocyanide, by focusing on the direction of the potential excursion. On the other hand, the role of both the pH and the potential on the interfacial capacitance in the presence of Na{sub 2}SO{sub 4} without redox species is documented. The results show up the sensitivity of the film surface to the electrochemical conditions. (author)

  20. Optical, structural and electrochromic behavior studies on nanocomposite thin film of aniline, o-toluidine and WO3

    Science.gov (United States)

    Najafi-Ashtiani, Hamed; Bahari, Ali

    2016-08-01

    In the field of materials for electrochromic (EC) applications much attention was paid to the derivatives of aniline. We report on the optical, structural and electrochromic properties of electrochromic thin film based on composite of WO3 nanoparticles and copolymer of aniline and o-toluidine prepared by electrochemical polymerization method on fluorine doped tin oxide (FTO) coated glass. The thin film was studied by X-ray diffraction (XRD) and Fourier transforms infrared (FTIR) spectroscopy. The morphology of prepared thin film was characterized by field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM) and the thermal gravimetric analysis (TGA) as well. The optical spectra of nanocomposite thin film were characterized in the 200-900 nm wavelength range and EC properties of nanocomposite thin film were studied by cyclic voltammetry (CV). The calculation of optical band gaps of thin film exhibited that the thin film has directly allowed transition with the values of 2.63 eV on first region and 3.80 eV on second region. Dispersion parameters were calculated based on the single oscillator model. Finally, important parameters such as dispersion energy, oscillator energy and lattice dielectric constant were determined and compared with the data from other researchers. The nonlinear optical properties such as nonlinear optical susceptibility, nonlinear absorption coefficient and nonlinear refractive index were extracted. The obtained results of nanocomposite thin film can be useful for the optoelectronic applications.

  1. Solution processable semiconductor thin films: Correlation between morphological, structural, optical and charge transport properties

    Science.gov (United States)

    Isik, Dilek

    electrochemical impedance spectroscopy. In the context of ARTICLE 1, thin film transistors based on soluble pentacene derivatives (prepared by the research group directed by Professor J. Anthony, at the University of Kentucky) were fabricated and characterized. GIXRD results performed on the thin films suggested a molecular arrangement favorable to charge transport in the source-drain direction, with the pi-pi stacking direction perpendicular to the channel. In ARTICLE 1, HMDS-treated SiO 2 substrates were used, to improve the surface coverage and to limit charge trapping at the dielectric surface. AFM showed good film coverage. The transistors showed ambipolar characteristics, attributed to the good matching between Au electrode work function and highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of the pentacene derivative. The work reported in ARTICLE 2 deals with pi-conjugated thiopheno-azomethines (both in oligomer and polymer form) and oligothiophene analogues. In the former case, couplings in the polymer are based on azomethine (-N=C-) moieties whereas in the latter case they are based on more conventional protocols (-C=C-). The effect of the coupling protocols on the corresponding thin film transistors behavior was studied. The key conclusion of this study was that thiopheno-azomethines thin films can be effectively incorporated into organic transistors: thin films of oligothiopheno-azomethines and the oligothiophenes exhibit p-type behavior whereas thin films of polythiopheno-azomethine exhibit an ambipolar behavior. The hole mobility of the heat-treated thin films of oligothiopheno-azomethines was three orders of magnitude higher compared to its oligothiophene analogue. AFM, coupled with hyperspectral fluorescence imaging, were used to investigate the micro- and nano-scale surface coverage. For the oligothiopheno-azomethine we were able to quantitatively deduce the surface coverage. To contribute to the exploration of innovative

  2. Thin film metal-oxides

    CERN Document Server

    Ramanathan, Shriram

    2009-01-01

    Presents an account of the fundamental structure-property relations in oxide thin films. This title discusses the functional properties of thin film oxides in the context of applications in the electronics and renewable energy technologies.

  3. Electrodeposition synthesis and electrochemical properties of nanostructured {gamma}-MnO{sub 2} films

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Shulei; Cheng, Fangyi; Chen, Jun [Institute of New Energy Material Chemistry, Nankai University, Tianjin 300071 (China)

    2006-11-08

    The thin films of carambola-like {gamma}-MnO{sub 2} nanoflakes with about 20nm in thickness and at least 200nm in width were prepared on nickel sheets by combination of potentiostatic and cyclic voltammetric electrodeposition techniques. The as-prepared MnO{sub 2} nanomaterials, which were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS), were used as the active material of the positive electrode for primary alkaline Zn/MnO{sub 2} batteries and electrochemical supercapacitors. Electrochemical measurements showed that the MnO{sub 2} nanoflake films displayed high potential plateau (around 1.0V versus Zn) in primary Zn/MnO{sub 2} batteries at the discharge current density of 500mAg{sup -1} and high specific capacitance of 240Fg{sup -1} at the current density of 1mAcm{sup -2}. This indicated the potential application of carambola-like {gamma}-MnO{sub 2} nanoflakes in high-power batteries and electrochemical supercapacitors. The growth process for the one- and three-dimensional nanostructured MnO{sub 2} was discussed on the basis of potentiostatic and cyclic voltammetric techniques. The present synthesis method can be extended to the preparation of other nanostructured metal-oxide films. (author)

  4. Thin films and nanomaterials

    International Nuclear Information System (INIS)

    Jayakumar, S.; Kannan, M.D.; Prasanna, S.

    2012-01-01

    The objective of this book is to disseminate the most recent research in Thin Films, Nanomaterials, Corrosion and Metallurgy presented at the International Conference on Advanced Materials (ICAM 2011) held in PSG College of Technology, Coimbatore, India during 12-16 December 2011. The book is a compilation of 113 chapters written by active researchers providing information and critical insights into the recent advancements that have taken place. Important new applications are possible today in the fields of microelectronics, opto-electronics, metallurgy and energy by the application of thin films on solid surfaces. Recent progress in high vacuum technology and new materials has a remarkable effect in thin film quality and cost. This has led to the development of new single or multi-layered thin film devices with diverse applications in a multitude of production areas, such as optics, thermal barrier coatings and wear protections, enhancing service life of tools and to protect materials against thermal and atmospheric influence. On the other hand, thin film process techniques and research are strongly related to the basic research activities in nano technology, an increasingly important field with countless opportunities for applications due to the emergence of new properties at the nanoscale level. Materials and structures that are designed and fabricated at the nano scale level, offer the potential to produce new devices and processes that may enhance efficiencies and reduce costs in many areas, as photovoltaic systems, hydrogen storage, fuel cells and solar thermal systems. In the book, the contributed papers are classified under two sections i) thin films and ii) nanomaterials. The thin film section includes single or multi layer conducting, insulating or semiconducting films synthesized by a wide variety of physical or chemical techniques and characterized or analyzed for different applications. The nanomaterials section deals with novel or exciting materials

  5. Correlation of morphology and barrier properties of thin microwave plasma polymer films on metal substrate

    International Nuclear Information System (INIS)

    Barranco, V.; Carpentier, J.; Grundmeier, G.

    2004-01-01

    The barrier properties of thin model organosilicon plasma polymers layers on iron are characterised by means of electrochemical impedance spectroscopy (EIS). Tailored thin plasma polymers of controlled morphology and chemical composition were deposited from a microwave discharge. By the analysis of the obtained impedance diagrams, the evolution of the water uptake φ, coating resistance and polymer capacitance with immersion time were monitored and the diffusion coefficients of the water through the films were calculated. The impedance data correlated well with the chemical structure and morphology of the plasma polymer films with a thickness of less than 100 nm. The composition of the films were determined by means of infrared reflection absorption spectroscopy (IRRAS), X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The morphology of the plasma polymer surface and the interface between the plasma polymer and the metal were characterised using atomic force microscopy (AFM). It could be shown that, at higher pressure, the film roughness increases which is probably due to the adsorption of plasma polymer nanoparticles formed in the plasma bulk and the faster film growth. This leads to voids with a size of a few tens of nanometers at the polymer/metal interface. The film roughness increases from the interface to the outer surface of the film. By lowering the pressure and thereby slowing the deposition rate, the plasma polymers perfectly imitate the substrate topography and lead to an excellent blocking of the metal surface. Moreover, the ratio of siloxane bonds to methyl-silyl groups increases which implies that the crosslink density is higher at lower deposition rate. The EIS data consistently showed higher coating resistance as well as lower interfacial capacitance values and a better stability over time for the film deposited at slower pressure. The diffusion coefficient of water in thin and ultra-thin plasma

  6. Electrochemical etching of molybdenum for shunt removal in thin film solar cells

    NARCIS (Netherlands)

    Hovestad, A.; Bressers, P.M.M.C.; Meertens, R.M.; Frijters, C.H.; Voorthuijzen, W.P.

    2015-01-01

    High yield and reproducible production is a major challenge in up-scaling thin film Cu(In,Ga)Se2(CIGS) solar cells to large area roll-to-roll industrial manufacturing. Pinholes enabling Ohmic contact between the ZnO:Al front-contact and Mo back contact of the CIGS cell create electrical shunts that

  7. LiFePO_4_−_xN_y thin-film electrodes coated on carbon fiber-modified current collectors for pseudocapacitors

    International Nuclear Information System (INIS)

    Chiu, Kuo-Feng; Su, Shih-Hsuan; Leu, Hoang-Jyh; Huang, Wei-Chieh

    2015-01-01

    LiFePO_4_−_xN_y thin films were sputter-deposited on micron carbon fibers (MCFs) under a gas mixture of N_2/Ar/H_2 as electrode materials in pseudocapacitors. The MCFs were fabricated by thermal chemical vapor deposition on stainless steel substrates as current collectors. Various amounts of N_2 were introduced by controlling the flow ratios of N_2 to Ar/H_2. The LiFePO_4_−_xN_y thin films coated on the surfaces of MCFs were observed by field emission scanning electron microscopy. The electrochemical properties of the LiFePO_4_−_xN_y thin films were characterized using cyclic voltammetry and charge–discharge processes. The LiFePO_4_−_xN_y thin-film electrode deposited under the optimal N_2 contents exhibited a high specific capacitance of 722 F/g at 1 A/g. Even at a current of 20 A/g, the electrode delivered a capacitance of 298 F/g. The pseudocapacitors using LiFePO_4_−_xN_y thin-film electrodes showed no significant capacitance fading after 1000 cycles at 1 A/g. The results indicated that nitrogen doping improved the electrochemical performances of LiFePO_4, demonstrating the potential of LiFePO_4_−_xN_y as an active material in pseudocapacitors. - Highlights: • LiFePO_4_−_xN_y thin films were sputter-deposited on micron carbon fibers (MCFs). • MCFs only act as a three-dimensional current collector in this system. • The pseudocapacitor exhibits a high specific capacitance.

  8. Swift heavy ions induced surface modifications in Ag-polypyrrole composite films synthesized by an electrochemical route

    International Nuclear Information System (INIS)

    Kumar, Vijay; Ali, Yasir; Sharma, Kashma; Kumar, Vinod; Sonkawade, R.G.; Dhaliwal, A.S.; Swart, H.C.

    2014-01-01

    Highlights: • Two steps electrochemical synthesis for the fabrication of Ag-polypyrrole composite films. • Surface modifications by swift heavy ion beam. • SEM image shows the formation of craters and humps after irradiation. • Detailed structural analysis by Raman spectroscopy. - Abstract: The general aim of this work was to study the effects of swift heavy ions on the properties of electrochemically synthesized Ag-polypyrrole composite thin films. Initially, polypyrrole (PPy) films were electrochemically synthesized on indium tin oxide coated glass surfaces using a chronopotentiometery technique, at optimized process conditions. The prepared PPy films have functioned as working electrodes for the decoration of submicron Ag particles on the surface of the PPy films through a cyclicvoltammetry technique. Towards probing the effect of swift heavy ion irradiation on the structural and morphological properties, the composite films were subjected to a 40 MeV Li 3+ ion beam irradiation for various fluences (1 × 10 11 , 1 × 10 12 and 1 × 10 13 ions/cm 2 ). Comparative microstructural investigations were carried out after the different ion fluences using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy and micro-Raman spectroscopy techniques. Raman and SEM studies revealed that the structure of the films became disordered after irradiation. The SEM studies of irradiated composite films show significant changes in their surface morphologies. The surface was smoother at lower fluence but craters were observed at higher fluence

  9. Swift heavy ions induced surface modifications in Ag-polypyrrole composite films synthesized by an electrochemical route

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Vijay, E-mail: vijays_phy@rediffmail.com [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein ZA 9300 (South Africa); Ali, Yasir [Department of Physics, Sant Longowal Institute of Engineering and Technology, Longowal, District Sangrur 148106, Punjab (India); Sharma, Kashma [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein ZA 9300 (South Africa); Department of Chemistry, Shoolini University of Biotechnology and Management Sciences, Solan 173212 (India); Kumar, Vinod [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein ZA 9300 (South Africa); Sonkawade, R.G. [Inter University Accelerator Center, Aruna Asif Ali Marg, New Delhi 110067 (India); Dhaliwal, A.S. [Department of Physics, Sant Longowal Institute of Engineering and Technology, Longowal, District Sangrur 148106, Punjab (India); Swart, H.C., E-mail: swarthc@ufs.ac.za [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein ZA 9300 (South Africa)

    2014-03-15

    Highlights: • Two steps electrochemical synthesis for the fabrication of Ag-polypyrrole composite films. • Surface modifications by swift heavy ion beam. • SEM image shows the formation of craters and humps after irradiation. • Detailed structural analysis by Raman spectroscopy. - Abstract: The general aim of this work was to study the effects of swift heavy ions on the properties of electrochemically synthesized Ag-polypyrrole composite thin films. Initially, polypyrrole (PPy) films were electrochemically synthesized on indium tin oxide coated glass surfaces using a chronopotentiometery technique, at optimized process conditions. The prepared PPy films have functioned as working electrodes for the decoration of submicron Ag particles on the surface of the PPy films through a cyclicvoltammetry technique. Towards probing the effect of swift heavy ion irradiation on the structural and morphological properties, the composite films were subjected to a 40 MeV Li{sup 3+} ion beam irradiation for various fluences (1 × 10{sup 11}, 1 × 10{sup 12} and 1 × 10{sup 13} ions/cm{sup 2}). Comparative microstructural investigations were carried out after the different ion fluences using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy and micro-Raman spectroscopy techniques. Raman and SEM studies revealed that the structure of the films became disordered after irradiation. The SEM studies of irradiated composite films show significant changes in their surface morphologies. The surface was smoother at lower fluence but craters were observed at higher fluence.

  10. Electrochemical properties of N-doped hydrogenated amorphous carbon films fabricated by plasma-enhanced chemical vapor deposition methods

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Yoriko; Furuta, Masahiro; Kuriyama, Koichi; Kuwabara, Ryosuke; Katsuki, Yukiko [Division of Environmental Science and Engineering, Graduate School of Science and Engineering, Yamaguchi University, 1677-1 Yoshida, Yamaguchi-shi, Yamaguchi 753-8512 (Japan); Kondo, Takeshi [Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510 (Japan); Fujishima, Akira [Kanagawa Advanced Science and Technology (KAST), 3-2-1, Sakato, Takatsu-ku, Kawasaki-shi, Kanagawa 213-0012 (Japan); Honda, Kensuke, E-mail: khonda@yamaguchi-u.ac.j [Division of Environmental Science and Engineering, Graduate School of Science and Engineering, Yamaguchi University, 1677-1 Yoshida, Yamaguchi-shi, Yamaguchi 753-8512 (Japan)

    2011-01-01

    Nitrogen-doped hydrogenated amorphous carbon thin films (a-C:N:H, N-doped DLC) were synthesized with microwave-assisted plasma-enhanced chemical vapor deposition widely used for DLC coating such as the inner surface of PET bottles. The electrochemical properties of N-doped DLC surfaces that can be useful in the application as an electrochemical sensor were investigated. N-doped DLC was easily fabricated using the vapor of nitrogen contained hydrocarbon as carbon and nitrogen source. A N/C ratio of resulting N-doped DLC films was 0.08 and atomic ratio of sp{sup 3}/sp{sup 2}-bonded carbons was 25/75. The electrical resistivity and optical gap were 0.695 {Omega} cm and 0.38 eV, respectively. N-doped DLC thin film was found to be an ideal polarizable electrode material with physical stability and chemical inertness. The film has a wide working potential range over 3 V, low double-layer capacitance, and high resistance to electrochemically induced corrosion in strong acid media, which were the same level as those for boron-doped diamond (BDD). The charge transfer rates for the inorganic redox species, Fe{sup 2+/3+} and Fe(CN){sub 6}{sup 4-/3-} at N-doped DLC were sufficiently high. The redox reaction of Ce{sup 2+/3+} with standard potential higher than H{sub 2}O/O{sub 2} were observed due to the wider potential window. At N-doped DLC, the change of the kinetics of Fe(CN){sub 6}{sup 3-/4-} by surface oxidation is different from that at BDD. The rate of Fe(CN){sub 6}{sup 3-/4-} was not varied before and after oxidative treatment on N-doped DLC includes sp{sup 2} carbons, which indicates high durability of the electrochemical activity against surface oxidation.

  11. Thin film device applications

    CERN Document Server

    Kaur, Inderjeet

    1983-01-01

    Two-dimensional materials created ab initio by the process of condensation of atoms, molecules, or ions, called thin films, have unique properties significantly different from the corresponding bulk materials as a result of their physical dimensions, geometry, nonequilibrium microstructure, and metallurgy. Further, these characteristic features of thin films can be drasti­ cally modified and tailored to obtain the desired and required physical characteristics. These features form the basis of development of a host of extraordinary active and passive thin film device applications in the last two decades. On the one extreme, these applications are in the submicron dimensions in such areas as very large scale integration (VLSI), Josephson junction quantum interference devices, magnetic bubbles, and integrated optics. On the other extreme, large-area thin films are being used as selective coatings for solar thermal conversion, solar cells for photovoltaic conver­ sion, and protection and passivating layers. Ind...

  12. An investigation of the insertion of the cations H{sup +}, Na{sup +}, K{sup +} on the electrochromic properties of the thermally evaporated WO{sub 3} thin films grown at different substrate temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Patel, K.J. [Applied Physics Department, Faculty of Technology and Engineering, M.S. University of Baroda, Kalabhavan, Vadodara 390001, Gujarat (India); Panchal, C.J., E-mail: cjpanchal_msu@yahoo.com [Applied Physics Department, Faculty of Technology and Engineering, M.S. University of Baroda, Kalabhavan, Vadodara 390001, Gujarat (India); Desai, M.S. [Applied Physics Department, Faculty of Technology and Engineering, M.S. University of Baroda, Kalabhavan, Vadodara 390001, Gujarat (India); Mehta, P.K. [Physics Department, Faculty of Science, M.S. University of Baroda, Vadodara 390002, Gujarat (India)

    2010-11-01

    The phenomenon of electrochromism in tungsten trioxide (WO{sub 3}) thin films has recently attained considerable interest due to their enormous applications in inorganic thin film electrochromic devices. We have investigated the compositional, optical, and electrochromic properties of the WO{sub 3} thin films grown at different substrate temperatures by the thermal evaporation of WO{sub 3} powder. The thin films were characterized using X-ray diffraction (XRD), X-ray photo-emission spectroscopy (XPS), and electrochemical techniques. The XPS analysis suggested that the oxygen to tungsten (O/W) ratio decreases, i.e., the oxygen deficiency increases, on increasing the substrate temperature up to 500 deg. C. The electrochemical analysis provided a comparative study of the coloration efficiency (CE) of the WO{sub 3} thin films intercalated with three different ions viz. H{sup +}, Na{sup +}, and K{sup +}. The effect of the variation of the substrate temperature on the CE and the switching time have also been investigated for the WO{sub 3} thin films intercalated with H{sup +} ions; the thin films deposited at RT and intercalated with H{sup +} ions are found to possess adequate electrochromic properties viz. CE and switching time from device point of view.

  13. Programmable diode/resistor-like behavior of nanostructured vanadium pentoxide xerogel thin film.

    Science.gov (United States)

    Wan, Zhenni; Darling, Robert B; Anantram, M P

    2015-11-11

    Electrical properties of a Cr/V2O5/Cr structure are investigated and switching of the device due to electrochemical reactions is observed at low bias (resistor (reverse sweep first). The switching is irreversible and persistent, lasting for more than one month. By performing environmental tests, we prove that water molecules in the atmosphere and intercalated in the xerogel film are involved in the electrochemical reactions. It is proposed that an interfacial layer with reduced oxidation state forms at the Cr/V2O5 interface, and creates a higher Schottky barrier due to rise of electron affinity. Different interfacial layer thicknesses in forward and reverse first sweeps are responsible for different I-V characteristics in subsequent sweeps. The results suggest future applications of these V2O5 thin films in low-power read-only memory devices and diode-resistor networks.

  14. Pt-based Thin Films as Efficient and Stable Catalysts for Oxygen Electroreduction

    DEFF Research Database (Denmark)

    Zamburlini, Eleonora

    at the cathode of Polymer Electrolyte Membrane Fuel Cells (PEMFCs). Herein the fabrication method, which consists of co-sputtering of thin films, is presented in detail, explaining the challenges one must face in order to fabricate oxygen-free Pt-lanthanides and Pt-early transition metals alloys......This thesis presents the fabrication and characterization of Pt-based thin film catalysts for Oxygen Reduction Reaction (ORR). Gadolinium and Yttrium have been used as alloying materials, in preparation for the replacement of the traditional but economically disadvantageous pure Pt catalysts......, and the proposed solutions. The characterization of the catalysts focused mainly on the electrochemical testing using a Rotating Ring Disk Electrode (RRDE) setup, and includes X-ray Diffraction (XRD), X-ray Photoemission Spectroscopy (XPS), Angle-Resolved X-ray Photoelectron Spectroscopy (AR-XPS), Scanning...

  15. Biomimetic thin film synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Graff, G.L.; Campbell, A.A.; Gordon, N.R.

    1995-05-01

    The purpose of this program is to develop a new process for forming thin film coatings and to demonstrate that the biomimetic thin film technology developed at PNL is useful for industrial applications. In the biomimetic process, mineral deposition from aqueous solution is controlled by organic functional groups attached to the underlying substrate surface. The coatings process is simple, benign, inexpensive, energy efficient, and particularly suited for temperature sensitive substrate materials (such as polymers). In addition, biomimetic thin films can be deposited uniformly on complex shaped and porous substrates providing a unique capability over more traditional line-of-sight methods.

  16. Nano-sized copper tungstate thin films as positive electrodes for rechargeable Li batteries

    International Nuclear Information System (INIS)

    Li Chilin; Fu Zhengwen

    2008-01-01

    Nano-sized CuWO 4 thin films have been fabricated by radio-frequency (R.F.) sputtering deposition, and are used as positive electrode with both LiClO 4 liquid electrolyte and LiPON solid electrolyte in rechargeable lithium batteries. An initial discharge capacity of 192 and 210 mAh/g is obtainable for CuWO 4 film electrode with and without coated LiPON in liquid electrolyte, respectively. An all-solid-state cell with Li/LiPON/CuWO 4 layers shows a high-volume rate capacity of 145 μAh/cm 2 μm in first discharge, and overcomes the unfavorable electrochemical degradation observed in liquid electrolyte system. A two-step reactive mechanism is investigated by both transmission electron microscopy and selected area electron diffraction techniques. Apart from the extrusion and injection of Cu 2+ /Cu 0 , additional capacity can be achieved by the reversible reactivity of (WO 4 ) 2- framework. The chemical diffusion coefficients of Li intercalation/deintercalation are estimated by cyclic voltammetry. Nano-CuWO 4 thin film is expected to be a promising positive electrode material for high-performance rechargeable thin-film lithium batteries

  17. Nanostructured nickel doped β-V{sub 2}O{sub 5} thin films for supercapacitor applications

    Energy Technology Data Exchange (ETDEWEB)

    Jeyalakshmi, K. [Department of Physics, PSNA College of Engineering and Technology, Dindigul 624622 (India); Vijayakumar, S. [Department of Physics, Gandhigram Rural Institute, Gandhigram 624302 (India); Purushothaman, K.K. [Department of Physics, TRP Engineering College, Trichy (India); Muralidharan, G., E-mail: muralg@rediffmail.com [Department of Physics, Gandhigram Rural Institute, Gandhigram 624302 (India)

    2013-07-15

    Graphical abstract: - Highlights: • Nanorod with pores has been observed for 5 wt.% nickel doped β-V{sub 2}O{sub 5} thin films. • Film with 5 wt.% of nickel exhibits a specific capacitance of 417 F g{sup −1}. • These films exhibit high energy density. • The charge transfer resistance is 103 Ω. - Abstract: Interesting thin film electrodes of nickel doped vanadium pentoxide with different levels of doping (2.5–10 wt.%) are prepared on FTO and glass substrate at 300 °C using sol–gel spin coating method. The structural and morphological studies are made to understand the nature of the surface of the thin films. The electrochemical characteristics have been investigated through cyclic voltammetry and ac impedance spectroscopy measurements. The doping of nickel with β-V{sub 2}O{sub 5} has led to enhanced intercalation and deintercalation of ions. β-V{sub 2}O{sub 5} films with 5 wt.% of Ni exhibit the maximum specific capacitance of 417 F/g at a scan rate of 5 mV/s, with a good cyclic stability making it a promising candidate for supercapacitor application.

  18. Fabrication, characterization and sensing properties of Cu(II) ion imprinted sol–gel thin film on QCM

    International Nuclear Information System (INIS)

    Su, Pi-Guey; Hung, Fang-Chieh; Lin, Po-Hung

    2012-01-01

    Cu(II)-molecularly imprinted sol–gel films (Cu(II)-MISGF), coated on a quartz crystal microbalance (QCM) chip, were fabricated using a sol–gel procedure. Co-hydrolysis and co-condensation of Cu(II) (templates), 3-aminopropyltrimethoxysilane (APTS, functional monomer) and tetraethoxysilane (TEOS, cross-linking agent) were performed with acid and base catalysis. The properties of the Cu(II)-MISGF were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and the electrochemical methods of cyclic voltammetry (CV). Microstructural observations revealed that the acid-catalyzed system yielded more mechanically stable thin films. A combined Cu(II)-MISGF-QCM with flow injection analysis (FIA) method was utilized to investigate the sensing performance of the Cu(II)-MISGF, with special emphasis on the most important properties of sensitivity, selectivity and response time. The Cu(II)-MISGF-QCM sensor, at a TEOS/APTS molar ratio of 10, exhibited excellent selectivity and rapidly responded to Cu(II) ions. - Highlights: ► A Cu(II)-molecularly imprinted sol–gel thin film on chip was fabricated. ► The thin film had mechanical stability using acidic catalyst. ► The thin film had good selectivity and response time for Cu(II) ions.

  19. Thin Film Photovoltaic Partnership Project | Photovoltaic Research | NREL

    Science.gov (United States)

    Thin Film Photovoltaic Partnership Project Thin Film Photovoltaic Partnership Project NREL's Thin Film Photovoltaic (PV) Partnership Project led R&D on emerging thin-film solar technologies in the United States from 1994 to 2009. The project made many advances in thin-film PV technologies that allowed

  20. Chemically induced porosity on BiVO4 films produced by double magnetron sputtering to enhance the photo-electrochemical response.

    Science.gov (United States)

    Thalluri, Sitaramanjaneya Mouli; Rojas, Roberto Mirabal; Rivera, Osmary Depablos; Hernández, Simelys; Russo, Nunzio; Rodil, Sandra Elizabeth

    2015-07-21

    Double magnetron sputtering (DMS) is an efficient system that is well known because of its precise control of the thin film synthesizing process over any kind of substrate. Here, DMS has been adopted to synthesize BiVO4 films over a conducting substrate (FTO), using metallic vanadium and ceramic Bi2O3 targets simultaneously. The films were characterized using different techniques, such as X-ray diffraction (XRD), UV-Vis spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM) and profilometry. The photo-electrochemical analysis was performed using linear scan voltammetry, chronoamperometry and electrochemical impedance spectroscopy (EIS) under the illumination of simulated solar light at 1 Sun. The photocurrent density of the sputtered BiVO4 thin films could be improved from 0.01 mA cm(-2) to 1.19 mA cm(-2) at 1.23 V vs. RHE by chemical treatment using potassium hydroxide (KOH). The effect of KOH was the removal of impurities from the grain boundaries, leading to a more porous structure and more pure crystalline monoclinic BiVO4 particles. Such variations in the microstructure as well as the improvement of the charge transfer properties of the BiVO4 film after the KOH treatment were confirmed and studied in depth by EIS analysis.

  1. Impact of Gate Dielectric in Carrier Mobility in Low Temperature Chalcogenide Thin Film Transistors for Flexible Electronics

    KAUST Repository

    Salas-Villasenor, A. L.; Mejia, I.; Hovarth, J.; Alshareef, Husam N.; Cha, D. K.; Ramirez-Bon, R.; Gnade, B. E.; Quevedo-Lopez, M. A.

    2010-01-01

    Cadmium sulfide thin film transistors were demonstrated as the n-type device for use in flexible electronics. CdS thin films were deposited by chemical bath deposition (70° C) on either 100 nm HfO2 or SiO2 as the gate dielectrics. Common gate transistors with channel lengths of 40-100 μm were fabricated with source and drain aluminum top contacts defined using a shadow mask process. No thermal annealing was performed throughout the device process. X-ray diffraction results clearly show the hexagonal crystalline phase of CdS. The electrical performance of HfO 2 /CdS -based thin film transistors shows a field effect mobility and threshold voltage of 25 cm2 V-1 s-1 and 2 V, respectively. Improvement in carrier mobility is associated with better nucleation and growth of CdS films deposited on HfO2. © 2010 The Electrochemical Society.

  2. Impact of Gate Dielectric in Carrier Mobility in Low Temperature Chalcogenide Thin Film Transistors for Flexible Electronics

    KAUST Repository

    Salas-Villasenor, A. L.

    2010-06-29

    Cadmium sulfide thin film transistors were demonstrated as the n-type device for use in flexible electronics. CdS thin films were deposited by chemical bath deposition (70° C) on either 100 nm HfO2 or SiO2 as the gate dielectrics. Common gate transistors with channel lengths of 40-100 μm were fabricated with source and drain aluminum top contacts defined using a shadow mask process. No thermal annealing was performed throughout the device process. X-ray diffraction results clearly show the hexagonal crystalline phase of CdS. The electrical performance of HfO 2 /CdS -based thin film transistors shows a field effect mobility and threshold voltage of 25 cm2 V-1 s-1 and 2 V, respectively. Improvement in carrier mobility is associated with better nucleation and growth of CdS films deposited on HfO2. © 2010 The Electrochemical Society.

  3. Thin Film & Deposition Systems (Windows)

    Data.gov (United States)

    Federal Laboratory Consortium — Coating Lab: Contains chambers for growing thin film window coatings. Plasma Applications Coating Lab: Contains chambers for growing thin film window coatings. Solar...

  4. A photoelectrochemical (PEC) study on graphene oxide based hematite thin films heterojunction (R-GO/Fe2O3)

    Science.gov (United States)

    Sharma, Poonam; Zachariah, Michael; Ehrman, Sheryl; Shrivastava, Rohit; Dass, Sahab; Satsangi, Vibha; Michael Zachariah, Sheryl Ehrman Collaboration; Rohit Shrivastava, Sahab Dass Collaboration; Vibha R Satsangi, Poonam Sharma Team

    2013-03-01

    Graphene has an excellent electronic conductivity, a high theoretical surface area of 2630 m2/g and excellent mechanical properties and, thus, is a promising component for high-performance electrode materials. Following this, GO has been used to modify the PEC response of photoactive material hematite thin films in PEC cell. A reduced graphene oxide/iron oxide (R-GO/Fe2O3) thin film structure has been successfully prepared on ITO by directly growing iron oxide particles on the thermally reduced graphene oxide sheets prepared from suspension of exfoliated graphene oxide. R-GO/Fe2O3 thin films were tested in PEC cell and offered ten times higher photocurrent density than pristine Fe2O3 thin film sample. XRD, SEM, EDS, UV-Vis, Mott-Schottky and Raman studies were carried out to study spectro-electrochemical properties. Enhanced PEC performance of these photoelectrodes was attributed to its porous morphology, improved conductivity upon favorable carrier transfer across the oxides interface.

  5. Nitrate ions as cathodic alkalization promoters for the electro-assisted deposition of sol-gel thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ding Shangzhi; Liu Liang [Department of Chemistry, Yuquan Campus, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Hu Jiming [Department of Chemistry, Yuquan Campus, Zhejiang University, Hangzhou, Zhejiang 310027 (China)], E-mail: kejmhu@zju.edu.cn; Zhang Jianqing; Cao Chunan [Department of Chemistry, Yuquan Campus, Zhejiang University, Hangzhou, Zhejiang 310027 (China); State Key Laboratory for Corrosion and Protection, Shenyang 110016 (China)

    2008-08-15

    Nitrate was used as a promoter to prepare dodecyltrimethoxysilane thin films on aluminum substrates. With the addition of nitrate into silane sol-gel precursors, the electro-assisted formation of silane films was facilitated, as indicated by electrochemical impedance spectroscopy, scanning electron microscopy and secondary-ion mass spectroscopy, due to the promotion in cathodic alkalization. However, an extra-high concentration of nitrate would be harmful because of the salting-out effect in precursors and the soluble nitrate remaining in silane films.

  6. Characterization of organic thin films

    CERN Document Server

    Ulman, Abraham; Evans, Charles A

    2009-01-01

    Thin films based upon organic materials are at the heart of much of the revolution in modern technology, from advanced electronics, to optics to sensors to biomedical engineering. This volume in the Materials Characterization series introduces the major common types of analysis used in characterizing of thin films and the various appropriate characterization technologies for each. Materials such as Langmuir-Blodgett films and self-assembled monolayers are first introduced, followed by analysis of surface properties and the various characterization technologies used for such. Readers will find detailed information on: -Various spectroscopic approaches to characterization of organic thin films, including infrared spectroscopy and Raman spectroscopy -X-Ray diffraction techniques, High Resolution EELS studies, and X-Ray Photoelectron Spectroscopy -Concise Summaries of major characterization technologies for organic thin films, including Auger Electron Spectroscopy, Dynamic Secondary Ion Mass Spectrometry, and Tra...

  7. Microwave Plasma Chemical Vapor Deposition of Nano-Structured Sn/C Composite Thin-Film Anodes for Li-ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, Cynthia; Marcinek, M.; Hardwick, L.J.; Richardson, T.J.; Song, X.; Kostecki, R.

    2008-02-01

    In this paper we report results of a novel synthesis method of thin-film composite Sn/C anodes for lithium batteries. Thin layers of graphitic carbon decorated with uniformly distributed Sn nanoparticles were synthesized from a solid organic precursor Sn(IV) tert-butoxide by a one step microwave plasma chemical vapor deposition (MPCVD). The thin-film Sn/C electrodes were electrochemically tested in lithium half cells and produced a reversible capacity of 440 and 297 mAhg{sup -1} at C/25 and 5C discharge rates, respectively. A long term cycling of the Sn/C nanocomposite anodes showed 40% capacity loss after 500 cycles at 1C rate.

  8. Use of UO 2 films for electrochemical studies

    Science.gov (United States)

    Miserque, F.; Gouder, T.; Wegen, D. H.; Bottomley, P. D. W.

    2001-10-01

    UO 2 films have been prepared by dc reactive sputtering of a uranium metal target in an Ar/O 2 atmosphere. We have used the films deposited on gold substrates as working electrodes for electrochemical investigations as simulating the surfaces of fuel pellets. Film composition was determined by photoelectron spectroscopy (XPS and UPS) and X-ray diffraction (XRD). The oxide stoichiometry as a function of deposition conditions was determined and the appropriate conditions for UO 2.0 formation established. AC impedance and cyclic voltammetry measurements were performed. A double RC electrical equivalent circuit was used to fit the data from impedance measurements, similar to those used in unirradiated UO 2 or spent fuel pellets. However due to the porosity or adhesion defects on the thin films that permitted a direct contact between the solution and the gold substrate, we were obliged to add a contribution simulating the water-gold system. Cyclic voltammetry measurements show the influence of pH on the dissolution mechanism. Alkaline solutions permit the formation of an oxidised layer (UO 2.33) which is not present in the acidic solutions. In both pH=2 and pH=6 solutions, a U VI species layer is formed.

  9. Electrochemical investigations of ion-implanted oxide films

    International Nuclear Information System (INIS)

    Schultze, J.W.; Danzfuss, B.; Meyer, O.; Stimming, U.

    1985-01-01

    Oxide films (passive films) of 40-50 nm thickness were prepared by anodic polarization of hafnium and titanium electrodes up to 20 V. Multiple-energy ion implantation of palladium, iron and xenon was used in order to obtain modified films with constant concentration profiles of the implanted ions. Rutherford backscattering, X-ray photoelectron spectroscopy measurements and electrochemical charging curves prove the presence of implanted ions, but electrochemical and photoelectrochemical measurements indicate that the dominating effect of ion implantation is the disordering of the oxide film. The capacity of hafnium electrodes increases as a result of an increase in the dielectric constant D. For titanium the Schottky-Mott analysis shows that ion implantation causes an increase in D and the donor concentration N. Additional electronic states in the band gap which are created by the implantation improve the conductivity of the semiconducting or insulating films. This is seen in the enhancement of electron transfer reactions and its disappearance during repassivation and annealing. Energy changes in the band gap are derived from photoelectrochemical measurements; the absorption edge of hafnium oxide films decreases by approximately 2 eV because of ion implantation, but it stays almost constant for titanium oxide films. All changes in electrochemical behavior caused by ion implantation show little variation with the nature of the implanted ion. Hence the dominating effect seems to be a disordering of the oxide. (Auth.)

  10. Mechanical measurements on lithium phosphorous oxynitride coated silicon thin film electrodes for lithium-ion batteries during lithiation and delithiation

    Energy Technology Data Exchange (ETDEWEB)

    Al-Obeidi, Ahmed, E-mail: alobeidi@mit.edu; Thompson, Carl V., E-mail: reiner.moenig@kit.edu, E-mail: cthomp@mit.edu [Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139 (United States); Kramer, Dominik, E-mail: dominik.kramer@kit.edu; Mönig, Reiner, E-mail: reiner.moenig@kit.edu, E-mail: cthomp@mit.edu [Institute for Applied Materials, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Helmholtz Institute Ulm for Electrochemical Energy Storage (HIU), Helmholtzstraße 11, 89081 Ulm (Germany); Boles, Steven T., E-mail: steven.t.boles@polyu.edu.hk [Institute for Applied Materials, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hung Hom (Hong Kong)

    2016-08-15

    The development of large stresses during lithiation and delithiation drives mechanical and chemical degradation processes (cracking and electrolyte decomposition) in thin film silicon anodes that complicate the study of normal electrochemical and mechanical processes. To reduce these effects, lithium phosphorous oxynitride (LiPON) coatings were applied to silicon thin film electrodes. Applying a LiPON coating has two purposes. First, the coating acts as a stable artificial solid electrolyte interphase. Second, it limits mechanical degradation by retaining the electrode's planar morphology during cycling. The development of stress in LiPON-coated electrodes was monitored using substrate curvature measurements. LiPON-coated electrodes displayed highly reproducible cycle-to-cycle behavior, unlike uncoated electrodes which had poorer coulombic efficiency and exhibited a continual loss in stress magnitude with continued cycling due to film fracture. The improved mechanical stability of the coated silicon electrodes allowed for a better investigation of rate effects and variations of mechanical properties during electrochemical cycling.

  11. Influence of Polycation Composition on Electrochemical Film Formation

    Directory of Open Access Journals (Sweden)

    Sabine Schneider

    2018-04-01

    Full Text Available The effect of polyelectrolyte composition on the electrodeposition onto platinum is investigated using a counterion switching approach. Film formation of preformed polyelectrolytes is triggered by oxidation of hexacyanoferrates(II (ferrocyanide, leading to polyelectrolyte complexes, which are physically crosslinked by hexacyanoferrate(III (ferricyanide ions due to preferential ferricyanide/polycation interactions. In this study, the electrodeposition of three different linear polyelectrolytes, namely quaternized poly[2-(dimethylaminoethyl methacrylate] (i.e., poly{[2-(methacryloyloxyethyl]trimethylammonium chloride}; PMOTAC, quaternized poly[2-(dimethylaminoethyl acrylate] (i.e., poly{[2-(acryloyloxyethyl]trimethylammonium chloride}; POTAC, quaternized poly[N-(3-dimethylaminopropylmethacrylamide] (i.e., poly{[3-(methacrylamidopropyl]trimethylammonium chloride}; PMAPTAC and different statistical copolymers of these polyelectrolytes with N-(3-aminopropylmethacrylamide (APMA, are studied. Hydrodynamic voltammetry utilizing a rotating ring disk electrode (RRDE shows the highest deposition efficiency DE for PMOTAC over PMAPTAC and over POTAC. Increasing incorporation of APMA weakens the preferred interaction of the quaternized units with the hexacyanoferrate(III ions. At a sufficient APMA content, electrodeposition can thus be prevented. Additional electrochemical quartz crystal microbalance measurements reveal the formation of rigid polyelectrolyte films being highly crosslinked by the hexacyanoferrate(III ions. Results indicate a different degree of water incorporation into these polyelectrolyte films. Hence, by adjusting the polycation composition, film properties can be tuned, while different chemistries can be incorporated into these electrodeposited thin hydrogel films.

  12. Investigation of interfacial resistance between LiCoO{sub 2} cathode and LiPON electrolyte in the thin film battery

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Eunkyung; Hong, Chan; Tak, Yongsug [Department of Chemical Engineering, Inha University, Inchon 402-751 (Korea, Republic of); Nam, Sang Cheol [Nuricell Inc., Jungrang-Ku, Seoul 131-220 (Korea, Republic of); Cho, Sungbaek [Agency for Defense Development, P.O. Box 35, Daejeon (Korea, Republic of)

    2006-09-13

    All solid-state thin film battery was prepared with conventional sputtering technologies. Low conductivity of lithium phosphorus oxynitride (LiPON) electrolyte and higher resistance at the interface of LiCoO{sub 2}/LiPON was crucial for the development of thin film battery. Presence of thermally treated Al{sub 2}O{sub 3} thin film at the interface of LiCoO{sub 2}/LiPON decreased the interfacial resistance and increased the discharge capacity with the better cycling behaviors. Surface analysis and electrochemical impedance measurement indicate the formation of solid solution LiCo{sub 1-y}Al{sub y}O{sub 2} at the interface of LiCoO{sub 2}/LiPON. (author)

  13. Self-Limited Growth in Pentacene Thin Films.

    Science.gov (United States)

    Pachmajer, Stefan; Jones, Andrew O F; Truger, Magdalena; Röthel, Christian; Salzmann, Ingo; Werzer, Oliver; Resel, Roland

    2017-04-05

    Pentacene is one of the most studied organic semiconducting materials. While many aspects of the film formation have already been identified in very thin films, this study provides new insight into the transition from the metastable thin-film phase to bulk phase polymorphs. This study focuses on the growth behavior of pentacene within thin films as a function of film thickness ranging from 20 to 300 nm. By employing various X-ray diffraction methods, combined with supporting atomic force microscopy investigations, one crystalline orientation for the thin-film phase is observed, while three differently tilted bulk phase orientations are found. First, bulk phase crystallites grow with their 00L planes parallel to the substrate surface; second, however, crystallites tilted by 0.75° with respect to the substrate are found, which clearly dominate the former in ratio; third, a different bulk phase polymorph with crystallites tilted by 21° is found. The transition from the thin-film phase to the bulk phase is rationalized by the nucleation of the latter at crystal facets of the thin-film-phase crystallites. This leads to a self-limiting growth of the thin-film phase and explains the thickness-dependent phase behavior observed in pentacene thin films, showing that a large amount of material is present in the bulk phase much earlier during the film growth than previously thought.

  14. Comparison of Ultrasonic Welding and Thermal Bonding for the Integration of Thin Film Metal Electrodes in Injection Molded Polymeric Lab-on-Chip Systems for Electrochemistry

    DEFF Research Database (Denmark)

    Matteucci, Marco; Heiskanen, Arto; Zor, Kinga

    2016-01-01

    We compare ultrasonic welding (UW) and thermal bonding (TB) for the integration of embedded thin-film gold electrodes for electrochemical applications in injection molded (IM) microfluidic chips. The UW bonded chips showed a significantly superior electrochemical performance compared to the ones ...

  15. Electrochemical reactivity at graphitic micro-domains on polycrystalline boron doped diamond thin-films electrodes

    International Nuclear Information System (INIS)

    Mahe, E.; Devilliers, D.; Comninellis, Ch.

    2005-01-01

    This paper deals with the electrochemical reactivity of boron doped diamond (BDD) electrodes. A comparative study has been carried out to show the influence of the presence of graphitic micro-domains upon the surface of these films. Those graphitic domains are sometimes present on as-grown boron doped diamond electrodes. The effect of doping a pure Csp 3 diamond electrode is established by highly oriented pyrolytic graphite (HOPG) abrasion onto the diamond surface. In order to establish the effect of doping on a pure Csp 3 diamond electrode, the amount of graphitic domains was increased by means of HOPG crystals grafted onto the BDD surface. Indeed that method allows the enrichment of the Csp 2 contribution of the electrode. The presence of graphitic domains can be correlatively associated with the presence of kinetically active redox sites. The electrochemical reactivity of boron doped diamond electrodes shows a distribution of kinetic constants on the whole surface of the electrode corresponding to different active sites. In this paper, we have studied by cyclic voltammetry and electrochemical impedance spectroscopy the kinetics parameters of the ferri/ferrocyanide redox couple in KCl electrolyte. A method is proposed to diagnose the presence of graphitic domains on diamond electrodes, and an electrochemical 'pulse cleaning' procedure is proposed to remove them

  16. Evolution of Principle and Practice of Electrodeposited Thin Film: A Review on Effect of Temperature and Sonication

    Directory of Open Access Journals (Sweden)

    A. Mallik

    2011-01-01

    Full Text Available This review discusses briefly the important aspects of thin films. The introduction of the article is a summary of evolution of thin films from surface engineering, their deposition methods, and important issues. The fundamental aspects of electrochemical deposition with special emphasis on the effect of temperature on the phase formation have been reviewed briefly. The field of sonoelectrochemistry has been discussed in the paper. The literature regarding the effects of temperature and sonication on the structure and morphology of the deposits and nucleation mechanisms, residual stress, and mechanical properties has also been covered briefly.

  17. Electrodeposited semiconductors at room temperature: an X-ray Absorption Spectroscopy study of Cu-, Zn-, S-bearing thin films

    International Nuclear Information System (INIS)

    Di Benedetto, Francesco; Cinotti, Serena; D’Acapito, Francesco; Vizza, Francesco; Foresti, Maria Luisa; Guerri, Annalisa; Lavacchi, Alessandro; Montegrossi, Giordano; Romanelli, Maurizio; Cioffi, Nicola; Innocenti, Massimo

    2015-01-01

    A SEM, DRS and XAS study was carried out on ultra-thin films with chemical composition belonging to the Cu-Zn-S ternary system, related to the kesterite-type materials, in the light of their potential application to thin film photovoltaic technology. The films, realized through the layer-by-layer E-ALD electrochemical technique, reveal variable phase composition as a function of the applied E-ALD sequence. In particular, by increasing the Zn cycles per Cu cycle from 1:1 to 9:1, the number of detected phases changes from 3 to 2. In all samples, Cu mainly crystallize in a Cu_2S type phase, whereas Zn occurs as ZnS. In the 1:1 sample, additional ZnO is detected. The variable phase composition parallels apparent changes in the sample morphology. In all samples, a sulphide thin film is covered by a net of elongated nanostructures, the length of which decreases with increasing the number of Zn cycles per Cu cycle. All these evidences are interpreted as due to the operating electrochemical route during the synthesis and confirm the lack of miscibility between Cu_2S and ZnS, thermodynamically relevant after the E-ALD has stopped. The band gap values exhibited by the three films, modulated by changing the copper:zinc ratio, progressively approach a value useful for solar energy conversion, thus strongly proposing these new sulfide nanomaterials for photovoltaics and photochemical applications.

  18. Highly Reversible Electrochemical Insertion of Lithium, Accompanied With a Marked Color Change, Occuring in Microcrystalline Lithium Nickel Oxide Films

    OpenAIRE

    Campet, G.; Portier, J.; Morel, B.; Ferry, D.; Chabagno, J. M.; Benotmane, L.; Bourrel, M.

    1992-01-01

    Thin films of lithium-nickel oxide, whose texture consists of microcrystallites with an average grain size of 50 Å, permit highly reversible electrochemical insertion of lithium ions in Li+ conducting electrolytes. Therefore, the corresponding materials would be of great interest for energy storage applications. In addition, the lithium insertion/extraction reactions in the nickel-based layers are accompanied with a marked color change, making these films of interest for the devel...

  19. Thin films for precision optics

    International Nuclear Information System (INIS)

    Araujo, J.F.; Maurici, N.; Castro, J.C. de

    1983-01-01

    The technology of producing dielectric and/or metallic thin films for high precision optical components is discussed. Computer programs were developed in order to calculate and register, graphically, reflectance and transmittance spectra of multi-layer films. The technology of vacuum evaporation of several materials was implemented in our thin-films laboratory; various films for optics were then developed. The possibility of first calculate film characteristics and then produce the film is of great advantage since it reduces the time required to produce a new type of film and also reduces the cost of the project. (C.L.B.) [pt

  20. Analysis of Hard Thin Film Coating

    Science.gov (United States)

    Shen, Dashen

    1998-01-01

    MSFC is interested in developing hard thin film coating for bearings. The wearing of the bearing is an important problem for space flight engine. Hard thin film coating can drastically improve the surface of the bearing and improve the wear-endurance of the bearing. However, many fundamental problems in surface physics, plasma deposition, etc, need further research. The approach is using electron cyclotron resonance chemical vapor deposition (ECRCVD) to deposit hard thin film an stainless steel bearing. The thin films in consideration include SiC, SiN and other materials. An ECRCVD deposition system is being assembled at MSFC.

  1. Preparation of thin films, with base to precursor materials of type Cu-In-Se elaborated by electrodeposition for the solar cells elaboration

    International Nuclear Information System (INIS)

    Fernandez, A.M.

    1999-01-01

    Thin films of chalcogenide compounds are promising because they have excellent optoelectronic characteristics to be applied in solar cells. In particular, CuInSe 2 and Cd Te thin films have shown high solar to electrical conversion efficiency. However, this efficiency is limited by the method of preparation, in this case, physical vapor deposition techniques are used. In order to increase the area of deposition t is necessary to use chemical methods, for example, electrodeposition technique. In this paper, the preparation of Cu-In-Se precursors thin films by electrochemical method is reported. These precursors were used to build solar cells with 7.9 % of efficiency. (Author)

  2. Thin-film solar cell

    NARCIS (Netherlands)

    Metselaar, J.W.; Kuznetsov, V.I.

    1998-01-01

    The invention relates to a thin-film solar cell provided with at least one p-i-n junction comprising at least one p-i junction which is at an angle alpha with that surface of the thin-film solar cell which collects light during operation and at least one i-n junction which is at an angle beta with

  3. Improving electrochemical performance of flexible thin film electrodes with micropillar array structures

    International Nuclear Information System (INIS)

    Myllymaa, Sami; Myllymaa, Katja; Lappalainen, Reijo; Pirinen, Sami; Pakkanen, Tapani A; Pakkanen, Tuula T; Suvanto, Mika

    2012-01-01

    For reliable function, bioelectrodes require a stable, low-impedance contact with the target tissue. In biosignal monitoring applications, in which low ion current densities are recorded, it is important to minimize electrode contact impedances. Recently, several flexible electrode concepts have been introduced for single-patient use. These electrodes conform well on the patient skin enabling an artifact-free, low-noise recording. In this study, polydimethylsiloxane (PDMS) elastomer was used as an electrode substrate material. One half of the substrates were surface-patterned with micropillars produced by using micro-working robot-made mold inserts and a replica molding technique. The substrates were subsequently coated with thin films of titanium (Ti), copper (Cu), silver (Ag) or silver–silver chloride (Ag/AgCl). Electrical impedance spectroscopy studies revealed that the micropillar structure caused statistically significant reductions in impedance modulus and phase for each coating candidate. The relative effect was strongest for pure Ag, for which the values of the real part (Z′) and the imaginary part (Z″) decreased to less than one tenth of the original (smooth) values. However, Ag/AgCl, as expected, proved to be a superior electrode material. Coating with chloride drastically reduced the interfacial impedance compared to pure Ag. Further significant reduction was achieved by the micropillars, since the phase angle declined from 10–13° (for smooth samples, f < 50 Hz) to a value as low as 5°. Equivalent circuit modeling was used to obtain a better understanding of phenomena occurring at various electrode–electrolyte interfaces. The knowledge obtained in this study will be exploited in the further development of flexible electrodes and miniaturized biointerfaces with improved electrochemical characteristics. (paper)

  4. Thin-Film Material Science and Processing | Materials Science | NREL

    Science.gov (United States)

    Thin-Film Material Science and Processing Thin-Film Material Science and Processing Photo of a , a prime example of this research is thin-film photovoltaics (PV). Thin films are important because cadmium telluride thin film, showing from top to bottom: glass, transparent conducting oxide (thin layer

  5. Nanocrystal thin film fabrication methods and apparatus

    Science.gov (United States)

    Kagan, Cherie R.; Kim, David K.; Choi, Ji-Hyuk; Lai, Yuming

    2018-01-09

    Nanocrystal thin film devices and methods for fabricating nanocrystal thin film devices are disclosed. The nanocrystal thin films are diffused with a dopant such as Indium, Potassium, Tin, etc. to reduce surface states. The thin film devices may be exposed to air during a portion of the fabrication. This enables fabrication of nanocrystal-based devices using a wider range of techniques such as photolithography and photolithographic patterning in an air environment.

  6. Photoelectrochemical properties of In{sub 2}Se{sub 3} thin films: Effect of substrate temperature

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Abhijit A., E-mail: aay_physics@yahoo.co.in [Thin Film Physics Laboratory, Department of Physics, Electronics and Photonics, Rajarshi Shahu Mahavidyalaya, Latur, M.S. 413512 (India); Salunke, S.D. [Department of Chemistry and Analytical Chemistry, Rajarshi Shahu Mahavidyalaya, Latur, M.S. 413512 (India)

    2015-08-15

    Highlights: • Photoelectrochemical properties of In{sub 2}Se{sub 3} thin films. • In{sub 2}Se{sub 3} films are of n-type with I{sub sc} and V{sub oc} of 1.05 mA/cm{sup 2} and 261 mV respectively. • Efficiency (η) and fill factor (FF) is found to be 0.71% and 0.51% respectively. • Performance of cell can motivate further studies concerning solar energy conversion. - Abstract: In{sub 2}Se{sub 3} thin films have been deposited onto fluorine doped tin oxide coated (FTO) glass substrates at various substrate temperatures by spray pyrolysis. The photoelectrochemical cell configurations were In{sub 2}Se{sub 3} thin film/1 M (NaOH + Na{sub 2}S + S)/C. From capacitance–voltage (C–V) and current–voltage (I–V) characteristics; it is concluded that In{sub 2}Se{sub 3} thin films are of n-type. The Fill factor (FF) and solar conversion efficiency (η) were calculated from photovoltaic power output characteristics. In this instance, the highest measured photocurrent density of 1.05 mA/cm{sup 2} and open circuit voltage of 261 mV is observed for film deposited at 350 °C resulting in maximum power conversion efficiency (η) and fill factor (FF) to be 0.71% and 0.51% respectively. Electrochemical impedance spectroscopy study shows that the In{sub 2}Se{sub 3} film deposited at 350 °C shows better performance in photoelectrochemical cell. The performance of indium selenide thin film observed in our work can motivate further studies concerning solar energy conversion.

  7. Study on Buckling of Stiff Thin Films on Soft Substrates as Functional Materials

    Science.gov (United States)

    Ma, Teng

    In engineering, buckling is mechanical instability of walls or columns under compression and usually is a problem that engineers try to prevent. In everyday life buckles (wrinkles) on different substrates are ubiquitous -- from human skin to a rotten apple they are a commonly observed phenomenon. It seems that buckles with macroscopic wavelengths are not technologically useful; over the past decade or so, however, thanks to the widespread availability of soft polymers and silicone materials micro-buckles with wavelengths in submicron to micron scale have received increasing attention because it is useful for generating well-ordered periodic microstructures spontaneously without conventional lithographic techniques. This thesis investigates the buckling behavior of thin stiff films on soft polymeric substrates and explores a variety of applications, ranging from optical gratings, optical masks, energy harvest to energy storage. A laser scanning technique is proposed to detect micro-strain induced by thermomechanical loads and a periodic buckling microstructure is employed as a diffraction grating with broad wavelength tunability, which is spontaneously generated from a metallic thin film on polymer substrates. A mechanical strategy is also presented for quantitatively buckling nanoribbons of piezoelectric material on polymer substrates involving the combined use of lithographically patterning surface adhesion sites and transfer printing technique. The precisely engineered buckling configurations provide a route to energy harvesters with extremely high levels of stretchability. This stiff-thin-film/polymer hybrid structure is further employed into electrochemical field to circumvent the electrochemically-driven stress issue in silicon-anode-based lithium ion batteries. It shows that the initial flat silicon-nanoribbon-anode on a polymer substrate tends to buckle to mitigate the lithiation-induced stress so as to avoid the pulverization of silicon anode. Spontaneously

  8. Electrodeposition and characterization of CdSe x-Te 1- x semiconducting thin films

    Science.gov (United States)

    Benamar, E.; Rami, M.; Fahoume, M.; Chraibi, F.; Ennaoui, A.

    1999-07-01

    Thin polycrystalline films of cadmium chalcogenides CdSe xTe 1-x ( 0 ≤ x ≤ 1) have been prepared by electrochemical plating on ITO (indium tin oxide) coated glass substrates from an acid sulfate solution at 90 °C. Structural, morphological and compositional studies of the deposited films are reported as a function of the x coefficient. XRD analysis shows that all deposits have a cubic structure with a preferred orientation along the (111) direction. The composition in the films is found to vary linearly with the composition in the solution. The increase in the selenium content x in the CdSe xTe 1-x films decreases the lattice constant and increases the band gap. Nevertheless this latter presents a minimum for x = 0.27.

  9. Hydrogen insertion in titanium carbide based thin films (nc-TiC{sub x}/a-C:H) - comparison with bulk TiC{sub x}

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Julien; Jaoul, Cédric, E-mail: jaoul@ensil.unilim.fr; Glandut, Nicolas; Lefort, Pierre

    2016-08-01

    Nanocomposites composed of titanium carbide nanosized grains embedded in an amorphous hydrogenated carbon matrix (nc-TiC{sub x}/a-C:H) are prepared by hybrid Magnetron Sputtering - PECVD process using a titanium metal target and gaseous C{sub 6}H{sub 6}. By controlling the benzene flow rate, thin films with different carbon content are obtained. The structures of nc-TiC{sub x}/a-C:H materials are analyzed by X-ray diffraction, X-ray photoelectron and Raman spectroscopic methods. The electrochemical hydrogen insertion, as studied by cyclic voltammetry, strongly depends on the carbon content in the thin films. The correlation between the hydrogen insertion ability and the structure of materials are discussed. Furthermore, we show that the hydrogen insertion in these thin films reaches values much more significant than in bulk substoichiometric titanium carbide obtained by reactive sintering. - Highlights: • nc-TiC{sub x}/a-C:H thin films are prepared hybrid Magnetron Sputtering - PECVD process. • Different carbon contents are obtained by changing the hydrocarbon flowrate. • Expanded lattice parameter of the TiC{sub x} phase and a-C:H phase are observed. • Electrochemical hydrogen insertion strongly depends on the carbon content. • The maximum insertion is 22 times more important than bulk TiC{sub x}.

  10. Infrared reflectance studies of hillock-like porous zinc oxide thin films

    International Nuclear Information System (INIS)

    Ching, C.G.; Lee, S.C.; Ng, S.S.; Hassan, Z.; Abu Hassan, H.

    2013-01-01

    We investigated the infrared (IR) reflectance characteristics of hillock-like porous zinc oxide (ZnO) thin films on silicon substrates. The IR reflectance spectra of the porous samples exhibited an extra resonance hump in the reststrahlen region of ZnO compared with the as-grown sample. Oscillation fringes with different behaviors were also observed in the non-reststrahlen region of ZnO. Standard multilayer optic technique was used with the effective medium theory to analyze the observations. Results showed that the porous ZnO layer consisted of several sublayers with different porosities and thicknesses. These findings were confirmed by scanning electron microscopy measurements. - Highlights: • Multilayer porous assumption qualitatively increased the overall spectra fitting. • IR reflectance is a sensitive method to probe the multilayer porous structure. • Hillock-like porous ZnO thin films fabricated using electrochemical etching method. • The thickness and porosity of the samples were determined. • Formation of extra resonance hump was due to splitting of reststrahlen band

  11. Effect of different solutions on electrochemical deposition of ZnO

    International Nuclear Information System (INIS)

    Asil, H.; Chinar, K.; Gur, E.; Tuzemen, S.

    2010-01-01

    ZnO thin films were grown by electrochemical deposition (ECD) onto indium tin oxide using different compounds such as Zn(NO 3 ) 2 , Zn(C 2 H 3 O 2 ) 2 , ZnCl 2 , Zn(ClO 4 ) 2 and different solvents such as dimethylsulfoxide (DMSO) and 18 M deionized water. Furthermore, solutions were prepared using different electrolytes and concentrations in order to determine the optimum deposition parameters of ZnO. All the grown films were characterized by X-ray diffraction, optical absorption and photoluminescence measurement techniques. It is indicated that films grown by using Zn(ClO 4 ) 2 show high crystallinity and optical quality. The X-ray diffraction analysis showed that ZnO thin films which were grown electrochemically in a non-aqueous solution (DMSO) prepared by Zn(ClO 4 ) 2 have highly c-axis preferential orientation. PL measurements showed that ZnO thin films grown in Zn(ClO 4 ) 2 indicates high quality emission characteristics compared to the thin films grown by other solutions

  12. Electrochemical preparation and characterization of CuInSe{sub 2} thin films for photovoltaic applications; Preparacion electroquimica y caracterizacion de laminas delgadas de CuInSe{sub 2} para aplicaciones fotovoltaicas

    Energy Technology Data Exchange (ETDEWEB)

    Guillen Arqueros, C

    1993-12-31

    The objective of this work has been to investigate the electrodeposition as a low-cost, large-area fabrication process to obtain CuInSe{sub 2} this films for efficient photovoltaic devices. this objective entails the elucidation of thin film deposition mechanism, the study of the fundamental properties of electrodeposited material, and also the modification of their physical and chemical parameters for photovoltaic applications. CuInSe{sub 2} thin films have been successfully electrodeposited from a citric was characterized by compositional, structural, electrical, optical and electrochemical measurements, relating their properties with the preparation parameters and also studying the effect of various thermal and chemical treatments. The results showed post-deposition treatment are needed for optimizing these films for solar cells fabrication: first, an annealing in inert atmosphere at temperatures above 400 degrees celsius to obtain a high recrystallization in the chalcopyrite structure, and after a chemical etching in KCN solution to remove secondary phases of Cu{sub x}Se and Se which are frequently electrodeposited with the CuInSe{sub 2}. The treated samples showed appropriate photovoltaic activity in a semiconductor-electrolite liquid junction. (author) 193 ref.

  13. Investigation of nanoporous platinum thin films fabricated by reactive sputtering: Application as micro-SOFC electrode

    Science.gov (United States)

    Jung, WooChul; Kim, Jae Jin; Tuller, Harry L.

    2015-02-01

    Highly porous Pt thin films, with nano-scale porosity, were fabricated by reactive sputtering. The strategy involved deposition of thin film PtOx at room temperature, followed by the subsequent decomposition of the oxide by rapid heat treatment. The resulting films exhibited percolating Pt networks infiltrated with interconnected nanosized pores, critical for superior solid oxide fuel cell cathode performance. This approach is particularly attractive for micro-fabricated solid oxide fuel cells, since it enables fabrication of the entire cell stack (anode/electrolyte/cathode) within the sputtering chamber, without breaking vacuum. In this work, the morphological, crystallographic and chemical properties of the porous electrode were systematically varied by control of deposition conditions. Oxygen reduction reaction kinetics were investigated by means of electrochemical impedance spectroscopy, demonstrating the critical role of nano-pores in achieving satisfactory micro-SOFC cathode performance.

  14. Characterizations of photoconductivity of graphene oxide thin films

    Directory of Open Access Journals (Sweden)

    Shiang-Kuo Chang-Jian

    2012-06-01

    Full Text Available Characterizations of photoresponse of a graphene oxide (GO thin film to a near infrared laser light were studied. Results showed the photocurrent in the GO thin film was cathodic, always flowing in an opposite direction to the initial current generated by the preset bias voltage that shows a fundamental discrepancy from the photocurrent in the reduced graphene oxide thin film. Light illumination on the GO thin film thus results in more free electrons that offset the initial current. By examining GO thin films reduced at different temperatures, the critical temperature for reversing the photocurrent from cathodic to anodic was found around 187°C. The dynamic photoresponse for the GO thin film was further characterized through the response time constants within the laser on and off durations, denoted as τon and τoff, respectively. τon for the GO thin film was comparable to the other carbon-based thin films such as carbon nanotubes and graphenes. τoff was, however, much larger than that of the other's. This discrepancy was attributable to the retardation of exciton recombination rate thanks to the existing oxygen functional groups and defects in the GO thin films.

  15. Electrodeposition of nanocrystalline CdSe thin films from dimethyl sulfoxide solution: Nucleation and growth mechanism, structural and optical studies

    International Nuclear Information System (INIS)

    Henriquez, R.; Badan, A.; Grez, P.; Munoz, E.; Vera, J.; Dalchiele, E.A.; Marotti, R.E.; Gomez, H.

    2011-01-01

    Highlights: → Electrodeposition of CdSe nanocrystalline semiconductor thin films. → Polycrystalline wurtzite structure with a slight (1010) preferred orientation. → Absorption edge shifts in the optical properties due to quantum confinement effects. - Abstract: Cadmium selenide (CdSe) nanocrystalline semiconductor thin films have been synthesized by electrodeposition at controlled potential based in the electrochemical reduction process of molecular selenium in dimethyl sulfoxide (DMSO) solution. The nucleation and growth mechanism of this process has been studied. The XRD pattern shows a characteristic polycrystalline hexagonal wurtzite structure with a slight (1 0 1 0) crystallographic preferred orientation. The crystallite size of nanocrystalline CdSe thin films can be simply controlled by the electrodeposition potential. A quantum size effect is deduced from the correlation between the band gap energy and the crystallite size.

  16. Electrochemical reactivity at graphitic micro-domains on polycrystalline boron doped diamond thin-films electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Mahe, E. [LI2C CNRS/UMR 7612, Laboratoire d' Electrochimie, Universite Pierre-et-Marie Curie - case courrier 51, 4, Place Jussieu, 75252 Paris Cedex 05 (France); Devilliers, D. [LI2C CNRS/UMR 7612, Laboratoire d' Electrochimie, Universite Pierre-et-Marie Curie - case courrier 51, 4, Place Jussieu, 75252 Paris Cedex 05 (France); Comninellis, Ch. [Unite de Genie Electrochimique, Institut de sciences des procedes chimiques et biologiques, Ecole Polytechnique Federale de Lausanne, 1015, Lausanne (Switzerland)

    2005-04-01

    This paper deals with the electrochemical reactivity of boron doped diamond (BDD) electrodes. A comparative study has been carried out to show the influence of the presence of graphitic micro-domains upon the surface of these films. Those graphitic domains are sometimes present on as-grown boron doped diamond electrodes. The effect of doping a pure Csp{sup 3} diamond electrode is established by highly oriented pyrolytic graphite (HOPG) abrasion onto the diamond surface. In order to establish the effect of doping on a pure Csp{sup 3} diamond electrode, the amount of graphitic domains was increased by means of HOPG crystals grafted onto the BDD surface. Indeed that method allows the enrichment of the Csp{sup 2} contribution of the electrode. The presence of graphitic domains can be correlatively associated with the presence of kinetically active redox sites. The electrochemical reactivity of boron doped diamond electrodes shows a distribution of kinetic constants on the whole surface of the electrode corresponding to different active sites. In this paper, we have studied by cyclic voltammetry and electrochemical impedance spectroscopy the kinetics parameters of the ferri/ferrocyanide redox couple in KCl electrolyte. A method is proposed to diagnose the presence of graphitic domains on diamond electrodes, and an electrochemical 'pulse cleaning' procedure is proposed to remove them.

  17. Differential reflectometry of thin film metal oxides on copper, tungsten, molybdenum and chromium

    International Nuclear Information System (INIS)

    Urban, F.K. III; Hummel, R.E.; Verink, E.D. Jr.

    1982-01-01

    A differential reflectometry study was undertaken to investigate the characteristics of thin oxide films on metal substrates. The oxides were produced by heating pure metals of copper, tungsten, molybdenum and chromium in dry oxygen. A new 'halfpolishing' technique was applied to obtain specimens with a step in oxide thickness in order to make them suitable for differential reflectometry. It was found that oxides formed this way yielded the same differential reflectograms as by electrochemical oxidation. A mathematical model involving the interaction of light with a thin corrosion product on metal substrates was applied to generate computer calculated differential reflectograms utilizing various optical constants and thicknesses of the assumed film. Three different thickness ranges have been identified. (a) For large film thicknesses, the differential reflectograms are distinguished by a sequence of interference peaks. (b) If the product of thickness and refraction index of the films is smaller than about 40 nm, no interference peaks are present. Any experimentally observed peaks in differential reflectograms of these films are caused entirely by electron interband transitions. (c) In an intermediate thickness range, superposition of interference and interband peaks are observed. (author)

  18. Electrochemical synthesis of poly(pyrrole-co-o-anisidine)/chitosan composite films

    Science.gov (United States)

    Yalçınkaya, Süleyman; Çakmak, Didem

    2017-05-01

    In this study, poly(pyrrole-co-o-anisidine)/chitosan composite films were electrochemically synthesized in various monomers feed ratio (pyrrole: o-anisidine; 9:1, 7:3, 1:1, 3:7 and 1:9) of pyrrole and o-anisidine on the platinum electrode. Electrochemical synthesis of the composite films was carried out via cyclic voltammetry technique. They were characterized by FT-IR, cyclic voltammetry, SEM micrographs, digital images, TGA and DSC techniques. The SEM results indicated that the particle size of the composite decreased with increasing o-anisidine ratio and the films became more likely to be smooth morphology. The TGA results proved that the film of the composite with 1:1 ratio showed highest final degradation temperature and lowest weight loss (83%) compared to copolymer and 9:1 1:9 composite films. The 1:1 composite film had higher thermal stability than copolymer and the other composite films (9:1 1:9). Meanwhile, electrochemical studies exhibited that the 1/9 composite film had good electrochemical stability as well.

  19. Nanostructured manganese oxide thin films as electrode material for supercapacitors

    Science.gov (United States)

    Xia, Hui; Lai, Man On; Lu, Li

    2011-01-01

    Electrochemical capacitors, also called supercapacitors, are alternative energy storage devices, particularly for applications requiring high power densities. Recently, manganese oxides have been extensively evaluated as electrode materials for supercapacitors due to their low cost, environmental benignity, and promising supercapacitive performance. In order to maximize the utilization of manganese oxides as the electrode material for the supercapacitors and improve their supercapacitive performance, the nanostructured manganese oxides have therefore been developed. This paper reviews the synthesis of the nanostructured manganese oxide thin films by different methods and the supercapacitive performance of different nanostructures.

  20. Development of neutron diffuse scattering analysis code by thin film and multilayer film

    International Nuclear Information System (INIS)

    Soyama, Kazuhiko

    2004-01-01

    To research surface structure of thin film and multilayer film by neutron, a neutron diffuse scattering analysis code using DWBA (Distorted-Wave Bron Approximation) principle was developed. Subjects using this code contain the surface and interface properties of solid/solid, solid/liquid, liquid/liquid and gas/liquid, and metal, magnetism and polymer thin film and biomembran. The roughness of surface and interface of substance shows fractal self-similarity and its analytical model is based on DWBA theory by Sinha. The surface and interface properties by diffuse scattering are investigated on the basis of the theoretical model. The calculation values are proved to be agreed with the experimental values. On neutron diffuse scattering by thin film, roughness of surface of thin film, correlation function, neutron propagation by thin film, diffuse scattering by DWBA theory, measurement model, SDIFFF (neutron diffuse scattering analysis program by thin film) and simulation results are explained. On neutron diffuse scattering by multilayer film, roughness of multilayer film, principle of diffuse scattering, measurement method and simulation examples by MDIFF (neutron diffuse scattering analysis program by multilayer film) are explained. (S.Y.)To research surface structure of thin film and multilayer film by neutron, a neutron diffuse scattering analysis code using DWBA (Distorted-Wave Bron Approximation) principle was developed. Subjects using this code contain the surface and interface properties of solid/solid, solid/liquid, liquid/liquid and gas/liquid, and metal, magnetism and polymer thin film and biomembran. The roughness of surface and interface of substance shows fractal self-similarity and its analytical model is based on DWBA theory by Sinha. The surface and interface properties by diffuse scattering are investigated on the basis of the theoretical model. The calculation values are proved to be agreed with the experimental values. On neutron diffuse scattering

  1. Spin coated versus dip coated electrochromic tungsten oxide films: Structure, morphology, optical and electrochemical properties

    International Nuclear Information System (INIS)

    Deepa, M.; Saxena, T.K.; Singh, D.P.; Sood, K.N.; Agnihotry, S.A.

    2006-01-01

    A sol-gel derived acetylated peroxotungstic acid sol encompassing 4 wt.% of oxalic acid dihydrate (OAD) has been employed for the deposition of tungsten oxide (WO 3 ) films by spin coating and dip coating techniques, in view of smart window applications. The morphological and structural evolution of the as-deposited spin and dip coated films as a function of annealing temperature (250 and 500 o C) has been examined and compared by Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM) and X-ray diffraction (XRD). A conspicuous feature of the dip coated film (annealed at 250 o C) is that its electrochromic and electrochemical properties ameliorate with cycling without degradation in contrast to the spin coated film for which these properties deteriorate under repetitive cycling. A comparative study of spin and dip coated nanostructured thin films (annealed at 250 o C) revealed a superior performance for the cycled dip coated film in terms of higher transmission modulation and coloration efficiency in solar and photopic regions, faster switching speed, higher electrochemical activity as well as charge storage capacity. While the dip coated film could endure 2500 color-bleach cycles, the spin coated film could sustain only a 1000 cycles. The better cycling stability of the dip coated film which is a repercussion of a balance between optimal water content, porosity and grain size hints at its potential for electrochromic window applications

  2. Electrodeposition of CdTe thin film from acetate-based ionic liquid bath

    Science.gov (United States)

    Waldiya, Manmohansingh; Bhagat, Dharini; Mukhopadhyay, Indrajit

    2018-05-01

    CdTe being a direct band gap semiconductor, is mostly used in photovoltaics. Here we present, the synthesis of CdTe thin film on fluorine doped tin oxide (FTO) substrate potentiostatically using 1-butyl-3-methylimidazolium acetate ([Bmim][Ac]) ionic liquid (IL) bath at 90 °C. Major advantages of using electrodeposition involves process simplicity, large scalability & economic viability. Some of the benefits offered by IL electrolytic bath are low vapour pressure, wide electrochemical window, and good ionic mobility. Cd(CH3COO)2 (anhydrous) and TeO2 were used as the source precursors. The IL electrolytic bath temperature was kept at 90 °C for deposition, owing to the limited solubility of TeO2 in [Bmim][Ac] IL at room temperature. Cathodic electrodeposition was carried out using a three electrode cell setup at a constant potential of -1.20 V vs. platinum (Pt) wire. The CdTe/FTO thin film were annealed in argon (Ar) atmosphere. Optical study of nanostructured CdTe film were done using UV-Vis-IR and Raman spectroscopy. Raman analysis confirms the formation of CdTe having surface optics (SO) mode at 160.6 cm-1 and transverse optics (TO) mode at 140.5 cm-1. Elemental Te peaks at 123, 140.5 and 268 cm-1 were also observed. The optical band gap of Ar annealed CdTe thin film were found to be 1.47 eV (absorbance band edge ˜ 846 nm). The optimization of deposition parameters using acetate-based IL electrolytic bath to get nearly stoichiometric CdTe thin film is currently being explored.

  3. Thin film tritium dosimetry

    Science.gov (United States)

    Moran, Paul R.

    1976-01-01

    The present invention provides a method for tritium dosimetry. A dosimeter comprising a thin film of a material having relatively sensitive RITAC-RITAP dosimetry properties is exposed to radiation from tritium, and after the dosimeter has been removed from the source of the radiation, the low energy electron dose deposited in the thin film is determined by radiation-induced, thermally-activated polarization dosimetry techniques.

  4. Structural evolution of bias sputtered LiNi0.5Mn1.5O4 thin film cathodes for lithium ion batteries

    International Nuclear Information System (INIS)

    Su, Shih-Hsuan; Chiu, Kuo-Feng; Leu, Hoang-Jyh

    2014-01-01

    LiNi 0.5 Mn 1.5 O 4 (LNMO) thin films have been deposited on stainless steel substrates using radio frequency (f = 13.56 MHz) magnetron sputtering, followed by thermal annealing in ambient atmosphere. Various negative biases were applied on the substrates during deposition. The structural evolution of LNMO thin films under different negative biases has been investigated and characterized by X-ray diffraction. All of the deposited films exhibit a crystalline spinel structure with a space group of Fd-3m, which is a so-called disordered phase. The results also indicate that particle size decreases with increasing negative bias. The electrochemical properties of the LNMO thin films as cathode materials for lithium ion batteries were investigated. Two distinctive voltage plateaus at ∼ 4.7 V and at ∼ 4.0 V (vs. Li + /Li) can be observed in the discharge curves, corresponding to the reactions of the disordered phase. The capacity of LNMO thin film electrodes under suitable negative bias can be optimized. - Highlights: • LiNi 0.5 Mn 1.5 O 4 thin films have been deposited on stainless steel substrates. • Various negative biases were applied on the substrates during deposition. • The particle sizes of LNMO thin films decrease with increasing negative bias

  5. In Situ Characterization of Ni and Ni/Fe Thin Film Electrodes for Oxygen Evolution in Alkaline Media by a Raman-Coupled Scanning Electrochemical Microscope Setup.

    Science.gov (United States)

    Steimecke, Matthias; Seiffarth, Gerda; Bron, Michael

    2017-10-17

    We present a spectroelectrochemical setup, in which Raman microscopy is combined with scanning electrochemical microscopy (SECM) in order to provide both spectroscopic and electrochemical information on the very same location of an electrode at the same time. The setup is applied to a subject of high academic and practical interest, namely, the oxygen evolution reaction at Ni and Ni/Fe electrodes. It comprises a transparent substrate electrode, onto which Ni and Ni/Fe thin films are deposited. An ultramicroelectrode (UME) is placed closely above the substrate to obtain electrochemical information, while a Raman microscope probes the same sample spot from below. To obtain information on oxygen evolution activity and structural changes, increasingly positive potentials from 0.1 up to 0.7 V vs Hg|HgO|1 M KOH were applied to the Ni/Fe-electrodes in 0.1 M KOH solution. Evolved oxygen is detected by reduction at a Pt UME, allowing for the determination of onset potentials, while the substrate current, which is recorded in parallel, is due to both overlapping oxygen evolution and the oxidation of Ni(OH) 2 to NiOOH. An optimum of 15% Fe in Ni/Fe films with respect to oxygen evolution activity was determined. At the same time, the potential-dependent formation of γ-NiOOH characterized by the Raman double band at 475 and 557 cm -1 allows for the conclusion that a certain amount of disorder introduced by Fe atoms is necessary to obtain high oxygen evolution reaction (OER) activity.

  6. Thin films for emerging applications v.16

    CERN Document Server

    Francombe, Maurice H

    1992-01-01

    Following in the long-standing tradition of excellence established by this serial, this volume provides a focused look at contemporary applications. High Tc superconducting thin films are discussed in terms of ion beam and sputtering deposition, vacuum evaporation, laser ablation, MOCVD, and other deposition processes in addition to their ultimate applications. Detailed treatment is also given to permanent magnet thin films, lateral diffusion and electromigration in metallic thin films, and fracture and cracking phenomena in thin films adhering to high-elongation substrates.

  7. Electrochemical reactivity of Co-Li2S nanocomposite for lithium-ion batteries

    International Nuclear Information System (INIS)

    Zhou, Yongning; Wu, Changliang; Zhang, Hua; Wu, Xiaojing; Fu, Zhengwen

    2007-01-01

    The fabrication of Co-Li 2 S nanocomposite thin film is reported by pulsed laser deposition (PLD) for the first time. Li 2 S-Co nanocomposite thin film is used as storing Li electrodes that have led to promising electrochemical activity and good electrochemical performance. The releasing Li process from the as-deposited Li 2 S-Co nanocomposite thin films is confirmed by the ex situ high resolution transmission electron microscopy (HR-TEM) and selected area electron diffraction (SAED) measurements and may come from the decomposition of Li 2 S with and without the interaction of metal Co into CoS 2 and S. The electrochemical reaction mechanism of Co-Li 2 S nanocomposite film electrode involving both the formation and decomposition of Li 2 S and the lithium extraction/insertion of CoS 2 after the initial charging process is proposed. Our results demonstrate the advantages of using Co-Li 2 S nanocomposite in storage lithium materials

  8. Interfaces and thin films physics

    International Nuclear Information System (INIS)

    Equer, B.

    1988-01-01

    The 1988 progress report of the Interfaces and Thin Film Physics laboratory (Polytechnic School France) is presented. The research program is focused on the thin films and on the interfaces of the amorphous semiconductor materials: silicon and silicon germanium, silicon-carbon and silicon-nitrogen alloys. In particular, the following topics are discussed: the basic processes and the kinetics of the reactive gas deposition, the amorphous materials manufacturing, the physico-chemical characterization of thin films and interfaces and the electron transport in amorphous semiconductors. The construction and optimization of experimental devices, as well as the activities concerning instrumentation, are also described [fr

  9. Buckling of Thin Films in Nano-Scale

    Directory of Open Access Journals (Sweden)

    Li L.A.

    2010-06-01

    Full Text Available Investigation of thin film buckling is important for life prediction of MEMS device which are damaged mainly by the delamination and buckling of thin films. In this paper the mechanical and thermal properties of compressed thin film titanium films with 150 nm thickness deposited on an organic glass substrate under mechanical and thermal loads were measured and characterized. In order to simulate the thin films which subjected to compound loads and the buckle modes the external uniaxial compression and thermal loading were subjected to the specimen by the symmetric loading device and the electrical film in this experiment. The temperature of the thin film deposited on substrate was measured using thermoelectric couple. The range of temperature accords with the temperature range of the MEMS. It is found that the size and number of the delamination and buckling of the film are depended upon the pre-fixed mechanical loading and thermal temperature. The thermal transient conduction and thermal stability of the film and substrate was studied with finite element method.

  10. Mesoporous tin-doped indium oxide thin films: effect of mesostructure on electrical conductivity

    Directory of Open Access Journals (Sweden)

    Till von Graberg, Pascal Hartmann, Alexander Rein, Silvia Gross, Britta Seelandt, Cornelia Röger, Roman Zieba, Alexander Traut, Michael Wark, Jürgen Janek and Bernd M Smarsly

    2011-01-01

    Full Text Available We present a versatile method for the preparation of mesoporous tin-doped indium oxide (ITO thin films via dip-coating. Two poly(isobutylene-b-poly(ethyleneoxide (PIB-PEO copolymers of significantly different molecular weight (denoted as PIB-PEO 3000 and PIB-PEO 20000 are used as templates and are compared with non-templated films to clarify the effect of the template size on the crystallization and, thus, on the electrochemical properties of mesoporous ITO films. Transparent, mesoporous, conductive coatings are obtained after annealing at 500 °C; these coatings have a specific resistance of 0.5 Ω cm at a thickness of about 100 nm. Electrical conductivity is improved by one order of magnitude by annealing under a reducing atmosphere. The two types of PIB-PEO block copolymers create mesopores with in-plane diameters of 20–25 and 35–45 nm, the latter also possessing correspondingly thicker pore walls. Impedance measurements reveal that the conductivity is significantly higher for films prepared with the template generating larger mesopores. Because of the same size of the primary nanoparticles, the enhanced conductivity is attributed to a higher conduction path cross section. Prussian blue was deposited electrochemically within the films, thus confirming the accessibility of their pores and their functionality as electrode material.

  11. Operating method of amorphous thin film semiconductor element

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Koshiro; Ono, Masaharu; Hanabusa, Akira; Osawa, Michio; Arita, Takashi

    1988-05-31

    The existing technologies concerning amorphous thin film semiconductor elements are the technologies concerning the formation of either a thin film transistor or an amorphous Si solar cell on a substrate. In order to drive a thin film transistor for electronic equipment control by the output power of an amorphous Si solar cell, it has been obliged to drive the transistor weth an amorphous solar cell which was formed on a substrate different from that for the transistor. Accordingly, the space for the amorphous solar cell, which was formed on the different substrate, was additionally needed on the substrate for the thin film transistor. In order to solve the above problem, this invention proposes an operating method of an amorphous thin film semiconductor element that after forming an amorphous Si solar cell through lamination on the insulation coating film which covers the thin film transistor formed on the substrate, the thin film transistor is driven by the output power of this solar cell. The invention eliminates the above superfluous space and reduces the size of the amorphous thin film semiconductor element including the electric source. (3 figs)

  12. Surface microstructures and corrosion resistance of Ni-Ti-Nb shape memory thin films

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kun [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Beijing Key Laboratory for Advanced Functional Materials and Thin Film Technology, Beihang University, Beijing 100191 (China); Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST (United Kingdom); Li, Yan, E-mail: liyan@buaa.edu.cn [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Beijing Key Laboratory for Advanced Functional Materials and Thin Film Technology, Beihang University, Beijing 100191 (China); Huang, Xu [Memry Corporation, Bethel, CT 06801 (United States); Gibson, Des [Institute of Thin Films, Sensors & Imaging, Scottish Universities Physics Alliance, University of the West of Scotland, Paisley PA1 2BE (United Kingdom); Zheng, Yang; Liu, Jiao; Sun, Lu [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Beijing Key Laboratory for Advanced Functional Materials and Thin Film Technology, Beihang University, Beijing 100191 (China); Fu, Yong Qing, E-mail: richard.fu@northumbria.ac.uk [Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne NE1 8ST (United Kingdom)

    2017-08-31

    Highlights: • The corrosion resistance of Ni-Ti-Nb shape memory thin films is investigated. • Modified surface oxide layers improve the corrosion resistance of Ni-Ti-Nb films. • Further Nb additions reduce the potential corrosion tendency of the films. - Abstract: Ni-Ti-Nb and Ni-Ti shape memory thin films were sputter-deposited onto silicon substrates and annealed at 600 °C for crystallization. X-ray diffraction (XRD) measurements indicated that all of the annealed Ni-Ti-Nb films were composed of crystalline Ni-Ti (Nb) and Nb-rich grains. X-ray photoelectron spectroscopy (XPS) tests showed that the surfaces of Ni-Ti-Nb films were covered with Ti oxides, NiO and Nb{sub 2}O{sub 5}. The corrosion resistance of the Ni-Ti-Nb films in 3.5 wt.% NaCl solution was investigated using electrochemical tests such as open-circuit potential (OCP) and potentio-dynamic polarization tests. Ni-Ti-Nb films showed higher OCPs, higher corrosion potentials (E{sub corr}) and lower corrosion current densities (i{sub corr}) than the binary Ni-Ti film, which indicated a better corrosion resistance. The reason may be that Nb additions modified the passive layer on the film surface. The OCPs of Ni-Ti-Nb films increased with further Nb additions, whereas no apparent difference of E{sub corr} and i{sub corr} was found among the Ni-Ti-Nb films.

  13. Layer-by-Layer films based on biopolymers extracted from red seaweeds and polyaniline for applications in electrochemical sensors of chromium VI

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira Farias, Emanuel Airton de; Corrêa dos Santos, Marianne; Araujo Dionísio, Natália de; Quelemes, Patrick V.; Souza Almeida Leite, José Roberto de [Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, CMRV, UFPI, Parnaíba, PI 64202-020 (Brazil); Eaton, Peter [UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto (Portugal); Alves da Silva, Durcilene [Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, CMRV, UFPI, Parnaíba, PI 64202-020 (Brazil); Eiras, Carla, E-mail: eiras@cnpq.br [Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, CMRV, UFPI, Parnaíba, PI 64202-020 (Brazil); Laboratório Interdisciplinar de Materiais Avançados, LIMAV, CCN, UFPI, Teresina, PI 64049-550 (Brazil)

    2015-10-15

    Graphical abstract: - Highlights: • LbL films based on PANI and polysaccharides of seaweeds were produced and applied sensors of Cr (VI). - Abstract: This paper proposes a new application for natural polysaccharides (agar and carrageenan), both extracted from the cell wall of red seaweeds. Thin films were prepared by the Layer-by-Layer (LbL) self-assembly technique onto ITO (tin-doped indium oxide), where the polysaccharides of interest were deposited in layers alternating with polyaniline (PANI). The films developed were characterized by cyclic voltammetry (CV), ultraviolet–visible spectroscopy (UV–vis) and atomic force microscopy (AFM). Results showed the presence of agar as well as carrageenan, which improves the electrochemical stability of the conducting polymer in an acid medium. The interactions at the molecular level between PANI and the biopolymers affected the most appropriate sequence of deposition as employed in the process of material immobilization and also influenced the resulting morphology. Among the films studied, the most promising system as regards electrochemical measurements was the ITO/agar/PANI system, which was subsequently employed in the electrochemical detection of chromium (VI)

  14. Layer-by-Layer films based on biopolymers extracted from red seaweeds and polyaniline for applications in electrochemical sensors of chromium VI

    International Nuclear Information System (INIS)

    Oliveira Farias, Emanuel Airton de; Corrêa dos Santos, Marianne; Araujo Dionísio, Natália de; Quelemes, Patrick V.; Souza Almeida Leite, José Roberto de; Eaton, Peter; Alves da Silva, Durcilene; Eiras, Carla

    2015-01-01

    Graphical abstract: - Highlights: • LbL films based on PANI and polysaccharides of seaweeds were produced and applied sensors of Cr (VI). - Abstract: This paper proposes a new application for natural polysaccharides (agar and carrageenan), both extracted from the cell wall of red seaweeds. Thin films were prepared by the Layer-by-Layer (LbL) self-assembly technique onto ITO (tin-doped indium oxide), where the polysaccharides of interest were deposited in layers alternating with polyaniline (PANI). The films developed were characterized by cyclic voltammetry (CV), ultraviolet–visible spectroscopy (UV–vis) and atomic force microscopy (AFM). Results showed the presence of agar as well as carrageenan, which improves the electrochemical stability of the conducting polymer in an acid medium. The interactions at the molecular level between PANI and the biopolymers affected the most appropriate sequence of deposition as employed in the process of material immobilization and also influenced the resulting morphology. Among the films studied, the most promising system as regards electrochemical measurements was the ITO/agar/PANI system, which was subsequently employed in the electrochemical detection of chromium (VI)

  15. Temperature dependence of LRE-HRE-TM thin films

    Science.gov (United States)

    Li, Zuoyi; Cheng, Xiaomin; Lin, Gengqi; Li, Zhen; Huang, Zhixin; Jin, Fang; Wang, Xianran; Yang, Xiaofei

    2003-04-01

    Temperature dependence of the properties of RE-TM thin films is very important for MO recording. In this paper, we studied the temperature dependence of the magnetic and magneto-optical properties of the amorphous LRE-HRE-TM single layer thin films and LRE-HRE-TM/HRE-TM couple-bilayered thin films. For LRE-HRE-TM single layer thin films, the temperature dependence of the magnetization was investigated by using the mean field theory. The experimental and theoretical results matched very well. With the LRE substitution in HRE-TM thin film, the compensation temperature Tcomp decreased and the curie temperature Tc remained unchanged. Kerr rotation angle became larger and the saturation magnetization Ms at room temperature increased. For LRE-HRE-TM/HRE-TM couple-bilayered thin films, comparisons of the temperature dependences of the coercivities and Kerr rotation angles were made between isolated sublayers and couple-bilayered thin film.

  16. Compositionally graded SiCu thin film anode by magnetron sputtering for lithium ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Polat, B.D., E-mail: bpolat@itu.edu.tr [Department of Metallurgical and Materials Engineering, Istanbul Technical University, Maslak, Istanbul 34469 (Turkey); Eryilmaz, O.L. [Energy Systems Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Keleş, O., E-mail: ozgulkeles@itu.edu.tr [Department of Metallurgical and Materials Engineering, Istanbul Technical University, Maslak, Istanbul 34469 (Turkey); Erdemir, A. [Energy Systems Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Amine, K. [Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2015-12-01

    Compositionally graded and non-graded composite SiCu thin films were deposited by magnetron sputtering technique on Cu disks for investigation of their potentials in lithium ion battery applications. The compositionally graded thin film electrodes with 30 at.% Cu delivered a 1400 mAh g{sup −1} capacity with 80% Coulombic efficiency in the first cycle and still retained its capacity at around 600 mAh g{sup −1} (with 99.9% Coulombic efficiency) even after 100 cycles. On the other hand, the non-graded thin film electrodes with 30 at.% Cu exhibited 1100 mAh g{sup −1} as the first discharge capacity with 78% Coulombic efficiency but the cycle life of this film degraded very quickly, delivering only 250 mAh g{sup −1} capacity after 100th cycles. Not only the Cu content but also the graded film thickness were believed to be the main contributors to the much superior performance of the compositionally graded SiCu films. We also believe that the Cu-rich region of the graded film helped reduce internal stress build-up and thus prevented film delamination during cycling. In particular, the decrease of Cu content from interface region to the top of the coating reduced the possibility of stress build-up across the film during cycling, thus leading to a high electrochemical performance.b - Highlights: • Highly adherent SiCu films are deposited by magnetron sputtering. • Compositionally graded SiCu film is produced and characterized. • Decrease of Cu content diverted the propagation of stress in the anode. • Cu rich layer at the bottom improves the adherence of the film.

  17. Applications of Silver Nanowires on Transparent Conducting Film and Electrode of Electrochemical Capacitor

    Directory of Open Access Journals (Sweden)

    Yuan-Jun Song

    2014-01-01

    Full Text Available Silver nanowire has potential applications on transparent conducting film and electrode of electrochemical capacitor due to its excellent conductivity. Transparent conducting film (G-film was prepared by coating silver nanowires on glass substrate using Meyer rod method, which exhibited better performance than carbon nanotube and graphene. The conductivity of G-film can be improved by increasing sintering temperature. Electrode of electrochemical capacitor (I-film was fabricated through the same method with G-film on indium tin oxide (ITO. CV curves of I-film under different scanning rates had obvious redox peaks, which indicated that I-film exhibited excellent electrochemical pseudocapacitance performance and good reversibility during charge/discharge process. In addition, the specific capacitance of I-film was measured by galvanostatic charge/discharge experiments, indicating that I-film exhibits high special capacitance and excellent electrochemical stability.

  18. Preparation and impedance characterization of all-solid-state thin film battery systems

    OpenAIRE

    Schichtel, Patrick

    2018-01-01

    In this thesis the behavior and properties of solid-state batteries based on multiple electrodes are analysed. For this purpose thin film systems of the relevant materials are prepared to achieve model system for more detailed analysis of the material specific properties. The characterisation of the systems is carried out with typical physical and electrochemical methods and especially using impedance spectroscopy. The first material analysed in this thesis is Li4Ti5O12 which was recognize...

  19. Electrical insulation properties of RF-sputtered LiPON layers towards electrochemical stability of lithium batteries

    OpenAIRE

    Vieira, E. M. F.; Ribeiro, J. F.; Silva, Maria Manuela; Barradas, N. P.; Alves, E.; Alves, A.; Correia, M. R.; Gonçalves, L. M.

    2016-01-01

    Electrochemical stability, moderate ionic conductivity and low electronic conductivity make the lithium phosphorous oxynitride (LiPON) electrolyte suitable for micro and nanoscale lithium batteries. The electrical and electrochemical properties of thin-film electrolytes can seriously compromise full battery performance. Here, radio-frequency (RF)-sputtered LiPON thin films were fabricated in nitrogen plasma under different working pressure conditions. With a slight decrease in ...

  20. Comparative evaluation of corrosion behaviour of type K thin film thermocouple and its bulk counterpart

    International Nuclear Information System (INIS)

    Mukherjee, S.K.; Barhai, P.K.; Srikanth, S.

    2011-01-01

    Highlights: → Anodic vacuum arc deposited chromel and alumel films are more 'noble' in 5% NaCl solution than their respective wires. → Chromel undergoes localised corrosion while alumel shows uniform corrosion. → Virgin samples of chromel-alumel TFTCs exhibit good thermoelectric response. → Their thermoelectric outputs remain largely unaffected when shelved under normal atmospheric conditions. → After 288 h of exposure in salt spray environment, their thermoelectric outputs show noticeable change due to size effects. - Abstract: This paper investigates the corrosion behaviour of type K thermoelements and their thin films, and compares the performance of chromel-alumel thin film thermocouple with its wire counterpart before and after exposure to 5% NaCl medium. Potentiodynamic polarisation tests reveal that chromel and alumel films are more 'noble' than their respective wires. Alumel corrodes faster when coupled with chromel in films than as wires. Secondary electron micrographs and electrochemical impedance spectroscopy measurements suggest that chromel shows localised corrosion while alumel undergoes uniform corrosion. Corrosion adversely affects the thermocouple output and introduces an uncertainty in the measurement.

  1. Lithium intercalation in sputter deposited antimony-doped tin oxide thin films: Evidence from electrochemical and optical measurements

    Energy Technology Data Exchange (ETDEWEB)

    Montero, J., E-mail: jose.montero@angstrom.uu.se; Granqvist, C. G.; Niklasson, G. A. [Department of Engineering Sciences, The A°ngström Laboratory, Uppsala University, P.O. Box 534, SE-751 21 Uppsala (Sweden); Guillén, C.; Herrero, J. [Department of Energy, Ciemat, Avda. Complutense 40, Ed. 42, E-28040 Madrid (Spain)

    2014-04-21

    Transparent conducting oxides are used as transparent electrical contacts in a variety of applications, including in electrochromic smart windows. In the present work, we performed a study of transparent conducting antimony-doped tin oxide (ATO) thin films by chronopotentiometry in a Li{sup +}-containing electrolyte. The open circuit potential vs. Li was used to investigate ATO band lineups, such as those of the Fermi level and the ionization potential, as well as the dependence of these lineups on the preparation conditions for ATO. Evidence was found for Li{sup +} intercalation when a current pulse was set in a way so as to drive ions from the electrolyte into the ATO lattice. Galvanostatic intermittent titration was then applied to determine the lithium diffusion coefficient within the ATO lattice. The electrochemical density of states of the conducting oxide was studied by means of the transient voltage recorded during the chronopotentiometry experiments. These measurements were possible because, as Li{sup +} intercalation took place, charge compensating electrons filled the lowest part of the conduction band in ATO. Furthermore, the charge insertion modified the optical properties of ATO according to the Drude model.

  2. The Effects of Film Thickness and Evaporation Rate on Si-Cu Thin Films for Lithium Ion Batteries.

    Science.gov (United States)

    Polat, B Deniz; Keles, Ozgul

    2015-12-01

    The reversible cyclability of Si based composite anodes is greatly improved by optimizing the atomic ratio of Si/Cu, the thickness and the evaporation rates of films fabricated by electron beam deposition method. The galvanostatic test results show that 500 nm thick flim, having 10%at. Cu-90%at. Si, deposited with a moderate evaporation rate (10 and 0.9 Å/s for Si and Cu respectively) delivers 2642.37 mAh g(-1) as the first discharge capacity with 76% Coulombic efficiency. 99% of its initial capacity is retained after 20 cycles. The electron conductive pathway and high mechanical tolerance induced by Cu atoms, the low electrical resistivity of the film due to Cu3Si particles, and the homogeneously distributed nano-sized/amorphous particles in the composite thin film could explain this outstanding electrochemical performance of the anode.

  3. Application-related properties of giant magnetostrictive thin films

    International Nuclear Information System (INIS)

    Lim, S.H.; Kim, H.J.; Na, S.M.; Suh, S.J.

    2002-01-01

    In an effort to facilitate the utilization of giant magnetostrictive thin films in microdevices, application-related properties of these thin films, which include induced anisotropy, residual stress and corrosion properties, are investigated. A large induced anisotropy with an energy of 6x10 4 J/m 3 is formed in field-sputtered amorphous Sm-Fe-B thin films, resulting in a large magnetostriction anisotropy. Two components of residual stress, intrinsic compressive stress and tensile stress due to the difference of the thermal expansion coefficients between the substrate and thin film, are identified. The variation of residual stress with fabrication parameter and annealing temperature, and its influence on mechanical bending and magnetic properties are examined. Better corrosion properties are observed in Sm-Fe thin films than in Tb-Fe. Corrosion properties of Tb-Fe thin films, however, are much improved with the introduction of nitrogen to the thin films without deteriorating magnetostrictive properties

  4. Controllable Electrochemical Activities by Oxidative Treatment toward Inner-Sphere Redox Systems at N-Doped Hydrogenated Amorphous Carbon Films

    Directory of Open Access Journals (Sweden)

    Yoriko Tanaka

    2012-01-01

    Full Text Available The electrochemical activity of the surface of Nitrogen-doped hydrogenated amorphous carbon thin films (a-CNH, N-doped DLC toward the inner sphere redox species is controllable by modifying the surface termination. At the oxygen plasma treated N-doped DLC surface (O-DLC, the surface functional groups containing carbon doubly bonded to oxygen (C=O, which improves adsorption of polar molecules, were generated. By oxidative treatment, the electron-transfer rate for dopamine (DA positively charged inner-sphere redox analyte could be improved at the N-doped DLC surface. For redox reaction of 2,4-dichlorophenol, which induces an inevitable fouling of the anode surface by forming passivating films, the DLC surfaces exhibited remarkably higher stability and reproducibility of the electrode performance. This is due to the electrochemical decomposition of the passive films without the interference of oxygen evolution by applying higher potential. The N-doped DLC film can offer benefits as the polarizable electrode surface with the higher reactivity and higher stability toward inner-sphere redox species. By making use of these controllable electrochemical reactivity at the O-DLC surface, the selective detection of DA in the mixed solution of DA and uric acid could be achieved.

  5. Interfacial passivation of CdS layer to CdSe quantum dots-sensitized electrodeposited ZnO nanowire thin films

    International Nuclear Information System (INIS)

    Zhang, Jingbo; Sun, Chuanzhen; Bai, Shouli; Luo, Ruixian; Chen, Aifan; Sun, Lina; Lin, Yuan

    2013-01-01

    ZnO porous thin films with nanowire structure were deposited by the one-step electrochemical deposition method. And a CdS layer was coated on the as-deposited ZnO nanowire thin films by successive ionic layer adsorption and reaction (SILAR) method to passivate surface states. Then the films were further sensitized by CdSe quantum dots (QDs) to serve as a photoanode for fabricating quantum dots-sensitized solar cells (QDSSCs). The effect of the CdS interfacial passivation layer on the performance of the QDSSCs was systematically investigated by varying the SILAR cycle number and heating the passivation layer. The amorphous CdS layer with an optimized thickness can effectively suppress the recombination of the injected electrons with holes on QDs and the redox electrolyte. The newly formed CdS layer on the surface of the ZnO nanowire thin film obviously prolongs the electron lifetime in the passivated ZnO nanoporous thin film because of the lower surface trap density in the ZnO nanowires after CdS deposition, which is favorable to the higher short-circuit photocurrent density (J sc ). For the CdSe QDs-sensitized ZnO nanoporous thin film with the interfacial passivation layer, the J sc and conversion efficiency can reach a maximum of 8.36 mA cm −2 and 2.36%, respectively. The conversion efficiency was improved by 83.47% compared with that of the cell based on the CdSe QDs-sensitized ZnO nanoporous thin film without CdS interfacial passivation (0.39%)

  6. P-type CuxS thin films: Integration in a thin film transistor structure

    International Nuclear Information System (INIS)

    Nunes de Carvalho, C.; Parreira, P.; Lavareda, G.; Brogueira, P.; Amaral, A.

    2013-01-01

    Cu x S thin films, 80 nm thick, are deposited by vacuum thermal evaporation of sulfur-rich powder mixture, Cu 2 S:S (50:50 wt.%) with no intentional heating of the substrate. The process of deposition occurs at very low deposition rates (0.1–0.3 nm/s) to avoid the formation of Cu or S-rich films. The evolution of Cu x S films surface properties (morphology/roughness) under post deposition mild annealing in air at 270 °C and their integration in a thin film transistor (TFT) are the main objectives of this study. Accordingly, Scanning Electron Microscopy studies show Cu x S films with different surface morphologies, depending on the post deposition annealing conditions. For the shortest annealing time, the Cu x S films look to be constructed of grains with large dimension at the surface (approximately 100 nm) and consequently, irregular shape. For the longest annealing time, films with a fine-grained surface are found, with some randomly distributed large particles bound to this fine-grained surface. Atomic Force Microscopy results indicate an increase of the root-mean-square roughness of Cu x S surface with annealing time, from 13.6 up to 37.4 nm, for 255 and 345 s, respectively. The preliminary integration of Cu x S films in a TFT bottom-gate type structure allowed the study of the feasibility and compatibility of this material with the remaining stages of a TFT fabrication as well as the determination of the p-type characteristic of the Cu x S material. - Highlights: • Surface properties of annealed Cu x S films. • Variation of conductivity with annealing temperatures of Cu x S films. • Application of evaporated Cu x S films in a thin film transistor (TFT) structure. • Determination of Cu x S p-type characteristic from TFT behaviour

  7. Semiconductor-nanocrystal/conjugated polymer thin films

    Science.gov (United States)

    Alivisatos, A. Paul; Dittmer, Janke J.; Huynh, Wendy U.; Milliron, Delia

    2014-06-17

    The invention described herein provides for thin films and methods of making comprising inorganic semiconductor-nanocrystals dispersed in semiconducting-polymers in high loading amounts. The invention also describes photovoltaic devices incorporating the thin films.

  8. Chemically fabricated LiFePO{sub 4} thin film electrode for transparent batteries and electrochromic devices

    Energy Technology Data Exchange (ETDEWEB)

    Béléké, Alexis B. [Institut de recherche d’Hydro-Québec, 1800 Boul. Lionel-Boulet, Varennes, QC J3X 1S3 (Canada); Department of Mining and Materials Engineering, McGill University, M.H. Wong Building, 3610 rue University, Montréal, QC H3A 2B2 (Canada); Faure, Cyril [Institut de recherche d’Hydro-Québec, 1800 Boul. Lionel-Boulet, Varennes, QC J3X 1S3 (Canada); Röder, Manuel [Center for Applied Electrochemistry, Fraunhofer Institute for Silicate Research, Neunerplatz 2, 97083 Würzburg (Germany); Hovington, Pierre [Institut de recherche d’Hydro-Québec, 1800 Boul. Lionel-Boulet, Varennes, QC J3X 1S3 (Canada); Posset, Uwe [Center for Applied Electrochemistry, Fraunhofer Institute for Silicate Research, Neunerplatz 2, 97083 Würzburg (Germany); Guerfi, Abdelbast [Institut de recherche d’Hydro-Québec, 1800 Boul. Lionel-Boulet, Varennes, QC J3X 1S3 (Canada); Zaghib, Karim, E-mail: zaghib.karim@ireq.ca [Institut de recherche d’Hydro-Québec, 1800 Boul. Lionel-Boulet, Varennes, QC J3X 1S3 (Canada)

    2016-12-15

    Graphical abstract: Simplified diagram of the novel sol-gel approach of preparation of colorless and transparent LiFePO{sub 4} thin film electrode. - Highlights: • Novel sol-gel synthesis of colorless LFP thin film electrode for transparent Li-ion battery. • High performance of the electrode at various current densities: 5, 10, 20, 50 and 100 μA/cm{sup 2}. • LFP nanoparticles exhibit an excellent electro-activity. • Colorless LFP thin film shows a transmittance above 80% versus FTO. • Higher transmittance of LFP electrode a potential candidate for electrochromic devices. - Abstract: We report a new sol-gel approach of synthesis of LiFePO{sub 4} (LFP) thin film and its application as cathode materials for transparent Li-ion battery in half-cell configuration. LFP thin films were obtained from an alcoholic colloidal suspension of iron acetylacetonate (Fe(AcAc){sub 3}) and aqueous lithium dihydrogen phosphate (LiH{sub 2}PO{sub 4}) deposited on fluorine tin oxide (FTO) glass substrate, followed by heating at 450 °C under nitrogen gas for 1 h. X-ray diffraction (XRD) confirmed that the LFP films have an orthorhombic crystal system with space group Pnma (62). Scanning electron microscopy (SEM) shows spherical LFP nanoparticles aggregates homogenously deposited all over the surface of FTO substrate containing 3-D open pores. The electrochemical behaviors of thin film vs Li/Li{sup +} cell were investigated by cyclic voltammetry and galvanostatic charge-discharge measurements. The cycle life was evaluated by running 1000 cycles of charge-discharge at a current density of 20 μA/cm{sup 2}. The transmission spectra reveal 85–90% of transparency versus FTO as reference, which makes it a potential candidate as a complementary electrode in electrochromic devices (ECDs).

  9. Electrochemical performance of graphene-polyethylenedioxythiophene nanocomposites

    International Nuclear Information System (INIS)

    Chen, Yan; Xu, Jianhua; Mao, Yunwu; Yang, Yajie; Yang, Wenyao; Li, Shibin

    2013-01-01

    Highlights: • A facile vapor-phase polymerization method is used to deposit PEDOT on graphene. • The graphene-PEDOT composite films exhibit better capacitive retention capability. • This simple technique has been developed to produce highly ordered thin films. -- Abstract: We propose a facile vapor-phase polymerization (VPP) method used to deposit graphene (G)-polyethylene dioxythiophene (PEDOT) nanocomposite film for electrode materials of electrochemical capacitor. This type of conductive polymer nanocomposite improves the performance of electrochemical capacitor. The specific discharge capacitance of G-PEDOT film is higher than that of pure PEDOT electrode. The G-PEDOT electrode also exhibits better capacitive retention capability after 1000 charge–discharge cycles

  10. Thin liquid films dewetting and polymer flow

    CERN Document Server

    Blossey, Ralf

    2012-01-01

    This book is a treatise on the thermodynamic and dynamic properties of thin liquid films at solid surfaces and, in particular, their rupture instabilities. For the quantitative study of these phenomena, polymer thin films haven proven to be an invaluable experimental model system.   What is it that makes thin film instabilities special and interesting, warranting a whole book? There are several answers to this. Firstly, thin polymeric films have an important range of applications, and with the increase in the number of technologies available to produce and to study them, this range is likely to expand. An understanding of their instabilities is therefore of practical relevance for the design of such films.   Secondly, thin liquid films are an interdisciplinary research topic. Interdisciplinary research is surely not an end to itself, but in this case it leads to a fairly heterogeneous community of theoretical and experimental physicists, engineers, physical chemists, mathematicians and others working on the...

  11. Self-assembly of dodecaphenyl POSS thin films

    Science.gov (United States)

    Handke, Bartosz; Klita, Łukasz; Niemiec, Wiktor

    2017-12-01

    The self-assembly abilities of Dodecaphenyl Polyhedral Oligomeric Silsesquioxane thin films on Si(1 0 0) surfaces were studied. Due to their thermal properties - relatively low sublimation temperature and preservation of molecular structure - cage type silsesquioxanes are ideal material for the preparation of a thin films by Physical Vapor Deposition. The Ultra-High Vacuum environment and the deposition precision of the PVD method enable the study of early stages of thin film growth and its molecular organization. X-ray Reflectivity and Atomic Force Microscopy measurements allow to pursuit size-effects in the structure of thin films with thickness ranges from less than a single molecular layer up to several tens of layers. Thermal treatment of the thin films triggered phase change: from a poorly ordered polycrystalline film into a well-ordered multilayer structure. Self-assembly of the layers is the effect of the π-stacking of phenyl rings, which force molecules to arrange in a superlattice, forming stacks of alternating organic-inorganic layers.

  12. Nanoscale reduction of graphene oxide thin films and its characterization.

    Science.gov (United States)

    Lorenzoni, M; Giugni, A; Di Fabrizio, E; Pérez-Murano, Francesc; Mescola, A; Torre, B

    2015-07-17

    In this paper, we report on a method to reduce thin films of graphene oxide (GO) to a spatial resolution better than 100 nm over several tens of micrometers by means of an electrochemical scanning probe based lithography. In situ tip-current measurements show that an edged drop in electrical resistance characterizes the reduced areas, and that the reduction process is, to a good approximation, proportional to the applied bias between the onset voltage and the saturation thresholds. An atomic force microscope (AFM) quantifies the drop of the surface height for the reduced profile due to the loss of oxygen. Complementarily, lateral force microscopy reveals a homogeneous friction coefficient of the reduced regions that is remarkably lower than that of native graphene oxide, confirming a chemical change in the patterned region. Micro Raman spectroscopy, which provides access to insights into the chemical process, allows one to quantify the restoration and de-oxidation of the graphitic network driven by the electrochemical reduction and to determine characteristic length scales. It also confirms the homogeneity of the process over wide areas. The results shown were obtained from accurate analysis of the shift, intensity and width of Raman peaks for the main vibrational bands of GO and reduced graphene oxide (rGO) mapped over large areas. Concerning multilayered GO thin films obtained by drop-casting we have demonstrated an unprecedented lateral resolution in ambient conditions as well as an improved control, characterization and understanding of the reduction process occurring in GO randomly folded multilayers, useful for large-scale processing of graphene-based material.

  13. Organic thin films and surfaces directions for the nineties

    CERN Document Server

    Ulman, Abraham

    1995-01-01

    Physics of Thin Films has been one of the longest running continuing series in thin film science consisting of 20 volumes since 1963. The series contains some of the highest quality studies of the properties ofvarious thin films materials and systems.In order to be able to reflect the development of todays science and to cover all modern aspects of thin films, the series, beginning with Volume 20, will move beyond the basic physics of thin films. It will address the most important aspects of both inorganic and organic thin films, in both their theoretical as well as technological aspects. Ther

  14. Yttria and ceria doped zirconia thin films grown by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Saporiti, F.; Juarez, R. E., E-mail: cididi@fi.uba.ar [Grupo de Materiales Avanzados, Facultad de Ingenieria, Universidad de Buenos Aires (Argentina); Audebert, F. [Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina); Boudard, M. [Laboratoire des Materiaux et du Genie Physique (CNRS), Grenoble (France)

    2013-11-01

    The Yttria stabilized Zirconia (YSZ) is a standard electrolyte for solid oxide fuel cells (SOFCs), which are potential candidates for next generation portable and mobile power sources. YSZ electrolyte thin films having a cubic single phase allow reducing the SOFC operating temperature without diminishing the electrochemical power density. Films of 8 mol% Yttria stabilized Zirconia (8YSZ) and films with addition of 4 weight% Ceria (8YSZ + 4CeO{sub 2}) were grown by pulsed laser deposition (PLD) technique using 8YSZ and 8YSZ + 4CeO{sub 2} targets and a Nd-YAG laser (355 nm). Films have been deposited on Soda-Calcia-Silica glass and Si(100) substrates at room temperature. The morphology and structural characteristics of the samples have been studied by means of X-ray diffraction and scanning electron microscopy. Films of a cubic-YSZ single phase with thickness in the range of 1-3 Micro-Sign m were grown on different substrates (author)

  15. Novel chemical analysis for thin films

    International Nuclear Information System (INIS)

    Usui, Toshio; Kamei, Masayuki; Aoki, Yuji; Morishita, Tadataka; Tanaka, Shoji

    1991-01-01

    Scanning electron microscopy and total-reflection-angle X-ray spectroscopy (SEM-TRAXS) was applied for fluorescence X-ray analysis of 50A- and 125A-thick Au thin films on Si(100). The intensity of the AuM line (2.15 keV) emitted from the Au thin films varied as a function of the take-off angle (θ t ) with respect to the film surface; the intensity of AuM line from the 125A-thick Au thin film was 1.5 times as large as that of SiK α line (1.74 keV) emitted from the Si substrate when θ t = 0deg-3deg, in the vicinity of a critical angle for total external reflection of the AuM line at Si (0.81deg). In addition, the intensity of the AuM line emitted from the 50A-thick Au thin film was also sufficiently strong for chemical analysis. (author)

  16. A study on the electrodeposition of NiFe alloy thin films using chronocoulometry and electrochemical quartz crystal microgravimetry

    CERN Document Server

    Myung, N S

    2001-01-01

    Ni, Fe and NiFe alloy thin films were electrodeposited at a polycrystalline Au surface using a range of electrolytes and potentials. Coulometry and EQCM were used for real-time monitoring of electroplating efficiency of the Ni and Fe. The plating efficiency of NiFe alloy thin films was computed with the aid of ICP spectrometry. In general, plating efficiency increased to a steady value with deposition time. Plating efficiency of Fe was lower than that of Ni at -0.85 and -1.0 V but the efficiency approached to the similar plateau value to that of Ni at more negative potentials. The films with higher content of Fe showed different stripping behavior from the ones with higher content of Ni. Finally, compositional data and real-time plating efficiency are presented for films electrodeposited using a range of electrolytes and potentials.

  17. Nanostructured thin film coatings with different strengthening effects

    Directory of Open Access Journals (Sweden)

    Panfilov Yury

    2017-01-01

    Full Text Available A number of articles on strengthening thin film coatings were analyzed and a lot of unusual strengthening effects, such as super high hardness and plasticity simultaneously, ultra low friction coefficient, high wear-resistance, curve rigidity increasing of drills with small diameter, associated with process formation of nanostructured coatings by the different thin film deposition methods were detected. Vacuum coater with RF magnetron sputtering system and ion-beam source and arc evaporator for nanostructured thin film coating manufacture are represented. Diamond Like Carbon and MoS2 thin film coatings, Ti, Al, Nb, Cr, nitride, carbide, and carbo-nitride thin film materials are described as strengthening coatings.

  18. Photoelectrochemical processes in organic semiconductor: Ambipolar perylene diimide thin film

    Science.gov (United States)

    Kim, Jung Yong; Chung, In Jae

    2018-03-01

    A thin film of N,N‧-dioctadecyl-3,4,9,10-perylene tetracarboxylic diimide (PTCDI-C18) is spin-coated on indium tin oxide (ITO) glass. Using the PTCDI-C18/ITO electrode, we fabricate a photoelectrochemical cell with the ITO/PTCDI-C18/Redox Electrolyte/Pt configuration. The electrochemical properties of this device are investigated as a function of hydroquinone (HQ) concentration, bias voltage, and wavelength of light. Anodic photocurrent is observed at V ≥ -0.2 V vs. Ag/AgCl, indicating that the PTCDI-C18 film acts as an n-type semiconductor as usual. However, when benzoquinone (BQ) is inserted into the electrolyte system instead of HQ, cathodic photocurrent is observed at V ≤ 0.0 V, displaying that PTCDI-C18 abnormally serves as a p-type semiconductor. Hence the overall results reveal that the PTCDI-C18 film can be an ambipolar functional semiconductor depending on the redox couple in the appropriate voltage.

  19. Solid-phase electrochemical reduction of graphene oxide films in alkaline solution

    Science.gov (United States)

    Basirun, Wan J.; Sookhakian, Mehran; Baradaran, Saeid; Mahmoudian, Mohammad R.; Ebadi, Mehdi

    2013-09-01

    Graphene oxide (GO) film was evaporated onto graphite and used as an electrode to produce electrochemically reduced graphene oxide (ERGO) films by electrochemical reduction in 6 M KOH solution through voltammetric cycling. Fourier transformed infrared and Raman spectroscopy confirmed the presence of ERGO. Electrochemical impedance spectroscopy characterization of ERGO and GO films in ferrocyanide/ferricyanide redox couple with 0.1 M KCl supporting electrolyte gave results that are in accordance with previous reports. Based on the EIS results, ERGO shows higher capacitance and lower charge transfer resistance compared to GO.

  20. Red photoluminescence and band edge shift from ZnO thin films

    International Nuclear Information System (INIS)

    Marotti, Ricardo E.; Badan, Juan A.; Quagliata, Eduardo; Dalchiele, Enrique A.

    2007-01-01

    The red photoluminescence (PL) band (peaked between 610 and 640 nm) from electrochemically deposited ZnO thin films is studied. The absorption coefficient is obtained from diffuse reflectance measurements. The absorption band edge depends on deposition conditions. The PL peak follows the shift of the band edge. A similar correlation appears when cooling down to 20 K. This suggests that PL is due to a transition from an intrinsic shallow state to an intrinsic deep state. Comparing against ZnO samples showing green PL, the shallow nature of the state is confirmed

  1. Thin Film Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Zweibel, K.

    1998-11-19

    The motivation to develop thin film technologies dates back to the inception of photovoltaics. It is an idea based on achieving truly low-cost photovoltaics appropriate for mass production and energy significant markets. The key to the idea is the use of pennies worth of active materials. Since sunlight carries relatively little energy in comparison with combustion-based energy sources, photovoltaic (PV) modules must be cheap to produce energy that can be competitive. Thin films are presumed to be the answer to that low-cost requirement. But how cheap do they have to be? The following is an oversimplified analysis that allows some insight into this question.

  2. Thin films: Past, present, future

    Energy Technology Data Exchange (ETDEWEB)

    Zweibel, K

    1995-04-01

    This report describes the characteristics of the thin film photovoltaic modules necessary for an acceptable rate of return for rural areas and underdeveloped countries. The topics of the paper include a development of goals of cost and performance for an acceptable PV system, a review of current technologies for meeting these goals, issues and opportunities in thin film technologies.

  3. Non-linear optics of nano-scale pentacene thin film

    Science.gov (United States)

    Yahia, I. S.; Alfaify, S.; Jilani, Asim; Abdel-wahab, M. Sh.; Al-Ghamdi, Attieh A.; Abutalib, M. M.; Al-Bassam, A.; El-Naggar, A. M.

    2016-07-01

    We have found the new ways to investigate the linear/non-linear optical properties of nanostructure pentacene thin film deposited by thermal evaporation technique. Pentacene is the key material in organic semiconductor technology. The existence of nano-structured thin film was confirmed by atomic force microscopy and X-ray diffraction. The wavelength-dependent transmittance and reflectance were calculated to observe the optical behavior of the pentacene thin film. It has been observed the anomalous dispersion at wavelength λ 800. The non-linear refractive index of the deposited films was investigated. The linear optical susceptibility of pentacene thin film was calculated, and we observed the non-linear optical susceptibility of pentacene thin film at about 6 × 10-13 esu. The advantage of this work is to use of spectroscopic method to calculate the liner and non-liner optical response of pentacene thin films rather than expensive Z-scan. The calculated optical behavior of the pentacene thin films could be used in the organic thin films base advanced optoelectronic devices such as telecommunications devices.

  4. Oxidation of ruthenium thin films using atomic oxygen

    Energy Technology Data Exchange (ETDEWEB)

    McCoy, A.P.; Bogan, J.; Brady, A.; Hughes, G.

    2015-12-31

    In this study, the use of atomic oxygen to oxidise ruthenium thin films is assessed. Atomic layer deposited (ALD) ruthenium thin films (~ 3 nm) were exposed to varying amounts of atomic oxygen and the results were compared to the impact of exposures to molecular oxygen. X-ray photoelectron spectroscopy studies reveal substantial oxidation of metallic ruthenium films to RuO{sub 2} at exposures as low as ~ 10{sup 2} L at 575 K when atomic oxygen was used. Higher exposures of molecular oxygen resulted in no metal oxidation highlighting the benefits of using atomic oxygen to form RuO{sub 2}. Additionally, the partial oxidation of these ruthenium films occurred at temperatures as low as 293 K (room temperature) in an atomic oxygen environment. - Highlights: • X-ray photoelectron spectroscopy study of the oxidation of Ru thin films • Oxidation of Ru thin films using atomic oxygen • Comparison between atomic oxygen and molecular oxygen treatments on Ru thin films • Fully oxidised RuO{sub 2} thin films formed with low exposures to atomic oxygen.

  5. Thin Films in the Photovoltaic Industry

    International Nuclear Information System (INIS)

    Jaeger-Waldau, A.

    2008-03-01

    In the past years, the yearly world market growth rate for Photovoltaics was an average of more than 40%, which makes it one of the fastest growing industries at present. Business analysts predict the market volume to increase to 40 billion euros in 2010 and expect rising profit margins and lower prices for consumers at the same time. Today PV is still dominated by wafer based Crystalline Silicon Technology as the 'working horse' in the global market, but thin films are gaining market shares. For 2007 around 12% are expected. The current silicon shortage and high demand has kept prices higher than anticipated from the learning curve experience and has widened the windows of opportunities for thin film solar modules. Current production capacity estimates for thin films vary between 3 and 6 GW in 2010, representing a 20% market share for these technologies. Despite the higher growth rates for thin film technologies compared with the industry average, Thin Film Photovoltaic Technologies are still facing a number of challenges to maintain this growth and increase market shares. The four main topics which were discussed during the workshop were: Potential for cost reduction; Standardization; Recycling; Performance over the lifetime.

  6. Rapid fabrication of mesoporous TiO2 thin films by pulsed fibre laser for dye sensitized solar cells

    Science.gov (United States)

    Hadi, Aseel; Alhabradi, Mansour; Chen, Qian; Liu, Hong; Guo, Wei; Curioni, Michele; Cernik, Robert; Liu, Zhu

    2018-01-01

    In this paper we demonstrate for the first time that a fibre laser with a wavelength of 1070 nm and a pulse width of milliseconds can be applied to generate mesoporous nanocrystalline (nc) TiO2 thin films on ITO coated glass in ambient atmosphere, by complete vaporisation of organic binder and inter-connection of TiO2 nanoparticles, without thermally damaging the ITO layer and the glass substrate. The fabrication of the mesoporous TiO2 thin films was achieved by stationary laser beam irradiation of 1 min. The dye sensitized solar cell (DSSC) with the laser-sintered TiO2 photoanode reached higher power conversion efficiency (PCE) of 3.20% for the TiO2 film thickness of 6 μm compared with 2.99% for the furnace-sintered. Electrochemical impedance spectroscopy studies revealed that the laser sintering under the optimised condition effectively decreased charge transfer resistance and increased electron lifetime of the TiO2 thin films. The use of the fibre laser with over 40% wall-plug efficiency offers an economically-feasible, industrial viable solution to the major challenge of rapid fabrication of large scale, mass production of mesoporous metal oxide thin film based solar energy systems, potentially for perovskite and monolithic tandem solar cells, in the future.

  7. Nanostructured thin films and coatings functional properties

    CERN Document Server

    Zhang, Sam

    2010-01-01

    The second volume in ""The Handbook of Nanostructured Thin Films and Coatings"" set, this book focuses on functional properties, including optical, electronic, and electrical properties, as well as related devices and applications. It explores the large-scale fabrication of functional thin films with nanoarchitecture via chemical routes, the fabrication and characterization of SiC nanostructured/nanocomposite films, and low-dimensional nanocomposite fabrication and applications. The book also presents the properties of sol-gel-derived nanostructured thin films as well as silicon nanocrystals e

  8. Hybrid carbon nanomaterials for electrochemical detection of biomolecules

    International Nuclear Information System (INIS)

    Laurila, Tomi

    2015-01-01

    Electrochemical detection of different biomolecules in vivo is a promising path towards in situ monitoring of human body and its functions. However, there are several major obstacles, such as sensitivity, selectivity and biocompatiblity, which must be tackled in order to achieve reliably and safely operating sensor devices. Here we show that by utilizing hybrid carbon materials as electrodes to detect two types of neurotransmitters, dopamine and glutamate, several advantages over commonly used electrode materials can be achieved. In particular, we will demonstrate here that it is possible to combine the properties of different carbon allotropes to obtain hybrid materials with greatly improved electrochemical performance. Three following examples of the approach are given: (i) diamond-like carbon (DLC) thin film electrodes with different layer thicknesses, (ii) multi-walled carbon nanotubes grown directly on top of DLC and (iii) carbon nanofibres synthesized on top of DLC thin films. Detailed structural and electrochemical characterization is carried out to rationalize the reasons behind the observed behvior. In addition, results from the atomistic simulations are utilized to obtain more information about the properties of the amorphous carbon thin films. (paper)

  9. Effect of thickness on structural, corrosion and mechanical properties of a thin ZrN film deposited by medium frequency (MF) reactive sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Kavitha, Ayyalu; Kannan, Raman [Anna Univ., Dindigul (India). Dept. of Physics; Loganathan, Subramani [Titan Industries, Hosur, Tamilnadu (India). Ion Plating Dept.

    2016-07-01

    Zirconium nitride (ZrN) thin films were prepared on stainless steel (SS) substrates by medium frequency (MF) reactive sputtering with gas ion source (GIS) by varying the deposition time and obtained thickness (t{sub ZrN}) in the range of 1.25 to 3.24 μm. The effect of thickness on the structural and microstructural properties was studied using XRD and AFM. XRD characterization revealed that the texture of the ZrN thin films changes as a function of thickness. Both, the (111) and (200) peak, appear initially and (111) becomes more intense with increasing t{sub ZrN}. AFM imaging revealed that the ZrN thin film coated with t{sub ZrN} ∼ 3.24 μm shows larger grains that are uniformly distributed over the surface. An average hardness value of 19.79 GPa was observed for ZrN thin films having t{sub ZrN} ∼ 3.24 μm. The ZrN thin films having t{sub ZrN} ∼ 3.24 μm exhibits better adhesion strength up to 20 N. The electrochemical polarization studies indicated that the ZrN thin film having larger thickness shows improved corrosion resistance compared to SS in 3.5 % NaCl solution.

  10. Study on the preheating duration of Cu{sub 2}SnS{sub 3} thin films using RF magnetron sputtering technique for photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Yuchen; He, Jun; Li, Xinran; Chen, Ye; Sun, Lin, E-mail: lsun@ee.ecnu.edu.cn; Yang, Pingxiong; Chu, Junhao

    2016-04-25

    Cu{sub 2}SnS{sub 3} (CTS) thin films are prepared by sulfurization the stacked metallic precursors deposited by raido-frequency magnetron sputtering method on molybdenum-coated soda lime glass substrates. The details of sulfurization process and the effect of preheating duration on the properties of CTS thin films have been investigated. It is found that the content of element tin strongly depend on the preheating duration. X-ray diffraction patterns identify that the CTS thin films exhibit the monoclinic structure. Raman scattering spectra make a further confirmation for the crystal structure. Fourier transform infrared reflectance spectroscopy (FTIR) is first used to study the properties of CTS thin films. The assigned active modes in Raman scattering spectra is consistent with the analysis in FTIR. Morphology analysis reveals long preheating duration would make the quality of films deteriorate. The thin film solar cell (TFSC) fabricated using the CTS absorber layer synthesized at preheating duration of 15 min shows that a power conversion efficiency up to 0.76% for a 0.19 cm{sup 2} area. The electrical characterization of CTS TFSC is first studied by electrochemical impedance spectroscopy, which implies the existence of MoS{sub x} and defects in the CTS/CdS interface. - Highlights: • CTS thin films and solar cells prepared by RF magnetron sputtering. • Preheating duration is a critical way to remain the Sn content in CTS thin film. • XRD, Raman, FTIR and XPS confirmed the single phase of CTS thin film. • The device characterization of CTS solar cell has been systematically investigated.

  11. Intrinsically conductive polymer thin film piezoresistors

    DEFF Research Database (Denmark)

    Lillemose, Michael; Spieser, Martin; Christiansen, N.O.

    2008-01-01

    We report on the piezoresistive effect in the intrinsically conductive polymer, polyaniline. A process recipe for indirect patterning of thin film polyaniline has been developed. Using a specially designed chip, the polyaniline thin films have been characterised with respect to resistivity...

  12. Surface microstructures and corrosion resistance of Ni-Ti-Nb shape memory thin films

    Science.gov (United States)

    Li, Kun; Li, Yan; Huang, Xu; Gibson, Des; Zheng, Yang; Liu, Jiao; Sun, Lu; Fu, Yong Qing

    2017-08-01

    Ni-Ti-Nb and Ni-Ti shape memory thin films were sputter-deposited onto silicon substrates and annealed at 600 °C for crystallization. X-ray diffraction (XRD) measurements indicated that all of the annealed Ni-Ti-Nb films were composed of crystalline Ni-Ti (Nb) and Nb-rich grains. X-ray photoelectron spectroscopy (XPS) tests showed that the surfaces of Ni-Ti-Nb films were covered with Ti oxides, NiO and Nb2O5. The corrosion resistance of the Ni-Ti-Nb films in 3.5 wt.% NaCl solution was investigated using electrochemical tests such as open-circuit potential (OCP) and potentio-dynamic polarization tests. Ni-Ti-Nb films showed higher OCPs, higher corrosion potentials (Ecorr) and lower corrosion current densities (icorr) than the binary Ni-Ti film, which indicated a better corrosion resistance. The reason may be that Nb additions modified the passive layer on the film surface. The OCPs of Ni-Ti-Nb films increased with further Nb additions, whereas no apparent difference of Ecorr and icorr was found among the Ni-Ti-Nb films.

  13. Structure-processing-property correlations in thin films of conjugated polymer nanocomposites and blends

    Science.gov (United States)

    Sreeram, Arvind

    Conjugated polymers have found several applications in recent years, in energy conversion and storage devices such as organic light emitting diodes, solar cells, batteries, and super capacitors. Thin films of polymers used for these applications need to be mechanically and thermally stable to withstand the harsh operating conditions. Although there is significant information on the optoelectronic properties of many of these polymers, there are only few studies on their mechanical properties. There is little information in the literature on how processing of these films influence mechanical properties. In the first part of this study, poly(p-phenylene vinylene) (PPV) films were prepared by thermolytic conversion of poly[p -phenylene (tetrahydrothiophenium)ethylene chloride] precursor films, at different temperatures and the kinetics of reaction was investigated using thermogravimetry and Fourier transform infrared (FTIR) spectroscopy. The mechanical properties of the films, studied using nanoindentation, showed a dependence on the extent of conversion and chemical composition of the films. The presence of chemical defects (e.g., carbonyl groups, detected using FTIR spectroscopy), was also found to have a noticeable effect on the modulus and hardness of the films. The storage modulus, E', and plasticity decreased with an increase in conversion, whereas the loss modulus, E", showed the opposite trend. Both the precursor and the fully-converted PPV films were found to have significantly lower E" than E', consistent with the glassy nature of the polymers at room temperature. In the second part of the study, polyacetylene films were synthesized by acid-catalyzed dehydration reaction of poly(vinyl alcohol) (PVA) precursor films. The kinetics of this reaction was monitored by thermogravimetry. The chemical structure of the conjugated polymer films was characterized by Raman and IR spectroscopy. Polyacetylene films incorporated with 1-propyl-3-methylimidazolium ionic liquid

  14. Understanding of electrochemical and structural changes of polypyrrole/polyethylene glycol composite films in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Pirvu, Cristian, E-mail: c_pirvu@chim.pub.ro [University Polytechnic of Bucharest, Faculty of Applied Chemistry and Materials Science, 1-7 Polizu, 011061 Bucharest (Romania); Manole, Claudiu Constantin; Stoian, Andrei Bogdan; Demetrescu, Ioana [University Polytechnic of Bucharest, Faculty of Applied Chemistry and Materials Science, 1-7 Polizu, 011061 Bucharest (Romania)

    2011-11-30

    Highlights: > Electrochemical monitoring of PPy and PPy-PEG films over immersion time. > Electrochemical and surface analysis showed that PEG improves the stability of PPy films. > Mott-Schottky analysis reveals p-type conductance for both films. > In situ AFM analysis sustains electrochemical behaviour. > A model of PPy and PPy-PEG films behaviour during immersion was elaborated. - Abstract: Electrochemical monitoring of electrical and structural changes of both PPy and PPy-PEG films electrochemical deposited, in order to highlight if the structural stability offered by PEG has an influence on electrical properties and stability in aqueous solution over immersion time was investigated. Electrochemical analysis suggests that PPy-PEG film inserts cations easier than PPy film for a short immersion time probably due to ability of PEG to form complexes with metal cations. The FTIR spectra showed that the PEG incorporation decreases the rate of PPy overoxidation probably by restraining the electron release and by rendering O{sub 2} inaccessible to PPy. Mott-Schottky analysis based on capacitance measurement reveal p-type conductance for both films. The in situ AFM analysis sustains electrochemical behaviour and has permitted elaboration of a model of PPy and PPy-PEG films behaviour during immersion in testing solution.

  15. Thermal conductivity model for nanoporous thin films

    Science.gov (United States)

    Huang, Congliang; Zhao, Xinpeng; Regner, Keith; Yang, Ronggui

    2018-03-01

    Nanoporous thin films have attracted great interest because of their extremely low thermal conductivity and potential applications in thin thermal insulators and thermoelectrics. Although there are some numerical and experimental studies about the thermal conductivity of nanoporous thin films, a simplified model is still needed to provide a straightforward prediction. In this paper, by including the phonon scattering lifetimes due to film thickness boundary scattering, nanopore scattering and the frequency-dependent intrinsic phonon-phonon scattering, a fitting-parameter-free model based on the kinetic theory of phonon transport is developed to predict both the in-plane and the cross-plane thermal conductivities of nanoporous thin films. With input parameters such as the lattice constants, thermal conductivity, and the group velocity of acoustic phonons of bulk silicon, our model shows a good agreement with available experimental and numerical results of nanoporous silicon thin films. It illustrates that the size effect of film thickness boundary scattering not only depends on the film thickness but also on the size of nanopores, and a larger nanopore leads to a stronger size effect of the film thickness. Our model also reveals that there are different optimal structures for getting the lowest in-plane and cross-plane thermal conductivities.

  16. Electrochemical characterization of oxide film formed at high temperature on Alloy 690

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, Geogy J., E-mail: gja@barc.gov.in [Materials Science Division, BARC, Mumbai 400 085 (India); Bhambroo, Rajan [Deptt. of Metallurgical Engg. and Mat. Sci., IIT Bombay, Mumbai 400 076 (India); Kain, V. [Materials Science Division, BARC, Mumbai 400 085 (India); Shekhar, R. [CCCM, BARC, Hyderabad 500 062 (India); Dey, G.K. [Materials Science Division, BARC, Mumbai 400 085 (India); Raja, V.S. [Deptt. of Metallurgical Engg. and Mat. Sci., IIT Bombay, Mumbai 400 076 (India)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer GD-QMS studies of high temperature oxide film formed on Alloy 690. Black-Right-Pointing-Pointer Defect density reduced with increase in temperature. Black-Right-Pointing-Pointer Electrochemical behaviour of oxide film correlated to the Cr-content in oxide. - Abstract: High temperature passivation studies on Alloy 690 were carried out in lithiated water at 250 Degree-Sign C, 275 Degree-Sign C and 300 Degree-Sign C for 72 h. The passive films were characterized by glow discharge-quadrupole mass spectroscopy (GD-QMS) for compositional variation across the depth and micro laser Raman spectroscopy for oxide composition on the surface. The defect density in the oxide films was established from the Mott-Schottky analysis using electrochemical impedance spectroscopy. Electrochemical experiments at room temperature in chloride medium revealed best passivity behaviour by the oxide film formed at 300 Degree-Sign C for 72 h. The electrochemical studies were correlated to the chromium (and oxygen) content of the oxide films. Autoclaving at 300 Degree-Sign C resulted in the best passive film formation on Alloy 690 in lithiated water.

  17. Ionic Liquid Catalyzed Electrolyte for Electrochemical Polyaniline Supercapacitors

    Science.gov (United States)

    Inamdar, A. I.; Im, Hyunsik; Jung, Woong; Kim, Hyungsang; Kim, Byungchul; Yu, Kook-Hyun; Kim, Jin-Sang; Hwang, Sung-Min

    2013-05-01

    The effect of different wt.% of ionic liquid "1,6-bis (trimethylammonium-1-yl) hexane tetrafluoroborate" in 0.5 M LiClO4+PC electrolyte on the supercapacitor properties of polyaniline (PANI) thin film are investigated. The PANI film is synthesized using electropolymerization of aniline in the presence of sulfuric acid. The electrochemical properties of the PANI thin film are studied by cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy (EIS) measurements. The optimum amount of the ionic liquid is found to be 2 wt.% which provides better ionic conductivity of the electrolyte. The highest specific capacitance of 259 F/g is obtained using the 2 wt.% electrolyte. This capacitance remains at up to 208 F/g (80% capacity retention) after 1000 charge-discharge cycles at a current density of 0.5 mA/g. The PANI film in the 2 wt.% ionic liquid catalyzed 0.5 M LiClO4+PC electrolyte shows small electrochemical resistance, better rate performance and higher cyclability. The increased ionic conductivity of the 2 wt.% ionic liquid catalyzed electrolyte causes a reduction in resistance at the electrode/electrolyte interface, which can be useful in electrochemically-preferred power devices for better applicability.

  18. Water-soluble polyelectrolyte-grafted multiwalled carbon nanotube thin films for efficient counter electrode of dye-sensitized solar cells.

    Science.gov (United States)

    Han, Jinkyu; Kim, Hyunju; Kim, Dong Young; Jo, Seong Mu; Jang, Sung-Yeon

    2010-06-22

    Water-soluble, polyelectrolyte-grafted multiwalled carbon nanotubes (MWCNTs), MWCNT-g-PSSNa, were synthesized using a "grafting to" route. MWCNT-g-PSSNa thin films fabricated by an electrostatic spray (e-spray) technique were used as the counter electrode (CE) for dye-sensitized solar cells (DSSCs). The e-sprayed MWCNT-g-PSSNa thin-film-based CEs (MWCNT-CE) were uniform over a large area, and the well-exfoliated MWCNTs formed highly interconnected network structures. The electrochemical catalytic activity of the MWCNT-CE at different thicknesses was investigated. The MWCNT-g-PSSNa thin film showed high efficiency as a CE in DSSCs. The power conversion efficiency (PCE) of the DSSCs using the MWCNT-g-PSSNa thin-film-based CE (DSSC-MWCNT) was >6% at a CE film thickness of approximately 0.3 microm. The optimum PCE was >7% at a film thickness of approximately 1 microm, which is 20-50 times thinner than conventional carbon-based CE. The charge transfer resistance at the MWCNT-CE/electrolyte interface was 1.52 Omega cm(2) at a MWCNT-CE thickness of 0.31 microm, which is lower than that of a Pt-CE/electrolyte interface, 1.78 Omega cm(2). This highlights the potential for the low-cost CE fabrication of DSSCs using a facile deposition technique from an environmentally "friendly" solution at low temperatures.

  19. Enhanced Cyclability of Lithium-Oxygen Batteries with Electrodes Protected by Surface Films Induced via In-Situ Electrochemical Process

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bin; Xu, Wu; Tao, Jinhui; Yan, Pengfei; Zheng, Jianming; Engelhard, Mark H.; Lu, Dongping; Wang, Chongmin; Zhang, Jiguang

    2018-04-16

    Although the rechargeable lithium-oxygen (Li-O2) batteries have extremely high theoretical specific energy, the practical application of these batteries is still limited by the instability of their carbon-based air-electrode, Li metal anode, and electrolytes towards reduced oxygen species. Here we demonstrate a simple one-step in-situ electrochemical pre-charging strategy to generate thin protective films on both carbon nanotubes (CNTs) air-electrode and Li metal anode simultaneously under an inert atmosphere. Li-O2 cells after such pre-treatment demonstrate significantly extended cycle life of 110 and 180 cycles under the capacity-limited protocol of 1000 mAh g-1 and 500 mAh g-1, respectively, which is far more than those without pre-treatment. The thin-films formed from decomposition of electrolyte during in-situ electrochemical pre-charging process in an inert environment can protect both CNTs air-electrode and Li metal anode prior to conventional Li-O2 discharge/charge cycling where reactive reduced oxygen species are formed. This work provides a new approach for protections of carbon-based air-electrode and Li metal anode in practical Li-O2 batteries, and may also be applied to other battery systems.

  20. Photoinduced hydrophobic surface of graphene oxide thin films

    International Nuclear Information System (INIS)

    Zhang Xiaoyan; Song Peng; Cui Xiaoli

    2012-01-01

    Graphene oxide (GO) thin films were deposited on transparent conducting oxide substrates and glass slides by spin coating method at room temperature. The wettability of GO thin films before and after ultraviolet (UV) irradiation was characterized with water contact angles, which increased from 27.3° to 57.6° after 3 h of irradiation, indicating a photo-induced hydrophobic surface. The UV–vis absorption spectra, Raman spectroscopy, X-ray photoelectron spectroscopy, and conductivity measurements of GO films before and after UV irradiation were taken to study the mechanism of photoinduced hydrophobic surface of GO thin films. It is demonstrated that the photoinduced hydrophobic surface is ascribed to the elimination of oxygen-containing functional groups on GO molecules. This work provides a simple strategy to control the wettability properties of GO thin films by UV irradiation. - Highlights: ► Photoinduced hydrophobic surface of graphene oxide thin films has been demonstrated. ► Elimination of oxygen-containing functional groups in graphene oxide achieved by UV irradiation. ► We provide novel strategy to control surface wettability of GO thin films by UV irradiation.

  1. Optical thin film deposition

    International Nuclear Information System (INIS)

    Macleod, H.A.

    1979-01-01

    The potential usefulness in the production of optical thin-film coatings of some of the processes for thin film deposition which can be classified under the heading of ion-assisted techniques is examined. Thermal evaporation is the process which is virtually universally used for this purpose and which has been developed to a stage where performance is in almost all respects high. Areas where further improvements would be of value, and the possibility that ion-assisted deposition might lead to such improvements, are discussed. (author)

  2. Optical thin films and coatings from materials to applications

    CERN Document Server

    Flory, Francois

    2013-01-01

    Optical coatings, including mirrors, anti-reflection coatings, beam splitters, and filters, are an integral part of most modern optical systems. This book provides an overview of thin film materials, the properties, design and manufacture of optical coatings and their use across a variety of application areas.$bOptical coatings, including mirrors, anti-reflection coatings, beam splitters, and filters, are an integral part of most modern optical systems. Optical thin films and coatings provides an overview of thin film materials, the properties, design and manufacture of optical coatings and their use across a variety of application areas. Part one explores the design and manufacture of optical coatings. Part two highlights unconventional features of optical thin films including scattering properties of random structures in thin films, optical properties of thin film materials at short wavelengths, thermal properties and colour effects. Part three focusses on novel materials for optical thin films and coatings...

  3. High throughput soft embossing process for micro-patterning of PEDOT thin films

    DEFF Research Database (Denmark)

    Fanzio, Paola; Cagliani, Alberto; Peterffy, Kristof G.

    2017-01-01

    The patterning of conductive polymers is a major challenge in the implementation of these materials in several research and industrial applications, spanning from photovoltaics to biosensors. Within this context, we have developed a reliable technique to pattern a thin layer of the conductive...... polymer poly(3,4-ethylenedioxythiophene) (PEDOT) by means of a low cost and high throughput soft embossing process. We were able to reproduce a functional conductive pattern with a minimum dimension of 1 μm and to fabricate electrically decoupled electrodes. Moreover, the conductivity of the PEDOT films...... has been characterized, finding that a post-processing treatment with Ethylene Glycol allows an increase in conductivity and a decrease in water solubility of the PEDOT film. Finally, cyclic voltammetry demonstrates that the post-treatment also ensures the electrochemical activity of the film. Our...

  4. Sputtering materials for VLSI and thin film devices

    CERN Document Server

    Sarkar, Jaydeep

    2010-01-01

    An important resource for students, engineers and researchers working in the area of thin film deposition using physical vapor deposition (e.g. sputtering) for semiconductor, liquid crystal displays, high density recording media and photovoltaic device (e.g. thin film solar cell) manufacturing. This book also reviews microelectronics industry topics such as history of inventions and technology trends, recent developments in sputtering technologies, manufacturing steps that require sputtering of thin films, the properties of thin films and the role of sputtering target performance on overall p

  5. Nanoscale semiconductor Pb{sub 1-x}Sn{sub x}Se (x = 0.2) thin films synthesized by electrochemical atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lin Shaoxiong; Zhang Xin; Shi Xuezhao; Wei Jinping; Lu Daban; Zhang Yuzhen; Kou Huanhuan [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Wang Chunming, E-mail: wangcm@lzu.edu.cn [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China)

    2011-04-15

    In this paper the fabrication and characterization of IV-VI semiconductor Pb{sub 1-x}Sn{sub x}Se (x = 0.2) thin films on gold substrate by electrochemical atomic layer deposition (EC-ALD) method at room temperature are reported. Cyclic voltammetry (CV) is used to determine approximate deposition potentials for each element. The amperometric I-t technique is used to fabricate the semiconductor alloy. The elements are deposited in the following sequence: (Se/Pb/Se/Pb/Se/Pb/Se/Pb/Se/Sn ...), each period is formed using four ALD cycles of PbSe followed by one cycle of SnSe. Then the deposition manner above is cyclic repeated till a satisfactory film with expected thickness of Pb{sub 1-x}Sn{sub x}Se is obtained. The morphology of the deposit is observed by field emission scanning electron microscopy (FE-SEM). X-ray diffraction (XRD) pattern is used to study its crystalline structure; X-ray photoelectron spectroscopy (XPS) of the deposit indicates an approximate ratio 1.0:0.8:0.2 of Se, Pb and Sn, as the expected stoichiometry for the deposit. Open-circuit potential (OCP) studies indicate a good p-type property, and the good optical activity makes it suitable for fabricating a photoelectric switch.

  6. Piezoelectric MEMS: Ferroelectric thin films for MEMS applications

    Science.gov (United States)

    Kanno, Isaku

    2018-04-01

    In recent years, piezoelectric microelectromechanical systems (MEMS) have attracted attention as next-generation functional microdevices. Typical applications of piezoelectric MEMS are micropumps for inkjet heads or micro-gyrosensors, which are composed of piezoelectric Pb(Zr,Ti)O3 (PZT) thin films and have already been commercialized. In addition, piezoelectric vibration energy harvesters (PVEHs), which are regarded as one of the key devices for Internet of Things (IoT)-related technologies, are promising future applications of piezoelectric MEMS. Significant features of piezoelectric MEMS are their simple structure and high energy conversion efficiency between mechanical and electrical domains even on the microscale. The device performance strongly depends on the function of the piezoelectric thin films, especially on their transverse piezoelectric properties, indicating that the deposition of high-quality piezoelectric thin films is a crucial technology for piezoelectric MEMS. On the other hand, although the difficulty in measuring the precise piezoelectric coefficients of thin films is a serious obstacle in the research and development of piezoelectric thin films, a simple unimorph cantilever measurement method has been proposed to obtain precise values of the direct or converse transverse piezoelectric coefficient of thin films, and recently this method has become to be the standardized testing method. In this article, I will introduce fundamental technologies of piezoelectric thin films and related microdevices, especially focusing on the deposition of PZT thin films and evaluation methods for their transverse piezoelectric properties.

  7. A computation study on the interplay between surface morphology and electrochemical performance of patterned thin film electrodes for Li-ion batteries

    Science.gov (United States)

    Gur, Sourav; Frantziskonis, George N.; Aifantis, Katerina E.

    2017-08-01

    Recent experiments illustrate that the morphology of the electrode surface impacts the voltage - capacity curves and long term cycling performance of Li-ion batteries. The present study systematically explores the role of the electrode surface morphology and uncertainties in the reactions that occur during electrochemical cycling, by performing kinetic Monte Carlo (kMC) simulations using the lattice Boltzmann method (LBM). This allows encoding of the inherent stochasticity at discrete microscale reaction events over the deterministic mean field reaction dynamics that occur in Li-ion cells. The electrodes are taken to be dense thin films whose surfaces are patterned with conical, trapezoidal, dome-shaped, or pillar-shaped structures. It is shown that the inherent perturbations in the reactions together with the characteristics of the electrode surface configuration can significantly improve battery performance, mainly because patterned surfaces, as opposed to flat surfaces, result in a smaller voltage drop. The most efficient pattern was the trapezoidal, which is consistent with experimental evidence on Si patterned electrodes.

  8. Properties of plasmonic arrays produced by pulsed-laser nanostructuring of thin Au films

    Directory of Open Access Journals (Sweden)

    Katarzyna Grochowska

    2014-11-01

    Full Text Available A brief description of research advances in the area of short-pulse-laser nanostructuring of thin Au films is followed by examples of experimental data and a discussion of our results on the characterization of structural and optical properties of gold nanostructures. These consist of partially spherical or spheroidal nanoparticles (NPs which have a size distribution (80 ± 42 nm and self-organization characterized by a short-distance order (length scale ≈140 nm. For the NP shapes produced, an observably broader tuning range (of about 150 nm of the surface plasmon resonance (SPR band is obtained by renewal thin film deposition and laser annealing of the NP array. Despite the broadened SPR bands, which indicate damping confirmed by short dephasing times not exceeding 4 fs, the self-organized Au NP structures reveal quite a strong enhancement of the optical signal. This was consistent with the near-field modeling and micro-Raman measurements as well as a test of the electrochemical sensing capability.

  9. A nanogravimmetric investigation of the charging processes on ruthenium oxide thin films and their effect on methanol oxidation

    International Nuclear Information System (INIS)

    Santos, M.C.; Cogo, L.; Tanimoto, S.T.; Calegaro, M.L.; Bulhoes, L.O.S

    2006-01-01

    The charging processes and methanol oxidation that occur during the oxidation-reduction cycles in a ruthenium oxide thin film electrode (deposited by the sol-gel method on Pt covered quartz crystals) were investigated by using cyclic voltammetry, chronoamperometry and electrochemical quartz crystal nanobalance techniques. The ruthenium oxide rutile phase structure was determined by X-ray diffraction analysis. The results obtained during the charging of rutile ruthenium oxide films indicate that in the anodic sweep the transition from Ru(II) to Ru(VI) occurs followed by proton de-intercalation. In the cathodic sweep, electron injection occurs followed by proton intercalation, leading to Ru(II). The proton intercalation/de-intercalation processes can be inferred from the mass/charge relationship which gives a slope close to 1 g mol -1 (multiplied by the Faraday constant) corresponding to the molar mass of hydrogen. From the chronoamperometric measurements, charge and mass saturation of the RuO 2 thin films was observed (440 ng cm -2 ) during the charging processes, which is related to the total number of active sites in these films. Using the electrochemical quartz crystal nanobalance technique to study the methanol oxidation reaction at these films was possible to demonstrate that bulk oxidation occurs without the formation of strongly adsorbed intermediates such as CO ads , demonstrating that Pt electrodes modified by ruthenium oxide particles can be promising catalysts for the methanol oxidation as already shown in the literature

  10. Understanding of electrochemical and structural changes of polypyrrole/polyethylene glycol composite films in aqueous solution

    International Nuclear Information System (INIS)

    Pirvu, Cristian; Manole, Claudiu Constantin; Stoian, Andrei Bogdan; Demetrescu, Ioana

    2011-01-01

    Highlights: → Electrochemical monitoring of PPy and PPy-PEG films over immersion time. → Electrochemical and surface analysis showed that PEG improves the stability of PPy films. → Mott-Schottky analysis reveals p-type conductance for both films. → In situ AFM analysis sustains electrochemical behaviour. → A model of PPy and PPy-PEG films behaviour during immersion was elaborated. - Abstract: Electrochemical monitoring of electrical and structural changes of both PPy and PPy-PEG films electrochemical deposited, in order to highlight if the structural stability offered by PEG has an influence on electrical properties and stability in aqueous solution over immersion time was investigated. Electrochemical analysis suggests that PPy-PEG film inserts cations easier than PPy film for a short immersion time probably due to ability of PEG to form complexes with metal cations. The FTIR spectra showed that the PEG incorporation decreases the rate of PPy overoxidation probably by restraining the electron release and by rendering O 2 inaccessible to PPy. Mott-Schottky analysis based on capacitance measurement reveal p-type conductance for both films. The in situ AFM analysis sustains electrochemical behaviour and has permitted elaboration of a model of PPy and PPy-PEG films behaviour during immersion in testing solution.

  11. Nanoscale reduction of graphene oxide thin films and its characterization

    KAUST Repository

    Lorenzoni, M.

    2015-06-29

    In this paper, we report on a method to reduce thin films of graphene oxide (GO) to a spatial resolution better than 100 nm over several tens of micrometers by means of an electrochemical scanning probe based lithography. In situ tip-current measurements show that an edged drop in electrical resistance characterizes the reduced areas, and that the reduction process is, to a good approximation, proportional to the applied bias between the onset voltage and the saturation thresholds. An atomic force microscope (AFM) quantifies the drop of the surface height for the reduced profile due to the loss of oxygen. Complementarily, lateral force microscopy reveals a homogeneous friction coefficient of the reduced regions that is remarkably lower than that of native graphene oxide, confirming a chemical change in the patterned region. Micro Raman spectroscopy, which provides access to insights into the chemical process, allows one to quantify the restoration and de-oxidation of the graphitic network driven by the electrochemical reduction and to determine characteristic length scales. It also confirms the homogeneity of the process over wide areas. The results shown were obtained from accurate analysis of the shift, intensity and width of Raman peaks for the main vibrational bands of GO and reduced graphene oxide (rGO) mapped over large areas. Concerning multilayered GO thin films obtained by drop-casting we have demonstrated an unprecedented lateral resolution in ambient conditions as well as an improved control, characterization and understanding of the reduction process occurring in GO randomly folded multilayers, useful for large-scale processing of graphene-based material. © 2015 IOP Publishing Ltd.

  12. Nanometric thin film membranes manufactured on square meter scale: ultra-thin films for CO 2 capture

    KAUST Repository

    Yave, Wilfredo

    2010-09-01

    Miniaturization and manipulation of materials at nanometer scale are key challenges in nanoscience and nanotechnology. In membrane science and technology, the fabrication of ultra-thin polymer films (defect-free) on square meter scale with uniform thickness (<100 nm) is crucial. By using a tailor-made polymer and by controlling the nanofabrication conditions, we developed and manufactured defect-free ultra-thin film membranes with unmatched carbon dioxide permeances, i.e. >5 m3 (STP) m-2 h -1 bar-1. The permeances are extremely high, because the membranes are made from a CO2 philic polymer material and they are only a few tens of nanometers thin. Thus, these thin film membranes have potential application in the treatment of large gas streams under low pressure like, e.g., carbon dioxide separation from flue gas. © 2010 IOP Publishing Ltd.

  13. Thin film bismuth iron oxides useful for piezoelectric devices

    Science.gov (United States)

    Zeches, Robert J.; Martin, Lane W.; Ramesh, Ramamoorthy

    2016-05-31

    The present invention provides for a composition comprising a thin film of BiFeO.sub.3 having a thickness ranging from 20 nm to 300 nm, a first electrode in contact with the BiFeO.sub.3 thin film, and a second electrode in contact with the BiFeO.sub.3 thin film; wherein the first and second electrodes are in electrical communication. The composition is free or essentially free of lead (Pb). The BFO thin film is has the piezoelectric property of changing its volume and/or shape when an electric field is applied to the BFO thin film.

  14. Photoelectrochemical performance of Mn-TiO{sub 2} thin films mounted on FTO prepared by sol-gel spin coating

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.C.; Song, G.H. [National Central Univ., Taoyuan, Taiwan (China). Dept. of Mechanical Engineering; Lu, C.W. [Jen-Teh Junior College, Hou- Lung, Taiwan (China). Dept. of Information Management; Tseng, C.J. [National Central Univ., Chung-Li, Taoyuan County, Taiwan (China). Dept. of Mechanical Engineering; Cheng, K.W. [Chang Gung Univ., Tao-Yuan, Taiwan (China). Dept. of Chemical and Materials Engineering

    2009-07-01

    Tin oxide (TiO{sub 2}) sol-gels with Mn{sup 2+} molar ratios ranging from 0 to 0.1 per cent were used to form nano-structured Mn(x)Ti(1-x)O(2) thin films. A layer-by-layer spincoating (LLSC) technique was used, in which 10 very thin and uniform coating layers of Mn(x)Ti(1-x)O(2) were deposited on fluorine doped tin oxide (FTO) glass. Properties of the thin films were determined as a function of annealing temperature and molar ratio of the Mn{sup 2+} ions by X-ray diffraction (XRD), scanning electron microscopy (SEM), Atomic Force microscopy (AFM) and photoelectrochemical (PEC) measurements. The PEC measurements were obtained in a dry-type three-electrode cell consisting of sample, platinized and reference Ag/AgCl electrodes. The results revealed that the Mn(x)Ti(1-x)O(2) thin films have better structure and electrochemical characteristics when the annealing temperature is 550 degrees C. The TiO{sub 2} thin films with Mn{sup 2+} ions also had higher photocurrent than undoped TiO{sub 2}. The optimum Mn{sup 2+} loading in this study was found to be 0.1 ml per cent. The maximum photocurrent of Mn(0.1)Ti(0.9)O(2) thin films is about 0.68 mA/cm2 when the bias potential is 0.8 V (vs.Ag/AgCl).

  15. Development of thin film cathodes for lithium-ion batteries in the material system Li–Mn–O by r.f. magnetron sputtering

    International Nuclear Information System (INIS)

    Fischer, J.; Adelhelm, C.; Bergfeldt, T.; Chang, K.; Ziebert, C.; Leiste, H.; Stüber, M.; Ulrich, S.; Music, D.; Hallstedt, B.; Seifert, H.J.

    2013-01-01

    Today most commercially available lithium ion batteries are still based on the toxic and expensive LiCoO 2 as a standard cathode material. However, lithium manganese based cathode materials are cheaper and environmentally friendlier. In this work cubic-LiMn 2 O 4 spinel, monoclinic-Li 2 MnO 3 and orthorhombic-LiMnO 2 thin films have been synthesized by non-reactive r.f. magnetron sputtering from two ceramic targets (LiMn 2 O 4 , LiMnO 2 ) in a pure argon discharge. The deposition parameters, namely target power and working gas pressure, were optimized in a combination with a post deposition heat treatment with respect to microstructure and electrochemical behavior. The chemical composition was determined using inductively coupled plasma optical emission spectroscopy and carrier gas hot extraction. The films' crystal structure, phase evolution and morphology were investigated by X-ray diffraction, micro Raman spectroscopy and scanning electron microscopy. Due to the fact that these thin films consist of the pure active material without any impurities, such as binders or conductive additives like carbon black, they are particularly well suited for measurements of the intrinsic physical properties, which is essential for fundamental understanding. The electrochemical behavior of the cubic and the orthorhombic films was investigated by galvanostatic cycling in half cells against metallic lithium. The cubic spinel films exhibit a maximum specific capacity of ∼ 82 mAh/g, while a specific capacity of nearly 150 mAh/g can be reached for the orthorhombic counterparts. These films are promising candidates for future all solid state battery applications. - Highlights: ► Synthesis of 3 Li–Mn–O structures by one up-scalable thin film deposition method ► Formation of o-LiMnO 2 by r.f. magnetron sputtering in combination with post-annealing ► Discharge capacity with o-LiMnO 2 cathodes twice as high as for c-LiMn 2 O 4 ► Thin film deposition of m-Li 2 MnO 3 and

  16. Tools to synthesize the learning of thin films

    International Nuclear Information System (INIS)

    Rojas, Roberto; Fuster, Gonzalo; Sluesarenko, Viktor

    2011-01-01

    After a review of textbooks written for undergraduate courses in physics, we have found that discussions on thin films are mostly incomplete. They consider the reflected and not the transmitted light for two instead of the four types of thin films. In this work, we complement the discussion in elementary textbooks, by analysing the phase differences required to match the conditions for constructive and destructive interference, in the reflected and transmitted light in four types of thin films. We consider thin films with varied sequences in the refractive index, which we identify as barriers, wells and stairs (up and down). Also, we use the conservation of energy in order to understand the complementary colour fringes observed in the reflected and transmitted light through thin films. We analyse systematically the phase changes by introducing a phase table and we synthesize the results in a circular diagram matching 16 physical situations of interference and their corresponding conditions on the film thickness. The phase table and the circular diagram are a pair of tools easily assimilated by students, and useful to organize, analyse and activate the knowledge about thin films.

  17. The wet corrosion of molybdenum thin film. Part I: Behavior at 25 C

    International Nuclear Information System (INIS)

    De Rosa, L.; Tomachuk, C.R.; Mitton, D.B.; Saiello, S.; Bellucci, F.; Springer, J.

    2004-01-01

    The corrosion and passivation behaviour of molybdenum thin films obtained by Physical Vapor Deposition (PVD) was investigated in aerated chloride and sulfate solutions at different pH values. Open circuit potential (ocp) measurements, polarisation experiments and electrochemical impedance spectroscopy (EIS) were employed. The experimental results suggest that the metal surface is covered by a passive film; however, corrosion still occurs. For the samples assessed during the current research, the acidic electrolytes tended to be less corrosive; however, a limited passive region was associated with the most basic sulfate or chloride solution. The effect of the pH was found to be more pronounced than the effect of the ion (chloride or sulfate). (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  18. Electrochemical and optical properties of CeO2-SnO2 and CeO2-SnO2:X (X = Li, C, Si films

    Directory of Open Access Journals (Sweden)

    Berton Marcos A.C.

    2001-01-01

    Full Text Available Thin solid films of CeO2-SnO2 (17 mol% Sn and CeO2-SnO2:X (X = Li, C and Si were prepared by the sol-gel route, using an aqueous-based process. The addition of Li, C and Si to the precursor solution leads to films with different electrochemical performances. The films were deposited by the dip-coating technique on ITO coated glass (Donnelly Glass at a speed of 10 cm/min and submitted to a final thermal treatment at 450 °C during 10 min in air. The electrochemical and optical properties of the films were determined from the cyclic voltammetry and chronoamperometry measurements using 0.1 M LiOH as supporting electrolyte. The ion storage capacity of the films was investigated using in situ spectroelectrochemical method and during the insertion/extraction process the films remained transparent. The powders were characterized by thermal analysis (DSC/TGA and X-ray diffraction.

  19. Electrochemical preparation and characterization of n-CdSe sub 0. 65 Te sub 0. 35 polycrystalline thin films: Influence of annealing

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, M T; Ortega, J [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, Madrid (Spain). Inst. de Energias Renovables

    1989-12-01

    CdSe{sub 0.65}Te{sub 0.35} thin films have been prepared by electrodeposition. The films were characterized by X-ray diffraction, optical and photoelectrochemical methods. The influence of annealing treatments on the physical parameters (grain size, d, donor concentration, N{sub D}, and hole diffusion length, L{sub P}) determining the photoelectrochemical behaviour of electrodeposited CdSe{sub 0.65}Te{sub 0.35} thin films in contact with sulfide/polysulfide electrolytes have been systematically studied. (orig.).

  20. Protein-modified nanocrystalline diamond thin films for biosensor applications.

    Science.gov (United States)

    Härtl, Andreas; Schmich, Evelyn; Garrido, Jose A; Hernando, Jorge; Catharino, Silvia C R; Walter, Stefan; Feulner, Peter; Kromka, Alexander; Steinmüller, Doris; Stutzmann, Martin

    2004-10-01

    Diamond exhibits several special properties, for example good biocompatibility and a large electrochemical potential window, that make it particularly suitable for biofunctionalization and biosensing. Here we show that proteins can be attached covalently to nanocrystalline diamond thin films. Moreover, we show that, although the biomolecules are immobilized at the surface, they are still fully functional and active. Hydrogen-terminated nanocrystalline diamond films were modified by using a photochemical process to generate a surface layer of amino groups, to which proteins were covalently attached. We used green fluorescent protein to reveal the successful coupling directly. After functionalization of nanocrystalline diamond electrodes with the enzyme catalase, a direct electron transfer between the enzyme's redox centre and the diamond electrode was detected. Moreover, the modified electrode was found to be sensitive to hydrogen peroxide. Because of its dual role as a substrate for biofunctionalization and as an electrode, nanocrystalline diamond is a very promising candidate for future biosensor applications.

  1. Molecular simulation of freestanding amorphous nickel thin films

    Energy Technology Data Exchange (ETDEWEB)

    Dong, T.Q. [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, UMR 8208 CNRS, 5 Boulevard Descartes, 77454 Marne-la-Vallée, Cedex 2 (France); Hoang, V.V., E-mail: vvhoang2002@yahoo.com [Department of Physics, Institute of Technology, National University of Ho Chi Minh City, 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City (Viet Nam); Lauriat, G. [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, UMR 8208 CNRS, 5 Boulevard Descartes, 77454 Marne-la-Vallée, Cedex 2 (France)

    2013-10-31

    Size effects on glass formation in freestanding Ni thin films have been studied via molecular dynamics simulation with the n-body Gupta interatomic potential. Atomic mechanism of glass formation in the films is determined via analysis of the spatio-temporal arrangements of solid-like atoms occurred upon cooling from the melt. Solid-like atoms are detected via the Lindemann ratio. We find that solid-like atoms initiate and grow mainly in the interior of the film and grow outward. Their number increases with decreasing temperature and at a glass transition temperature they dominate in the system to form a relatively rigid glassy state of a thin film shape. We find the existence of a mobile surface layer in both liquid and glassy states which can play an important role in various surface properties of amorphous Ni thin films. We find that glass formation is size independent for models containing 4000 to 108,000 atoms. Moreover, structure of amorphous Ni thin films has been studied in details via coordination number, Honeycutt–Andersen analysis, and density profile which reveal that amorphous thin films exhibit two different parts: interior and surface layer. The former exhibits almost the same structure like that found for the bulk while the latter behaves a more porous structure containing a large amount of undercoordinated sites which are the origin of various surface behaviors of the amorphous Ni or Ni-based thin films found in practice. - Highlights: • Glass formation is analyzed via spatio-temporal arrangements of solid-like atoms. • Amorphous Ni thin film exhibits two different parts: surface and interior. • Mobile surface layer enhances various surface properties of the amorphous Ni thin films. • Undercoordinated sites play an important role in various surface activities.

  2. Electrochemical behavior of high performance on-chip porous carbon films for micro-supercapacitors applications in organic electrolytes

    Science.gov (United States)

    Brousse, K.; Huang, P.; Pinaud, S.; Respaud, M.; Daffos, B.; Chaudret, B.; Lethien, C.; Taberna, P. L.; Simon, P.

    2016-10-01

    Carbide derived carbons (CDCs) are promising materials for preparing integrated micro-supercapacitors, as on-chip CDC films are prepared via a process fully compatible with current silicon-based device technology. These films show good adherence on the substrate and high capacitance thanks to their unique nanoporous structure which can be fine-tuned by adjusting the synthesis parameters during chlorination of the metallic carbide precursor. The carbon porosity is mostly related to the synthesis temperature whereas the thickness of the films depends on the chlorination duration. Increasing the pore size allows the adsorption of large solvated ions from organic electrolytes and leads to higher energy densities. Here, we investigated the electrochemical behavior and performance of on-chip TiC-CDC in ionic liquid solvent mixtures of 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIBF4) diluted in either acetonitrile or propylene carbonate via cyclic voltammetry and electrochemical impedance spectroscopy. Thin CDC films exhibited typical capacitive signature and achieved 169 F cm-3 in both electrolytes; 65% of the capacitance was still delivered at 1 V s-1. While increasing the thickness of the films, EMI+ transport limitation was observed in more viscous PC-based electrolyte. Nevertheless, the energy density reached 90 μW h cm-2 in 2M EMIBF4/ACN, confirming the interest of these CDC films for micro-supercapacitors applications.

  3. Resistivity of thiol-modified gold thin films

    International Nuclear Information System (INIS)

    Correa-Puerta, Jonathan; Del Campo, Valeria; Henríquez, Ricardo; Häberle, Patricio

    2014-01-01

    In this work, we study the effect of thiol self assembled monolayers on the electrical resistivity of metallic thin films. The analysis is based on the Fuchs–Sondheimer–Lucas theory and on electrical transport measurements. We determined resistivity change due to dodecanethiol adsorption on gold thin films. For this purpose, we controlled the deposition and annealing temperatures of the films to change the surface topography and to diminish the effect of electron grain boundary scattering. Results show that the electrical response to the absorption of thiols strongly depends on the initial topography of the surface. - Highlights: • We study the effect of self assembled monolayers on the resistivity of thin films. • Fuchs–Sondheimer theory reproduces the resistivity increase due to thiol deposition. • We determined resistivity change due to dodecanethiol deposition on gold thin films. • The electrical response strongly depends on the substrate surface topography

  4. Resistivity of thiol-modified gold thin films

    Energy Technology Data Exchange (ETDEWEB)

    Correa-Puerta, Jonathan [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Av. Universidad 330, Curauma, Valparaíso (Chile); Del Campo, Valeria [Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Valparaiso 2390123 (Chile); Henríquez, Ricardo, E-mail: ricardo.henriquez@usm.cl [Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Valparaiso 2390123 (Chile); Häberle, Patricio [Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Valparaiso 2390123 (Chile)

    2014-11-03

    In this work, we study the effect of thiol self assembled monolayers on the electrical resistivity of metallic thin films. The analysis is based on the Fuchs–Sondheimer–Lucas theory and on electrical transport measurements. We determined resistivity change due to dodecanethiol adsorption on gold thin films. For this purpose, we controlled the deposition and annealing temperatures of the films to change the surface topography and to diminish the effect of electron grain boundary scattering. Results show that the electrical response to the absorption of thiols strongly depends on the initial topography of the surface. - Highlights: • We study the effect of self assembled monolayers on the resistivity of thin films. • Fuchs–Sondheimer theory reproduces the resistivity increase due to thiol deposition. • We determined resistivity change due to dodecanethiol deposition on gold thin films. • The electrical response strongly depends on the substrate surface topography.

  5. Thin film free-standing PEDOT:PSS/SU8 bilayer microactuators

    International Nuclear Information System (INIS)

    Taccola, S; Greco, F; Mazzolai, B; Mattoli, V; Jager, E W H

    2013-01-01

    Several smart active materials have been proposed and tested for the development of microactuators. Among these, conjugated polymers are of great interest because miniaturization improves their electrochemical properties, such as increasing the speed and stress output of microactuators, with respect to large-scale actuators. Recently we developed a novel fabrication process to obtain robust free-standing conductive ultra-thin films made of the conjugated polymer poly(3, 4-ethylenedioxythiophene) doped with the polyanion poly(styrenesulfonate) (PEDOT:PSS). These conductive free-standing nanofilms, with thicknesses ranging between a few tens to several hundreds of nm, allow the realisation of new all polymer microactuators using facile microfabrication methods. Here, we report a novel processing method for manufacturing all polymer electrochemical microactuators. We fabricated and patterned free-standing PEDOT:PSS/SU8 bilayer microactuators in the form of microfingers of a variety of lengths using adapted microfabrication procedures. By imposing electrochemical oxidation/reduction cycles on the PEDOT:PSS we were able to demonstrate reversible actuation of the microactuators resulting in bending of the microfingers. A number of possible applications can be envisaged for these small, soft actuators, such as microrobotics and cell manipulation. (technical note)

  6. Preparation and characterization of Eosin B- and Erythrosin J-sensitized nanostructured NiO thin film photocathodes

    Energy Technology Data Exchange (ETDEWEB)

    Vera, F. [Instituto de Quimica, Universidad Catolica de Valparaiso, Valparaiso (Chile); Schrebler, R. [Instituto de Quimica, Universidad Catolica de Valparaiso, Valparaiso (Chile); Munoz, E. [Instituto de Quimica, Universidad Catolica de Valparaiso, Valparaiso (Chile); Suarez, C. [Instituto de Quimica, Universidad Catolica de Valparaiso, Valparaiso (Chile); Cury, P. [Instituto de Quimica, Universidad Catolica de Valparaiso, Valparaiso (Chile); Gomez, H. [Instituto de Quimica, Universidad Catolica de Valparaiso, Valparaiso (Chile); Cordova, R. [Instituto de Quimica, Universidad Catolica de Valparaiso, Valparaiso (Chile); Marotti, R.E. [Instituto de Fisica, Facultad de Ingenieria, Universidad de la Republica, Herrera y Reissig 565, C.C. 30, 11000 Montevideo (Uruguay); Dalchiele, E.A. [Instituto de Fisica, Facultad de Ingenieria, Universidad de la Republica, Herrera y Reissig 565, C.C. 30, 11000 Montevideo (Uruguay)]. E-mail: dalchiel@fing.edu.uy

    2005-11-01

    Nickel oxide (NiO) thin films were prepared onto ITO/glass substrates by spin-coating, dipping and electrochemically. Studies of the morphological and structural properties of the films were done by atomic force microscopy (AFM). Photoelectrochemical and optical experiments were carried out in order to characterize the semiconductor properties of the nanostructured NiO thin films. The experiments were also done for Eosin B- and Erythrosin J-sensitized nanostructured NiO films, with the aim to visualize their potential application as photocatodes in tandem dye-sensitized solar cells (TDSSC). The NiO grown by dipping was the one presenting the best morphological properties. The photoelectrochemical results for all the bare NiO, NiO-Eosin B and NiO-Erythrosin J/electrolyte (I{sub 2}/I{sup -}) systems showed a p-type behavior. An enhancement in the photocurrent has been observed for the systems sensitized with the dyes. For the NiO/Erythrosin J system the enhancement of the current under illumination in comparison to the dark current was about 200%.

  7. Preparation and characterization of Eosin B- and Erythrosin J-sensitized nanostructured NiO thin film photocathodes

    International Nuclear Information System (INIS)

    Vera, F.; Schrebler, R.; Munoz, E.; Suarez, C.; Cury, P.; Gomez, H.; Cordova, R.; Marotti, R.E.; Dalchiele, E.A.

    2005-01-01

    Nickel oxide (NiO) thin films were prepared onto ITO/glass substrates by spin-coating, dipping and electrochemically. Studies of the morphological and structural properties of the films were done by atomic force microscopy (AFM). Photoelectrochemical and optical experiments were carried out in order to characterize the semiconductor properties of the nanostructured NiO thin films. The experiments were also done for Eosin B- and Erythrosin J-sensitized nanostructured NiO films, with the aim to visualize their potential application as photocatodes in tandem dye-sensitized solar cells (TDSSC). The NiO grown by dipping was the one presenting the best morphological properties. The photoelectrochemical results for all the bare NiO, NiO-Eosin B and NiO-Erythrosin J/electrolyte (I 2 /I - ) systems showed a p-type behavior. An enhancement in the photocurrent has been observed for the systems sensitized with the dyes. For the NiO/Erythrosin J system the enhancement of the current under illumination in comparison to the dark current was about 200%

  8. Electrodeposition of enzymes-integrated mesoporous composite films by interfacial templating: A paradigm for electrochemical biosensors

    International Nuclear Information System (INIS)

    Wang, Dongming; Tan, Yiwei

    2014-01-01

    The development of nanostructured electrodes for electrochemical biosensors is of significant interest for modern detection, portable devices, and enhanced performance. However, development of such sensors still remains challenging due to the time-consuming, detriment-to-nature, and costly modifications of both electrodes and enzymes. In this work, we report a simple one-step approach to fabricating high-performance, direct electron transfer (DET) based nanoporous enzyme-embedded electrodes by electrodeposition coupled with recent progress in potential-controlled interfacial surfactant assemblies. In contrast to those previously electrodeposited mesoporous materials that are not bioactive, we imparted the biofunctionality to electrodeposited mesoporous thin films by means of the amphiphilic phospholipid templates strongly interacting with enzymes. Thus, phospholipid-templated mesoporous ZnO films covalently inlaid with the pristine enzymes were prepared by simple one-step electrodeposition. We further demonstrate two examples of such hybrid film electrodes embedded with alcohol dehydrogenase (ADH) and glucose oxidase (GOx), which are effectively employed as electrochemical biosensors for amperometric sensing of ethanol and glucose without using any electron relays. The favorable mass transport and large contact surface area provided by nanopores play an important role in improving the performance of these two biosensors, such as excellent sensitivities, low detection limits, and fast response. The matrix mesoporous films acting as effective electronic bridges are responsible for DET between enzyme molecules and metal electrode

  9. Fabrication and characterization of nanostructured anatase TiO{sub 2} films prepared by electrochemical anodization and their photocatalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Yurddaskal, Metin [Dokuz Eylul University, The Graduate School of Natural and Applied Sciences, Buca 35390, Izmir (Turkey); Dokuz Eylul University, Center for Fabrication and Applications of Electronic Materials (EMUM), Buca, 35390, Izmir (Turkey); Dikici, Tuncay, E-mail: tuncay.dikici@ikc.edu.tr [Dokuz Eylul University, The Graduate School of Natural and Applied Sciences, Buca 35390, Izmir (Turkey); Izmir Katip Celebi University, Department of Materials Science and Engineering, Cigli 35620, Izmir (Turkey); Yildirim, Serdar [Dokuz Eylul University, The Graduate School of Natural and Applied Sciences, Buca 35390, Izmir (Turkey); Dokuz Eylul University, Center for Fabrication and Applications of Electronic Materials (EMUM), Buca, 35390, Izmir (Turkey); Yurddaskal, Melis [Celal Bayar University, Department of Mechanical Engineering, Muradiye, 45140 Manisa (Turkey); Toparli, Mustafa; Celik, Erdal [Dokuz Eylul University, Center for Fabrication and Applications of Electronic Materials (EMUM), Buca, 35390, Izmir (Turkey); Dokuz Eylul University, Department of Metallurgical and Materials Engineering, Buca 35390, Izmir (Turkey)

    2015-12-05

    In this study, nanostructured anatase titanium dioxide (TiO{sub 2}) films were fabricated by electrochemical anodization of titanium first, and then annealed at 500 °C for 2 h. Effect of electrolyte concentration, anodization time and electrolyte temperature on the surface morphology of the resulting TiO{sub 2} thin films were investigated. The phase structures, surface morphology and chemical composition were analyzed using X-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The photocatalytic activity tests of the samples were evaluated by the degradation of aqueous methylene blue (MB) solutions under UV light illumination for different periods of time. The results showed that the structure of nanostructured TiO{sub 2} films depended strongly on the anodization parameters. It was found that there were micro-scale pores (<10 μm) and nano-scale pores (diameter in the range from 40 to 70 nm) on the anodized titanium surfaces. This study indicated that structures, surface morphology, and surface area of the nanostructured anatase TiO{sub 2} films played an important role on their photocatalytic performance. The results clearly proved that nanostructured anatase TiO{sub 2} film prepared with optimum process parameters resulted in enhancement of the photocatalytic activity. - Highlights: • TiO{sub 2} thin films were prepared on titanium substrates by electrochemical anodization at 30 V. • Effect of various anodization parameters on the photocatalytic activity of titanium was investigated. • Micro- and nanoscale TiO{sub 2} pores formed on the titanium by anodizing. • Surface morphology of the TiO{sub 2} films plays an important role on the photocatalytic performance. • The sample anodized for 240 min showed the highest photocatalytic activity.

  10. Dependence of the constitution, microstructure and electrochemical behaviour of magnetron sputtered Li-Ni-Mn-Co-O thin film cathodes for lithium-ion batteries on the working gas pressure and annealing conditions

    International Nuclear Information System (INIS)

    Strafela, Marc; Fischer, Julian; Leiste, Harald; Rinke, Monika; Bergfeldt, Thomas; Seifert, Hans Juergen; Ulrich, Sven; Music, Denis; Chang, Keke; Schneider, Jochen

    2017-01-01

    Li(Ni 1/3 Mn 1/3 Co 1/3 )O 2 as a cathode material for lithium ion batteries shows good thermal stability, high reversible capacity (290 mAh g -1 ), good rate capability and better results in terms of environmental friendliness. In this paper thin film cathodes in the material system Li-Ni-Mn-Co-O were deposited onto silicon and stainless steel substrates, by non-reactive r.f. magnetron sputtering from a ceramic Li 1.18 (Ni 0.39 Mn 0.19 Co 0.35 )O 1.97 target at various argon working gas pressures between 0.2 Pa and 20 Pa. A comprehensive study on the composition and microstructure was carried out. The results showed that the elemental composition varies depending on argon working gas pressure. The elemental composition was determined by inductively coupled plasma optical emission spectroscopy in combination with carrier gas hot extraction. The films showed different grain orientations depending argon working gas pressures. The degree of cation order in the lattice structure of the films deposited at 0.5 Pa and 7 Pa argon working gas pressure, was increased by annealing in an argon/oxygen atmosphere at different pressures for one hour. The microstructure of the films varies with annealing gas pressure and is characterized using X-ray diffraction and unpolarized micro-Raman spectroscopy at room temperature. Electrochemical characterization of as-deposited and annealed films was carried out by galvanostatic cycling in Li-Ni-Mn-Co-O half-cells against metallic lithium. Correlations between process parameters, constitution, microstructure and electrochemical behaviour are discussed in detail.

  11. Electrocrystallization and scanning probe microscopy of ceramic thin films and superlattices

    Science.gov (United States)

    Hung, Chen-Jen

    This dissertation presents an investigation of the electrocrystallization and scanning probe microscopy of ceramic thin films and superlattices. All of the films were deposited from aqueous solution at room temperature with no subsequent heat treatment needed to effect crystallization. Thallium(III) oxide defect chemistry superlattices were electrodeposited by pulsing the applied overpotential during deposition. The defect chemistry of the oxide is dependent on the applied overpotential. High overpotentials favor oxygen vacancies, while low overpotentials favor cation interstitials. Nanometer-scale holes were formed in thin thallium(III) oxide films using the scanning tunneling microscope in humid ambient conditions. Both cathodic and anodic etching reactions were performed on this metal oxide surface. The hole formation was attributed to localized electrochemical etching reactions beneath the STM tip. The scanning tunneling microscope (STM) was also used to both induce local surface modifications and image cleaved Pb-Tl-O superlattices. A trench of 100 nm in width, 32 nm in depth, and over 1 μm in length was formed after sweeping a bias voltage of ±2.5 V for 1 minute using a fixed STM tip. It has been suggested that STM results obtained under ambient conditions must be evaluated with great care because of the possibility of localized electrochemcial reactions. A novel synthesis method for the production of Cu(II) oxide from an alkaline solution containing Cu(II) tartrate was developed. Rietveld refinement of the cupric oxide films reveals pure Cu(II) oxide with no Cu(I) oxide present in the film.

  12. Improvement in interfacial characteristics of low-voltage carbon nanotube thin-film transistors with solution-processed boron nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Jun-Young; Ha, Tae-Jun, E-mail: taejunha0604@gmail.com

    2017-08-15

    Highlights: • We demonstrate the potential of solution-processed boron nitride (BN) thin films for nanoelectronics. • Improved interfacial characteristics reduced the leakage current by three orders of magnitude. • The BN encapsulation improves all the device key metrics of low-voltage SWCNT-TFTs. • Such improvements were achieved by reduced interaction of interfacial localized states. - Abstract: In this article, we demonstrate the potential of solution-processed boron nitride (BN) thin films for high performance single-walled carbon nanotube thin-film transistors (SWCNT-TFTs) with low-voltage operation. The use of BN thin films between solution-processed high-k dielectric layers improved the interfacial characteristics of metal-insulator-metal devices, thereby reducing the current density by three orders of magnitude. We also investigated the origin of improved device performance in SWCNT-TFTs by employing solution-processed BN thin films as an encapsulation layer. The BN encapsulation layer improves the electrical characteristics of SWCNT-TFTs, which includes the device key metrics of linear field-effect mobility, sub-threshold swing, and threshold voltage as well as the long-term stability against the aging effect in air. Such improvements can be achieved by reduced interaction of interfacial localized states with charge carriers. We believe that this work can open up a promising route to demonstrate the potential of solution-processed BN thin films on nanoelectronics.

  13. Characterization of nanocrystalline cadmium telluride thin films ...

    Indian Academy of Sciences (India)

    Unknown

    tion method, successive ionic layer adsorption and reaction (SILAR), are described. For deposition of CdTe thin films ... By conducting several trials optimization of the adsorption, reaction and rinsing time duration for CdTe thin film .... The electrical resistivity of CdTe films was studied in air. Figure 3 shows the variation of log ...

  14. Photoluminescence properties of perovskite multilayer thin films

    Energy Technology Data Exchange (ETDEWEB)

    Macario, Leilane Roberta; Longo, Elson, E-mail: leilanemacario@gmail.com [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil); Mazzo, Tatiana Martelli [Universidade Federal de Sao Paulo (UNIFESP), SP (Brazil); Bouquet, Valerie; Deputier, Stephanie; Ollivier, Sophie; Guilloux-Viry, Maryline [Universite de Rennes (France)

    2016-07-01

    Full text: The knowledge of the optical properties of thin films is important in many scientific, technological and industrial applications of thin films such as photoconductivity, solar energy, photography, and numerous other applications [1]. In this study, perovskite type oxides were grown by pulsed laser deposition [2] in order to obtain thin films with applicable optical properties. The LaNiO{sub 3} (LN), BaTiO{sub 3} (BT) and KNbO{sub 3} (KNb) targets were prepared by solid-state reaction. The X-ray Diffraction revealed the presence of the desired phases, containing the elements of interest in the targets and in the thin films that were produced. The LN, BT and KNb thin films were polycrystalline and the corresponding diffraction peaks were indexed in the with JCPDS cards n. 00-033-0711, n. 00-005-0626, and n. 00-009-0156, respectively. The multilayers films were polycrystalline. The majority of the micrographs obtained by scanning electron microscopy presented films with a thickness from 100 to 400 nm. The photoluminescent (PL) emission spectra of thin films show different broad bands that occupies large region of the visible spectrum, ranging from about 300-350 to 600-650 nm of the electromagnetic spectrum. The PL emission is associated with the order-disorder structural, even small structural changes can modify the interactions between electronic states. The structural disorder results in formation of new energy levels in the forbidden region. The proximity or distance of these new energy levels formed in relation to valence band and to the conduction band results in PL spectra located at higher or lower energies. These interactions change the electronic states which can be influenced by defects, particularly the interface defects between the layers of the thin films. The presence of defects results in changes in the broad band matrix intensity and in displacement of the PL emission maximum. (author)

  15. Optical characteristics of the thin-film scintillator detector

    International Nuclear Information System (INIS)

    Muga, L.; Burnsed, D.

    1976-01-01

    A study of the thin-film detector (TFD) was made in which various light guide and scintillator film support configurations were tested for efficiency of light coupling. Masking of selected portions of the photomultiplier (PM) tube face revealed the extent to which emitted light was received at the exposed PM surfaces. By blocking off selected areas of the scintillator film surface from direct view of the PM tube faces, a measure of the light-guiding efficiency of the film and its support could be estimated. The picture that emerges is that, as the light which is initially trapped in the thin film spreads radially outward from the ion entrance/exit point, it is scattered out of the film by minute imperfections. Optimum signals were obtained by a configuration in which the thin scintillator film was supported on a thin rectangular Celluloid frame inserted within a highly polished metal cylindrical sleeve

  16. Multilayered films of cobalt oxyhydroxide nanowires/manganese oxide nanosheets for electrochemical capacitor

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Huajun [State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014 (China); ARC Centre of Excellence for Functional Nanomaterials, School of Chemical Engineering and AIBN, The University of Queensland, St Lucia, Brisbane, QLD 4072 (Australia); Tang, Fengqiu; Mukherji, Aniruddh; Yan, Xiaoxia; Wang, Lianzhou (Max) Lu, Gao Qing [ARC Centre of Excellence for Functional Nanomaterials, School of Chemical Engineering and AIBN, The University of Queensland, St Lucia, Brisbane, QLD 4072 (Australia); Lim, Melvin [Division of Environmental and Water Resources Engineering, School of Civil and Environmental Engineering, Nanyang Technological University, 639798 (Singapore)

    2010-01-15

    Multilayered films of cobalt oxyhydroxide nanowires (CoOOHNW) and exfoliated manganese oxide nanosheet (MONS) are fabricated by potentiostatic deposition and electrostatic self-assembly on indium-tin oxide coated glass substrates. The morphology and chemical composition of these films are characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectra (XPS) and the potential application as electrochemical supercapacitors are investigated using cyclic voltammetry and charge-discharge measurements. These ITO/CoOOHNW/MONS multilayered film electrodes exhibit excellent electrochemical capacitance properties, including high specific capacitance (507 F g{sup -1}) and long cycling durability (less 2% capacity loss after 5000 charge/discharge cycles). These characteristics indicate that these newly developed films may find important application for electrochemical capacitors. (author)

  17. Fractal and multifractal analysis of LiF thin film surface

    International Nuclear Information System (INIS)

    Yadav, R.P.; Dwivedi, S.; Mittal, A.K.; Kumar, M.; Pandey, A.C.

    2012-01-01

    Highlights: ► Fractal and multifractal analysis of surface morphologies of the LiF thin films. ► Complexity and roughness of the LiF thin films increases as thickness increases. ► LiF thin films are multifractal in nature. ► Strength of the multifractality increases with thickness of the film. - Abstract: Fractal and multifractal analysis is performed on the atomic force microscopy (AFM) images of the surface morphologies of the LiF thin films of thickness 10 nm, 20 nm, and 40 nm, respectively. Autocorrelation function, height–height correlation function, and two-dimensional multifractal detrended fluctuation analysis (MFDFA) are used for characterizing the surface. It is found that the interface width, average roughness, lateral correlation length, and fractal dimension of the LiF thin film increase with the thickness of the film, whereas the roughness exponent decreases with thickness. Thus, the complexity and roughness of the LiF thin films increases as thickness increases. It is also demonstrated that the LiF thin films are multifractal in nature. Strength of the multifractality increases with thickness of the film.

  18. Chemical synthesis of highly stable PVA/PANI films for supercapacitor application

    Energy Technology Data Exchange (ETDEWEB)

    Patil, D.S.; Shaikh, J.S.; Dalavi, D.S.; Kalagi, S.S. [Thin Films Materials laboratory, Department of Physics, Shivaji University, Kolhapur 416004, M.S. (India); Patil, P.S., E-mail: psp_phy@unishivaji.ac.in [Thin Films Materials laboratory, Department of Physics, Shivaji University, Kolhapur 416004, M.S. (India)

    2011-08-15

    Highlights: {yields} Chemical synthesis of PVA/PANI films by spin and dip coating at room temperature. {yields} Thickness dependent supercapacitor behavior of PVA/PANI film. {yields} The synthesized film are highly stable up to 20,000 cycles. - Abstract: Polyvinyl alcohol (PVA)/polyaniline (PANI) thin films were chemically synthesized by adopting two step process: initially a thin layer (200 nm) of PVA was spin coated by using an aqueous PVA solution onto fluorine doped tin oxide (FTO) coated glass substrate, afterwards PANI was chemically polymerized from aniline monomer and dip coated onto the precoated substrate. The thickness of PANI layer was varied from 293 nm to 2367 nm by varying deposition cycles onto the precoated PVA thin film. The resultant PVA/PANI films were characterized for their optical, morphological and electrochemical properties. The FT-IR and Raman spectra revealed characteristic features of the PANI phase. The SEM study showed porous spongy structure. Electrochemical properties were studied by electrochemical impedance measurement and cyclic voltammetry. The electrochemical performance of PVA/PANI thin films was investigated in 1 M H{sub 2}SO{sub 4} aqueous electrolyte. The highest specific capacitance of 571 Fg{sup -1} was observed for the optimized thickness of 880 nm. The film was found to be stable for more than 20,000 cycles. The samples degraded slightly (25% decrement in specific capacitance) for the first 10,000 cycles. The degradation becomes much slower (10.8% decrement in specific capacitance) beyond 10,000 cycles. This dramatic improvement in the electrochemical stability of the PANI samples, without sacrificing specific capacitance was attributed to the optimized PVA layer.

  19. Preparation and characterization of vanadium oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Monfort, O.; Plesch, G. [Comenius University of Bratislava, Faculty of Natural Sciences, Department of Inorganic Chemistry, 84215 Bratislava (Slovakia); Roch, T. [Comenius University of Bratislava, Faculty of Mathematics Physics and Informatics, Department of Experimental Physics, 84248 Bratislava (Slovakia)

    2013-04-16

    The thermotropic VO{sub 2} films have many applications, since they exhibit semiconductor-conductor switching properties at temperature around 70 grad C. Vanadium oxide thin films were prepared via sol-gel method. Spin coater was used to depose these films on Si/SiO{sub 2} and lime glass substrates. Thin films of V{sub 2}O{sub 5} can be reduced to metastable VO{sub 2} thin films at the temperature of 450 grad C under the pressure of 10{sup -2} Pa. These films are then converted to thermotropic VO{sub 2} at 700 grad C in argon under normal pressure. (authors)

  20. An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen.

    Science.gov (United States)

    Louie, Mary W; Bell, Alexis T

    2013-08-21

    A detailed investigation has been carried out of the structure and electrochemical activity of electrodeposited Ni-Fe films for the oxygen evolution reaction (OER) in alkaline electrolytes. Ni-Fe films with a bulk and surface composition of 40% Fe exhibit OER activities that are roughly 2 orders of magnitude higher than that of a freshly deposited Ni film and about 3 orders of magnitude higher than that of an Fe film. The freshly deposited Ni film increases in activity by as much as 20-fold during exposure to the electrolyte (KOH); however, all films containing Fe are stable as deposited. The oxidation of Ni(OH)2 to NiOOH in Ni films occurs at potentials below the onset of the OER. Incorporation of Fe into the film increases the potential at which Ni(OH)2/NiOOH redox occurs and decreases the average oxidation state of Ni in NiOOH. The Tafel slope (40 mV dec(-1)) and reaction order in OH(-) (1) for the mixed Ni-Fe films (containing up to 95% Fe) are the same as those for aged Ni films. In situ Raman spectra acquired in 0.1 M KOH at OER potentials show two bands characteristic of NiOOH. The relative intensities of these bands vary with Fe content, indicating a change in the local environment of Ni-O. Similar changes in the relative intensities of the bands and an increase in OER activity are observed when pure Ni films are aged. These observations suggest that the OER is catalyzed by Ni in Ni-Fe films and that the presence of Fe alters the redox properties of Ni, causing a positive shift in the potential at which Ni(OH)2/NiOOH redox occurs, a decrease in the average oxidation state of the Ni sites, and a concurrent increase in the activity of Ni cations for the OER.

  1. Laser nanostructuring of ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Nedyalkov, N., E-mail: nned@ie.bas.bg [Department of Electronics and Electrical Engineering, Keio University, 3-14-1 Hiyoshi Kohoku-ku, Yokohama-shi, Kanagawa-ken 223-8522 (Japan); Institute of Electronics, Bulgarian Academy of Sciences, Tzarigradsko shousse 72, Sofia 1784 (Bulgaria); Koleva, M.; Nikov, R.; Atanasov, P. [Institute of Electronics, Bulgarian Academy of Sciences, Tzarigradsko shousse 72, Sofia 1784 (Bulgaria); Nakajima, Y.; Takami, A.; Shibata, A.; Terakawa, M. [Department of Electronics and Electrical Engineering, Keio University, 3-14-1 Hiyoshi Kohoku-ku, Yokohama-shi, Kanagawa-ken 223-8522 (Japan)

    2016-06-30

    Highlights: • Nanosecond laser pulse nanostructuring of ZnO thin films on metal substrate is demonstrated. • Two regimes of the thin film modification are observed depending on the applied laser fluence. • At high fluence regime the ZnO film is homogeneously decomposed into nanosized particles. • The characteristic size of the formed nanostructures corresponds to the domain size of the thin film. - Abstract: In this work, results on laser processing of thin zinc oxide films deposited on metal substrate are presented. ZnO films are obtained by classical nanosecond pulsed laser deposition method in oxygen atmosphere on tantalum substrate. The produced films are then processed by nanosecond laser pulses at wavelength of 355 nm. The laser processing parameters and the film thickness are varied and their influence on the fabricated structures is estimated. The film morphology after the laser treatment is found to depend strongly on the laser fluence as two regimes are defined. It is shown that at certain conditions (high fluence regime) the laser treatment of the film leads to formation of a discrete nanostructure, composed of spherical like nanoparticles with narrow size distribution. The dynamics of the melt film on the substrate and fast cooling are found to be the main mechanisms for fabrication of the observed structures. The demonstrated method is an alternative way for direct fabrication of ZnO nanostructures on metal which can be easy implemented in applications as resistive sensor devices, electroluminescent elements, solar cell technology.

  2. Restructuring in block copolymer thin films

    DEFF Research Database (Denmark)

    Posselt, Dorthe; Zhang, Jianqi; Smilgies, Detlef-M.

    2017-01-01

    Block copolymer (BCP) thin films have been proposed for a number of nanotechnology applications, such as nanolithography and as nanotemplates, nanoporous membranes and sensors. Solvent vapor annealing (SVA) has emerged as a powerful technique for manipulating and controlling the structure of BCP...... thin films, e.g., by healing defects, by altering the orientation of the microdomains and by changing the morphology. Due to high time resolution and compatibility with SVA environments, grazing-incidence small-angle X-ray scattering (GISAXS) is an indispensable technique for studying the SVA process......, providing information of the BCP thin film structure both laterally and along the film normal. Especially, state-of-the-art combined GISAXS/SVA setups at synchrotron sources have facilitated in situ and real-time studies of the SVA process with a time resolution of a few seconds, giving important insight...

  3. Nanocoatings and ultra-thin films technologies and applications

    CERN Document Server

    Tiginyanu, Ion

    2011-01-01

    Gives a comprehensive account of the developments of nanocoatings and ultra-thin films. This book covers the fundamentals, processes of deposition and characterisation of nanocoatings, as well as the applications. It is suitable for the glass and glazing, automotive, electronics, aerospace, construction and biomedical industries in particular.$bCoatings are used for a wide range of applications, from anti-fogging coatings for glass through to corrosion control in the aerospace and automotive industries. Nanocoatings and ultra-thin films provides an up-to-date review of the fundamentals, processes of deposition, characterisation and applications of nanocoatings. Part one covers technologies used in the creation and analysis of thin films, including chapters on current and advanced coating technologies in industry, nanostructured thin films from amphiphilic molecules, chemical and physical vapour deposition methods and methods for analysing nanocoatings and ultra-thin films. Part two focuses on the applications...

  4. Effects of crystallinity and impurities on the electrical conductivity of Li–La–Zr–O thin films

    Energy Technology Data Exchange (ETDEWEB)

    Park, Joong Sun, E-mail: parkj@anl.gov [Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Cheng, Lei [Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Department of Material Sciences and Engineering, University of California, Berkeley, CA 94720 (United States); Zorba, Vassilia [Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Mehta, Apurva [Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Cabana, Jordi [Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Department of Chemistry, University of Illinois at Chicago, IL 60607 (United States); Chen, Guoying; Doeff, Marca M.; Richardson, Thomas J. [Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Park, Jung Hoon [Department of Nano-Science and Technology, University of Seoul, Seoul (Korea, Republic of); Son, Ji-Won [High-Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seoul 136–791 (Korea, Republic of); Hong, Wan-Shick, E-mail: wshong@uos.ac.kr [Department of Nano-Science and Technology, University of Seoul, Seoul (Korea, Republic of)

    2015-02-02

    We present a study of the fabrication of thin films from a Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12} (LLZO) target using pulsed laser deposition. The effects of substrate temperatures and impurities on electrochemical properties of the films were investigated. The thin films of Li–La–Zr–O were deposited at room temperature and higher temperatures on a variety of substrates. Deposition above 600 °C resulted in a mixture of cubic and tetragonal phases of LLZO, as well as a La{sub 2}Zr{sub 2}O{sub 7} impurity, and resulted in aluminum enrichment at the surface when Al-containing substrates were used. Films deposited at 600 °C exhibited the highest room temperature conductivity, 1.61 × 10{sup −6} S/cm. The chemical stability toward metallic lithium was also studied using X-ray photoelectron spectroscopy, which showed that the oxidation state of zirconium remained at + 4 following physical contact with heated lithium metal. - Highlights: • Thin film Li–La–Zr–O was deposited by pulsed laser deposition using Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12}. • Deposition above 600 °C resulted in cubic and tetragonal phases of Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12}. • Aluminum migration from the substrate to the film surface was observed. • The chemical stability toward lithium was studied by X-ray photoelectron spectroscopy.

  5. Nanosphere lithography applied to magnetic thin films

    Science.gov (United States)

    Gleason, Russell

    Magnetic nanostructures have widespread applications in many areas of physics and engineering, and nanosphere lithography has recently emerged as promising tool for the fabrication of such nanostructures. The goal of this research is to explore the magnetic properties of a thin film of ferromagnetic material deposited onto a hexagonally close-packed monolayer array of polystyrene nanospheres, and how they differ from the magnetic properties of a typical flat thin film. The first portion of this research focuses on determining the optimum conditions for depositing a monolayer of nanospheres onto chemically pretreated silicon substrates (via drop-coating) and the subsequent characterization of the deposited nanosphere layer with scanning electron microscopy. Single layers of permalloy (Ni80Fe20) are then deposited on top of the nanosphere array via DC magnetron sputtering, resulting in a thin film array of magnetic nanocaps. The coercivities of the thin films are measured using a home-built magneto-optical Kerr effect (MOKE) system in longitudinal arrangement. MOKE measurements show that for a single layer of permalloy (Py), the coercivity of a thin film deposited onto an array of nanospheres increases compared to that of a flat thin film. In addition, the coercivity increases as the nanosphere size decreases for the same deposited layer. It is postulated that magnetic exchange decoupling between neighboring nanocaps suppresses the propagation of magnetic domain walls, and this pinning of the domain walls is thought to be the primary source of the increase in coercivity.

  6. Bandtail characteristics in InN thin films

    International Nuclear Information System (INIS)

    Shen, W.Z.; Jiang, L.F.; Yang, H.F.; Meng, F.Y.; Ogawa, H.; Guo, Q.X.

    2002-01-01

    The Urbach bandtail characteristics in InN thin films grown by radio-frequency magnetron sputtering on sapphire (0001) substrates have been investigated both theoretically and experimentally. The bandtail parameter in InN thin films has been obtained by temperature-dependent transmission spectra, with the aid of a detailed calculation of the transmission profile. A bandtail model based on the calculation of density of occupied states and the carrier-phonon interaction has been employed to analyze the temperature-dependent bandtail characteristics. The bandtail parameter is in the range of 90-120 meV in the InN thin film. It is found that the carrier-phonon interaction in InN is weak and the structural disorder contribution (∼90 meV) dominates over the interactive terms. The high structural disorder in InN thin films may relate to the high nonradiative recombination centers

  7. Thin films of mixed metal compounds

    Science.gov (United States)

    Mickelsen, Reid A.; Chen, Wen S.

    1985-01-01

    A compositionally uniform thin film of a mixed metal compound is formed by simultaneously evaporating a first metal compound and a second metal compound from independent sources. The mean free path between the vapor particles is reduced by a gas and the mixed vapors are deposited uniformly. The invention finds particular utility in forming thin film heterojunction solar cells.

  8. Polarized emission from light-emitting electrochemical cells using uniaxially oriented polymer thin films of poly(9,9-dioctylfluorene-co-bithiophene)

    Science.gov (United States)

    Miyazaki, Masumi; Sakanoue, Tomo; Takenobu, Taishi

    2018-03-01

    Uniaxially oriented poly(9,9-dioctylfluorene-co-bithiophene) (F8T2) films were prepared on rubbed polyimide substrates and applied to emitting layers of light-emitting electrochemical cells (LECs). The layered structure of the uniaxially oriented F8T2 film and ionic liquid electrolytes enabled us to demonstrate LEC operations with high anisotropic characteristics both in emission and charge transport. Polarized electroluminescence (EL) from electrochemically induced p-n junctions in the uniaxially oriented F8T2 was obtained. The dichroic ratios of EL were the same as those of photoluminescence, suggesting that the doping process into the oriented F8T2 did not interrupt the polymer ordering. This indicates the usefulness of the layered structure of the polymer/electrolyte for the fabrication of LECs based on highly oriented polymer films. In addition, uniaxially oriented F8T2 was found to show reduced threshold energy in optically pumped amplified spontaneous emission. These demonstrations suggest the advantage of uniaxially oriented polymer-based LECs for potential application in future electrically pumped lasers.

  9. Thin-Film Power Transformers

    Science.gov (United States)

    Katti, Romney R.

    1995-01-01

    Transformer core made of thin layers of insulating material interspersed with thin layers of ferromagnetic material. Flux-linking conductors made of thinner nonferromagnetic-conductor/insulator multilayers wrapped around core. Transformers have geometric features finer than those of transformers made in customary way by machining and mechanical pressing. In addition, some thin-film materials exhibit magnetic-flux-carrying capabilities superior to those of customary bulk transformer materials. Suitable for low-cost, high-yield mass production.

  10. Stiffness, strength and adhesion characterization of electrochemically deposited conjugated polymer films

    Science.gov (United States)

    Qu, Jing; Ouyang, Liangqi; Kuo, Chin-chen; Martin, David C.

    2015-01-01

    Conjugated polymers such as poly(3,4-ethylenedioxythiphene) (PEDOT) are of interest for a variety of applications including interfaces between electronic biomedical devices and living tissue. The mechanical properties, strength, and adhesion of these materials to solid substrates are all vital for long-term applications. We have been developing methods to quantify the mechanical properties of conjugated polymer thin films. In this study the stiffness, strength and the interfacial shear strength (adhesion) of electrochemically deposited PEDOT and PEDOT-co-1,3,5-tri[2-(3,4-ethylene dioxythienyl)]-benzene (EPh) were studied. The estimated Young’s modulus of the PEDOT films was 2.6 ± 1.4 GPa, and the strain to failure was around 2%. The tensile strength was measured to be 56 ± 27 MPa. The effective interfacial shear strength was estimated with a shear-lag model by measuring the crack spacing as a function of film thickness. For PEDOT on gold/palladium-coated hydrocarbon film substrates an interfacial shear strength of 0.7 ± 0.3 MPa was determined. The addition of 5 mole% of a tri-functional EDOT crosslinker (EPh) increased the tensile strength of the films to 283 ± 67 MPa, while the strain to failure remained about the same (2%). The effective interfacial shear strength was increased to 2.4 ± 0.6 MPa. PMID:26607768

  11. Magnetic damping phenomena in ferromagnetic thin-films and multilayers

    Science.gov (United States)

    Azzawi, S.; Hindmarch, A. T.; Atkinson, D.

    2017-11-01

    Damped ferromagnetic precession is an important mechanism underpinning the magnetisation processes in ferromagnetic materials. In thin-film ferromagnets and ferromagnetic/non-magnetic multilayers, the role of precession and damping can be critical for spintronic device functionality and as a consequence there has been significant research activity. This paper presents a review of damping in ferromagnetic thin-films and multilayers and collates the results of many experimental studies to present a coherent synthesis of the field. The terms that are used to define damping are discussed with the aim of providing consistent definitions for damping phenomena. A description of the theoretical basis of damping is presented from early developments to the latest discussions of damping in ferromagnetic thin-films and multilayers. An overview of the time and frequency domain methods used to study precessional magnetisation behaviour and damping in thin-films and multilayers is also presented. Finally, a review of the experimental observations of magnetic damping in ferromagnetic thin-films and multilayers is presented with the most recent explanations. This brings together the results from many studies and includes the effects of ferromagnetic film thickness, the effects of composition on damping in thin-film ferromagnetic alloys, the influence of non-magnetic dopants in ferromagnetic films and the effects of combining thin-film ferromagnets with various non-magnetic layers in multilayered configurations.

  12. Tracking metal ions with polypyrrole thin films adhesively bonded to diazonium-modified flexible ITO electrodes.

    Science.gov (United States)

    Lo, Momath; Diaw, Abdou K D; Gningue-Sall, Diariatou; Aaron, Jean-Jacques; Oturan, Mehmet A; Chehimi, Mohamed M

    2018-05-09

    Adhesively bonded polypyrrole thin films doped with benzene sulfonic acid (BSA) were electrodeposited on aminobenzenediazonium-modified flexible ITO electrodes and further employed for the detection of Pb 2+ , Cu 2+ , and Cd 2+ metal ions in aqueous medium. The aminophenyl (AP) adhesive layer was grafted to ITO by electroreduction of the in situ generated parent diazonium compound. Polypyrrole (PPy) thin films exhibited remarkable adhesion to aminophenyl (ITO-AP). The strongly adherent polypyrrole films exhibited excellent electroactivity in the doped state with BSA which itself served to chelate the metal ions in aqueous medium. The surface of the resulting, modified flexible electrode was characterized by XPS, SEM, and electrochemical methods. The ITO-AP-PPy electrodes were then used for the simultaneous detection of Cu 2+ , Cd 2+ , and Pb 2+ by differential pulse voltammetry (DPV). The detection limits were 11.1, 8.95, and 0.99 nM for Cu 2+ , Cd 2+ , and Pb 2+ , respectively. In addition, the modified electrodes displayed a good reproducibility, making them suitable for the determination of heavy metals in real wastewater samples.

  13. Rapid and Efficient Redox Processes within 2D Covalent Organic Framework Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    DeBlase, Catherine R. [Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, New York 14853-1301, United States; Hernández-Burgos, Kenneth [Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, New York 14853-1301, United States; Silberstein, Katharine E. [Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, New York 14853-1301, United States; Rodríguez-Calero, Gabriel G. [Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, New York 14853-1301, United States; Bisbey, Ryan P. [Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, New York 14853-1301, United States; Abruña, Héctor D. [Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, New York 14853-1301, United States; Dichtel, William R. [Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, New York 14853-1301, United States

    2015-02-17

    Two-dimensional covalent organic frameworks (2D COFs) are ideally suited for organizing redox-active subunits into periodic, permanently porous polymer networks of interest for pseudocapacitive energy storage. Here we describe a method for synthesizing crystalline, oriented thin films of a redox-active 2D COF on Au working electrodes. The thickness of the COF film was controlled by varying the initial monomer concentration. A large percentage (80–99%) of the anthraquinone groups are electrochemically accessible in films thinner than 200 nm, an order of magnitude improvement over the same COF prepared as a randomly oriented microcrystalline powder. As a result, electrodes functionalized with oriented COF films exhibit a 400% increase in capacitance scaled to electrode area as compared to those functionalized with the randomly oriented COF powder. These results demonstrate the promise of redox-active COFs for electrical energy storage and highlight the importance of controlling morphology for optimal performance.

  14. Rapid and Efficient Redox Processes within 2D Covalent Organic Framework Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    DeBlase, Catherine R.; Hernández-Burgos, Kenneth; Silberstein, Katharine E.; Rodríguez-Calero, Gabriel G.; Bisbey, Ryan P.; Abruña, Héctor D.; Dichtel, William R.

    2015-03-24

    Two-dimensional covalent organic frameworks (2D COFs) are ideally suited for organizing redox-active subunits into periodic, permanently porous polymer networks of interest for pseudocapacitive energy storage. Here we describe a method for synthesizing crystalline, oriented thin films of a redox-active 2D COF on Au working electrodes. The thickness of the COF film was controlled by varying the initial monomer concentration. A large percentage (80–99%) of the anthraquinone groups are electrochemically accessible in films thinner than 200 nm, an order of magnitude improvement over the same COF prepared as a randomly oriented microcrystalline powder. As a result, electrodes functionalized with oriented COF films exhibit a 400% increase in capacitance scaled to electrode area as compared to those functionalized with the randomly oriented COF powder. These results demonstrate the promise of redox-active COFs for electrical energy storage and highlight the importance of controlling morphology for optimal performance.

  15. A Paper-Based Electrochromic Array for Visualized Electrochemical Sensing

    OpenAIRE

    Fengling Zhang; Tianyi Cai; Liang Ma; Liyuan Zhan; Hong Liu

    2017-01-01

    We report a battery-powered, paper-based electrochromic array for visualized electrochemical sensing. The paper-based sensing system consists of six parallel electrochemical cells, which are powered by an aluminum-air battery. Each single electrochemical cell uses a Prussian Blue spot electrodeposited on an indium-doped tin oxide thin film as the electrochromic indicator. Each electrochemical cell is preloaded with increasing amounts of analyte. The sample activates the battery for the sensin...

  16. Chemical vapour deposition of thin-film dielectrics

    International Nuclear Information System (INIS)

    Vasilev, Vladislav Yu; Repinsky, Sergei M

    2005-01-01

    Data on the chemical vapour deposition of thin-film dielectrics based on silicon nitride, silicon oxynitride and silicon dioxide and on phosphorus- and boron-containing silicate glasses are generalised. The equipment and layer deposition procedures are described. Attention is focussed on the analysis and discussion of the deposition kinetics and on the kinetic models for film growth. The film growth processes are characterised and data on the key physicochemical properties of thin-film covalent dielectric materials are given.

  17. Residual stress in spin-cast polyurethane thin films

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hong; Zhang, Li, E-mail: lizhang@mae.cuhk.edu.hk [Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin N.T., Hong Kong (China); Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong Kong, Shatin N.T., Hong Kong (China)

    2015-01-19

    Residual stress is inevitable during spin-casting. Herein, we report a straightforward method to evaluate the residual stress in as-cast polyurethane thin films using area shrinkage measurement of films in floating state, which shows that the residual stress is independent of radial location on the substrate and decreased with decreasing film thickness below a critical value. We demonstrate that the residual stress is developed due to the solvent evaporation after vitrification during spin-casting and the polymer chains in thin films may undergo vitrification at an increased concentration. The buildup of residual stress in spin-cast polymer films provides an insight into the size effects on the nature of polymer thin films.

  18. Structural, magnetic, and electrochemical properties of poly(o-anisidine)/maghemite thin films

    International Nuclear Information System (INIS)

    Fonseca, L.H.M.; Rinaldi, A.W.; Rubira, A.F.; Cotica, L.F.; Medeiros, S.N. de; Paesano, A.; Santos, I.A.; Girotto, E.M.

    2006-01-01

    Electrodeposition of semiconducting poly(o-anisidine)/γ-Fe 2 O 3 (maghemite) thin films was carried out using an aqueous alkaline medium containing ferrous sulphate and o-anisidine. Potentiostatic composite deposition was made at 55 deg. C. X-ray diffraction and FTIR analysis indicated the presence of iron oxide (maghemite), o-anisidine, and chemical interaction between the components. The magnetic characterization of the resulting composite indicated a magnetically ordered state for the polymer/maghemite composite. Moessbauer characterization suggested the formation of nanoparticulate γ-Fe 2 O 3 clusters. Cyclic voltammetry evidenced electroactivity with characteristic peaks of a conducting polymer as well as the presence of γ-Fe 2 O 3

  19. Electrochemical and surface behavior of hydyroxyapatite/Ti film on nanotubular Ti-35Nb-xZr alloys

    International Nuclear Information System (INIS)

    Jeong, Yong-Hoon; Choe, Han-Cheol; Brantley, William A.

    2012-01-01

    In this paper, we investigated the electrochemical and surface behavior of hydroxyapatite (HA)/Ti films on the nanotubular Ti-35Nb-xZr alloy. The Ti-35Nb-xZr ternary alloys with 3-10 wt.% Zr content were made by an arc melting method. The nanotubular oxide layers were developed on the Ti-35Nb-xZr alloys by an anodic oxidation method in 1 M H 3 PO 4 electrolyte containing 0.8 wt% NaF at room temperature. The HA/Ti composite films on the nanotubular oxide surfaces were deposited by a magnetron sputtering method. Their surface characteristics were analyzed by field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS) and an X-ray diffractometer (XRD). The corrosion behavior of the specimens was examined through potentiodynamic and AC impedance tests in 0.9% NaCl solution. From the results, the Ti-35Nb-xZr alloys showed a solely β phase microstructure that resulted from the addition of Zr. The nanotubular structure formed with a diameter of about 200 nm, and the HA/Ti thin film was deposited on the nanotubular structure. The HA/Ti thin film-coated nanotubular Ti-35Nb-xZr alloys showed good corrosion resistance in 0.9% NaCl solution.

  20. Simulated Thin-Film Growth and Imaging

    Science.gov (United States)

    Schillaci, Michael

    2001-06-01

    Thin-films have become the cornerstone of the electronics, telecommunications, and broadband markets. A list of potential products includes: computer boards and chips, satellites, cell phones, fuel cells, superconductors, flat panel displays, optical waveguides, building and automotive windows, food and beverage plastic containers, metal foils, pipe plating, vision ware, manufacturing equipment and turbine engines. For all of these reasons a basic understanding of the physical processes involved in both growing and imaging thin-films can provide a wonderful research project for advanced undergraduate and first-year graduate students. After producing rudimentary two- and three-dimensional thin-film models incorporating ballsitic deposition and nearest neighbor Coulomb-type interactions, the QM tunneling equations are used to produce simulated scanning tunneling microscope (SSTM) images of the films. A discussion of computational platforms, languages, and software packages that may be used to accomplish similar results is also given.

  1. Thin film characterization by resonantly excited internal standing waves

    Energy Technology Data Exchange (ETDEWEB)

    Di Fonzio, S [SINCROTRONE TRIESTE, Trieste (Italy)

    1996-09-01

    This contribution describes how a standing wave excited in a thin film can be used for the characterization of the properties of the film. By means of grazing incidence X-ray reflectometry one can deduce the total film thickness. On the other hand in making use of a strong resonance effect in the electric field intensity distribution inside a thin film on a bulk substrate one can learn more about the internal structure of the film. The profile of the internal standing wave is proven by diffraction experiments. The most appropriate non-destructive technique for the subsequent thin film characterization is angularly dependent X-ray fluorescence analysis. The existence of the resonance makes it a powerful tool for the detection of impurities and of ultra-thin maker layers, for which the position can be determined with very high precision (about 1% of the total film thickness). This latter aspect will be discussed here on samples which had a thin Ti marker layer at different positions in a carbon film. Due to the resonance enhancement it was still possible to perform these experiments with a standard laboratory x-ray tube and with standard laboratory tool for marker or impurity detection in thin films.

  2. Thin film ceramic thermocouples

    Science.gov (United States)

    Gregory, Otto (Inventor); Fralick, Gustave (Inventor); Wrbanek, John (Inventor); You, Tao (Inventor)

    2011-01-01

    A thin film ceramic thermocouple (10) having two ceramic thermocouple (12, 14) that are in contact with each other in at least on point to form a junction, and wherein each element was prepared in a different oxygen/nitrogen/argon plasma. Since each element is prepared under different plasma conditions, they have different electrical conductivity and different charge carrier concentration. The thin film thermocouple (10) can be transparent. A versatile ceramic sensor system having an RTD heat flux sensor can be combined with a thermocouple and a strain sensor to yield a multifunctional ceramic sensor array. The transparent ceramic temperature sensor that could ultimately be used for calibration of optical sensors.

  3. Photoluminescence of electron beam evaporated CaS:Bi thin films

    CERN Document Server

    Smet, P F; Poelman, D R; Meirhaeghe, R L V

    2003-01-01

    For the first time, the photoluminescence (PL) of electron beam evaporated CaS:Bi thin films is reported. Luminescent CaS:Bi powder prepared out of aqueous solutions was used as source material. The influence of substrate temperature on the PL and the morphology of thin films is discussed, and an optimum is determined. Substrate temperatures between 200 deg. C and 300 deg. C lead to good quality thin films with sufficient PL intensity. As-deposited thin films show two emission bands, peaking at 450 and 530 nm. Upon annealing the emission intensity increases, and annealing at 800 deg. C is sufficient to obtain a homogeneously blue emitting thin film (CIE colour coordinates (0.17; 0.12)), thanks to a single remaining emission band at 450 nm. The influence of ambient temperature on the PL of CaS:Bi powder and thin films was also investigated and it was found that CaS:Bi thin films show a favourable thermal quenching behaviour near room temperature.

  4. Excimer Laser Deposition of PLZT Thin Films

    National Research Council Canada - National Science Library

    Petersen, GAry

    1991-01-01

    .... In order to integrate these devices into optical systems, the production of high quality thin films with high transparency and perovskite crystal structure is desired. This requires development of deposition technologies to overcome the challenges of depositing and processing PLZT thin films.

  5. Factors influencing charge capacity of vanadium pentoxide thin films during lithium ion intercalation/deintercalation cycles

    International Nuclear Information System (INIS)

    Alamarguy, D.; Castle, J. E.; Ibris, N.; Salvi, A. M.

    2007-01-01

    The intercalation of vanadium pentoxide by lithium ions leads to a change in optical properties, a process that is of value in thin-film electrochromic devices. In this study, films of V 2 O 5 , deposited on indium tin oxide (ITO) glass coupons by a sol-gel process, were challenged by increasing numbers of charge-discharge cycles ranging from 72 to 589 full cycles. The samples were characterized by x-ray photoelectron spectroscopy (XPS) and then examined in the deintercalated state by time-of-flight secondary ion mass spectroscopy (SIMS). XPS enabled measurement of the thickness and composition of the solid-electrolyte interface and provided evidence of the residual V 4+ concentration within the top few nanometers of the surface. The SIMS profile gave direct information on the thickness of the films and on the thickness loss caused by rinsing the samples after the electrochemical exposure. Determination, by SIMS, of the concentration of lithium ions has enabled a correction to be made for the amount of inactive material within the electrochemically active region of the film. The SIMS depth profiles for lithium in the four samples are similar, with a marked buildup of Li at the interface with the ITO. This interphase zone had a thickness of ∼27 nm and was electrochemically inactive, enabling a further correction to be made. Thus, by means of the XPS and the SIMS results the chemistry and thickness of the films could be fully characterized. The remaining inconsistency between capacity (between 35% and 100% of the anticipated charge) and number of cycles is ascribed to edge effects arising from the method used for production of the coupons

  6. Science and Technology Text Mining: Electrochemical Power

    Science.gov (United States)

    2003-07-14

    electrodes) and improvements based on component materials (glassy carbon, carbon fibers, aerogels , thin films). A focal point of electrochemical capacitor...performance of carbon aerogels ; and the fabrication and application of Cu-carbon composite (prepared from sawdust) to electrochemical capacitor electrodes. xi...applications require decreases in size and weight, especially for space, aircraft , and individual soldier or small team applications. For large volumes

  7. Elucidation of the electrochromic mechanism of nanostructured iron oxides films

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Lobato, M.A.; Martinez, Arturo I.; Castro-Roman, M. [Center for Research and Advanced Studies of the National Polytechnic Institute, Cinvestav Campus Saltillo, Carr. Saltillo-Monterrey Km. 13, Ramos Arizpe, Coah. 25900 (Mexico); Perry, Dale L. [Mail Stop 70A1150, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States); Zarate, R.A. [Departamento de Fisica, Facultad de Ciencias, Universidad Catolica del Norte, Casilla 1280, Antofagasta (Chile); Escobar-Alarcon, L. (Departamento de Fisica, Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico)

    2011-02-15

    Nanostructured hematite thin films were electrochemically cycled in an aqueous solution of LiOH. Through optical, structural, morphological, and magnetic measurements, the coloration mechanism of electrochromic iron oxide thin films was elucidated. The conditions for double or single electrochromic behavior are given in this work. During the electrochemical cycling, it was found that topotactic transformations of hexagonal crystal structures are favored; i.e. {alpha}-Fe{sub 2}O{sub 3} to Fe(OH){sub 2} and subsequently to {delta}-FeOOH. These topotactic redox reactions are responsible for color changes of iron oxide films. (author)

  8. Recent advances in ZnO nanostructures and thin films for biosensor applications: Review

    International Nuclear Information System (INIS)

    Arya, Sunil K.; Saha, Shibu; Ramirez-Vick, Jaime E.; Gupta, Vinay; Bhansali, Shekhar; Singh, Surinder P.

    2012-01-01

    Graphical abstract: ZnO nanostructures have shown binding of biomolecules in desired orientation with improved conformation and high biological activity, resulting in enhanced sensing characteristics. Furthermore, their compatibility with complementary metal oxide semiconductor technology for constructing integrated circuits makes them suitable candidate for future small integrated biosensor devices. This review highlights various approaches to synthesize ZnO nanostructures and thin films, and their applications in biosensor technology. Highlights: ► This review highlights various approaches to synthesize ZnO nanostructures and thin films. ► Article highlights the importance of ZnO nanostructures as biosensor matrix. ► Article highlights the advances in various biosensors based on ZnO nanostructures. ► Article describes the potential of ZnO based biosensor for new generation healthcare devices. - Abstract: Biosensors have shown great potential for health care and environmental monitoring. The performance of biosensors depends on their components, among which the matrix material, i.e., the layer between the recognition layer of biomolecule and transducer, plays a crucial role in defining the stability, sensitivity and shelf-life of a biosensor. Recently, zinc oxide (ZnO) nanostructures and thin films have attracted much interest as materials for biosensors due to their biocompatibility, chemical stability, high isoelectric point, electrochemical activity, high electron mobility, ease of synthesis by diverse methods and high surface-to-volume ratio. ZnO nanostructures have shown the binding of biomolecules in desired orientations with improved conformation and high biological activity, resulting in enhanced sensing characteristics. Furthermore, compatibility with complementary metal oxide semiconductor technology for constructing integrated circuits makes ZnO nanostructures suitable candidate for future small integrated biosensor devices. This review

  9. Recent advances in ZnO nanostructures and thin films for biosensor applications: Review

    Energy Technology Data Exchange (ETDEWEB)

    Arya, Sunil K., E-mail: sunilarya333@gmail.com [Bioelectronics Program, Institute of Microelectronics, A-Star 11 Science Park Road, Singapore Science Park II, Singapore 117685 (Singapore); Saha, Shibu [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Ramirez-Vick, Jaime E. [Engineering Science and Materials Department, University of Puerto Rico, Mayaguez, PR 00681 (United States); Gupta, Vinay [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Bhansali, Shekhar [Department of Electrical and Computer Engineering, Florida International University, Miami, FL (United States); Singh, Surinder P., E-mail: singh.uprm@gmail.com [National Physical Laboratory, Dr K.S. Krishnan Marg, New Delhi 110012 (India)

    2012-08-06

    Graphical abstract: ZnO nanostructures have shown binding of biomolecules in desired orientation with improved conformation and high biological activity, resulting in enhanced sensing characteristics. Furthermore, their compatibility with complementary metal oxide semiconductor technology for constructing integrated circuits makes them suitable candidate for future small integrated biosensor devices. This review highlights various approaches to synthesize ZnO nanostructures and thin films, and their applications in biosensor technology. Highlights: Black-Right-Pointing-Pointer This review highlights various approaches to synthesize ZnO nanostructures and thin films. Black-Right-Pointing-Pointer Article highlights the importance of ZnO nanostructures as biosensor matrix. Black-Right-Pointing-Pointer Article highlights the advances in various biosensors based on ZnO nanostructures. Black-Right-Pointing-Pointer Article describes the potential of ZnO based biosensor for new generation healthcare devices. - Abstract: Biosensors have shown great potential for health care and environmental monitoring. The performance of biosensors depends on their components, among which the matrix material, i.e., the layer between the recognition layer of biomolecule and transducer, plays a crucial role in defining the stability, sensitivity and shelf-life of a biosensor. Recently, zinc oxide (ZnO) nanostructures and thin films have attracted much interest as materials for biosensors due to their biocompatibility, chemical stability, high isoelectric point, electrochemical activity, high electron mobility, ease of synthesis by diverse methods and high surface-to-volume ratio. ZnO nanostructures have shown the binding of biomolecules in desired orientations with improved conformation and high biological activity, resulting in enhanced sensing characteristics. Furthermore, compatibility with complementary metal oxide semiconductor technology for constructing integrated circuits makes Zn

  10. Electrochemical writing on edible polysaccharide films for intelligent food packaging.

    Science.gov (United States)

    Wu, Si; Wang, Wenqi; Yan, Kun; Ding, Fuyuan; Shi, Xiaowen; Deng, Hongbing; Du, Yumin

    2018-04-15

    Polysaccharide films used as intelligent food packaging possess the advantages of renewability, safety and biodegradability. Printing on the polysaccharidic food packaging is challenging due to the high demand for edible-ink and the need for a suitable printing technique. In this work, we propose an electrochemical method for writing on polysaccharide film. Unlike conventional printing, this electrochemical writing process relies on the pH responsive color change of anthocyanin embedded in the chitosan/agarose hydrogel. By biasing a negative potential to a stainless wire (used as a pen) contacting the surface of the chitosan/agarose/ATH hydrogel, the locally generated pH change induced the color change of ATH and wrote programmed information on the hydrogel. We demonstrate the writing can be temporary in the hydrogel but stable when the hydrogel is dried. We further demonstrate that the written film is applicable for the detection of the spoilage of crucian fish. The reported electrochemical writing process provides a novel method for printing information on polysaccharide film and great potential for intelligent food packaging. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Physics of thin films advances in research and development

    CERN Document Server

    Hass, Georg; Vossen, John L

    2013-01-01

    Physics of Thin Films: Advances in Research and Development, Volume 12 reviews advances that have been made in research and development concerning the physics of thin films. This volume covers a wide range of preparative approaches, physics phenomena, and applications related to thin films. This book is comprised of four chapters and begins with a discussion on metal coatings and protective layers for front surface mirrors used at various angles of incidence from the ultraviolet to the far infrared. Thin-film materials and deposition conditions suitable for minimizing reflectance changes with

  12. Characterization of ultrasonic spray pyrolysed ruthenium oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Patil, P.S.; Ennaoui, E.A.; Lokhande, C.D.; Mueller, M.; Giersig, M.; Diesner, K.; Tributsch, H. [Hahn-Meitner-Institut Berlin GmbH (Germany). Bereich Physikalische Chemie

    1997-11-21

    The ultrasonic spray pyrolysis (USP) technique was employed to deposit ruthenium oxide thin films. The films were prepared at 190 C substrate temperature and further annealed at 350 C for 30 min in air. The films were 0.22 {mu} thick and black grey in color. The structural, compositional and optical properties of ruthenium oxide thin films are reported. Contactless transient photoconductivity measurement was carried out to calculate the decay time of excess charge carriers in ruthenium oxide thin films. (orig.) 28 refs.

  13. Synthesis of nanocrystalline nickel-zinc ferrite (Ni0.8Zn0.2Fe2O4) thin films by chemical bath deposition method

    International Nuclear Information System (INIS)

    Pawar, D.K.; Pawar, S.M.; Patil, P.S.; Kolekar, S.S.

    2011-01-01

    Graphical abstract: Display Omitted Research highlights: → We have successfully synthesized nickel-zinc ferrite (Ni 0.8 Zn 0.2 Fe 2 O 4 ) thin films on stainless steel substrates using a low temperature chemical bath deposition method. → The surface morphological study showed the compact flakes like morphology. → The as-deposited thin films are hydrophilic (10 o o ) whereas the annealed thin films are super hydrophilic (θ o ) in nature. → Ni 0.8 Zn 0.2 Fe 2 O 4 thin films could be used in supercapacitor. - Abstract: The nickel-zinc ferrite (Ni 0.8 Zn 0.2 Fe 2 O 4 ) thin films have been successfully deposited on stainless steel substrates using a chemical bath deposition method from alkaline bath. The films were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), static water contact angle and cyclic voltammetry measurements. The X-ray diffraction pattern shows that deposited Ni 0.8 Zn 0.2 Fe 2 O 4 thin films were oriented along (3 1 1) plane. The FTIR spectra showed strong absorption peaks around 600 cm -1 which are typical for cubic spinel crystal structure. SEM study revealed compact flakes like morphology having thickness ∼1.8 μm after air annealing. The annealed films were super hydrophilic in nature having a static water contact angle (θ) of 5 o .The electrochemical supercapacitor study of Ni 0.8 Zn 0.2 Fe 2 O 4 thin films has been carried out in 6 M KOH electrolyte. The values of interfacial and specific capacitances obtained were 0.0285 F cm -2 and 19 F g -1 , respectively.

  14. Rhenium Alloys as Ductile Substrates for Diamond Thin-Film Electrodes.

    Science.gov (United States)

    Halpern, Jeffrey M; Martin, Heidi B

    2014-02-01

    Molybdenum-rhenium (Mo/Re) and tungsten-rhenium (W/Re) alloys were investigated as substrates for thin-film, polycrystalline boron-doped diamond electrodes. Traditional, carbide-forming metal substrates adhere strongly to diamond but lose their ductility during exposure to the high-temperature (1000°C) diamond, chemical vapor deposition environment. Boron-doped semi-metallic diamond was selectively deposited for up to 20 hours on one end of Mo/Re (47.5/52.5 wt.%) and W/Re (75/25 wt.%) alloy wires. Conformal diamond films on the alloys displayed grain sizes and Raman signatures similar to films grown on tungsten; in all cases, the morphology and Raman spectra were consistent with well-faceted, microcrystalline diamond with minimal sp 2 carbon content. Cyclic voltammograms of dopamine in phosphate-buffered saline (PBS) showed the wide window and low baseline current of high-quality diamond electrodes. In addition, the films showed consistently well-defined, dopamine electrochemical redox activity. The Mo/Re substrate regions that were uncoated but still exposed to the diamond-growth environment remained substantially more flexible than tungsten in a bend-to-fracture rotation test, bending to the test maximum of 90° and not fracturing. The W/Re substrates fractured after a 27° bend, and the tungsten fractured after a 21° bend. Brittle, transgranular cleavage fracture surfaces were observed for tungsten and W/Re. A tension-induced fracture of the Mo/Re after the prior bend test showed a dimple fracture with a visible ductile core. Overall, the Mo/Re and W/Re alloys were suitable substrates for diamond growth. The Mo/Re alloy remained significantly more ductile than traditional tungsten substrates after diamond growth, and thus may be an attractive metal substrate for more ductile, thin-film diamond electrodes.

  15. Field ion microscope studies on thin films

    International Nuclear Information System (INIS)

    Cavaleru, A.; Scortaru, A.

    1976-01-01

    A review of the progress made in the last years in FIM application to thin film structure studies and adatom properties important in the nucleation stage of thin film growth: substrate binding and mobility of individual adatoms, behaviour of adatoms clusters is presented. (author)

  16. The Structure and Stability of Molybdenum Ditelluride Thin Films

    Directory of Open Access Journals (Sweden)

    Zhouling Wang

    2014-01-01

    Full Text Available Molybdenum-tellurium alloy thin films were fabricated by electron beam evaporation and the films were annealed in different conditions in N2 ambient. The hexagonal molybdenum ditelluride thin films with well crystallization annealed at 470°C or higher were obtained by solid state reactions. Thermal stability measurements indicate the formation of MoTe2 took place at about 350°C, and a subtle weight-loss was in the range between 30°C and 500°C. The evolution of the chemistry for Mo-Te thin films was performed to investigate the growth of the MoTe2 thin films free of any secondary phase. And the effect of other postdeposition treatments on the film characteristics was also investigated.

  17. Magnetic surfaces, thin films, and multilayers

    International Nuclear Information System (INIS)

    Parkin, S.S.P.; Renard, J.P.; Shinjo, T.; Zinn, W.

    1992-01-01

    This paper details recent developments in the magnetism of surfaces, thin films and multilayers. More than 20 invited contributions and more than 60 contributed papers attest to the great interest and vitality of this subject. In recent years the study of magnetic surfaces, thin films and multilayers has undergone a renaissance, partly motivated by the development of new growth and characterization techniques, but perhaps more so by the discovery of many exciting new properties, some quite unanticipated. These include, most recently, the discovery of enormous values of magnetoresistance in magnetic multilayers far exceeding those found in magnetic single layer films and the discovery of oscillatory interlayer coupling in transition metal multilayers. These experimental studies have motivated much theoretical work. However these developments are to a large extent powered by materials engineering and our ability to control and understand the growth of thin layers just a few atoms thick. The preparation of single crystal thin film layers and multilayers remains important for many studies, in particular, for properties dependent. These studies obviously require engineering not just a layer thicknesses but of lateral dimensions as well. The properties of such structures are already proving to be a great interest

  18. Thin films prepared from tungstate glass matrix

    Energy Technology Data Exchange (ETDEWEB)

    Montanari, B.; Ribeiro, S.J.L.; Messaddeq, Y. [Departamento de Quimica Geral e Inorganica, Instituto de Quimica, Sao Paulo State University-UNESP, CP 355, CEP 14800-900, Araraquara, SP (Brazil); Li, M.S. [Instituto de Fisica, USP, CP 369, CEP 13560-970, Sao Carlos, SP (Brazil); Poirier, G. [Departamento de Ciencias Exatas, UNIFAL-MG, CEP 37130-000, Alfenas-MG (Brazil)], E-mail: gael@unifal-mg.edu.br

    2008-01-30

    Vitreous samples containing high concentrations of WO{sub 3} (above 40% M) have been used as a target to prepare thin films. Such films were deposited using the electron beam evaporation method onto soda-lime glass substrates. These films were characterized by X-ray diffraction (XRD), perfilometry, X-ray energy dispersion spectroscopy (EDS), M-Lines and UV-vis absorption spectroscopy. In this work, experimental parameters were established to obtain stable thin films showing a chemical composition close to the glass precursor composition and with a high concentration of WO{sub 3}. These amorphous thin films of about 4 {mu}m in thickness exhibit a deep blue coloration but they can be bleached by thermal treatment near the glass transition temperature. Such bleached films show several guided modes in the visible region and have a high refractive index. Controlled crystallization was realized and thus it was possible to obtain WO{sub 3} microcrystals in the amorphous phase.

  19. Effect of yttrium doping on the dielectric properties of CaCu{sub 3}Ti{sub 4}O{sub 12} thin film produced by chemical solution deposition

    Energy Technology Data Exchange (ETDEWEB)

    Saji, Viswanathan S., E-mail: vssaji@chosun.ac.k [Chosun University, College of Dentistry and 2nd Stage of Brain Korea 21 for College of Dentistry, Gwangju-501-759 (Korea, Republic of); Choe, Han Cheol [Chosun University, College of Dentistry and 2nd Stage of Brain Korea 21 for College of Dentistry, Gwangju-501-759 (Korea, Republic of)

    2009-05-29

    Pure and yttrium substituted CaCu{sub 3}Ti{sub 4-x}Y{sub x}O{sub 12-x/} {sub 2} (x = 0, 0.02, 0.1) thin films were prepared on boron doped silica substrate employing chemical solution deposition, spin coating and rapid thermal annealing. The phase and microstructure of the sintered films were examined using X-ray diffraction and scanning electron microscopy. Dielectric properties of the films were measured at room temperature using electrochemical impedance spectroscopy. Highly ordered polycrystalline CCTO thin film with bimodal grain size distribution was achieved at a sintering temperature of 800 {sup o}C. Yttrium doping was found to have beneficial effects on the dielectric properties of CCTO thin film. Dielectric parameters obtained for a CaCu{sub 3}Ti{sub 4-x}Y{sub x}O{sub 12-x} {sub /2} (x = 0.02) film at 1 KHz were k {approx} 2700 and tan {delta} {approx} 0.07.

  20. Reliability and Engineering of Thin-Film Photovoltaic Modules. Research forum proceedings

    Science.gov (United States)

    Ross, R. G., Jr. (Editor); Royal, E. L. (Editor)

    1985-01-01

    A Research Forum on Reliability and Engineering of Thin Film Photovoltaic Modules, under sponsorship of the Jet Propulsion Laboratory's Flat Plate Solar Array (FSA) Project and the U.S. Department of Energy, was held in Washington, D.C., on March 20, 1985. Reliability attribute investigations of amorphous silicon cells, submodules, and modules were the subjects addressed by most of the Forum presentations. Included among the reliability research investigations reported were: Arrhenius-modeled accelerated stress tests on a Si cells, electrochemical corrosion, light induced effects and their potential effects on stability and reliability measurement methods, laser scribing considerations, and determination of degradation rates and mechanisms from both laboratory and outdoor exposure tests.

  1. Characterization of Sucrose Thin Films for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    S. L. Iconaru

    2011-01-01

    Full Text Available Sucrose is a natural osmolyte accumulated in the cells of organisms as they adapt to environmental stress. In vitro sucrose increases protein stability and forces partially unfolded structures to refold. Thin films of sucrose (C12H22O11 were deposited on thin cut glass substrates by the thermal evaporation technique (P∼10−5 torr. Characteristics of thin films were put into evidence by Fourier Transform Infrared Spectroscopy (FTIR, X-ray Photoelectron Spectroscopy (XPS, scanning electron microscopy (SEM, and differential thermal analysis and thermal gravimetric analysis (TG/DTA. The experimental results confirm a uniform deposition of an adherent layer. In this paper we present a part of the characteristics of sucrose thin films deposited on glass in medium vacuum conditions, as a part of a culture medium for osteoblast cells. Osteoblast cells were used to determine proliferation, viability, and cytotoxicity interactions with sucrose powder and sucrose thin films. The osteoblast cells have been provided from the American Type Culture Collection (ATCC Centre. The outcome of this study demonstrated the effectiveness of sucrose thin films as a possible nontoxic agent for biomedical applications.

  2. Significant questions in thin liquid film heat transfer

    International Nuclear Information System (INIS)

    Bankoff, S.G.

    1994-01-01

    Thin liquid films appear in many contexts, such as the cooling of gas turbine blade tips, rocket engines, microelectronics arrays, and hot fuel element surfaces in hypothetical nuclear reactor accidents. Apart from these direct cooling applications of thin liquid layers, thin films form a crucial element in determining the allowable heat flux limits in boiling. This is because the last stages of dryout almost invariably involve the rupture of a residual liquid film, either as a microlayer underneath the bubbles, or a thin annular layer in a high-quality burnout scenario. The destabilization of these thin films under the combined actions of shear stress, evaporation, and thermocapillary effects is quite complex. The later stages of actual rupture to form dry regions, which then expand, resulting in possible overheating, are even more complex and less well understood. However, significant progress has been made in understanding the behavior of these thin films, which are subject to competing instabilities prior to actual rupture. This will be reviewed briefly. Recent work on the advance, or recession, of contact lines will also be described briefly, and significant questions that still remain to be answered will be discussed. 68 refs., 7 figs

  3. Novel photon management for thin-film photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Menon, Rajesh [Univ. of Utah, Salt Lake City, UT (United States)

    2016-11-11

    The objective of this project is to enable commercially viable thin-film photovoltaics whose efficiencies are increased by over 10% using a novel optical spectral-separation technique. A thin planar diffractive optic is proposed that efficiently separates the solar spectrum and assigns these bands to optimal thin-film sub-cells. An integrated device that is comprised of the optical element, an array of sub-cells and associated packaging is proposed.

  4. Ion transport and phase transformation in thin film intercalation electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Wunde, Fabian; Nowak, Susann; Muerter, Juliane; Hadjixenophontos, Efi; Berkemeier, Frank; Schmitz, Guido [Stuttgart Univ. (Germany). Inst. fuer Materialwissenschaft

    2017-11-15

    Thin film battery electrodes of the olivine structure LiFePO{sub 4} and the spinel phase LiMn{sub 2}O{sub 4} are deposited through ion-beam sputtering. The intercalation kinetics is studied by cyclo-voltammetry using variation of the cycling rate over 4 to 5 orders of magnitude. The well-defined layer geometry allows a detailed quantitative analysis. It is shown that LiFePO{sub 4} clearly undergoes phase separation during intercalation, although the material is nano-confined and very high charging rates are applied. We present a modified Randles-Sevcik evaluation adapted to phase-separating systems. Both the charging current and the overpotential depend on the film thickness in a systematic way. The analysis yields evidence that the grain boundaries are important short circuit paths for fast transport. They increase the electrochemical active area with increasing layer thickness. Evidence is obtained that the grain boundaries in LiFePO{sub 4} have the character of an ion-conductor of vanishing electronic conductivity.

  5. Undoped CVD diamond films for electrochemical applications

    International Nuclear Information System (INIS)

    Mosinska, Lidia; Fabisiak, Kazimierz; Paprocki, Kazimierz; Kowalska, Magdalena; Popielarski, Pawel; Szybowicz, Miroslaw

    2013-01-01

    By using different deposition conditions, the CVD diamond films with different qualities and orientation were grown by the hot-filament CVD technique. The object of this article is to summarize and discuss relation between structural, physical and electrochemical properties of different diamond electrodes. The physical properties of the Hot Filament CVD microcrystalline diamond films are analyzed by scanning electron microscopy and Raman spectroscopy. In presented studies two different electrodes were used of the diamond grain sizes around 200 nm and 10 μm, as it was estimated from SEM picture. The diamond layers quality was checked on basis of FWHM (Full width at Half Maximum) of 1332 cm −1 diamond Raman peak. The ratio of sp 3 /sp 2 carbon bonds was determined by 1550 cm −1 G band and 1350 cm −1 D band in the Raman spectrum. The electrochemical properties were analyzed using (CV) cyclic voltammetry measurements in aqueous solutions. The sensitivity of undoped diamond electrodes depends strongly on diamond film quality and concentration of amorphous carbon phase in the diamond layer

  6. Dependence of the constitution, microstructure and electrochemical behaviour of magnetron sputtered Li-Ni-Mn-Co-O thin film cathodes for lithium-ion batteries on the working gas pressure and annealing conditions

    Energy Technology Data Exchange (ETDEWEB)

    Strafela, Marc; Fischer, Julian; Leiste, Harald; Rinke, Monika; Bergfeldt, Thomas; Seifert, Hans Juergen; Ulrich, Sven [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany). Inst. for Applied Materials (IAM); Music, Denis; Chang, Keke; Schneider, Jochen [RWTH Aachen Univ. (Germany). Materials Chemistry

    2017-11-15

    Li(Ni{sub 1/3}Mn{sub 1/3}Co{sub 1/3})O{sub 2} as a cathode material for lithium ion batteries shows good thermal stability, high reversible capacity (290 mAh g{sup -1}), good rate capability and better results in terms of environmental friendliness. In this paper thin film cathodes in the material system Li-Ni-Mn-Co-O were deposited onto silicon and stainless steel substrates, by non-reactive r.f. magnetron sputtering from a ceramic Li{sub 1.18}(Ni{sub 0.39}Mn{sub 0.19}Co{sub 0.35})O{sub 1.97} target at various argon working gas pressures between 0.2 Pa and 20 Pa. A comprehensive study on the composition and microstructure was carried out. The results showed that the elemental composition varies depending on argon working gas pressure. The elemental composition was determined by inductively coupled plasma optical emission spectroscopy in combination with carrier gas hot extraction. The films showed different grain orientations depending argon working gas pressures. The degree of cation order in the lattice structure of the films deposited at 0.5 Pa and 7 Pa argon working gas pressure, was increased by annealing in an argon/oxygen atmosphere at different pressures for one hour. The microstructure of the films varies with annealing gas pressure and is characterized using X-ray diffraction and unpolarized micro-Raman spectroscopy at room temperature. Electrochemical characterization of as-deposited and annealed films was carried out by galvanostatic cycling in Li-Ni-Mn-Co-O half-cells against metallic lithium. Correlations between process parameters, constitution, microstructure and electrochemical behaviour are discussed in detail.

  7. Thin films as an emerging platform for drug delivery

    Directory of Open Access Journals (Sweden)

    Sandeep Karki

    2016-10-01

    Full Text Available Pharmaceutical scientists throughout the world are trying to explore thin films as a novel drug delivery tool. Thin films have been identified as an alternative approach to conventional dosage forms. The thin films are considered to be convenient to swallow, self-administrable, and fast dissolving dosage form, all of which make it as a versatile platform for drug delivery. This delivery system has been used for both systemic and local action via several routes such as oral, buccal, sublingual, ocular, and transdermal routes. The design of efficient thin films requires a comprehensive knowledge of the pharmacological and pharmaceutical properties of drugs and polymers along with an appropriate selection of manufacturing processes. Therefore, the aim of this review is to provide an overview of the critical factors affecting the formulation of thin films, including the physico-chemical properties of polymers and drugs, anatomical and physiological constraints, as well as the characterization methods and quality specifications to circumvent the difficulties associated with formulation design. It also highlights the recent trends and perspectives to develop thin film products by various companies.

  8. Structural characterization of a Cu(II) thin-film aging in a Cu-nitrate solution

    International Nuclear Information System (INIS)

    Mear, F.O.; Essi, M.; Sistat, P.; Guimon, M.-F.; Gonbeau, D.; Pradel, A.

    2009-01-01

    The response of thin-film copper (II) ion-selective electrodes based on chalcogenide glassy Cu-Sb-Ge-Se is described according to the soaking time in a 10 -4 M copper (II) solution. The chalcogenide membrane/solution interface has been investigated by using electrochemical impedance spectroscopy (EIS) and X-ray photoelectron spectroscopy (XPS) in order to understand the sensing properties. During the first month of the soaking, an alteration of the membrane by a chemical change without alteration of the sensor detection performance has been observed.

  9. Removable Thin Films used for the Abatement and Mitigation of Beryllium

    International Nuclear Information System (INIS)

    Lumia, M.; Gentile, C.; Creek, K.; Sandoval, R.

    2003-01-01

    The use of removable thin films for the abatement of hazardous particulates has many advantages. Removable thin films are designed to trap and fix particulates in the film's matrix by adhesion. Thin films can be applied to an existing contaminated area to fix and capture the particulates for removal. The nature of the removable thin films, after sufficient cure time, is such that it can typically be removed as one continuous entity. The removable thin films can be applied to almost any surface type with a high success rate of removal

  10. Nanodiamond Films for Applications in Electrochemical Systems

    Directory of Open Access Journals (Sweden)

    A. F. Azevedo

    2012-01-01

    Full Text Available The purpose of the present paper is to give an overview on the current development status of nanocrystalline diamond electrodes for electrochemical applications. Firstly, we describe a brief comparison between the general properties of nanocrystalline diamond (undoped and boron-doped and boron-doped microcrystalline diamond films. This is followed by a summary of the nanodiamond preparation methods. Finally, we present a discussion about the undoped and boron-doped nanocrystalline diamond and their characteristics, electrochemical properties, and practical applications.

  11. Thermochemical hydrogen generation of indium oxide thin films

    Directory of Open Access Journals (Sweden)

    Taekyung Lim

    2017-03-01

    Full Text Available Development of alternative energy resources is an urgent requirement to alleviate current energy constraints. As such, hydrogen gas is gaining attention as a future alternative energy source to address existing issues related to limited energy resources and air pollution. In this study, hydrogen generation by a thermochemical water-splitting process using two types of In2O3 thin films was investigated. The two In2O3 thin films prepared by chemical vapor deposition (CVD and sputtering deposition systems contained different numbers of oxygen vacancies, which were directly related to hydrogen generation. The as-grown In2O3 thin film prepared by CVD generated a large amount of hydrogen because of its abundant oxygen vacancies, while that prepared by sputtering had few oxygen vacancies, resulting in low hydrogen generation. Increasing the temperature of the In2O3 thin film in the reaction chamber caused an increase in hydrogen generation. The oxygen-vacancy-rich In2O3 thin film is expected to provide a highly effective production of hydrogen as a sustainable and efficient energy source.

  12. Thin Film Photovoltaic/Thermal Solar Panels

    Institute of Scientific and Technical Information of China (English)

    David JOHNSTON

    2008-01-01

    A solar panel is described.in which thin films of semiconductor are deposited onto a metal substrate.The semiconductor-metal combination forms a thin film photovoltaic cell,and also acts as a reflector,absorber tandem, which acts as a solar selective surface,thus enhancing the solar thermal performance of the collector plate.The use of thin films reduces the distance heat is required to flow from the absorbing surface to the metal plate and heat exchange conduits.Computer modelling demonstrated that,by suitable choice of materials,photovohaic efficiency call be maintained,with thermal performance slishtly reduced,compared to that for thermal-only panels.By grading the absorber layer-to reduce the band gap in the lower region-the thermal performance can be improved,approaching that for a thermal-only solar panel.

  13. Phonon transport across nano-scale curved thin films

    Energy Technology Data Exchange (ETDEWEB)

    Mansoor, Saad B.; Yilbas, Bekir S., E-mail: bsyilbas@kfupm.edu.sa

    2016-12-15

    Phonon transport across the curve thin silicon film due to temperature disturbance at film edges is examined. The equation for radiative transport is considered via incorporating Boltzmann transport equation for the energy transfer. The effect of the thin film curvature on phonon transport characteristics is assessed. In the analysis, the film arc length along the film centerline is considered to be constant and the film arc angle is varied to obtain various film curvatures. Equivalent equilibrium temperature is introduced to assess the phonon intensity distribution inside the curved thin film. It is found that equivalent equilibrium temperature decay along the arc length is sharper than that of in the radial direction, which is more pronounced in the region close to the film inner radius. Reducing film arc angle increases the film curvature; in which case, phonon intensity decay becomes sharp in the close region of the high temperature edge. Equivalent equilibrium temperature demonstrates non-symmetric distribution along the radial direction, which is more pronounced in the near region of the high temperature edge.

  14. Phonon transport across nano-scale curved thin films

    International Nuclear Information System (INIS)

    Mansoor, Saad B.; Yilbas, Bekir S.

    2016-01-01

    Phonon transport across the curve thin silicon film due to temperature disturbance at film edges is examined. The equation for radiative transport is considered via incorporating Boltzmann transport equation for the energy transfer. The effect of the thin film curvature on phonon transport characteristics is assessed. In the analysis, the film arc length along the film centerline is considered to be constant and the film arc angle is varied to obtain various film curvatures. Equivalent equilibrium temperature is introduced to assess the phonon intensity distribution inside the curved thin film. It is found that equivalent equilibrium temperature decay along the arc length is sharper than that of in the radial direction, which is more pronounced in the region close to the film inner radius. Reducing film arc angle increases the film curvature; in which case, phonon intensity decay becomes sharp in the close region of the high temperature edge. Equivalent equilibrium temperature demonstrates non-symmetric distribution along the radial direction, which is more pronounced in the near region of the high temperature edge.

  15. Structural, morphological and Raman studies of pulse electrosynthesised indium antimonide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Joginder, E-mail: joginderchauhan82@gmail.com; Chandel, Tarun; Rajaram, P. [School of Studies in Physics, Jiwaji University, Gwalior (MP), India-474011 (India)

    2015-08-28

    InSb films deposited on fluorine doped tin oxide (FTO) substrates by a pulse elctrodeposition technique. The deposition was carried out at an applied potential −1.3V versus Ag/AgCl electrode. Structural, morphological and optical studies were performed on the electrodeposited InSb. X-ray diffraction (XRD) studies show that the deposited InSb films are polycrystalline in nature having the zinc blend structure. The crystallite size (D), dislocation density (δ) and strain (ε) were calculated using XRD results. The EDAX analysis shows that chemical composition of In{sup 3+} and Sb{sup 3+} ions is close to the required stoichiometry. The surface morphology of the deposited films was examined using scanning electron microscopy (SEM). SEM studies reveal that the surface of the films is uniformly covered with submicron sized spherical particles. However, the crystallite size determined by the Scherrer method shows a size close to 30 nm. Surface morphology studies of the InSb films were also performed using atomic force microscopy (AFM). The average surface roughness as measured by AFM is around 40 nm. Hot probe studies show that all the electrodeposited thin films have n type conductivity and the thickness of the films is calculated using electrochemical formula.

  16. Emergent Topological Phenomena in Thin Films of Pyrochlore Iridates

    Science.gov (United States)

    Yang, Bohm-Jung; Nagaosa, Naoto

    2014-06-01

    Because of the recent development of thin film and artificial superstructure growth techniques, it is possible to control the dimensionality of the system, smoothly between two and three dimensions. In this Letter we unveil the dimensional crossover of emergent topological phenomena in correlated topological materials. In particular, by focusing on the thin film of pyrochlore iridate antiferromagnets grown along the [111] direction, we demonstrate that the thin film can have a giant anomalous Hall conductance, proportional to the thickness of the film, even though there is no Hall effect in 3D bulk material. Moreover, in the case of ultrathin films, a quantized anomalous Hall conductance can be observed, despite the fact that the system is an antiferromagnet. In addition, we uncover the emergence of a new topological phase, the nontrivial topological properties of which are hidden in the bulk insulator and manifest only in thin films. This shows that the thin film of correlated topological materials is a new platform to search for unexplored novel topological phenomena.

  17. Development of thin film cathodes for lithium-ion batteries in the material system Li–Mn–O by r.f. magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, J., E-mail: julian.fischer@kit.edu [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials, Applied Materials Physics (IAM-AWP), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Adelhelm, C.; Bergfeldt, T. [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials, Applied Materials Physics (IAM-AWP), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Chang, K. [RWTH Aachen University, Materials Chemistry, Kopernikusstrasse 10, 46 52074 Aachen (Germany); Ziebert, C.; Leiste, H.; Stüber, M.; Ulrich, S. [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials, Applied Materials Physics (IAM-AWP), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Music, D.; Hallstedt, B. [RWTH Aachen University, Materials Chemistry, Kopernikusstrasse 10, 46 52074 Aachen (Germany); Seifert, H.J. [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials, Applied Materials Physics (IAM-AWP), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2013-01-01

    Today most commercially available lithium ion batteries are still based on the toxic and expensive LiCoO{sub 2} as a standard cathode material. However, lithium manganese based cathode materials are cheaper and environmentally friendlier. In this work cubic-LiMn{sub 2}O{sub 4} spinel, monoclinic-Li{sub 2}MnO{sub 3} and orthorhombic-LiMnO{sub 2} thin films have been synthesized by non-reactive r.f. magnetron sputtering from two ceramic targets (LiMn{sub 2}O{sub 4}, LiMnO{sub 2}) in a pure argon discharge. The deposition parameters, namely target power and working gas pressure, were optimized in a combination with a post deposition heat treatment with respect to microstructure and electrochemical behavior. The chemical composition was determined using inductively coupled plasma optical emission spectroscopy and carrier gas hot extraction. The films' crystal structure, phase evolution and morphology were investigated by X-ray diffraction, micro Raman spectroscopy and scanning electron microscopy. Due to the fact that these thin films consist of the pure active material without any impurities, such as binders or conductive additives like carbon black, they are particularly well suited for measurements of the intrinsic physical properties, which is essential for fundamental understanding. The electrochemical behavior of the cubic and the orthorhombic films was investigated by galvanostatic cycling in half cells against metallic lithium. The cubic spinel films exhibit a maximum specific capacity of ∼ 82 mAh/g, while a specific capacity of nearly 150 mAh/g can be reached for the orthorhombic counterparts. These films are promising candidates for future all solid state battery applications. - Highlights: ► Synthesis of 3 Li–Mn–O structures by one up-scalable thin film deposition method ► Formation of o-LiMnO{sub 2} by r.f. magnetron sputtering in combination with post-annealing ► Discharge capacity with o-LiMnO{sub 2} cathodes twice as high as for c

  18. Identification of an Actual Strain-Induced Effect on Fast Ion Conduction in a Thin-Film Electrolyte.

    Science.gov (United States)

    Ahn, Junsung; Jang, Ho Won; Ji, Hoil; Kim, Hyoungchul; Yoon, Kyung Joong; Son, Ji-Won; Kim, Byung-Kook; Lee, Hae-Weon; Lee, Jong-Ho

    2018-05-09

    Strain-induced fast ion conduction has been a research area of interest for nanoscale energy conversion and storage systems. However, because of significant discrepancies in the interpretation of strain effects, there remains a lack of understanding of how fast ionic transport can be achieved by strain effects and how strain can be controlled in a nanoscale system. In this study, we investigated strain effects on the ionic conductivity of Gd 0.2 Ce 0.8 O 1.9-δ (100) thin films under well controlled experimental conditions, in which errors due to the external environment could not intervene during the conductivity measurement. In order to avoid any interference from perpendicular-to-surface defects, such as grain boundaries, the ionic conductivity was measured in the out-of-plane direction by electrochemical impedance spectroscopy analysis. With varying film thickness, we found that a thicker film has a lower activation energy of ionic conduction. In addition, careful strain analysis using both reciprocal space mapping and strain mapping in transmission electron microscopy shows that a thicker film has a higher tensile strain than a thinner film. Furthermore, the tensile strain of thicker film was mostly developed near a grain boundary, which indicates that intrinsic strain is dominant rather than epitaxial or thermal strain during thin-film deposition and growth via the Volmer-Weber (island) growth mode.

  19. Electrochemically Controlled Ion-exchange Property of Carbon Nanotubes/Polypyrrole Nanocomposite in Various Electrolyte Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Daiwon [Pacific Northwest National Laboratory, 902 Battelle Boulevard P.O. Box 999 Richland WA 99352 USA; Zhu, Chengzhou [School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164-2920 United States; Fu, Shaofang [School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164-2920 United States; Du, Dan [School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164-2920 United States; Engelhard, Mark H. [Pacific Northwest National Laboratory, 902 Battelle Boulevard P.O. Box 999 Richland WA 99352 USA; Lin, Yuehe [Pacific Northwest National Laboratory, 902 Battelle Boulevard P.O. Box 999 Richland WA 99352 USA; School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164-2920 United States

    2016-09-15

    The electrochemically controlled ion-exchange properties of multi-wall carbon nanotube (MWNT)/electronically conductive polypyrrole (PPy) polymer composite in the various electrolyte solutions have been investigated. The ion-exchange behavior, rate and capacity of the electrochemically deposited polypyrrole with and without carbon nanotube (CNT) were compared and characterized using cyclic voltammetry (CV), chronoamperometry (CA), electrochemical quartz crystal microbalance (EQCM), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). It has been found that the presence of carbon nanotube backbone resulted in improvement in ion-exchange rate, stability of polypyrrole, and higher anion loading capacity per PPy due to higher surface area, electronic conductivity, porous structure of thin film, and thinner film thickness providing shorter diffusion path. Chronoamperometric studies show that electrically switched anion exchange could be completed more than 10 times faster than pure PPy thin film. The anion selectivity of CNT/PPy film is demonstrated using X-ray photoelectron spectroscopy (XPS).

  20. Thermoelectric effects of amorphous Ga-Sn-O thin film

    Science.gov (United States)

    Matsuda, Tokiyoshi; Uenuma, Mutsunori; Kimura, Mutsumi

    2017-07-01

    The thermoelectric effects of an amorphous Ga-Sn-O (a-GTO) thin film have been evaluated as a physical parameter of a novel oxide semiconductor. Currently, a-GTO thin films are greatly desired not only because they do not contain rare metals and are therefore free from problems on the exhaustion of resources and the increase in cost but also because their initial characteristics and performance stabilities are excellent when they are used in thin-film transistors. In this study, an a-GTO thin film was deposited on a quartz substrate by RF magnetron sputtering and postannealing was performed in air at 350 °C for 1 h using an annealing furnace. The Seebeck coefficient and electrical conductivity of the a-GTO thin film were -137 µV/K and 31.8 S/cm at room temperature, and -183 µV/K and 43.8 S/cm at 397 K, respectively, and as a result, the power factor was 1.47 µW/(cm·K2) at 397 K; these values were roughly as high as those of amorphous In-Ga-Zn-O (a-IGZO) thin films. Therefore, a-GTO thin films will be a candidate material for thermoelectric devices fabricated in a large area at a low cost by controlling the carrier mobility, carrier density, device structures, and so forth.

  1. Beryllium thin films for resistor applications

    Science.gov (United States)

    Fiet, O.

    1972-01-01

    Beryllium thin films have a protective oxidation resistant property at high temperature and high recrystallization temperature. However, the experimental film has very low temperature coefficient of resistance.

  2. XRay Study of Transfer Printed Pentacene Thin Films

    International Nuclear Information System (INIS)

    Shao, Y.; Solin, S. A.; Hines, D. R.; Williams, E. D.

    2007-01-01

    We investigated the structural properties and transfer properties of pentacene thin films fabricated by thermal deposition and transfer printing onto SiO2 and plastic substrates, respectively. The dependence of the crystallite size on the printing time, temperature and pressure were measured. The increases of crystalline size were observed when pentacene thin films were printed under specific conditions, e.g. 120 deg. C and 600 psi and can be correlated with the improvement of the field effect mobility of pentacene thin-film transistors

  3. Macro stress mapping on thin film buckling

    Energy Technology Data Exchange (ETDEWEB)

    Goudeau, P.; Villain, P.; Renault, P.-O.; Tamura, N.; Celestre, R.S.; Padmore, H.A.

    2002-11-06

    Thin films deposited by Physical Vapour Deposition techniques on substrates generally exhibit large residual stresses which may be responsible of thin film buckling in the case of compressive stresses. Since the 80's, a lot of theoretical work has been done to develop mechanical models but only a few experimental work has been done on this subject to support these theoretical approaches and nothing concerning local stress measurement mainly because of the small dimension of the buckling (few 10th mm). This paper deals with the application of micro beam X-ray diffraction available on synchrotron radiation sources for stress mapping analysis of gold thin film buckling.

  4. Applications of Nonlinear Electrochemical Impedance Spectroscopy (NLEIS)

    KAUST Repository

    Adler, S. B.

    2013-08-31

    This paper reviews the use of nonlinear electrochemical impedance spectroscopy (NLEIS) in the analysis of SOFC electrode reactions. By combining EIS and NLEIS, as well as other independent information about an electrode material, it becomes possible to establish quantitative links between electrochemical kinetics and materials properties, even when systems are unstable with time. After a brief review of the method, this paper summarizes recent results analyzing the effects of Sr segregation in thin-film LSC electrodes. © The Electrochemical Society.

  5. Electrochemical surface plasmon spectroscopy-Recent developments and applications

    International Nuclear Information System (INIS)

    Zhang, Nan; Schweiss, Ruediger; Zong, Yun; Knoll, Wolfgang

    2007-01-01

    A survey is given on recent developments and applications of electrochemical techniques combined with surface plasmon resonance (SPR) spectroscopy. Surface plasmon spectroscopy (SPS) and optical waveguide mode spectroscopy make use of evanescent waves on metal-dielectric interfaces and can be conveniently combined with electrochemical methods. Selected examples of applications of high-pressure surface electrochemical plasmon resonance spectroscopy to study supramolecular architectures such as layer-by-layer films of conducting polymers or thin composite films will be presented. Then a combination of SPS with the electrochemical quartz crystal microbalance (EQCM) will be introduced and illustrated with a study on doping/de-doping process of a conducting polymer. This combination allows for simultaneous electrochemical, optical and microgravimetric characterization of interfaces. Finally, new technical developments including integration of SPS into microfluidic devices using a grating coupler and surface plasmon enhanced diffraction will be discussed

  6. Theoretical investigation of the thermodynamic properties of metallic thin films

    International Nuclear Information System (INIS)

    Hung, Vu Van; Phuong, Duong Dai; Hoa, Nguyen Thi; Hieu, Ho Khac

    2015-01-01

    The thermodynamic properties of metallic thin films with face-centered cubic structure at ambient conditions were investigated using the statistical moment method including the anharmonicity effects of thermal lattice vibrations. The analytical expressions of Helmholtz free energy, lattice parameter, linear thermal expansion coefficient, specific heats at the constant volume and constant pressure were derived in terms of the power moments of the atomic displacements. Numerical calculations of thermodynamic properties have been performed for Au and Al thin films and compared with those of bulk metals. This research proposes that thermodynamic quantities of thin films approach the values of bulk when the thickness of thin film is about 70 nm. - Highlights: • Thermodynamic properties of thin films were investigated using the moment method. • Expressions of Helmholtz energy, expansion coefficient, specific heats were derived. • Calculations for Au, Al thin films were performed and compared with those of bulks

  7. Theoretical investigation of the thermodynamic properties of metallic thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Vu Van [Vietnam Education Publishing House, 81 Tran Hung Dao, Hanoi (Viet Nam); Phuong, Duong Dai [Hanoi National University of Education, 136 Xuan Thuy, Hanoi (Viet Nam); Hoa, Nguyen Thi [University of Transport and Communications, Lang Thuong, Dong Da, Hanoi (Viet Nam); Hieu, Ho Khac, E-mail: hieuhk@duytan.edu.vn [Institute of Research and Development, Duy Tan University, K7/25 Quang Trung, Danang (Viet Nam)

    2015-05-29

    The thermodynamic properties of metallic thin films with face-centered cubic structure at ambient conditions were investigated using the statistical moment method including the anharmonicity effects of thermal lattice vibrations. The analytical expressions of Helmholtz free energy, lattice parameter, linear thermal expansion coefficient, specific heats at the constant volume and constant pressure were derived in terms of the power moments of the atomic displacements. Numerical calculations of thermodynamic properties have been performed for Au and Al thin films and compared with those of bulk metals. This research proposes that thermodynamic quantities of thin films approach the values of bulk when the thickness of thin film is about 70 nm. - Highlights: • Thermodynamic properties of thin films were investigated using the moment method. • Expressions of Helmholtz energy, expansion coefficient, specific heats were derived. • Calculations for Au, Al thin films were performed and compared with those of bulks.

  8. One-step electrochemical composite polymerization of polypyrrole integrated with functionalized graphene/carbon nanotubes nanostructured composite film for electrochemical capacitors

    International Nuclear Information System (INIS)

    Ding Bing; Lu Xiangjun; Yuan Changzhou; Yang Sudong; Han Yongqin; Zhang Xiaogang; Che Qian

    2012-01-01

    Graphical abstract: A novel one-step electrochemical co-deposition strategy was first proposed to prepare unique polypyrrole/reduced graphene oxide/carbon nanotubes (PPy/F-RGO/CNTs) ternary composites, where F-RGO, CNTs, and PPy were electrodeposited simultaneously to construct a three-dimensional (3-D) highly porous film electrode. Highlights: ► Isolated, water-soluble graphene was obtained through benzenesulfonic functionalization. ► PPy/F-RGO/CNTs ternary composite film was prepared via one-step electrochemical co-deposition route. ► PPy/F-RGO/CNTs film shows 3-D highly porous nanostructure and high electrical conductivity. ► PPy/F-RGO/CNTs film exhibits high capacitance, good high-rate performance with a remarkable cycling stability. - Abstract: A novel one-step electrochemical composite polymerization strategy was first proposed to prepare unique polypyrrole/reduced graphene oxide/carbon nanotubes (PPy/F-RGO/CNTs) ternary composites, where F-RGO, CNTs, and PPy were electrodeposited simultaneously to construct a three-dimensional (3-D) highly porous film electrode. Such ternary composite film electrode exhibits a high specific capacitance of 300 F g −1 at 1 A g −1 as well as a remarkable cycling stability at high rates, which is related to its unique nanostructure and high electrical conductivity. F-RGO and CNTs act as an electron-transporting backbone of a 3-D porous nanostructure, leaving adequate working space for facile electrolyte penetration and better faradaic utilization of the electro-active PPy. Furthermore, the straightforward approach proposed here can be readily extended to prepare other composite film electrodes with good electrochemical performance for energy storage.

  9. Lithium-Ion (de)insertion reaction of Germanium thin-film electrodes : an electrochemical and in situ XRD study

    NARCIS (Netherlands)

    Baggetto, L.; Notten, P.H.L.

    2009-01-01

    Germanium is a promising negative electrode candidate for lithium-ion thin-film batteries because of its very high theoretical storage capacity. When assuming full conversion of the material into the room-temperature equilibrium lithium saturated germanium phase, a theoretical capacity of or of

  10. Amperometric detection and electrochemical oxidation of aliphatic amines and ammonia on silver-lead oxide thin-film electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Jisheng [Iowa State Univ., Ames, IA (United States)

    1996-01-08

    This thesis comprises three parts: Electrocatalysis of anodic oxygen-transfer reactions: aliphatic amines at mixed Ag-Pb oxide thin-film electrodes; oxidation of ammonia at anodized Ag-Pb eutectic alloy electrodes; and temperature effects on oxidation of ethylamine, alanine, and aquated ammonia.

  11. Study of LiNiVO{sub 4} thin films used as anodes in lithium micro-batteries; Etude de couches minces de type LiNiVO{sub 4} utilisables en tant qu'electrode negative dans des microbatteries au lithium

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, V.

    2003-03-01

    Since fifteen years, considerable effort has been invested in developing thin film solid state micro-batteries as possible integrated components in microelectronics. The recent technological improvement concerning miniaturized systems opens a large field of applications for the future use of micro-batteries. LiNiVO{sub 4} thin films are promising materials as anodes for lithium micro-batteries. All the thin films have been prepared by radio-frequency magnetron sputtering using a LiNiVO{sub 4} target. The discharge gas was either pure argon or a mixture of argon and oxygen. We have studied the influence of some experimental parameters such as the oxygen partial pressure, the sputtering power, the target-substrate distance, the total pressure and the substrate temperature on the composition, the microstructure and the electrochemical properties. The chemical composition of the thin films has been determined by Rutherford backscattering spectroscopy combined with nuclear reaction analysis. Among all experimental parameters investigated, only the partial pressure of oxygen has a considerable influence on the thin film composition. Auger spectroscopy has revealed a good homogeneity of the thin films. X-ray diffraction shows that the as-deposited thin films are amorphous. The near-stoichiometric composition Li{sub 1.12}NiV{sub 1.02}O{sub 4}.11 has highlighted good electrochemical properties in the potential range [3 V - 0.02 V]. This particular composition displays a high capacity of 1000 mAh/g which is enhanced when the film is annealed at 300 degrees C. (author)

  12. Effect of solution concentration on MEH-PPV thin films

    Science.gov (United States)

    Affendi, I. H. H.; Sarah, M. S. P.; Alrokayan, Salman A. H.; Khan, Haseeb A.; Rusop, M.

    2018-05-01

    MEH-PPV thin films were prepared with a mixture of THF (tetrahydrofuran) solution deposited by spin coating method. The surface topology of MEH-PPV thin film were characterize by atomic force microscopy (AFM) and optical properties of absorption spectra were characterized by using Ultraviolet-visible-near-infrared (UV-Vis-NIR). The MEH-PPV concentration variation affects the surface and optical properties of the thin film where 0.5 mg/ml MEH-PPV concentration have a good surface topology provided the same film also gives the highest absorption coefficient were then deposited to a TiO2 thin film forming composite layer. The composite layer then shows low current flow of short circuit current of Isc = -5.313E-7 A.

  13. Manipulating the ferroelectric polarization state of BaTiO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Datta, S.; Rioult, M.; Stanescu, D.; Magnan, H.; Barbier, A., E-mail: antoine.barbier@cea.fr

    2016-05-31

    Controlling the ferroelectric polarization at macroscopic or microscopic levels is crucial in the framework of the development of ferroelectric materials used in yet challenging photo-electrochemical (PEC) cells and spintronic applications. We report here on polarization methods allowing to electrically polarize prototypical samples of BaTiO{sub 3} (001) films. Epitaxial single crystalline layers were grown up to a thickness of 25 nm by atomic oxygen assisted molecular beam epitaxy on 1 at.% Nb doped SrTiO{sub 3} (001) single crystals. The samples were both microscopically and macroscopically polarized using Piezoresponse Force Microscopy and electrochemical poling in an electrolyte respectively. In addition we demonstrate the possibility to retrieve a quasi-native mixed ferroelectric polarization state after annealing. These polarization methods may be applied to many other ferroelectric thin films. - Highlights: • Ferroelectricity of BaTiO{sub 3} layers can be micro- and macroscopically controlled. • Microscopic ferroelectric domains are defined with piezoresponse force microscopy. • Poling in a LiClO{sub 4} electrolyte is a macroscopic poling method. • Air annealing above the Curie temperature “resets” the polarization state.

  14. Thermionic vacuum arc (TVA) technique for magnesium thin film deposition

    Energy Technology Data Exchange (ETDEWEB)

    Balbag, M.Z., E-mail: zbalbag@ogu.edu.t [Eskisehir Osmangazi University, Education Faculty, Primary Education, Meselik Campus, Eskisehir 26480 (Turkey); Pat, S.; Ozkan, M.; Ekem, N. [Eskisehir Osmangazi University, Art and Science Faculty, Physics Department, Eskisehir 26480 (Turkey); Musa, G. [Ovidius University, Physics Department, Constanta (Romania)

    2010-08-15

    In this study, magnesium thin films were deposited on glass substrate by the Thermionic Vacuum Arc (TVA) technique for the first time. We present a different technique for deposition of high-quality magnesium thin films. By means of this technique, the production of films is achieved by condensing the plasma of anode material generated using Thermionic Vacuum Arc (TVA) under high vacuum conditions onto the surface to be coated. The crystal orientation and morphology of the deposited films were investigated by using XRD, EDX, SEM and AFM. The aim of this study is to search the use of TVA technique to coat magnesium thin films and to determine some of the physical properties of the films generated. Furthermore, this study will contribute to the scientific studies which search the thin films of magnesium or the compounds containing magnesium. In future, this study will be preliminary work to entirely produce magnesium diboride (MgB{sub 2}) superconductor thin film with the TVA technique.

  15. Perovskite phase thin films and method of making

    Science.gov (United States)

    Boyle, Timothy J.; Rodriguez, Mark A.

    2000-01-01

    The present invention comprises perovskite-phase thin films, of the general formula A.sub.x B.sub.y O.sub.3 on a substrate, wherein A is selected from beryllium, magnesium, calcium, strontium, and barium or a combination thereof; B is selected from niobium and tantalum or a combination thereof; and x and y are mole fractions between approximately 0.8 and 1.2. More particularly, A is strontium or barium or a combination thereof and B is niobium or tantalum or a combination thereof. Also provided is a method of making a perovskite-phase thin film, comprising combining at least one element-A-containing compound, wherein A is selected from beryllium, magnesium, calcium, strontium or barium, with at least one element-B-containing compound, wherein B niobium or tantalum, to form a solution; adding a solvent to said solution to form another solution; spin-coating the solution onto a substrate to form a thin film; and heating the film to form the perovskite-phase thin film.

  16. Properties of RF-Sputtered PZT Thin Films with Ti/Pt Electrodes

    Directory of Open Access Journals (Sweden)

    Cui Yan

    2014-01-01

    Full Text Available Effect of annealing temperature and thin film thickness on properties of Pb(Zr0.53Ti0.47O3 (PZT thin film deposited via radiofrequency magnetron sputtering technique onto Pt/Ti/SiO2/Si substrate was investigated. Average grain sizes of the PZT thin film were measured by atomic force microscope; their preferred orientation was studied through X-ray diffraction analysis. Average residual stress in the thin film was estimated according to the optimized Stoney formula, and impedance spectroscopy characterization was performed via an intelligent LCR measuring instrument. Average grain sizes of PZT thin films were 60 nm~90 nm and their average roughness was less than 2 nm. According to X-ray diffraction analysis, 600°C is the optimal annealing temperature to obtain the PZT thin film with better crystallization. Average residual stress showed that thermal mismatch was the decisive factor of residual stress in Pt/Ti/SiO2/Si substrate; the residual stress in PZT thin film decreased as their thickness increased and increased with annealing temperature. The dielectric constant and loss angle tangent were extremely increased with the thickness of PZT thin films. The capacitance of the device can be adjusted according to the thickness of PZT thin films.

  17. Photoinducedly electrochemical preparation of Prussian blue film and electrochemical modification of the film with cetyltrimethylammonium cation

    Energy Technology Data Exchange (ETDEWEB)

    Liu Shouqing, E-mail: shouqing_liu@hotmail.co [Key Laboratory of Environmental Functional Materials of Jiangsu Province, College of Chemistry and Bioengineering, Suzhou University of Science and Technology, Suzhou 215009 (China); Li Hua; Sun Weihui; Wang Xiaomei; Chen Zhigang [Key Laboratory of Environmental Functional Materials of Jiangsu Province, College of Chemistry and Bioengineering, Suzhou University of Science and Technology, Suzhou 215009 (China); Xu Jingjuan; Ju Huangxian; Chen Hongyuan [Key Laboratory of Analytical Chemistry for Life Science, Ministry of Education, Nanjing University, Nanjing 210093 (China)

    2011-04-15

    Research highlights: {yields} Cetyltrimethylammonium cations work as counter ions in Prussian blue film was observed and confirmed by cyclic voltammetry, Fourier transform infrared spectroscopy, X-ray powder diffraction measurements, scanning electronic microscopy and transmission electron microscope for the first time. {yields} Because the cetyltrimethylammonium cations in Prussian blue film are hydrophobic, the Prussian blue film is very stable even in alkali solution, which provides a technical basis for fabrication of stable biosensors. - Abstract: This work presents a photoinducedly electrochemical preparation of Prussian blue from a single sodium nitroprusside and insertion of cetyltrimethylammonium cations into Prussian blue as counter ions. The product of photoinducedly electrochemical reactions has a couple of voltammetric peaks at E{sup o} = 0.266 V in 0.2 mol l{sup -1} KCl solution, the measurements of X-ray powder diffraction and FT-IR spectroscopy show that it is Prussian blue (PB). The formation mechanism of a pre-photochemical reaction and subsequent electrochemical reaction is suggested. The cyclic voltammetric treatment of the freshly as-prepared PB film in 1.0 mmol l{sup -1} cetyltrimethylammonium (CTA) bromide solution leads to the insertion of cetyltrimethylammonium cations into the channels of Prussian blue, which substitutes for potassium ions as counter ions in Prussian blue. The Prussian blue containing CTA counter ions shows two couples of voltammetric peaks at E{sup o} = -0.106 V and E{sup o} = 0.249 V in 0.2 mol l{sup -1} KCl solution containing 1.0 mmol l{sup -1} cetyltrimethylammonium bromide. Compared with the electrochemical behaviors of KFeFe(CN){sub 6} in 0.1 mol l{sup -1} KOH alkali solution, CTAFeFe(CN){sub 6} shows relatively durable voltammetric currents due to the hydrophobic effects of cetyltrimethylammonium. The diffusion coefficients for CTA and potassium cations were estimated to be D{sub CTA} 1.25 x 10{sup -12} cm{sup 2} s

  18. Substrate-HTcS thin film interaction studies by (S)TEM

    NARCIS (Netherlands)

    Ramaekers, P.P.J.; Klepper, D.; Kitazawa, K.; Ishiguro, T.

    1989-01-01

    This paper concerns with compatibility aspects beween HTcS thin film either their substrates. The influence of substrate-thin film interaction and thin film microstructure on the superconducting properties is discussed. In this respect, data based on (S)TEM observations are presented. It is

  19. Uniform Thin Films of CdSe and CdSe(ZnS) Core(shell) Quantum Dots by Sol-Gel Assembly: Enabling Photoelectrochemical Characterization and Electronic Applications

    Science.gov (United States)

    Korala, Lasantha; Wang, Zhijie; Liu, Yi; Maldonado, Stephen; Brock, Stephanie L.

    2013-01-01

    Optoelectronic properties of quantum dot (QD) films are limited by (1) poor interfacial chemistry and (2) non-radiative recombination due to surface traps. To address these performance issues, sol-gel methods are applied to fabricate thin films of CdSe and core(shell) CdSe(ZnS) QDs. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) imaging with chemical analysis confirms that the surface of the QDs in the sol-gel thin films are chalcogen-rich, consistent with an oxidative-induced gelation mechanism in which connectivity is achieved by formation of dichalcogenide covalent linkages between particles. The ligand removal and assembly process is probed by thermogravimetric, spectroscopic and microscopic studies. Further enhancement of inter-particle coupling via mild thermal annealing, which removes residual ligands and reinforces QD connectivity, results in QD sol-gel thin films with superior charge transport properties, as shown by a dramatic enhancement of electrochemical photocurrent under white light illumination relative to thin films composed of ligand-capped QDs. A more than 2-fold enhancement in photocurrent, and a further increase in photovoltage can be achieved by passivation of surface defects via overcoating with a thin ZnS shell. The ability to tune interfacial and surface characteristics for the optimization of photophysical properties suggests that the sol-gel approach may enable formation of QD thin films suitable for a range of optoelectronic applications. PMID:23350924

  20. Low-field vortex dynamics in various high-Tc thin films

    Indian Academy of Sciences (India)

    Abstract. We present a novel ac susceptibility technique for the study of vortex creep in supercon- ducting thin films. With this technique we study the dynamics of dilute vortices in c-axis oriented. Y-123, Hg-1212, and Tl-1212 thin films, as well as a-axis oriented Hg-1212 thin films. Results on the Hg-1212 and Tl-1212 thin ...

  1. Atomic Structure Control of Silica Thin Films on Pt(111)

    KAUST Repository

    Crampton, Andrew S

    2015-05-27

    Metal oxide thin films grown on metal single crystals are commonly used to model heterogeneous catalyst supports. The structure and properties of thin silicon dioxide films grown on metal single crystals have only recently been thoroughly characterized and their spectral properties well established. We report the successful growth of a three- dimensional, vitreous silicon dioxide thin film on the Pt(111) surface and reproduce the closed bilayer structure previously reported. The confirmation of the three dimensional nature of the film is unequivocally shown by the infrared absorption band at 1252 cm−1. Temperature programmed desorption was used to show that this three-dimensional thin film covers the Pt(111) surface to such an extent that its application as a catalyst support for clusters/nanoparticles is possible. The growth of a three-dimensional film was seen to be directly correlated with the amount of oxygen present on the surface after the silicon evaporation process. This excess of oxygen is tentatively attributed to atomic oxygen being generated in the evaporator. The identification of atomic oxygen as a necessary building block for the formation of a three-dimensional thin film opens up new possibilities for thin film growth on metal supports, whereby simply changing the type of oxygen enables thin films with different atomic structures to be synthesized. This is a novel approach to tune the synthesis parameters of thin films to grow a specific structure and expands the options for modeling common amorphous silica supports under ultra high vacuum conditions.

  2. Electrodeposition and characterization of CdSe{sub x}Te{sub 1-x} semiconducting thin films

    Energy Technology Data Exchange (ETDEWEB)

    Benamar, E.; Rami, M.; Fahoume, M.; Chraibi, F.; Ennaoui, A. [Faculty of Sciences, Laboratory of Materials Physics, Dept. of Physics, Rabat (Morocco)

    1999-07-01

    Thin polycrystalline films of cadmium chalcogenides CdSe{sub x}Te{sub 1-x} (0{<=}x{<=}1) can be used for various technical applications in particular for the conversion of solar energy in photoelectrochemical devices. They have been prepared by electrochemical plating on ITO (indium tin oxide) coated glass substrates from an acid sulfate solution at 90 deg. C. Structural, morphological and compositional studies of the deposited films are reported as a function of the x coefficient. XRD analysis shows that all deposits have a cubic structure with a preferred orientation along the (111) direction. The composition in the films is found to vary linearly with the composition in the solution. The increase in the selenium content x in the CdSe{sub x}Te{sub 1-x} films decreases the lattice constant and increases the band gap. Nevertheless this latter presents a minimum for x = 0.27.

  3. A novel application of the CuI thin film for preparing thin copper nanowires

    International Nuclear Information System (INIS)

    Shi Shuo; Sun Jialin; Zhang Jianhong; Cao Yang

    2005-01-01

    We present a novel application of the CuI thin film for preparing thin copper nanowires under a direct current electric field (DCEF). The CuI thin film was used as a medium for transmitting cuprous ions during the growing process of copper nanowires. As electrodes are the source of cuprous ions, high-purity copper films were deposited on both ends of the CuI thin film. At 353 K, under whole solid condition, without any templates, and having applied a DCEF of 1.5x10 4 V/m, cuprous ions were generated at the anode and migrated towards the cathode through the CuI film. At the edge of the cathode, cuprous ions obtained electrons and congregated to form a disordered thin copper nanowires bundle. The SEM images showed that these copper nanowires were from 10 to 20 nm in diameter and several hundred nanometers in length. The effect of the electric field intensity and the growth temperature on the diameter of the nanowires was also studied

  4. Fabrication and electrochemical properties of free-standing single-walled carbon nanotube film electrodes

    International Nuclear Information System (INIS)

    Niu Zhi-Qiang; Ma Wen-Jun; Dong Hai-Bo; Li Jin-Zhu; Zhou Wei-Ya

    2011-01-01

    An easily manipulative approach was presented to fabricate electrodes using free-standing single-walled carbon nanotube (SWCNT) films grown directly by chemical vapor deposition. Electrochemical properties of the electrodes were investigated. In comparison with the post-deposited SWCNT papers, the directly grown SWCNT film electrodes manifested enhanced electrochemical properties and sensitivity of sensors as well as excellent electrocatalytic activities. A transition from macroelectrode to nanoelectrode behaviours was observed with the increase of scan rate. The heat treatment of the SWCNT film electrodes increased the current signals of electrochemical analyser and background current, because the heat-treatment of the SWCNTs in air could create more oxide defects on the walls of the SWCNTs and make the surfaces of SWCNTs more hydrophilic. The excellent electrochemical properties of the directly grown and heat-treated free-standing SWCNT film electrodes show the potentials in biological and electrocatalytic applications. (cross-disciplinary physics and related areas of science and technology)

  5. Silicon-integrated thin-film structure for electro-optic applications

    Science.gov (United States)

    McKee, Rodney A.; Walker, Frederick Joseph

    2000-01-01

    A crystalline thin-film structure suited for use in any of an number of electro-optic applications, such as a phase modulator or a component of an interferometer, includes a semiconductor substrate of silicon and a ferroelectric, optically-clear thin film of the perovskite BaTiO.sub.3 overlying the surface of the silicon substrate. The BaTiO.sub.3 thin film is characterized in that substantially all of the dipole moments associated with the ferroelectric film are arranged substantially parallel to the surface of the substrate to enhance the electro-optic qualities of the film.

  6. Nitrogen incorporation in sputter deposited molybdenum nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Stöber, Laura, E-mail: laura.stoeber@tuwien.ac.at; Patocka, Florian, E-mail: florian.patocka@tuwien.ac.at; Schneider, Michael, E-mail: michael.schneider@tuwien.ac.at; Schmid, Ulrich, E-mail: ulrich.e366.schmid@tuwien.ac.at [Institute of Sensor and Actuator Systems, TU Wien, Gußhausstraße 27-29, A-1040 Vienna (Austria); Konrath, Jens Peter, E-mail: jenspeter.konrath@infineon.com; Haberl, Verena, E-mail: verena.haberl@infineon.com [Infineon Technologies Austria AG, Siemensstraße 2, 9500 Villach (Austria)

    2016-03-15

    In this paper, the authors report on the high temperature performance of sputter deposited molybdenum (Mo) and molybdenum nitride (Mo{sub 2}N) thin films. Various argon and nitrogen gas compositions are applied for thin film synthetization, and the amount of nitrogen incorporation is determined by Auger measurements. Furthermore, effusion measurements identifying the binding conditions of the nitrogen in the thin film are performed up to 1000 °C. These results are in excellent agreement with film stress and scanning electron microscope analyses, both indicating stable film properties up to annealing temperatures of 500 °C.

  7. Thin Cu film resistivity using four probe techniques: Effect of film thickness and geometrical shapes

    Science.gov (United States)

    Choudhary, Sumita; Narula, Rahul; Gangopadhyay, Subhashis

    2018-05-01

    Precise measurement of electrical sheet resistance and resistivity of metallic thin Cu films may play a significant role in temperature sensing by means of resistivity changes which can further act as a safety measure of various electronic devices during their operation. Four point probes resistivity measurement is a useful approach as it successfully excludes the contact resistance between the probes and film surface of the sample. Although, the resistivity of bulk samples at a particular temperature mostly depends on its materialistic property, however, it may significantly differ in the case of thin films, where the shape and thickness of the sample can significantly influence on it. Depending on the ratio of the film thickness to probe spacing, samples are usually classified in two segments such as (i) thick films or (ii) thin films. Accordingly, the geometric correction factors G can be related to the sample resistivity r, which has been calculated here for thin Cu films of thickness up to few 100 nm. In this study, various rectangular shapes of thin Cu films have been used to determine the shape induced geometric correction factors G. An expressions for G have been obtained as a function of film thickness t versus the probe spacing s. Using these expressions, the correction factors have been plotted separately for each cases as a function of (a) film thickness for fixed linear probe spacing and (b) probe distance from the edge of the film surface for particular thickness. Finally, we compare the experimental results of thin Cu films of various rectangular geometries with the theoretical reported results.

  8. Optical constant of thin gold films

    DEFF Research Database (Denmark)

    Yakubovsky, D. I.; Fedyanin, D. Yu; Arsenin, A. V.

    2017-01-01

    The performance of metal-based devices is limited by ohmic losses in the metal, which are determined by electron scattering. The structural properties of gold thin films also play an important role in the film quality, which may affect its' optical properties and the overall capability...... and spectroscopic ellipsometry, the structural morphology and optical properties of polycrystalline gold thin films (fabricated by e-beam deposition at a low sputtering rate smooth gold) in the thickness range of 20 - 200 nm. By extracting the real and imaginary dielectric function and the Drude parameter...... of the device. At the same time, metal films of different thicknesses are needed for different applications and, since these films are polycrystalline, their internal properties and surface roughness can greatly vary from one thickness to another. In this work, we study, using atomic force microscopy...

  9. Preparation and properties of thin films treatise on materials science and technology

    CERN Document Server

    Tu, K N

    1982-01-01

    Treatise on Materials Science and Technology, Volume 24: Preparation and Properties of Thin Films covers the progress made in the preparation of thin films and the corresponding study of their properties. The book discusses the preparation and property correlations in thin film; the variation of microstructure of thin films; and the molecular beam epitaxy of superlattices in thin film. The text also describes the epitaxial growth of silicon structures (thermal-, laser-, and electron-beam-induced); the characterization of grain boundaries in bicrystalline thin films; and the mechanical properti

  10. Hall effect of K-doped superconducting thin films

    Energy Technology Data Exchange (ETDEWEB)

    Son, Eunseon; Lee, Nam Hoon; Kang, Won Nam [Dept. of physics, Sungkyunkwan University, Suwon (Korea, Republic of); Hwang, Tae Jong; Kim, Dong Ho [Dept. of physics, Yeungnam University, Gyeongsan(Korea, Republic of)

    2013-09-15

    We have studied Hall effect for potassium (K)-doped BaFe{sub 2}As{sub 2}superconducting thin films by analyzing the relation between the longitudinal resistivity (ρ{sub xy}) and the Hall resistivity (ρ{sub xy}). The thin films used in this study were fabricated on Al{sub O3} (000l) substrates by using an ex-situ pulsed laser deposition (PLD) technique under a high-vacuum condition of ∼10{sup -6} Torr. The samples showed the high superconducting transition temperatures (T{sub C}) of ∼40 K. The ρ{sub xx} and ρ{sub xy}the for K-doped BaFeAs{sub 2} thin films were measured by using a physical property measurement system (PPMS) with a temperature sweep (T-sweep) mode at an applied current density of 100 A/cm{sup 2} and at magnetic fields from 0 up to 9 T. We report the T-sweep results of the ρ{sub xx} and the ρ{sub xy} to investigate Hall scaling behavior on the basis of the relation of ρ{sub xy} = A(ρ{sub xy}){sup β}. The ρ{sub xx} values are 3.0 ± 0.2 in the c-axis-oriented K-doped BaFeAs{sub 2} thin films, whereas the thin films with various oriented-directions like a polycrystal showed slightly lower β than that of c-axis-oriented thin films. Interestingly, the β value is decreased with increasing magnetic fields.

  11. Properties of Spray Pyrolysied Copper Oxide Thin Films

    Directory of Open Access Journals (Sweden)

    S. S. Roy

    2017-02-01

    Full Text Available Copper oxide (CuO thin films were deposited on well cleaned glass substrates by spray pyrolysis technique (SPT from cupric acetate (Cu(CH3COO2.H2O precursor solutions of 0.05 – 0.15 M molar concentrations (MC at a substrate temperature of 350 °C and at an air pressure of 1 bar. Effect of varying MC on the surface morphology, structural optical and electrical properties of CuO thin films were investigated. XRD patterns of the prepared films revealed the formation of CuO thin films having monoclinic structure with the main CuO (111 orientation and crystalline size ranging from 8.02 to 9.05 nm was observed. The optical transmission of the film was found to decrease with the increase of MC. The optical band gap of the thin films for 0.10 M was fond to be 1.60 eV. The room temperature electrical resistivity varies from 31 and 24 ohm.cm for the films grown with MC of 0.05 and 0.10 M respectively. The change in resistivity of the films was studied with respect to the change in temperature was shown that semiconductor nature is present. This information is expected to underlie the successful development of CuO films for solar windows and other semi-conductor applications including gas sensors.

  12. Laser-induced damage to thin film dielectric coatings

    International Nuclear Information System (INIS)

    Walker, T.W.

    1980-01-01

    The laser-induced damage thresholds of dielectric thin film coatings have been found to be more than an order of magnitude lower than the bulk material damage thresholds. Prior damage studies have been inconclusive in determining the damage mechanism which is operative in thin films. A program was conducted in which thin film damage thresholds were measured as a function of laser wavelength (1.06 μm, 0.53 μm, 0.35 μm and 0.26 μm), laser pulse length (5 and 15 nanoseconds), film materials and film thickness. The large matrix of data was compared to predictions given by avalanche ionization, multiphoton ionization and impurity theories of laser damage. When Mie absorption cross-sections and the exact thermal equations were included into the impurity theory excellent agreement with the data was found. The avalanche and multiphoton damage theories could not account for most parametric variations in the data. For example, the damage thresholds for most films increased as the film thickness decreased and only the impurity theory could account for this behavior. Other observed changes in damage threshold with changes in laser wavelength, pulse length and film material could only be adequately explained by the impurity theory. The conclusion which results from this study is that laser damage in thin film coatings results from absorbing impurities included during the deposition process

  13. Physical Vapor Deposition of Thin Films

    Science.gov (United States)

    Mahan, John E.

    2000-01-01

    A unified treatment of the theories, data, and technologies underlying physical vapor deposition methods With electronic, optical, and magnetic coating technologies increasingly dominating manufacturing in the high-tech industries, there is a growing need for expertise in physical vapor deposition of thin films. This important new work provides researchers and engineers in this field with the information they need to tackle thin film processes in the real world. Presenting a cohesive, thoroughly developed treatment of both fundamental and applied topics, Physical Vapor Deposition of Thin Films incorporates many critical results from across the literature as it imparts a working knowledge of a variety of present-day techniques. Numerous worked examples, extensive references, and more than 100 illustrations and photographs accompany coverage of: * Thermal evaporation, sputtering, and pulsed laser deposition techniques * Key theories and phenomena, including the kinetic theory of gases, adsorption and condensation, high-vacuum pumping dynamics, and sputtering discharges * Trends in sputter yield data and a new simplified collisional model of sputter yield for pure element targets * Quantitative models for film deposition rate, thickness profiles, and thermalization of the sputtered beam

  14. Indium Sulfide and Indium Oxide Thin Films Spin-Coated from Triethylammonium Indium Thioacetate Precursor for n-Channel Thin Film Transistor

    Energy Technology Data Exchange (ETDEWEB)

    Tung, Duy Dao; Jeong, Hyun Dam [Chonnam Natioal University, Gwangju (Korea, Republic of)

    2014-09-15

    The In{sub 2}S{sub 3} thin films of tetragonal structure and In{sub 2}O{sub 3} films of cubic structure were synthesized by a spin coating method from the organometallic compound precursor triethylammonium indium thioacetate ([(Et){sub 3}NH]+ [In(SCOCH{sub 3}){sub 4}]''-; TEA-InTAA). In order to determine the electron mobility of the spin-coated TEA-InTAA films, thin film transistors (TFTs) with an inverted structure using a gate dielectric of thermal oxide (SiO{sub 2}) was fabricated. These devices exhibited n-channel TFT characteristics with a field-effect electron mobility of 10.1 cm''2 V''-1s''-1 at a curing temperature of 500 o C, indicating that the semiconducting thin film material is applicable for use in low-cost, solution-processed printable electronics.

  15. Structural, Electrical and Optical Properties of TiO2 Thin Film Deposited on the Nano Porous Silicon Template

    Science.gov (United States)

    Bahar, Mahmood; Dermani, Ensieh Khalili

    The porous silicon (PSi), which is produced by the electrochemical etching, has been used as a substrate for the growth of the titanium oxide (TiO2) thin films. By using the EBPVD method, TiO2 thin films have been deposited on the surface of the PSi substrate. TiO2/PSi layers were annealed at the temperature of 400∘C, 500∘C and 600∘C for different tests. The morphology and structures of layers were investigated by the scanning electron microscopy (SEM) and X-ray diffraction (XRD). The current-voltage characteristic curves of samples and the ideality factor of heterojunction were studied. The results showed that the electrical properties of the samples change with increase in the annealing temperature. The optical properties of the prepared samples were investigated by using UV-Vis and photoluminescence (PL) spectroscopy. Green light emission of the PSi combined with the blue light and violet-blue emission obtained from the TiO2/PSi PL spectra. The results showed that the optical band gap energy of the PSi has increased from 1.86eV to 2.93eV due to the deposition of TiO2 thin film.

  16. Nanostructured thin films and coatings mechanical properties

    CERN Document Server

    2010-01-01

    The first volume in "The Handbook of Nanostructured Thin Films and Coatings" set, this book concentrates on the mechanical properties, such as hardness, toughness, and adhesion, of thin films and coatings. It discusses processing, properties, and performance and provides a detailed analysis of theories and size effects. The book presents the fundamentals of hard and superhard nanocomposites and heterostructures, assesses fracture toughness and interfacial adhesion strength of thin films and hard nanocomposite coatings, and covers the processing and mechanical properties of hybrid sol-gel-derived nanocomposite coatings. It also uses nanomechanics to optimize coatings for cutting tools and explores various other coatings, such as diamond, metal-containing amorphous carbon nanostructured, and transition metal nitride-based nanolayered multilayer coatings.

  17. Fabrication of ATO/Graphene Multi-layered Transparent Conducting Thin Films

    Science.gov (United States)

    Li, Na; Chen, Fei; Shen, Qiang; Wang, Chuanbin; Zhang, Lianmeng

    2013-03-01

    A novel transparent conducting oxide based on the ATO/graphene multi-layered thin films has been developed to satisfy the application of transparent conductive electrode in solar cells. The ATO thin films are prepared by pulsed laser deposition method with high quality, namely the sheet resistance of 49.5 Ω/sq and average transmittance of 81.9 %. The prepared graphene sheet is well reduced and shows atomically thin, spotty distributed appearance on the top of the ATO thin films. The XRD and optical micrographs are used to confirm the successfully preparation of the ATO/graphene multi-layered thin films. The Hall measurements and UV-Vis spectrophotometer are conducted to evaluate the sheet resistance and optical transmittance of the innovative structure. It is found that graphene can improve the electrical properties of the ATO thin films with little influence on the optical transmittance.

  18. Fabrication of ATO/Graphene Multi-layered Transparent Conducting Thin Films

    International Nuclear Information System (INIS)

    Li Na; Chen Fei; Shen Qiang; Wang Chuanbin; Zhang Lianmeng

    2013-01-01

    A novel transparent conducting oxide based on the ATO/graphene multi-layered thin films has been developed to satisfy the application of transparent conductive electrode in solar cells. The ATO thin films are prepared by pulsed laser deposition method with high quality, namely the sheet resistance of 49.5 Ω/sq and average transmittance of 81.9 %. The prepared graphene sheet is well reduced and shows atomically thin, spotty distributed appearance on the top of the ATO thin films. The XRD and optical micrographs are used to confirm the successfully preparation of the ATO/graphene multi-layered thin films. The Hall measurements and UV-Vis spectrophotometer are conducted to evaluate the sheet resistance and optical transmittance of the innovative structure. It is found that graphene can improve the electrical properties of the ATO thin films with little influence on the optical transmittance.

  19. Preparation and characterization of porphyrin-polythiophene stacked films as prepared by electrochemical method under stirring condition

    International Nuclear Information System (INIS)

    Sugawa, Kosuke; Akiyama, Tsuyoshi; Yamada, Sunao

    2008-01-01

    Porphyrin-polythiophene (pTh) stacked films consisting of meso-tetrathienylporphyrin (TThP) and bithiophene (BiTh) were prepared on transparent indium-tin-oxide (ITO) electrodes by sequential electrochemical scanning of applied potential between 0 and + 2 V vs Ag wire in the electrolyte solution of BiTh and TThP under stirring condition. First, the pTh films were prepared by electrochemical polymerization and then TThP was incorporated into the as-prepared pTh film by subsequent electrochemical scanning as described above in the TThP solution. The operation of solution stirring during electrochemical scanning achieved the formation of robust stacked films. UV/Vis and fluorescence spectra confirmed that the amount of TThP moiety increased with increasing the number of electrochemical scanning cycles in the TThP solution. In order to evaluate the incorporation profile of TThP, surface analyses and depth profiles of stacked films were carried out by XPS spectroscopy. The results suggested that all films formed porphyrin-polythiophene stacked structure precisely, and that TThP was exclusively incorporated around the outermost region of the pTh film

  20. Bi-axially crumpled silver thin-film electrodes for dielectric elastomer actuators

    International Nuclear Information System (INIS)

    Low, Sze-Hsien; Lau, Gih-Keong

    2014-01-01

    Metal thin films, which have high conductivity, are much stiffer and may fracture at a much lower strain than dielectric elastomers. In order to fabricate compliant electrodes for use in dielectric elastomer actuators (DEAs), metal thin films have been formed into either zigzag patterns or corrugations, which favour bending and only allow uniaxial DEA deformations. However, biaxially compliant electrodes are desired in order to maximize generated forces of DEA. In this paper, we present crumpled metal thin-film electrodes that are biaxially compliant and have full area coverage over the dielectric elastomer. These crumpled metal thin-film electrodes are more stretchable than flat metal thin films; they remain conductive beyond 110% radial strain. Also, crumpling reduced the stiffening effect of metal thin films on the soft elastomer. As such, DEAs using crumpled metal thin-film electrodes managed to attain relatively high actuated area strains of up to 128% at 1.8 kV (102 Vμm −1 ). (paper)

  1. Subtle Raman signals from nano-diamond and β-SiC thin films

    International Nuclear Information System (INIS)

    Kuntumalla, Mohan Kumar; Ojha, Harish; Srikanth, Vadali Venkata Satya Siva

    2013-01-01

    Micro Raman scattering experiments are carried out in pursuit of subtle but discernable signals from nano-diamond and β-SiC thin films. The thin films are synthesized using microwave plasma assisted chemical vapor deposition technique. Raman scattering experiments in conjunction with scanning electron microscopy and x-ray diffraction were carried out to extract microstructure and phase information of the above mentioned thin films. Certain subtle Raman signals have been identified in this work. In the case of nanodiamond thin films, Raman bands at ∼ 485 and ∼ 1220 cm −1 are identified. These bands have been assigned to the nanodiamond present in nanodiamond thin films. In the case of nano β-SiC thin films, optical phonons are identified using surface enhanced Raman scattering. - Highlights: ► Subtle Raman signals from nano-diamond and β-silicon carbide related thin films. ► Raman bands at ∼ 485 and ∼ 1220 cm −1 from nanodiamond thin films are identified. ► Longitudinal optical phonon from nano β-silicon carbide thin films is identified

  2. In vitro behaviour of nanocrystalline silver-sputtered thin films

    International Nuclear Information System (INIS)

    Piedade, A P; Vieira, M T; Martins, A; Silva, F

    2007-01-01

    Silver thin films were deposited with different preferential orientations and special attention was paid to the bioreactivity of the surfaces. The study was essentially focused on the evaluation of the films by x-ray diffraction (XRD), atomic force microscopy (AFM), high-resolution transmission electron microscopy (HRTEM), electron probe microanalysis (EPMA) and contact angle measurements. The deposited thin films were characterized before and after immersion in S-enriched simulated human plasma in order to estimate the influence of the preferential crystallographic orientation on the in vitro behaviour. Silver thin films with and without (111) preferential crystallographic orientation were deposited by r.f. magnetron sputtering to yield nanocrystalline coatings, high compact structures, very hydrophobic surfaces and low roughness. These properties reduce the chemisorption of reactive species onto the film surface. The in vitro tests indicate that silver thin films can be used as coatings for biomaterials applications

  3. Ion Beam Assisted Deposition of Thin Epitaxial GaN Films.

    Science.gov (United States)

    Rauschenbach, Bernd; Lotnyk, Andriy; Neumann, Lena; Poppitz, David; Gerlach, Jürgen W

    2017-06-23

    The assistance of thin film deposition with low-energy ion bombardment influences their final properties significantly. Especially, the application of so-called hyperthermal ions (energy GaN thin films on (0001)-oriented 6H-SiC substrates at 700 °C. The films are studied in situ by reflection high energy electron diffraction, ex situ by X-ray diffraction, scanning tunnelling microscopy, and high-resolution transmission electron microscopy. It is demonstrated that the film growth mode can be controlled by varying the ion to atom ratio, where 2D films are characterized by a smooth topography, a high crystalline quality, low biaxial stress, and low defect density. Typical structural defects in the GaN thin films were identified as basal plane stacking faults, low-angle grain boundaries forming between w-GaN and z-GaN and twin boundaries. The misfit strain between the GaN thin films and substrates is relieved by the generation of edge dislocations in the first and second monolayers of GaN thin films and of misfit interfacial dislocations. It can be demonstrated that the low-energy nitrogen ion assisted molecular beam epitaxy is a technique to produce thin GaN films of high crystalline quality.

  4. Catalytic EC′ reaction at a thin film modified electrode

    International Nuclear Information System (INIS)

    Gerbino, Leandro; Baruzzi, Ana M.; Iglesias, Rodrigo A.

    2013-01-01

    Numerical simulations of cyclic voltammograms corresponding to a catalytic EC′ reaction taking place at a thin film modified electrode are performed by way of finite difference method. Besides considering the chemical kinetic occurring inside the thin film, the model takes into account the different diffusion coefficients for each species at each of the involved phases, i.e. the thin film layer and bulk solution. The theoretical formulation is given in terms of dimensionless model parameters but a brief discussion of each of these parameters and their relationship to experimental variables is presented. Special emphasis is given to the use of working curve characteristics to quantify diffusion coefficient, homogeneous kinetic constant and thickness of the thin layer in a real system. Validation of the model is made by comparison of experimental results corresponding to the electron charge transfer of Ru(NH 3 ) 6 3+ /Ru(NH 3 ) 6 2+ hemi-couple at a thin film of a cross-linked chitosan film containing an immobilized redox dye

  5. Room temperature ferroelectricity in continuous croconic acid thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Xuanyuan; Lu, Haidong; Yin, Yuewei; Ahmadi, Zahra; Costa, Paulo S. [Department of Physics and Astronomy, University of Nebraska, Lincoln, Nebraska 68588 (United States); Zhang, Xiaozhe [Department of Physics and Astronomy, University of Nebraska, Lincoln, Nebraska 68588 (United States); Department of Physics, Xi' an Jiaotong University, Xi' an 710049 (China); Wang, Xiao; Yu, Le; Cheng, Xuemei [Department of Physics, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010 (United States); DiChiara, Anthony D. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Gruverman, Alexei, E-mail: alexei-gruverman@unl.edu, E-mail: a.enders@me.com, E-mail: xiaoshan.xu@unl.edu; Enders, Axel, E-mail: alexei-gruverman@unl.edu, E-mail: a.enders@me.com, E-mail: xiaoshan.xu@unl.edu; Xu, Xiaoshan, E-mail: alexei-gruverman@unl.edu, E-mail: a.enders@me.com, E-mail: xiaoshan.xu@unl.edu [Department of Physics and Astronomy, University of Nebraska, Lincoln, Nebraska 68588 (United States); Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, Nebraska 68588 (United States)

    2016-09-05

    Ferroelectricity at room temperature has been demonstrated in nanometer-thin quasi 2D croconic acid thin films, by the polarization hysteresis loop measurements in macroscopic capacitor geometry, along with observation and manipulation of the nanoscale domain structure by piezoresponse force microscopy. The fabrication of continuous thin films of the hydrogen-bonded croconic acid was achieved by the suppression of the thermal decomposition using low evaporation temperatures in high vacuum, combined with growth conditions far from thermal equilibrium. For nominal coverages ≥20 nm, quasi 2D and polycrystalline films, with an average grain size of 50–100 nm and 3.5 nm roughness, can be obtained. Spontaneous ferroelectric domain structures of the thin films have been observed and appear to correlate with the grain patterns. The application of this solvent-free growth protocol may be a key to the development of flexible organic ferroelectric thin films for electronic applications.

  6. Subtractive fabrication of ferroelectric thin films with precisely controlled thickness

    Science.gov (United States)

    Ievlev, Anton V.; Chyasnavichyus, Marius; Leonard, Donovan N.; Agar, Joshua C.; Velarde, Gabriel A.; Martin, Lane W.; Kalinin, Sergei V.; Maksymovych, Petro; Ovchinnikova, Olga S.

    2018-04-01

    The ability to control thin-film growth has led to advances in our understanding of fundamental physics as well as to the emergence of novel technologies. However, common thin-film growth techniques introduce a number of limitations related to the concentration of defects on film interfaces and surfaces that limit the scope of systems that can be produced and studied experimentally. Here, we developed an ion-beam based subtractive fabrication process that enables creation and modification of thin films with pre-defined thicknesses. To accomplish this we transformed a multimodal imaging platform that combines time-of-flight secondary ion mass spectrometry with atomic force microscopy to a unique fabrication tool that allows for precise sputtering of the nanometer-thin layers of material. To demonstrate fabrication of thin-films with in situ feedback and control on film thickness and functionality we systematically studied thickness dependence of ferroelectric switching of lead-zirconate-titanate, within a single epitaxial film. Our results demonstrate that through a subtractive film fabrication process we can control the piezoelectric response as a function of film thickness as well as improve on the overall piezoelectric response versus an untreated film.

  7. Solution processed pentacene thin films and their structural properties

    International Nuclear Information System (INIS)

    Tao Chunlan; Zhang Xuhui; Zhang Fujia; Liu Yiyang; Zhang Haoli

    2007-01-01

    The paper reported the solution process of pentacene thin films from organic solvent O-dichlorobenzene. The pentacene thin films obtained from different conditions were characterized by X-ray diffraction (XRD), optical microscopy, scanning electron microscopy (SEM), and UV-vis spectroscopy. The result shows that the pentacene solution was successfully obtained at a minimum temperature of 40 deg. C. The optimum temperature of forming pentacene thin films was 100 deg. C

  8. Stability of tetraphenyl butadiene thin films in liquid xenon

    International Nuclear Information System (INIS)

    Sanguino, P.; Balau, F.; Botelho do Rego, A.M.; Pereira, A.; Chepel, V.

    2016-01-01

    Tetraphenyl butadiene (TPB) is widely used in particle detectors as a wavelength shifter. In this work we studied the stability of TPB thin films when immersed in liquid xenon (LXe). The thin films were deposited on glass and quartz substrates by thermal evaporation. Morphological and chemical surface properties were monitored before and after immersion into LXe by scanning electron microscopy and X-ray photoelectron spectroscopy. No appreciable changes have been detected with these two methods. Grain size and surface chemical composition were found to be identical before and after submersion into LXe. However, the film thickness, measured via optical transmission in the ultraviolet–visible wavelength regions, decreased by 1.6 μg/cm 2 (24%) after immersion in LXe during 20 h. These results suggest the necessity of using a protective thin film over the Tetraphenyl butadiene when used as a wavelength shifter in LXe particle detectors. - Highlights: • Stability of tetraphenyl butadiene (TPB) thin films immersed in liquid xenon (LXe). • Thermally evaporated TPB thin films were immersed in LXe for 20 h. • Film morphology and chemical surface properties remained unchanged. • Surface density of the films decreased by 1.6 μg/cm 2 (24%) after immersion in LXe. • For using in LXe particle detectors, TPB films should be protected with a coating.

  9. Preparation of Cu{sub 2}ZnSnS{sub 4} thin films by sulfurizing stacked precursor thin films via successive ionic layer adsorption and reaction method

    Energy Technology Data Exchange (ETDEWEB)

    Su Zhenghua; Yan Chang; Sun Kaiwen; Han Zili [School of Metallurgical Science and Engineering, Central South University, Changsha 410083 (China); Liu Fangyang, E-mail: liufangyang@csu.edu.cn [School of Metallurgical Science and Engineering, Central South University, Changsha 410083 (China); Liu Jin [School of Metallurgical Science and Engineering, Central South University, Changsha 410083 (China); Lai Yanqing, E-mail: laiyanqingcsu@163.com [School of Metallurgical Science and Engineering, Central South University, Changsha 410083 (China); Li Jie; Liu Yexiang [School of Metallurgical Science and Engineering, Central South University, Changsha 410083 (China)

    2012-07-15

    Earth-abundant Cu{sub 2}ZnSnS{sub 4} is a promising alternative photovoltaic material which has been examined as absorber layer of thin film solar cells. In this study, Cu{sub 2}ZnSnS{sub 4} (CZTS) thin films have been successfully fabricated by sulfurizing stacked precursor thin films via successive ionic layer adsorption and reaction (SILAR) method. The prepared CZTS thin films have been characterized by X-ray diffraction, energy dispersive spectrometer, Raman spectroscopy, UV-vis spectroscopy, Hall effect measurements and photoelectrochemical tests. Results reveal that the thin films have kesterite structured Cu{sub 2}ZnSnS{sub 4} and the p-type conductivity with a carrier concentration in the order of 10{sup 18} cm{sup -3} and an optical band gap of 1.5 eV, which are suitable for applications in thin film solar cells.

  10. Molecular dynamics simulation of Cu/Au thin films under temperature gradient

    International Nuclear Information System (INIS)

    Li, Qibin; Peng, Xianghe; Peng, Tiefeng; Tang, Qizhong; Zhang, Xiaomin; Huang, Cheng

    2015-01-01

    Graphical abstract: Heat transportation in the thin films. - Highlights: • The coherent lattice interface is found at thin films after annealing. • The vacancies are observed clearly in the deposit thin films. • The defect and component will influence the energy transportation in the coatings. • The vacancies and lattice mismatch can enlarge the mobility of atoms. • The phonon transportation in thin films has no apparent rule. - Abstract: Three modulation period thin films, 1.8 nm Cu/3.6 nm Au, 2.7 nm Cu/2.7 nm Au and 3.6 nm Cu/1.8 nm Au, are obtained from deposition method and ideal modeling based on lattice constant, to examine their structures and thermophysical characteristics under temperature gradient. The coherent lattice interface is found both at deposit and ideal thin films after annealing. Also, the vacancies are observed clearly in the deposit thin films. The defect and component of thin films will influence the energy transportation in the coatings. The vacancies and lattice mismatch can enlarge the mobility of atoms and result in the failure of coating under the thermal stress. The power spectrum of atoms’ movement has no apparent rule for phonon transportation in thin films. The results are helpful to reveal the micro-mechanism and provide reasonable basis for the failure of metallic coatings.

  11. Molecular dynamics simulation of Cu/Au thin films under temperature gradient

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qibin, E-mail: qibinli@cqu.edu.cn [College of Aerospace Engineering, Chongqing University, Chongqing 400030 (China); State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400030 (China); Chongqing Key Laboratory of Heterogeneous Material Mechanics, Chongqing University, Chongqing 400030 (China); Peng, Xianghe [College of Aerospace Engineering, Chongqing University, Chongqing 400030 (China); State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400030 (China); Peng, Tiefeng, E-mail: pengtiefeng@cqu.edu.cn [State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400030 (China); Tang, Qizhong [College of Aerospace Engineering, Chongqing University, Chongqing 400030 (China); Zhang, Xiaomin [College of Aerospace Engineering, Chongqing University, Chongqing 400030 (China); Chongqing Key Laboratory of Heterogeneous Material Mechanics, Chongqing University, Chongqing 400030 (China); Huang, Cheng [College of Aerospace Engineering, Chongqing University, Chongqing 400030 (China)

    2015-12-01

    Graphical abstract: Heat transportation in the thin films. - Highlights: • The coherent lattice interface is found at thin films after annealing. • The vacancies are observed clearly in the deposit thin films. • The defect and component will influence the energy transportation in the coatings. • The vacancies and lattice mismatch can enlarge the mobility of atoms. • The phonon transportation in thin films has no apparent rule. - Abstract: Three modulation period thin films, 1.8 nm Cu/3.6 nm Au, 2.7 nm Cu/2.7 nm Au and 3.6 nm Cu/1.8 nm Au, are obtained from deposition method and ideal modeling based on lattice constant, to examine their structures and thermophysical characteristics under temperature gradient. The coherent lattice interface is found both at deposit and ideal thin films after annealing. Also, the vacancies are observed clearly in the deposit thin films. The defect and component of thin films will influence the energy transportation in the coatings. The vacancies and lattice mismatch can enlarge the mobility of atoms and result in the failure of coating under the thermal stress. The power spectrum of atoms’ movement has no apparent rule for phonon transportation in thin films. The results are helpful to reveal the micro-mechanism and provide reasonable basis for the failure of metallic coatings.

  12. CdS thin films prepared by laser assisted chemical bath deposition

    International Nuclear Information System (INIS)

    Garcia, L.V.; Mendivil, M.I.; Garcia Guillen, G.; Aguilar Martinez, J.A.; Krishnan, B.; Avellaneda, D.; Castillo, G.A.; Das Roy, T.K.; Shaji, S.

    2015-01-01

    Highlights: • CdS thin films by conventional CBD and laser assisted CBD. • Characterized these films using XRD, XPS, AFM, optical and electrical measurements. • Accelerated growth was observed in the laser assisted CBD process. • Improved dark conductivity and good photocurrent response for the LACBD CdS. - Abstract: In this work, we report the preparation and characterization of CdS thin films by laser assisted chemical bath deposition (LACBD). CdS thin films were prepared from a chemical bath containing cadmium chloride, triethanolamine, ammonium hydroxide and thiourea under various deposition conditions. The thin films were deposited by in situ irradiation of the bath using a continuous laser of wavelength 532 nm, varying the power density. The thin films obtained during deposition of 10, 20 and 30 min were analyzed. The changes in morphology, structure, composition, optical and electrical properties of the CdS thin films due to in situ irradiation of the bath were analyzed by atomic force microscopy (AFM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and UV–vis spectroscopy. The thin films obtained by LACBD were nanocrystalline, photoconductive and presented interesting morphologies. The results showed that LACBD is an effective synthesis technique to obtain nanocrystalline CdS thin films having good optoelectronic properties

  13. CdS thin films prepared by laser assisted chemical bath deposition

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, L.V.; Mendivil, M.I.; Garcia Guillen, G.; Aguilar Martinez, J.A. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, Av. Pedro de Alba s/n, Ciudad Universitaria, San Nicolas de los Garza, Nuevo Leon 66450 (Mexico); Krishnan, B. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, Av. Pedro de Alba s/n, Ciudad Universitaria, San Nicolas de los Garza, Nuevo Leon 66450 (Mexico); CIIDIT – Universidad Autonoma de Nuevo Leon, Apodaca, Nuevo Leon (Mexico); Avellaneda, D.; Castillo, G.A.; Das Roy, T.K. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, Av. Pedro de Alba s/n, Ciudad Universitaria, San Nicolas de los Garza, Nuevo Leon 66450 (Mexico); Shaji, S., E-mail: sshajis@yahoo.com [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, Av. Pedro de Alba s/n, Ciudad Universitaria, San Nicolas de los Garza, Nuevo Leon 66450 (Mexico); CIIDIT – Universidad Autonoma de Nuevo Leon, Apodaca, Nuevo Leon (Mexico)

    2015-05-01

    Highlights: • CdS thin films by conventional CBD and laser assisted CBD. • Characterized these films using XRD, XPS, AFM, optical and electrical measurements. • Accelerated growth was observed in the laser assisted CBD process. • Improved dark conductivity and good photocurrent response for the LACBD CdS. - Abstract: In this work, we report the preparation and characterization of CdS thin films by laser assisted chemical bath deposition (LACBD). CdS thin films were prepared from a chemical bath containing cadmium chloride, triethanolamine, ammonium hydroxide and thiourea under various deposition conditions. The thin films were deposited by in situ irradiation of the bath using a continuous laser of wavelength 532 nm, varying the power density. The thin films obtained during deposition of 10, 20 and 30 min were analyzed. The changes in morphology, structure, composition, optical and electrical properties of the CdS thin films due to in situ irradiation of the bath were analyzed by atomic force microscopy (AFM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and UV–vis spectroscopy. The thin films obtained by LACBD were nanocrystalline, photoconductive and presented interesting morphologies. The results showed that LACBD is an effective synthesis technique to obtain nanocrystalline CdS thin films having good optoelectronic properties.

  14. Sputtered molybdenum thin films and the application in CIGS solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, D.; Zhu, H., E-mail: hongbing1982@hotmail.com; Liang, X.; Zhang, C.; Li, Z.; Xu, Y.; Chen, J.; Zhang, L.; Mai, Y., E-mail: yaohuamai@hbu.edu.cn

    2016-01-30

    Graphical abstract: - Highlights: • Mo thin films are prepared by magnetron sputtering. • The dynamic deposition rate increases with the increasing discharge power. • The surface structure of Mo films varies with discharge power and working pressure. • High efficiency CIGS thin film solar cell of 15.2% has been obtained. - Abstract: Molybdenum (Mo) thin films are prepared by magnetron sputtering with different discharge powers and working pressures for the application in Cu(In, Ga)Se{sub 2} (CIGS) thin film solar cells as back electrodes. Properties of these Mo thin films are systematically investigated. It is found that the dynamic deposition rate increases with the increasing discharge power while decreases with the increasing working pressure. The highest dynamic deposition rate of 15.1 nm m/min is achieved for the Mo thin film deposited at the discharge power of 1200 W and at the working pressure of 0.15 Pa. The achieved lowest resistivity of 3.7 × 10{sup −5} Ω cm is attributed to the large grains in the compact thin film. The discharge power and working pressure have great influence on the sputtered Mo thin films. High efficiency of 12.5% was achieved for the Cu(In, Ga)Se{sub 2} (CIGS) thin film solar cells with Mo electrodes prepared at 1200 W and low working pressures. By further optimizing material and device properties, the conversion efficiency has reached to 15.2%.

  15. Thin Film Approaches to the SRF Cavity Problem Fabrication and Characterization of Superconducting Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Beringer, Douglas [College of William and Mary, Williamsburg, VA (United States)

    2017-08-01

    Superconducting Radio Frequency (SRF) cavities are responsible for the acceleration of charged particles to relativistic velocities in most modern linear accelerators, such as those employed at high-energy research facilities like Thomas Jefferson National Laboratory’s CEBAF and the LHC at CERN. Recognizing SRF as primarily a surface phenomenon enables the possibility of applying thin films to the interior surface of SRF cavities, opening a formidable tool chest of opportunities by combining and designing materials that offer greater performance benefit. Thus, while improvements in radio frequency cavity design and refinements in cavity processing techniques have improved accelerator performance and efficiency – 1.5 GHz bulk niobium SRF cavities have achieved accelerating gradients in excess of 35 MV/m – there exist fundamental material bounds in bulk superconductors limiting the maximally sustained accelerating field gradient (≈ 45 MV/m for Nb) where inevitable thermodynamic breakdown occurs. With state of the art Nb based cavity design fast approaching these theoretical limits, novel material innovations must be sought in order to realize next generation SRF cavities. One proposed method to improve SRF performance is to utilize thin film superconducting-insulating-superconducting (SIS) multilayer structures to effectively magnetically screen a bulk superconducting layer such that it can operate at higher field gradients before suffering critically detrimental SRF losses. This dissertation focuses on the production and characterization of thin film superconductors for such SIS layers for radio frequency applications. Correlated studies on structure, surface morphology and superconducting properties of epitaxial Nb and MgB2 thin films are presented.

  16. 3D nanoporous graphene films converted from liquid-crystalline holey graphene oxide for thin and high-performance supercapacitors

    Science.gov (United States)

    Wang, Bin; Liu, Jinzhang; Zhao, Yi; Zheng, Dezhi; Li, Yan; Sha, Jiangbo

    2018-01-01

    Holey graphene oxide (HGO) is prepared and its liquid crystal (LC) formation in water is investigated. The blade-coated LC-HGO hydrogel is hydrothermally reduced to form 3D nanoporous films used as supercapacitor electrodes. Holey graphene sheets are rumpled and interconnected to form a cellular structure with pore size around 100 nm during the reduction process. Reduced HGO films with different thicknesses are integrated into solid-state symmetric supercapacitors and their electrochemical performances are studied. High specific capacitance up to 304 F g-1 and high volumetric capacitance around 400 F cm-3 are achieved from our thin and flexible devices.

  17. Electrochemical Thinning for Anodic Aluminum Oxide and Anodic Titanium Oxide

    Energy Technology Data Exchange (ETDEWEB)

    Lee, In Hae; Jo, Yun Kyoung; Kim, Yong Tae; Tak, Yong Sug; Choi, Jin Sub [Inha University, Incheon (Korea, Republic of)

    2012-05-15

    For given electrolytes, different behaviors of anodic aluminum oxide (AAO) and anodic titanium oxide (ATO) during electrochemical thinning are explained by ionic and electronic current modes. Branched structures are unavoidably created in AAO since the switch of ionic to electronic current is slow, whereas the barrier oxide in ATO is thinned without formation of the branched structures. In addition, pore opening can be possible in ATO if chemical etching is performed after the thinning process. The thinning was optimized for complete pore opening in ATO and potential-current behavior is interpreted in terms of ionic current-electronic current switching.

  18. Polymer surfaces, interfaces and thin films

    Energy Technology Data Exchange (ETDEWEB)

    Stamm, M [Max-Planck-Institut fuer Polymerforschung, Mainz (Germany)

    1996-11-01

    Neutron reflectometry can be used in various ways to investigate surfaces, interfaces and thin films of polymers. Its potential comes mostly from the possibilities offered by selective deuteration, where a particular component can be made visible with respect to its activity at the interface. In addition the depth resolution is much better than with most other direct techniques, and details of the profiles may be resolved. Several examples will be discussed including the segment diffusion at the interface between two polymer films, the determination of the narrow interfaces between incompatible polymer blends and the development of order in thin diblock copolymer films. (author) 10 figs., 2 tabs., 38 refs.

  19. Polymer surfaces, interfaces and thin films

    International Nuclear Information System (INIS)

    Stamm, M.

    1996-01-01

    Neutron reflectometry can be used in various ways to investigate surfaces, interfaces and thin films of polymers. Its potential comes mostly from the possibilities offered by selective deuteration, where a particular component can be made visible with respect to its activity at the interface. In addition the depth resolution is much better than with most other direct techniques, and details of the profiles may be resolved. Several examples will be discussed including the segment diffusion at the interface between two polymer films, the determination of the narrow interfaces between incompatible polymer blends and the development of order in thin diblock copolymer films. (author) 10 figs., 2 tabs., 38 refs

  20. Flush Mounting Of Thin-Film Sensors

    Science.gov (United States)

    Moore, Thomas C., Sr.

    1992-01-01

    Technique developed for mounting thin-film sensors flush with surfaces like aerodynamic surfaces of aircraft, which often have compound curvatures. Sensor mounted in recess by use of vacuum pad and materials selected for specific application. Technique involves use of materials tailored to thermal properties of substrate in which sensor mounted. Together with customized materials, enables flush mounting of thin-film sensors in most situations in which recesses for sensors provided. Useful in both aircraft and automotive industries.