WorldWideScience

Sample records for electrochemical reductive dehalogenation

  1. Microbial reductive dehalogenation.

    Science.gov (United States)

    Mohn, W W; Tiedje, J M

    1992-01-01

    A wide variety of compounds can be biodegraded via reductive removal of halogen substituents. This process can degrade toxic pollutants, some of which are not known to be biodegraded by any other means. Reductive dehalogenation of aromatic compounds has been found primarily in undefined, syntrophic anaerobic communities. We discuss ecological and physiological principles which appear to be important in these communities and evaluate how widely applicable these principles are. Anaerobic communities that catalyze reductive dehalogenation appear to differ in many respects. A large number of pure cultures which catalyze reductive dehalogenation of aliphatic compounds are known, in contrast to only a few organisms which catalyze reductive dehalogenation of aromatic compounds. Desulfomonile tiedjei DCB-1 is an anaerobe which dehalogenates aromatic compounds and is physiologically and morphologically unusual in a number of respects, including the ability to exploit reductive dehalogenation for energy metabolism. When possible, we use D. tiedjei as a model to understand dehalogenating organisms in the above-mentioned undefined systems. Aerobes use reductive dehalogenation for substrates which are resistant to known mechanisms of oxidative attack. Reductive dehalogenation, especially of aliphatic compounds, has recently been found in cell-free systems. These systems give us an insight into how and why microorganisms catalyze this activity. In some cases transition metal complexes serve as catalysts, whereas in other cases, particularly with aromatic substrates, the catalysts appear to be enzymes. Images PMID:1406492

  2. Electrochemically reduced titanocene dichloride as a catalyst of reductive dehalogenation of organic halides

    International Nuclear Information System (INIS)

    Magdesieva, Tatiana V.; Graczyk, Magdalena; Vallat, Alain; Nikitin, Oleg M.; Demyanov, Petr I.; Butin, Kim P.; Vorotyntsev, Mikhail A.

    2006-01-01

    We have studied a reaction between the reduced form of titanocene dichloride (Cp 2 TiCl 2 ) and a group of organic halides: benzyl derivatives (4-X-C 6 H 4 CH 2 Cl, X = H, NO 2 , CH 3 ; 4-X-C 6 H 4 CH 2 Br, X = H, NO 2 , PhC(O); 4-X-C 6 H 4 CH 2 SCN, X = H, NO 2 ) as well as three aryl halides (4-NO 2 C 6 H 4 Hal, Hal = Cl, Br; 4-CH 3 O-C 6 H 4 Cl). It has been shown that the electrochemical reduction of Cp 2 TiCl 2 in the presence of these benzyl halides leads to a catalytic cycle resulting in the reductive dehalogenation of these organic substrates to yield mostly corresponding toluene derivatives as the main product. No dehalogenation has been observed for aryl derivatives. Based on electrochemical data and digital simulation, possible schemes of the catalytic process have been outlined. For non-substituted benzyl halides halogen atom abstraction is a key step. For the reaction of nitrobenzyl halides the complexation of Ti(III) species with the nitro group takes place, with the electron transfer from Ti(III) to this group (owing to its highest coefficient in LUMO of the nitro benzyl halide) followed by an intramolecular dissociative electron redistribution in the course of the heterolytic C-Hal bond cleavage. The results for reduced titanocene dichloride centers immobilized inside a polymer film showed that the catalytic reductive dehalogenation of the p-nitrobenzyl chloride does occur but with a low efficiency because of the partial deactivation of the film due to the blocking of the electron charge transport between the electrode and catalytic centers

  3. Electrochemically reduced titanocene dichloride as a catalyst of reductive dehalogenation of organic halides

    Energy Technology Data Exchange (ETDEWEB)

    Magdesieva, Tatiana V. [Department Chemistry, M.V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation)]. E-mail: tvm@org.chem.msu.ru; Graczyk, Magdalena [LSEO-UMR 5188 CNRS, Universite de Bourgogne, Dijon (France); Vallat, Alain [LSEO-UMR 5188 CNRS, Universite de Bourgogne, Dijon (France); Nikitin, Oleg M. [Department Chemistry, M.V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation); Demyanov, Petr I. [Department Chemistry, M.V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation); Butin, Kim P. [Department Chemistry, M.V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation); Vorotyntsev, Mikhail A. [LSEO-UMR 5188 CNRS, Universite de Bourgogne, Dijon (France)]. E-mail: MV@u-bourgogne.fr

    2006-11-12

    We have studied a reaction between the reduced form of titanocene dichloride (Cp{sub 2}TiCl{sub 2}) and a group of organic halides: benzyl derivatives (4-X-C{sub 6}H{sub 4}CH{sub 2}Cl, X = H, NO{sub 2}, CH{sub 3}; 4-X-C{sub 6}H{sub 4}CH{sub 2}Br, X = H, NO{sub 2}, PhC(O); 4-X-C{sub 6}H{sub 4}CH{sub 2}SCN, X = H, NO{sub 2}) as well as three aryl halides (4-NO{sub 2}C{sub 6}H{sub 4}Hal, Hal = Cl, Br; 4-CH{sub 3}O-C{sub 6}H{sub 4}Cl). It has been shown that the electrochemical reduction of Cp{sub 2}TiCl{sub 2} in the presence of these benzyl halides leads to a catalytic cycle resulting in the reductive dehalogenation of these organic substrates to yield mostly corresponding toluene derivatives as the main product. No dehalogenation has been observed for aryl derivatives. Based on electrochemical data and digital simulation, possible schemes of the catalytic process have been outlined. For non-substituted benzyl halides halogen atom abstraction is a key step. For the reaction of nitrobenzyl halides the complexation of Ti(III) species with the nitro group takes place, with the electron transfer from Ti(III) to this group (owing to its highest coefficient in LUMO of the nitro benzyl halide) followed by an intramolecular dissociative electron redistribution in the course of the heterolytic C-Hal bond cleavage. The results for reduced titanocene dichloride centers immobilized inside a polymer film showed that the catalytic reductive dehalogenation of the p-nitrobenzyl chloride does occur but with a low efficiency because of the partial deactivation of the film due to the blocking of the electron charge transport between the electrode and catalytic centers.

  4. Microbial reductive dehalogenation.

    OpenAIRE

    Mohn, W W; Tiedje, J M

    1992-01-01

    A wide variety of compounds can be biodegraded via reductive removal of halogen substituents. This process can degrade toxic pollutants, some of which are not known to be biodegraded by any other means. Reductive dehalogenation of aromatic compounds has been found primarily in undefined, syntrophic anaerobic communities. We discuss ecological and physiological principles which appear to be important in these communities and evaluate how widely applicable these principles are. Anaerobic commun...

  5. Mechanisms of bacterially catalyzed reductive dehalogenation

    Energy Technology Data Exchange (ETDEWEB)

    Picardal, Flynn William [Univ. of Arizona, Tucson, AZ (United States)

    1992-01-01

    Nine bacteria were tested for the ability to dehalogenate tetrachloromethane (CT), tetrachloroethene (PCE), and 1, 1, 1-trichloroethane (TCA) under anaerobic conditions. Three bacteria were able to reductively dehalogenate CT. Dehalogenation ability was not readily linked to a common metabolism or changes in culture redox potential. None of the bacteria tested were able to dehalogenate PCE or TCA. One of the bacteria capable of dehalogenating CT, Shewanella putrefaciens, was chosen as a model organism to study mechanisms of bacterially catalyzed reductive dehalogenation. The effect of a variety of alternate electron acceptors on CT dehalogenation ability by S. putrefaciens was determined. oxygen and nitrogen oxides were inhibitory but Fe (III), trimethylamine oxide, and fumarate were not. A model of the electron transport chain of S. putrefaciens was developed to explain inhibition patterns. A period of microaerobic growth prior to CT exposure increased the ability of S. putrefaciens to dehalogenate CT. A microaerobic growth period also increased cytochrome concentrations. A relationship between cytochrome content and dehalogenation ability was developed from studies in which cytochrome concentrations in S. putrefaciens were manipulated by changing growth conditions. Stoichiometry studies using 14C-CT suggested that CT was first reduced to form a trichloromethyl radical. Reduction of the radical to produce chloroform and reaction of the radical with cellular biochemicals explained observed product distributions. Carbon dioxide or other fully dehalogenated products were not found.

  6. Biochemistry of Catabolic Reductive Dehalogenation.

    Science.gov (United States)

    Fincker, Maeva; Spormann, Alfred M

    2017-06-20

    A wide range of phylogenetically diverse microorganisms couple the reductive dehalogenation of organohalides to energy conservation. Key enzymes of such anaerobic catabolic pathways are corrinoid and Fe-S cluster-containing, membrane-associated reductive dehalogenases. These enzymes catalyze the reductive elimination of a halide and constitute the terminal reductases of a short electron transfer chain. Enzymatic and physiological studies revealed the existence of quinone-dependent and quinone-independent reductive dehalogenases that are distinguishable at the amino acid sequence level, implying different modes of energy conservation in the respective microorganisms. In this review, we summarize current knowledge about catabolic reductive dehalogenases and the electron transfer chain they are part of. We review reaction mechanisms and the role of the corrinoid and Fe-S cluster cofactors and discuss physiological implications.

  7. Reductive dehalogenation of chlorophenols by Desulfomonile tiedjei DCB-1.

    Science.gov (United States)

    Mohn, W W; Kennedy, K J

    1992-01-01

    Reductive dehalogenation of chlorophenols has been reported in undefined anaerobic cultures but never before in an anaerobic pure culture. We found that the sulfate-reducing bacterium Desulfomonile tiedjei DCB-1 reductively dehalogenates pentachlorophenol (PCP) and other chlorophenols. The maximum rate of PCP dechlorination observed was 54 mu mol of Cl- h-1 g of protein-1. 3-Chlorobenzoate appeared to serve as a required inducer for PCP dehalogenation; however, neither PCP nor 3-chlorophenol induced dehalogenation. Dehalogenation was catalyzed by living cells, and formate served as a required electron donor. D. tiedjei dehalogenated meta-chlorine substituents of chlorophenols (i.e., PCP was degraded to 2,4,6-trichlorophenol). Generally, more highly chlorinated phenol congeners were more readily dechlorinated, and 3-chlorophenol was not dehalogenated. Growing cultures dehalogenated PCP, but greater than 10 microM PCP (approximately 1.7 mmol g of protein-1) reversibly inhibited growth. PMID:1599254

  8. Kinetics of reductive dehalogenation of bromobenzene derivatives

    International Nuclear Information System (INIS)

    Mashirova, A.A.; Kaminskij, Yu.L.; Shestakov, A.D.; Kudelin, B.K.

    1982-01-01

    The catalytic reductive dehalogenation of p-bromoaniline, p-bromobenzonitrile and p-bromobenzene with hydrogen was studied. The decrease of molar ratio bromoderivative/palladium catalyst is shown to change the reaction order from zero to the first. With the decrease of hydrogen pressure the reaction order transition zone shifts towards increased bromoderivative/catalyst ratio. Preliminary saturation of catalyst with hydrogen increases the starting rate of reaction, maximum rate being achieved at saturation during 5-15 minutes. The catalytic reductive dehalogenation with tritium-containing hydrogen shows that the molar activity of the products corresponds to that of the initial gas. Strong adsorption of initial bromoderivatives on catalyst surface is a dominant factor in reaction mechanism [ru

  9. Anaerobic reductive dehalogenation of polychlorinated dioxins

    Energy Technology Data Exchange (ETDEWEB)

    Bunge, Michael [Aarhus Univ. (DK). Dept. of Biological Sciences, Microbiology, and Interdisciplinary Nanoscience Centre (iNANO); Lechner, Ute [Halle-Wittenberg Univ., Halle (Germany). Inst. of Biology/Microbiology

    2009-09-15

    Polychlorinated dibenzo-p-dioxins and -furans (PCDD/Fs) are among the most harmful environmental contaminants. Their widespread distribution due to unintentional or unknown release coincides with environmental persistence, acute and chronic toxicity to living organisms, and long-term effects due to the compounds' tendency for bioaccumulation and biomagnification. While microbial aerobic degradation of PCDD/Fs is mainly reported for the turnover of low chlorinated congeners, this review focuses on anaerobic reductive dehalogenation, which may constitute a potential remediation strategy for polychlorinated compounds in soils and sediments. Microorganisms in sediments and in microcosms or enrichment cultures have been shown to be involved in the reductive dechlorination of dioxins. Bacteria related to the genus Dehalococcoides are capable of the reductive transformation of dioxins leading to lower chlorinated dioxins including di- and monochlorinated congeners. Thus, reductive dehalogenation might be one of the very few mechanisms able to mediate the turnover of polychlorinated dioxins by reducing their toxicity and paving the way for a subsequent breakdown of the carbon skeleton. (orig.)

  10. Reductive tetrachloroethene dehalogenation in the presence of oxygen by Sulfurospirillum multivorans: physiological studies and proteome analysis.

    Science.gov (United States)

    Gadkari, Jennifer; Goris, Tobias; Schiffmann, Christian L; Rubick, Raffael; Adrian, Lorenz; Schubert, Torsten; Diekert, Gabriele

    2018-01-01

    Reductive dehalogenation of organohalides is carried out by organohalide-respiring bacteria (OHRB) in anoxic environments. The tetrachloroethene (PCE)-respiring Epsilonproteobacterium Sulfurospirillum multivorans is one of few OHRB able to respire oxygen. Therefore, we investigated the organism's capacity to dehalogenate PCE in the presence of oxygen, which would broaden the applicability to use S. multivorans, unlike other commonly oxygen-sensitive OHRB, for bioremediation, e.g. at oxic/anoxic interphases. Additionally, this has an impact on our understanding of the global halogen cycle. Sulfurospirillum multivorans performs dehalogenation of PCE to cis-1,2-dichloroethene at oxygen concentrations below 0.19 mg/L. The redox potential of the medium electrochemically adjusted up to +400 mV had no influence on reductive dehalogenation by S. multivorans in our experiments, suggesting that higher levels of oxygen impair PCE dechlorination by inhibiting or inactivating involved enzymes. The PCE reductive dehalogenase remained active in cell extracts of S. multivorans exposed to 0.37 mg/L oxygen for more than 96 h. Analysis of the proteome revealed that superoxide reductase and cytochrome peroxidase amounts increased with 5% oxygen in the gas phase, while the response to atmospheric oxygen concentrations involved catalase and hydrogen peroxide reductase. Taken together, our results demonstrate that reductive dehalogenation by OHRB is not limited to anoxic conditions. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Microbial reductive dehalogenation of vinyl chloride

    Science.gov (United States)

    Spormann, Alfred M [Stanford, CA; Muller, Jochen A [Baltimore, MD; Rosner, Bettina M [Berlin, DE; Von Abendroth, Gregory [Nannhein, DE; Meshulam-Simon, Galit [Los Altos, CA; McCarty, Perry L [Stanford, CA

    2011-11-22

    Compositions and methods are provided that relate to the bioremediation of chlorinated ethenes, particularly the bioremediation of vinyl chloride by Dehalococcoides-like organisms. An isolated strain of bacteria, Dehalococcoides sp. strain VS, that metabolizes vinyl chloride is provided; the genetic sequence of the enzyme responsible for vinyl chloride dehalogenation; methods of assessing the capability of endogenous organisms at an environmental site to metabolize vinyl chloride; and a method of using the strains of the invention for bioremediation.

  12. Electrochemical reductive dehalogenation of iodine-containing contrast agent pharmaceuticals: Examination of reactions of diatrizoate and iopamidol using the method of rotating ring-disc electrode (RRDE).

    Science.gov (United States)

    Yan, Mingquan; Chen, Zhanghao; Li, Na; Zhou, Yuxuan; Zhang, Chenyang; Korshin, Gregory

    2018-06-01

    This study examined the electrochemical (EC) reduction of iodinated contrast media (ICM) exemplified by iopamidol and diatrizoate. The method of rotating ring-disc electrode (RRDE) was used to elucidate rates and mechanisms of the EC reactions of the selected ICMs. Experiments were carried at varying hydrodynamic conditions, concentrations of iopamidol, diatrizoate, natural organic matter (NOM) and model compounds (resorcinol, catechol, guaiacol) which were used to examine interactions between products of the EC reduction of ICMs and halogenation-active species. The data showed that iopamidol and diatrizoate were EC-reduced at potentials < -0.45 V vs. s.c.e. In the range of potentials -0.65 to -0.85 V their reduction was mass transfer-controlled. The presence of NOM and model compounds did not affect the EC reduction of iopamidol and diatrizoate but active iodine species formed as a result of the EC-induced transformations of these ICMs reacted readily with NOM and model compounds. These data provide more insight into the nature of generation of iodine-containing by-products in the case of reductive degradation of ICMs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Influence of sulfur oxyanions on reductive dehalogenation activities in Desulfomonile tiedjei.

    OpenAIRE

    Townsend, G T; Suflita, J M

    1997-01-01

    The inhibition of aryl reductive dehalogenation reactions by sulfur oxyanions has been demonstrated in environmental samples, dehalogenating enrichments, and the sulfate-reducing bacterium Desulfomonile tiedjei; however, this phenomenon is not well understood. We examined the effects of sulfate, sulfite, and thiosulfate on reductive dehalogenation in the model microorganism D. tiedjei and found separate mechanisms of inhibition due to these oxyanions under growth versus nongrowth conditions. ...

  14. Anaerobic Aryl Reductive Dehalogenation of Halobenzoates by Cell Extracts of “Desulfomonile tiedjei”

    OpenAIRE

    DeWeerd, Kim A.; Suflita, Joseph M.

    1990-01-01

    We studied the transformation of halogenated benzoates by cell extracts of a dehalogenating anaerobe, “Desulfomonile tiedjei.” We found that cell extracts possessed aryl reductive dehalogenation activity. The activity was heat labile and dependent on the addition of reduced methyl viologen, but not on that of reduced NAD, NADP, flavin mononucleotide, flavin adenine dinucleotide, desulfoviridin, cytochrome c3, or benzyl viologen. Dehalogenation activity in extracts was stimulated by formate, C...

  15. REDUCTIVE DEHALOGENATION OF HALOMETHANES IN NATURAL AND MODEL SYSTEMS: QSAR ANALYSIS

    Science.gov (United States)

    Reductive dehalogenation is a dominant reaction pathway for halogenated organics in anoxic environments. Towards the goal of developing predictive tools for this reaction process, the reduction kinetics for a series of halomethanes were measured in batch studies with both natural...

  16. Reductive dehalogenation in microbial and electrolytic model systems

    International Nuclear Information System (INIS)

    Criddle, C.S.

    1990-01-01

    This research addresses the principles or reductive dehalogenation, with a focus on microbial processes. Carbon tetrachloride (CT) was selected as a model compound for intensive investigation. Three different experimental systems were studied: pure cultures of Escherichia coli k-12, pure cultures of a denitrifying Pseudomonad isolated from aquifer solids (Pseudomonas sp. strain KC), and an electrolysis cell. The product distributions were consistent with the hypothesis that CT undergoes a rate-limiting reduction to radical species which rapidly react with constituents of the surrounding milieu. In cultures of E. coli k-12, use of oxygen and nitrate as terminal electron acceptors generally prevented CT transformation. At low oxygen levels (∼ 1%), however, transformation of 14 C-CT to 14 C-CO 2 and attachment to cell material did occur in accord with reports of CT fate in mammalian cell cultures. Under fumarate-respiring conditions, 14 C-CT was recovered as 14 C-C 2 , chloroform (CF), and in a non-volatile fraction. In contrast, fermenting conditions resulted in more CF, more cell-bound 14 C, and almost no 14 C-CO 2 . Rates were faster under fermenting conditions than under fumarate-respiring conditions. Rates also decreased over time suggesting the gradual exhaustion of transformation activity. This loss was modeled with a simple exponential decay term. Pseudomonas sp. strain KC converted 14 C-CT to 14 C-CO 2 under denitrifying conditions, without CF production. Strain KC was the only organism of several denitrifiers that transformed CT. Induction of CT transformation by strain KC depended upon the presence of trace metals. Addition of ferrous iron and cobalt inhibited CT transformation. For strain KC, CT transformation is apparently linked to its mechanism for trace metal acquisition

  17. Enzymatic Reductive Dehalogenation Controls the Biosynthesis of Marine Bacterial Pyrroles.

    Science.gov (United States)

    El Gamal, Abrahim; Agarwal, Vinayak; Rahman, Imran; Moore, Bradley S

    2016-10-12

    Enzymes capable of performing dehalogenating reactions have attracted tremendous contemporary attention due to their potential application in the bioremediation of anthropogenic polyhalogenated persistent organic pollutants. Nature, in particular the marine environment, is also a prolific source of polyhalogenated organic natural products. The study of the biosynthesis of these natural products has furnished a diverse array of halogenation biocatalysts, but thus far no examples of dehalogenating enzymes have been reported from a secondary metabolic pathway. Here we show that the penultimate step in the biosynthesis of the highly brominated marine bacterial product pentabromopseudilin is catalyzed by an unusual debrominase Bmp8 that utilizes a redox thiol mechanism to remove the C-2 bromine atom of 2,3,4,5-tetrabromopyrrole to facilitate oxidative coupling to 2,4-dibromophenol. To the best of our knowledge, Bmp8 is first example of a dehalogenating enzyme from the established genetic and biochemical context of a natural product biosynthetic pathway.

  18. Zero-Valent Metal Emulsion for Reductive Dehalogenation of DNAPLs

    Science.gov (United States)

    Reinhart, Debra R. (Inventor); Clausen, Christian (Inventor); Gelger, Cherie L. (Inventor); Quinn, Jacqueline (Inventor); Brooks, Kathleen (Inventor)

    2006-01-01

    A zero-valent metal emulsion is used to dehalogenate solvents, such as pooled dense non-aqueous phase liquids (DNAPLs), including trichloroethylene (TCE). The zero-valent metal emulsion contains zero-valent metal particles, a surfactant, oil and water, The preferred zero-valent metal particles are nanoscale and microscale zero-valent iron particles.

  19. The kinetics of reductive dehalogenation of a set of halogenated aliphatic hydrocarbons in anaerobic sediment slurries.

    Science.gov (United States)

    Peijnenburg, W; Eriksson, L; de Groot, A; Sjöström, M; Verboom, H

    1998-01-01

    Disappearance rate constants are reported for the reductive transformation of 17 halogenated aliphatic hydrocarbons in anaerobic sediment-water samples. Statistical experimental design in combination with multivariate chemical characterization of their chemical properties was used to select the compounds. Degradation followed pseudo first-order kinetics through at least two half-lives for 15 of the 17 compounds. Of all the compounds investigated, 1,2,3-trichloropropane and dichloromethane were unique in that they were dehalogenated according to zero-order kinetics. Reductive dehalogenation was the sole transformation reaction taking place.

  20. Characterization of Chloroethylene Dehalogenation by Cell Extracts of Desulfomonile tiedjei and Its Relationship to Chlorobenzoate Dehalogenation

    OpenAIRE

    Townsend, G. T.; Suflita, J. M.

    1996-01-01

    We characterized the reductive dehalogenation of tetrachloroethylene in cell extracts of Desulfomonile tiedjei and compared it with this organism's 3-chlorobenzoate dehalogenation activity. Tetrachloroethylene was sequentially dehalogenated to trichloro- and dichloroethylene; there was no evidence for dichloroethylene dehalogenation. Like the previously characterized 3-chlorobenzoate dehalogenation activity, tetrachloroethylene dehalogenation was heat sensitive, not oxygen labile, and increas...

  1. REDUCTIVE DEHALOGENATION OF HEXACHLOROETHANE, CARBON TETRACHLORIDE, AND BROMOFORM BY ANTHRAHYDROQUINONE DISULFONATE AND HUMIC ACID

    Science.gov (United States)

    The reductive dehalogenation of hexachloroethane (CzCLj), carbon tetrachloride (CC14), and bromoform (CHBr3) was examined at 50 “C in aqueous solutions containing ei- ther (1) 500 pM of 2,6-anthrahydroquinone disulfonate (AHQDS), (2) 250 pM Fe2+, or (3) 250 pM HS-. The pH ranged ...

  2. The use of quantum chemically derived descriptors for QSAR modelling of reductive dehalogenation of aromatic compounds

    NARCIS (Netherlands)

    Rorije E; Richter J; Peijnenburg WJGM; ECO; IHE Delft

    1994-01-01

    In this study, quantum-chemically derived parameters are developed for a limited number of halogenated aromatic compounds to model the anaerobic reductive dehalogenation reaction rate constants of these compounds. It is shown that due to the heterogeneity of the set of compounds used, no single

  3. Reductive dehalogenation of 3,5-dibromo-4-hydroxybenzoate by an aerobic strain of Delftia sp. EOB-17.

    Science.gov (United States)

    Chen, Kai; Jian, Shanshan; Huang, Linglong; Ruan, Zhepu; Li, Shunpeng; Jiang, Jiandong

    2015-12-01

    To confirm the reductive dehalogenation ability of the aerobic strain of Delftia sp. EOB-17, finding more evidences to support the hypothesis that reductive dehalogenation may occur extensively in aerobic bacteria. Delftia sp. EOB-17, isolated from terrestrial soil contaminated with halogenated aromatic compounds, completely degraded 0.2 mM DBHB in 28 h and released two equivalents of bromides under aerobic conditions in the presence of sodium succinate. LC-MS analysis revealed that DBHB was transformed to 4-hydroxybenzoate via 3-bromo-4-hydroxybenzoate by successive reductive dehalogenation. Highly conserved DBHB-degrading genes, including reductive dehalogenase gene (bhbA3) and the extra-cytoplasmic binding receptor gene (bhbB3), were also found in strain EOB-17 by genome sequencing. The optimal temperature and pH for DBHB reductive dehalogenation activity are 30 °C and 8, respectively, and 0.1 mM Cd(2+), Cu(2+), Hg(2+) and Zn(2+) strongly inhibited dehalogenation activity. The aerobic strain of Delftia sp. EOB-17 was confirmed to reductively dehalogenate DBHB under aerobic conditions, providing another evidence to support the hypothesis that reductive dehalogenation occurs extensively in aerobic bacteria.

  4. Humic substances-mediated microbial reductive dehalogenation of triclosan

    Science.gov (United States)

    Wang, L.; Xu, S.; Yang, Y.

    2015-12-01

    The role of natural organic matter in regulating the redox reactions as an electron shuttle has received lots of attention, because it can significantly affect the environmental degradation of contaminants and biogeochemical cycles of major elements. However, up to date, limited studies examined the role of natural organic matter in affecting the microbial dehalogenation of emergent organohalides, a critical detoxification process. In this study, we investigated the humic substance (HS)-mediated microbial dehalogenation of triclosan, a widely used antimicrobial agent. We found that the presence of HS stimulated the microbial degradation of triclosan by Shewanella putrefaciens CN-32. In the absence of HS, the triclosan was degraded gradually, achieving 8.6% residual at 8 days. With HS, the residual triclosan was below 2% after 4 days. Cl- was confirmed by ion chromatography analysis, but the dehalogenation processes and other byproducts warrant further investigations. The impact of HS on the degradation of triclosan was highly dependent on the concentration of HS. When the HS was below 15 mg/L, the degradation rate constant for triclosan increased with the organic carbon concentration. Beyond that point, the increased organic carbon concentration decreased the degradation of triclosan. Microbially pre-reduced HS abiotically reduced triclosan, testifying the electron shuttling processes. These results indicate that dissolved organic matter plays a dual role in regulating the degradation of triclosan: it mediates electron transport and inhibits the bioavailability through complexation. Such novel organic matter-mediated reactions for organohalides are important for evaluating the natural attenuation of emergent contaminants and designing cost-effective engineering treatment.

  5. Electrochemical reduction of NOx

    DEFF Research Database (Denmark)

    Traulsen, Marie Lund

    NO and NO2 (collectively referred to as NOx) are air pollutants, and the largest single contributor to NOx pollution is automotive exhaust. This study investigates electrochemical deNOx, a technology which aims to remove NOx from automotive diesel exhaust by electrochemical reduction of NOx to N2...... and O2. The focus in this study is on improving the activity and selectivity of solid oxide electrodes for electrochemical deNOx by addition of NOx storage compounds to the electrodes. Two different composite electrodes, La0.85Sr0.15MnO3-δ-Ce0.9Gd0.1O1.95 (LSM15-CGO10) and La0.85Sr0.15FeO3-δ-Ce0.9Gd0.1O......1.95 (LSF15-CGO10), have been investigated in combination with three different NOx storage compounds: BaO, K2O and MnOx. The main focus in the investigation has been on conversion measurements and electrochemical characterization, the latter by means of electrochemical impedance spectroscopy...

  6. Original Synthesis of Fluorenyl Alcohol Derivatives by Reductive Dehalogenation Initiated by TDAE.

    Science.gov (United States)

    Giuglio-Tonolo, Alain Gamal; Terme, Thierry; Vanelle, Patrice

    2016-10-24

    We report here a novel and easy-to-handle reductive dehalogenation of 9-bromofluorene in the presence of arylaldehydes and dicarbonyl derivatives to give the corresponding fluorenyl alcohol derivatives and Darzens epoxides as by-products in tetrakis(dimethylamino)ethylene (TDAE) reaction conditions. The reaction is believed to proceed via two successive single electron transfers to generate the fluorenyl anion which was able to react with different electrophiles. A mechanistic study was conducted to understand the formation of the epoxide derivatives.

  7. IN SITU DESTRUCTION OF CHLORINATED HYDROCARBON COMPOUNDS IN GROUNDWATER USING CATALYTIC REDUCTIVE REDUCTIVE DEHALOGENATION IN A REACTIVE WELL: TESTING AND OPERATIONAL EXPERIENCES. (R825421)

    Science.gov (United States)

    A groundwater treatment technology based on catalytic reductive dehalogenation has been developed to efficiently destroy chlorinated hydrocarbons in situ using a reactive well approach. The treatment process utilizes dissolved H2 as an electron donor, in...

  8. Reductive Dehalogenation of Brominated Phenolic Compounds by Microorganisms Associated with the Marine Sponge Aplysina aerophoba

    Science.gov (United States)

    Ahn, Young-Beom; Rhee, Sung-Keun; Fennell, Donna E.; Kerkhof, Lee J.; Hentschel, Ute; Häggblom, Max M.

    2003-01-01

    Marine sponges are natural sources of brominated organic compounds, including bromoindoles, bromophenols, and bromopyrroles, that may comprise up to 12% of the sponge dry weight. Aplysina aerophoba sponges harbor large numbers of bacteria that can amount to 40% of the biomass of the animal. We postulated that there might be mechanisms for microbially mediated degradation of these halogenated chemicals within the sponges. The capability of anaerobic microorganisms associated with the marine sponge to transform haloaromatic compounds was tested under different electron-accepting conditions (i.e., denitrifying, sulfidogenic, and methanogenic). We observed dehalogenation activity of sponge-associated microorganisms with various haloaromatics. 2-Bromo-, 3-bromo-, 4-bromo-, 2,6-dibromo-, and 2,4,6-tribromophenol, and 3,5-dibromo-4-hydroxybenzoate were reductively debrominated under methanogenic and sulfidogenic conditions with no activity observed in the presence of nitrate. Monochlorinated phenols were not transformed over a period of 1 year. Debromination of 2,4,6-tribromophenol, and 2,6-dibromophenol to 2-bromophenol was more rapid than the debromination of the monobrominated phenols. Ampicillin and chloramphenicol inhibited activity, suggesting that dehalogenation was mediated by bacteria. Characterization of the debrominating methanogenic consortia by using terminal restriction fragment length polymorphism (TRFLP) and denaturing gradient gel electrophoresis analysis indicated that different 16S ribosomal DNA (rDNA) phylotypes were enriched on the different halogenated substrates. Sponge-associated microorganisms enriched on organobromine compounds had distinct 16S rDNA TRFLP patterns and were most closely related to the δ subgroup of the proteobacteria. The presence of homologous reductive dehalogenase gene motifs in the sponge-associated microorganisms suggested that reductive dehalogenation might be coupled to dehalorespiration. PMID:12839794

  9. BIOMASS, OLEATE, AND OTHER POSSIBLE SUBSTRATES FOR CHLOROETHENE REDUCTIVE DEHALOGENATION. (R825689C084)

    Science.gov (United States)

    AbstractComparative studies were conducted with benzoate, propionate, oleate, tetrabutyl orthosilicate (TBOS), and biomass as substrates for dehalogenation of cis-1,2-dichloroethene (cDCE). All five substrates supported dehalogenation. Sufficient calcium was re...

  10. Original Synthesis of Fluorenyl Alcohol Derivatives by Reductive Dehalogenation Initiated by TDAE

    Directory of Open Access Journals (Sweden)

    Alain Gamal Giuglio-Tonolo

    2016-10-01

    Full Text Available We report here a novel and easy-to-handle reductive dehalogenation of 9-bromofluorene in the presence of arylaldehydes and dicarbonyl derivatives to give the corresponding fluorenyl alcohol derivatives and Darzens epoxides as by-products in tetrakis(dimethylaminoethylene (TDAE reaction conditions. The reaction is believed to proceed via two successive single electron transfers to generate the fluorenyl anion which was able to react with different electrophiles. A mechanistic study was conducted to understand the formation of the epoxide derivatives.

  11. Microbial reductive dehalogenation of trihalomethanes by a Dehalobacter-containing co-culture.

    Science.gov (United States)

    Zhao, Siyan; Rogers, Matthew J; He, Jianzhong

    2017-07-01

    Trihalomethanes such as chloroform and bromoform, although well-known as a prominent class of disinfection by-products, are ubiquitously distributed in the environment due to widespread industrial usage in the past decades. Chloroform and bromoform are particularly concerning, of high concentrations detected and with long half-lives up to several hundred days in soils and groundwater. In this study, we report a Dehalobacter- and Desulfovibrio-containing co-culture that exhibits dehalogenation of chloroform (~0.61 mM) to dichloromethane and bromoform (~0.67 mM) to dibromomethane within 10-15 days. This co-culture was further found to dechlorinate 1,1,1-trichloroethane (1,1,1-TCA) (~0.65 mM) to 1,1-dichloroethane within 12 days. The Dehalobacter species present in this co-culture, designated Dehalobacter sp. THM1, was found to couple growth with dehalogenation of chloroform, bromoform, and 1,1,1-TCA. Strain THM1 harbors a newly identified reductive dehalogenase (RDase), ThmA, which catalyzes chloroform, bromoform, and 1,1,1-TCA dehalogenation. Additionally, based on the sequences of thmA and other identified chloroform RDase genes, ctrA, cfrA, and tmrA, a pair of chloroform RDase gene-specific primers were designed and successfully applied to investigate the chloroform dechlorinating potential of microbial communities. The comparative analysis of chloroform RDases with tetrachloroethene RDases suggests a possible approach in predicting the substrate specificity of uncharacterized RDases in the future.

  12. Reductive Dehalogenation of Trichloroacetic Acid by Trichlorobacter thiogenes gen. nov., sp. nov.

    Science.gov (United States)

    De Wever, Helene; Cole, James R.; Fettig, Michael R.; Hogan, Deborah A.; Tiedje, James M.

    2000-01-01

    A bacterium able to grow via reductive dechlorination of trichloroacetate was isolated from anaerobic soil enrichments. The isolate, designated strain K1, is a member of the δ proteobacteria and is related to other known sulfur and ferric iron reducers. In anaerobic mineral media supplemented with acetate and trichloroacetate, its doubling time was 6 h. Alternative electron donor and acceptors were acetoin and sulfur or fumarate, respectively. Trichloroacetate dehalogenation activity was constitutively present, and the dechlorination product was dichloroacetate and chloride. Trichloroacetate conversion seemed to be coupled to a novel sulfur-sulfide redox cycle, which shuttled electrons from acetate oxidation to trichloroacetate reduction. In view of its unique physiological characteristics, the name Trichlorobacter thiogenes is suggested for strain K1. PMID:10831402

  13. Complete Reductive Dehalogenation of Brominated Biphenyls by Anaerobic Microorganisms in Sediment

    Science.gov (United States)

    Bedard, Donna L.; Van Dort, Heidi M.

    1998-01-01

    We sought to determine whether microorganisms from the polychlorinated biphenyl (PCB)-contaminated sediment in Woods Pond (Lenox, Mass.) could dehalogenate brominated biphenyls. The PCB dechlorination specificities for the microorganisms in this sediment have been well characterized. This allowed us to compare the dehalogenation specificities for brominated biphenyls and chlorinated biphenyls within a single sediment. Anaerobic sediment microcosms were incubated separately at 25°C with 16 different mono- to tetrabrominated biphenyls (350 μM) and disodium malate (10 mM). Samples were extracted and analyzed by gas chromatography with an electron capture detector and a mass spectrometer detector at various times for up to 54 weeks. All of the tested brominated biphenyls were dehalogenated. For most congeners, including 2,6-dibromobiphenyl (26-BB) and 24-25-BB, the dehalogenation began within 1 to 2 weeks. However, for 246-BB and 2-2-BB, debromination was first observed at 7 and 14 weeks, respectively. Most intermediate products did not persist, but when 2-2-BB was produced as a dehalogenation product, it persisted for at least 15 weeks before it was dehalogenated to 2-BB and then to biphenyl. The dehalogenation specificities for brominated and chlorinated biphenyls were similar: meta and para substituents were generally removed first, and ortho substituents were more recalcitrant. However, the brominated biphenyls were better dehalogenation substrates than the chlorinated biphenyls. All of the tested bromobiphenyls, including those with ortho and unflanked meta and para substituents, were ultimately dehalogenated to biphenyl, whereas their chlorinated counterparts either were not dehalogenation substrates or were only partially dehalogenated. Our data suggest that PCB-dechlorinating microorganisms may be able to dehalogenate brominated biphenyls and may exhibit a relaxed specificity for these substrates. PMID:16349530

  14. Dehalogenation Activities and Distribution of Reductive Dehalogenase Homologous Genes in Marine Subsurface Sediments▿ †

    Science.gov (United States)

    Futagami, Taiki; Morono, Yuki; Terada, Takeshi; Kaksonen, Anna H.; Inagaki, Fumio

    2009-01-01

    Halogenated organic compounds serve as terminal electron acceptors for anaerobic respiration in a diverse range of microorganisms. Here, we report on the widespread distribution and diversity of reductive dehalogenase homologous (rdhA) genes in marine subsurface sediments. A total of 32 putative rdhA phylotypes were detected in sediments from the southeast Pacific off Peru, the eastern equatorial Pacific, the Juan de Fuca Ridge flank off Oregon, and the northwest Pacific off Japan, collected at a maximum depth of 358 m below the seafloor. In addition, significant dehalogenation activity involving 2,4,6-tribromophenol and trichloroethene was observed in sediment slurry from the Nankai Trough Forearc Basin. These results suggest that dehalorespiration is an important energy-yielding pathway in the subseafloor microbial ecosystem. PMID:19749069

  15. Reductive dehalogenation of polychlorinated biphenyls by anaerobic microorganisms enriched from Dutch sediments

    NARCIS (Netherlands)

    HartkampCommandeur, LCM; Gerritse, J; Govers, HAJ; Parsons, [No Value

    The dehalogenation of PCBs by anaerobic microbial cultures enriched from Dutch sediments was investigated. One mixed culture originating from estuarine sediments of the River Rhine (the Chemie Harbour), dehalogenated 2,2',3,3',4,4'- and 2,2,',3,3',6,6'-hexachlorobiphenyls (HCB) to yield penta- and

  16. COMPARISON OF TRICHLOROETHYLENE REDUCTIVE DEHALOGENATION BY MICROBIAL COMMUNITIES STIMULATED ON SILICON-BASED ORGANIC COMPOUNDS AS SLOW-RELEASE ANAEROBIC SUBSTRATES. (R828772C001)

    Science.gov (United States)

    Microcosm studies were conducted to demonstrate the effectiveness of tetrabutoxysilane (TBOS) as a slow-release anaerobic substrate to promote reductive dehalogenation of trichloroethylene (TCE). The abiotic hydrolysis of TBOS and tetrakis(2-ethylbutoxy)silane (TKEBS), and the...

  17. Reductive dehalogenase structure suggests a mechanism for B12-dependent dehalogenation.

    Science.gov (United States)

    Payne, Karl Ap; Quezada, Carolina P; Fisher, Karl; Dunstan, Mark S; Collins, Fraser A; Sjuts, Hanno; Levy, Colin; Hay, Sam; Rigby, Stephen Ej; Leys, David

    2015-01-22

    Organohalide chemistry underpins many industrial and agricultural processes, and a large proportion of environmental pollutants are organohalides. Nevertheless, organohalide chemistry is not exclusively of anthropogenic origin, with natural abiotic and biological processes contributing to the global halide cycle. Reductive dehalogenases are responsible for biological dehalogenation in organohalide respiring bacteria, with substrates including polychlorinated biphenyls or dioxins. Reductive dehalogenases form a distinct subfamily of cobalamin (B12)-dependent enzymes that are usually membrane associated and oxygen sensitive, hindering detailed studies. Here we report the characterization of a soluble, oxygen-tolerant reductive dehalogenase and, by combining structure determination with EPR (electron paramagnetic resonance) spectroscopy and simulation, show that a direct interaction between the cobalamin cobalt and the substrate halogen underpins catalysis. In contrast to the carbon-cobalt bond chemistry catalysed by the other cobalamin-dependent subfamilies, we propose that reductive dehalogenases achieve reduction of the organohalide substrate via halogen-cobalt bond formation. This presents a new model in both organohalide and cobalamin (bio)chemistry that will guide future exploitation of these enzymes in bioremediation or biocatalysis.

  18. Cobamide-mediated enzymatic reductive dehalogenation via long-range electron transfer.

    Science.gov (United States)

    Kunze, Cindy; Bommer, Martin; Hagen, Wilfred R; Uksa, Marie; Dobbek, Holger; Schubert, Torsten; Diekert, Gabriele

    2017-07-03

    The capacity of metal-containing porphyrinoids to mediate reductive dehalogenation is implemented in cobamide-containing reductive dehalogenases (RDases), which serve as terminal reductases in organohalide-respiring microbes. RDases allow for the exploitation of halogenated compounds as electron acceptors. Their reaction mechanism is under debate. Here we report on substrate-enzyme interactions in a tetrachloroethene RDase (PceA) that also converts aryl halides. The shape of PceA's highly apolar active site directs binding of bromophenols at some distance from the cobalt and with the hydroxyl substituent towards the metal. A close cobalt-substrate interaction is not observed by electron paramagnetic resonance spectroscopy. Nonetheless, a halogen substituent para to the hydroxyl group is reductively eliminated and the path of the leaving halide is traced in the structure. Based on these findings, an enzymatic mechanism relying on a long-range electron transfer is concluded, which is without parallel in vitamin B 12 -dependent biochemistry and represents an effective mode of RDase catalysis.

  19. Regioselective alkali metal reduction of dibenzocyclooctadiene lignan derivatives, demethoxylation followed by dehalogenation.

    Science.gov (United States)

    Wang, Qing-Yao; Fang, Jia-Qi; Deng, Lu-Lu; Hao, Xiao-Jiang; Mu, Shu-Zhen

    2017-12-27

    The regioselective demethoxylation and dehalogenation of dihalogenated dibenzocyclooctadiene lignans derivatives were realized in a one-step reaction with excellent yields in the sodium and t-butanol reaction system.

  20. Reductive dehalogenation activity of indigenous microorganism in sediments of the Hackensack River, New Jersey.

    Science.gov (United States)

    Sohn, Seo Yean; Häggblom, Max M

    2016-07-01

    Organohalogen pollutants are of concern in many river and estuarine environments, such as the New York-New Jersey Harbor estuary and its tributaries. The Hackensack River is contaminated with various metals, hydrocarbons and halogenated organics, including polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins. In order to examine the potential for microbial reductive dechlorination by indigenous microorganisms, sediment samples were collected from five different estuarine locations along the Hackensack River. Hexachlorobenzene (HCB), hexabromobenzene (HBB), and pentachloroaniline (PCA) were selected as model organohalogen pollutants to assess anaerobic dehalogenating potential. Dechlorinating activity of HCB and PCA was observed in sediment microcosms for all sampling sites. HCB was dechlorinated via pentachlorobenzene (PeCB) and trichlorobenzene (TriCB) to dichlorobenzene (DCB). PCA was dechlorinated via tetrachloroaniline (TeCA), trichloroanilines (TriCA), and dichloroanilines (DCA) to monochloroaniline (MCA). No HBB debromination was observed over 12 months of incubation. However, with HCB as a co-substrate slow HBB debromination was observed with production of tetrabromobenzene (TeBB) and tribromobenzene (TriBB). Chloroflexi specific 16S rRNA gene PCR-DGGE followed by sequence analysis detected Dehalococcoides species in sediments of the freshwater location, but not in the estuarine site. Analysis targeting 12 putative reductive dehalogenase (rdh) genes showed that these were enriched concomitant with HCB or PCA dechlorination in freshwater sediment microcosms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Reductive dehalogenation of haloacetic acids by hemoglobin-loaded carbon nanotube electrode.

    Science.gov (United States)

    Li, Yu-Ping; Cao, Hong-Bin; Zhang, Yi

    2007-01-01

    Hemoglobin (Hb) was immobilized on carbon nanotube (CNT) electrode to catalyze the dehalogenation of haloacetic acids (HAAs). FTIR and UV measurements were performed to investigate the activity-keep of Hb after immobilization on CNT. The electrocatalytic behaviors of the Hb-loaded electrode for the dehalogenation of HAAs were studied by cyclic voltammmetry and constant-potential electrolysis technique. An Hb-loaded packed-bed flow reactor was also constructed for bioelectrocatalytic dehalogenation of HAAs. The results showed that Hb retained its nature, the essential features of its native secondary structure, and its biocatalytic activity after immobilization on CNT. Chloroacetic acids and bromoacetic acids could be dehalogenated completely with Hb catalysis through a stepwise dehalogenation process at -0.400V (vs. saturated calomel electrode (SCE)) and -0.200V (vs. SCE), respectively. The removal of 10.5mM trichloroacetic acid and dichloroacetic acid is ca. 97% and 63%, respectively, with electrolysis for 300min at -0.400V (vs. SCE) using the Hb-loaded packed-bed flow reactor, and almost 100% of tribromoacetic acid and dibromoacetic acid was removed with electrolysis for 40min at -0.200V (vs. SCE). The average current efficiency of Hb-catalytic dehalogenation almost reaches 100%.

  2. Electrochemical Reduction Process for Pyroprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Eun-Young; Hong, Sun-Seok; Park, Wooshin; Im, Hun Suk; Oh, Seung-Chul; Won, Chan Yeon; Cha, Ju-Sun; Hur, Jin-Mok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-06-15

    Nuclear energy is expected to meet the growing energy demand while avoiding CO{sub 2} emission. However, the problem of accumulating spent fuel from current nuclear power plants which is mainly composed of uranium oxides should be addressed. One of the most practical solutions is to reduce the spent oxide fuel and recycle it. Next-generation fuel cycles demand innovative features such as a reduction of the environmental load, improved safety, efficient recycling of resources, and feasible economics. Pyroprocessing based on molten salt electrolysis is one of the key technologies for reducing the amount of spent nuclear fuel and destroying toxic waste products, such as the long-life fission products. The oxide reduction process based on the electrochemical reduction in a LiCl-Li{sub 2}O electrolyte has been developed for the volume reduction of PWR (Pressurized Water Reactor) spent fuels and for providing metal feeds for the electrorefining process. To speed up the electrochemical reduction process, the influences of the feed form for the cathode and the type of anode shroud on the reduction rate were investigated.

  3. Comparison of lactate, formate, and propionate as hydrogen donors for the reductive dehalogenation of trichloroethene in a continuous-flow column

    Science.gov (United States)

    Azizian, Mohammad F.; Marshall, Ian P. G.; Behrens, Sebastian; Spormann, Alfred M.; Semprini, Lewis

    2010-04-01

    A continuous-flow column study was conducted to analyze the reductive dehalogenation of trichloroethene (TCE) with aquifer material with high content of iron oxides. The column was bioaugmented with the Point Mugu (PM) culture, which is a mixed microbial enrichment culture capable of completely transforming TCE to ethene (ETH). We determined whether lactate, formate, or propionate fermentation resulted in more effective dehalogenation. Reductive dehalogenation, fermentation, and sulfate, Fe(III), and Mn(IV) reduction were all exhibited within the column. Different steady-states of dehalogenation were achieved based on the concentration of substrates added, with effective transformation to ETH obtained when ample electron donor equivalents were provided. Most of the metabolic reducing equivalents were channeled to sulfate, Fe(III), and Mn(IV) reduction. When similar electron reducing equivalents were added, the most effective dehalogenation was achieved with formate, with 14% of the electron equivalents going towards dehalogenation reactions, compared to 6.5% for lactate and 9.6% for propionate. Effective dehalogenation was maintained over 1000 days of column operation. Over 90% of electron equivalents added could be accounted for by the different electron accepting processes in the column, with 50% associated with soluble and precipitated Fe(II) and Mn(II). Bulk Fe(III) and Mn(IV) reduction was rather associated with lactate and propionate addition than formate addition. Sulfate reduction was a competing electron acceptor reaction with all three electron donors. DNA was extracted from solid coupon samples obtained during the course of the experiment and analyzed using 16S rRNA gene clone libraries and quantitative PCR. Lactate and propionate addition resulted in a significant increase in Geobacter, Spirochaetes, and Desulfitobacterium phylotypes relative to " Dehalococcoides" when compared to formate addition. Results from the molecular biological analyses support

  4. Continuous-flow column study of reductive dehalogenation of PCE upon bioaugmentation with the Evanite enrichment culture

    Science.gov (United States)

    Azizian, Mohammad F.; Behrens, Sebastian; Sabalowsky, Andrew; Dolan, Mark E.; Spormann, Alfred M.; Semprini, Lewis

    2008-08-01

    A continuous-flow anaerobic column experiment was conducted to evaluate the reductive dechlorination of tetrachloroethene (PCE) in Hanford aquifer material after bioaugmentation with the Evanite (EV) culture. An influent PCE concentration of 0.09 mM was transformed to vinyl chloride (VC) and ethene (ETH) within a hydraulic residence time of 1.3 days. The experimental breakthrough curves were described by the one-dimensional two-site-nonequilibrium transport model. PCE dechlorination was observed after bioaugmentation and after the lactate concentration was increased from 0.35 to 0.67 mM. At the onset of reductive dehalogenation, cis-dichloroethene (c-DCE) concentrations in the column effluent exceeded the influent PCE concentration indicating enhanced PCE desorption and transformation. When the lactate concentration was increased to 1.34 mM, c-DCE reduction to vinyl chloride (VC) and ethene (ETH) occurred. Spatial rates of PCE and VC transformation were determined in batch-incubated microcosms constructed with aquifer samples obtained from the column. PCE transformation rates were highest in the first 5 cm from the column inlet and decreased towards the column effluent. Dehalococcoides cell numbers dropped from ˜ 73.5% of the total Bacterial population in the original inocula, to about 0.5% to 4% throughout the column. The results were consistent with estimates of electron donor utilization, with 4% going towards dehalogenation reactions.

  5. Electrochemical Reduction of Zinc Phosphate

    International Nuclear Information System (INIS)

    Kim, Chang Hwan; Lee, Jung Hyun; Shin, Woon Sup

    2010-01-01

    We demonstrated first that the electrochemical reduction of zinc phosphate in neutral phosphate buffer is possible and potentially applicable to bio-compatible rechargeable battery. The actual redox component is Zn(s)/Zn phosphate(s) and the future research about the control of crystal formation for the better cyclability is required. In lead-acid battery, the electrochemical redox reaction of Pb (s) /PbSO 4(s) is used by reducing Pb(II) and oxidizing Pb(0) in sulfate rich solution. Since both reduced form and oxidized form are insoluble, they cannot diffuse to the opposite electrodes and react. It is a very common strategy to make a stable battery electrode that a metal element is reduced and oxidized in solution containing an abundance of anion readily precipitating with the metal ion. For the application of this strategy to construction of rechargeable battery using bio-compatible electrode materials and electrolytes, the use of phosphate ion can be considered as anion readily precipitating with metal ions. If phosphate buffer with neutral pH is used as electrolyte, the better bio-compatibility will be achieved than most of rechargeable battery using strong acid, strong base or organic solvent as electrolyte solution. There are many metal ions readily precipitating with phos-phate ion, and zinc is one of them

  6. Copper increases reductive dehalogenation of haloacetamides by zero-valent iron in drinking water: Reduction efficiency and integrated toxicity risk.

    Science.gov (United States)

    Chu, Wenhai; Li, Xin; Bond, Tom; Gao, Naiyun; Bin, Xu; Wang, Qiongfang; Ding, Shunke

    2016-12-15

    The haloacetamides (HAcAms), an emerging class of nitrogen-containing disinfection byproducts (N-DBPs), are highly cytotoxic and genotoxic, and typically occur in treated drinking waters at low μg/L concentrations. Since many drinking distribution and storage systems contain unlined cast iron and copper pipes, reactions of HAcAms with zero-valent iron (ZVI) and metallic copper (Cu) may play a role in determining their fate. Moreover, ZVI and/or Cu are potentially effective HAcAm treatment technologies in drinking water supply and storage systems. This study reports that ZVI alone reduces trichloroacetamide (TCAcAm) to sequentially form dichloroacetamide (DCAcAm) and then monochloroacetamide (MCAcAm), whereas Cu alone does not impact HAcAm concentrations. The addition of Cu to ZVI significantly improved the removal of HAcAms, relative to ZVI alone. TCAcAm and their reduction products (DCAcAm and MCAcAm) were all decreased to below detection limits at a molar ratio of ZVI/Cu of 1:1 after 24 h reaction (ZVI/TCAcAm = 0.18 M/5.30 μM). TCAcAm reduction increased with the decreasing pH from 8.0 to 5.0, but values from an integrated toxic risk assessment were minimised at pH 7.0, due to limited removal MCAcAm under weak acid conditions (pH = 5.0 and 6.0). Higher temperatures (40 °C) promoted the reductive dehalogenation of HAcAms. Bromine was preferentially removed over chlorine, thus brominated HAcAms were more easily reduced than chlorinated HAcAms by ZVI/Cu. Although tribromoacetamide was more easily reduced than TCAcAm during ZVI/Cu reduction, treatment of tribromoacetamide resulted in a higher integrated toxicity risk than TCAcAm, due to the formation of monobromoacetamide (MBAcAm). Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Chlorine isotope effects from isotope ratio mass spectrometry suggest intramolecular C-Cl bond competition in trichloroethene (TCE) reductive dehalogenation.

    Science.gov (United States)

    Cretnik, Stefan; Bernstein, Anat; Shouakar-Stash, Orfan; Löffler, Frank; Elsner, Martin

    2014-05-20

    Chlorinated ethenes are prevalent groundwater contaminants. To better constrain (bio)chemical reaction mechanisms of reductive dechlorination, the position-specificity of reductive trichloroethene (TCE) dehalogenation was investigated. Selective biotransformation reactions (i) of tetrachloroethene (PCE) to TCE in cultures of Desulfitobacterium sp. strain Viet1; and (ii) of TCE to cis-1,2-dichloroethene (cis-DCE) in cultures of Geobacter lovleyi strain SZ were investigated. Compound-average carbon isotope effects were -19.0‰ ± 0.9‰ (PCE) and -12.2‰ ± 1.0‰ (TCE) (95% confidence intervals). Using instrumental advances in chlorine isotope analysis by continuous flow isotope ratio mass spectrometry, compound-average chorine isotope effects were measured for PCE (-5.0‰ ± 0.1‰) and TCE (-3.6‰ ± 0.2‰). In addition, position-specific kinetic chlorine isotope effects were determined from fits of reactant and product isotope ratios. In PCE biodegradation, primary chlorine isotope effects were substantially larger (by -16.3‰ ± 1.4‰ (standard error)) than secondary. In TCE biodegradation, in contrast, the product cis-DCE reflected an average isotope effect of -2.4‰ ± 0.3‰ and the product chloride an isotope effect of -6.5‰ ± 2.5‰, in the original positions of TCE from which the products were formed (95% confidence intervals). A greater difference would be expected for a position-specific reaction (chloride would exclusively reflect a primary isotope effect). These results therefore suggest that both vicinal chlorine substituents of TCE were reactive (intramolecular competition). This finding puts new constraints on mechanistic scenarios and favours either nucleophilic addition by Co(I) or single electron transfer as reductive dehalogenation mechanisms.

  8. Chlorine Isotope Effects from Isotope Ratio Mass Spectrometry Suggest Intramolecular C-Cl Bond Competition in Trichloroethene (TCE Reductive Dehalogenation

    Directory of Open Access Journals (Sweden)

    Stefan Cretnik

    2014-05-01

    Full Text Available Chlorinated ethenes are prevalent groundwater contaminants. To better constrain (biochemical reaction mechanisms of reductive dechlorination, the position-specificity of reductive trichloroethene (TCE dehalogenation was investigated. Selective biotransformation reactions (i of tetrachloroethene (PCE to TCE in cultures of Desulfitobacterium sp. strain Viet1; and (ii of TCE to cis-1,2-dichloroethene (cis-DCE in cultures of Geobacter lovleyi strain SZ were investigated. Compound-average carbon isotope effects were −19.0‰ ± 0.9‰ (PCE and −12.2‰ ± 1.0‰ (TCE (95% confidence intervals. Using instrumental advances in chlorine isotope analysis by continuous flow isotope ratio mass spectrometry, compound-average chorine isotope effects were measured for PCE (−5.0‰ ± 0.1‰ and TCE (−3.6‰ ± 0.2‰. In addition, position-specific kinetic chlorine isotope effects were determined from fits of reactant and product isotope ratios. In PCE biodegradation, primary chlorine isotope effects were substantially larger (by −16.3‰ ± 1.4‰ (standard error than secondary. In TCE biodegradation, in contrast, the product cis-DCE reflected an average isotope effect of −2.4‰ ± 0.3‰ and the product chloride an isotope effect of −6.5‰ ± 2.5‰, in the original positions of TCE from which the products were formed (95% confidence intervals. A greater difference would be expected for a position-specific reaction (chloride would exclusively reflect a primary isotope effect. These results therefore suggest that both vicinal chlorine substituents of TCE were reactive (intramolecular competition. This finding puts new constraints on mechanistic scenarios and favours either nucleophilic addition by Co(I or single electron transfer as reductive dehalogenation mechanisms.

  9. Electrochemical and photoelectrochemical reduction of furfurals

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kyoung-Shin; Roylance, John James; Kubota, Stephen R.

    2018-02-06

    Electrochemical cells and photoelectrochemical cells for the reduction of furfurals are provided. Also provided are methods of using the cells to carry out the reduction reactions. Using the cells and methods, furfurals can be converted into furan alcohols or linear ketones.

  10. Dehalogenimonas lykanthroporepellens gen. nov., sp. nov., a reductively dehalogenating bacterium isolated from chlorinated solvent-contaminated groundwater.

    Science.gov (United States)

    Moe, William M; Yan, Jun; Nobre, M Fernanda; da Costa, Milton S; Rainey, Fred A

    2009-11-01

    Two recently reported bacterial strains that are able to reductively dehalogenate polychlorinated aliphatic alkanes, including 1,2,3-trichloropropane, 1,2-dichloropropane, 1,1,2,2-tetrachloroethane, 1,1,2-trichloroethane and 1,2-dichloroethane, were further characterized to clarify their taxonomic position. The two strains, designated BL-DC-8 and BL-DC-9(T), were mesophilic, non-spore-forming, non-motile, Gram-negative staining and strictly anaerobic. Cells were irregular cocci, 0.3-0.6 mum in diameter. The two strains were resistant to ampicillin and vancomycin. Hydrogen was utilized as an electron donor. The genomic DNA G+C content of strains BL-DC-8 and BL-DC-9(T) was 54.0 and 53.8 mol%, respectively. The major cellular fatty acids were C(18 : 1)omega9c, C(16 : 1)omega9c, C(16 : 0) and C(14 : 0). Phylogenetic analyses based on 16S rRNA gene sequences indicated that the strains cluster within the phylum Chloroflexi, but are related only distantly to all recognized taxa in the phylum. Morphological, physiological and chemotaxonomic traits as well as phylogenetic analysis support the conclusion that these two strains represent a novel species of a new genus in the phylum Chloroflexi, for which the name Dehalogenimonas lykanthroporepellens gen. nov., sp. nov. is proposed. The type strain of Dehalogenimonas lykanthroporepellens is BL-DC-9(T) (=ATCC BAA-1523(T) =JCM 15061(T)).

  11. Reduced Graphene Oxide-Immobilized Tris(bipyridine)ruthenium(II) Complex for Efficient Visible-Light-Driven Reductive Dehalogenation Reaction.

    Science.gov (United States)

    Li, Xiaoyan; Hao, Zhongkai; Zhang, Fang; Li, Hexing

    2016-05-18

    A sodium benzenesulfonate (PhSO3Na)-functionalized reduced graphene oxide was synthesized via a two-step aryl diazonium coupling and subsequent NaCl ion-exchange procedure, which was used as a support to immobilize tris(bipyridine)ruthenium(II) complex (Ru(bpy)3Cl2) by coordination reaction. This elaborated Ru(bpy)3-rGO catalyst exhibited excellent catalytic efficiency in visible-light-driven reductive dehalogenation reactions under mild conditions, even for ary chloride. Meanwhile, it showed the comparable reactivity with the corresponding homogeneous Ru(bpy)3Cl2 catalyst. This high catalytic performance could be attributed to the unique two-dimensional sheet-like structure of Ru(bpy)3-rGO, which efficiently diminished diffusion resistance of the reactants. Meanwhile, the nonconjugated PhSO3Na-linkage between Ru(II) complex and the support and the very low electrical conductivity of the catalyst inhibited energy/electron transfer from Ru(II) complex to rGO support, resulting in the decreased support-induced quenching effect. Furthermore, it could be easily recycled at least five times without significant loss of catalytic reactivity.

  12. Genome sequence of Desulfitobacterium hafniense DCB-2, a Gram-positive anaerobe capable of dehalogenation and metal reduction

    Directory of Open Access Journals (Sweden)

    Kim Sang-Hoon

    2012-02-01

    Full Text Available Abstract Background The genome of the Gram-positive, metal-reducing, dehalorespiring Desulfitobacterium hafniense DCB-2 was sequenced in order to gain insights into its metabolic capacities, adaptive physiology, and regulatory machineries, and to compare with that of Desulfitobacterium hafniense Y51, the phylogenetically closest strain among the species with a sequenced genome. Results The genome of Desulfitobacterium hafniense DCB-2 is composed of a 5,279,134-bp circular chromosome with 5,042 predicted genes. Genome content and parallel physiological studies support the cell's ability to fix N2 and CO2, form spores and biofilms, reduce metals, and use a variety of electron acceptors in respiration, including halogenated organic compounds. The genome contained seven reductive dehalogenase genes and four nitrogenase gene homologs but lacked the Nar respiratory nitrate reductase system. The D. hafniense DCB-2 genome contained genes for 43 RNA polymerase sigma factors including 27 sigma-24 subunits, 59 two-component signal transduction systems, and about 730 transporter proteins. In addition, it contained genes for 53 molybdopterin-binding oxidoreductases, 19 flavoprotein paralogs of the fumarate reductase, and many other FAD/FMN-binding oxidoreductases, proving the cell's versatility in both adaptive and reductive capacities. Together with the ability to form spores, the presence of the CO2-fixing Wood-Ljungdahl pathway and the genes associated with oxygen tolerance add flexibility to the cell's options for survival under stress. Conclusions D. hafniense DCB-2's genome contains genes consistent with its abilities for dehalogenation, metal reduction, N2 and CO2 fixation, anaerobic respiration, oxygen tolerance, spore formation, and biofilm formation which make this organism a potential candidate for bioremediation at contaminated sites.

  13. Reductive dehalogenation by layered iron(II)-iron(III) hydroxides and related iron(II) containing solids

    DEFF Research Database (Denmark)

    Yin, Weizhao

    In the present PhD project, novel synthesis and modifications of layered Fe(II)-Fe(III) hydroxides (green rusts, GRs) were investigated with focus on improved dehalogenation of carbon tetrachloride by using modified green rusts and/or altered reaction conditions. The Ph.D. project has comprised: 1...... sulphate green rust formation by aerial oxidation of FeII or co-precipitation by adding Fe(III) salt to Fe(II). In comparison with traditional green rust synthesis, pure GRs were synthesized in minutes. 2. Enhanced dehalogenation of CT by GR in presence of selected amino acids. In presence of glycine......, chloroform (CF) formation is effectively suppressed: less than 10% of CT is transformed to CF, and more than 90% of dehalogenation products are found to be formic acid and carbon monoxide in presence of 60 mM glycine; while a 80% of CF recovery was obtained without amino acids addition. 3. A “switch...

  14. REDUCTIVE DEHALOGENATION OF HALOMETHANES IN IRON- AND SULFATE-REDUCING SEDIMENTS. 1. REACTIVITY PATTERN ANALYSIS

    Science.gov (United States)

    The incorporation of reductive transformations into environmental fate models requires the characterization of natural reductants in well-characterized sediments and aquifer materials. For this purpose, reactivity patterns (i.e., the range and relative order of reactivity) for a...

  15. Characterization of Chloroethylene Dehalogenation by Cell Extracts of Desulfomonile tiedjei and Its Relationship to Chlorobenzoate Dehalogenation

    Science.gov (United States)

    Townsend, G. T.; Suflita, J. M.

    1996-01-01

    We characterized the reductive dehalogenation of tetrachloroethylene in cell extracts of Desulfomonile tiedjei and compared it with this organism's 3-chlorobenzoate dehalogenation activity. Tetrachloroethylene was sequentially dehalogenated to trichloro- and dichloroethylene; there was no evidence for dichloroethylene dehalogenation. Like the previously characterized 3-chlorobenzoate dehalogenation activity, tetrachloroethylene dehalogenation was heat sensitive, not oxygen labile, and increased in proportion to the amount of protein in assay mixtures. In addition, both dehalogenation activities were dependent on hydrogen or formate as an electron donor and had an absolute requirement for either methyl viologen or triquat as an electron carrier in vitro. Both activities appear to be catalyzed by integral membrane proteins with similar solubilization characteristics. Dehalogenation of tetrachloroethylene was inhibited by 3-chlorobenzoate but not by the structural isomers 2- and 4-chlorobenzoate. The last two compounds are not substrates for D. tiedjei. These findings lead us to suggest that the dehalogenation of tetrachloroethylene in D. tiedjei is catalyzed by a dehalogenase previously thought to be specific for meta-halobenzoates. PMID:16535377

  16. Electrochemical reduction of cerium oxide into metal

    Energy Technology Data Exchange (ETDEWEB)

    Claux, Benoit [CEA, Valduc, F-21120 Is-sur-Tille (France); Universite de Grenoble, LEPMI-ENSEEG, 1130 rue de la Piscine, BP75, F-38402 St Martin d' Heres Cedex (France); Serp, Jerome, E-mail: jerome.serp@cea.f [CEA, Valduc, F-21120 Is-sur-Tille (France); Fouletier, Jacques [Universite de Grenoble, LEPMI-ENSEEG, 1130 rue de la Piscine, BP75, F-38402 St Martin d' Heres Cedex (France)

    2011-02-28

    The Fray Farthing and Chen (FFC) and Ono and Suzuki (OS) processes were developed for the reduction of titanium oxide to titanium metal by electrolysis in high temperature molten alkali chloride salts. The possible transposition to CeO{sub 2} reduction is considered in this study. Present work clarifies, by electro-analytical techniques, the reduction pathway leading to the metal. The reduction of CeO{sub 2} into metal was feasible via an indirect mechanism. Electrolyses on 10 g of CeO{sub 2} were carried out to evaluate the electrochemical process efficiency. Ca metal is electrodeposited at the cathode from CaCl{sub 2}-KCl solvent and reacts chemically with ceria to form not only metallic cerium, but also cerium oxychloride.

  17. Reductive dehalogenation of disinfection byproducts by an activated carbon-based electrode system.

    Science.gov (United States)

    Li, Yuanqing; Kemper, Jerome M; Datuin, Gwen; Akey, Ann; Mitch, William A; Luthy, Richard G

    2016-07-01

    Low molecular weight, uncharged, halogenated disinfection byproducts (DBPs) are poorly removed by the reverse osmosis and advanced oxidation process treatment units often applied for further treatment of municipal wastewater for potable reuse. Granular activated carbon (GAC) treatment effectively sorbed 22 halogenated DBPs. Conversion of the GAC to a cathode within an electrolysis cell resulted in significant degradation of the 22 halogenated DBPs by reductive electrolysis at -1 V vs. Standard Hydrogen Electrode (SHE). The lowest removal efficiency over 6 h electrolysis was for trichloromethane (chloroform; 47%) but removal efficiencies were >90% for 13 of the 22 DBPs. In all cases, DBP degradation was higher than in electrolysis-free controls, and degradation was verified by the production of halides as reduction products. Activated carbons and charcoal were more effective than graphite for electrolysis, with graphite featuring poor sorption for the DBPs. A subset of halogenated DBPs (e.g., haloacetonitriles, chloropicrin) were degraded upon sorption to the GAC, even without electrolysis. Using chloropicrin as a model, experiments indicated that this loss was attributable to the partial reduction of sorbed chloropicrin from reducing equivalents in the GAC. Reducing equivalents depleted by these reactions could be restored when the GAC was treated by reductive electrolysis. GAC treatment of an advanced treatment train effluent for potable reuse effectively reduced the concentrations of chloroform, bromodichloromethane and dichloroacetonitrile measured in the column influent to below the method detection limits. Treatment of the GAC by reductive electrolysis at -1 V vs. SHE over 12 h resulted in significant degradation of the chloroform (63%), bromodichloromethane (96%) and dichloroacetonitrile (99%) accumulated on the GAC. The results suggest that DBPs in advanced treatment train effluents could be captured and degraded continuously by reductive electrolysis

  18. Reactivity of Aryl Halides for Reductive Dehalogenation in (Seawater Using Polymer-Supported Terpyridine Palladium Catalyst

    Directory of Open Access Journals (Sweden)

    Toshimasa Suzuka

    2015-05-01

    Full Text Available A polymer-supported terpyridine palladium complex was prepared. The complex was found to promote hydrodechlorination of aryl chlorides with potassium formate in seawater. Generally, reductive cleavage of aryl chlorides using transition metal catalysts is more difficult than that of aryl bromides and iodides (reactivity: I > Br > Cl; however, the results obtained did not follow the general trend. Therefore, we investigated the reaction inhibition agents and found a method to remove these inhibitors. The polymeric catalysts showed high catalytic activity and high reusability for transfer reduction in seawater.

  19. Electrochemical reduction of sulfur dioxide in sulfolane

    Energy Technology Data Exchange (ETDEWEB)

    Vorob' ev, A.S.; Gavrilova, A.A.; Kolosnitsyn, V.S.; Nikitin, Yu.E.

    1985-09-01

    Solutions of sulfur dioxide in aproptic media are promising electrolyte oxidizing agents for chemical current sources with anodes of active metals. This work describes the electrochemical reduction of sulfur dioxide in sulfolane in a lithium halide supporting electrolyte which was investigated by the methods of voltamperometry and chronopotentiometry. The dependence of the current of the cathodic peak on the concentration of the supporting electrolyte salts, sulfur dioxide and water, was studied. On the basis of the data obtained, a hypothesis was advanced on the nature of the limiting step. The investigation showed that at low polarizing current densities, a substantial influence on the reduction of sulfur dioxide in sulfolane in a lithium halide supporting electrolyte is exerted by blockage of the electrode surface by sparingly soluble reaction products.

  20. Electrochemical reduction of NO{sub x}

    Energy Technology Data Exchange (ETDEWEB)

    Lund Traulsen, M.

    2012-04-15

    NO and NO{sub 2} (collectively referred to as NO{sub x}) are air pollutants, and the largest single contributor to NO{sub x} pollution is automotive exhaust. This study investigates electrochemical deNO{sub x}, a technology which aims to remove NO{sub x} from automotive diesel exhaust by electrochemical reduction of NO{sub x} to N{sub 2} and O{sub 2}. The focus in this study is on improving the activity and selectivity of solid oxide electrodes for electrochemical deNO{sub x} by addition of NO{sub x} storage compounds to the electrodes. Two different composite electrodes, La{sub 0.85}Sr{sub 0.15}MnO{sub 3-{delta}-}Ce{sub 0.9}Gd{sub 0.1}O{sub 1.95} (LSM15-CGO10) and La{sub 0.85}Sr{sub 0.15}FeO{sub 3-{delta}-}Ce{sub 0.9}Gd{sub 0.1}O{sub 1.95} (LSF15-CGO10), have been investigated in combination with three different NO{sub x} storage compounds: BaO, K{sub 2}O and MnO{sub x}. The main focus in the investigation has been on conversion measurements and electrochemical characterization, the latter by means of electrochemical impedance spectroscopy and cyclic voltammetry. In addition, infrared spectroscopy has been performed to study how NO{sub x} adsorption on the electrodes is affected by the presence of the aforementioned NO{sub x} storage compounds. Furthermore, non-tested and tested electrode microstructures have been thoroughly evaluated by scanning electron microscopy. The studies reveal addition of MnO{sub x} or K{sub 2}O to the electrodes cause severe degradation problems, and addition of these compounds is thus unsuitable for electrode improvement. In contrast, addition of BaO to LSM15-CGO10 electrodes is shown to have a very positive impact on the NO{sub x} conversion. The increased NO{sub x} conversion, following the BaO addition, is attributed to a combination of 1) a decreased electrode polarisation resistance and 2) an altered NO{sub x} adsorption. The NO{sub x} conversion is observed to increase strongly with polarisation, and during 9 V polarisation of an

  1. Electrochemical reduction of NiO in a composite electrode

    DEFF Research Database (Denmark)

    Hu, Qiang; Jacobsen, Torben; Hansen, Karin Vels

    2013-01-01

    a lower overpotential. Microstructures of NiO with different reduction degrees are shown. Electrochemical impedance spectroscopy is carried out during the reduction process. Electrochemical reduction of NiO may need an induction period. When NiO is reduced at a constant voltage the current initially...

  2. Anaerobic Dehalogenation of Hydroxylated Polychlorinated Biphenyls by Desulfitobacterium dehalogenans

    OpenAIRE

    Wiegel, Juergen; Zhang, Xiaoming; Wu, Qingzhong

    1999-01-01

    Ten years after reports on the existence of anaerobic dehalogenation of polychlorinated biphenyls (PCBs) in sediment slurries, we report here on the rapid reductive dehalogenation of para-hydroxylated PCBs (HO-PCBs), the excreted main metabolites of PCB in mammals, which can exhibit estrogenic and antiestrogenic activities in humans. The anaerobic bacterium Desulfitobacterium dehalogenans completely dehalogenates all flanking chlorines (chlorines in ortho position to the para-hydroxyl group) ...

  3. Homoacetogenesis in Deep-Sea Chloroflexi, as Inferred by Single-Cell Genomics, Provides a Link to Reductive Dehalogenation in Terrestrial Dehalococcoidetes.

    Science.gov (United States)

    Sewell, Holly L; Kaster, Anne-Kristin; Spormann, Alfred M

    2017-12-19

    The deep marine subsurface is one of the largest unexplored biospheres on Earth and is widely inhabited by members of the phylum Chloroflexi In this report, we investigated genomes of single cells obtained from deep-sea sediments of the Peruvian Margin, which are enriched in such Chloroflexi 16S rRNA gene sequence analysis placed two of these single-cell-derived genomes (DscP3 and Dsc4) in a clade of subphylum I Chloroflexi which were previously recovered from deep-sea sediment in the Okinawa Trough and a third (DscP2-2) as a member of the previously reported DscP2 population from Peruvian Margin site 1230. The presence of genes encoding enzymes of a complete Wood-Ljungdahl pathway, glycolysis/gluconeogenesis, a Rhodobacter nitrogen fixation (Rnf) complex, glyosyltransferases, and formate dehydrogenases in the single-cell genomes of DscP3 and Dsc4 and the presence of an NADH-dependent reduced ferredoxin:NADP oxidoreductase (Nfn) and Rnf in the genome of DscP2-2 imply a homoacetogenic lifestyle of these abundant marine Chloroflexi We also report here the first complete pathway for anaerobic benzoate oxidation to acetyl coenzyme A (CoA) in the phylum Chloroflexi (DscP3 and Dsc4), including a class I benzoyl-CoA reductase. Of remarkable evolutionary significance, we discovered a gene encoding a formate dehydrogenase (FdnI) with reciprocal closest identity to the formate dehydrogenase-like protein (complex iron-sulfur molybdoenzyme [CISM], DET0187) of terrestrial Dehalococcoides/Dehalogenimonas spp. This formate dehydrogenase-like protein has been shown to lack formate dehydrogenase activity in Dehalococcoides/Dehalogenimonas spp. and is instead hypothesized to couple HupL hydrogenase to a reductive dehalogenase in the catabolic reductive dehalogenation pathway. This finding of a close functional homologue provides an important missing link for understanding the origin and the metabolic core of terrestrial Dehalococcoides/Dehalogenimonas spp. and of reductive

  4. Isolation from estuarine sediments of a Desulfovibrio strain which can grow on lactate coupled to the reductive dehalogenation of 2,4,6-tribromophenol

    Energy Technology Data Exchange (ETDEWEB)

    Boyle, A.W.; Phelps, C.D.; Young, L.Y. [Rutgers-The State Univ. of New Jersey, New Brunswick, NJ (United States). Biotechnology Center for Agriculture and the Environment

    1999-03-01

    Strain TBP-1, an anaerobic bacterium capable of reductively dehalogenating 2,4,6-tribromophenol to phenol, was isolated from estuarine sediments of the Arthur Kill in the New York/New Jersey harbor. It is a gram-negative, motile, vibrio-shaped, obligate anaerobe which grows on lactate, pyruvate, hydrogen, and fumarate when provided sulfate as an electron acceptor. The organism accumulates acetate when grown on lactate and sulfate, contains desulfoviridin, and will not grow in the absence of NaCl. It will not utilize acetate, succinate, propionate, or butyrate for growth via sulfate reduction. When supplied with lactate as an electron donor, strain TBP-1 will utilize sulfate, sulfite, sulfur, and thiosulfate for growth but not nitrate, fumarate, or acrylate. This organism debrominates 2-, 4-, 2,4-, 2,6-, and 2,4,6-bromophenol but not 3- or 2,3-bromophenol or monobrominated benzoates. It will not dehalogenate monochlorinated, fluorinated, or iodinated phenols or chlorinated benzoates. Together with its physiological characteristics, its 16S rRNA gene sequence places it in the genus Desulfovibrio. The average growth yield of strain TBP-1 grown on a defined medium supplemented with lactate and 2,4,6-bromophenol is 3.71 mg of protein/mmol of phenol produced, and the yield was 1.42 mg of protein/mmol of phenol produced when 40bromophenol was the electron acceptor. Average growth yields for Desulfovibrio sp. strain TBP-1 grown with 2,4,6-bromophenol, 4-bromophenol, or sulfate are 0.62, 0.71, and 1.07, respectively. Growth did not occur when either lactate or 2,4,6-bromophenol was omitted from the growth medium. These results indicate that Desulfovibrio sp. strain TBP-1 is capable of growth via halorespiration.

  5. Microbial dehalogenation

    NARCIS (Netherlands)

    Janssen, DB; Oppentocht, JE; Poelarends, GJ

    Novel dehalogenases have been identified recently in various bacteria that utilise halogenated substrates. X-ray studies and sequence analysis have revealed insight into the molecular mechanisms of hydrolytic dehalogenases. Furthermore, genetic and biochemical studies have indicated that reductive

  6. In Situ Generation of Pd-Pt Core-Shell Nanoparticles on Reduced Graphene Oxide (Pd@Pt/rGO) Using Microwaves: Applications in Dehalogenation Reactions and Reduction of Olefins.

    Science.gov (United States)

    Goswami, Anandarup; Rathi, Anuj K; Aparicio, Claudia; Tomanec, Ondrej; Petr, Martin; Pocklanova, Radka; Gawande, Manoj B; Varma, Rajender S; Zboril, Radek

    2017-01-25

    Core-shell nanocatalysts are a distinctive class of nanomaterials with varied potential applications in view of their unique structure, composition-dependent physicochemical properties, and promising synergism among the individual components. A one-pot microwave (MW)-assisted approach is described to prepare the reduced graphene oxide (rGO)-supported Pd-Pt core-shell nanoparticles, (Pd@Pt/rGO); spherical core-shell nanomaterials (∼95 nm) with Pd core (∼80 nm) and 15 nm Pt shell were nicely distributed on the rGO matrix in view of the choice of reductant and reaction conditions. The well-characterized composite nanomaterials, endowed with synergism among its components and rGO support, served as catalysts in aromatic dehalogenation reactions and for the reduction of olefins with high yield (>98%), excellent selectivity (>98%) and recyclability (up to 5 times); both Pt/rGO and Pd/rGO and even their physical mixtures showed considerably lower conversions (20 and 57%) in dehalogenation of 3-bromoaniline. Similarly, in the reduction of styrene to ethylbenzene, Pd@Pt core-shell nanoparticles (without rGO support) possess considerably lower conversion (60%) compared to Pd@Pt/rGO. The mechanism of dehalogenation reactions with Pd@Pt/rGO catalyst is discussed with the explicit premise that rGO matrix facilitates the adsorption of the reducing agent, thus enhancing its local concentration and expediting the hydrazine decomposition rate. The versatility of the catalyst has been validated via diverse substrate scope for both reduction and dehalogenation reactions.

  7. Homoacetogenesis in Deep-Sea Chloroflexi, as Inferred by Single-Cell Genomics, Provides a Link to Reductive Dehalogenation in Terrestrial Dehalococcoidetes

    Directory of Open Access Journals (Sweden)

    Holly L. Sewell

    2017-12-01

    Full Text Available The deep marine subsurface is one of the largest unexplored biospheres on Earth and is widely inhabited by members of the phylum Chloroflexi. In this report, we investigated genomes of single cells obtained from deep-sea sediments of the Peruvian Margin, which are enriched in such Chloroflexi. 16S rRNA gene sequence analysis placed two of these single-cell-derived genomes (DscP3 and Dsc4 in a clade of subphylum I Chloroflexi which were previously recovered from deep-sea sediment in the Okinawa Trough and a third (DscP2-2 as a member of the previously reported DscP2 population from Peruvian Margin site 1230. The presence of genes encoding enzymes of a complete Wood-Ljungdahl pathway, glycolysis/gluconeogenesis, a Rhodobacter nitrogen fixation (Rnf complex, glyosyltransferases, and formate dehydrogenases in the single-cell genomes of DscP3 and Dsc4 and the presence of an NADH-dependent reduced ferredoxin:NADP oxidoreductase (Nfn and Rnf in the genome of DscP2-2 imply a homoacetogenic lifestyle of these abundant marine Chloroflexi. We also report here the first complete pathway for anaerobic benzoate oxidation to acetyl coenzyme A (CoA in the phylum Chloroflexi (DscP3 and Dsc4, including a class I benzoyl-CoA reductase. Of remarkable evolutionary significance, we discovered a gene encoding a formate dehydrogenase (FdnI with reciprocal closest identity to the formate dehydrogenase-like protein (complex iron-sulfur molybdoenzyme [CISM], DET0187 of terrestrial Dehalococcoides/Dehalogenimonas spp. This formate dehydrogenase-like protein has been shown to lack formate dehydrogenase activity in Dehalococcoides/Dehalogenimonas spp. and is instead hypothesized to couple HupL hydrogenase to a reductive dehalogenase in the catabolic reductive dehalogenation pathway. This finding of a close functional homologue provides an important missing link for understanding the origin and the metabolic core of terrestrial Dehalococcoides/Dehalogenimonas spp. and of

  8. Electrochemical reduction of nitrate in the presence of an amide

    Science.gov (United States)

    Dziewinski, Jacek J.; Marczak, Stanislaw

    2002-01-01

    The electrochemical reduction of nitrates in aqueous solutions thereof in the presence of amides to gaseous nitrogen (N.sub.2) is described. Generally, electrochemical reduction of NO.sub.3 proceeds stepwise, from NO.sub.3 to N.sub.2, and subsequently in several consecutive steps to ammonia (NH.sub.3) as a final product. Addition of at least one amide to the solution being electrolyzed suppresses ammonia generation, since suitable amides react with NO.sub.2 to generate N.sub.2. This permits nitrate reduction to gaseous nitrogen to proceed by electrolysis. Suitable amides include urea, sulfamic acid, formamide, and acetamide.

  9. Electrochemical reduction of nickel ions from dilute solutions

    NARCIS (Netherlands)

    Njau, K.N.; Janssen, L.J.J.

    1995-01-01

    Electrochemical reduction of nickel ions in dilute solution using a divided GBC-cell is of interest for purification of waste waters. A typical solution to be treated is the effluent from steel etching processes which contain low quantities of nickel, chromate and chromium ions. Reduction of

  10. Reductive dehalogenation of 5-bromouracil by aliphatic organic radicals in aqueous solutions; electron transfer and proton-coupled electron transfer mechanisms

    Science.gov (United States)

    Matasović, Brunislav; Bonifačić, Marija

    2011-06-01

    Reductive dehalogenation of 5-bromouracil by aliphatic organic radicals CO2-rad , rad CH 2OH, rad CH(CH 3)OH, and rad CH(CH 3)O - have been studied in oxygen free aqueous solutions in the presence of organic additives: formate, methanol or ethanol. For radicals production 60Co γ-radiolysis was employed and the yield of bromide was measured by means of ion chromatography. Both radical anions have reducing potential negative enough to transfer an electron to BrU producing bromide ion and U rad radical. High yields of bromide have been measured increasing proportional to the concentration of the corresponding organic additives at a constant dose rate. This is characteristic for a chain process where regeneration of radical ions occurs by H-atom abstraction by U rad radical from formate or ethanol. Results with the neutral radicals conformed earlier proposition that the reduction reaction of α-hydroxyalkyl radicals proceeds by the proton-coupled electron transfer mechanism ( Matasović and Bonifačić, 2007). Thus, while both rad CH 2OH and rad CH(CH 3)OH did not react with BrU in water/alcohol solutions, addition of bicarbonate and acetate in mmol dm -3 concentrations, pH 7, brought about chain debromination to occur in the case of rad CH(CH 3)OH radical as reactant. Under the same conditions phosphate buffer, a base with higher bulk proton affinity, failed to have any influence. The results are taken as additional proofs for the specific complex formation of α-hydroxyalkyl radicals with suitable bases which enhances radicals' reduction potential in comparison with only water molecules as proton acceptors. Rate constants for the H-atom abstraction from ethanol and formate by U rad radicals have been estimated to amount to about ≥85 and 1200 dm 3 mol -1 s -1, respectively.

  11. Electrochemical carbon dioxide reduction on rough copper surfaces

    NARCIS (Netherlands)

    Kas, Recep

    2016-01-01

    Sustainable development and climate change is considered to be one of the top challenges of humanity. Electrochemical carbon dioxide (CO2) reduction to fuels or fuel precursor using renewable electricity is a very promising way to recycle CO2 and store the electricity. This would also provide

  12. Electrochemical reduction of metal ions in dilute solution using hydrogen

    NARCIS (Netherlands)

    Portegies Zwart, I.; Wijnbelt, E.C.W.; Janssen, L.J.J.

    1995-01-01

    Reduction of metal ions in dilute solutions is of great interest for purification of waste waters and process liquids. A new electrochemical cell has been introduced. This cell - a GBC-cell - is a combination of a gasdiffusion electrode in direct contact with a packed bed of carbon particles.

  13. Electrochemical reduction of dilute chromate solutions on carbon felt electrodes

    NARCIS (Netherlands)

    Frenzel, Ines; Frenzel, I.; Holdik, Hans; Barmashenko, Vladimir; Stamatialis, Dimitrios; Wessling, Matthias

    2006-01-01

    Carbon felt is a potential material for electrochemical reduction of chromates. Very dilute solutions may be efficiently treated due to its large specific surface area and high porosity. In this work, the up-scaling of this technology is investigated using a new type of separated cell and

  14. Electrochemical reduction of imazamethabenz methyl on mercury and carbon electrodes

    International Nuclear Information System (INIS)

    Ruiz Montoya, Mercedes; Pintado, Sara; Rodriguez Mellado, Jose Miguel

    2010-01-01

    This paper presents polarographic and voltammetric studies of the reduction of the herbicide imazamethabenz methyl (2/3-methyl-(4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)-p-toluate), on mercury and carbon electrodes. The electrochemical studies were performed in strongly acidic media (0.1-2.7 M H 2 SO 4 ) as well as in the pH range of 1-12. The overall reduction process involves the uptake of two electrons. The results obtained in polarography show that there is the reduction of two species, related via an acid-base equilibrium, and having very close reduction potentials. The voltammetric results obtained with a glassy carbon electrode were very similar to those observed on mercury electrodes. The reducible group in the molecule is the imidazolinone ring. In strongly acidic media (pH a ), the reaction mechanism proposed is the reduction of the protonated herbicide by an electrochemical-chemical-electrochemical (ECE) process, being the r.d.s. the second electron transfer. At pH > pK a the neutral form of the herbicide is reduced and the second electron transfer becomes reversible or quasi-reversible. In basic media, the species reduced is the deprotonated imazamethabenz methyl and the r.d.s. is the second electron transfer.

  15. Electrochemical reduction of imazamethabenz methyl on mercury and carbon electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz Montoya, Mercedes, E-mail: mmontoya@uhu.e [Departamento de Ingenieria Quimica, Quimica Fisica y Quimica Organica, Universidad de Huelva, Campus El Carmen, Facultad de Ciencias Experimentales, E-21071 Huelva (Spain); Pintado, Sara; Rodriguez Mellado, Jose Miguel [Departamento de Quimica Fisica y Termodinamica Aplicada, Universidad de Cordoba, Campus Universitario de Rabanales, edificio ' Marie Curie' , E-14014 Cordoba (Spain)

    2010-03-30

    This paper presents polarographic and voltammetric studies of the reduction of the herbicide imazamethabenz methyl (2/3-methyl-(4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)-p-toluate), on mercury and carbon electrodes. The electrochemical studies were performed in strongly acidic media (0.1-2.7 M H{sub 2}SO{sub 4}) as well as in the pH range of 1-12. The overall reduction process involves the uptake of two electrons. The results obtained in polarography show that there is the reduction of two species, related via an acid-base equilibrium, and having very close reduction potentials. The voltammetric results obtained with a glassy carbon electrode were very similar to those observed on mercury electrodes. The reducible group in the molecule is the imidazolinone ring. In strongly acidic media (pH < pK{sub a}), the reaction mechanism proposed is the reduction of the protonated herbicide by an electrochemical-chemical-electrochemical (ECE) process, being the r.d.s. the second electron transfer. At pH > pK{sub a} the neutral form of the herbicide is reduced and the second electron transfer becomes reversible or quasi-reversible. In basic media, the species reduced is the deprotonated imazamethabenz methyl and the r.d.s. is the second electron transfer.

  16. Microbial dehalogenation of organohalides in marine and estuarine environments.

    Science.gov (United States)

    Zanaroli, Giulio; Negroni, Andrea; Häggblom, Max M; Fava, Fabio

    2015-06-01

    Marine sediments are the ultimate sink and a major entry way into the food chain for many highly halogenated and strongly hydrophobic organic pollutants, such as polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs), polybrominated diphenylethers (PBDEs) and 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT). Microbial reductive dehalogenation in anaerobic sediments can transform these contaminants into less toxic and more easily biodegradable products. Although little is still known about the diversity of respiratory dehalogenating bacteria and their catabolic genes in marine habitats, the occurrence of dehalogenation under actual site conditions has been reported. This suggests that the activity of dehalogenating microbes may contribute, if properly stimulated, to the in situ bioremediation of marine and estuarine contaminated sediments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Reductive dehalogenation of 5-bromouracil by aliphatic organic radicals in aqueous solutions; electron transfer and proton-coupled electron transfer mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Matasovic, Brunislav [Division of Physical Chemistry, ' Ruder Boskovic' Institute, Bijenicka c. 54, HR-10000 Zagreb (Croatia); Bonifacic, Marija, E-mail: bonifacic@irb.h [Division of Physical Chemistry, ' Ruder Boskovic' Institute, Bijenicka c. 54, HR-10000 Zagreb (Croatia)

    2011-06-15

    Reductive dehalogenation of 5-bromouracil by aliphatic organic radicals {sup {center_dot}C}O{sub 2}{sup -}, {sup {center_dot}C}H{sub 2}OH, {sup {center_dot}C}H(CH{sub 3})OH, and {sup {center_dot}C}H(CH{sub 3})O{sup -} have been studied in oxygen free aqueous solutions in the presence of organic additives: formate, methanol or ethanol. For radicals production {sup 60}Co {gamma}-radiolysis was employed and the yield of bromide was measured by means of ion chromatography. Both radical anions have reducing potential negative enough to transfer an electron to BrU producing bromide ion and U{sup {center_dot}} radical. High yields of bromide have been measured increasing proportional to the concentration of the corresponding organic additives at a constant dose rate. This is characteristic for a chain process where regeneration of radical ions occurs by H-atom abstraction by U{sup {center_dot}} radical from formate or ethanol. Results with the neutral radicals conformed earlier proposition that the reduction reaction of {alpha}-hydroxyalkyl radicals proceeds by the proton-coupled electron transfer mechanism (). Thus, while both {sup {center_dot}C}H{sub 2}OH and {sup {center_dot}C}H(CH{sub 3})OH did not react with BrU in water/alcohol solutions, addition of bicarbonate and acetate in mmol dm{sup -3} concentrations, pH 7, brought about chain debromination to occur in the case of {sup {center_dot}C}H(CH{sub 3})OH radical as reactant. Under the same conditions phosphate buffer, a base with higher bulk proton affinity, failed to have any influence. The results are taken as additional proofs for the specific complex formation of {alpha}-hydroxyalkyl radicals with suitable bases which enhances radicals' reduction potential in comparison with only water molecules as proton acceptors. Rate constants for the H-atom abstraction from ethanol and formate by U{sup {center_dot}} radicals have been estimated to amount to about {>=}85 and 1200 dm{sup 3} mol{sup -1} s{sup -1

  18. Anaerobic microbial dehalogenation

    NARCIS (Netherlands)

    Smidt, H.; Vos, de W.M.

    2004-01-01

    The natural production and anthropogenic release of halogenated hydrocarbons into the environment has been the likely driving force for the evolution of an unexpectedly high microbial capacity to dehalogenate different classes of xenobiotic haloorganics. This contribution provides an update on the

  19. Microfluidic platform for studying the electrochemical reduction of carbon dioxide

    Science.gov (United States)

    Whipple, Devin Talmage

    Diminishing supplies of conventional energy sources and growing concern over greenhouse gas emissions present significant challenges to supplying the world's rapidly increasing demand for energy. The electrochemical reduction of carbon dioxide has the potential to address many of these issues by providing a means of storing electricity in chemical form. Storing electrical energy as chemicals is beneficial for leveling the output of clean, but intermittent renewable energy sources such as wind and solar. Electrical energy stored as chemicals can also be used as carbon neutral fuels for portable applications allowing petroleum derived fuels in the transportation sector to be replaced by more environmentally friendly energy sources. However, to be a viable technology, the electrochemical reduction of carbon dioxide needs to have both high current densities and energetic efficiencies (Chapter 1). Although many researchers have studied the electrochemical reduction of CO2 including parameters such as catalysts, electrolytes and temperature, further investigation is needed to improve the understanding of this process and optimize the performance (Chapter 2). This dissertation reports the development and validation of a microfluidic reactor for the electrochemical reduction of CO2 (Chapter 3). The design uses a flowing liquid electrolyte instead of the typical polymer electrolyte membrane. In addition to other benefits, this flowing electrolyte gives the reactor great flexibility, allowing independent analysis of each electrode and the testing of a wide variety of conditions. In this work, the microfluidic reactor has been used in the following areas: • Comparison of different metal catalysts for the reduction of CO2 to formic acid and carbon monoxide (Chapter 4). • Investigation of the effects of the electrolyte pH on the reduction of CO2 to formic acid and carbon monoxide (Chapter 5). • Study of amine based electrolytes for lowering the overpotentials for CO2

  20. Electrochemical Reduction of solid UO2 in Molten Fluoride Salts

    International Nuclear Information System (INIS)

    Gibilaro, Mathieu; Cassayre, Laurent; Massot, Laurent; Chamelot, Pierre; Malmbeck, Rikard; Dugne, Olivier; Allegri, Patrick

    2010-01-01

    The direct electrochemical reduction of UO 2 solid pellets was carried out in LiF-CaF 2 (+ 2wt % Li 2 O) at 850 deg. C. An inert gold anode was used instead of the usual reactive sacrificial carbon anode. In this case, reduction of oxide ions yields O 2 gas evolution on the anode. Electrochemical characterisations of UO 2 pellets have been performed by linear sweep voltammetry at 10 mV/s and reduction waves associated to its direct reduction have been observed at a potential 150 mV more positive in comparison with the solvent reduction. Then, galvano-static electrolyses runs have been realised and products were characterised by SEM-EDX, EPMA/WDS and XRD. In one of the runs, uranium oxide was partially reduced and three phases were observed: non reduced UO 2 in the centre, pure metallic uranium on the external layer and an intermediate phase representing the initial stage of reduction taking place at the grain boundaries. In another run, the UO 2 sample was fully reduced. Due to oxygen removal, the U matrix had a typical coral-like structure which is characteristic of the pattern observed after the electroreduction of solid oxides. (authors)

  1. Electrochemical Reduction of Quinones in Different Media: A Review

    Directory of Open Access Journals (Sweden)

    Partha Sarathi Guin

    2011-01-01

    Full Text Available The electron transfer reactions involving quinones, hydroquinones, and catechols are very important in many areas of chemistry, especially in biological systems. The therapeutic efficiency as well as toxicity of anthracycline anticancer drugs, a class of anthraquinones, is governed by their electrochemical properties. Other quinones serve as important functional moiety in various biological systems like electron-proton carriers in the respiratory chain and their involvement in photosynthetic electron flow systems. The present paper summarizes literatures on the reduction of quinones in different solvents under various conditions using different electrochemical methods. The influence of different reaction conditions including pH of the media, nature of supporting electrolytes, nature of other additives, intramolecular or intermolecular hydrogen bonding, ion pair formation, polarity of the solvents, stabilization of the semiquinone and quinone dianion, catalytic property, and adsorption at the electrode surface, are discussed and relationships between reaction conditions and products formed have been presented.

  2. Electrochemical Reduction of Isatin-monohydrazone on Mercury Electrode

    Directory of Open Access Journals (Sweden)

    Ender Biçer

    2015-07-01

    Full Text Available Electrochemical behaviour of isatin monohydrazone (IM on a hanging mercury drop electrode in the Britton-Robinson (B-R buffer solution of pH = 2.00–9.00 has been investigated using square-wave voltammetry (SWV and cyclic voltammetry (CV techniques. In the pH range of 2.00–5.00, the voltammogram of IM exhibited a single cathodic irreversible peak. When the pH value exceeds 5.00, a new cathodic irreversible peak was also seen. According to the voltammetric data, a plausible electrode reaction mechanism of IM was proposed. The first reduction peak of IM is resulted from the reduction of =N–NH– group with consumption of 2e–/2H+. Also, its second cathodic peak is formed by the participation of 2e–/2H+ for the reduction of –N=N– group on its tautomeric form.

  3. Electrochemical reduction of actinides oxides in molten salts

    International Nuclear Information System (INIS)

    Claux, B.

    2011-01-01

    Reactive metals are currently produced from their oxide by multiple steps reduction techniques. A one step route from the oxide to the metal has been suggested for metallic titanium production by electrolysis in high temperature molten chloride salts. In the so-called FFC process, titanium oxide is electrochemically reduced at the cathode, generating O 2- ions, which are converted on a graphite anode into carbon oxide or dioxide. After this process, the spent salt can in principle be reused for several batches which is particularly attractive for a nuclear application in terms of waste minimization. In this work, the electrochemical reduction process of cerium oxide (IV) is studied in CaCl 2 and CaCl 2 -KCl melts to understand the oxide reduction mechanism. Cerium is used as a chemical analogue of actinides. Electrolysis on 10 grams of cerium oxide are made to find optimal conditions for the conversion of actinides oxides into metals. The scale-up to hundred grams of oxide is also discussed. (author) [fr

  4. Reductive dehalogenation by anaerobic bacteria

    OpenAIRE

    Holliger, H.C.

    1992-01-01

    The understanding of the fate of synthetic halogenated hydrocarbons became a matter of major interest over the last two decades. Halogenated compounds may threaten ecosystems due to their biocide properties. The degradability of halocompounds determines whether they will accumulate in a certain environment or whether they will be transformed to harmless products. A whole range of anthropogenic organohalogen compounds was detected in soils, sediments, surface and subsurface waters, an...

  5. Reductive dehalogenation by anaerobic bacteria

    NARCIS (Netherlands)

    Holliger, H.C.

    1992-01-01

    The understanding of the fate of synthetic halogenated hydrocarbons became a matter of major interest over the last two decades. Halogenated compounds may threaten ecosystems due to their biocide properties. The degradability of halocompounds determines whether they will accumulate in a

  6. Electrochemical reduction of hexavalent chromium in ground water

    Energy Technology Data Exchange (ETDEWEB)

    Bansal, S. [Lawrence Livermore National Lab., CA (United States)

    1994-12-01

    Electrochemical reduction of hexavalent chromium (Cr{sup +6}) to its trivalent state (Cr{sup +3}) is showing promising results in treating ground water at Lawrence Livermore National Laboratory`s (LLNL`s) Main Site. An electrolytic cell using stainless-steel and brass electrodes has been found to offer the most efficient reduction while yielding the least amount of precipitate. Trials have successfully lowered concentrations of Cr{sup +6} to below 11 parts per billion (micrograms/liter), the California state standard. We ran several trials to determine optimal voltage for running the cell; each trial consisted of applying a voltage between 6V and 48V for ten minutes through samples obtained at Treatment Facility C(TFC). No conclusive data has been obtained yet.

  7. Electrochemical reduction of oxygen catalyzed by Pseudomonas aeruginosa

    Energy Technology Data Exchange (ETDEWEB)

    Cournet, Amandine [Universite de Toulouse, UPS, LU49, Adhesion bacterienne et formation de biofilms, 35 chemin des Maraichers, 31062 Toulouse Cedex 09 (France)] [Laboratoire de Genie Chimique CNRS UMR5503, 4 allee Emile Monso, BP 84234, 31432 Toulouse Cedex 04 (France); Berge, Mathieu; Roques, Christine [Universite de Toulouse, UPS, LU49, Adhesion bacterienne et formation de biofilms, 35 chemin des Maraichers, 31062 Toulouse Cedex 09 (France); Bergel, Alain [Laboratoire de Genie Chimique CNRS UMR5503, 4 allee Emile Monso, BP 84234, 31432 Toulouse Cedex 04 (France); Delia, Marie-Line, E-mail: marieline.delia@ensiacet.f [Laboratoire de Genie Chimique CNRS UMR5503, 4 allee Emile Monso, BP 84234, 31432 Toulouse Cedex 04 (France)

    2010-07-01

    Pseudomonas aeruginosa has already been shown to catalyze oxidation processes in the anode compartment of a microbial fuel cell. The present study focuses on the reverse capacity of the bacterium, i.e. reduction catalysis. Here we show that P. aeruginosa is able to catalyze the electrochemical reduction of oxygen. The use of cyclic voltammetry showed that, for a given range of potential values, the current generated in the presence of bacteria could reach up to four times the current obtained without bacteria. The adhesion of bacteria to the working electrode was necessary for the catalysis to be observed but was not sufficient. The electron transfer between the working electrode and the bacteria did not involve mediator metabolites like phenazines. The transfer was by direct contact. The catalysis required a certain contact duration between electrodes and live bacteria but after this delay, the metabolic activity of cells was no longer necessary. Membrane-bound proteins, like catalase, may be involved. Various strains of P. aeruginosa, including clinical isolates, were tested and all of them, even catalase-defective mutants, presented the same catalytic property. P. aeruginosa offers a new model for the analysis of reduction catalysis and the protocol designed here may provide a basis for developing an interesting tool in the field of bacterial adhesion.

  8. HYDROGEN CONCENTRATIONS IN SULFATE-REDUCING ESTUARINE SEDIMENTS DURING PCE DEHALOGENATION

    Science.gov (United States)

    Despite recent progress made evaluating the role of hydrogen (H2) as a key electron donor in the anaerobic remediation of chloroethenes, few studies have focused on the evaluation of hydrogen thresholds relative to reductive dehalogenation in sulfidogenic environments. Competitio...

  9. Electrochemical processing of spent nuclear fuels: An overview of oxide reduction in pyroprocessing technology

    Directory of Open Access Journals (Sweden)

    Eun-Young Choi

    2015-12-01

    Full Text Available The electrochemical reduction process has been used to reduce spent oxide fuel to a metallic form using pyroprocessing technology for a closed fuel cycle in combination with a metal-fuel fast reactor. In the electrochemical reduction process, oxides fuels are loaded at the cathode basket in molten Li2O–LiCl salt and electrochemically reduced to the metal form. Various approaches based on thermodynamic calculations and experimental studies have been used to understand the electrode reaction and efficiently treat spent fuels. The factors that affect the speed of the electrochemical reduction have been determined to optimize the process and scale-up the electrolysis cell. In addition, demonstrations of the integrated series of processes (electrorefining and salt distillation with the electrochemical reduction have been conducted to realize the oxide fuel cycle. This overview provides insight into the current status of and issues related to the electrochemical processing of spent nuclear fuels.

  10. Electrochemical characterization of praseodymia doped zircon. Catalytic effect on the electrochemical reduction of molecular oxygen in polar organic solvents

    Energy Technology Data Exchange (ETDEWEB)

    Domenech, Antonio, E-mail: antonio.domenech@uv.es [Departament de Quimica Analitica, Universitat de Valencia, Dr. Moliner, 50, 46100 Burjassot, Valencia (Spain); Montoya, Noemi; Alarcon, Javier [Departament de Quimica Inorganica, Universitat de Valencia, Dr. Moliner, 50, 46100 Burjassot, Valencia (Spain)

    2011-08-01

    Highlights: > Electrochemical characterization of Pr centers in praseodymia-doped zircon. > Study of the catalytic effect on the reduction of peroxide radical anion in nonaqueous solvents. > Assessment of non-uniform distribution of Pr centers in the zircon grains. - Abstract: The voltammetry of microparticles and scanning electrochemical microscopy methodologies are applied to characterize praseodymium centers in praseodymia-doped zircon (Pr{sub x}Zr{sub (1-y)}Si{sub (1-z)}O{sub 4}; y + z = x; 0.02 < x < 0.10) specimens prepared via sol-gel synthetic routes. In contact with aqueous electrolytes, two overlapping Pr-centered cathodic processes, attributable to the Pr (IV) to Pr (III) reduction of Pr centers in different sites are obtained. In water-containing, air-saturated acetone and DMSO solutions as solvent, Pr{sub x}Zr{sub (1-y)}Si{sub (1-z)}O{sub 4} materials produce a significant catalytic effect on the electrochemical reduction of peroxide radical anion electrochemically generated. These electrochemical features denote that most of the Pr centers are originally in its 4+ oxidation state in the parent Pr{sub x}Zr{sub (1-y)}Si{sub (1-z)}O{sub 4} specimens. The variation of the catalytic performance of such specimens with potential scan rate, water concentration and Pr loading suggests that Pr is not uniformly distributed within the zircon grains, being concentrated in the outer region of such grains.

  11. Electrochemical reduction of nitrous oxide on La1-xSrxFeO3 perovskites

    DEFF Research Database (Denmark)

    Kammer Hansen, Kent

    2010-01-01

    The electrochemical reduction of nitrous oxide and oxygen has been studied on cone-shaped electrodes of La1-xSrxFeO3-delta perovskites in an all solid state cell, using cyclic voltammetry. It was shown that the activity of the La1-xSrxFeO3-delta perovskites for the electrochemical reduction...... of nitrous oxide mainly depends on the amount of Fe(III) and oxide ion vacancies. The activity of the La1-xSrxFeO3-delta perovskites towards the electrochemical reduction of nitrous oxide is much lower than the activity of the La1-xSrxFeO3-delta perovskites towards the electrochemical reduction of oxygen...

  12. Surface-reconstructed Cu Electrode via a Facile Electrochemical Anodization-Reduction Process for Low Overpotential CO 2 reduction

    KAUST Repository

    Min, Shixiong; Yang, Xiulin; Lu, Ang-Yu; Tseng, Chien-Chih; Hedhili, Mohamed N.; Lai, Zhiping; Li, Lain-Jong; Huang, Kuo-Wei

    2017-01-01

    A high-surface-area Cu electrode, fabricated by a simple electrochemical anodization-reduction method, exhibits high activity and selectivity for CO2 reduction at low overpotential in 0.1 M KHCO3 solution. A faradaic efficiency of 37% for HCOOH

  13. Electrochemical reduction of disulfide-containing proteins for hydrogen/deuterium exchange monitored by mass spectrometry

    DEFF Research Database (Denmark)

    Mysling, Simon; Salbo, Rune; Ploug, Michael

    2014-01-01

    Characterization of disulfide bond-containing proteins by hydrogen/deuterium exchange monitored by mass spectrometry (HDX-MS) requires reduction of the disulfide bonds under acidic and cold conditions, where the amide hydrogen exchange reaction is quenched (pH 2.5, 0 °C). The reduction typically...... of TCEP. In the present study, we explore the feasibility of using electrochemical reduction as a substitute for TCEP in HDX-MS analyses. Our results demonstrate that efficient disulfide bond reduction is readily achieved by implementing an electrochemical cell into the HDX-MS workflow. We also identify...... some challenges in using electrochemical reduction in HDX-MS analyses and provide possible conditions to attenuate these limitations. For example, high salt concentrations hamper disulfide bond reduction, necessitating additional dilution of the sample with aqueous acidic solution at quench conditions....

  14. The electrochemical reduction processes of solid compounds in high temperature molten salts.

    Science.gov (United States)

    Xiao, Wei; Wang, Dihua

    2014-05-21

    Solid electrode processes fall in the central focus of electrochemistry due to their broad-based applications in electrochemical energy storage/conversion devices, sensors and electrochemical preparation. The electrolytic production of metals, alloys, semiconductors and oxides via the electrochemical reduction of solid compounds (especially solid oxides) in high temperature molten salts has been well demonstrated to be an effective and environmentally friendly process for refractory metal extraction, functional materials preparation as well as spent fuel reprocessing. The (electro)chemical reduction of solid compounds under cathodic polarizations generally accompanies a variety of changes at the cathode/melt electrochemical interface which result in diverse electrolytic products with different compositions, morphologies and microstructures. This report summarizes various (electro)chemical reactions taking place at the compound cathode/melt interface during the electrochemical reduction of solid compounds in molten salts, which mainly include: (1) the direct electro-deoxidation of solid oxides; (2) the deposition of the active metal together with the electrochemical reduction of solid oxides; (3) the electro-inclusion of cations from molten salts; (4) the dissolution-electrodeposition process, and (5) the electron hopping process and carbon deposition with the utilization of carbon-based anodes. The implications of the forenamed cathodic reactions on the energy efficiency, chemical compositions and microstructures of the electrolytic products are also discussed. We hope that a comprehensive understanding of the cathodic processes during the electrochemical reduction of solid compounds in molten salts could form a basis for developing a clean, energy efficient and affordable production process for advanced/engineering materials.

  15. Electrochemical Impedance Study of Reduction Kinetics of the Pesticide Vinclozoline

    Czech Academy of Sciences Publication Activity Database

    Pospíšil, Lubomír; Sokolová, Romana; Colombini, M. P.; Giannarelli, S.; Fuoco, R.

    2000-01-01

    Roč. 67, - (2000), s. 305-312 ISSN 0026-265X R&D Projects: GA MŠk OC D15.10; GA ČR GA203/97/1048 Institutional research plan: CEZ:AV0Z4040901 Keywords : electrochemical impedance * pesticide s * vinclozoline Subject RIV: CG - Electrochemistry Impact factor: 0.884, year: 2000

  16. Surface-reconstructed Cu Electrode via a Facile Electrochemical Anodization-Reduction Process for Low Overpotential CO 2 reduction

    KAUST Repository

    Min, Shixiong

    2017-03-21

    A high-surface-area Cu electrode, fabricated by a simple electrochemical anodization-reduction method, exhibits high activity and selectivity for CO2 reduction at low overpotential in 0.1 M KHCO3 solution. A faradaic efficiency of 37% for HCOOH and 27% for CO production was achieved with the current density of 1.5 mA cm-2 at −0.64 V vs. RHE, much higher than that of polycrystalline Cu. The enhanced catalytic performance is a result of the formation of the high electrochemical active surface area and high density of preferred low-index facets.

  17. Surface structured platinum electrodes for the electrochemical reduction of carbon dioxide in imidazolium based ionic liquids.

    Science.gov (United States)

    Hanc-Scherer, Florin A; Montiel, Miguel A; Montiel, Vicente; Herrero, Enrique; Sánchez-Sánchez, Carlos M

    2015-10-07

    The direct CO2 electrochemical reduction on model platinum single crystal electrodes Pt(hkl) is studied in [C2mim(+)][NTf2(-)], a suitable room temperature ionic liquid (RTIL) medium due to its moderate viscosity, high CO2 solubility and conductivity. Single crystal electrodes represent the most convenient type of surface structured electrodes for studying the impact of RTIL ion adsorption on relevant electrocatalytic reactions, such as surface sensitive electrochemical CO2 reduction. We propose here based on cyclic voltammetry and in situ electrolysis measurements, for the first time, the formation of a stable adduct [C2mimH-CO2(-)] by a radical-radical coupling after the simultaneous reduction of CO2 and [C2mim(+)]. It means between the CO2 radical anion and the radical formed from the reduction of the cation [C2mim(+)] before forming the corresponding electrogenerated carbene. This is confirmed by the voltammetric study of a model imidazolium-2-carboxylate compound formed following the carbene pathway. The formation of that stable adduct [C2mimH-CO2(-)] blocks CO2 reduction after a single electron transfer and inhibits CO2 and imidazolium dimerization reactions. However, the electrochemical reduction of CO2 under those conditions provokes the electrochemical cathodic degradation of the imidazolium based RTIL. This important limitation in CO2 recycling by direct electrochemical reduction is overcome by adding a strong acid, [H(+)][NTf2(-)], into solution. Then, protons become preferentially adsorbed on the electrode surface by displacing the imidazolium cations and inhibiting their electrochemical reduction. This fact allows the surface sensitive electro-synthesis of HCOOH from CO2 reduction in [C2mim(+)][NTf2(-)], with Pt(110) being the most active electrode studied.

  18. Electrochemical reduction of O2 and NO on Ni, Pt and Au

    DEFF Research Database (Denmark)

    Kammer Hansen, Kent

    2008-01-01

    The electrochemical reduction of oxygen and nitric oxide was studied using cyclic voltammetry on point electrodes of Ni, Pt and Au in the temperature range 400-600 degrees C. All the materials were more active towards the reduction of oxygen than towards the reduction of nitric oxide, except Pt...... the reduction of oxygen. This implies that the triple-phase boundary (3PB) catalyses the reduction of oxygen but not the reduction of nitric oxide, as Au is a catalytic inactive metal. All the materials were more active towards oxidation than towards reduction that is evolution of oxygen or oxidation of nitric...

  19. Electrochemical reduction of oxygen catalyzed by a wide range of bacteria including Gram-positive

    Energy Technology Data Exchange (ETDEWEB)

    Cournet, Amandine [Universite de Toulouse, UPS, LU49, Adhesion Bacterienne et Formation de Biofilms, 35 chemin des Maraichers, 31 062 Toulouse cedex 09 (France); Laboratoire de Genie Chimique CNRS, Universite de Toulouse, 4 allee Emile Monso, BP 84234, 31432 Toulouse cedex 04 (France); Delia, Marie-Line; Bergel, Alain [Laboratoire de Genie Chimique CNRS, Universite de Toulouse, 4 allee Emile Monso, BP 84234, 31432 Toulouse cedex 04 (France); Roques, Christine; Berge, Mathieu [Universite de Toulouse, UPS, LU49, Adhesion Bacterienne et Formation de Biofilms, 35 chemin des Maraichers, 31 062 Toulouse cedex 09 (France)

    2010-04-15

    Most bacteria known to be electrochemically active have been harvested in the anodic compartments of microbial fuel cells (MFCs) and are able to use electrodes as electron acceptors. The reverse phenomenon, i.e. using solid electrodes as electron donors, is not so widely studied. To our knowledge, most of the electrochemically active bacteria are Gram-negative. The present study implements a transitory electrochemical technique (cyclic voltammetry) to study the microbial catalysis of the electrochemical reduction of oxygen. It is demonstrated that a wide range of aerobic and facultative anaerobic bacteria are able to catalyze oxygen reduction. Among these electroactive bacteria, several were Gram-positive. The transfer of electrons was direct since no activity was obtained with the filtrate. These findings, showing a widespread property among bacteria including Gram-positive ones, open new and interesting routes in the field of electroactive bacteria research. (author)

  20. Solid-phase electrochemical reduction of graphene oxide films in alkaline solution

    Science.gov (United States)

    Basirun, Wan J.; Sookhakian, Mehran; Baradaran, Saeid; Mahmoudian, Mohammad R.; Ebadi, Mehdi

    2013-09-01

    Graphene oxide (GO) film was evaporated onto graphite and used as an electrode to produce electrochemically reduced graphene oxide (ERGO) films by electrochemical reduction in 6 M KOH solution through voltammetric cycling. Fourier transformed infrared and Raman spectroscopy confirmed the presence of ERGO. Electrochemical impedance spectroscopy characterization of ERGO and GO films in ferrocyanide/ferricyanide redox couple with 0.1 M KCl supporting electrolyte gave results that are in accordance with previous reports. Based on the EIS results, ERGO shows higher capacitance and lower charge transfer resistance compared to GO.

  1. A comparative study of electrochemical reduction of isatin and its ...

    Indian Academy of Sciences (India)

    Administrator

    hibit a single irreversible two-electron reduction wave in contrast with the two discrete one-electron transfer reduction ... experiments. The working electrode was a Static Mercury Drop Elec- ..... Women Scientist Scheme (WOS-A), is gratefully.

  2. Enhancement of Capacitive Performance in Titania Nanotubes Modified by an Electrochemical Reduction Method

    Directory of Open Access Journals (Sweden)

    Nurul Asma Samsudin

    2018-01-01

    Full Text Available Highly ordered titania nanotubes (TNTs were synthesised by an electrochemical anodization method for supercapacitor applications. However, the capacitive performance of the TNTs was relatively low and comparable to the conventional capacitor. Therefore, in order to improve the capacitive performance of the TNTs, a fast and facile electrochemical reduction method was applied to modify the TNTs (R-TNTs by introducing oxygen vacancies into the lattice. X-ray photoelectron spectroscopy (XPS data confirmed the presence of oxygen vacancies in the R-TNTs lattice upon the reduction of Ti4+ to Ti3+. Electrochemical reduction parameters such as applied voltage and reduction time were varied to optimize the best conditions for the modification process. The electrochemical performance of the samples was analyzed in a three-electrode configuration cell. The cyclic voltammogram recorded at 200 mV s−1 showed a perfect square-shaped voltammogram indicating the excellent electrochemical performance of R-TNTs prepared at 5 V for 30 s. The total area of the R-TNTs voltammogram was 3 times larger than the unmodified TNTs. A specific capacitance of 11.12 mF cm−2 at a current density of 20 μA cm−2 was obtained from constant current charge-discharge measurements, which was approximately 57 times higher than that of unmodified TNTs. R-TNTs also displayed outstanding cycle stability with 99% capacity retention after 1000 cycles.

  3. The electrochemical reduction of biotin (vitamin B7) and conversion into its ester

    International Nuclear Information System (INIS)

    Lauw, Sherman J.L.; Ganguly, Rakesh; Webster, Richard D.

    2013-01-01

    Highlights: •Biotin can be reduced electrochemically, by one-electron, at a platinum electrode. •The reduction likely follows a direct discharge mechanism of the carboxyl group. •Electrochemically generated biotin carboxylate was reacted with iodomethane (91%). •ATR–FTIR characterization of biotin, its carboxylate anion, and its methyl ester. -- Abstract: An electrochemical study on biotin (vitamin B7), performed in aprotic solvents and at a platinum electrode, revealed that at approximately E f 0 =−1.6to−1.8 vs. (Fc/Fc + )/V (E f 0 =formal reduction potential and Fc=ferrocene), biotin is reduced by one-electron to form its carboxylate anion and dihydrogen via a direct discharge of the carboxylic acid at the platinum surface. The electrochemical reduction process appeared to be chemically reversible on the time-frame of cyclic voltammetry (CV) (t ≤ s), but not over the extended period of controlled potential electrolysis (CPE) (t ≥ min) where the conversion of biotin into its carboxylate anion was found to be chemically irreversible. A strategy to functionalize biotin's carboxyl group was established by performing a bulk reductive electrolysis, and then reacting the electrochemically generated carboxylate anion with iodomethane to afford biotin methyl ester in excellent yield (91%). Attenuated total reflectance–Fourier transform infrared (ATR–FTIR) spectroscopy was successful in identifying several distinct and characteristic carbonyl absorbance peaks associated with the analogous forms of biotin available before electrolysis, after electrolysis, and after methylation

  4. Electrochemical-metallothermic reduction of zirconium in molten salt solutions

    International Nuclear Information System (INIS)

    McLaughlin, D.F.; Talko, F.

    1990-01-01

    This patent describes a method for separating hafnium from zirconium of the type wherein a feed containing zirconium and hafnium chlorides is prepared from zirconium-hafnium chloride and the feed is introduced into a distillation column, which distillation column has a reboiler connected at the bottom and a reflux condenser connected at the top and wherein a hafnium chloride enriched stream is taken from the top of the column and a zirconium enriched chloride stream is taken from the bottom of the column. It comprises: reducing the zirconium enriched chloride stream taken from the distillation column to metal by electrochemically reducing an alkaline earth metal in a molten salt bath with the molten salt in the molten salt bath consisting essentially of a mixture of at least one alkali metal chloride and at least one alkaline earth metal chloride and zirconium chloride, with the reduced alkaline earth metal reacting with the zirconium chloride to produce zirconium metal and alkaline earth metal chloride

  5. TRAPPING AND IDENTIFICATION OF THE DICHLOROACETATE RADICAL FROM THE REDUCTIVE DEHALOGENATION OF TRICHLOROACETATE BY MOUSE AND RAT LIVER MICROSOMES. (R825954)

    Science.gov (United States)

    A key question in the risk assessment of trichloroethylene (TRI) is the extent to which its carcinogenic effects might depend on the formation of dichloroacetate (DCA) as a metabolite. One of the metabolic pathways proposed for the formation of DCA from TRI is by the reductive...

  6. Determination of pertechnetate by liquid chromatography with reductive electrochemical detection

    International Nuclear Information System (INIS)

    Lewis, J.Y.; Zodda, J.P.; Deutsch, E.; Heineman, W.R.

    1983-01-01

    A method utilizing liquid chromatography with electrochemical detection has been developed for the determination of total TcO 4 - (/sup 99m/TcO 4 - and /sup 99m/TcO 4 - ) in 99 Mo//sup 99m/Tc generator eluents. Pertechnetate, which is the starting material for the preparation of many diagnostic radiopharmaceuticals, is generally present in these eluents in the concentration range of 5 X 10 -8 M to 5 X 10 -6 M. No sample pretreatment is necessary since impurities and other components are separated by the high-pressure liquid chromatography (HPLC) NH 2 -bonded column. By use of both static mercury drop (SMDE) and solid electrode detectors, in conjuction with rigorous deoxygenation procedures, total TcO 4 - in generator eluents is readily determined. A severe electrode fouling phenomenon limits the use of solid electrode detectors to TcO 4 - concentrations less than 10 -7 M, the working range for a carbon electrode being 8.5 X 10 -9 to 1.0 X 10 -7 M. The working range for the SMDE is 2.1 X 10 -8 to 1.0 X 10 -4 M TcO 4 -

  7. Metallic oxide reduction in molten chlorides: electrochemical solvent regeneration

    International Nuclear Information System (INIS)

    Martin, A.

    2005-11-01

    We consider the reaction MeO 2 + 2 Ca → Me + 2 CaO in CaCl 2 at 850 C. We want to re-use the molten media, which is a CaO-CaCl 2 melt at the end of the reaction. For that we want to de-oxidize it. When we electrolyse CaO we obtain Ca and O 2 ; it presents three difficult points that we want to solve: (1) it is difficult to oxidize O 2 - without oxidizing Cl - because their oxidation potential are very closed, (2) the chemical or electrochemical anodic corrosion, (3) the anodically produced gas dissolution in the mell One way of avoiding chlorine gas evolution is to prevent chloride ions from reaching the anode, for example using a selective membrane. Furthermore, the best prevention of the anodically produced gas dissolution in the melt can be done with a compartment, physically separating the anode from the rest of the reactional media. Thus in this work we have used an yttria stabilized zirconia membrane as a selective membrane for the deoxidation of a CaO-CaCl 2 melt at 850 C. (author)

  8. Electrochemical co-reduction synthesis of graphene/nano-gold composites and its application to electrochemical glucose biosensor

    International Nuclear Information System (INIS)

    Wang, Xiaolin; Zhang, Xiaoli

    2013-01-01

    Graphical abstract: - Highlights: • Graphene/nano-Au composite was synthesized by electrochemical co-reduction method in one step. • Glucose oxidase achieves direct electrochemistry on the graphene/nano-Au composite film. • The glucose biosensor shows a high sensitivity of 56.93 μA mM −1 cm −2 toward glucose. • Glucose was detected with a wide linear range and low detection limit. - Abstract: A simple, green and controllable approach was employed for electrochemical synthesize of the graphene/nano-Au composites. The process was that graphene oxide and HAuCl 4 was electrochemically co-reduced onto the glassy carbon electrode (GCE) by cyclic voltammetry in one step. The obtained graphene/nano-Au/GCE exhibited high electrocatalytic activity toward H 2 O 2 , which resulted in a remarkable decrease in the overpotential of H 2 O 2 electrochemical oxidation compared with bare GCE. Such electrocatalytic behavior of the graphene/nano-Au/GCE permitted effective low-potential amperometric biosensing of glucose via the incorporation of glucose oxidase (GOD) with graphene/nano-Au. An obvious advantage of this enzyme electrode (graphene/nano-Au/GOD/GCE) was that the graphene/nano-Au nanocomposites provided a favorable microenvironment for GOD and facilitated the electron transfer between the active center of GOD and electrode. The immobilized GOD showed a direct, reversible redox reaction. Furthermore, the graphene/nano-Au/GOD/GCE was used as a glucose biosensor, displaying a low detection limit of 17 μM (S/N = 3), a high sensitivity of 56.93 μA mM −1 cm −2 , acceptable reproducibility, very good stability, selectivity and anti-interference ability

  9. Application of Elimination Voltammetry to the Study of Electrochemical Reduction and Determination of the Herbicide Metribuzin

    Czech Academy of Sciences Publication Activity Database

    Skopalová, J.; Navrátil, Tomáš

    2007-01-01

    Roč. 52, č. 6 (2007), s. 961-977 ISSN 0009-2223 R&D Projects: GA ČR GA203/07/1195 Institutional research plan: CEZ:AV0Z40400503 Keywords : Elimination voltammetry with linear scan (EVLS) * metribuzin * electrochemical reduction * mercury electrodes Subject RIV: CG - Electrochemistry Impact factor: 0.529, year: 2007

  10. Theoretical Insight into the Trends that Guide the Electrochemical Reduction of Carbon Dioxide to Formic Acid

    DEFF Research Database (Denmark)

    Yoo, J.S.; Christensen, Rune; Vegge, Tejs

    2016-01-01

    The electrochemical reduction (electroreduction) of CO2 to formic acid (HCOOH) and its competing reactions, that is, the electroreduction of CO2 to CO and the hydrogen evolution reaction (HER), on twenty-seven different metal surfaces have been investigated using density functional theory (DFT) c...

  11. Influence of temperature and voltage on electrochemical reduction ...

    Indian Academy of Sciences (India)

    Administrator

    Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, College of Materials Science ... not only waste energy sources, but also influence reduc- tion effect. Thus, the ... was 1⋅2 cm, typical concentrations and reduction time of. GO were 1 ..... Project (12JC1408600) and the National High Technology.

  12. In-Situ XRD during Electrochemical CO Reduction on Cu

    DEFF Research Database (Denmark)

    Bertheussen, Erlend; Scott, Søren Bertelsen; Hogg, Thomas

    2018-01-01

    Almost all-successful CO2 and CO reduction catalysts to higher chain carbons are based on copper1, however various facets and pre-treatments of copper have shown to give a wide variety of product selectivity.2,3 Currently there are many unanswered questions regarding active sites and mechanisms t...

  13. LSFM perovskites as cathodes for the electrochemical reduction of NO

    DEFF Research Database (Denmark)

    Kammer Hansen, K.; Skou, E.M.

    2005-01-01

    Six La0.6Sr0.4Fe1-xMnO3-delta (x=0.0, 0.2, 0.4, 0.6, 0.8, 1.0) perovskite compounds have been synthesised by the citric-acid route. The perovskites have been characterised by powder XRD and are shown to belong to the hexagonal crystal system. The perovskites are also evaluated by TG...... degrees C on a ceria based electrolyte. Only La0.6Sr0.4Fe0.8Mn0.2O3-delta (LSFM020) and La0.6Sr0.4FeO3-delta (LSFM000) show significant activity for the reduction of NO. This can probably be related to the high redox capacity of these compounds. The activity of the perovskites for the reduction of oxygen...... increases systematically with increasing iron content. The selectivity of the perovskites towards the reduction of NO with regard to the reduction of O-2 is highest at the lowest temperatures. (c) 2004 Published by Elsevier B.V....

  14. Mechanisms of electrochemical reduction and oxidation of nitric oxide

    NARCIS (Netherlands)

    Vooys, de A.C.A.; Beltramo, G.L.; Riet, van B.; Veen, van J.A.R.; Koper, M.T.M.

    2004-01-01

    A summary is given of recent work on the reactivity of nitric oxide on various metal electrodes. The significant differences between the reactivity of adsorbed NO and NO in solution are pointed out, both for the reduction and the oxidation reaction(s). Whereas adsorbed NO can be reduced only to

  15. A highly selective copper-indium bimetallic electrocatalyst for the electrochemical reduction of aqueous CO2to CO

    KAUST Repository

    Rasul, Shahid; Anjum, Dalaver H.; Jedidi, Abdesslem; Minenkov, Yury; Cavallo, Luigi; Takanabe, Kazuhiro

    2014-01-01

    The challenge in the electrochemical reduction of aqueous carbon dioxide is in designing a highly selective, energy-efficient, and non-precious-metal electrocatalyst that minimizes the competitive reduction of proton to form hydrogen during aqueous

  16. Spinels as cathodes for the electrochemical reduction of O2 and NO

    DEFF Research Database (Denmark)

    Simonsen, Vibe Louise Ernlund; Find, D.; Lilliedal, M.

    2007-01-01

    the largest difference in activity between reduction of oxygen and the reduction of nitric oxide, the activity being highest for the reduction of nitric oxide. The material is probably not stable when polarised cathodically. However it seems that the electrode material can be regenerated upon oxidation. NiFe2......Spinels were synthesised and investigated as electro-catalyst for the electrochemical reduction of oxygen and nitric oxide using cyclic voltammetry and cone shaped electrodes. The following four spinels were investigated; CoFe2O4, NiFe2O4, CuFe2O4 and Co3O4. The composition CuFe2O4 revealed......O4 is also more active for the reduction of nitric oxide than for the reduction of oxygen, whereas the cobalt containing spinels have a higher activity for the reduction of oxygen than for the reduction of nitric oxide....

  17. Mineralization of 2-chlorophenol by sequential electrochemical reductive dechlorination and biological processes

    Energy Technology Data Exchange (ETDEWEB)

    Arellano-González, Miguel Ángel; González, Ignacio [Universidad Autónoma Metropolitana-Iztapalapa, Departamento de Química, Av. San Rafael Atlixco No. 186, Col. Vicentina, 09340 Mexico D.F. (Mexico); Texier, Anne-Claire, E-mail: actx@xanum.uam.mx [Universidad Autónoma Metropolitana-Iztapalapa, Departamento de Biotecnología, Av. San Rafael Atlixco No. 186, Col. Vicentina, 09340 Mexico, D.F. (Mexico)

    2016-08-15

    Highlights: • Dechlorination of 2-chlorophenol to phenol was 100% efficient on Pd-Ni/Ti electrode. • An ECCOCEL reactor was efficient and selective to obtain phenol from 2-chlorophenol. • Phenol was totally mineralized in a coupled denitrifying biorreactor. • Global time of 2-chlorophenol mineralization in the combined system was 7.5 h. - Abstract: In this work, a novel approach was applied to obtain the mineralization of 2-chlorophenol (2-CP) in an electrochemical-biological combined system where an electrocatalytic dehydrogenation process (reductive dechlorination) was coupled to a biological denitrification process. Reductive dechlorination of 2-CP was conducted in an ECCOCEL-type reactor on a Pd-Ni/Ti electrode at a potential of −0.40 V vs Ag/AgCl{sub (s)}/KCl{sub (sat)}, achieving 100 percent transformation of 2-CP into phenol. The electrochemically pretreated effluent was fed to a rotating cylinder denitrifying bioreactor where the totality of phenol was mineralized by denitrification, obtaining CO{sub 2} and N{sub 2} as the end products. The total time required for 2-CP mineralization in the combined electrochemical-biological process was 7.5 h. This value is close to those previously reported for electrochemical and advanced oxidation processes but in this case, an efficient process was obtained without accumulation of by-products or generation of excessive energy costs due to the selective electrochemical pretreatment. This study showed that the use of electrochemical reductive pretreatment combined with biological processes could be a promising technology for the removal of recalcitrant molecules, such as chlorophenols, from wastewaters by more efficient, rapid, and environmentally friendly processes.

  18. Electrochemical depassivation of zero-valent iron for trichloroethene reduction

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Liang [Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences, Beijing 100083 (China); Jin, Song [Department of Civil and Architectural Engineering, University of Wyoming, Laramie, WY 82071 (United States); Advanced Environmental Technologies, LLC, Fort Collins, CO 80524 (United States); Fallgren, Paul H. [Department of Civil Engineering, University of Colorado Denver, Denver, CO 80217 (United States); Swoboda-Colberg, Norbert G. [Department of Geology and Geophysics, University of Wyoming, Laramie, WY 82071 (United States); Liu, Fei [Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences, Beijing 100083 (China); Colberg, Patricia J.S., E-mail: pczoo@uwyo.edu [Department of Civil and Architectural Engineering, University of Wyoming, Laramie, WY 82071 (United States)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Electrical current may depassivate ZVI and restore its capacity to reduce TCE. Black-Right-Pointing-Pointer Electrical current may defer or even prevent surface oxidation of ZVI. Black-Right-Pointing-Pointer Electrical current coupled with ZVI achieves greater TCE reduction than ZVI alone. - Abstract: Permeable reactive barriers (PRBs) composed of zero-valent iron (ZVI) are susceptible to passivation, resulting in substantially decreased rates of chlorinated solvent removal over time. In this study, the application of low electrical direct current (DC) to restore the reductive capacity of passivated ZVI was examined. Electrical current was applied to a laboratory column reactor filled with a mixture of pre-passivated ZVI and sand. Variable voltage settings (0-12 V) were applied through two stainless steel electrodes placed at the ends of the reactor. While only partial restoration of the reductive capacity of the passivated ZVI was observed, higher rates of trichloroethene (TCE) removal were always obtained when current was applied, and the rates of TCE removal were roughly proportional to the voltage level. Although differences were observed between the rates and extent of TCE removal within the column, it is noteworthy that TCE removal was not restricted to that region of the column where the electrons entered (i.e., at the cathode). While complete 'depassivation' of ZVI may be difficult to achieve in practice, the application of DC demonstrated observable restoration of reactivity of the passivated ZVI. This study provides evidence that this approach may significantly extend the life of a ZVI PRB.

  19. Electrochemical depassivation of zero-valent iron for trichloroethene reduction

    International Nuclear Information System (INIS)

    Chen, Liang; Jin, Song; Fallgren, Paul H.; Swoboda-Colberg, Norbert G.; Liu, Fei; Colberg, Patricia J.S.

    2012-01-01

    Highlights: ► Electrical current may depassivate ZVI and restore its capacity to reduce TCE. ► Electrical current may defer or even prevent surface oxidation of ZVI. ► Electrical current coupled with ZVI achieves greater TCE reduction than ZVI alone. - Abstract: Permeable reactive barriers (PRBs) composed of zero-valent iron (ZVI) are susceptible to passivation, resulting in substantially decreased rates of chlorinated solvent removal over time. In this study, the application of low electrical direct current (DC) to restore the reductive capacity of passivated ZVI was examined. Electrical current was applied to a laboratory column reactor filled with a mixture of pre-passivated ZVI and sand. Variable voltage settings (0–12 V) were applied through two stainless steel electrodes placed at the ends of the reactor. While only partial restoration of the reductive capacity of the passivated ZVI was observed, higher rates of trichloroethene (TCE) removal were always obtained when current was applied, and the rates of TCE removal were roughly proportional to the voltage level. Although differences were observed between the rates and extent of TCE removal within the column, it is noteworthy that TCE removal was not restricted to that region of the column where the electrons entered (i.e., at the cathode). While complete “depassivation” of ZVI may be difficult to achieve in practice, the application of DC demonstrated observable restoration of reactivity of the passivated ZVI. This study provides evidence that this approach may significantly extend the life of a ZVI PRB.

  20. Optimization of conditions to produce nitrous gases by electrochemical reduction of nitric acid

    International Nuclear Information System (INIS)

    Lemaire, M.; CEA Centre d'Etudes de la Vallee du Rhone, 30 -Marcoule

    1996-01-01

    Gaseous nitrogen oxides (NO and NO 2 ) involved as oxidizing agents in nuclear fuel reprocessing can be an produced by electrochemical reduction of nitric acid. This could be an interesting alternative to the usual process because no wastes are generated. Voltammetric studies on a platinum electrode show that two reduction potential regions are observed in concentrated nitric acid solutions, between 0.05 V S HE and 0.3 V S HE and O.5 V S HE and 1 V S HE. The highest potential region reduction mechanism was studies by: classical micro-electrolysis methods; macro-electrolysis methods; infra-red spectroscopy couplet to electrochemistry. It was determined that the origin of nitric acid reduction is the electrochemical reduction of nitrous acid in nitric oxide which chemically reduces nitric acid. This reaction produces nitrous acid back which indicate an auto-catalytic behaviour of nitric acid reduction mechanism. Nitrogen dioxide evolution during nitric acid reduction can also be explained by an other chemical reaction. In the potential value of platinum electrode is above 0.8 V S HE, products of the indirect nitric acid reduction are nitrous acid, nitrogen oxide and nitrogen dioxide. Below this value nitric oxide can be reduced in nitrous oxide. Thus the potential value is the most important parameter for the nitrogen oxides production selectivity. However, owing to the auto-catalytic character of the reduction mechanism, potential value can be controlled during intentiostatic industrial electrolysis. (author)

  1. Optimization of the nitrous vapors experimental conditions production by nitric acid electrochemical reduction

    International Nuclear Information System (INIS)

    Lemaire, M.

    1996-01-01

    Gaseous nitrogen oxides (NO and NO 2 ) involved as oxidizing agents in nuclear fuel reprocessing can be produced by electrochemical reduction of nitric acid. This is an interesting alternative to the existing process because no wastes are generated. voltammetric studies on a platinum electrode show that two reduction potential regions are observed in concentrated nitric acid solutions, between 0,05 V SHE and between 0,5 V SHE and 1 V SHE . The highest potential region reduction mechanism was studied by: classical micro-electrolysis methods, macro-electrolysis methods, infrared spectroscopy coupled to electrochemistry. It was determined that the origin of nitric acid reduction is the electrochemical reduction of nitrous acid in nitric oxide which chemically reduces nitric acid. This reaction produces nitrous acid back which indicate an auto-catalytic behaviour of nitric acid reduction mechanism. Nitrogen dioxide evolution during nitric reduction can also explained by an other chemical reaction. If the potential value of platinum electrode is above 0,8 V SHE , products of the indirect nitric acid reduction are nitrous acid, nitrogen oxide and nitrogen dioxide. Below this value nitric oxide can be reduced in nitrous oxide. Thus the potential value is the most important parameter for the nitrogen oxides production selectivity. However, owing to the auto-catalytic character of the reduction mechanism, potential value can be controlled during intentiostatic industrial electrolysis. (author)

  2. Electrochemical reduction of cerium oxides in molten salts

    International Nuclear Information System (INIS)

    Claux, B.; Serp, J.; Fouletier, J.

    2011-01-01

    This brief article describes a pyrochemical process that is used by CEA to turn actinide oxides into metal actinides. This process is applied to Cerium oxides (CeO 2 ) that simulate actinide oxides well chemically as cerium belongs to the lanthanide family. The process is in fact an electrolysis of cerium oxide in a bath of molten calcium chloride salt whose temperature is between 800 and 900 Celsius degrees. At those temperatures calcium chloride becomes a ionic liquid (Ca 2+ and Cl - ) that is a good electrical conductor and is particularly well-adapted as solvent to an electrolytic process. The electrolysis current allows the transformation of solvent Ca 2+ ions into metal calcium which, in turn, can reduce cerium oxide into metal cerium through chromatically. Experimental data shows the reduction of up to 90% of 10 g samples of CeO 2 in a 6 hour long electrolysis while the best reduction rate ever known was 80% so far. This result is all the more promising that cerium oxides are more difficult to reduce than actinide oxides from the thermodynamical perspective

  3. Electrochemical functionalization of glassy carbon electrode by reduction of diazonium cations in protic ionic liquid

    International Nuclear Information System (INIS)

    Shul, Galyna; Ruiz, Carlos Alberto Castro; Rochefort, Dominic; Brooksby, Paula A.; Bélanger, Daniel

    2013-01-01

    Protic ionic liquid based on 2-methoxypyridine and trifluoroacetic acid was used as electrolyte for the functionalization of a glassy carbon electrode surface by electrochemical reduction of in situ generated 4-chlorobenzene diazonium and 4-nitrobenzene diazonium cations. The diazonium cations were synthesized in an electrochemical cell by reaction of the corresponding amines with NaNO 2 dissolved in protic ionic liquid. The resulting electrografted organic layers exhibit similar properties to those layers obtained by the derivatization from isolated diazonium salts dissolved in protic ionic liquid. Functionalized glassy carbon electrode surfaces were characterized by cyclic voltammetry, Fourier transform infrared and X-ray photoelectron spectroscopies. Atomic force microscopy thickness measurements revealed that, in our experimental conditions, the use of protic ionic liquid led to the formation of film with a thickness of about 1.5 nm. It is also demonstrated that the nitrobenzene chemisorbed on glassy carbon electrode or dissolved in protic ionic liquid undergoes electrochemical conversion to hydroxyaminobenzene

  4. Influence of BaO in perovskite electrodes for the electrochemical reduction of NOx

    DEFF Research Database (Denmark)

    Simonsen, Vibe Louise Ernlund; Johnsen, M.M.; Kammer Hansen, Kent

    2007-01-01

    Using the point electrode method, the effect of BaO on electrochemical reduction of NO (x) was investigated using the perovskites La0.85Sr0.15MnO3 (LSM15) and La0.85Sr0.15CoO3 (LSCo15) as electrode materials. The experiments were carried out in the temperature range 400-600 degrees C in 1% NO and...... favored oxygen reduction compared to reduction of nitric oxide. The LSCO15 electrode containing BaO reacted to form a K2NiF4-structure and was not tested further....

  5. Simple colorimetric assay for dehalogenation reactivity of nanoscale zero-valent iron using 4-chlorophenol

    DEFF Research Database (Denmark)

    Hwang, Yuhoon; Mines, Paul D.; Jakobsen, Mogens Havsteen

    2015-01-01

    Despite the wide application of nanoscale zero valent iron (nZVI) for the treatment of a plethora of pollutants through reductive reactions, reactivity evaluation of nZVI towards dehalogenation has not been standardized. In this light, it was desired to develop a simple colorimetric assay...

  6. Formation of mixed organic layers by stepwise electrochemical reduction of diazonium compounds.

    Science.gov (United States)

    Santos, Luis; Ghilane, Jalal; Lacroix, Jean Christophe

    2012-03-28

    This work describes the formation of a mixed organic layer covalently attached to a carbon electrode. The strategy adopted is based on two successive electrochemical reductions of diazonium salts. First, bithiophene phenyl (BTB) diazonium salt is reduced using host/guest complexation in a water/cyclodextrin (β-CD) solution. The resulting layer consists of grafted BTB oligomers and cyclodextrin that can be removed from the surface. The electrochemical response of several outer-sphere redox probes on such BTB/CD electrodes is close to that of a diode, thanks to the easily p-dopable oligo(BTB) moieties. When CD is removed from the surface, pinholes are created and this diode like behavior is lost. Following this, nitrophenyl (NP) diazonium is reduced to graft a second component. Electrochemical study shows that upon grafting NP insulating moieties, the diode-like behavior of the layer is restored which demonstrates that NP is grafted predominately in the empty spaces generated by β-CD desorption. As a result, a mixed BTB/NP organic layer covalently attached to a carbon electrode is obtained using a stepwise electrochemical reduction of two diazonium compounds.

  7. Electrochemical reduction of trinitrotoluene on core-shell tin-carbon electrodes

    International Nuclear Information System (INIS)

    Grigoriants, Irena; Markovsky, Boris; Persky, Rachel; Perelshtein, Ilana; Gedanken, Aharon; Aurbach, Doron; Filanovsky, Boris; Bourenko, Tatiana; Felner, Israel

    2008-01-01

    In this work, we studied the electrochemical process of 2,4,6-trinitrotoluene (TNT) reduction on a new type of electrodes based on a core-shell tin-carbon Sn(C) structure. The Sn(C) composite was prepared from the precursor tetramethyl-tin Sn(CH 3 ) 4 , and the product contained a core of submicron-sized tin particles uniformly enveloped with carbon shells. Cyclic voltammograms of Sn(C) electrodes in aqueous sodium chloride solutions containing TNT show three well-pronounced reduction waves in the potential range of -0.50 to -0.80 V (vs. an Ag/AgCl/Cl - reference electrode) that correspond to the multistep process of TNT reduction. Electrodes containing Sn(C) particles annealed at 800 deg. C under argon develop higher voltammetric currents of TNT reduction (comparing to the as-prepared tin-carbon material) due to stabilization of the carbon shell. It is suggested that the reduction of TNT on core-shell tin-carbon electrodes is an electrochemically irreversible process. A partial oxidation of the TNT reduction products occurred at around -0.20 V. The electrochemical response of TNT reduction shows that it is not controlled by the diffusion of the active species to/from the electrodes but rather by interfacial charge transfer and possible adsorption phenomena. The tin-carbon electrodes demonstrate significantly stable behavior for TNT reduction in NaCl solutions and provide sufficient reproducibility with no surface fouling through prolonged voltammetric cycling. It is presumed that tin nanoparticles, which constitute the core, are electrochemically inactive towards TNT reduction, but Sn or SnO 2 formed on the electrodes during TNT reduction may participate in this reaction as catalysts or carbon-modifying agents. The nitro-groups of TNT can be reduced irreversibly (via two possible paths) by three six-electron transfers, to 2,4,6-triaminotoluene, as follows from mass-spectrometric studies. The tin-carbon electrodes described herein may serve as amperometric sensors

  8. Electrochemical preparation of iron cuboid nanoparticles and their catalytic properties for nitrite reduction

    International Nuclear Information System (INIS)

    Chen Yanxin; Chen Shengpei; Chen Qingsong; Zhou Zhiyou; Sun Shigang

    2008-01-01

    Iron cuboid nanoparticles supported on glassy carbon (denoted nm-Fe/GC) were prepared by electrochemical deposition under cyclic voltammetric (CV) conditions. The structure and composition of the Fe nanomaterials were characterized by scanning electron microscopy (SEM), selected area electron diffraction (SAED), X-ray diffraction (XRD) and energy dispersive X-ray analysis (EDX). The results demonstrated that the Fe cuboid nanoparticles are dispersed discretely on GC substrate with an average size ca. 171 nm, and confirmed that the electrochemical synthesized nanocubes are single crystals of pure Fe. The catalytic properties of the Fe cuboid nanoparticles towards nitrite electroreduction were investigated, and enhanced electrocatalytic activity of the Fe nanocubes has been determined. In comparison with the data obtained on a bulk-Fe electrode, the onset potential of nitrite reduction on nm-Fe/GC is positively sifted by 100 mV, and the steady reduction current density is enhanced about 2.4-3.2 times

  9. Electrochemical reduction study of Eu3+ in perchlorid media by cyclic chronopotentiometry

    International Nuclear Information System (INIS)

    Brotto, M.E.; Rabockai, T.

    1990-01-01

    The electrochemical reduction of Eu 3+ in perchloric media was studied by means of cyclic chronopotentiometry. It is shown that the charge transfer reaction is followed by a chemical reaction in which Eu 2+ ion reoxydized to the trivalent ion (catalytic reaction scheme). The mean value of the homogeneous reaction rate constant is (2,43 +- 0,24) x 10 -2 dm 3 .mol -1 . (author)

  10. Electrochemical promotion of NO reduction by hydrogen on a platinum/polybenzimidazole catalyst

    DEFF Research Database (Denmark)

    Petrushina, Irina; Bandur, Viktor; Cappeln, Frederik Vilhelm

    2003-01-01

    The electrochemical promotion of catalytic NO reduction by hydrogen was studied using a (NO, H-2, Ar), Pt polybenzimidazole (PBI)-H3PO4\\Pt, (H-2, Ar) fuel cell at 135degreesC. A mixture of NO/H-2/Ar was used as the working mixture at one electrode and a mixture of H-2/Ar was used as reference and...... at the negative polarization can be attributed to the electrochemical production of the promoters. At low gas flow rates, a charge-induced change of the strength of chemisorptive bonds can take place.......The electrochemical promotion of catalytic NO reduction by hydrogen was studied using a (NO, H-2, Ar), Pt polybenzimidazole (PBI)-H3PO4\\Pt, (H-2, Ar) fuel cell at 135degreesC. A mixture of NO/H-2/Ar was used as the working mixture at one electrode and a mixture of H-2/Ar was used as reference...... and counter gas at the other electrode. Products of NO reduction (N-2 and H2O) were analyzed by an on-line mass spectrometer. At high NO+H-2+Ar flow rate (17 mL/min; 17 and 354 mL/min, respectively, at atmospheric pressure) the maximum rate enhancement ratio was 4.65. At low NO+H-2+Ar flow rate (17 mL/min; 17...

  11. Thermodynamic and achievable efficiencies for solar-driven electrochemical reduction of carbon dioxide to transportation fuels

    Science.gov (United States)

    Singh, Meenesh R.; Clark, Ezra L.; Bell, Alexis T.

    2015-11-01

    Thermodynamic, achievable, and realistic efficiency limits of solar-driven electrochemical conversion of water and carbon dioxide to fuels are investigated as functions of light-absorber composition and configuration, and catalyst composition. The maximum thermodynamic efficiency at 1-sun illumination for adiabatic electrochemical synthesis of various solar fuels is in the range of 32-42%. Single-, double-, and triple-junction light absorbers are found to be optimal for electrochemical load ranges of 0-0.9 V, 0.9-1.95 V, and 1.95-3.5 V, respectively. Achievable solar-to-fuel (STF) efficiencies are determined using ideal double- and triple-junction light absorbers and the electrochemical load curves for CO2 reduction on silver and copper cathodes, and water oxidation kinetics over iridium oxide. The maximum achievable STF efficiencies for synthesis gas (H2 and CO) and Hythane (H2 and CH4) are 18.4% and 20.3%, respectively. Whereas the realistic STF efficiency of photoelectrochemical cells (PECs) can be as low as 0.8%, tandem PECs and photovoltaic (PV)-electrolyzers can operate at 7.2% under identical operating conditions. We show that the composition and energy content of solar fuels can also be adjusted by tuning the band-gaps of triple-junction light absorbers and/or the ratio of catalyst-to-PV area, and that the synthesis of liquid products and C2H4 have high profitability indices.

  12. Thermodynamic and achievable efficiencies for solar-driven electrochemical reduction of carbon dioxide to transportation fuels.

    Science.gov (United States)

    Singh, Meenesh R; Clark, Ezra L; Bell, Alexis T

    2015-11-10

    Thermodynamic, achievable, and realistic efficiency limits of solar-driven electrochemical conversion of water and carbon dioxide to fuels are investigated as functions of light-absorber composition and configuration, and catalyst composition. The maximum thermodynamic efficiency at 1-sun illumination for adiabatic electrochemical synthesis of various solar fuels is in the range of 32-42%. Single-, double-, and triple-junction light absorbers are found to be optimal for electrochemical load ranges of 0-0.9 V, 0.9-1.95 V, and 1.95-3.5 V, respectively. Achievable solar-to-fuel (STF) efficiencies are determined using ideal double- and triple-junction light absorbers and the electrochemical load curves for CO2 reduction on silver and copper cathodes, and water oxidation kinetics over iridium oxide. The maximum achievable STF efficiencies for synthesis gas (H2 and CO) and Hythane (H2 and CH4) are 18.4% and 20.3%, respectively. Whereas the realistic STF efficiency of photoelectrochemical cells (PECs) can be as low as 0.8%, tandem PECs and photovoltaic (PV)-electrolyzers can operate at 7.2% under identical operating conditions. We show that the composition and energy content of solar fuels can also be adjusted by tuning the band-gaps of triple-junction light absorbers and/or the ratio of catalyst-to-PV area, and that the synthesis of liquid products and C2H4 have high profitability indices.

  13. Thermodynamic and achievable efficiencies for solar-driven electrochemical reduction of carbon dioxide to transportation fuels

    Science.gov (United States)

    Singh, Meenesh R.; Clark, Ezra L.; Bell, Alexis T.

    2015-01-01

    Thermodynamic, achievable, and realistic efficiency limits of solar-driven electrochemical conversion of water and carbon dioxide to fuels are investigated as functions of light-absorber composition and configuration, and catalyst composition. The maximum thermodynamic efficiency at 1-sun illumination for adiabatic electrochemical synthesis of various solar fuels is in the range of 32–42%. Single-, double-, and triple-junction light absorbers are found to be optimal for electrochemical load ranges of 0–0.9 V, 0.9–1.95 V, and 1.95–3.5 V, respectively. Achievable solar-to-fuel (STF) efficiencies are determined using ideal double- and triple-junction light absorbers and the electrochemical load curves for CO2 reduction on silver and copper cathodes, and water oxidation kinetics over iridium oxide. The maximum achievable STF efficiencies for synthesis gas (H2 and CO) and Hythane (H2 and CH4) are 18.4% and 20.3%, respectively. Whereas the realistic STF efficiency of photoelectrochemical cells (PECs) can be as low as 0.8%, tandem PECs and photovoltaic (PV)-electrolyzers can operate at 7.2% under identical operating conditions. We show that the composition and energy content of solar fuels can also be adjusted by tuning the band-gaps of triple-junction light absorbers and/or the ratio of catalyst-to-PV area, and that the synthesis of liquid products and C2H4 have high profitability indices. PMID:26504215

  14. Direct electrochemical reduction of solid uranium oxide in molten fluoride salts

    Science.gov (United States)

    Gibilaro, Mathieu; Cassayre, Laurent; Lemoine, Olivier; Massot, Laurent; Dugne, Olivier; Malmbeck, Rikard; Chamelot, Pierre

    2011-07-01

    The direct electrochemical reduction of UO 2 solid pellets was carried out in LiF-CaF 2 (+2 mass.% Li 2O) at 850 °C. An inert gold anode was used instead of the usual reactive sacrificial carbon anode. In this case, oxidation of oxide ions present in the melt yields O 2 gas evolution on the anode. Electrochemical characterisations of UO 2 pellets were performed by linear sweep voltammetry at 10 mV/s and reduction waves associated to oxide direct reduction were observed at a potential 150 mV more positive in comparison to the solvent reduction. Subsequent, galvanostatic electrolyses runs were carried out and products were characterised by SEM-EDX, EPMA/WDS, XRD and microhardness measurements. In one of the runs, uranium oxide was partially reduced and three phases were observed: nonreduced UO 2 in the centre, pure metallic uranium on the external layer and an intermediate phase representing the initial stage of reduction taking place at the grain boundaries. In another run, the UO 2 sample was fully reduced. Due to oxygen removal, the U matrix had a typical coral-like structure which is characteristic of the pattern observed after the electroreduction of solid oxides.

  15. Electrochemical characterization of glassy carbon electrode modified with 1,10-phenanthroline groups by two pathways: reduction of the corresponding diazonium ions and reduction of phenanthroline

    International Nuclear Information System (INIS)

    Shul, Galyna; Weissmann, Martin; Bélanger, Daniel

    2015-01-01

    The electrochemical behaviour of 1,10-phenanthroline molecules immobilized on a glassy carbon electrode surface by electrochemical reduction of the corresponding in-situ generated diazonium ions in an aqueous solution was investigated. Firstly, the derivatization of glassy carbon electrode was confirmed by the presence of the barrier effect in the solution of a redox probe. Secondly, atomic force microscopy measurements revealed the deposition of thin (< 2 nm) uniform 1,10-phenanthroline film on the surface of pyrolyzed photoresist film electrode. Thirdly, the initially electrochemically inactive grafted organic film became electroactive after being subjected to electrochemical reduction and oxidation. Fourthly, the electrochemical behaviour of phenanthroline modified electrode by electrochemical reduction of the corresponding diazonium cations was found to be similar to that of electrode modified by electrochemical reduction of only phenanthroline dissolved in an aqueous acid solution. Finally, cyclic voltammetry experiments using various methyl substituted phenanthroline derivatives provided direct evidence that functional groups responsible for the film electroactivity are formed at 5 or/and 6 positions of grafted phenanthroline molecules. On the other hand, a phenanthroline derivative having these positions blocked by methyl groups can also display electroactivity with position 7 being most likely involved in the observed redox process

  16. Perchlorate reduction during electrochemically induced pitting corrosion of zero-valent titanium (ZVT)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chunwoo, E-mail: clee@doosanhydro.com [Department of Research and Development, Doosan Hydro Technology, Inc, Tampa, FL 33619 (United States); Batchelor, Bill [Zachry Department of Civil Engineering, Texas A and M University, College Station, TX 77840 (United States); Park, Sung Hyuk [Environmental and Engineering Research Team, GS Engineering and Construction Research Institute, Youngin, Kyunggi-do 449-831 (Korea, Republic of); Han, Dong Suk; Abdel-Wahab, Ahmed [Chemical Engineering Program, Texas A and M University at Qatar, Education City, Doha, PO Box 23874 (Qatar); Kramer, Timothy A.

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer ZVT is oxidized during electrochemically induced pitting corrosion to produce reactive soluble species. Black-Right-Pointing-Pointer Perchlorate is effectively reduced to chloride by soluble titanium species. Black-Right-Pointing-Pointer Solution pH and surface area of ZVT showed negligible effects on rates of perchlorate reduction. - Abstract: Zero-valent metals and ionic metal species are a popular reagent for the abatement of contaminants in drinking water and groundwater and perchlorate is a contaminant of increasing concern. However, perchlorate degradation using commonly used reductants such as zero-valent metals and soluble reduced metal species is kinetically limited. Titanium in the zero-valent and soluble states has a high thermodynamic potential to reduce perchlorate. Here we show that perchlorate is effectively reduced to chloride by soluble titanium species in a system where the surface oxide film is removed from ZVT and ZVT is oxidized during electrochemically induced pitting corrosion to produce reactive soluble species. The pitting potential of ZVT was measured as 12.77 {+-} 0.04 V (SHE) for a 100 mM solution of perchlorate. The rate of perchlorate reduction was independent of the imposed potential as long as the potential was maintained above the pitting potential, but it was proportional to the applied current. Solution pH and surface area of ZVT electrodes showed negligible effects on rates of perchlorate reduction. Although perchlorate is effectively reduced during electrochemically induced corrosion of ZVT, this process may not be immediately applicable to perchlorate treatment due to the high potentials needed to produce active reductants, the amount of titanium consumed, the inhibition of perchlorate removal by chloride, and oxidation of chloride to chlorine.

  17. Perchlorate reduction during electrochemically induced pitting corrosion of zero-valent titanium (ZVT)

    International Nuclear Information System (INIS)

    Lee, Chunwoo; Batchelor, Bill; Park, Sung Hyuk; Han, Dong Suk; Abdel-Wahab, Ahmed; Kramer, Timothy A.

    2011-01-01

    Highlights: ► ZVT is oxidized during electrochemically induced pitting corrosion to produce reactive soluble species. ► Perchlorate is effectively reduced to chloride by soluble titanium species. ► Solution pH and surface area of ZVT showed negligible effects on rates of perchlorate reduction. - Abstract: Zero-valent metals and ionic metal species are a popular reagent for the abatement of contaminants in drinking water and groundwater and perchlorate is a contaminant of increasing concern. However, perchlorate degradation using commonly used reductants such as zero-valent metals and soluble reduced metal species is kinetically limited. Titanium in the zero-valent and soluble states has a high thermodynamic potential to reduce perchlorate. Here we show that perchlorate is effectively reduced to chloride by soluble titanium species in a system where the surface oxide film is removed from ZVT and ZVT is oxidized during electrochemically induced pitting corrosion to produce reactive soluble species. The pitting potential of ZVT was measured as 12.77 ± 0.04 V (SHE) for a 100 mM solution of perchlorate. The rate of perchlorate reduction was independent of the imposed potential as long as the potential was maintained above the pitting potential, but it was proportional to the applied current. Solution pH and surface area of ZVT electrodes showed negligible effects on rates of perchlorate reduction. Although perchlorate is effectively reduced during electrochemically induced corrosion of ZVT, this process may not be immediately applicable to perchlorate treatment due to the high potentials needed to produce active reductants, the amount of titanium consumed, the inhibition of perchlorate removal by chloride, and oxidation of chloride to chlorine.

  18. Electrochemical reduction behavior of U3O8 powder in a LiCl molten salt

    International Nuclear Information System (INIS)

    Jeong, Sang Mun; Shin, Ho-Sup; Hong, Sun-Seok; Hur, Jin-Mok; Do, Jae Bum; Lee, Han Soo

    2010-01-01

    The reduction path of the U 3 O 8 powder vol-oxidized at 1200 deg. C has been determined by a series of electrochemical experiments in a 1 wt.% Li 2 O/LiCl molten salt. Various reaction intermediates are observed by during electrolysis of U 3 O 8 . The formation of the metallic uranium is caused from two different reduction paths, a direct reduction of uranium oxide and an electro-lithiothermic reduction. As the uranium oxide is converted to the metallic uranium, the lithium metal is more actively formed in the cathode basket. The reducibility of the rare earth oxides with the U 3 O 8 powder has been tested by constant voltage electrolysis. The results suggest the advanced vol-oxidation could lead to the enhancement in the reducibility of the rare earth fission products.

  19. Controlling formation of single-molecule junctions by electrochemical reduction of diazonium terminal groups.

    Science.gov (United States)

    Hines, Thomas; Díez-Pérez, Ismael; Nakamura, Hisao; Shimazaki, Tomomi; Asai, Yoshihiro; Tao, Nongjian

    2013-03-06

    We report controlling the formation of single-molecule junctions by means of electrochemically reducing two axialdiazonium terminal groups on a molecule, thereby producing direct Au-C covalent bonds in situ between the molecule and gold electrodes. We report a yield enhancement in molecular junction formation as the electrochemical potential of both junction electrodes approach the reduction potential of the diazonium terminal groups. Step length analysis shows that the molecular junction is significantly more stable, and can be pulled over a longer distance than a comparable junction created with amine anchoring bonds. The stability of the junction is explained by the calculated lower binding energy associated with the direct Au-C bond compared with the Au-N bond.

  20. Formation of Hydrogen Peroxide by Electrochemical Reduction of Molecular Oxygen using Luminol Chemiluminescence

    International Nuclear Information System (INIS)

    Rana, Sohail

    2005-01-01

    Formation of hydrogen peroxide by electrochemical reduction of molecular oxygen was examined by measuring luminol chemiluminescence and absorption spectrum using flow-injection method. Ferryl porphyrin is widely accepted as responsible species to stimulate the emission in hydrogen peroxide/ iron porphyrin/ luminol system. Emission was observed under cathodic potentials (0.05V at pH2.0 and -0.3V at pH11.0) by the electrochemical reduction of aerated electrolytes solution but emission was observed at anodic potentials. Iron porphyrin solution was added at down stream of the working electrode and was essential for the emission. Removal of the dissolved molecular oxygen resulted in the decrease of emission intensity by more than 70%. In order to examine the life time of reduced active species, delay tubes were introduced between working electrode Fe TMPyP inlet. Experimental results suggested the active species were stable for quite a long period. The emission was quenched considerably (>90%) when hydroperoxy was added at the down stream of working electrode whereas the Superoxide dismutase (SOD) had little effect and mannitol had no effect. The spectra at reduction potential under aerated condition were shifted to the longer wavelength (>430nm) compared to the original spectrum of Fe TMPyP (422nm), indicating that the ferryl species were mixed to some extent. These observations lead to the conclusion that hydrogen peroxide was produced first by electrochemical reduction of molecular oxygen which then converted Fe TMPyP into O=FeTMPyP to activate luminol. Comparing emission intensities with the reference experiments, the current efficiencies for the formation of hydrogen peroxide were estimated as about 30-65% in all over the pH range used. (author)

  1. Nitrogen-doped diamond electrode shows high performance for electrochemical reduction of nitrobenzene

    International Nuclear Information System (INIS)

    Zhang, Qing; Liu, Yanming; Chen, Shuo; Quan, Xie; Yu, Hongtao

    2014-01-01

    Highlights: • A metal-free nitrogen-doped diamond electrode was synthesized. • The electrode exhibits high electrocatalytic activity for nitrobenzene reduction. • The electrode exhibits high selectivity for reduction of nitrobenzene to aniline. • High energy efficiency was obtained compared with graphite electrode. -- Abstract: Effective electrode materials are critical to electrochemical reduction, which is a promising method to pre-treat anti-oxidative and bio-refractory wastewater. Herein, nitrogen-doped diamond (NDD) electrodes that possess superior electrocatalytic properties for reduction were fabricated by microwave-plasma-enhanced chemical vapor deposition technology. Nitrobenzene (NB) was chosen as the probe compound to investigate the material's electro-reduction activity. The effects of potential, electrolyte concentration and pH on NB reduction and aniline (AN) formation efficiencies were studied. NDD exhibited high electrocatalytic activity and selectivity for reduction of NB to AN. The NB removal efficiency and AN formation efficiency were 96.5% and 88.4% under optimal conditions, respectively; these values were 1.13 and 3.38 times higher than those of graphite electrodes. Coulombic efficiencies for NB removal and AN formation were 27.7% and 26.1%, respectively; these values were 4.70 and 16.6 times higher than those of graphite electrodes under identical conditions. LC–MS analysis revealed that the dominant reduction pathway on the NDD electrode was NB to phenylhydroxylamine (PHA) to AN

  2. Rational Design of a Hierarchical Tin Dendrite Electrode for Efficient Electrochemical Reduction of CO2.

    Science.gov (United States)

    Won, Da Hye; Choi, Chang Hyuck; Chung, Jaehoon; Chung, Min Wook; Kim, Eun-Hee; Woo, Seong Ihl

    2015-09-21

    Catalysis is a key technology for the synthesis of renewable fuels through electrochemical reduction of CO2 . However, successful CO2 reduction still suffers from the lack of affordable catalyst design and understanding the factors governing catalysis. Herein, we demonstrate that the CO2 conversion selectivity on Sn (or SnOx /Sn) electrodes is correlated to the native oxygen content at the subsurface. Electrochemical analyses show that the reduced Sn electrode with abundant oxygen species effectively stabilizes a CO2 (.-) intermediate rather than the clean Sn surface, and consequently results in enhanced formate production in the CO2 reduction. Based on this design strategy, a hierarchical Sn dendrite electrode with high oxygen content, consisting of a multi-branched conifer-like structure with an enlarged surface area, was synthesized. The electrode exhibits a superior formate production rate (228.6 μmol h(-1)  cm(-2) ) at -1.36 VRHE without any considerable catalytic degradation over 18 h of operation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Kinetics of oxygen reduction reaction at electrochemically fabricated tin-palladium bimetallic electrocatalyst in acidic media

    Energy Technology Data Exchange (ETDEWEB)

    Miah, Md. Rezwan, E-mail: mrmche@yahoo.co [Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Mail Box G1-5, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502 (Japan); Masud, Jahangir [Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Mail Box G1-5, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502 (Japan); Ohsaka, Takeo, E-mail: ohsaka@echem.titech.ac.j [Department of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Mail Box G1-5, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502 (Japan)

    2010-12-15

    In the present article, oxygen reduction reaction (ORR) at electrochemically fabricated tin-palladium (Sn-Pd) bimetallic electrocatalyst-modified glassy carbon (GC) electrode (Sn-Pd/GC electrode) in acidic media is addressed. Hydrodynamic voltammetric measurements were employed with a view to evaluating various kinetic parameters of the ORR at the Sn-Pd/GC electrode. The obtained results obviously demonstrated that the Sn-Pd bimetallic electrocatalyt substantially promoted the activity of the GC electrode and drove the ORR through an exclusive one-step four-electron pathway forming H{sub 2}O as the final product.

  4. Kinetics of oxygen reduction reaction at electrochemically fabricated tin-palladium bimetallic electrocatalyst in acidic media

    International Nuclear Information System (INIS)

    Miah, Md. Rezwan; Masud, Jahangir; Ohsaka, Takeo

    2010-01-01

    In the present article, oxygen reduction reaction (ORR) at electrochemically fabricated tin-palladium (Sn-Pd) bimetallic electrocatalyst-modified glassy carbon (GC) electrode (Sn-Pd/GC electrode) in acidic media is addressed. Hydrodynamic voltammetric measurements were employed with a view to evaluating various kinetic parameters of the ORR at the Sn-Pd/GC electrode. The obtained results obviously demonstrated that the Sn-Pd bimetallic electrocatalyt substantially promoted the activity of the GC electrode and drove the ORR through an exclusive one-step four-electron pathway forming H 2 O as the final product.

  5. Metal-Organic-Framework-Mediated Nitrogen-Doped Carbon for CO2 Electrochemical Reduction

    KAUST Repository

    Wang, Riming; Sun, Xiaohui; Ould-Chikh, Samy; Osadchii, Dmitrii; Bai, Fan; Kapteijn, Freek; Gascon, Jorge

    2018-01-01

    A nitrogen-doped carbon was synthesized through the pyrolysis of the well-known metal-organic framework ZIF-8, followed by a subsequent acid treatment, and has been applied as a catalyst in the electrochemical reduction of carbon dioxide. The resulting electrode shows Faradaic efficiencies to carbon monoxide as high as ∼78%, with hydrogen being the only byproduct. The pyrolysis temperature determines the amount and the accessibility of N species in the carbon electrode, in which pyridinic-N and quaternary-N species play key roles in the selective formation of carbon monoxide.

  6. Metal-Organic-Framework-Mediated Nitrogen-Doped Carbon for CO2 Electrochemical Reduction

    KAUST Repository

    Wang, Riming

    2018-04-11

    A nitrogen-doped carbon was synthesized through the pyrolysis of the well-known metal-organic framework ZIF-8, followed by a subsequent acid treatment, and has been applied as a catalyst in the electrochemical reduction of carbon dioxide. The resulting electrode shows Faradaic efficiencies to carbon monoxide as high as ∼78%, with hydrogen being the only byproduct. The pyrolysis temperature determines the amount and the accessibility of N species in the carbon electrode, in which pyridinic-N and quaternary-N species play key roles in the selective formation of carbon monoxide.

  7. Electrochemical study of nitrobenzene reduction using novel Pt nanoparticles/macroporous carbon hybrid nanocomposites

    International Nuclear Information System (INIS)

    Zhang Yufan; Zeng Lijun; Bo Xiangjie; Wang Huan; Guo Liping

    2012-01-01

    Graphical abstract: A one-step microwave-assisted route for rapidly synthesizing Pt nanoparticles ensemble on macroporous carbon hybrid nanocomposites (PNMPC) has been reported. As a novel electrode material, the excellent electrochemical behavior of nitrobenzene was investigated thoroughly at the PNMPC modified glassy carbon electrode. And moreover, the modified electrode was successfully applied to the determination of nitrobenzene in real samples. Highlights: ► One-step microwave-assisted heating synthesis Pt nanoparticles/macroporous carbon hybrid nanocomposites (PNMPC). ► Catalytic rate constant being 3.14 × 10 4 M −1 s −1 for NB in pH 7.0. ► Sensitive electrochemical detection of NB at the PNMPC/Nafion/GC electrode. ► The electrode showing excellent anti-interference ability and good stability for NB. - Abstract: Novel Pt nanoparticles (PN) ensemble on macroporous carbon (MPC) hybrid nanocomposites (PNMPC) were prepared through a rapidly and simple one-step microwave-assisted heating procedure. The obtained PNMPC was characterized by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA) and electrochemical methods. The electrochemical reduction of nitrobenzene (NB) was thoroughly investigated at the PNMPC modified glassy carbon (GC) electrode, and the catalytic rate constant was calculated to be 3.14 × 10 4 M −1 s −1 for NB. A sensitive NB sensor was developed based on the PNMPC/GC electrode, which showed a wide linear range (1–200 μM), low detection limit (50 nM), high sensitivity (6.93 μA μM −1 ), excellent anti-interference ability and good stability. And moreover, the electrode was successfully applied to the determination of NB in real samples.

  8. Thermodynamic and achievable efficiencies for solar-driven electrochemical reduction of carbon dioxide to transportation fuels

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Meenesh R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Joint Center for Artificial Photosynthesis, Material Science Division; Clark, Ezra L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Joint Center for Artificial Photosynthesis, Material Science Division; Univ. of California, Berkeley, CA (United States). Dept. of Chemical & Biomolecular Engineering; Bell, Alexis T. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Joint Center for Artificial Photosynthesis, Material Science Division; Univ. of California, Berkeley, CA (United States). Dept. of Chemical & Biomolecular Engineering

    2015-10-26

    Thermodynamic, achievable, and realistic efficiency limits of solar-driven electrochemical conversion of water and carbon dioxide to fuels are investigated as functions of light-absorber composition and configuration, and catalyst composition. The maximum thermodynamic efficiency at 1-sun illumination for adiabatic electrochemical synthesis of various solar fuels is in the range of 32–42%. Single-, double-, and triple-junction light absorbers are found to be optimal for electrochemical load ranges of 0–0.9 V, 0.9–1.95 V, and 1.95–3.5 V, respectively. Achievable solar-to-fuel (STF) efficiencies are determined using ideal double- and triple-junction light absorbers and the electrochemical load curves for CO2 reduction on silver and copper cathodes, and water oxidation kinetics over iridium oxide. The maximum achievable STF efficiencies for synthesis gas (H2 and CO) and Hythane (H2 and CH4) are 18.4% and 20.3%, respectively. Whereas the realistic STF efficiency of photoelectrochemical cells (PECs) can be as low as 0.8%, tandem PECs and photovoltaic (PV)-electrolyzers can operate at 7.2% under identical operating conditions. Finally, we show that the composition and energy content of solar fuels can also be adjusted by tuning the band-gaps of triple-junction light absorbers and/or the ratio of catalyst-to-PV area, and that the synthesis of liquid products and C2H4 have high profitability indices.

  9. Enzymatic Halogenation and Dehalogenation Reactions: Pervasive and Mechanistically Diverse.

    Science.gov (United States)

    Agarwal, Vinayak; Miles, Zachary D; Winter, Jaclyn M; Eustáquio, Alessandra S; El Gamal, Abrahim A; Moore, Bradley S

    2017-04-26

    Naturally produced halogenated compounds are ubiquitous across all domains of life where they perform a multitude of biological functions and adopt a diversity of chemical structures. Accordingly, a diverse collection of enzyme catalysts to install and remove halogens from organic scaffolds has evolved in nature. Accounting for the different chemical properties of the four halogen atoms (fluorine, chlorine, bromine, and iodine) and the diversity and chemical reactivity of their organic substrates, enzymes performing biosynthetic and degradative halogenation chemistry utilize numerous mechanistic strategies involving oxidation, reduction, and substitution. Biosynthetic halogenation reactions range from simple aromatic substitutions to stereoselective C-H functionalizations on remote carbon centers and can initiate the formation of simple to complex ring structures. Dehalogenating enzymes, on the other hand, are best known for removing halogen atoms from man-made organohalogens, yet also function naturally, albeit rarely, in metabolic pathways. This review details the scope and mechanism of nature's halogenation and dehalogenation enzymatic strategies, highlights gaps in our understanding, and posits where new advances in the field might arise in the near future.

  10. Electrochemical reduction of CO2 to CO over Zn in propylene carbonate/tetrabutylammonium perchlorate

    Science.gov (United States)

    Shen, Feng-xia; Shi, Jin; Chen, Tian-you; Shi, Feng; Li, Qing-yuan; Zhen, Jian-zheng; Li, Yun-fei; Dai, Yong-nian; Yang, Bin; Qu, Tao

    2018-02-01

    Developing low cost and high efficient electrode for carbon dioxide (CO2) reduction in organic media is essential for practical application. Zn is a cheap metal and has high catalytic effects on CO2 reduction to carbon monoxide (CO) in aqueous solution. However, little attention has been given to investigate the performance of Zn in organic media for CO2 reduction. In present work, we have conducted CO2 reduction in propylene carbonate/tetrabutylammonium perchlorate on Zn due to that propylene carbonate is a widely used industrial absorber, and tetrabutylammonium perchlorate is a commonly used organic supporting electrolyte. In addition, because electrochemical reduction of CO2 to CO naturally produces H2O, we have discussed water effects on CO2 reduction in propylene carbonate/tetrabutylammonium perchlorate+6.8 wt % H2O. Our experiment results reveal that the faradaic efficiency for CO formation reaches to 83%, and the current density remains stable at 6.72 mA/cm2 at voltage -2.3 V for 4 h. Interestingly, Zn presents higher catalytic activity than Ag, and slightly lower than Au. X-ray photoelectron spectroscopy results confirm that no poisonous species is formed and absorbed on the cathode, which is an important advantage in practical application.

  11. Soft landing of bare PtRu nanoparticles for electrochemical reduction of oxygen.

    Science.gov (United States)

    Johnson, Grant E; Colby, Robert; Engelhard, Mark; Moon, Daewon; Laskin, Julia

    2015-08-07

    Magnetron sputtering of two independent Pt and Ru targets coupled with inert gas aggregation in a modified commercial source has been combined with soft landing of mass-selected ions to prepare bare 4.5 nm diameter PtRu nanoparticles on glassy carbon electrodes with controlled size and morphology for electrochemical reduction of oxygen in solution. Employing atomic force microscopy (AFM) it is shown that the nanoparticles bind randomly to the glassy carbon electrode at a relatively low coverage of 7 × 10(4) ions μm(-2) and that their average height is centered at 4.5 nm. Scanning transmission electron microscopy images obtained in the high-angle annular dark field mode (HAADF-STEM) further confirm that the soft-landed PtRu nanoparticles are uniform in size. Wide-area scans of the electrodes using X-ray photoelectron spectroscopy (XPS) reveal the presence of both Pt and Ru in atomic concentrations of ∼9% and ∼33%, respectively. Deconvolution of the high energy resolution XPS spectra in the Pt 4f and Ru 3d regions indicates the presence of both oxidized Pt and Ru. The substantially higher loading of Ru compared to Pt and enrichment of Pt at the surface of the nanoparticles is confirmed by wide-area analysis of the electrodes using time-of-flight medium energy ion scattering (TOF-MEIS) employing both 80 keV He(+) and O(+) ions. The activity of electrodes containing 7 × 10(4) ions μm(-2) of bare 4.5 nm PtRu nanoparticles toward the electrochemical reduction of oxygen was evaluated employing cyclic voltammetry (CV) in 0.1 M HClO4 and 0.5 M H2SO4 solutions. In both electrolytes a pronounced reduction peak was observed during O2 purging of the solution that was not evident during purging with Ar. Repeated electrochemical cycling of the electrodes revealed little evolution in the shape or position of the voltammograms indicating high stability of the nanoparticles supported on glassy carbon. The reproducibility of the nanoparticle synthesis and deposition was

  12. Reactivity study of silicon electrode modified by grafting using electrochemical reduction of diazonium salts

    International Nuclear Information System (INIS)

    Kaiber, A.; Cherkkaoui, M.; Chazalviel, J.N.

    2015-01-01

    The use of the hydrogenated surface of silicon is hampered by its chemical instability by surface oxidation. The researchers have attempted to modify this surface by direct grafting through the establishment of covalent silicon-carbon bonds from the reaction of chemical species on the surface. Different grafting methods can be implemented for the preparation of grafted surfaces. The choice of an electrochemical reaction allows fast grafting from the hydrogenated surface. We studied the formation of a phenyl layer by electrochemical reduction of aryl diazonium salts (BF4-,+N2-ph-OCH3) on a p-Si-H (111) electrode in an aqueous medium (0.05M H/sub 2/SO/sub 4/ + 0.05M HF). The grafting of an organic layer by reduction is confirmed by the observation of a cyclic voltammetry peak around -0.3V/SCE. In-situ infrared spectroscopy (IR) analysis allows to identify the chemical functions present on the grafted surface, allowing a direct monitoring of the grafting reaction. (author)

  13. Nitrogen-based catalysts for the electrochemical reduction of CO2 to CO.

    Science.gov (United States)

    Tornow, Claire E; Thorson, Michael R; Ma, Sichao; Gewirth, Andrew A; Kenis, Paul J A

    2012-12-05

    The synthesis and application of carbon-supported, nitrogen-based organometallic silver catalysts for the reduction of CO(2) is studied using an electrochemical flow reactor. Their performance toward the selective formation of CO is similar to the performance achieved when using Ag as the catalyst, but comparatively at much lower silver loading. Faradaic efficiencies of the organometallic catalyst are higher than 90%, which are comparable to those of Ag. Furthermore, with the addition of an amine ligand to Ag/C, the partial current density for CO increases significantly, suggesting a possible co-catalyst mechanism. Additional improvements in activity and selectivity may be achieved as greater insight is obtained on the mechanism of CO(2) reduction and on how these complexes assemble on the carbon support.

  14. Correlation between Quantumchemically Calculated LUMO Energies and the Electrochemical Window of Ionic Liquids with Reduction-Resistant Anions

    Directory of Open Access Journals (Sweden)

    Wim Buijs

    2012-01-01

    Full Text Available Quantum chemical calculations showed to be an excellent method to predict the electrochemical window of ionic liquids with reduction-resistant anions. A good correlation between the LUMO energy and the electrochemical window is observed. Surprisingly simple but very fast semiempirical calculations are in full record with density functional theory calculations and are a very attractive tool in the design and optimization of ionic liquids for specific purposes.

  15. Copper-substituted perovskite compositions for solid oxide fuel cell cathodes and oxygen reduction electrodes in other electrochemical devices

    Science.gov (United States)

    Rieke, Peter C [Pasco, WA; Coffey, Gregory W [Richland, WA; Pederson, Larry R [Kennewick, WA; Marina, Olga A [Richland, WA; Hardy, John S [Richland, WA; Singh, Prabhaker [Richland, WA; Thomsen, Edwin C [Richland, WA

    2010-07-20

    The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells. Also provided are electrochemical devices that include active oxygen reduction electrodes, such as solid oxide fuel cells, sensors, pumps and the like. The compositions comprises a copper-substituted ferrite perovskite material. The invention also provides novel methods for making and using the electrode compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having cathodes comprising the compositions.

  16. Dehalogenation of lindane by a variety of porphyrins and corrins.

    OpenAIRE

    Marks, T S; Allpress, J D; Maule, A

    1989-01-01

    The dehalogenation of lindane by a range of hemoproteins, porphyrins, and corrins has been tested under reducing conditions in the presence of dithiothreitol. In addition, a series of porphyrin-metal ion complexes have been prepared and have also been screened for the capacity to dehalogenate lindane. Hemoglobin, hemin, hematin, and chlorophyll alpha all catalyzed the dehalogenation of lindane, as did all of the corrins tested. The porphyrins which did not contain metal centers--coproporphyri...

  17. Electrochemical treatment of wastewater: A case study of reduction of DNT and oxidation of chlorinated phenols

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, J.D.; Bunce, N.J.; Jedral, W.

    1999-07-01

    Electrochemical treatment is under consideration as a treatment option for several recalcitrant compounds. In this work the authors investigate the oxidation of chlorophenols and the reduction of nitroaromatics. In the case of chlorinated phenols, they explore the problem of anode fouling which has hampered electrolytic treatment of phenolic compounds by examining phenols differing in the extent of chlorination, according to the mechanism of oxidation at different electrode types. Linear sweep voltammograms at a Pt anode were interpreted in terms of deposition of oligomers on the anode surface. Passivation increased in parallel with the uncompensated resistance of the solution and occurred only at potentials at which water is oxidized, suggesting that the formation of the oligomer film involves attack of hydroxyl radicals on electrochemically oxidized substrate. Relative reactivities of congeners were anode-dependent, due to different mechanisms of oxidation: direct electron transfer oxidation at PbO{sub 2} and hydroxyl radical attack at SnO{sub 2} and IrO{sub 2}. Voltammetry of 2,6-dinitrotoluene (DNT) was consistent with literature values. DNT was reduced at several cathodes with the most promising result at Ni-plated Ni wire. At current densities {lt} 0.1 mA cm{sup {minus}2}, current efficiencies {gt} 50% could be achieved with 4-chlorophenol at all three anodes and for 2,6-DNT at Ni-plated Ni wire.

  18. A Study on Electrochemical Reduction of Rare Earth Oxides in Molten LiCl-Li{sub 2}O Salt

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Min Woo; Jeong, Sang Mun; Lee, See Hoon [Chungbook National University, Chungju (Korea, Republic of); Sohn, Jung Min [Chonbuk National University, Jeonju (Korea, Republic of)

    2016-05-15

    In this study, the electrochemical reduction of RE{sub 2}O{sub 3} (RE = Nd or Ce) has been conducted via co-reduction NiO to increase the reduction degree of the rare earth oxides in molten molten LiCl containing 1wt% Li{sub 2}O. The electrochemical reduction behavior of the mixed RE{sub 2}O{sub 3}-NiO oxide has been investigated and the reduction path of RE{sub 2}O{sub 3} has been proposed. An electorchemical spent fuel processing technology, pyroprocessing, has been developed for recycling of spent fuel to be applied to a sodium-cooled fast reactor. The spent fuel is reduced in the oxide reduction process. It is well known that the rare earth oxides are hardly reduced due to their electrochemical and thermodynamic stability. The rare earth oxides unreduced in the reduction process can cause problems via reaction with UCl{sub 3} in the electrorefiner. To tackle those problems, the electrochemical reduction of rare earth oxide has been conducted via co-reduction of NiO in LiCl molten salt containing 1 wt% Li{sub 2}O. The reduction of the oxide mixture starts from the reduction of NiO to Ni, followed by that of RE{sub 2}O{sub 3} on the produced Ni to form intermetallic RENi{sub 5}. The mixed oxide pellets were successfully reduced to the RENi5 alloy by constant electrolysis at 3.0 V at 650 .deg. C. The crucial aspect to these results is that the thermodynamically stable rare-earth oxide, Nd{sub 2}O{sub 3} was successfully converted to the metal in the presence of NiO.

  19. A Study on Electrochemical Reduction of Rare Earth Oxides in Molten LiCl-Li2O Salt

    International Nuclear Information System (INIS)

    Lee, Min Woo; Jeong, Sang Mun; Lee, See Hoon; Sohn, Jung Min

    2016-01-01

    In this study, the electrochemical reduction of RE 2 O 3 (RE = Nd or Ce) has been conducted via co-reduction NiO to increase the reduction degree of the rare earth oxides in molten molten LiCl containing 1wt% Li 2 O. The electrochemical reduction behavior of the mixed RE 2 O 3 -NiO oxide has been investigated and the reduction path of RE 2 O 3 has been proposed. An electorchemical spent fuel processing technology, pyroprocessing, has been developed for recycling of spent fuel to be applied to a sodium-cooled fast reactor. The spent fuel is reduced in the oxide reduction process. It is well known that the rare earth oxides are hardly reduced due to their electrochemical and thermodynamic stability. The rare earth oxides unreduced in the reduction process can cause problems via reaction with UCl 3 in the electrorefiner. To tackle those problems, the electrochemical reduction of rare earth oxide has been conducted via co-reduction of NiO in LiCl molten salt containing 1 wt% Li 2 O. The reduction of the oxide mixture starts from the reduction of NiO to Ni, followed by that of RE 2 O 3 on the produced Ni to form intermetallic RENi 5 . The mixed oxide pellets were successfully reduced to the RENi5 alloy by constant electrolysis at 3.0 V at 650 .deg. C. The crucial aspect to these results is that the thermodynamically stable rare-earth oxide, Nd 2 O 3 was successfully converted to the metal in the presence of NiO.

  20. Single site porphyrine-like structures advantages over metals for selective electrochemical CO2 reduction

    DEFF Research Database (Denmark)

    Bagger, Alexander; Ju, Wen; Varela, Ana Sofia

    2017-01-01

    Currently, no catalysts are completely selective for the electrochemical CO2 Reduction Reaction (CO2RR). Based on trends in density functional theory calculations of reaction intermediates we find that the single metal site in a porphyrine-like structure has a simple advantage of limiting...... the competing Hydrogen Evolution Reaction (HER). The single metal site in a porphyrine-like structure requires an ontop site binding of hydrogen, compared to the hollow site binding of hydrogen on a metal catalyst surface. The difference in binding site structure gives a fundamental energy-shift in the scaling...... relation of ∼0.3eV between the COOH* vs. H* intermediate (CO2RR vs. HER). As a result, porphyrine-like catalysts have the advantage over metal catalyst of suppressing HER and enhancing CO2RR selectivity....

  1. Heterogeneous electrochemical CO2 reduction using nonmetallic carbon-based catalysts: current status and future challenges

    Science.gov (United States)

    Ma, Tao; Fan, Qun; Tao, Hengcong; Han, Zishan; Jia, Mingwen; Gao, Yunnan; Ma, Wangjing; Sun, Zhenyu

    2017-11-01

    Electrochemical CO2 reduction (ECR) offers an important pathway for renewable energy storage and fuels production. It still remains a challenge in designing highly selective, energy-efficient, robust, and cost-effective electrocatalysts to facilitate this kinetically slow process. Metal-free carbon-based materials have features of low cost, good electrical conductivity, renewability, diverse structure, and tunability in surface chemistry. In particular, surface functionalization of carbon materials, for example by doping with heteroatoms, enables access to unique active site architectures for CO2 adsorption and activation, leading to interesting catalytic performances in ECR. We aim to provide a comprehensive review of this category of metal-free catalysts for ECR, providing discussions and/or comparisons among different nonmetallic catalysts, and also possible origin of catalytic activity. Fundamentals and some future challenges are also described.

  2. Electrocatalytic oxygen reduction and hydrogen evolution reactions on phthalocyanine modified electrodes: Electrochemical, in situ spectroelectrochemical, and in situ electrocolorimetric monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Koca, Atif, E-mail: akoca@eng.marmara.edu.tr [Department of Chemical Engineering, Faculty of Engineering, Marmara University, Goeztepe, 34722 Istanbul (Turkey); Kalkan, Ayfer; Bayir, Zehra Altuntas [Department of Chemistry, Technical University of Istanbul, Maslak, 34469 Istanbul (Turkey)

    2011-06-30

    Highlights: > Electrochemical and in situ spectroelectrochemical characterizations of the metallophthalocyanines were performed. > The presence of O{sub 2} influences both oxygen reduction reaction and the electrochemical behaviors of the complexes. > Homogeneous catalytic ORR process occurs via an 'inner sphere' chemical catalysis process. > CoPc and CuPc coated on a glassy carbon electrode decrease the overpotential of the working electrode for H{sup +} reduction. - Abstract: This study describes electrochemical, in situ spectroelectrochemical, and in situ electrocolorimetric monitoring of the electrocatalytic reduction of molecular oxygen and hydronium ion on the phthalocyanine-modified electrodes. For this purpose, electrochemical and in situ spectroelectrochemical characterizations of the metallophthalocyanines (MPc) bearing tetrakis-[4-((4'-trifluoromethyl)phenoxy)phenoxy] groups were performed. While CoPc gives both metal-based and ring-based redox processes, H{sub 2}Pc, ZnPc and CuPc show only ring-based electron transfer processes. In situ electrocolorimetric method was applied to investigate the color of the electrogenerated anionic and cationic forms of the complexes. The presence of O{sub 2} in the electrolyte system influences both oxygen reduction reaction and the electrochemical and spectral behaviors of the complexes, which indicate electrocatalytic activity of the complexes for the oxygen reduction reaction. Perchloric acid titrations monitored by voltammetry represent possible electrocatalytic activities of the complexes for hydrogen evolution reaction. CoPc and CuPc coated on a glassy carbon electrode decrease the overpotential of the working electrode for H{sup +} reduction. The nature of the metal center changes the electrocatalytic activities for hydrogen evolution reaction in aqueous solution. Although CuPc has an inactive metal center, its electrocatalytic activity is recorded more than CoPc for H{sup +} reduction in aqueous

  3. The impact of electrochemical reduction potentials on the electrocatalytic activity of graphene oxide toward the oxygen reduction reaction in an alkaline medium

    International Nuclear Information System (INIS)

    Toh, Shaw Yong; Loh, Kee Shyuan; Kamarudin, Siti Kartom; Daud, Wan Ramli Wan

    2016-01-01

    We report the synthesis of graphene via the electrochemical reduction of graphene oxide (GO). In this study, GO nanosheets from aqueous dispersion were pre-assembled on a glassy carbon (GC) electrode and then electrochemically reduced in 1 M KOH under various constant reduction potentials in the range of −0.6 V to −1.5 V (vs. Ag/AgCl). X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy analyses revealed that the graphitic structure was substantially restored in the resulting electrochemically reduced graphene oxide (ERGO). The ERGO electrodes exhibited significantly enhanced catalytic activity toward the oxygen reduction reaction (ORR) in an alkaline medium compared with the initial GO electrode. Of the ERGO electrodes produced at various cathodic potentials, the ERGO-1.2 V electrode, which was produced at a reduction potential of −1.2 V, demonstrated the best catalytic activity toward the ORR in an alkaline medium. The ORR on GO and ERGO electrodes was shown to proceed via a two-electron mechanism at low overpotentials. The agreement between the spectroscopy results and electrochemical measurements provide strong evidence that the enhanced ORR catalytic activity is mainly attributed to the restoration of GO’s graphitic structure. Furthermore, the ERGO-1.2 V electrode showed excellent tolerance to the methanol poisoning effect compared with a Pt/C catalyst electrode.

  4. Dehalogenation of Chlorinated Hydroxybiphenyls by Fungal Laccase

    Science.gov (United States)

    Schultz, Asgard; Jonas, Ulrike; Hammer, Elke; Schauer, Frieder

    2001-01-01

    We have investigated the transformation of chlorinated hydroxybiphenyls by laccase produced by Pycnoporus cinnabarinus. The compounds used were transformed to sparingly water-soluble colored precipitates which were identified by gas chromatography-mass spectrometry as oligomerization products of the chlorinated hydroxybiphenyls. During oligomerization of 2-hydroxy-5-chlorobiphenyl and 3-chloro-4-hydroxybiphenyl, dechlorinated C—C-linked dimers were formed, demonstrating the dehalogenation ability of laccase. In addition to these nonhalogenated dimers, both monohalogenated and dihalogenated dimers were identified. PMID:11526052

  5. Three-dimensional porous hollow fibre copper electrodes for efficient and high-rate electrochemical carbon dioxide reduction

    NARCIS (Netherlands)

    Kas, Recep; Hummadi, Khalid Khazzal; Kortlever, Ruud; de Wit, Patrick; Milbrat, Alexander; Luiten-Olieman, Maria W.J.; Benes, Nieck Edwin; Koper, Marc T.M.; Mul, Guido

    2016-01-01

    Aqueous-phase electrochemical reduction of carbon dioxide requires an active, earth-abundant electrocatalyst, as well as highly efficient mass transport. Here we report the design of a porous hollow fibre copper electrode with a compact three-dimensional geometry, which provides a large area,

  6. Evaluation of Chemical Kinetic for Mathematics Model Reduction of Cadmium Reaction Rate, Constant and Reaction Orde in to Electrochemical Process

    International Nuclear Information System (INIS)

    Prayitno

    2007-01-01

    The experiment was reduction of cadmium rate with electrochemical influenced by time process, concentration, current strength and type of electrode plate. The aim of the experiment was to know the influence, mathematic model reduction of cadmium the reaction rate, reaction rate constant and reaction orde influenced by time process, concentration, current strength and type of electrode plate. Result of research indicate the time processing if using plate of copper electrode is during 30 minutes and using plate of aluminium electrode is during 20 minutes. Condition of strong current that used in process of electrochemical is only 0.8 ampere and concentration effective is 5.23 mg/l. The most effective type Al of electrode plate for reduction from waste and the efficiency of reduction is 98 %. (author)

  7. Catalyzed Dehalogenation of Delor 103 by Sodium Hydridoaluminate

    Czech Academy of Sciences Publication Activity Database

    Hetflejš, Jiří; Czakoová, Marie; Řeřicha, Roman; Včelák, Jaroslav

    2001-01-01

    Roč. 44, č. 6 (2001), s. 1521-1529 ISSN 0045-6535 R&D Projects: GA ČR GA203/97/1173 Institutional research plan: CEZ:AV0Z4072921 Keywords : PCB dehalogenation * Co and Ni dehalogenation catalysts Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.181, year: 2001

  8. Anaerobic microbial dehalogenation of organohalides-state of the art and remediation strategies.

    Science.gov (United States)

    Nijenhuis, Ivonne; Kuntze, Kevin

    2016-04-01

    Contamination and remediation of groundwater with halogenated organics and understanding of involved microbial reactions still poses a challenge. Over the last years, research in anaerobic microbial dehalogenation has advanced in many aspects providing information about the reaction, physiology of microorganisms as well as approaches to investigate the activity of microorganisms in situ. Recently published crystal structures of reductive dehalogenases (Rdh), heterologous expression systems and advanced analytical, proteomic and stable isotope approaches allow addressing the overall reaction and specific enzymes as well as co-factors involved during anaerobic microbial dehalogenation. In addition to Dehalococcoides spp., Dehalobacter and Dehalogenimonas strains have been recognized as important and versatile organohalide respirers. Together, these provide perspectives for integrated concepts allowing to improve and monitor in situ biodegradation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Theoretical Insight into the Trends that Guide the Electrochemical Reduction of Carbon Dioxide to Formic Acid.

    Science.gov (United States)

    Yoo, Jong Suk; Christensen, Rune; Vegge, Tejs; Nørskov, Jens K; Studt, Felix

    2016-02-19

    The electrochemical reduction (electroreduction) of CO2 to formic acid (HCOOH) and its competing reactions, that is, the electroreduction of CO2 to CO and the hydrogen evolution reaction (HER), on twenty-seven different metal surfaces have been investigated using density functional theory (DFT) calculations. Owing to a strong linear correlation between the free energies of COOH* and H*, it seems highly unlikely that the electroreduction of CO2 to HCOOH via the COOH* intermediate occurs without a large fraction of the current going to HER. On the other hand, the selective electroreduction of CO2 to HCOOH seems plausible if the reaction occurs via the HCOO* intermediate, as there is little correlation between the free energies of HCOO* and H*. Lead and silver surfaces are found to be the most promising monometallic catalysts showing high faradaic efficiencies for the electroreduction of CO2 to HCOOH with small overpotentials. Our methodology is widely applicable, not only to metal surfaces, but also to other classes of materials enabling the computational search for electrocatalysts for CO2 reduction to HCOOH. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. A highly selective copper-indium bimetallic electrocatalyst for the electrochemical reduction of aqueous CO2to CO

    KAUST Repository

    Rasul, Shahid

    2014-12-23

    The challenge in the electrochemical reduction of aqueous carbon dioxide is in designing a highly selective, energy-efficient, and non-precious-metal electrocatalyst that minimizes the competitive reduction of proton to form hydrogen during aqueous CO2 conversion. A non-noble metal electrocatalyst based on a copper-indium (Cu-In) alloy that selectively converts CO2 to CO with a low overpotential is reported. The electrochemical deposition of In on rough Cu surfaces led to Cu-In alloy surfaces. DFT calculations showed that the In preferentially located on the edge sites rather than on the corner or flat sites and that the d-electron nature of Cu remained almost intact, but adsorption properties of neighboring Cu was perturbed by the presence of In. This preparation of non-noble metal alloy electrodes for the reduction of CO2 provides guidelines for further improving electrocatalysis.

  11. Distribution of dehalogenation activity in subseafloor sediments of the Nankai Trough subduction zone.

    Science.gov (United States)

    Futagami, Taiki; Morono, Yuki; Terada, Takeshi; Kaksonen, Anna H; Inagaki, Fumio

    2013-04-19

    Halogenated organic matter buried in marine subsurface sediment may serve as a source of electron acceptors for anaerobic respiration of subseafloor microbes. Detection of a diverse array of reductive dehalogenase-homologous (rdhA) genes suggests that subseafloor organohalide-respiring microbial communities may play significant ecological roles in the biogeochemical carbon and halogen cycle in the subseafloor biosphere. We report here the spatial distribution of dehalogenation activity in the Nankai Trough plate-subduction zone of the northwest Pacific off the Kii Peninsula of Japan. Incubation experiments with slurries of sediment collected at various depths and locations showed that degradation of several organohalides tested only occurred in the shallow sedimentary basin, down to 4.7 metres below the seafloor, despite detection of rdhA in the deeper sediments. We studied the phylogenetic diversity of the metabolically active microbes in positive enrichment cultures by extracting RNA, and found that Desulfuromonadales bacteria predominate. In addition, for the isolation of genes involved in the dehalogenation reaction, we performed a substrate-induced gene expression screening on DNA extracted from the enrichment cultures. Diverse DNA fragments were obtained and some of them showed best BLAST hit to known organohalide respirers such as Dehalococcoides, whereas no functionally known dehalogenation-related genes such as rdhA were found, indicating the need to improve the molecular approach to assess functional genes for organohalide respiration.

  12. Electrochemical reduction behavior of simplified simulants of vitrified radioactive waste in molten CaCl2

    Science.gov (United States)

    Katasho, Yumi; Yasuda, Kouji; Nohira, Toshiyuki

    2018-05-01

    The electrochemical reduction of two types of simplified simulants of vitrified radioactive waste, simulant 1 (glass component only: SiO2, B2O3, Na2O, Al2O3, CaO, Li2O, and ZnO) and simulant 2 (also containing long-lived fission product oxides, ZrO2, Cs2O, PdO, and SeO2), was investigated in molten CaCl2 at 1103 K. The behavior of each element was predicted from the potential-pO2- diagram constructed from thermodynamic data. After the immersion of simulant 1 into molten CaCl2 without electrolysis, the dissolution of Na, Li, and Cs was confirmed by inductively coupled plasma atomic emission spectrometry and mass spectrometry analysis of the samples. The scanning electron microscopy/energy dispersive X-ray and X-ray diffraction analyses of simulants 1 and 2 electrolyzed at 0.9 V vs. Ca2+/Ca confirmed that most of SiO2 had been reduced to Si. After the electrolysis of simulants 1 and 2, Al, Zr, and Pd remained in the solid phase. In addition, SeO2 was found to remain partially in the solid phase and partially evaporate, although a small quantity dissolved into the molten salt.

  13. Pyro-Electrochemical Reduction of a Mixture of Rare Earth Oxides and NiO in LiCl molten Salt

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Min Woo; Jeong, Sang Mun [Department of Chemical Engineering, Chungbuk National University, Cheongju (Korea, Republic of)

    2017-06-15

    An electrochemical reduction of a mixture of NiO and rare earth oxides has been conducted to increase the reduction degree of rare earth oxides. Cyclic voltammetry (CV) measurement was carried out to determine the electrochemical reduction behavior of the mixed oxide in molten LiCl medium. Constant voltage electrolysis was performed with various supplied charges to understand the mechanism of electrochemical reduction of the mixed oxide as a working electrode. After completion of the electrochemical reduction, crystal structure of the reaction intermediates was characterized by using an X-ray diffraction method. The results clearly demonstrate that the rare earth oxide was converted to RE-Ni intermetallics via co-reduction with NiO.

  14. Reductive dechlorination of trichloroacetic acid (TCAA) by electrochemical process over Pd-In/Al_2O_3 catalyst

    International Nuclear Information System (INIS)

    Liu, Yanzhen; Mao, Ran; Tong, Yating; Lan, Huachun; Zhang, Gong; Liu, Huijuan; Qu, Jiuhui

    2017-01-01

    Highlights: • TCAA was efficiently removed by Pd-In/Al_2O_3 based electro-reductive process. • The active species for TCAA electroreduction involved electron (e"−) and atomic H*. • The atomic H* played a major contribution to TCAA removal. - Abstract: Electrochemical reduction treatment was found to be a promising method for dechlorination of Trichloroacetic acid (TCAA), and acceleration of electron transfer or enhancement of the concentration of atomic H* significantly improve the electrochemical dechlorination process. Bimetallic Pd-based catalysts have the unique property of simultaneously catalyzing the production of atomic H* and reducing target pollutants. Herein, a bimetallic Pd–In electrocatalyst with atomic ratio of 1:1 was evenly deposited on an Al_2O_3 substrate, and the bimetallic Pd-In structure was confirmed via X-ray photoelectron spectroscopy (XPS). Electrochemical removal of trichloroacetic acid (TCAA) by the Pd-In/Al_2O_3 catalyst was performed in a three-dimensional reactor. 94% of TCAA with the initial concentration of 500 μg L"−"1 could be degraded within 30 min under a relatively low current density (0.9 mA cm"−"2). In contrast to the presence of refractory intermediates (dichloroacetic acid (DCAA)) found in the Pd/Al_2O_3 system, TCAA could be thoroughly reduced to monochloroacetic acid (MCAA) using Pd-In/Al_2O_3 catalysts. According to scavenger experiments, an electron transfer process and atomic H* formation function both existed in the TCAA reduction process, and the enhanced indirect atomic H* reduction process (confirmed by ESR signals) played a chief role in the TCAA removal. Moreover, the synergistic effects of Pd and In were proven to be able to enhance both direct electron transfer and indirect atomic H* formation, indicating a promising prospect for bimetallic electrochemical reduction treatment.

  15. The electrochemical behavior of cobalt phthalocyanine/platinum as methanol-resistant oxygen-reduction electrocatalysts for DMFC

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yuhao; Reddy, Ramana G. [Department of Metallurgical and Materials Engineering, The University of Alabama, P.O. Box 870202, Tuscaloosa, AL 35487 (United States)

    2007-02-01

    The electrochemical behavior of cobalt phthalocyanine/platinum as methanol-resistant oxygen-reduction electrocatalyst for DMFC was investigated. Platinum was chemically deposited on the carbon-supported cobalt phthalocyanine (CoPc), and then it was heat-treated in high purity nitrogen at 300 C, 635 C and 980 C. In order to evaluate the electrocatalytic behavior of CoPc-Pt/C, the PtCo/C and Pt/C as reference catalysts were employed. TGA, XRD, EDAX, XPS and electrochemical experiments were used to study the thermal stability, crystal structure, physical characterization and electrochemical behavior of these catalysts. These catalysts exhibited similar electrocatalytic activity for oxygen reaction in 0.5 M H{sub 2}SO{sub 4} solution. In methanol tolerance experiments, Pt/C, PtCo/C and CoPc-Pt/C heated at 980 C were active for the methanol oxidation reaction (MOR). The presence of Co did not improve resistance to methanol poisoning. However, the CoPc-Pt/C after 300 C or 635 C heat-treatment demonstrated significant inactivity for MOR, hence they have a good ability to resist methanol poisoning. The current study indicated that the macrocyclic structure of phthalocyanine is the most important factor to improve the methanol tolerance of CoPc-Pt/C as the oxygen-reduction reaction (ORR) electrocatalyst. The CoPc-Pt based catalyst should be a good alternation for oxygen electro-reduction reaction in DMFC. (author)

  16. Electrochemical reduction approach-based 3D graphene/Ni(OH)2 electrode for high-performance supercapacitors

    International Nuclear Information System (INIS)

    Yan, Huijun; Bai, Jianwei; Wang, Bin; Yu, Lei; Zhao, Lin; Wang, Jun; Liu, Qi; Liu, Jingyuan; Li, Zhanshuang

    2015-01-01

    Highlights: • 3D graphene foam is synthesized by a simple electrochemical reduction method. • The 3D graphene/Ni(OH) 2 composite is used as a monolithic free-standing electrode material. • The 3D conductive graphene network improves the contact between electrode and electrolyte. • Compositing graphene with Ni(OH) 2 sheets take full advantage of the synergistic effects. • Results show that the as-synthesized products have good electrochemical property. - Abstract: Using a simple electrochemical reduction approach, we have produced three-dimensional (3D) graphene foam having high conductivity and well-defined macroporous structure. Through a hydrothermal process, Ni(OH) 2 sheets are grown in-situ onto the graphene surface. This monolithic 3D graphene/Ni(OH) 2 composite is used as the free-standing electrode for supercapacitor application; it shows a high specific capacitance of 183.1 F g −1 (based on the total mass of the electrode), along with excellent rate capability and cycle performance. The asymmetric supercapacitor based on the 3D graphene/Ni(OH) 2 as a positive electrode and active carbon (AC) as a negative electrode is also assembled and it exhibits a specific capacitance of 148.3 F g −1 at 0.56 A g −1 and a high energy density of 52.7 W h kg −1 at a power density of 444.4 W kg −1 . Moreover, 3D graphene/Ni(OH) 2 //AC has a good cycle stability (87.9% capacitance retention after 1000 cycles), making it promising as one of the most attractive candidates for electrochemical energy storage. This excellent electrochemical performance results from the multiplexed 3D graphene network facilitating electron transport; the interlaced Ni(OH) 2 sheets shorten ion diffusion paths and facilitate the rapid migration of electrolyte ions

  17. Improvement of electron emission characteristics of porous silicon emitter by using cathode reduction and electrochemical oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Li, He; Wenjiang, Wang, E-mail: wwj@mail.xjtu.edu.cn; Xiaoning, Zhang

    2017-03-31

    Highlights: • An electron emitter based on porous silicon having the strong application potential was prepared in the studying. • A new simple and convenient post-treat technique was proposed to improve the electron emission properties of the PS emitter. • It demonstrated that the improving of the PS morphology and the oxygen distribution is very important to the PS emitter. - Abstract: A new simple and convenient post-treat technique combined the cathode reduction (CR) and electrochemical oxidation (ECO) was proposed to improve the electron emission properties of the surface-emitting cold cathodes based on the porous silicon (PS). It is demonstrated here that by introducing this new technique combined CR and ECO, the emission properties of the diode have been significantly improved than those as-prepared samples. The experimental results showed that the emission current densities and efficiencies of sample treated by CR were 62 μA/cm{sup 2} and 12.10‰, respectively, nearly 2 orders of magnitude higher than those of as-prepared sample. Furthermore, the CR-treated PS emitter shows higher repeatability and stability compared with the as-prepared PS emitter. The scanning electron microscope (SEM), atomic force microscope (AFM), energy dispersive spectrometer (EDS), furier transformed infrared (FTIR) spectroscopy results indicated that the improved mechanism is mainly due to the passivation of the PS, which not only improve the PS morphology by the passivation of the H{sup +} but also improve the uniformity of the oxygen content distribution in the whole PS layer. Therefore, the method combined the CR treatment and ECO is expected to be a valuable technique to enhance the electron emission characteristics of the PS emitter.

  18. Improvement of electron emission characteristics of porous silicon emitter by using cathode reduction and electrochemical oxidation

    International Nuclear Information System (INIS)

    Li, He; Wenjiang, Wang; Xiaoning, Zhang

    2017-01-01

    Highlights: • An electron emitter based on porous silicon having the strong application potential was prepared in the studying. • A new simple and convenient post-treat technique was proposed to improve the electron emission properties of the PS emitter. • It demonstrated that the improving of the PS morphology and the oxygen distribution is very important to the PS emitter. - Abstract: A new simple and convenient post-treat technique combined the cathode reduction (CR) and electrochemical oxidation (ECO) was proposed to improve the electron emission properties of the surface-emitting cold cathodes based on the porous silicon (PS). It is demonstrated here that by introducing this new technique combined CR and ECO, the emission properties of the diode have been significantly improved than those as-prepared samples. The experimental results showed that the emission current densities and efficiencies of sample treated by CR were 62 μA/cm"2 and 12.10‰, respectively, nearly 2 orders of magnitude higher than those of as-prepared sample. Furthermore, the CR-treated PS emitter shows higher repeatability and stability compared with the as-prepared PS emitter. The scanning electron microscope (SEM), atomic force microscope (AFM), energy dispersive spectrometer (EDS), furier transformed infrared (FTIR) spectroscopy results indicated that the improved mechanism is mainly due to the passivation of the PS, which not only improve the PS morphology by the passivation of the H"+ but also improve the uniformity of the oxygen content distribution in the whole PS layer. Therefore, the method combined the CR treatment and ECO is expected to be a valuable technique to enhance the electron emission characteristics of the PS emitter.

  19. Quantum chemical analysis of Со2+ aqua complexes electrochemical reduction

    Directory of Open Access Journals (Sweden)

    Viktor F. Vargalyuk

    2017-11-01

    Full Text Available Based on the analysis of quantum chemical calculations results (GAMESS, density functional theory, B3LYP method as to [Co(H2On]z(H2O6–n clusters for z = 0, 1, 2 and n=1÷6, it has been demonstrated that electrochemical reduction of [Co(H2O6]2+ aqua complexes runs stage-wise. At the first stage, an electron injected into the [Co(H2O6]2+ complex is entirely located in the orbital of the central atom, as z(Co herewith changes from +1.714 е to +0.777 е. The weakening of Со–ОН2 bonds leads to decomposition of resulting [Co(H2O6]+ particles into two energetically related forms – [Co(H2O4]+ and [Co(H2O3]+. Further reduction of these intermediates runs differently. Electron injection into the [Co(H2O3]+ intermediate terminatesthe transition of Со2+-ions to Со0 z(Co= –0.264 е. This process is accompanied by rapid decomposition of [Co(H2O3]0 product into monohydrate atom of cobalt Со(Н2О. On the contrary, electron injection into the [Co(H2O4]+ intermediate leads to emergence of a specific structure – [Co+(H2O–(Н2О3]¹0, whereby the electron is located in the atoms of cobalt only by 28%, and by 72% in cobalt-coordinated water molecules, clearly focusing on one of the. In this molecule, z(H2O changes from +0.148 е to –0.347 е. There is an assumption that a non-equilibrium [Co+(H2O–(Н2О3]0¹ form transits to [Co(ОH(Н2О3]0 hydroxo-form, which further disproportionates turning into Co(ОH2 hydroxide. In order to reduce the impact of this unfavorable reaction pathway on the overall reaction rate Со2+ + 2ē = Со0, we suggest raising the temperature to ensure complete dissociation of [Co(H2O4]+ to [Co(H2O3]+.

  20. Detection of CO2•- in the Electrochemical Reduction of Carbon Dioxide in N,N-Dimethylformamide by Scanning Electrochemical Microscopy.

    Science.gov (United States)

    Kai, Tianhan; Zhou, Min; Duan, Zhiyao; Henkelman, Graeme A; Bard, Allen J

    2017-12-27

    The electrocatalytic reduction of CO 2 has been studied extensively and produces a number of products. The initial reaction in the CO 2 reduction is often taken to be the 1e formation of the radical anion, CO 2 •- . However, the electrochemical detection and characterization of CO 2 •- is challenging because of the short lifetime of CO 2 •- , which can dimerize and react with proton donors and even mild oxidants. Here, we report the generation and quantitative determination of CO 2 •- in N,N-dimethylformamide (DMF) with the tip generation/substrate collection (TG/SC) mode of scanning electrochemical microscopy (SECM). CO 2 was reduced at a hemisphere-shaped Hg/Pt ultramicroelectrode (UME) or a Hg/Au film UME, which were utilized as the SECM tips. The CO 2 •- produced can either dimerize to form oxalate within the nanogap between SECM tip and substrate or collected at SECM substrate (e.g., an Au UME). The collection efficiency (CE) for CO 2 •- depends on the distance (d) between the tip and substrate. The dimerization rate (6.0 × 10 8 M -1 s -1 ) and half-life (10 ns) of CO 2 •- can be evaluated by fitting the collection efficiency vs distance curve. The dimerized species of CO 2 •- , oxalate, can also be determined quantitatively. Furthermore, the formal potential (E 0 ') and heterogeneous rate constant (k 0 ) for CO 2 reduction were determined with different quaternary ammonium electrolytes. The significant difference in k 0 is due to a tunneling effect caused by the adsorption of the electrolytes on the electrode surface at negative potentials.

  1. Electrochemical reduction of carbon dioxide to formate with Fe-C electrodes in anaerobic sludge digestion process.

    Science.gov (United States)

    Zhao, Zisheng; Zhang, Yaobin; Li, Yang; Zhao, Huimin; Quan, Xie

    2016-12-01

    Electrochemical reduction of carbon dioxide (CO 2 ) to useful chemicals is an attractive strategy to cut its emission in atmosphere. However, high overpotential and energy consumption required in the electrochemical reduction are the major barriers of this process. In this study, a new CO 2 reduction technique for production of formic acid was proposed from waste activated sludge digestion in a microbial electrosynthesis system (MES) with iron plate and carbon pillar as the electrodes. Compared with other reactors, methane production of the Fe-C MES reactor was slightly lower and CO 2 was undetectable. Instead, considerable formate (672.3 mg/L) and H 2 (45.8 mL) were produced in this Fe-C MES reactor, but not found in the other reactors. It should be ascribed to the reduction of CO 2 and H + at cathode. The reduction of H + resulted in a weak alkaline pH (9.3), which made the methanogenesis slightly lower in Fe-C MES. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Facile synthesis of reduced graphene oxide nanosheets by a sodium diphenylamine sulfonate reduction process and its electrochemical property

    International Nuclear Information System (INIS)

    Ji, Yunzhou; Liu, Qi; Cheng, Meiling; Lai, Lifang; Li, Zhanfeng; Peng, Yuxin; Yang, Yong

    2013-01-01

    We report a new method to convert graphene oxide (GO) to stable colloidal dispersion of reduced graphene oxide nanosheets (RGONS) using sodium diphenylamine sulfonate (SDAS) as a reductant, as well as itself and its redox product as the stabilizer. The as-prepared RGONS have been characterized by X-ray diffraction, Fourier transform infrared spectroscopy, UV–visible spectroscopy, thermo-gravimetric analysis, scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, atomic force microscopy and Raman spectroscopy. The results indicate that the bulk of oxygen-containing functional groups from GO have been removed. Based on the cyclic voltammogram (CV) analyses, it is found that the RGONS-based material exhibits better electrochemical activity in sensing ascorbic acid than GO. The simple method provides a new efficient route for the synthesis of water-soluble RGONS on a large scale and novel composites. - Highlights: • We report a new environment-friendly reductant for the reduction of graphene oxide. • The reduction process needn't use other stabilizer except for using reductant. • The reduced graphene oxide nanosheet (RGONS) aqueous dispersion is stable. • The RGONS shows a high electrochemical activity in sensing ascorbic acid

  3. Nanocomposite films containing Au nanoparticles formed by electrochemical reduction of metal ions in the multilayer films as electrocatalyst for dioxygen reduction

    International Nuclear Information System (INIS)

    Huang Minghua; Shen Yan; Cheng Wenlong; Shao Yong; Sun Xuping; Liu Baifeng; Dong Shaojun

    2005-01-01

    Through electrostatic layer-by-layer assembly, AuCl 4 - anions and [tetrakis(N-methylpyridyl)porphyrinato] cobalt (CoTMPyP) cations were alternately deposited on indium tin oxide (ITO) substrates, and 4-aminobenzoic acid modified glassy carbon electrode. Electrochemical reduction of AuCl 4 - anions sandwiched between CoTMPyP layers leads to the in situ formation of Au nanoparticles in the multilayer films. Regular growth of the multilayer films is monitored by UV-vis spectroscopy. UV-vis spectroscopy, X-ray photoelectron spectroscopy and cyclic voltammetry confirm the formation of Au nanoparticles in the multilayer films after electrochemical reduction of AuCl 4 - anions. Atomic force spectroscopy verifies that the as-prepared Au nanoparticles are uniformly distributed with average particles diameters of 20-25 nm. The resulting composite films containing Au nanoparticles with high stability exhibit high electrocatalytic activity for the reduction of dioxygen. Rotating disk electrode voltammetry and rotating ring-disk electrode voltammetry demonstrate the Au nanoparticles-containing films can catalyze two-electron reduction of O 2 to H 2 O 2 in O 2 -saturated 0.1 M H 2 SO 4 solution

  4. Chemoselective Radical Dehalogenation and C-C Bond Formation on Aryl Halide Substrates Using Organic Photoredox Catalysts.

    Science.gov (United States)

    Poelma, Saemi O; Burnett, G Leslie; Discekici, Emre H; Mattson, Kaila M; Treat, Nicolas J; Luo, Yingdong; Hudson, Zachary M; Shankel, Shelby L; Clark, Paul G; Kramer, John W; Hawker, Craig J; Read de Alaniz, Javier

    2016-08-19

    Despite the number of methods available for dehalogenation and carbon-carbon bond formation using aryl halides, strategies that provide chemoselectivity for systems bearing multiple carbon-halogen bonds are still needed. Herein, we report the ability to tune the reduction potential of metal-free phenothiazine-based photoredox catalysts and demonstrate the application of these catalysts for chemoselective carbon-halogen bond activation to achieve C-C cross-coupling reactions as well as reductive dehalogenations. This procedure works both for conjugated polyhalides as well as unconjugated substrates. We further illustrate the usefulness of this protocol by intramolecular cyclization of a pyrrole substrate, an advanced building block for a family of natural products known to exhibit biological activity.

  5. Electrochemical CO2 Reduction by Ni-containing Iron Sulfides: How Is CO2 Electrochemically Reduced at Bisulfide-Bearing Deep-sea Hydrothermal Precipitates?

    International Nuclear Information System (INIS)

    Yamaguchi, Akira; Yamamoto, Masahiro; Takai, Ken; Ishii, Takumi; Hashimoto, Kazuhito; Nakamura, Ryuhei

    2014-01-01

    The discovery of deep-sea hydrothermal vents on the late 1970's has led to many hypotheses concerning chemical evolution in the prebiotic ocean and the early evolution of energy metabolism in ancient Earth. Such studies stand on the quest for the bioenergetic evolution to utilize reducing chemicals such as H 2 for CO 2 reduction and carbon assimilation. In addition to the direct reaction of H 2 and CO 2 , the electrical current passing across a bisulfide-bearing chimney structure has pointed to the possible electrocatalytic CO 2 reduction at the cold ocean-vent interface (R. Nakamura, et al. Angew. Chem. Int. Ed. 2010, 49, 7692 − 7694). To confirm the validity of this hypothesis, here, we examined the energetics of electrocatalytic CO 2 reduction by iron sulfide (FeS) deposits at slightly acidic pH. Although FeS deposits inefficiently reduced CO 2 , the efficiency of the reaction was substantially improved by the substitution of Fe with Ni to form FeNi 2 S 4 (violarite), of which surface was further modified with amine compounds. The potential-dependent activity of CO 2 reduction demonstrated that CO 2 reduction by H 2 in hydrothermal fluids was involved in a strong endergonic electron transfer reaction, suggesting that a naturally occurring proton-motive force (PMF) as high as 200 mV would be established across the hydrothermal vent chimney wall. However, in the chimney structures, H 2 generation competes with CO 2 reduction for electrical current, resulting in rapid consumption of the PMF. Therefore, to maintain the PMF and the electrosynthesis of organic compounds in hydrothermal vent mineral deposits, we propose a homeostatic pH regulation mechanism of FeS deposits, in which elemental hydrogen stored in the hydrothermal mineral deposits is used to balance the consumption of the electrochemical gradient by H 2 generation

  6. The sequential use of washing and an electrochemical reduction process for the remediation of lead-contaminated soils.

    Science.gov (United States)

    Demir, Aydeniz; Köleli, Nurcan

    2013-01-01

    A two-step method for the remediation of three different types of lead (Pb)-contaminated soil was evaluated. The first step included soil washing with ethylenediaminetetraacetic acid (EDTA) to remove Pb from soils. The washing experiments were performed with 0.05 M Na2EDTA at 1:10 soil to liquid ratio. Following the washing, Pb removal efficiency from soils ranged within 50-70%. After the soil washing process, Pb2+ ions in the washing solution were reduced electrochemically in a fixed-bed reactor. Lead removal efficiency with the electrochemical reduction at -2.0 V potential ranged within 57-76%. The overall results indicate that this two-step method is an environmentally-friendly and effective technology to remediate Pb-contaminated soils, as well as Pb-contaminated wastewater treatment due to the transformation of toxic Pb2+ ions into a non-hazardous metallic form (Pb(0)).

  7. Thickness- and Particle-Size-Dependent Electrochemical Reduction of Carbon Dioxide on Thin-Layer Porous Silver Electrodes.

    Science.gov (United States)

    Zhang, Lin; Wang, Zhiyong; Mehio, Nada; Jin, Xianbo; Dai, Sheng

    2016-03-08

    The electrochemical reduction of CO2 can not only convert it back into fuels, but is also an efficient manner to store forms of renewable energy. Catalysis with silver is a possible technology for CO2 reduction. We report that in the case of monolithic porous silver, the film thickness and primary particle size of the silver particles, which can be controlled by electrochemical growth/reduction of AgCl film on silver substrate, have a strong influence on the electrocatalytic activity towards CO2 reduction. A 6 μm thick silver film with particle sizes of 30-50 nm delivers a CO formation current of 10.5 mA cm(-2) and a mass activity of 4.38 A gAg (-1) at an overpotential of 0.39 V, comparable to levels achieved with state-of-the-art gold catalysts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A simple model of the batch electrochemical reduction of nitrate/nitrite waste

    International Nuclear Information System (INIS)

    Wingard, D.A.; Weidner, J.W.; Van Zee, J.W.

    1994-01-01

    A model of a divided parallel plate electrochemical cell operated in a batch mode for the destruction of NO 3 - /NO 2 - in alkaline waste streams is presented. The model uses boundary layer approximations at each electrode and at the separator to minimize computation time. Five competing electrochemical reactions are included at the cathode. The model uses either an explicit Runge-Kutta routine with empirically determined current efficiencies or an implicit stepping routine for each electrode if the current efficiencies are to be predicted. Tim dependent changes of the concentration, temperature, and cell voltage are predicted for constant current operation. Model predictions are compared with experimental data

  9. Binding of carbon dioxide to metal macrocycles: Toward a mechanistic understanding of electrochemical and photochemical carbon dioxide reduction

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, E.

    1993-01-01

    Efforts were made to find effective catalysts for photochemical and electrochemical reduction of CO[sub 2]. We are studying the factors controlling excited-state lifetimes, electron-transfer rates to mediators/catalysts, properties of reduced mediators, binding of small molecules to reduced mediators, and reactivity of the mediators to yield the desired products. This document describes some of the results of binding on CO[sub 2] to metal macrocycles. The electrocatalytic activity of cobalt macrocycle complexes in reduction of CO[sub 2] in CO[sub 2]-saturated water at the Hg electrode is being studied. We are ready to study the mechanism and kinetics of the photochemical CO[sub 2] reduction in order to design more efficient photo-energy conversion systems. 19 refs.

  10. Binding of carbon dioxide to metal macrocycles: Toward a mechanistic understanding of electrochemical and photochemical carbon dioxide reduction

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, E.

    1993-07-01

    Efforts were made to find effective catalysts for photochemical and electrochemical reduction of CO{sub 2}. We are studying the factors controlling excited-state lifetimes, electron-transfer rates to mediators/catalysts, properties of reduced mediators, binding of small molecules to reduced mediators, and reactivity of the mediators to yield the desired products. This document describes some of the results of binding on CO{sub 2} to metal macrocycles. The electrocatalytic activity of cobalt macrocycle complexes in reduction of CO{sub 2} in CO{sub 2}-saturated water at the Hg electrode is being studied. We are ready to study the mechanism and kinetics of the photochemical CO{sub 2} reduction in order to design more efficient photo-energy conversion systems. 19 refs.

  11. Determination of the extent of reduction of dense UO{sub 2} cathodes from direct electrochemical reduction studies in molten chloride medium

    Energy Technology Data Exchange (ETDEWEB)

    Sri Maha Vishnu, D.; Sanil, N. [Fuel Chemistry Division, Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Murugesan, N. [Materials Chemistry Division, Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Shakila, L. [Fuel Chemistry Division, Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Ramesh, C. [Materials Chemistry Division, Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Mohandas, K.S., E-mail: ksmd@igcar.gov.in [Fuel Chemistry Division, Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Nagarajan, K. [Fuel Chemistry Division, Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India)

    2012-08-15

    Electro-reduction of solid UO{sub 2} to U has been studied with molten CaCl{sub 2} or LiCl as the electrolyte medium. Electro-reduction of thick (>3 mm), powder compacted and sintered pellets of UO{sub 2} showed incomplete reduction resulting in a mixture of uranium metal and UO{sub 2}. The extent of reduction of UO{sub 2} to U was determined by employing a novel method called 'metal estimation by hydrogen sensor (MEHS)', in which the hydrogen evolved during the reaction of U metal in the reduced product with con. HBr was measured using an in-house developed polymer electrolyte based amperometric hydrogen sensor. The results of our investigations on incompletely reduced UO{sub 2} pellets in both CaCl{sub 2} and LiCl melts showed that the extent of reduction of different regions of the oxide pellet was different. It varied from 88.3% on the surface of the pellet as against 3.7% towards the centre bulk during electro-reduction in CaCl{sub 2} (at 1173 K). The metallisation was found restricted to the surface of the pellets reduced in LiCl melt (at 923 K). Electro-reduction of small chunks of UO{sub 2} pellet in CaCl{sub 2} melt resulted in products with lower extent of reduction. Based on the measurements, a probable mechanism on the propagation of reduction through the solid UO{sub 2} matrix during the electrochemical reduction process has been proposed.

  12. Electrochemical probing into the active sites of graphitic-layer encapsulated iron oxygen reduction reaction electrocatalysts

    DEFF Research Database (Denmark)

    Zhong, Lijie; Jensen, Jens Oluf; Cleemann, Lars Nilausen

    2018-01-01

    is still unclear compared with the well-recognized surface coordinated FeNx/C structure. Using the strong complexing effect of the iron component with anions, cyanide (CN−) in alkaline and thiocyanate (SCN−) in acidic media, the metal containing active sites are electrochemically probed. Three...

  13. Highly selective NOx reduction for diesel engine exhaust via an electrochemical system

    DEFF Research Database (Denmark)

    Shao, Jing; Tao, Youkun; Kammer Hansen, Kent

    2016-01-01

    It is challenging to reduce the nitrogen oxides (NOx) in diesel engine exhaust due to the inhibiting effect of excess oxygen. In this study, a novel electrochemical deNOx system was developed, which eliminated the need for additional reducing materials or a sophisticated controlling system as used...

  14. REDOX AND REDUCTION POTENTIALS AS PARAMETERS TO PREDICT THE DEGRADATION PATHWAY OF CHLORINATED BENZENES IN ANAEROBIC ENVIRONMENTS

    NARCIS (Netherlands)

    DOLFING, J; HARRISON, BK

    1993-01-01

    The anaerobic degradation pathway of hexachlorobenzene starts with a series of reductive dehalogenation steps. In the present paper it was evaluated whether the dehalogenation pathway observed in microbial ecosystems could be predicted by the redox potential and/or the reduction potential (the

  15. Effect of flavin compounds on uranium(VI) reduction- kinetic study using electrochemical methods with UV-vis spectroscopy

    International Nuclear Information System (INIS)

    Yamasaki, Shinya; Tanaka, Kazuya; Kozai, Naofumi; Ohnuki, Toshihiko

    2017-01-01

    The reduction of uranium hexavalent (U(VI)) to tetravalent (U(IV)) is an important reaction because of the change in its mobility in the natural environment. Although the flavin mononucleotide (FMN) has acted as an electron shuttle for the U(VI) reduction in vivo system, which is called an electron mediator, only the rate constant for the electron transfer from FMN to U(VI) has been determined. This study examined the rate constant for the U(VI) reduction process by three flavin analogues (riboflavin, flavin mononucleotide, flavin adenine dinucleotide) to elucidate their substituent group effect on the U(VI) reduction rate by electrochemical methods. The formation of the U(IV) was monitored by UV-vis spectrometry at 660 nm during the constant potential electrolysis of the U(VI) solution in the presence of the mediator. The cyclic voltammograms indicated that the three flavin analogues behaved as electron mediator to reduce U(VI). The logarithmic rate constant for the U(VI) reduction was related to the standard redox potential of the mediators. This linear relationship indicated that the redox-active group of the mediator and the substituent group of the mediator dominate capability of the U(VI) reduction and its rate, respectively. The apparent reduction potential of U(VI) increased about 0.2 V in the presence of the mediators, which strongly suggests that the biological electron mediator makes the U(VI) reduction possible even under more oxidative conditions. - Highlights: • The rate constant for the U(VI) reduction by flavin analogues was determined. • The flavins showed a mediator effect on the U(VI) reduction. • The logarithmic rate constants for the U(VI) reduction was proportional to redox potential of the mediator. • The presence of the mediator increased about 0.2 V apparent redox potential of U(VI) to U(IV).

  16. Operando Soft X-ray Absorption Spectroscopic Study on a Solid Oxide Fuel Cell Cathode during Electrochemical Oxygen Reduction.

    Science.gov (United States)

    Nakamura, Takashi; Oike, Ryo; Kimura, Yuta; Tamenori, Yusuke; Kawada, Tatsuya; Amezawa, Koji

    2017-05-09

    An operando soft X-ray absorption spectroscopic technique, which enabled the analysis of the electronic structures of the electrode materials at elevated temperature in a controlled atmosphere and electrochemical polarization, was established and its availability was demonstrated by investigating the electronic structural changes of an La 2 NiO 4+δ dense-film electrode during an electrochemical oxygen reduction reaction. Clear O K-edge and Ni L-edge X-ray absorption spectra could be obtained below 773 K under an atmospheric pressure of 100 ppm O 2 /He, 0.1 % O 2 /He, and 1 % O 2 /He gas mixtures. Considerable spectral changes were observed in the O K-edge X-ray absorption spectra upon changing the PO2 and application of electrical potential, whereas only small spectral changes were observed in Ni L-edge X-ray absorption spectra. A pre-edge peak of the O K-edge X-ray absorption spectra, which reflects the unoccupied partial density of states of Ni 3d-O 2p hybridization, increased or decreased with cathodic or anodic polarization, respectively. The electronic structural changes of the outermost orbital of the electrode material due to electrochemical polarization were successfully confirmed by the operando X-ray absorption spectroscopic technique developed in this study. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Novel Electrochemical Synthesis of Polypyrrole/Ag Nanocomposite and Its Electrocatalytic Performance towards Hydrogen Peroxide Reduction

    OpenAIRE

    Ruma Gupta; Kavitha Jayachandran; J. S. Gamare; B. Rajeshwari; Santosh K. Gupta; J. V. Kamat

    2015-01-01

    A simple electrochemical method of synthesis of polypyrrole/silver (PPy/Ag) nanocomposite is presented. The method is based on potentiodynamic polymerization of pyrrole followed by electrodeposition of silver employing a single potentiostatic pulse. The synthesized PPy film has embedded Ag nanocubes. The morphology and structure of the resulting nanocomposite were characterized by field emission scanning electron microscopy and X-ray diffraction. Electron paramagnetic resonance studies showed...

  18. New electrochemical oscillator based on the cation-catalyzed reduction of nitroaromatic radical anions

    Czech Academy of Sciences Publication Activity Database

    Hromadová, Magdaléna; Pospíšil, Lubomír; Sokolová, Romana; Fanelli, N.

    2009-01-01

    Roč. 54, č. 22 (2009), s. 4991-4996 ISSN 0013-4686 R&D Projects: GA AV ČR IAA400400802; GA AV ČR IAA400400505; GA ČR GA203/08/1157; GA MŠk LC510; GA MŠk OC 140 Institutional research plan: CEZ:AV0Z40400503 Keywords : nitroaromatic radical * cationic catalysis * electrochemical impendance * oscillation Subject RIV: CG - Electrochemistry Impact factor: 3.325, year: 2009

  19. Conformational analysis of large and highly disulfide-stabilized proteins by integrating online electrochemical reduction into an optimized H/D exchange mass spectrometry workflow

    DEFF Research Database (Denmark)

    Trabjerg, Esben; Jakobsen, Rasmus Uffe; Mysling, Simon

    2015-01-01

    Analysis of disulfide-bonded proteins by HDX-MS requires effective and rapid reduction of disulfide bonds before enzymatic digestion in order to increase sequence coverage. In a conventional HDX-MS workflow, disulfide bonds are reduced chemically by addition of a reducing agent to the quench......-antibody, respectively. The presented results demonstrate the successful electrochemical reduction during HDX-MS analysis of both a small exceptional tightly disulfide-bonded protein (NGF) as well as the largest protein attempted to date (IgG1-antibody). We envision that online electrochemical reduction...... the electrochemical reduction efficiency during HDX-MS analysis of two particularly challenging disulfide stabilized proteins: a therapeutic IgG1-antibody and Nerve Growth Factor-β (NGF). Several different parameters (flow rate, applied square wave potential as well as the type of labeling- and quench buffer) were...

  20. Electrochemically reduced graphene-oxide supported bimetallic nanoparticles highly efficient for oxygen reduction reaction with excellent methanol tolerance

    Science.gov (United States)

    Yasmin, Sabina; Cho, Sung; Jeon, Seungwon

    2018-03-01

    We report a simple and facile method for the fabrication of bimetallic nanoparticles on electrochemically reduced graphene oxide (ErGO) for electrocatalytic oxygen reduction reaction (ORR) in alkaline media. First, reduced graphene oxide supported palladium and manganese oxide nanoparticle (rGO/Pd-Mn2O3) catalyst was synthesized via a simple chemical method at room temperature; then, it was electrochemically reduced for oxidation reduction reaction (ORR) in alkaline media. The chemical composition and morphological properties of ErGO/Pd-Mn2O3 was characterized by X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS). The TEM images reveals that, nano-sized Pd and Mn2O3 particles were disperse on the ErGO sheet without aggregation. The as-prepared ErGO/Pd-Mn2O3 was employed for ORR in alkaline media which shows higher ORR activity with more positive onset and half-wave potential, respectively. Remarkably, ErGO/Pd-Mn2O3 reduced oxygen via four-electron transfer pathway with negligible amount of intermediate peroxide species (HO2-). Furthermore, the higher stability and excellent methanol tolerance of the ErGO/Pd-Mn2O3 compared to commercial Pt/C (20 wt%) catalyst, indicating its suitability for fuel cells.

  1. Electrochemically enhanced reduction of hexavalent chromium in contaminated clay: Kinetics, energy consumption, and application of pulse current

    DEFF Research Database (Denmark)

    Sun, Tian Ran; Pamukcu, Sibel; Ottosen, Lisbeth M.

    2015-01-01

    the dependency of reaction rate on energy consumption. A modified electrophoresis cell with platinum wires as working electrodes was used to run experiments. Results showed that the reduction rate of Cr(VI) was significantly increased by application of current with the pseudo-first-order rate constant kpse from......,Fe)(OH)3] precipitates. XRD analysis suggested that the [(Cr,Fe)(OH)3] formed at the clay surface and grew into the pore fluid. SEM-EDX results indicated that the overall Fe(III):Cr(III) ratio of the precipitates was approximately 1.26:1. Application of pulse current decreased the non-productive energy......Electrochemically enhanced reduction of Cr(VI) in clay medium is a technique based on inputting extra energy into the clay to drive the favorable redox reaction. In this study, the reducing reagent Fe(II) was transported into Cr(VI) spiked kaolinite clay by direct current to investigate...

  2. Densely Packed, Ultra Small SnO Nanoparticles for Enhanced Activity and Selectivity in Electrochemical CO2 Reduction.

    Science.gov (United States)

    Gu, Jun; Héroguel, Florent; Luterbacher, Jeremy; Hu, Xile

    2018-03-05

    Controlling the selectivity in electrochemical CO 2 reduction is an unsolved challenge. While tin (Sn) has emerged as a promising non-precious catalyst for CO 2 electroreduction, most Sn-based catalysts produce formate as the major product, which is less desirable than CO in terms of separation and further use. Tin monoxide (SnO) nanoparticles supported on carbon black were synthesized and assembled and their application in CO 2 reduction was studied. Remarkably high selectivity and partial current densities for CO formation were obtained using these SnO nanoparticles compared to other Sn catalysts. The high activity is attributed to the ultra-small size of the nanoparticles (2.6 nm), while the high selectivity is attributed to a local pH effect arising from the dense packing of nanoparticles in the conductive carbon black matrix. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Electrochemical Reduction of Oxygen on Anthraquinone/Carbon Nanotubes Nanohybrid Modified Glassy Carbon Electrode in Neutral Medium

    Directory of Open Access Journals (Sweden)

    Zheng Gong

    2013-01-01

    Full Text Available The electrochemical behaviors of monohydroxy-anthraquinone/multiwall carbon nanotubes (MHAQ/MWCNTs nanohybrid modified glassy carbon (MHAQ/MWCNTs/GC electrodes in neutral medium were investigated; also reported was their application in the electrocatalysis of oxygen reduction reaction (ORR. The resulting MHAQ/MWCNTs nanohybrid was characterized by scanning electron microscope (SEM and transmission electron microscope (TEM. It was found that the ORR at the MHAQ/MWCNTs/GC electrode occurs irreversibly at a potential about 214 mV less negative than at a bare GC electrode in pH 7.0 buffer solution. Cyclic voltammetric and rotating disk electrode (RDE techniques indicated that the MHAQ/MWCNTs nanohybrid has high electrocatalytic activity for the two-electron reduction of oxygen in the studied potential range. The kinetic parameters of ORR at the MHAQ/MWCNTs nanohybrid modified GC electrode were also determined by RDE and EIS techniques.

  4. Electrochemical Reduction of Oxygen and Nitric Oxide at Low Temperature on La1−xSrxFeO3−δ Cathodes

    DEFF Research Database (Denmark)

    Kammer Hansen, Kent

    2014-01-01

    A series of six strontium-substituted lanthanum ferrites (La1-xSrxFeO3-delta, x = 0.00, 0.05, 0.15, 0.25, 0.35, and 0.50) were synthesized using the glycine-nitrate process and evaluated as cathodes for the electrochemical reduction of oxygen and nitric oxide in the temperature range 200 to 400...... degrees C, using cone-shaped electrodes and cyclic voltammetry. It was shown that the ferrites had a higher activity towards the electrochemical reduction of nitric oxide than towards the electrochemical reduction of oxygen, in the investigated temperature range. The highest activity towards...... the electrochemical reduction of nitric oxide was found for La0.95Sr0.05FeO3-delta at 400 degrees C. This compound also showed the highest activity towards the electrochemical reduction of oxygen at 400 degrees C. The highest apparent selectivity was found for the compound LaFeO3 at 200 degrees C. The materials...

  5. EQCM Study of Influence of Anion Nature on Electrochemical Reduction of Bismuth Sulfide in Nickel Plating Solution

    Directory of Open Access Journals (Sweden)

    Loreta TAMAŠAUSKAITĖ-TAMAŠIŪNAITĖ

    2011-03-01

    Full Text Available The influence of anion nature on the reduction of bismuth sulfide film deposited on gold using the successive ionic layer adsorption and reaction method in solutions containing Ni2+ ions has been investigated by electrochemical quartz crystal microbalance combined with cyclic voltammetry and X-ray photoelectron spectroscopy. It has been determined that the reduction of bismuth sulfide film in the nickel plating solution depends on the anion nature: larger cathodic current and mass changes (Dƒ are observed in the solution containing acetate anion as compared to those in the solution containing sulfate anion. As the reduction of bismuth sulfide film in the background solutions depends on the nature of anion, it influences the cathodic reduction of Ni2+ ions prior to OPD of Ni. A greater current and mass change (Dƒ is conditioned by simultaneously occurring reduction of bismuth sulfide film when the film is reduced in the acetate nickel plating electrolyte in contrast to that in the sulfate one.http://dx.doi.org/10.5755/j01.ms.17.1.244

  6. Hydrothermal-reduction synthesis of manganese oxide nanomaterials for electrochemical supercapacitors.

    Science.gov (United States)

    Zhang, Xiong; Chen, Yao; Yu, Peng; Ma, Yanwei

    2010-11-01

    In the present work, amorphous manganese oxide nanomaterials have been synthesized by a common hydrothermal method based on the redox reaction between MnO4(-) and Fe(2+) under an acidic condition. The synthesized MnO2 samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and electrochemical studies. XRD results showed that amorphous manganese oxide phase was obtained. XPS quantitative analysis revealed that the atomic ratio of Mn to Fe was 3.5 in the MnO2 samples. TEM images showed the porous structure of the samples. Electrochemical properties of the MnO2 electrodes were studied using cyclic voltammetry and galvanostatic charge-discharge cycling in 1 M Na2SO4 aqueous electrolyte, which showed excellent pseudocapacitance properties. A specific capacitance of 192 Fg(-1) at a current density of 0.5 Ag(-1) was obtained at the potential window from -0.1 to 0.9 V (vs. SCE).

  7. Efficient electrochemical reduction of nitrate to nitrogen using Ti/IrO2-Pt anode and different cathodes

    International Nuclear Information System (INIS)

    Li Miao; Feng Chuanping; Zhang Zhenya; Sugiura, Norio

    2009-01-01

    Electrochemical reduction of nitrate using Fe, Cu, and Ti as cathodes and Ti/IrO 2 -Pt as anode in an undivided and unbuffered cell was studied. In the presence of appropriate amount of NaCl, both cathodic reduction of nitrate and anodic oxidation of the by-products of ammonia and nitrite were achieved by all cathodes under a proper condition. Both in the absence and presence of NaCl, the order of nitrate removal rate was Fe > Cu > Ti. The nitrate removal was 87% and selectivity to nitrogen was 100% in 3 h with Fe cathode in the presence of NaCl. Ti/IrO 2 -Pt anode played an important role during nitrate reduction, especially in the presence of NaCl, at which by-products could efficiently be oxidized. Moreover, atomic force microscopy (AFM) investigation shown Ti/IrO 2 -Pt anode was suitable for nitration reduction and the surface roughness of all cathodes increased. The concentrations of Fe, Cu, and Ti in the electrolyte were less than 0.15, 0.12 and 0.09 mg/L after 3 h electrolysis, respectively.

  8. Investigation of electrochemical reduction of GeO2 to Ge in molten CaCl2-NaCl

    International Nuclear Information System (INIS)

    Rong, Liangbin; He, Rui; Wang, Zhiyong; Peng, Junjun; Jin, Xianbo; Chen, George Z.

    2014-01-01

    Electrochemical reduction of solid GeO 2 has been investigated in the mixed CaCl 2 -NaCl melt at 1023 K for developing a more efficient process for preparation of Ge. Cyclic voltammetry and potentiostatic electrolysis were applied to study the GeO 2 -loaded metallic cavity electrode. In addition, porous GeO 2 pellets were reduced by potentiostatic and constant cell voltage electrolysis with a graphite anode, and the electrolysis products were analyzed by powder X-ray diffraction, scanning electron microscopy and energy-dispersive X-ray spectrometry, focusing on understanding the reduction mechanism and the impact of electrode potential on the product purity. It was found that the reduction of GeO 2 to Ge occurred at a potential of about -0.50 V (vs. Ag/Ag + ), but generating various calcium germanates simultaneously, whose reduction was a little more difficult and needed a potential more negative than -1.00 V. However, if the cathode potential exceeded -1.60 V, Ca (or Na) - Ge intermetallic compounds might form. These results gave an appropriate potential range between -1.10 and -1.40 V for the production of pure germanium. Rapid electrolysis of GeO 2 to pure Ge has been realized at a cell voltage of 2.5 V with a current efficiency of about 92%

  9. Effect of nitrogen precursors on the electrochemical performance of nitrogen-doped reduced graphene oxide towards oxygen reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Soo, Li Ting, E-mail: nicolesoo90@gmail.com [Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 Bangi UKM, Selangor (Malaysia); Loh, Kee Shyuan, E-mail: ksloh@ukm.edu.my [Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 Bangi UKM, Selangor (Malaysia); Mohamad, Abu Bakar, E-mail: drab@ukm.edu.my [Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 Bangi UKM, Selangor (Malaysia); Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi UKM, Selangor (Malaysia); Daud, Wan Ramli Wan, E-mail: wramli@ukm.edu.my [Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 Bangi UKM, Selangor (Malaysia); Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi UKM, Selangor (Malaysia); Wong, Wai Yin, E-mail: waiyin.wwy@gmail.com [Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 Bangi UKM, Selangor (Malaysia); School of Engineering, Taylor' s University' s Lakeside Campus, No. 1, Jalan Taylor' s, 46500 Subang Jaya, Selangor (Malaysia)

    2016-08-25

    A series of nitrogen-doped reduced graphene oxides (NGs) with different ratios are synthesized by thermal annealing of graphene oxide with melamine or urea. The total nitrogen content in NG is high, with values of up to 5.88 at.%. The NG samples prepared by melamine exhibited thin transparent graphene sheets structure, with consist of higher nitrogen doping level and quaternary N content compared to those NG samples prepared from urea. Electrochemical characterizations show that NG is a promising metal-free electrocatalyst for an oxygen reduction reaction (ORR). Incorporation of nitrogen atoms into graphene basal plane can enhances its electrocatalytic activity toward ORR in alkaline media. The onset potential and mean number of electron transfers on NG 1 are −0.10 V and 3.80 respectively, which is higher than that of reduced graphene oxide (−0.15 V, 3.52). This study suggests that quaternary-N of the NG samples is the active site which determines the ORR activity Moreover, the NG samples with the transparent layer of graphene-like structure have better ORR performances than that of bulk graphite-like NG samples. - Highlights: • Synthesis of nitrogen-doped graphene (NG) via thermal annealing. • The effects of the nitrogen precursors on the synthesized NG are discussed. • Electrochemical performances of the NG are correlated to N doping and EASA. • Graphitic-N is proposed to be the active site for ORR.

  10. Synthesis and electrochemical properties of olivine LiFePO{sub 4} prepared by a carbothermal reduction method

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hui-ping; Wang, Zhi-xing; Li, Xin-hai; Guo, Hua-jun; Peng, Wen-jie; Zhang, Yun-he; Hu, Qi-yang [School of Metallurgical Science and Engineering, Central South University, Changsha 410083 (China)

    2008-10-01

    LiFePO{sub 4}/C composite cathode material was prepared by carbothermal reduction method, which uses NH{sub 4}H{sub 2}PO{sub 4}, Li{sub 2}CO{sub 3} and cheap Fe{sub 2}O{sub 3} as starting materials, acetylene black and glucose as carbon sources. The precursor of LiFePO{sub 4}/C was characterized by differential thermal analysis and thermogravimetry. X-ray diffraction (XRD), scanning electron microscopy (SEM) micrographs showed that the LiFePO{sub 4}/C is olivine-type phase, and the addition of the carbon reduced the LiFePO{sub 4} grain size. The carbon is dispersed between the grains, ensuring a good electronic contact. The products sintered at 700 C for 8 h with glucose as carbon source possessed excellent electrochemical performance. The synthesized LiFePO{sub 4} composites showed a high electrochemical capacity of 159.3 mAh g{sup -1} at 0.1C rate, and the capacity fading is only 2.2% after 30 cycles. (author)

  11. Effect of nitrogen precursors on the electrochemical performance of nitrogen-doped reduced graphene oxide towards oxygen reduction reaction

    International Nuclear Information System (INIS)

    Soo, Li Ting; Loh, Kee Shyuan; Mohamad, Abu Bakar; Daud, Wan Ramli Wan; Wong, Wai Yin

    2016-01-01

    A series of nitrogen-doped reduced graphene oxides (NGs) with different ratios are synthesized by thermal annealing of graphene oxide with melamine or urea. The total nitrogen content in NG is high, with values of up to 5.88 at.%. The NG samples prepared by melamine exhibited thin transparent graphene sheets structure, with consist of higher nitrogen doping level and quaternary N content compared to those NG samples prepared from urea. Electrochemical characterizations show that NG is a promising metal-free electrocatalyst for an oxygen reduction reaction (ORR). Incorporation of nitrogen atoms into graphene basal plane can enhances its electrocatalytic activity toward ORR in alkaline media. The onset potential and mean number of electron transfers on NG 1 are −0.10 V and 3.80 respectively, which is higher than that of reduced graphene oxide (−0.15 V, 3.52). This study suggests that quaternary-N of the NG samples is the active site which determines the ORR activity Moreover, the NG samples with the transparent layer of graphene-like structure have better ORR performances than that of bulk graphite-like NG samples. - Highlights: • Synthesis of nitrogen-doped graphene (NG) via thermal annealing. • The effects of the nitrogen precursors on the synthesized NG are discussed. • Electrochemical performances of the NG are correlated to N doping and EASA. • Graphitic-N is proposed to be the active site for ORR.

  12. Reduction in energy consumption of electrochemical pesticide degradation through combination with membrane filtration

    DEFF Research Database (Denmark)

    Madsen, Henrik Tækker; Søgaard, Erik Gydesen; Muff, Jens

    2015-01-01

    A significant challenge for large-scale use of electrochemical oxidation (EO) is high energy consumption, and for EO to become accepted as a standard technique, the amount of energy consumed in the process must be reduced. In this study, it was investigated how the energy consumption of EO could...... be lowered by combining the process with membrane filtration, in a setup where EO was applied to the membrane retentate stream. Use of two types of membranes, a nanofiltration (NF) and a reverse osmosis (RO) membrane, was investigated, and to provide realistic estimates on the energy consumption...... of the treatment, natural groundwater spiked with the pesticide residue 2,6-dichlorobenzamide (BAM) was used as matrix in the experiments. To understand the effect of the membranes on the energy consumption, their effect on the EO degradation efficiency was also determined. The results showed that membranes...

  13. Modular cathode assemblies and methods of using the same for electrochemical reduction

    Science.gov (United States)

    Wiedmeyer, Stanley G.; Barnes, Laurel A.; Williamson, Mark A.; Willit, James L.

    2018-03-20

    Modular cathode assemblies are useable in electrolytic reduction systems and include a basket through which fluid electrolyte may pass and exchange charge with a material to be reduced in the basket. The basket can be divided into upper and lower sections to provide entry for the material. Example embodiment cathode assemblies may have any shape to permit modular placement at any position in reduction systems. Modular cathode assemblies include a cathode plate in the basket, to which unique and opposite electrical power may be supplied. Example embodiment modular cathode assemblies may have standardized electrical connectors. Modular cathode assemblies may be supported by a top plate of an electrolytic reduction system. Electrolytic oxide reduction systems are operated by positioning modular cathode and anode assemblies at desired positions, placing a material in the basket, and charging the modular assemblies to reduce the metal oxide.

  14. Electrochemical reduction of nitroaromatic compounds by single sheet iron oxide coated electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Li-Zhi, E-mail: lizhi@plen.ku.dk [Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK–1871 Frederiksberg C (Denmark); Hansen, Hans Christian B. [Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK–1871 Frederiksberg C (Denmark); Bjerrum, Morten Jannik [Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK–2100 København Ø (Denmark)

    2016-04-05

    Highlights: • Composite layers of single sheet iron oxides were coated on indium tin oxide electrodes. • Single sheet iron oxide is an electro-catalyst for reduction of nitroaromatic compounds in aqueous solution. • The reduction is well explained by a diffusion layer model. • The charge properties of the nitrophenols have an important influence on reduction. • Low-cost iron oxide based materials are promising electro-catalyst for water treatment. - Abstract: Nitroaromatic compounds are substantial hazard to the environment and to the supply of clean drinking water. We report here the successful reduction of nitroaromatic compounds by use of iron oxide coated electrodes, and demonstrate that single sheet iron oxides formed from layered iron(II)-iron(III) hydroxides have unusual electrocatalytic reactivity. Electrodes were produced by coating of single sheet iron oxides on indium tin oxide electrodes. A reduction current density of 10 to 30 μA cm{sup −2} was observed in stirred aqueous solution at pH 7 with concentrations of 25 to 400 μM of the nitroaromatic compound at a potential of −0.7 V vs. SHE. Fast mass transfer favors the initial reduction of the nitroaromatic compound which is well explained by a diffusion layer model. Reduction was found to comprise two consecutive reactions: a fast four-electron first-order reduction of the nitro-group to the hydroxylamine-intermediate (rate constant = 0.28 h{sup −1}) followed by a slower two-electron zero-order reduction resulting in the final amino product (rate constant = 6.9 μM h{sup −1}). The zero-order of the latter reduction was attributed to saturation of the electrode surface with hydroxylamine-intermediates which have a more negative half-wave potential than the parent compound. For reduction of nitroaromatic compounds, the SSI electrode is found superior to metal electrodes due to low cost and high stability, and superior to carbon-based electrodes in terms of high coulombic efficiency and

  15. Selective Electrochemical Reduction of Carbon Dioxide to Ethanol on a Boron- and Nitrogen-Co-doped Nanodiamond.

    Science.gov (United States)

    Liu, Yanming; Zhang, Yujing; Cheng, Kai; Quan, Xie; Fan, Xinfei; Su, Yan; Chen, Shuo; Zhao, Huimin; Zhang, Yaobin; Yu, Hongtao; Hoffmann, Michael R

    2017-12-04

    Electrochemical reduction of CO 2 to ethanol, a clean and renewable liquid fuel with high heating value, is an attractive strategy for global warming mitigation and resource utilization. However, converting CO 2 to ethanol remains great challenge due to the low activity, poor product selectivity and stability of electrocatalysts. Here, the B- and N-co-doped nanodiamond (BND) was reported as an efficient and stable electrode for selective reduction of CO 2 to ethanol. Good ethanol selectivity was achieved on the BND with high Faradaic efficiency of 93.2 % (-1.0 V vs. RHE), which overcame the limitation of low selectivity for multicarbon or high heating value fuels. Its superior performance was mainly originated from the synergistic effect of B and N co-doping, high N content and overpotential for hydrogen evolution. The possible pathway for CO 2 reduction revealed by DFT computation was CO 2 →*COOH→*CO→*COCO→*COCH 2 OH→*CH 2 OCH 2 OH→CH 3 CH 2 OH. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Waste-to-energy: Dehalogenation of plastic-containing wastes.

    Science.gov (United States)

    Shen, Yafei; Zhao, Rong; Wang, Junfeng; Chen, Xingming; Ge, Xinlei; Chen, Mindong

    2016-03-01

    The dehalogenation measurements could be carried out with the decomposition of plastic wastes simultaneously or successively. This paper reviewed the progresses in dehalogenation followed by thermochemical conversion of plastic-containing wastes for clean energy production. The pre-treatment method of MCT or HTT can eliminate the halogen in plastic wastes. The additives such as alkali-based metal oxides (e.g., CaO, NaOH), iron powders and minerals (e.g., quartz) can work as reaction mediums and accelerators with the objective of enhancing the mechanochemical reaction. The dehalogenation of waste plastics could be achieved by co-grinding with sustainable additives such as bio-wastes (e.g., rice husk), recyclable minerals (e.g., red mud) via MCT for solid fuels production. Interestingly, the solid fuel properties (e.g., particle size) could be significantly improved by HTT in addition with lignocellulosic biomass. Furthermore, the halogenated compounds in downstream thermal process could be eliminated by using catalysts and adsorbents. Most dehalogenation of plastic wastes primarily focuses on the transformation of organic halogen into inorganic halogen in terms of halogen hydrides or salts. The integrated process of MCT or HTT with the catalytic thermal decomposition is a promising way for clean energy production. The low-cost additives (e.g., red mud) used in the pre-treatment by MCT or HTT lead to a considerable synergistic effects including catalytic effect contributing to the follow-up thermal decomposition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Reductieve dehalogenering van heterocyclische verbindingen, relatie tussen structuur en omzettingssnelheid

    NARCIS (Netherlands)

    de Beer KGM; Peijnenburg WJGM; Verboom JH

    1992-01-01

    A relationship was derived between the structure of halogenated heterocyclic aromatic compounds and their rate of dehalogenation in anaerobic sediment-water mixtures. Of all compounds selected, the pseudo-first order reaction rate constant was determined from the concentration-time profile, as

  18. Cathodic Potential Dependence of Electrochemical Reduction of SiO2 Granules in Molten CaCl2

    Science.gov (United States)

    Yang, Xiao; Yasuda, Kouji; Nohira, Toshiyuki; Hagiwara, Rika; Homma, Takayuki

    2016-09-01

    As part of an ongoing fundamental study to develop a new process for producing solar-grade silicon, this paper examines the effects of cathodic potential on reduction kinetics, current efficiency, morphology, and purity of Si product during electrolysis of SiO2 granules in molten CaCl2 at 1123 K (850 °C). SiO2 granules were electrolyzed potentiostatically at different cathodic potentials (0.6, 0.8, 1.0, and 1.2 V vs Ca2+/Ca). The reduction kinetics was evaluated based on the growth of the reduced Si layer and the current behavior during electrolysis. The results suggest that a more negative cathodic potential is favorable for faster reduction. Current efficiencies in 60 minutes are greater than 65 pct at all the potentials examined. Si wires with sub-micron diameters are formed, and their morphologies show little dependence on the cathodic potential. The impurities in the Si product can be controlled at low level. The rate-determining step for the electrochemical reduction of SiO2 granules in molten CaCl2 changes with time. At the initial stage of electrolysis, the electron transfer is the rate-determining step. At the later stage, the diffusion of O2- ions is the rate-determining step. The major cause of the decrease in reduction rate with increasing electrolysis time is the potential drop from the current collector to the reaction front due to the increased contact resistance among the reduced Si particles.

  19. Silver-coated ion exchange membrane electrode applied to electrochemical reduction of carbon dioxide

    International Nuclear Information System (INIS)

    Hori, Y.; Ito, H.; Okano, K.; Nagasu, K.; Sato, S.

    2003-01-01

    Silver-coated ion exchange membrane electrodes (solid polymer electrolyte, SPE) were prepared by electroless deposition of silver onto ion exchange membranes. The SPE electrodes were used for carbon dioxide (CO 2 ) reduction with 0.2 M K 2 SO 4 as the electrolyte with a platinum plate (Pt) for the counterelectrode. In an SPE electrode system prepared from a cation exchange membrane (CEM), the surface of the SPE was partly ruptured during CO 2 reduction, and the reaction was rapidly suppressed. SPE electrodes made of an anion exchange membrane (SPE/AEM) sustained reduction of CO 2 to CO for more than 2 h, whereas, the electrode potential shifted negatively during the electrolysis. The reaction is controlled by the diffusion of CO 2 through the metal layer of the SPE electrode at high current density. Ultrasonic radiation, applied to the preparation of SPE/AEM, was effective to improve the electrode properties, enhancing the electrolysis current of CO 2 reduction. Observation by a scanning electron microscope (SEM) showed that the electrode metal layer became more porous by the ultrasonic radiation treatment. The partial current density of CO 2 reduction by SPE/AEM amounted to 60 mA cm -2 , i.e. three times the upper limit of the conventional electrolysis by a plate electrode. Application of SPE device may contribute to an advancement of CO 2 fixation at ambient temperature and pressure

  20. REDUCTIVE DEHALOGENATION OF ORGANIC CONTAMINANTS IN SOILS AND GROUND WATER

    Science.gov (United States)

    Introduction and large scale production of synthetic halogenated organic chemicals over the last 50 years has resulted in a group of contaminants which tend to persist in the environment and resist both biotic and abiotic degradation. The low solubility of these types of contamin...

  1. The potential for reductive dehalogenation of chlorinated phenol in a ...

    African Journals Online (AJOL)

    2005-04-14

    Apr 14, 2005 ... cally in the dark at 28°C. Gas phases of the flasks were regularly flushed with N2. ... The headspace of the feed reservoir was continuously ... anion exchange chromatography using a Waters 501 HPLC pump, a Hamilton ...

  2. Mechanism of Cobalamin-Mediated Reductive Dehalogenation of Chloroethylenes

    DEFF Research Database (Denmark)

    Ji, Li; Wang, Chenchen; Ji, Shujing

    2017-01-01

    molecular-level insight into the competing pathways for chloroethylenes reacting with cob(I)alamin: the computed ratios of inner-sphere to outer-sphere pathways for perchloroethylene and trichloroethylene are 17:1 and 3.5:1, respectively, in accord with the corresponding experimental ratios of >10:1 and >2...

  3. The Mechanism of Room-Temperature Ionic-Liquid-Based Electrochemical CO₂ Reduction: A Review.

    Science.gov (United States)

    Lim, Hyung-Kyu; Kim, Hyungjun

    2017-03-28

    Electrochemical CO₂ conversion technology is becoming indispensable in the development of a sustainable carbon-based economy. While various types of electrocatalytic systems have been designed, those based on room-temperature ionic liquids (RTILs) have attracted considerable attention because of their high efficiencies and selectivities. Furthermore, it should be possible to develop more advanced electrocatalytic systems for commercial use because target-specific characteristics can be fine-tuned using various combinations of RTIL ions. To achieve this goal, we require a systematic understanding of the role of the RTIL components in electrocatalytic systems, however, their role has not yet been clarified by experiment or theory. Thus, the purpose of this short review is to summarize recent experimental and theoretical mechanistic studies to provide insight into and to develop guidelines for the successful development of new CO₂ conversion systems. The results discussed here can be summarized as follows. Complex physical and chemical interactions between the RTIL components and the reaction intermediates, in particular at the electrode surface, are critical for determining the activity and selectivity of the electrocatalytic system, although no single factor dominates. Therefore, more fundamental research is required to understand the physical, chemical, and thermodynamic characteristics of complex RTIL-based electrocatalytic systems.

  4. Electrochemical reduction of lanthanum trichloride in a molten equimolar mixture of sodium and potassium chlorides

    Energy Technology Data Exchange (ETDEWEB)

    Glagolevskaya, A.L.; Kuznetsov, S.A.; Polyakov, E.G.; Stangrit, P.T.

    1987-09-20

    The authors used linear voltamperometry for the investigation of the mechanism for the cathodic reduction of lanthanum. The mechanism for the cathodic reduction of lanthanum chloride in molten equimolar NaCl-KCl may be seen as consisting of a slow irreversible electrode reaction with a subsequent rapid irreversible chemical reaction. Lanthanum ions in a lower oxidation state were not found upon the prolonged maintenance of metallic lanthanum in molten NaCl-KCl-LaCl/sub 3/. Only an increase in the concentration of lanthanum(III) chloride in the melt was noted. The appearance of oxygen anions in the melt does not lead to a change in the mechanism of the cathodic reduction of lanthanum chloride but reduces the concentration of this chloride due to the formation of lanthanum oxochloride which is insoluble in the melt.

  5. Experimental Monitoring of Cr(VI) Bio-reduction Using Electrochemical Geophysics

    International Nuclear Information System (INIS)

    Birsen Canan; Gary R. Olhoeft; William A. Smith

    2007-01-01

    Many Department of Energy (DOE) sites are contaminated with highly carcinogenic hexavalent chromium (Cr(VI)). In this research, we explore the feasibility of applying complex resistivity to the detection and monitoring of microbially-induced reduction of hexavalent chromium (Cr(VI)) to a less toxic form (Cr(III)). We hope to measure the change in ionic concentration that occurs during this reduction reaction. This form of reduction promises to be an attractive alternative to more expensive remedial treatment methods. The specific goal of this research is to define the minimum and maximum concentration of the chemical and biological compounds in contaminated samples for which the Cr(VI) - Cr(III) reduction processes could be detected via complex resistivity. There are three sets of experiments, each comprised of three sample columns. The first experiment compares three concentrations of Cr(VI) at the same bacterial cell concentration. The second experiment establishes background samples with, and without, Cr(VI) and bacterial cells. The third experiment examines the influence of three different bacterial cell counts on the same concentration of Cr(VI). A polarization relaxation mechanism was observed between 10 and 50 Hz. The polarization mechanism, unfortunately, was not unique to bio-chemically active samples. Spectral analysis of complex resistivity data, however, showed that the frequency where the phase minimum occurred was not constant for bio-chemically active samples throughout the experiment. A significant shifts in phase minima occurred between 10 to 20 Hz from the initiation to completion of Cr(VI) reduction. This phenomena was quantified using the Cole-Cole model and the Marquardt-Levenberg nonlinear least square minimization method. The data suggests that the relaxation time and the time constant of this relaxation are the Cole-Cole parameters most sensitive to changes in biologically-induced reduction of Cr(VI)

  6. (Spectro) Electrochemical investigation of reduction mechanism of a new energetic molecule 2,2-dinitroethene-1,1-diamine (FOX-7) in aprotic solvents

    Czech Academy of Sciences Publication Activity Database

    Šimková, Ludmila; Dmitrieva, E.; Klíma, Jiří; Dunsch, L.; Ludvík, Jiří

    2015-01-01

    Roč. 19, č. 1 (2015), s. 103-112 ISSN 1432-8488 R&D Projects: GA ČR GA13-21704S Institutional support: RVO:61388955 Keywords : FOX -7 * electrochemical reduction * Autoprotonation mechanism Subject RIV: CG - Electrochemistry Impact factor: 2.327, year: 2015

  7. Electrochemical reduction of NO with propene in the presence of oxygen on LSCoM/CGO porous cell stacks impregnated with BaO

    DEFF Research Database (Denmark)

    Friedberg, Anja Zarah; Kammer Hansen, Kent

    2015-01-01

    of up to 30 % was achieved. In the presence of propene, the electrochemical promotion on the NOx conversion decreased and only 13 % was removed. A propene oxidation of 35 % was achieved as the highest at 400 °C. The propene acted as a reducing agent on the barium nitrates and caused a greater reduction...

  8. Electrochemical Probing of in Vivo 5-Hydroxymethyl Furfural Reduction in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Kostesha, Natalie; Almeida, J.R.M.; Heiskanen, Arto

    2009-01-01

    with HMF, was probed using the menadione-ferricyanide double mediator system. A lower intracellular NADPH level as the consequence of more effective HMF reduction was observed for the ADH6 strain both with and without added glucose, which increases the overall cellular NADPH level. The mediated...

  9. Electrochemical reduction of CO2 on compositionally variant Au-Pt bimetallic thin films

    NARCIS (Netherlands)

    Ma, M.; Hansen, H.A.; Valenti, M.; Wang, Z.; Cao, A.; Dong, M.; Smith, W.A.

    2017-01-01

    The electrocatalytic reduction of CO2 on Au-Pt bimetallic catalysts with different compositions was evaluated, offering a platform for uncovering the correlation between the catalytic activity and the surface composition of bimetallic electrocatalysts. The Au-Pt alloy films were synthesized by a

  10. Nature and Distribution of Stable Subsurface Oxygen in Copper Electrodes During Electrochemical CO2 Reduction

    DEFF Research Database (Denmark)

    Cavalca, Filippo Carlo; Ferragut, Rafael; Aghion, Stefano

    2017-01-01

    Oxide-derived copper (OD-Cu) electrodes exhibit higher activity than pristine copper during the carbon dioxide reduction reaction (CO2RR) and higher selectivity towards ethylene. The presence of residual subsurface oxygen in OD-Cu has been proposed to be responsible for such improvements, although...

  11. Electrochemical surface derivation of glassy carbon by the reduction of triaryl- and alkyldiphenylsulfonium salts

    DEFF Research Database (Denmark)

    Vase, K.H.; Holm, A.H.; Norrman, Kion

    2008-01-01

    , whereas (4-chlorophenyl)diphenylsulfonium salt leads to a mixture of phenyl and chlorophenyl groups). These relationships may be understood by considering the inductive nature of the substituent with regard to the aryl-S bonds and are supported by preparative experiments. Upon reduction...

  12. Graphene-based materials via benzidine-assisted exfoliation and reduction of graphite oxide and their electrochemical properties

    Science.gov (United States)

    Vermisoglou, E. C.; Giannakopoulou, T.; Romanos, G.; Boukos, N.; Psycharis, V.; Lei, C.; Lekakou, C.; Petridis, D.; Trapalis, C.

    2017-01-01

    Benzidine, a compound bearing aromatic rings and terminal amino groups, was employed for the intercalation and simultaneous reduction of graphite oxide (GO). The aromatic diamine can be intercalated into GO as follows: (1) by grafting with the epoxy groups of GO, (2) by hydrogen bonding with the oxygen containing groups of GO. Stacking between benzidine aromatic rings and unoxidized domains of GO may occur through π-π interaction. The role of benzidine is influenced by pH conditions and the weight ratio GO/benzidine. Two weight ratios were tested i.e. 1:2 and 1:3. Under strong alkaline conditions through K2CO3 addition (pH ∼10.4-10.6) both intercalation and reduction of GO via amino groups occur, while under strong acidic conditions through HCl addition (pH ∼1.4-2.2) π-π stacking is preferred. When no base or acid is added (pH ∼5.2) and the weight ratio is 1:2, there are indications that reduction and π-π stacking occur, while at a GO/benzidine weight ratio 1:3 intercalation via amino groups and reduction seem to dominate. The aforementioned remarks render benzidine a multifunctional tool towards production of reduced graphene oxide. The effect of pH conditions and the GO/benzidine weight ratio on the quality and the electrochemical properties of the produced graphene-based materials were investigated. Cyclic voltammetry measurements using three-electrode cell and KCl aqueous solution as an electrolyte gave specific capacitance values up to ∼178 F/g. When electric double-layer capacitors (EDLC) were fabricated from these materials, the maximum capacitance in organic electrolyte i.e., tetraethyl ammonium tetrafluoroborate (TEABF4) in polycarbonate (PC) was ∼29 F/g.

  13. Dehalogenation of vicinal dihalo compounds by 1,1'-bis(trimethylsilyl)-1H,1'H-4,4'-bipyridinylidene for giving alkenes and alkynes in a salt-free manner.

    Science.gov (United States)

    Rej, Supriya; Pramanik, Suman; Tsurugi, Hayato; Mashima, Kazushi

    2017-12-07

    We report a transition metal-free dehalogenation of vicinal dihalo compounds by 1,1'-bis(trimethylsilyl)-1H,1'H-4,4'-bipyridinylidene (1) under mild conditions, in which trimethylsilyl halide and 4,4'-bipyridine were generated as byproducts. The synthetic protocol for this dehalogenation reaction was effective for a wide scope of dibromo compounds as substrates while keeping the various functional groups intact. Furthermore, the reduction of vicinal dichloro alkanes and vicinal dibromo alkenes also proceeded in a salt-free manner to afford the corresponding alkenes and alkynes.

  14. Electrochemical analysis

    International Nuclear Information System (INIS)

    Hwang, Hun

    2007-02-01

    This book explains potentiometry, voltametry, amperometry and basic conception of conductometry with eleven chapters. It gives the specific descriptions on electrochemical cell and its mode, basic conception of electrochemical analysis on oxidation-reduction reaction, standard electrode potential, formal potential, faradaic current and faradaic process, mass transfer and overvoltage, potentiometry and indirect potentiometry, polarography with TAST, normal pulse and deferential pulse, voltammetry, conductometry and conductometric titration.

  15. Enzymic Dehalogenation of 4-Chlorobenzoyl Coenzyme A in Acinetobacter sp. Strain 4-CB1

    OpenAIRE

    Copley, Shelley D.; Crooks, Gwen P.

    1992-01-01

    4-Chlorobenzoate degradation in cell extracts of Acinetobacter sp. strain 4-CB1 occurs by initial synthesis of 4-chlorobenzoyl coenzyme A (4-chlorobenzoyl CoA) from 4-chlorobenzoate, CoA, and ATP. 4-Chlorobenzoyl CoA is dehalogenated to 4-hydroxybenzoyl CoA. Following the dehalogenation reaction, 4-hydroxybenzoyl CoA is hydrolyzed to 4-hydroxybenzoate and CoA. Possible roles for the CoA moiety in the dehalogenation reaction are discussed.

  16. Enzymic Dehalogenation of 4-Chlorobenzoyl Coenzyme A in Acinetobacter sp. Strain 4-CB1

    Science.gov (United States)

    Copley, Shelley D.; Crooks, Gwen P.

    1992-01-01

    4-Chlorobenzoate degradation in cell extracts of Acinetobacter sp. strain 4-CB1 occurs by initial synthesis of 4-chlorobenzoyl coenzyme A (4-chlorobenzoyl CoA) from 4-chlorobenzoate, CoA, and ATP. 4-Chlorobenzoyl CoA is dehalogenated to 4-hydroxybenzoyl CoA. Following the dehalogenation reaction, 4-hydroxybenzoyl CoA is hydrolyzed to 4-hydroxybenzoate and CoA. Possible roles for the CoA moiety in the dehalogenation reaction are discussed. PMID:16348702

  17. Electrochemical degradation and toxicity reduction of C.I. Basic Red 29 solution and textile wastewater by using diamond anode

    International Nuclear Information System (INIS)

    Koparal, A. Savas; Yavuz, Yusuf; Guerel, Canan; Oguetveren, Ulker Bakir

    2007-01-01

    Electrochemical oxidation of Basic Red 29 (BR29) was studied in a bipolar trickle tower (BTT) reactor by using Raschig ring shaped boron-doped diamond (BDD) electrodes, which were originally employed by the present researchers, in a recirculated batch mode. The model solution was prepared with BR29 using distilled water. The effects of initial dye concentration, Na 2 SO 4 concentration as supporting electrolyte, current density, flow rate and initial pH on the removal efficiency were investigated, and practically, complete BR29 removal (over 99%) was obtained in all the studies. After optimum experimental conditions were determined, textile wastewater has also studied by monitoring the destruction of color and COD. With the textile wastewater, 97.2% of color and 91% of COD removal were, respectively, achieved at the current density of 1 mA/cm 2 . Microtox toxicity tests were performed in both BR29 solution and textile wastewater under optimum experimental conditions, and relatively good toxicity reductions were obtained with respect to the initial values. According to the results, BDD anode was seen to be a unique material for the degradation of BR29 and COD and also the reduction of toxicity simultaneously

  18. Electrochemical degradation and toxicity reduction of C.I. Basic Red 29 solution and textile wastewater by using diamond anode

    Energy Technology Data Exchange (ETDEWEB)

    Koparal, A. Savas [Anadolu Universitesi, Cevre Sor.Uyg. ve Aras, Merkezi, Eskisehir (Turkey)]. E-mail: askopara@anadolu.edu.tr; Yavuz, Yusuf [Anadolu Universitesi, Cevre Sor.Uyg. ve Aras, Merkezi, Eskisehir (Turkey); Guerel, Canan [Anadolu Universitesi, Cevre Sor.Uyg. ve Aras, Merkezi, Eskisehir (Turkey); Oguetveren, Ulker Bakir [Anadolu Universitesi, Cevre Sor.Uyg. ve Aras, Merkezi, Eskisehir (Turkey)

    2007-06-25

    Electrochemical oxidation of Basic Red 29 (BR29) was studied in a bipolar trickle tower (BTT) reactor by using Raschig ring shaped boron-doped diamond (BDD) electrodes, which were originally employed by the present researchers, in a recirculated batch mode. The model solution was prepared with BR29 using distilled water. The effects of initial dye concentration, Na{sub 2}SO{sub 4} concentration as supporting electrolyte, current density, flow rate and initial pH on the removal efficiency were investigated, and practically, complete BR29 removal (over 99%) was obtained in all the studies. After optimum experimental conditions were determined, textile wastewater has also studied by monitoring the destruction of color and COD. With the textile wastewater, 97.2% of color and 91% of COD removal were, respectively, achieved at the current density of 1 mA/cm{sup 2}. Microtox toxicity tests were performed in both BR29 solution and textile wastewater under optimum experimental conditions, and relatively good toxicity reductions were obtained with respect to the initial values. According to the results, BDD anode was seen to be a unique material for the degradation of BR29 and COD and also the reduction of toxicity simultaneously.

  19. Electrochemical reduction of oxygen on gold and boron-doped diamond electrodes in ambient temperature, molten acetamide-urea-ammonium nitrate eutectic melt

    International Nuclear Information System (INIS)

    Dilimon, V.S.; Venkata Narayanan, N.S.; Sampath, S.

    2010-01-01

    The electrochemical reduction of oxygen has been studied on gold, boron-doped diamond (BDD) and glassy carbon (GC) electrodes in a ternary eutectic mixture of acetamide (CH 3 CONH 2 ), urea (NH 2 CONH 2 ) and ammonium nitrate (NH 4 NO 3 ). Cyclic voltammetry (CV), differential pulse voltammetry (DPV), chronoamperometry and rotating disk electrode (RDE) voltammetry techniques have been employed to follow oxygen reduction reaction (ORR). The mechanism for the electrochemical reduction of oxygen on polycrystalline gold involves 2-step, 2-electron pathways of O 2 to H 2 O 2 and further reduction of H 2 O 2 to H 2 O. The first 2-electron reduction of O 2 to H 2 O 2 passes through superoxide intermediate by 1-electron reduction of oxygen. Kinetic results suggest that the initial 1-electron reduction of oxygen to HO 2 is the rate-determining step of ORR on gold surfaces. The chronoamperometric and RDE studies show a potential dependent change in the number of electrons on gold electrode. The oxygen reduction reaction on boron-doped diamond (BDD) seems to proceed via a direct 4-electron process. The reduction of oxygen on the glassy carbon (GC) electrode is a single step, irreversible, diffusion limited 2-electron reduction process to peroxide.

  20. Kinetic investigation of the chlorine reduction reaction on electrochemically oxidised ruthenium

    International Nuclear Information System (INIS)

    Thomassen, M.; Karlsen, C.; Borresen, B.; Tunold, R.

    2006-01-01

    The rate and mechanism of the electroreduction of chlorine on electrooxidised ruthenium has been investigated with focus on the effect of solution pH. Current/potential curves for the reduction process in solutions with constant chloride concentration of 1.0 mol dm -3 and varying H + concentration have been obtained with the use of the rotating disk electrode technique (RDE). It was found that the chlorine reduction rate is highly inhibited in solutions with high H + concentrations and that it can be satisfactorily described by the Erenburg mechanism, previously suggested for the chlorine evolution on RuO 2 and RTO. The expression of the kinetic current as a function of chlorine and H + concentration was obtained by solving the elementary rate equations of the kinetic mechanism. The kinetic constants obtained from the correlation of the kinetic current expression to the experimental data were used to simulate the dependence of the surface coverages and elementary reaction rates on overpotential

  1. Identification of intrinsic catalytic activity for electrochemical reduction of water molecules to generate hydrogen

    KAUST Repository

    Shinagawa, Tatsuya

    2015-01-01

    Insufficient hydronium ion activities at near-neutral pH and under unbuffered conditions induce diffusion-limited currents for hydrogen evolution, followed by a reaction with water molecules to generate hydrogen at elevated potentials. The observed constant current behaviors at near neutral pH reflect the intrinsic electrocatalytic reactivity of the metal electrodes for water reduction. This journal is © the Owner Societies.

  2. Electrochemical Reduction of CO2 at Metal Electrodes in a Distillable Ionic Liquid.

    Science.gov (United States)

    Chen, Lu; Guo, Si-Xuan; Li, Fengwang; Bentley, Cameron; Horne, Mike; Bond, Alan M; Zhang, Jie

    2016-06-08

    The electroreduction of CO2 in the distillable ionic liquid dimethylammonium dimethylcarbamate (dimcarb) has been investigated with 17 metal electrodes. Analysis of the electrolysis products reveals that aluminum, bismuth, lead, copper, nickel, palladium, platinum, iron, molybdenum, titanium and zirconium electroreduce the available protons in dimcarb to hydrogen rather than reducing CO2 . Conversely, indium, tin, zinc, silver and gold are able to catalyze the reduction of CO2 to predominantly carbon monoxide (CO) and to a lesser extent, formate ([HCOO](-) ). In all cases, the applied potential was found to have a minimal influence on the distribution of the reduction products. Overall, indium was found to be the best electrocatalyst for CO2 reduction in dimcarb, with faradaic efficiencies of approximately 45 % and 40 % for the generation of CO and [HCOO](-) , respectively, at a potential of -1.34 V versus Cc(+/0) (Cc(+) =cobaltocenium) employing a dimethylamine to CO2 ratio of less than 1.8:1. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Electrochemical processes of adsorbed chlorobenzene and fluorobenzene on a platinum polycrystalline electrode

    Czech Academy of Sciences Publication Activity Database

    Kebrlová, Natálie; Janderka, P.; Trnková, L.

    2009-01-01

    Roč. 74, č. 4 (2009), s. 611-625 ISSN 0010-0765 Institutional research plan: CEZ:AV0Z40500505 Keywords : electrochemical degradation * hydrogenation * dehalogenation Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.856, year: 2009

  4. NOX Reduction Using an Electrochemical Cell with NOadsorbents

    DEFF Research Database (Denmark)

    Shao, Jing

    , surface diffusion, and transfer of NOx and O2 species at/near the triple phase boundary region, and the formation of intermediate NO2. Severe degradation was observed on both electrodes following long-term operation, caused by the corrosion of the Ag electrode covered by a nitrate melt, or associated......This thesis studied the electrochemical cells modified by NOx adsorbents for the NOx reduction under O2-rich conditions. The structure of a multilayer electrochemical cell with a NOx adsorption layer was optimized by removing a yttria-stabilized zirconia (YSZ) cover layer coated on a Pt...

  5. Electrochemical CO2 and CO reduction on metal-functionalized porphyrin-like graphene

    DEFF Research Database (Denmark)

    Tripkovic, Vladimir; Vanin, Marco; Karamad, Mohammedreza

    2013-01-01

    Porphyrin-like metal-functionalized graphene structures have been investigated as possible catalysts for CO2 and CO reduction to methane or methanol. The late transition metals (Cu, Ag, Au, Ni, Pd, Pt, Co, Rh, Ir, Fe, Ru, Os) and some p (B, Al, Ga) and s (Mg) metals comprised the center of the po......Porphyrin-like metal-functionalized graphene structures have been investigated as possible catalysts for CO2 and CO reduction to methane or methanol. The late transition metals (Cu, Ag, Au, Ni, Pd, Pt, Co, Rh, Ir, Fe, Ru, Os) and some p (B, Al, Ga) and s (Mg) metals comprised the center...... instead of CO2. Volcano plots were constructed on the basis of scaling relations of reaction intermediates, and from these plots the reaction steps with the highest overpotentials were deduced. The Rh-porphyrin-like functionalized graphene was identified as the most active catalyst for producing methanol...... from CO, featuring an overpotential of 0.22 V. Additionally, we have also examined the hydrogen evolution and oxidation reaction, and in their case, too, Rh-porphyrin turned out to be the best catalyst with an overpotential of 0.15 V. © 2013 American Chemical Society....

  6. Formation and proof of stable bi-, tri- and tetraradical polyanions during the electrochemical reduction of cone-polynitrocalix[4]arenes. An ESR-UV-vis spectroelectrochemical study

    International Nuclear Information System (INIS)

    Liška, Alan; Rosenkranz, Marco; Klíma, Jiří; Dunsch, Lothar; Lhoták, Pavel; Ludvík, Jiří

    2014-01-01

    Graphical abstract: - Abstract: The first intermediates of electrochemical reduction of nitro compounds in nonaqueous DMF are stable radical anions. In the series of mono-, di-, tri- and tetranitro calix[4]arenes each nitro group represents a reduction center, therefore the question about the spin state of intermediary anions arises. In this communication, the voltammetric and coulometric investigation of these compounds is performed together with the spectral measurements (ESR and UV-vis). The in-situ spectroelectrochemical approach proved that during reduction, in all polynitro radicalic intermediates the electrons remain unpaired and thus relatively stable mono-, di-, tri- and tetraradical mono-, di-, tri- and tetraanions, respectively, can be electrochemically generated in aprotic DMF from polynitrocalix[4]arenes. This finding confirms that the nitrophenyl units in polynitrocalix[4]arenes are completely independent and no mutual electronic communication takes place among them

  7. Anode-cathode power distribution systems and methods of using the same for electrochemical reduction

    Science.gov (United States)

    Koehl, Eugene R; Barnes, Laurel A; Wiedmeyer, Stanley G; Williamson, Mark A; Willit, James L

    2014-01-28

    Power distribution systems are useable in electrolytic reduction systems and include several cathode and anode assembly electrical contacts that permit flexible modular assembly numbers and placement in standardized connection configurations. Electrical contacts may be arranged at any position where assembly contact is desired. Electrical power may be provided via power cables attached to seating assemblies of the electrical contacts. Cathode and anode assembly electrical contacts may provide electrical power at any desired levels. Pairs of anode and cathode assembly electrical contacts may provide equal and opposite electrical power; different cathode assembly electrical contacts may provide different levels of electrical power to a same or different modular cathode assembly. Electrical systems may be used with an electrolyte container into which the modular cathode and anode assemblies extend and are supported above, with the modular cathode and anode assemblies mechanically and electrically connecting to the respective contacts in power distribution systems.

  8. Electrochemical Reduction of CO2 on Compositionally Variant Au-Pt Bimetallic Thin Films

    DEFF Research Database (Denmark)

    Ma, Ming; Hansen, Heine Anton; Valenti, Marco

    2017-01-01

    The electrocatalytic reduction of CO2 on Au-Pt bimetallic catalysts with different compositions was evaluated, offering a platform for uncovering the correlation between the catalytic activity and the surface composition of bimetallic electrocatalysts. The Au-Pt alloy films were synthesized...... by a magnetron sputtering co-deposition technique with tunable composition. It was found that the syngas ratio (CO:H2) on the Au-Pt films is able to be tuned by systematically controlling the binary composition. This tunable catalytic selectivity is attributed to the variation of binding strength of COOH and CO...... intermediates, influenced by the surface electronic structure (d-band center energy) which is linked to the surface composition of the bimetallic films. Notably, a gradual shift of the d-band center away from the Fermi level was observed with increasing Au content, which correspondingly reduces the binding...

  9. [Bio-electrochemical effect on hydrogenotrophic sulfate reduction stimulated by electrical field in the presence of H2 under atmospheric pressure].

    Science.gov (United States)

    Xu, Hui-Wei; Zhang, Xu; Yang, Shan-Shan; Li, Guang-He

    2009-07-15

    Microbial sulfate reduction rate is limited with H2 as electron donor. In order to improve hydrogenotrophic sulfate reduction under normal atmospheric H2 pressure, a bio-electrochemical system with direct current was designed and performed in this study. Results indicates that sulfate reduction rate (SRR) increases with the augment of current intensity under lower current intensity (I electric or magnetic field stimulates the proliferation of sulfate-reducing bacteria (SRB) and the activity of the enzymes. When I is higher than 1.50 mA, the activity of SRB is inhibited, resulting in lower reduction rate compared with that at lower current. If controlling the cathode potential lower than -0.69 V and H2 partial pressure 1.01 x 10(5) Pa, electro-catalytic sulfate reduction process takes place with H2 as reductant in this bio-electrochemical system. However, the overall reduction rate is still lower than that when I = 1.50 mA is applied, and additionally the energy consumption is much higher. Therefore, electric field of low intensity can enhance hydrogenotrophic sulfate reduction in the presence of H2 under atmospheric pressure.

  10. Amino acid assisted dehalogenation of carbon tetrachloride by green rust

    DEFF Research Database (Denmark)

    Yin, Weizhao; Strobel, Bjarne W.; Hansen, Hans Chr. Bruun

    2017-01-01

    that reduce the formation of toxic by-products such as chloroform (CF). In this study, carbon tetrachloride (CT) dehalogenation by the chloride form of GR (GRCl) was tested in presence of glycine (GLY) and other selected amino acids. GLY, alanine (ALA) or serine (SER) all resulted in remarkable suppression...... of CF formation with only ~ 10% of CF recovery while sarcosine (SAR) showed insignificant effects. For two non-amino acid buffers, TRIS had little effect while HEPES resulted in a 40 times lower rate constant compared to experiments where no buffer was added. The FeII complexing properties of the amino...... acids and buffers caused variable extents of GRCl dissolution which was linearly correlated with CF suppression and dehalogenation rate. We hypothesize that the CF suppression seen for amino acids is caused by stabilization of carbene intermediates via the carbonyl group. Different effects on CF...

  11. Electrochemical kinetics and X-ray absorption spectroscopy investigations of select chalcogenide electrocatalysts for oxygen reduction reaction applications

    International Nuclear Information System (INIS)

    Ziegelbauer, Joseph M.; Murthi, Vivek S.; O'Laoire, Cormac; Gulla, Andrea F.; Mukerjee, Sanjeev

    2008-01-01

    Transition metal-based chalcogenide electrocatalysts exhibit a promising level of performance for oxygen reduction reaction applications while offering significant economic benefits over the state of the art Pt/C systems. The most active materials are based on Ru x Se y clusters, but the toxicity of selenium will most likely limit their embrace by the marketplace. Sulfur-based analogues do not suffer from toxicity issues, but suffer from substantially less activity and stability than their selenium brethren. The structure/property relationships that result in these properties are not understood due to ambiguities regarding the specific morphologies of Ru x S y -based chalcogenides. To clarify these properties, an electrochemical kinetics study was interpreted in light of extensive X-ray diffraction, scanning electron microscopy, and in situ X-ray absorption spectroscopy evaluations. The performance characteristics of ternary M x Ru y S z /C (M = Mo, Rh, or Re) chalcogenide electrocatalysts synthesized by the now-standard low-temperature nonaqueous (NA) route are compared to commercially available (De Nora) Rh- and Ru-based systems. Interpretation of performance differences is made in regards to bulk and surface properties of these systems. In particular, the overall trends of the measured activation energies in respect to increasing overpotential and the gross energy values can be explained in regards to these differences

  12. Electrochemical Reduction of CO2 on IrxRu(1–x)O2(110) Surfaces 

    DEFF Research Database (Denmark)

    Bhowmik, Arghya; Hansen, Heine Anton; Vegge, Tejs

    2017-01-01

    with oxygen-coordinated intermediates that can circumvent the limitations imposed by the scaling relations on metal catalysts. Here, we introduce an innovative concept of ligand effects in oxide catalysts. Both IrO2 and RuO2 binds OH* and other intermediates from the electrochemical reduction of CO2 (CO2RR......High overpotentials and low faradic efficiencies plague metal catalysts for direct conversion of CO2 to methanol and other liquid fuels. RuO2-based electrocatalysts have been observed to evolve methanol at low overpotentials, which has been attributed to an alternative reaction mechanism......) strongly, but the stable and miscible system IrxRu(1-x)O2 exhibits anomalous weaker binding energy in the presence of CO* spectators, because of Ru–Ir ligand effects. The weakened adsorbate binding leads to a very low CO2RR onset potential (methanol evolution at −0.2 V RHE). An Ir atom at the bridge site...

  13. The electrochemical selective reduction of NO using CoSe2@CNTs hybrid.

    Science.gov (United States)

    Liu, Hui; Xiang, Kaisong; Yang, Bentao; Xie, Xiaofeng; Wang, Dongli; Zhang, Cong; Liu, Zhilou; Yang, Shu; Liu, Cao; Zou, Jianping; Chai, Liyuan

    2017-06-01

    Converting the NO from gaseous pollutant into NH 4 + through electrocatalytical reduction using cost-effective materials holds great promise for pollutant purifying and resources recycling. In this work, we developed a highly selective and stable catalyst CoSe 2 nanoparticle hybridized with carbon nanotubes (CoSe 2 @CNTs). The CoSe 2 @CNTs hybrid catalysts performed an extraordinary high selectivity for NH 4 + formation in NO electroreduction with minimal N 2 O production and H 2 evolution. The specific spatial structure of CoSe 2 is conductive to the predominant formation of N-H bond between the N from adsorbed NO and H and inhibition of N-N formation from adjacent adsorbed NO. It was also the first time to convert the coordinated NO into NH 4 + using non-noble metal catalysis. Moreover, the original concept of employing CoSe 2 as eletrocatalyst for NO hydrogenation presented in this work can broaden horizons and provide new dimensions in the design of new highly efficient catalysts for NH 4 + synthesis in aqueous solution.

  14. Electrochemical reduction of oxygen on lead-silver alloys in an alkaline medium

    International Nuclear Information System (INIS)

    Seliverstov, S.D.; Arkhangel'skaya, Z.P.; Lyzlov, N.Y.

    1986-01-01

    The use of lead-silver alloys as materials for the gas-absorbing electrode in sealed silver-cadmium alkaline storage batteries is desirable primarily from the stanpoint of saving the costly silver. The authors studied reduction of oxygen with the aim of optimizing the composition of the Pb-Ag alloy and of the porous structure of the electrodes. The alloys were made in a muffle furnace in corundum crucibles under a layer of VI-2 flux. Curves are shown which represent the dependence of the ionization current of molecular oxygen on smooth partially immersed electrodes made from alloys differing in composition on the length of the part of the electrode withdrawn from the solution. It is shown that decrease of the corrosion resistance of the alloy in the porous electrode causes partial loss of its mechanical strength. Worsening of the electric contact between the particles of active material is also possible. An alloy of the composition (mass %) 60 Pb-40 Ag is the most suitable from the practical standpoint

  15. Electrochemical reduction and oxidation pathways for Reactive Black 5 dye using nickel electrodes in divided and undivided cells

    International Nuclear Information System (INIS)

    Méndez-Martínez, Ana J.; Dávila-Jiménez, Martin M.; Ornelas-Dávila, Omar; Elizalde-González, María P.; Arroyo-Abad, Uriel; Sirés, Ignasi; Brillas, Enric

    2012-01-01

    Highlights: ► Ni electrodes were used for the mild degradation of the azo dye Reactive Black 5. ► Potentiostatic degradation was performed in undivided and divided cells. ► Degradation by-products were detected and monitored by RP-HPLC and LC–MS/MS. ► Small alkylsulfonyl phenol and isoxazole derivatives were identified. ► The cathodic and anodic degradation pathways for Reactive Black 5 were elucidated. - Abstract: The cathodic reduction and anodic ·OH-mediated oxidation of the azo dye Reactive Black 5 (RB5) have been studied potentiostatically by using undivided and divided cells with a Ni-polyvinylchloride (Ni-PVC) composite cathode and a Ni wire mesh anode. Solutions of 50–100 cm 3 of 20–80 mg dm −3 RB5 in 0.1 mol dm −3 KOH were degraded to assess the effect of electrolysis time and electrode potentials on the infrared and absorbance spectra, as well as on the decay of the total organic carbon and chemical oxygen demand. Reversed-phase high performance liquid chromatography (RP-HPLC) with ion-pairing and diode array detection (ion pair chromatography), along with coupling to tandem mass spectrometry (LC–MS/MS), were used for the identification of the aromatic degradation by-products and monitoring their time course. These analyses revealed the progressive conversion of the RB5 dye to simpler molecules with m/z 200, 369.5 and 547 under the direct action of the electron at the cathode and the formation of polar compounds such as alkylsulfonyl phenol derivatives with m/z 201, 185 and 171 by the ·OH mediation at the anode. From these results, the electrochemical reduction and oxidation pathways for the RB5 dye were elucidated.

  16. The electrochemical reduction of the purines guanine and adenine at platinum electrodes in several room temperature ionic liquids

    International Nuclear Information System (INIS)

    Zanoni, Maria Valnice Boldrin; Rogers, Emma I.; Hardacre, Christopher; Compton, Richard G.

    2010-01-01

    The reduction of guanine was studied by microelectrode voltammetry in the room temperature ionic liquids (RTILs) N-hexyltriethylammonium bis (trifluoromethanesulfonyl) imide [N 6,2,2,2 ][N(Tf) 2 ], 1-butyl-3-methylimidazolium hexafluorosphosphate [C 4 mim][PF 6 ], N-butyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide [C 4 mpyrr][N(Tf) 2 ], 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide [C 4 mim][N(Tf) 2 ], N-butyl-N-methyl-pyrrolidinium dicyanamide [C 4 mpyrr][N(NC) 2 ] and tris(P-hexyl)-tetradecylphosphonium trifluorotris(pentafluoroethyl)phosphate [P 14,6,6,6 ][FAP] on a platinum microelectrode. In [N 6,2,2,2 ][NTf 2 ] and [P 14,6,6,6 ][FAP], but not in the other ionic liquids studied, guanine reduction involves a one-electron, diffusion-controlled process at very negative potential to produce an unstable radical anion, which is thought to undergo a dimerization reaction, probably after proton abstraction from the cation of the ionic liquid. The rate of this subsequent reaction depends on the nature of the ionic liquid, and it is faster in the ionic liquid [P 14,6,6,6 ][FAP], in which the formation of the resulting dimer can be voltammetrically monitored at less negative potentials than required for the reduction of the parent molecule. Adenine showed similar behaviour to guanine but the pyrimidines thymine and cytosine did not; thymine was not reduced at potentials less negative than required for solvent (RTIL) decomposition while only a poorly defined wave was seen for cytosine. The possibility for proton abstraction from the cation in [N 6,2,2,2 ][NTf 2 ] and [P 14,6,6,6 ][FAP] is noted and this is thought to aid the electrochemical dimerization process. The resulting rapid reaction is thought to shift the reduction potentials for guanine and adenine to lower values than observed in RTILs where the scope for proton abstraction is not present. Such shifts are characteristic of so-called EC processes where reversible electron transfer

  17. Reduction of uranyl carbonate and hydroxyl complexes and neptunyl carbonate complexes studied with chemical-electrochemical methods and rixs spectroscopy

    International Nuclear Information System (INIS)

    Butorin, Sergei; Nordgren, Joseph; Ollila, Kaija; Albinsson, Yngve; Werme, Lars

    2003-10-01

    actinides have been mobilised through oxidation, they can migrate away from this potentially oxidising region and will encounter an oxygen free, reducing environment caused by the anaerobic corrosion of the cast iron insert. The actinyl species are no longer thermodynamically stable and reduction to the tetravalent state will be possible. There is, however, an open question whether the reduction kinetics will be sufficiently high to cause reduction in solution and if sorption onto the corroding iron surface will be accompanied by an electron transfer sufficiently rapid to reduce the actinide back to the tetravalent state. This report contains the results of experimental studies of uranium reduction-depletion from water solutions in the presence of corroding iron and spectroscopic studies of the oxidation state of uranium and neptunium sorbed/precipitated onto iron under oxygen free conditions using resonant inelastic soft x-ray scattering (RIXS) spectroscopy. The RIXS measurements show that at least partial reduction of both uranyl carbonate complexes and neptunyl carbonate complexes take place on the corroding iron surface. The chemical/electrochemical measurements indicate that reduction of uranyl carbonate complexes also take place in solution in a system containing corroding iron, i.e. sorption onto the iron/iron oxide surface may not be necessary in order for reduction to take place. Reduction of uranyl hydroxyl complexes was also found to take place in solution, but at a rate that was noticeably lower than for the uranyl carbonate complexes

  18. Electrochemical dehalogenisation of chlorinated aromatics - from model substances to practice-relevant ''real life'' samples

    International Nuclear Information System (INIS)

    Voss, I.; Altrogge, M.; Francke, W.

    1993-01-01

    Building on methods for the dehalogenisation of chlorinated benzoles known from the literature, an investigation was carried out whether polychlorinated biphenyls, dibenzo furane and dibenzo-p-dioxin can be dehalogenated electrochemically. The experiments were carried out with pure substances and transferred to mixed substances (real life samples). The investigations showed that both pure substances and complex mixtures can be dehalogenated without problems. Even in the presence of a clear oil matrix (e.g.: Oil trickled through a deposit), dehalogenisation of the xenobiotica present is possible. First attempts at 'scaling up' show that the method is also suitable in principle, for the disposal of large quantities of contaminated liquids. (BBR) [de

  19. Optimization of the nitrous vapors experimental conditions production by nitric acid electrochemical reduction; Optimisation des conditions operatoires de production de vapeurs nitreuses par reduction electrochimique d`acide nitrique

    Energy Technology Data Exchange (ETDEWEB)

    Lemaire, M.

    1996-11-22

    Gaseous nitrogen oxides (NO and NO{sub 2}) involved as oxidizing agents in nuclear fuel reprocessing can be produced by electrochemical reduction of nitric acid. This is an interesting alternative to the existing process because no wastes are generated. voltammetric studies on a platinum electrode show that two reduction potential regions are observed in concentrated nitric acid solutions, between 0,05 V{sub SHE} and between 0,5 V{sub SHE} and 1 V{sub SHE}. The highest potential region reduction mechanism was studied by: classical micro-electrolysis methods, macro-electrolysis methods, infrared spectroscopy coupled to electrochemistry. It was determined that the origin of nitric acid reduction is the electrochemical reduction of nitrous acid in nitric oxide which chemically reduces nitric acid. This reaction produces nitrous acid back which indicate an auto-catalytic behaviour of nitric acid reduction mechanism. Nitrogen dioxide evolution during nitric reduction can also explained by an other chemical reaction. If the potential value of platinum electrode is above 0,8 V{sub SHE}, products of the indirect nitric acid reduction are nitrous acid, nitrogen oxide and nitrogen dioxide. Below this value nitric oxide can be reduced in nitrous oxide. Thus the potential value is the most important parameter for the nitrogen oxides production selectivity. However, owing to the auto-catalytic character of the reduction mechanism, potential value can be controlled during intentiostatic industrial electrolysis. (author). 91 refs.

  20. Role of the adsorbed oxygen species in the selective electrochemical reduction of CO{sub 2} to alcohols and carbonyls on copper electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Le Duff, Cecile S.; Lawrence, Matthew J.; Rodriguez, Paramaconi [School of Chemistry, University of Birmingham, Edgbaston (United Kingdom)

    2017-10-09

    The electrochemical reduction of CO{sub 2} into fuels has gained significant attention recently as source of renewable carbon-based fuels. The unique high selectivity of copper in the electrochemical reduction of CO{sub 2} to hydrocarbons has called much interest in discovering its mechanism. In order to provide significant information about the role of oxygen in the electrochemical reduction of CO{sub 2} on Cu electrodes, the conditions of the surface structure and the composition of the Cu single crystal electrodes were controlled over time. This was achieved using pulsed voltammetry, since the pulse sequence can be programmed to guarantee reproducible initial conditions for the reaction at every fraction of time and at a given frequency. In contrast to the selectivity of CO{sub 2} reduction using cyclic voltammetry and chronoamperometric methods, a large selection of oxygenated hydrocarbons was found under alternating voltage conditions. Product selectivity towards the formation of oxygenated hydrocarbon was associated to the coverage of oxygen species, which is surface-structure- and potential-dependent. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Role of the adsorbed oxygen species in the selective electrochemical reduction of CO_2 to alcohols and carbonyls on copper electrodes

    International Nuclear Information System (INIS)

    Le Duff, Cecile S.; Lawrence, Matthew J.; Rodriguez, Paramaconi

    2017-01-01

    The electrochemical reduction of CO_2 into fuels has gained significant attention recently as source of renewable carbon-based fuels. The unique high selectivity of copper in the electrochemical reduction of CO_2 to hydrocarbons has called much interest in discovering its mechanism. In order to provide significant information about the role of oxygen in the electrochemical reduction of CO_2 on Cu electrodes, the conditions of the surface structure and the composition of the Cu single crystal electrodes were controlled over time. This was achieved using pulsed voltammetry, since the pulse sequence can be programmed to guarantee reproducible initial conditions for the reaction at every fraction of time and at a given frequency. In contrast to the selectivity of CO_2 reduction using cyclic voltammetry and chronoamperometric methods, a large selection of oxygenated hydrocarbons was found under alternating voltage conditions. Product selectivity towards the formation of oxygenated hydrocarbon was associated to the coverage of oxygen species, which is surface-structure- and potential-dependent. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Highly conductive alumina/NCN composites electrodes fabricated by gelcasting and reduction-sintering-An electrochemical behavior study in aggressive environments

    International Nuclear Information System (INIS)

    Liu Jingjun; Menchavez, Ruben L.; Watanabe, Hideo; Fuji, Masayoshi; Takahashi, Minoru

    2008-01-01

    A novel highly conductive alumina/nano-carbon network composites (alumina/NCN composites) was fabricated by gelcasting and reduction-sintering method under argon atmosphere. The electrochemical behaviors of the alumina/NCN composites were studied systematically in some aggressive solutions (HCl, H 2 SO 4 , HNO 3 , NaOH, and KOH), using potentiodynamic polarization and chronoamperometry and X-ray diffraction and SEM observations. The results showed that the electrochemical stability and reproducibility of the composite electrodes in these diluted acids and alkalis were very good and had, in some extent, an electro-catalytic activity toward formation of hydrogen evolution and reduction of dissolved oxygen in aqueous solutions in comparison with a commercial graphite electrode. In addition, the pyrolyzed nano-carbon contents, size, and shape in the alumina matrix, have greatly effects on the electrochemical performances and electrode reactions in these solutions. It is found that the minimal residual carbon content of 0.62 wt.% in the matrix is enough to improve electrochemical performances and avoid to loss the ceramics physical properties at the same time. When the additional potential in all the tested electrolytes was at +1700 mV (vs. SCE), alumina particles at the electrode surface were not observed to dissolve into solution in this case, indicating the material being suitable for electrodes in aggressive solutions

  3. A catalytic borylation/dehalogenation route to o-fluoro arylboronates.

    Science.gov (United States)

    Jayasundara, Chathurika R K; Unold, Jason M; Oppenheimer, Jossian; Smith, Milton R; Maleczka, Robert E

    2014-12-05

    A two-step Ir-catalyzed borylation/Pd-catalyzed dehalogenation sequence allows for the net synthesis of fluoroarenes where the boronic ester is ortho to fluorine. Key elements of this approach include the use of a halogen para to the fluorine to block meta Ir-catalyzed borylation and the chemoselective Pd-catalyzed dehalogenation by KF activated polymethylhydrosiloxane (PMHS).

  4. A Catalytic Borylation/Dehalogenation Route to o-Fluoro Arylboronates

    OpenAIRE

    Jayasundara, Chathurika R. K.; Unold, Jason M.; Oppenheimer, Jossian; Smith, Milton R.; Maleczka, Robert E.

    2014-01-01

    A two-step Ir-catalyzed borylation/Pd-catalyzed dehalogenation sequence allows for the net synthesis of fluoroarenes where the boronic ester is ortho to fluorine. Key elements of this approach include the use of a halogen para to the fluorine to block meta Ir-catalyzed borylation and the chemoselective Pd-catalyzed dehalogenation by KF activated polymethylhydrosiloxane (PMHS).

  5. Comparing the performances of electrochemical sensors using p-aminophenol redox cycling by different reductants on gold electrodes modified with self-assembled monolayers

    International Nuclear Information System (INIS)

    Xia, Ning; Ma, Fengji; Zhao, Feng; He, Qige; Du, Jimin; Li, Sujuan; Chen, Jing; Liu, Lin

    2013-01-01

    Highlights: • Performances of p-AP redox cycling using different reductants on gold surface are compared. • Background current decreases in order of hydrazine, Na 2 SO 3 , NaBH 4 , NADH, cysteamine, and TCEP. • Chemical reaction rate with QI increases in order of NADH, TCEP, and cysteamine. • NADH, TCEP and cysteamine are suitable for p-AP redox cycling on gold electrode. -- Abstract: p-Aminophenol (p-AP) redox cycling using chemical reductants is one strategy for developing sensitive electrochemical sensors. However, most of the reported reductants are only used on indium-tin oxide (ITO) electrodes but not gold electrodes due to the high background current caused by the oxidation reaction of the reductants on the highly electrocatalytic gold electrodes. Therefore, new strategies and/or reductants are in demand for expanding the application of p-AP redox cycling on gold electrodes. In this work, we compared the performances of several reductants in p-AP redox cycling on self-assembled monolayers (SAMs)-modified gold electrodes. Among the tested reagents, nicotinamide adenine dinucleotide (NADH), tris(2-carboxyethyl)phosphine (TCEP) and cysteamine were demonstrated to be suitable for p-AP redox cycling on the alkanethiol-modified gold electrodes because of their low background current. The rate of chemical reaction between reductants and p-quinone imine (QI, the electrochemically oxidized product of p-AP) increases in the order of NADH −1 was achieved. We believe that our work will be valuable for the development of electrochemical sensors using p-AP redox cycling on gold electrodes

  6. On the Theory of Oxidation-Reduction Reactions Involving Electron Transfer. V. Comparison and Properties of Electrochemical and Chemical Rate Constants

    Science.gov (United States)

    Marcus, R. A.

    1962-01-01

    Using a theory of electron transfers which takes cognizance of reorganization of the medium outside the inner coordination shell and of changes of bond lengths inside it, relations between electrochemical and related chemical rate constants are deduced and compared with the experimental data. A correlation is found, without the use of arbitrary parameters. Effects of weak complexes with added electrolytes are included under specified conditions. The deductions offer a way of coordinating a variety of data in the two fields, internally as well as with each those in another. For example, the rate of oxidation or reduction of a series of related reactants by one reagent is correlated with that of another and with that of the corresponding electrochemical oxidation-reduction reaction, under certain specified conditions. These correlations may also provide a test for distinguishing an electron from an atom transfer mechanism. (auth)

  7. Session 6: Catalytic hydro-dehalogenation as a remediation methodology: a consideration of Pd and Ni activity and halo-arene reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Keane, M.A.; Amorim, C. [Kentucky Univ., Dept. of Chemical and Materials Engineering (United States); Patterson, P.M. [Kentucky Univ., Center for Applied Energy Research, Lexington, KY (United States)

    2004-07-01

    In this presentation, we consider the action of Ni/SiO{sub 2} and Pd/SiO{sub 2} bearing the same (ca. 5% w/w) metal loading and probe the intrinsic activity/selectivity of the metal site. Characterization pre- and post- reaction has drawn on HRTEM-EDX, SEM, XRD, TPR, H{sub 2} chemisorption/TPD. Reduction of Pd/SiO{sub 2} is far more facile than that of Ni/SiO{sub 2} to generate a narrower distribution of smaller Pd particles that exhibit significantly (up to three orders of magnitude) higher specific hydro-dehalogenation activities. The latter is manifest in a predominant complete dehalogenation of poly-halogenated aromatics. The role of the support in modifying the hydro-dehalogenation activity of the metal site will be addressed by considering carbon supported Pd and Ni, employing graphite, activated carbon and carbon nano-fibers as substrates. While the use of carbon nano-fibers/nano-tubes as metal supports is attracting the interest of the catalysis community, their application in halo-arene hydro-dehalogenation has yet to be reported in the literature. Carbon nano-fibers offer a high aspect ratio surface on which to disperse the active metal phase, as is illustrated by the representative TEM. The highly crystalline faceted Pd phase is a morphological feature that is consistent with a strong interaction between the metal particles and the support medium. This translates into high specific hydro-dehalogenation activities that are maintained over prolonged reaction cycles, a feature that will be discussed. The conversion of a range of halo-arenes (mono-, di- and tri- chloro-, bromo-, fluoro and iodo- benzenes, phenols and toluenes) under clearly defined reaction conditions will be presented where the differences in halo-arene reactivity are identified. Halo-arene reactivity is determined by inductive and steric effects, the former evident in the enhancement of hydro-dehalogenation by electron donating (-OH and -CH{sub 3}) substituents, the latter in the

  8. Superconducting Nb{sub 3}Sn intermetallics made by electrochemical reduction of Nb{sub 2}O{sub 5}-SnO{sub 2} oxides

    Energy Technology Data Exchange (ETDEWEB)

    Glowacki, B A; Fray, D J; Yan, X-Y; Chen, G

    2003-05-01

    The article is focused on low temperature superconducting Nb{sub 3}Sn material manufactured by novel electrodeoxidizing method developed in Cambridge whereby the range of alloys and intermetallics are produced cheaply making potential superconducting wires more cost effective. The process of direct electrochemical reduction of Nb{sub 2}O{sub 5}-SnO{sub 2} mixtures and in situ formation of the Nb{sub 3}Sn is discussed in details.

  9. Electrochemical reduction induced self-doping of Ti3+ for efficient water splitting performance on TiO2 based photoelectrodes

    KAUST Repository

    Zhang, Zhonghai

    2013-01-01

    Hetero-element doping (e.g., N, F, C) of TiO2 is inevitably accompanied by significantly increased structural defects due to the dopants\\' nature being foreign impurities. Very recently, in situ self-doping with homo-species (e.g., Ti3+) has been emerging as a rational solution to enhance TiO2 photoactivity within both UV and visible light regions. Herein we demonstrate that conventional electrochemical reduction is indeed a facile and effective strategy to induce in situ self-doping of Ti3+ into TiO2 and the self-doped TiO2 photoelectrodes showed remarkably improved and very stable water splitting performance. In this study, hierarchical TiO2 nanotube arrays (TiO2 NTs) were chosen as TiO2 substrates and then electrochemically reduced under varying conditions to produce Ti3+ self-doped TiO2 NTs (ECR-TiO2 NTs). The optimized saturation photocurrent density and photoconversion efficiency on the ECR-TiO2 NTs under simulated AM 1.5G illumination were identified to be 2.8 mA cm-2 at 1.23 V vs. RHE and 1.27% respectively, which are the highest values ever reported for TiO 2 based photoelectrodes. The electrochemical impedance spectra measurement confirms that the electrochemical induced Ti3+ self-doping improved the electrical conductivity of the ECR-TiO2 NTs. The versatility and effectiveness of the electrochemical reduction method for Ti3+ self-doping in P25 based TiO2 was also examined and confirmed. This journal is © 2013 the Owner Societies.

  10. Engineering Ru@Pt Core-Shell Catalysts for Enhanced Electrochemical Oxygen Reduction Mass Activity and Stability

    Directory of Open Access Journals (Sweden)

    Ariel Jackson

    2018-01-01

    Full Text Available Improving the performance of oxygen reduction reaction (ORR electrocatalysts is essential for the commercial efficacy of many renewable energy technologies, including low temperature polymer electrolyte fuel cells (PEFCs. Herein, we report highly active and stable carbon-supported Ru@Pt core-shell nanoparticles (Ru@Pt/C prepared by a wet chemical synthesis technique. Through rotating disc electrode testing, the Ru@Pt/C achieves an ORR Pt mass-based activity of 0.50 A mgPt−1 at 0.9 V versus the reversible hydrogen electrode (RHE, which exceeds the activity of the state-of-the-art commercial Pt/C catalyst as well as the Department of Energy 2020 PEFC electrocatalyst activity targets for transportation applications. The impact of various synthetic parameters, including Pt to Ru ratios and catalyst pretreatments (i.e., annealing are thoroughly explored. Pt-based mass activity of all prepared Ru@Pt/C catalysts was found to exceed 0.4 mgPt−1 across the range of compositions investigated, with the maximum activity catalyst having a Ru:Pt ratio of 1:1. This optimized composition of Ru@Pt/C catalyst demonstrated remarkable stability after 30,000 accelerated durability cycles (0.6 to 1.0 V vs. RHE at 125 mV s−1, maintaining 85% of its initial mass activity. Scanning transmission electron microscopy energy dispersive spectroscopy (STEM-EDS analysis at various stages of electrochemical testing demonstrated that the Pt shell can provide sufficient protection against the dissolution of the otherwise unstable Ru core.

  11. Engineering Ru@Pt Core-Shell Catalysts for Enhanced Electrochemical Oxygen Reduction Mass Activity and Stability.

    Science.gov (United States)

    Jackson, Ariel; Strickler, Alaina; Higgins, Drew; Jaramillo, Thomas Francisco

    2018-01-12

    Improving the performance of oxygen reduction reaction (ORR) electrocatalysts is essential for the commercial efficacy of many renewable energy technologies, including low temperature polymer electrolyte fuel cells (PEFCs). Herein, we report highly active and stable carbon-supported Ru@Pt core-shell nanoparticles (Ru@Pt/C) prepared by a wet chemical synthesis technique. Through rotating disc electrode testing, the Ru@Pt/C achieves an ORR Pt mass-based activity of 0.50 A mg Pt -1 at 0.9 V versus the reversible hydrogen electrode (RHE), which exceeds the activity of the state-of-the-art commercial Pt/C catalyst as well as the Department of Energy 2020 PEFC electrocatalyst activity targets for transportation applications. The impact of various synthetic parameters, including Pt to Ru ratios and catalyst pretreatments (i.e., annealing) are thoroughly explored. Pt-based mass activity of all prepared Ru@Pt/C catalysts was found to exceed 0.4 mg Pt -1 across the range of compositions investigated, with the maximum activity catalyst having a Ru:Pt ratio of 1:1. This optimized composition of Ru@Pt/C catalyst demonstrated remarkable stability after 30,000 accelerated durability cycles (0.6 to 1.0 V vs. RHE at 125 mV s -1 ), maintaining 85% of its initial mass activity. Scanning transmission electron microscopy energy dispersive spectroscopy (STEM-EDS) analysis at various stages of electrochemical testing demonstrated that the Pt shell can provide sufficient protection against the dissolution of the otherwise unstable Ru core.

  12. Electrochemical pretreatment of amino-carbon nanotubes on graphene support as a novel platform for bilirubin oxidase with improved bioelectrocatalytic activity towards oxygen reduction.

    Science.gov (United States)

    Navaee, Aso; Salimi, Abdollah; Jafari, Fereydoon

    2015-03-23

    The electrochemical conditioning of amino-carbon nanotubes (CNTs) on a graphene support in an alkaline solution is used to produce -NHOH as hydrophilic functional groups for the efficient immobilization of bilirubin oxidase enzyme. The application of the immobilized enzyme for the direct electrocatalytic reduction of O2 is investigated. The onset potential of 0.81 V versus NHE and peak current density of 2.3 mA cm(-2) for rotating modified electrode at 1250 rpm, indicate improved biocatalytic activity of the proposed system for O2 reduction. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Electrochemical formation of a Pt/Zn alloy and its use as a catalyst for oxygen reduction reaction in fuel cells.

    Science.gov (United States)

    Sode, Aya; Li, Winton; Yang, Yanguo; Wong, Phillip C; Gyenge, Elod; Mitchell, Keith A R; Bizzotto, Dan

    2006-05-04

    The characterization of an electrochemically created Pt/Zn alloy by Auger electron spectroscopy is presented indicating the formation of the alloy, the oxidation of the alloy, and the room temperature diffusion of the Zn into the Pt regions. The Pt/Zn alloy is stable up to 1.2 V/RHE and can only be removed with the oxidation of the base Pt metal either electrochemically or in aqua regia. The Pt/Zn alloy was tested for its effectiveness toward oxygen reduction. Kinetics of the oxygen reduction reaction (ORR) were measured using a rotating disk electrode (RDE), and a 30 mV anodic shift in the potential of ORR was found when comparing the Pt/Zn alloy to Pt. The Tafel slope was slightly smaller than that measured for the pure Pt electrode. A simple procedure for electrochemically modifying a Pt-containing gas diffusion electrode (GDE) with Zn was developed. The Zn-treated GDE was pressed with an untreated GDE anode, and the created membrane electrode assembly was tested. Fuel cell testing under two operating conditions (similar anode and cathode inlet pressures, and a larger cathode inlet pressure) indicated that the 30 mV shift observed on the RDE was also evident in the fuel cell tests. The high stability of the Pt/Zn alloy in acidic environments has a potential benefit for fuel cell applications.

  14. Design of a Sensitive and Selective Electrochemical Aptasensor for the Determination of the Complementary cDNA of miRNA-145 Based on the Intercalation and Electrochemical Reduction of Doxorubicin.

    Science.gov (United States)

    Mohamadi, Maryam; Mostafavi, Ali; Torkzadeh-Mahani, Masoud

    2017-11-01

    The aim of this research was the determination of a microRNA (miRNA) using a DNA electrochemical aptasensor. In this biosensor, the complementary complementary DNA (cDNA) of miRNA-145 (a sense RNA transcript) was the target strand and the cDNA of miRNA-145 was the probe strand. Both cDNAs can be the product of the reverse transcriptase-polymerase chain reaction of miRNA. The proposed aptasensor's function was based on the hybridization of target strands with probes immobilized on the surface of a working electrode and the subsequent intercalation of doxorubicin (DOX) molecules functioning as the electroactive indicators of any double strands that formed. Electrochemical transduction was performed by measuring the cathodic current resulting from the electrochemical reduction of the intercalated molecules at the electrode surface. In the experiment, because many DOX molecules accumulated on each target strand on the electrode surface, amplification was inherently easy, without a need for enzymatic or complicated amplification strategies. The proposed aptasensor also had the excellent ability to regenerate as a result of the melting of the DNA duplex. Moreover, the use of DNA probe strands obviated the challenges of working with an RNA probe, such as sensitivity to RNase enzyme. In addition to the linear relationship between the electrochemical signal and the concentration of the target strands that ranged from 2.0 to 80.0 nM with an LOD of 0.27 nM, the proposed biosensor was clearly capable of distinguishing between complementary (target strand) and noncomplementary sequences. The presented biosensor was successfully applied for the quantification of DNA strands corresponding to miRNA-145 in human serum samples.

  15. Dehalogenases: From Improved Performance to Potential Microbial Dehalogenation Applications

    Directory of Open Access Journals (Sweden)

    Thiau-Fu Ang

    2018-05-01

    Full Text Available The variety of halogenated substances and their derivatives widely used as pesticides, herbicides and other industrial products is of great concern due to the hazardous nature of these compounds owing to their toxicity, and persistent environmental pollution. Therefore, from the viewpoint of environmental technology, the need for environmentally relevant enzymes involved in biodegradation of these pollutants has received a great boost. One result of this great deal of attention has been the identification of environmentally relevant bacteria that produce hydrolytic dehalogenases—key enzymes which are considered cost-effective and eco-friendly in the removal and detoxification of these pollutants. These group of enzymes catalyzing the cleavage of the carbon-halogen bond of organohalogen compounds have potential applications in the chemical industry and bioremediation. The dehalogenases make use of fundamentally different strategies with a common mechanism to cleave carbon-halogen bonds whereby, an active-site carboxylate group attacks the substrate C atom bound to the halogen atom to form an ester intermediate and a halide ion with subsequent hydrolysis of the intermediate. Structurally, these dehalogenases have been characterized and shown to use substitution mechanisms that proceed via a covalent aspartyl intermediate. More so, the widest dehalogenation spectrum of electron acceptors tested with bacterial strains which could dehalogenate recalcitrant organohalides has further proven the versatility of bacterial dehalogenators to be considered when determining the fate of halogenated organics at contaminated sites. In this review, the general features of most widely studied bacterial dehalogenases, their structural properties, basis of the degradation of organohalides and their derivatives and how they have been improved for various applications is discussed.

  16. Dehalogenases: From Improved Performance to Potential Microbial Dehalogenation Applications.

    Science.gov (United States)

    Ang, Thiau-Fu; Maiangwa, Jonathan; Salleh, Abu Bakar; Normi, Yahaya M; Leow, Thean Chor

    2018-05-07

    The variety of halogenated substances and their derivatives widely used as pesticides, herbicides and other industrial products is of great concern due to the hazardous nature of these compounds owing to their toxicity, and persistent environmental pollution. Therefore, from the viewpoint of environmental technology, the need for environmentally relevant enzymes involved in biodegradation of these pollutants has received a great boost. One result of this great deal of attention has been the identification of environmentally relevant bacteria that produce hydrolytic dehalogenases—key enzymes which are considered cost-effective and eco-friendly in the removal and detoxification of these pollutants. These group of enzymes catalyzing the cleavage of the carbon-halogen bond of organohalogen compounds have potential applications in the chemical industry and bioremediation. The dehalogenases make use of fundamentally different strategies with a common mechanism to cleave carbon-halogen bonds whereby, an active-site carboxylate group attacks the substrate C atom bound to the halogen atom to form an ester intermediate and a halide ion with subsequent hydrolysis of the intermediate. Structurally, these dehalogenases have been characterized and shown to use substitution mechanisms that proceed via a covalent aspartyl intermediate. More so, the widest dehalogenation spectrum of electron acceptors tested with bacterial strains which could dehalogenate recalcitrant organohalides has further proven the versatility of bacterial dehalogenators to be considered when determining the fate of halogenated organics at contaminated sites. In this review, the general features of most widely studied bacterial dehalogenases, their structural properties, basis of the degradation of organohalides and their derivatives and how they have been improved for various applications is discussed.

  17. [Changes of chlorine isotope composition characterize bacterial dehalogenation of dichloromethane].

    Science.gov (United States)

    Ziakun, A M; Firsova, Iu E; Torgonskaia, M L; Doronina, N V; Trotsenko, Iu A

    2007-01-01

    Fractionation of dichloromethane (DCM) molecules with different chlorine isotopes by aerobic methylobacteria Methylobacterium dichloromethanicum DM4 and Albibacter nethylovorans DM10; cell-free extract of strain DM4; and transconjugant Methylobacterium evtorquens Al1/pME 8220, expressing the dcmA gene for DCM dehalogenase but unable to grow on DCM, was studied. Kinetic indices of DCM isotopomers for chlorine during bacterial dehalogenation and diffusion were compared. A two-step model is proposed, which suggests diffusional DCM transport to bacterial cells.

  18. N-Heterocyclic Carbene Complexes in Dehalogenation Reactions

    Science.gov (United States)

    Mas-Marzá, Elena; Page, Michael J.; Whittlesey, Michael K.

    Catalytic dehalogenation represents an underdeveloped transformation in M-NHC chemistry with a small number of reports detailing the reactivity of Co, Ru, Ni and Pd catalysts. In situ generated nickel and palladium NHC complexes catalyse the hydrodechlorination of aryl chlorides. Lower coordinate Ni complexes are proposed to operate in the hydrodefluorination of mono- and poly-fluorinated substrates. The single example of Ru-NHC catalysed hydrodefluorination of fully and partially fluorinated aromatic substrates is characterised by an unusual regioselectivity. The highly regioselective dehydrohalogenation of relatively unreactive alkyl halide substrates is achieved with a cobalt NHC catalyst.

  19. New Method for Super Hydrophobic Treatment of Gas Diffusion Layers for Proton Exchange Membrane Fuel Cells Using Electrochemical Reduction of Diazonium Salts.

    Science.gov (United States)

    Thomas, Yohann R J; Benayad, Anass; Schroder, Maxime; Morin, Arnaud; Pauchet, Joël

    2015-07-15

    The purpose of this article is to report a new method for the surface functionalization of commercially available gas diffusion layers (GDLs) by the electrochemical reduction of diazonium salt containing hydrophobic functional groups. The method results in superhydrophobic GDLs, over a large area, without pore blocking. An X-ray photoelectron spectroscopy study based on core level spectra and chemical mapping has demonstrated the successful grafting route, resulting in a homogeneous distribution of the covalently bonded hydrophobic molecules on the surface of the GDL fibers. The result was corroborated by contact angle measurement, showing similar hydrophobicity between the grafted and PTFE-modified GDLs. The electrochemically modified GDLs were tested in proton exchange membrane fuel cells under automotive, wet, and dry conditions and demonstrated improved performance over traditional GDLs.

  20. A novel differential electrochemical mass spectrometry method to determine the product distribution from parasitic Methanol oxidation reaction on oxygen reduction reaction catalysts

    Science.gov (United States)

    Jurzinsky, Tilman; Kurzhals, Philipp; Cremers, Carsten

    2018-06-01

    The oxygen reduction reaction is in research focus since several decades due to its importance for the overall fuel cell performance. In direct methanol fuel cells, the crossover of methanol and its subsequent parasitic oxidation are main issues when it comes to preventing fuel cell performance losses. In this work, we present a novel differential electrochemical mass spectrometry method to evaluate oxygen reduction reaction catalysts on their tolerance to methanol being present at the cathode. Besides this, the setup allows to measure under more realistic fuel cell conditions than typical rotating disc electrode measurements, because the oxygen reduction reaction is evaluated in gaseous phase and a gas diffusion electrode is used as working electrode. Due to the new method, it was possible to investigate the oxygen reduction reaction on two commonly used catalysts (Pt/C and Pt3Co/C) in absence and presence of methanol. It was found, that Pt3Co/C is less prone to parasitic current losses due to methanol oxidation reaction. By connecting a mass spectrometer to the electrochemical cell, the new method allows to determine the products formed on the catalysts due to parasitic methanol electrooxidation.

  1. A new strategy for 2,4,6-Trinitrotoluene adsorption and electrochemical reduction on poly(melamine)/graphene oxide modified electrode

    International Nuclear Information System (INIS)

    Cotchim, Suparat; Thavarungkul, Panote; Kanatharana, Proespichaya; Limbut, Warakorn

    2015-01-01

    Highlights: • A new fabrication strategy of a poly(melamine)/graphene oxide (PM/GO) modified glassy carbon electrode (GCE) (PM/GO/GCE) for the detection of ultra-traces of TNT is proposed. • The PM/GO/GCE exhibits excellent adsorption and electrochemical reduction of TNT via the AdCSV technique. • The PM/GO/GCE provides for a high sensitivity, good repeatability and selectivity. • This strategy opens new opportunities for the sensitive detection of TNT aiming at protection of the environmental and homeland securities. - Abstract: A poly(melamine)/graphene oxide (PM/GO) layer modified on a glassy carbon electrode (GCE) was used for the adsorption and electrochemical detection of 2,4,6 trinitrotoluene (TNT). The surface morphology and electrochemical behaviour of the PM/GO/GCE were characterized by scanning electron microscopy (SEM), fourier transform infrared spectroscopy (FT-IR), cyclic voltammetry (CV) and adsorptive cathodic stripping voltammetry (AdCSV). The PM/GO/GCE exhibited excellent adsorption and electrochemical reduction of TNT via the AdCSV technique with two linear ranges, 1–90 μg L −1 and 100–1000 μg L −1 , a detection limit of 0.34 μg L −1 and a quantitation limit of 1.14 μg L −1 . The PM/GO/GCE provided for a high sensitivity, good repeatability and selectivity. This modified electrode was successfully applied to detect TNT in soil samples with good recoveries that ranged from 93 to 99%.

  2. Optimization of conditions to produce nitrous gases by electrochemical reduction of nitric acid; Optimisation des conditions operatoires de production de vapeurs nitreuses par reduction electrochimique d`acide nitrique

    Energy Technology Data Exchange (ETDEWEB)

    Lemaire, M. [CEA Centre d`Etudes Nucleaires de Saclay, 91 -Gif-sur-Yvette (France)]|[CEA Centre d`Etudes de la Vallee du Rhone, 30 -Marcoule (France). Direction du Cycle du Combustible

    1996-11-22

    Gaseous nitrogen oxides (NO and NO{sub 2}) involved as oxidizing agents in nuclear fuel reprocessing can be an produced by electrochemical reduction of nitric acid. This could be an interesting alternative to the usual process because no wastes are generated. Voltammetric studies on a platinum electrode show that two reduction potential regions are observed in concentrated nitric acid solutions, between 0.05 V{sub S}HE and 0.3 V{sub S}HE and O.5 V{sub S}HE and 1 V{sub S}HE. The highest potential region reduction mechanism was studies by: classical micro-electrolysis methods; macro-electrolysis methods; infra-red spectroscopy couplet to electrochemistry. It was determined that the origin of nitric acid reduction is the electrochemical reduction of nitrous acid in nitric oxide which chemically reduces nitric acid. This reaction produces nitrous acid back which indicate an auto-catalytic behaviour of nitric acid reduction mechanism. Nitrogen dioxide evolution during nitric acid reduction can also be explained by an other chemical reaction. In the potential value of platinum electrode is above 0.8 V{sub S}HE, products of the indirect nitric acid reduction are nitrous acid, nitrogen oxide and nitrogen dioxide. Below this value nitric oxide can be reduced in nitrous oxide. Thus the potential value is the most important parameter for the nitrogen oxides production selectivity. However, owing to the auto-catalytic character of the reduction mechanism, potential value can be controlled during intentiostatic industrial electrolysis. (author). 91 refs.

  3. Organic reactions for the electrochemical and photochemical production of chemical fuels from CO2--The reduction chemistry of carboxylic acids and derivatives as bent CO2 surrogates.

    Science.gov (United States)

    Luca, Oana R; Fenwick, Aidan Q

    2015-11-01

    The present review covers organic transformations involved in the reduction of CO2 to chemical fuels. In particular, we focus on reactions of CO2 with organic molecules to yield carboxylic acid derivatives as a first step in CO2 reduction reaction sequences. These biomimetic initial steps create opportunities for tandem electrochemical/chemical reductions. We draw parallels between long-standing knowledge of CO2 reactivity from organic chemistry, organocatalysis, surface science and electrocatalysis. We point out some possible non-faradaic chemical reactions that may contribute to product distributions in the production of solar fuels from CO2. These reactions may be accelerated by thermal effects such as resistive heating and illumination. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Controlled amino-functionalization by electrochemical reduction of bromo and nitro azobenzene layers bound to Si(111) surfaces

    NARCIS (Netherlands)

    Ullien, D.; Thüne, P.C.; Jager, W.F.; Sudhölter, E.J.R.; De Smet, L.C.P.M.

    2014-01-01

    4-Nitrobenzenediazonium (4-NBD) and 4-bromobenzenediazonium (4-BBD) salts were grafted electrochemically onto H-terminated, p-doped silicon (Si) surfaces. Atomic force microscopy (AFM) and ellipsometry experiments clearly showed layer thicknesses of 2–7 nm, which indicate multilayer formation.

  5. Effect of chemical functionalization on the electrochemical properties of conducting polymers. Modification of polyaniline by diazonium ion coupling and subsequent reductive degradation

    Energy Technology Data Exchange (ETDEWEB)

    Acevedo, Diego F.; Rivarola, Claudia R.; Miras, Maria C. [Departamento de Quimica, Universidad Nacional de Rio Cuarto, Ruta Nacional 8, Km 601, X5804ZAB, Rio Cuarto, Cordoba (Argentina); Barbero, Cesar A., E-mail: cbarbero@exa.unrc.edu.a [Departamento de Quimica, Universidad Nacional de Rio Cuarto, Ruta Nacional 8, Km 601, X5804ZAB, Rio Cuarto, Cordoba (Argentina)

    2011-04-01

    The electrochemical properties of polyaniline (PANI) can be altered by coupling the polymer with aryldiazonium ions. The ions are synthesized by diazotization of aromatic primary amines (1-aminoanthraquinone, sulphadiazine and 4-cyanoaniline) bearing functional groups which are then linked to the polyaniline backbone. All materials produced are electroactive, suggesting that the reaction involves coupling of the diazonium ion with the aromatic rings and not nucleophilic substitution by the aminic nitrogen of PANI on the aryl cations. The electrochemical properties of the modified polymers are different to those of PANI, likely due to electronic and steric effects of the attached groups. Reductive degradation of the azo linkages, using dithionite ion, removes the attached moieties leaving primary amino groups attached to the polyaniline backbone. In that way, the effect of the attached groups on the electrochemical properties of PANI is eliminated. FTIR spectroscopy measurement of the different polymers supports the proposed mechanism. Using the method a polymer containing redox (anthraquinone) groups, which could be used for charge storage, is obtained. Additionally a material containing sulphadiazine moieties, which can be released in vivo by bacterial activity, is also produced. The molecule is a well-known sulfa drug with bacteriostatic activity. The reaction sequence seems to be of general application to modify polyanilines, by attaching functional groups, and then to produce a PANI backbone bearing primary amino groups. Evidence is presented on the kinetic control of attached group removal.

  6. Effect of chemical functionalization on the electrochemical properties of conducting polymers. Modification of polyaniline by diazonium ion coupling and subsequent reductive degradation

    International Nuclear Information System (INIS)

    Acevedo, Diego F.; Rivarola, Claudia R.; Miras, Maria C.; Barbero, Cesar A.

    2011-01-01

    The electrochemical properties of polyaniline (PANI) can be altered by coupling the polymer with aryldiazonium ions. The ions are synthesized by diazotization of aromatic primary amines (1-aminoanthraquinone, sulphadiazine and 4-cyanoaniline) bearing functional groups which are then linked to the polyaniline backbone. All materials produced are electroactive, suggesting that the reaction involves coupling of the diazonium ion with the aromatic rings and not nucleophilic substitution by the aminic nitrogen of PANI on the aryl cations. The electrochemical properties of the modified polymers are different to those of PANI, likely due to electronic and steric effects of the attached groups. Reductive degradation of the azo linkages, using dithionite ion, removes the attached moieties leaving primary amino groups attached to the polyaniline backbone. In that way, the effect of the attached groups on the electrochemical properties of PANI is eliminated. FTIR spectroscopy measurement of the different polymers supports the proposed mechanism. Using the method a polymer containing redox (anthraquinone) groups, which could be used for charge storage, is obtained. Additionally a material containing sulphadiazine moieties, which can be released in vivo by bacterial activity, is also produced. The molecule is a well-known sulfa drug with bacteriostatic activity. The reaction sequence seems to be of general application to modify polyanilines, by attaching functional groups, and then to produce a PANI backbone bearing primary amino groups. Evidence is presented on the kinetic control of attached group removal.

  7. The effect of electrochemical CO annealing on platinum–cobalt nanoparticles in acid medium and their correlation to the oxygen reduction reaction

    International Nuclear Information System (INIS)

    Ciapina, Eduardo G.; Ticianelli, Edson A.

    2011-01-01

    Highlights: ► Modification of the surface properties of Pt 3 Co/C electrocatalyst. ► Electrochemical CO annealing in acid media generated a Pt-rich surface. ► In situ XAS revealed modifications in the Pt 5d band occupancy after CO annealing. ► The CO-annealed sample exhibited stronger interaction with oxygenated species. ► Increased Pt utilization in the CO-annealed Pt 3 Co/C electrocatalyst. - Abstract: This paper describes a modification of the surface properties of a carbon-supported Pt 3 Co catalyst resulting from an electrochemical cycling treatment in a 0.1 M HClO 4 and in a CO-saturated 0.1 M HClO 4 solution (electrochemical CO-annealing). The procedure generated a Pt-rich surface with electrochemical properties different from that presented by the as-received (untreated) sample. This was evidenced by a shift in the CO stripping peak to more positive potentials in the CO stripping voltammetry, and by an increased charge of H upd region and a modification of the oxide reduction peak observed in the base cyclic voltammogram. In situ X-ray absorption spectroscopy experiments conducted in the dispersive mode revealed differences in the electronic 5d band occupancy after the CO annealing, whereas the behavior of the intensity of the white-line as function of the potential for this material approached that found for pure Pt/C nanoparticles, in contrast to the small potential dependence profile exhibited by the as-received Pt 3 Co nanoparticles. Mass activities towards the oxygen reduction reaction measured by rotating disk experiments carried out at 1600 rpm in a O 2 -saturated solution at 25 °C increased from 0.10 A/mg of Pt to 0.19 A/mg of Pt, evidencing the higher Pt utilization in the CO-annealed Pt 3 Co/C electrocatalyst. The origin of the different electrochemical behavior is discussed.

  8. Dehalogenation of aromatic halides by polyaniline/zero-valent iron composite nanofiber: Kinetics and mechanisms

    CSIR Research Space (South Africa)

    Giri, S

    2016-03-01

    Full Text Available Dehalogenation of aryl halides was demonstrated using polyaniline/zero valent iron composite nanofiber (termed as PANI/Fe0) as a cheap, efficient and environmentally friendly heterogeneous catalyst. The catalyst was prepared via rapid mixing...

  9. Polymer Dehalogenation-Enabled Fast Fabrication of N,S-Codoped Carbon Materials for Superior Supercapacitor and Deionization Applications.

    Science.gov (United States)

    Chang, Yingna; Zhang, Guoxin; Han, Biao; Li, Haoyuan; Hu, Cejun; Pang, Yingchun; Chang, Zheng; Sun, Xiaoming

    2017-09-06

    Doped carbon materials (DCM) with multiple heteroatoms hold broad interest in electrochemical catalysis and energy storage but require several steps to fabricate, which greatly hinder their practical applications. In this study, a facile strategy is developed to enable the fast fabrication of multiply doped carbon materials via room-temperature dehalogenation of polyvinyl dichloride (PVDC) promoted by KOH with the presence of different organic dopants. A N,S-codoped carbon material (NS-DCM) is demonstratively synthesized using two dopants (dimethylformamide for N doping and dimethyl sulfoxide for S doping). Afterward, the precursive room-temperature NS-DCM with intentionally overdosed KOH is submitted to inert annealing to obtain large specific surface area and high conductivity. Remarkably, NS-DCM annealed at 600 °C (named as 600-NS-DCM), with 3.0 atom % N and 2.4 atom % S, exhibits a very high specific capacitance of 427 F g -1 at 1.0 A g -1 in acidic electrolyte and also keeps ∼60% of capacitance at ultrahigh current density of 100.0 A g -1 . Furthermore, capacitive deionization (CDI) measurements reveal that 600-NS-DCM possesses a large desalination capacity of 32.3 mg g -1 (40.0 mg L -1 NaCl) and very good cycling stability. Our strategy of fabricating multiply doped carbon materials can be potentially extended to the synthesis of carbon materials with various combinations of heteroatom doping for broad electrochemical applications.

  10. Transfer Hydro-dehalogenation of Organic Halides Catalyzed by Ruthenium(II) Complex.

    Science.gov (United States)

    You, Tingjie; Wang, Zhenrong; Chen, Jiajia; Xia, Yuanzhi

    2017-02-03

    A simple and efficient Ru(II)-catalyzed transfer hydro-dehalogenation of organic halides using 2-propanol solvent as the hydride source was reported. This methodology is applicable for hydro-dehalogenation of a variety of aromatic halides and α-haloesters and amides without additional ligand, and quantitative yields were achieved in many cases. The potential synthetic application of this method was demonstrated by efficient gram-scale transformation with catalyst loading as low as 0.5 mol %.

  11. Electrochemical extraction of neodymium by co-reduction with aluminum in LiCl–KCl molten salt

    International Nuclear Information System (INIS)

    Yan, Yong-De; Xu, Yan-Lu; Zhang, Mi-Lin; Xue, Yun; Han, Wei; Huang, Ying; Chen, Qiong; Zhang, Zhi-Jian

    2013-01-01

    The electrochemical behavior of Nd(III) ions in LiCl–KCl and LiCl–KCl–AlCl 3 melts on a Mo electrode at 723 K was studied by various electrochemical techniques. The results showed that Nd(III) ions are reduced to Nd(0) through two consecutive steps, and the underpotential deposition of neodymium on pre-deposited Al electrode formed two kinds of Al–Nd intermetallic compounds in LiCl–KCl–AlCl 3 solutions. The electrochemical extraction of neodymium was carried out in LiCl–KCl–AlCl 3 melts on a Mo electrode at 873 K by potentiostatic and galvanostatic electrolysis. The extraction efficiency was 99.25% after potentiostatic electrolysis for 30 h. Al–Li–Nd bulk alloy was obtained by galvanostatic electrolysis. X-ray diffraction (XRD) suggested that Al 2 Nd and Al 3 Nd phases were formed in Al–Li–Nd alloy. The microstructure and micro-zone chemical analysis of Al–Li–Nd alloy were characterized by scanning electron microscopy (SEM) with energy dispersive spectrometry (EDS), respectively

  12. A novel molten-salt electrochemical cell for investigating the reduction of uranium dioxide to uranium metal by lithium using in situ synchrotron radiation.

    Science.gov (United States)

    Brown, Leon D; Abdulaziz, Rema; Jervis, Rhodri; Bharath, Vidal; Mason, Thomas J; Atwood, Robert C; Reinhard, Christina; Connor, Leigh D; Inman, Douglas; Brett, Daniel J L; Shearing, Paul R

    2017-03-01

    A novel electrochemical cell has been designed and built to allow for in situ energy-dispersive X-ray diffraction measurements to be made during reduction of UO 2 to U metal in LiCl-KCl at 500°C. The electrochemical cell contains a recessed well at the bottom of the cell into which the working electrode sits, reducing the beam path for the X-rays through the molten-salt and maximizing the signal-to-noise ratio from the sample. Lithium metal was electrodeposited onto the UO 2 working electrode by exposing the working electrode to more negative potentials than the Li deposition potential of the LiCl-KCl eutectic electrolyte. The Li metal acts as a reducing agent for the chemical reduction of UO 2 to U, which appears to proceed to completion. All phases were fitted using Le Bail refinement. The cell is expected to be widely applicable to many studies involving molten-salt systems.

  13. Effects of composition of the micro porous layer and the substrate on performance in the electrochemical reduction of CO2 to CO

    Science.gov (United States)

    Kim, Byoungsu; Hillman, Febrian; Ariyoshi, Miho; Fujikawa, Shigenori; Kenis, Paul J. A.

    2016-04-01

    With the development of better catalysts, mass transport limitations are becoming a challenge to high throughput electrochemical reduction of CO2 to CO. In contrast to optimization of electrodes for fuel cells, optimization of gas diffusion electrodes (GDE) - consisting of a carbon fiber substrate (CFS), a micro porous layer (MPL), and a catalyst layer (CL) - for CO2 reduction has not received a lot of attention. Here, we studied the effect of the MPL and CFS composition on cathode performance in electroreduction of CO2 to CO. In a flow reactor, optimized GDEs exhibited a higher partial current density for CO production than Sigracet 35BC, a commercially available GDE. By performing electrochemical impedance spectroscopy in a CO2 flow reactor we determined that a loading of 20 wt% PTFE in the MPL resulted in the best performance. We also investigated the influence of the thickness and wet proof level of CFS with two different feeds, 100% CO2 and the mixture of 50% CO2 and N2, determining that thinner and lower wet proofing of the CFS yields better cathode performance than when using a thicker and higher wet proof level of CFS.

  14. Electrochemical oxidation of ethanol using PtRh/C electrocatalysts in alkaline medium and synthesized by sodium borohydride and alcohol reduction

    International Nuclear Information System (INIS)

    Fontes, Eric Hossein

    2017-01-01

    PtRh/C were prepared by the following atomic proportions: (100,0), (0,100), (90,10), (70,30) and (50,50). The methods employed in the synthesis of these materials were reduction by sodium borohydride and reduction by alcohol. The metal salts used were H 2 PtCl 6 3•6H 2 0 and (RhNO 3 ) 3 , the support used was Carbon black XC72 and the bulk metal composition was 20% and 80% of support. The electrocatalysts were characterized by Energy Dispersive X-ray spectroscopy, X-ray diffraction and Transmission electron microscopy. The ethanol electrochemical oxidation mechanism was investigated by in situ Fourier Transform Infrared Spectroscopy couple to an Attenuated Total Reflection technique. The electrocatalytic activity were evaluated by Cyclic Voltammetry, Linear Sweep Voltammetry and Chronoamperometry techniques. The Fuel Cells tests were made in a single direct alcohol fuel cell with alkaline membrane. The working electrodes were prepared by a thin porous coating technique. X-ray diffraction allowed to verify metallic alloys, segregate phases and to calculate the percentage of metallic alloys. It was else possible to identify crystallographic phases. Infrared Spectroscopy allowed to verify that the electrochemical oxidation of ethanol was carried out by an incomplete mechanism. PtRh(70:30)/C prepared by sodium borohydride produced large amounts of carbon dioxide and acetaldehyde. Rh/C showed electrocatalytic activity when compared with other materials studied.

  15. Preparation of porous lead from shape-controlled PbO bulk by in situ electrochemical reduction in ChCl-EG deep eutectic solvent

    Science.gov (United States)

    Ru, Juanjian; Hua, Yixin; Xu, Cunying; Li, Jian; Li, Yan; Wang, Ding; Zhou, Zhongren; Gong, Kai

    2015-12-01

    Porous lead with different shapes was firstly prepared from controlled geometries of solid PbO bulk by in situ electrochemical reduction in choline chloride-ethylene glycol deep eutectic solvents at cell voltage 2.5 V and 353 K. The electrochemical behavior of PbO powders on cavity microelectrode was investigated by cyclic voltammetry. It is indicated that solid PbO can be directly reduced to metal in the solvent and a nucleation loop is apparent. Constant voltage electrolysis demonstrates that PbO pellet can be completely converted to metal for 13 h, and the current efficiency and specific energy consumption are about 87.79% and 736.82 kWh t-1, respectively. With the electro-deoxidation progress on the pellet surface, the reduction rate reaches the fastest and decreases along the distance from surface to inner center. The morphologies of metallic products are porous and mainly consisted of uniform particles which connect with each other by finer strip-shaped grains to remain the geometry and macro size constant perfectly. In addition, an empirical model of the electro-deoxidation process from spherical PbO bulk to porous lead is also proposed. These findings provide a novel and simple route for the preparation of porous metals from oxide precursors in deep eutectic solvents at room temperature.

  16. Electrochemical reduction of oxygen and nitric oxide at low temperature on Ce1−xPrxO2−δ cathodes

    DEFF Research Database (Denmark)

    Werchmeister, Rebecka Maria Larsen; Kammer Hansen, Kent

    2013-01-01

    The ability of praseodymium doped cerium oxide materials to electrochemically reduce NO and O2 was studied using cone-shaped electrodes in conjunction with cyclic voltammetry, in the temperature range 200–400 °C. Four samples were studied; Ce1−xPrxO2−δ (x = 0.1, 0.2, 0.3 and 0.4). It was shown...... the highest ratio of maximum cathodic current density (iNO/iO2iNO/iO2), which is used as an indication of a higher activity toward reduction of NO compared to reduction of O2. The apparent selectivity generally decreased with increasing temperature for all the compositions....

  17. Efficient Electrocatalytic Reduction of CO2 by Nitrogen-Doped Nanoporous Carbon/Carbon Nanotube Membranes - A Step Towards the Electrochemical CO2 Refinery

    KAUST Repository

    Wang, Hong; Jia, Jia; Song, Pengfei; Wang, Qiang; Li, Debao; Min, Shixiong; Qian, Chenxi; Wang, Lu; Li, Young Feng; Ma, Chun; Wu, Tao; Yuan, Jiayin; Antonietti, Markus; Ozin, Geoffrey A.

    2017-01-01

    The search for earth abundant, efficient and stable electrocatalysts that can enable the chemical reduction of CO2 to value-added chemicals and fuels at an industrially relevant scale, is a high priority for the development of a global network of renewable energy conversion and storage systems that can meaningfully impact greenhouse gas induced climate change. Here we introduce a straightforward, low cost, scalable and technologically relevant method to manufacture an all-carbon, electroactive, nitrogen-doped nanoporous carbon-carbon nanotube composite membrane. The membrane is demonstrated to function as a binder-free, high-performance electrode for the electrocatalytic reduction of CO2 to formate. The Faradaic efficiency for the production of formate is 81%. Furthermore, the robust structural and electrochemical properties of the membrane endow it with excellent long-term stability.

  18. Efficient Electrocatalytic Reduction of CO2 by Nitrogen-Doped Nanoporous Carbon/Carbon Nanotube Membranes - A Step Towards the Electrochemical CO2 Refinery

    KAUST Repository

    Wang, Hong

    2017-05-12

    The search for earth abundant, efficient and stable electrocatalysts that can enable the chemical reduction of CO2 to value-added chemicals and fuels at an industrially relevant scale, is a high priority for the development of a global network of renewable energy conversion and storage systems that can meaningfully impact greenhouse gas induced climate change. Here we introduce a straightforward, low cost, scalable and technologically relevant method to manufacture an all-carbon, electroactive, nitrogen-doped nanoporous carbon-carbon nanotube composite membrane. The membrane is demonstrated to function as a binder-free, high-performance electrode for the electrocatalytic reduction of CO2 to formate. The Faradaic efficiency for the production of formate is 81%. Furthermore, the robust structural and electrochemical properties of the membrane endow it with excellent long-term stability.

  19. Effect of reduction enhancer on a radiolytic synthesis of carbon-supported Pt–Cu nanoparticles and their structural and electrochemical properties

    Energy Technology Data Exchange (ETDEWEB)

    Kugai, Junichiro, E-mail: jkugai@kobe-kosen.ac.jp [Kobe City College of Technology, Department of Applied Chemistry (Japan); Kubota, Chihiro; Okazaki, Tomohisa; Seino, Satoshi; Nakagawa, Takashi [Osaka University, Graduate School of Engineering (Japan); Nitani, Hiroaki [High Energy Accelerator Research Organization, Institute of Materials Structure Science (IMSS) (Japan); Yamamoto, Takao A. [Osaka University, Graduate School of Engineering (Japan)

    2015-06-15

    In order to clarify the effect of reduction enhancer on the nanoparticle formation process and their structural and catalytic properties, carbon-supported Pt–Cu nanoparticles were synthesized by electron beam irradiation on an aqueous precursor solution in the presence/absence of reduction enhancer. In the absence of reduction enhancer, tetravalent platinum oxide particles of approximately 1 nm in diameter were formed on carbon support with copper barely precipitated, while in the presence of 2-propanol or ethylene glycol or glucose both platinum and copper precipitated as few-nanometer-sized alloy particles together with copper oxides. It was suggested that the metal nuclei produced upon electron beam irradiation do not have enough lifetime without reduction enhancer due to fast oxidation of the nuclei by oxidizing radicals, while the reduction enhancer scavenges these oxidizing radicals preventing oxidation of metallic clusters and prolonging their lifetime. Ethylene glycol gave smaller and better alloyed particles with less copper oxides compared to 2-propanol since the carbonyl compounds derived from oxidation of ethylene glycol protect metallic clusters from oxidation further prolonging their lifetime. In the electrochemical measurements, the methanol oxidation activities of Pt–Cu/C catalysts were well explained by their structural characteristics.

  20. Rapid kinetics of dehalogenation promoted by iodotyrosine deiodinase from human thyroid.

    Science.gov (United States)

    Bobyk, Kostyantyn D; Ballou, David P; Rokita, Steven E

    2015-07-28

    Reductive dehalogenation such as that catalyzed by iodotyrosine deiodinase (IYD) is highly unusual in aerobic organisms but necessary for iodide salvage from iodotyrosine generated during thyroxine biosynthesis. Equally unusual is the dependence of this process on flavin. Rapid kinetics have now been used to define the basic processes involved in IYD catalysis. Time-dependent quenching of flavin fluorescence was used to monitor halotyrosine association to IYD. The substrates chloro-, bromo-, and iodotyrosine bound with similar rate constants (kon) ranging from 1.3 × 10(6) to 1.9 × 10(6) M(-1) s(-1). Only the inert substrate analogue fluorotyrosine exhibited a significantly (5-fold) slower kon (0.3 × 10(6) M(-1) s(-1)). All data fit a standard two-state model and indicated that no intermediate complex accumulated during closure of the active site lid induced by substrate. Subsequent halide elimination does not appear to limit reactions of bromo- and iodotyrosine since both fully oxidized the reduced enzyme with nearly equivalent second-order rate constants (7.3 × 10(3) and 8.6 × 10(3) M(-1) s(-1), respectively) despite the differing strength of their carbon-halogen bonds. In contrast to these substrates, chlorotyrosine reacted with the reduced enzyme approximately 20-fold more slowly and revealed a spectral intermediate that formed at approximately the same rate as the bromo- and iodotyrosine reactions.

  1. NiCr (x) Fe2-x O-4 as cathode materials for electrochemical reduction of NO (x)

    DEFF Research Database (Denmark)

    Bræstrup, Frantz Radzik; Kammer Hansen, Kent

    2010-01-01

    Solid solutions of spinel-type oxides with the composition NiCr x Fe2-x O4 (x = 0.0, 0.5, 1.0, 1.5, 2.0) were prepared with the glycine–nitrate combustion synthesis. Four-point DC resistivity measurements show an increase in the conductivity as more Cr is introduced into the structure, whereas...... dilatometer measurements show that the linear thermal expansion decreases with increasing Cr content. The oxides were used as electrode materials in a pseudo-three-electrode setup in the temperature range of 300–600 °C. Cyclic voltammetry and electrochemical impedance spectroscopy were used to characterize...... the electrochemical behavior in 1% NO, 1% NO2, and 10% O2. NiCr2O4 shows high activity in NO and NO2 relative to O2 and can therefore be considered as a possible electrode material. Peaks were detected in the voltammograms recorded on NiCr2O4 in 1% NO. The origin of the peaks seems to be related to the oxidation...

  2. Effect of CaO addition on preparation of ferrotitanium from ilmenite by electrochemical reduction in CaCl_2−NaCl molten salt

    International Nuclear Information System (INIS)

    Xiong, Li; Hua, Yixin; Xu, Cunying; Li, Jian; Li, Yan; Zhang, Qibo; Zhou, Zhongren; Zhang, Yadong; Ru, Juanjian

    2016-01-01

    Ferro-titanium (FeTi) alloy was prepared successfully from synthesized ilmenite through electrochemical reduction method in equal-molar CaCl_2−NaCl molten salt at 973 K and a cell voltage of 3.2 V under inert atmosphere, where molybdenum rod and graphite were used as cathode and anode respectively. It is indicated that the CaO content in the molten salt has an appreciable effect on the phase transformation of reactants occurring in the electrolytic process. The optimized CaO content in the molten salt is 1 mol% and this suitable content of CaO can significantly improve the reduction rate of ilmenite. The micromorphology of the ferrotitanium product is porous with the amount of 1 mol%CaO addition. It is observed that the particles of ferrotitanium had a uniform size in the initial period of time. Along with the electrolysis time extension, however, the particles connected with each other to generate strips and then form a honeycomb structure. These findings provide a basis for scientifically discussion on the optimization of CaO addition amount during the electrochemical reduction of ilmenite and other oxides in molten salts. - Highlights: • Ferro-titanium was prepared from synthesized ilmenite in CaCl_2−NaCl molten salt. • CaO content has appreciable effect on the phase transformation of ilmenite reactant. • The optimized CaO content is 1 mol% which can significantly improve reaction rate. • The products are connected with each other to form strips as electrolysis time.

  3. Effect of CaO addition on preparation of ferrotitanium from ilmenite by electrochemical reduction in CaCl{sub 2}−NaCl molten salt

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Li [Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093 (China); State Key Lab of Complex Nonferrous Metal Resources Clean Utilization, Kunming 650093 (China); Hua, Yixin, E-mail: yxhua@kmust.edu.cn [Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093 (China); State Key Lab of Complex Nonferrous Metal Resources Clean Utilization, Kunming 650093 (China); Xu, Cunying; Li, Jian; Li, Yan; Zhang, Qibo; Zhou, Zhongren; Zhang, Yadong [Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093 (China); State Key Lab of Complex Nonferrous Metal Resources Clean Utilization, Kunming 650093 (China); Ru, Juanjian [Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China)

    2016-08-15

    Ferro-titanium (FeTi) alloy was prepared successfully from synthesized ilmenite through electrochemical reduction method in equal-molar CaCl{sub 2}−NaCl molten salt at 973 K and a cell voltage of 3.2 V under inert atmosphere, where molybdenum rod and graphite were used as cathode and anode respectively. It is indicated that the CaO content in the molten salt has an appreciable effect on the phase transformation of reactants occurring in the electrolytic process. The optimized CaO content in the molten salt is 1 mol% and this suitable content of CaO can significantly improve the reduction rate of ilmenite. The micromorphology of the ferrotitanium product is porous with the amount of 1 mol%CaO addition. It is observed that the particles of ferrotitanium had a uniform size in the initial period of time. Along with the electrolysis time extension, however, the particles connected with each other to generate strips and then form a honeycomb structure. These findings provide a basis for scientifically discussion on the optimization of CaO addition amount during the electrochemical reduction of ilmenite and other oxides in molten salts. - Highlights: • Ferro-titanium was prepared from synthesized ilmenite in CaCl{sub 2}−NaCl molten salt. • CaO content has appreciable effect on the phase transformation of ilmenite reactant. • The optimized CaO content is 1 mol% which can significantly improve reaction rate. • The products are connected with each other to form strips as electrolysis time.

  4. The electrochemical reduction rate of colloidal particles of silver halides as a function of the electrolyte composition

    International Nuclear Information System (INIS)

    Selivanov, V.N.

    1997-01-01

    Influence of silver halide colloid particles concentration (AgI), electrolyte composition and signs of the electrode and colloids charges on their reduction threshold current densities has been studied. It has been discovered that reduction threshold current densities of positively charged colloid particles exceed by a factor of 3-4 the threshold densities of silver ions diffusion current. It is shown that the threshold density of colloids reduction current is limited by the rates of their electrophoretic transfer and diffusion

  5. Pyrolysis and dehalogenation of plastics from waste electrical and electronic equipment (WEEE): a review.

    Science.gov (United States)

    Yang, Xiaoning; Sun, Lushi; Xiang, Jun; Hu, Song; Su, Sheng

    2013-02-01

    Plastics from waste electrical and electronic equipment (WEEE) have been an important environmental problem because these plastics commonly contain toxic halogenated flame retardants which may cause serious environmental pollution, especially the formation of carcinogenic substances polybrominated dibenzo dioxins/furans (PBDD/Fs), during treat process of these plastics. Pyrolysis has been proposed as a viable processing route for recycling the organic compounds in WEEE plastics into fuels and chemical feedstock. However, dehalogenation procedures are also necessary during treat process, because the oils collected in single pyrolysis process may contain numerous halogenated organic compounds, which would detrimentally impact the reuse of these pyrolysis oils. Currently, dehalogenation has become a significant topic in recycling of WEEE plastics by pyrolysis. In order to fulfill the better resource utilization of the WEEE plastics, the compositions, characteristics and dehalogenation methods during the pyrolysis recycling process of WEEE plastics were reviewed in this paper. Dehalogenation and the decomposition or pyrolysis of WEEE plastics can be carried out simultaneously or successively. It could be 'dehalogenating prior to pyrolysing plastics', 'performing dehalogenation and pyrolysis at the same time' or 'pyrolysing plastics first then upgrading pyrolysis oils'. The first strategy essentially is the two-stage pyrolysis with the release of halogen hydrides at low pyrolysis temperature region which is separate from the decomposition of polymer matrixes, thus obtaining halogenated free oil products. The second strategy is the most common method. Zeolite or other type of catalyst can be used in the pyrolysis process for removing organohalogens. The third strategy separate pyrolysis and dehalogenation of WEEE plastics, which can, to some degree, avoid the problem of oil value decline due to the use of catalyst, but obviously, this strategy may increase the cost of

  6. Electrochemical studies on the reduction of uranyl ions in nitric acid-hydrazine media at platinum electrode

    International Nuclear Information System (INIS)

    Mishra, Satyabrata; Sini, K.; Mallika, C.; Kamachi Mudali, U.; Jagadeeswara Rao, Ch.

    2015-01-01

    Production of uranous nitrate with good conversion efficiency is one of the major steps in the aqueous reprocessing of spent fuels of nuclear reactors, as U(IV) is used for the separation of Pu from U by the selective reduction of Pu(IV) into practically non-extractable Pu(III) in aqueous streams. Electro-reduction of uranyl ions has the advantage of not introducing corrosive chemicals into the process stream. High current efficiency with maximum conversion of U(VI) to U(IV) can be achieved in continuous as well as batch mode electro-reduction, if the process is voltage-controlled rather than current controlled. As potentiostatic studies reveal the mechanism of reduction of uranyl ions in potential controlled electrolysis, the reduction behavior of uranyl ions (UO 2 2+ ) in nitric acid and nitric acid-hydrazine media were investigated by Cyclic Voltammetric (CV) and Chronopotentiometric (CP) techniques using platinum working electrode at 298 K. Heterogeneous electron transfer rate constant (ks) for uranyl reduction was estimated at a very low concentration of nitric acid (0.05 M) using Klinger and Kochi equation. Values of the diffusion coefficients were determined as a function of acidity with and without hydrazine. Reduction of uranyl ions was found to be under kinetic as well as diffusion control when the concentration of nitric acid was 0.05 M and in the absence of hydrazine. However, as the acidity of the supporting electrolyte increased, the reduction was purely under kinetic control. (author)

  7. High surface area synthesis, electrochemical activity, and stability of tungsten carbide supported Pt during oxygen reduction in proton exchange membrane fuel cells

    Science.gov (United States)

    Chhina, H.; Campbell, S.; Kesler, O.

    The oxidation of carbon catalyst supports to carbon dioxide gas leads to degradation in catalyst performance over time in proton exchange membrane fuel cells (PEMFCs). The electrochemical stability of Pt supported on tungsten carbide has been evaluated on a carbon-based gas diffusion layer (GDL) at 80 °C and compared to that of HiSpec 4000™ Pt/Vulcan XC-72R in 0.5 M H 2SO 4. Due to other electrochemical processes occurring on the GDL, detailed studies were also performed on a gold mesh substrate. The oxygen reduction reaction (ORR) activity was measured both before and after accelerated oxidation cycles between +0.6 V and +1.8 V vs. RHE. Tafel plots show that the ORR activity remained high even after accelerated oxidation tests for Pt/tungsten carbide, while the ORR activity was extremely poor after accelerated oxidation tests for HiSpec 4000™. In order to make high surface area tungsten carbide, three synthesis routes were investigated. Magnetron sputtering of tungsten on carbon was found to be the most promising route, but needs further optimization.

  8. High surface area synthesis, electrochemical activity, and stability of tungsten carbide supported Pt during oxygen reduction in proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Chhina, H. [Automotive fuel cell corporation, 9000 Glenlyon Parkway, Burnaby, BC (Canada); Department of Mechanical and Industrial Engineering, 5 King' s College Road, University of Toronto, Toronto, Ontario (Canada); Campbell, S. [Automotive fuel cell corporation, 9000 Glenlyon Parkway, Burnaby, BC (Canada); Kesler, O. [Department of Mechanical and Industrial Engineering, 5 King' s College Road, University of Toronto, Toronto, Ontario (Canada)

    2008-04-15

    The oxidation of carbon catalyst supports to carbon dioxide gas leads to degradation in catalyst performance over time in proton exchange membrane fuel cells (PEMFCs). The electrochemical stability of Pt supported on tungsten carbide has been evaluated on a carbon-based gas diffusion layer (GDL) at 80 C and compared to that of HiSpec 4000 trademark Pt/Vulcan XC-72R in 0.5 M H{sub 2}SO{sub 4}. Due to other electrochemical processes occurring on the GDL, detailed studies were also performed on a gold mesh substrate. The oxygen reduction reaction (ORR) activity was measured both before and after accelerated oxidation cycles between +0.6 V and +1.8 V vs. RHE. Tafel plots show that the ORR activity remained high even after accelerated oxidation tests for Pt/tungsten carbide, while the ORR activity was extremely poor after accelerated oxidation tests for HiSpec 4000 trademark. In order to make high surface area tungsten carbide, three synthesis routes were investigated. Magnetron sputtering of tungsten on carbon was found to be the most promising route, but needs further optimization. (author)

  9. Ultrasensitive and simultaneous detection of hydroquinone, catechol and resorcinol based on the electrochemical co-reduction prepared Au-Pd nanoflower/reduced graphene oxide nanocomposite

    International Nuclear Information System (INIS)

    Chen, Yuan; Liu, Xiaoying; Zhang, Si; Yang, Liuqing; Liu, Meiling; Zhang, Youyu; Yao, Shouzhuo

    2017-01-01

    A simple and efficient eletrochemical sensing platform for simultaneous detection of hydroquinone (HQ), catechol (CC) and resorcinol (RC) based on the Au-Pd bimetallic and graphene is described in this paper. The Au-Pd reduced graphene oxide (Au-Pd NF/rGO) was prepared by the electrochemical co-reduction deposition via cyclic voltammetry method (CV). The Au-Pd NF/rGO nanocomposite was examined by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and electrochemical methods CV and differential pulse voltammety (DPV) study showed that the three dihydroxybenzene isomers can be catalytically oxidized and discriminated simultaneously on the Au-Pd NF/rGO/GCE. The presence of Pd makes the performance of the sensor superior to that of in the absence of it. Owing to the integrated superior conductivity and excellent catalytic property of Au-Pd NF/rGO, the sensitive and simultaneous detection of HQ, CC and RC was realized in the individual or triple-components solution based on the as proposed Au-Pd NF/rGO/GCE, which shows wide linear range and low detection limit. The detection of them in tap water, river water and lake water were also successfully performed and good recovery was obtained.

  10. Electrochemical reduction of oxygen on small platinum particles supported on carbon in concentrated phosphoric acid. 2. Effects of teflon content in the catalyst layer and baking temperature of the electrode

    Energy Technology Data Exchange (ETDEWEB)

    Maoka, T.

    1988-03-01

    A relation between hydrophobicity (or wettability) of a porous gas diffusion electrode for use in a phosphoric acid fuel cell and its cathode performance (activity toward electrochemical oxygen reduction) was examined. The hydrophobicity of the gas diffusion electrode was regulated by changing either the amount of Teflon (PTFE) content in the catalyst layer or baking temperature of the electrode. The Tafel slope or electrochemical oxygen reduction became twice as high as that of the ordinary electrode when the wettability of electrode toward phosphoric acid was high. This fact supports a flooded agglomerate model as the mode of this type of porous gas diffusion electrode.

  11. Achieving direct electrochemistry of glucose oxidase by one step electrochemical reduction of graphene oxide and its use in glucose sensing.

    Science.gov (United States)

    Shamsipur, Mojtaba; Tabrizi, Mahmoud Amouzadeh

    2014-12-01

    In this paper, the direct electrochemistry of glucose oxidase (GOD) was accomplished at a glassy carbon electrode modified with electrochemically reduced graphene oxide/sodium dodecyl sulfate (GCE/ERGO/SDS). A pair of reversible peaks is exhibited on GCE/ERGO/SDS/GOD by cyclic voltammetry. The peak-to-peak potential separation of immobilized GOD is 28 mV in 0.1 M phosphate buffer solution (pH7.0) with a scan rate of 50 mV/s. The average surface coverage is 2.62×10(-10) mol cm(-2). The resulting biosensor exhibited a good response to glucose with linear range from 1 to 8 mM (R(2)=0.9878), good reproducibility and detection limit of 40.8 μM. The results from the biosensor were similar (±5%) to those obtained from the clinical analyzer. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Rapid isolation of a facultative anaerobic electrochemically active bacterium capable of oxidizing acetate for electrogenesis and azo dyes reduction.

    Science.gov (United States)

    Shen, Nan; Yuan, Shi-Jie; Wu, Chao; Cheng, Yuan-Yuan; Song, Xiang-Ning; Li, Wen-Wei; Tong, Zhong-Hua; Yu, Han-Qing

    2014-05-01

    In this study, 27 strains of electrochemically active bacteria (EAB) were rapidly isolated and their capabilities of extracellular electron transfer were identified using a photometric method based on WO3 nanoclusters. These strains caused color change of WO3 from white to blue in a 24-well agar plate within 40 h. Most of the isolated EAB strains belonged to the genera of Aeromonas and Shewanella. One isolate, Pantoea agglomerans S5-44, was identified as an EAB that can utilize acetate as the carbon source to produce electricity and reduce azo dyes under anaerobic conditions. The results confirmed the capability of P. agglomerans S5-44 for extracellular electron transfer. The isolation of this acetate-utilizing, facultative EBA reveals the metabolic diversity of environmental bacteria. Such strains have great potential for environmental applications, especially at interfaces of aerobic and anaerobic environments, where acetate is the main available carbon source.

  13. Improving corrosion resistance of magnesium-based alloys by surface modification with hydrogen by electrochemical ion reduction (EIR) and by plasma immersion ion implantation (PIII)

    Energy Technology Data Exchange (ETDEWEB)

    Bakkar, A. [Institut fuer Materialpruefung und Werkstofftechnik, Dr. Doelling und Dr. Neubert GmbH, Freiberger Strasse 1, 38678 Clausthal (Germany); Department of Metallurgy and Materials Engineering, Suez Canal University, P.O. Box 43721, Suez (Egypt); Neubert, V. [Institut fuer Materialpruefung und Werkstofftechnik, Dr. Doelling und Dr. Neubert GmbH, Freiberger Strasse 1, 38678 Clausthal (Germany)]. E-mail: volkmar.neubert@tu-clausthal.de

    2005-05-01

    Magnesium-based hydrides are well known that they have a high hydrogen-storage capacity. In this study, two different methods have been provided for hydrogen surface modification of high purity magnesium (hp Mg) and AZ91 magnesium alloy. One was electrochemical ion reduction (EIR) of hydrogen from an alkaline electrolyte on such Mg-based cathode. The other was plasma immersion ion implantation (PIII or PI{sup 3}) into Mg-based substrate. The depth profile of H-modified surfaces was described by Auger electron spectroscopy (AES) and by secondary ion mass spectrometry (SIMS) measurements. Corrosion testing was carried out in Avesta cell by potentiodynamic polarisation in chloride-containing aqueous solutions of pH 7 and pH 12. A greatly significant improvement in the corrosion resistance of H-modified surfaces was verified.

  14. Improving corrosion resistance of magnesium-based alloys by surface modification with hydrogen by electrochemical ion reduction (EIR) and by plasma immersion ion implantation (PIII)

    International Nuclear Information System (INIS)

    Bakkar, A.; Neubert, V.

    2005-01-01

    Magnesium-based hydrides are well known that they have a high hydrogen-storage capacity. In this study, two different methods have been provided for hydrogen surface modification of high purity magnesium (hp Mg) and AZ91 magnesium alloy. One was electrochemical ion reduction (EIR) of hydrogen from an alkaline electrolyte on such Mg-based cathode. The other was plasma immersion ion implantation (PIII or PI 3 ) into Mg-based substrate. The depth profile of H-modified surfaces was described by Auger electron spectroscopy (AES) and by secondary ion mass spectrometry (SIMS) measurements. Corrosion testing was carried out in Avesta cell by potentiodynamic polarisation in chloride-containing aqueous solutions of pH 7 and pH 12. A greatly significant improvement in the corrosion resistance of H-modified surfaces was verified

  15. Application of bioinformatics tools and databases in microbial dehalogenation research (a review).

    Science.gov (United States)

    Satpathy, R; Konkimalla, V B; Ratha, J

    2015-01-01

    Microbial dehalogenation is a biochemical process in which the halogenated substances are catalyzed enzymatically in to their non-halogenated form. The microorganisms have a wide range of organohalogen degradation ability both explicit and non-specific in nature. Most of these halogenated organic compounds being pollutants need to be remediated; therefore, the current approaches are to explore the potential of microbes at a molecular level for effective biodegradation of these substances. Several microorganisms with dehalogenation activity have been identified and characterized. In this aspect, the bioinformatics plays a key role to gain deeper knowledge in this field of dehalogenation. To facilitate the data mining, many tools have been developed to annotate these data from databases. Therefore, with the discovery of a microorganism one can predict a gene/protein, sequence analysis, can perform structural modelling, metabolic pathway analysis, biodegradation study and so on. This review highlights various methods of bioinformatics approach that describes the application of various databases and specific tools in the microbial dehalogenation fields with special focus on dehalogenase enzymes. Attempts have also been made to decipher some recent applications of in silico modeling methods that comprise of gene finding, protein modelling, Quantitative Structure Biodegradibility Relationship (QSBR) study and reconstruction of metabolic pathways employed in dehalogenation research area.

  16. Mechanistic Pathway in the Electrochemical Reduction of CO2 on RuO2

    DEFF Research Database (Denmark)

    Karamad, Mohammadreza; Hansen, Heine Anton; Rossmeisl, Jan

    2015-01-01

    below −0.43 V vs the reversible hydrogen electrode (RHE). On the other hand, at 0.5 ML of CO*, the reduction of formic acid to H2COOH* is the thermodynamically most difficult step and becomes exergonic at potentials below −0.25 V vs RHE. We have found that CO2 reduction activity on RuO2 changes with CO...

  17. Specific anion effects on copper surface through electrochemical treatment: Enhanced photoelectrochemical CO2 reduction activity of derived nanostructures induced by chaotropic anions

    Science.gov (United States)

    Navaee, Aso; Salimi, Abdollah

    2018-05-01

    Copper derivatives are the most prominent CO2 reduction electrocatalyst. Herein, the metallic copper has been electrochemically treated with some of common ionic salts such as N3bar, HPO2bar, S2bar, Fbar, Clbar, Brbar and Ibar based on the dissolution of a metallic working electrode in an aqueous solution to derive the surface roughness incorporated with nanostructures. Diverse surface morphology can be obtained when the ionic radii of anions are changed. Surface study reveals various roughness shapes based on the size and polarity of the anions, where the ions with higher ionic radii have higher impact on the Cu surface. In comparison, polyatomic oxyanion such as HPO2bar even with large ionic radii do not have enough strength to create the surface roughness than that of oxygen-free anions with large ionic radii. The photoelectrochemical behavior of the modified surfaces toward CO2 reduction is studied at a wide potential window in bicarbonate aqueous solution. Based on our investigations, treated surfaces by Ibar, Clbar and S2bargive a more surface roughness, while Ibar and N3bar offer higher catalytic activity toward CO2 reduction due to possible complexing ability of these anions with Cu cations, followed by formation of the co-catalyst semiconductor and facilitate electron transfer. This methodology can be applied to investigate the effect of ions on transition metals along with obtaining different surface morphologies tailored to different applications.

  18. Structural Dynamics and Evolution of Bismuth Electrodes during Electrochemical Reduction of CO 2 in Imidazolium-Based Ionic Liquid Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Medina-Ramos, Jonnathan [Chemical; Lee, Sang Soo [Chemical; Fister, Timothy T. [Chemical; Hubaud, Aude A. [Chemical; Sacci, Robert L.; Mullins, David R.; DiMeglio, John L. [Department; Pupillo, Rachel C. [Department; Velardo, Stephanie M. [Department; Lutterman, Daniel A.; Rosenthal, Joel [Department; Fenter, Paul [Chemical

    2017-09-14

    Real-time changes in the composition and structure of bismuth electrodes used for catalytic conversion of CO2 into CO were examined via X-ray absorption spectroscopy (including XANES and EXAFS), electrochemical quartz crystal microbalance (EQCM), and in situ X-ray reflectivity (XR). Measurements were performed with bismuth electrodes immersed in acetonitrile (MeCN) solutions containing a 1-butyl-3-methylimidazolium ([BMIM]+) ionic liquid promoter or electrochemically inactive tetrabutylammonium supporting electrolytes (TBAPF6 and TBAOTf). Altogether, these measurements show that bismuth electrodes are originally a mixture of bismuth oxides (including Bi2O3) and metallic bismuth (Bi0) and that the reduction of oxidized bismuth species to Bi0 is fully achieved under potentials at which CO2 activation takes place. Furthermore, EQCM measurements conducted during cyclic voltammetry revealed that a bismuth-coated quartz crystal exhibits significant shifts in resistance (ΔR) prior to the onset of CO2 reduction near -1.75 V vs Ag/AgCl and pronounced hysteresis in frequency (Δf) and ΔR, which suggests significant changes in roughness or viscosity at the Bi/[BMIM]+ solution interface. In situ XR performed on rhombohedral Bi (001) oriented films indicates that extensive restructuring of the bismuth film cathodes takes place upon polarization to potentials more negative than -1.6 V vs Ag/AgCl, which is characterized by a decrease of the Bi (001) Bragg peak intensity of ≥50% in [BMIM]OTf solutions in the presence and absence of CO2. Over 90% of the reflectivity is recovered during the anodic half-scan, suggesting that the structural changes are mostly reversible. In contrast, such a phenomenon is not observed for thin Bi (001) oriented films in solutions of tetrabutylammonium salts that do not promote CO2 reduction. Overall, these results highlight that Bi electrodes undergo significant potential-dependent chemical and structural transformations in the presence of [BMIM

  19. Achieving direct electrochemistry of glucose oxidase by one step electrochemical reduction of graphene oxide and its use in glucose sensing

    International Nuclear Information System (INIS)

    Shamsipur, Mojtaba; Amouzadeh Tabrizi, Mahmoud

    2014-01-01

    In this paper, the direct electrochemistry of glucose oxidase (GOD) was accomplished at a glassy carbon electrode modified with electrochemically reduced graphene oxide/sodium dodecyl sulfate (GCE/ERGO/SDS). A pair of reversible peaks is exhibited on GCE/ERGO/SDS/GOD by cyclic voltammetry. The peak-to-peak potential separation of immobilized GOD is 28 mV in 0.1 M phosphate buffer solution (pH 7.0) with a scan rate of 50 mV/s. The average surface coverage is 2.62 × 10 −10 mol cm −2 . The resulting biosensor exhibited a good response to glucose with linear range from 1 to 8 mM (R 2 = 0.9878), good reproducibility and detection limit of 40.8 μM. The results from the biosensor were similar (± 5%) to those obtained from the clinical analyzer. - Highlights: • A direct electron transfer reaction of glucose oxidase was observed on GCE/ERGO/SDS. • This composite film was successfully applied in preparation of glucose biosensor. • The detection limit of the biosensor was estimated to be 40.8 μM. • The results from the sensor were similar to those obtained from the clinical analyzer

  20. Achieving direct electrochemistry of glucose oxidase by one step electrochemical reduction of graphene oxide and its use in glucose sensing

    Energy Technology Data Exchange (ETDEWEB)

    Shamsipur, Mojtaba; Amouzadeh Tabrizi, Mahmoud, E-mail: mahmoud.tabrizi@gmail.com

    2014-12-01

    In this paper, the direct electrochemistry of glucose oxidase (GOD) was accomplished at a glassy carbon electrode modified with electrochemically reduced graphene oxide/sodium dodecyl sulfate (GCE/ERGO/SDS). A pair of reversible peaks is exhibited on GCE/ERGO/SDS/GOD by cyclic voltammetry. The peak-to-peak potential separation of immobilized GOD is 28 mV in 0.1 M phosphate buffer solution (pH 7.0) with a scan rate of 50 mV/s. The average surface coverage is 2.62 × 10{sup −10} mol cm{sup −2}. The resulting biosensor exhibited a good response to glucose with linear range from 1 to 8 mM (R{sup 2} = 0.9878), good reproducibility and detection limit of 40.8 μM. The results from the biosensor were similar (± 5%) to those obtained from the clinical analyzer. - Highlights: • A direct electron transfer reaction of glucose oxidase was observed on GCE/ERGO/SDS. • This composite film was successfully applied in preparation of glucose biosensor. • The detection limit of the biosensor was estimated to be 40.8 μM. • The results from the sensor were similar to those obtained from the clinical analyzer.

  1. Water-assisted dehalogenation of thionyl chloride in the presence of water molecules.

    Science.gov (United States)

    Yeung, Chi Shun; Ng, Ping Leung; Guan, Xiangguo; Phillips, David Lee

    2010-04-01

    A second-order Møller-Plesset perturbation theory (MP2) and density functional theory (DFT) investigation of the dehalogenation reactions of thionyl chloride is reported, in which water molecules (up to seven) were explicitly involved in the reaction complex. The dehalogenation processes of thionyl chloride were found to be dramatically catalyzed by water molecules. The reaction rate became significantly faster as more water molecules became involved in the reaction complex. The dehalogenation processes can be reasonably simulated by the gas-phase water cluster models, which reveals that water molecules can help to solvate the thionyl chloride molecules and activate the release of the Cl(-) leaving group. The computed activation energies were used to compare the calculations to available experimental data.

  2. Synthesis and characterization of the WxRuySez from the electrochemical reduction of oxygen and their possible application as electrode in fuel cell

    International Nuclear Information System (INIS)

    Ramirez R, S.D.

    1995-01-01

    In this communication the synthesis of the W 0.03 RuSe 0.47 O 0.3 from the transition metal carbonyl compounds and the chalcogenide in m Xylene, the chemical characterization of the novel material was performed by neutron activation analysis (NAA), using the TRIGA Mark III Reactor from the Nuclear Center of Mexico. The oxygen present in the material was determined by Rutherford Backscattering Spectrometry (RBS). Also the RuSe 5.7 y WSe 2 were synthesized and characterized by NAA. The electro kinetic oxygen reduction behaviour of the W 0.03 RuSe 0.47 O 0.3 deposited in glassy carbon was investigated in aqueous H 2 SO 4 0.5M. The rotating disk electrode electrochemical technique was used for determining the kinetic parameters: The reaction was of first order which implied that the rate determining step is the transfer of one electron, the Tafel slope was 0.115 V/decade; the electron transfer coefficient found was of 0.5, and the activation energy in the oxygen reduction reaction was 0.47 eV. (Author)

  3. Flexible graphene/carbon nanotube hybrid papers chemical-reduction-tailored by gallic acid for high-performance electrochemical capacitive energy storages

    Science.gov (United States)

    Yao, Lu; Zhou, Chao; Hu, Nantao; Hu, Jing; Hong, Min; Zhang, Liying; Zhang, Yafei

    2018-03-01

    Mechanically robust graphene papers with both high gravimetric and volumetric capacitances are desired for high-performance energy storages. However, it's still a challenge to tailor the structure of graphene papers in order to meet this requirement. In this work, a kind of chemical-reduction-tailored mechanically-robust reduced graphene oxide/carbon nanotube hybrid paper has been reported for high-performance electrochemical capacitive energy storages. Gallic acid (GA), as an excellent reducing agent, was used to reduce graphene oxide. Through vacuum filtration of gallic acid reduced graphene oxide (GA-rGO) and carboxylic multiwalled carbon nanotubes (MWCNTs) aqueous suspensions, mechanically robust GA-rGO/MWCNTs hybrid papers were obtained. The resultant hybrid papers showed high gravimetric capacitance of 337.6 F g-1 (0.5 A g-1) and volumetric capacitance of 151.2 F cm-3 (0.25 A cm-3). In addition, the assembled symmetric device based on the hybrid papers exhibited high gravimetric capacitance of 291.6 F g-1 (0.5 A g-1) and volumetric capacitance of 136.6 F cm-3 (0.25 A cm-3). Meanwhile, it exhibited excellent rate capability and cycling stability. Above all, this chemical reduction tailoring technique and the resultant high-performance GA-rGO/MWCNTs hybrid papers give an insight for designing high-performance electrodes and hold a great potential in the field of energy storages.

  4. Fungal strains as catalysts for the biotransformation of halolactones by hydrolytic dehalogenation with the dimethylcyclohexane system.

    Science.gov (United States)

    Grabarczyk, Małgorzata

    2012-08-14

    Bicyclic chloro-, bromo- and iodo-γ-lactones with dimethylcyclohexane rings were used as substrates for bioconversion by several fungal strains (Fusarium, Botrytis and Beauveria). Most of the selected microorganisms transformed these lactones by hydrolytic dehalogenation into the new compound cis-2-hydroxy-4,6-dimethyl-9-oxabicyclo[4.3.0]- nonan-8-one, mainly the (-)-isomer. When iodo-γ-lactone was used as the substrate, two products were observed: a hydroxy-γ-lactone and an unsaturated lactone. The structures of all substrates and products were established on the basis of their spectral data. The mechanism of dehalogenation of three halolactones was also studied.

  5. Detection of dehalogenation impurities in organohalogenated pharmaceuticals by UHPLC-DAD-HRESIMS.

    Science.gov (United States)

    Regalado, Erik L; Dermenjian, Renee K; Joyce, Leo A; Welch, Christopher J

    2014-04-01

    The presence of dehalogenated impurities is often observed in halogen-containing pharmaceuticals, and can present a difficult analytical challenge, as the chromatographic behavior of the halogenated drug and the hydrogen-containing analog can be quite similar. In this study we describe the chromatographic separation and unambiguous identification of dehalogenation impurities or associated isomers in organohalogenated pharmaceuticals using UHPLC with a pentafluorophenyl column coupled with diode-array and high resolution electrospray ionization mass spectrometry detection (UHPLC-DAD-HRESIMS). Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Stable silver nanoclusters electrochemically deposited on nitrogen-doped graphene as efficient electrocatalyst for oxygen reduction reaction

    Science.gov (United States)

    Jin, Shi; Chen, Man; Dong, Haifeng; He, Bingyu; Lu, Huiting; Su, Lei; Dai, Wenhao; Zhang, Qiaochu; Zhang, Xueji

    2015-01-01

    Metal nanoclusters exhibit unusually high catalytic activity toward oxygen reduction reaction (ORR) due to their small size and unique electronic structures. However, controllable synthesis of stable metal nanoclusters is a challenge, and the durability of metal clusters suffers from the deficiency of dissolution, aggregation, and sintering during catalysis reactions. Herein, silver nanoclusters (AgNCs) (diameter , which is vital in high performance fuel cells, batteries and nanodevices.

  7. pH control for enhanced reductive bioremediation of chlorinated solvent source zones

    International Nuclear Information System (INIS)

    Robinson, Clare; Barry, D.A.; McCarty, Perry L.; Gerhard, Jason I.; Kouznetsova, Irina

    2009-01-01

    Enhanced reductive dehalogenation is an attractive treatment technology for in situ remediation of chlorinated solvent DNAPL source areas. Reductive dehalogenation is an acid-forming process with hydrochloric acid and also organic acids from fermentation of the electron donors typically building up in the source zone during remediation. This can lead to groundwater acidification thereby inhibiting the activity of dehalogenating microorganisms. Where the soils' natural buffering capacity is likely to be exceeded, the addition of an external source of alkalinity is needed to ensure sustained dehalogenation. To assist in the design of bioremediation systems, an abiotic geochemical model was developed to provide insight into the processes influencing the groundwater acidity as dehalogenation proceeds, and to predict the amount of bicarbonate required to maintain the pH at a suitable level for dehalogenating bacteria (i.e., > 6.5). The model accounts for the amount of chlorinated solvent degraded, site water chemistry, electron donor, alternative terminal electron-accepting processes, gas release and soil mineralogy. While calcite and iron oxides were shown to be the key minerals influencing the soil's buffering capacity, for the extensive dehalogenation likely to occur in a DNAPL source zone, significant bicarbonate addition may be necessary even in soils that are naturally well buffered. Results indicated that the bicarbonate requirement strongly depends on the electron donor used and availability of competing electron acceptors (e.g., sulfate, iron (III)). Based on understanding gained from this model, a simplified model was developed for calculating a preliminary design estimate of the bicarbonate addition required to control the pH for user-specified operating conditions.

  8. pH control for enhanced reductive bioremediation of chlorinated solvent source zones

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Clare, E-mail: clare.robinson@epfl.ch [Laboratoire de technologie ecologique, Institut d' ingenierie de l' environnement, Station No. 2, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland); Now at: Department of Civil and Environmental Engineering, University of Western Ontario, London, Canada N6A 5B9 (Canada); Barry, D.A., E-mail: andrew.barry@epfl.ch [Laboratoire de technologie ecologique, Institut d' ingenierie de l' environnement, Station No. 2, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland); McCarty, Perry L., E-mail: pmccarty@stanford.edu [Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305-4020 (United States); Gerhard, Jason I., E-mail: j.gerhard@ed.ac.uk [Now at: Department of Civil and Environmental Engineering, University of Western Ontario, London, Canada N6A 5B9 (Canada); Institute for Infrastructure and Environment, University of Edinburgh, Edinburgh, EH9 3JL (United Kingdom); Kouznetsova, Irina, E-mail: irina.kouznetsova@ed.ac.uk [Institute for Infrastructure and Environment, University of Edinburgh, Edinburgh, EH9 3JL (United Kingdom)

    2009-08-01

    Enhanced reductive dehalogenation is an attractive treatment technology for in situ remediation of chlorinated solvent DNAPL source areas. Reductive dehalogenation is an acid-forming process with hydrochloric acid and also organic acids from fermentation of the electron donors typically building up in the source zone during remediation. This can lead to groundwater acidification thereby inhibiting the activity of dehalogenating microorganisms. Where the soils' natural buffering capacity is likely to be exceeded, the addition of an external source of alkalinity is needed to ensure sustained dehalogenation. To assist in the design of bioremediation systems, an abiotic geochemical model was developed to provide insight into the processes influencing the groundwater acidity as dehalogenation proceeds, and to predict the amount of bicarbonate required to maintain the pH at a suitable level for dehalogenating bacteria (i.e., > 6.5). The model accounts for the amount of chlorinated solvent degraded, site water chemistry, electron donor, alternative terminal electron-accepting processes, gas release and soil mineralogy. While calcite and iron oxides were shown to be the key minerals influencing the soil's buffering capacity, for the extensive dehalogenation likely to occur in a DNAPL source zone, significant bicarbonate addition may be necessary even in soils that are naturally well buffered. Results indicated that the bicarbonate requirement strongly depends on the electron donor used and availability of competing electron acceptors (e.g., sulfate, iron (III)). Based on understanding gained from this model, a simplified model was developed for calculating a preliminary design estimate of the bicarbonate addition required to control the pH for user-specified operating conditions.

  9. Electrochemical dissolution of fresh and passivated chalcopyrite electrodes. Effect of pyrite on the reduction of Fe3+ ions and transport processes within the passive film

    International Nuclear Information System (INIS)

    Olvera, O.G.; Quiroz, L.; Dixon, D.G.; Asselin, E.

    2014-01-01

    Graphical abstract: - Highlights: • FeS 2 increased the dissolution rate of fresh and passivated CuFeS 2 electrodes. • Fe 3+ reduction was the rate controlling step in the dissolution of fresh CuFeS 2 . • Diffusion within the passive film controlled the dissolution rate of passivated CuFeS 2 . - Abstract: The effect of pyrite (FeS 2 ) on the electrochemical dissolution of fresh and passivated chalcopyrite (CuFeS 2 ) electrodes has been studied. Current density values for the dissolution of CuFeS 2 were calculated from EIS measurements. FeS 2 increased the dissolution rate of fresh and passivated CuFeS 2 electrodes indicating that the galvanic effect continued even after the electrode was chemically passivated. The dissolution rate of CuFeS 2 decreased by a factor of 3 after the passivation treatment. Due to the low diffusion rates of ions within the CuFeS 2 passive film and due to an increase in the resistance to the transfer of electrons at the electrode/film interface, the activity of FeS 2 for the reduction of Fe 3+ ions was also reduced by a factor of 2.3 even though FeS 2 was not exposed to any chemical treatment. The results in this work indicate that the dissolution rate of the fresh CuFeS 2 electrode was controlled by the reduction of Fe 3+ ions whereas for the passivated CuFeS 2 electrode the dissolution rate was controlled by diffusion within the passive film

  10. In Situ Scanning Tunneling Microscopy Topography Changes of Gold (111) in Aqueous Sulfuric Acid Produced by Electrochemical Surface Oxidation and Reduction and Relaxation Phenomena

    Science.gov (United States)

    Pasquale, M. A.; Nieto, F. J. Rodríguez; Arvia, A. J.

    The electrochemical formation and reduction of O-layers on gold (111) films in 1 m sulfuric acid under different potentiodynamic routines are investigated utilizing in situ scanning tunneling microscopy. The surface dynamics is interpreted considering the anodic and cathodic reaction pathways recently proposed complemented with concurrent relaxation phenomena occurring after gold (111) lattice mild disruption (one gold atom deep) and moderate disruption (several atoms deep). The dynamics of both oxidized and reduced gold topographies depends on the potentiodynamic routine utilized to form OH/O surface species. The topography resulting from a mild oxidative disruption is dominated by quasi-2D holes and hillocks of the order of 5 nm, involving about 500-600 gold atoms each, and their coalescence. A cooperative turnover process at the O-layer, in which the anion ad-layer and interfacial water play a key role, determines the oxidized surface topography. The reduction of these O-layers results in gold clusters, their features depending on the applied potential routine. A moderate oxidative disruption produces a surface topography of hillocks and holes several gold atoms high and deep, respectively. The subsequent reduction leads to a spinodal gold pattern. Concurrent coalescence appears to be the result of an Ostwald ripening that involves the surface diffusion of both gold atoms and clusters. These processes produce an increase in surface roughness and an incipient gold faceting. The dynamics of different topographies can be qualitatively explained employing the arguments from colloidal science theory. For 1.1 V ≤ E ≅ Epzc weak electrostatic repulsions favor gold atom/cluster coalescence, whereas for E < Epzc the attenuated electrostatic repulsions among gold surfaces stabilize small clusters over the substrate producing string-like patterns.

  11. Electron transfer study on graphene modified glassy carbon substrate via electrochemical reduction and the application for tris(2,2'-bipyridyl)ruthenium(II) electrochemiluminescence sensor fabrication.

    Science.gov (United States)

    Xu, Yuanhong; Cao, Mengmei; Liu, Huihui; Zong, Xidan; Kong, Na; Zhang, Jizhen; Liu, Jingquan

    2015-07-01

    In this study, electron transfer behavior of the graphene nanosheets attachment on glassy carbon electrode (GCE) via direct electrochemical reduction of graphene oxide (GO) is investigated for the first time. The graphene modified electrode was achieved by simply dipping the GCE in GO suspension, followed by cyclic voltammetric scanning in the potential window from 0V to -1.5V. Tris(2,2'-bipyridyl)ruthenium(II) [Ru(bpy)3(2+)] was immobilized on the graphene modified electrode and used as the redox probe to evaluate the electron transfer behavior. The electron transfer rate constant (Ks) was calculated to be 61.9±5.8s(-1), which is much faster than that of tiled graphene modified GCE (7.1±0.6s(-1)). The enhanced electron transfer property observed with the GCE modified by reductively deposited graphene is probably due to its standing configuration, which is beneficial to the electron transfer comparing with the tiled one. Because the abundant oxygen-containing groups are mainly located at the edges of GO, which should be much easier for the reduction to start from, the reduced GO should tend to stand on the electrode surface as evidenced by scanning electron microscopy analysis. In addition, due to the favored electron transfer and standing configuration, the Ru(bpy)3(2+) electrochemiluminescence sensor fabricated with standing graphene modified GCE provided much higher and more stable efficiency than that fabricated with tiled graphene. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Graphite Carbon-Supported Mo2C Nanocomposites by a Single-Step Solid State Reaction for Electrochemical Oxygen Reduction.

    Science.gov (United States)

    Huang, K; Bi, K; Liang, C; Lin, S; Wang, W J; Yang, T Z; Liu, J; Zhang, R; Fan, D Y; Wang, Y G; Lei, M

    2015-01-01

    Novel graphite-molybdenum carbide nanocomposites (G-Mo2C) are synthesized by a typical solid state reaction with melamine and MoO3 as precursors under inert atmosphere. The characterization results indicate that G-Mo2C composites are composed of high crystallization and purity of Mo2C and few layers of graphite carbon. Mo2C nanoparticles with sizes ranging from 5 to 50 nm are uniformly supported by surrounding graphite layers. It is believed that Mo atom resulting from the reduction of MoO3 is beneficial to the immobilization of graphite carbon. Moreover, the electrocatalytic performances of G-Mo2C for ORR in alkaline medium are investigated by cyclic voltammetry (CV), rotating disk electrode (RDE) and chronoamperometry test with 3M methanol. The results show that G-Mo2C has a considerable catalytic activity and superior methanol tolerance performance for the oxygen reduction reaction (ORR) benefiting from the chemical interaction between the carbide nanoparticles and graphite carbon.

  13. Dehalogenimonas alkenigignens sp. nov., a chlorinated-alkane-dehalogenating bacterium isolated from groundwater.

    Science.gov (United States)

    Bowman, Kimberly S; Nobre, M Fernanda; da Costa, Milton S; Rainey, Fred A; Moe, William M

    2013-04-01

    Two strictly anaerobic bacterial strains, designated IP3-3(T) and SBP-1, were isolated from groundwater contaminated by chlorinated alkanes and alkenes at a Superfund Site located near Baton Rouge, Louisiana (USA). Both strains reductively dehalogenate a variety of polychlorinated aliphatic alkanes, including 1,2-dichloroethane, 1,2-dichloropropane, 1,1,2,2-tetrachloroethane, 1,1,2-trichloroethane and 1,2,3-trichloropropane, when provided with hydrogen as the electron donor. To clarify their taxonomic position, strains IP3-3(T) and SBP-1 were characterized using a polyphasic approach. Both IP3-3(T) and SBP-1 are mesophilic, non-spore-forming, non-motile and Gram-stain-negative. Cells of both strains are irregular cocci with diameters of 0.4-1.1 µm. Both are resistant to ampicillin and vancomycin. The genomic DNA G+C contents of strains IP3-3(T) and SBP-1 are 55.5±0.4 and 56.2±0.2 mol% (HPLC), respectively. Major cellular fatty acids include C18 : 1ω9c, C16 : 0, C14 : 0 and C16 : 1ω9c. 16S rRNA gene sequence based phylogenetic analyses indicated that the strains cluster within the phylum Chloroflexi most closely related to but distinct from the species Dehalogenimonas lykanthroporepellens (96.2 % pairwise similarity) and Dehalococcoides mccartyi (90.6 % pairwise similarity). Physiological and chemotaxonomic traits as well as phylogenetic analysis support the conclusion that these strains represent a novel species within the genus Dehalogenimonas for which the name Dehalogenimonas alkenigignens sp. nov. is proposed. The type strain is IP3-3(T) ( = JCM 17062(T) = NRRL B-59545(T)).

  14. Substrate interactions in dehalogenation of 1,2-dichloroethane, 1,2-dichloropropane, and 1,1,2-trichloroethane mixtures by Dehalogenimonas spp.

    Science.gov (United States)

    Dillehay, Jacob L; Bowman, Kimberly S; Yan, Jun; Rainey, Fred A; Moe, William M

    2014-04-01

    When chlorinated alkanes are present as soil or groundwater pollutants, they often occur in mixtures. This study evaluated substrate interactions during the anaerobic reductive dehalogenation of chlorinated alkanes by the type strains of two Dehalogenimonas species, D. lykanthroporepellens and D. alkenigignens. Four contaminant mixtures comprised of combinations of the chlorinated solvents 1,2-dichloroethane (1,2-DCA), 1,2-dichloropropane (1,2-DCP), and 1,1,2-trichloroethane (1,1,2-TCA) were assessed for each species. Chlorinated solvent depletion and daughter product formation determined as a function of time following inoculation into anaerobic media revealed preferential dechlorination of 1,1,2-TCA over both 1,2-DCA and 1,2-DCP for both species. 1,2-DCA in particular was not dechlorinated until 1,1,2-TCA reached low concentrations. In contrast, both species concurrently dechlorinated 1,2-DCA and 1,2-DCP over a comparably large concentration range. This is the first report of substrate interactions during chlorinated alkane dehalogenation by pure cultures, and the results provide insights into the chlorinated alkane transformation processes that may be expected for contaminant mixtures in environments where Dehalogenimonas spp. are present.

  15. Inverse kinetic solvent isotope effect in TiO2 photocatalytic dehalogenation of non-adsorbable aromatic halides: a proton-induced pathway.

    Science.gov (United States)

    Chang, Wei; Sun, Chunyan; Pang, Xibin; Sheng, Hua; Li, Yue; Ji, Hongwei; Song, Wenjing; Chen, Chuncheng; Ma, Wanhong; Zhao, Jincai

    2015-02-09

    An efficient redox reaction between organic substrates in solution and photoinduced h(+) vb /e(-) cb on the surface of photocatalysts requires the substrates or solvent to be adsorbed onto the surface, and is consequentially marked by a normal kinetic solvent isotope effect (KSIE ≥ 1). Reported herein is a universal inverse KSIE (0.6-0.8 at 298 K) for the reductive dehalogenation of aromatic halides which cannot adsorb onto TiO2 in a [D0 ]methanol/[D4 ]methanol solution. Combined with in situ ATR-FTIR spectroscopy investigations, a previously unknown pathway for the transformation of these aromatic halides in TiO2 photocatalysis was identified: a proton adduct intermediate, induced by released H(+) /D(+) from solvent oxidation, accompanies a change in hybridization from sp(2) to sp(3) at a carbon atom of the aromatic halides. The protonation event leads these aromatic halides to adsorb onto the TiO2 surface and an ET reaction to form dehalogenated products follows. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. CueO-immobilized porous carbon electrode exhibiting improved performance of electrochemical reduction of dioxygen to water

    Energy Technology Data Exchange (ETDEWEB)

    Tsujimura, Seiya [Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake cho, Sakyo-ku, Kyoto 606-8502 (Japan)], E-mail: seiya@kais.kyoto-u.ac.jp; Miura, Yuko; Kano, Kenji [Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake cho, Sakyo-ku, Kyoto 606-8502 (Japan)

    2008-07-20

    We report the electro-enzymatic reduction of O{sub 2} to water at a current density controlled by the diffusion of the dissolved O{sub 2} in rotating disk electrode experiments under a broad pH range between 2 and 8. The electrocatalyst is CueO from Escherichia coli, which belongs to the family of multi-copper oxidases, immobilized on mesoporous carbon supports. The electrons are transferred from the electrode to CueO without an electron transfer mediator. The current density reached a value as high as 12 mA cm{sup -2} at 1 atm O{sub 2}, 25 deg. C, and 10,000 rpm on the CueO-modified electrodes. The CueO-modified mesoporous carbon cathode is quite superior to the smooth CueO cathode in the current density, electrode kinetics, pH tolerance, and thermal stability.

  17. Dehalogenation of chloroalkanes by nickel(i) porphyrin derivatives, a computational study.

    Science.gov (United States)

    Szatkowski, L; Hall, M B

    2016-11-14

    The nickel(i) octaethylisobacteriochlorin anion ([OEiBCh-Ni (I) ] - ) is commonly used as a synthetic model of cofactor F 430 from Methyl-Coenzyme M Reductase. In this regard, experimental studies show that [OEiBCh-Ni (I) ] - can catalyze dehalogenation of aliphatic halides in DMF solution by a highly efficient S N 2 reaction. To better understand this process, we constructed theoretical models of the dehalogenation of chloromethane by a simple nickel(i) isobacteriochlorin anion and compared its reactivity with that of similar Ni (I) complexes with other porphyrin-derived ligands: porphyrin, chlorin, bactreriochlorin, hexahydroporphyrin and octahydroporphyrin. Our calculations predict that all of the porphyrin derivative's model reactions proceed through low-spin complexes. Relative to the energy of the separate reactants the theoretical activation energies (free-energy barriers with solvation corrections) for the dehalogenation of chloromethane are similar for all of the porphyrin derivatives and range for the different functionals from 10-15 kcal mol -1 for B3LYP to 5-10 kcal mol -1 for M06-L and to 13-18 kcal mol -1 for ωB97X-D. The relative free energies of the products of the dehalogenation step, L-Ni-Me adducts, have a range from -5 to -40 kcal mol -1 for all functionals; generally becoming more negative with increasing saturation of the porphyrin ligand. Moreover, no significant differences in the theoretical chlorine kinetic isotope effect were discernable with change of porphyrin ligand.

  18. A Study of Picosecond Dehalogenation of Chlorobenzene Anions in Liquids of Positronium Inhibition Measurements

    DEFF Research Database (Denmark)

    Wikander, G.; Mogensen, O. E.

    1982-01-01

    on intramolecular electron transfer with subsequent dehalogenation of the molecular anion on a picosecond timescale. The divergence in inhibitor efficiency obtained for the chlorobenzenes when dissolved in aromatic solvents compared to the same solutes when dissolved in a saturated alkane appears most probably...

  19. Efficient Indium-Mediated Dehalogenation of Aromatics in Ionic Liquid Media

    Directory of Open Access Journals (Sweden)

    Flavia C. Zacconi

    2012-12-01

    Full Text Available An efficient indium-mediated dehalogenation reaction of haloaromatics and haloheteroaromatics in ionic liquids has been studied. This method is simple and effective in the presence of [bmim]Br. Furthermore, this methodology is environmentally friendly compared with conventional ones.

  20. Ligand-free, palladium-catalyzed dihydrogen generation from TMDS: dehalogenation of aryl halides on water.

    Science.gov (United States)

    Bhattacharjya, Anish; Klumphu, Piyatida; Lipshutz, Bruce H

    2015-03-06

    A mild and environmentally attractive dehalogenation of functionalized aryl halides has been developed using nanoparticles formed from PdCl2 in the presence of tetramethyldisiloxane (TMDS) on water. The active catalyst and reaction medium can be recycled. This method can also be applied to cascade reactions in a one-pot sequence.

  1. Covalent coupling via dehalogenation on Ni(111) supported boron nitride and graphene.

    Science.gov (United States)

    Morchutt, Claudius; Björk, Jonas; Krotzky, Sören; Gutzler, Rico; Kern, Klaus

    2015-02-11

    Polymerization of 1,3,5-tris(4-bromophenyl)benzene via dehalogenation on graphene and hexagonal boron nitride is investigated by scanning tunneling microscopy experiments and density functional theory calculations. This work reveals how the interactions between molecules and graphene or h-BN grown on Ni(111) govern the surface-confined synthesis of polymers through C-C coupling.

  2. Dehalogenation of Haloalkanes by Mycobacterium tuberculosis H37Rv and Other Mycobacteria

    Science.gov (United States)

    Jesenská, Andrea; Sedlác̆ek, Ivo; Damborský, Jir̆í

    2000-01-01

    Haloalkane dehalogenases convert haloalkanes to their corresponding alcohols by a hydrolytic mechanism. To date, various haloalkane dehalogenases have been isolated from bacteria colonizing environments that are contaminated with halogenated compounds. A search of current databases with the sequences of these known haloalkane dehalogenases revealed the presence of three different genes encoding putative haloalkane dehalogenases in the genome of the human parasite Mycobacterium tuberculosis H37Rv. The ability of M. tuberculosis and several other mycobacterial strains to dehalogenate haloaliphatic compounds was therefore studied. Intact cells of M. tuberculosis H37Rv were found to dehalogenate 1-chlorobutane, 1-chlorodecane, 1-bromobutane, and 1,2-dibromoethane. Nine isolates of mycobacteria from clinical material and four strains from a collection of microorganisms were found to be capable of dehalogenating 1,2-dibromoethane. Crude extracts prepared from two of these strains, Mycobacterium avium MU1 and Mycobacterium smegmatis CCM 4622, showed broad substrate specificity toward a number of halogenated substrates. Dehalogenase activity in the absence of oxygen and the identification of primary alcohols as the products of the reaction suggest a hydrolytic dehalogenation mechanism. The presence of dehalogenases in bacterial isolates from clinical material, including the species colonizing both animal tissues and free environment, indicates a possible role of parasitic microorganisms in the distribution of degradation genes in the environment. PMID:10618227

  3. Crystal Structures of Intermediates in the Dehalogenation of Haloalkanoates by L-2-Haloacid Dehalogenase

    NARCIS (Netherlands)

    Ridder, Ivo S.; Rozeboom, Henriëtte J.; Kalk, Kor H.; Dijkstra, Bauke W.

    1999-01-01

    The L-2-haloacid dehalogenase from the 1,2-dichloroethane-degrading bacterium Xanthobacter autotrophicus GJ10 catalyzes the hydrolytic dehalogenation of small L-2-haloalkanoates to their corresponding D-2-hydroxyalkanoates, with inversion of the configuration at the C2 atom. The structure of the

  4. Characterization and electrochemical properties of high tap-density LiFePO4/C cathode materials by a combination of carbothermal reduction and molten salt methods

    International Nuclear Information System (INIS)

    Fey, George Ting-Kuo; Lin, Yi-Chuan; Kao, Hsien-Ming

    2012-01-01

    Olivine-structured LiFePO 4 cathode materials were prepared via a combination of carbothermal reduction (CR) and molten salt (MS) methods. To enhance the powder's tap density, the LiFePO 4 /C composite was pressed into pellets and then sintered for at least 1 h at 1028 K in the reaction environment of KCl molten salts. The use of molten salt can effectively influence unit cell volume, morphology and tap density of particles, and consequently change the electrochemical performance of LiFePO 4 /C. The composites were characterized in detail by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), dynamic light scattering (DLS), Raman spectroscopy and tap density testing. The final product with high tap density of 1.50 g cm −3 contains 4.58 wt% carbon and exhibits good discharge capacity of 141 mAh g −1 at a 0.2 C-rate in the potential range of 2.8–4.0 V.

  5. Scanning electrochemical microscopy. 47. Imaging electrocatalytic activity for oxygen reduction in an acidic medium by the tip generation-substrate collection mode.

    Science.gov (United States)

    Fernández, José L; Bard, Allen J

    2003-07-01

    The oxygen reduction reaction (ORR) in acidic medium was studied on different electrode materials by scanning electrochemical microscopy (SECM) operating in a new variation of the tip generation-substrate collection mode. An ultramicroelectrode tip placed close to the substrate electrode oxidizes water to oxygen at a constant current. The substrate is held at a potential where the tip-generated oxygen is reduced and the resulting substrate current is measured. By changing the substrate potential, it is possible to obtain a polarization (current-potential) curve, which depends on the electrocatalytic activity of the substrate material. The main difference between this mode and the classical feedback SECM mode of operation is that the feedback diffusion process is not required for the measurement, allowing its application for studying the ORR in acidic solutions. Activity-sensitive images of heterogeneous surfaces, e.g., with Pt and Au electrodes, were obtained from the substrate current when the x-y plane was scanned with the tip. The usefulness of this technique for imaging electrocatalytic activity of smooth metallic electrodes and of highly dispersed fuel cell-type electrocatalysts was demonstrated. The application of this method to the combinatorial chemical analysis of electrode materials and electrocatalysts is discussed.

  6. Durability of template-free Fe-N-C foams for electrochemical oxygen reduction in alkaline solution

    Science.gov (United States)

    Mufundirwa, Albert; Harrington, George F.; Smid, Břetislav; Cunning, Benjamin V.; Sasaki, Kazunari; Lyth, Stephen M.

    2018-01-01

    Due to the high cost and limited availability of platinum, the development of non-platinum-group metals (non-PGM) catalysts is of paramount importance. A promising alternative to Pt are Fe-N-C-based materials. Here we present the synthesis, characterization and electrochemistry of a template-free nitrogen-doped carbon foam, impregnated with iron. This low-cost and gram-scale method results in materials with micron-scale pore size and large surface area (1600 m2g-1). When applied as an oxygen reduction reaction (ORR) electrocatalyst in alkaline solution, the Fe-N-C foams display extremely high initial activity, slightly out-performing commercially available non-PGM catalysts (NCP-2000, Pajarito Powder). The load-cycle durability in alkaline solution is investigated, and the performance steadily degrades over 60,000 potential cycles, whilst the commercial catalyst is remarkably stable. The post-operation catalyst microstructure is elucidated by transmission electron microscopy (TEM), to provide insight into the degradation processes. The resulting images suggest that potential cycling leads to leaching of atomically dispersed Fe-N2/4 sites in all the catalysts, whereas encapsulated iron nanoparticles are protected.

  7. Fe/Ni-N-CNFs electrochemical catalyst for oxygen reduction reaction/oxygen evolution reaction in alkaline media

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhuang [MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001 (China); Li, Mian [Faculty of Chemistry, Northeast Normal University, Changchun 130024 (China); Fan, Liquan; Han, Jianan [MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001 (China); Xiong, Yueping, E-mail: ypxiong@hit.edu.cn [MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2017-04-15

    Highlights: • Novel Fe/Ni-N-CNFs electrocatalysts are prepared by electrospinning technique. • The Fe1Ni1-N-CNFs catalyst exhibits the excellent ORR and OER catalytic activity. • Synergy of Fe/Ni alloy is responsible for the excellent catalytic performance. - Abstract: The novel of iron, nickel and nitrogen doped carbon nanofibers (Fe/Ni-N-CNFs) as bifunctional electrocatalysts are prepared by electrospinning technique. In alkaline media, the Fe/Ni-N-CNFs catalysts (especially for Fe1Ni1-N-CNFs) exhibit remarkable electrocatalytic performances of oxygen reduction reaction (ORR)/oxygen evolution reaction (OER). For ORR catalytic activity, Fe1Ni1-N-CNFs catalyst offers a higher onset potential of 0.903 V, a similar four-electron reaction pathway, and excellent stability. For OER catalytic activity, Fe1Ni1-N-CNFs catalyst possesses a lower onset potential of 1.528 V and a smaller charge transfer resistance of 48.14 Ω. The unparalleled catalytic activity of ORR and OER for the Fe1Ni1-N-CNFs is attributed to the 3D porous cross-linked microstructures of carbon nanofibers with Fe/Ni alloy, N dopant, and abundant M-N{sub x} and NiOOH as catalytic active sites. Thus, Fe1Ni1-N-CNFs catalyst can be acted as one of the efficient and inexpensive catalysts of metal-air batteries.

  8. Vertical distribution of dehalogenating bacteria in mangrove sediment and their potential to remove polybrominated diphenyl ether contamination.

    Science.gov (United States)

    Pan, Ying; Chen, Juan; Zhou, Haichao; Farzana, Shazia; Tam, Nora F Y

    2017-11-30

    The removal and degradation of polybrominated diphenyl ethers (PBDEs) in sediments are not clear. The vertical distribution of total and dehalogenating bacteria in sediment cores collected from a typical mangrove swamp in South China and their intrinsic degradation potential were investigated. These bacterial groups had the highest abundances in surface sediments (0-5cm). A 5-months microcosm experiment also showed that surface sediments had the highest rate to remove BDE-47 than deeper sediments (5-30cm) under anaerobic condition. The deeper sediments, being more anaerobic, had lower population of dehalogenating bacteria leading to a weaker BDE-47 removal potential than surface sediments. Stepwise multiple regression analysis indicated that Dehalococcoides spp. were the most important dehalogenating bacteria affecting the anaerobic removal of BDE-47 in mangrove sediments. This is the first study reporting that mangrove sediments harbored diverse groups of dehalogenating bacteria and had intrinsic potential to remove PBDE contamination. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Utilization of subsurface microbial electrochemical systems to elucidate the mechanisms of competition between methanogenesis and microbial iron(III)/humic acid reduction in Arctic peat soils

    Science.gov (United States)

    Friedman, E. S.; Miller, K.; Lipson, D.; Angenent, L. T.

    2012-12-01

    High-latitude peat soils are a major carbon reservoir, and there is growing concern that previously dormant carbon from this reservoir could be released to the atmosphere as a result of continued climate change. Microbial processes, such as methanogenesis and carbon dioxide production via iron(III) or humic acid reduction, are at the heart of the carbon cycle in Arctic peat soils [1]. A deeper understanding of the factors governing microbial dominance in these soils is crucial for predicting the effects of continued climate change. In previous years, we have demonstrated the viability of a potentiostatically-controlled subsurface microbial electrochemical system-based biosensor that measures microbial respiration via exocellular electron transfer [2]. This system utilizes a graphite working electrode poised at 0.1 V NHE to mimic ferric iron and humic acid compounds. Microbes that would normally utilize these compounds as electron acceptors donate electrons to the electrode instead. The resulting current is a measure of microbial respiration with the electrode and is recorded with respect to time. Here, we examine the mechanistic relationship between methanogenesis and iron(III)- or humic acid-reduction by using these same microbial-three electrode systems to provide an inexhaustible source of alternate electron acceptor to microbes in these soils. Chamber-based carbon dioxide and methane fluxes were measured from soil collars with and without microbial three-electrode systems over a period of four weeks. In addition, in some collars we simulated increased fermentation by applying acetate treatments to understand possible effects of continued climate change on microbial processes in these carbon-rich soils. The results from this work aim to increase our fundamental understanding of competition between electron acceptors, and will provide valuable data for climate modeling scenarios. 1. Lipson, D.A., et al., Reduction of iron (III) and humic substances plays a major

  10. Enhanced photocatalytic, electrochemical and photoelectrochemical properties of TiO2 nanotubes arrays modified with Cu, AgCu and Bi nanoparticles obtained via radiolytic reduction

    International Nuclear Information System (INIS)

    Nischk, Michał; Mazierski, Paweł; Wei, Zhishun; Siuzdak, Katarzyna; Kouame, Natalie Amoin; Kowalska, Ewa; Remita, Hynd; Zaleska-Medynska, Adriana

    2016-01-01

    Highlights: • TiO 2 nanotubes were modified with Cu, AgCu, Bi nanoparticles via gamma radiolysis. • Excessive amount of deposited metal decreased photocatalytic activity. • AgCu-modified samples were more active than Cu-modified (with the same Cu content). • AgCu nanoparticles exist in a core (Ag) -shell (Cu) form. • Examined photocatalysts were resistant towards photocorrosion processes. - Abstract: TiO 2 nanotubes arrays (NTs), obtained via electrochemical anodization of Ti foil, were modified with monometallic (Cu, Bi) and bimetallic (AgCu) nanoparticles. Different amounts of metals’ precursors were deposited on the surface of NTs by the spin-coating technique, and the reduction of metals was performed via gamma radiolysis. Surface modification of titania was studied by EDS and XPS analysis. The results show that AgCu nanoparticles exist in a Ag core -Cu shell form. Photocatalytic activity was examined under UV irradiation and phenol was used as a model pollutant of water. Over 95% of phenol degradation was achieved after 60 min of irradiation for almost all examined samples, but only slight difference in degradation efficiency (about 3%) between modified and bare NTs was observed. However, the initial phenol degradation rate and TOC removal efficiency was significantly enhanced for the samples modified with 0.31 and 0.63 mol% of Bi as well as for all the samples modified with Cu and AgCu nanoparticles in comparison with bare titania nanotubes. The saturated photocurrent, under the influence of simulated solar light irradiation, for the most active Bi- and AgCu-modified samples, was over two times higher than for pristine NTs. All the examined materials were resistant towards photocorrosion processes that enables their application for long term processes induced by light.

  11. Enhanced photocatalytic, electrochemical and photoelectrochemical properties of TiO{sub 2} nanotubes arrays modified with Cu, AgCu and Bi nanoparticles obtained via radiolytic reduction

    Energy Technology Data Exchange (ETDEWEB)

    Nischk, Michał [Department of Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 11/12 G. Narutowicza 11/12 St., 80-233 Gdansk (Poland); Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, 63 Wita Stwosza St., 80-308 Gdansk (Poland); Mazierski, Paweł [Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, 63 Wita Stwosza St., 80-308 Gdansk (Poland); Wei, Zhishun [Institute for Catalysis, Hokkaido University, N21, W10, 001-0021, Sapporo (Japan); Siuzdak, Katarzyna [Centre for Plasma and Laser Engineering, The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, 14 Fiszera St., 80-231 Gdansk (Poland); Kouame, Natalie Amoin [Laboratoire de Chimie Physique, CNRS—UMR 8000,Université Paris-Sud, Université Paris-Saclay, Bâtiment 349, 91405 Orsay (France); Kowalska, Ewa [Institute for Catalysis, Hokkaido University, N21, W10, 001-0021, Sapporo (Japan); Remita, Hynd [Laboratoire de Chimie Physique, CNRS—UMR 8000,Université Paris-Sud, Université Paris-Saclay, Bâtiment 349, 91405 Orsay (France); Zaleska-Medynska, Adriana, E-mail: adriana.zaleska@ug.edu.pl [Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, 63 Wita Stwosza St., 80-308 Gdansk (Poland)

    2016-11-30

    Highlights: • TiO{sub 2} nanotubes were modified with Cu, AgCu, Bi nanoparticles via gamma radiolysis. • Excessive amount of deposited metal decreased photocatalytic activity. • AgCu-modified samples were more active than Cu-modified (with the same Cu content). • AgCu nanoparticles exist in a core{sub (Ag)}-shell{sub (Cu)} form. • Examined photocatalysts were resistant towards photocorrosion processes. - Abstract: TiO{sub 2} nanotubes arrays (NTs), obtained via electrochemical anodization of Ti foil, were modified with monometallic (Cu, Bi) and bimetallic (AgCu) nanoparticles. Different amounts of metals’ precursors were deposited on the surface of NTs by the spin-coating technique, and the reduction of metals was performed via gamma radiolysis. Surface modification of titania was studied by EDS and XPS analysis. The results show that AgCu nanoparticles exist in a Ag{sub core}-Cu{sub shell} form. Photocatalytic activity was examined under UV irradiation and phenol was used as a model pollutant of water. Over 95% of phenol degradation was achieved after 60 min of irradiation for almost all examined samples, but only slight difference in degradation efficiency (about 3%) between modified and bare NTs was observed. However, the initial phenol degradation rate and TOC removal efficiency was significantly enhanced for the samples modified with 0.31 and 0.63 mol% of Bi as well as for all the samples modified with Cu and AgCu nanoparticles in comparison with bare titania nanotubes. The saturated photocurrent, under the influence of simulated solar light irradiation, for the most active Bi- and AgCu-modified samples, was over two times higher than for pristine NTs. All the examined materials were resistant towards photocorrosion processes that enables their application for long term processes induced by light.

  12. Portable Nitric Oxide (NO) Generator Based on Electrochemical Reduction of Nitrite for Potential Applications in Inhaled NO Therapy and Cardiopulmonary Bypass Surgery.

    Science.gov (United States)

    Qin, Yu; Zajda, Joanna; Brisbois, Elizabeth J; Ren, Hang; Toomasian, John M; Major, Terry C; Rojas-Pena, Alvaro; Carr, Benjamin; Johnson, Thomas; Haft, Jonathan W; Bartlett, Robert H; Hunt, Andrew P; Lehnert, Nicolai; Meyerhoff, Mark E

    2017-11-06

    A new portable gas phase nitric oxide (NO) generator is described for potential applications in inhaled NO (INO) therapy and during cardiopulmonary bypass (CPB) surgery. In this system, NO is produced at the surface of a large-area mesh working electrode by electrochemical reduction of nitrite ions in the presence of a soluble copper(II)-ligand electron transfer mediator complex. The NO generated is then transported into gas phase by either direct purging with nitrogen/air or via circulating the electrolyte/nitrite solution through a gas extraction silicone fiber-based membrane-dialyzer assembly. Gas phase NO concentrations can be tuned in the range of 5-1000 ppm (parts per million by volume for gaseous species), in proportion to a constant cathodic current applied between the working and counter electrodes. This new NO generation process has the advantages of rapid production times (5 min to steady-state), high Faraday NO production efficiency (ca. 93%), excellent stability, and very low cost when using air as the carrier gas for NO (in the membrane dialyzer configuration), enabling the development of potentially portable INO devices. In this initial work, the new system is examined for the effectiveness of gaseous NO to reduce the systemic inflammatory response (SIR) during CPB, where 500 ppm of NO added to the sweep gas of the oxygenator or to the cardiotomy suction air in a CPB system is shown to prevent activation of white blood cells (granulocytes and monocytes) during extracorporeal circulation with cardiotomy suction conducted with five pigs.

  13. Preparation of catalysts PtSb2O5.SnO2 supported on carbon and ATO using the alcohol reduction method for electrochemical oxidation of ethanol

    International Nuclear Information System (INIS)

    Ayoub, Jamil Mahmoud Said

    2013-01-01

    Pt Sn/C-ATO electrocatalysts with different Pt:Sn atomic ratios (90:10, 70:30 and 50:50) were prepared in a single step by an alcohol-reduction process using H 2 PtCl 6 .6H 2 O and SnCl 2 .2H 2 O as metal sources and ethylene glycol as solvent and reducing agent and a physical mixture of carbon Vulcan XC72 (85 wt%) and Sb 2 O 5 .SnO 2 (15 wt%) as support (C-ATO). The obtained materials were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The catalytic activity for ethanol electro-oxidation in acid medium was investigated by cyclic voltammetry and chronoamperometry and in single direct ethanol fuel cell (DEFC). XRD analyses showed that Pt(FCC), SnO 2 , carbon and ATO phases coexist in the obtained materials. The electrochemical studies showed that PtSn/C-ATO electrocatalysts were more active for ethanol electro-oxidation than PtSn/C electrocatalyst. The experiments at 100 deg C on a single DEFC showed that the power density of the cell using Pt Sn/C-ATO (90:10) was nearly 100% higher than the one obtained using Pt Sn/C (50:50). FTIR measurements showed that the addition of ATO to Pt Sn/C favors the formation of acetic acid as a product while for PtSn/C acetaldehyde was the principal product formed. (author)

  14. Selenium-Mediated Dehalogenation of Halogenated Nucleosides and its Relevance to the DNA Repair Pathway.

    Science.gov (United States)

    Mondal, Santanu; Manna, Debasish; Mugesh, Govindasamy

    2015-08-03

    Halogenated nucleosides can be incorporated into the newly synthesized DNA of replicating cells and therefore are commonly used in the detection of proliferating cells in living tissues. Dehalogenation of these modified nucleosides is one of the key pathways involved in DNA repair mediated by the uracil-DNA glycosylase. Herein, we report the first example of a selenium-mediated dehalogenation of halogenated nucleosides. We also show that the mechanism for the debromination is remarkably different from that of deiodination and that the presence of a ribose or deoxyribose moiety in the nucleosides facilitates the deiodination. The results described herein should help in understanding the metabolism of halogenated nucleosides in DNA and RNA. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Fungal Strains as Catalysts for the Biotransformation of Halolactones by Hydrolytic Dehalogenation with the Dimethylcyclohexane System

    Directory of Open Access Journals (Sweden)

    Małgorzata Grabarczyk

    2012-08-01

    Full Text Available Bicyclic chloro-, bromo- and iodo-γ-lactones with dimethylcyclohexane rings were used as substrates for bioconversion by several fungal strains (Fusarium, Botrytis and Beauveria. Most of the selected microorganisms transformed these lactones by hydrolytic dehalogenation into the new compound cis-2-hydroxy-4,6-dimethyl-9-oxabicyclo[4.3.0]- nonan-8-one, mainly the (−-isomer. When iodo-γ-lactone was used as the substrate, two products were observed: a hydroxy-γ-lactone and an unsaturated lactone. The structures of all substrates and products were established on the basis of their spectral data. The mechanism of dehalogenation of three halolactones was also studied.

  16. Rapid dehalogenation of pesticides and organics at the interface of reduced graphene oxide-silver nanocomposite.

    Science.gov (United States)

    Koushik, Dibyashree; Sen Gupta, Soujit; Maliyekkal, Shihabudheen M; Pradeep, T

    2016-05-05

    This paper reports dehalogenation of various organohalides, especially aliphatic halocarbons and pesticides at reduced graphene oxide-silver nanocomposite (RGO@Ag). Several pesticides as well as chlorinated and fluorinated alkyl halides were chosen for this purpose. The composite and the products of degradation were characterized thoroughly by means of various microscopic and spectroscopic techniques. A sequential two-step mechanism involving dehalogenation of the target pollutants by silver nanoparticles followed by adsorption of the degraded compounds onto RGO was revealed. The composite showed unusual adsorption capacity, as high as 1534 mg/g, which facilitated the complete removal of the pollutants. Irrespective of the pollutants tested, a pseudo-second-order rate equation best described the adsorption kinetics. The affinity of the composite manifested chemical differences. The high adsorption capacity and re-usability makes the composite an excellent substrate for purification of water. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Targeted radionuclide therapy with astatine-211: Oxidative dehalogenation of astatobenzoate conjugates.

    Science.gov (United States)

    Teze, David; Sergentu, Dumitru-Claudiu; Kalichuk, Valentina; Barbet, Jacques; Deniaud, David; Galland, Nicolas; Maurice, Rémi; Montavon, Gilles

    2017-05-31

    211 At is a most promising radionuclide for targeted alpha therapy. However, its limited availability and poorly known basic chemistry hamper its use. Based on the analogy with iodine, labelling is performed via astatobenzoate conjugates, but in vivo deastatination occurs, particularly when the conjugates are internalized in cells. Actually, the chemical or biological mechanism responsible for deastatination is unknown. In this work, we show that the C-At "organometalloid" bond can be cleaved by oxidative dehalogenation induced by oxidants such as permanganates, peroxides or hydroxyl radicals. Quantum mechanical calculations demonstrate that astatobenzoates are more sensitive to oxidation than iodobenzoates, and the oxidative deastatination rate is estimated to be about 6 × 10 6 faster at 37 °C than the oxidative deiodination one. Therefore, we attribute the "internal" deastatination mechanism to oxidative dehalogenation in biological compartments, in particular lysosomes.

  18. Polymer nanocomposite membranes with hierarchically structured catalysts for high throughput dehalogenation

    Science.gov (United States)

    Crock, Christopher A.

    Halogenated organics are categorized as primary pollutants by the Environmental Protection Agency. Trichloroethylene (TCE), which had broad industrial use in the past, shows persistence in the environment because of its chemical stability. The large scale use and poor control of TCE resulted in its prolonged release into the environment before the carcinogenic risk associated with TCE was fully understood. TCE pollution stemmed from industrial effluents and improper disposal of solvent waste. Membrane reactors are promising technology for treating TCE polluted groundwater because of the high throughput, relatively low cost of membrane fabrication and facile retrofitting of existing membrane based water treatment facilities with catalytic membrane reactors. Compared to catalytic fluidized or fixed bed reactors, catalytic membrane reactors feature minimal diffusional limitation. Additionally, embedding catalyst within the membrane avoids the need for catalyst recovery and can prevent aggregation of catalytic nanoparticles. In this work, Pd/xGnP, Pd-Au/xGnP, and commercial Pd/Al2O3 nanoparticles were employed in batch and flow-through membrane reactors to catalyze the dehalogenation of TCE in the presence of dissolved H2. Bimetallic Pd-Au/xGnP catalysts were shown to be more active than monometallic Pd/xGnP or commercial Pd/Al 2O3 catalysts. In addition to synthesizing nanocomposite membranes for high-throughput TCE dehalogenation, the membrane based dehalogenation process was designed to minimize the detrimental impact of common catalyst poisons (S2-, HS-, and H2S -) by concurrent oxidation of sulfide species to gypsum in the presence of Ca2+ and removal of gypsum through membrane filtration. The engineered membrane dehalogenation process demonstrated that bimetallic Pd-Au/xGnP catalysts resisted deactivation by residual sulfide species after oxidation, and showed complete removal of gypsum during membrane filtration.

  19. Quantifying the Electrocatalytic Turnover of Vitamin B12-Mediated Dehalogenation on Single Soft Nanoparticles.

    Science.gov (United States)

    Cheng, Wei; Compton, Richard G

    2016-02-12

    We report the electrocatalytic dehalogenation of trichloroethylene (TCE) by single soft nanoparticles in the form of Vitamin B12 -containing droplets. We quantify the turnover number of the catalytic reaction at the single soft nanoparticle level. The kinetic data shows that the binding of TCE with the electro-reduced vitamin in the Co(I) oxidation state is chemically reversible. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Indirect Evidence Link PCB Dehalogenation with Geobacteraceae in Anaerobic Sediment-Free Microcosms.

    Science.gov (United States)

    Praveckova, Martina; Brennerova, Maria V; Holliger, Christof; De Alencastro, Felippe; Rossi, Pierre

    2016-01-01

    Although polychlorinated biphenyls (PCBs) production was brought to a halt 30 years ago, recalcitrance to degradation makes them a major environmental pollutant at a global scale. Previous studies confirmed that organohalide-respiring bacteria (OHRB) were capable of utilizing chlorinated congeners as electron acceptor. OHRB belonging to the Phyla Chloroflexi and Firmicutes are nowadays considered as the main PCB-dechlorinating organisms. In this study, we aimed at exploring the involvement of other taxa in PCB dechlorination using sediment-free microcosms (SFMs) and the Delor PCB mixture. High rates of congener dehalogenation (up to 96%) were attained in long-term incubations of up to 692 days. Bacterial communities were dominated by Chloroflexi, Proteobacteria, and Firmicutes, among strictly simplified community structures composed of 12 major phyla only. In a first batch of SFMs, Dehalococcoides mccartyi closely affiliated with strains CG4 and CBDB1 was considered as the main actor associated with congener dehalogenation. Addition of 2-bromoethanesulfonate (BES), a known inhibitor of methanogenic activity in a second batch of SFMs had an adverse effect on the abundance of Dehalococcoides sp. Only two sequences affiliated to this Genus could be detected in two (out of six) BES-treated SFMs, contributing to a mere 0.04% of the communities. BES-treated SFMs showed very different community structures, especially in the contributions of organisms involved in fermentation and syntrophic activities. Indirect evidence provided by both statistical and phylogenetic analysis validated the implication of a new cluster of actors, distantly affiliated with the Family Geobacteraceae (Phylum δ-Proteobacteria), in the dehalogenation of low chlorinated PCB congeners. Members of this Family are known already for their dehalogenation capacity of chlorinated solvents. As a result, the present study widens the knowledge for the phylogenetic reservoir of indigenous PCB dechlorinating

  1. Kinetics and efficiency of the hydrated electron-induced dehalogenation by the sulfite/UV process.

    Science.gov (United States)

    Li, Xuchun; Fang, Jingyun; Liu, Guifang; Zhang, Shujuan; Pan, Bingcai; Ma, Jun

    2014-10-01

    Hydrated electron (e(aq)(-)), which is listed among the most reactive reducing species, has great potential for removal and detoxification of recalcitrant contaminants. Here we provided quantitative insight into the availability and conversion of e(aq)(-) in a newly developed sulfite/UV process. Using monochloroacetic acid as a simple e(aq)(-)-probe, the e(aq)(-)-induced dehalogenation kinetics in synthetic and surface water was well predicted by the developed models. The models interpreted the complex roles of pH and S(IV), and also revealed the positive effects of UV intensity and temperature quantitatively. Impacts of humic acid, ferrous ion, carbonate/bicarbonate, and surface water matrix were also examined. Despite the retardation of dehalogenation by electron scavengers, the process was effective even in surface water. Efficiency of the process was discussed, and the optimization approaches were proposed. This study is believed to better understand the e(aq)(-)-induced dehalogenation by the sulfite/UV process in a quantitative manner, which is very important for its potential application in water treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. ELECTROCHEMICAL PROPERTIES AND ELECTROCHEMICAL ...

    African Journals Online (AJOL)

    b Department of Materials Engineering and Industrial Technologies, University ... [17], transistors [18-20], photovoltaic cells [21], energy storage [22-28], protective coatings ... showed unsymmetric oxidation and reduction peaks, describing the ...

  3. Two-equivalent electrochemical reduction of a cyano-complex [TlIII(CN)2]+ and the novel di-nuclear compound [(CN)5PtII-TlIII]0

    International Nuclear Information System (INIS)

    Dolidze, Tina D.; Khoshtariya, Dimitri E.; Behm, Martin; Lindbergh, Goeran; Glaser, Julius

    2005-01-01

    Extending our recent insights in two-electron transfer microscopic mechanisms for a Tl III /Tl I redox system [D.E. Khoshtariya, et al., Inorg. Chem. 41 (2002) 1728], the electrochemical response of glassy carbon electrode in acidified solutions of Tl III (ClO 4 ) 3 containing different concentrations of sodium cyanide has been extensively studied for the first time by use of cyclic voltammetry and the CVSIM curve simulation PC program. The complex [Tl III (CN) 2 ] + has been thoroughly identified electrochemically and shown to display a single well-defined reduction wave (which has no anodic counterpart), ascribed to the two-equivalent process yielding [Tl I (aq)] + . This behavior is similar to that of [Tl III (aq)] 3+ ion in the absence of sodium cyanide, disclosed in the previous work, and is compatible with the quasi-simultaneous yet sequential two-electron transfer pattern (with two reduction waves merged in one), implying the rate-determining first electron transfer step (resulting in the formation of a covalently interacting di-thallium complex as a metastable intermediate), and the fast second electron transfer step. Some preliminary studies of the two-equivalent reduction of directly metal-metal bonded stable compound [(CN) 5 Pt II -Tl III ] 0 has been also performed displaying two reduction waves compatible with a true sequential pattern

  4. Electrochemical biosensors

    CERN Document Server

    Cosnier, Serge

    2015-01-01

    "This is an excellent book on modern electrochemical biosensors, edited by Professor Cosnier and written by leading international experts. It covers state-of-the-art topics of this important field in a clear and timely manner."-Prof. Joseph Wang, UC San Diego, USA  "This book covers, in 13 well-illustrated chapters, the potential of electrochemical methods intimately combined with a biological component for the assay of various analytes of biological and environmental interest. Particular attention is devoted to the description of electrochemical microtools in close contact with a biological cell for exocytosis monitoring and to the use of nanomaterials in the electrochemical biosensor architecture for signal improvement. Interestingly, one chapter describes the concept and design of self-powered biosensors derived from biofuel cells. Each topic is reviewed by experts very active in the field. This timely book is well suited for providing a good overview of current research trends devoted to electrochemical...

  5. Effects of size reduction on the structure and magnetic properties of core-shell Ni3Si/silica nanoparticles prepared by electrochemical synthesis

    Czech Academy of Sciences Publication Activity Database

    Pigozzi, G.; Mukherji, D.; Elerman, Y.; Strunz, Pavel; Gilles, R.; Hoelzel, M.; Barbier, B.; Schmutz, P.

    2014-01-01

    Roč. 584, JAN (2014), s. 119-127 ISSN 0925-8388 Institutional support: RVO:61389005 Keywords : intermetallics * nanostructured materials * transition metal alloys and compounds * electrochemical synthesis * crystal structure * magnetic measurements Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.999, year: 2014

  6. H2 CONSUMPTION DURING THE MICROBIAL REDUCTIVE DEHALOGENATION OF CHLORINATED PHENOLS AND TETRACHLOROETHENE

    Science.gov (United States)

    Competition for molecular hydrogen exists among hydrogen-utilizing microorganisms in anoxic environments, and evidence suggests that lower hydrogen concentrations are observed with more energetically favorable electron-accepting processes. The transfer of electrons to organochlor...

  7. PENTACHLROPHENOL REDUCTIVE DEHALOGENATION IN AN INTERCEPTOR TRENCH: TEMPERATURE EFFECTS. (R825689C016)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  8. CHLORINATED ETHENE HALF-VELOCITY COEFFICIENTS (KS) FOR REDUCTIVE DEHALOGENATION. (R825689C084)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  9. REDUCTIVE DEHALOGENATION OF A NITROGEN HETEROCYCLIC HERBICIDE IN ANOXIC AQUIFER SLURRIES

    Science.gov (United States)

    We studied the metabolic fate of bromacil in anaerobic aquifer slurries held under denitrifying, sulfate-reducing, or methanogenic conditions. Liquid chromatograhy-mass spectrometry of the slurries confirmed that bromacil was debrominated under methanogenic conditions but was not...

  10. Role of turbulent flow seawater in the corrosion enhancement of an Al–Zn–Mg alloy: an electrochemical impedance spectroscopy (EIS analysis of oxygen reduction reaction (ORR

    Directory of Open Access Journals (Sweden)

    Marcela C. Quevedo

    2018-04-01

    Full Text Available The effect of flow on the corrosion of Al–14 wt% Zn–8 wt% Mg alloy in aerated synthetic seawater at ambient temperature was studied using a rotating cylinder electrode (RCE under turbulent regime conditions by means of electrochemical impedance spectroscopy (EIS. The overall electrochemical corrosion process was found to be strongly influenced by the oxygen mass transfer process under turbulent flow conditions on the cathodic kinetics, driving to a significant increase in corrosion rate.At corrosion potential, Ecorr value, contributions from the anodic and cathodic processes involved were observed in the impedance diagrams. Instead, at a cathodic potential of −1.2 V (sce, impedance measurements proved the predominance of the mass-transfer process for oxygen. A primary analysis of the impedance plots allowed to confirm such situation. Keywords: Aluminum alloy, Corrosion, EIS, Flow, Oxygen, Mass transfer, Rotating cylinder electrode, Seawater

  11. The Suzuki-Miyaura Cross-Coupling Reaction of Halogenated Aminopyrazoles: Method Development, Scope, and Mechanism of Dehalogenation Side Reaction.

    Science.gov (United States)

    Jedinák, Lukáš; Zátopková, Renáta; Zemánková, Hana; Šustková, Alena; Cankař, Petr

    2017-01-06

    The efficient Suzuki-Miyaura cross-coupling reaction of halogenated aminopyrazoles and their amides or ureas with a range of aryl, heteroaryl, and styryl boronic acids or esters has been developed. The method allowed incorporation of problematic substrates: aminopyrazoles bearing protected or unprotected pyrazole NH, as well as the free amino or N-amide group. Direct comparison of the chloro, bromo, and iodopyrazoles in the Suzuki-Miyaura reaction revealed that Br and Cl derivatives were superior to iodopyrazoles, as a result of reduced propensity to dehalogenation. Moreover, the mechanism and factors affecting the undesired dehalogenation side reaction were revealed.

  12. Electrochemical Processes

    DEFF Research Database (Denmark)

    Bech-Nielsen, Gregers

    1997-01-01

    The notes describe in detail primary and secondary galvanic cells, fuel cells, electrochemical synthesis and electroplating processes, corrosion: measurments, inhibitors, cathodic and anodic protection, details of metal dissolution reactions, Pourbaix diagrams and purification of waste water from...

  13. Singlet versus Triplet Excited State Mediated Photoinduced Dehalogenation Reactions of Itraconazole in Acetonitrile and Aqueous Solutions.

    Science.gov (United States)

    Zhu, Ruixue; Li, Ming-de; Du, Lili; Phillips, David Lee

    2017-04-06

    Photoinduced dehalogenation of the antifungal drug itraconazole (ITR) in acetonitrile (ACN) and ACN/water mixed solutions was investigated using femtosecond and nanosecond time-resolved transient absorption (fs-TA and ns-TA, respectively) and nanosecond time-resolved resonance Raman spectroscopy (ns-TR 3 ) experiments. An excited resonance energy transfer is found to take place from the 4-phenyl-4,5-dihydro-3H-1,2,4-triazol-3-one part of the molecule to the 1,3-dichlorobenzene part of the molecule when ITR is excited by ultraviolet light. This photoexcitation is followed by a fast carbon-halogen bond cleavage that leads to the generation of radical intermediates via either triplet and/or singlet excited states. It is found that the singlet excited state-mediated carbon-halogen cleavage is the predominant dehalogenation process in ACN solvent, whereas a triplet state-mediated carbon-halogen cleavage prefers to occur in the ACN/water mixed solutions. The singlet-to-triplet energy gap is decreased in the ACN/water mixed solvents and this helps facilitate an intersystem crossing process, and thus, the carbon-halogen bond cleavage happens mostly through an excited triplet state in the aqueous solutions examined. The ns-TA and ns-TR 3 results also provide some evidence that radical intermediates are generated through a homolytic carbon-halogen bond cleavage via predominantly the singlet excited state pathway in ACN but via mainly the triplet state pathway in the aqueous solutions. In strong acidic solutions, protonation at the oxygen and/or nitrogen atoms of the 1,2,4-triazole-3-one group appears to hinder the dehalogenation reactions. This may offer the possibility that the phototoxicity of ITR due to the generation of aryl or halogen radicals can be reduced by protonation of certain moieties in suitably designed ITR halogen-containing derivatives.

  14. A Novel Cathode Material for Cathodic Dehalogenation of 1,1-Dibromo Cyclopropane Derivatives.

    Science.gov (United States)

    Gütz, Christoph; Selt, Maximilian; Bänziger, Markus; Bucher, Christoph; Römelt, Christina; Hecken, Nadine; Gallou, Fabrice; Galvão, Tomás R; Waldvogel, Siegfried R

    2015-09-28

    Leaded bronze turned out to be an excellent cathode material for the dehalogenation reaction of cyclopropanes without affecting the strained molecular entity. With this particular alloy, beneficial properties of lead cathodes are conserved, whereas the corrosion of cathode is efficiently suppressed. The solvent in the electrolyte determines whether a complete debromination reaction is achieved or if the process can be selectively stopped at the monobromo cyclopropane intermediate. The electroorganic conversion tolerates a variety of functional groups and can be conducted at rather complex substrates like cyclosporine A. This approach allows the sustainable preparation of cyclopropane derivatives. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Genomic and Transcriptomic Analysis of Growth-Supporting Dehalogenation of Chlorinated Methanes in Methylobacterium

    Directory of Open Access Journals (Sweden)

    Pauline Chaignaud

    2017-09-01

    Full Text Available Bacterial adaptation to growth with toxic halogenated chemicals was explored in the context of methylotrophic metabolism of Methylobacterium extorquens, by comparing strains CM4 and DM4, which show robust growth with chloromethane and dichloromethane, respectively. Dehalogenation of chlorinated methanes initiates growth-supporting degradation, with intracellular release of protons and chloride ions in both cases. The core, variable and strain-specific genomes of strains CM4 and DM4 were defined by comparison with genomes of non-dechlorinating strains. In terms of gene content, adaptation toward dehalogenation appears limited, strains CM4 and DM4 sharing between 75 and 85% of their genome with other strains of M. extorquens. Transcript abundance in cultures of strain CM4 grown with chloromethane and of strain DM4 grown with dichloromethane was compared to growth with methanol as a reference C1 growth substrate. Previously identified strain-specific dehalogenase-encoding genes were the most transcribed with chlorinated methanes, alongside other genes encoded by genomic islands (GEIs and plasmids involved in growth with chlorinated compounds as carbon and energy source. None of the 163 genes shared by strains CM4 and DM4 but not by other strains of M. extorquens showed higher transcript abundance in cells grown with chlorinated methanes. Among the several thousand genes of the M. extorquens core genome, 12 genes were only differentially abundant in either strain CM4 or strain DM4. Of these, 2 genes of known function were detected, for the membrane-bound proton translocating pyrophosphatase HppA and the housekeeping molecular chaperone protein DegP. This indicates that the adaptive response common to chloromethane and dichloromethane is limited at the transcriptional level, and involves aspects of the general stress response as well as of a dehalogenation-specific response to intracellular hydrochloric acid production. Core genes only differentially

  16. Electrochemical destruction of nitrosamines

    Energy Technology Data Exchange (ETDEWEB)

    Lejen, T; Volchek, K; Ladanowski, C; Velicogna, D; Whittaker, H [Environment Canada, Ottawa, ON (Canada). Emergencies Engineering Div.

    1996-09-01

    Treatment conditions for the electrolytic destruction of nitrosamines were studied. The joint investigation between Canada and the Ukraine was part of an assessment of hazardous contaminants at former Soviet ICBM missile sites. The electrochemical destruction of N-dimethylnitrosamines (NDMA) on carbon/platinum electrodes was studied under basic and acidic conditions by UV spectroscopy, gas chromatography, mass spectroscopy, and colorimetry. Experiments with a 100 ppm NDMA solution showed that electrolytic-reduction was pH sensitive within a range of pH 0.5 to 4.0. Electrolysis was effective for the reduction of NDMA in strong acidic conditions. 30 refs., 1 tab., 4 figs.

  17. Dehalogenation, degradation and mineralization of diuron by peroxone (peroxide/ozone) treatment.

    Science.gov (United States)

    Catalkaya, Ebru Cokay; Kargi, Fikret

    2009-05-01

    Removal of diuron from aqueous solution by peroxone (hydrogen peroxide/ozone) oxidation was investigated using Box-Behnken statistical experiment design and the response surface methodology (RSM). Effects of diuron, H(2)O(2) concentrations and initial pH on the extent of diuron, total organic carbon (TOC) and adsorbable organic halogen (AOX) removals were investigated. Ozone dose was kept constant at 45 mg min(-1). Optimum reagent doses yielding the highest diuron, TOC and AOX removals were also determined. Hydrogen peroxide dose and pH were the most effective parameters for pesticide removal while hydrogen peroxide dose had the most significant effect on AOX removal (dehalogenation). All parameters affected mineralization (TOC removal) of diuron. Nearly complete removal of diuron was achieved within 5 minutes, while complete mineralization and dehalogenation were not achieved even within 60 minutes at high diuron doses indicating formation of some intermediate products. The optimal H(2)O(2)/pH/diuron ratio resulting in the maximum pesticide (100%), TOC (82%) and AOX (95%) removal was found to be 340/8/10.

  18. Benzoate-driven dehalogenation of chlorinated ethenes in microbial cultures from a contaminated aquifer

    Energy Technology Data Exchange (ETDEWEB)

    Bunge, M.; Kleikemper, J.; Miniaci, C.; Duc, L.; Muusse, M.G.; Zeyer, J. [Swiss Federal Institute of Technology (ETH), Zurich (Switzerland). Inst. of Biogeochemistry and Pollutant Dynamics, Soil Biology; Hause, G. [Halle-Wittenberg Univ., Halle (Germany). Biocenter

    2007-10-15

    Microbial dehalogenation of tetrachloroethene (PCE) and cis-dichloroethene (cis-DCE) was studied in cultures from a continuous stirred tank reactor initially inoculated with aquifer material from a PCE-contaminated site. Cultures amended with hydrogen and acetate readily dechlorinated PCE and cis-DCE; however, this transformation was incomplete and resulted in the accumulation of chlorinated intermediates and only small amounts of ethene within 60 days of incubation. Conversely, microbial PCE and cis-DCE dechlorination in cultures with benzoate and acetate resulted in the complete transformation to ethene within 30 days. Community fingerprinting by denaturing gradient gel electrophoresis (DGGE) revealed the predominance of phylotypes closely affiliated with Desulfitobacterium, Dehalococcoides, and Syntrophus species. The Dehalococcoides culture VZ, obtained from small whitish colonies in cis-DCE dechlorinating agarose cultures, revealed an irregular cell diameter between 200 and 500 nm, and a spherical or biconcave disk-shaped morphology. These organisms were identified as responsible for the dechlorination of cis-DCE to ethene in the PCE-dechlorinating consortia, operating together with the Desulfitobacterium as PCE-to-cis-DCE dehalogenating bacterium and with a Syntrophus species as potential hydrogen-producing partner in cultures with benzoate. (orig.)

  19. Insights into the molecular mechanism of dehalogenation catalyzed by D-2-haloacid dehalogenase from crystal structures.

    Science.gov (United States)

    Wang, Yayue; Feng, Yanbin; Cao, Xupeng; Liu, Yinghui; Xue, Song

    2018-01-23

    D-2-haloacid dehalogenases (D-DEXs) catalyse the hydrolytic dehalogenation of D-2-haloacids, releasing halide ions and producing the corresponding 2-hydroxyacids. A structure-guided elucidation of the catalytic mechanism of this dehalogenation reaction has not been reported yet. Here, we report the catalytic mechanism of a D-DEX, HadD AJ1 from Pseudomonas putida AJ1/23, which was elucidated by X-ray crystallographic analysis and the H 2 18 O incorporation experiment. HadD AJ1 is an α-helical hydrolase that forms a homotetramer with its monomer including two structurally axisymmetric repeats. The product-bound complex structure was trapped with L-lactic acid in the active site, which is framed by the structurally related helices between two repeats. Site-directed mutagenesis confirmed the importance of the residues lining the binding pocket in stabilizing the enzyme-substrate complex. Asp205 acts as a key catalytic residue and is responsible for activating a water molecule along with Asn131. Then, the hydroxyl group of the water molecule directly attacks the C2 atom of the substrate to release the halogen ion instead of forming an enzyme-substrate ester intermediate as observed in L-2-haloacid dehalogenases. The newly revealed structural and mechanistic information on D-DEX may inspire structure-based mutagenesis to engineer highly efficient haloacid dehalogenases.

  20. Identification of a multi-protein reductive dehalogenase complex in Dehalococcoides mccartyi strain CBDB1 suggests a protein-dependent respiratory electron transport chain obviating quinone involvement

    DEFF Research Database (Denmark)

    Kublik, Anja; Deobald, Darja; Hartwig, Stefanie

    2016-01-01

    electrophoresis (BN-PAGE), gel filtration and ultrafiltration an active dehalogenating protein complex with a molecular mass of 250–270 kDa was identified. The active subunit of reductive dehalogenase (RdhA) colocalised with a complex iron-sulfur molybdoenzyme (CISM) subunit (CbdbA195) and an iron-sulfur cluster...... of the dehalogenating complex prior to membrane solubilisation. Taken together, the identification of the respiratory dehalogenase protein complex and the absence of indications for quinone participation in the respiration suggest a quinone-independent protein-based respiratory electron transfer chain in D. mccartyi....

  1. Covalent attachment of pyridine-type molecules to glassy carbon surfaces by electrochemical reduction of in situ generated diazonium salts. Formation of ruthenium complexes on ligand-modified surfaces

    International Nuclear Information System (INIS)

    Yesildag, Ali; Ekinci, Duygu

    2010-01-01

    In this study, pyridine, quinoline and phenanthroline molecules were covalently bonded to glassy carbon (GC) electrode surfaces for the first time using the diazonium modification method. Then, the complexation ability of the modified films with ruthenium metal cations was investigated. The derivatization of GC surfaces with heteroaromatic molecules was achieved by electrochemical reduction of the corresponding in situ generated diazonium salts. X-ray photoelectron spectroscopy (XPS) was used to confirm the attachment of heteroaromatic molecules to the GC surfaces and to determine the surface concentration of the films. The barrier properties of the modified GC electrodes were studied in the presence of redox probes such as Fe(CN) 6 3- and Ru(NH 3 ) 6 3+ by cyclic voltammetry. Additionally, the presence of the resulting organometallic films on the surfaces was verified by XPS after the chemical transformation of the characterized ligand films to the ruthenium complex films. The electrochemical behavior of these films in acetonitrile solution was investigated using voltammetric methods, and the surface coverage of the organometallic films was determined from the reversible metal-based Ru(II)/Ru(III) oxidation waves.

  2. Covalent attachment of pyridine-type molecules to glassy carbon surfaces by electrochemical reduction of in situ generated diazonium salts. Formation of ruthenium complexes on ligand-modified surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Yesildag, Ali [Department of Chemistry, Faculty of Sciences, Atatuerk University, 25240 Erzurum (Turkey); Ekinci, Duygu, E-mail: dekin@atauni.edu.t [Department of Chemistry, Faculty of Sciences, Atatuerk University, 25240 Erzurum (Turkey)

    2010-09-30

    In this study, pyridine, quinoline and phenanthroline molecules were covalently bonded to glassy carbon (GC) electrode surfaces for the first time using the diazonium modification method. Then, the complexation ability of the modified films with ruthenium metal cations was investigated. The derivatization of GC surfaces with heteroaromatic molecules was achieved by electrochemical reduction of the corresponding in situ generated diazonium salts. X-ray photoelectron spectroscopy (XPS) was used to confirm the attachment of heteroaromatic molecules to the GC surfaces and to determine the surface concentration of the films. The barrier properties of the modified GC electrodes were studied in the presence of redox probes such as Fe(CN){sub 6}{sup 3-} and Ru(NH{sub 3}){sub 6}{sup 3+} by cyclic voltammetry. Additionally, the presence of the resulting organometallic films on the surfaces was verified by XPS after the chemical transformation of the characterized ligand films to the ruthenium complex films. The electrochemical behavior of these films in acetonitrile solution was investigated using voltammetric methods, and the surface coverage of the organometallic films was determined from the reversible metal-based Ru(II)/Ru(III) oxidation waves.

  3. Electrochemical capacitor

    Science.gov (United States)

    Anderson, Marc A.; Liu, Kuo -Chuan; Mohr, Charles M.

    1999-10-05

    An inexpensive porous metal oxide material having high surface area, good conductivity and high specific capacitance is advantageously used in an electrochemical capacitor. The materials are formed in a sol-gel process which affords control over the properties of the resultant metal oxide materials.

  4. Electrochemical construction

    Science.gov (United States)

    Einstein, Harry; Grimes, Patrick G.

    1983-08-23

    An electrochemical cell construction features a novel co-extruded plastic electrode in an interleaved construction with a novel integral separator-spacer. Also featured is a leak and impact resistant construction for preventing the spill of corrosive materials in the event of rupture.

  5. Electrochemical device

    Science.gov (United States)

    Grimes, Patrick G.; Einstein, Harry; Bellows, Richard J.

    1988-01-12

    A tunnel protected electrochemical device features channels fluidically communicating between manifold, tunnels and cells. The channels are designed to provide the most efficient use of auxiliary power. The channels have a greater hydraulic pressure drop and electrical resistance than the manifold. This will provide a design with the optimum auxiliary energy requirements.

  6. Electrochemical Cell

    DEFF Research Database (Denmark)

    1999-01-01

    The invention relates to a rechargeable electrochemical cell comprising a negative electrode, an electrolyte and a positive electrode in which the positive electrode structure comprises a lithium cobalt manganese oxide of the composition Li¿2?Co¿y?Mn¿2-y?O¿4? where 0 ... for capacity losses in lithium ion cells and lithium-alloy cells....

  7. Effect of heterogeneity on enhanced reductive dechlorination: Analysis of remediation efficiency and groundwater acidification

    Science.gov (United States)

    Brovelli, A.; Lacroix, E.; Robinson, C. E.; Gerhard, J.; Holliger, C.; Barry, D. A.

    2011-12-01

    Enhanced reductive dehalogenation is an attractive in situ treatment technology for chlorinated contaminants. The process includes two acid-forming microbial reactions: fermentation of an organic substrate resulting in short-chain fatty acids, and dehalogenation resulting in hydrochloric acid. The accumulation of acids and the resulting drop of groundwater pH are controlled by the mass and distribution of chlorinated solvents in the source zone, type of electron donor, alternative terminal electron acceptors available and presence of soil mineral phases able to buffer the pH (such as carbonates). Groundwater acidification may reduce or halt microbial activity, and thus dehalogenation, significantly increasing the time and costs required to remediate the aquifer. In previous work a detailed geochemical and groundwater flow simulator able to model the fermentation-dechlorination reactions and associated pH change was developed. The model accounts for the main processes influencing microbial activity and groundwater pH, including the groundwater composition, the electron donor used and soil mineral phase interactions. In this study, the model was applied to investigate how spatial variability occurring at the field scale affects dechlorination rates, groundwater pH and ultimately the remediation efficiency. Numerical simulations were conducted to examine the influence of heterogeneous hydraulic conductivity on the distribution of the injected, fermentable substrate and on the accumulation/dilution of the acidic products of reductive dehalogenation. The influence of the geometry of the DNAPL source zone was studied, as well as the spatial distribution of soil minerals. The results of this study showed that the heterogeneous distribution of the soil properties have a potentially large effect on the remediation efficiency. For examples, zones of high hydraulic conductivity can prevent the accumulation of acids and alleviate the problem of groundwater acidification. The

  8. Oxygen Vacancies and Stacking Faults Introduced by Low-Temperature Reduction Improve the Electrochemical Properties of Li2MnO3 Nanobelts as Lithium-Ion Battery Cathodes.

    Science.gov (United States)

    Sun, Ya; Cong, Hengjiang; Zan, Ling; Zhang, Youxiang

    2017-11-08

    Among the Li-rich layered oxides Li 2 MnO 3 has significant theoretical capacity as a cathode material for Li-ion batteries. Pristine Li 2 MnO 3 generally has to be electrochemically activated in the first charge-discharge cycle which causes very low Coulombic efficiency and thus deteriorates its electrochemical properties. In this work, we show that low-temperature reduction can produce a large amount of structural defects such as oxygen vacancies, stacking faults, and orthorhombic LiMnO 2 in Li 2 MnO 3 . The Rietveld refinement analysis shows that, after a reduction reaction with stearic acid at 340 °C for 8 h, pristine Li 2 MnO 3 changes into a Li 2 MnO 3 -LiMnO 2 (0.71/0.29) composite, and the monoclinic Li 2 MnO 3 changes from Li 2.04 Mn 0.96 O 3 in the pristine Li 2 MnO 3 (P-Li 2 MnO 3 ) to Li 2.1 Mn 0.9 O 2.79 in the reduced Li 2 MnO 3 (R-Li 2 MnO 3 ), indicating the production of a large amount of oxygen vacancies in the R-Li 2 MnO 3 . High-resolution transmission electron microscope images show that a high density of stacking faults is also introduced by the low-temperature reduction. When measured as a cathode material for Li-ion batteries, R-Li 2 MnO 3 shows much better electrochemical properties than P-Li 2 MnO 3 . For example, when charged-discharged galvanostatically at 20 mA·g -1 in a voltage window of 2.0-4.8 V, R-Li 2 MnO 3 has Coulombic efficiency of 77.1% in the first charge-discharge cycle, with discharge capacities of 213.8 and 200.5 mA·h·g -1 in the 20th and 30th cycles, respectively. In contrast, under the same charge-discharge conditions, P-Li 2 MnO 3 has Coulombic efficiency of 33.6% in the first charge-discharge cycle, with small discharge capacities of 80.5 and 69.8 mA·h·g -1 in the 20th and 30th cycles, respectively. These materials characterizations, and electrochemical measurements show that low-temperature reduction is one of the effective ways to enhance the performances of Li 2 MnO 3 as a cathode material for Li-ion batteries.

  9. Pollution by s-triazine herbicides on waters. Electrochemical study on the simazine and propazone reductive deactivation; Contaminacion de aguas por herbicidas s-triazinicos. Estudio electroquimico de la desactivacion reductiva de simazina y propazina

    Energy Technology Data Exchange (ETDEWEB)

    Marin Galvin, R.; Rodriguez Mellado, J. M.; Higuera, M. J. [Universidad de Cordoba (Spain); Ruiz Montoya, M. [Universidad de Huelva (Spain)

    2000-07-01

    The s-Triazine herbicides are actually very used in the world's agricultural practices. Due to this they are widely found in soils and waters. In this sense, these herbicides can be deactivated by photooxidative way in that aquatic environments well sun-lighted and oxygenated. This paper deals on a electrochemical study al laboratory-scale on the reduction of simazine and propazine on mercury electrodes. According results, the global processes is irreversible and it is carried out at potentials of -1.000 mV and solutions with pH<4,0. The products then obtained are non aromatic and non chlorinated and must be reasonably of a lower toxicity than that of the primitive herbicides. The above implies that this reductive way could be applied to detoxify wastewaters herbicide-polluted by using another electrodes different of that mercury. On the other hand, the natural deactivation of natural waters containing simazine and propazine could theoretically act by this reductive way in acids, very poor oxygenated and rich in suspended materials waters (specially, carbonaceous). (Author) 23 refs.

  10. Electrochemical reduction of graphited materials in LiClO{sub 4}-EC and LiClO{sub 4}-PC media: characterization of interface products by transmission electron microscopy; Reduction electrochimique de materiaux graphites en milieux LiCIO{sub 4}-EC et LiCIO{sub 4}-PC: caracterisation des produits d`interface par microscopie electronique a transmission

    Energy Technology Data Exchange (ETDEWEB)

    Billaud, D.; Naji, A.; Ghanbaja, J. [Universite Henri Poincare Nancy, 54 - Vandoeuvre-les-Nancy (France); Willmann, P. [Centre National d`Etudes Spatiales (CNES), 31 - Toulouse (France)

    1996-12-31

    The electrochemical intercalation of non-solvated lithium in different graphited materials has been performed in LiClO{sub 4}-ethylene carbonate (EC) medium. The irreversible capacity observed during the first output is mainly due to the formation of a passivation layer made of electrolyte reduction products. These products have been characterized for different electrode reduction potentials using transmission electron microscopy (image, diffraction) and electron energy loss spectroscopy (EELS). EC reduction on the electrode surface in presence of LiClO{sub 4} leads to the formation of Li{sub 2}CO{sub 3} for potentials close to 0.8 V vs Li{sup +}/Li. For lower potentials, the electrolyte reduction reaction goes on with the formation of different lithium alkyl-carbonates. In LiClO{sub 4}-propylene carbonate (PC) medium, the interface phenomena are different. The reduction of a graphite electrode is characterized by the exfoliation phenomenon which hinders lithium intercalation. On the contrary, the formation of the passivation layer by graphite reduction in LiClO{sub 4}-EC medium allows the cycling of the electrode in the LiClO{sub 4}-PC electrolyte. In this case, the irreversible capacity observed during the first output depends on the experimental conditions of formation of the passivation layer. Abstract only. (J.S.)

  11. Electrochemical reduction of graphited materials in LiClO{sub 4}-EC and LiClO{sub 4}-PC media: characterization of interface products by transmission electron microscopy; Reduction electrochimique de materiaux graphites en milieux LiCIO{sub 4}-EC et LiCIO{sub 4}-PC: caracterisation des produits d`interface par microscopie electronique a transmission

    Energy Technology Data Exchange (ETDEWEB)

    Billaud, D; Naji, A; Ghanbaja, J [Universite Henri Poincare Nancy, 54 - Vandoeuvre-les-Nancy (France); Willmann, P [Centre National d` Etudes Spatiales (CNES), 31 - Toulouse (France)

    1997-12-31

    The electrochemical intercalation of non-solvated lithium in different graphited materials has been performed in LiClO{sub 4}-ethylene carbonate (EC) medium. The irreversible capacity observed during the first output is mainly due to the formation of a passivation layer made of electrolyte reduction products. These products have been characterized for different electrode reduction potentials using transmission electron microscopy (image, diffraction) and electron energy loss spectroscopy (EELS). EC reduction on the electrode surface in presence of LiClO{sub 4} leads to the formation of Li{sub 2}CO{sub 3} for potentials close to 0.8 V vs Li{sup +}/Li. For lower potentials, the electrolyte reduction reaction goes on with the formation of different lithium alkyl-carbonates. In LiClO{sub 4}-propylene carbonate (PC) medium, the interface phenomena are different. The reduction of a graphite electrode is characterized by the exfoliation phenomenon which hinders lithium intercalation. On the contrary, the formation of the passivation layer by graphite reduction in LiClO{sub 4}-EC medium allows the cycling of the electrode in the LiClO{sub 4}-PC electrolyte. In this case, the irreversible capacity observed during the first output depends on the experimental conditions of formation of the passivation layer. Abstract only. (J.S.)

  12. Structure and electrochemical performances of LiFe{sub 1−2x}Ti{sub x}PO{sub 4}/C cathode doped with high valence Ti{sup 4+} by carbothermal reduction method

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Chang-ling, E-mail: clfanhd@yahoo.com.cn [College of Materials Science and Engineering, Hunan University, Changsha 410082 (China); Han, Shao-chang [College of Materials Science and Engineering, Hunan University, Changsha 410082 (China); Li, Ling-fang [College of Materials Science and Engineering, Hunan University, Changsha 410082 (China); College of Mechanical Engineering, Hunan University of Art and Science, Changde 415000 (China); Bai, Yong-mei [Equipment Manufacturing College, Hebei University of Engineering, Handan 056038 (China); Zhang, Ke-he; Chen, Jin; Zhang, Xiang [College of Materials Science and Engineering, Hunan University, Changsha 410082 (China)

    2013-11-05

    Highlights: •LiFePO{sub 4}/C and LiFe{sub 1−2x}Ti{sub x}PO{sub 4}/C are prepared by carbothermal reduction method. •Phenol–formaldehyde resin is used as reducing agent and carbon source. •Mechanism of carbothermal reduction reaction is presented on the basis of TG–DSC. •The electrochemical performances of samples are systematically investigated. -- Abstract: LiFePO{sub 4}/C (LFPC) and LiFe{sub 1−2x}Ti{sub x}PO{sub 4}/C (LFTPC) were prepared by carbothermal reduction method using FePO{sub 4}·2H{sub 2}O as iron source and phenol–formaldehyde resin as reducing agent and carbon source. Different ratios of TiO{sub 2} (IV) with high valence and small radius were applied to dope LiFePO{sub 4} to enhance its electrochemical performances. Results show that LFPC and LFTPC are synthesized successfully by carbothermal reduction method. The optimal carbon content in LFPC is 5 wt.% and its discharge capacity at 0.1 C is 150.8 mA h g{sup −1}. The crystallite structure of LFTPC becomes stable. They possess the smaller particle size compared with LiFePO{sub 4}. LFTPC-2 possesses the best C-rate and cycle performances among all the samples. Its discharge capacities at 0.1 C, 1 C and 3 C are 132.7 mA h g{sup −1}, 98.7 mA h g{sup −1} and 83.1 mA h g{sup −1}. The discharge curve can maintain its stable and flat platform of 3.3 V at 3 C. The electronic conductivity of LFTPC, which is coated with carbon and doped with Ti, can reach ∼10{sup −4} S cm{sup −1}. The charge transfer resistance of LFTPC-2 is 33.68 Ω, which is much lower than that of other samples.

  13. Substrate-Mediated C-C and C-H Coupling after Dehalogenation.

    Science.gov (United States)

    Kong, Huihui; Yang, Sha; Gao, Hongying; Timmer, Alexander; Hill, Jonathan P; Díaz Arado, Oscar; Mönig, Harry; Huang, Xinyan; Tang, Qin; Ji, Qingmin; Liu, Wei; Fuchs, Harald

    2017-03-15

    Intermolecular C-C coupling after cleavage of C-X (mostly, X = Br or I) bonds has been extensively studied for facilitating the synthesis of polymeric nanostructures. However, the accidental appearance of C-H coupling at the terminal carbon atoms would limit the successive extension of covalent polymers. To our knowledge, the selective C-H coupling after dehalogenation has not so far been reported, which may illuminate another interesting field of chemical synthesis on surfaces besides in situ fabrication of polymers, i.e., synthesis of novel organic molecules. By combining STM imaging, XPS analysis, and DFT calculations, we have achieved predominant C-C coupling on Au(111) and more interestingly selective C-H coupling on Ag(111), which in turn leads to selective synthesis of polymeric chains or new organic molecules.

  14. 57Fe-Mössbauer spectroscopy and electrochemical activities of graphitic layer encapsulated iron electrocatalysts for the oxygen reduction reaction

    DEFF Research Database (Denmark)

    Zhong, Lijie; Frandsen, Cathrine; Mørup, Steen

    2018-01-01

    Graphitic layer encapsulated iron based nanoparticles (G@FeNPs) have recently been disclosed as an interesting type of highly active electrocatalysts for the oxygen reduction reaction (ORR). However, the complex composition of the metal-containing components and their contributions in catalysis r...

  15. Electrochemical behavior for a reduction of uranium oxide in a LiCl-Li2O molten salt with an integrated cathode assembly

    International Nuclear Information System (INIS)

    Park, Sung Bin; Park, Byung Heung; Seo, Chung Seok; Jung, Ki Jung; Park, Seong Won

    2005-01-01

    Electrolytic reduction of uranium oxide to uranium metal was studied in a LiCl-Li 2 O molten salt system. The reduction mechanism of the uranium oxide to a uranium metal has been studied by means of a cyclic voltammetry. Effects of the layer thickness of the uranium oxide and the thickness of the MgO on the overpotential of the cathode and the anode were investigated by means of a chronopotentiometry. From the cyclic voltamograms, the decomposition potentials of the metal oxides are the determining factors for the mechanism of the reduction of the uranium oxide in a Li Cl-3 wt% Li 2 O molten salt and the two mechanisms of the electrolytic reduction were considered with regards to the applied cathode potential. In the chronopotentiograms, the exchange current and the transfer coefficient based on the Tafel behavior were obtained with regard to the layer thickness of the uranium oxide which is loaded into the porous MgO membrane and the thickness of the porous MgO membrane. The maximum allowable currents for the changes of the layer thickness of the uranium oxide and the thickness of the MgO membrane were also obtained from the limiting potential which is the decomposition potential of LiCl

  16. Chromatographic resolution of closely related species in pharmaceutical chemistry: dehalogenation impurities and mixtures of halogen isomers.

    Science.gov (United States)

    Regalado, Erik L; Zhuang, Ping; Chen, Yadan; Makarov, Alexey A; Schafer, Wes A; McGachy, Neil; Welch, Christopher J

    2014-01-07

    In recent years, the use of halogen-containing molecules has proliferated in the pharmaceutical industry, where the incorporation of halogens, especially fluorine, has become vitally important for blocking metabolism and enhancing the biological activity of pharmaceuticals. The chromatographic separation of halogen-containing pharmaceuticals from associated isomers or dehalogenation impurities can sometimes be quite difficult. In an attempt to identify the best current tools available for addressing this important problem, a survey of the suitability of four chromatographic method development platforms (ultra high-performance liquid chromatography (UHPLC), core shell HPLC, achiral supercritical fluid chromatography (SFC) and chiral SFC) for separating closely related mixtures of halogen-containing pharmaceuticals and their dehalogenated isosteres is described. Of the 132 column and mobile phase combinations examined for each mixture, a small subset of conditions were found to afford the best overall performance, with a single UHPLC method (2.1 × 50 mm, 1.9 μm Hypersil Gold PFP, acetonitrile/methanol based aqueous eluents containing either phosphoric or perchloric acid with 150 mM sodium perchlorate) affording excellent separation for all samples. Similarly, a survey of several families of closely related halogen-containing small molecules representing the diversity of impurities that can sometimes be found in purchased starting materials for synthesis revealed chiral SFC (Chiralcel OJ-3 and Chiralpak IB, isopropanol or ethanol with 25 mM isobutylamine/carbon dioxide) as well as the UHPLC (2.1 × 50 mm, 1.8 μm ZORBAX RRHD Eclipse Plus C18 and the Gold PFP, acetonitrile/methanol based aqueous eluents containing phosphoric acid) as preferred methods.

  17. Electrochemical reduction of phthalide at carbon cathodes in dimethylformamide: Effects of supporting electrolyte and gas chromatographic injector-port chemistry on the product distribution

    International Nuclear Information System (INIS)

    Pasciak, Erick M.; Hochstetler, Spencer E.; Mubarak, Mohammad S.; Evans, Dennis H.; Peters, Dennis G.

    2013-01-01

    Highlights: • Reduction of phthalide gives a radical-anion that undergoes ring-opening in 3.5 s. • Phthalide reduction gives 2-methylbenzoate esters with electrolyte-derived moieties. • Electrolysis of phthalide affords products that depend on the method of analysis. • Upon reduction, phthalide undergoes deuteration in the presence of deuterium oxide. -- Abstract: Cyclic voltammetry and controlled-potential (bulk) electrolysis have been used to investigate the direct reduction of phthalide at carbon electrodes in dimethylformamide (DMF) containing 0.10 M tetramethylammonium perchlorate (TMAP) or tetra-n-butylammonium perchlorate (TBAP). Cyclic voltammograms recorded with a glassy carbon electrode exhibit a single cathodic peak and a corresponding anodic peak that arise, respectively, from one-electron reduction of phthalide to generate a radical-anion intermediate and from reoxidation of the intermediate. At a scan rate of 100 mV s −1 , quasi-reversible behavior is observed (due to ring-opening of the radical-anion), whereas fully reversible behavior is seen at 5 V s −1 or higher. Digital simulation of cyclic voltammograms indicates that the lifetime of the radical-anion is 3.5 s. Bulk electrolysis of phthalide at a reticulated vitreous carbon cathode affords products that depend on the procedure used to analyze the catholyte. Direct injection of catholyte into a gas chromatograph shows phthalide and a 2-methylbenzoate ester bearing an alkyl moiety from the supporting-electrolyte cation. However, if the catholyte is partitioned between diethyl ether and aqueous hydrochloric acid before gas chromatographic analysis, phthalide and 2-methylbenzoic acid are observed. Thermally induced reactions that occur in the injector port of the gas chromatograph are responsible for the formation of the 2-methylbenzoate ester as well as for the phthalide found in all electrolyzed solutions

  18. Electrochemical cell

    Science.gov (United States)

    Kaun, T.D.

    An improved secondary electrochemical cell is disclosed having a negative electrode of lithium aluminum, a positive electrode of iron sulfide, a molten electrolyte of lithium chloride and potassium chloride, and the combination that the fully charged theoretical capacity of the negative electrode is in the range of 0.5 to 1.0 that of the positive electrode. The cell thus is negative electrode limiting during discharge cycling. Preferably, the negative electrode contains therein, in the approximate range of 1 to 10 volume % of the electrode, an additive from the materials of graphitized carbon, aluminum-iron alloy, and/or magnesium oxide.

  19. Electrochemical Reduction of Oxygen and Nitric oxide at low Temperature on La1-xSrxCr0.97V0.03O3-δ Cathodes

    DEFF Research Database (Denmark)

    Kammer Hansen, Kent

    2013-01-01

    Five La1-xSrxCr0.97V0.03O3-δ (x = 0, 0.05, 0.15, 0.25, 0.35) perovskites were synthesized and characterized by powder XRD and cyclic voltammetry on cone-shaped electrodes in 10% oxygen in argon or 1% nitric oxide in argon at 200, 300 and 400°C. It was shown that the activation energy for the redu......Five La1-xSrxCr0.97V0.03O3-δ (x = 0, 0.05, 0.15, 0.25, 0.35) perovskites were synthesized and characterized by powder XRD and cyclic voltammetry on cone-shaped electrodes in 10% oxygen in argon or 1% nitric oxide in argon at 200, 300 and 400°C. It was shown that the activation energy...... for the reduction of oxygen is higher than the activation energy for the reduction nitric oxide. The activity for the reduction of both oxygen and nitric oxide was shown to be highest for the end member La0.65Sr0.35Cr0.97V0.03O3-δ. The highest ratio between the current densities in the nitric oxide and oxygen...... containing atmospheres was found for the end member LaCr0.97V0.03O3-δ. The chromites also showed activity as anodes for either oxygen evolution or oxidation of nitric oxide to nitrogen dioxide....

  20. Electrochemical Reduction of N2 under Ambient Conditions for Artificial N2 Fixation and Renewable Energy Storage Using N2 /NH3 Cycle.

    Science.gov (United States)

    Bao, Di; Zhang, Qi; Meng, Fan-Lu; Zhong, Hai-Xia; Shi, Miao-Miao; Zhang, Yu; Yan, Jun-Min; Jiang, Qing; Zhang, Xin-Bo

    2017-01-01

    Using tetrahexahedral gold nanorods as a heterogeneous electrocatalyst, an electrocatalytic N 2 reduction reaction is shown to be possible at room temperature and atmospheric pressure, with a high Faradic efficiency up to 4.02% at -0.2 V vs reversible hydrogen electrode (1.648 µg h -1 cm -2 and 0.102 µg h -1 cm -2 for NH 3 and N 2 H 4 ·H 2 O, respectively). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Electrochemical attosyringe.

    Science.gov (United States)

    Laforge, François O; Carpino, James; Rotenberg, Susan A; Mirkin, Michael V

    2007-07-17

    The ability to manipulate ultrasmall volumes of liquids is essential in such diverse fields as cell biology, microfluidics, capillary chromatography, and nanolithography. In cell biology, it is often necessary to inject material of high molecular weight (e.g., DNA, proteins) into living cells because their membranes are impermeable to such molecules. All techniques currently used for microinjection are plagued by two common problems: the relatively large injector size and volume of injected fluid, and poor control of the amount of injected material. Here we demonstrate the possibility of electrochemical control of the fluid motion that allows one to sample and dispense attoliter-to-picoliter (10(-18) to 10(-12) liter) volumes of either aqueous or nonaqueous solutions. By changing the voltage applied across the liquid/liquid interface, one can produce a sufficient force to draw solution inside a nanopipette and then inject it into an immobilized biological cell. A high success rate was achieved in injections of fluorescent dyes into cultured human breast cells. The injection of femtoliter-range volumes can be monitored by video microscopy, and current/resistance-based approaches can be used to control injections from very small pipettes. Other potential applications of the electrochemical syringe include fluid dispensing in nanolithography and pumping in microfluidic systems.

  2. Synergy of Cobalt and Silver Microparticles Electrodeposited on Glassy Carbon for the Electrocatalysis of the Oxygen Reduction Reaction: An Electrochemical Investigation

    Directory of Open Access Journals (Sweden)

    Claudio Zafferoni

    2015-08-01

    Full Text Available The combination of two different metals, each of them acting on different steps of the oxygen reduction reaction (ORR, yields synergic catalytic effects. In this respect, the electrocatalytic effect of silver is enhanced by the addition of cobalt, which is able to break the O–O bond of molecular oxygen, thus accelerating the first step of the reduction mechanism. At the same time, research is to further reduce the catalyst’s cost, reducing the amount of Ag, which, even though being much less expensive than Pt, is still a noble metal. From this point of view, using a small amount of Ag together with an inexpensive material, such as graphite, represents a good compromise. The aim of this work was to verify if the synergic effects are still operating when very small amounts of cobalt (2–10 μg·cm−2 are added to the microparticles of silver electrodeposited on glassy carbon, described in a preceding paper from us. To better stress the different behaviour observed when cobalt and silver are contemporarily present in the deposit, the catalytic properties of cobalt alone were investigated. The analysis was completed by the Levich plots to evaluate the number of electrons involved and by Tafel plots to show the effects on the reaction mechanism.

  3. Influence of physical factors and geochemical conditions on groundwater acidification during enhanced reductive dechlorination

    Science.gov (United States)

    Brovelli, A.; Barry, D. A.; Robinson, C.; Gerhard, J.

    2010-12-01

    Enhanced reductive dehalogenation is an attractive in situ treatment technology for chlorinated contaminants. The process includes two acid-forming microbial reactions: fermentation of an organic substrate resulting in short-chain fatty acids, and dehalogenation resulting in hydrochloric acid. The accumulation of acids and the resulting drop of groundwater pH are controlled by the mass and distribution of chlorinated solvents in the source zone, type of electron donor, availability of alternative terminal electron acceptors and presence of soil mineral phases able to buffer the pH (such as carbonates). Groundwater acidification may reduce or halt microbial activity, and thus dehalogenation, significantly increasing the time and costs required to remediate the aquifer. For this reason, research in this area is gaining increasing attention. In previous work (Robinson et al., 2009 407:4560, Sci. Tot. Environ, Robinson and Barry, 2009 24:1332, Environ. Model. & Software, Brovelli et al., 2010, submitted), a detailed geochemical and groundwater flow model able to predict the pH change occurring during reductive dehalogenation was developed. The model accounts for the main processes influencing groundwater pH, including the groundwater composition, the electron donor used and soil mineral phase interactions. In this study, the model was applied to investigate how spatial variability occurring at the field scale affects groundwater pH and dechlorination rates. Numerical simulations were conducted to examine the influence of heterogeneous hydraulic conductivity on the distribution of the injected, fermentable substrate and on the accumulation/dilution of the acidic products of reductive dehalogenation. The influence of the geometry of the DNAPL source zone was studied, as well as the spatial distribution of soil minerals. The results of this study showed that the heterogeneous distribution of the soil properties have a potentially large effect on the remediation efficiency

  4. Electrochemical investigations of Co3Fe-RGO as a bifunctional catalyst for oxygen reduction and evolution reactions in alkaline media

    Science.gov (United States)

    Kumar, Surender; Kumar, Divyaratan; Kishore, Brij; Ranganatha, Sudhakar; Munichandraiah, Nookala; Venkataramanan, Natarajan S.

    2017-10-01

    Nanoparticles of Co3Fe alloy is prepared on reduced graphene oxide (RGO) sheets by modified polyol method. Synthesized alloy particles are characterized by various physicochemical techniques. TEM and SEM pictures showed homogeneously dispersed alloy nanoparticles on the RGO sheets. Electrochemistry of alloy nanoparticles is investigated in alkaline medium. The result shows that oxygen evaluation reaction (OER) activity of Co3Fe-RGO is higher than Pt-black particles. RDE studies in alkaline medium shows that oxygen reduction reaction (ORR) follow four electron pathway. It is suggest that Co3Fe-RGO is an efficient non-precious catalyst for oxygen (ORR/OER) reactions in alkaline electrolyte for PEMFC applications.

  5. Highly sensitive electrochemical detection of DNA hybridisation by coupling the chemical reduction of a redox label to the electrode reaction of a solution phase mediator.

    Science.gov (United States)

    Ngoensawat, Umphan; Rijiravanich, Patsamon; Somasundrum, Mithran; Surareungchai, Werasak

    2014-11-21

    We have described a highly sensitive method for detecting DNA hybridisation using a redox-labeled stem loop probe. The redox labels were poly(styrene-co-acrylic) (PSA) spheres of 454 nm diameter, modified by methylene blue (MB) deposited alternatively with poly(sodium 4-styrene sulphonate) (PSS) in a layer-by-layer process. Each PSA sphere carried approx. 3.7 × 10(5) molecules of MB, as determined optically. DIG-tagged stem loop probes were immobilised on screen printed electrodes bearing anti-DIG antibodies. Binding with the target enabled straightening of the stem loop, which made attachment to the MB-coated PSA spheres possible. For measuring the current from the direct reduction of MB by differential pulse voltammetry, a 30 mer DNA target common to 70 strains of Escherichia coli was calibrated across the range 1.0 fM to 100 pM (gradient = 3.2 × 10(-8) A (log fM)(-1), r(2) = 0.95, n = 60), with an LOD of ∼58 fM. By using Fe(CN)6(3-/4-) as a solution phase mediator for the MB reduction, we were able to lower the LOD to ∼39 aM (gradient = 5.95 × 10(-8) A (log aM)(-1), r(2) = 0.96, n = 30), which corresponds to the detection of 0.76 ag (∼50 molecules) in the 2 μL analyte sample. We hypothesise that the lowering of the LOD was due to the fact that not all the MB labels were able to contact the electrode surface.

  6. Superhydrophobic surfaces by electrochemical processes.

    Science.gov (United States)

    Darmanin, Thierry; Taffin de Givenchy, Elisabeth; Amigoni, Sonia; Guittard, Frederic

    2013-03-13

    This review is an exhaustive representation of the electrochemical processes reported in the literature to produce superhydrophobic surfaces. Due to the intensive demand in the elaboration of superhydrophobic materials using low-cost, reproducible and fast methods, the use of strategies based on electrochemical processes have exponentially grown these last five years. These strategies are separated in two parts: the oxidation processes, such as oxidation of metals in solution, the anodization of metals or the electrodeposition of conducting polymers, and the reduction processed such as the electrodeposition of metals or the galvanic deposition. One of the main advantages of the electrochemical processes is the relative easiness to produce various surface morphologies and a precise control of the structures at a micro- or a nanoscale. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Catabolic thiosulfate disproportionation and carbon dioxide reduction in strain DCB-1, a reductively dechlorinating anaerobe

    Energy Technology Data Exchange (ETDEWEB)

    Mohn, W.W.; Tiedje, J.M. (Michigan State Univ., East Lansing (USA))

    1990-04-01

    Strain DCB-1 is a strict anaerobe capable of reductive dehalogenation. We elucidated metabolic processes in DCB-1 which may be related to dehalogenation and which further characterize the organism physiologically. Sulfoxy anions and CO2 were used by DCB-1 as catabolic electron acceptors. With suitable electron donors, sulfate and thiosulfate were reduced to sulfide. Sulfate and thiosulfate supported growth with formate or hydrogen as the electron donor and thus are probably respiratory electron acceptors. Other electron donors supporting growth with sulfate were CO, lactate, pyruvate, butyrate, and 3-methoxybenzoate. Thiosulfate also supported growth without an additional electron donor, being disproportionated to sulfide and sulfate. In the absence of other electron acceptors, CO2 reduction to acetate plus cell material was coupled to pyruvate oxidation to acetate plus CO2. Pyruvate could not be fermented without an electron acceptor. Carbon monoxide dehydrogenase activity was found in whole cells, indicating that CO2 reduction probably occurred via the acetyl coenzyme A pathway. Autotrophic growth occurred on H2 plus thiosulfate or sulfate. Diazotrophic growth occurred, and whole cells had nitrogenase activity. On the basis of these physiological characteristics, DCB-1 is a thiosulfate-disproportionating bacterium unlike those previously described.

  8. Electrochemical vapor generation of selenium species after online photolysis and reduction by UV-irradiation under nano TiO{sub 2} photocatalysis and its application to selenium speciation by HPLC coupled with atomic fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Jing; Wang, Qiuquan; Huang, Benli [Xiamen University (China). Department of Chemistry; MOE Key Laboratory of Analytical Sciences, Xiamen (China)

    2005-01-01

    An online UV photolysis and UV/TiO{sub 2} photocatalysis reduction device (UV-UV/TiO{sub 2} PCRD) and an electrochemical vapor generation (ECVG) cell have been used for the first time as an interface between high-performance liquid chromatography (HPLC) and atomic fluorescence spectrometry (AFS) for selenium speciation. The newly designed ECVG cell of approximately 115 {mu}L dead volume consists of a carbon fiber cathode and a platinum loop anode; the atomic hydrogen generated on the cathode was used to reduce selenium to vapor species for AFS determination. The noise was greatly reduced compared with that obtained by use of the UV-UV/TiO{sub 2} PCRD-KBH{sub 4}-acid interface. The detection limits obtained for seleno-DL-cystine (SeCys), selenite (Se{sup IV}), seleno-DL-methionine (SeMet), and selenate (Se{sup VI}) were 2.1, 2.9, 4.3, and 3.5 ng mL{sup -1}, respectively. The proposed method was successfully applied to the speciation of selenium in water-soluble extracts of garlic shoots cultured with different selenium species. The results obtained suggested that UV-UV/TiO{sub 2} PCRD-ECVG should be an effective interface between HPLC and AFS for the speciation of elements amenable to vapor generation, and is superior to methods involving KBH{sub 4}. (orig.)

  9. In situ reduction and functionalization of graphene oxide with l-cysteine for simultaneous electrochemical determination of cadmium(ii), lead(ii), copper(ii), and mercury(ii) ions

    KAUST Repository

    Muralikrishna, S. N.; Sureshkumar, K.; Varley, Thomas Stephen; Nagaraju, Doddahalli H.; Ramakrishnappa, Thippeswamy

    2014-01-01

    One pot reduction and functionalization of graphene oxide (GO) with l-cysteine (l-cys-rGO) at the edges and basal planes of the carbon layers are presented. The l-cys-rGO was characterized by X-ray diffraction studies (XRD), X-ray photoelectron spectroscopy (XPS), attenuated infrared spectroscopy (ATIR), and Raman spectroscopy. The surface morphology was studied by scanning electron microscopy (SEM) and transmittance electron microscopy (TEM). The l-cys-rGO was further utilized for the simultaneous electrochemical quantification of environmentally harmful metal ions such as, Cd2+, Pb2+, Cu2+ and Hg2+. Detection limits obtained for these metal ions were 0.366, 0.416, 0.261 and 1.113 μg L-1 respectively. The linear range obtained for Cd2+, Cu2+ and Hg2+ was 0.4 to 2.0 μM and for Pb2+ was 0.4 to 1.2 μM. The detection limits were found to be less than the World Health Organization (WHO) limits. The developed protocol was applied for the determination of the above metal ions in various environmental samples and the results obtained were validated by atomic absorption spectroscopy (AAS). This journal is

  10. Electrochemical, spectroscopic, and DFT study of C60(CF3)n frontier orbitals (n = 2-18): the link between double bonds in pentagons and reduction potentials.

    Science.gov (United States)

    Popov, Alexey A; Kareev, Ivan E; Shustova, Natalia B; Stukalin, Evgeny B; Lebedkin, Sergey F; Seppelt, Konrad; Strauss, Steven H; Boltalina, Olga V; Dunsch, Lothar

    2007-09-19

    The frontier orbitals of 22 isolated and characterized C(60)(CF(3))(n) derivatives, including seven reported here for the first time, have been investigated by electronic spectroscopy (n = 2 [1], 4 [1], 6 [2], 8 [5], 10 [6], 12 [3]; the number of isomers for each composition is shown in square brackets) fluorescence spectroscopy (n = 10 [4]), cyclic voltammetry under air-free conditions (all compounds with n mV s(-1) up to 5.0 V s(-1), respectively. The 18 experimental 0/- E(1/2) values (vs C(60)(0/-)) are a linear function of the DFT-predicted LUMO energies (average E1/2 deviation from the least-squares line is 0.02 V). This linear relationship was used to predict the 0/- E(1/2) values for the n = 16 and 18 derivatives, and none of the predicted values is more positive than the 0/- E(1/2) value for one of the isomers of C(60)(CF(3))(10). In general, reduction potentials for the 0/- couple are shifted anodically relative to the C(60)(0/-) couple. However, the 0/- E(1/2) values for a given composition are strongly dependent on the addition pattern of the CF3 groups. In addition, LUMO energies for isomers of C(60)(X)(n) (n = 2, 4, 6, 8, 10, and 12) that are structurally related to many of the CF(3) derivatives were calculated and compared for X = CH(3), H, Ph, NH(2), CH(2)F, CHF(2), F, NO(2), and CN. The experimental and computational results for the C(60)(CF(3))(n) compounds and the computational results for more than 50 additional C(60)(X)(n) compounds provide new insights about the frontier orbitals of C(60)(X)(n) derivatives. For a given substituent, X, the addition pattern is as important, if not more important in many cases, than the number of substituents, n, in determining E(1/2) values. Those addition patterns with double bonds in pentagons having two C(sp(2)) nearest neighbors result in the strongest electron acceptors.

  11. Dehalogenation and coupling of a polycyclic hydrocarbon on an atomically thin insulator.

    Science.gov (United States)

    Dienel, Thomas; Gómez-Díaz, Jaime; Seitsonen, Ari P; Widmer, Roland; Iannuzzi, Marcella; Radican, Kevin; Sachdev, Hermann; Müllen, Klaus; Hutter, Jürg; Gröning, Oliver

    2014-07-22

    Catalytic activity is of pivotal relevance in enabling efficient and selective synthesis processes. Recently, covalent coupling reactions catalyzed by solid metal surfaces opened the rapidly evolving field of on-surface chemical synthesis. Tailored molecular precursors in conjunction with the catalytic activity of the metal substrate allow the synthesis of novel, technologically highly relevant materials such as atomically precise graphene nanoribbons. However, the reaction path on the metal substrate remains unclear in most cases, and the intriguing question is how a specific atomic configuration between reactant and catalyst controls the reaction processes. In this study, we cover the metal substrate with a monolayer of hexagonal boron nitride (h-BN), reducing the reactivity of the metal, and gain unique access to atomistic details during the activation of a polyphenylene precursor by sequential dehalogenation and the subsequent coupling to extended oligomers. We use scanning tunneling microscopy and density functional theory to reveal a reaction site anisotropy, induced by the registry mismatch between the precursor and the nanostructured h-BN monolayer.

  12. Estimation of Anaerobic Debromination Rate Constants of PBDE Pathways Using an Anaerobic Dehalogenation Model.

    Science.gov (United States)

    Karakas, Filiz; Imamoglu, Ipek

    2017-04-01

    This study aims to estimate anaerobic debromination rate constants (k m ) of PBDE pathways using previously reported laboratory soil data. k m values of pathways are estimated by modifying a previously developed model as Anaerobic Dehalogenation Model. Debromination activities published in the literature in terms of bromine substitutions as well as specific microorganisms and their combinations are used for identification of pathways. The range of estimated k m values is between 0.0003 and 0.0241 d -1 . The median and maximum of k m values are found to be comparable to the few available biologically confirmed rate constants published in the literature. The estimated k m values can be used as input to numerical fate and transport models for a better and more detailed investigation of the fate of individual PBDEs in contaminated sediments. Various remediation scenarios such as monitored natural attenuation or bioremediation with bioaugmentation can be handled in a more quantitative manner with the help of k m estimated in this study.

  13. Anaerobic microbial dehalogenation and its key players in the contaminated Bitterfeld-Wolfen megasite.

    Science.gov (United States)

    Nijenhuis, Ivonne; Stollberg, Reiner; Lechner, Ute

    2018-04-01

    The megasite Bitterfeld-Wolfen is highly contaminated as a result of accidents and because of dumping of wastes from local chemical industries in the last century. A variety of contaminants including chlorinated ethenes and benzenes, hexachlorohexanes and chlorinated dioxins can still be found in the groundwater and (river) sediments. Investigations of the in situ microbial transformation of organohalides have been performed only over the last two decades at this megasite. In this review, we summarise the research on the activity of anaerobic dehalogenating bacteria at the field site in Bitterfeld-Wolfen, focusing on chlorinated ethenes, monochlorobenzene and chlorinated dioxins. Various methods and concepts were applied including ex situ cultivation and isolation, and in situ analysis of hydrochemical parameters, compound-specific stable isotope analysis of contaminants, 13C-tracer studies and molecular markers. Overall, biotransformation of organohalides is ongoing at the field site and Dehalococcoides mccartyi species play an important role in the detoxification process in the Bitterfeld-Wolfen region.

  14. Binding of anions in triply interlocked coordination catenanes and dynamic allostery for dehalogenation reactions.

    Science.gov (United States)

    Yang, Linlin; Jing, Xu; An, Bowen; He, Cheng; Yang, Yang; Duan, Chunying

    2018-01-28

    By synergistic combination of multicomponent self-assembly and template-directed approaches, triply interlocked metal organic catenanes that consist of two isolated chirally identical tetrahedrons were constructed and stabilized as thermodynamic minima. In the presence of suitable template anions, the structural conversion from the isolated tetrahedral conformers into locked catenanes occurred via the cleavage of an intrinsically reversible coordination bond in each of the tetrahedrons, followed by the reengineering and interlocking of two fragments with the regeneration of the broken coordination bonds. The presence of several kinds of individual pocket that were attributed to the triply interlocked patterns enabled the possibility of encapsulating different anions, allowing the dynamic allostery between the unlocked/locked conformers to promote the dehalogenation reaction of 3-bromo-cyclohexene efficiently, as with the use of dehalogenase enzymes. The interlocked structures could be unlocked into two individual tetrahedrons through removal of the well-matched anion templates. The stability and reversibility of the locked/unlocked structures were further confirmed by the catching/releasing process that accompanied emission switching, providing opportunities for the system to be a dynamic molecular logic system.

  15. Estimation of rate constants of PCB dechlorination reactions using an anaerobic dehalogenation model.

    Science.gov (United States)

    Karakas, Filiz; Imamoglu, Ipek

    2017-02-15

    This study aims to estimate anaerobic dechlorination rate constants (k m ) of reactions of individual PCB congeners using data from four laboratory microcosms set up using sediment from Baltimore Harbor. Pathway k m values are estimated by modifying a previously developed model as Anaerobic Dehalogenation Model (ADM) which can be applied to any halogenated hydrophobic organic (HOC). Improvements such as handling multiple dechlorination activities (DAs) and co-elution of congeners, incorporating constraints, using new goodness of fit evaluation led to an increase in accuracy, speed and flexibility of ADM. DAs published in the literature in terms of chlorine substitutions as well as specific microorganisms and their combinations are used for identification of pathways. The best fit explaining the congener pattern changes was found for pathways of Phylotype DEH10, which has the ability to remove doubly flanked chlorines in meta and para positions, para flanked chlorines in meta position. The range of estimated k m values is between 0.0001-0.133d -1 , the median of which is found to be comparable to the few available published biologically confirmed rate constants. Compound specific modelling studies such as that performed by ADM can enable monitoring and prediction of concentration changes as well as toxicity during bioremediation. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Solid State Electrochemical DeNOx

    DEFF Research Database (Denmark)

    Kammer Hansen, Kent

    2010-01-01

    The literature on direct electrochemical reduction of NOx in a solid state cell has been reviewed. It is shown that that the reduction of nitric oxide either occurs on the electrode or on the electrolyte if F-centers are formed. It is also shown that some oxide based electrodes has a high apparent...

  17. Electrochemical quartz crystal microbalance analysis of the oxygen reduction reaction on Pt-based electrodes. Part 2: adsorption of oxygen species and ClO4(-) anions on Pt and Pt-Co alloy in HClO4 solutions.

    Science.gov (United States)

    Omura, J; Yano, H; Tryk, D A; Watanabe, M; Uchida, H

    2014-01-14

    To gain deeper insight into the role of adsorbed oxygenated species in the O2 reduction reaction (ORR) kinetics on platinum and platinum-cobalt alloys for fuel cells, we carried out a series of measurements with the electrochemical quartz crystal microbalance (EQCM) and the rotating disk electrode (RDE) in acid solution. The effects of anion adsorption on the activities for the ORR were first assessed in HClO4 and HF electrolyte solutions at various concentrations. In our previous work (Part 1), we reported that the perchlorate anion adsorbs specifically on bulk-Pt, with a Frumkin-Temkin isotherm, that is, a linear relationship between Δm and log[HClO4]. Here, we find that the specific adsorption on the Pt-skin/Pt3Co alloy was significantly stronger than that on bulk-Pt, in line with its modified electronic properties. The kinetically controlled current density j(k) for the O2 reduction at the Pt-skin/Pt3Co-RDE was about 9 times larger than that of the bulk-Pt-RDE in 0.01 M HClO4 saturated with air, but the j(k) values on Pt-skin/Pt3Co decreased with increasing [HClO4] more steeply than in the case of Pt, due to the blocking of the active sites by the specifically adsorbed ClO4(-). We have detected reversible mass changes for one or more adsorbed oxygen-containing species (Ox = O2, O, OH, H2O) on the Pt-skin/Pt3Co-EQCM and Pt-EQCM in O2-saturated and He-purged 0.01 M HClO4 solutions, in which the specific adsorption of ClO4(-) anions was negligible. The coverages of oxygen species θ(Ox) on the Pt-skin/Pt3Co in the potential range from 0.86 to 0.96 V in the O2-saturated solution were found to be larger than those on pure Pt, providing strong evidence that the higher O2 reduction activity on the Pt3Co is correlated with higher θ(Ox), contrary to the conventional view.

  18. Process for electrochemically gasifying coal using electromagnetism

    Science.gov (United States)

    Botts, Thomas E.; Powell, James R.

    1987-01-01

    A process for electrochemically gasifying coal by establishing a flowing stream of coal particulate slurry, electrolyte and electrode members through a transverse magnetic field that has sufficient strength to polarize the electrode members, thereby causing them to operate in combination with the electrolyte to electrochemically reduce the coal particulate in the slurry. Such electrochemical reduction of the coal produces hydrogen and carbon dioxide at opposite ends of the polarized electrode members. Gas collection means are operated in conjunction with the process to collect the evolved gases as they rise from the slurry and electrolyte solution.

  19. Electrochemical study of oxygen reduction reaction in Pt/C catalysts synthesized by photo-deposition; Estudio electroquimico de la reaccion de reduccion de oxigeno en catalizadores de Pt/C sintetizados por fotodeposito

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Galindo, J. A.; Ruiz-Camacho, B.; Valenzuela-Zapata, M. A.; Gonzalez-Huerta, R. G. [IPN, ESIQIE, Mexico, D.F. (Mexico)]. E-mail: rosgonzalez_h@yahoo.com.mx

    2009-09-15

    Fuel batteries are considered one of the principal generators of energy for the immediate future, though their use is limited by their cost and useful lifetime. One of the main components of a fuel battery are electrodes made of a noble metal, such as Pt, dispersed in a support. The interaction between these two components has received a good deal of attention in recent years. It is considered to be responsible for structural growth effects and a decreased dispersion of metal particles on a support, causing the battery to have low overall performance and a reduced useful lifetime. The properties of the support are accentuated in cathode catalysts, where oxygen reduction reactions occur as a result of its operating conditions. Syntheses are currently being investigated to improve the metal-support interaction and thereby increase the lifetime of the fuel battery. This work presents the electrochemical study of nanometric-sized carbon-supported platinum (Pt/C) catalysts synthesized with chemical photo-deposition to determine its catalytic effect and stability for oxygen reduction reaction in an acid medium. C{sub 10}H{sub 14}O{sub 4}Pt (Pt(acac)2) was used as the platinum precursor. The electrochemical study was conducted with cyclic voltamperometry and rotary disc electrode (RDE) techniques, observing that the synthesized catalysts present a behavior similar to that of Pt (E-Tek). The kinetic study showed an open-circuit potential of de 0.96 V with a Tafel slope of 73 mV dec-1, and with a current of 0.1 mA cm-2 the potential is 0.91 V. The authors wish to thank the ICYTDF (project PICS08-37) and the IPN (project SIP-20090433). [Spanish] Las pilas de combustible se perfilan como uno de los principales generadores de energia en un futuro inmediato, pero su utilizacion esta limitada por su costo y tiempo de vida util. Uno de los componentes principales de la pila de combustible son los electrodos integrados por un metal noble, como el Pt, disperso en un soporte. La

  20. Effect of temperature and pH on dehalogenation of total organic chlorine, bromine and iodine in drinking water.

    Science.gov (United States)

    Abusallout, Ibrahim; Rahman, Shamimur; Hua, Guanghui

    2017-11-01

    Disinfection byproduct (DBP) concentrations in drinking water distribution systems and indoor water uses depend on competitive formation and degradation reactions. This study investigated the dehalogenation kinetics of total organic chlorine (TOCl), bromine (TOBr) and iodine (TOI) produced by fulvic acid under different pH and temperature conditions, and total organic halogen (TOX) variations in a treated drinking water under simulated distribution system and heating scenarios. TOX dehalogenation rates were generally in the order of TOI ≅ TOCl(NH 2 Cl) > TOBr > TOCl(Cl 2 ). The half-lives of different groups of TOX compounds formed by fulvic acid varied between 27 and 139 days during incubation at 20 °C and 0.98-2.17 days during heating at 55 °C. Base-catalyzed reactions played a major role in TOX degradation as evidenced by enhanced dehalogenation under high pH conditions. The results of heating of a treated water in the presence of residuals showed that TOX concentrations of chlorinated samples increased rapidly when chlorine residuals were present and then gradually decreased after chlorine residuals were exhausted. The final TOX concentrations of chlorinated samples after heating showed moderate decreases with increasing ambient water ages. Chloraminated samples with different ambient water ages exhibited similar final TOX concentrations during simulated distribution system and heating experiments. This study reinforces the importance of understanding DBP variations in indoor water uses as wells as in distribution systems to provide more accurate DBP information for exposure assessment and regulatory determination. Published by Elsevier Ltd.

  1. DISPOSAL OF POISONOUS ORGANIC HALIDES BY USING THE ELECTROCHEMICAL METHOD: DFT SIMULATION

    Directory of Open Access Journals (Sweden)

    Tudor Spataru

    2016-12-01

    Full Text Available Geometry optimizations at the UBP86/6-311++G** level of electronic structure theory have been performed for DDT, β-hexachlorocyclohexane, and heptachlor organic polychlorides as well for their positive and negative ions. The HOMO composition of these neutral molecules show no participation of the carbon-chlorine atomic orbitals, while LUMO of the calculated molecules include a major contribution of the anti-bonding character atomic orbitals from the two or three carbon-chloride bonds of each calculated molecule. Consequently, the negative ions were the most sensitive structure during the geometry optimization, showing the carbon-chloride bonds cleaving during the electronic structure calculations. Further geometry optimization of the obtained neutral intermediate molecules after the fi rst and second reducing by two electrons show that the electrochemical dehalogenation of the organic poychlorides is sequential.

  2. Electrochemical energy generation

    International Nuclear Information System (INIS)

    Kreysa, G.; Juettner, K.

    1993-01-01

    The proceedings encompass 40 conference papers belonging to the following subject areas: Baseline and review papers; electrochemical fuel cells; batteries: Primary and secondary cells; electrochemical, regenerative systems for energy conversion; electrochemical hydrogen generation; electrochemistry for nuclear power plant; electrochemistry for spent nuclear fuel reprocessing; energy efficiency in electrochemical processes. There is an annex listing the authors and titles of the poster session, and compacts of the posters can be obtained from the office of the Gesellschaft Deutscher Chemiker, Abteilung Tagungen. (MM) [de

  3. Dehalogenation of Polybrominated Diphenyl Ethers and Polychlorinated Biphenyl by Bimetallic, Impregnated, and Nanoscale Zerovalent Iron

    Science.gov (United States)

    Zhuang, Yuan; Ahn, Sungwoo; Seyfferth, Angelia L.; Masue-Slowey, Yoko; Fendorf, Scott; Luthy, Richard G.

    2011-01-01

    Nanoscale zerovalent iron particles (nZVI), bimetallic nanoparticles (nZVI/Pd), and nZVI/Pd impregnated activated carbon (nZVI/Pd-AC) composite particles were synthesized and investigated for their effectiveness to remove polybrominated diphenyl ethers (PBDEs) and/or polychlorinated biphenyls (PCBs). Palladization of nZVI promoted the dehalogenation kinetics for mono- to tri-BDEs and 2,3,4-trichlorobiphenyl (PCB 21). Compared to nZVI, the iron-normalized rate constants for nZVI/Pd were about 2-, 3-, and 4-orders of magnitude greater for tri-, di-, and mono-BDEs, respectively, with diphenyl ether as a main reaction product. The reaction kinetics and pathways suggest an H-atom transfer mechanism. The reaction pathways with nZVI/Pd favor preferential removal of para-halogens on PBDEs and PCBs. X-ray fluorescence mapping of nZVI/Pd-AC showed that Pd mainly deposits on the outer part of particles, while Fe was present throughout the activated carbon particles. While BDE 21 was sorbed onto activated carbon composites quickly, debromination was slower compared to reaction with freely dispersed nZVI/Pd. Our XPS and chemical data suggest about 7% of the total iron within the activated carbon was zero-valent, which shows the difficulty with in-situ synthesis of a significant fraction of zero-valent iron in the micro-porous material. Related factors that likely hinder the reaction with nZVI/Pd-AC are the heterogenous distribution of nZVI and Pd on activated carbon and/or immobilization of hydrophobic organic contaminants at the adsorption sites thereby inhibiting contact with nZVI. PMID:21557574

  4. Yarrowia lipolytica NCIM 3589, a tropical marine yeast, degrades bromoalkanes by an initial hydrolytic dehalogenation step.

    Science.gov (United States)

    Vatsal, Aakanksha; Zinjarde, Smita S; Kumar, Ameeta Ravi

    2015-04-01

    The widespread industrial use of organobromines which are known persistent organic pollutants has led to their accumulation in sediments and water bodies causing harm to animals and humans. While degradation of organochlorines by bacteria is well documented, information regarding degradation pathways of these recalcitrant organobromines is scarce. Hence, their fates and effects on the environment are of concern. The present study shows that a tropical marine yeast, Yarrowia lipolytica NCIM 3589 aerobically degrades bromoalkanes differing in carbon chain length and position of halogen substitution viz., 2-bromopropane (2-BP), 1-bromobutane (1-BB), 1,5 dibromopentane (1,5-DBP) and 1-bromodecane (1-BD) as seen by an increase in cell mass, release of bromide and concomitant decrease in concentration of brominated compound. The amount of bromoalkane degraded was 27.3, 21.9, 18.0 and 38.3 % with degradation rates of 0.076, 0.058, 0.046 and 0.117/day for 2-BP, 1-BB, 1,5-DBP and 1-BD, respectively. The initial product formed respectively were alcohols viz., 2-propanol, 1-butanol, 1-bromo, 5-pentanol and 1-decanol as detected by GC-MS. These were further metabolized to fatty acids viz., 2-propionic, 1-butyric and 1-decanoic acid eventually leading to carbon dioxide formation. Neither higher chain nor brominated fatty acids were detected. An inducible extracellular dehalogenase responsible for removal of bromide was detected with activities of 21.07, 18.82, 18.96 and 26.67 U/ml for 2-BP, 1-BB, 1,5-DBP and 1-BD, respectively. We report here for the first time the proposed aerobic pathway of bromoalkane degradation by an eukaryotic microbe Y. lipolytica 3589, involving an initial hydrolytic dehalogenation step.

  5. Effect of Amine Adlayer on Electrochemical Uric Acid Sensor Conducted on Electrochemically Reduced Graphene Oxide

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sumi; Kim, Kyuwon [Incheon National University, Incheon (Korea, Republic of)

    2016-03-15

    The electrochemical biosensing efficiency of uric acid (UA) detection on an electrochemically reduced graphene oxide (ERGO)-decorated electrode surface was studied by using various amine linkers used to immobilize ERGO. The amine linkers aminoethylphenyldiazonium , 2,2'-(ethylenedioxy)bis(ethylamine), 3-aminopro-pyltriethoxysilane, and polyethyleneimine were coated on indium-tin-oxide electrode surfaces through chemical or electrochemical deposition methods. ERGO-decorated surfaces were prepared by the electrochemical reduction of graphene oxide (GO), which was immobilized on the amine-coated electrode surfaces through the electrostatic interaction between GO and the ammonium ion of the linker on the surface. We monitored the sensing results of electrochemical UA detection with differential pulse voltammetry. The ERGO-modified surface presented electrocatalytic oxidation of UA and ascorbic acid. Among the different amines tested, 3-aminopropyltriethoxysilane provided the best biosensing performance in terms of sensitivity and reproducibility.

  6. Effect of Amine Adlayer on Electrochemical Uric Acid Sensor Conducted on Electrochemically Reduced Graphene Oxide

    International Nuclear Information System (INIS)

    Park, Sumi; Kim, Kyuwon

    2016-01-01

    The electrochemical biosensing efficiency of uric acid (UA) detection on an electrochemically reduced graphene oxide (ERGO)-decorated electrode surface was studied by using various amine linkers used to immobilize ERGO. The amine linkers aminoethylphenyldiazonium , 2,2'-(ethylenedioxy)bis(ethylamine), 3-aminopro-pyltriethoxysilane, and polyethyleneimine were coated on indium-tin-oxide electrode surfaces through chemical or electrochemical deposition methods. ERGO-decorated surfaces were prepared by the electrochemical reduction of graphene oxide (GO), which was immobilized on the amine-coated electrode surfaces through the electrostatic interaction between GO and the ammonium ion of the linker on the surface. We monitored the sensing results of electrochemical UA detection with differential pulse voltammetry. The ERGO-modified surface presented electrocatalytic oxidation of UA and ascorbic acid. Among the different amines tested, 3-aminopropyltriethoxysilane provided the best biosensing performance in terms of sensitivity and reproducibility.

  7. Structural basis for the substrate specificity and the absence of dehalogenation activity in 2-chloromuconate cycloisomerase from Rhodococcus opacus 1CP.

    Science.gov (United States)

    Kolomytseva, Marina; Ferraroni, Marta; Chernykh, Alexey; Golovleva, Ludmila; Scozzafava, Andrea

    2014-09-01

    2-Chloromuconate cycloisomerase from the Gram-positive bacterium Rhodococcus opacus 1CP (Rho-2-CMCI) is an enzyme of a modified ortho-pathway, in which 2-chlorophenol is degraded using 3-chlorocatechol as the central intermediate. In general, the chloromuconate cycloisomerases catalyze not only the cycloisomerization, but also the process of dehalogenation of the chloromuconate to dienelactone. However Rho-2-CMCI, unlike the homologous enzymes from the Gram-negative bacteria, is very specific for only one position of the chloride on the substrate chloromuconate. Furthermore, Rho-2-CMCI is not able to dehalogenate the 5-chloromuconolactone and therefore it cannot generate the dienelactone. The crystallographic structure of the homooctameric Rho-2-CMCI was solved by molecular replacement using the coordinates of the structure of chloromuconate cycloisomerase from Pseudomonas putida PRS2000. The structure was analyzed and compared to the other already known structures of (chloro)muconate cycloisomerases. In addition to this, molecular docking calculations were carried out, which allowed us to determine the residues responsible for the high substrate specificity and the lack of dehalogenation activity of Rho-2-CMCI. Our studies highlight that a histidine, located in a loop that closes the active site cavity upon the binding of the substrate, could be related to the dehalogenation inability of Rho-2-CMCI and in general of the muconate cycloisomerases. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Electrochemical hydrogen Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Digby Macdonald

    2010-08-09

    As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not

  9. Electrochemical hydrogen Storage Systems

    International Nuclear Information System (INIS)

    Macdonald, Digby

    2010-01-01

    As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not described in the

  10. Electrochemical remediation technologies for soil and groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Doering, F. [Electrochemical Processes I.I. c. Valley Forge, PA (United States)]|[P2 Soil Remediation, Inc. Stuttgart (Germany); Doering, N. [P2 Soil Remediation, Inc. Stuttgart (Germany)

    2001-07-01

    In Direct Current Technologies (DCTs) a direct current electricity is passed between at least two subsurface electrodes in order to effect the remediation of the groundwater and/or the soil. DCTs in line with the U.S.-terminology comprise of the ElectroChemical Remediation Technologies (ECRTs), and GeoKinetics. The primary distinction between ECRTs and ElectroKinetics are the power input, and the mode of operation, which are electrochemical reactions vs. mass transport. ECRTs combine phenomena of colloid (surface) electrochemistry with the phenomena of Induced Polarization (IP). This report focuses on ECRTs, comprising of the ElectroChemical GeoOxidation (ECGO) for the mineralization of organic pollutants to finally carbon dioxide and water, and Induced Complexation (IC), related to the electrochemical conversion of metals enhancing the mobilization and precipitation of heavy metals on both electrodes. Both technologies are based on reduction-oxidation (redox) reactions at the scale of the individual soil particles. (orig.)

  11. Metal Oxide Materials and Collector Efficiency in Electrochemical Supercapacitors

    Science.gov (United States)

    2010-12-01

    However, even if thick tita - nium films and/or nanostructured layers were obtained using these methods, they were composed of non-conducting titanium...following electrochemical reduction in LiClO4/acetonitrile. Table 1 reports the electrochemical parameters and the atomic composition of the tita - nium

  12. Optimization of Electrical Methods for Sub -surface Monitoring of Biological Contamination: From Micro-scale to Macroscopic one through Sub-micrometric Topographic and Electrochemical Studies of Oxydation/Reduction Processes Provoked by Bacteria

    Science.gov (United States)

    Dhahri, S.; Marliere, C.

    2012-12-01

    The presence of biological matter (bacteria) in deep geological sites for storage of, for instance, radioactive elements or groundwater in aquifers was clearly proved. That biomass triggers physical and chemical processes which greatly modify the durability and the sustainability of the storage sites. These processes, mainly from oxidative/reductive reactions, are poorly understood. This is mainly due to the fact that former studies were done at the macroscopic level far away from the micrometric scale where relevant processes induced by bacteria take place. Investigations at microscopic level are needed. Thus, we developed an experimental set -up based on the combined use of optical microscopy (epifluorescence and transmission), atomic force microscopy (AFM) and scanning electro -chemical microscopy (SECM) in order to get simultaneous information on topographic and electro -chemical processes at different length scales. The first highly sensitive step was to use AFM and optical microscopy with biological samples in liquid environment: We will present a new, non -perturbative method for imaging bacteria in their natural liquid environment using AFM. No immobilization protocol, neither chemical nor mechanical, is needed, contrary to what has been regarded till now as essential. Furthermore we were able to follow the natural gliding movements of bacteria, directly proving their living state during the AFM investigation: we thus directly prove the low impact of these breakthrough AFM observations on the native behavior of the bacteria. The second delicate step was to combine AFM and optical measurements with electrical ones. We mounted a new experimental set-up coupling real -time (i) monitoring of optical properties as the optical density (OD) evolution related to bulk bacterial growth in liquid or as the counting of number of bacteria adhering on the surface of the sample as well and (ii) electrical and electrochemical measurements. We thus will present results on

  13. Alkyl Bromides as Mechanistic Probes of Reductive Dehalogenation: Reactions of Vicinal Dibromide Stereoisomers with Zero-Valent Metals

    National Research Council Canada - National Science Library

    Totten, Lisa

    2000-01-01

    The mechanism through which zero-valent metals (most notably iron and zinc) reduce alkyl polyhalides in aqueous solution at room temperature was investigated using several stereoisomers of vicinal dibromides as probe compounds...

  14. IN VITRO STUDIES ON REDUCTIVE VINYL CHLORIDE DEHALOGENATION BY AN ANAEROBIC MIXED CULTURE. (R825689C084)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  15. Reductive dehalogenation of aryl halides over palladium catalysts deposited on SBA-15 type molecular sieve modified with amine donor groups

    Czech Academy of Sciences Publication Activity Database

    Štěpnička, P.; Semler, M.; Demel, J.; Zukal, Arnošt; Čejka, Jiří

    2011-01-01

    Roč. 341, č. 1-2 (2011), s. 97-102 ISSN 1381-1169 R&D Projects: GA ČR GA104/09/0561 Institutional research plan: CEZ:AV0Z40400503 Keywords : heterogeneous catalysts * supported catalysts * palladium Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.947, year: 2011

  16. Textbook Error: Short Circuiting on Electrochemical Cell

    Science.gov (United States)

    Bonicamp, Judith M.; Clark, Roy W.

    2007-01-01

    Short circuiting an electrochemical cell is an unreported but persistent error in the electrochemistry textbooks. It is suggested that diagrams depicting a cell delivering usable current to a load be postponed, the theory of open-circuit galvanic cells is explained, the voltages from the tables of standard reduction potentials is calculated and…

  17. Electrochemical treatment of liquid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D.T. [Savannah River Technology Center, Aiken, SC (United States)

    1997-10-01

    Under this task, electrochemical treatment processes are being evaluated and developed for the destruction of organic compounds and nitrates/nitrites and the removal of other hazardous species from liquid wastes stored throughout the DOE complex. This technology targets the (1) destruction of nitrates, nitrites and organic compounds; (2) removal of radionuclides; and (3) removal of RCRA metals. The development program consists of five major tasks: (1) evaluation of electrochemical reactors for the destruction and removal of hazardous waste components, (2) development and validation of engineering process models, (3) radioactive laboratory-scale tests, (4) demonstration of the technology in an engineering-scale reactor, and (5) analysis and evaluation of test data. The development program team is comprised of individuals from national laboratories, academic institutions, and private industry. Possible benefits of this technology include: (1) improved radionuclide separation as a result of the removal of organic complexants, (2) reduction in the concentrations of hazardous and radioactive species in the waste (e.g., removal of nitrate, mercury, chromium, cadmium, {sup 99}Tc, and {sup 106}Ru), (3) reduction in the size of the off-gas handling equipment for the vitrification of low-level waste (LLW) by reducing the source of NO{sub x} emissions, (4) recovery of chemicals of value (e.g. sodium hydroxide), and (5) reduction in the volume of waste requiring disposal.

  18. Dehalogenation Activity of Selected Fungi Toward δ-Iodo-γ-Lactone Derived from trans,trans-Farnesol.

    Science.gov (United States)

    Gliszczyńska, Anna; Gładkowski, Witold; Świtalska, Marta; Wietrzyk, Joanna; Szumny, Antoni; Gębarowska, Elżbieta; Wawrzeńczyk, Czesław

    2016-04-01

    Time-course of biotransformation of racemic trans-4-((E)-4',8'-dimethylnona-3',7'-dien-1-yl)-5-iodomethyl-4-methyldihydrofuran-2-one (1) in fungal and yeast cultures was investigated. In these conditions, the substrate 1 was enantioselectively dehalogenated yielding 4-((E)-4',8'-dimethylnona-3',7'-dien-1-yl)-4-methyl-5-methylenedihydrofuran-2-one (2) and its structure was established based on the spectroscopic data. The most effective biocatalyst used was Didymosphaeria igniaria, which catalyzed the process with highest rate and enantioselectivity (ee of product = 76%). The antiproliferative activity of δ-iodo-γ-lactone 1, product of its biotransformation 2, and starting substrate (farnesol) were evaluated toward two cancer cell lines: A549 (human lung adenocarcinoma) and HL-60 (human promyelocytic leukemia). © 2016 Verlag Helvetica Chimica Acta AG, Zürich.

  19. Regio- and Enantioselective Sequential Dehalogenation of rac-1,3-Dibromobutane by Haloalkane Dehalogenase LinB.

    Science.gov (United States)

    Gross, Johannes; Prokop, Zbyněk; Janssen, Dick; Faber, Kurt; Hall, Mélanie

    2016-08-03

    The hydrolytic dehalogenation of rac-1,3-dibromobutane catalyzed by the haloalkane dehalogenase LinB from Sphingobium japonicum UT26 proceeds in a sequential fashion: initial formation of intermediate haloalcohols followed by a second hydrolytic step to produce the final diol. Detailed investigation of the course of the reaction revealed favored nucleophilic displacement of the sec-halogen in the first hydrolytic event with pronounced R enantioselectivity. The second hydrolysis step proceeded with a regioselectivity switch at the primary position, with preference for the S enantiomer. Because of complex competition between all eight possible reactions, intermediate haloalcohols formed with moderate to good ee ((S)-4-bromobutan-2-ol: up to 87 %). Similarly, (S)-butane-1,3-diol was formed at a maximum ee of 35 % before full hydrolysis furnished the racemic diol product. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Synthesis of graphene platelets by chemical and electrochemical route

    Energy Technology Data Exchange (ETDEWEB)

    Ramachandran, Rajendran; Felix, Sathiyanathan [Centre for Nanotechnology Research, VIT University, Vellore 632014, Tamil Nadu (India); Joshi, Girish M. [Materials Physics Division, School of Advanced Sciences, VIT University, Vellore 632014, Tamil Nadu (India); Raghupathy, Bala P.C., E-mail: balapraveen2000@yahoo.com [Centre for Nanotechnology Research, VIT University, Vellore 632014, Tamil Nadu (India); Research and Advanced Engineering Division (Materials), Renault Nissan Technology and Business Center India (P) Ltd., Chennai, Tamil Nadu (India); Jeong, Soon Kwan, E-mail: jeongsk@kier.re.kr [Climate Change Technology Research Division, Korea Institute of Energy Research, Yuseong-gu, Daejeon 305-343 (Korea, Republic of); Grace, Andrews Nirmala, E-mail: anirmalagrace@vit.ac.in [Centre for Nanotechnology Research, VIT University, Vellore 632014, Tamil Nadu (India); Climate Change Technology Research Division, Korea Institute of Energy Research, Yuseong-gu, Daejeon 305-343 (Korea, Republic of)

    2013-10-15

    Graphical abstract: A schematic showing the overall reduction process of graphite to reduced graphene platelets by chemical and electrochemical route. - Highlights: • Graphene was prepared by diverse routes viz. chemical and electrochemical methods. • NaBH{sub 4} was effective for removing oxygen functional groups from graphene oxide. • Sodium borohydride reduced graphene oxide (SRGO) showed high specific capacitance. • Electrochemical rendered a cheap route for production of graphene in powder form. - Abstract: Graphene platelets were synthesized from graphene oxide by chemical and electrochemical route. Under the chemical method, sodium borohydride and hydrazine chloride were used as reductants to produce graphene. In this paper, a novel and cost effective electrochemical method, which can simplify the process of reduction on a larger scale, is demonstrated. The electrochemical method proposed in this paper produces graphene in powder form with good yield. The atomic force microscopic images confirmed that the graphene samples prepared by all the routes have multilayers of graphene. The electrochemical process provided a new route to make relatively larger area graphene sheets, which will have interest for further patterning applications. Attempt was made to quantify the quantum of reduction using cyclic voltammetry and choronopotentiometry techniques on reduced graphene samples. As a measure in reading the specific capacitance values, a maximum specific capacitance value of 265.3 F/g was obtained in sodium borohydride reduced graphene oxide.

  1. Synthesis of graphene platelets by chemical and electrochemical route

    International Nuclear Information System (INIS)

    Ramachandran, Rajendran; Felix, Sathiyanathan; Joshi, Girish M.; Raghupathy, Bala P.C.; Jeong, Soon Kwan; Grace, Andrews Nirmala

    2013-01-01

    Graphical abstract: A schematic showing the overall reduction process of graphite to reduced graphene platelets by chemical and electrochemical route. - Highlights: • Graphene was prepared by diverse routes viz. chemical and electrochemical methods. • NaBH 4 was effective for removing oxygen functional groups from graphene oxide. • Sodium borohydride reduced graphene oxide (SRGO) showed high specific capacitance. • Electrochemical rendered a cheap route for production of graphene in powder form. - Abstract: Graphene platelets were synthesized from graphene oxide by chemical and electrochemical route. Under the chemical method, sodium borohydride and hydrazine chloride were used as reductants to produce graphene. In this paper, a novel and cost effective electrochemical method, which can simplify the process of reduction on a larger scale, is demonstrated. The electrochemical method proposed in this paper produces graphene in powder form with good yield. The atomic force microscopic images confirmed that the graphene samples prepared by all the routes have multilayers of graphene. The electrochemical process provided a new route to make relatively larger area graphene sheets, which will have interest for further patterning applications. Attempt was made to quantify the quantum of reduction using cyclic voltammetry and choronopotentiometry techniques on reduced graphene samples. As a measure in reading the specific capacitance values, a maximum specific capacitance value of 265.3 F/g was obtained in sodium borohydride reduced graphene oxide

  2. Electrochemical solar energy conversion

    International Nuclear Information System (INIS)

    Gerischer, H.

    1991-01-01

    The principles of solar energy conversion in photoelectrochemical cells are briefly reviewed. Cells for the generation of electric power and for energy storage in form of electrochemical energy are described. These systems are compared with solid state photovoltaic devices, and the inherent difficulties for the operation of the electrochemical systems are analyzed. (author). 28 refs, 10 figs

  3. Electrochemical thermodynamic measurement system

    Science.gov (United States)

    Reynier, Yvan [Meylan, FR; Yazami, Rachid [Los Angeles, CA; Fultz, Brent T [Pasadena, CA

    2009-09-29

    The present invention provides systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and electrochemical energy storage and conversion systems. Systems and methods of the present invention are configured for simultaneously collecting a suite of measurements characterizing a plurality of interconnected electrochemical and thermodynamic parameters relating to the electrode reaction state of advancement, voltage and temperature. Enhanced sensitivity provided by the present methods and systems combined with measurement conditions that reflect thermodynamically stabilized electrode conditions allow very accurate measurement of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and electrochemical systems, such as the energy, power density, current rate and the cycle life of an electrochemical cell.

  4. Electrochemical oxidation of ethanol using PtRh/C electrocatalysts in alkaline medium and synthesized by sodium borohydride and alcohol reduction; Oxidação eletroquímica do etanol utilizando eletrocatalisadores PtRh/C em meio alcalino e sintetizados via borohidreto de sódio e redução por álcool

    Energy Technology Data Exchange (ETDEWEB)

    Fontes, Eric Hossein

    2017-07-01

    PtRh/C were prepared by the following atomic proportions: (100,0), (0,100), (90,10), (70,30) and (50,50). The methods employed in the synthesis of these materials were reduction by sodium borohydride and reduction by alcohol. The metal salts used were H{sub 2}PtCl{sub 6}3•6H{sub 2}0 and (RhNO{sub 3}){sub 3}, the support used was Carbon black XC72 and the bulk metal composition was 20% and 80% of support. The electrocatalysts were characterized by Energy Dispersive X-ray spectroscopy, X-ray diffraction and Transmission electron microscopy. The ethanol electrochemical oxidation mechanism was investigated by in situ Fourier Transform Infrared Spectroscopy couple to an Attenuated Total Reflection technique. The electrocatalytic activity were evaluated by Cyclic Voltammetry, Linear Sweep Voltammetry and Chronoamperometry techniques. The Fuel Cells tests were made in a single direct alcohol fuel cell with alkaline membrane. The working electrodes were prepared by a thin porous coating technique. X-ray diffraction allowed to verify metallic alloys, segregate phases and to calculate the percentage of metallic alloys. It was else possible to identify crystallographic phases. Infrared Spectroscopy allowed to verify that the electrochemical oxidation of ethanol was carried out by an incomplete mechanism. PtRh(70:30)/C prepared by sodium borohydride produced large amounts of carbon dioxide and acetaldehyde. Rh/C showed electrocatalytic activity when compared with other materials studied.

  5. Preliminary results of the comparison of the electrochemical behavior of a thioether and biphenyl

    Science.gov (United States)

    Morales, W.; Jones, W. R.

    1983-01-01

    An electrochemical cell was constructed to explore the feasibility of using electrochemical techniques to simulate the tribochemistry of various substances. The electrochemical cell was used to study and compare the behavior of a thioether 1,3-bis(phenylthio) benzene and biphenyl. It is found that under controlled conditions biphenyl undergoes a reversible reduction to a radical anion whereas the thioether undergoes an irreversible reduction yielding several products. The results are discussed in relationship to boundary lubrication.

  6. Chain reaction on de-halogenation of 1,2-dibromotetrafluoroethane and 1,1,2-trichlorotrifluoroethane induced by irradiation in alcohols

    International Nuclear Information System (INIS)

    Nakagawa, Seiko

    2015-01-01

    Methanol and 2-propanol solutions of 1,2-dibromotetrafluoroethane and 1,1,2-trichlorotrifluoroethane were irradiated with γ-rays after perfect de-oxygenation. The product, formed by the substitution of one of the bromine or chlorine atoms with a hydrogen atom, was observed by radiation-induced degradation and the product was also de-halogenated. The G-value of de-halogenation was more than a thousand times higher than G(e solv − ) and increased with the decreasing dose rate, meaning that a chain reaction is involved in the process. The efficiency of the degradation in 2-propanol was several times higher than that in methanol. It is concluded that the charge transfer from an alcohol radical will be the trigger of the chain reaction the same as in the degradation of hexachloroethane in alcohol solutions (Sawai et al., 1978). - Highlights: • Halone2402 and Furon113 were de-halogenated by radiation-induced chain reaction in pure alcohol. • The efficiency of the degradation in 2-propanol was several times higher than that in methanol. • The charge transfer from an alcohol radical will be the trigger of the chain reaction

  7. The electrochemical impedance of metal hydride electrodes

    DEFF Research Database (Denmark)

    Valøen, Lars Ole; Lasia, Andrzej; Jensen, Jens Oluf

    2002-01-01

    The electrochemical impedance responses for different laboratory type metal hydride electrodes were successfully modeled and fitted to experimental data for AB5 type hydrogen storage alloys as well as one MgNi type electrode. The models fitted the experimental data remarkably well. Several AC......, explaining the experimental impedances in a wide frequency range for electrodes of hydride forming materials mixed with copper powder, were obtained. Both charge transfer and spherical diffusion of hydrogen in the particles are important sub processes that govern the total rate of the electrochemical...... hydrogen absorption/desorption reaction. To approximate the experimental data, equations describing the current distribution in porous electrodes were needed. Indications of one or more parallel reduction/oxidation processes competing with the electrochemical hydrogen absorption/desorption reaction were...

  8. Electrochemical gating in scanning electrochemical microscopy

    NARCIS (Netherlands)

    Ahonen, P.; Ruiz, V.; Kontturi, K.; Liljeroth, P.; Quinn, B.M.

    2008-01-01

    We demonstrate that scanning electrochemical microscopy (SECM) can be used to determine the conductivity of nanoparticle assemblies as a function of assembly potential. In contrast to conventional electron transport measurements, this method is unique in that electrical connection to the film is not

  9. Redox-active porous coordination polymers prepared by trinuclear heterometallic pivalate linking with the redox-active nickel(II) complex: synthesis, structure, magnetic and redox properties, and electrocatalytic activity in organic compound dehalogenation in heterogeneous medium.

    Science.gov (United States)

    Lytvynenko, A S; Kolotilov, S V; Kiskin, M A; Cador, O; Golhen, S; Aleksandrov, G G; Mishura, A M; Titov, V E; Ouahab, L; Eremenko, I L; Novotortsev, V M

    2014-05-19

    Linking of the trinuclear pivalate fragment Fe2CoO(Piv)6 by the redox-active bridge Ni(L)2 (compound 1; LH is Schiff base from hydrazide of 4-pyridinecarboxylic acid and 2-pyridinecarbaldehyde, Piv(-) = pivalate) led to formation of a new porous coordination polymer (PCP) {Fe2CoO(Piv)6}{Ni(L)2}1.5 (2). X-ray structures of 1 and 2 were determined. A crystal lattice of compound 2 is built from stacked 2D layers; the Ni(L)2 units can be considered as bridges, which bind two Fe2CoO(Piv)6 units. In desolvated form, 2 possesses a porous crystal lattice (SBET = 50 m(2) g(-1), VDR = 0.017 cm(3) g(-1) estimated from N2 sorption at 78 K). At 298 K, 2 absorbed a significant quantity of methanol (up to 0.3 cm(3) g(-1)) and chloroform. Temperature dependence of molar magnetic susceptibility of 2 could be fitted as superposition of χMT of Fe2CoO(Piv)6 and Ni(L)2 units, possible interactions between them were taken into account using molecular field model. In turn, magnetic properties of the Fe2CoO(Piv)6 unit were fitted using two models, one of which directly took into account a spin-orbit coupling of Co(II), and in the second model the spin-orbit coupling of Co(II) was approximated as zero-field splitting. Electrochemical and electrocatalytic properties of 2 were studied by cyclic voltammetry in suspension and compared with electrochemical and electrocatalytic properties of a soluble analogue 1. A catalytic effect was determined by analysis of the catalytic current dependency on concentrations of the substrate. Compound 1 possessed electrocatalytic activity in organic halide dehalogenation, and such activity was preserved for the Ni(L)2 units, incorporated into the framework of 2. In addition, a new property occurred in the case of 2: the catalytic activity of PCP depended on its sorption capacity with respect to the substrate. In contrast to homogeneous catalysts, usage of solid PCPs may allow selectivity due to porous structure and simplify separation of product.

  10. Electrochemical force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kalinin, Sergei V.; Jesse, Stephen; Collins, Liam F.; Rodriguez, Brian J.

    2017-01-10

    A system and method for electrochemical force microscopy are provided. The system and method are based on a multidimensional detection scheme that is sensitive to forces experienced by a biased electrode in a solution. The multidimensional approach allows separation of fast processes, such as double layer charging, and charge relaxation, and slow processes, such as diffusion and faradaic reactions, as well as capturing the bias dependence of the response. The time-resolved and bias measurements can also allow probing both linear (small bias range) and non-linear (large bias range) electrochemical regimes and potentially the de-convolution of charge dynamics and diffusion processes from steric effects and electrochemical reactivity.

  11. Emerging electrochemical energy conversion and storage technologies

    Science.gov (United States)

    Badwal, Sukhvinder P. S.; Giddey, Sarbjit S.; Munnings, Christopher; Bhatt, Anand I.; Hollenkamp, Anthony F.

    2014-01-01

    Electrochemical cells and systems play a key role in a wide range of industry sectors. These devices are critical enabling technologies for renewable energy; energy management, conservation, and storage; pollution control/monitoring; and greenhouse gas reduction. A large number of electrochemical energy technologies have been developed in the past. These systems continue to be optimized in terms of cost, life time, and performance, leading to their continued expansion into existing and emerging market sectors. The more established technologies such as deep-cycle batteries and sensors are being joined by emerging technologies such as fuel cells, large format lithium-ion batteries, electrochemical reactors; ion transport membranes and supercapacitors. This growing demand (multi billion dollars) for electrochemical energy systems along with the increasing maturity of a number of technologies is having a significant effect on the global research and development effort which is increasing in both in size and depth. A number of new technologies, which will have substantial impact on the environment and the way we produce and utilize energy, are under development. This paper presents an overview of several emerging electrochemical energy technologies along with a discussion some of the key technical challenges. PMID:25309898

  12. Electrochemical modification of carbon electrode with benzylphosphonic groups

    International Nuclear Information System (INIS)

    Benjamin, Ossonon Diby; Weissmann, Martin; Bélanger, Daniel

    2014-01-01

    Electrochemical modification of carbon electrodes by aryl groups bearing a phosphonate terminal functionality was carried out by both electrochemical reduction of diazonium ions (diazobenzylphosphonic acid) and electrochemical oxidation of an amine (aminobenzylphosphonic acid). The grafting by electrochemical reduction of aryl diazonium ions was found to be more efficient. The surface concentration of phosphonate groups, estimated by electrochemical reduction of electrostatically bound Pb(II) ions, was found to be about 25% higher for the layer formed by electrochemical reduction of diazonium ions than for the layer formed by oxidation of the amine. The acid–base properties of the grafted films were slightly influenced by the grafting procedure and the difference in the apparent pK a was most likely related to the presence of the substrate –NH-aryl linkage for the film generated by amine oxidation. X-ray photoelectron spectroscopy was used to get some insight on the chemical species present at the carbon electrode surface. For both procedures, the films consist in mixture of at least two different covalently grafted species

  13. Application of electrochemical techniques in fuel reprocessing- an overview

    Energy Technology Data Exchange (ETDEWEB)

    Rao, M K; Bajpai, D D; Singh, R K [Power Reactor Fuel Reprocessing Plant, Tarapur (India)

    1994-06-01

    The operating experience and development work over the past several years have considerably improved the wet chemical fuel reprocessing PUREX process and have brought the reprocessing to a stage where it is ready to adopt the introduction of electrochemical technology. Electrochemical processes offer advantages like simplification of reprocessing operation, improved performance of the plant and reduction in waste volume. At Power Reactor Fuel Reprocessing plant, Tarapur, work on development and application of electrochemical processes has been carried out in stages. To achieve plant scale application of these developments, a new electrochemical cycle is being added to PUREX process at PREFRE. This paper describes the electrochemical and membrane cell development activities carried out at PREFRE and their current status. (author). 5 refs., 4 tabs.

  14. Concatenation of electrochemical grafting with chemical or electrochemical modification for preparing electrodes with specific surface functionality

    International Nuclear Information System (INIS)

    Verma, Pallavi; Maire, Pascal; Novak, Petr

    2011-01-01

    Surface modified electrodes are used in electro-analysis, electro-catalysis, sensors, biomedical applications, etc. and could also be used in batteries. The properties of modified electrodes are determined by the surface functionality. Therefore, the steps involved in the surface modification of the electrodes to obtain specific functionality are of prime importance. We illustrate here bridging of two routes of surface modifications namely electrochemical grafting, and chemical or electrochemical reduction. First, by electrochemical grafting an organic moiety is covalently immobilized on the surface. Then, either by chemical or by electrochemical route the terminal functional group of the grafted moiety is transformed. Using the former route we prepared lithium alkyl carbonate (-O(CH 2 ) 3 OCO 2 Li) modified carbon with potential applications in batteries, and employing the latter we prepared phenyl hydroxyl amine (-C 6 H 4 NHOH) modified carbon which may find application in biosensors. Benzyl alcohol (-C 6 H 4 CH 2 OH) modified carbon was prepared by both chemical as well as electrochemical route. We report combinations of conjugating the two steps of surface modifications and show how the optimal route of terminal functional group modification depends on the chemical nature of the moiety attached to the surface in the electrochemical grafting step.

  15. Concatenation of electrochemical grafting with chemical or electrochemical modification for preparing electrodes with specific surface functionality

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Pallavi; Maire, Pascal [Paul Scherrer Institut, Electrochemistry Laboratory, Section Electrochemical Energy Storage, CH-5232 Villigen PSI (Switzerland); Novak, Petr, E-mail: petr.novak@psi.c [Paul Scherrer Institut, Electrochemistry Laboratory, Section Electrochemical Energy Storage, CH-5232 Villigen PSI (Switzerland)

    2011-04-01

    Surface modified electrodes are used in electro-analysis, electro-catalysis, sensors, biomedical applications, etc. and could also be used in batteries. The properties of modified electrodes are determined by the surface functionality. Therefore, the steps involved in the surface modification of the electrodes to obtain specific functionality are of prime importance. We illustrate here bridging of two routes of surface modifications namely electrochemical grafting, and chemical or electrochemical reduction. First, by electrochemical grafting an organic moiety is covalently immobilized on the surface. Then, either by chemical or by electrochemical route the terminal functional group of the grafted moiety is transformed. Using the former route we prepared lithium alkyl carbonate (-O(CH{sub 2}){sub 3}OCO{sub 2}Li) modified carbon with potential applications in batteries, and employing the latter we prepared phenyl hydroxyl amine (-C{sub 6}H{sub 4}NHOH) modified carbon which may find application in biosensors. Benzyl alcohol (-C{sub 6}H{sub 4}CH{sub 2}OH) modified carbon was prepared by both chemical as well as electrochemical route. We report combinations of conjugating the two steps of surface modifications and show how the optimal route of terminal functional group modification depends on the chemical nature of the moiety attached to the surface in the electrochemical grafting step.

  16. Fundamentals of electrochemical science

    CERN Document Server

    Oldham, Keith

    1993-01-01

    Key Features* Deals comprehensively with the basic science of electrochemistry* Treats electrochemistry as a discipline in its own right and not as a branch of physical or analytical chemistry* Provides a thorough and quantitative description of electrochemical fundamentals

  17. Electrochemical Analysis of Neurotransmitters

    Science.gov (United States)

    Bucher, Elizabeth S.; Wightman, R. Mark

    2015-07-01

    Chemical signaling through the release of neurotransmitters into the extracellular space is the primary means of communication between neurons. More than four decades ago, Ralph Adams and his colleagues realized the utility of electrochemical methods for the study of easily oxidizable neurotransmitters, such as dopamine, norepinephrine, and serotonin and their metabolites. Today, electrochemical techniques are frequently coupled to microelectrodes to enable spatially resolved recordings of rapid neurotransmitter dynamics in a variety of biological preparations spanning from single cells to the intact brain of behaving animals. In this review, we provide a basic overview of the principles underlying constant-potential amperometry and fast-scan cyclic voltammetry, the most commonly employed electrochemical techniques, and the general application of these methods to the study of neurotransmission. We thereafter discuss several recent developments in sensor design and experimental methodology that are challenging the current limitations defining the application of electrochemical methods to neurotransmitter measurements.

  18. Organic electrochemical transistors

    KAUST Repository

    Rivnay, Jonathan; Inal, Sahika; Salleo, Alberto; Owens, Ró isí n M.; Berggren, Magnus; Malliaras, George G.

    2018-01-01

    Organic electrochemical transistors (OECTs) make effective use of ion injection from an electrolyte to modulate the bulk conductivity of an organic semiconductor channel. The coupling between ionic and electronic charges within the entire volume

  19. Electrochemical polymer electrolyte membranes

    CERN Document Server

    Fang, Jianhua; Wilkinson, David P

    2015-01-01

    Electrochemical Polymer Electrolyte Membranes covers PEMs from fundamentals to applications, describing their structure, properties, characterization, synthesis, and use in electrochemical energy storage and solar energy conversion technologies. Featuring chapters authored by leading experts from academia and industry, this authoritative text: Discusses cutting-edge methodologies in PEM material selection and fabricationPoints out important challenges in developing PEMs and recommends mitigation strategies to improve PEM performanceAnalyzes the cur

  20. Electrochemical properties of quaternary ammonium salts for electrochemical capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Ue, Makoto; Takeda, Masayuki; Takehara, Masahiro; Mori, Shoichiro [Mitsubishi Chemical Corp., Inashiki, Ibaraki (Japan). Tsukuba Research Center

    1997-08-01

    The limiting reduction and oxidation potentials and electrolytic conductivities of new quaternary ammonium salts were examined for electrochemical capacitor applications, whose anions have already been tested as lithium salts for lithium battery applications. The anodic stability was in the following order BR{sub 4}{sup {minus}} < ClO{sub 4}{sup {minus}} {le} CF{sub 3}SO{sub 3}{sup {minus}} < (CF{sub 3}SO{sub 2}){sub 2}N{sup {minus}} {le} C{sub 4}F{sub 9}SO{sub 3}{sup {minus}} < BF{sub 4}{sup {minus}} < PF{sub 6}{sup {minus}} {le} AsF{sub 6}{sup {minus}} < SbF{sub 6}{sup {minus}}. The electrolytic conductivities of Me{sub 4{minus}n}Et{sub n}N(CF{sub 3}SO{sub 2}){sub 2}N (n = 0--4) were examined in comparison with Me{sub 4{minus}n}Et{sub n}NBF{sub 4} counterparts. These imide salts showed good solubility, relatively high conductivity, and anodic stability in propylene carbonate. Et{sub 4}N(CF{sub 3}SO{sub 2}){sub 2}N was found to be a good supporting salt for low permittivity organic solvents, and it afforded a highly conductive electrolyte system based on the ethylene carbonate-dimethyl carbonate mixed solvent, which is useful for electrochemical capacitor applications.

  1. Electrochemical production of hydrocarbons from carbon dioxide and water

    NARCIS (Netherlands)

    Ros, C.H.

    2016-01-01

    Electrocatalytic reduction of CO2 is one possibility to solve the electrical energy storage problem and decrease the amount of CO2. Copper is the only metal that has been reported to produce hydrocarbons in the electrochemical CO2 reduction at ambient pressure and temperature. External parameters

  2. Preparation and Electrochemical Properties of Silver Doped Hollow Carbon Nanofibers

    Directory of Open Access Journals (Sweden)

    LI Fu

    2016-11-01

    Full Text Available Silver doped PAN-based hollow carbon nanofibers were prepared combining co-electrospinning with in situ reduction technique subsequently heat treatment to improve the electrochemical performances of carbon based supercapacitor electrodes. The morphology, structure and electrochemical performances of the resulted nanofiber were studied. The results show that the silver nanoparticles can be doped on the surface of hollow carbon nanofibers and the addition of silver favors the improvement of the electrochemical performances, exhibiting the enhanced reversibility of electrode reaction and the capacitance and the reduced charge transfer impedance.

  3. Electrochemical degradation of the chloramphenicol at flow reactor

    International Nuclear Information System (INIS)

    Rezende, Luis Gustavo P.; Prado, Vania M. do; Rocha, Robson S.; Beati, Andre A.G.F.; Sotomayor, Maria del Pilar T.; Lanza, Marcos R.V.

    2010-01-01

    This paper reports a study of electrochemical degradation of the chloramphenicol antibiotic in aqueous medium using a flow-by reactor with DSA anode. The process efficiency was monitored by chloramphenicol concentration analysis with liquid chromatography (HPLC) during the experiments. Analysis of Total Organic Carbon (TOC) was performed to estimate the degradation degree and Ion Chromatography (IC) was performed to determinate inorganic ions formed during the electrochemical degradation process. In electrochemical flow-by reactor, 52% of chloramphenicol was degraded, with 12% TOC reduction. IC analysis showed the production of chloride ions (25 mg L -1 ), nitrate ions (6 mg L -1 ) and nitrite ions (4.5 mg L -1 ). (author)

  4. Transparent Electrochemical Gratings from a Patterned Bistable Silver Mirror.

    Science.gov (United States)

    Park, Chihyun; Na, Jongbeom; Han, Minsu; Kim, Eunkyoung

    2017-07-25

    Silver mirror patterns were formed reversibly on a polystyrene (PS)-patterned electrode to produce gratings through the electrochemical reduction of silver ions. The electrochemical gratings exhibited high transparency (T > 95%), similar to a see-through window, by matching the refractive index of the grating pattern with the surrounding medium. The gratings switch to a diffractive state upon the formation of a mirror pattern (T modulation, NIR light reflection, and on-demand heat transfer.

  5. Nanodevices in nature: Electrochemical aspects

    International Nuclear Information System (INIS)

    Volkov, Alexander G.; Volkova-Gugeshashvili, Maya I.; Brown-McGauley, Courtney L.; Osei, Albert J.

    2007-01-01

    Electrochemical multielectron reactions in photosynthesis and respiration are evaluated by thermodynamic and kinetic analysis. Kharkats and Volkov [Yu.I. Kharkats, A.G. Volkov, Biochim. Biophys. Acta 891 (1987) 56] were the first to present proof that cytochrome c oxidase reduces molecular oxygen by synchronous multielectron mechanism without O 2 - intermediate formation. After this pioneering observation, it became clear that the first step of oxygen reduction is two-electron concerted process. The energy for the H + -pump of cytochrome oxidase is liberated when the third and fourth electrons are added in the last two steps of water formation independent of the reaction pathway. Electrochemical principles govern many biological properties of organisms, such as the generation of electric fields, and the conduction of fast excitation waves. These properties are supported by the function of a variety of natural nanodevices. Ionic channels, as natural nanodevices, control the plasma membrane potential, and the movement of ions across membranes; thereby, regulating various biological functions. Some voltage-gated ion channels work as plasma membrane nanopotentiostats. In plants, excitation waves are possible mechanisms for intercellular and intracellular communication in response to environmental changes. The role of electrified nanointerface of the plasma membrane in signal transduction is discussed as well

  6. Microtiter plate based colorimetric assay for characterization of dehalogenation activity of GAC/Fe0 composite

    DEFF Research Database (Denmark)

    Hwang, Yuhoon; Salatas, Apostolos; Mines, Paul D.

    2015-01-01

    of nZVI and its composite with granular activated carbon (GAC). The assay focused on analysis of reaction products rather than its mother compounds, which gives more accurate quantification of reductive activity. The colorimetric assays were developed to quantify three reaction products, ammonia......Even though nanoscale zero valent iron (nZVI) has been intensively studied for the treatment of a plethora of pollutants through reductive reaction, a quantification of nZVI reactivity has not been standardized. Here, we developed series of colorimetric assays for determining reductive activity...

  7. Fabricating hierarchically porous carbon with well-defined open pores via polymer dehalogenation for high-performance supercapacitor

    Science.gov (United States)

    Guo, Mei; Li, Yu; Du, Kewen; Qiu, Chaochao; Dou, Gang; Zhang, Guoxin

    2018-05-01

    Improving specific energy of supercapacitors (SCs) at high power has been intensively investigated as a hot and challengeable topic. In this work, hierarchically porous carbon (HPC) materials with well-defined meso-/macro-pores are reported via the dehalogenation reaction of polyvinyl fluoride (PVDF) by NaNH2. The pore hierarchy is achievable mainly because of the coupled effects of NaNH2 activation and the template/bubbling effects of byproducts of NaF and NH3. Electron microscopy studies and Brunauer-Emmett-Teller (BET) measurements confirm that the structures of HPC samples contain multiple-scale pores assembled in a hierarchical pattern, and most of their volumes are contributed by mesopores. Aqueous symmetric supercapacitors (ASSCs) were fabricated using HPC-M7 materials, achieving an ultrahigh specific energy of 18.8 Wh kg-1 at specific power of 986.8 W kg-1. Remarkably, at the ultrahigh power of 14.3 kW kg-1, the HPC-ASSCs still output a very high specific energy of 16.7 Wh kg-1, which means the ASSCs can be charged or discharged within 4 s. The outstanding rate capacitive performance is mainly benefited from the hierarchical porous structure that allows highly efficient ion diffusion.

  8. Prefunctionalized Porous Organic Polymers: Effective Supports of Surface Palladium Nanoparticles for the Enhancement of Catalytic Performances in Dehalogenation.

    Science.gov (United States)

    Zhong, Hong; Liu, Caiping; Zhou, Hanghui; Wang, Yangxin; Wang, Ruihu

    2016-08-22

    Three porous organic polymers (POPs) containing H, COOMe, and COO(-) groups at 2,6-bis(1,2,3-triazol-4-yl)pyridyl (BTP) units (i.e., POP-1, POP-2, and POP-3, respectively) were prepared for the immobilization of metal nanoparticles (NPs). The ultrafine palladium NPs are uniformly encapsulated in the interior pores of POP-1, whereas uniform- and dual-distributed palladium NPs are located on the external surface of POP-2 and POP-3, respectively. The presence of carboxylate groups not only endows POP-3 an outstanding dispersibility in H2 O/EtOH, but also enables the palladium NPs at the surface to show the highest catalytic activity, stability, and recyclability in dehalogenation reactions of chlorobenzene at 25 °C. The palladium NPs on the external surface are effectively stabilized by the functionalized POPs containing BTP units and carboxylate groups, which provides a new insight for highly efficient catalytic systems based on surface metal NPs of porous materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Indirect Evidence Link PCB Dehalogenation with Geobacteraceae in Anaerobic Sediment-Free Microcosms

    Czech Academy of Sciences Publication Activity Database

    Pravečková, Martina; Brennerová, Mária; Holliger, Ch.; De Alencastro, F.; Rossi, P.

    2016-01-01

    Roč. 7, June (2016), s. 933 ISSN 1664-302X Institutional support: RVO:61388971 Keywords : polychlorinated biphenyl congeners * Delor 103 * reductive dechlorination Subject RIV: EE - Microbiology, Virology Impact factor: 4.076, year: 2016

  10. Electrochemical processing of carbon dioxide.

    Science.gov (United States)

    Oloman, Colin; Li, Hui

    2008-01-01

    With respect to the negative role of carbon dioxide on our climate, it is clear that the time is ripe for the development of processes that convert CO(2) into useful products. The electroreduction of CO(2) is a prime candidate here, as the reaction at near-ambient conditions can yield organics such as formic acid, methanol, and methane. Recent laboratory work on the 100 A scale has shown that reduction of CO(2) to formate (HCO(2)(-)) may be carried out in a trickle-bed continuous electrochemical reactor under industrially viable conditions. Presuming the problems of cathode stability and formate crossover can be overcome, this type of reactor is proposed as the basis for a commercial operation. The viability of corresponding processes for electrosynthesis of formate salts and/or formic acid from CO(2) is examined here through conceptual flowsheets for two process options, each converting CO(2) at the rate of 100 tonnes per day.

  11. Materials for electrochemical capacitors

    Science.gov (United States)

    Simon, Patrice; Gogotsi, Yury

    2008-11-01

    Electrochemical capacitors, also called supercapacitors, store energy using either ion adsorption (electrochemical double layer capacitors) or fast surface redox reactions (pseudo-capacitors). They can complement or replace batteries in electrical energy storage and harvesting applications, when high power delivery or uptake is needed. A notable improvement in performance has been achieved through recent advances in understanding charge storage mechanisms and the development of advanced nanostructured materials. The discovery that ion desolvation occurs in pores smaller than the solvated ions has led to higher capacitance for electrochemical double layer capacitors using carbon electrodes with subnanometre pores, and opened the door to designing high-energy density devices using a variety of electrolytes. Combination of pseudo-capacitive nanomaterials, including oxides, nitrides and polymers, with the latest generation of nanostructured lithium electrodes has brought the energy density of electrochemical capacitors closer to that of batteries. The use of carbon nanotubes has further advanced micro-electrochemical capacitors, enabling flexible and adaptable devices to be made. Mathematical modelling and simulation will be the key to success in designing tomorrow's high-energy and high-power devices.

  12. SAFIRA. Subproject B 3.1: reductive dechlorination of chloroaromatics by means of electrochemical methods and membrane-supported catalysts for in-situ treatment of contaminated groundwater. Final report; SAFIRA. Teilprojekt B 3.1: Reduktive Dechlorierung von Chloraromaten mit elektrochemischen Methoden und Membran-gestuetzten Katalysatoren zur in-situ-Behandlung von kontaminierten Grundwaessern. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Kopinke, F.D.; Mackenzie, K.; Koehler, R.; Battke, J.

    2002-12-31

    The objective of the sub-project was the development and experimental testing of a mainly passive, in situ technology for the abiotic dehalogenation of halogenated organic hydrocarbons (HOCs) within the aquifer. The technology to be developed should be applicable not only for aliphatic HOCs but also for dehalogenation of aromatic halogenated pollutants. During the first two years of the project, the main focus of our research was the development and testing of novel membrane-supported catalysts. The catalytically active component Pd was embedded in highly disperse form into non-porous silicone membranes in order to protect it from ionic catalyst poisons and erosion. At the laboratory scale, the novel catalysts proved their suitability for dehalogenation of various classes of HOCs within the water phase. The membrane-supported catalysts were developed in co-operation with a working group from the GKSS Geesthacht and their novelty was protected in a patent disclosure (DE 19952 732A1). Especially for their use under field conditions, membrane-supported Pd catalysts were produced as hollow fibres where the reaction partner hydrogen was fed from the interior of the fibres. Unfortunately, the high activity of these catalysts was not sustainable under Bitterfeld groundwater conditions - sulphur poisoning occurred due to non-ionic catalyst poisons situated in the aquifer and H{sub 2}S produced by sulphate-reducing bacteria. In order to enhance the catalyst stability and therefore their applicability in a scaled-up technology, our studies were then focused on the suppression of microbial activity and on catalyst regeneration. (orig.) [German] Das Ziel des Teilprojektes war die Entwicklung und experimentelle Pruefung eines weitgehend passiven, in-situ-tauglichen Verfahrens zur abiotischen Dehalogenierung von HKW im Aquifer, das auch auf halogenierte aromatische Verbindungen anwendbar ist. In den ersten zwei Jahren des Projektes stand die Entwicklung und Testung von Membran

  13. Dynamic PET and SPECT imaging with radioiodinated, amyloid-reactive peptide p5 in mice: a positive role for peptide dehalogenation.

    Science.gov (United States)

    Martin, Emily B; Kennel, Stephen J; Richey, Tina; Wooliver, Craig; Osborne, Dustin; Williams, Angela; Stuckey, Alan; Wall, Jonathan S

    2014-10-01

    Dynamic molecular imaging provides bio-kinetic data that is used to characterize novel radiolabeled tracers for the detection of disease. Amyloidosis is a rare protein misfolding disease that can affect many organs. It is characterized by extracellular deposits composed principally of fibrillar proteins and hypersulfated proteoglycans. We have previously described a peptide, p5, which binds preferentially to amyloid deposits in a murine model of reactive (AA) amyloidosis. We have determined the whole body distribution of amyloid by molecular imaging techniques using radioiodinated p5. The loss of radioiodide from imaging probes due to enzymatic reaction has plagued the use of radioiodinated peptides and antibodies. Therefore, we studied iodine-124-labeled p5 by using dynamic PET imaging of both amyloid-laden and healthy mice to assess the rates of amyloid binding, the relevance of dehalogenation and the fate of the radiolabeled peptide. Rates of blood pool clearance, tissue accumulation and dehalogenation of the peptide were estimated from the images. Comparisons of these properties between the amyloid-laden and healthy mice provided kinetic profiles whose differences may prove to be indicative of the disease state. Additionally, we performed longitudinal SPECT/CT imaging with iodine-125-labeled p5 up to 72h post injection to determine the stability of the radioiodinated peptide when bound to the extracellular amyloid. Our data show that amyloid-associated peptide, in contrast to the unbound peptide, is resistant to dehalogenation resulting in enhanced amyloid-specific imaging. These data further support the utility of this peptide for detecting amyloidosis and monitoring potential therapeutic strategies in patients. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Electrochemical energy storage

    CERN Document Server

    Tarascon, Jean-Marie

    2015-01-01

    The electrochemical storage of energy has become essential in assisting the development of electrical transport and use of renewable energies. French researchers have played a key role in this domain but Asia is currently the market leader. Not wanting to see history repeat itself, France created the research network on electrochemical energy storage (RS2E) in 2011. This book discusses the launch of RS2E, its stakeholders, objectives, and integrated structure that assures a continuum between basic research, technological research and industries. Here, the authors will cover the technological

  15. Electrochemical Hydrogen Evolution

    DEFF Research Database (Denmark)

    Laursen, A.B.; Varela Gasque, Ana Sofia; Dionigi, F.

    2012-01-01

    The electrochemical hydrogen evolution reaction (HER) is growing in significance as society begins to rely more on renewable energy sources such as wind and solar power. Thus, research on designing new, inexpensive, and abundant HER catalysts is important. Here, we describe how a simple experiment...... catalysts based on this. Suited for upper-level high school and first-year university students, this exercise involves using a basic two-cell electrochemical setup to test multiple electrode materials as catalysts at one applied potential, and then constructing a volcano curve with the resulting currents...

  16. Efficient electrochemical degradation of multiwall carbon nanotubes.

    Science.gov (United States)

    Reipa, Vytas; Hanna, Shannon K; Urbas, Aaron; Sander, Lane; Elliott, John; Conny, Joseph; Petersen, Elijah J

    2018-07-15

    As the production mass of multiwall carbon nanotubes (MWCNT) increases, the potential for human and environmental exposure to MWCNTs may also increase. We have shown that exposing an aqueous suspension of pristine MWCNTs to an intense oxidative treatment in an electrochemical reactor, equipped with an efficient hydroxyl radical generating Boron Doped Diamond (BDD) anode, leads to their almost complete mineralization. Thermal optical transmittance analysis showed a total carbon mass loss of over two orders of magnitude due to the electrochemical treatment, a result consistent with measurements of the degraded MWCNT suspensions using UV-vis absorbance. Liquid chromatography data excludes substantial accumulation of the low molecular weight reaction products. Therefore, up to 99% of the initially suspended MWCNT mass is completely mineralized into gaseous products such as CO 2 and volatile organic carbon. Scanning electron microscopy (SEM) images show sporadic opaque carbon clusters suggesting the remaining nanotubes are transformed into structure-less carbon during their electrochemical mineralization. Environmental toxicity of pristine and degraded MWCNTs was assessed using Caenorhabditis elegans nematodes and revealed a major reduction in the MWCNT toxicity after treatment in the electrochemical flow-by reactor. Published by Elsevier B.V.

  17. Complete Detoxification of Short Chain Chlorinated Aliphatic Compounds: Isolation of Halorespiring Organisms and Biochemical Studies of the Dehalogenating Enzyme Systems - Final Report; FINAL

    International Nuclear Information System (INIS)

    Tiedje, J.M.

    1999-01-01

    Work focused on the isolation and characterization of halorespiring populations, and the initial investigation of the dechlorinating enzyme systems. In addition, tools to evaluate the presence/activity to halorespiring populations in the environment were developed. The tools developed in this work (measurements of hydrogen consumption thresholds, molecular probes) are relevant for regulatory agencies in order to facilitate decisions on which bioremediation technology (biostimulation or bioaugmentation) is most promising at a particular site. In addition, a better understanding of the physiology of the halorespiring organisms as well as the biochemistry of the dehalogenating enzyme systems enhances our knowledge of how these organisms can successfully be employed in the bioremediation of contaminated sites

  18. A study of the dissolution mechanism by chemical and electrochemical oxidation-reduction of actinide dioxides (UO2, NpO2, PuO2, and AmO2) in an acid aqueous medium

    International Nuclear Information System (INIS)

    Berger, P.

    1991-01-01

    The plan followed to describe our study will be as follows: In a first part, we will review the general properties of MO 2 oxides (M = U, Np, Pu, and Am), as well as the dissolution methods known so far. We will emphasize, in particular, the great similarities in their structures, properties, and methods of dissolution, which justifies a parallel study of these oxides using an electrochemical method. The second part will concern the experimental study of the dissolution under electrolysis. We will, first of all, investigate its thermodynamic aspect, with the calculation of the free enthalpies of dissolution; and we will next show the phenomena of oxidizing dissolution and reducing dissolution using carbon paste electrodes. In a third part, we will present the test results on oxidizing dissolution in solutions that are highly enriched with oxygen-18. The isotopic analysis of the oxygen in the actinyl ions formed, deduced from the Raman spectra of the solutions, will make it possible to demonstrate the existence of a first oxidation step involving the participation of the solid. In the fourth part, we will summarize the experimental observations that might contribute to a better understanding of the mechanisms of oxidizing dissolution. A fifth and last part will be devoted to the presentation of a simple model of the dissolution of oxides in a carbon paste electrode under a constant current

  19. Biomass derived porous nitrogen doped carbon for electrochemical devices

    Directory of Open Access Journals (Sweden)

    Litao Yan

    2017-04-01

    Full Text Available Biomass derived porous nanostructured nitrogen doped carbon (PNC has been extensively investigated as the electrode material for electrochemical catalytic reactions and rechargeable batteries. Biomass with and without containing nitrogen could be designed and optimized to prepare PNC via hydrothermal carbonization, pyrolysis, and other methods. The presence of nitrogen in carbon can provide more active sites for ion absorption, improve the electronic conductivity, increase the bonding between carbon and sulfur, and enhance the electrochemical catalytic reaction. The synthetic methods of natural biomass derived PNC, heteroatomic co- or tri-doping into biomass derived carbon and the application of biomass derived PNC in rechargeable Li/Na batteries, high energy density Li–S batteries, supercapacitors, metal-air batteries and electrochemical catalytic reaction (oxygen reduction and evolution reactions, hydrogen evolution reaction are summarized and discussed in this review. Biomass derived PNCs deliver high performance electrochemical storage properties for rechargeable batteries/supercapacitors and superior electrochemical catalytic performance toward hydrogen evolution, oxygen reduction and evolution, as promising electrodes for electrochemical devices including battery technologies, fuel cell and electrolyzer. Keywords: Biomass, Nitrogen doped carbon, Batteries, Fuel cell, Electrolyzer

  20. Electrochemical Power Sources

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 7. Electrochemical Power Sources - Rechargeable Batteries. A K Shukla S K Martha. General Article Volume 6 Issue 7 July 2001 pp 52-63. Fulltext. Click here to view fulltext PDF. Permanent link:

  1. Electro-chemical grinding

    Science.gov (United States)

    Feagans, P. L.

    1972-01-01

    Electro-chemical grinding technique has rotation speed control, constant feed rates, and contour control. Hypersonic engine parts of nickel alloys can be almost 100% machined, keeping tool pressure at virtual zero. Technique eliminates galling and permits constant surface finish and burr-free interrupted cutting.

  2. Oxygen Reduction on Platinum

    DEFF Research Database (Denmark)

    Nesselberger, Markus

    . The influence of the ion adsorption strength, which is observed in the “particle size studies” on the oxygen reduction rate on Pt/C catalysts, is further investigated under similar reaction conditions by infrared spectroscopy. The designed in situ electrochemical ATR-FTIR setup features a high level...... of instrument automation and online data treatment, and provides welldefined mass transport conditions enabling kinetic measurements. A modified electrochemical / spectroscopic interface is presented allowing the exclusive investigation of the Pt/C catalyst layer. Three types of potential dependent adsorption...... adsorption on Pt does not block the ORR directly. Instead, the onset of oxide formation with the concomitant conversion of the anion adsorbate layer is the decisive blocking mechanism....

  3. Synthesis and characterization of technetium(III) complexes with nitrogen heterocycles by O atom transfer from oxotechnetium(V) cores. Crystal structures of mer-[Cl3(pic)3Tc] and mer-[Cl3(pic)(PMe2Ph)2Tc] (pic = 4-picoline). Electrochemical parameters fore the reduction of TcII, TcIII, and TcIV

    International Nuclear Information System (INIS)

    Lu, Jun; Yamano, Akahito; Clarke, M.J.

    1990-01-01

    The combination of pyridine ligands, (OCl 4 Tc) - , and O atom acceptors of different cone angles, such as PMe 2 Ph or PPh 3 , results in Tc III complexes that vary in the coordination of the phosphine ligand. The compounds mer[Cl 3 (4-picoline) 3 Tc] and mer-(Cl 3 (4-picoline)(PMe 2 Ph) 2 Tc) have been obtained in good yield and have been characterized spectroscopically and by single-crystal x-ray diffraction. The crystal structure data are reported. Linear correlations of technetium reduction potentials in DMF with electrochemical ligand additivity parameters (E L 's) have been obtained for the Tc II,I , Tc III,II , and Tc IV,III couples. The slope and intercept (S M , I M ) pairs for each technetium oxidation-reduction couple, respectively, are (1.39, -2.07), (1.29, -0.91), and (1.00, 0.65). 32 refs., 3 figs., 6 tabs

  4. Synthesis and characterization of the WxRuySez from the electrochemical reduction of oxygen and their possible application as electrode in fuel cell; Sintesis y caracterizacion del WxRuySez para la reduccion electroquimica de oxigeno y su posible aplicacion como electrodo en celdas de combustible

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez R, S D

    1996-12-31

    In this communication the synthesis of the W{sub 0.03}RuSe{sub 0.47}O{sub 0.3} from the transition metal carbonyl compounds and the chalcogenide in m Xylene, the chemical characterization of the novel material was performed by neutron activation analysis (NAA), using the TRIGA Mark III Reactor from the Nuclear Center of Mexico. The oxygen present in the material was determined by Rutherford Backscattering Spectrometry (RBS). Also the RuSe{sub 5.7} y WSe{sub 2} were synthesized and characterized by NAA. The electro kinetic oxygen reduction behaviour of the W{sub 0.03}RuSe{sub 0.47}O{sub 0.3} deposited in glassy carbon was investigated in aqueous H{sub 2}SO{sub 4} 0.5M. The rotating disk electrode electrochemical technique was used for determining the kinetic parameters: The reaction was of first order which implied that the rate determining step is the transfer of one electron, the Tafel slope was 0.115 V/decade; the electron transfer coefficient found was of 0.5, and the activation energy in the oxygen reduction reaction was 0.47 eV. (Author).

  5. Electrochemical and spectroscopic investigations of the K2SO4-V2O5 molten electrolyte

    DEFF Research Database (Denmark)

    Schmidt, Douglas S.; Winnick, Jack; Boghosian, Soghomon

    1999-01-01

    A 60 mol % K(2)SO(4)J/40 mol % V2O5 molten salt mixture was tested for electrochemical activity to determine its propensity for sulfate transport. Results of cyclic voltammetry showed a high electrochemical activity due likely to the reduction and oxidation of bulk, as opposed to minor, species...

  6. Preliminary comparison of different reduction methods of graphene

    Indian Academy of Sciences (India)

    The reduction of graphene oxide (GO) is a promising route to bulk produce graphene-based sheets. Different reduction processes result in reduced graphene oxide (RGO) with different properties. In this paper three reduction methods, chemical, thermal and electrochemical reduction, were compared on three aspects ...

  7. Electrochemical Approaches to Renewable Energy

    Science.gov (United States)

    Lobaccaro, Peter

    chapters 4-6, the electrochemical reduction of carbon dioxide (CO2R) is investigated as this reaction can produce hydrocarbons and alcohols as opposed to just hydrogen. First in chapter 4, the electrochemical cell, which is used to test the activity of CO2R catalysts, is scrutinized. The electrochemical cell is a mini-chemical reactor and it is important to monitor the reaction conditions within the reactor to ensure that they are constant throughout the study. I show that operating cells with high catalyst surface area to electrolyte volume ratios (S/V) at high current densities can have subtle consequences during CO2R, particularly as they relate to the bulk electrolyte CO2 concentration. By using the pH in the cell to measure the CO2 concentration, significant undersaturation of CO2 is observed in the bulk electrolyte, even at modest current densities of 10 mA cm-2. Undersaturation of CO2 produces large changes in the faradaic efficiency observed on copper electrodes, with hydrogen production becoming increasingly favored. Then in chapter 5, the use of selected-ion flow-tube mass spectrometry (SIFT-MS) as an analytical tool to detect the products of CO2R is investigated. The real-time analysis of the products of CO2R is especially of interest to enable the study of how and when the liquid products of the reaction are generated. This is currently only possible in some limited situations and an analytical tool that can do quantitative analysis of all the products of the CO2R reaction in real-time does not exist. I show that SIFT-MS is a promising technique which can uniquely detect the hydrocarbon, alcohols, and aldehydes produced during CO2R on copper. Furthermore, SIFT-MS should be able to provide quantitative results; however, further study is needed to rigorously prove this. Finally in chapter 6, a CO2R catalyst platform is developed based on templated electrochemically deposited nanowires. This platform is used to investigate the role of high surface area in catalyst

  8. Chemical and Electrochemical Properties of La0.58Sr0.4Fe0.8Co0.2O3-δ (LSCF) Thin Films upon Oxygen Reduction and Evolution Reactions

    DEFF Research Database (Denmark)

    Pitscheider, Simon; Machala, Michael; Guan, Zixuan

    2017-01-01

    The Oxygen Evolution and Oxygen Reduction Reactions (OER/ORR), occurring at the oxygen electrode of Solid Oxide Cells (SOCs) in the two possible ways of operation, require substantial overpotentials, therefore lowering the operating efficiency of the cells. The reaction mechanisms occurring...... at these electrodes are still not completely understood due to their complexity and localized character at the interfaces between different materials or between the gas atmosphere and the electrocatalyst, and need in situ techniques with very high chemical sensitivity, with the additional difficulty of probing...... the materials as close as possible to their realistic operating conditions. In addition, the properties of LSCF are, despite numerous studies, still unclear in many aspects, despite LSCF being one of the state-of-the-art electrocatalysts used for SOCs. It is understood that the surface chemical composition...

  9. Electrochemical removal of nickel ions from industrial wastewater

    NARCIS (Netherlands)

    Njau, K.N.; Woude, van der M.E.; Visser, G.J.; Janssen, L.J.J.

    2000-01-01

    The electrochemical reduction of nickel ions in dilute industrial wastewater from a galvanic nickel plating plant was carried out on a three-dimensional electrode in a gas diffusion electrode packed bed electrode cell (GBC) and also on a rotating disc electrode. To explain the experimental results,

  10. Synthesis and characterization of electrochemically-reduced graphene

    Indian Academy of Sciences (India)

    Graphene has superior electrical conductivity than graphite and other allotropes of carbon because of its high surface area and chemical tolerance. Electrochemically processed graphene sheets were obtained through the reduction of graphene oxide from hydrazine hydrate. The prepared samples were heated to different ...

  11. Electrochemical Oxidation of Phenol using a Flow-through Micro ...

    African Journals Online (AJOL)

    The electrochemical oxidation of phenol to benzoquinone followed by the reduction to hydroquinone and catechol was demonstrated by constructing a three-dimensional porous micro-flow cell from lead dioxideand lead. The electrodes were made by using the principles of curing and formation of lead oxide material that ...

  12. Electrochemical Behavior of Quinoxalin-2-one Derivatives at Mercury Electrodes and Its Analytical Use

    OpenAIRE

    Zimpl, Milan; Skopalova, Jana; Jirovsky, David; Bartak, Petr; Navratil, Tomas; Sedonikova, Jana; Kotoucek, Milan

    2012-01-01

    Derivatives of quinoxalin-2-one are interesting compounds with potential pharmacological activity. From this point of view, understanding of their electrochemical behavior is of great importance. In the present paper, a mechanism of electrochemical reduction of quinoxalin-2-one derivatives at mercury dropping electrode was proposed. Pyrazine ring was found to be the main electroactive center undergoing a pH-dependent two-electron reduction process. The molecule protonization of nitrogen in th...

  13. Catalytic reduction of NO by methane using a Pt/C/polybenzimidazole/Pt/C fuel cell

    DEFF Research Database (Denmark)

    Petrushina, Irina; Cleemann, Lars Nilausen; Refshauge, Rasmus

    2007-01-01

    with participation of H+ or electrochemically produced hydrogen. When added, methane partially suppresses the electrochemical reduction of NO. Methane outlet concentration monitoring has shown the CH4 participation in the chemical catalytic reduction, i.e., methane co-adsorption with NO inhibited the electrochemical...... NO reduction and introduced a dominant chemical path of the NO reduction. The products of the NO reduction with methane were N2, C2H4, and water. The catalytic NO reduction by methane was promoted when the catalyst was negatively polarized (−0.2 V). Repeated negative polarization of the catalyst increased...

  14. Electrochemical Sensors for Clinic Analysis

    Directory of Open Access Journals (Sweden)

    Guang Li

    2008-03-01

    Full Text Available Demanded by modern medical diagnosis, advances in microfabrication technology have led to the development of fast, sensitive and selective electrochemical sensors for clinic analysis. This review addresses the principles behind electrochemical sensor design and fabrication, and introduces recent progress in the application of electrochemical sensors to analysis of clinical chemicals such as blood gases, electrolytes, metabolites, DNA and antibodies, including basic and applied research. Miniaturized commercial electrochemical biosensors will form the basis of inexpensive and easy to use devices for acquiring chemical information to bring sophisticated analytical capabilities to the non-specialist and general public alike in the future.

  15. STIMULATION OF REDUCTIVE DECHLORINATION OF TETRA- CHLOROETHENE (PCE) IN ANAEROBIC AQUIFER MICROCOSMS BY ADDITION OF SHORT-CHAIN ORGANIC ACIDS OR ALCOHOLS

    Science.gov (United States)

    The effect of the addition of common fermentation products on the dehalogenation of tetrachloroethene was studied in methanogenic slurries made with aquifer solids. Lactate, propionate, crotonate, butyrate, and ethanol stimulated dehalogenation activity, while acetate, methanol, ...

  16. Electrochemical redox processes involving soluble cerium species

    International Nuclear Information System (INIS)

    Arenas, L.F.; Ponce de León, C.; Walsh, F.C.

    2016-01-01

    Highlights: • The relevance of cerium in laboratory and industrial electrochemistry is considered. • The history of fundamental electrochemical studies and applications is considered. • The chemistry, redox thermodynamics and electrode kinetics of cerium are summarised. • The uses of cerium ions in synthesis, energy storage, analysis and environmental treatment are illustrated. • Research needs and development perspectives are discussed. - Abstract: Anodic oxidation of cerous ions and cathodic reduction of ceric ions, in aqueous acidic solutions, play an important role in electrochemical processes at laboratory and industrial scale. Ceric ions, which have been used for oxidation of organic wastes and off-gases in environmental treatment, are a well-established oxidant for indirect organic synthesis and specialised cleaning processes, including oxide film removal from tanks and process pipework in nuclear decontamination. They also provide a classical reagent for chemical analysis in the laboratory. The reversible oxidation of cerous ions is an important reaction in the positive compartment of various redox flow batteries during charge and discharge cycling. A knowledge of the thermodynamics and kinetics of the redox reaction is critical to an understanding of the role of cerium redox species in these applications. Suitable choices of electrode material (metal or ceramic; coated or uncoated), geometry/structure (2-or 3-dimensional) and electrolyte flow conditions (hence an acceptable mass transport rate) are critical to achieving effective electrocatalysis, a high performance and a long lifetime. This review considers the electrochemistry of soluble cerium species and their diverse uses in electrochemical technology, especially for redox flow batteries and mediated electrochemical oxidation.

  17. Electrochemical Science and Technology

    CERN Document Server

    Oldham, Keith; Bond, Alan

    2011-01-01

    The book addresses the scientific principles underlying electrochemistry. Starting with the basic concepts of electricity, the early chapters discuss the physics and chemistry of the materials from which electrochemical cells are constructed and the properties that make these materials appropriate as cell components. Much of the importance of electrochemistry lies in the conversion of electrical energy into chemical energy and vice versa; the thermodynamics of these processes is described, in the context of a wide range of applications of these interconversions. An electrode is a surface at wh

  18. Isolation of novel bacteria within the Chloroflexi capable of reductive dechlorination of 1,2,3-trichloropropane.

    Science.gov (United States)

    Yan, J; Rash, B A; Rainey, F A; Moe, W M

    2009-04-01

    Two strictly anaerobic bacterial strains were isolated from contaminated groundwater at a Superfund site located near Baton Rouge, LA, USA. These strains represent the first isolates reported to reductively dehalogenate 1,2,3-trichloropropane. Allyl chloride (3-chloro-1-propene), which is chemically unstable, was produced from 1,2,3-trichloropropane, and it was hydrolysed abiotically to allyl alcohol and also reacted with the sulfide- and cysteine-reducing agents in the medium to form various allyl sulfides. Both isolates also dehalogenated a variety of other vicinally chlorinated alkanes (1,2-dichloropropane, 1,2-dichloroethane, 1,1,2-trichloroethane, 1,1,2,2- tetrachloroethane) via dichloroelimination reactions. A quantitative real-time PCR (qPCR) approach targeting 16S rRNA genes indicated that both strains couple reductive dechlorination to cell growth. Growth was not observed in the absence of hydrogen (H2) as an electron donor and a polychlorinated alkane as an electron acceptor. Alkanes containing only a single chlorine substituent (1-chloropropane, 2-chloropropane), chlorinated alkenes (tetrachlorothene, trichlorothene, cisdichloroethene, trans-dichloroethene, vinyl chloride) and chlorinated benzenes (1-chlorobenzene and 1,2- dichlorobenzene) were not dechlorinated. Phylogenetic analysis based on 16S rRNA gene sequence data showed these isolates to represent a new lineage within the Chloroflexi. Their closest previously cultured relatives are 'Dehalococcoides' strains, with 16S rRNA gene sequence similarities of only 90%.

  19. Electrochemical photovoltaic cells and electrodes

    Science.gov (United States)

    Skotheim, Terje A.

    1984-01-01

    Improved electrochemical photovoltaic cells and electrodes for use therein, particularly electrodes employing amorphous silicon or polyacetylene coating are produced by a process which includes filling pinholes or porous openings in the coatings by electrochemical oxidation of selected monomers to deposit insulating polymer in the openings.

  20. Thermodynamics of irreversible electrochemical phenomena

    NARCIS (Netherlands)

    Groot, S.R. de; Mazur, P.; Tolhoek, H.A.

    1953-01-01

    A discussion from first principles is given of the energy and entropy laws in electrochemical systems. It is found that it is possible to clarify such controversial concepts as the form of the second law and the role of the electrochemical potential in the systems concerned.