WorldWideScience

Sample records for electrochemical iron generation

  1. Electrochemical oxidation of iron and alkalinity generation for efficient sulfide control in sewers.

    Science.gov (United States)

    Lin, Hui-Wen; Kustermans, Caroline; Vaiopoulou, Eleni; Prévoteau, Antonin; Rabaey, Korneel; Yuan, Zhiguo; Pikaar, Ilje

    2017-07-01

    The addition of iron salts is one of the most commonly used dosing strategies for sulfide control in sewers. However, iron salts decrease the sewage pH which not only reduces the effectiveness of sulfide precipitation but also enhances the release of residual sulfide to the sewer atmosphere. Equally important, concentrated iron salt solutions are corrosive and their frequent transport, handling, and on-site storage often come with Occupational Health and Safety (OH&S) concerns. Here, we experimentally demonstrated a novel sulfide control approach using electrochemical systems with parallel placed iron electrodes. This enabled combining anodic dissolved iron species release with cathodic hydroxyl anion production, which alleviates all the aforementioned concerns. A long-term experiment was successfully carried out achieving an average sulfide removal efficiency of 95.4 ± 4.4% at low voltage input of 2.90 ± 0.54 V over the course of 8 weeks. This electrochemical method was demonstrated to successfully achieve efficient sulfide control. In addition, it increases the sewage pH, thereby overcoming the drawbacks associated with the pH decrease in the case of conventional iron salt dosing. Ferrous ions were produced at an overall coulombic efficiency (CE) of 98.2 ± 1.2%, whereas oxygen evolution and direct sulfide oxidation were not observed. Short-term experiments showed that increasing either inter-electrode gap or current density increased the cell voltage associated with the increase in the ohmic drop of the system. Overall, this study highlights the practical potential of in-situ generation of dissolved iron species and simultaneous hydroxyl anion generation for efficient sulfide control in sewers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Electrochemically Generated cis-Carboxylato-Coordinated Iron(IV) Oxo Acid-Base Congeners as Promiscuous Oxidants of Water Pollutants

    DEFF Research Database (Denmark)

    de Sousa, David P; Miller, Christopher J; Chang, Yingyue

    2017-01-01

    The nonheme iron(IV) oxo complex [FeIV(O)(tpenaH)]2+ and its conjugate base [FeIV(O)(tpena)]+ [tpena- = N,N,N'-tris(2-pyridylmethyl)ethylenediamine-N'-acetate] have been prepared electrochemically in water by bulk electrolysis of solutions prepared from [FeIII2(μ-O)(tpenaH)2](ClO4)4 at potentials...... of the electrochemically generated iron(IV) oxo complexes, in terms of the broad range of substrates examined, represents an important step toward the goal of cost-effective electrocatalytic water purification....

  3. Iron turbidity removal from the active process water system of the Kaiga Generating Station Unit 1 using an electrochemical filter

    International Nuclear Information System (INIS)

    Venkateswaran, G.; Gokhale, B.K.

    2007-01-01

    Iron turbidity is observed in the intermediate cooling circuit of the active process water system (APWS) of Kaiga Generating Station (KGS). Deposition of hydrous/hydrated oxides of iron on the plate type heat exchanger, which is employed to transfer heat from the APWS to the active process cooling water system (APCWS), can in turn result in higher moderator D 2 O temperatures due to reduced heat transfer. Characterization of turbidity showed that the major component is γ-FeOOH. An in-house designed and fabricated electrochemical filter (ECF) containing an alternate array of 33 pairs of cathode and anode graphite felts was successfully tested for the removal of iron turbidity from the APWS of Kaiga Generating Station Unit No. 1 (KGS No. 1). A total volume of 52.5 m 3 water was processed using the filter. At an average inlet turbidity of 5.6 nephelometric turbidity units (NTU), the outlet turbidity observed from the ECF was 1.6 NTU. A maximum flow rate (10 L . min -1 ) and applied potential of 18.0-20.0 V was found to yield an average turbidity-removal efficiency of ∝ 75 %. When the experiment was terminated, a throughput of > 2.08 . 10 5 NTU-liters was realized without any reduction in the removal efficiency. Removal of the internals of the filter showed that only the bottom 11 pairs of felts had brownish deposits, while the remaining felts looked clean and unused. (orig.)

  4. Determination of antimony by electrochemical hydride generation atomic absorption spectrometry in samples with high iron content using chelating resins as on-line removal system

    International Nuclear Information System (INIS)

    Bolea, E.; Arroyo, D.; Laborda, F.; Castillo, J.R.

    2006-01-01

    A method for the removal of the interference caused by iron on electrochemical generation of stibine is proposed. It consists of a chelating resin Chelex 100 column integrated into a flow injection system and coupled to the electrochemical hydride generator quartz tube atomic absorption spectrometer (EcHG-QT-AAS). Iron, as Fe(II), is retained in the column with high efficiency, close to 99.9% under optimal conditions. No significant retention was observed for Sb(III) under same conditions and a 97 ± 5% signal recovery was achieved. An electrochemical hydride generator with a concentric configuration and a reticulated vitreous carbon cathode was employed. The system is able to determine antimony concentrations in the range of ng ml -1 in presence of iron concentrations up to 400 mg l -1 . The procedure was validated by analyzing PACS-2 marine sediments reference material with a 4% (w/w) iron content and a [Fe]:[Sb] ratio of 4000:1, which caused total antimony signal suppression on the electrochemical hydride generation system. A compost sample with high iron content (0.7%, w/w), was also analyzed. A good agreement was found on both samples with the certified value and the antimony concentration determined by ICP-MS, respectively

  5. Electrochemically controlled iron isotope fractionation

    Science.gov (United States)

    Black, Jay R.; Young, Edward D.; Kavner, Abby

    2010-02-01

    Variations in the stable isotope abundances of transition metals have been observed in the geologic record and trying to understand and reconstruct the physical/environmental conditions that produced these signatures is an area of active research. It is clear that changes in oxidation state lead to large fractionations of the stable isotopes of many transition metals such as iron, suggesting that transition metal stable isotope signatures could be used as a paleo-redox proxy. However, the factors contributing to these observed stable isotope variations are poorly understood. Here we investigate how the kinetics of iron redox electrochemistry generates isotope fractionation. Through a combination of electrodeposition experiments and modeling of electrochemical processes including mass-transport, we show that electron transfer reactions are the cause of a large isotope separation, while mass transport-limited supply of reactant to the electrode attenuates the observed isotopic fractionation. Furthermore, the stable isotope composition of electroplated transition metals can be tuned in the laboratory by controlling parameters such as solution chemistry, reaction overpotential, and solution convection. These methods are potentially useful for generating isotopically-marked metal surfaces for tracking and forensic purposes. In addition, our studies will help interpret stable isotope data in terms of identifying underlying electron transfer processes in laboratory and natural samples.

  6. Electrochemical energy generation

    International Nuclear Information System (INIS)

    Kreysa, G.; Juettner, K.

    1993-01-01

    The proceedings encompass 40 conference papers belonging to the following subject areas: Baseline and review papers; electrochemical fuel cells; batteries: Primary and secondary cells; electrochemical, regenerative systems for energy conversion; electrochemical hydrogen generation; electrochemistry for nuclear power plant; electrochemistry for spent nuclear fuel reprocessing; energy efficiency in electrochemical processes. There is an annex listing the authors and titles of the poster session, and compacts of the posters can be obtained from the office of the Gesellschaft Deutscher Chemiker, Abteilung Tagungen. (MM) [de

  7. Characterization of Electrochemically Generated Silver

    Science.gov (United States)

    Adam, Niklas; Martinez, James; Carrier, Chris

    2014-01-01

    Silver biocide offers a potential advantage over iodine, the current state of the art in US spacecraft disinfection technology, in that silver can be safely consumed by the crew. Low concentrations of silver (Silver does not require hardware to remove it from a water system, and therefore can provide a simpler means for disinfecting water. The Russian segment of the International Space Station has utilized an electrochemically generated silver solution, which is colloidal in nature. To be able to reliably provide a silver biocide to drinking water by electrochemical means would reduce mass required for removing another biocide such as iodine from the water. This would also aid in crew time required to replace iodine removal cartridges. Future long term missions would benefit from electrochemically produced silver as the biocide could be produced on demand and requires only a small concentration to be effective. Since it can also be consumed safely, there is less mass in removal hardware and little consumables required for production. The goal of this project initially is to understand the nature of the electrochemically produced silver, the particle sizes produced by the electrochemical cell and the effect that voltage adjustment has on the particle size. In literature, it has been documented that dissolved oxygen and pH have an effect on the ionization of the electrochemical silver so those parameters would be measured and possibly adjusted to understand their effect on the silver.

  8. Progress in electrochemical synthesis of magnetic iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Ramimoghadam, Donya; Bagheri, Samira; Hamid, Sharifah Bee Abd

    2014-01-01

    Recently, magnetic iron oxide particles have been emerged as significant nanomaterials due to its extensive range of application in various fields. In this regard, synthesis of iron oxide nanoparticles with desirable properties and high potential applications are greatly demanded. Therefore, investigation on different iron oxide phases and their magnetic properties along with various commonly used synthetic techniques are remarked and thoroughly described in this review. Electrochemical synthesis as a newfound method with unique advantages is elaborated, followed by design approaches and key parameters to control the properties of the iron oxide nanoparticles. Additionally, since the dispersion of iron oxide nanoparticles is as important as its preparation, surface modification issue has been a serious challenge which is comprehensively discussed using different surfactants. Despite the advantages of the electrochemical synthesis method, this technique has been poorly studied and requires deep investigations on effectual parameters such as current density, pH, electrolyte concentration etc. - Highlights: • IONPs are applied in chemical industries, medicine, magnetic storage etc. • Electrochemical synthesis (EC) is convenient, eco-friendly, selective and low-cost. • EC key factors are current density, pH, electrolyte concentration, electrode type. • Organic, inorganic and biological materials can be used to modify IONPs’ surface. • The physicochemical properties of IONPs can be controlled by adding surfactants

  9. One step paired electrochemical synthesis of iron and iron oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Ordoukhanian Juliet

    2016-09-01

    Full Text Available In this study, a new one step paired electrochemical method is developed for simultaneous synthesis of iron and iron oxide nanoparticles. iron and iron oxide are prepared as cathodic and anodic products from iron (ii sulfate aqueous solution in a membrane divided electrolytic cell by the pulsed current electrosynthesis. Because of organic solvent-free and electrochemical nature of the synthesis, the process could be considered as green and environmentally friendly. The reduction of energy consumption and low cost are the other significant advantages of this new method that would have a great application potential in the chemical industry. The nanostructure of prepared samples was characterized by Fourier transform infrared spectroscopy (FT-IR, X-ray diffraction (XRD, scanning electron microscopy (SEM and transmission electron microscopy (TEM. The magnetic properties were studied by vibrating sample magnetometer (VsM.

  10. Investigation of electrochemical synthesis of ferrate, Part I: Electrochemical behavior of iron and its several alloys in concentrated alkaline solutions

    Directory of Open Access Journals (Sweden)

    Čekerevac Milan I.

    2009-01-01

    Full Text Available In recent years, considerable attention has been paid to various applications of Fe(VI due to its unique properties such as oxidizing power, selective reactivity, stability of the salt, and non-toxic decomposition by-products of ferric ion. In environmental remediation processes, Fe(VI has been proposed as green oxidant, coagulant, disinfectant, and antifoulant. Therefore, it is considered as a promising multi-purpose water treatment chemical. Fe(VI has also potential applications in electrochemical energy source, as 'green cathode'. The effectiveness of ferrate as a powerful oxidant in the entire pH range, and its use in environmental applications for the removal of wide range of contaminants has been well documented by several researchers. There is scientific evidence that ferrate can effectively remove arsenic, algae, viruses, pharmaceutical waste, and other toxic heavy metals. Although Fe(VI was first discovered in early eighteen century, detailed studies on physical and chemical properties of Fe(VI had to wait until efficient synthetic and analytical methods of Fe(VI were developed by Schreyer et al. in the 1950s. Actually, there have been developed three ways for the preparation of Fe(VI compounds : the wet oxidation of Fe(II and Fe(III compounds, the dry oxidation of the same, and the electrochemistry method, mainly based on the trans passive oxidation of iron. High purity ferrates Fe(VI can be generated when electrode of the pure iron metal or its alloys are anodized in concentrated alkaline solution. It is known that the efficiency of electrochemical process of Fe(VI production depends on many factors such as current density, composition of anode material, types of electrolyte etc. In this paper, the electrochemical synthesis of ferrate(VI solution by the anodic dissolution of iron and its alloys in concentrated water solution of NaOH and KOH is investigated. The process of transpassive dissolution of iron to ferrate(VI was studied by

  11. Electrochemical surface nitriding of pure iron by molten salt electrochemical process

    Energy Technology Data Exchange (ETDEWEB)

    Tsujimura, Hiroyuki; Goto, Takuya; Ito, Yasuhiko

    2004-08-11

    Electrochemical surface nitriding of pure iron was investigated in molten LiCl-KCl-Li{sub 3}N systems at 773 K. An outer compound layer and an inner diffusion layer were obtained by means of potentiostatic electrolysis at 1.00 V (versus Li{sup +}/Li). From XRD and SEM analyses, it was confirmed that the obtained compound layer consisted of {epsilon}-Fe{sub 2-3}N and {gamma}'-Fe{sub 4}N; the free energies of formation of the two nitrides are positive and the equilibrium nitrogen partial pressure of those are of the order of 10{sup 4} atm at 773 K. This result suggests that an apparent nitrogen partial pressure of at least the order of 10{sup 4} atm was imposed by the adsorbed nitrogen atoms (N{sub ads}) formed by anodic oxidation of nitride ion (N{sup 3-}) at the iron electrode surface.

  12. Electrochemical measurement of tritium and hydrogen permeation through iron membranes

    International Nuclear Information System (INIS)

    Hagi, Hideki; Hayashi, Yasunori

    1987-01-01

    Permeation rates of tritium and hydrogen through iron were measured by the electro-chemical method in which an aqueous solution containing 3.7 x 10 12 Bq/m 3 tritium was used as a cathodic electrolyte. Tritium and hydrogen were introduced from one side of a specimen by cathodic polarization with a constant current density, while at the other side of the specimen the permeated tritium and hydrogen were extracted by potentiostatical ionization. Nearly all of the potentiostatic current on the extraction side is produced by the ionization of hydrogen, because the concentration of tritium in the cathodic electrolyte is very small. The amount of permeated hydrogen was obtained by integrating the potentiostatic current, and that of permeated tritium was determined by measuring the radioactivity of the electrolyte sampled from the anodic side. The separation factor for permeation obtained under steady state conditions (the ratio of permeation rates of hydrogen to tritium divided by the ratio of the concentration of hydrogen to tritium in the cathodic electrolyte) is 12 at 288 K. This value is independent of cathodic current density. Diffusion coefficients of tritium (D T ) and hydrogen (D H ) in iron were determined from the tritium and hydrogen permeation by using time lag technique. For annealed iron at 286 K, D T = 9 x 10 -10 m 2 /s and D H = 4 x 10 -9 m 2 /s, and for 9 % cold-worked iron at 284 K, D T = 3 x 10 -10 m 2 /s and D H = 4 x 10 -10 m 2 /s. (author)

  13. Selective Leaching of Gray Cast Iron: Electrochemical Aspects

    International Nuclear Information System (INIS)

    Na, Kyung Hwan; Yun, Eun Sub; Park, Young Sheop

    2010-01-01

    Currently, to keep step with increases in energy consumption, much attention has been paid to the construction of new nuclear power plants (NPPs) and to the continued operation of NPPs. For continued operation, the selective leaching of materials should be evaluated by visual inspections and hardness measurements as a part of One-Time Inspection Program according to the requirements of the guidelines for continued operation of pressured water reactors (PWRs) in Korea and license renewals in the United States, entitled the 'Generic Aging Lessons Learned (GALL) report.' However, the acceptance criteria for hardness have yet to be provided. Recently, USNRC released a new draft of the GALL report for comment and plans to publish its formal version by the end of 2010. In the new draft, the quantitative acceptance criteria for hardness are given at last: no more than a 20 percent decrease in hardness for gray cast iron and brass containing more than 15 percent zinc. Selective leaching is the preferential removal of one of the alloying elements from a solid alloy by corrosion processes, leaving behind a weakened spongy or porous residual structure. The materials susceptible to selective leaching include gray cast iron and brass, which are mainly used as pump casings and valve bodies in the fire protection systems of NPPs. Since selective leaching proceeds slowly during a long period of time and causes a decrease in strength without changing the overall dimensions of original material, it is difficult to identify. In the present work, the selective leaching of gray cast iron is investigated in terms of its electrochemical aspects as part of an ongoing research project to study the changes in metal properties by selective leaching

  14. Electrochemical measurement of tritium and hydrogen permeation through iron membranes

    International Nuclear Information System (INIS)

    Hagi, Hideki; Hayashi, Yasunori

    1988-01-01

    Permeation rates of tritium and hydrogen through iron were measured by the electrochemical method in which an aqueous solution containing 3.7 x 10 12 Bq/m 3 tritium was used as a cathodic electrolyte. Tritium and hydrogen were introduced from one side of a specimen by cathodic polarization with a constant current density, while at the other side of the specimen the permeated tritium and hydrogen were extracted by potentiostatical ionization. Nearly all of the potentiostatic current of the extraction side stands for the ionization of hydrogen, because the concentration of tritium in the cathodic electrolyte is very small. The amount of permeated hydrogen was obtained by integrating the anodic current, and that of tritium was determined by measuring the radioactivity of the electrolyte sampled from the extraction side. The separation factor for permeation obtained under steady state conditions (the ratio of permeation rates of hydrogen to tritium divided by the ratio of the concentration of hydrogen to tritium in the charging electrolyte) is 12 at 288 K. This value is independent of cathodic current density. Diffusion coefficients of tritium (D T ) and hydrogen (D H ) in iron were determined from the time lag of tritium and hydrogen permeation. For annealed specimens at 286 K, D T = 9 x 10 -10 m 2 /s and D H = 4 x 10 -9 m 2 /s, and for 9% cold-worked specimens at 284 K, D T = 3 x 10 -10 m 2 /s and D H = 4 x 10 -10 m 2 /s. (author)

  15. Enhancing the water oxidation activity of Ni2P nanocatalysts by iron-doping and electrochemical activation

    International Nuclear Information System (INIS)

    Liu, Guang; He, Dongying; Yao, Rui; Zhao, Yong; Li, Jinping

    2017-01-01

    Highlights: •A sol-gel method for synthesis of Fe-doping Ni 2 P nanocatalysts was present. •Fe-doping Ni 2 P sample exhibited high OER activity after electrochemical activation. •In situ formed Fe-NiOOH layer on activated Fe-Ni 2 P provided more active OER sites. -- Abstract: In this work, we reported a facile and safe route for synthesis of Ni 2 P nanocatalysts by sol-gel method and demonstrated that the oxygen evolution reaction (OER) activity of Ni 2 P nanocatalysts can be dramatically enhanced by iron-doping and electrochemical activation. Compared with the fresh Fe-doped Ni 2 P nanocatalysts, a stable Fe-NiOOH layer was formed on the surface of Fe-doped Ni 2 P nanoparticles by electrochemical activation, thus promoting the charge transfer ability and surface electrochemically active sites generation for the electrochemical activated Fe-doped Ni 2 P nanocatalysts, ultimately accounting for the improvement of water oxidation activity, which was evidenced by cyclic voltammograms (CV), electrochemical impedance spectroscopy (EIS), X-ray photoelectron spectra (XPS) as well as high-resolution transmission electron microscopy (HR-TEM) measurements. For water oxidation reaction in 1 M KOH solution, the electrochemical activated Fe-doped Ni 2 P nanocatalysts can attain 10 mA/cm 2 at an overpotential of 292 mV with Tafel slope of 50 mV/dec, which was also much better than that of individual Ni 2 P, Fe 2 P nanocatalysts as well as commercial RuO 2 electrocatalyst. Moreover, long-term stability performance by chronoamperometric and chronopotentiometric tests for the activated Fe-doped Ni 2 P nanocatalysts exhibited no obvious decline within 56 h. It was demonstrated that modulating the OER catalytic activity for metal phosphide by iron-doping and electrochemical activation may provide new opportunities and avenues to engineer high performance electrocatalysts for water splitting.

  16. Electrochemical removal of hexavalent chromium from wastewater using Platinum-Iron/Iron-carbon nanotubes and bipolar Electrodes

    Directory of Open Access Journals (Sweden)

    Hoshyar Hossini

    2015-01-01

    Full Text Available Background: In recent decades, electrocoagulation (EC has engrossed much attention as an environmental-friendly and effectiveness process. In addition, the EC process is a potential suitable way for treatment of wastewater with concern to costs and environment. The object of this study was electrochemical evaluation of chromium removal from industrial wastewater using Platinum and carbon nanotubes electrodes. Materials and Methods: The effect of key variables including pH (3–9, hexavalent chromium concentration (50–300 mg/l, supporting electrolyte (NaCl, KCl, Na2CO3 and KNO3 and its dosage, Oxidation-Reduction variations, sludge generation rate and current density (2–20 mA/cm2 was determined. Results: Based on experimental data, optimum conditions were determined in 20, 120 min, pH 3, NaCl 0.5% and 100 mg/L initial concentration of chromium. Conclusions: Removal of hexavalent chromium from the wastewater could be successfully performanced using Platinum-Iron/Iron-carbon nanotubes and bipolar Electrodes.

  17. Determination of antimony by using a quartz atom trap and electrochemical hydride generation atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Menemenlioglu, Ipek; Korkmaz, Deniz [Department of Chemistry, Middle East Technical University, 06531 Ankara (Turkey); Ataman, O. Yavuz [Department of Chemistry, Middle East Technical University, 06531 Ankara (Turkey)], E-mail: ataman@metu.edu.tr

    2007-01-15

    The analytical performance of a miniature quartz trap coupled with electrochemical hydride generator for antimony determination is described. A portion of the inlet arm of the conventional quartz tube atomizer was used as an integrated trap medium for on-line preconcentration of electrochemically generated hydrides. This configuration minimizes transfer lines and connections. A thin-layer of electrochemical flow through cell was constructed. Lead and platinum foils were employed as cathode and anode materials, respectively. Experimental operation conditions for hydride generation as well as the collection and revolatilization conditions for the generated hydrides in the inlet arm of the quartz tube atomizer were optimized. Interferences of copper, nickel, iron, cobalt, arsenic, selenium, lead and tin were examined both with and without the trap. 3{sigma} limit of detection was estimated as 0.053 {mu}g l{sup -1} for a sample size of 6.0 ml collected in 120 s. The trap has provided 18 fold sensitivity improvement as compared to electrochemical hydride generation alone. The accuracy of the proposed technique was evaluated with two standard reference materials; Trace Metals in Drinking Water, Cat CRM-TMDW and Metals on Soil/Sediment 4, IRM-008.

  18. Electrochemical probing into the active sites of graphitic-layer encapsulated iron oxygen reduction reaction electrocatalysts

    DEFF Research Database (Denmark)

    Zhong, Lijie; Jensen, Jens Oluf; Cleemann, Lars Nilausen

    2018-01-01

    is still unclear compared with the well-recognized surface coordinated FeNx/C structure. Using the strong complexing effect of the iron component with anions, cyanide (CN−) in alkaline and thiocyanate (SCN−) in acidic media, the metal containing active sites are electrochemically probed. Three...

  19. Chitosan-iron oxide nanocomposite based electrochemical aptasensor for determination of malathion

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakar, Nirmal, E-mail: nirmalprabhakar@gmail.com; Thakur, Himkusha; Bharti, Anu; Kaur, Navpreet

    2016-10-05

    An electrochemical aptasensor based on chitosan-iron oxide nanocomposite (CHIT-IO) film deposited on fluorine tin Oxide (FTO) was developed for the detection of malathion. Iron oxide nanoparticles were prepared by co-precipitation method and characterized by Transmission electron microscopy and UV–Visible spectroscopy. The biotinylated DNA aptamer sequence specific to the malathion was immobilized onto the iron oxide doped-chitosan/FTO electrode by using streptavidin as linking molecule. Various characterization studies like Field Emission-Scanning Electron Microscopy (FE-SEM), Fourier Transform Infrared Spectroscopy (FT-IR), and Electrochemical studies were performed to attest the successful fabrication of bioelectrodes. Experimental parameters like aptamer concentration, response time, stability of electrode and reusability studies were optimized. Aptamer immobilized chitosan-iron oxide nanocomposite (APT/SA/CHIT-IO/FTO) bioelectrodes exhibited LOD of about 0.001 ng/mL within 15 min and spike-in studies revealed about 80–92% recovery of malathion from the lettuce leaves and soil sample. - Highlights: • An electrochemical aptasensor for the detection of Malathion has been developed. • Chitosan-iron oxide NP deposited FTO sheets provides platform for aptamer immobilization. • Aptasensor has efficiency to detect malathion upto 0.001 ng/mL within 15 min.

  20. Electrochemical measurements in PWR steam generators to follow crevice chemistry

    International Nuclear Information System (INIS)

    Feron, D.

    1991-01-01

    In PWR steam generator crevices, the evolution of chemistry is important for the understanding of corrosion phenomena. Electrochemical measurements have been performed in high temperature simulated crevice environments in order to follow hideout processes and remedial actions (on-line addition of boric acid). Reported tests have been conducted with model boilers of AJAX facilities. Eccentric and concentric tube support plate crevices have been instrumented with platinum electrodes. Electrochemical measurements have been collected when model boiler was under nominal conditions (primary temperature: 335 deg C, secondary temperature: 280 deg C). They include Electrochemical Impedance Spectroscopy (EIS) and potential measurements: with EIS, sodium and boric acid hideouts have been detected and followed. Potential measurements have been performed in an attempt to measure crevice PH evolution

  1. Electrochemical permeation tests on the kinetics of the hydrogen absorption of palladium and iron

    International Nuclear Information System (INIS)

    Dafft, E.G.

    1977-01-01

    Electrochemical permeation tests were performed to investigate the kinetics of the hydrogen development and hydrogen absorption. The cathode side of the samples was galvanostatically cathodically polarized in different electrolyte solutions with and without additions. THe hydrogen atoms diffusing out of the opposite side for iron and α-palladium were oxidized with potentiostatic, sufficiently anodic polarization. The thus registered stationary current is proportional to the hydrogen activity on the cathode side. Test apparatus and conditions are described. The measurements on iron are discussed. (orig./HPOE) [de

  2. Tracking polaron generation in electrochemically doped polyaniline thin films

    Science.gov (United States)

    Kalagi, S. S.; Patil, P. S.

    2018-04-01

    Electrochemically deposited polyaniline films on ITO substrates have been studied for their optical properties. π-π*transitions inducing the formation of polarons and bipolarons have been studied from the optical spectra. The generation of these quasiparticles and the corresponding quantum of energy stored has been analysed and calculated from the experimental data. The evolution of polaron with increased levels of protonation has been identified and the necessary energy required for the transitions have been explained with the help of band structure diagram.

  3. Electrochemical behaviour of iron and AISI 304 stainless steel in simulated acid rain solution

    Energy Technology Data Exchange (ETDEWEB)

    Pilic, Zora; Martinovic, Ivana [Mostar Univ. (Bosnia and Herzegovina). Dept. of Chemistry

    2016-10-15

    The growth mechanism and properties of the oxide films on iron and AISI 304 stainless steel were studied in simulated acid rain (pH 4.5) by means of electrochemical techniques and atomic absorption spectrometry. The layer-pore resistance model was applied to explain a potentiodynamic formation of surface oxides. It was found that the growth of the oxide film on iron takes place by the low-field migration mechanism, while that on the stainless steel takes place by the high-field mechanism. Kinetic parameters were determined. Impedance measurements revealed that Fe surface film has no protective properties at the open circuit potential, while the resistance of stainless steel oxide film is very high. The concentration of the metallic ions released into solution and measured by atomic absorption spectroscopy was in accordance with the results obtained from the electrochemical techniques.

  4. Characterization of electrochemically and chemically generated technetium diphosphonate radiopharmaceuticals

    International Nuclear Information System (INIS)

    Martin, J.L. Jr.

    1987-01-01

    Tc-Methylene diphosphonate, (MDP), the skeletal imaging ligand is most use in radiopharmacies, is the first metal-ligand complex prepared electrochemically in this work. A similar systematic evaluation of electrochemically reduced Tc-dimethylaminomethylene diphosphonate (DMAD) is presented. DMAD as well as MDP have been characterized by anion exchange HPLC following NaBH4 reduction. The goal is twofold. First, the effect of varying the applied potential on the resultant chromatographic distribution of complexes is investigated. Secondly, the combination(s) of applied potential and preparation pH which preferentially directs the formation of technetium diphosphonate complexes previously shown to be superior skeletal imaging agents is determined. EXAFS, extended x-ray absorption fine structure spectroscopy, is applied to the analysis of dilute solutions (10mM) of electrochemically and chemically reduced Tc-MDP complexes. Further characterizations of electrochemically and chemically generated complexes are performed using in-vitro and in-vivo physiological techniques of biodistribution and blood clearance studies on Sprague Dawley rats and beagle dogs respectively. Finally, in-vitro and in-vivo dilution studies were performed using water, human and dog urine, to determine the influence of the physiological environment on clinically prepared and injected radiopharmaceuticals

  5. Occurrence and behaviour of dissolved, nano-particulate and micro-particulate iron in waste waters and treatment systems: new insights from electrochemical analysis.

    Science.gov (United States)

    Matthies, R; Aplin, A C; Horrocks, B R; Mudashiru, L K

    2012-04-01

    Cyclic-, Differential Pulse- and Steady-state Microdisc Voltammetry (CV, DPV, SMV) techniques have been used to quantify the occurrence and fate of dissolved Fe(ii)/Fe(iii), nano-particulate and micro-particulate iron over a 12 month period in a series of net-acidic and net-alkaline coal mine drainages and passive treatment systems. Total iron in the mine waters is typically 10-100 mg L(-1), with values up to 2100 mg L(-1). Between 30 and 80% of the total iron occurs as solid phase, of which 20 to 80% is nano-particulate. Nano-particulate iron comprises 20 to 70% of the nominally "dissolved" (i.e. sedimentation are the only processes required to remove solid phase iron, these data have important implications for the generation or consumption of acidity during water treatment. In most waters, the majority of truly dissolved iron occurs as Fe(ii) (average 64 ± 22%). Activities of Fe(ii) do not correlate with pH and geochemical modelling shows that no Fe(ii) mineral is supersaturated. Removal of Fe(ii) must proceed via oxidation and hydrolysis. Except in waters with pH waters are generally supersaturated with respect to ferrihydrite and schwertmannite, and are not at redox equilibrium, indicating the key role of oxidation and hydrolysis kinetics on water treatment. Typically 70-100% of iron is retained in the treatment systems. Oxidation, hydrolysis, precipitation, coagulation and sedimentation occur in all treatment systems and - independent of water chemistry and the type of treatment system - hydroxides and oxyhydroxysulfates are the main iron sinks. The electrochemical data thus reveal the rationale for incomplete iron retention in individual systems and can thus inform future design criteria. The successful application of this low cost and rapid electrochemical method demonstrates its significant potential for real-time, on-site monitoring of iron-enriched waters and may in future substitute traditional analytical methods.

  6. The electrochemical transfer reactions and the structure of the iron|oxide layer|electrolyte interface

    International Nuclear Information System (INIS)

    Petrović, Željka; Metikoš-Huković, Mirjana; Babić, Ranko

    2012-01-01

    The thickness, barrier (protecting) and semiconducting properties of the potentiostatically formed oxide films on the pure iron electrode in an aqueous borate buffer solution were investigated by electrochemical quartz crystal nanobalance (EQCN), electrochemical impedance spectroscopy (EIS), and Mott–Schottky (MS) analysis. The thicknesses of the prepassive Fe(II)hydroxide layer (up to monolayer) nucleated on the bare iron surface and the passive Fe(II)/Fe(III) layer (up to 2 nm), deposited on the top of the first one, were determined using in situ gravimetry. Electronic properties of iron prepassive and passive films as well as ionic and electronic transfer reactions at the film|solution interface were discussed on the basis of a band structure model of the surface oxide film and the potential distribution at the interface. The anodic oxide film formation and cathodic decomposition are coupled processes and their reversible inter-conversion is mediated by the availability of free charge carriers on the electrode|solution interface. The structure of the reversible double layer at the iron oxide|solution interface was discussed based on the concept of the specific adsorption of the imidazolium cation on the negatively charged electrode surface at pH > pH pzc .

  7. Binary iron sulfides as anode materials for rechargeable batteries: Crystal structures, syntheses, and electrochemical performance

    Science.gov (United States)

    Xu, Qian-Ting; Li, Jia-Chuang; Xue, Huai-Guo; Guo, Sheng-Ping

    2018-03-01

    Effective utilization of energy requires the storage and conversion device with high ability. For well-developed lithium ion batteries (LIBs) and highly developing sodium ion batteries (SIBs), this ability especially denotes to high energy and power densities. It's believed that the capacity of a full cell is mainly contributed by anode materials. So, to develop inexpensive anode materials with high capacity are meaningful for various rechargeable batteries' better applications. Iron is a productive element in the crust, and its oxides, sulfides, fluorides, and oxygen acid salts are extensively investigated as electrode materials for batteries. In view of the importance of electrode materials containing iron, this review summarizes the recent achievements on various binary iron sulfides (FeS, FeS2, Fe3S4, and Fe7S8)-type electrodes for batteries. The contents are mainly focused on their crystal structures, synthetic methods, and electrochemical performance. Moreover, the challenges and some improvement strategies are also discussed.

  8. Electrochemical depassivation of zero-valent iron for trichloroethene reduction

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Liang [Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences, Beijing 100083 (China); Jin, Song [Department of Civil and Architectural Engineering, University of Wyoming, Laramie, WY 82071 (United States); Advanced Environmental Technologies, LLC, Fort Collins, CO 80524 (United States); Fallgren, Paul H. [Department of Civil Engineering, University of Colorado Denver, Denver, CO 80217 (United States); Swoboda-Colberg, Norbert G. [Department of Geology and Geophysics, University of Wyoming, Laramie, WY 82071 (United States); Liu, Fei [Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences, Beijing 100083 (China); Colberg, Patricia J.S., E-mail: pczoo@uwyo.edu [Department of Civil and Architectural Engineering, University of Wyoming, Laramie, WY 82071 (United States)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Electrical current may depassivate ZVI and restore its capacity to reduce TCE. Black-Right-Pointing-Pointer Electrical current may defer or even prevent surface oxidation of ZVI. Black-Right-Pointing-Pointer Electrical current coupled with ZVI achieves greater TCE reduction than ZVI alone. - Abstract: Permeable reactive barriers (PRBs) composed of zero-valent iron (ZVI) are susceptible to passivation, resulting in substantially decreased rates of chlorinated solvent removal over time. In this study, the application of low electrical direct current (DC) to restore the reductive capacity of passivated ZVI was examined. Electrical current was applied to a laboratory column reactor filled with a mixture of pre-passivated ZVI and sand. Variable voltage settings (0-12 V) were applied through two stainless steel electrodes placed at the ends of the reactor. While only partial restoration of the reductive capacity of the passivated ZVI was observed, higher rates of trichloroethene (TCE) removal were always obtained when current was applied, and the rates of TCE removal were roughly proportional to the voltage level. Although differences were observed between the rates and extent of TCE removal within the column, it is noteworthy that TCE removal was not restricted to that region of the column where the electrons entered (i.e., at the cathode). While complete 'depassivation' of ZVI may be difficult to achieve in practice, the application of DC demonstrated observable restoration of reactivity of the passivated ZVI. This study provides evidence that this approach may significantly extend the life of a ZVI PRB.

  9. Electrochemical depassivation of zero-valent iron for trichloroethene reduction

    International Nuclear Information System (INIS)

    Chen, Liang; Jin, Song; Fallgren, Paul H.; Swoboda-Colberg, Norbert G.; Liu, Fei; Colberg, Patricia J.S.

    2012-01-01

    Highlights: ► Electrical current may depassivate ZVI and restore its capacity to reduce TCE. ► Electrical current may defer or even prevent surface oxidation of ZVI. ► Electrical current coupled with ZVI achieves greater TCE reduction than ZVI alone. - Abstract: Permeable reactive barriers (PRBs) composed of zero-valent iron (ZVI) are susceptible to passivation, resulting in substantially decreased rates of chlorinated solvent removal over time. In this study, the application of low electrical direct current (DC) to restore the reductive capacity of passivated ZVI was examined. Electrical current was applied to a laboratory column reactor filled with a mixture of pre-passivated ZVI and sand. Variable voltage settings (0–12 V) were applied through two stainless steel electrodes placed at the ends of the reactor. While only partial restoration of the reductive capacity of the passivated ZVI was observed, higher rates of trichloroethene (TCE) removal were always obtained when current was applied, and the rates of TCE removal were roughly proportional to the voltage level. Although differences were observed between the rates and extent of TCE removal within the column, it is noteworthy that TCE removal was not restricted to that region of the column where the electrons entered (i.e., at the cathode). While complete “depassivation” of ZVI may be difficult to achieve in practice, the application of DC demonstrated observable restoration of reactivity of the passivated ZVI. This study provides evidence that this approach may significantly extend the life of a ZVI PRB.

  10. The electrochemical generation of useful chemical species from lunar materials

    Science.gov (United States)

    Tsai, Kan J.; Kuchynka, Daniel J.; Sammells, Anthony F.

    1989-01-01

    The current status of work on an electrochemical technology for the simultaneous generation of oxygen and lithium from a Li2O containing molten salt (Li2O-LiCl-LiF) is discussed. The electrochemical cell utilizes an oxygen vacancy conducting solid electrolyte, yttria-stabilized zirconia, to effect separation between the oxygen evolving and lithium reduction half-cell reactions. The cell, which operates at 700 to 800 C, possesses rapid electrode kinetics at the lithium-alloy electrode with exchange current density values being greater than 60 mA/sq cm, showing high reversibility for this reaction. When used in the electrolytic mode, lithium produced at the negative electrode would be continuously removed from the cell for later use (under lunar conditions) as an easily storable reducting agent (compared to H2) for the chemical refining of lunar ores via the general reaction: 2Li + MO yields Li2O + M where MO represents a lunar ore. Emphasis to this time has been on the simulated lunar ore ilmenite (FeTiO3), which we have found becomes chemically reduced by Li at 432 C. Furthermore, both Fe2O3 and TiO2 have been reduced by Li to give the corresponding metal. This electrochemical approach provides a convenient route for producing metals under lunar conditions and oxygen for the continuous maintenance of human habitats on the Moon's surface. Because of the high reversibility of this electrochemical system, it has also formed the basis for the lithium-oxygen secondary battery. This secondary lithium-oxygen battery system posses the highest theoretical energy density yet investigated.

  11. Ferrate(VI) as a greener oxidant: Electrochemical generation and treatment of phenol.

    Science.gov (United States)

    Sun, Xuhui; Zhang, Qi; Liang, He; Ying, Li; Xiangxu, Meng; Sharma, Virender K

    2016-12-05

    Ferrate(VI) (Fe(VI)O4(2-), Fe(VI)) is a greener oxidant in the treatment of drinking water and wastewater. The electrochemical synthesis of Fe(VI) may be considered environmentally friendly because it involves one-step process to convert Fe(0) to Fe(VI) without using harmful chemicals. Electrolysis was performed by using a sponge iron as an anode in NaOH solution at different ionic strengths. The cyclic voltammetric (CV) curves showed that the sponge iron had higher electrical activity than the grey cast iron. The optimum current density was 0.054mAcm(-2) in 10M NaOH solution, which is much lower than the electrolyte concentrations used in other electrode materials. A comparison of current efficiency and energy consumption was conducted and is briefly discussed. The generated ferrate solution was applied to degrade phenol in water at two levels (2mgL(-1) and 5mgL(-1)). The maximum removal efficiency was ∼70% and the optimum pH for phenol treatment was 9.0. Experiments on phenol removal using conventional coagulants (ferric chloride (FeCl3) and polyaluminium chloride (PAC)) were performed independently to demonstrate that removal of phenol by Fe(VI) occurred mainly by oxidative transformation. A combination of Fe(VI) and coagulant may be advantageous in enhancing removal efficiency, adjusting pH, and facilitating flocculation. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Iron-Based Nanomaterials/Graphene Composites for Advanced Electrochemical Sensors

    Directory of Open Access Journals (Sweden)

    Kaveh Movlaee

    2017-11-01

    Full Text Available Iron oxide nanostructures (IONs in combination with graphene or its derivatives—e.g., graphene oxide and reduced graphene oxide—hold great promise toward engineering of efficient nanocomposites for enhancing the performance of advanced devices in many applicative fields. Due to the peculiar electrical and electrocatalytic properties displayed by composite structures in nanoscale dimensions, increasing efforts have been directed in recent years toward tailoring the properties of IONs-graphene based nanocomposites for developing more efficient electrochemical sensors. In the present feature paper, we first reviewed the various routes for synthesizing IONs-graphene nanostructures, highlighting advantages, disadvantages and the key synthesis parameters for each method. Then, a comprehensive discussion is presented in the case of application of IONs-graphene based composites in electrochemical sensors for the determination of various kinds of (biochemical substances.

  13. Iron-Based Nanomaterials/Graphene Composites for Advanced Electrochemical Sensors

    Science.gov (United States)

    Movlaee, Kaveh; Ganjali, Mohmmad Reza; Norouzi, Parviz

    2017-01-01

    Iron oxide nanostructures (IONs) in combination with graphene or its derivatives—e.g., graphene oxide and reduced graphene oxide—hold great promise toward engineering of efficient nanocomposites for enhancing the performance of advanced devices in many applicative fields. Due to the peculiar electrical and electrocatalytic properties displayed by composite structures in nanoscale dimensions, increasing efforts have been directed in recent years toward tailoring the properties of IONs-graphene based nanocomposites for developing more efficient electrochemical sensors. In the present feature paper, we first reviewed the various routes for synthesizing IONs-graphene nanostructures, highlighting advantages, disadvantages and the key synthesis parameters for each method. Then, a comprehensive discussion is presented in the case of application of IONs-graphene based composites in electrochemical sensors for the determination of various kinds of (bio)chemical substances. PMID:29168771

  14. Electrochemical preparation of iron cuboid nanoparticles and their catalytic properties for nitrite reduction

    International Nuclear Information System (INIS)

    Chen Yanxin; Chen Shengpei; Chen Qingsong; Zhou Zhiyou; Sun Shigang

    2008-01-01

    Iron cuboid nanoparticles supported on glassy carbon (denoted nm-Fe/GC) were prepared by electrochemical deposition under cyclic voltammetric (CV) conditions. The structure and composition of the Fe nanomaterials were characterized by scanning electron microscopy (SEM), selected area electron diffraction (SAED), X-ray diffraction (XRD) and energy dispersive X-ray analysis (EDX). The results demonstrated that the Fe cuboid nanoparticles are dispersed discretely on GC substrate with an average size ca. 171 nm, and confirmed that the electrochemical synthesized nanocubes are single crystals of pure Fe. The catalytic properties of the Fe cuboid nanoparticles towards nitrite electroreduction were investigated, and enhanced electrocatalytic activity of the Fe nanocubes has been determined. In comparison with the data obtained on a bulk-Fe electrode, the onset potential of nitrite reduction on nm-Fe/GC is positively sifted by 100 mV, and the steady reduction current density is enhanced about 2.4-3.2 times

  15. Electrochemical deposition of iron sulfide thin films and heterojunction diodes with zinc oxide

    Directory of Open Access Journals (Sweden)

    Shoichi Kawai

    2014-03-01

    Full Text Available Iron sulfide thin films were fabricated by the electrochemical deposition method from an aqueous solution containing FeSO4 and Na2S2O3. The composition ratio obtained was Fe:S:O = 36:56:8. In the photoelectrochemical measurement, a weak negative photo-current was observed for the iron sulfide films, which indicates that its conduction type is p-type. No peaks were observed in X-ray diffraction pattern, and thus the deposited films were considered to be amorphous. For a heterojunction with ZnO, rectification properties were confirmed in the current-voltage characteristics. Moreover, the current was clearly enhanced under AM1.5 illumination.

  16. Corrosion resistance and electrochemical potentiokinetic reactivation testing of some iron-base hardfacing alloys

    International Nuclear Information System (INIS)

    Cockeram, B.V.

    1999-01-01

    Hardfacing alloys are weld deposited on a base material to provide a wear resistant surface. Commercially available iron-base hardfacing alloys are being evaluated for replacement of cobalt-base alloys to reduce nuclear plant activation levels. Corrosion testing was used to evaluate the corrosion resistance of several iron-base hardfacing alloys in highly oxygenated environments. The corrosion test results indicate that iron-base hardfacing alloys in the as-deposited condition have acceptable corrosion resistance when the chromium to carbon ratio is greater than 4. Tristelle 5183, with a high niobium (stabilizer) content, did not follow this trend due to precipitation of niobium-rich carbides instead of chromium-rich carbides. This result indicates that iron-base hardfacing alloys containing high stabilizer contents may possess good corrosion resistance with Cr:C < 4. NOREM 02, NOREM 01, and NoCo-M2 hardfacing alloys had acceptable corrosion resistance in the as-deposited and 885 C/4 hour heat treated condition, but rusting from sensitization was observed in the 621 C/6 hour heat treated condition. The feasibility of using an Electrochemical Potentiokinetic Reactivation (EPR) test method, such as used for stainless steel, to detect sensitization in iron-base hardfacing alloys was evaluated. A single loop-EPR method was found to provide a more consistent measurement of sensitization than a double loop-EPR method. The high carbon content that is needed for a wear resistant hardfacing alloy produces a high volume fraction of chromium-rich carbides that are attacked during EPR testing. This results in inherently lower sensitivity for detection of a sensitized iron-base hardfacing alloy than stainless steel using conventional EPR test methods

  17. Signal Processing for the Impedance Measurement on an Electrochemical Generator

    Directory of Open Access Journals (Sweden)

    El-Hassane AGLZIM

    2008-04-01

    Full Text Available Improving the life time of batteries or fuel cells requires the optimization of components such as membranes and electrodes and enhancement of the flow of gases [1], [2]. These goals could be reached by using a real time measurement on loaded generator. The impedance spectroscopy is a new way that was recently investigated. In this paper, we present an electronic measurement instrumentation developed in our laboratory to measure and plot the impedance of a loaded electrochemical generator like batteries and fuel cells. Impedance measures were done according to variations of the frequency in a larger band than what is usually used. The electronic instrumentation is controlled by Hpvee® software which allows us to plot the Nyquist graph of the electrochemical generator impedance. The theoretical results obtained in simulation under Pspice® confirm the choice of the method and its advantage. For safety reasons, the experimental preliminary tests were done on a 12 V vehicle battery, having an input current of 330 A and a capacity of 40 Ah and are now extended to a fuel cell. The results were plotted at various nominal voltages of the battery (12.7 V, 10 V, 8 V and 5 V and with two imposed currents (0.6 A and 4 A. The Nyquist diagram resulting from the experimental data enable us to show an influence of the load of the battery on its internal impedance. The similitude in the graph form and in order of magnitude of the values obtained (both theoretical and practical enables us to validate our electronic measurement instrumentation. Different sensors (temperature, pressure were placed around the device under test (DUT. These influence parameters were permanently recorded. Results presented here concern a classic loaded 12 V vehicle battery. The Nyquist diagram resulting from the experimental data confirms the influence of the load of the DUT on its internal impedance.

  18. Investigation into Generation of Micro Features by Localised Electrochemical Deposition

    Science.gov (United States)

    Debnath, Subhrajit; Laskar, Hanimur Rahaman; Bhattacharyya, B.

    2017-11-01

    With the fast advancement of technology, localised electrochemical deposition (LECD) is becoming very advantageous in generating high aspect ratio micro features to meet the steep demand in modern precision industries of the present world. Except many other advantages, this technology is highly uncomplicated and economical for fabricating metal micro-parts with in micron ranges. In the present study, copper micro-columns have been fabricated utilizing LECD process. Different process parameters such as voltage, frequency, duty ratio and electrolyte concentration, which affect the deposition performance have been identified and their effects on deposition performances such as deposition rate, height and diameter of the micro-columns have been experimentally investigated. Taguchi's methodology has been used to study the effects as well as to obtain the optimum values of process parameters so that localised deposition with best performance can be achieved. Moreover, the generated micro-columns were carefully observed under optical and scanning electron microscope from where the surface quality of the deposited micro-columns has been studied qualitatively. Also, an array of copper micro-columns has been fabricated on stainless steel (SS-304) substrate for further exploration of LECD process capability.

  19. Electrochemical activity of iron in acid treated bentonite and influence of added nickel

    Energy Technology Data Exchange (ETDEWEB)

    Mudrinić, T., E-mail: tihana@nanosys.ihtm.bg.ac.rs [University of Belgrade-Institute of Chemistry, Technology and Metallurgy, Center for Catalysis and Chemical Engineering, Njegoševa 12, 11000 Belgrade (Serbia); Mojović, Z.; Milutinović-Nikolić, A. [University of Belgrade-Institute of Chemistry, Technology and Metallurgy, Center for Catalysis and Chemical Engineering, Njegoševa 12, 11000 Belgrade (Serbia); Mojović, M. [University of Belgrade, Faculty of Physical Chemistry, Studenski trg 12-16, 11000 Belgrade (Serbia); Žunić, M. [University of Belgrade-Institute of Chemistry, Technology and Metallurgy, Center for Catalysis and Chemical Engineering, Njegoševa 12, 11000 Belgrade (Serbia); Vukelić, N. [University of Belgrade, Faculty of Physical Chemistry, Studenski trg 12-16, 11000 Belgrade (Serbia); Jovanović, D. [University of Belgrade-Institute of Chemistry, Technology and Metallurgy, Center for Catalysis and Chemical Engineering, Njegoševa 12, 11000 Belgrade (Serbia)

    2015-10-30

    Highlights: • Mild acid treatment followed by incorporation of nickel was performed on bentonite. • Modified bentonites based electrodes were tested in H{sub 2}SO{sub 4} by cyclic voltammetry. • Acid treatment increased current response of electroactive iron within smectite. • Incorporation of Ni improved reversibility of Fe{sup 2+}/Fe{sup 3+} oxidation/reduction process. - Abstract: Bentonite originated from Mečji Do, Serbia, was submitted to acid treatment at 70 °C for 30 min, while only the concentration of applied HCl varied. The obtained acid treated samples were used to modify glassy carbon (GC) electrode. The effect of applied acid treatment on the electrochemical behavior of GC electrodes modified with these materials was investigated. Furthermore, the effect of the introduction of nickel into acid treated samples was studied. The incorporation of nickel into acid treated bentonite was achieved by either ion exchange or impregnation/decomposition method. The obtained samples were characterized using the following methods: inductively coupled plasma (ICP), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and electron spin resonance (ESR) spectroscopy. The electrochemical behavior of these samples was tested by cyclic voltammetry in 0.1 mol dm{sup −3} H{sub 2}SO{sub 4} solution. The ICP, FTIR and ESR results exhibited a slight decrease of iron content in the acid treated samples. XRD and FTIR results confirmed that the conditions applied for the acid treatment were mild enough for the smectite structure to be preserved. The electrocatalytic test showed that the current response of Fe{sup 2+}/Fe{sup 3+} oxidation/reduction process increased on the GC electrodes separately modified with each of the acid treated samples in comparison with current obtained on the GC electrode modified with untreated sample. These results indicated that applied acid treatment probably increased the accessibility of the electroactive iron within

  20. Morphological, structural and electrochemical properties of lithium iron phosphates synthesized by Spray Pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, L.S. [Universidad Carlos III de Madrid and IAAB, Avda. de la Universidad, 30, 28911 Leganes, Madrid (Spain); Meatza, I. de [Dpto. Energia, CIDETEC, Po Miramon 196, Parque Tecnologico de San Sebastian, 20009 Donostia-San Sebastian (Spain); Martin, M.I., E-mail: imartin@ietcc.csic.e [Universidad Carlos III de Madrid and IAAB, Avda. de la Universidad, 30, 28911 Leganes, Madrid (Spain); Bengoechea, M. [Dpto. Energia, CIDETEC, Po Miramon 196, Parque Tecnologico de San Sebastian, 20009 Donostia-San Sebastian (Spain); Cantero, I. [Dpto. I-D-i Nuevas Tecnologias, CEGASA, Artapadura, 11, 01013 Vitoria-Gasteiz (Spain); Rabanal, M.E., E-mail: mariaeugenia.rabanal@uc3m.e [Universidad Carlos III de Madrid and IAAB, Avda. de la Universidad, 30, 28911 Leganes, Madrid (Spain)

    2010-03-01

    In the field of materials for lithium ion batteries, the lithium iron phosphate LiFePO{sub 4} has been proven for use as a positive electrode due to its good resistance to thermal degradation and overcharge, safety and low cost. The use of nanostructured materials would improve its efficiency. This work shows the results of the synthesis of nanostructured materials with functional properties for lithium batteries through aerosol techniques. The Spray Pyrolysis method allows synthesizing nanostructured particles with spherical geometry, not agglomerates, with narrow distribution of particle size and homogeneous composition in respect to a precursor solution. Experimental techniques were focused on the morphological (SEM and TEM), structural (XRD and HRTEM-SAED), chemical (EDS) and electrochemical characterization.

  1. Morphological, structural and electrochemical properties of lithium iron phosphates synthesized by Spray Pyrolysis

    International Nuclear Information System (INIS)

    Gomez, L.S.; Meatza, I. de; Martin, M.I.; Bengoechea, M.; Cantero, I.; Rabanal, M.E.

    2010-01-01

    In the field of materials for lithium ion batteries, the lithium iron phosphate LiFePO 4 has been proven for use as a positive electrode due to its good resistance to thermal degradation and overcharge, safety and low cost. The use of nanostructured materials would improve its efficiency. This work shows the results of the synthesis of nanostructured materials with functional properties for lithium batteries through aerosol techniques. The Spray Pyrolysis method allows synthesizing nanostructured particles with spherical geometry, not agglomerates, with narrow distribution of particle size and homogeneous composition in respect to a precursor solution. Experimental techniques were focused on the morphological (SEM and TEM), structural (XRD and HRTEM-SAED), chemical (EDS) and electrochemical characterization.

  2. An electrochemical pumping system for on-chip gradient generation.

    Science.gov (United States)

    Xie, Jun; Miao, Yunan; Shih, Jason; He, Qing; Liu, Jun; Tai, Yu-Chong; Lee, Terry D

    2004-07-01

    Within the context of microfluidic systems, it has been difficult to devise pumping systems that can deliver adequate flow rates at high pressure for applications such as HPLC. An on-chip electrochemical pumping system based on electrolysis that offers certain advantages over designs that utilize electroosmotic driven flow has been fabricated and tested. The pump was fabricated on both silicon and glass substrates using photolithography. The electrolysis electrodes were formed from either platinum or gold, and SU8, an epoxy-based photoresist, was used to form the pump chambers. A glass cover plate and a poly(dimethylsiloxane) (PDMS) gasket were used to seal the chambers. Filling of the chambers was accomplished by using a syringe to inject liquid via filling ports, which were later sealed using a glass cover plate. The current supplied to the electrodes controlled the rate of gas formation and, thus, the resulting fluid flow rate. At low backpressures, flow rates >1 microL/min have been demonstrated using polymer electrospray nozzle, we have confirmed the successful generation of a solvent gradient via a mass spectrometer.

  3. Stability, electrochemical behaviors and electronic structures of iron hydroxyl-phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Wang Zhongli; Sun Shaorui; Li Fan; Chen Ge [College of Environmental and Energy Engineering, Beijing University of Technology, Pingleyuan 100, Chaoyang District, Beijing 100022 (China); Xia Dingguo, E-mail: dgxia@bjut.edu.cn [College of Environmental and Energy Engineering, Beijing University of Technology, Pingleyuan 100, Chaoyang District, Beijing 100022 (China); Zhao Ting; Chu Wangsheng [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); University of Science and Technology of China, Hefei 230026 (China); Wu Ziyu, E-mail: wuzy@ihep.ac.cn [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); University of Science and Technology of China, Hefei 230026 (China)

    2010-09-01

    Iron hydroxyl-phosphate with a uniform spherical particle size of around 1 {mu}m, a compound of the type Fe{sub 2-y}{open_square}{sub y}(PO{sub 4})(OH){sub 3-3y}(H{sub 2}O){sub 3y-2} (where {open_square} represents a vacancy), has been synthesized by hydrothermal methods. The particles are composed of spheres of diameter <100 nm. The compound exhibits good electrochemical performance, with reversible capacities of around 150 mAh g{sup -1} and 120 mAh g{sup -1} at current densities of 170 mA g{sup -1} and 680 mA g{sup -1}, respectively. The stability of crystal structure of this material was studied by TGA and XRD which show that the material remains stable at least up to the temperature 200 deg. C. Investigation of the electronic structure of the iron hydroxyl-phosphate by GGA + U calculation has indicated that it has a better electronic conductivity than LiFePO{sub 4}.

  4. Electrochemical CO2 Reduction by Ni-containing Iron Sulfides: How Is CO2 Electrochemically Reduced at Bisulfide-Bearing Deep-sea Hydrothermal Precipitates?

    International Nuclear Information System (INIS)

    Yamaguchi, Akira; Yamamoto, Masahiro; Takai, Ken; Ishii, Takumi; Hashimoto, Kazuhito; Nakamura, Ryuhei

    2014-01-01

    The discovery of deep-sea hydrothermal vents on the late 1970's has led to many hypotheses concerning chemical evolution in the prebiotic ocean and the early evolution of energy metabolism in ancient Earth. Such studies stand on the quest for the bioenergetic evolution to utilize reducing chemicals such as H 2 for CO 2 reduction and carbon assimilation. In addition to the direct reaction of H 2 and CO 2 , the electrical current passing across a bisulfide-bearing chimney structure has pointed to the possible electrocatalytic CO 2 reduction at the cold ocean-vent interface (R. Nakamura, et al. Angew. Chem. Int. Ed. 2010, 49, 7692 − 7694). To confirm the validity of this hypothesis, here, we examined the energetics of electrocatalytic CO 2 reduction by iron sulfide (FeS) deposits at slightly acidic pH. Although FeS deposits inefficiently reduced CO 2 , the efficiency of the reaction was substantially improved by the substitution of Fe with Ni to form FeNi 2 S 4 (violarite), of which surface was further modified with amine compounds. The potential-dependent activity of CO 2 reduction demonstrated that CO 2 reduction by H 2 in hydrothermal fluids was involved in a strong endergonic electron transfer reaction, suggesting that a naturally occurring proton-motive force (PMF) as high as 200 mV would be established across the hydrothermal vent chimney wall. However, in the chimney structures, H 2 generation competes with CO 2 reduction for electrical current, resulting in rapid consumption of the PMF. Therefore, to maintain the PMF and the electrosynthesis of organic compounds in hydrothermal vent mineral deposits, we propose a homeostatic pH regulation mechanism of FeS deposits, in which elemental hydrogen stored in the hydrothermal mineral deposits is used to balance the consumption of the electrochemical gradient by H 2 generation

  5. Preparation of iron-deposited graphite surface for application as cathode material during electrochemical vat-dyeing process

    International Nuclear Information System (INIS)

    Anbu Kulandainathan, M.; Kiruthika, K.; Christopher, G.; Babu, K. Firoz; Muthukumaran, A.; Noel, M.

    2008-01-01

    Iron-deposited graphite surfaces were prepared, characterized and employed as cathode materials for electrochemical vat-dyeing process containing very low concentration of sodium dithionite. The electrodeposition, in presence of ammonium thiocyanate and gelatin or animal glue as binding additives, were found to give finer iron deposits for improved electrochemical dyeing application. The electrodeposits were characterized using scanning electron microscopy, electron-dispersive X-ray spectroscopy and X-ray diffraction methods, before and after electrochemical dyeing process. The electrochemical activity of the iron-deposited graphite electrodes always stored in water seems to depend on the surface-bound Fe 3+ /Fe 2+ redox species. Vat dyes like C.I. Vat Violet 1, C.I. Vat Green 1 and C.I. Vat Blue 4 could be efficiently dyed employing these above electrode materials. The colour intensity and washing fastness of the dyed fabrics were found to be equal with conventionally dyed fabrics. The electrodes could also be reused for the dyeing process

  6. High Pressure Electrochemical Oxygen Generation for ISS, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Giner, Inc. has developed an advanced electrochemical static vapor feed oxygen (O2) concentrator (SVFOC) that offers a simple alternative to the use of pressure...

  7. High Pressure Electrochemical Oxygen Generation for ISS, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Giner, Inc. has developed an advanced high pressure electrochemical oxygen concentrator (EOC) that offers a simple alternative to the use of pressure swing...

  8. Studies on the electrochemical behaviour of iron by the use of radio-tracer technique, 1. Studies on the electrodeposition and dissolution of iron by the use of radio-tracer technique

    Energy Technology Data Exchange (ETDEWEB)

    Moritani, Kimikazu; Ito, Yasuhiko; Kamata, Masahiro; Oishi, Jun

    1984-12-01

    To investigate whether radio-tracer techniques can augment conventional electrochemical techniques, offering useful information about the electrochemical behaviour of iron, the current efficiency of the electrodeposition of iron and the corrosion rate of metallic iron were measured by the radio-tracer method and the results were compared with the results measured by gravimetry and absorption photometry. Major conclusions obtained by the experiments are summarized as: 1) Between ordinary Fe and /sup 59/Fe, no isotope effect was observed. 2) Radiation from /sup 59/Fe had no effect on the electrode reaction. 3) While the use of a Ge semiconductor detector is undoubtedly preferable, Geiger-Mueller counter or NaI(Tl) scintillation counter gave fully satisfactory results. 4) Electrodeposited iron corrodes several times more rapidly than the iron base metal. These results suggests many other interesting applications of the radio-tracer technique when it is desired to obtain more detailed information on the electrochemical behaviour of iron. (author).

  9. Electrochemical study of bio-corrosion mechanisms at the carbon steel interface in presence of iron-reducing and hydrogenotrophic bacteria in the nuclear waste disposal context

    International Nuclear Information System (INIS)

    Leite-de-Souza-Moreira, Rebeca

    2013-01-01

    The safety of deep geological repository for nuclear waste is a very important and topical matter especially for the nuclear industry. Such as nuclear fuel the high level waste have to be stored for time frames of millions of years in metallic containers. Typically these containers should be placed in deep geological clay formations 500 metres underground. Corrosion processes, will take place after the re-saturation of the geological medium and under the prevalent anoxic conditions may lead to the generation of hydrogen. This gas accumulates in clay environment through the years and eventually becomes hazardous for steel containers. In the particular environment of geological repositories does not provide much biodegradable substances. This is the reason that hydrogen represents a new suitable energy source for hydrogenotrophic bacteria. Thereby formed bacterial bio-films on the containers may contribute to a process of fast decay of the steel, the so called bio-corrosion. The aim of this study is to characterize the electrochemical interfaces in order to obtain the mechanisms of bio-corrosion of carbon steels in presence of iron reducing and hydrogenotrophic bacterium Shewanella oneideinsis. The products of corrosion processes, namely hydrogen and iron (III) oxides are used as electron donor and acceptor, respectively. The amount of hydrogen consumed by Shewanella could be estimated with 10"-"4 mol s"-"1 using Scanning Electrochemical Microscopy (SECM) techniques. The influence of the local hydrogen generation was evaluated via chrono-amperometry. When hydrogen was locally generated above a carbon steel substrate an accelerated corrosion process can be observed. Eventually, using Local Electrochemical Impedance Spectroscopy (LEIS) techniques, the mechanism of the generalised corrosion process was demonstrated. (author)

  10. Iron release from ferritin and lipid peroxidation by radiolytically generated reducing radicals

    International Nuclear Information System (INIS)

    Reif, D.W.; Schubert, J.; Aust, S.D.

    1988-01-01

    Iron is involved in the formation of oxidants capable of damaging membranes, protein, and DNA. Using 137 Cs gamma radiation, we investigated the release of iron from ferritin and concomitant lipid peroxidation by radiolytically generated reducing radicals, superoxide and the carbon dioxide anion radical. Both radicals released iron from ferritin with similar efficiencies and iron mobilization from ferritin required an iron chelator. Radiolytically generated superoxide anion resulted in peroxidation of phospholipid liposomes as measured by malondialdehyde formation only when ferritin was included as an iron source and the released iron was found to be chelated by the phospholipid liposomes

  11. Electrochemical synthesis and spectroscopic characterization of poly(N-phenylpyrrole coatings in an organic medium on iron and platinum electrodes

    Directory of Open Access Journals (Sweden)

    A.K.D. Diaw

    2008-12-01

    Full Text Available The electrochemical synthesis of poly(N-phenylpyrrole film was achieved on pretreated iron and platinum electrodes in acetonitrile solutions containing 0.1 M N-phenylpyrrole as the monomer and 0.1 M tetrabutylammonium trifluoromethane sulfonate (Bu4NCF3SO3 as the supporting-salt. The results showed that a surface treatment by 10 % aqueous nitric acid inhibits iron dissolution without preventing the N-phenylpyrrole oxidation. Very strongly adherent films were obtained at constant-potential, constant-current and cyclic voltammetry. XPS measurements, infrared (FT-IR and electronic absorption (UV-vis spectroscopies were used to characterize the iron and platinum-coated electrodes. Finally the anticorrosion properties of the PΦP film were evidenced.

  12. Investigations on structural iron electrochemical properties in layered silicates using massive mica electrodes

    International Nuclear Information System (INIS)

    Hadi, J.; Ignatiadis, I.; Tournassat, C.; Charlet, L.; Silvester, E.

    2012-01-01

    Document available in extended abstract form only. Nuclear waste repositories are being installed in deep excavated rock formations in some places in Europe to isolate and store radioactive waste. In France, the Callovo-Oxfordian formation (COx) is a potential candidate for a nuclear waste repository. The redox reactivity of COx clay rock samples are already under study using microscopic, spectrometric and wet analysis techniques. In order to cross and overcome certain limits by improvement in the knowledge, specific electrodes should be constructed and devoted to the deepening of the electrochemical behaviour of the COx system in different situations. Iron is one of the most common redox species in soils and sedimentary rocks. Iron-bearing phyllosilicates play key roles in various biogeochemical processes. The complexity of the physical and chemical changes involving their structural iron makes the studies of its redox properties challenging. Most of the recent reported efforts were focused on probing Fe redox on finely powdered clay particles, and have been hampered by inadequate interactions between particles and electrodes. Moreover, such experiments usually involve redox probe ions, thus adding supplementary difficulties in the determination of structural iron redox parameters such as redox potential (Eh) and kinetics. The present study aims at qualitatively investigating the above mentioned phenomena on minerals like iron-bearing micas. In the current work, we present initial insights regarding efforts to build a direct electrical interface between solid electrodes and conveniently shaped macroscopic mica crystals in order to investigate the redox properties of structural iron in dry and aqueous environments, in the presence of representative perturbations. A classical three electrode system has been used for voltammetric measurements. Platinum plate was the counter electrode. Potentials have been measured against either silver-silver chloride electrode or

  13. Selective Electrochemical Generation of Hydrogen Peroxide from Water Oxidation

    DEFF Research Database (Denmark)

    Viswanathan, Venkatasubramanian; Hansen, Heine Anton; Nørskov, Jens K.

    2015-01-01

    evolution and form hydrogen peroxide. Using density functional theory calculations, we show that the free energy of adsorbed OH* can be used to determine selectivity trends between the 2e(-) water oxidation to H2O2 and the 4e(-) oxidation to O2. We show that materials which bind oxygen intermediates...... sufficiently weakly, such as SnO2, can activate hydrogen peroxide evolution. We present a rational design principle for the selectivity in electrochemical water oxidation and identify new material candidates that could perform H2O2 evolution selectively....

  14. Electrochemical Study of Polymer and Ceramic-Based Nanocomposite Coatings for Corrosion Protection of Cast Iron Pipeline

    Directory of Open Access Journals (Sweden)

    Ameen Uddin Ammar

    2018-02-01

    Full Text Available Coating is one of the most effective measures to protect metallic materials from corrosion. Various types of coatings such as metallic, ceramic and polymer coatings have been investigated in a quest to find durable coatings to resist electrochemical decay of metals in industrial applications. Many polymeric composite coatings have proved to be resistant against aggressive environments. Two major applications of ferrous materials are in marine environments and in the oil and gas industry. Knowing the corroding behavior of ferrous-based materials during exposure to these aggressive applications, an effort has been made to protect the material by using polymeric and ceramic-based coatings reinforced with nano materials. Uncoated and coated cast iron pipeline material was investigated during corrosion resistance by employing EIS (electrochemical impedance spectroscopy and electrochemical DC corrosion testing using the “three electrode system”. Cast iron pipeline samples were coated with Polyvinyl Alcohol/Polyaniline/FLG (Few Layers Graphene and TiO2/GO (graphene oxide nanocomposite by dip-coating. The EIS data indicated better capacitance and higher impedance values for coated samples compared with the bare metal, depicting enhanced corrosion resistance against seawater and “produce water” of a crude oil sample from a local oil rig; Tafel scans confirmed a significant decrease in corrosion rate of coated samples.

  15. Removal of arsenic from synthetic acid mine drainage by electrochemical pH adjustment and coprecipitation with iron hydroxide.

    Science.gov (United States)

    Wang, Jenny Weijun; Bejan, Dorin; Bunce, Nigel J

    2003-10-01

    Acid mine drainage (AMD), which is caused by the biological oxidation of sulfidic materials, frequently contains arsenic in the form of arsenite, As(III), and/or arsenate, As(V), along with much higher concentrations of dissolved iron. The present work is directed toward the removal of arsenic from synthetic AMD by raising the pH of the solution by electrochemical reduction of H+ to elemental hydrogen and coprecipitation of arsenic with iron(III) hydroxide, following aeration of the catholyte. Electrolysis was carried out at constant current using two-compartment cells separated with a cation exchange membrane. Four different AMD model systems were studied: Fe(III)/As(V), Fe(III)/As(III), Fe(II)/As(V), and Fe(II)/As(III) with the initial concentrations for Fe(III) 260 mg/L, Fe(II) 300 mg/L, As(V), and As(III) 8 mg/L. Essentially quantitative removal of arsenic and iron was achieved in all four systems, and the results were independent of whether the pH was adjusted electrochemically or by the addition of NaOH. Current efficiencies were approximately 85% when the pH of the effluent was 4-7. Residual concentrations of arsenic were close to the drinking water standard proposed by the World Health Organization (10 microg/L), far below the mine waste effluent standard (500 microg/L).

  16. Determination of Te in soldering tin using continuous flowing electrochemical hydride generation atomic fluorescence spectrometry

    International Nuclear Information System (INIS)

    Jiang Xianjuan; Gan Wuer; Han Suping; He Youzhao

    2008-01-01

    An electrochemical hydride generation system was developed for the detection of Te by coupling an electrochemical hydride generator with atomic fluorescence spectrometry. Since TeH 2 is unstable and easily decomposes in solution, a reticular W filament cathode was used in the present system. The TeH 2 generated on the cathode surface was effectively driven out by sweeping gas from the cathode chamber. In addition, a low temperature electrochemical cell (10 deg. C) was applied to reduce the decomposition of TeH 2 in solution. The limit of detection (LOD) was 2.2 ng ml -1 and the relative standard deviation (RSD) was 3.9% for nine consecutive measurements of standard solution. This method was successfully employed for determination of Te in soldering tin material

  17. The improvement of boron-doped diamond anode system in electrochemical degradation of p-nitrophenol by zero-valent iron

    International Nuclear Information System (INIS)

    Zhu Xiuping; Ni Jinren

    2011-01-01

    Boron-doped diamond (BDD) electrodes are promising anode materials in electrochemical treatment of wastewaters containing bio-refractory organic compounds due to their strong oxidation capability and remarkable corrosion stability. In order to further improve the performance of BDD anode system, electrochemical degradation of p-nitrophenol were initially investigated at the BDD anode in the presence of zero-valent iron (ZVI). The results showed that under acidic condition, the performance of BDD anode system containing zero-valent iron (BDD-ZVI system) could be improved with the joint actions of electrochemical oxidation at the BDD anode (39.1%), Fenton's reaction (28.5%), oxidation–reduction at zero-valent iron (17.8%) and coagulation of iron hydroxides (14.6%). Moreover, it was found that under alkaline condition the performance of BDD-ZVI system was significantly enhanced, mainly due to the accelerated release of Fe(II) ions from ZVI and the enhanced oxidation of Fe(II) ions. The dissolved oxygen concentration was significantly reduced by reduction at the cathode, and consequently zero-valent iron corroded to Fe(II) ions in anaerobic highly alkaline environments. Furthermore, the oxidation of released Fe(II) ions to Fe(III) ions and high-valent iron species (e.g., FeO 2+ , FeO 4 2− ) was enhanced by direct electrochemical oxidation at BDD anode.

  18. Controlled hydrodynamic conditions on the formation of iron oxide nanostructures synthesized by electrochemical anodization: Effect of the electrode rotation speed

    International Nuclear Information System (INIS)

    Lucas-Granados, Bianca; Sánchez-Tovar, Rita; Fernández-Domene, Ramón M.; García-Antón, Jose

    2017-01-01

    Highlights: • Novel iron anodization process under controlled dynamic conditions was evaluated. • Iron oxide nanostructures composed mainly by hematite were synthesized. • Different morphologies were obtained depending on the electrode rotation speed. • A suitable photocatalyst was obtained by stirring the electrode at 1000 rpm.. - Abstract: Iron oxide nanostructures are of particular interest because they can be used as photocatalysts in water splitting due to their advantageous properties. Electrochemical anodization is one of the best techniques to synthesize nanostructures directly on the metal substrate (direct back contact). In the present study, a novel methodology consisting of the anodization of iron under hydrodynamic conditions is carried out in order to obtain mainly hematite (α-Fe 2 O 3 ) nanostructures to be used as photocatalysts for photoelectrochemical water splitting applications. Different rotation speeds were studied with the aim of evaluating the obtained nanostructures and determining the most attractive operational conditions. The synthesized nanostructures were characterized by means of Raman spectroscopy, Field Emission Scanning Electron Microscopy, photoelectrochemical water splitting, stability against photocorrosion tests, Mott-Schottky analysis, Electrochemical Impedance Spectroscopy (EIS) and band gap measurements. The results showed that the highest photocurrent densities for photoelectrochemical water splitting were achieved for the nanostructure synthesized at 1000 rpm which corresponds to a nanotubular structure reaching ∼0.130 mA cm −2 at 0.54 V (vs. Ag/AgCl). This is in agreement with the EIS measurements and Mott-Schottky analysis which showed the lowest resistances and the corresponding donor density values, respectively, for the nanostructure anodized at 1000 rpm.

  19. Controlled hydrodynamic conditions on the formation of iron oxide nanostructures synthesized by electrochemical anodization: Effect of the electrode rotation speed

    Energy Technology Data Exchange (ETDEWEB)

    Lucas-Granados, Bianca; Sánchez-Tovar, Rita; Fernández-Domene, Ramón M.; García-Antón, Jose, E-mail: jgarciaa@iqn.upv.es

    2017-01-15

    Highlights: • Novel iron anodization process under controlled dynamic conditions was evaluated. • Iron oxide nanostructures composed mainly by hematite were synthesized. • Different morphologies were obtained depending on the electrode rotation speed. • A suitable photocatalyst was obtained by stirring the electrode at 1000 rpm.. - Abstract: Iron oxide nanostructures are of particular interest because they can be used as photocatalysts in water splitting due to their advantageous properties. Electrochemical anodization is one of the best techniques to synthesize nanostructures directly on the metal substrate (direct back contact). In the present study, a novel methodology consisting of the anodization of iron under hydrodynamic conditions is carried out in order to obtain mainly hematite (α-Fe{sub 2}O{sub 3}) nanostructures to be used as photocatalysts for photoelectrochemical water splitting applications. Different rotation speeds were studied with the aim of evaluating the obtained nanostructures and determining the most attractive operational conditions. The synthesized nanostructures were characterized by means of Raman spectroscopy, Field Emission Scanning Electron Microscopy, photoelectrochemical water splitting, stability against photocorrosion tests, Mott-Schottky analysis, Electrochemical Impedance Spectroscopy (EIS) and band gap measurements. The results showed that the highest photocurrent densities for photoelectrochemical water splitting were achieved for the nanostructure synthesized at 1000 rpm which corresponds to a nanotubular structure reaching ∼0.130 mA cm{sup −2} at 0.54 V (vs. Ag/AgCl). This is in agreement with the EIS measurements and Mott-Schottky analysis which showed the lowest resistances and the corresponding donor density values, respectively, for the nanostructure anodized at 1000 rpm.

  20. Electrochemical study of the increased antioxidant capacity of flavonoids through complexation with iron(II) ions

    International Nuclear Information System (INIS)

    Porfírio, Demóstenes Amorim; Ferreira, Rafael de Queiroz; Malagutti, Andréa Renata; Valle, Eliana Maíra Agostini

    2014-01-01

    Highlights: • Metal-Flavonoid complexes exhibit greater antioxidant capacity than the free flavonoid;. • Voltammetric profile is an additional information for determining antioxidant capacity;. • Pyrogallol group is a stronger complex-forming group than the catechol;. • Morin, quercetin and fisetin increased their antioxidant capacity in 15%, 32% and 28%, respectively. - Abstract: Flavonoids are polyphenolic compounds that act as natural antioxidants in the human body through various mechanisms, with an emphasis on suppressing reactive oxygen species (ROS) formation by inhibiting enzymes, the direct capture of ROS, and the regulation/protection of antioxidant defenses. Additionally, flavonoids can coordinate with transition metals to catalyze electron transport and promote free radical capture. Recently, metal ion chelation mechanisms have generated considerable interest, as experimental data show that flavonoids in metal complexes exhibit greater antioxidant activity than free flavonoids. However, few studies have correlated the complexing properties of flavonoids with their antioxidant capacity. Thus, the aim of this study was to use the CRAC (Ceric Reducing Antioxidant Capacity) electrochemical assay to measure the antioxidant capacity of five free flavonoids and Fe 2+ -flavonoid complexes. In addition, the interactions between the flavonoids and Fe 2+ were analyzed based on the oxidation peaks formed in their cyclic voltammograms

  1. A Critical Review of Spinel Structured Iron Cobalt Oxides Based Materials for Electrochemical Energy Storage and Conversion

    Directory of Open Access Journals (Sweden)

    Hongyan Gao

    2017-11-01

    Full Text Available Iron cobalt oxides, such as typical FeCo2O4 and CoFe2O4, are two spinel structured transitional metal oxide materials with excellent electrochemical performance. As the electrodes, they have been widely applied in the current energy storage and conversion processes such as supercapacitors, Lithium-ion batteries and fuel cells. Based on synthesis approaches and controlled conditions, these two materials exhibited broad morphologies and nanostructures and thus distinct electrochemical performance. Some of them have shown promising applications as electrodes in energy storage and conversion. The incorporation with other materials to form composites further improved their performance. This review briefly summarized the recent applications of FeCo2O4 and CoFe2O4 in energy storage and conversion, current understandings on mechanisms and especially the relevance of morphologies and structures and composites to electrochemical performance. Some recommendations were finally put forward addressing current issues and future prospects on electrodes of FeCo2O4 and CoFe2O4 based materials in energy storage and conversion, implying there was still space to further optimize their performance.

  2. In situ generation of diazonium cations in organic electrolyte for electrochemical modification of electrode surface

    International Nuclear Information System (INIS)

    Baranton, Steve; Belanger, Daniel

    2008-01-01

    The modification of glassy carbon electrode was achieved by electrochemical reduction of in situ generated diazonium cations in acetonitrile. The in situ generation of 4-nitrophenyl diazonium cations in acetonitrile was investigated by spectroscopic methods. UV-visible spectroscopy revealed slow kinetics for the reaction of 4-nitroaniline with tert-butylnitrite in acetonitrile to form the corresponding diazonium cation. As a result, a coupling reaction, which implies a consumption of the amine and loss of the already formed diazonium cations, was evidenced by 1 H NMR spectroscopy. This spectroscopic study allowed the optimization of the in situ diazonium cations generation prior to the modification step. The electrochemical modification of the carbon electrodes with 4-nitrophenyl, 4-bromophenyl and anthraquinone groups was characterized by cyclic voltammetry and the resulting grafted layer were characterized by electrochemical techniques. The cyclic voltammetric behaviour during the electrochemical grafting was very similar to the one observed for an isolated diazonium salt dissolved in acetonitrile. In the case of the anthraquinone-modified electrode, the use of acetonitrile, into which the corresponding amine is soluble but not in aqueous media, allowed for its grafting by the in situ approach. The barrier properties of these grafted layers are similar to those obtained from isolated diazonium salts. Finally, the chemical composition of the grafted layers was determined by X-ray photoelectron spectroscopy and surface coverage in the range 5-7 x 10 -10 mol cm -2 was estimated for films grown in our experimental conditions

  3. In situ generation of diazonium cations in organic electrolyte for electrochemical modification of electrode surface

    Energy Technology Data Exchange (ETDEWEB)

    Baranton, Steve [Departement de Chimie, Universite du Quebec a Montreal, Case Postale 8888, succursale Centre-Ville, Montreal (Quebec), H3C 3P8 (Canada); Belanger, Daniel [Departement de Chimie, Universite du Quebec a Montreal, Case Postale 8888, succursale Centre-Ville, Montreal (Quebec), H3C 3P8 (Canada)], E-mail: belanger.daniel@uqam.ca

    2008-10-01

    The modification of glassy carbon electrode was achieved by electrochemical reduction of in situ generated diazonium cations in acetonitrile. The in situ generation of 4-nitrophenyl diazonium cations in acetonitrile was investigated by spectroscopic methods. UV-visible spectroscopy revealed slow kinetics for the reaction of 4-nitroaniline with tert-butylnitrite in acetonitrile to form the corresponding diazonium cation. As a result, a coupling reaction, which implies a consumption of the amine and loss of the already formed diazonium cations, was evidenced by {sup 1}H NMR spectroscopy. This spectroscopic study allowed the optimization of the in situ diazonium cations generation prior to the modification step. The electrochemical modification of the carbon electrodes with 4-nitrophenyl, 4-bromophenyl and anthraquinone groups was characterized by cyclic voltammetry and the resulting grafted layer were characterized by electrochemical techniques. The cyclic voltammetric behaviour during the electrochemical grafting was very similar to the one observed for an isolated diazonium salt dissolved in acetonitrile. In the case of the anthraquinone-modified electrode, the use of acetonitrile, into which the corresponding amine is soluble but not in aqueous media, allowed for its grafting by the in situ approach. The barrier properties of these grafted layers are similar to those obtained from isolated diazonium salts. Finally, the chemical composition of the grafted layers was determined by X-ray photoelectron spectroscopy and surface coverage in the range 5-7 x 10{sup -10} mol cm{sup -2} was estimated for films grown in our experimental conditions.

  4. Electrochemical Membrane for Carbon Dioxide Capture and Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Ghezel-Ayagh, Hossein [FuelCell Energy, Inc., Danbury, CT (United States)

    2017-12-21

    FuelCell Energy, Inc. (FCE), in collaboration with AECOM Corporation (formerly URS Corporation) and Pacific Northwest National Laboratory, has been developing a novel Combined Electric Power and Carbon-dioxide Separation (CEPACS) system. The CEPACS system is based on electrochemical membrane (ECM) technology derived from FCE’s carbonate fuel cell products featuring internal (methane steam) reforming and carrying the trade name of Direct FuelCell®. The unique chemistry of carbonate fuel cells offers an innovative approach for separation of CO2 from existing fossil-fuel power plant exhaust streams (flue gases). The ECM-based CEPACS system has the potential to become a transformational CO2-separation technology by working as two devices in one: it separates the CO2 from the exhaust of other plants such as an existing coal-fired plant and simultaneously produces clean electric power at high efficiency using a supplementary fuel. The development effort was carried out under the U.S. Department of Energy (DOE) cooperative agreement DE-FE0007634. The overall objective of this project was to successfully demonstrate the ability of FCE’s ECM-based CEPACS system technology to separate ≥90% of the CO2 from a simulated Pulverized Coal (PC) power plant flue gas stream and to compress the captured CO2 to a state that can be easily transported for sequestration or beneficial use. In addition, a key objective was to show, through the technical and economic feasibility study and bench scale testing, that the ECM-based CEPACS system is an economical alternative for CO2 capture in PC power plants, and that it meets DOE’s objective related to the incremental cost of electricity (COE) for post-combustion CO2 capture (no more than 35% increase in COE). The project was performed in three budget periods (BP). The specific objective for BP1 was to complete the Preliminary Technical and Economic Feasibility Study

  5. Electrochemical treatment of evaporated residue of soak liquor generated from leather industry

    International Nuclear Information System (INIS)

    Boopathy, R.; Sekaran, G.

    2013-01-01

    Highlights: • Electrochemical treatment of evaporated residue of soak liquor (ERSL) generated in Tannery. • Copper coating on electrode surface and horizontal mounting of electrodes for ERSL treatment. • Electrochemical oxidation of organic pollutants under high saline condition. • The treated solution may be evaporated to dryness to get NaCl salt for hide/skin preservation. -- Abstract: The organic and suspended solids present in soak liquor, generated from leather industry, demands treatment. The soak liquor is being segregated and evaporated in solar evaporation pans/multiple effect evaporator due to non availability of viable technology for its treatment. The residue left behind in the pans/evaporator does not carry any reuse value and also faces disposal threat due to the presence of high concentration of sodium chloride, organic and bacterial impurities. In the present investigation, the aqueous evaporated residue of soak liquor (ERSL) was treated by electrochemical oxidation. Graphite/graphite and SS304/graphite systems were used in electrochemical oxidation of organics in ERSL. Among these, graphite/graphite system was found to be effective over SS304/graphite system. Hence, the optimised conditions for the electrochemical oxidation of organics in ERSL using graphite/graphite system was evaluated by response surface methodology (RSM). The mass transport coefficient (k m ) was calculated based on pseudo-first order rate kinetics for both the electrode systems (graphite/graphite and SS304/graphite). The thermodynamic properties illustrated the electrochemical oxidation was exothermic and non-spontaneous in nature. The calculated specific energy consumption at the optimum current density of 50 mA cm −2 was 0.41 kWh m −3 for the removal of COD and 2.57 kWh m −3 for the removal of TKN

  6. Iron Bioavailability Studies of the First Generation of Iron-Biofortified Beans Released in Rwanda.

    Science.gov (United States)

    Glahn, Raymond; Tako, Elad; Hart, Jonathan; Haas, Jere; Lung'aho, Mercy; Beebe, Steve

    2017-07-21

    This paper represents a series of in vitro iron (Fe) bioavailability experiments, Fe content analysis and polyphenolic profile of the first generation of Fe biofortified beans ( Phaseolus vulgaris ) selected for human trials in Rwanda and released to farmers of that region. The objective of the present study was to demonstrate how the Caco-2 cell bioassay for Fe bioavailability can be utilized to assess the nutritional quality of Fe in such varieties and how they may interact with diets and meal plans of experimental studies. Furthermore, experiments were also conducted to directly compare this in vitro approach with specific human absorption studies of these Fe biofortified beans. The results show that other foods consumed with beans, such as rice, can negatively affect Fe bioavailability whereas potato may enhance the Fe absorption when consumed with beans. The results also suggest that the extrinsic labelling approach to measuring human Fe absorption can be flawed and thus provide misleading information. Overall, the results provide evidence that the Caco-2 cell bioassay represents an effective approach to evaluate the nutritional quality of Fe-biofortified beans, both separate from and within a targeted diet or meal plan.

  7. Iron

    Science.gov (United States)

    Iron is a mineral that our bodies need for many functions. For example, iron is part of hemoglobin, a protein which carries ... It helps our muscles store and use oxygen. Iron is also part of many other proteins and ...

  8. Ferrier rearrangement promoted by an electrochemically generated zirconium catalyst.

    Science.gov (United States)

    Stevanović, Dragana; Pejović, Anka; Damljanović, Ivan; Minić, Aleksandra; Bogdanović, Goran A; Vukićević, Mirjana; Radulović, Niko S; Vukićević, Rastko D

    2015-04-30

    In situ generated zirconium catalyst from a sacrificial zirconium anode was successfully applied to promote Ferrier rearrangement of 3,4,5-tri-O-acetyl-D-glucal and 6-deoxy-3,4-di-O-acetyl-L-glucal (3,4-di-O-acetyl-L-rhamnal) in the presence of three thiols and eleven thiophenols as nucleophiles. A simple constant current electrolysis (20 mA, 0.4 F mol(-1)) of an acetonitrile solution of lithium perchlorate (0.1 M) containing the corresponding glycal and S-nucleophiles, using a zirconium anode and a platinum cathode resulted in the successful synthesis of the corresponding 2,3-unsaturated peracetylated thioglycosides (with an average anomer ratio α/β=4.129 in the case of peracetylated D-glucal and 8.740 in the case of L-rhamnal). The same procedure proved to be appropriate in synthesizing dihydropyran derivatives ('C-glycosides') using allyltrimethylsilane as the nucleophile (only 'α-anomers' were obtained). All new compounds were fully characterized by spectral data, whereas single-crystal X-ray analysis was performed for two thioglycosides. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Physico-chemical properties of the new generation IV iron preparations ferumoxytol, iron isomaltoside 1000 and ferric carboxymaltose.

    Science.gov (United States)

    Neiser, Susann; Rentsch, Daniel; Dippon, Urs; Kappler, Andreas; Weidler, Peter G; Göttlicher, Jörg; Steininger, Ralph; Wilhelm, Maria; Braitsch, Michaela; Funk, Felix; Philipp, Erik; Burckhardt, Susanna

    2015-08-01

    The advantage of the new generation IV iron preparations ferric carboxymaltose (FCM), ferumoxytol (FMX), and iron isomaltoside 1000 (IIM) is that they can be administered in relatively high doses in a short period of time. We investigated the physico-chemical properties of these preparations and compared them with those of the older preparations iron sucrose (IS), sodium ferric gluconate (SFG), and low molecular weight iron dextran (LMWID). Mössbauer spectroscopy, X-ray diffraction, and Fe K-edge X-ray absorption near edge structure spectroscopy indicated akaganeite structures (β-FeOOH) for the cores of FCM, IIM and IS, and a maghemite (γ-Fe2O3) structure for that of FMX. Nuclear magnetic resonance studies confirmed the structure of the carbohydrate of FMX as a reduced, carboxymethylated, low molecular weight dextran, and that of IIM as a reduced Dextran 1000. Polarography yielded significantly different fingerprints of the investigated compounds. Reductive degradation kinetics of FMX was faster than that of FCM and IIM, which is in contrast to the high stability of FMX towards acid degradation. The labile iron content, i.e. the amount of iron that is only weakly bound in the polynuclear iron core, was assessed by a qualitative test that confirmed decreasing labile iron contents in the order SFG ≈ IS > LMWID ≥ FMX ≈ IIM ≈ FCM. The presented data are a step forward in the characterization of these non-biological complex drugs, which is a prerequisite to understand their cellular uptake mechanisms and the relationship between the structure and physiological safety as well as efficacy of these complexes.

  10. Automated electrochemical detection of iron ions in erythrocytes from melim minipigs suffering from melanoma

    Czech Academy of Sciences Publication Activity Database

    Kremplová, M.; Krejcová, l.; Hynek, D.; Barath, P.; Majzlík, P.; Horák, Vratislav; Adam, V.; Sochor, J.; Cernei, N.; Hubálek, J.; Vrba, R.; Kižek, R.

    2012-01-01

    Roč. 7, č. 7 (2012), s. 5893-5909 ISSN 1452-3981 Institutional research plan: CEZ:AV0Z50450515 Keywords : Automation * Biological sample * Electrochemical detection Subject RIV: CG - Electrochemistry Impact factor: 3.729, year: 2011

  11. Electrochemical and spectroscopie behaviour of iron in the molten NaCl-K2SO4 mixture

    DEFF Research Database (Denmark)

    Bjerrum, Niels; Petruchina, Irina; Volkov, S.V.

    1996-01-01

    The chemical and electrochemical dissolving of Armco iron in the NaCl-K2SO4 melt has been studied. In the case of the chemical dissolution, a sample becomes coated, as time goes on, with a dense film consisting of FeO, FeS and Fe3O4; precipitation in the melt is observed, the precipitate consisting...... not detect Fe(III) by electronic absorption spectra, possibly due to the superimposition of the charge transfer bands edge on low-intensity Fe(III) bands of the 5d electronic configuration. The solubility of Fe2O3 in the NaCl-K2SO4 melt is low and was determined to 2 x 10(-3) wt%....

  12. Kinetic studies of electrochemical generation of Ag(II) ion and catalytic oxidation of selected organics

    International Nuclear Information System (INIS)

    Zawodzinski, C.; Smith, W.H.; Martinez, K.R.

    1993-01-01

    The goal of this research is to develop a method to treat mixed hazardous wastes containing selected organic compounds and heavy metals, including actinide elements. One approach is to destroy the organic via electrochemical oxidation to carbon dioxide, then recover the metal contaminants through normally accepted procedures such as ion exchange, precipitation, etc. The authors have chosen to study the electrochemical oxidation of a simple alcohol, iso-propanol. Much of the recent work reported involved the use of an electron transfer mediator, usually the silver(I)/(II) redox couple. This involved direct electrochemical generation of the mediator at the anode of a divided cell followed by homogeneous reaction of the mediator with the organic compound. In this study the authors have sought to compare the mediated reaction with direct electrochemical oxidation of the organic. In addition to silver(I)/(II) they also looked at the cobalt(II)/(III) redox coupled. In the higher oxidation state both of these metal ions readily hydrolyze in aqueous solution to ultimately form insoluble oxide. The study concluded that in a 6M nitric acid solution at room temperature iso-propanol can be oxidized to carbon dioxide and acetic acid. Acetic acid is a stable intermediate and resists further oxidation. The presence of Co(III) enhances the rate or efficiency of the reaction

  13. Electrochemical treatment of evaporated residue of soak liquor generated from leather industry.

    Science.gov (United States)

    Boopathy, R; Sekaran, G

    2013-09-15

    The organic and suspended solids present in soak liquor, generated from leather industry, demands treatment. The soak liquor is being segregated and evaporated in solar evaporation pans/multiple effect evaporator due to non availability of viable technology for its treatment. The residue left behind in the pans/evaporator does not carry any reuse value and also faces disposal threat due to the presence of high concentration of sodium chloride, organic and bacterial impurities. In the present investigation, the aqueous evaporated residue of soak liquor (ERSL) was treated by electrochemical oxidation. Graphite/graphite and SS304/graphite systems were used in electrochemical oxidation of organics in ERSL. Among these, graphite/graphite system was found to be effective over SS304/graphite system. Hence, the optimised conditions for the electrochemical oxidation of organics in ERSL using graphite/graphite system was evaluated by response surface methodology (RSM). The mass transport coefficient (km) was calculated based on pseudo-first order rate kinetics for both the electrode systems (graphite/graphite and SS304/graphite). The thermodynamic properties illustrated the electrochemical oxidation was exothermic and non-spontaneous in nature. The calculated specific energy consumption at the optimum current density of 50 mA cm(-2) was 0.41 kWh m(-3) for the removal of COD and 2.57 kWh m(-3) for the removal of TKN. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Electrochemical studies of iron/carbonates system applied to the formation of thin layers of siderite on inert substrates

    International Nuclear Information System (INIS)

    Ithurbide, A.; Peulon, S.; Mandin, Ph.; Beaucaire, C.; Chausse, A.

    2007-01-01

    In order to understand the complex mechanisms of the reactions occurring, a methodology is developed. It is based on the use of compounds electrodeposited under the form of thin layers and which are used then as electrodes to study their interactions with the toxic species. It is in this framework that is studied the electrodeposition of siderite on inert substrates. At first, have been studied iron electrochemical systems in carbonated solutions. These studies have been carried out with classical electrochemical methods (cyclic voltametry, amperometry) coupled to in-situ measurements: quartz microbalance, pH. Different compounds have been obtained under the form of homogeneous and adherent thin layers. The analyses of these depositions, by different ex-situ characterizations (XRD, IR, SEM, EDS..) have revealed particularly the presence of siderite. Then, the influence of several experimental parameters (substrate, potential, medium composition, temperature) on the characteristics of siderite thin layers has been studied. From these experimental results, models have been proposed. (O.M.)

  15. Iron oxyhydroxide nanorods with high electrochemical reactivity as a sensitive and rapid determination platform for 4-chlorophenol

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuanyuan [Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Britton Chance Center for Biomedical Photonics at Wuhan, National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Cheng, Qin; Zheng, Meng [Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Liu, Xin [Britton Chance Center for Biomedical Photonics at Wuhan, National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Wu, Kangbing, E-mail: kbwu@hust.edu.cn [Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2016-04-15

    Highlights: • Prepared FeOOH nanorods exhibited high reactivity toward the oxidation of 4-CP. • Response signals and detection sensitivity of 4-CP increased greatly by FeOOH. • Highly-sensitive and rapid determination platform was developed for 4-CP. • Practical application in water samples was studied, and the accuracy was good. - Abstract: Iron oxyhydroxide (FeOOH) nanorods were prepared through solvothermal reaction, and characterized using Raman spectroscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, transmission electron microscopy and scanning electron microscopy. Thereafter, the prepared FeOOH nanorods were used as sensing material to construct a novel detection platform for 4-chlorophenol (4-CP). The electrochemical behaviors of 4-CP were studied, and the oxidation peak currents increased greatly on the surface of FeOOH nanorods. The signal enhancement mechanism was studied for 4-CP, and it was found that the prepared FeOOH nanorods remarkably improved the electron transfer ability and surface adsorption efficiency of 4-CP. The influences of pH value, amount of FeOOH nanorods and accumulation time were examined. As a result, a highly-sensitive electrochemical method was developed for the rapid determination of 4-CP. The linear range was from 10 to 500 nM, and the detection limit was 3.2 nM. It was used in different water samples, and the results consisted with the values that obtained by high-performance liquid chromatography.

  16. Simultaneous Electrochemical Detection of Dopamine and Ascorbic Acid Using an Iron Oxide/Reduced Graphene Oxide Modified Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Teo Peik-See

    2014-08-01

    Full Text Available The fabrication of an electrochemical sensor based on an iron oxide/graphene modified glassy carbon electrode (Fe3O4/rGO/GCE and its simultaneous detection of dopamine (DA and ascorbic acid (AA is described here. The Fe3O4/rGO nanocomposite was synthesized via a simple, one step in-situ wet chemical method and characterized by different techniques. The presence of Fe3O4 nanoparticles on the surface of rGO sheets was confirmed by FESEM and TEM images. The electrochemical behavior of Fe3O4/rGO/GCE towards electrocatalytic oxidation of DA was investigated by cyclic voltammetry (CV and differential pulse voltammetry (DPV analysis. The electrochemical studies revealed that the Fe3O4/rGO/GCE dramatically increased the current response against the DA, due to the synergistic effect emerged between Fe3O4 and rGO. This implies that Fe3O4/rGO/GCE could exhibit excellent electrocatalytic activity and remarkable electron transfer kinetics towards the oxidation of DA. Moreover, the modified sensor electrode portrayed sensitivity and selectivity for simultaneous determination of AA and DA. The observed DPVs response linearly depends on AA and DA concentration in the range of 1–9 mM and 0.5–100 µM, with correlation coefficients of 0.995 and 0.996, respectively. The detection limit of (S/N = 3 was found to be 0.42 and 0.12 µM for AA and DA, respectively.

  17. Electrochemical reduction of nitroaromatic compounds by single sheet iron oxide coated electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Li-Zhi, E-mail: lizhi@plen.ku.dk [Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK–1871 Frederiksberg C (Denmark); Hansen, Hans Christian B. [Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK–1871 Frederiksberg C (Denmark); Bjerrum, Morten Jannik [Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK–2100 København Ø (Denmark)

    2016-04-05

    Highlights: • Composite layers of single sheet iron oxides were coated on indium tin oxide electrodes. • Single sheet iron oxide is an electro-catalyst for reduction of nitroaromatic compounds in aqueous solution. • The reduction is well explained by a diffusion layer model. • The charge properties of the nitrophenols have an important influence on reduction. • Low-cost iron oxide based materials are promising electro-catalyst for water treatment. - Abstract: Nitroaromatic compounds are substantial hazard to the environment and to the supply of clean drinking water. We report here the successful reduction of nitroaromatic compounds by use of iron oxide coated electrodes, and demonstrate that single sheet iron oxides formed from layered iron(II)-iron(III) hydroxides have unusual electrocatalytic reactivity. Electrodes were produced by coating of single sheet iron oxides on indium tin oxide electrodes. A reduction current density of 10 to 30 μA cm{sup −2} was observed in stirred aqueous solution at pH 7 with concentrations of 25 to 400 μM of the nitroaromatic compound at a potential of −0.7 V vs. SHE. Fast mass transfer favors the initial reduction of the nitroaromatic compound which is well explained by a diffusion layer model. Reduction was found to comprise two consecutive reactions: a fast four-electron first-order reduction of the nitro-group to the hydroxylamine-intermediate (rate constant = 0.28 h{sup −1}) followed by a slower two-electron zero-order reduction resulting in the final amino product (rate constant = 6.9 μM h{sup −1}). The zero-order of the latter reduction was attributed to saturation of the electrode surface with hydroxylamine-intermediates which have a more negative half-wave potential than the parent compound. For reduction of nitroaromatic compounds, the SSI electrode is found superior to metal electrodes due to low cost and high stability, and superior to carbon-based electrodes in terms of high coulombic efficiency and

  18. Polypyrrole–titanium(IV) doped iron(III) oxide nanocomposites: Synthesis, characterization with tunable electrical and electrochemical properties

    International Nuclear Information System (INIS)

    Nandi, Debabrata; Ghosh, Arup Kumar; Gupta, Kaushik; De, Amitabha; Sen, Pintu; Duttachowdhury, Ankan; Ghosh, Uday Chand

    2012-01-01

    Highlights: ► Synthesis and characterization of polymer nanocomposite based on titanium doped iron(III) oxide. ► Electrical conductivity increased 100 times in composite with respect to polymer. ► Electrochemical capacitance of polymer composites increased with nanooxide content. ► Thermal stability of the polymer enhanced with nano oxide content. -- Abstract: Titanium(IV)-doped synthetic nanostructured iron(III) oxide (NITO) and polypyrrole (PPy) nanocomposites was fabricated by in situ polymerization using FeCl 3 as initiator. The polymer nanocomposites (PNCs) and pure NITO were characterized by X-ray diffraction, Föurier transform infrared spectroscopy, scanning electron microscopy, electron dispersive X-ray spectroscopy, transmission electron microscopy, etc. Thermo gravimetric and differential thermal analyses showed the enhancement of thermal stability of PNCs than the pure polymer. Electrical conductivity of the PNCs had increased significantly from 0.793 × 10 −2 S/cm to 0.450 S/cm with respect to the PPy, and that had been explained by 3-dimensional variable range hopping (VRH) conduction mechanisms. In addition, the specific capacitance of PNCs had increased from 147 F/g to 176 F/g with increasing NITO content than that of pure NITO (26 F/g), presumably due to the growing of mesoporous structure with increasing NITO content in PNCs which reduced the charge transfer resistance significantly.

  19. Application of electrochemical plasma techniques in surface engineering of iron based structural materials

    International Nuclear Information System (INIS)

    Coaca, E.; Rusu, O.; Mihalache, M.; Minca, M.; Tacica, M.; Florea, S.; Oncioiu, G.; Andrei, V.

    2013-01-01

    The surface of austenitic stainless steels 304 L and 316 L was modified by various complex surface treatments: - plasma electrolytic carbo-nitriding by means of Plasma electrolytic saturation (PES); the saturation of cathodic surfaces with C, N was performed using suitable electrolytes (aqueous solutions of inorganic acids, appropriate salts containing the desired elements and certain organic compounds); -electrodeposition of Al from ChCl based Ionic Liquid. The coatings obtained in various experimental conditions have been investigated by means of electron spectroscopy, scanning electron microscopy, energy dispersion x-ray spectrometry, electrochemical techniques, and the properties of the thin films have been correlated with the microstructure and the composition of the surface layers which are strongly dependents of the different regimes of diffusion treatments. The preliminary results on Electrochemical Plasma Technology (EPT) treatments demonstrate that we can select the processing parameters for essential improvement of corrosion behaviour in some aggressive medium and high values of microhardness. (authors)

  20. Electrochemical Anti-corrosion System of Iron Tower Based on Solar Power Supply

    Directory of Open Access Journals (Sweden)

    Tian Tian

    2018-01-01

    Full Text Available Aiming at the serious problem of the corrosion of the transmission tower in the coastal area or in the harsh industrial area, a kind of electro-chemical anti-corrosion system based on solar power is designed. The system consists of a solar power module and an electrochemical anti-corrosion module: The solar power module consists of a solar panel, a photovoltaic controller, a accumulator and a constant potentiometer. The Electrochemical anti-corrosion modules include an anode block and an anode bed and reference electrode. The photovoltaic energy technology and forced current cathodic protection technology are used in the system, to achieve the effective protection of the tower anti-corrosion. Solar power supply to the nearest, solve the long-distance transmission loss and the high installation costs, form a simple structure, stable operation, low cost, clean and environmental protection, long service life of anti-corrosion system, with good economic efficiency and social benefits. It is of great significance to ensure the safe operation of the tower, maintain the normal operation of the power grid, and even promotes the optimization and upgrading of the industrial structure, save energy and reduces emissions, improve the safe and stable operation of the power system and the economic benefits, etc.

  1. Stability, electrochemical behaviors and electronic structures of iron hydroxyl-phosphate

    International Nuclear Information System (INIS)

    Wang Zhongli; Sun Shaorui; Li Fan; Chen Ge; Xia Dingguo; Zhao Ting; Chu Wangsheng; Wu Ziyu

    2010-01-01

    Iron hydroxyl-phosphate with a uniform spherical particle size of around 1 μm, a compound of the type Fe 2-y □ y (PO 4 )(OH) 3-3y (H 2 O) 3y-2 (where □ represents a vacancy), has been synthesized by hydrothermal methods. The particles are composed of spheres of diameter -1 and 120 mAh g -1 at current densities of 170 mA g -1 and 680 mA g -1 , respectively. The stability of crystal structure of this material was studied by TGA and XRD which show that the material remains stable at least up to the temperature 200 deg. C. Investigation of the electronic structure of the iron hydroxyl-phosphate by GGA + U calculation has indicated that it has a better electronic conductivity than LiFePO 4 .

  2. The role of halide ions on the electrochemical behaviour of iron in alkali solutions

    Science.gov (United States)

    Begum, S. Nathira; Muralidharan, V. S.; Basha, C. Ahmed

    2008-02-01

    Active dissolution and passivation of transition metals in alkali solutions is of technological importance in batteries. The performance of alkaline batteries is decided by the presence of halides as they influence passivation. Cyclic voltammetric studies were carried out on iron in different sodium hydroxide solutions in presence of halides. In alkali solutions iron formed hydroxo complexes and their polymers in the interfacial diffusion layer. With progress of time they formed a cation selective layer. The diffusion layer turned into bipolar ion selective layer consisted of halides, a selective inner sublayer to the metal side and cation selective outer layer to the solution side. At very high anodic potentials, dehydration and deprotonation led to the conversion of salt layer into an oxide.

  3. Electrochemical behavior of meso-substituted iron porphyrins in alkaline aqueous media

    Science.gov (United States)

    Berezina, N. M.; Bazanov, M. I.; Maksimova, A. A.; Semeikin, A. S.

    2017-12-01

    The effect meso-substitution in iron porphyrin complexes has on their redox behavior in alkaline aqueous solutions is studied via cyclic voltammetry. The voltammetric features of the reduction of iron pyridylporphyrins suggest that the sites of electron transfer lie at the ligand, the metal ion, and the pyridyl moieties. The electron transfer reactions between the different forms of these compounds, including the oxygen reduction reaction they mediate, are outlined to show the sequence and potential ranges in which they occur in alkaline aqueous media. Under our experimental conditions, the iron porphyrins exist as μ-oxo dimmers whose activity for the electrocatalytic reduction of oxygen displays a considerable dependence on the nature of the substitutents and nitrogen isomerization (for pyridylporphyrins) and grows in the order (Fe( ms-Ph)4P)2O, (Fe[ ms-(Py-3)Ph3]P)2O, (Fe[ ms-(Py-4)4]P)2O, and (Fe[ ms-(Py-3)4]P)2O.

  4. Microwave synthesis of copper network onto lithium iron phosphate cathode materials for improved electrochemical performance

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Chien-Te, E-mail: cthsieh@saturn.yzu.edu.tw [Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan 320, Taiwan (China); Liu, Juan-Ru [Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan 320, Taiwan (China); Juang, Ruey-Shin [Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 333, Taiwan (China); Lee, Cheng-En; Chen, Yu-Fu [Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan 320, Taiwan (China)

    2015-03-01

    Herein reported is an efficient microwave-assisted (MA) approach for growing Cu network onto LiFePO{sub 4} (LFP) powders as cathode materials for high-performance Li-ion batteries. The MA approach is capable of depositing highly-porous Cu network, fully covered the LFP powders. The electrochemical performance of Cu-coated LFP cathodes are well characterized by charge/discharge cycling and electrochemical impedance spectroscopy (EIS). The Cu network acts as the key role in improving the specific capacity, rate capability, electrode polarization, as compared to fresh LFP cathode without the Cu coating. The EIS incorporated with equivalent circuit reveals that the completed Cu network obviously suppresses the charge transfer resistance. This result can be attributed to the fact that the Cu network ensures the LFP crystals to get electron easily, alleviating the electrode polarization in view of one-dimensional Li{sup +} ion mobility in the olivine crystals. Based on the analysis of Randles plots, the relatively higher Li{sup +} diffusion coefficient reflects the more efficient Li{sup +} pathway in the LFP powders through the aid of porous Cu network. - Highlights: • An efficient route was used to prepare Cu/LiFePO{sub 4} (LFP) hybrid as cathode material. • The Cu/LFP cathodes exhibit an improved performance as compared to fresh LFP one. • The microwave approach can deposit Cu network, fully covered the LFP powders. • The Cu network ensures LFP to get electrons, alleviating electrode polarization.

  5. Microwave synthesis of copper network onto lithium iron phosphate cathode materials for improved electrochemical performance

    International Nuclear Information System (INIS)

    Hsieh, Chien-Te; Liu, Juan-Ru; Juang, Ruey-Shin; Lee, Cheng-En; Chen, Yu-Fu

    2015-01-01

    Herein reported is an efficient microwave-assisted (MA) approach for growing Cu network onto LiFePO 4 (LFP) powders as cathode materials for high-performance Li-ion batteries. The MA approach is capable of depositing highly-porous Cu network, fully covered the LFP powders. The electrochemical performance of Cu-coated LFP cathodes are well characterized by charge/discharge cycling and electrochemical impedance spectroscopy (EIS). The Cu network acts as the key role in improving the specific capacity, rate capability, electrode polarization, as compared to fresh LFP cathode without the Cu coating. The EIS incorporated with equivalent circuit reveals that the completed Cu network obviously suppresses the charge transfer resistance. This result can be attributed to the fact that the Cu network ensures the LFP crystals to get electron easily, alleviating the electrode polarization in view of one-dimensional Li + ion mobility in the olivine crystals. Based on the analysis of Randles plots, the relatively higher Li + diffusion coefficient reflects the more efficient Li + pathway in the LFP powders through the aid of porous Cu network. - Highlights: • An efficient route was used to prepare Cu/LiFePO 4 (LFP) hybrid as cathode material. • The Cu/LFP cathodes exhibit an improved performance as compared to fresh LFP one. • The microwave approach can deposit Cu network, fully covered the LFP powders. • The Cu network ensures LFP to get electrons, alleviating electrode polarization

  6. Application of electrochemical frequency modulation for monitoring corrosion and corrosion inhibition of iron by some indole derivatives in molar hydrochloric acid

    International Nuclear Information System (INIS)

    Khaled, K.F.

    2008-01-01

    The corrosion inhibition effect of four indole derivatives, namely indole (IND), benzotriazole (BTA), benzothiazole (BSA) and benzoimidazole (BIA), have been used as possible corrosion inhibitors for pure iron in 1 M HCl. In this study, electrochemical frequency modulation, EFM was used as an effective method for corrosion rate determination in corrosion inhibition studies. By using EFM measurements, corrosion current density was determined without prior knowledge of Tafel slopes. Corrosion rates obtained using EFM, were compared to that obtained from other chemical and electrochemical techniques. The results obtained from EFM, EIS, Tafel and weight loss measurements were in good agreement. Tafel polarization measurements show that indole derivatives are cathodic-type inhibitors. Molecular simulation studies were applied to optimize the adsorption structures of indole derivatives. The inhibitor/iron/solvent interfaces were simulated and the adsorption energies of these inhibitors were calculated. Quantum chemical calculations have been performed and several quantum chemical indices were calculated and correlated with the corresponding inhibition efficiencies

  7. Redox properties of iron-bearing clays and MX-80 bentonite – Electrochemical and spectroscopic characterization

    Energy Technology Data Exchange (ETDEWEB)

    Hofstetter, Th. B.; Sosedova, Y.; Gorski, C.; Voegelin, A.; Sander, M.

    2014-03-15

    The characterization of the redox properties of Fe-bearing minerals in the presence and absence of dissolved Fe{sup 2+} is of major relevance for the assessment of redox reactions in natural and engineered environments such as radioactive waste repositories. In this study, we developed an electrochemical approach based on the use of soluble organic electron transfer mediators, which enabled us to quantify the redox properties of Fe-bearing clay minerals, MX- 80 bentonite and combinations of clay minerals, Fe oxides and dissolved Fe{sup 2+}. Using mediated electrochemical oxidation and reduction, we quantified the electron accepting and donating capacities of ferrous smectite SWa-1, Wyoming montmorillonite SWy-2 and MX-80 bentonite at pH 7.5. All structural Fe in clay minerals was redox-active in contrast to that present in other, not further defined phases of MX-80. The materials investigated were redoxactive over a very wide range of Eh-values, that is the Fe{sup 2+}/Fe{sub total} ratio of the minerals changed from 0 to 100 % between +600 and -600 mV (vs. SHE). Redox properties were highly path-dependent due to structural changes of the minerals as revealed from the study of native and redox-cycled clay minerals after repeated reduction and re-oxidation cycles. Irreversible alteration of the mineral structure, however, was less obvious for materials with lower total Fe content such as MX-80 bentonite and SWy-2. Systems containing native montmorillonites (SWy-2 or MX-80), goethite and dissolved Fe{sup 2+} were also able to buffer the reduction potential E{sub H} between 0 and -300 mV. Regardless of their Fe oxidation state, Fe-bearing minerals are redox-active over a wide potential range and therefore very relevant as redox buffers determining the fate of redox-active radionuclides and metals in waste repositories. (authors)

  8. Redox properties of iron-bearing clays and MX-80 bentonite – Electrochemical and spectroscopic characterization

    International Nuclear Information System (INIS)

    Hofstetter, Th. B.; Sosedova, Y.; Gorski, C.; Voegelin, A.; Sander, M.

    2014-03-01

    The characterization of the redox properties of Fe-bearing minerals in the presence and absence of dissolved Fe"2"+ is of major relevance for the assessment of redox reactions in natural and engineered environments such as radioactive waste repositories. In this study, we developed an electrochemical approach based on the use of soluble organic electron transfer mediators, which enabled us to quantify the redox properties of Fe-bearing clay minerals, MX- 80 bentonite and combinations of clay minerals, Fe oxides and dissolved Fe"2"+. Using mediated electrochemical oxidation and reduction, we quantified the electron accepting and donating capacities of ferrous smectite SWa-1, Wyoming montmorillonite SWy-2 and MX-80 bentonite at pH 7.5. All structural Fe in clay minerals was redox-active in contrast to that present in other, not further defined phases of MX-80. The materials investigated were redoxactive over a very wide range of Eh-values, that is the Fe"2"+/Fe_t_o_t_a_l ratio of the minerals changed from 0 to 100 % between +600 and -600 mV (vs. SHE). Redox properties were highly path-dependent due to structural changes of the minerals as revealed from the study of native and redox-cycled clay minerals after repeated reduction and re-oxidation cycles. Irreversible alteration of the mineral structure, however, was less obvious for materials with lower total Fe content such as MX-80 bentonite and SWy-2. Systems containing native montmorillonites (SWy-2 or MX-80), goethite and dissolved Fe"2"+ were also able to buffer the reduction potential E_H between 0 and -300 mV. Regardless of their Fe oxidation state, Fe-bearing minerals are redox-active over a wide potential range and therefore very relevant as redox buffers determining the fate of redox-active radionuclides and metals in waste repositories. (authors)

  9. The electrochemical corrosion of bulk nanocrystalline ingot iron in HCl solutions with different concentrations

    International Nuclear Information System (INIS)

    Wang, S.G.; Sun, M.; Cheng, P.C.; Long, K.

    2011-01-01

    Highlights: → The corrosion resistance of BNII was enhanced in comparison with CPII in 0.1-0.4 mol L -1 solution. → The function work of BNII is 0.47 eV larger that of CPII. → The energy state density of 4s electrons of BNII is 13.73% less than that of CPII. → BNII corrosion resistance was enhanced due to its larger work function and less 4s electrons weight. → The specific adsorption of Cl - on BNII was weaker than that of CPII due to its larger function work. - Abstract: We studied the corrosion properties of bulk nanocrystalline ingot iron (BNII) and conventional polycrystalline ingot iron (CPII) in HCl solutions from 0.1 mol L -1 to 0.4 mol L -1 at room temperature. The corrosion resistance of BNII was enhanced in comparison with CPII. We investigated the surface energy state densities of BNII and CPII with ultra-violet photoelectron spectroscopy. The energy state density of BNII 4s electrons was 13.73% less than that of CPII. The function work of BNII was 0.47 eV larger that of CPII. The corrosion resistance of BNII was enhanced in comparison with CPII due to its less energy state density of 4s electrons, larger work function and weaker Cl - specific adsorption.

  10. HFE gene variants and iron-induced oxygen radical generation in idiopathic pulmonary fibrosis.

    Science.gov (United States)

    Sangiuolo, Federica; Puxeddu, Ermanno; Pezzuto, Gabriella; Cavalli, Francesco; Longo, Giuliana; Comandini, Alessia; Di Pierro, Donato; Pallante, Marco; Sergiacomi, Gianluigi; Simonetti, Giovanni; Zompatori, Maurizio; Orlandi, Augusto; Magrini, Andrea; Amicosante, Massimo; Mariani, Francesca; Losi, Monica; Fraboni, Daniela; Bisetti, Alberto; Saltini, Cesare

    2015-02-01

    In idiopathic pulmonary fibrosis (IPF), lung accumulation of excessive extracellular iron and macrophage haemosiderin may suggest disordered iron homeostasis leading to recurring microscopic injury and fibrosing damage. The current study population comprised 89 consistent IPF patients and 107 controls. 54 patients and 11 controls underwent bronchoalveolar lavage (BAL). Haemosiderin was assessed by Perls' stain, BAL fluid malondialdehyde (MDA) by high-performance liquid chromatography, BAL cell iron-dependent oxygen radical generation by fluorimetry and the frequency of hereditary haemochromatosis HFE gene variants by reverse dot blot hybridisation. Macrophage haemosiderin, BAL fluid MDA and BAL cell unstimulated iron-dependent oxygen radical generation were all significantly increased above controls (pHFE allelic variants was markedly higher in IPF compared with controls (40.4% versus 22.4%, OR 2.35, p=0.008) and was associated with higher iron-dependent oxygen radical generation (HFE variant 107.4±56.0, HFE wild type (wt) 59.4±36.4 and controls 16.7±11.8 fluorescence units per 10(5) BAL cells; p=0.028 HFE variant versus HFE wt, p=0.006 HFE wt versus controls). The data suggest iron dysregulation associated with HFE allelic variants may play an important role in increasing susceptibility to environmental exposures, leading to recurring injury and fibrosis in IPF. Copyright ©ERS 2015.

  11. Estimation of the effect of molybdenum on chemical and electrochemical stability of iron-based alloys

    International Nuclear Information System (INIS)

    Tyurin, A.G.

    2003-01-01

    The E-pH diagram for Mo-H 2 O system is made more precise. It is shown that a passivating film on molybdenum in weakly acid, neutral and alkali solutions may constitute MoO 2 only. In strongly acid solutions at anodic polarization the film should transform according to the following scheme: MoO 2 → Mo 4 O 11 → Mo 9 O 26 → MoO 3 . Sections of a Fe-Mo-O system phase diagram and a Fe-Mo-H 2 O system E-pH diagram at 25 deg C are plotted. MoO 2 is found to be a product of iron-molybdenum alloy oxidation in the air and in water. For the system of alloy Kh17N13M2-H 2 O the section of a E-pH diagram is plotted at 25 deg C [ru

  12. Synthesis of iron oxides nanoparticles with very high saturation magnetization form TEA-Fe(III) complex via electrochemical deposition for supercapacitor applications

    Science.gov (United States)

    Elrouby, Mahmoud; Abdel-Mawgoud, A. M.; El-Rahman, Rehab Abd

    2017-11-01

    This work is devoted to the synthesis of magnetic iron oxides nanoparticles with very high saturation magnetization to be qualified for supercapacitor applications using, a simple electrodeposition technique. It is found that the electrochemical reduction process depends on concentration, temperature, deposition potential and the scan rate of potential. The nature of electrodeposition process has been characterized via voltammetric and chronoamperometric techniques. The morphology of the electrodeposits has been investigated using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The structure and phase content of these investigated electrodeposits have been examined and calculated. The obtained iron oxides show a high saturation magnetization (Ms) of about 229 emu g-1. The data exhibited a relation between Ms of electrodeposited iron oxide and specific capacitance. This relation exhibits that the highest Ms value of electrodeposited iron oxides gives also highest specific capacitance of about 725 Fg-1. Moreover, the electrodeposited iron oxides exhibit a very good stability. The new characteristics of the electro synthesized iron oxides at our optimized conditions, strongly qualify them as a valuable material for high-performance supercapacitor applications.

  13. Electrochemical removal of indium ions from aqueous solution using iron electrodes

    International Nuclear Information System (INIS)

    Chou, Wei-Lung; Huang, Yen-Hsiang

    2009-01-01

    The removal of indium ions from aqueous solution was carried out by electrocoagulation in batch mode using an iron electrode. Various operating parameters that could potentially affect the removal efficiency were investigated, including the current density, pH variation, supporting electrolyte, initial concentration, and temperature. The optimum current density, supporting electrolyte concentration, and temperature were found to be 6.4 mA/cm 2 , 0.003N NaCl, and 298 K, respectively. When the pH values lower than 6.1, the removal efficiencies of indium ions via electrocoagulation were up to 5 times greater than those by adding sodium hydroxide. The indium ion removal efficiency decreased with an increase in the initial concentration. Results for the indium ion removal kinetics at various current densities show that the kinetic rates conformed to the pseudo-second-order kinetic model with good correlation. The experimental data were also tested against different adsorption isotherm models for describing the electrocoagulation process. The adsorption of indium ions preferably fitting the Langmuir adsorption isotherm suggests monolayer coverage of adsorbed molecules.

  14. Electrochemical removal of indium ions from aqueous solution using iron electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Wei-Lung, E-mail: wlchou@sunrise.hk.edu.tw [Department of Safety, Health and Environmental Engineering, Hungkuang University, No. 34 Chung-Chie Road, Sha-Lu, Taichung 433, Taiwan (China); Huang, Yen-Hsiang [Department of Safety, Health and Environmental Engineering, Hungkuang University, No. 34 Chung-Chie Road, Sha-Lu, Taichung 433, Taiwan (China)

    2009-12-15

    The removal of indium ions from aqueous solution was carried out by electrocoagulation in batch mode using an iron electrode. Various operating parameters that could potentially affect the removal efficiency were investigated, including the current density, pH variation, supporting electrolyte, initial concentration, and temperature. The optimum current density, supporting electrolyte concentration, and temperature were found to be 6.4 mA/cm{sup 2}, 0.003N NaCl, and 298 K, respectively. When the pH values lower than 6.1, the removal efficiencies of indium ions via electrocoagulation were up to 5 times greater than those by adding sodium hydroxide. The indium ion removal efficiency decreased with an increase in the initial concentration. Results for the indium ion removal kinetics at various current densities show that the kinetic rates conformed to the pseudo-second-order kinetic model with good correlation. The experimental data were also tested against different adsorption isotherm models for describing the electrocoagulation process. The adsorption of indium ions preferably fitting the Langmuir adsorption isotherm suggests monolayer coverage of adsorbed molecules.

  15. Bioelectrochemical biosensor for water toxicity detection: generation of dual signals for electrochemical assay confirmation.

    Science.gov (United States)

    Yang, Yuan; Wang, Yan-Zhai; Fang, Zhen; Yu, Yang-Yang; Yong, Yang-Chun

    2018-02-01

    Toxicity assessment of water is of great important to the safety of human health and to social security because of more and more toxic compounds that are spilled into the aquatic environment. Therefore, the development of fast and reliable toxicity assessment methods is of great interest and attracts much attention. In this study, by using the electrochemical activity of Shewanella oneidensis MR-1 cells as the toxicity indicator, 3,5-dichlorophenol (DCP) as the model toxic compound, a new biosensor for water toxicity assessment was developed. Strikingly, the presence of DCP in the water significantly inhibited the maximum current output of the S. oneidensis MR-1 in a three-electrode system and also retarded the current evolution by the cells. Under the optimized conditions, the maximum current output of the biosensor was proportional to the concentration of DCP up to 30 mg/L. The half maximal inhibitory concentration of DCP determined by this biosensor is about 14.5 mg/L. Furthermore, simultaneous monitoring of the retarded time (Δt) for current generation allowed the identification of another biosensor signal in response to DCP which could be employed to verify the electrochemical result by dual confirmation. Thus, the present study has provided a reliable and promising approach for water quality assessment and risk warning of water toxicity.

  16. Electrochemical Performance of Iron Diphosphide/Carbon Tube Nanohybrids in Lithium-ion Batteries

    International Nuclear Information System (INIS)

    Jiang, Jun; Wang, Wenliang; Wang, Chunde; Zhang, Li; Tang, Kaibin; Zuo, Jian; Yang, Qing

    2015-01-01

    Graphical abstract: Display Omitted -- Highlights: • Dehydrogenated FeP 2 /C nanohybrids were fabricated via a facile annealing process. • The nanohybrids as anode in LIB show excellent cycling stability and rate capability. • C-hybrid promotes buffering volume change and increasing electroconductibility. • The process can be applied for the fabrication of many more TMPs and nanohybrids. -- Abstract: Phosphorous-rich phase iron diphosphide/carbon tube (FeP 2 /C) nanohybrids, which are synthesized via a pyrolysis process and composed of heterostructures of orthorhombic FeP 2 with conical carbon tubes, have been identified as a new anode in lithium-ion batteries. After an annealing treatment to eliminate the excessive hydrogen elements in the carbon tubes, the FeP 2 /C nanohybrids display good reversible capacity, long cycle life, and excellent rate capability. Specifically, the annealed hybrids exhibit a discharge capacity of 602 mA h g −1 on the second cycle and a discharge capacity of 435 mA h g −1 after 100 cycles at 0.1C (0.137 A g −1 ). Meanwhile, these annealed hybrids exhibit excellent rate capability, such as a reversible capability of 510 mA h g −1 , 440 mA h g −1 , 380 mA h g −1 , 330 mA h g −1 and 240 mA h g −1 at 0.25C, 0.5C, 1C, 2.5C and 5C, respectively

  17. Iron

    DEFF Research Database (Denmark)

    Hansen, Jakob Bondo; Moen, I W; Mandrup-Poulsen, T

    2014-01-01

    and discuss recent evidence, suggesting that iron is a key pathogenic factor in both type 1 and type 2 diabetes with a focus on inflammatory pathways. Pro-inflammatory cytokine-induced β-cell death is not fully understood, but may include iron-induced ROS formation resulting in dedifferentiation by activation...... of transcription factors, activation of the mitochondrial apoptotic machinery or of other cell death mechanisms. The pro-inflammatory cytokine IL-1β facilitates divalent metal transporter 1 (DMT1)-induced β-cell iron uptake and consequently ROS formation and apoptosis, and we propose that this mechanism provides...

  18. Iron

    Science.gov (United States)

    ... Share: Search the ODS website Submit Search NIH Office of Dietary Supplements Consumer Datos en español Health ... eating a variety of foods, including the following: Lean meat, seafood, and poultry. Iron-fortified breakfast cereals ...

  19. Electrochemical preconcentration and hydride generation methods for trace determination of selenium by atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Bye, R.

    1986-01-01

    The use of atomic absorption spectrometry in combination with two different preconcentration/separation techniques for the determination of trace concentrations of selenium is described. Electrochemical preconcentration onto a platinum electrode with a subsequent atomization of selenium is discussed briefly. Several parameters are considered such as the presence of depolarizers, and the temperature of the electrolyzed solutions. Special attention is payed to the efficiency of the atomization step, and a method to improve this is proposed. Applications of the technique to real samples are also reported. Secondly, the separation of the selenium as the volatile selenium hydride from the sample solution is considered. Several papers in this thesis deal with commonly occurring interferants as nickel and copper and with ways of minimizing or avoiding the interferring effects, whereas other papers relate to more theoretical aspects of the hydride generation process. New methods for the determination of selenium in technical samples with high contents of nickel and copper are also presented

  20. Effect of replacement of vanadium by iron on the electrochemical behaviour of titanium alloys in simulated physiological media

    Directory of Open Access Journals (Sweden)

    Mareci, D.

    2009-02-01

    Full Text Available The electrochemical behaviour of Ti6Al4V, Ti6Al3.5Fe and Ti5Al2.5Fe alloys has been evaluated in Ringer’s solution at 25 °C. The effect of the substitution of vanadium in Ti6Al4V alloy has been specifically addressed. The evaluation of the corrosion resistance was carried out through the analysis of the open circuit potential variation with time, potentiodynamic polarization curves, and electrochemical impedance spectroscopy (EIS tests. Very low current densities were obtained (order of nA/cm2 from the polarization curves and EIS, indicating a typical passive behaviour for all investigated alloys. The EIS results exhibited relative capacitive behaviour (large corrosion resistance with phase angle close to –80° and relative high impedance values (order of 105 Ω•cm2 at low and medium frequencies, which are indicative of the formation of a highly stable film on these alloys in Ringer’s solution. In conclusion, the electrochemical behaviour of Ti6Al4V is not affected by the substitution of vanadium with iron.

    El comportamiento electroquímico de las aleaciones Ti6Al4V, Ti6Al3.5Fe y Ti5Al2.5Fe fue evaluado en una disolución Ringer a 25 °C. Se ha estudiado especialmente el efecto de la sustitución del vanadio en la aleación Ti6Al4V. La evaluación de la resistencia a la corrosión se ha llevado a cabo a través del análisis de la variación del potencial de un circuito abierto con el tiempo, las curvas de polarización potenciodinámicas y los ensayos de espectroscopía de impedancia electroquímica (EIS. Se han obtenido densidades de corriente muy bajas (del orden de nA/cm2 en las curvas de polarización y EIS, indicando un comportamiento pasivo típico para todas las aleaciones investigadas. Los resultados de la EIS mostraron un comportamiento capacitivo relativo (gran resistencia a la corrosión con ángulos de fase próximos a –80° y valores de impedancia relativamente altos (del orden de

  1. Electrochemically Smart Bimetallic Materials Featuring Group 11 Metals: In-situ Conductive Network Generation and Its Impact on Cell Capacity

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Esther [Stony Brook Univ., NY (United States)

    2016-11-30

    Our results for this program “Electrochemically smart bimetallic materials featuring Group 11 metals: in-situ conductive matrix generation and its impact on battery capacity, power and reversibility” have been highly successful: 1) we demonstrated material structures which generated in-situ conductive networks through electrochemical activation with increases in conductivity up to 10,000 fold, 2) we pioneered in situ analytical methodology to map the cathodes at several stages of discharge through the use of Energy Dispersive X-ray Diffraction (EDXRD) to elucidate the kinetic dependence of the conductive network formation, and 3) we successfully designed synthetic methodology for direct control of material properties including crystallite size and surface area which showed significant impact on electrochemical behavior.

  2. Iron bioavailability studies of the first generation of iron-biofortified beans released in Rwanda

    Science.gov (United States)

    This paper represents a series of in vitro Fe bioavailability experiments, Fe content analysis and polyphenolic profile of the first generation of Fe biofortified beans (Phaseolus vulgaris) selected for human trials in Rwanda and released to farmers of that region. The objective of the present stud...

  3. High performance electrode for electrochemical oxygen generator cell based on solid electrolyte ion transport membrane

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Wei; Shao, Zongping; Ran, Ran; Chen, Zhihao; Zeng, Pingying; Gu, Hongxia; Jin, Wanqin; Xu, Nanping [College of Chemistry and Chemical Engineering, Nanjing University of Technology, No. 5 Xin Mofan Road, Nanjing 210009, JiangSu (China)

    2007-06-30

    A double-layer composite electrode based on Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} + Sm{sub 0.2}Ce{sub 0.8}O{sub 1.9} (BSCF + SDC) and BSCF + SDC + Ag was investigated to be a promising cathode and also anode for the electrochemical oxygen generator based on samaria doped ceria electrolyte. The Ag particles in the second layer were not only the current collector but also the improver for the oxygen adsorption at the electrode. a.c. impedance results indicated that the electrode polarization resistance, as low as 0.0058 {omega} cm{sup 2} was reached at 800 C under air. In oxygen generator cell performance test, the electrode resistance dropped to half of the value at zero current density under an applied current density of 2.34 A cm{sup -2} at 700 C, and on the same conditions the oxygen generator cell was continual working for more than 900 min with a Faradic efficiency of {proportional_to}100%. (author)

  4. Sensitive detection of pyoverdine with an electrochemical sensor based on electrochemically generated graphene functionalized with gold nanoparticles.

    Science.gov (United States)

    Gandouzi, Islem; Tertis, Mihaela; Cernat, Andreea; Bakhrouf, Amina; Coros, Maria; Pruneanu, Stela; Cristea, Cecilia

    2018-04-01

    The design and development of an electrochemical sensor for the sensitive and selective determination of pyoverdine, a virulence factor secreted by Pseudomonas aeruginosa, bacteria involved in nosocomial infections is presented in this work. The presence of pyoverdine in water and body fluids samples can be directly linked to the presence of the Pseudomonas bacteria, thus being a nontoxic and low cost marker for the detection of water pollution as well as for the biological contamination of other media. The sensor was elaborated using layer-by-layer technique for the deposition of a graphene‑gold nanoparticles composite film on the graphite-based screen printed electrode, from aqueous suspension. Under optimal conditions, the electrochemical signal corresponding to the pyoverdine oxidation process was proportional to its concentration, showing a wide linear range from 1 to 100μmolL -1 and a detection limit of 0.33μmolL -1 . This sensor discriminate with satisfactory recoveries the target analyte in different real matrices and also exhibited low response to other interfering species, proving that this technique is promising for medical and environmental applications. In addition, the proposed nanocomposite platform presented good reproducibility, high and long term stability, the sensitivity for pyoverdine remain unchanged after being stored at 4°C for four weeks. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Temperature-dependent electrochemical heat generation in a commercial lithium-ion battery

    Science.gov (United States)

    Bandhauer, Todd M.; Garimella, Srinivas; Fuller, Thomas F.

    2014-02-01

    Lithium-ion batteries suffer from inherent thermal limitations (i.e., capacity fade and thermal runaway); thus, it is critical to understand heat generation experienced in the batteries under normal operation. In the current study, reversible and irreversible electrochemical heat generation rates were measured experimentally on a small commercially available C/LiFePO4 lithium-ion battery designed for high-rate applications. The battery was tested over a wide range of temperatures (10-60 °C) and discharge and charge rates (∼C/4-5C) to elucidate their effects. Two samples were tested in a specially designed wind tunnel to maintain constant battery surface temperature within a maximum variation of ±0.88 °C. A data normalization technique was employed to account for the observed capacity fade, which was largest at the highest rates. The heat rate was shown to increase with both increasing rate and decreasing temperature, and the reversible heat rate was shown to be significant even at the highest rate and temperature (7.4% at 5C and 55 °C). Results from cycling the battery using a dynamic power profile also showed that constant-current data predict the dynamic performance data well. In addition, the reversible heat rate in the dynamic simulation was shown to be significant, especially for charge-depleting HEV applications.

  6. Radiation Safety in Production of Y-90 from an electrochemical generator. CENTIS experience

    International Nuclear Information System (INIS)

    Ayra Pardo, Fernando Enrique

    2016-01-01

    From a project with the International Atomic Energy Agency, Isotope Center installation and commissioning began operating an electrochemical generator of Sr-90 / Y-90 inside a glove box shielded. The aim was to ensure the production of Y-90 needed in the research carried out in Cuba with this radionuclide for the medical industry. Associate at the beginning of this practice, compliance with all regulatory requirements approved in the country from the radiological point of view that demonstrated the safety of this for both operators and the general public became necessary. Using the MCNPX code generator installation was simulated and the equivalent dose Hp (10) were obtained for the operator: 6.27 mSv / y Hp (0.07): 17 mSv / a for a source of 10 Ci of 90 Sr- 90 Y . Also the use of TLD dosimeters similar to those used for gamma emitting radionuclides for controlling beta exposures was evaluated. high sensitivity lithium fluoride tablets couple energy beta particles of Y-90 which ensures its use for measuring the magnitude Hp (007) was demonstrated. two possible solutions for the recovery of liquid waste 90 Sr one another by distillation and ion exchange are evaluated. To transport the Y-90 may be used the package currently used in marketing the rest of the CENTIS radiopharmaceuticals. As a final result, the practice was approved and included in the Operating License Center Isotopes. (author)

  7. Switching Transient Generation in Surface Interrogation Scanning Electrochemical Microscopy and Time-of-Flight Techniques.

    Science.gov (United States)

    Ahn, Hyun S; Bard, Allen J

    2015-12-15

    In surface interrogation scanning electrochemical microscopy (SI-SECM), fine and accurate control of the delay time between substrate generation and tip interrogation (tdelay) is crucial because tdelay defines the decay time of the reactive intermediate. In previous applications of the SI-SECM, the resolution in the control of tdelay has been limited to several hundreds of milliseconds due to the slow switching of the bipotentiostat. In this work, we have improved the time resolution of tdelay control up to ca. 1 μs, enhancing the SI-SECM to be competitive in the time domain with the decay of many reactive intermediates. The rapid switching SI-SECM has been implemented in a substrate generation-tip collection time-of-flight (SG-TC TOF) experiment of a solution redox mediator, and the results obtained from the experiment exhibited good agreement with that obtained from digital simulation. The reaction rate constant of surface Co(IV) on oxygen-evolving catalyst film, which was inaccessible thus far due to the lack of tdelay control, has been measured by the rapid switching SI-SECM.

  8. Electrochemical generation of mercury cold vapor and its in-situ trapping in gold-covered graphite tube atomizers

    International Nuclear Information System (INIS)

    Cerveny, Vaclav; Rychlovsky, Petr; Netolicka, Jarmila; Sima, Jan

    2007-01-01

    The combination of more efficient flow-through electrochemical mercury cold vapor generation with its in-situ trapping in a graphite tube atomizer is described. This coupled technique has been optimized to attain the maximum sensitivity for Hg determination and to minimize the limits of detection and determination. A laboratory constructed thin-layer flow-through cell with a platinum cathode served as the cold vapor generator. Various cathode arrangements with different active surface areas were tested. Automated sampling equipment for the graphite atomizer with an untreated fused silica capillary was used for the introduction of the mercury vapor. The inner surface of the graphite tube was covered with a gold foil placed against the sampling hole. The results attained for the electrochemical mercury cold vapor generation (an absolute limit of detection of 80 pg; peak absorbance, 3σ criterion) were compared with the traditional vapor generation using NaBH 4 as the reducing agent (an absolute limit of detection of 124 pg; peak absorbance, 3σ criterion). The repeatability at the 5 ng ml -1 level was better than 4.1% (RSD) for electrochemical mercury vapor generation and better than 5.6% for the chemical cold vapor generation. The proposed method was applied to the determination the of Hg contents in a certified reference material and in spiked river water samples

  9. The GENIALL process for generation of nickel-iron alloys from nickel ores or mattes

    International Nuclear Information System (INIS)

    Diaz, G.; Frias, C.; Palma, J.

    2001-01-01

    A new process, called GENIALL (acronym of Generation of Nickel Alloys), for nickel recovery as ferronickel alloys from ores or mattes without previous smelting is presented in this paper. Its core technology is a new electrolytic concept, the ROSEL cell, for electrowinning of nickel-iron alloys from concentrated chloride solutions. In the GENIALL Process the substitution of iron-based solid wastes as jarosite, goethite or hematite, by saleable ferronickel plates provides both economic and environmental attractiveness. Another advantage is that no associated sulfuric acid plant is required. The process starts with leaching of the raw material (ores or mattes) with a solution of ferric chloride. The leachate liquor is purified by conventional methods like cementation or solvent extraction, to remove impurities or separate by-products like copper and cobalt. The purified solution, that contains a mixture of ferrous and nickel chlorides is fed to the cathodic compartment of the electrowinning cell, where nickel and ferrous ions are reduced together to form an alloy. Simultaneously, ferrous chloride is oxidized to ferric chloride in the anodic compartment, from where it is recycled to the leaching stage. The new electrolytic equipment has been developed and scaled up from laboratory to pilot prototypes with commercial size electrodes of 1 m 2 . Process operating conditions have been established in continuous runs at bench and pilot plant scale. The technology has shown a remarkable capacity to produce nickel-iron alloys of a wide range of compositions, from 10% to 80% nickel, just by adjusting the operating parameters. This emerging technology could be implemented in many processes in which iron and other non-ferrous metals are harmful impurities to be removed, or valuable metals to be recovered as a marketable iron alloy. Other potential applications of this technology are regeneration of spent etching liquors, and iron removal from aqueous effluents. (author)

  10. Application of an electrochemical chlorine-generation system combined with solar energy as appropriate technology for water disinfection.

    Science.gov (United States)

    Choi, Jusol; Park, Chan Gyu; Yoon, Jeyong

    2013-02-01

    Affordable water disinfection is key to reducing the waterborne disease experienced worldwide where resources are limited. A simple electrochemical system that can generate chlorine as a disinfectant from the electrolysis of sodium chloride is an appropriate technology to produce clean water, particularly if driven by solar energy. This study examined the affordability of an electrochemical chlorine generation system using solar energy and developed the necessary design information for its implementation. A two-electrode batch reactor, equipped with commercial IrO(2)-coated electrodes and a solar panel (approximate area 0.2 m(2)), was used to produce chlorine from a 35g/L solution of NaCl. Within 1 h, sufficient chlorine (0.8 g) was generated to produce clean drinking water for about 80 people for 1 day (target microorganism: Escherichia coli; daily drinking water requirement: 2 L per person; chlorine demand: 4 mg/L; solar power: 650 W/m(2) in Seoul, Korea. Small household batteries were demonstrated to be a suitable alternative power source when there is insufficient solar irradiation. Using a 1 m(2) solar panel, the reactor would take only 15 min in Seoul, Korea, or 7 min in the tropics (solar power 1300 W/m(2)), to generate 1 g of chlorine. The solar-powered electrochemical chlorine generation system for which design information is provided here is a simple and affordable way to produce chlorine with which to convert contaminated water into clean drinking water.

  11. Improved in vivo performance of amperometric oxygen (PO2) sensing catheters via electrochemical nitric oxide generation/release.

    Science.gov (United States)

    Ren, Hang; Coughlin, Megan A; Major, Terry C; Aiello, Salvatore; Rojas Pena, Alvaro; Bartlett, Robert H; Meyerhoff, Mark E

    2015-08-18

    A novel electrochemically controlled release method for nitric oxide (NO) (based on electrochemical reduction of nitrite ions) is combined with an amperometric oxygen sensor within a dual lumen catheter configuration for the continuous in vivo sensing of the partial pressure of oxygen (PO2) in blood. The on-demand electrochemical NO generation/release method is shown to be fully compatible with amperometric PO2 sensing. The performance of the sensors is evaluated in rabbit veins and pig arteries for 7 and 21 h, respectively. Overall, the NO releasing sensors measure both venous and arterial PO2 values more accurately with an average deviation of -2 ± 11% and good correlation (R(2) = 0.97) with in vitro blood measurements, whereas the corresponding control sensors without NO release show an average deviation of -31 ± 28% and poor correlation (R(2) = 0.43) at time points >4 h after implantation in veins and >6 h in arteries. The NO releasing sensors induce less thrombus formation on the catheter surface in both veins and arteries (p < 0.05). This electrochemical NO generation/release method could offer a new and attractive means to improve the biocompatibility and performance of implantable chemical sensors.

  12. Generation of Small Single Domain Nanobody Binders for Sensitive Detection of Testosterone by Electrochemical Impedance Spectroscopy.

    Science.gov (United States)

    Li, Guanghui; Zhu, Min; Ma, Lu; Yan, Junrong; Lu, Xiaoling; Shen, Yanfei; Wan, Yakun

    2016-06-08

    A phage display library of variable domain of the heavy chain only antibody or nanobody (Nb) was constructed after immunizing a bactrian camel with testosterone. With the smaller molecular size (15 kDa), improved solubility, good stability, high affinity, specificity, and lower immunogenicity, Nbs are a promising tool in the next generation of diagnosis and medical applications. Testosterone is a reproductive hormone, playing an important role in normal cardiac function and being the highly predictive marker for many diseases. Herein, a simple and sensitive immunosensor based on electrochemical impedance spectroscopy (EIS) and Nbs was successfully developed for the determination of testosterone. We successfully isolated the antitestosterone Nbs from an immune phage display library. Moreover, one of the Nbs was biotinylated according to in vivo BirA system, which showed the highest production yield and the most stable case. Further, the EIS immunosensor was set up for testosterone detection by applying the biotinylated antitestosterone Nb. As a result, the biosensor exhibited a linear working range from 0.05 to 5 ng mL(-1) with a detection limit of 0.045 ng mL(-1). In addition, the proposed immunosensor was successfully applied in determining testosterone in serum samples. In conclusion, the proposed immunosensor revealed high specificity of testosterone detection and showed as a potential approach for sensitive and accurate diagnosis of testosterone.

  13. A novel type of electrochemical sensor based on ferromagnetic carbon-encapsulated iron nanoparticles for direct determination of hemoglobin in blood samples.

    Science.gov (United States)

    Matysiak, Edyta; Donten, Mikolaj; Kowalczyk, Agata; Bystrzejewski, Michal; Grudzinski, Ireneusz P; Nowicka, Anna M

    2015-02-15

    An effective, fast, facile and direct electrochemical method of determination of hemoglobin (Hb) in blood sample without any sample preparation is described. The method is accomplished by using the ferromagnetic electrode modifier (carbon-encapsulated iron nanoparticles) and an external magnetic field. The successful voltammetric determination of hemoglobin is achieved in PBS buffer as well as in the whole blood sample. The obtained results show the excellent electroactivity of Hb. The measurements are of high sensitivity and good reproducibility. The detection limit is estimated to be 0.7 pM. The electrochemical determination data were compared with the gravimetric data obtained with a quartz crystal microbalance. The agreement between these results is very good. The changes of the electrode surface morphology before and after Hb detection are monitored by electron microscopy. The functionality of the electrochemical sensor is tested with human and rat blood samples. The concentration of hemoglobin in the blood samples determined by using voltammetric/gravimetric detection is in perfect agreement with the data obtained from typical clinical analysis. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Speciation of inorganic arsenic by electrochemical hydride generation atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Li Xun [Department of Chemistry, Beijing Normal University, Beijing 100875 (China); Department of Chemistry and Life Science, Gannan Teachers College, Ganzhou 341000 (China); Jia Jing [Department of Chemistry, Beijing Normal University, Beijing 100875 (China); Wang Zhenghao [Department of Chemistry, Beijing Normal University, Beijing 100875 (China)]. E-mail: zhwang@bnu.edu.cn

    2006-02-23

    A simple procedure was developed for the speciation of inorganic arsenic by electrochemical hydride generation atomic absorption spectrometry (EcHG-AAS), without pre-reduction of As(V). Glassy carbon was selected as cathode material in the flow cell. An optimum catholyte concentration for simultaneous generation of arsine from As(III) and As(V) was 0.06 mol l{sup -1} H{sub 2}SO{sub 4}. Under the optimized conditions, adequate sensitivity and difference in ratio of slopes of the calibration curves for As(III) and As(V) can be achieved at the electrolytic currents of 0.6 and 1 A. The speciation of inorganic arsenic can be performed by controlling the electrolytic currents, and the concentration of As(III) and As(V) in the sample can be calculated according to the equations of absorbance additivity obtained at two selected electrolytic currents. The calibration curves were linear up to 50 ng ml{sup -1} for both As(III) and As(V) at 0.6 and 1 A. The detection limits of the method were 0.2 and 0.5 ng ml{sup -1} for As(III) and As(V) at 0.6 A, respectively. The relative standard deviations were of 2.1% for 20 ng ml{sup -1} As(III) and 2.5% for 20 ng ml{sup -1} As(V). The method was validated by the analysis of human hair certified reference material and successfully applied to speciation of soluble inorganic arsenic in Chinese medicine.

  15. Speciation of inorganic arsenic by electrochemical hydride generation atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Li Xun; Jia Jing; Wang Zhenghao

    2006-01-01

    A simple procedure was developed for the speciation of inorganic arsenic by electrochemical hydride generation atomic absorption spectrometry (EcHG-AAS), without pre-reduction of As(V). Glassy carbon was selected as cathode material in the flow cell. An optimum catholyte concentration for simultaneous generation of arsine from As(III) and As(V) was 0.06 mol l -1 H 2 SO 4 . Under the optimized conditions, adequate sensitivity and difference in ratio of slopes of the calibration curves for As(III) and As(V) can be achieved at the electrolytic currents of 0.6 and 1 A. The speciation of inorganic arsenic can be performed by controlling the electrolytic currents, and the concentration of As(III) and As(V) in the sample can be calculated according to the equations of absorbance additivity obtained at two selected electrolytic currents. The calibration curves were linear up to 50 ng ml -1 for both As(III) and As(V) at 0.6 and 1 A. The detection limits of the method were 0.2 and 0.5 ng ml -1 for As(III) and As(V) at 0.6 A, respectively. The relative standard deviations were of 2.1% for 20 ng ml -1 As(III) and 2.5% for 20 ng ml -1 As(V). The method was validated by the analysis of human hair certified reference material and successfully applied to speciation of soluble inorganic arsenic in Chinese medicine

  16. Lateral transport of solutes in microfluidic channels using electrochemically generated gradients in redox-active surfactants.

    Science.gov (United States)

    Liu, Xiaoyang; Abbott, Nicholas L

    2011-04-15

    We report principles for a continuous flow process that can separate solutes based on a driving force for selective transport that is generated by a lateral concentration gradient of a redox-active surfactant across a microfluidic channel. Microfluidic channels fabricated with gold electrodes lining each vertical wall were used to electrochemically generate concentration gradients of the redox-active surfactant 11-ferrocenylundecyl-trimethylammonium bromide (FTMA) in a direction perpendicular to the flow. The interactions of three solutes (a hydrophobic dye, 1-phenylazo-2-naphthylamine (yellow AB), an amphiphilic molecule, 2-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-pentanoyl)-1-hexadecanoyl-sn-glycero-3-phosphocholine (BODIPY C(5)-HPC), and an organic salt, 1-methylpyridinium-3-sulfonate (MPS)) with the lateral gradients in surfactant/micelle concentration were shown to drive the formation of solute-specific concentration gradients. Two distinct physical mechanisms were identified to lead to the solute concentration gradients: solubilization of solutes by micelles and differential adsorption of the solutes onto the walls of the microchannels in the presence of the surfactant concentration gradient. These two mechanisms were used to demonstrate delipidation of a mixture of BODIPY C(5)-HPC (lipid) and MPS and purification of BODIPY C(5)-HPC from a mixture of BODIPY C(5)-HPC and yellow AB. Overall, the results of this study demonstrate that lateral concentration gradients of redox-active surfactants formed within microfluidic channels can be used to transport solutes across the microfluidic channels in a solute-dependent manner. The approach employs electrical potentials (solutions having high ionic strength (>0.1M), and offers the basis of continuous processes for the purification or separation of solutes in microscale systems. © 2011 American Chemical Society

  17. Long term corrosion of iron and non alloy or low alloy steels in clay soils. Physico-chemical characterisation and electrochemical study of archaeological analogues

    International Nuclear Information System (INIS)

    Pons, Emmanuelle

    2002-01-01

    Archaeological objects of Gallo-Roman and Merovingian time, and from a battlefield of World War 1, were studied to better understand long term corrosion phenomena of iron in clay soils. This study is part of the French national program about nuclear waste deep repository, conducted by the ANDRA (French national Agency for Radioactive Waste Management). Iron archaeological analogues make a valuable contribution to the specifying of containers for long lived and high level wastes (HLWs), because they provide access to the considered time scale. The experimental issue is divided into two major parts: - a physico-chemical characterisation of corrosion products, by Raman spectroscopy; - an electrochemical study of the behaviour of the different corrosion layers. Although the metallic material is different between ancient artefacts (ferrite) and 1914-1918 remains (hypo-eutectoid steels), the same stable phases are identified in their corrosion products: mainly iron oxides and oxi-hydroxides. From a macroscopic point of view, these products are staggered into two layers: an internal one, and an external one, which contains soil markers. Under the microscope, a complex composite structure appears. Goethite a-FeOOH, which was identified on each object, is frequently in contact with the metal core. The average corrosion rate in the burial environment, deduced from the layers thickness, highlights a significant slowdown of corrosion after the first burial time, about one century. The electrochemical study showed the predominant role of transport phenomena in the pores of corrosion layers. The behaviour of the metal - internal layer system is well explained by a model of porous electrode (De Levie theory). Despite its porosity, the internal layer is protective, as it leads to a significant decrease of the corrosion rate (about ten time). (author) [fr

  18. Combined electrochemical, heat generation, and thermal model for large prismatic lithium-ion batteries in real-time applications

    Science.gov (United States)

    Farag, Mohammed; Sweity, Haitham; Fleckenstein, Matthias; Habibi, Saeid

    2017-08-01

    Real-time prediction of the battery's core temperature and terminal voltage is very crucial for an accurate battery management system. In this paper, a combined electrochemical, heat generation, and thermal model is developed for large prismatic cells. The proposed model consists of three sub-models, an electrochemical model, heat generation model, and thermal model which are coupled together in an iterative fashion through physicochemical temperature dependent parameters. The proposed parameterization cycles identify the sub-models' parameters separately by exciting the battery under isothermal and non-isothermal operating conditions. The proposed combined model structure shows accurate terminal voltage and core temperature prediction at various operating conditions while maintaining a simple mathematical structure, making it ideal for real-time BMS applications. Finally, the model is validated against both isothermal and non-isothermal drive cycles, covering a broad range of C-rates, and temperature ranges [-25 °C to 45 °C].

  19. Iron plasma generation using a Nd:YAG laser pulse of several hundred picoseconds

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, Jun, E-mail: jtamura@post.j-parc.jp [J-PARC Center, Japan Atomic Energy Agency, Ibaraki 319-1195 (Japan); Kumaki, Masafumi [Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555 (Japan); Kondo, Kotaro [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Tokyo 152-8550 (Japan); Kanesue, Takeshi; Okamura, Masahiro [Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973 (United States)

    2016-02-15

    We investigated the high intensity plasma generated by using a Nd:YAG laser to apply a laser-produced plasma to the direct plasma injection scheme. The capability of the source to generate high charge state ions strongly depends on the power density of the laser irradiation. Therefore, we focused on using a higher power laser with several hundred picoseconds of pulse width. The iron target was irradiated with the pulsed laser, and the ion current of the laser-produced iron plasma was measured using a Faraday cup and the charge state distribution was investigated using an electrostatic ion analyzer. We found that higher charge state iron ions (up to Fe{sup 21+}) were obtained using a laser pulse of several hundred picoseconds in comparison to those obtained using a laser pulse of several nanoseconds (up to Fe{sup 19+}). We also found that when the laser irradiation area was relatively large, the laser power was absorbed mainly by the contamination on the target surface.

  20. Electrochemical cell

    Science.gov (United States)

    Kaun, T.D.

    An improved secondary electrochemical cell is disclosed having a negative electrode of lithium aluminum, a positive electrode of iron sulfide, a molten electrolyte of lithium chloride and potassium chloride, and the combination that the fully charged theoretical capacity of the negative electrode is in the range of 0.5 to 1.0 that of the positive electrode. The cell thus is negative electrode limiting during discharge cycling. Preferably, the negative electrode contains therein, in the approximate range of 1 to 10 volume % of the electrode, an additive from the materials of graphitized carbon, aluminum-iron alloy, and/or magnesium oxide.

  1. Next Generation Metallic Iron Nodule Technology in Electric Arc Steelmaking - Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Donald R. Fosnacht; Iwao Iwasaki; Richard F. Kiesel; David J. Englund; David W. Hendrickson; Rodney L. Bleifuss

    2010-12-22

    -bituminous coal as a reductant. From over 4000 laboratory tube and box furnace tests, it was established that the correct combination of additives, fluxes, and reductant while controlling the concentration of CO and CO2 in the furnace atmosphere (a) lowers the operating temperature, (b) decreases the use of reductant coal (c) generates less micro nodules of iron, and (d) promotes desulphurization. The laboratory scale work was subsequently verified on 12.2 m (40 ft) long pilot scale furnace. High quality NRI could be produced on a routine basis using the pilot furnace facility with energy provided from oxy-gas or oxy-coal burner technologies. Specific strategies were developed to allow the use of sub-bituminous coals both as a hearth material and as part of the reaction mixture. Computational Fluid Dynamics (CFD) modeling was used to study the overall carbothermic reduction and smelting process. The movement of the furnace gas on a pilot hearth furnace and larger simulated furnaces and various means of controlling the gas atmosphere were evaluated. Various atmosphere control methods were identified and tested during the course of the investigation. Based on the results, the appropriate modifications to the furnace were made and tested at the pilot scale. A series of reduction and smelting tests were conducted to verify the utility of the processing conditions. During this phase, the overall energy use characteristics, raw materials, alternative fuels, and the overall economics predicted for full scale implementation were analyzed. The results indicate that it should be possible to lower reaction temperatures while simultaneously producing low sulfur, high carbon NRI if the right mix chemistry and atmosphere are employed. Recommendations for moving the technology to the next stage of commercialization are presented.

  2. Electrochemical generation and storage of electrical energy; Production et stockage electrochimiques de l'energie electrique

    Energy Technology Data Exchange (ETDEWEB)

    Fauvarque, J.F.

    2005-07-01

    Electrochemical systems have the remarkable property of being able to convert chemical energy into electrical energy and vice-versa, and this, in conditions close to the thermodynamical reversibility, without any pollutant and noise emissions, and without the need of heavy maintenance. These systems can find various applications in the different domains of the economical life, in particular in the transportation sector. Depending on the application in concern, the batteries, fuel cells and super-capacitors are more or less well-adapted and the choice of a given, or of a combination of technologies must be made with respect to the final objective of the application. This document presents the history, principle, electromotive force, capacity, power, and cyclability of closed electrochemical generators (batteries and capacitors). It presents also the principle and characteristics of open systems (fuel cells and redox systems). (J.S.)

  3. Ruthenium determination in new composite materials by coulometric titration with generated iron(2)

    International Nuclear Information System (INIS)

    Butakova, N.A.; Oganesyan, L.B.

    1983-01-01

    A coulometric technique is developed for ruthenium (4) titration with generated iron (2) in a mixture of hydrochloric-, sulfuric- and phosphoric acids with potentiometric and biammetric indication of the final titration point. Bi (3), Pd (2), Nb (5), Pt (4) Pb (2), Rh (3) do not interfere with the titration. Together with Ru (4) titrated are Ir (4), V (5), Au (3). The method is applied to analyze commercial samples of ruthenium dioxides, lead- and bismuth ruthenites, ruthenium pentafluorides containing 30-80% of ruthenium. The Ssub(r) values do not exceed 0.002

  4. Contribution to the Study of the Relation between Microstructure and Electrochemical Behavior of Iron-Based FeCoC Ternary Alloys

    Directory of Open Access Journals (Sweden)

    Farida Benhalla-Haddad

    2012-01-01

    Full Text Available This work deals with the relation between microstructure and electrochemical behavior of four iron-based FeCoC ternary alloys. First, the arc-melted studied alloys were characterized using differential thermal analyses and scanning electron microscopy. The established solidification sequences of these alloys show the presence of two primary crystallization phases (δ(Fe and graphite as well as two univariante lines : peritectic L+(Fe↔(Fe and eutectic L↔(Fe+Cgraphite. The ternary alloys were thereafter studied in nondeaerated solution of 10−3 M NaHCO3 + 10−3 M Na2SO4, at 25°C, by means of the potentiodynamic technique. The results indicate that the corrosion resistance of the FeCoC alloys depends on the carbon amount and the morphology of the phases present in the studied alloys.

  5. Efficient and Selective Chemical Labeling of Electrochemically Generated Peptides Based on Spirolactone Chemistry

    NARCIS (Netherlands)

    Zhang, Tao; Niu, Xiaoyu; Yuan, Tao; Tessari, Marco; de Vries, Marcel P.; Permentier, Hjalmar P.; Bischoff, Rainer

    2016-01-01

    Specific digestion of proteins is an essential step for mass spectrometry-based proteomics, and the chemical labeling of the resulting peptides is often used for peptide enrichment or the introduction of desirable tags. Cleavage of the peptide bond following electrochemical oxidation of Tyr or Trp

  6. Determination of plutonium by secondary coulometric titration with internally generated iron(II) Pt. 2

    International Nuclear Information System (INIS)

    Chitnis, R.T.; Talnikar, S.G.; Thakur, V.A.; Paranjape, A.H.

    1979-01-01

    Determination of plutonium by secondary coulometry involving the controlled potential technique for the generation of an iron(II) mediator, is reported in Part I. In this paper, the same determination is reported using constant current coulometry for the generation of the mediator, and zero current potentiometry for end-point detection. The factors affecting the current efficiency, viz. current density and supporting electrolyte composition have been checked in order to define the appropriate conditions for obtaining 100% current efficiency. The original method of Carson et al. suffers from the disadvantage that it involves complicated sample treatment. Introduction of perchloric acid treatment as a method for the oxidation of plutonium and the pretitration of the supporting electrolyte to the end-point potential prior to sample addition, have considerably helped to improve the precision and accuracy of the method. Exhaustive analytical data are reported covering plutonium quantities ranging from 25 micrograms to 5 milligrams, which establishes the scope of the method. (author)

  7. Morphology, structural and optical properties of iron oxide thin film photoanodes in photoelectrochemical cell: Effect of electrochemical oxidation

    OpenAIRE

    Maabong Kelebogile; Machatine Augusto G.; Hu Yelin; Braun Artur; Nambala Fred J.; Diale Mmantsae

    2016-01-01

    Abstract Hematite (a Fe2O3) is a promising semiconductor as photoanode in solar hydrogen production from photoelectrolysis of water due to its appropriate band gap low cost and high electrochemical stability in aqueous caustic electrolytes. Operation of such photoanode in a biased photoelectrochemical cell constitutes an anodization with consequent redox reactions at the electrode surface. a Fe2O3 thin film photoanodes were prepared by simple and inexpensive dip coating method on fluorine dop...

  8. Studies on the permeation of hydrogen through steam generator tubes at high temperatures using an electrochemical method

    International Nuclear Information System (INIS)

    Giraudeau, F.; Yang, L.; Steward, F.R.; DeBouvier, O.

    1998-01-01

    The permeation of hydrogen through steam generator tubes at high temperatures (∼ 300 degrees C) has been studied using an electrochemical technique. With this technique, hydrogen is generated on one side of the tube and monitored on the other side. The time for the hydrogen to reach the other side is used to determine the diffusion coefficient of hydrogen in the tube. Boundary conditions at the entry and exit sides have been investigated separately. Preliminary studies were performed on Stainless Steel 316 and Nickel Alloy 800 to better understand the influence of the solution chemistry on the electrochemical evolution of hydrogen. The surface phenomena effect and the trapping effect are discussed to account for differences observed in the permeation response. The hydrogen permeation through oxides at the exit side has been studied. Two nickel alloys (Alloy 800 and Alloy 600), materials widely used for steam generator tubes, have been investigated. The tubes were prefilmed using two different treatments. The oxides were formed in dry air at high temperatures (300 degrees C to 600 degrees C), or in humid gas at 300 degrees C. The diffusion coefficients at 300 degrees C in Stainless Steel 316 and Alloy 800 were determined to be of the order of 10 -6 - 10 -7 cm 2 /s for the bare metal. This is in agreement with results obtained by gas phase permeation techniques in the literature. (author)

  9. Investigation of Iron Oxide Morphology in a Cyclic Redox Water Splitting Process for Hydrogen Generation

    Directory of Open Access Journals (Sweden)

    Michael M. Bobek

    2012-10-01

    Full Text Available A solar fuels generation research program is focused on hydrogen production by means of reactive metal water splitting in a cyclic iron-based redox process. Iron-based oxides are explored as an intermediary reactive material to dissociate water molecules at significantly reduced thermal energies. With a goal of studying the resulting oxide chemistry and morphology, chemical assistance via CO is used to complete the redox cycle. In order to exploit the unique characteristics of highly reactive materials at the solar reactor scale, a monolithic laboratory scale reactor has been designed to explore the redox cycle at temperatures ranging from 675 to 875 K. Using high resolution scanning electron microscope (SEM and electron dispersive X-ray spectroscopy (EDS, the oxide morphology and the oxide state are quantified, including spatial distributions. These images show the change of the oxide layers directly after oxidation and after reduction. The findings show a significant non-stoichiometric O/Fe gradient in the atomic ratio following oxidation, which is consistent with a previous kinetics model, and a relatively constant, non-stoichiometric O/Fe atomic ratio following reduction.

  10. PAMAM dendrimer-coated iron oxide nanoparticles: synthesis and characterization of different generations

    International Nuclear Information System (INIS)

    Khodadust, Rouhollah; Unsoy, Gozde; Yalcın, Serap; Gunduz, Gungor; Gunduz, Ufuk

    2013-01-01

    This study focuses on the synthesis and characterization of different generations (G 0 –G 7 ) of polyamidoamine (PAMAM) dendrimer-coated magnetic nanoparticles (DcMNPs). In this study, superparamagnetic iron oxide nanoparticles were synthesized by co-precipitation method. The synthesized nanoparticles were modified with aminopropyltrimethoxysilane for dendrimer coating. Aminosilane-modified MNPs were coated with PAMAM dendrimer. The characterization of synthesized nanoparticles was performed by X-ray diffraction, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), dynamic light scattering, and vibrating sample magnetometry (VSM) analyses. TEM images demonstrated that the DcMNPs have monodisperse size distribution with an average particle diameter of 16 ± 5 nm. DcMNPs were found to be superparamagnetic through VSM analysis. The synthesis, aminosilane modification, and dendrimer coating of iron oxide nanoparticles were validated by FTIR and XPS analyses. Cellular internalization of nanoparticles was studied by inverted light scattering microscopy, and cytotoxicity was determined by XTT analysis. Results demonstrated that the synthesized DcMNPs, with their functional groups, symmetry perfection, size distribution, improved magnetic properties, and nontoxic characteristics could be suitable nanocarriers for targeted cancer therapy upon loading with various anticancer agents.

  11. Generation of hydroxyl radicals by urban suspended particulate air matter. The role of iron ions

    Science.gov (United States)

    Valavanidis, Athanasios; Salika, Anastasia; Theodoropoulou, Anna

    Recent epidemiologic studies showed statistical associations between particulate air pollution in urban areas and increased morbidity and mortality, even at levels well within current national air quality standards. Inhalable particulate matter (PM 10) can penetrate into the lower airways where they can cause acute and chronic lung injury by generating toxic oxygen free radicals. We tested inhalable total suspended particulates (TSP) from the Athens area, diesel and gasoline exhaust particles (DEP and GED), and urban street dusts, by Electron Paramagnetic Resonance (EPR). All particulates can generate hydroxyl radicals (HO ṡ), in aqueous buffered solutions, in the presence of hydrogen peroxide. Results showed that oxidant generating activity is related with soluble iron ions. Leaching studies showed that urban particulate matter can release large amounts of Fe 3+ and lesser amounts of Fe 2+, as it was shown from other studies. Direct evidence of HO ṡ was confirmed by spin trapping with DMPO and measurement of DMPO-OH adduct by EPR. Evidence was supported with the use of chelator (EDTA), which increases the EPR signal, and the inhibition of the radical generating activity by desferrioxamine or/and antioxidants ( D-mannitol, sodium benzoate).

  12. Carbon-supported iron complexes as electrocatalysts for the cogeneration of hydroxylamine and electricity in a NO-H2 fuel cell: A combined electrochemical and density functional theory study

    Science.gov (United States)

    Sheng, Xia; Alvarez-Gallego, Yolanda; Dominguez-Benetton, Xochitl; Baert, Kitty; Hubin, Annick; Zhao, Hailiang; Mihaylov, Tzvetan T.; Pierloot, Kristine; Vankelecom, Ivo F. J.; Pescarmona, Paolo P.

    2018-06-01

    Carbon-supported iron complexes were investigated as electrocatalysts for the reduction of nitric oxide (NO) in a H2-NO fuel cell conceived for the production of hydroxylamine (NH2OH) with concomitant generation of electricity. Two types of iron complexes with tetradentate ligands, namely bis(salicylidene)ethylenediimine (Salen) and phthalocyanine (Pc), supported on activated carbon or graphite were prepared and evaluated as electrocatalysts, either without further treatment or after pyrolysis at 700 °C. The performance in the reduction of NO of gas diffusion cathodes based on these electrocatalysts was investigated in an electrochemical half cell (3-electrode configuration) using linear sweep voltammetry (LSV). The most promising electrocatalysts were studied further by chronoamperometric experiments in a H2-NO fuel cell, which allowed comparison in terms of power output and hydroxylamine production. Depending on the concentration of the NO feed (6 or 18%), the best electrocatalytic performance was delivered either by FePc or FeSalen. The gas diffusion electrode based on FeSalen supported on activated carbon with 0.3 wt% Fe-loading provided the highest current density (86 A/m2) and the best current efficiency (43%) towards the desired NH2OH when operating at the higher NO concentration (18%). Moreover, FeSalen offers the advantage of being cheaper than FePc. The experimental work was complemented by density functional theory (DFT) calculations, which allowed to shed more light on the reaction mechanism for the reduction of nitric oxide at the atomistic level.

  13. Evaluation of the Effects of Iron Oxides on Soil Reducing Conditions and Methane Generation in Cambodian Wetland Rice Fields

    Science.gov (United States)

    Weaver, M.; Benner, S.; Fendorf, S.; Sampson, M.; Leng, M.

    2007-12-01

    Atmospheric concentrations of methane have been steadily increasing over the last 100 years, which has given rise to research of wetland rice fields, recently identified as a major anthropomorphic source of methane. Establishment of experimental soil pots, cultivating an aromatic early variety rice strain in the Kean Svay District of Cambodia, have recently been carried out to evaluate methods to minimize methane release by promoting redox buffering by iron oxides. In the first series of experiments, iron oxides were added to the soils and the rate of change in reducing conditions and methanogenesis onset was monitored. In the second series of experiments, plots are subject to periodic drying cycles to promote rejuvenation of buffering iron oxides. Initial results indicate a delay in the onset of methanogenesis, and overall methane generation, in plots where initial iron oxides concentrations are elevated.

  14. Utilization of subsurface microbial electrochemical systems to elucidate the mechanisms of competition between methanogenesis and microbial iron(III)/humic acid reduction in Arctic peat soils

    Science.gov (United States)

    Friedman, E. S.; Miller, K.; Lipson, D.; Angenent, L. T.

    2012-12-01

    High-latitude peat soils are a major carbon reservoir, and there is growing concern that previously dormant carbon from this reservoir could be released to the atmosphere as a result of continued climate change. Microbial processes, such as methanogenesis and carbon dioxide production via iron(III) or humic acid reduction, are at the heart of the carbon cycle in Arctic peat soils [1]. A deeper understanding of the factors governing microbial dominance in these soils is crucial for predicting the effects of continued climate change. In previous years, we have demonstrated the viability of a potentiostatically-controlled subsurface microbial electrochemical system-based biosensor that measures microbial respiration via exocellular electron transfer [2]. This system utilizes a graphite working electrode poised at 0.1 V NHE to mimic ferric iron and humic acid compounds. Microbes that would normally utilize these compounds as electron acceptors donate electrons to the electrode instead. The resulting current is a measure of microbial respiration with the electrode and is recorded with respect to time. Here, we examine the mechanistic relationship between methanogenesis and iron(III)- or humic acid-reduction by using these same microbial-three electrode systems to provide an inexhaustible source of alternate electron acceptor to microbes in these soils. Chamber-based carbon dioxide and methane fluxes were measured from soil collars with and without microbial three-electrode systems over a period of four weeks. In addition, in some collars we simulated increased fermentation by applying acetate treatments to understand possible effects of continued climate change on microbial processes in these carbon-rich soils. The results from this work aim to increase our fundamental understanding of competition between electron acceptors, and will provide valuable data for climate modeling scenarios. 1. Lipson, D.A., et al., Reduction of iron (III) and humic substances plays a major

  15. Morphology, structural and optical properties of iron oxide thin film photoanodes in photoelectrochemical cell: Effect of electrochemical oxidation

    Science.gov (United States)

    Maabong, Kelebogile; Machatine, Augusto G.; Hu, Yelin; Braun, Artur; Nambala, Fred J.; Diale, Mmantsae

    2016-01-01

    Hematite (α-Fe2O3) is a promising semiconductor as photoanode in solar hydrogen production from photoelectrolysis of water due to its appropriate band gap, low cost and high electrochemical stability in aqueous caustic electrolytes. Operation of such photoanode in a biased photoelectrochemical cell constitutes an anodization with consequent redox reactions at the electrode surface. α-Fe2O3 thin film photoanodes were prepared by simple and inexpensive dip coating method on fluorine doped tin oxide (FTO) glass substrate, annealed in air at 500 °C for 2 h, then electrochemically oxidized (anodized) in 1 M KOH at 500 mV for 1 min in dark and light conditions. Changes in structural properties and morphology of α-Fe2O3 nanoparticles films were investigated by XRD, Raman spectroscopy and a high resolution FE-SEM. The average grain size was observed to increase from 57 nm for pristine samples to 73 and 77 nm for anodized samples in dark and light respectively. Broadening and red shift in Raman spectra in anodized samples may be attributed to lattice expansion upon oxidation. The UV-visible measurements revealed enhanced absorption in the photoanodes after the treatment. The findings suggest that the anodization of the photoelectrode in a biased cell causes not only changes of the molecular structure at the surface, but also changes in the crystallographic structure which can be detected with x-ray diffractometry.

  16. Morphology, structural and optical properties of iron oxide thin film photoanodes in photoelectrochemical cell: Effect of electrochemical oxidation

    International Nuclear Information System (INIS)

    Maabong, Kelebogile; Machatine, Augusto G.; Hu, Yelin; Braun, Artur; Nambala, Fred J.; Diale, Mmantsae

    2016-01-01

    Hematite (α-Fe_2O_3) is a promising semiconductor as photoanode in solar hydrogen production from photoelectrolysis of water due to its appropriate band gap, low cost and high electrochemical stability in aqueous caustic electrolytes. Operation of such photoanode in a biased photoelectrochemical cell constitutes an anodization with consequent redox reactions at the electrode surface. α-Fe_2O_3 thin film photoanodes were prepared by simple and inexpensive dip coating method on fluorine doped tin oxide (FTO) glass substrate, annealed in air at 500 °C for 2 h, then electrochemically oxidized (anodized) in 1 M KOH at 500 mV for 1 min in dark and light conditions. Changes in structural properties and morphology of α-Fe_2O_3 nanoparticles films were investigated by XRD, Raman spectroscopy and a high resolution FE-SEM. The average grain size was observed to increase from ~57 nm for pristine samples to 73 and 77 nm for anodized samples in dark and light respectively. Broadening and red shift in Raman spectra in anodized samples may be attributed to lattice expansion upon oxidation. The UV–visible measurements revealed enhanced absorption in the photoanodes after the treatment. The findings suggest that the anodization of the photoelectrode in a biased cell causes not only changes of the molecular structure at the surface, but also changes in the crystallographic structure which can be detected with x-ray diffractometry.

  17. Morphology, structural and optical properties of iron oxide thin film photoanodes in photoelectrochemical cell: Effect of electrochemical oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Maabong, Kelebogile [Department of Physics, University of Pretoria, Pretoria 0002 (South Africa); Laboratory of High Ceramics, Empa, Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf (Switzerland); Department of Physics, University of Botswana, Private Bag 002, Gaborone (Botswana); Machatine, Augusto G. [Department of Physics, University of Pretoria, Pretoria 0002 (South Africa); Hu, Yelin [Laboratory of High Ceramics, Empa, Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf (Switzerland); Laboratory for Photonics and Interfaces, EPFL, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland); Braun, Artur [Laboratory of High Ceramics, Empa, Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf (Switzerland); Nambala, Fred J. [Department of Physics, University of Pretoria, Pretoria 0002 (South Africa); University of Zambia, Box 32379, Great East Road Campus, Lusaka (Zambia); Diale, Mmantsae, E-mail: mmantsae.diale@up.ac.za [Department of Physics, University of Pretoria, Pretoria 0002 (South Africa); Laboratory of High Ceramics, Empa, Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf (Switzerland)

    2016-01-01

    Hematite (α-Fe{sub 2}O{sub 3}) is a promising semiconductor as photoanode in solar hydrogen production from photoelectrolysis of water due to its appropriate band gap, low cost and high electrochemical stability in aqueous caustic electrolytes. Operation of such photoanode in a biased photoelectrochemical cell constitutes an anodization with consequent redox reactions at the electrode surface. α-Fe{sub 2}O{sub 3} thin film photoanodes were prepared by simple and inexpensive dip coating method on fluorine doped tin oxide (FTO) glass substrate, annealed in air at 500 °C for 2 h, then electrochemically oxidized (anodized) in 1 M KOH at 500 mV for 1 min in dark and light conditions. Changes in structural properties and morphology of α-Fe{sub 2}O{sub 3} nanoparticles films were investigated by XRD, Raman spectroscopy and a high resolution FE-SEM. The average grain size was observed to increase from ~57 nm for pristine samples to 73 and 77 nm for anodized samples in dark and light respectively. Broadening and red shift in Raman spectra in anodized samples may be attributed to lattice expansion upon oxidation. The UV–visible measurements revealed enhanced absorption in the photoanodes after the treatment. The findings suggest that the anodization of the photoelectrode in a biased cell causes not only changes of the molecular structure at the surface, but also changes in the crystallographic structure which can be detected with x-ray diffractometry.

  18. Oxygen blast furnace and combined cycle (OBF-CC) - an efficient iron-making and power generation process

    International Nuclear Information System (INIS)

    Jianwei, Y.; Guolong, S.; Cunjiang, K.; Tianjun, Y.

    2003-01-01

    A new iron and power generating process, oxygen blast furnace and combined cycle (OBF-CC), is presented. In order to support the opinion, the features of the oxygen blast furnace and integrated coal gasification and combined cycle (IGCC) are summarized. The relation between the blasting parameters and the output gas quantity, as well as caloric value is calculated based on mass and energy balance. Analysis and calculation indicate that the OBF-CC will be an efficient iron-making and power generation process with higher energy efficiency and less pollution

  19. The next generation of iron fertilization experiments in the southern Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Smetacek, V.; Naqvi, S.W.A.

    Of the various macro-engineering schemes proposed to mitigate global warming, ocean iron fertilization (OIF) is one that could be started at short notice on relevant scales. It is based on the reasoning that adding trace amounts of iron to iron...

  20. Deposition of tellurium films by decomposition of electrochemically-generated H{sub 2}Te: application to radiative cooling devices

    Energy Technology Data Exchange (ETDEWEB)

    Engelhard, T.; Jones, E.D.; Viney, I. [Coventry Univ. (United Kingdom). Centre for Data Storage Mater.; Mastai, Y.; Hodes, G. [Department of Materials and Interfaces, Weizmann Institute of Science, 76100, Rehovot (Israel)

    2000-07-17

    The preparation of homogenous, large area thin layers of tellurium on thin polyethylene foils is described. The tellurium was formed by room temperature decomposition of electrochemically generated H{sub 2}Te. Pre-treatment of the polyethylene substrates with KMnO{sub 4} to give a Mn-oxide layer was found to improve the Te adhesion and homogeneity. Optical characterization of the layers was performed using UV/VIS/NIR spectroscopy. Such coatings have favorable characteristics for use as solar radiation shields in radiative cooling devices. The simplicity of generation of the very unstable H{sub 2}Te was also exploited to demonstrate formation of size-quantized CdTe nanocrystals. (orig.)

  1. Evaluation of Electrochemically Generated Potable Water Disinfectants for Use on the International Space Station

    Science.gov (United States)

    Rodriquez, Branelle; Anderson, Molly; Adams, Niklas; Vega, Leticia; Botkin, Douglas

    2013-01-01

    Microbial contamination and subsequent growth in spacecraft water systems are constant concerns for missions involving human crews. The current potable water disinfectant for the International Space Station (ISS) is iodine; however, with the end of the Space Shuttle Program, there is a need to develop redundant biocide systems that do not require regular up-mass dependencies. Throughout the course of a year, four different electrochemical systems were investigated as a possible biocide for potable water on the ISS. Research has indicated that a wide variability exists with regards to efficacy in both concentration and exposure time of these disinfectants; therefore, baseline efficacy values were established. This paper describes a series of tests performed to establish optimal concentrations and exposure times for four disinfectants against single and mixed species planktonic and biofilm bacteria. Results of the testing determined whether these electrochemical disinfection systems are able to produce a sufficient amount of chemical in both concentration and volume to act as a biocide for potable water on the ISS.

  2. Synthesis and electrochemical study of iron, chromium and tungsten aminocarbenes: Role of ligand structure and central metal nature

    Energy Technology Data Exchange (ETDEWEB)

    Hoskovcova, Irena [Department of Inorganic Chemistry, Institute of Chemical Technology, Technicka 5, 166 28 Prague 6 (Czech Republic); Rohacova, Jana; Dvorak, Dalimil; Tobrman, Tomas [Department of Organic Chemistry, Institute of Chemical Technology, Technicka 5, 166 28 Prague 6 (Czech Republic); Zalis, Stanislav [J. Heyrovsky Institute of Physical Chemistry, Academy of Science of the Czech Republic, Dolejskova 3, 182 23 Prague 8 (Czech Republic); Zverinova, Radka [Department of Inorganic Chemistry, Institute of Chemical Technology, Technicka 5, 166 28 Prague 6 (Czech Republic); J. Heyrovsky Institute of Physical Chemistry, Academy of Science of the Czech Republic, Dolejskova 3, 182 23 Prague 8 (Czech Republic); Ludvik, Jiri, E-mail: jiri.ludvik@jh-inst.cas.c [J. Heyrovsky Institute of Physical Chemistry, Academy of Science of the Czech Republic, Dolejskova 3, 182 23 Prague 8 (Czech Republic)

    2010-11-30

    Several series of Fischer-type aminocarbene complexes with central Fe, Cr or W atoms and with various carbene substitution were synthesized and electrochemically investigated by dc-polarography and cyclic voltammetry. The shifts and changes of reduction and oxidation potentials were evaluated using the linear free energy relationship (LFER) approach with respect to (a) the type of coordination, (b) the substitution on the carbene ligand and (c) the nature of the central metal atom. The analysis of measured data confirms that the reduction center is localized on the carbene moiety and is strongly influenced by both electronic and sterical properties of its substituents. The oxidation proceeds on the metal and depends mainly on its nature and on the {pi}-acidity of the ligands. Electrochemistry thus represents an important experimental approach to the description and understanding of the molecular electronic structure and redox properties. Experimental results are supported by DFT calculation of HOMO and LUMO orbitals shape and composition.

  3. Electrochemistry study of the influence of local hydrogen generation in carbon steel bio-corrosion mechanisms in presence of iron reducing bacteria (Shewanella oneidensis)

    International Nuclear Information System (INIS)

    Moreira, R.; Libert, M.; Tribollet, B.; Vivier, V.

    2012-01-01

    , local electrochemical techniques were applied in order to locally generate hydrogen and to observe the influence of the increase of the availability of electron's donors. A polarized platinum tip, of 100 μm of diameter, was placed 50 μm distant from the carbon steel electrode surface. A specifically electrochemical cell was developed for this study aiming to perform local electrochemical measurements in anaerobic conditions. A biological medium (called as M1) was used as a reaction solution where only corrosion products were used as electron donor (hydrogen) and accepters (iron III oxides). The carbon steel electrode was polarized at open circuit potential (OCP) and the current variation over time was monitored. A different corrosion kinetic was observed in presence of bacteria when the hydrogen was locally generated by the tip, suggesting a reaction's acceleration. The study of this phenomenon is now under progress. (authors)

  4. Application of electrochemically generated ozone to the discoloration and degradation of solutions containing the dye Reactive Orange 122

    International Nuclear Information System (INIS)

    Santana, Mario H.P.; Da Silva, Leonardo M.; Freitas, Admildo C.; Boodts, Julien F.C.; Fernandes, Karla C.; De Faria, Luiz A.

    2009-01-01

    Aqueous solutions containing the commercial azo dye Reactive Orange 122 (RO122) were ozonated in acid and alkaline conditions. Ozone was electrochemically generated using a laboratory-made electrochemical reactor and applied using semi-batch conditions and a column bubble reactor. A constant ozone application rate of 0.25 g h -1 was used throughout. Color removal and degradation efficiency were evaluated as function of ozonation time, pH and initial dye concentration by means of discoloration kinetics and COD-TOC removal. Experimental findings revealed that pH affects both discoloration kinetics and COD-TOC removal. A single pseudo-first-order kinetic rate constant, k obs , for discoloration was found for ozonation carried out in alkaline solutions, contrary to acidic solutions where k obs depends on ozonation time. COD-TOC removal supports degradation of RO122 is more pronounced for alkaline conditions. Evaluation of the oxidation feasibility by means of the COD/TOC ratio indicates that the ozonation process in both acid and alkaline conditions leads to a reduction in recalcitrance of the soluble organic matter

  5. New generation of electrochemical immunoassay based on polymeric nanoparticles for early detection of breast cancer

    Directory of Open Access Journals (Sweden)

    Mouffouk F

    2017-04-01

    Full Text Available Fouzi Mouffouk,1 Sihem Aouabdi,2 Entesar Al-Hetlani,1 Hacene Serrai,3 Tareq Alrefae,4 Liaohai Leo Chen5 1Department of Chemistry, Kuwait University, Safat, Kuwait; 2King Abdullah International Medical Research Center (KAIMRC, Jeddah, Kingdom of Saudi Arabia; 3Department of Radiology and Nuclear Medicine, University Hospital of Gent (UZG, Gent, Belgium; 4Department of Physics, Kuwait University, Safat, Kuwait; 5Surgical Precision Research Lab. Department of Surgery, University of Illinois at Chicago, IL, USA Abstract: Screening and early diagnosis are the key factors for the reduction of mortality rate and treatment cost of cancer. Therefore, sensitive and selective methods that can reveal the low abundance of cancer biomarkers in a biological sample are always desired. Here, we report the development of a novel electrochemical biosensor for early detection of breast cancer by using bioconjugated self-assembled pH-responsive polymeric micelles. The micelles were loaded with ferrocene molecules as “tracers” to specifically target cell surface-associated epithelial mucin (MUC1, a biomarker for breast and other solid carcinoma. The synthesis of target-specific, ferrocene-loaded polymeric micelles was confirmed, and the resulting sensor was capable of detecting the presence of MUC1 in a sample containing about 10 cells/mL. Such a high sensitivity was achieved by maximizing the loading capacity of ferrocene inside the polymeric micelles. Every single event of binding between the antibody and antigen was represented by the signal of hundreds of thousands of ferrocene molecules that were released from the polymeric micelles. This resulted in a significant increase in the intensity of the ferrocene signal detected by cyclic voltammetry. Keywords: electrochemical immunoassay, polymeric nanoparticles, breast cancer biomarkers, biosensors 

  6. Long-term behaviour of iron in clay soils: a study of world war 1 remains by physico-chemical and electrochemical characterization

    International Nuclear Information System (INIS)

    Pons, E.; Uran, L.; Lemaitre, C.; David, D.; Joiret, S.; Hugot-Le Goff, A.

    2003-01-01

    Iron archaeological analogues constitute a good way to contribute to the definition of the containers for high-level radioactive wastes. In the present study we considered objects from a battle field of world war 1. Visual and microscopic observations revealed 2 corrosion layers of similar thickness: an external layer that appeared orange-brown, about 200 μm to 1 mm thick and in contact with the metallic cores an internal layer which was dark-grey. The Raman spectroscopy testing showed that the external layer was made out of oxy-hydroxides, mixed with crystals from the soil, while the presence of oxides was always associated with the internal corrosion layer. Electrochemical measurements clearly illustrated a different behaviour between the 2 corrosion layers. Impedance spectroscopy measuring confirmed the porosity of the external layer. Polarization tests were performed in Evian water to better understand the behaviour of the internal corrosion layer, an indicative corrosion current was defined and its measurement confirmed the protective role of the internal layer against corrosion. Nevertheless the burial environment seems to play also a significant role in the slowdown of the corrosion. (A.C.)

  7. Generation of covariance files for iron-56 and natural iron - International Evaluation Co-operation Volume 2

    International Nuclear Information System (INIS)

    Vonach, Herbert; Gruppelaar, Harm; Santamarina, Alain; Froehner, Fritz; Hasegawa, Akira; Kanda, Yukinori; Sugimoto, Masayoshi; Kopecky, J.; Fu, C.Y.; Hetrick, David M.; Larson, Duane C.; Peelle, R.W.

    1994-01-01

    A Working Party on International Evaluation Co-operation was established under the sponsorship of the OECD/NEA Nuclear Science Committee (NSC) to promote the exchange of information on nuclear data evaluations, validation, and related topics. Its aim is also to provide a framework for co-operative activities between members of the major nuclear data evaluation projects. This includes the possible exchange of scientists in order to encourage co-operation. Requirements for experimental data resulting from this activity are compiled. The Working Party determines common criteria for evaluated nuclear data files with a view to assessing and improving the quality and completeness of evaluated data. The Parties to the project are: ENDF (United States), JEFF/EFF (NEA Data Bank Member countries), and JENDL (Japan). Co-operation with evaluation projects of non-OECD countries are organised through the Nuclear Data Section of the International Atomic Energy Agency (IAEA). The following report was issued by a Subgroup investigating different methodologies to produce covariance data. These data are required to assess uncertainties in design parameters and to refine the use of nuclear data both in fission and fusion reactor applications. It was agreed to limit the scope to covariance data for Iron-56 and natural iron in view of their importance as structural materials in reactors and particularly for fusion reactor shielding applications

  8. Constructing superhydrophobic WO3@TiO2 nanoflake surface beyond amorphous alloy against electrochemical corrosion on iron steel

    Science.gov (United States)

    Yu, S. Q.; Ling, Y. H.; Wang, R. G.; Zhang, J.; Qin, F.; Zhang, Z. J.

    2018-04-01

    To eliminate harmful localized corrosion, a new approach by constructing superhydrophobic WO3@TiO2 hierarchical nanoflake surface beyond FeW amorphous alloy formed on stainless steel was proposed. Facile dealloying and liquid deposition was employed at low temperature to form a nanostructured layer composing inner WO3 nanoflakes coated with TiO2 nanoparticles (NPs) layer. After further deposition of PFDS on nanoflakes, the contact angle reached 162° while the corrosion potential showed a negative shift of 230 mV under illumination, resulting in high corrosion resistance in 3.5 wt% NaCl solution. The tradeoff between superhydrophobic surface and photo-electro response was investigated. It was found that this surface feature makes 316 SS be immune to localized corrosion and a pronounced photo-induced process of electron storage/release as well as the stability of the functional layer were detected with or without illumination, and the mechanism behind this may be related to the increase of surface potential due to water repellence and the delayed cathodic protection of semiconducting coating derived mainly from the valence state changes of WO3. This study demonstrates a simple and low-cost electrochemical approach for protection of steel and novel means to produce superhydrophobic surface and cathodic protection with controllable electron storage/release on engineering scale.

  9. Performance Evaluation of Electrochem's PEM Fuel Cell Power Plant for NASA's 2nd Generation Reusable Launch Vehicle

    Science.gov (United States)

    Kimble, Michael C.; Hoberecht, Mark

    2003-01-01

    NASA's Next Generation Launch Technology (NGLT) program is being developed to meet national needs for civil and commercial space access with goals of reducing the launch costs, increasing the reliability, and reducing the maintenance and operating costs. To this end, NASA is considering an all- electric capability for NGLT vehicles requiring advanced electrical power generation technology at a nominal 20 kW level with peak power capabilities six times the nominal power. The proton exchange membrane (PEM) fuel cell has been identified as a viable candidate to supply this electrical power; however, several technology aspects need to be assessed. Electrochem, Inc., under contract to NASA, has developed a breadboard power generator to address these technical issues with the goal of maximizing the system reliability while minimizing the cost and system complexity. This breadboard generator operates with dry hydrogen and oxygen gas using eductors to recirculate the gases eliminating gas humidification and blowers from the system. Except for a coolant pump, the system design incorporates passive components allowing the fuel cell to readily follow a duty cycle profile and that may operate at high 6:1 peak power levels for 30 second durations. Performance data of the fuel cell stack along with system performance is presented to highlight the benefits of the fuel cell stack design and system design for NGLT vehicles.

  10. Electrochemical hydride generation atomic fluorescence spectrometry for detection of tin in canned foods using polyaniline-modified lead cathode

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Xianjuan [Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026 (China); Gan Wuer, E-mail: wgan@ustc.edu.cn [Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026 (China); Wan Lingzhong; Deng Yun; Yang Qinghua; He Youzhao [Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2010-12-15

    An electrochemical hydride generation system with polyaniline-modified lead cathode was developed for tin determination by coupling with atomic fluorescence spectrometry. The tin fluorescence signal intensity was improved evidently as the polyaniline membrane could facilitate the transformation process from atomic tin to the SnH{sub 4} and prevent the aggradation of Sn atom on Pb electrode surface. The effects of experimental parameters and interferences have been studied. The limit of detection (LOD) was 1.5 ng mL{sup -1} (3{sigma}) and the relative standard deviation (RSD) was 3.3% for 11 consecutive measurements of 50 ng mL{sup -1} Sn(IV) standard solution.

  11. Electrochemical hydride generation atomic fluorescence spectrometry for detection of tin in canned foods using polyaniline-modified lead cathode.

    Science.gov (United States)

    Jiang, Xianjuan; Gan, Wuer; Wan, Lingzhong; Deng, Yun; Yang, Qinghua; He, Youzhao

    2010-12-15

    An electrochemical hydride generation system with polyaniline-modified lead cathode was developed for tin determination by coupling with atomic fluorescence spectrometry. The tin fluorescence signal intensity was improved evidently as the polyaniline membrane could facilitate the transformation process from atomic tin to the SnH(4) and prevent the aggradation of Sn atom on Pb electrode surface. The effects of experimental parameters and interferences have been studied. The limit of detection (LOD) was 1.5 ng mL(-1) (3σ) and the relative standard deviation (RSD) was 3.3% for 11 consecutive measurements of 50 ng mL(-1) Sn(IV) standard solution. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Ultra-trace determination of methylmercuy in seafood by atomic fluorescence spectrometry coupled with electrochemical cold vapor generation

    Energy Technology Data Exchange (ETDEWEB)

    Zu, Wenchuan, E-mail: zuhongshuai@126.com [Beijing Institute of Technology, College of Chemistry, Beijing 100081 (China); Beijing Center for Physical & Chemical Analysis, Beijing 100089 (China); Wang, Zhenghao [Beijing Normal University, College of Chemistry, Beijing 100875 (China)

    2016-03-05

    Highlights: • Methylmercury detection by ECVG-AFS without pre-separation by HPLC is proposed. • Methylmercury is atomized by direct electrochemical reduction with no reductant. • Remarkably better sensitivity is obtained than the traditional HPLC-UV-AFS method. • Glassy carbon is the best cathode material to generate Hg vapor from methylmercury. - Abstract: A homemade electrochemical flow cell was adopted for the determination of methylmercury. The cold vapor of mercury atoms was generated from the surface of glassycarbon cathode through the method of electrolytic reduction and detected by atomic fluorescence spectroscopy subsequently. The operating conditions were optimized with 2 ng mL{sup −1} methylmercury standard solution. The caliberation curve was favorably linear when the concentrations of standard HgCH{sub 3}{sup +} solutions were in the range of 0.2–5 ng mL{sup −1}(as Hg). Under the optimized conditions, the limit of detection (LOD) for methylmercury was 1.88 × 10{sup −3} ng mL{sup −1} and the precision evaluated by relative standard deviation was 2.0% for six times 2 ng mL{sup −1} standard solution replicates. The terminal analytical results of seafood samples, available from local market, showed that the methylmercury content ranged within 3.7–45.8 ng g{sup −1}. The recoveries for methylmercury spiked samples were found to be in the range of 87.6–103.6% and the relative standard deviations below 5% (n = 6)were acquired, which showed this method was feasible for real sample analysis.

  13. The effect of coating on heat generation properties of Iron oxide nanoparticles

    Science.gov (United States)

    Yuan, Yuan

    Magnetic nanoparticles have attracted more and more attention for their potential application as heating agents in cancer hyperthermia. The effectiveness of cancer hyperthermia can be increased by using particles that have a higher heat generation rate, quantified by specific absorption rate (SAR), at a smaller applied field. In order to optimize the functionality of nanoparticles as heating agents, it is essential to have a comprehensive understanding of factors that may influence SAR including coating and aggregation. In all biomedical applications, the magnetic particles are coated with surfactants and polymers to enhance biocompatibility, prevent agglomeration and add functionality. Coatings may profoundly influence particles' clustering behavior and magnetic properties. Yet its effect on the heat generation rate of the nanoparticles has been scarcely investigated. In this context, a systematic investigation was carried out in this dissertation in order to understand the impact of the surface coating of magnetic nanoparticles on their heat generation rate. The study also includes investigation of normal nerve cell viability in presence of biofunctionalized magnetic nanoparticles with and without exposure to magnetic heating. Commercially available suspensions of iron oxide nanoparticles with a diameter of approximately 10 nm and different coatings relevant to biomedical applications such as aminosilane, carboxymethyl-dextran, protein A, biotin were extensively characterized. First of all, magnetic phase reduction of magnetite nanoparticles was examined by studying the discrepancy between the volume fraction of magnetic phase calculated from magnetization curve and the magnetic core concentration obtained from Tiron chelation test. The findings indicated that coatings might interact with the surface atoms of the magnetic core and form a magnetically disordered layer reducing the total amount of the magnetic phase. Secondly, the impact of coating and aggregation

  14. Development of Portable Flow-Through Electrochemical Sanitizing Unit to Generate Near Neutral Electrolyzed Water.

    Science.gov (United States)

    Zhang, Jufang; Yang, Hongshun; Chan, Joel Zhi Yang

    2018-03-01

    We developed a portable flow-through, electrochemical sanitizing unit to produce near neutral pH electrolyzed water (producing NEW). Two methods of redirecting cathode yields back to the anode chamber and redirecting anode yields the cathode chamber were used. The NEW yields were evaluated, including: free available chlorine (FAC), oxidation-reduction potential (ORP), and pH. The performances of 2 electrodes (RuO 2 -IrO 2 /TiO 2 and IrO 2 -Ta 2 O 5 /TiO 2 ) were investigated. The unit produced NEW at pH 6.46 to 7.17, an ORP of 805.5 to 895.8 mV, and FAC of 3.7 to 82.0 mg/L. The NEW produced by redirecting cathode yields had stronger bactericidal effects than the NEW produced by redirecting anode yields or NEW produced by mixing the commercial unit's anode and cathode product (P portable flow-through, NEW-producing unit has great potential in a wide range of applications, such as organic farm, households, and small food industries. The examined sanitizing treatments showed effective control of Escherichia coli O157:H7 and Listeria monocytogenes. © 2018 Institute of Food Technologists®.

  15. Diphthamide biosynthesis requires an organic radical generated by an iron-sulphur enzyme

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yang; Zhu, Xuling; Torelli, Andrew T; Lee, Michael; Dzikovski, Boris; Koralewski, Rachel M; Wang, Eileen; Freed, Jack; Krebs, Carsten; Ealick, Steve E; Lin, Hening [Cornell; (Penn)

    2010-08-30

    Archaeal and eukaryotic translation elongation factor 2 contain a unique post-translationally modified histidine residue called diphthamide, which is the target of diphtheria toxin. The biosynthesis of diphthamide was proposed to involve three steps, with the first being the formation of a C-C bond between the histidine residue and the 3-amino-3-carboxypropyl group of S-adenosyl-l-methionine (SAM). However, further details of the biosynthesis remain unknown. Here we present structural and biochemical evidence showing that the first step of diphthamide biosynthesis in the archaeon Pyrococcus horikoshii uses a novel iron-sulphur-cluster enzyme, Dph2. Dph2 is a homodimer and each of its monomers can bind a [4Fe-4S] cluster. Biochemical data suggest that unlike the enzymes in the radical SAM superfamily, Dph2 does not form the canonical 5'-deoxyadenosyl radical. Instead, it breaks the Cγ,Met-S bond of SAM and generates a 3-amino-3-carboxypropyl radical. Our results suggest that P. horikoshii Dph2 represents a previously unknown, SAM-dependent, [4Fe-4S]-containing enzyme that catalyses unprecedented chemistry.

  16. Electrochemical sensing using comparison of voltage-current time differential values during waveform generation and detection

    Science.gov (United States)

    Woo, Leta Yar-Li; Glass, Robert Scott; Fitzpatrick, Joseph Jay; Wang, Gangqiang; Henderson, Brett Tamatea; Lourdhusamy, Anthoniraj; Steppan, James John; Allmendinger, Klaus Karl

    2018-01-02

    A device for signal processing. The device includes a signal generator, a signal detector, and a processor. The signal generator generates an original waveform. The signal detector detects an affected waveform. The processor is coupled to the signal detector. The processor receives the affected waveform from the signal detector. The processor also compares at least one portion of the affected waveform with the original waveform. The processor also determines a difference between the affected waveform and the original waveform. The processor also determines a value corresponding to a unique portion of the determined difference between the original and affected waveforms. The processor also outputs the determined value.

  17. Identification of intrinsic catalytic activity for electrochemical reduction of water molecules to generate hydrogen

    KAUST Repository

    Shinagawa, Tatsuya; Takanabe, Kazuhiro

    2015-01-01

    Insufficient hydronium ion activities at near-neutral pH and under unbuffered conditions induce diffusion-limited currents for hydrogen evolution, followed by a reaction with water molecules to generate hydrogen at elevated potentials. The observed

  18. Novel Microbial Electrochemical Technologies and Microorganisms for Power Generation and Desalination

    KAUST Repository

    Chehab, Noura A.

    2014-12-01

    Global increases in water demand and decreases in both the quantity and quality of fresh water resources have served as the major driving forces to develop sustainable use of water resources. One viable alternative is to explore non-traditional (impaired quality) water sources such as wastewater and seawater. The current paradigm for wastewater treatment is based on technologies that are energy intensive and fail to recover the potential resources (water and energy) in wastewater. Also, conventional desalination technologies like reverse osmosis (RO) are energy intensive. Therefore, there is a need for the development of sustainable wastewater treatment and desalination technologies for practical applications. Processes based on microbial electrochemical technologies (METs) such as microbial fuel cells (MFCs), microbial electrolysis cells (MECs) and microbial desalination cells (MDCs) hold promise for the treatment of wastewater with recovery of the inherent energy, and MDCs could be used for both desalination of seawater and energy recovery. METs use anaerobic bacteria, referred to as exoelectrogens, that are capable of transferring electrons exogenously to convert soluble organic matter present in the wastewater directly into an electrical current to produce electrical power (MFC and MDC) or biogas (MEC). In my dissertation, I investigated the three types of METs mentioned above to: 1) have a better insight on the effect of 4 oxygen intrusion on the microbial community structure and performance of air-cathode MFCs; 2) improve the desalination efficiency of air-cathode MDCs using ion exchange resins (IXRs); and 3) enrich for extremophilic exoelectrogens from the Red Sea brine pool using MECs. The findings from these studies can shape further research aimed at developing more efficient air-cathode MFCs for practical applications, a more efficient integrated IXRMDC configuration that can be used as a pre-treatment to RO, and exploring extreme environments as a

  19. Chip-based generation of carbon nanodots via electrochemical oxidation of screen printed carbon electrodes and the applications for efficient cell imaging and electrochemiluminescence enhancement.

    Science.gov (United States)

    Xu, Yuanhong; Liu, Jingquan; Zhang, Jizhen; Zong, Xidan; Jia, Xiaofang; Li, Dan; Wang, Erkang

    2015-06-07

    A portable lab-on-a-chip methodology to generate ionic liquid-functionalized carbon nanodots (CNDs) was developed via electrochemical oxidation of screen printed carbon electrodes. The CNDs can be successfully applied for efficient cell imaging and solid-state electrochemiluminescence sensor fabrication on the paper-based chips.

  20. Electrochemical aptasensor for detecting Der p2 allergen using polycarbonate-based double-generation gold nanoparticle chip

    Directory of Open Access Journals (Sweden)

    Ming-Che Shen

    2017-04-01

    Full Text Available In this study, a novel aptamer-based impedimetric biosensor for detecting the group 2 allergen of Dermatophagoides pteronyssinus (Der p2 was developed. First, an anodic aluminum oxide (AAO membrane was prepared. A modified AAO barrier-layer surface with an array of nanohemispheres of 400 nm in diameter was used as a template for the nanoelectroforming of a nickel mold. After electroforming, the AAO template was etched and a nickel nanomold with a concave nanostructure array was produced. The formed nanostructured nickel nanomold was then used in the replica molding of a nanostructured polycarbonate (PC substrate via hot embossing. Finally, a gold thin film was sputtered onto the PC substrate to form a double-generation gold nanoparticle electrode (array of nanohemispheres with smaller nanoparticles orderly distributed on each nanohemisphere. After immobilizing specifically designed aptamers on the fabricated electrode, electrochemical impedance spectroscopy was used to determine the concentration of Der p2. The sensitivity of the proposed scheme for the detection of the dust mite antigen Der p2 was 2.088 Ω / (ng/mL × cm2 with a dynamic detection range of 27.5–400 ng/mL and detection limit of 16.47 ng/mL.The aptamer-based impedimetric biosensor proposed in this study possesses many advantages such as high sensitivity, low cost, and high consistency over currently used sensors. The proposed sensor was found to be useful for the rapid detection of rare molecules present in an analyte. Keywords: Aptamers, Der p2 dust mite allergen detection, Nanostructured biosensors, Electrochemical impedance spectroscopy

  1. Electrochemical generation of arsenic volatile species using a gold/mercury amalgam cathode. Determination of arsenic by atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Andrea Caiminagua

    2015-03-01

    Full Text Available The electrochemical generation of arsenic volatile species (arsine using an Au/Hg amalgam cathode in a 0.5 M H2SO4 solution, is described. Results were compared with those obtained with other cathodes commonly used for generation of arsine. The effects of the electrolytic conditions and interferent ions have been studied. Results show that the Au/Hg cathode has better tolerance to interference and higher repeatability than cathodes made out of platinum (Pt, gold (Au, reticulated glassy carbon (RGC, lead (Pb. Under optimized conditions, a 0.027 μg L−1 (3σ detection limit for As(III in aqueous solutions and a 2.4% relative standard deviation for a 0.1 μg L−1 As(III were obtained. The accuracy of the method was verified by determination of As in a certified reference material. The proposed method was applied to the determination of As in spiked tap water samples.

  2. Novel Lead dioxide-Graphite-Polymer composite anode for electrochemical chlorine generation

    Czech Academy of Sciences Publication Activity Database

    Gedam, N.; Neti, R.N.; Kormunda, M.; Šubrt, Jan; Bakardjieva, Snejana

    2015-01-01

    Roč. 169, JUL (2015), s. 109-116 ISSN 0013-4686 Institutional support: RVO:61388980 Keywords : beta-Lead dioxide * Graphite * Polymer composite anode * Chlorine generation * Cyclic voltammetry Subject RIV: CG - Electrochemistry Impact factor: 4.803, year: 2015

  3. A complementary set of electrochemical and X-ray synchrotron techniques to determine the passivation mechanism of iron treated in a new corrosion inhibitor solution specifically developed for the preservation of metallic artefacts

    International Nuclear Information System (INIS)

    Mirambet, F.; Reguer, S.; Rocca, E.; Hollner, S.; Testemale, D.

    2010-01-01

    Metallic artefacts of the cultural heritage are often stored in uncontrolled environmental conditions. They are very sensitive to atmospheric corrosion caused by a succession of wet and dry periods due to variations of relative humidity and temperature. To avoid the complete degradation of the metallic artefacts, new preventive strategies must be developed. In this context, we have studied new compounds based on sodium carboxylates solutions CH 3 (CH 2 ) n-2 COO - , Na + hereafter called NaC n . They allow the formation of a passive layer at the metallic surface composed of a metal-carboxylate complex. To understand the action of those inhibitors in the passivation process of iron we have performed electrochemical measurements and surface characterisation. Moreover, to monitor in real time the growth of the coating, in situ X-ray absorption spectroscopy (XAS) experiments at iron K-edge were carried out in an electrochemical cell. These analyses have shown that in the case of NaC 10 solution, the protection of iron surface is correlated to the precipitation of a well-organised layer of FeC 10 . These experiments confirmed that this compound is a fully oxidised trinuclear Fe(III) complex containing decanoate anions as ligands. Such information concerning the passive layer is a key factor to evaluate its stability and finally the long-term efficiency of the protection treatment. (orig.)

  4. Electrochemical selenium hydride generation with in situ trapping in graphite tube atomizers

    Czech Academy of Sciences Publication Activity Database

    Šíma, Jan; Rychlovský, P.

    2003-01-01

    Roč. 58, č. 5 (2003), s. 919-930 ISSN 0584-8547 R&D Projects: GA ČR GA203/98/0754; GA ČR GA203/01/0453 Institutional research plan: CEZ:AV0Z4031919 Keywords : hydride generation * electrothermal atomic absorption spectrometry * In situ trapping Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.361, year: 2003

  5. Identification of intrinsic catalytic activity for electrochemical reduction of water molecules to generate hydrogen

    KAUST Repository

    Shinagawa, Tatsuya

    2015-01-01

    Insufficient hydronium ion activities at near-neutral pH and under unbuffered conditions induce diffusion-limited currents for hydrogen evolution, followed by a reaction with water molecules to generate hydrogen at elevated potentials. The observed constant current behaviors at near neutral pH reflect the intrinsic electrocatalytic reactivity of the metal electrodes for water reduction. This journal is © the Owner Societies.

  6. Multistage leaching of metals from spent lithium ion battery waste using electrochemically generated acidic lixiviant.

    Science.gov (United States)

    Boxall, N J; Adamek, N; Cheng, K Y; Haque, N; Bruckard, W; Kaksonen, A H

    2018-04-01

    Lithium ion battery (LIB) waste contains significant valuable resources that could be recovered and reused to manufacture new products. This study aimed to develop an alternative process for extracting metals from LIB waste using acidic solutions generated by electrolysis for leaching. Results showed that solutions generated by electrolysis of 0.5 M NaCl at 8 V with graphite or mixed metal oxide (MMO) electrodes were weakly acidic and leach yields obtained under single stage (batch) leaching were poor (leaching with the graphite electrolyte solution improved leach yields overall, but the electrodes corroded over time. Though yields obtained with both electrolyte leach solutions were low when compared to the 4 M HCl control, there still remains potential to optimise the conditions for the generation of the acidic anolyte solution and the solubilisation of valuable metals from the LIB waste. A preliminary value proposition indicated that the process has the potential to be economically feasible if leach yields can be improved, especially based on the value of recoverable cobalt and lithium. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Performance of the electrical generator cell by the ferrous alloys of printed circuit board scrap and Iron Metal 1020

    Science.gov (United States)

    Sahan, Y.; Sudarsono, S.; Silviana, E.; Chairul; Wisrayetti

    2018-04-01

    Galvani cell is one of thealternative energy. This cell can be used as an electric resources. In this research, the generator cell was designed and builds to generate the electric. The generator cell consisted of the iron metal 1020 were used as anode, the ferrous alloys of printed circuit board scrapwas then used as chatode, and NaCl solution as an electrolyte. The aim of this research is to estimate the performance of this generator cell by using variation of NaCl concentration (i.e. 1%, 3%, 5%, 7%, and 9%) with the electrodes pair ( 1 and 8 pairs). The performance of the cell was measured with a multi tester equipment and a LED bulb (5-watt 3Volt). The Results shown that the generator cell can produce the electric power of 3.679 Volt maximally by using NaCl 9% and 8 electrode pairs applied for this condition.

  8. Sign of inverse spin Hall voltages generated by ferromagnetic resonance and temperature gradients in yttrium iron garnet platinum bilayers

    International Nuclear Information System (INIS)

    Schreier, Michael; Lotze, Johannes; Gross, Rudolf; Goennenwein, Sebastian T B; Bauer, Gerrit E W; Uchida, Ken-ichi; Daimon, Shunsuke; Kikkawa, Takashi; Saitoh, Eiji; Vasyuchka, Vitaliy I; Lauer, Viktor; Chumak, Andrii V; Serga, Alexander A; Hillebrands, Burkard; Flipse, Joost; Van Wees, Bart J

    2015-01-01

    We carried out a concerted effort to determine the absolute sign of the inverse spin Hall effect voltage generated by spin currents injected into a normal metal. We focus on yttrium iron garnet (YIG)∣platinum bilayers at room temperature, generating spin currents by microwaves and temperature gradients. We find consistent results for different samples and measurement setups that agree with theory. We suggest a right-hand-rule to define a positive spin Hall angle corresponding to the voltage expected for the simple case of scattering of free electrons from repulsive Coulomb charges. (paper)

  9. Oxidation and reduction of copper and iron species in steam generator deposits - Effects of hydrazine, carbohydrazide and catalyzed hydrazine

    International Nuclear Information System (INIS)

    Marks, C.R.; Varrin, R.D.; Gorman, J.A.; McIlree, A.R.; Stanley, R.

    2002-01-01

    It has long been suspected that oxidation and reduction of secondary side deposits in PWR steam generators have a significant influence on the onset of intergranular attack and stress corrosion cracking (IGA/SCC) of mill annealed Alloy 600 steam generator tubes. It is believed that these same processes could affect the possible future occurrence of IGA/SCC of thermally treated Alloy 600 and Alloy 690 tubes that are in newer steam generators. The working hypothesis for describing the influence of oxides on accelerated tube degradation is that deposits formed during normal operation are oxidized during lay-up. During subsequent operation, these oxidized species accelerate tube degradation by raising the electrochemical potential. (authors)

  10. Gold nano particle decorated graphene core first generation PAMAM dendrimer for label free electrochemical DNA hybridization sensing.

    Science.gov (United States)

    Jayakumar, K; Rajesh, R; Dharuman, V; Venkatasan, R; Hahn, J H; Pandian, S Karutha

    2012-01-15

    A novel first generation (G1) poly(amidoamine) dendrimer (PAMAM) with graphene core (GG1PAMAM) was synthesized for the first time. Single layer of GG1PAMAM was immobilized covalently on mercaptopropionic acid (MPA) monolayer on Au transducer. This allows cost effective and easy deposition of single layer graphene on the Au transducer surface than the advanced vacuum techniques used in the literature. Au nano particles (17.5 nm) then decorated the GG1PAMAM and used for electrochemical DNA hybridization sensing. The sensor discriminates selectively and sensitively the complementary double stranded DNA (dsDNA, hybridized), non-complementary DNA (ssDNA, un-hybridized) and single nucleotide polymorphism (SNP) surfaces. Interactions of the MPA, GG1PAMAM and the Au nano particles were characterized by Ultra Violet (UV), Fourier Transform Infrared (FTIR), Raman spectroscopy (RS), Thermo gravimetric analysis (TGA), Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Cyclic Voltmetric (CV), Impedance spectroscopy (IS) and Differntial Pulse Voltammetry (DPV) techniques. The sensor showed linear range 1×10(-6) to 1×10(-12) M with lowest detection limit 1 pM which is 1000 times lower than G1PAMAM without graphene core. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Quantifying the VNIR Effects of Nanophase Iron Generated through the Space Weathering of Silicates: Reconciling Modeled Data with Laboratory Observations

    Science.gov (United States)

    Legett, C., IV; Glotch, T. D.; Lucey, P. G.

    2015-12-01

    Space weathering is a diverse set of processes that occur on the surfaces of airless bodies due to exposure to the space environment. One of the effects of space weathering is the generation of nanophase iron particles in glassy rims on mineral grains due to sputtering of iron-bearing minerals. These particles have a size-dependent effect on visible and near infrared (VNIR) reflectance spectra with smaller diameter particles (behavior), while larger particles (> 300 nm) darken without reddening. Between these two sizes, a gradual shift between these two behaviors occurs. In this work, we present results from the Multiple Sphere T-Matrix (MSTM) scattering model in combination with Hapke theory to explore the particle size and iron content parameter spaces with respect to VNIR (700-1700 nm) spectral slope. Previous work has shown that the MSTM-Hapke hybrid model offers improvements over Mie-Hapke models. Virtual particles are constructed out of an arbitrary number of spheres, and each sphere is assigned a refractive index and extinction coefficient for each wavelength of interest. The model then directly solves Maxwell's Equations at every wave-particle interface to predict the scattering, extinction and absorption efficiencies. These are then put into a simplified Hapke bidirectional reflectance model that yields a predicted reflectance. Preliminary results show an area of maximum slopes for iron particle diameters planned to better refine the extent of this region. Companion laboratory work using mixtures of powdered aerogel and nanophase iron particles provides a point of comparison to modeling efforts. The effects on reflectance and emissivity values due to particle size in a nearly ideal scatterer (aerogel) are also observed with comparisons to model data.

  12. Thermodynamic studies of chromium adsorption on iron species generated by electrocoagulation

    Energy Technology Data Exchange (ETDEWEB)

    Parga, J.R.; Vazquez, V.; Gonzalez, G.; Cisneros, M.M. [Metallurgy and Materials Science Department, Institute Technology of Saltillo (Mexico)

    2010-10-15

    The protection of the global environment and in particular, the provision of a sustainable source of clean water is a necessity for human survival. Specifically, large quantities of chromium containing compounds are being discharged into the environment. This study has been carried out to determine the feasibility of chromium adsorption on iron species by an Electrocoagulation (EC) process using the Langmuir Isotherm. The full potential of EC with air injection as an alternative wastewater treatment technique to remove chromium from well water shows more than 99 % removal without the addition of any chemical reagents. In this study, X-Ray Diffraction, Scanning Electron Microscopy, Moessbauer Spectroscopy and Fourier Transform Infrared Spectroscopy are used to characterize the solid products that reveal the expected crystalline iron oxides, i.e., lepidocrocite, magnetite, gohetite, and iron oxide. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  13. Effect of release of dopamine on iron transformations and reactive oxygen species (ROS) generation under conditions typical of coastal waters.

    Science.gov (United States)

    Sun, Yingying; Pham, A Ninh; Waite, T David

    2018-01-24

    Seasonally persistent blooms of Ulvaria obscura var. blyttii, the prominent species present in green tides in the northern Pacific and Atlantic, have been well documented in recent decades. The synthesis and release of dopamine (DA) by Ulvaria obscura var. blyttii has been proposed to be associated with the suppression and inhibition of the growth of other organisms competing for limited resources. To better understand the potential benefits obtained from the release of DA, the transformation of DA as well its concomitant impact on the local seawater environment are investigated in this study. The results show that, despite several toxic quinones being produced during the oxidation of DA, aminochrome (DAC) is likely to be the only quinone playing an allelopathic role in view of its expected accumulation in the surrounding environment. As a consequence of the direct oxidation of DA and DA induced generation of 5,6-dihydroxyindole (DHI), high concentrations of H 2 O 2 accumulate over time, especially in the presence of elements including iron, calcium and magnesium. The oxidative stress to other organisms induced by the release of DA may be particularly detrimental as a result of H 2 O 2 induced reduction in photosynthesis, inactivation of antioxidant systems or even the generation of ˙OH. DA induced iron mobilization may benefit the continuously persistent blooms of Ulvaria obscura var. blyttii or even the whole community via alleviation in iron deficiency within the bloom region.

  14. Iron recovery from the waste generated during the cutting of granite

    International Nuclear Information System (INIS)

    Junca, E.; Espinosa, D. C. R.; Tenorio, J. A. S.; De Oliveira, J. R.

    2015-01-01

    Metallic iron is present in the waste left when granite blocks are cut. Thus, the purpose of this study was to characterize this waste using chemical and particle size analyses. To achieve this, X-ray diffraction and scanning electron microscopy coupled with electron back-scattered diffraction were used. To find the method with the best metallic iron recovery from the waste of ornamental rock, three distinct methods were examined: magnetic separation, table concentration and cyclone processing. The first method involved three steps: (1) use of a wet high-intensity magnetic separator, where only the equipment’s remaining magnetic field was present; (2) the material from the first step was then submitted to separation again, this time using a magnet for rare earth particles; and (3) this material after two separation processes was finally submitted to ferromagnetic separation. The second method used a concentration table set at various inclinations, oscillation frequencies and wash flow rates. Meanwhile, for the third method, the cyclone tests, only the water pressure was varied. After each test, a chemical analysis was performed to determine the metallic iron present in each sample. The tests revealed that magnetic separation presents the best results. Using this technique, a ferrous concentrate with 93 % metallic iron content and a granite concentrate with only 0.6 % metallic iron were obtained. On the other hand, in the table concentrator tests, the ferrous concentrate only had a metallic concentration of 13.6 %. In separation by the cyclone processing, the product barely contained metallic iron (7.2 % maximum).

  15. Development of an electrochemical 90Sr-90Y generator for separation of 90Y suitable for targeted therapy

    International Nuclear Information System (INIS)

    Chakravarty, Rubel; Pandey, Usha; Manolkar, Remani B.; Dash, Ashutosh; Venkatesh, Meera; Pillai, M.R. Ambikalmajan

    2008-01-01

    90 Y of high specific activity and very high radionuclidic purity (>99.998%) is essential for targeted therapy. Since the current methods used for the preparation of 90 Y from 90 Sr are not adaptable for use in a central/hospital radiopharmacy, a simple 90 Sr- 90 Y generator system based on electrochemical separation technique was developed. Methods: Two-cycle electrolysis procedure was developed for separation of 90 Y from 90 Sr in nitrate solution. The first electrolysis was performed for 90 min in 90 Sr(NO 3 ) 2 feed solution at pH 2-3 at a potential of -2.5V with 100-200 mA current using platinum electrodes. The second electrolysis was performed for 45 min in 3 mM HNO 3 at a potential of -2.5V with 100 mA current. In this step, the cathode from the first electrolysis containing 90 Y was used as anode along with a fresh circular platinum electrode as cathode. The 90 Y deposited on the circular cathode after the second electrolysis was dissolved in acetate buffer to obtain 90 Y acetate, suitable for radiolabeling. Results: >96% recovery of 90 Y could be achieved in each cycle, with an overall decay corrected yield of >90%. The recovered 90 Y had high radionuclidic purity with barely 30.2±15.2 kBq (817±411 nCi) of 90 Sr per 37 GBq (1 Ci) of 90 Y (0.817±0.411 ppm). Consistent and repeated separation could be demonstrated using up to 1.85 GBq (50 mCi) of 90 Sr. The generator was named 'Kamadhenu,' the eternally milk-yielding Indian mythological cow. Conclusions: A technique suitable for adaptation at central radiopharmacies for obtaining therapeutic quantities of pure 90 Y has been developed

  16. The new generation of intravenous iron: chemistry, pharmacology, and toxicology of ferric carboxymaltose.

    Science.gov (United States)

    Funk, Felix; Ryle, Peter; Canclini, Camillo; Neiser, Susann; Geisser, Peter

    2010-01-01

    An ideal preparation for intravenous iron replacement therapy should balance effectiveness and safety. Compounds that release iron rapidly tend to cause toxicity, while large molecules can induce antibody formation and cause anaphylactic reactions. There is therefore a need for an intravenous iron preparation that delivers appropriate amounts of iron in a readily available form but with minimal side effects and thus with an excellent safety profile. In this paper, a review is given on the chemistry, pharmacology, and toxicology of ferric carboxymaltose (FCM, Ferinject), a stable and robust complex formulated as a colloidal solution with a physiological pH. The complex is gradually taken up mainly from the hepatic reticulo-endothelial system (RES), followed by effective delivery of iron to the endogeneous transport system for the haem synthesis in new erythrocytes, as shown in studies on the pharmacodynamics and pharmacokinetics with radio-labelled FCM. Studies with radio-labelled FCM also demonstrated a barrier function of the placenta and a low transfer of iron into the milk of lactating rats. Safety pharmacology studies indicated a favourable profile with regard to cardiovascular, central nervous, respiratory, and renal toxicity. A high maximum non-lethal dose was demonstrated in the single-dose toxicity studies. Furthermore, based on the No-Observed-Adverse-Effect-Levels (NOAELs) found in repeated-dose toxicity studies and on the cumulative doses administered, FCM has good safety margins. Reproductive and developmental toxicity studies did not reveal any direct or indirect harmful effects. No genotoxic potential was found in in vitro or in vivo studies. Moreover, antigenicity studies showed no cross-reactivity of FMC with anti-dextran antibodies and also suggested that FCM does not possess sensitizing potential. Lastly, no evidence of irritation was found in local tolerance studies with FCM. This excellent toxicity profile and the high effectiveness of FCM allow

  17. One-step hydrothermal synthesis and electrochemical performance of sodium-manganese-iron phosphate as cathode material for Li-ion batteries

    Science.gov (United States)

    Karegeya, Claude; Mahmoud, Abdelfattah; Vertruyen, Bénédicte; Hatert, Frédéric; Hermann, Raphaël P.; Cloots, Rudi; Boschini, Frédéric

    2017-09-01

    The sodium-manganese-iron phosphate Na2Mn1.5Fe1.5(PO4)3 (NMFP) with alluaudite structure was obtained by a one-step hydrothermal synthesis route. The physical properties and structure of this material were obtained through XRD and Mössbauer analyses. X-ray diffraction Rietveld refinements confirm a cationic distribution of Na+ and presence of vacancies in A(2)', Na+ and small amounts of Mn2+ in A(1), Mn2+ in M(1), 0.5 Mn2+ and Fe cations (Mn2+,Fe2+ and Fe3+) in M(2), leading to the structural formula Na2Mn(Mn0.5Fe1.5)(PO4)3. The particles morphology was investigated by SEM. Several reactions with different hydrothermal reaction times were attempted to design a suitable synthesis protocol of NMFP compound. The time of reaction was varied from 6 to 48 h at 220 °C. The pure phase of NMFP particles was firstly obtained when the hydrothermal reaction of NMFP precursors mixture was maintained at 220 °C for 6 h. When the reaction time was increased from 6 to 12, 24 and 48 h, the dandelion structure was destroyed in favor of NMFP micro-rods. The combination of NMFP (NMFP-6H, NMFP-12H, NMFP-24H and NMFP-48H) structure refinement and Mössbauer characterizations shows that the increase of the reaction time leads to the progressive increment of Fe(III) and the decrease of the crystal size. The electrochemical tests indicated that NMFP is a 3 V sodium intercalating cathode. The comparison of the discharge capacity evolution of studied NMFP electrode materials at C/5 current density shows different capacities of 48, 40, 34 and 34 mA h g-1 for NMFP-6H, NMFP-12H, NMFP-24H and NMFP-48H respectively. Interestingly, all samples show excellent capacity retention of about 99% during 50 cycles.

  18. The next generation of iron fertilization experiments in the Southern Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Smetacek, V.; Naqvi, S.W.A.

    of arguments pertaining to the fate of bloom biomass, the ratio of iron added to carbon sequestered and various side effects of fertilization, continue to cast doubt on its efficacy. The idea is also unpopular with the public because it is perceived as meddling...

  19. MATHEMATICAL MODELING AND NUMERICAL SOLUTION OF IRON CORROSION PROBLEM BASED ON CONDENSATION CHEMICAL PROPERTIES

    Directory of Open Access Journals (Sweden)

    Basuki Widodo

    2012-02-01

    Full Text Available Corrosion process is a natural case that happened at the various metals, where the corrosion process in electrochemical can be explained by using galvanic cell. The iron corrosion process is based on the acidity degree (pH of a condensation, iron concentration and condensation temperature of electrolyte. Those are applied at electrochemistry cell. The iron corrosion process at this electrochemical cell also able to generate electrical potential and electric current during the process takes place. This paper considers how to build a mathematical model of iron corrosion, electrical potential and electric current. The mathematical model further is solved using the finite element method. This iron corrosion model is built based on the iron concentration, condensation temperature, and iteration time applied. In the electric current density model, the current based on electric current that is happened at cathode and anode pole and the iteration time applied. Whereas on the potential  electric model, it is based on the beginning of electric potential and the iteration time applied. The numerical results show that the part of iron metal, that is gristle caused by corrosion, is the part of metal that has function as anode and it has some influences, such as time depth difference, iron concentration and condensation temperature on the iron corrosion process and the sum of reduced mass during corrosion process. Moreover, difference influence of time and beginning electric potential has an effect on the electric potential, which emerges during corrosion process at the electrochemical cell. Whereas, at the electrical current is also influenced by difference of depth time and condensation temperature applied.Keywords: Iron Corrosion, Concentration of iron, Electrochemical Cell and Finite Element Method

  20. Electrochemistry for the Generation of Renewable Chemicals: One-Pot Electrochemical Deoxygenation of Xylose to δ-Valerolactone.

    Science.gov (United States)

    James, Olusola O; Sauter, Waldemer; Schröder, Uwe

    2017-05-09

    In this study, the electrochemical conversion of xylose to δ-valerolactone via carbonyl intermediates is demonstrated. The conversion was achieved in aqueous media and at ambient conditions. This study also demonstrates that the feedstock for production of renewable chemicals and biofuels through electrochemistry can be extended to primary carbohydrate molecules. This is the first report on a one-pot electrochemical deoxygenation of xylose to δ-valerolactone. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Updated (BP3) Technical and Economic Feasibility Study - Electrochemical Membrane for Carbon Dioxide Capture and Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Ghezel-Ayagh, Hossein

    2016-10-12

    This topical report summarizes the results of an updated Technical & Economic Feasibility Study (T&EFS) which was conducted in Budget Period 3 of the project to evaluate the performance and cost of the Electrochemical Membrane (ECM)-based CO2 capture system. The ECM technology is derived from commercially available inorganic membranes; the same used in FuelCell Energy’s commercial fuel cell power plants and sold under the trade name Direct FuelCell® (DFC®). The ECM stacks are utilized in the Combined Electric Power (generation) And Carbon dioxide Separation (CEPACS) systems which can be deployed as add-ons to conventional power plants (Pulverized Coal, Combined Cycle, etc.) or industrial facilities to simultaneously produce power while capturing >90% of the CO2 from the flue gas. In this study, an ECM-based CEPACS plant was designed to capture and compress >90% of the CO2 (for sequestration or beneficial use) from the flue gas of a reference 550 MW (nominal, net AC) Pulverized Coal (PC) Rankine Cycle (Subcritical steam) power plant. ECM performance was updated based on bench scale ECM stack test results. The system process simulations were performed to generate the CEPACS plant performance estimates. The performance assessment included estimation of the parasitic power consumption for CO2 capture and compression, and the efficiency impact on the PC plant. While the ECM-based CEPACS system for the 550 MW PC plant captures 90% of CO2 from the flue gas, it generates additional (net AC) power after compensating for the auxiliary power requirements of CO2 capture and compression. An equipment list, ECM stacks packaging design, and CEPACS plant layout were developed to facilitate the economic analysis. Vendor quotes were also solicited. The economic feasibility study included estimation of CEPACS plant capital cost, cost of electricity (COE) analyses and estimation of cost per ton of CO2 captured. The incremental COE for the ECM-based CO2 capture is expected to meet

  2. Updated (BP3) Technical and Economic Feasibility Study - Electrochemical Membrane for Carbon Dioxide Capture and Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Ghezel-Ayagh, Hossein [FuelCell Energy, Inc., Danbury, CT (United States)

    2017-12-21

    This topical report summarizes the results of an updated Technical & Economic Feasibility Study (T&EFS) which was conducted in Budget Period 3 of the project to evaluate the performance and cost of the Electrochemical Membrane (ECM)-based CO2 capture system. The ECM technology is derived from commercially available inorganic membranes; the same used in FuelCell Energy’s commercial fuel cell power plants and sold under the trade name Direct FuelCell® (DFC®). The ECM stacks are utilized in the Combined Electric Power (generation) And Carbon dioxide Separation (CEPACS) systems which can be deployed as add-ons to conventional power plants (Pulverized Coal, Combined Cycle, etc.) or industrial facilities to simultaneously produce power while capturing >90% of the CO2 from the flue gas. In this study, an ECM-based CEPACS plant was designed to capture and compress >90% of the CO2 (for sequestration or beneficial use) from the flue gas of a reference 550 MW (nominal, net AC) Pulverized Coal (PC) Rankine Cycle (Subcritical steam) power plant. ECM performance was updated based on bench scale ECM stack test results. The system process simulations were performed to generate the CEPACS plant performance estimates. The performance assessment included estimation of the parasitic power consumption for CO2 capture and compression, and the efficiency impact on the PC plant. While the ECM-based CEPACS system for the 550 MW PC plant captures 90% of CO2 from the flue gas, it generates additional (net AC) power after compensating for the auxiliary power requirements of CO2 capture and compression. An equipment list, ECM stacks packaging design, and CEPACS plant layout were developed to facilitate the economic analysis. Vendor quotes were also solicited. The economic feasibility study included estimation of CEPACS plant capital cost, cost of electricity (COE) analyses and estimation of cost per ton of CO2

  3. The redox properties of the natural iron-bearing clay mineral ferruginous smectite SWA-1: a combined electrochemical and spectroscopic study

    International Nuclear Information System (INIS)

    Gorski, Christopher A.; Voegelin, Andreas; Sander, Michael; Hofstetter, Thomas B.

    2012-01-01

    Document available in extended abstract form only. Iron-bearing clay minerals are ubiquitous in the environment and clay-mineral-based materials have been proposed to be part of backfill material in nuclear waste repositories. Laboratory and field studies have confirmed that structural iron (Fe) in clay minerals participates in redox reactions with organic pollutants, metals, and radionuclides, thus influencing their transport and reactivity. Knowledge of the redox properties of Fe-bearing clay minerals is therefore essential for understanding and predicting the fate, mobility, and bioavailability subsurface contaminants. A quantitative understanding of clay mineral redox behavior remains lacking, however, due to constraints in previous experimental approaches and the complex structural changes that accompany changes in the Fe oxidation state. This work provides a quantitative means for measuring the redox properties of Fe-bearing clay minerals, which can be applied to both field and laboratory studies tracking radionuclide-clay mineral redox reactions. Here we use mediated electrochemical reduction and oxidation to determine the electron accepting and donating capacities of several natural Fe-bearing clay minerals with different structural Fe content (2.3 to 21 wt-%) and varied redox histories. Results indicate that the fraction of redox-active Fe in clay minerals is mineral-dependent, and is linked to the thermodynamics of reduction and oxidation as well as to the ability of clay minerals to conduct electrons and facilitate structural re-arrangements required to maintain charge balance. The reduction potential (E H ) characteristics of a natural ferruginous smectite (SWa-1) were further characterized as a function of solution conditions and repeated Fe reduction and oxidation cycles. SWa-1 samples were analyzed with Moessbauer spectroscopy (MS) and X-ray absorption spectroscopy (XAS) to link observed redox potential behavior to structural properties and changes

  4. Analysis of silicon-based integrated photovoltaic-electrochemical hydrogen generation system under varying temperature and illumination

    Institute of Scientific and Technical Information of China (English)

    Vishwa Bhatt; Brijesh Tripathi; Pankaj Yadav; Manoj Kumar

    2017-01-01

    Last decade witnessed tremendous research and development in the area of photo-electrolytic hydrogen generation using chemically stable nanostructured photo-cathode/anode materials.Due to intimately coupled charge separation and photo-catalytic processes,it is very difficult to optimize individual components of such system leading to a very low demonstrated solar-to-fuel efficiency (SFE) of less than 1%.Recently there has been growing interest in an integrated photovoltaic-electrochemical (PV-EC) system based on GaAs solar cells with the demonstrated SFE of 24.5% under concentrated illumination condition.But a high cost of GaAs based solar cells and recent price drop of poly-crystalline silicon (pc-Si) solar cells motivated researchers to explore silicon based integrated PV-EC system.In this paper a theoretical framework is introduced to model silicon-based integrated PV-EC device.The theoretical framework is used to analyze the coupling and kinetic losses of a silicon solar cell based integrated PV-EC water splitting system under varying temperature and illumination.The kinetic loss occurs in the range of 19.1%-27.9% and coupling loss takes place in the range of 5.45%-6.74% with respect to varying illumination in the range of 20-100 mW/cm2.Similarly,the effect of varying temperature has severe impact on the performance of the system,wherein the coupling loss occurs in the range of 0.84%-21.51% for the temperature variation from 25 to 50 ℃.

  5. Electrochemical solar energy conversion

    International Nuclear Information System (INIS)

    Gerischer, H.

    1991-01-01

    The principles of solar energy conversion in photoelectrochemical cells are briefly reviewed. Cells for the generation of electric power and for energy storage in form of electrochemical energy are described. These systems are compared with solid state photovoltaic devices, and the inherent difficulties for the operation of the electrochemical systems are analyzed. (author). 28 refs, 10 figs

  6. Precipitation of iron species on the cold side of PWR steam generator and its possible correlation to dose rate elevation

    International Nuclear Information System (INIS)

    Bengtsson, Bernt; Chen, Jiaxin; Andersson, Petter

    2014-01-01

    For the last 10 years of service of Ringhals PWR unit 4, operating with Alloy-600MA steam generator tubing materials and a coolant pH of 7.2 (a)300°C, the cold water channel heads experienced continuous dose rate elevation. In the hot parts, however, it remained stable. Similar observations were made in Ringhals unit 2 and 3 after SGR to Alloy 690 and sometimes in other PWRs operated at similarly 'low' pH-regime. Following the introduction of elevated pH regime at Ringhals PWRs the cold side dose rates dropped to the similar levels as on the hot side. The phenomena are analysed in this paper from three different aspects: (1) the general plant observations in dose rate development under different coolant pH regimes; (2) the concentrations of dissolved and soluble iron species at the low and high coolant pH values and (3) the microstructures of the oxide films formed on the cold and hot sides of a steam generator tube pulled from a retired steam generator. Based on the analyses a hypothesis is elaborated that the formation of a thin but highly radioactive layer of iron-rich oxide deposit on the cold side may be responsible for the dose rate elevation and that its formation may be harder at the elevated pH regime. (author)

  7. Magnetophotonic crystals based on yttrium-iron-garnet infiltrated opals: Magnetization-induced second-harmonic generation

    Science.gov (United States)

    Murzina, T. V.; Kim, E. M.; Kapra, R. V.; Moshnina, I. V.; Aktsipetrov, O. A.; Kurdyukov, D. A.; Kaplan, S. F.; Golubev, V. G.; Bader, M. A.; Marowsky, G.

    2006-01-01

    Three-dimensional magnetophotonic crystals (MPCs) based on artificial opals infiltrated by yttrium iron garnet (YIG) are fabricated and their structural, optical, and nonlinear optical properties are studied. The formation of the crystalline YIG inside the opal matrix is checked by x-ray analysis. Two templates are used for the infiltration by YIG: bare opals and those covered by a thin platinum film. Optical second-harmonic generation (SHG) technique is used to study the magnetization-induced nonlinear-optical properties of the composed MPCs. A high nonlinear magneto-optical Kerr effect in the SHG intensity is observed at the edge of the photonic band gap of the MPCs.

  8. Impact of solvent mixture on iron nanoparticles generated by laser ablation

    Science.gov (United States)

    Chakif, M.; Prymak, O.; Slota, M.; Heintze, E.; Gurevich, E. L.; Esen, C.; Bogani, L.; Epple, M.; Ostendorf, A.

    2014-03-01

    The present work reveals the structural and magnetic properties of iron oxide (FexOy) nanoparticles (NPs) prepared by femtosecond laser ablation. The FexOy-NPs were produced in solutions consisting of different ratios of water and acetone. Laser ablation in water yields agglomerates and that in acetone yields chain structures whereas that in water/acetone show a mixture of both. We observe significant fabrication dependent properties such as different crystallinities and magnetic behaviors. The structural characterization shows a change from iron (Fe) to a FexOy state of the NPs which depends on the solution composition. Furthermore, transmission electron microscopy measurements exhibit a broad particle size distribution in all samples but with significant differences in the mean sizes. Using magnetic measurements we show that nanoparticles fabricated in pure acetone have lower coercive fields which come along with a smaller mean particle size and therefore increasing superparamagnetic behavior.

  9. Electrochemical separation of 90-yttrium in the electrochemical 90Sr/90Y generator and its use for radiolabelling of DOTA-conjugated somatostatin analog [DOTA0, Tyr3] octreotate

    Directory of Open Access Journals (Sweden)

    Petrović Đorđe Ž.

    2012-01-01

    Full Text Available Radiopharmaceuticals based on 90Y are widely used in the treatment of malignant deseases. In order to meet the requirements for their future application, a 90Sr/90Y generator was developed and 90Y eluted from this locally produced generator was used for the radiolabelling of the DOTA-conjugated somatostatin analog [DOTA0,Tyr3] octreotate and the preparation of [90Y-DOTA0,Tyr3] octreotate (90Y-DOTATATE for peptide receptore radionuclide therapy. 90Sr/90Y generator was based on the electrochemical separation of 90Y from 90Sr in a two-cycle electrolysis procedure. Three electrode cells were used to perform both electrolyses. In both cycles, working electrodes were kept on constant potential. The pH of the solution was adjusted to 2.7 of the value before the electrolyses. The radionuclidic purity of the 90Y solution was analysed by ITLC and extraction paper chromatography. The labelling of peptide (100 mg DOTATATE with 90YCl3 was performed at 95°C for 30 minutes. Radiochemical purity was determined by HPLC and chromatographic separation, using a solid SepPak C-18 column. Results obtained confirmed the efficiency of our electrochemical separation technique and quality control methods for 90Y. The achieved efficiency of the 90Sr/90Y generator above 96% of the theoretical value represents a good basis for the further development of this generator. The labelling of the DOTATATE with 90Y exhibited a high efficiency, too: there was less than 1% of 90Y3+in the 90Y-DOTATATE.

  10. Comparison of Four Human Papillomavirus Genotyping Methods: Next-generation Sequencing, INNO-LiPA, Electrochemical DNA Chip, and Nested-PCR.

    Science.gov (United States)

    Nilyanimit, Pornjarim; Chansaenroj, Jira; Poomipak, Witthaya; Praianantathavorn, Kesmanee; Payungporn, Sunchai; Poovorawan, Yong

    2018-03-01

    Human papillomavirus (HPV) infection causes cervical cancer, thus necessitating early detection by screening. Rapid and accurate HPV genotyping is crucial both for the assessment of patients with HPV infection and for surveillance studies. Fifty-eight cervicovaginal samples were tested for HPV genotypes using four methods in parallel: nested-PCR followed by conventional sequencing, INNO-LiPA, electrochemical DNA chip, and next-generation sequencing (NGS). Seven HPV genotypes (16, 18, 31, 33, 45, 56, and 58) were identified by all four methods. Nineteen HPV genotypes were detected by NGS, but not by nested-PCR, INNO-LiPA, or electrochemical DNA chip. Although NGS is relatively expensive and complex, it may serve as a sensitive HPV genotyping method. Because of its highly sensitive detection of multiple HPV genotypes, NGS may serve as an alternative for diagnostic HPV genotyping in certain situations. © The Korean Society for Laboratory Medicine

  11. A systematic study of the controlled generation of crystalline iron oxide nanoparticles on graphene using a chemical etching process

    Directory of Open Access Journals (Sweden)

    Peter Krauß

    2017-09-01

    Full Text Available Chemical vapor deposition (CVD of carbon precursors employing a metal catalyst is a well-established method for synthesizing high-quality single-layer graphene. Yet the main challenge of the CVD process is the required transfer of a graphene layer from the substrate surface onto a chosen target substrate. This process is delicate and can severely degrade the quality of the transferred graphene. The protective polymer coatings typically used generate residues and contamination on the ultrathin graphene layer. In this work, we have developed a graphene transfer process which works without a coating and allows the transfer of graphene onto arbitrary substrates without the need for any additional post-processing. During the course of our transfer studies, we found that the etching process that is usually employed can lead to contamination of the graphene layer with the Faradaic etchant component FeCl3, resulting in the deposition of iron oxide FexOy nanoparticles on the graphene surface. We systematically analyzed the removal of the copper substrate layer and verified that crystalline iron oxide nanoparticles could be generated in controllable density on the graphene surface when this process is optimized. It was further confirmed that the FexOy particles on graphene are active in the catalytic growth of carbon nanotubes when employing a water-assisted CVD process.

  12. Generation of drugs coated iron nanoparticles through high energy ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Radhika Devi, A.; Murty, B. S. [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036 (India); Chelvane, J. A. [Defence Metallurgical Research Laboratory, Hyderabad 500058 (India); Prabhakar, P. K.; Padma Priya, P. V.; Doble, Mukesh [Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036 (India)

    2014-03-28

    The iron nanoparticles coated with oleic acid and drugs such as folic acid/Amoxicillin were synthesized by high energy ball milling and characterized by X-ray diffraction, Transmission electron microscope, zeta potential, dynamic light scattering, Fourier Transform Infra red (FT-IR) measurements, and thermo gravimetric analysis (TGA). FT-IR and TGA measurements show good adsorption of drugs on oleic acid coated nanoparticles. Magnetic measurements indicate that saturation magnetization is larger for amoxicillin coated particles compared to folic acid coated particles. The biocompatibility of the magnetic nanoparticles prepared was evaluated by in vitro cytotoxicity assay using L929 cells as model cells.

  13. Iron metabolism and toxicity

    International Nuclear Information System (INIS)

    Papanikolaou, G.; Pantopoulos, K.

    2005-01-01

    Iron is an essential nutrient with limited bioavailability. When present in excess, iron poses a threat to cells and tissues, and therefore iron homeostasis has to be tightly controlled. Iron's toxicity is largely based on its ability to catalyze the generation of radicals, which attack and damage cellular macromolecules and promote cell death and tissue injury. This is lucidly illustrated in diseases of iron overload, such as hereditary hemochromatosis or transfusional siderosis, where excessive iron accumulation results in tissue damage and organ failure. Pathological iron accumulation in the liver has also been linked to the development of hepatocellular cancer. Here we provide a background on the biology and toxicity of iron and the basic concepts of iron homeostasis at the cellular and systemic level. In addition, we provide an overview of the various disorders of iron overload, which are directly linked to iron's toxicity. Finally, we discuss the potential role of iron in malignant transformation and cancer

  14. Iron-free betatrons - short radiation pulse generators for roentgenography of fast-going processes

    Energy Technology Data Exchange (ETDEWEB)

    Pavlovskij, A P; Zenkov, D I; Kuropatkin, Yu P; Mironenko, V D; Suvorov, V N [All-Russian Scientific Research Inst. of Experimental Physics, Sarov (Russian Federation)

    1997-12-31

    The possibilities of further increasing the current in high-current iron-free betatrons are studied. The efficiency of electron capture has been successfully increased by introducing local disturbances of the betatron magnetic field. At the optimum ratios of the disturbing and the betatron field, and at the optimum winding geometry as for the field disturbances and their attenuation rate, a multi-revolution electron capture has been achieved. The dependence of the circulating current on the injection energy was studied at the optimized facility with a porcelain accelerating chamber and a conducting cover. The experimental dependence is close to the calculated one. The maximum circulating current achieved was 28030 A which is the record value for circular accelerators. (J.U.). 1 tab., 5 figs., 2 refs.

  15. Four magnetite generations in the Precambrian Varena Iron Ore deposit, SE Lithuania, as a result of rock-fluid interactions

    Science.gov (United States)

    Skridlaite, Grazina; Prusinskiene, Sabina; Siliauskas, Laurynas

    2017-04-01

    Iron ores in Precambrian crystalline basement of the Varena area, SE Lithuania, were discovered during the detail geological-geophysical exploration in 1982-1992. They are covered with 210-500 m thick sediments. The Varena Iron Ore deposit (VIOD) may yield from 71 to 219.6 million tons of iron ore according to different economic evaluations (Marfin, 1996). They were assumed to be of metasomatic and hydrothermal origin, however several other hypotheses explaining the VIOZ origin, e.g. as a layered mafic or carbonatite intrusions were also suggested. Magnetites of the VIOD were thoroughly investigated by the Cameca SX100 microprobe at the Warsaw University and by the Quanta 250 Energy Dispersive Spectroscopy (EDS) at the Nature Research Centre in Vilnius, Lithuania. Four generations of magnetite were distinguished in the studied serpentine-magnetite ores (D8 drilling) and were compared with the earlier studied and reference magnetites. The earliest, spinel inclusion-rich magnetite cores (Mag-1) have the highest trace element contents (in wt%): Si (0.032), Al (0.167-0.248), Mg (0.340-0.405), Ti (0.215-0.254), V (0.090-0.138) etc. They might have formed during an early metamorphism and/or related skarn formation. Voluminous second magnetite (Mag-2) replacing olivine, pyroxenes, spinel and other skarn minerals at c. 540o C (Magnetite-Ilmenite geothermometer) has much lower trace element abundances, probably washed out by hydrothermal fluids. The latest magnetites (Mag-3 and Mag-4) overgrow the earlier ones and occur near or within the sulfide veins (Mag-4). As was observed from microtextures, the Mag-3 and Mag-4 have originated from the late thermal reworking by dissolution-reprecipitation processes. To imply an origin of the studied magnetites, they were compared to the earlier studied magmatic-metamorphic (1058 drilling), presumably skarn (982 drilling) magnetites from the studied area and plotted in the major magnetite ore type fields according to Dupuis and Beaudoin

  16. Fuel cells. Technology and future chances of electrochemical power generation. Brennstoffzellen. Technik und Zukunft der elektrochemischen Stromerzeugung

    Energy Technology Data Exchange (ETDEWEB)

    McDougall, A.

    1980-01-01

    This is a translation of the original edition which appeared in 1976 in Great Britain under the title 'Fuel Cells'. The emphasis of this book lies on a simplified presentation of the general fundamentals of the direct electrochemical transformation of chemical energy into electrical energy. Application areas of high-, middle- and low-temperature fuel cells as well as economic aspects and future chances are shortly outlined.

  17. Electrochemical studies of iron/carbonates system applied to the formation of thin layers of siderite on inert substrates; Etudes electrochimiques du systeme fer/carbonates appliquees a la formation de couches minces de siderite sur des substrats inertes

    Energy Technology Data Exchange (ETDEWEB)

    Ithurbide, A. [CEA Saclay, Dept. de Physico-Chimie (DEN/DPC/SECR/L3MR), 91 - Gif sur Yvette (France); Peulon, S. [Univ. d' Evry-val-d' Essonne, UMR 8587, CNRS, 91 - Evry (France); Mandin, Ph. [Ecole Nationale Superieure de Chimie de Paris (ENSCP), UMR 7575, 75 - Paris (France); Beaucaire, C. [CEA Saclay, Dept. de Physico-Chimie (DEN/DPC/SECR/L3MR), 91 - Gif sur Yvette (France); Chausse, A. [Univ. d' Evry-val-d' Essonne, UMR 8587, CNRS, 91 - Evry (France)

    2007-07-01

    In order to understand the complex mechanisms of the reactions occurring, a methodology is developed. It is based on the use of compounds electrodeposited under the form of thin layers and which are used then as electrodes to study their interactions with the toxic species. It is in this framework that is studied the electrodeposition of siderite on inert substrates. At first, have been studied iron electrochemical systems in carbonated solutions. These studies have been carried out with classical electrochemical methods (cyclic voltametry, amperometry) coupled to in-situ measurements: quartz microbalance, pH. Different compounds have been obtained under the form of homogeneous and adherent thin layers. The analyses of these depositions, by different ex-situ characterizations (XRD, IR, SEM, EDS..) have revealed particularly the presence of siderite. Then, the influence of several experimental parameters (substrate, potential, medium composition, temperature) on the characteristics of siderite thin layers has been studied. From these experimental results, models have been proposed. (O.M.)

  18. Leaching of aluminum and iron from boiler slag generated from a typical Chinese Steel Plant.

    Science.gov (United States)

    Li, Jinping; Gan, Jinhua; Li, Xianwang

    2009-07-30

    This paper presents a new way of recycling aluminum and iron in boiler slag derived from coal combustion plants, which integrates efficient extraction and reuse of the leached pellets together. The boiler slag was pelletized together with washed coal and lime prior to sintering and then was sintered at 800-1200 degrees C for different periods to produce sintered pellets for the leaching test. An elemental analysis of aqueous solutions leached by sulfuric acid was determined by EDTA-Na(2)-ZnCl(2) titration method. The components and microstructures of the samples, sintered pellets and leached residue were examined by means of XRF, XRD and SEM. XRD analysis indicates that predominate minerals such as kaolinite, quartz, calcium silicide, hematate and metakoalin exist in the boiler slag. An aluminum extraction efficiency of 86.50% was achieved. The maximum extraction efficiency of Fe was 94.60% in the same conditions of that for the maximum extraction efficiency of Al. The extraction efficiencies of Al and Fe increased with an increase in temperature, leaching time and acidity. High Al extraction efficiency was obtained for pellets with high CaO content. The final product of alumina would be used directly for the production of metallic aluminum.

  19. Removal of arsenic from contaminated groundwater with application of iron electrodissolution, aeration and sand filtration

    DEFF Research Database (Denmark)

    Kowalski, Krysztof; Arturi, Kasia; Søgaard, Erik Gydesen

    2014-01-01

    The results from a new water treatment system for arsenic removal are presented. The technology is based on the employment of an electrolytic iron dissolution and efficient aeration procedure prior to sand filtration. The treatment was introduced and investigated in a pilot scale plant and full......, there was a relationship where the higher applied current from the iron generator resulted in a better quality of the produced water. The long period of use also helped to determine a proper iron dosage (the Fe/As ratio 68 mg/mg) and identify carbonate scale formation in the electrochemical process. The electrolytic...

  20. Cofortification of ferric pyrophosphate and citric acid/trisodium citrate into extruded rice grains doubles iron bioavailability through in situ generation of soluble ferric pyrophosphate citrate complexes.

    Science.gov (United States)

    Hackl, Laura; Cercamondi, Colin I; Zeder, Christophe; Wild, Daniela; Adelmann, Horst; Zimmermann, Michael B; Moretti, Diego

    2016-05-01

    Iron fortification of rice is a promising strategy for improving iron nutrition. However, it is technically challenging because rice is consumed as intact grains, and ferric pyrophosphate (FePP), which is usually used for rice fortification, has low bioavailability. We investigated whether the addition of a citric acid/trisodium citrate (CA/TSC) mixture before extrusion increases iron absorption in humans from FePP-fortified extruded rice grains. We conducted an iron absorption study in iron-sufficient young women (n = 20), in which each participant consumed 4 different meals (4 mg Fe/meal): 1) extruded FePP-fortified rice (No CA/TSC); 2) extruded FePP-fortified rice with CA/TSC added before extrusion (CA/TSC extruded); 3) extruded FePP-fortified rice with CA/TSC solution added after cooking and before consumption (CA/TSC solution); and 4) nonextruded rice fortified with a FeSO4 solution added after cooking and before consumption (reference). Iron absorption was calculated from erythrocyte incorporation of stable iron isotopes 14 d after administration. In in vitro experiments, we assessed the soluble and dialyzable iron from rice meals in which CA/TSC was added at different preparation stages and from meals with different iron:CA:TSC ratios. Fractional iron absorption was significantly higher from CA/TSC-extruded meals (3.2%) than from No CA/TSC (1.7%) and CA/TSC solution (1.7%; all P solubility and dialyzability were higher in CA/TSC-extruded rice than in rice with No CA/TSC and CA/TSC solution, and solubility increased with higher amounts of added CA and TSC in extruded rice. Iron bioavailability nearly doubled when CA/TSC was extruded with FePP into fortified rice, resulting in iron bioavailability comparable to that of FeSO4 We attribute this effect to an in situ generation of soluble FePP citrate moieties during extrusion and/or cooking because of the close physical proximity of FePP and CA/TSC in the extruded rice matrix. This trial was registered at

  1. 57Fe-Mössbauer spectroscopy and electrochemical activities of graphitic layer encapsulated iron electrocatalysts for the oxygen reduction reaction

    DEFF Research Database (Denmark)

    Zhong, Lijie; Frandsen, Cathrine; Mørup, Steen

    2018-01-01

    Graphitic layer encapsulated iron based nanoparticles (G@FeNPs) have recently been disclosed as an interesting type of highly active electrocatalysts for the oxygen reduction reaction (ORR). However, the complex composition of the metal-containing components and their contributions in catalysis r...

  2. Electrochemical characterization of mixed self-assembled films of water-soluble single-walled carbon nanotube-poly(m-aminobenzene sulfonic acid) and Iron(II) tetrasulfophthalocyanine

    CSIR Research Space (South Africa)

    Agboola, BO

    2010-09-01

    Full Text Available The redox activities of water-soluble iron(II) tetrasulfophthalocyanine (FeTSPc) and single-walled carbon nanotube-poly(m-aminobenzene sulfonic acid) (SWCNT-PABS) adsorbed on a gold surface precoated with a self-assembled monolayer (SAM) of 2...

  3. Thermodynamic Studies of the Arsenic Adsorption on Iron Species Generated by Electrocoagulation

    OpenAIRE

    Parga, J. R.; Vazquez, V.; Moreno, H.

    2009-01-01

    Protection of global environment and sustainable sources of clean water are a necessity for human survival. The wide use of heavy metals by modern industries has generated heavy metals containing wastes and by-products. Specifically, large quantities of arsenic compounds are being discharged into the environment. The full potential of Electrocoagulation (EC) with air injection as an alternative wastewater treatment technique to remove arsenic from water showed more than 99 percent of removal ...

  4. Volumetric Titrations Using Electrolytically Generated Reagents for the Determination of Ascorbic Acid and Iron in Dietary Supplement Tablets: An Undergraduate Laboratory Experiment

    Science.gov (United States)

    Scanlon, Christopher; Gebeyehu, Zewdu; Griffin, Kameron; Dabke, Rajeev B.

    2014-01-01

    An undergraduate laboratory experiment for the volumetric quantitative analysis of ascorbic acid and iron in dietary supplement tablets is presented. Powdered samples of the dietary supplement tablets were volumetrically titrated against electrolytically generated reagents, and the mass of dietary reagent in the tablet was determined from the…

  5. A solid rotor iron free asynchronous generator for the production of high energy pulses

    International Nuclear Information System (INIS)

    Rioux, C.; Sultanem, F.

    1976-01-01

    A rotating machine capable of charging a noncooled magnetic storage coil is described. The rotor of the machine which is formed by metallic cylinder rotating at high speed, also behaves as a flywheel. The stator is composed of a three-phase winding connected to a system of rectifiers and power factor correcting condensers, thus forming an auto excited asynchronous generator. A very high power density is achieved because the machine has non ferrous winding, which permits a magnetic field of a few teslas. The basic machine theory and experimental model built are described

  6. Moessbauer spectroscopy characterization and electrochemical study of the kinetics of oxidation of iron in chlorinated aqueous media: structure and equilibrium diagram of green rust one

    International Nuclear Information System (INIS)

    Genin, J.M.R.; Rezel, D.; Bauer, Ph.; Olowe, A.; Beral, A.

    1986-01-01

    Moessbauer spectroscopy allows to precise the structure of akaganeite, lepidocrocite, green rust I and initial hydroxide of a simulated corrosion process of iron in chlorinated aqueous media. The characterization of the compounds during the process is coupled with E - pH recordings, yielding the kinetics of the various reactions (order and activation energy) as well as the Pourbaix diagram of Green Rust I by scanning the [Cl - ]/[OH - ] ratio. (author) 16 refs., 15 figs

  7. On-line electrochemically controlled in-tube solid phase microextraction of inorganic selenium followed by hydride generation atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Asiabi, Hamid [Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran (Iran, Islamic Republic of); Yamini, Yadollah, E-mail: yyamini@modares.ac.ir [Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran (Iran, Islamic Republic of); Seidi, Shahram [Department of Analytical Chemistry, Faculty of Chemistry, K.N. Toosi University of Technology, Tehran (Iran, Islamic Republic of); Shamsayei, Maryam; Safari, Meysam; Rezaei, Fatemeh [Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran (Iran, Islamic Republic of)

    2016-05-30

    In this work, for the first time, a rapid, simple and sensitive microextraction procedure is demonstrated for the matrix separation, preconcentration and determination of inorganic selenium species in water samples using an electrochemically controlled in-tube solid phase microextraction (EC-in-tube SPME) followed by hydride generation atomic absorption spectrometry (HG-AAS). In this approach, in which EC-in-tube SPME and HG-AAS system were combined, the total analysis time, was decreased and the accuracy, repeatability and sensitivity were increased. In addition, to increases extraction efficiency, a novel nanostructured composite coating consisting of polypyrrole (PPy) doped with ethyleneglycol dimethacrylate (EGDMA) was prepared on the inner surface of a stainless-steel tube by a facile electrodeposition method. To evaluate the offered setup and the new PPy-EGDMA coating, it was used to extract inorganic selenium species in water samples. Extraction of inorganic selenium species was carried out by applying a positive potential through the inner surface of coated in-tube under flow conditions. Under the optimized conditions, selenium was detected in amounts as small as 4.0 parts per trillion. The method showed good linearity in the range of 0.012–200 ng mL{sup −1}, with coefficients of determination better than 0.9996. The intra- and inter-assay precisions (RSD%, n = 5) were in the range of 2.0–2.5% and 2.7–3.2%, respectively. The validated method was successfully applied for the analysis of inorganic selenium species in some water samples and satisfactory results were obtained. - Graphical abstract: An electrochemically controlled in-tube solid phase microextraction followed by hydride generation atomic absorption spectrometry was developed for extraction and determination ultra-trace amounts of Se in aqueous solutions. - Highlights: • A nanostructured composite coating consisting of PPy doped with EGDMA was prepared. • The coating was

  8. Determination of trace iron in the boiler water used in power generation plants by solid-phase spectrophotometry.

    Science.gov (United States)

    Sarenqiqige; Maeda, Akihiro; Yoshimura, Kazuhisa

    2014-01-01

    A sensitive, simple and low-cost determination method for the total iron concentration in boiler water systems of power generation plants was developed by solid phase spectrometry (SPS) using 2,4,6-tris(2-pyridyl)-1,3,5-triazine (TPTZ) as a coloring agent. The reagents and 0.08 cm(3) of a cation exchanger were added to a 50-cm(3) boiler water sample, then mixed for 30 min to adsorb/concentrate the produced Fe(TPTZ)2(2+) colored complex on the solid beads, resulting in a 625 times concentration of the target analyte without any other procedure. The detection limit of 0.1 μg dm(-3) was obtained, and the optimum conditions for the digestion procedure and color developing reaction was investigated and reported. According to the application of this method to real samples, the present SPS method is the best one because of the shorter analysis time, simpler operation and use of very low-cost equipment compared to the conventional methods, such as TPTZ solution spectrophotometric method after a 16 times concentration, ICP-MS and AAS.

  9. Development of Self-Powered Wireless-Ready High Temperature Electrochemical Sensors for In-Situ Corrosion Monitoring for Boiler Tubes in Next Generation Coal-based Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xingbo [West Virginia Univ., Morgantown, WV (United States)

    2015-06-30

    The key innovation of this project is the synergy of the high temperature sensor technology based on the science of electrochemical measurement and state-of-the-art wireless communication technology. A novel self-powered wireless high temperature electrochemical sensor system has been developed for coal-fired boilers used for power generation. An initial prototype of the in-situ sensor demonstrated the capability of the wireless communication system in the laboratory and in a pilot plant (Industrial USC Boiler Setting) environment to acquire electrochemical potential and current signals during the corrosion process. Uniform and localized under-coal ash deposit corrosion behavior of Inconel 740 superalloy has been studied at different simulated coal ash hot corrosion environments using the developed sensor. Two typical potential noise patterns were found to correlate with the oxidation and sulfidation stages in the hot coal ash corrosion process. Two characteristic current noise patterns indicate the extent of the corrosion. There was a good correlation between the responses of electrochemical test data and the results from corroded surface analysis. Wireless electrochemical potential and current noise signals from a simulated coal ash hot corrosion process were concurrently transmitted and recorded. The results from the performance evaluation of the sensor confirm a high accuracy in the thermodynamic and kinetic response represented by the electrochemical noise and impedance test data.

  10. Erosion-corrosion entrainment of iron-containing compounds as a source of deposits in steam generators used at nuclear power plants equipped with VVER reactors

    Science.gov (United States)

    Tomarov, G. V.; Shipkov, A. A.

    2011-03-01

    The main stages and processes through which deposits are generated, migrate, and precipitate in the metal-secondary coolant system of power units at nuclear power plants are analyzed and determined. It is shown that substances produced by the mechanism of general erosion-corrosion are the main source of the ionic-colloid form of iron, which is the main component of deposits in a steam generator. Ways for controlling the formation of deposits in a nuclear power plant's steam generator are proposed together with methods for estimating their efficiency.

  11. Turbidity and microbes removal from water using an electrochemical filter

    International Nuclear Information System (INIS)

    Venkateswaran, G.; Gokhale, B.K.; Belapurkar, A.D.; Kumbhar, A.G.; Balaji, V.

    2004-01-01

    An in-house designed and fabricated Electrochemical fibrous graphite filter (ECF) was used to remove turbidity and microbes. The filter was found to be effective in removing sub micron size indium turbidity from RAPS-1 moderator water, iron turbidity from Active Process Cooling Water (APCW) of Kaiga Generating Station and microbial reduction from process cooling water RAPS-2. Unlike conventional turbidity removal by addition of coagulants and biocide chemical additions for purification, ECF is a clean way to remove the turbidity without contaminating the system and is best suited for close loop systems

  12. Electrochemical biosensors

    CERN Document Server

    Cosnier, Serge

    2015-01-01

    "This is an excellent book on modern electrochemical biosensors, edited by Professor Cosnier and written by leading international experts. It covers state-of-the-art topics of this important field in a clear and timely manner."-Prof. Joseph Wang, UC San Diego, USA  "This book covers, in 13 well-illustrated chapters, the potential of electrochemical methods intimately combined with a biological component for the assay of various analytes of biological and environmental interest. Particular attention is devoted to the description of electrochemical microtools in close contact with a biological cell for exocytosis monitoring and to the use of nanomaterials in the electrochemical biosensor architecture for signal improvement. Interestingly, one chapter describes the concept and design of self-powered biosensors derived from biofuel cells. Each topic is reviewed by experts very active in the field. This timely book is well suited for providing a good overview of current research trends devoted to electrochemical...

  13. Attachment of iron corrosion products on steam generator tube and feed-water pump in PWRs secondary system

    International Nuclear Information System (INIS)

    Shoda, Y.; Ishihara, N.; Miyata, H.; Ohira, T.; Watanabe, Y.; Nonaka, Y.

    2010-01-01

    Operating experience of the secondary systems in PWRs indicates that scale attachment distinctly have an effect on the performance of water-steam cycle. Attached scale on outer surface of steam generator (SG) tube could induce many problems such as decrease heat efficiency of plant, corrosion of tube by intergranular attack (IGA), and choke of flow channel. Scale attached on rotor blade of feed water pump increases the driving steam consumption to keep the constant flow rate, and results in the thermal efficiency decrease of the plant. In this study, two types of test about scale deposition on equipment were executed in the conditions simulating the secondary system of PWR. One is SG model test, which simulated the circulating boiler composed of single SG tube and blow down line. The deposition rate under AVT condition was equivalent to plants revealed with extended period. High-AVT test provided useful reference, because the deposition rate of power plant is too small to measure in a short period after the beginning of High-AVT operation in Japan. The other is feed water pump model test. The mock-up pump is composed of a rotating stainless steel disk. As a result, it is confirmed that the deposition rate depends mostly on iron concentration in water and the exfoliation rate depends mainly on pH. Applying this information, the scale deposition-growth behavior on the equipment is quantitatively expressed by the model combined of scale deposition behavior and exfoliation behavior couples with the former. These results bring effective estimation for suppressing deposition-growth by the selection of water chemistry management and/or equipment improvement in the PWR secondary system. (author)

  14. Bio-electrochemical remediation of real field petroleum sludge as an electron donor with simultaneous power generation facilitates biotransformation of PAH: effect of substrate concentration.

    Science.gov (United States)

    Chandrasekhar, K; Venkata Mohan, S

    2012-04-01

    Remediation of real-field petroleum sludge was studied under self-induced electrogenic microenvironment with the function of variable organic loads (OLs) in bio-electrochemical treatment (BET) systems. Operation under various OLs documented marked influence on both electrogenic activity and remediation efficiency. Both total petroleum hydrocarbons (TPH) and its aromatic fraction documented higher removal with OL4 operation followed by OL3, OL2, OL1 and control. Self-induced biopotential and associated multiple bio-electrocatalytic reactions during BET operation facilitated biotransformation of higher ring aromatics (5-6) to lower ring aromatic (2-3) compounds. Asphaltenes and NSO fractions showed negligible removal during BET operation. Higher electrogenic activity was recorded at OL1 (343mV; 53.11mW/m(2), 100Ω) compared to other three OLs operation. Bioaugmentation to anodic microflora with anaerobic culture documented enhanced electrogenic activity at OL4 operation. Voltammetric profiles, Tafel analysis and VFA generation were in agreement with the observed power generation and degradation efficiency. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Scanning electrochemical microscopy. 47. Imaging electrocatalytic activity for oxygen reduction in an acidic medium by the tip generation-substrate collection mode.

    Science.gov (United States)

    Fernández, José L; Bard, Allen J

    2003-07-01

    The oxygen reduction reaction (ORR) in acidic medium was studied on different electrode materials by scanning electrochemical microscopy (SECM) operating in a new variation of the tip generation-substrate collection mode. An ultramicroelectrode tip placed close to the substrate electrode oxidizes water to oxygen at a constant current. The substrate is held at a potential where the tip-generated oxygen is reduced and the resulting substrate current is measured. By changing the substrate potential, it is possible to obtain a polarization (current-potential) curve, which depends on the electrocatalytic activity of the substrate material. The main difference between this mode and the classical feedback SECM mode of operation is that the feedback diffusion process is not required for the measurement, allowing its application for studying the ORR in acidic solutions. Activity-sensitive images of heterogeneous surfaces, e.g., with Pt and Au electrodes, were obtained from the substrate current when the x-y plane was scanned with the tip. The usefulness of this technique for imaging electrocatalytic activity of smooth metallic electrodes and of highly dispersed fuel cell-type electrocatalysts was demonstrated. The application of this method to the combinatorial chemical analysis of electrode materials and electrocatalysts is discussed.

  16. Structural, Transport and Electrochemical Properties of LiFePO4 Substituted in Lithium and Iron Sublattices (Al, Zr, W, Mn, Co and Ni)

    Science.gov (United States)

    Molenda, Janina; Kulka, Andrzej; Milewska, Anna; Zając, Wojciech; Świerczek, Konrad

    2013-01-01

    LiFePO4 is considered to be one of the most promising cathode materials for lithium ion batteries for electric vehicle (EV) application. However, there are still a number of unsolved issues regarding the influence of Li and Fe-site substitution on the physicochemical properties of LiFePO4. This is a review-type article, presenting results of our group, related to the possibility of the chemical modification of phosphoolivine by introduction of cation dopants in Li and Fe sublattices. Along with a synthetic review of previous papers, a large number of new results are included. The possibility of substitution of Li+ by Al3+, Zr4+, W6+ and its influence on the physicochemical properties of LiFePO4 was investigated by means of XRD, SEM/EDS, electrical conductivity and Seebeck coefficient measurements. The range of solid solution formation in Li1−3xAlxFePO4, Li1−4xZrxFePO4 and Li1−6xWxFePO4 materials was found to be very narrow. Transport properties of the synthesized materials were found to be rather weakly dependent on the chemical composition. The battery performance of selected olivines was tested by cyclic voltammetry (CV). In the case of LiFe1−yMyPO4 (M = Mn, Co and Ni), solid solution formation was observed over a large range of y (0 0.25 leads to considerably lower values of σ. The activated character of electrical conductivity with a rather weak temperature dependence of the Seebeck coefficient suggests a small polaron-type conduction mechanism. The electrochemical properties of LiFe1−yMyPO4 strongly depend on the Fe substitution level. PMID:28809235

  17. Structural, Transport and Electrochemical Properties of LiFePO4 Substituted in Lithium and Iron Sublattices (Al, Zr, W, Mn, Co and Ni

    Directory of Open Access Journals (Sweden)

    Konrad Świerczek

    2013-04-01

    Full Text Available LiFePO4 is considered to be one of the most promising cathode materials for lithium ion batteries for electric vehicle (EV application. However, there are still a number of unsolved issues regarding the influence of Li and Fe-site substitution on the physicochemical properties of LiFePO4. This is a review-type article, presenting results of our group, related to the possibility of the chemical modification of phosphoolivine by introduction of cation dopants in Li and Fe sublattices. Along with a synthetic review of previous papers, a large number of new results are included. The possibility of substitution of Li+ by Al3+, Zr4+, W6+ and its influence on the physicochemical properties of LiFePO4 was investigated by means of XRD, SEM/EDS, electrical conductivity and Seebeck coefficient measurements. The range of solid solution formation in Li1−3xAlxFePO4, Li1−4xZrxFePO4 and Li1−6xWxFePO4 materials was found to be very narrow. Transport properties of the synthesized materials were found to be rather weakly dependent on the chemical composition. The battery performance of selected olivines was tested by cyclic voltammetry (CV. In the case of LiFe1−yMyPO4 (M = Mn, Co and Ni, solid solution formation was observed over a large range of y (0 0.25 leads to considerably lower values of σ. The activated character of electrical conductivity with a rather weak temperature dependence of the Seebeck coefficient suggests a small polaron-type conduction mechanism. The electrochemical properties of LiFe1−yMyPO4 strongly depend on the Fe substitution level.

  18. Electrochemical Processes

    DEFF Research Database (Denmark)

    Bech-Nielsen, Gregers

    1997-01-01

    The notes describe in detail primary and secondary galvanic cells, fuel cells, electrochemical synthesis and electroplating processes, corrosion: measurments, inhibitors, cathodic and anodic protection, details of metal dissolution reactions, Pourbaix diagrams and purification of waste water from...

  19. Electrochemical analysis

    International Nuclear Information System (INIS)

    Hwang, Hun

    2007-02-01

    This book explains potentiometry, voltametry, amperometry and basic conception of conductometry with eleven chapters. It gives the specific descriptions on electrochemical cell and its mode, basic conception of electrochemical analysis on oxidation-reduction reaction, standard electrode potential, formal potential, faradaic current and faradaic process, mass transfer and overvoltage, potentiometry and indirect potentiometry, polarography with TAST, normal pulse and deferential pulse, voltammetry, conductometry and conductometric titration.

  20. Investigation on the effect of lubrication and forming parameters to the green compact generated from iron powder through warm forming route

    International Nuclear Information System (INIS)

    Rahman, M.M.; Nor, S.S.M.; Rahman, H.Y.

    2011-01-01

    In order to generate green compacts of iron ASC 100.29 powder at above ambient temperature and below its recrystallization temperature, a warm compaction rig is designed and fabricated which can be operated at various temperature and load. The aim of this paper is to present the outcomes of an investigation on the effect of lubrication and forming parameters, i.e., load and temperature to the green compacts generated through warm compaction route. The feedstock was prepared by mechanically mixing the main powder constituent, i.e., iron ASC 100.29 powder with different weight percent of zinc stearate at different mixing time. Compaction load was varied from 105 kN to 125 kN using simultaneous compaction mechanism. The microstructures of the green compacts were analyzed by Scanning Electron Microscopy (SEM), and the mechanical properties are measured through density measurement, hardness test and electrical conductivity test. The study found that increase in compaction load as well as forming temperature give improved microstructure and mechanical properties. It is also found that effects of lubrication to the mechanical properties of green compacts are strongly dependant on the lubricant content as well as mixing time of iron powder with the lubricant.

  1. Portable Nitric Oxide (NO) Generator Based on Electrochemical Reduction of Nitrite for Potential Applications in Inhaled NO Therapy and Cardiopulmonary Bypass Surgery.

    Science.gov (United States)

    Qin, Yu; Zajda, Joanna; Brisbois, Elizabeth J; Ren, Hang; Toomasian, John M; Major, Terry C; Rojas-Pena, Alvaro; Carr, Benjamin; Johnson, Thomas; Haft, Jonathan W; Bartlett, Robert H; Hunt, Andrew P; Lehnert, Nicolai; Meyerhoff, Mark E

    2017-11-06

    A new portable gas phase nitric oxide (NO) generator is described for potential applications in inhaled NO (INO) therapy and during cardiopulmonary bypass (CPB) surgery. In this system, NO is produced at the surface of a large-area mesh working electrode by electrochemical reduction of nitrite ions in the presence of a soluble copper(II)-ligand electron transfer mediator complex. The NO generated is then transported into gas phase by either direct purging with nitrogen/air or via circulating the electrolyte/nitrite solution through a gas extraction silicone fiber-based membrane-dialyzer assembly. Gas phase NO concentrations can be tuned in the range of 5-1000 ppm (parts per million by volume for gaseous species), in proportion to a constant cathodic current applied between the working and counter electrodes. This new NO generation process has the advantages of rapid production times (5 min to steady-state), high Faraday NO production efficiency (ca. 93%), excellent stability, and very low cost when using air as the carrier gas for NO (in the membrane dialyzer configuration), enabling the development of potentially portable INO devices. In this initial work, the new system is examined for the effectiveness of gaseous NO to reduce the systemic inflammatory response (SIR) during CPB, where 500 ppm of NO added to the sweep gas of the oxygenator or to the cardiotomy suction air in a CPB system is shown to prevent activation of white blood cells (granulocytes and monocytes) during extracorporeal circulation with cardiotomy suction conducted with five pigs.

  2. Experiments on iron shield transmission of quasi-monoenergetic neutrons generated by 43- and 68-MeV protons via the 7Li(p,n) reaction

    International Nuclear Information System (INIS)

    Nakashima, Hiroshi; Tanaka, Shun-ichi; Nakao, Noriaki

    1996-03-01

    In order to provide benchmark data of neutrons transmitted through iron shields in the intermediate-energy region, spatial distributions of neutron energy spectra and reaction rates behind and inside the iron shields of thickness up to 130 cm were measured for 43- and 68-MeVp- 7 Li neutrons using a quasi-monoenergetic neutron beam source at the 90-MV AVF cyclotron facility of the TLARA facility in JAERI. The measured data by five kinds of detectors: the BC501A detector, the Bonner ball counter, 238 U and 232 Th fission counters, 7 LiF and nat LiF TLDs and solid state nuclear track detector, are numerically provided in this report in the energy region between 10 -4 eV and the energy of peak neutrons generated by the 7 Li(p,n) reaction. (author)

  3. Experiments on iron shield transmission of quasi-monoenergetic neutrons generated by 43- and 68-MeV protons via the {sup 7}Li(p,n) reaction

    Energy Technology Data Exchange (ETDEWEB)

    Nakashima, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Tanaka, Shun-ichi; Nakao, Noriaki [and others

    1996-03-01

    In order to provide benchmark data of neutrons transmitted through iron shields in the intermediate-energy region, spatial distributions of neutron energy spectra and reaction rates behind and inside the iron shields of thickness up to 130 cm were measured for 43- and 68-MeVp-{sup 7}Li neutrons using a quasi-monoenergetic neutron beam source at the 90-MV AVF cyclotron facility of the TLARA facility in JAERI. The measured data by five kinds of detectors: the BC501A detector, the Bonner ball counter, {sup 238}U and {sup 232}Th fission counters, {sup 7}LiF and {sup nat}LiF TLDs and solid state nuclear track detector, are numerically provided in this report in the energy region between 10{sup -4} eV and the energy of peak neutrons generated by the {sup 7}Li(p,n) reaction. (author).

  4. Materials for electrochemical capacitors

    Science.gov (United States)

    Simon, Patrice; Gogotsi, Yury

    2008-11-01

    Electrochemical capacitors, also called supercapacitors, store energy using either ion adsorption (electrochemical double layer capacitors) or fast surface redox reactions (pseudo-capacitors). They can complement or replace batteries in electrical energy storage and harvesting applications, when high power delivery or uptake is needed. A notable improvement in performance has been achieved through recent advances in understanding charge storage mechanisms and the development of advanced nanostructured materials. The discovery that ion desolvation occurs in pores smaller than the solvated ions has led to higher capacitance for electrochemical double layer capacitors using carbon electrodes with subnanometre pores, and opened the door to designing high-energy density devices using a variety of electrolytes. Combination of pseudo-capacitive nanomaterials, including oxides, nitrides and polymers, with the latest generation of nanostructured lithium electrodes has brought the energy density of electrochemical capacitors closer to that of batteries. The use of carbon nanotubes has further advanced micro-electrochemical capacitors, enabling flexible and adaptable devices to be made. Mathematical modelling and simulation will be the key to success in designing tomorrow's high-energy and high-power devices.

  5. Electrochemical One-Electron Oxidation of Low-Generation Polyamidoamine-Type Dendrimers with a 1,4-Phenylenediamine Core

    DEFF Research Database (Denmark)

    Hammerich, Ole; Hansen, Thomas; Thorvildsen, Asbjørn

    2009-01-01

    voltammetry (DPV) in methanol, acetonitrile, dichloromethane, and dimethyl sulfoxide. The dendrimers are more difficult to oxidize than N,N,N',N'-tetramethyl-p-phenylenediamine (TMePD). The oxidation potentials decrease with increasing dendrimer generation up to G0.5, after which the potential is essentially......A series of polyamidoamine (PAMAM)-type dendrimers with a 1,4-phenylenediamine (PD) core is prepared from PD by procedures including Michael addition of methyl acrylate followed by aminolysis with 1,2-ethanediamine. Their one-electron oxidation potentials are determined by differential pulse......,N,N',N'-tetra-n-alkyl-p-phenylenediamines, including a planar arrangement of the atoms linked to the two PD nitrogen atoms. Thus, the effect of chain size on the oxidation potential appears to be caused primarily by a simple electronic effect. The calculations indicate considerable reorientation of the dendrimer side chains on oxidation, presumably...

  6. Electrochemical characteriztion of the bioanode during simultaneous azo dye decolorization and bioelectricity generation in an air-cathode single chambered microbial fuel cell

    International Nuclear Information System (INIS)

    Sun Jian; Hu Yongyou; Hou Bin

    2011-01-01

    To achieve high power output based on simultaneously azo dye decolorization using microbial fuel cell (MFC), the bioanode responses during decolorization of a representative azo dye, Congo red, were investigated in an air-cathode single chambered MFC using representative electrochemical techniques. It has been found that the maximum stable voltage output was delayed due to slowly developed anode potential during Congo red decolorization, indicating that the electrons recovered from co-substrate are preferentially transferred to Congo red rather than the bioanode of the MFC and Congo red decolorization is prior to electricity generation. Addition of Congo red had a negligible effect on the Ohmic resistance (R ohm ) of the bioanode, but the charge-transfer resistance (R c ) and the diffusion resistance (R d ) were significantly influenced. The R c and R d firstly decreased then increased with increase of Congo red concentration, probably due to the fact that the Congo red and its decolorization products can act as electron shuttle for conveniently electrons transfer from bacteria to the anode at low concentration, but result in accelerated consumption of electrons at high concentration. Cyclic voltammetry results suggested that Congo red was a more favorable electron acceptor than the bioanode of the MFC. Congo red decolorization did not result in a noticeable decrease in peak catalytic current until Congo red concentration up to 900 mg l -1 . Long-term decolorization of Congo red resulted in change in catalytic active site of anode biofilm.

  7. Corrosion evaluation of heat recovery steam generator superheater tube in two methods of testing: Tafel polarization and electrochemical impedance spectroscopy (EIS)

    Science.gov (United States)

    Santoso, Rio Pudjidarma; Riastuti, Rini

    2018-05-01

    The purpose of this research is to evaluate the corrosion process which occurs on the water side of Heat Recovery Steam Generator (HRSG) superheater tube. The tube was 13CrMo44 and divided into 3 types of specimen: new tube, used tube (with oxide layer on surface), cleaned-used tube (without oxide layer on surface). The evaluation of corrosion parameters wasperformed using deaerated ultra-high purity water (boiler feed water) in two methods of testing: Tafel polarization and Electrochemical Impedance Spectroscopy (EIS). Tafel polarization was excellent as its capability to show the value of corrosion current and the corrosion rate explicitly, on the other hand, EIS was excellent as its capability to explain for corrosion mechanism on metal interface in detail. Both methods showed that the increase of electrolyte temperature from 25°C to 55°C would increase the corrosion rate with the mechanism of decreasing polarization resistance due to thinning out the passive film thickness and enlarge the area of reduction reaction of cathode. Magnetite oxide scale which is laid on the surface of used tube specimen shows protective nature to reduce the corrosion rate, and clear up this oxide would increase the corrosion rate back as new tube.

  8. In-line electrochemical reagent generation coupled to a flow injection biamperometric system for the determination of sulfite in beverage samples.

    Science.gov (United States)

    de Paula, Nattany T G; Barbosa, Elaine M O; da Silva, Paulo A B; de Souza, Gustavo C S; Nascimento, Valberes B; Lavorante, André F

    2016-07-15

    This work reports an in-line electrochemical reagent generation coupled to a flow injection biamperometric procedure for the determination of SO3(2-). The method was based on a redox reaction between the I3(-) and SO3(2-) ions, after the diffusion of SO2 through a gas diffusion chamber. Under optimum experimental conditions, a linear response ranging from 1.0 to 12.0 mg L(-1) (R=0.9999 and n=7), a detection and quantification limit estimated at 0.26 and 0.86 mg L(-1), respectively, a standard deviation relative of 0.4% (n=10) for a reference solution of 4.0 mg L(-1) SO3(2-) and sampling throughput for 40 determinations per hour were achieved. Addition and recovery tests with juice and wine samples were performed resulting in a range between 92% and 110%. There were no significant differences at a 95% confidence level in the analysis of eight samples when comparing the new method with a reference procedure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Energy loss in electrochemical diaphragm process of chlorine and alkali industry - A collateral effect of the undesirable generation of chlorate

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Phabyanno Rodrigues; Mirapalheta, Almir; e Silva Zanta, Carmem Lucia de Paiva; Tonholo, Josealdo [Instituto de Quimica e Biotecnologia, Universidade Federal de Alagoas, 57072970 Maceio, AL (Brazil); Henrique dos Santos Andrade, Marcio [Instituto de Quimica e Biotecnologia, Universidade Federal de Alagoas, 57072970 Maceio, AL (Brazil); Braskem S/A, Maceio, AL (Brazil); Vilar, Eudesio Oliveira [Departamento de Engenharia Quimica, Universidade Federal de Campina, Grande, Campina Grande, PB (Brazil)

    2010-05-15

    Contamination of NaOH with chlorate constitutes a major problem for the chlorine-alkali industry, particularly when electrolytic cells based on the diaphragm process are employed. In this paper, pilot and laboratory cell experiments revealed that chlorate contamination in diaphragm cells also inhibits hydrogen evolution and gives rise to a significant increase in electrical energy consumption. Electrolysis carried out under conditions that simulated the industrial process (current density 240 mA cm{sup -2}; temperature 90 C; brine flux 23 L cm{sup -2} h{sup -1}) revealed that chlorate formation depends on brine flux and NaOH production. The inhibitory effect of chlorate on the main cathodic reaction was demonstrated in bench cell experiments, with cathodic displacement of the hydrogen evolution reaction by more than 100 mV in the presence of 0.4% chlorate compared with ideal conditions in which chlorate formation was absent. This hydrogen generation overpotential can charge the total electric energy balance in more than 5% of the total value, consisting of a critical loss for this process. (author)

  10. Oxidation of dibenzothiophene as a model substrate for the removal of organic sulphur from fossil fuels by iron(III ions generated from pyrite by Acidithiobacillus ferrooxidans

    Directory of Open Access Journals (Sweden)

    VLADIMIR P. BESKOSKI

    2007-06-01

    Full Text Available Within this paper a new idea for the removal of organically bonded sulphur from fossil fuels is discussed. Dibenzothiophene (DBT was used as a model compound of organicmolecules containing sulphur. This form of (biodesulphurization was performed by an indirect mechanism in which iron(III ions generated from pyrite by Acidithiobacillus ferrooxidans performed the abiotic oxidation. The obtained reaction products, dibenzothiopene sulfoxide and dibenzothiophene sulfone, are more soluble in water than the basic substrate and the obtained results confirmed the basic hypothesis and give the posibility of continuing the experiments related to application of this (biodesulphurization process.

  11. Electrochemical preparation of hematite nanostructured films for solar hydrogen production

    Directory of Open Access Journals (Sweden)

    Ebadzadeh T.

    2012-10-01

    Full Text Available Photoelectrochemical water splitting is a clean and promising technique for using a renewable source of energy, i.e., solar energy, to produce hydrogen. In this work electrochemical formation of iron oxyhydroxide and its conversion to hematite (α- Fe2O3 through thermal treatment have been studied. Oxyhydroxide iron compounds have been prepared onto SnO2/F covered glass substrate by potential cycling with two different potential sweep rate values; then calcined at 520 °C in air to obtain α-Fe2O3 nanostrutured films for their implementation as photoanode in a photoelectrochemical cell. X-ray diffraction analysis allowed finding that iron oxides films have nanocrystalline character. Scanning electron microscopy revealed that films have nanostructured morphology. The obtained results are discussed considering the influence of potential sweep rate employed during the preparation of iron oxyhydroxide film on optical, structural and morphological properties of hematite nanostructured films. Results show that films have acceptable characteristics as photoanode in a photoelectrochemical cell for hydrogen generation from water.

  12. Electrochemical capacitor

    Science.gov (United States)

    Anderson, Marc A.; Liu, Kuo -Chuan; Mohr, Charles M.

    1999-10-05

    An inexpensive porous metal oxide material having high surface area, good conductivity and high specific capacitance is advantageously used in an electrochemical capacitor. The materials are formed in a sol-gel process which affords control over the properties of the resultant metal oxide materials.

  13. Electrochemical construction

    Science.gov (United States)

    Einstein, Harry; Grimes, Patrick G.

    1983-08-23

    An electrochemical cell construction features a novel co-extruded plastic electrode in an interleaved construction with a novel integral separator-spacer. Also featured is a leak and impact resistant construction for preventing the spill of corrosive materials in the event of rupture.

  14. Electrochemical device

    Science.gov (United States)

    Grimes, Patrick G.; Einstein, Harry; Bellows, Richard J.

    1988-01-12

    A tunnel protected electrochemical device features channels fluidically communicating between manifold, tunnels and cells. The channels are designed to provide the most efficient use of auxiliary power. The channels have a greater hydraulic pressure drop and electrical resistance than the manifold. This will provide a design with the optimum auxiliary energy requirements.

  15. Electrochemical Cell

    DEFF Research Database (Denmark)

    1999-01-01

    The invention relates to a rechargeable electrochemical cell comprising a negative electrode, an electrolyte and a positive electrode in which the positive electrode structure comprises a lithium cobalt manganese oxide of the composition Li¿2?Co¿y?Mn¿2-y?O¿4? where 0 ... for capacity losses in lithium ion cells and lithium-alloy cells....

  16. HIGHWAY INFRASTRUCTURE FOCUS AREA NEXT-GENERATION INFRASTRUCTURE MATERIALS VOLUME I - TECHNICAL PROPOSAL & MANAGEMENTENHANCEMENT OF TRANSPORTATION INFRASTRUCTURE WITH IRON-BASED AMORPHOUS-METAL AND CERAMIC COATINGS

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J C

    2007-12-04

    The infrastructure for transportation in the United States allows for a high level of mobility and freight activity for the current population of 300 million residents, and several million business establishments. According to a Department of Transportation study, more than 230 million motor vehicles, ships, airplanes, and railroads cars were used on 6.4 million kilometers (4 million miles) of highways, railroads, airports, and waterways in 1998. Pipelines and storage tanks were considered to be part of this deteriorating infrastructure. The annual direct cost of corrosion in the infrastructure category was estimated to be approximately $22.6 billion in 1998. There were 583,000 bridges in the United States in 1998. Of this total, 200,000 bridges were steel, 235,000 were conventional reinforced concrete, 108,000 bridges were constructed using pre-stressed concrete, and the balance was made using other materials of construction. Approximately 15 percent of the bridges accounted for at this point in time were structurally deficient, primarily due to corrosion of steel and steel reinforcement. Iron-based amorphous metals, including SAM2X5 (Fe{sub 49.7}Cr{sub 17.7}Mn{sub 1.9}Mo{sub 7.4}W{sub 1.6}B{sub 15.2}C{sub 3.8}Si{sub 2.4}) and SAM1651 (Fe{sub 48}Mo{sub 14}Cr{sub 15}Y{sub 2}C{sub 15}B{sub 6}) have been developed, and have very good corrosion resistance. These materials have been prepared as a melt-spun ribbons, as well as gas atomized powders and thermal-spray coatings. During electrochemical testing in several environments, including seawater at 90 C, the passive film stabilities of these materials were found to be comparable to that of more expensive high-performance alloys, based on electrochemical measurements of the passive film breakdown potential and general corrosion rates. These materials also performed very well in standard salt fog tests. Chromium (Cr), molybdenum (Mo) and tungsten (W) provided corrosion resistance, and boron (B) enabled glass formation

  17. Cellular iron transport.

    Science.gov (United States)

    Garrick, Michael D; Garrick, Laura M

    2009-05-01

    Iron has a split personality as an essential nutrient that also has the potential to generate reactive oxygen species. We discuss how different cell types within specific tissues manage this schizophrenia. The emphasis in enterocytes is on regulating the body's supply of iron by regulating transport into the blood stream. In developing red blood cells, adaptations in transport manage the body's highest flux of iron. Hepatocytes buffer the body's stock of iron. Macrophage recycle the iron from effete red cells among other iron management tasks. Pneumocytes provide a barrier to prevent illicit entry that, when at risk of breaching, leads to a need to handle the dangers in a fashion essentially shared with macrophage. We also discuss or introduce cell types including renal cells, neurons, other brain cells, and more where our ignorance, currently still vast, needs to be removed by future research.

  18. Novel iron-cobalt derivatised lithium iron phosphate nanocomposite for lithium ion battery cathode

    CSIR Research Space (South Africa)

    Ikpo, CO

    2013-01-01

    Full Text Available Described herein is the electrochemical study conducted on lithium ion battery cathode material consisting of composite of lithium iron phosphate (LiFePO(sub4), iron-cobalt derivatised carbon nanotubes (FeCo-CNT) and polyaniline (PA) nanomaterials...

  19. Music Generated by a Zn/Cu Electrochemical Cell, a Lemon Cell, and a Solar Cell: A Demonstration for General Chemistry

    Science.gov (United States)

    Cady, Susan G.

    2014-01-01

    The circuit board found in a commercial musical greeting card is used to supply music for electrochemical cell demonstrations. Similar to a voltmeter, the "modified" musical device is connected to a chemical reaction that produces electricity. The commercial 1 V battery inside the greeting card circuit board can be replaced with an…

  20. The hydroxypyridinone iron chelator CP94 increases methyl-aminolevulinate-based photodynamic cell killing by increasing the generation of reactive oxygen species

    Directory of Open Access Journals (Sweden)

    Yuktee Dogra

    2016-10-01

    Full Text Available Methyl-aminolevulinate-based photodynamic therapy (MAL-PDT is utilised clinically for the treatment of non-melanoma skin cancers and pre-cancers and the hydroxypyridinone iron chelator, CP94, has successfully been demonstrated to increase MAL-PDT efficacy in an initial clinical pilot study. However, the biochemical and photochemical processes leading to CP94-enhanced photodynamic cell death, beyond the well-documented increases in accumulation of the photosensitiser protoporphyrin IX (PpIX, have not yet been fully elucidated. This investigation demonstrated that MAL-based photodynamic cell killing of cultured human squamous carcinoma cells (A431 occurred in a predominantly necrotic manner following the generation of singlet oxygen and ROS. Augmenting MAL-based photodynamic cell killing with CP94 co-treatment resulted in increased PpIX accumulation, MitoSOX-detectable ROS generation (probably of mitochondrial origin and necrotic cell death, but did not affect singlet oxygen generation. We also report (to our knowledge, for the first time the detection of intracellular PpIX-generated singlet oxygen in whole cells via electron paramagnetic resonance spectroscopy in conjunction with a spin trap.

  1. Magnetic separation of antibiotics by electrochemical magnetic seeding

    Energy Technology Data Exchange (ETDEWEB)

    Ihara, I; Toyoda, K [Department of Agricultural Engineering and Socio Economics, Kobe University, Nada, Kobe 657-8501 (Japan); Beneragama, N; Umetsu, K [Department of Animal Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555 (Japan)

    2009-03-01

    Magnetic separation of several classes of antibiotics was investigated using electrochemical magnetic seeding. Electrocoagulation with a sacrificial anode followed by addition of magnetite particles was applied for the magnetic seeding of antibiotics. With electrochemical magnetic seeding using an iron anode, tetracycline antibiotics (oxytetracycline, chlortetracycline, doxycycline and tetracycline) and cephalosporin antibiotic (cefdinir) were rapidly removed from synthetic wastewater by magnetic separation using a neodymium magnet. Iron and aluminium anodes were suitable for magnetic seeding of the antibiotics. The results indicated that the ability of antibiotics to form strong complex with iron and aluminium allowed the higher removal by magnetic separation. This method would be appropriate for rapid treatment of antibiotics in wastewater.

  2. Magnetic separation of antibiotics by electrochemical magnetic seeding

    International Nuclear Information System (INIS)

    Ihara, I; Toyoda, K; Beneragama, N; Umetsu, K

    2009-01-01

    Magnetic separation of several classes of antibiotics was investigated using electrochemical magnetic seeding. Electrocoagulation with a sacrificial anode followed by addition of magnetite particles was applied for the magnetic seeding of antibiotics. With electrochemical magnetic seeding using an iron anode, tetracycline antibiotics (oxytetracycline, chlortetracycline, doxycycline and tetracycline) and cephalosporin antibiotic (cefdinir) were rapidly removed from synthetic wastewater by magnetic separation using a neodymium magnet. Iron and aluminium anodes were suitable for magnetic seeding of the antibiotics. The results indicated that the ability of antibiotics to form strong complex with iron and aluminium allowed the higher removal by magnetic separation. This method would be appropriate for rapid treatment of antibiotics in wastewater.

  3. Removal of selenite by zero-valent iron combined with ultrasound: Se(IV) concentration changes, Se(VI) generation, and reaction mechanism.

    Science.gov (United States)

    Fu, Fenglian; Lu, Jianwei; Cheng, Zihang; Tang, Bing

    2016-03-01

    In this paper, the performance and application of zero-valent iron (ZVI) assisted by ultrasonic irradiation for the removal of selenite (Se(IV)) in wastewater was evaluated and reaction mechanism of Se(IV) with ZVI in such systems was investigated. A series of batch experiments were conducted to determine the effects of ultrasound power, pH, ZVI concentration, N2 and air on Se(IV) removal. ZVI before and after reaction with Se(IV) was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Results indicated that ultrasound can lead to a significant synergy in the removal of Se(IV) by ZVI because ultrasound can promote the generation of OH and accelerate the advanced Fenton process. The primary reaction products of ZVI and Se(IV) were Se(0), ferrihydrite, and Fe2O3. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Photocatalyst based on titanium or iron semiconductors for the generation of hydrogen from water upon solar irradiation

    OpenAIRE

    Serra, Marco

    2016-01-01

    The objective of present thesis is to prepare and evaluate photocatalyst for hydrogen generation from water methanol mixture using solar light. This general objective has been accomplished by applying different methodology in material preparation as well as exploring the photocatalytic activity of novel semiconductors. In this way after a general introduction to the feed showing the relevance of solar fuels and in particular hydrogen generation, the...

  5. Electrochemically induced dual reactive barriers for transformation of TCE and mixture of contaminants in groundwater.

    Science.gov (United States)

    Mao, Xuhui; Yuan, Songhu; Fallahpour, Noushin; Ciblak, Ali; Howard, Joniqua; Padilla, Ingrid; Loch-Caruso, Rita; Alshawabkeh, Akram N

    2012-11-06

    A novel reactive electrochemical flow system consisting of an iron anode and a porous cathode is proposed for the remediation of mixture of contaminants in groundwater. The system consists of a series of sequentially arranged electrodes, a perforated iron anode, a porous copper cathode followed by a mesh-type mixed metal oxide anode. The iron anode generates ferrous species and a chemically reducing environment, the porous cathode provides a reactive electrochemically reducing barrier, and the inert anode provides protons and oxygen to neutralize the system. The redox conditions of the electrolyte flowing through this system can be regulated by controlling the distribution of the electric current. Column experiments are conducted to evaluate the process and study the variables. The electrochemical reduction on a copper foam cathode produced an electrode-based reductive potential capable of reducing TCE and nitrate. Rational electrodes arrangement, longer residence time of electrolytes and higher surface area of the foam electrode improve the reductive transformation of TCE. More than 82.2% TCE removal efficiency is achieved for the case of low influent concentration (45 mA). The ferrous species produced from the iron anode not only enhance the transformation of TCE on the cathode, but also facilitates transformation of other contaminants including dichromate, selenate and arsenite. Removal efficiencies greater than 80% are achieved for these contaminants in flowing contaminated water. The overall system, comprising the electrode-based and electrolyte-based barriers, can be engineered as a versatile and integrated remedial method for a relatively wide spectrum of contaminants and their mixtures.

  6. The anaerobic corrosion of carbon steel and cast iron in artificial groundwaters

    International Nuclear Information System (INIS)

    Smart, N.R.; Blackwood, D.J.; Werme, L.

    2001-07-01

    In Sweden, high level radioactive waste will be disposed of in a canister with a copper outer and a cast iron or carbon steel inner. If the iron insert comes into contact with anoxic geological water, anaerobic corrosion leading to the generation of hydrogen will occur. This paper presents a study of the anaerobic corrosion of carbon steel and cast iron in artificial Swedish granitic groundwaters. Electrochemical methods and gas collection techniques were used to assess the mechanisms and rates of corrosion and the associated hydrogen gas production over a range of conditions. The corrosion rate is high initially but is anodically limited by the slow formation of a duplex magnetite film. The effects of key environmental parameters such as temperature and ionic strength on the anaerobic corrosion rate are discussed

  7. The anaerobic corrosion of carbon steel and cast iron in artificial groundwaters

    Energy Technology Data Exchange (ETDEWEB)

    Smart, N.R. [AEA Technology plc, Culham Science Centre (United Kingdom); Blackwood, D.J. [National Univ. of Singapore (Singapore); Werme, L. [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    2001-07-01

    In Sweden, high level radioactive waste will be disposed of in a canister with a copper outer and a cast iron or carbon steel inner. If the iron insert comes into contact with anoxic geological water, anaerobic corrosion leading to the generation of hydrogen will occur. This paper presents a study of the anaerobic corrosion of carbon steel and cast iron in artificial Swedish granitic groundwaters. Electrochemical methods and gas collection techniques were used to assess the mechanisms and rates of corrosion and the associated hydrogen gas production over a range of conditions. The corrosion rate is high initially but is anodically limited by the slow formation of a duplex magnetite film. The effects of key environmental parameters such as temperature and ionic strength on the anaerobic corrosion rate are discussed.

  8. Electrochemical attosyringe.

    Science.gov (United States)

    Laforge, François O; Carpino, James; Rotenberg, Susan A; Mirkin, Michael V

    2007-07-17

    The ability to manipulate ultrasmall volumes of liquids is essential in such diverse fields as cell biology, microfluidics, capillary chromatography, and nanolithography. In cell biology, it is often necessary to inject material of high molecular weight (e.g., DNA, proteins) into living cells because their membranes are impermeable to such molecules. All techniques currently used for microinjection are plagued by two common problems: the relatively large injector size and volume of injected fluid, and poor control of the amount of injected material. Here we demonstrate the possibility of electrochemical control of the fluid motion that allows one to sample and dispense attoliter-to-picoliter (10(-18) to 10(-12) liter) volumes of either aqueous or nonaqueous solutions. By changing the voltage applied across the liquid/liquid interface, one can produce a sufficient force to draw solution inside a nanopipette and then inject it into an immobilized biological cell. A high success rate was achieved in injections of fluorescent dyes into cultured human breast cells. The injection of femtoliter-range volumes can be monitored by video microscopy, and current/resistance-based approaches can be used to control injections from very small pipettes. Other potential applications of the electrochemical syringe include fluid dispensing in nanolithography and pumping in microfluidic systems.

  9. Application of a passive electrochemical noise technique to localized corrosion of candidate radioactive waste container materials

    International Nuclear Information System (INIS)

    Korzan, M.A.

    1994-05-01

    One of the key engineered barriers in the design of the proposed Yucca Mountain repository is the waste canister that encapsulates the spent fuel elements. Current candidate metals for the canisters to be emplaced at Yucca Mountain include cast iron, carbon steel, Incoloy 825 and titanium code-12. This project was designed to evaluate passive electrochemical noise techniques for measuring pitting and corrosion characteristics of candidate materials under prototypical repository conditions. Experimental techniques were also developed and optimized for measurements in a radiation environment. These techniques provide a new method for understanding material response to environmental effects (i.e., gamma radiation, temperature, solution chemistry) through the measurement of electrochemical noise generated during the corrosion of the metal surface. In addition, because of the passive nature of the measurement the technique could offer a means of in-situ monitoring of barrier performance

  10. Iron Polymerization and Arsenic Removal During In-Situ Iron Electrocoagulation in Synthetic Bangladeshi Groundwater

    Science.gov (United States)

    van Genuchten, C. M.; Pena, J.; Addy, S.; Gadgil, A.

    2010-12-01

    Millions of people worldwide are exposed to arsenic-contamination in groundwater drinking supplies. The majority of affected people live in rural Bangladesh. Electrocoagulation (EC) using iron electrodes is a promising arsenic removal strategy that is based on the generation of iron precipitates with a high affinity for arsenic through the electrochemical dissolution of a sacrificial iron anode. Many studies of iron hydrolysis in the presence of co-occurring ions in groundwater such as PO43-, SiO44-, and AsO43- suggest that these ions influence the polymerization and formation of iron oxide phases. However, the combined impact of these ions on precipitates generated by EC is not well understood. X-ray absorption spectroscopy (XAS) was used to examine EC precipitates generated in synthetic Bangladeshi groundwater (SBGW). The iron oxide structure and arsenic binding geometry were investigated as a function of EC operating conditions. As and Fe k-edge spectra were similar between samples regardless of the large range of current density (0.02, 1.1, 5.0, 100 mA/cm2) used during sample generation. This result suggests that current density does not play a large role in the formation EC precipitates in SBGW. Shell-by-shell fits of Fe K-edge data revealed the presence of a single Fe-Fe interatomic distance at approximately 3.06 Å. The absence of longer ranged Fe-Fe correlations suggests that EC precipitates consist of nano-scale chains (polymers) of FeO6 octahedra sharing equatorial edges. Shell-by-shell fits of As K-edge spectra show arsenic bound in primarily bidentate, binuclear corner sharing complexes. In this coordination geometry, arsenic prevents the formation of FeO6 corner-sharing linkages, which are necessary for 3-dimensional crystal growth. The individual and combined effects of other anions, such as PO43- and SiO44- present in SBGW are currently being investigated to determine the role of these ions in stunting crystal growth. The results provided by this

  11. Creep Behavior Of Thin Laminates Of Iron-Cobalt Alloys For Use In Switched Reluctance Motors And Generators

    OpenAIRE

    Fingers, Richard Todd

    1997-01-01

    The United States Air Force is in the process of developing magnetic bearings as well as an aircraft Integrated Power Unit and an Internal Starter/Generator for main propulsion engines. These developments are the driving force behind a new emphasis on high temperature, high strength magnetic materials for power applications. Analytical work, utilizing elasticity theory, in conjunction with design requirements, indicates a need for magnetic materials to have strengths in excess of 80 ksi up ...

  12. Iron and manganese removal from drinking water

    OpenAIRE

    Pascu, Daniela-Elena; Neagu (Pascu), Mihaela; Alina Traistaru, Gina; Nechifor, Aurelia Cristina; Raluca Miron, Alexandra

    2016-01-01

    The purpose of the present study is to find a suitable method for removal of iron and manganese from ground water, considering both local economical and environmental aspects. Ground water is a highly important source of drinking water in Romania. Ground water is naturally pure from bacteria at a 25 m depth or more. However, solved metals may occur and if the levels are too high, the water is not drinkable. Different processes, such as electrochemical and combined electrochemical-adsorption m...

  13. Characterizing reactive oxygen generation and bacterial inactivation by a zerovalent iron-fullerene nano-composite device at neutral pH under UV-A illumination

    International Nuclear Information System (INIS)

    Erdim, Esra; Badireddy, Appala Raju; Wiesner, Mark R.

    2015-01-01

    Highlights: • We synthesized a novel ZVI/nC 60 nano-composite device for multi-ROS generation. • O 2 · − (UV-A independent) and 1 O 2 (UV-A dependent) are generated at neutral pH. • At low Fe concentration, ZVI/nC 60 device is a better ROS generator than ZVI alone. • C 60 mediates electron transfer from ZVI surface to dissolved O 2 to produce O 2 · − . • Bacteria are rapidly inactivated by O 2 · − even at low ZVI/nC 60 ratio. - Abstract: A nano-composite device composed of nano-scale zerovalent iron (ZVI) and C 60 fullerene aggregates (ZVI/nC 60 ) was produced via a rapid nucleation method. The device was conceived to deliver reactive oxygen species (ROS) generated by photosensitization and/or electron transfer to targeted contaminants, including waterborne pathogens under neutral pH conditions. Certain variations of the nano-composite were fabricated differing in the amounts of (1) ZVI (0.1 mM and 2 mM) but not nC 60 (2.5 mg-C/L), and (2) nC 60 (0–25 mg-C/L) but not ZVI (0.1 mM). The generation of ROS by the ZVI/nC 60 nano-composites and ZVI nanoparticles was quantified using organic probe compounds. 0.1 mM ZVI/2.5 mg-C/L C 60 generated 3.74-fold higher O 2 · − concentration and also resulted in an additional 2-log inactivation of Pseudomonas aeruginosa when compared to 0.1 mM ZVI (3-log inactivation). 2 mM ZVI/2.5 mg-C/L nC 60 showed negligible improvement over 2 mM ZVI in terms of O 2 · − generation or inactivation. Further, incremental amounts of nC 60 in the range of 0–25 mg-C/L in 0.1 mM ZVI/nC 60 led to increased O 2 · − concentration, independent of UV-A. This study demonstrates that ZVI/nC 60 device delivers (1) enhanced O 2 · − with nC 60 as a mediator for electron transfer, and (2) 1 O 2 (only under UV-A illumination) at neutral pH conditions

  14. Electrochemically deposited Cu{sub 2}O cubic particles on boron doped diamond substrate as efficient photocathode for solar hydrogen generation

    Energy Technology Data Exchange (ETDEWEB)

    Mavrokefalos, Christos K. [Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, England (United Kingdom); Hasan, Maksudul, E-mail: maksudul.hasan@chem.ox.ac.uk [Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, England (United Kingdom); Tyndall National Institute, University College Cork, Lee Maltings, Cork (Ireland); Rohan, James F. [Tyndall National Institute, University College Cork, Lee Maltings, Cork (Ireland); Compton, Richard G. [Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, England (United Kingdom); Foord, John S., E-mail: john.foord@chem.ox.ac.uk [Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, England (United Kingdom)

    2017-06-30

    Highlights: • Fabrication of low-cost photocathode by electrochemical method is described. • Boron-doped diamond is presented as catalyst support. • NiO nanoparticles on Cu{sub 2}O surface enhances photocurrent and electrode stability. • Synergy of metallic interaction between Cu and Ni leads to high efficiency. - Abstract: Herein, we report a novel photocathode for the water splitting reaction. The electrochemical deposition of Cu{sub 2}O particles on boron doped diamond (BDD) electrodes and the subsequent decoration with NiO nanoparticles by a dip coating method to act as co-catalyst for hydrogen evolution reaction is described. The morphology analysis by scanning electron microscope (SEM) revealed that Cu{sub 2}O particles are cubic and decorated sporadically with NiO nanoparticles. X-ray photoelectron spectroscopy (XPS) confirmed the electronic interaction at the interface between Cu{sub 2}O and NiO through a binding energy shift of the main Cu 2p peak. The photoelectrochemical (PEC) performance of NiO-Cu{sub 2}O/BDD showed a much higher current density (−0.33 mA/cm{sup 2}) and photoconversion efficiency (0.28%) compared to the unmodified Cu{sub 2}O/BDD electrode, which are only −0.12 mA/cm{sup 2} and 0.06%, respectively. The enhancement in PEC performance is attributable to the synergy of NiO as an electron conduction mediator leading to the enhanced charge separation and transfer to the reaction interface for hydrogen evolution as evidenced by electrochemical impedance spectroscopy (EIS) and charge carrier density calculation. Stability tests showed that the NiO nanoparticles loading content on Cu{sub 2}O surface is a crucial parameter in this regard.

  15. Diffusion of hydrogen in iron oxides

    International Nuclear Information System (INIS)

    Bruzzoni, P.

    1993-01-01

    The diffusion of hydrogen in transitions metals oxides has been recently studied at room temperature through the permeability electrochemical technique. This work studies thin oxide layers grown in air or in presence of oxidizing atmospheres at temperatures up to 200 deg C. The substrate was pure iron with different superficial treatments. It was observed that these oxides reduce up to three magnitudes orders, the hydrogen stationary flux through membranes of usual thickness in comparison with iron membranes free of oxide. (Author)

  16. CMOS Electrochemical Instrumentation for Biosensor Microsystems: A Review

    Directory of Open Access Journals (Sweden)

    Haitao Li

    2016-12-01

    Full Text Available Modern biosensors play a critical role in healthcare and have a quickly growing commercial market. Compared to traditional optical-based sensing, electrochemical biosensors are attractive due to superior performance in response time, cost, complexity and potential for miniaturization. To address the shortcomings of traditional benchtop electrochemical instruments, in recent years, many complementary metal oxide semiconductor (CMOS instrumentation circuits have been reported for electrochemical biosensors. This paper provides a review and analysis of CMOS electrochemical instrumentation circuits. First, important concepts in electrochemical sensing are presented from an instrumentation point of view. Then, electrochemical instrumentation circuits are organized into functional classes, and reported CMOS circuits are reviewed and analyzed to illuminate design options and performance tradeoffs. Finally, recent trends and challenges toward on-CMOS sensor integration that could enable highly miniaturized electrochemical biosensor microsystems are discussed. The information in the paper can guide next generation electrochemical sensor design.

  17. Myricetin-induced apoptosis of triple-negative breast cancer cells is mediated by the iron-dependent generation of reactive oxygen species from hydrogen peroxide.

    Science.gov (United States)

    Knickle, Allison; Fernando, Wasundara; Greenshields, Anna L; Rupasinghe, H P Vasantha; Hoskin, David W

    2018-05-06

    Myricetin is a dietary phytochemical with anticancer activity; however, the effect of myricetin on breast cancer cells remains unclear. Here, we show that myricetin inhibited the growth of triple-negative breast cancer (TNBC) cells but was less inhibitory for normal cells. The effect of myricetin was comparable to epigallocatechin gallate and doxorubicin, and greater than resveratrol and cisplatin. Myricetin-treated TNBC cells showed evidence of early and late apoptosis/necrosis, which was associated with intracellular reactive oxygen species (ROS) accumulation, extracellular regulated kinase 1/2 and p38 mitogen-activated protein kinase activation, mitochondrial membrane destabilization and cytochrome c release, and double-strand DNA breaks. The antioxidant N-acetyl-cysteine protected myricetin-treated TNBC cells from cytotoxicity due to DNA damage. Myricetin also induced hydrogen peroxide (H 2 O 2 ) production in cell-free culture medium, as well as in the presence of TNBC cells and normal cells. In addition, deferriprone-mediated inhibition of intracellular ROS generation via the iron-dependent Fenton reaction and inhibition of extracellular ROS accumulation with superoxide dismutase plus catalase prevented myricetin-induced cytotoxicity in TNBC cell cultures. We conclude that the cytotoxic effect of myricetin on TNBC cells was due to oxidative stress initiated by extracellular H 2 O 2 formed by autoxidation of myricetin, leading to intracellular ROS production via the Fenton reaction. Copyright © 2018. Published by Elsevier Ltd.

  18. In situ generated gas bubble-assisted modulation of the morphologies, photocatalytic, and magnetic properties of ferric oxide nanostructures synthesized by thermal decomposition of iron nitrate

    International Nuclear Information System (INIS)

    Tong Guoxiu; Guan Jianguo; Xiao Zhidong; Huang Xing; Guan Yao

    2010-01-01

    Ferric oxide (Fe 2 O 3 ) complex nanoarchitectures with high BET specific surface area, superior photocatalytic activity and modulated magnetic properties are facilely synthesized via controlled thermal decomposition of iron(III) nitrate nonahydrate. The products are characterized by X-ray diffraction, Fourier-transforming infrared spectra, field-emission scanning electron microscope, field-emission high-resolution transmission electron microscope, and nitrogen physisorption and micrometrics analyzer. The corresponding photocatalytic activity and static magnetic properties are also evaluated by measuring the photocatalytic degradation of Rhodamine B aqueous solution under visible light illumination and vibrating sample magnetometer, respectively. Simply tuning the decomposition temperature can conveniently modulate the adsorbing/desorbing behaviors of the in situ generated gases on the nucleus surfaces, and consequently the crystalline structures and morphologies of the Fe 2 O 3 complex nanoarchitectures. The as-prepared Fe 2 O 3 complex nanoarchitectures show strong crystal structure and/or morphology-dependent photocatalytic and magnetic performances. The Fe 2 O 3 complex nanoarchitectures with high specific surface area and favorable crystallization are found to be beneficial for improving the photocatalytic activity. This work not only reports a convenient and low-cost decomposition procedure and a novel formation mechanism of complex nanoarchitectures but also provides an efficient route to enhance catalytic and magnetic properties of Fe 2 O 3 .

  19. Covalent attachment of pyridine-type molecules to glassy carbon surfaces by electrochemical reduction of in situ generated diazonium salts. Formation of ruthenium complexes on ligand-modified surfaces

    International Nuclear Information System (INIS)

    Yesildag, Ali; Ekinci, Duygu

    2010-01-01

    In this study, pyridine, quinoline and phenanthroline molecules were covalently bonded to glassy carbon (GC) electrode surfaces for the first time using the diazonium modification method. Then, the complexation ability of the modified films with ruthenium metal cations was investigated. The derivatization of GC surfaces with heteroaromatic molecules was achieved by electrochemical reduction of the corresponding in situ generated diazonium salts. X-ray photoelectron spectroscopy (XPS) was used to confirm the attachment of heteroaromatic molecules to the GC surfaces and to determine the surface concentration of the films. The barrier properties of the modified GC electrodes were studied in the presence of redox probes such as Fe(CN) 6 3- and Ru(NH 3 ) 6 3+ by cyclic voltammetry. Additionally, the presence of the resulting organometallic films on the surfaces was verified by XPS after the chemical transformation of the characterized ligand films to the ruthenium complex films. The electrochemical behavior of these films in acetonitrile solution was investigated using voltammetric methods, and the surface coverage of the organometallic films was determined from the reversible metal-based Ru(II)/Ru(III) oxidation waves.

  20. Covalent attachment of pyridine-type molecules to glassy carbon surfaces by electrochemical reduction of in situ generated diazonium salts. Formation of ruthenium complexes on ligand-modified surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Yesildag, Ali [Department of Chemistry, Faculty of Sciences, Atatuerk University, 25240 Erzurum (Turkey); Ekinci, Duygu, E-mail: dekin@atauni.edu.t [Department of Chemistry, Faculty of Sciences, Atatuerk University, 25240 Erzurum (Turkey)

    2010-09-30

    In this study, pyridine, quinoline and phenanthroline molecules were covalently bonded to glassy carbon (GC) electrode surfaces for the first time using the diazonium modification method. Then, the complexation ability of the modified films with ruthenium metal cations was investigated. The derivatization of GC surfaces with heteroaromatic molecules was achieved by electrochemical reduction of the corresponding in situ generated diazonium salts. X-ray photoelectron spectroscopy (XPS) was used to confirm the attachment of heteroaromatic molecules to the GC surfaces and to determine the surface concentration of the films. The barrier properties of the modified GC electrodes were studied in the presence of redox probes such as Fe(CN){sub 6}{sup 3-} and Ru(NH{sub 3}){sub 6}{sup 3+} by cyclic voltammetry. Additionally, the presence of the resulting organometallic films on the surfaces was verified by XPS after the chemical transformation of the characterized ligand films to the ruthenium complex films. The electrochemical behavior of these films in acetonitrile solution was investigated using voltammetric methods, and the surface coverage of the organometallic films was determined from the reversible metal-based Ru(II)/Ru(III) oxidation waves.

  1. IRON-TOLERANT CYANOBACTERIA: IMPLICATIONS FOR ASTROBIOLOGY

    Science.gov (United States)

    Brown, Igor I.; Allen, Carlton C.; Mummey, Daniel L.; Sarkisova, Svetlana A.; McKay, David S.

    2006-01-01

    The review is dedicated to the new group of extremophiles - iron tolerant cyanobacteria. The authors have analyzed earlier published articles about the ecology of iron tolerant cyanobacteria and their diversity. It was concluded that contemporary iron depositing hot springs might be considered as relative analogs of Precambrian environment. The authors have concluded that the diversity of iron-tolerant cyanobacteria is understudied. The authors also analyzed published data about the physiological peculiarities of iron tolerant cyanobacteria. They made the conclusion that iron tolerant cyanobacteria may oxidize reduced iron through the photosystem of cyanobacteria. The involvement of both Reaction Centers 1 and 2 is also discussed. The conclusion that iron tolerant protocyanobacteria could be involved in banded iron formations generation is also proposed. The possible mechanism of the transition from an oxygenic photosynthesis to an oxygenic one is also discussed. In the final part of the review the authors consider the possible implications of iron tolerant cyanobacteria for astrobiology.

  2. Electrochemical Applications in Metal Bioleaching.

    Science.gov (United States)

    Tanne, Christoph Kurt; Schippers, Axel

    2017-12-10

    Biohydrometallurgy comprises the recovery of metals by biologically catalyzed metal dissolution from solids in an aqueous solution. The application of this kind of bioprocessing is described as "biomining," referring to either bioleaching or biooxidation of sulfide metal ores. Acidophilic iron- and sulfur-oxidizing microorganisms are the key to successful biomining. However, minerals such as primary copper sulfides are recalcitrant to dissolution, which is probably due to their semiconductivity or passivation effects, resulting in low reaction rates. Thus, further improvements of the bioleaching process are recommendable. Mineral sulfide dissolution is based on redox reactions and can be accomplished by electrochemical technologies. The impact of electrochemistry on biohydrometallurgy affects processing as well as analytics. Electroanalysis is still the most widely used electrochemical application in mineralogical research. Electrochemical processing can contribute to bioleaching in two ways. The first approach is the coupling of a mineral sulfide to a galvanic partner or electrocatalyst (spontaneous electron transfer). This approach requires only low energy consumption and takes place without technical installations by the addition of higher redox potential minerals (mostly pyrite), carbonic material, or electrocatalytic ions (mostly silver ions). Consequently, the processed mineral (often chalcopyrite) is preferentially dissolved. The second approach is the application of electrolytic bioreactors (controlled electron transfer). The electrochemical regulation of electrolyte properties by such reactors has found most consideration. It implies the regulation of ferrous and ferric ion ratios, which further results in optimized solution redox potential, less passivation effects, and promotion of microbial activity. However, many questions remain open and it is recommended that reactor and electrode designs are improved, with the aim of finding options for simplified

  3. Effects of simulated deposition of acid mist and iron ore particulate matter on photosynthesis and the generation of oxidative stress in Schinus terebinthifolius Radii and Sophora tomentosa L

    Energy Technology Data Exchange (ETDEWEB)

    Kuki, Kacilda Naomi [Departamento de Biologia Vegetal, Universidade Federal de Vicosa (Brazil)], E-mail: naomikuki@hotmail.com; Oliva, Marco Antonio; Pereira, Eduardo Gusmao; Costa, Alan Carlos [Departamento de Biologia Vegetal, Universidade Federal de Vicosa (Brazil); Cambraia, Jose [Departamento de Biologia Geral, Universidade Federal de Vicosa (Brazil)

    2008-09-15

    Particulate matter is a natural occurrence in the environment, but some industries, such as the iron ore sector, can raise the total amount of particles in the atmosphere. This industry is primarily a source of iron and sulfur dioxide particulates. The effects of the pollutants from the iron ore industries on representatives of restinga vegetation in a Brazilian coastal ecosystem were investigated using physiological and biochemical measures. Two species, Schinus terebinthifolius and Sophora tomentosa, were exposed to simulated deposition of acid mist and iron ore particulate matter in acrylic chambers in a greenhouse. Parameters such as gas exchange, fluorescence emission, chlorophyll content, total iron content, antioxidant enzyme activity and malondialdehyde content were assessed in order to evaluate the responses of the two species. Neither treatment was capable of inducing oxidative stress in S. terebinthifolius. Nevertheless, the deposition of iron ore particulates on this species increased chlorophyll content, the maximum quantum efficiency of photosystem II and the electron transport rate, while iron content was unaltered. On the other hand, S. tomentosa showed a greater sensitivity to the treatments. Plants of S. tomentosa that were exposed to acid mist had a decrease in photosynthesis, while the deposition of iron particulate matter led to an increase in iron content and membrane permeability of the leaves. The activities of antioxidant enzymes, such as catalases and superoxide dismutase, were enhanced by both treatments. The results suggested that the two restinga species use different strategies to overcome the stressful conditions created by the deposition of particulate matter, either solid or wet. It seems that while S. terebinthifolius avoided stress, S. tomentosa used antioxidant enzyme systems to partially neutralize oxidative stress. The findings also point to the potential use of S. tomentosa as a biomarker species under field conditions.

  4. Effects of simulated deposition of acid mist and iron ore particulate matter on photosynthesis and the generation of oxidative stress in Schinus terebinthifolius Radii and Sophora tomentosa L.

    Science.gov (United States)

    Kuki, Kacilda Naomi; Oliva, Marco Antônio; Pereira, Eduardo Gusmão; Costa, Alan Carlos; Cambraia, José

    2008-09-15

    Particulate matter is a natural occurrence in the environment, but some industries, such as the iron ore sector, can raise the total amount of particles in the atmosphere. This industry is primarily a source of iron and sulfur dioxide particulates. The effects of the pollutants from the iron ore industries on representatives of restinga vegetation in a Brazilian coastal ecosystem were investigated using physiological and biochemical measures. Two species, Schinus terebinthifolius and Sophora tomentosa, were exposed to simulated deposition of acid mist and iron ore particulate matter in acrylic chambers in a greenhouse. Parameters such as gas exchange, fluorescence emission, chlorophyll content, total iron content, antioxidant enzyme activity and malondialdehyde content were assessed in order to evaluate the responses of the two species. Neither treatment was capable of inducing oxidative stress in S. terebinthifolius. Nevertheless, the deposition of iron ore particulates on this species increased chlorophyll content, the maximum quantum efficiency of photosystem II and the electron transport rate, while iron content was unaltered. On the other hand, S. tomentosa showed a greater sensitivity to the treatments. Plants of S. tomentosa that were exposed to acid mist had a decrease in photosynthesis, while the deposition of iron particulate matter led to an increase in iron content and membrane permeability of the leaves. The activities of antioxidant enzymes, such as catalases and superoxide dismutase, were enhanced by both treatments. The results suggested that the two restinga species use different strategies to overcome the stressful conditions created by the deposition of particulate matter, either solid or wet. It seems that while S. terebinthifolius avoided stress, S. tomentosa used antioxidant enzyme systems to partially neutralize oxidative stress. The findings also point to the potential use of S. tomentosa as a biomarker species under field conditions.

  5. Effects of simulated deposition of acid mist and iron ore particulate matter on photosynthesis and the generation of oxidative stress in Schinus terebinthifolius Radii and Sophora tomentosa L

    International Nuclear Information System (INIS)

    Kuki, Kacilda Naomi; Oliva, Marco Antonio; Pereira, Eduardo Gusmao; Costa, Alan Carlos; Cambraia, Jose

    2008-01-01

    Particulate matter is a natural occurrence in the environment, but some industries, such as the iron ore sector, can raise the total amount of particles in the atmosphere. This industry is primarily a source of iron and sulfur dioxide particulates. The effects of the pollutants from the iron ore industries on representatives of restinga vegetation in a Brazilian coastal ecosystem were investigated using physiological and biochemical measures. Two species, Schinus terebinthifolius and Sophora tomentosa, were exposed to simulated deposition of acid mist and iron ore particulate matter in acrylic chambers in a greenhouse. Parameters such as gas exchange, fluorescence emission, chlorophyll content, total iron content, antioxidant enzyme activity and malondialdehyde content were assessed in order to evaluate the responses of the two species. Neither treatment was capable of inducing oxidative stress in S. terebinthifolius. Nevertheless, the deposition of iron ore particulates on this species increased chlorophyll content, the maximum quantum efficiency of photosystem II and the electron transport rate, while iron content was unaltered. On the other hand, S. tomentosa showed a greater sensitivity to the treatments. Plants of S. tomentosa that were exposed to acid mist had a decrease in photosynthesis, while the deposition of iron particulate matter led to an increase in iron content and membrane permeability of the leaves. The activities of antioxidant enzymes, such as catalases and superoxide dismutase, were enhanced by both treatments. The results suggested that the two restinga species use different strategies to overcome the stressful conditions created by the deposition of particulate matter, either solid or wet. It seems that while S. terebinthifolius avoided stress, S. tomentosa used antioxidant enzyme systems to partially neutralize oxidative stress. The findings also point to the potential use of S. tomentosa as a biomarker species under field conditions

  6. Characterizing reactive oxygen generation and bacterial inactivation by a zerovalent iron-fullerene nano-composite device at neutral pH under UV-A illumination

    Energy Technology Data Exchange (ETDEWEB)

    Erdim, Esra [Center for the Environmental Implications of NanoTechnology, Duke University, Durham, NC 27708 (United States); Environmental Engineering Department, Marmara University, Istanbul 34469 (Turkey); Badireddy, Appala Raju [Center for the Environmental Implications of NanoTechnology, Duke University, Durham, NC 27708 (United States); Department of Civil and Environmental Engineering, Duke University, Durham, NC 27708 (United States); Wiesner, Mark R., E-mail: wiesner@duke.edu [Department of Civil and Environmental Engineering, Duke University, Durham, NC 27708 (United States); Department of Civil and Environmental Engineering, Duke University, Durham, NC 27708 (United States)

    2015-02-11

    Highlights: • We synthesized a novel ZVI/nC{sub 60} nano-composite device for multi-ROS generation. • O{sub 2}·{sup −} (UV-A independent) and {sup 1}O{sub 2} (UV-A dependent) are generated at neutral pH. • At low Fe concentration, ZVI/nC{sub 60} device is a better ROS generator than ZVI alone. • C{sub 60} mediates electron transfer from ZVI surface to dissolved O{sub 2} to produce O{sub 2}·{sup −}. • Bacteria are rapidly inactivated by O{sub 2}·{sup −} even at low ZVI/nC{sub 60} ratio. - Abstract: A nano-composite device composed of nano-scale zerovalent iron (ZVI) and C{sub 60} fullerene aggregates (ZVI/nC{sub 60}) was produced via a rapid nucleation method. The device was conceived to deliver reactive oxygen species (ROS) generated by photosensitization and/or electron transfer to targeted contaminants, including waterborne pathogens under neutral pH conditions. Certain variations of the nano-composite were fabricated differing in the amounts of (1) ZVI (0.1 mM and 2 mM) but not nC{sub 60} (2.5 mg-C/L), and (2) nC{sub 60} (0–25 mg-C/L) but not ZVI (0.1 mM). The generation of ROS by the ZVI/nC{sub 60} nano-composites and ZVI nanoparticles was quantified using organic probe compounds. 0.1 mM ZVI/2.5 mg-C/L C{sub 60} generated 3.74-fold higher O{sub 2}·{sup −} concentration and also resulted in an additional 2-log inactivation of Pseudomonas aeruginosa when compared to 0.1 mM ZVI (3-log inactivation). 2 mM ZVI/2.5 mg-C/L nC{sub 60} showed negligible improvement over 2 mM ZVI in terms of O{sub 2}·{sup −} generation or inactivation. Further, incremental amounts of nC{sub 60} in the range of 0–25 mg-C/L in 0.1 mM ZVI/nC{sub 60} led to increased O{sub 2}·{sup −} concentration, independent of UV-A. This study demonstrates that ZVI/nC{sub 60} device delivers (1) enhanced O{sub 2}·{sup −} with nC{sub 60} as a mediator for electron transfer, and (2) {sup 1}O{sub 2} (only under UV-A illumination) at neutral pH conditions.

  7. Electrochemical energy storage systems for solar thermal applications

    Science.gov (United States)

    Krauthamer, S.; Frank, H.

    1980-01-01

    Existing and advanced electrochemical storage and inversion/conversion systems that may be used with terrestrial solar-thermal power systems are evaluated. The status, cost and performance of existing storage systems are assessed, and the cost, performance, and availability of advanced systems are projected. A prime consideration is the cost of delivered energy from plants utilizing electrochemical storage. Results indicate that the five most attractive electrochemical storage systems are the: iron-chromium redox (NASA LeRC), zinc-bromine (Exxon), sodium-sulfur (Ford), sodium-sulfur (Dow), and zinc-chlorine (EDA).

  8. Tritium permeation through iron

    International Nuclear Information System (INIS)

    Hagi, Hideki; Hayashi, Yasunori

    1989-01-01

    An experimental method for measuring diffusion coefficients and permeation rates of tritium in metals around room temperature has been established, and their values in iron have been obtained by using the method. Permeation rates of tritium and hydrogen through iron were measured by the electrochemical method in which a tritiated aqueous solution was used as a cathodic electrolyte. Tritium and hydrogen were introduced from one side of a membrane specimen by cathodic polarization, while at the other side of the specimen the permeating tritium and hydrogen were extracted by potentiostatical ionization. The amount of permeated hydrogen was obtained by integrating the anodic current, and that of tritium was determined by measuring the radioactivity of the electrolyte sampled from the extraction side. Diffusion coefficients of tritium (D T ) and hydrogen (D H ) were determined from the time lag of tritium and hydrogen permeation. D T =9x10 -10 m 2 /s and D H =4x10 -9 m 2 /s at 286 K for annealed iron specimens. These values of D T and D H were compared with the previous data of the diffusion coefficients of hydrogen and deuterium, and the isotope effect in diffusion was discussed. (orig.)

  9. Identification of phenylbutyrate-generated metabolites in Huntington disease patients using parallel liquid chromatography/electrochemical array/mass spectrometry and off-line tandem mass spectrometry.

    Science.gov (United States)

    Ebbel, Erika N; Leymarie, Nancy; Schiavo, Susan; Sharma, Swati; Gevorkian, Sona; Hersch, Steven; Matson, Wayne R; Costello, Catherine E

    2010-04-15

    Oral sodium phenylbutyrate (SPB) is currently under investigation as a histone deacetylation (HDAC) inhibitor in Huntington disease (HD). Ongoing studies indicate that symptoms related to HD genetic abnormalities decrease with SPB therapy. In a recently reported safety and tolerability study of SPB in HD, we analyzed overall chromatographic patterns from a method that employs gradient liquid chromatography with series electrochemical array, ultraviolet (UV), and fluorescence (LCECA/UV/F) for measuring SPB and its metabolite phenylacetate (PA). We found that plasma and urine from SPB-treated patients yielded individual-specific patterns of approximately 20 metabolites that may provide a means for the selection of subjects for extended trials of SPB. The structural identification of these metabolites is of critical importance because their characterization will facilitate understanding the mechanisms of drug action and possible side effects. We have now developed an iterative process with LCECA, parallel LCECA/LCMS, and high-performance tandem MS for metabolite characterization. Here we report the details of this method and its use for identification of 10 plasma and urinary metabolites in treated subjects, including indole species in urine that are not themselves metabolites of SPB. Thus, this approach contributes to understanding metabolic pathways that differ among HD patients being treated with SPB. Copyright 2010 Elsevier Inc. All rights reserved.

  10. Carbon quantum dots directly generated from electrochemical oxidation of graphite electrodes in alkaline alcohols and the applications for specific ferric ion detection and cell imaging.

    Science.gov (United States)

    Liu, Mengli; Xu, Yuanhong; Niu, Fushuang; Gooding, J Justin; Liu, Jingquan

    2016-04-25

    Carbon quantum dots (CQDs) are attracting tremendous interest owing to their low toxicity, water dispersibility, biocompatibility, optical properties and wide applicability. Herein, CQDs with an average diameter of (4.0 ± 0.2) nm and high crystallinity were produced simply from the electrochemical oxidation of a graphite electrode in alkaline alcohols. The as-formed CQDs dispersion was colourless but the dispersion gradually changed to bright yellow when stored in ambient conditions. Based on UV-Vis absorption, fluorescence spectroscopy, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and high-resolution transmission electron microscopy (HRTEM), this colour change appeared to be due to oxygenation of surface species over time. Furthermore, the CQDs were used in specific and sensitive detection of ferric ion (Fe(3+)) with broad linear ranges of 10-200 μM with a low limit of detection of 1.8 μM (S/N = 3). The application of the CQDs for Fe(3+) detection in tap water was demonstrated and the possible mechanism was also discussed. Finally, based on their good characteristics of low cytotoxicity and excellent biocompatibility, the CQDs were successfully applied to cell imaging.

  11. Electrochemical vapor generation of selenium species after online photolysis and reduction by UV-irradiation under nano TiO{sub 2} photocatalysis and its application to selenium speciation by HPLC coupled with atomic fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Jing; Wang, Qiuquan; Huang, Benli [Xiamen University (China). Department of Chemistry; MOE Key Laboratory of Analytical Sciences, Xiamen (China)

    2005-01-01

    An online UV photolysis and UV/TiO{sub 2} photocatalysis reduction device (UV-UV/TiO{sub 2} PCRD) and an electrochemical vapor generation (ECVG) cell have been used for the first time as an interface between high-performance liquid chromatography (HPLC) and atomic fluorescence spectrometry (AFS) for selenium speciation. The newly designed ECVG cell of approximately 115 {mu}L dead volume consists of a carbon fiber cathode and a platinum loop anode; the atomic hydrogen generated on the cathode was used to reduce selenium to vapor species for AFS determination. The noise was greatly reduced compared with that obtained by use of the UV-UV/TiO{sub 2} PCRD-KBH{sub 4}-acid interface. The detection limits obtained for seleno-DL-cystine (SeCys), selenite (Se{sup IV}), seleno-DL-methionine (SeMet), and selenate (Se{sup VI}) were 2.1, 2.9, 4.3, and 3.5 ng mL{sup -1}, respectively. The proposed method was successfully applied to the speciation of selenium in water-soluble extracts of garlic shoots cultured with different selenium species. The results obtained suggested that UV-UV/TiO{sub 2} PCRD-ECVG should be an effective interface between HPLC and AFS for the speciation of elements amenable to vapor generation, and is superior to methods involving KBH{sub 4}. (orig.)

  12. Removal of the arsenic from contaminated groundwater with use of the new generation of MicroDrop Aqua system

    DEFF Research Database (Denmark)

    Kowalski, Krzysztof; Søgaard, Erik Gydesen

    2012-01-01

    The results from a new pilot scale plant of the MicroDrop Aqua arsenic removal technology are introduced. The technology is based on the employing of electrochemical iron dissolution and efficient aeration prior to sand filtration. The pilot treatment was used to study effectiveness of iron relea...... addition and easily to remove arsenic from contaminated groundwater.......The results from a new pilot scale plant of the MicroDrop Aqua arsenic removal technology are introduced. The technology is based on the employing of electrochemical iron dissolution and efficient aeration prior to sand filtration. The pilot treatment was used to study effectiveness of iron release...... in an electro-dissolution process that is taking place in an iron generator. It was found that there is a need of some extra time to reach a state of steady iron release and that could not be achieved within a short period of 10-20 minutes. The pilot plant proved to be able to remove arsenic to value below 5μg...

  13. Cast irons

    CERN Document Server

    1996-01-01

    Cast iron offers the design engineer a low-cost, high-strength material that can be easily melted and poured into a wide variety of useful, and sometimes complex, shapes. This latest handbook from ASM covers the entire spectrum of one of the most widely used and versatile of all engineered materials. The reader will find the basic, but vital, information on metallurgy, solidification characteristics, and properties. Extensive reviews are presented on the low-alloy gray, ductile, compacted graphite, and malleable irons. New and expanded material has been added covering high-alloy white irons used for abrasion resistance and high-alloy graphitic irons for heat and corrosion resistance. Also discussed are melting furnaces and foundry practices such as melting, inoculation, alloying, pouring, gating and rising, and molding. Heat treating practices including stress relieving, annealing, normalizing, hardening and tempering, autempering (of ductile irons), and surface-hardening treatments are covered, too. ASM Spec...

  14. Electrochemical components

    CERN Document Server

    Pera, Marie-Cécile; Gualous, Hamid; Turpin, Christophe

    2013-01-01

    Marie-Cécile Péra is Full Professor at the University of Franche-Comte in France and Deputy Director of the FEMTO-ST Institute (CNRS). Her research activities include modeling, control and diagnosis of electrical power generation systems (fuel cells - PEMFC and SOFC, supercapacities, batteries) for transportation and stationary applications. Daniel Hissel is Full Professor at the University of Franche-Comte in France and Director of the Fuel Cell Lab Research Federation (CNRS). He also leads a research team devoted to hybrid electrical systems in the FEMTO-ST Institute (CNRS). Hamid Gualo

  15. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... risk for iron-deficiency anemia, including: Vegetarian or vegan eating patterns. Not eating enough iron-rich foods, ... iron-fortified foods that have iron added. Vegetarian diets can provide enough iron if you choose nonmeat ...

  16. Pseudocapacitive Oxides and Sulfides for High-Performance Electrochemical Energy Storage

    KAUST Repository

    Xia, Chuan

    2018-01-01

    The intermittent nature of several sustainable energy sources such as solar and wind energy has ignited the demand of electrochemical energy storage devices in the form of batteries and electrochemical capacitors. The future generation

  17. Flow injection electrochemical hydride generation inductively coupled plasma time-of-flight mass spectrometry for the simultaneous determination of hydride forming elements and its application to the analysis of fresh water samples

    International Nuclear Information System (INIS)

    Bings, Nicolas H.; Stefanka, Zsolt; Mallada, Sergio Rodriguez

    2003-01-01

    A flow injection (FI) method was developed using electrochemical hydride generation (EcHG) as a sample introduction system, coupled to an inductively coupled plasma time-of-flight mass spectrometer (ICP-TOFMS) for rapid and simultaneous determination of six elements forming hydrides (As, Bi, Ge, Hg, Sb and Se). A novel low volume electrolysis cell, especially suited for FI experiments was designed and the conditions for simultaneous electrochemical hydride generation (EcHG; electrolyte concentrations and flow rates, electrolysis voltage and current) as well as the ICP-TOFMS operational parameters (carrier gas flow rate, modulation pulse width (MPW)) for the simultaneous determination of 12 isotopes were optimized. The compromise operation parameters of the electrolysis were found to be 1.4 and 3 ml min -1 for the anolyte and catholyte flow rates, respectively, using 2 M sulphuric acid. An optimum electrolysis current of 0.7 A (16 V) and an argon carrier gas flow rate of 0.91 l min -1 were chosen. A modulation pulse width of 5 μs, which influences the sensitivity through the amount of ions being collected by the MS per single analytical cycle, provided optimum results for the detection of transient signals. The achieved detection limits were compared with those obtained by using FI in combination with conventional nebulization (FI-ICP-TOFMS); values for chemical hydride generation (FI-CHG-ICP-TOFMS) were taken from the literature. By using a 200 μl sample loop absolute detection limits (3σ) in the range of 10-160 pg for As, Bi, Ge, Hg, Sb and 1.1 ng for Se and a precision of 4-8% for seven replicate injections of 20-100 ng ml -1 multielemental sample solutions were achieved. The analysis of a standard reference material (SRM) 1643d (NIST, 'Trace Elements in Water') showed good agreement with the certified values for As and Sb. Se showed a drastic difference, which is probably due to the presence of hydride-inactive Se species in the sample. Recoveries better than

  18. Status of the DOE battery and electrochemical technology program. III

    International Nuclear Information System (INIS)

    Roberts, R.

    1982-02-01

    This report reviews the status of the Department of Energy Subelement on Electrochemical Storage Systems. It emphasizes material presented at the Fourth US Department of Energy Battery and Electrochemical Contractors' Conference, held June 2-4, 1981. The conference stressed secondary batteries, however, the aluminum/air mechanically rechargeable battery and selected topics on industrial electrochemical processes were included. The potential contributions of the battery and electrochemical technology efforts to supported technologies: electric vehicles, solar electric systems, and energy conservation in industrial electrochemical processes, are reviewed. The analyses of the potential impact of these systems on energy technologies as the basis for selecting specific battery systems for investigation are noted. The battery systems in the research, development, and demonstration phase discussed include: aqueous mobile batteries (near term) - lead-acid, iron/nickel-oxide, zinc/nickel-oxide; advanced batteries - aluminum/air, iron/air, zinc/bromine, zinc/ferricyanide, chromous/ferric, lithium/metal sulfide, sodium/sulfur; and exploratory batteries - lithium organic electrolyte, lithium/polymer electrolyte, sodium/sulfur (IV) chloroaluminate, calcium/iron disulfide, lithium/solid electrolyte. Supporting research on electrode reactions, cell performance modeling, new battery materials, ionic conducting solid electrolytes, and electrocatalysis is reviewed. Potential energy saving processes for the electrowinning of aluminum and zinc, and for the electrosynthesis of inorganic and organic compounds are included

  19. Studying Irony Detection Beyond Ironic Criticism: Let's Include Ironic Praise

    Directory of Open Access Journals (Sweden)

    Richard Bruntsch

    2017-04-01

    criticism. Generating unique variance in irony detection, ironic praise can be postulated as worthwhile to include in future studies—especially when studying the role of mental ability, personality, and humor in irony detection.

  20. Utilization of a novel electrochemical {sup 90}Sr/{sup 90}Y generator for the preparation of {sup 90}Y-labeled RGD peptide dimer in clinically relevant dose

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Sudipta; Chakravarty, Rubel; Pillai, Maroor Raghavan Ambikalmajan; Dash, Ashutosh [Bhabha Atomic Research Centre, Mumbai (India). Radiopharmaceuticals Div.; Sarma, Haladhar Dev [Bhabha Atomic Research Centre, Mumbai (India). Radiation Biology and Health Sciences Div.

    2014-09-01

    The work reported in this paper provides a systematic study towards the development of an optimized strategy for preparation of a clinically relevant dose of {sup 90}Y-labeled dimeric RGD peptide derivative, DOTA-E[c(RGDfK)]{sub 2} [DOTA-(RGD){sub 2}] for in vivo targeted therapy utilizing {sup 90}Y obtained from a novel electrochemical {sup 90}Sr/{sup 90}Y generator. The performance of the generator was evaluated to ensure its suitability for providing {sup 90}Y in adequate quantity and purity required for formulation of clinically relevant dose for PRRT. {sup 90}Y-DOTA-(RGD){sub 2} was synthesized in high yield (86.2 ± 2.5%) and radiochemical purity (98.4 ± 0.5%) using clinically relevant dose (∝ 3.8 GBq) of {sup 90}Y. In vitro stability studies revealed that the radiolabeled conjugate retained its radiochemical purity in normal saline and human serum. Preliminary biodistribution studies carried out in C57/BL6 mice bearing melanoma tumors showed that the preparation exhibited significant tumor uptake (5.30 ± 0.78% of injected activity at 30 min post-injection) with good tumor to background ratio. The optimized radiolabeling protocol seems to be an attractive strategy which is largely viewed as a springboard to realize scope of developing {sup 90}Y labeled cyclic RGD peptides for targeted therapy of tumors over-expressing integrin-α{sub ν}β{sub 3} receptors. (orig.)

  1. Determination of As in tobacco by using electrochemical hydride generation at a Nafion® solid polymer electrolyte cell hyphenated with atomic fluorescence spectrometry

    Science.gov (United States)

    Yang, Qinghua; Gan, Wuer; Deng, Yun; Sun, Huihui

    2011-11-01

    In the present work, a novel solid polymer electrolyte hydride generation (SPE-HG) cell was developed. The home-made SPE-HG cell, mainly composed of three components (Nafion®117 membrane for separating and H + exchanging, a soft graphite felt cathode and a Ti mesh modified by Ir anode), was employed for detecting As by coupling to atomic fluorescence spectrometry (AFS). The H + generated by electrolysis of pure water in anode chamber transferred to cathode chamber through SPE, and immediately reacted with As 3 + to generate AsH 3. The relative mechanisms and operation conditions for hydride generation of As were investigated in detail. The developed cell employed water as an alternative of acid anolyte, with virtues of low-cost, more than 6 months lifetime and environment friendly compared with the conventional cell. Under the optimized conditions, the limit of determination of As 3 + for sample blank solution was 0.12 μg L - 1 , the RSD was 2.9% for 10 consecutive measurements of 5 μg L - 1 As 3 + standard solution. The accuracy of the method was verified by the determination of As in the reference Tea (GBW07605) and the developed method was successfully applied to determine trace amounts of As in tobacco samples with recovery from 97% to 103%.

  2. IRON DOME

    African Journals Online (AJOL)

    6 Israeli Navy 'First Arm of the Sea: The Successful Interception of the Iron Dome Rocket .... sky to destroy them whilst in flight to minimise civilian casualties. ..... Including The Moon and Celestial Bodies.53 Demeyere further emphasises the.

  3. Iron overdose

    Science.gov (United States)

    ... tracing) X-ray to detect and track iron tablets through the stomach and intestines Treatment may include: ... BF, St. Geme JW, Schor NF, eds. Nelson Textbook of Pediatrics . 20th ed. Philadelphia, PA: Elsevier; 2016: ...

  4. Understanding the nanoscale redox-behavior of iron-anodes for rechargeable iron-air batteries

    Energy Technology Data Exchange (ETDEWEB)

    Weinrich, Henning [Forschungszentrum Julich (Germany). Inst. for Energy and Climate Research-Fundamental Electrochemistry (IEK-9); RWTH Aachen Univ., Aachen (Germany). Inst. of Physical Chemistry; Come, Jérémy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS); Tempel, Hermann [Forschungszentrum Julich (Germany). Inst. for Energy and Climate Research-Fundamental Electrochemistry (IEK-9); Kungl, Hans [Forschungszentrum Julich (Germany). Inst. for Energy and Climate Research-Fundamental Electrochemistry (IEK-9); Eichel, Rüdiger-A. [Forschungszentrum Julich (Germany). Inst. for Energy and Climate Research-Fundamental Electrochemistry (IEK-9); Balke, Nina [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS)

    2017-10-10

    Iron-air cells provide a promising and resource-efficient alternative battery concept with superior area specific power density characteristics compared to state-of-the-art Li-air batteries and potentially superior energy density characteristics compared to present Li-ion batteries. Understanding charge-transfer reactions at the anode-electrolyte interface is the key to develop high-performance cells. By employing in-situ electrochemical atomic force microscopy (in-situ EC-AFM), in-depth insight into the electrochemically induced surface reaction processes on iron in concentrated alkaline electrolyte is obtained. The results highlight the formation and growth of the redox-layer on iron over the course of several oxidation/reduction cycles. By this means, a direct correlation between topography changes and the corresponding electrochemical reactions at the nanoscale could unambiguously be established. Here in this paper, the twofold character of the nanoparticulate redox-layer in terms of its passivating character and its contribution to the electrochemical reactions is elucidated. Furthermore, the evolution of single nanoparticles on the iron electrode surface is evaluated in unprecedented and artifact-free detail. Based on the dedicated topography analysis, a detailed structural model for the evolution of the redox-layer which is likewise elementary for corrosion science and battery research is derived.

  5. Transport of iron particles generated during milling operations in multilateral wells; Transporte de particulas de aco geradas pela abertura de janelas em pocos multilaterais

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Andre Leibsohn; Rezende, Carla Leonor Teixeira; Leal, Rafael Amorim Ferreira; Lourenco, Fabio Gustavo Fernandes [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas]. E-mail: aleibsohn@cenpes.petrobras.com.br; rezenc@hotmail.com; ramorim@cenpes.petrobras.com.br; fabiolou@urbi.com.br

    2000-07-01

    This paper presents a series of numerical simulations aimng the definition of requirements (flow rate and fluid properties) to remove iron particles both in the inclined sections and in the riser annulus. Additionally, experimental work was developed in a pilot scale flow loop in order tocompare the behavior of water and sinthetic oil baed fluids in milling operations. (author)

  6. Regulation of Electrochemically Generated H2O2 in Situ from a Novel CB-PTFE Cathode for Transformation of Chlorine Benzene in Groundwater

    Science.gov (United States)

    Jiang, J.; Zhang, X.; Li, G.

    2014-12-01

    Fenton's reagents (H2O2 and Fe2+ catalyst commonly) have been widely used in soil and groundwater remediation. But the excessive H2O2 decomposition and the pH modification (acidification) problem have been limitations for Fenton based remediation strategies. The Electro-Fenton (E- Fenton) processes has been recently developed to solve the problems, in which Fe2+ or H2O2are generated in situ as continuing source of Fenton's reagents. In this study, a novel CB-PTFE cathode and a Fe cathode were employed to generate H2O2 and Fe2+ in situ simultaneously. The generated reactive oxidizing species, i.e., O2,H2O2 and hydroxyl radical (HO•), oxidized bio-refractory organics to nontoxic matters in groundwater. Automatic pH adjustments are achieved by appropriately arraying the electrodes. Laboratory batch tests and column tests for the E-Fenton oxidation and hybrid electrolysis system were conducted to evaluate the transformation efficiency of chlorine benzene. Results from batch experiments suggested the CB-PTFE cathode was effective for reducing O2 to H2O2. The H2O2 concentration reached 468 mg/L under the condition of pH 3.0 and 30mA/cm2 in 60 minutes, which was 5 and 10 times of that with a graphite and C-felt cathode. The removal efficiency of chlorine benzene reached 80% in 20 minutes. Both chlorine benzene degradation and H2O2 production increased with decreasing solution pH and increasing current density. The results from the columns tests proved that the in situ E-Fenton system is a feasible method for groundwater remediation.

  7. Epipremnum aureum and Dracaena braunii as indoor plants for enhanced bio-electricity generation in a plant microbial fuel cell with electrochemically modified carbon fiber brush anode.

    Science.gov (United States)

    Sarma, Pranab Jyoti; Mohanty, Kaustubha

    2018-04-13

    In this study, two different unexploited indoor plants, Epipremnum aureum and Dracaena braunii were used to produce clean and sustainable bio-electricity in a plant microbial fuel cell (PMFC). Acid modified carbon fiber brush electrodes as well as bare electrodes were used in both the PMFCs. A bentonite based clay membrane was successfully integrated in the PMFCs. Maximum performance of E. aureum was 620 mV which was 188 mV higher potential than D. braunii. The bio-electricity generation using modified electrode was 154 mV higher than the bare carbon fiber, probably due to the effective bacterial attachment to the carbon fiber owing to hydrogen bonding. Maximum power output of 15.38 mW/m 2 was obtained by E. aureum with an internal resistance of 200 Ω. Higher biomass yield was also obtained in case of E. aureum during 60 days of experiment, which may correlate with the higher bio-electricity generation than D. braunii. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  8. Model Catalysis of Ammonia Synthesis ad Iron-Water Interfaces - ASum Frequency Generation Vibrational Spectroscopic Study of Solid-GasInterfaces and Anion Photoelectron Spectroscopic Study of Selected Anionclusters

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, Michael James [Univ. of California, Berkeley, CA (United States)

    2005-01-01

    The ammonia synthesis reaction has been studied using single crystal model catalysis combined with sum frequency generation (SFG) vibrational spectroscopy. The adsorption of gases N2, H2, O2 and NH3 that play a role in ammonia synthesis have been studied on the Fe(111) crystal surface by sum frequency generation vibrational spectroscopy using an integrated Ultra-High Vacuum (UHV)/high-pressure system. SFG spectra are presented for the dissociation intermediates, NH2 (~3325 cm-1) and NH (~3235 cm-1) under high pressure of ammonia or equilibrium concentrations of reactants and products on Fe(111) surfaces. Special attention was paid to understand how potassium promotion of the iron catalyst affects the intermediates of ammonia synthesis. An Fe(111) surface promoted with 0.2 monolayers of potassium red shifts the vibrational frequencies of the reactive surface intermediates, NH and NH2, providing evidence for weakened the nitrogen-hydrogen bonds relative to clean Fe(111). Spectral features of these surface intermediates persisted to higher temperatures for promoted iron surfaces than for clean Fe(111) surfaces implying that nitrogen-iron bonds are stronger for the promoted surface. The ratio of the NH to NH2 signal changed for promoted surfaces in the presence of equilibrium concentrations of reactants and products. The order of adding oxygen and potassium to promoted surfaces does not alter the spectra indicating that ammonia induces surface reconstruction of the catalyst to produce the same surface morphology. When oxygen is co-adsorbed with nitrogen, hydrogen, ammonia or potassium on Fe(111), a relative phase shift of the spectra occurs as compared to the presence of adsorbates on clean iron surfaces. Water adsorption on iron was also probed using SFG vibrational spectroscopy. For both H2O and D2O, the only spectral feature was in the range of

  9. The Aging of Iron Man

    Directory of Open Access Journals (Sweden)

    Azhaar Ashraf

    2018-03-01

    Full Text Available Brain iron is tightly regulated by a multitude of proteins to ensure homeostasis. Iron dyshomeostasis has become a molecular signature associated with aging which is accompanied by progressive decline in cognitive processes. A common theme in neurodegenerative diseases where age is the major risk factor, iron dyshomeostasis coincides with neuroinflammation, abnormal protein aggregation, neurodegeneration, and neurobehavioral deficits. There is a great need to determine the mechanisms governing perturbations in iron metabolism, in particular to distinguish between physiological and pathological aging to generate fruitful therapeutic targets for neurodegenerative diseases. The aim of the present review is to focus on the age-related alterations in brain iron metabolism from a cellular and molecular biology perspective, alongside genetics, and neuroimaging aspects in man and rodent models, with respect to normal aging and neurodegeneration. In particular, the relationship between iron dyshomeostasis and neuroinflammation will be evaluated, as well as the effects of systemic iron overload on the brain. Based on the evidence discussed here, we suggest a synergistic use of iron-chelators and anti-inflammatories as putative anti-brain aging therapies to counteract pathological aging in neurodegenerative diseases.

  10. The Aging of Iron Man.

    Science.gov (United States)

    Ashraf, Azhaar; Clark, Maryam; So, Po-Wah

    2018-01-01

    Brain iron is tightly regulated by a multitude of proteins to ensure homeostasis. Iron dyshomeostasis has become a molecular signature associated with aging which is accompanied by progressive decline in cognitive processes. A common theme in neurodegenerative diseases where age is the major risk factor, iron dyshomeostasis coincides with neuroinflammation, abnormal protein aggregation, neurodegeneration, and neurobehavioral deficits. There is a great need to determine the mechanisms governing perturbations in iron metabolism, in particular to distinguish between physiological and pathological aging to generate fruitful therapeutic targets for neurodegenerative diseases. The aim of the present review is to focus on the age-related alterations in brain iron metabolism from a cellular and molecular biology perspective, alongside genetics, and neuroimaging aspects in man and rodent models, with respect to normal aging and neurodegeneration. In particular, the relationship between iron dyshomeostasis and neuroinflammation will be evaluated, as well as the effects of systemic iron overload on the brain. Based on the evidence discussed here, we suggest a synergistic use of iron-chelators and anti-inflammatories as putative anti-brain aging therapies to counteract pathological aging in neurodegenerative diseases.

  11. Towards a Multifunctional Electrochemical Sensing and Niosome Generation Lab-on-Chip Platform Based on a Plug-and-Play Concept

    Directory of Open Access Journals (Sweden)

    Adnane Kara

    2016-05-01

    Full Text Available In this paper, we present a new modular lab on a chip design for multimodal neurotransmitter (NT sensing and niosome generation based on a plug-and-play concept. This architecture is a first step toward an automated platform for an automated modulation of neurotransmitter concentration to understand and/or treat neurodegenerative diseases. A modular approach has been adopted in order to handle measurement or drug delivery or both measurement and drug delivery simultaneously. The system is composed of three fully independent modules: three-channel peristaltic micropumping system, a three-channel potentiostat and a multi-unit microfluidic system composed of pseudo-Y and cross-shape channels containing a miniature electrode array. The system was wirelessly controlled by a computer interface. The system is compact, with all the microfluidic and sensing components packaged in a 5 cm × 4 cm × 4 cm box. Applied to serotonin, a linear calibration curve down to 0.125 mM, with a limit of detection of 31 μ M was collected at unfunctionalized electrodes. Added sensitivity and selectivity was achieved by incorporating functionalized electrodes for dopamine sensing. Electrode functionalization was achieved with gold nanoparticles and using DNA and o-phenylene diamine polymer. The as-configured platform is demonstrated as a central component toward an “intelligent” drug delivery system based on a feedback loop to monitor drug delivery.

  12. Towards a Multifunctional Electrochemical Sensing and Niosome Generation Lab-on-Chip Platform Based on a Plug-and-Play Concept.

    Science.gov (United States)

    Kara, Adnane; Rouillard, Camille; Mathault, Jessy; Boisvert, Martin; Tessier, Frédéric; Landari, Hamza; Melki, Imene; Laprise-Pelletier, Myriam; Boisselier, Elodie; Fortin, Marc-André; Boilard, Eric; Greener, Jesse; Miled, Amine

    2016-05-28

    In this paper, we present a new modular lab on a chip design for multimodal neurotransmitter (NT) sensing and niosome generation based on a plug-and-play concept. This architecture is a first step toward an automated platform for an automated modulation of neurotransmitter concentration to understand and/or treat neurodegenerative diseases. A modular approach has been adopted in order to handle measurement or drug delivery or both measurement and drug delivery simultaneously. The system is composed of three fully independent modules: three-channel peristaltic micropumping system, a three-channel potentiostat and a multi-unit microfluidic system composed of pseudo-Y and cross-shape channels containing a miniature electrode array. The system was wirelessly controlled by a computer interface. The system is compact, with all the microfluidic and sensing components packaged in a 5 cm × 4 cm × 4 cm box. Applied to serotonin, a linear calibration curve down to 0.125 mM, with a limit of detection of 31 μ M was collected at unfunctionalized electrodes. Added sensitivity and selectivity was achieved by incorporating functionalized electrodes for dopamine sensing. Electrode functionalization was achieved with gold nanoparticles and using DNA and o-phenylene diamine polymer. The as-configured platform is demonstrated as a central component toward an "intelligent" drug delivery system based on a feedback loop to monitor drug delivery.

  13. Electrochemical generation of energy: from the portable electronic devices to industrial plants; Generacion electroquimica de energia electrica: de los dispositivos electronicos portatiles a las plantas industriales

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Varela, Javier [Centro de Investigacion y de Estudios Avanzados (CINVESTAV), Unidad Saltillo (Mexico)

    2006-10-15

    This article proposes the electrical energy generation via electrochemistry as substitute of petroleum and discusses on the development of low and high temperature fuel cells fed by diverse types of fuels: electrolyte fuel cells of polymeric membrane, PEM cells H{sub 2}/O{sub 2}, cell of direct alcohol consumption, PEM cells and bio-fuel cells, SOFC cells and bio-fuel cells. It presents its constitution, operation principles, and use plausibility, present situation in the market, advantages and disadvantages, as well as already made cell insertion projects. [Spanish] Este trabajo propone la generacion de energia electrica via electroquimica como sustituto del petroleo y discurre sobre el desarrollo de celdas de combustible de baja y alta temperatura alimentadas por diversos tipos de combustibles: celdas de combustible de electrolito de membrana polimerica, celda PEM H{sub 2}/O{sub 2}, celda de consumo directo de alcohol, celdas PEM y biocombustibles, celdas de combustible de oxido solido y biocombustibles. Expone su constitucion, principios de operacion, plausibilidad de uso, situacion actual en el mercado, ventajas y desventajas, asi como proyectos de insercion de celdas ya realizados.

  14. Electrochemical thermodynamic measurement system

    Science.gov (United States)

    Reynier, Yvan [Meylan, FR; Yazami, Rachid [Los Angeles, CA; Fultz, Brent T [Pasadena, CA

    2009-09-29

    The present invention provides systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and electrochemical energy storage and conversion systems. Systems and methods of the present invention are configured for simultaneously collecting a suite of measurements characterizing a plurality of interconnected electrochemical and thermodynamic parameters relating to the electrode reaction state of advancement, voltage and temperature. Enhanced sensitivity provided by the present methods and systems combined with measurement conditions that reflect thermodynamically stabilized electrode conditions allow very accurate measurement of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and electrochemical systems, such as the energy, power density, current rate and the cycle life of an electrochemical cell.

  15. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... iron-rich foods, especially during certain stages of life when more iron is needed, such as childhood and pregnancy. Good sources of iron are meat, poultry, fish, and iron- ...

  16. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... that are good sources of iron include dried beans, dried fruits, eggs, lean red meat, salmon, iron- ... of iron, including iron-fortified breads and cereals, beans, tofu, dried fruits, and spinach and other dark ...

  17. Iron in diet

    Science.gov (United States)

    ... Reasonable amounts of iron are also found in lamb, pork, and shellfish. Iron from vegetables, fruits, grains, ... strawberries, tomatoes, and potatoes) also increase iron absorption. Cooking foods in a cast-iron skillet can also ...

  18. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... from developing iron-deficiency anemia. Foods that are good sources of iron include dried beans, dried fruits, ... iron is needed, such as childhood and pregnancy. Good sources of iron are meat, poultry, fish, and ...

  19. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... you are diagnosed with iron-deficiency anemia. Risk Factors You may have an increased risk for iron- ... iron-deficiency anemia if you have certain risk factors , including pregnancy. To prevent iron-deficiency anemia, your ...

  20. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... for your body to absorb iron from the gastrointestinal tract (GI tract). Blood loss When you lose blood, ... iron deficiency. Endurance athletes lose iron through their gastrointestinal tracts. They also lose iron through the breakdown of ...

  1. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... iron in your body is low. For this reason, other iron tests are also done. Ferritin measure ... iron is needed, such as childhood and pregnancy. Good sources of iron are meat, poultry, fish, and ...

  2. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... develop new therapies for conditions that affect the balance of iron in the body and lead to ... Disease Control and Prevention) Iron - Health Professional Fact Sheet (NIH) Iron Dietary Supplement Fact Sheet (NIH) Iron- ...

  3. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... to moderate iron-deficiency anemia, or red blood cell transfusion for severe iron-deficiency anemia. You may ... body needs iron to make healthy red blood cells. Iron-deficiency anemia usually develops over time because ...

  4. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... enough iron-rich foods, such as meat and fish, may result in you getting less than the ... pregnancy. Good sources of iron are meat, poultry, fish, and iron-fortified foods that have iron added. ...

  5. Iron Dextran Injection

    Science.gov (United States)

    Iron dextran injection is used to treat iron-deficiency anemia (a lower than normal number of red blood cells ... treated with iron supplements taken by mouth. Iron dextran injection is in a class of medications called ...

  6. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... and severity. Treatments may include iron supplements, procedures, surgery, and dietary ... iron supplements, also called iron pills or oral iron, by mouth once or several times a ...

  7. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... developing iron-deficiency anemia. Foods that are good sources of iron include dried beans, dried fruits, eggs, ... is needed, such as childhood and pregnancy. Good sources of iron are meat, poultry, fish, and iron- ...

  8. Iron deficiency

    DEFF Research Database (Denmark)

    Schou, Morten; Bosselmann, Helle; Gaborit, Freja

    2015-01-01

    BACKGROUND: Both iron deficiency (ID) and cardiovascular biomarkers are associated with a poor outcome in heart failure (HF). The relationship between different cardiovascular biomarkers and ID is unknown, and the true prevalence of ID in an outpatient HF clinic is probably overlooked. OBJECTIVES.......043). CONCLUSION: ID is frequent in an outpatient HF clinic. ID is not associated with cardiovascular biomarkers after adjustment for traditional confounders. Inflammation, but not neurohormonal activation is associated with ID in systolic HF. Further studies are needed to understand iron metabolism in elderly HF...

  9. Electrochemical cell assembled in discharged state

    Science.gov (United States)

    Yao, Neng-Ping; Walsh, William J.

    1976-01-01

    A secondary, electrochemical cell is assembled in a completely discharged state within a sealed containment. As assembled, the cell includes a positive electrode separated from a negative electrode by a molten salt electrolyte. The positive electrode is contained within a porous structure, permitting passage of molten electrolyte, and includes one or more layers of a metallic mesh, e.g. iron, impregnated with an intimate mixture of lithium sulfide and the electrolyte. The negative electrode is a porous plaque of aluminum metal. Prior to using the cell, an electrical charge forms lithium-aluminum alloy within the negative electrode and metal sulfide within the positive electrode.

  10. Electrochemical Evaluation of Corrosion Inhibiting Layers Formed in a Defect from Lithium-Leaching Organic Coatings

    NARCIS (Netherlands)

    Visser, P.; Meeusen, M.; Gonzalez Garcia, Y.; Terryn, H.A.; Mol, J.M.C.

    2017-01-01

    This work presents the electrochemical evaluation of protective layers generated in a coating defect from lithium-leaching organic coatings on AA2024-T3 aluminum alloys as a function of neutral salt spray exposure time. Electrochemical impedance spectroscopy was used to study the electrochemical

  11. Elucidation of the electrochromic mechanism of nanostructured iron oxides films

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Lobato, M.A.; Martinez, Arturo I.; Castro-Roman, M. [Center for Research and Advanced Studies of the National Polytechnic Institute, Cinvestav Campus Saltillo, Carr. Saltillo-Monterrey Km. 13, Ramos Arizpe, Coah. 25900 (Mexico); Perry, Dale L. [Mail Stop 70A1150, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States); Zarate, R.A. [Departamento de Fisica, Facultad de Ciencias, Universidad Catolica del Norte, Casilla 1280, Antofagasta (Chile); Escobar-Alarcon, L. (Departamento de Fisica, Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico)

    2011-02-15

    Nanostructured hematite thin films were electrochemically cycled in an aqueous solution of LiOH. Through optical, structural, morphological, and magnetic measurements, the coloration mechanism of electrochromic iron oxide thin films was elucidated. The conditions for double or single electrochromic behavior are given in this work. During the electrochemical cycling, it was found that topotactic transformations of hexagonal crystal structures are favored; i.e. {alpha}-Fe{sub 2}O{sub 3} to Fe(OH){sub 2} and subsequently to {delta}-FeOOH. These topotactic redox reactions are responsible for color changes of iron oxide films. (author)

  12. Corrosion behaviour of layers obtained by nitrogen implantation into boron films deposited onto iron substrates

    International Nuclear Information System (INIS)

    Marchetti, F.; Fedrizzi, L.; Giacomozzi, F.; Guzman, L.; Borgese, A.

    1985-01-01

    The electrochemical behaviour and corrosion resistance of boron films deposited onto Armco iron after bombardment with 100 keV N + ions were determined in various test solutions. The changes in the electrochemical parameters give evidence of lower anodic dissolution rates for the treated samples. Scanning electron microscopy and Auger analysis of the corroded surfaces confirm the presence of protective layers. (Auth.)

  13. Electrochemical cell and negative electrode therefor

    Science.gov (United States)

    Kaun, Thomas D.

    1982-01-01

    A secondary electrochemical cell with the positive and negative electrodes separated by a molten salt electrolyte with the negative electrode comprising a particulate mixture of lithium-aluminum alloy and electrolyte and an additive selected from graphitized carbon, Raney iron or mixtures thereof. The lithium-aluminum alloy is present in the range of from about 45 to about 80 percent by volume of the negative electrode, and the electrolyte is present in an amount not less than about 10 percent by volume of the negative electrode. The additive of graphitized carbon is present in the range of from about 1 to about 10 percent by volume of the negative electrode, and the Raney iron additive is present in the range of from about 3 to about 10 percent by volume of the negative electrode.

  14. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Research Home / < Back To Health Topics / Iron-Deficiency Anemia Iron-Deficiency Anemia Also known as Leer en español Iron-deficiency ... iron-deficiency anemia. Blood tests to screen for iron-deficiency anemia To screen for iron-deficiency anemia, your doctor ...

  15. Electrochemical gating in scanning electrochemical microscopy

    NARCIS (Netherlands)

    Ahonen, P.; Ruiz, V.; Kontturi, K.; Liljeroth, P.; Quinn, B.M.

    2008-01-01

    We demonstrate that scanning electrochemical microscopy (SECM) can be used to determine the conductivity of nanoparticle assemblies as a function of assembly potential. In contrast to conventional electron transport measurements, this method is unique in that electrical connection to the film is not

  16. Petrophilic, Fe(III Reducing Exoelectrogen Citrobacter sp. KVM11, Isolated From Hydrocarbon Fed Microbial Electrochemical Remediation Systems

    Directory of Open Access Journals (Sweden)

    Krishnaveni Venkidusamy

    2018-03-01

    Full Text Available Exoelectrogenic biofilms capable of extracellular electron transfer are important in advanced technologies such as those used in microbial electrochemical remediation systems (MERS Few bacterial strains have been, nevertheless, obtained from MERS exoelectrogenic biofilms and characterized for bioremediation potential. Here we report the identification of one such bacterial strain, Citrobacter sp. KVM11, a petrophilic, iron reducing bacterial strain isolated from hydrocarbon fed MERS, producing anodic currents in microbial electrochemical systems. Fe(III reduction of 90.01 ± 0.43% was observed during 5 weeks of incubation with Fe(III supplemented liquid cultures. Biodegradation screening assays showed that the hydrocarbon degradation had been carried out by metabolically active cells accompanied by growth. The characteristic feature of diazo dye decolorization was used as a simple criterion for evaluating the electrochemical activity in the candidate microbe. The electrochemical activities of the strain KVM11 were characterized in a single chamber fuel cell and three electrode electrochemical cells. The inoculation of strain KVM11 amended with acetate and citrate as the sole carbon and energy sources has resulted in an increase in anodic currents (maximum current density of 212 ± 3 and 359 ± mA/m2 with respective coulombic efficiencies of 19.5 and 34.9% in a single chamber fuel cells. Cyclic voltammetry studies showed that anaerobically grown cells of strain KVM11 are electrochemically active whereas aerobically grown cells lacked the electrochemical activity. Electrobioremediation potential of the strain KVM11 was investigated in hydrocarbonoclastic and dye detoxification conditions using MERS. About 89.60% of 400 mg l-1 azo dye was removed during the first 24 h of operation and it reached below detection limits by the end of the batch operation (60 h. Current generation and biodegradation capabilities of strain KVM11 were examined using an

  17. Petrophilic, Fe(III) Reducing Exoelectrogen Citrobacter sp. KVM11, Isolated From Hydrocarbon Fed Microbial Electrochemical Remediation Systems

    Science.gov (United States)

    Venkidusamy, Krishnaveni; Hari, Ananda Rao; Megharaj, Mallavarapu

    2018-01-01

    Exoelectrogenic biofilms capable of extracellular electron transfer are important in advanced technologies such as those used in microbial electrochemical remediation systems (MERS) Few bacterial strains have been, nevertheless, obtained from MERS exoelectrogenic biofilms and characterized for bioremediation potential. Here we report the identification of one such bacterial strain, Citrobacter sp. KVM11, a petrophilic, iron reducing bacterial strain isolated from hydrocarbon fed MERS, producing anodic currents in microbial electrochemical systems. Fe(III) reduction of 90.01 ± 0.43% was observed during 5 weeks of incubation with Fe(III) supplemented liquid cultures. Biodegradation screening assays showed that the hydrocarbon degradation had been carried out by metabolically active cells accompanied by growth. The characteristic feature of diazo dye decolorization was used as a simple criterion for evaluating the electrochemical activity in the candidate microbe. The electrochemical activities of the strain KVM11 were characterized in a single chamber fuel cell and three electrode electrochemical cells. The inoculation of strain KVM11 amended with acetate and citrate as the sole carbon and energy sources has resulted in an increase in anodic currents (maximum current density) of 212 ± 3 and 359 ± mA/m2 with respective coulombic efficiencies of 19.5 and 34.9% in a single chamber fuel cells. Cyclic voltammetry studies showed that anaerobically grown cells of strain KVM11 are electrochemically active whereas aerobically grown cells lacked the electrochemical activity. Electrobioremediation potential of the strain KVM11 was investigated in hydrocarbonoclastic and dye detoxification conditions using MERS. About 89.60% of 400 mg l-1 azo dye was removed during the first 24 h of operation and it reached below detection limits by the end of the batch operation (60 h). Current generation and biodegradation capabilities of strain KVM11 were examined using an initial

  18. Research progress in the electrochemical synthesis of ferrate(VI)

    International Nuclear Information System (INIS)

    Macova, Zuzana; Bouzek, Karel; Hives, Jan; Sharma, Virender K.; Terryn, Raymond J.; Baum, J. Clayton

    2009-01-01

    There is renewed interest in the +6 oxidation state of iron, ferrate (VI) (Fe VI O 4 2- ), because of its potential as a benign oxidant for organic synthesis, as a chemical in developing cleaner ('greener') technology for remediation processes, and as an alternative for environment-friendly battery cathodes. This interest has led many researchers to focus their attention on the synthesis of ferrate(VI). Of the three synthesis methods, electrochemical, wet chemical and thermal, electrochemical synthesis has received the most attention due to its ease and the high purity of the product. Moreover, electrochemical processes use an electron as a so-called clean chemical, thus avoiding the use of any harmful chemicals to oxidize iron to the +6 oxidation state. This paper reviews the development of electrochemical methods to synthesize ferrate(VI). The approaches chosen by different laboratories to overcome some of the difficulties associated with the electrochemical synthesis of ferrate(VI) are summarized. Special attention is paid to parameters such as temperature, anolyte, and anode material composition. Spectroscopic work to understand the mechanism of ferrate(VI) synthesis is included. Recent advances in two new approaches, the use of an inert electrode and molten hydroxide salts, in the synthesis of ferrate(VI) are also reviewed. Progress made in the commercialization of ferrate(VI) continuous production is briefly discussed as well

  19. Effect of residual stresses on hydrogen permeation in iron

    International Nuclear Information System (INIS)

    Mouanga, M.; Bercot, P.; Takadoum, J.

    2010-01-01

    The effect of residual stresses on electrochemical permeation in iron membrane was investigated. Four thermal and mechanical treatments were chosen to obtain different surface states in relation to the residual stresses. Residual stresses were determined by X-ray diffraction (XRD) using the Macherauch and Mueller method. The results were completed by the microhardness measurements. For all iron membranes, compressive residual stresses were obtained. Electrochemical permeation experiments using a Devanathan and Stachurski cell were employed to determine the hydrogen permeation behaviour of the various iron membranes. The latter was charged with hydrogen by galvanostatic cathodic polarization in 0.1 M NaOH at 25 deg. C. The experimental results revealed that hydrogen permeation rate increases with increasing residual stresses introduced in iron membranes.

  20. Electrochemical characterization of liquid resistors

    International Nuclear Information System (INIS)

    Wilson, J.M.; Whiteley, R.V.

    1983-01-01

    During the first two years of operation of Sandia's Particle Beam Fusion Accelerator (PBFA I) the reliability of the CuSO 4 solution resistors in the Marx Generator Energy Storage System has been unsatisfactory. Resistor failure, which is characterized by a large increase in resistance, has been attributed to materials, production techniques, and operating parameters. The problems associated with materials and production techniques have been identified and solutions are proposed. Non-ideal operating parameters are shown to cause polarization of the cathode in the resistor. This initiates electrochemical reactions in the resistor. These reactions often lead to resistance changes and to eventual resistor failure

  1. Iron and iron derived radicals

    International Nuclear Information System (INIS)

    Borg, D.C.; Schaich, K.M.

    1987-04-01

    We have discussed some reactions of iron and iron-derived oxygen radicals that may be important in the production or treatment of tissue injury. Our conclusions challenge, to some extent, the usual lines of thought in this field of research. Insofar as they are born out by subsequent developments, the lessons they teach are two: Think fast! Think small! In other words, think of the many fast reactions that can rapidly alter the production and fate of highly reactive intermediates, and when considering the impact of competitive reactions on such species, think how they affect the microenvironment (on the molecular scale) ''seen'' by each reactive molecule. 21 refs., 3 figs., 1 tab

  2. Iron, transferrin and myelinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Sergeant, C. E-mail: sergeant@cenbg.in2p3.fr; Vesvres, M.H.; Deves, G.; Baron, B.; Guillou, F

    2003-09-01

    Transferrin (Tf), the iron binding protein of vertebrates serum, is known to be synthesized by oligodendrocytes (Ols) in the central nervous system. It has been postulated that Tf is involved in Ols maturation and myelinogenesis. This link is particularly important in the understanding of a severe human pathology: the multiple sclerosis, which remains without efficient treatment. We generated transgenic mice containing the complete human Tf gene and extensive regulatory sequences from the 5{sup '} and 3{sup '} untranslated regions that specifically overexpress Tf in Ols. Brain cytoarchitecture of the transgenic mice appears to be normal in all brain regions examined, total myelin content is increased by 30% and motor coordination is significantly improved when compared with non-transgenic littermates. Tf role in the central nervous system may be related to its affinity for metallic cations. Normal and transgenic mice were used for determination of trace metals (iron, copper and zinc) and minerals (potassium and calcium) concentration in cerebellum and corpus callosum. The freeze-dried samples were prepared to allow proton-induced X-ray emission and Rutherford backscattering spectrometry analyses with the nuclear microprobe in Bordeaux. Preliminary results were obtained and carbon distribution was revealed as a very good analysis to distinguish precisely the white matter region. A comparison of metallic and mineral elements contents in brain between normal and transgenic mice shows that iron, copper and zinc levels remained constant. This result provides evidence that effects of Tf overexpression in the brain do not solely relate to iron transport.

  3. Iron, transferrin and myelinogenesis

    International Nuclear Information System (INIS)

    Sergeant, C.; Vesvres, M.H.; Deves, G.; Baron, B.; Guillou, F.

    2003-01-01

    Transferrin (Tf), the iron binding protein of vertebrates serum, is known to be synthesized by oligodendrocytes (Ols) in the central nervous system. It has been postulated that Tf is involved in Ols maturation and myelinogenesis. This link is particularly important in the understanding of a severe human pathology: the multiple sclerosis, which remains without efficient treatment. We generated transgenic mice containing the complete human Tf gene and extensive regulatory sequences from the 5 ' and 3 ' untranslated regions that specifically overexpress Tf in Ols. Brain cytoarchitecture of the transgenic mice appears to be normal in all brain regions examined, total myelin content is increased by 30% and motor coordination is significantly improved when compared with non-transgenic littermates. Tf role in the central nervous system may be related to its affinity for metallic cations. Normal and transgenic mice were used for determination of trace metals (iron, copper and zinc) and minerals (potassium and calcium) concentration in cerebellum and corpus callosum. The freeze-dried samples were prepared to allow proton-induced X-ray emission and Rutherford backscattering spectrometry analyses with the nuclear microprobe in Bordeaux. Preliminary results were obtained and carbon distribution was revealed as a very good analysis to distinguish precisely the white matter region. A comparison of metallic and mineral elements contents in brain between normal and transgenic mice shows that iron, copper and zinc levels remained constant. This result provides evidence that effects of Tf overexpression in the brain do not solely relate to iron transport

  4. Gas recombination assembly for electrochemical cells

    Science.gov (United States)

    Levy, Isaac; Charkey, Allen

    1989-01-01

    An assembly for recombining gases generated in electrochemical cells wherein a catalyst strip is enveloped within a hydrophobic, gas-porous film which, in turn, is encased between gas-porous, metallic layers. The sandwich construction of metallic layers and film is formed into a spiral with a tab for connection to the cell.

  5. Electrochemical force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kalinin, Sergei V.; Jesse, Stephen; Collins, Liam F.; Rodriguez, Brian J.

    2017-01-10

    A system and method for electrochemical force microscopy are provided. The system and method are based on a multidimensional detection scheme that is sensitive to forces experienced by a biased electrode in a solution. The multidimensional approach allows separation of fast processes, such as double layer charging, and charge relaxation, and slow processes, such as diffusion and faradaic reactions, as well as capturing the bias dependence of the response. The time-resolved and bias measurements can also allow probing both linear (small bias range) and non-linear (large bias range) electrochemical regimes and potentially the de-convolution of charge dynamics and diffusion processes from steric effects and electrochemical reactivity.

  6. Iron cycling at corroding carbon steel surfaces

    Science.gov (United States)

    Lee, Jason S.; McBeth, Joyce M.; Ray, Richard I.; Little, Brenda J.; Emerson, David

    2013-01-01

    Surfaces of carbon steel (CS) exposed to mixed cultures of iron-oxidizing bacteria (FeOB) and dissimilatory iron-reducing bacteria (FeRB) in seawater media under aerobic conditions were rougher than surfaces of CS exposed to pure cultures of either type of microorganism. The roughened surface, demonstrated by profilometry, is an indication of loss of metal from the surface. In the presence of CS, aerobically grown FeOB produced tight, twisted helical stalks encrusted with iron oxides. When CS was exposed anaerobically in the presence of FeRB, some surface oxides were removed. However, when the same FeOB and FeRB were grown together in an aerobic medium, FeOB stalks were less encrusted with iron oxides and appeared less tightly coiled. These observations suggest that iron oxides on the stalks were reduced and solubilized by the FeRB. Roughened surfaces of CS and denuded stalks were replicated with three culture combinations of different species of FeOB and FeRB under three experimental conditions. Measurements of electrochemical polarization resistance established different rates of corrosion of CS in aerobic and anaerobic media, but could not differentiate rate differences between sterile controls and inoculated exposures for a given bulk concentration of dissolved oxygen. Similarly, total iron in the electrolyte could not be used to differentiate treatments. The experiments demonstrate the potential for iron cycling (oxidation and reduction) on corroding CS in aerobic seawater media. PMID:24093730

  7. Bio-electrochemical synthesis of commodity chemicals by ...

    Indian Academy of Sciences (India)

    2016-08-02

    Aug 2, 2016 ... be exploited in a bio-electrochemical system for current generation or to provide ..... fiber was desorbed directly to GC injector for 3 min. This ..... The authors are grateful to COMSATS Institute of Information. Technology ...

  8. Iron mineralogy and bioaccessibility of dust generated from soils as determined by reflectance spectroscopy and magnetic and chemical properties--Nellis Dunes recreational area, Nevada

    Science.gov (United States)

    Goldstein, Harland L.; Reynolds, Richard L.; Morman, Suzette A.; Moskowitz, Bruce; Kokaly, Raymond F.; Goossens, Dirk; Buck, Brenda J.; Flagg, Cody; Till, Jessica; Yauk, Kimberly; Berquó, Thelma S.

    2013-01-01

    Atmospheric mineral dust exerts many important effects on the Earth system, such as atmospheric temperatures, marine productivity, and melting of snow and ice. Mineral dust also can have detrimental effects on human health through respiration of very small particles and the leaching of metals in various organs. These effects can be better understood through characterization of the physical and chemical properties of dust, including certain iron oxide minerals, for their extraordinary radiative properties and possible effects on lung inflammation. Studies of dust from the Nellis Dunes recreation area near Las Vegas, Nevada, focus on characteristics of radiative properties (capacity of dust to absorb solar radiation), iron oxide mineral type and size, chemistry, and bioaccessibility of metals in fluids that simulate human gastric, lung, and phagolysosomal fluids. In samples of dust from the Nellis Dunes recreation area with median grain sizes of 2.4, 3.1, and 4.3 micrometers, the ferric oxide minerals goethite and hematite, at least some of it nanosized, were identified. In one sample, in vitro bioaccessibility experiments revealed high bioaccessibility of arsenic in all three biofluids and higher leachate concentration and bioaccessibility for copper, uranium, and vanadium in the simulated lung fluid than in the phagolysosomal fluid. The combination of methods used here to characterize mineral dust at the Nellis Dunes recreation area can be applied to global dust and broad issues of public health.

  9. Iron deficiency anaemia in pregnancy: The role of parenteral iron.

    Science.gov (United States)

    Esen, Umo I

    2017-01-01

    Maternal and perinatal morbidity and mortality remain major challenges in the delivery of safe maternity care worldwide. Anaemia in pregnancy is an important contributor to this dismal picture, especially where blood transfusion services are poorly developed. An early diagnosis and treatment of iron deficiency anaemia in pregnancy using the new generation dextran-free parenteral iron preparations can save lives and reduce morbidity in selected pregnancies. It is time to cast aside the fears associated with the use of the old parenteral iron preparations which were associated a high incidence of anaphylaxis, and embrace the use of new parenteral iron products which have better side effect profiles and can deliver total dose infusions without the need for test dosing. In selected women, the benefits of this treatment far outweigh any disadvantages.

  10. Fundamentals of electrochemical science

    CERN Document Server

    Oldham, Keith

    1993-01-01

    Key Features* Deals comprehensively with the basic science of electrochemistry* Treats electrochemistry as a discipline in its own right and not as a branch of physical or analytical chemistry* Provides a thorough and quantitative description of electrochemical fundamentals

  11. Electrochemical Analysis of Neurotransmitters

    Science.gov (United States)

    Bucher, Elizabeth S.; Wightman, R. Mark

    2015-07-01

    Chemical signaling through the release of neurotransmitters into the extracellular space is the primary means of communication between neurons. More than four decades ago, Ralph Adams and his colleagues realized the utility of electrochemical methods for the study of easily oxidizable neurotransmitters, such as dopamine, norepinephrine, and serotonin and their metabolites. Today, electrochemical techniques are frequently coupled to microelectrodes to enable spatially resolved recordings of rapid neurotransmitter dynamics in a variety of biological preparations spanning from single cells to the intact brain of behaving animals. In this review, we provide a basic overview of the principles underlying constant-potential amperometry and fast-scan cyclic voltammetry, the most commonly employed electrochemical techniques, and the general application of these methods to the study of neurotransmission. We thereafter discuss several recent developments in sensor design and experimental methodology that are challenging the current limitations defining the application of electrochemical methods to neurotransmitter measurements.

  12. Organic electrochemical transistors

    KAUST Repository

    Rivnay, Jonathan; Inal, Sahika; Salleo, Alberto; Owens, Ró isí n M.; Berggren, Magnus; Malliaras, George G.

    2018-01-01

    Organic electrochemical transistors (OECTs) make effective use of ion injection from an electrolyte to modulate the bulk conductivity of an organic semiconductor channel. The coupling between ionic and electronic charges within the entire volume

  13. Nanostructured Electrode Materials for Electrochemical Capacitor Applications.

    Science.gov (United States)

    Choi, Hojin; Yoon, Hyeonseok

    2015-06-02

    The advent of novel organic and inorganic nanomaterials in recent years, particularly nanostructured carbons, conducting polymers, and metal oxides, has enabled the fabrication of various energy devices with enhanced performance. In this paper, we review in detail different nanomaterials used in the fabrication of electrochemical capacitor electrodes and also give a brief overview of electric double-layer capacitors, pseudocapacitors, and hybrid capacitors. From a materials point of view, the latest trends in electrochemical capacitor research are also discussed through extensive analysis of the literature and by highlighting notable research examples (published mostly since 2013). Finally, a perspective on next-generation capacitor technology is also given, including the challenges that lie ahead.

  14. Method for conducting nonlinear electrochemical impedance spectroscopy

    Science.gov (United States)

    Adler, Stuart B.; Wilson, Jamie R.; Huff, Shawn L.; Schwartz, Daniel T.

    2015-06-02

    A method for conducting nonlinear electrochemical impedance spectroscopy. The method includes quantifying the nonlinear response of an electrochemical system by measuring higher-order current or voltage harmonics generated by moderate-amplitude sinusoidal current or voltage perturbations. The method involves acquisition of the response signal followed by time apodization and fast Fourier transformation of the data into the frequency domain, where the magnitude and phase of each harmonic signal can be readily quantified. The method can be implemented on a computer as a software program.

  15. Iron Homeostasis in Mycobacterium tuberculosis: Mechanistic Insights into Siderophore-Mediated Iron Uptake

    Science.gov (United States)

    2016-01-01

    Mycobacterium tuberculosis requires iron for normal growth but faces a limitation of the metal ion due to its low solubility at biological pH and the withholding of iron by the mammalian host. The pathogen expresses the Fe3+-specific siderophores mycobactin and carboxymycobactin to chelate the metal ion from insoluble iron and the host proteins transferrin, lactoferrin, and ferritin. Siderophore-mediated iron uptake is essential for the survival of M. tuberculosis, as knockout mutants, which were defective in siderophore synthesis or uptake, failed to survive in low-iron medium and inside macrophages. But as excess iron is toxic due to its catalytic role in the generation of free radicals, regulation of iron uptake is necessary to maintain optimal levels of intracellular iron. The focus of this review is to present a comprehensive overview of iron homeostasis in M. tuberculosis that is discussed in the context of mycobactin biosynthesis, transport of iron across the mycobacterial cell envelope, and storage of excess iron. The clinical significance of the serum iron status and the expression of the iron-regulated protein HupB in tuberculosis (TB) patients is presented here, highlighting the potential of HupB as a marker, notably in extrapulmonary TB cases. PMID:27402628

  16. Electrochemical generation of oxygen. 1: The effects of anions and cations on hydrogen chemisorption and anodic oxide film formation on platinum electrode. 2: The effects of anions and cations on oxygen generation on platinum electrode

    Science.gov (United States)

    Huang, C. J.; Yeager, E.; Ogrady, W. E.

    1975-01-01

    The effects were studied of anions and cations on hydrogen chemisorption and anodic oxide film formation on Pt by linear sweep voltammetry, and on oxygen generation on Pt by potentiostatic overpotential measurement. The hydrogen chemisorption and anodic oxide film formation regions are greatly influenced by anion adsorption. In acids, the strongly bound hydrogen occurs at more cathodic potential when chloride and sulfate are present. Sulfate affects the initial phase of oxide film formation by produced fine structure while chloride retards the oxide-film formation. In alkaline solutions, both strongly and weakly bound hydrogen are influenced by iodide, cyanide, and barium and calcium cations. These ions also influence the oxide film formation. Factors considered to explain these effects are discussed. The Tafel slope for oxygen generation was found to be independent on the oxide thickness and the presence of cations or anions. The catalytic activity indicated by the exchange current density was observed decreasing with increasing oxide layer thickness, only a minor dependence on the addition of certain cations and anions was found.

  17. Iron and stony-iron meteorites

    DEFF Research Database (Denmark)

    Ruzicka, Alex M.; Haack, Henning; Chabot, Nancy L.

    2017-01-01

    By far most of the melted and differentiated planetesimals that have been sampled as meteorites are metal-rich iron meteorites or stony iron meteorites. The parent asteroids of these meteorites accreted early and differentiated shortly after the solar system formed, producing some of the oldest...... and interpretations for iron and stony iron meteorites (Plate 13.1). Such meteorites provide important constraints on the nature of metal-silicate separation and mixing in planetesimals undergoing partial to complete differentiation. They include iron meteorites that formed by the solidification of cores...... (fractionally crystallized irons), irons in which partly molten metal and silicates of diverse types were mixed together (silicate-bearing irons), stony irons in which partly molten metal and olivine from cores and mantles were mixed together (pallasites), and stony irons in which partly molten metal...

  18. Electrochemical polymer electrolyte membranes

    CERN Document Server

    Fang, Jianhua; Wilkinson, David P

    2015-01-01

    Electrochemical Polymer Electrolyte Membranes covers PEMs from fundamentals to applications, describing their structure, properties, characterization, synthesis, and use in electrochemical energy storage and solar energy conversion technologies. Featuring chapters authored by leading experts from academia and industry, this authoritative text: Discusses cutting-edge methodologies in PEM material selection and fabricationPoints out important challenges in developing PEMs and recommends mitigation strategies to improve PEM performanceAnalyzes the cur

  19. Nanohybrid capacitor: the next generation electrochemical capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Naoi, K. [Institute of Symbiotic Science and Technology, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8558 (Japan)

    2010-10-15

    Conventional electric double layer capacitors (EDLC) designed with two symmetrical activated carbon electrodes can deliver substantially more power than similar size Li-ion batteries. There is presently a major effort to increase the energy density of EDLC s up to a target value in the vicinity of 20-30 Wh kg{sup -1}.The present review article deals with the recent contributions to get this high energy density and new approaches that have been made to increase the withstanding voltage of the EDLCs. Important alternative approach to meet this goal that is under serious investigation is to develop an asymmetric (hybrid) capacitors. Hybrid capacitor systems are the promising approach to meet the goal to effectively increase the energy density. The investigation is to develop hybrid capacitors has been initiated by Li-ion capacitors. And, now Nanohybrid capacitor certainly achieves as high energy density as Li-ion capacitors with higher stability, higher safety and higher productivity. This is the new lithium-ion based hybrid capacitor using the lithium titanate (Li{sub 4}Ti{sub 5}O{sub 12}) negative intercalation electrode that can operate at unusually high current densities. The high-rate Li{sub 4}Ti{sub 5}O{sub 12} negative electrode has a unique nano-structure consisting of unusually small nano-crystalline Li{sub 4}Ti{sub 5}O{sub 12} nucleated and grafted onto carbon nano-fiber anchors (nc-Li{sub 4}Ti{sub 5}O{sub 12}/CNF). (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  20. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Iron-Deficiency Anemia Iron-Deficiency Anemia Also known as Leer en español Iron-deficiency anemia is a ... address the cause of your iron deficiency, such as any underlying bleeding. If undiagnosed or untreated, iron- ...

  1. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... To Health Topics / Iron-Deficiency Anemia Iron-Deficiency Anemia Also known as Leer en español Iron-deficiency ... anemia. Blood tests to screen for iron-deficiency anemia To screen for iron-deficiency anemia, your doctor ...

  2. Iron-Deficiency Anemia

    Science.gov (United States)

    ... To Health Topics / Iron-Deficiency Anemia Iron-Deficiency Anemia Also known as Leer en español Iron-deficiency ... anemia. Blood tests to screen for iron-deficiency anemia To screen for iron-deficiency anemia, your doctor ...

  3. Online Monitoring of Electrochemical Degradation of Paracetamol through a Biomimetic Sensor

    OpenAIRE

    Mariana Calora Quintino de Oliveira; Marcos Roberto de Vasconcelos Lanza; José Luis Paz Jara; Maria Del Pilar Taboada Sotomayor

    2011-01-01

    This paper reports, for the first time, the online monitoring to the electrochemical degradation of the paracetamol using a biomimetic sensor coupled to a Flow Injection Analysis (FIA) system. The electrochemical degradation of the drug was carried out in aqueous medium using a flow-by reactor with a DSA anode. The process efficiency was monitored at real time by the biomimetic sensor constructed by modifying a glassy carbon electrode with a Nafion membrane doped with iron tetrapyridinoporphy...

  4. Study on the electrochemical of the metal deposition from ionic liquids for lithium, titanium and dysprosium

    International Nuclear Information System (INIS)

    Berger, Claudia A.

    2017-01-01

    The thesis was aimed to the characterization of electrochemically deposited film of lithium, titanium and dysprosium on Au(111) from different ionic liquids, finally dysprosium on neodymium-iron-boron magnate for industrial applications. The investigation of the deposits were performed using cyclic voltametry, in-situ scanning tunneling microscopy, electrochemical quartz microbalance, XPS and Auger electron spectroscopy. The sample preparation is described in detail. The deposition rate showed a significant temperature dependence.

  5. Enhancing graphene/CNT based electrochemical detection using magneto-nanobioprobes

    OpenAIRE

    sprotocols

    2015-01-01

    Authors: Priyanka Sharma, V Bhalla, E Senthil Prasad, V Dravid, G Shekhawat & C. Raman Suri ### Abstract This protocol describes an optimized signal amplification strategy to develop an ultra-sensitive magneto-electrochemical biosensing platform. The new protocol combines the advantages of carbon nanotube (CNT) and reduced graphene oxide (rGO) together with electrochemical bursting of magnetic nanoparticles. The method involves synthesis of gold-iron (Au/Fe) nano-structures function...

  6. Structure and properties of composite iron-based coatings obtained by the electromechanical technique

    Science.gov (United States)

    Dubinskii, N. A.

    2007-09-01

    The influence of the electrolyte temperature and current density on the content of inclusions of powder particles in composite coatings obtained by the electrochemical technique has been investigated. It has been found that the wear resistance of iron coatings with inclusions of powder particles of aluminum, kaolin, and calcium silicate increases from 5 to 10 times compared to coating without inclusions of disperse particles, and the friction coefficient therewith decreases from 0.097 to 0.026. It has been shown that the mechanical properties of iron obtained by the method of electrochemical deposition depend on their fine structure. The regimes of deposition of iron-based coatings have been optimized.

  7. Iron phosphate materials as cathodes for lithium batteries

    CERN Document Server

    Prosini, Pier Paolo

    2011-01-01

    ""Iron Phosphate Materials as Cathodes for Lithium Batteries"" describes the synthesis and the chemical-physical characteristics of iron phosphates, and presents methods of making LiFePO4 a suitable cathode material for lithium-ion batteries. The author studies carbon's ability to increase conductivity and to decrease material grain size, as well as investigating the electrochemical behaviour of the materials obtained. ""Iron Phosphate Materials as Cathodes for Lithium Batteries"" also proposes a model to explain lithium insertion/extraction in LiFePO4 and to predict voltage profiles at variou

  8. Study of electrochemical phosphate conversion coating of metallic surfaces

    International Nuclear Information System (INIS)

    Gougelin, Patrick

    1985-01-01

    After an overview on phosphate conversion coating processes, on models of iron electrochemical dissolution, on the passivation phenomenon, and on the phosphate conversion coating treatment, this research thesis reports a detailed study of this last process. The author presents the experimental method, reports the study of this process and of passivation under constant polarization. He reports the use of various techniques and conditions: chrono-amperometry, chrono-potentiometry, cyclic volt-amperometry

  9. Nanomaterials-based electrochemical sensors for nitric oxide

    International Nuclear Information System (INIS)

    Dang, Xueping; Hu, Hui; Wang, Shengfu; Hu, Shengshui

    2015-01-01

    Electrochemical sensing has been demonstrated to represent an efficient way to quantify nitric oxide (NO) in challenging physiological environments. A sensing interface based on nanomaterials opens up new opportunities and broader prospects for electrochemical NO sensors. This review (with 141 refs.) gives a general view of recent advances in the development of electrochemical sensors based on nanomaterials. It is subdivided into sections on (i) carbon derived nanomaterials (such as carbon nanotubes, graphenes, fullerenes), (ii) metal nanoparticles (including gold, platinum and other metallic nanoparticles); (iii) semiconductor metal oxide nanomaterials (including the oxides of titanium, aluminum, iron, and ruthenium); and finally (iv) nanocomposites (such as those formed from carbon nanomaterials with nanoparticles of gold, platinum, NiO or TiO 2 ). The various strategies are discussed, and the advances of using nanomaterials and the trends in NO sensor technology are outlooked in the final section. (author)

  10. Electrochemical reduction of NOx

    DEFF Research Database (Denmark)

    Traulsen, Marie Lund

    NO and NO2 (collectively referred to as NOx) are air pollutants, and the largest single contributor to NOx pollution is automotive exhaust. This study investigates electrochemical deNOx, a technology which aims to remove NOx from automotive diesel exhaust by electrochemical reduction of NOx to N2...... and O2. The focus in this study is on improving the activity and selectivity of solid oxide electrodes for electrochemical deNOx by addition of NOx storage compounds to the electrodes. Two different composite electrodes, La0.85Sr0.15MnO3-δ-Ce0.9Gd0.1O1.95 (LSM15-CGO10) and La0.85Sr0.15FeO3-δ-Ce0.9Gd0.1O......1.95 (LSF15-CGO10), have been investigated in combination with three different NOx storage compounds: BaO, K2O and MnOx. The main focus in the investigation has been on conversion measurements and electrochemical characterization, the latter by means of electrochemical impedance spectroscopy...

  11. Combined geochemical and electrochemical methodology to quantify corrosion of carbon steel by bacterial activity

    International Nuclear Information System (INIS)

    Schutz, Marta K.; Moreira, Rebeca; Tribollet, Bernard; Vivier, Vincent; Bildstein, Olivier; Lartigue, Jean-Eric; Libert, Marie; Schlegel, Michel L.

    2014-01-01

    The availability of respiratory substrates, such as H 2 and Fe(II,III) solid corrosion products within nuclear waste repository, will sustain the activities of hydrogen-oxidizing bacteria (HOB) and iron-reducing bacteria (IRB). This may have a direct effect on the rate of carbon steel corrosion. This study investigates the effects of Shewanella oneidensis (an HOB and IRB model organism) on the corrosion rate by looking at carbon steel dissolution in the presence of H 2 as the sole electron donor. Bacterial effect is evaluated by means of geochemical and electrochemical techniques. Both showed that the corrosion rate is enhanced by a factor of 2-3 in the presence of bacteria. The geochemical experiments indicated that the composition and crystallinity of the solid corrosion products (magnetite and vivianite) are modified by bacteria. Moreover, the electrochemical experiments evidenced that the bacterial activity can be stimulated when H 2 is generated in a small confinement volume. In this case, a higher corrosion rate and mineralization (vivianite) on the carbon steel surface were observed. The results suggest that the mechanism likely to influence the corrosion rate is the bioreduction of Fe(III) from magnetite coupled to the H 2 oxidation. (authors)

  12. Modelling Systemic Iron Regulation during Dietary Iron Overload and Acute Inflammation: Role of Hepcidin-Independent Mechanisms.

    Science.gov (United States)

    Enculescu, Mihaela; Metzendorf, Christoph; Sparla, Richard; Hahnel, Maximilian; Bode, Johannes; Muckenthaler, Martina U; Legewie, Stefan

    2017-01-01

    Systemic iron levels must be maintained in physiological concentrations to prevent diseases associated with iron deficiency or iron overload. A key role in this process plays ferroportin, the only known mammalian transmembrane iron exporter, which releases iron from duodenal enterocytes, hepatocytes, or iron-recycling macrophages into the blood stream. Ferroportin expression is tightly controlled by transcriptional and post-transcriptional mechanisms in response to hypoxia, iron deficiency, heme iron and inflammatory cues by cell-autonomous and systemic mechanisms. At the systemic level, the iron-regulatory hormone hepcidin is released from the liver in response to these cues, binds to ferroportin and triggers its degradation. The relative importance of individual ferroportin control mechanisms and their interplay at the systemic level is incompletely understood. Here, we built a mathematical model of systemic iron regulation. It incorporates the dynamics of organ iron pools as well as regulation by the hepcidin/ferroportin system. We calibrated and validated the model with time-resolved measurements of iron responses in mice challenged with dietary iron overload and/or inflammation. The model demonstrates that inflammation mainly reduces the amount of iron in the blood stream by reducing intracellular ferroportin transcription, and not by hepcidin-dependent ferroportin protein destabilization. In contrast, ferroportin regulation by hepcidin is the predominant mechanism of iron homeostasis in response to changing iron diets for a big range of dietary iron contents. The model further reveals that additional homeostasis mechanisms must be taken into account at very high dietary iron levels, including the saturation of intestinal uptake of nutritional iron and the uptake of circulating, non-transferrin-bound iron, into liver. Taken together, our model quantitatively describes systemic iron metabolism and generated experimentally testable predictions for additional

  13. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... making new blood cells. Visit our Aplastic Anemia Health Topic to learn more. ... recommend that you take iron supplements, also called iron pills or oral iron, by mouth once or several times a ...

  14. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... red meat, salmon, iron-fortified breads and cereals, peas, tofu, dried fruits, and dark green leafy vegetables. ... stored iron has been used. Ferritin is a protein that helps store iron in your body. Reticulocyte ...

  15. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... drinking black tea, which reduces iron absorption. Other treatments If you have chronic kidney disease and iron- ... and lifestyle changes to avoid complications. Follow your treatment plan Do not stop taking your prescribed iron ...

  16. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... diagnoses you with iron-deficiency anemia, your treatment will depend on the cause and severity of the ... of iron. The recommended daily amounts of iron will depend on your age, sex, and whether you ...

  17. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... heart failure . Increased risk of infections Motor or cognitive development delays in children Pregnancy complications, such as ... iron-deficiency anemia may require intravenous (IV) iron therapy or a blood transfusion . Iron supplements Your doctor ...

  18. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... for iron-deficiency anemia. Lifestyle habits Certain lifestyle habits may increase your risk for iron-deficiency anemia, including: Vegetarian or vegan eating patterns. Not eating enough iron-rich foods, such ...

  19. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... because your body’s intake of iron is too low. Low intake of iron can happen because of blood ... delivery or giving birth to a baby with low birth weight In people with chronic conditions, iron- ...

  20. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... breastfeeding. Recommended daily iron intake for children and adults. The table lists the recommended amounts of iron, ... increased need for iron during growth spurts. Older adults, especially those over age 65. Unhealthy environments Children ...

  1. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... girls. From birth to 6 months, babies need 0.27 mg of iron. This number goes up ... screen blood donors for low iron stores. Reliable point-of-care testing may help identify iron deficiency ...

  2. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... amount of iron, and medical conditions that make it hard for your body to absorb iron from ... hepcidin. Hepcidin prevents iron from leaving cells where it is stored or from being absorbed in the ...

  3. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... bleeding. If undiagnosed or untreated, iron-deficiency anemia can cause serious complications, including heart failure and development ... iron is too low. Low intake of iron can happen because of blood loss, consuming less than ...

  4. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... iron-fortified foods that have iron added. Vegetarian diets can provide enough iron if you choose nonmeat ... Anemia in Chronic Kidney Disease (National Institute of Diabetes and Digestive and Kidney Diseases) Avoiding Anemia (National ...

  5. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... lean red meat, salmon, iron-fortified breads and cereals, peas, tofu, dried fruits, and dark green leafy ... sources of iron, including iron-fortified breads and cereals, beans, tofu, dried fruits, and spinach and other ...

  6. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... starch. Restless legs syndrome Shortness of breath Weakness Complications Undiagnosed or untreated iron-deficiency anemia may cause ... as complete blood count and iron studies. Prevent complications over your lifetime To prevent complications from iron- ...

  7. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... you do not have enough iron in your body. People with mild or moderate iron-deficiency anemia ... and where to find more information. Causes Your body needs iron to make healthy red blood cells. ...

  8. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... from developing iron-deficiency anemia. Foods that are good sources of iron include dried beans, dried fruits, eggs, lean red meat, ... signs of iron-deficiency anemia include: Brittle nails ...

  9. Taking iron supplements

    Science.gov (United States)

    ... medlineplus.gov/ency/article/007478.htm Taking iron supplements To use the sharing features on this page, ... levels. You may also need to take iron supplements as well to rebuild iron stores in your ...

  10. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... fruits, eggs, lean red meat, salmon, iron-fortified breads and cereals, peas, tofu, dried fruits, and dark ... choose nonmeat sources of iron, including iron-fortified breads and cereals, beans, tofu, dried fruits, and spinach ...

  11. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... ESAs are usually used with iron therapy or IV iron, or when iron therapy alone is not enough. Look for Living With will discuss what your doctor may recommend, including lifelong lifestyle changes ...

  12. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... and pregnancy. Good sources of iron are meat, poultry, fish, and iron-fortified foods that have iron ... Anemia Restless Legs Syndrome Von Willebrand Disease Other Resources NHLBI resources Your Guide to Anemia [PDF, 1. ...

  13. Effects of microbial redox cycling of iron on cast iron pipe corrosion in drinking water distribution systems.

    Science.gov (United States)

    Wang, Haibo; Hu, Chun; Zhang, Lili; Li, Xiaoxiao; Zhang, Yu; Yang, Min

    2014-11-15

    Bacterial characteristics in corrosion products and their effect on the formation of dense corrosion scales on cast iron coupons were studied in drinking water, with sterile water acting as a reference. The corrosion process and corrosion scales were characterized by electrochemical and physico-chemical measurements. The results indicated that the corrosion was more rapidly inhibited and iron release was lower due to formation of more dense protective corrosion scales in drinking water than in sterile water. The microbial community and denitrifying functional genes were analyzed by pyrosequencing and quantitative polymerase chain reactions (qPCR), respectively. Principal component analysis (PCA) showed that the bacteria in corrosion products played an important role in the corrosion process in drinking water. Nitrate-reducing bacteria (NRB) Acidovorax and Hydrogenophaga enhanced iron corrosion before 6 days. After 20 days, the dominant bacteria became NRB Dechloromonas (40.08%) with the protective corrosion layer formation. The Dechloromonas exhibited the stronger corrosion inhibition by inducing the redox cycling of iron, to enhance the precipitation of iron oxides and formation of Fe3O4. Subsequently, other minor bacteria appeared in the corrosion scales, including iron-respiring bacteria and Rhizobium which captured iron by the produced siderophores, having a weaker corrosion-inhibition effect. Therefore, the microbially-driven redox cycling of iron with associated microbial capture of iron caused more compact corrosion scales formation and lower iron release. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Exploring the iron metabolism in multidrug resistant tuberculosis ...

    African Journals Online (AJOL)

    The iron metabolism plays a key role in the progression of active Tuberculosis. Several studies have shown a link between iron metabolism disorders an active tuberculosis. The aim of this study was to explore the iron metabolism of 100 patients with multidrug-resistant tuberculosis (MDR-TB) treated with second generation ...

  15. Genetics Home Reference: iron-refractory iron deficiency anemia

    Science.gov (United States)

    ... refractory iron deficiency anemia Iron-refractory iron deficiency anemia Printable PDF Open All Close All Enable Javascript ... expand/collapse boxes. Description Iron-refractory iron deficiency anemia is one of many types of anemia , which ...

  16. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... increased need for iron during growth spurts. Older adults, especially those over age ... athletes. Athletes, especially young females, are at risk for iron deficiency. Endurance ...

  17. Electrochemical Reduction Process for Pyroprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Eun-Young; Hong, Sun-Seok; Park, Wooshin; Im, Hun Suk; Oh, Seung-Chul; Won, Chan Yeon; Cha, Ju-Sun; Hur, Jin-Mok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-06-15

    Nuclear energy is expected to meet the growing energy demand while avoiding CO{sub 2} emission. However, the problem of accumulating spent fuel from current nuclear power plants which is mainly composed of uranium oxides should be addressed. One of the most practical solutions is to reduce the spent oxide fuel and recycle it. Next-generation fuel cycles demand innovative features such as a reduction of the environmental load, improved safety, efficient recycling of resources, and feasible economics. Pyroprocessing based on molten salt electrolysis is one of the key technologies for reducing the amount of spent nuclear fuel and destroying toxic waste products, such as the long-life fission products. The oxide reduction process based on the electrochemical reduction in a LiCl-Li{sub 2}O electrolyte has been developed for the volume reduction of PWR (Pressurized Water Reactor) spent fuels and for providing metal feeds for the electrorefining process. To speed up the electrochemical reduction process, the influences of the feed form for the cathode and the type of anode shroud on the reduction rate were investigated.

  18. Nanodevices in nature: Electrochemical aspects

    International Nuclear Information System (INIS)

    Volkov, Alexander G.; Volkova-Gugeshashvili, Maya I.; Brown-McGauley, Courtney L.; Osei, Albert J.

    2007-01-01

    Electrochemical multielectron reactions in photosynthesis and respiration are evaluated by thermodynamic and kinetic analysis. Kharkats and Volkov [Yu.I. Kharkats, A.G. Volkov, Biochim. Biophys. Acta 891 (1987) 56] were the first to present proof that cytochrome c oxidase reduces molecular oxygen by synchronous multielectron mechanism without O 2 - intermediate formation. After this pioneering observation, it became clear that the first step of oxygen reduction is two-electron concerted process. The energy for the H + -pump of cytochrome oxidase is liberated when the third and fourth electrons are added in the last two steps of water formation independent of the reaction pathway. Electrochemical principles govern many biological properties of organisms, such as the generation of electric fields, and the conduction of fast excitation waves. These properties are supported by the function of a variety of natural nanodevices. Ionic channels, as natural nanodevices, control the plasma membrane potential, and the movement of ions across membranes; thereby, regulating various biological functions. Some voltage-gated ion channels work as plasma membrane nanopotentiostats. In plants, excitation waves are possible mechanisms for intercellular and intracellular communication in response to environmental changes. The role of electrified nanointerface of the plasma membrane in signal transduction is discussed as well

  19. Iron and stony-iron meteorites

    DEFF Research Database (Denmark)

    Benedix, Gretchen K.; Haack, Henning; McCoy, T. J.

    2014-01-01

    Without iron and stony-iron meteorites, our chances of ever sampling the deep interior of a differentiated planetary object would be next to nil. Although we live on a planet with a very substantial core, we will never be able to sample it. Fortunately, asteroid collisions provide us with a rich...... sampling of the deep interiors of differentiated asteroids. Iron and stony-iron meteorites are fragments of a large number of asteroids that underwent significant geological processing in the early solar system. Parent bodies of iron and some stony-iron meteorites completed a geological evolution similar...... to that continuing on Earth – although on much smaller length- and timescales – with melting of the metal and silicates; differentiation into core, mantle, and crust; and probably extensive volcanism. Iron and stony-iron meteorites are our only available analogues to materials found in the deep interiors of Earth...

  20. Electrochemical energy storage

    CERN Document Server

    Tarascon, Jean-Marie

    2015-01-01

    The electrochemical storage of energy has become essential in assisting the development of electrical transport and use of renewable energies. French researchers have played a key role in this domain but Asia is currently the market leader. Not wanting to see history repeat itself, France created the research network on electrochemical energy storage (RS2E) in 2011. This book discusses the launch of RS2E, its stakeholders, objectives, and integrated structure that assures a continuum between basic research, technological research and industries. Here, the authors will cover the technological

  1. Electrochemical Hydrogen Evolution

    DEFF Research Database (Denmark)

    Laursen, A.B.; Varela Gasque, Ana Sofia; Dionigi, F.

    2012-01-01

    The electrochemical hydrogen evolution reaction (HER) is growing in significance as society begins to rely more on renewable energy sources such as wind and solar power. Thus, research on designing new, inexpensive, and abundant HER catalysts is important. Here, we describe how a simple experiment...... catalysts based on this. Suited for upper-level high school and first-year university students, this exercise involves using a basic two-cell electrochemical setup to test multiple electrode materials as catalysts at one applied potential, and then constructing a volcano curve with the resulting currents...

  2. Iron from Zealandic bog iron ore -

    DEFF Research Database (Denmark)

    Lyngstrøm, Henriette Syrach

    2011-01-01

    og geologiske materiale, metallurgiske analyser og eksperimentel arkæologiske forsøg - konturerne af en jernproduktion med udgangspunkt i den sjællandske myremalm. The frequent application by archaeologists of Werner Christensen’s distribution map for the occurrence of bog iron ore in Denmark (1966...... are sketched of iron production based on bog iron ore from Zealand....

  3. Phosphomolybdic acid and ferric iron as efficient electron mediators for coupling biomass pretreatment to produce bioethanol and electricity generation from wheat straw

    Science.gov (United States)

    Yi Ding; Bo Du; Xuebing Zhao; J.Y. Zhu; Dehua Liu

    2017-01-01

    Phosphomolybdic acid (PMo12) was used as an electron mediator and proton carrier to mediate biomass pretreatment for ethanol production and electricity generation from wheat straw. In the pretreatment, lignin was oxidized anaerobically by PMo12 with solubilization of a fraction of hemicelluloses, and the PMo12...

  4. Menadione metabolism to thiodione in hepatoblastoma by scanning electrochemical microscopy

    Science.gov (United States)

    Mauzeroll, Janine; Bard, Allen J.; Owhadian, Omeed; Monks, Terrence J.

    2004-01-01

    The cytotoxicity of menadione on hepatocytes was studied by using the substrate generation/tip collection mode of scanning electrochemical microscopy by exposing the cells to menadione and detecting the menadione-S-glutathione conjugate (thiodione) that is formed during the cellular detoxication process and is exported from the cell by an ATP-dependent pump. This efflux was electrochemically detected and allowed scanning electrochemical microscopy monitoring and imaging of single cells and groups of highly confluent live cells. Based on a constant flux model, ≈6 × 106 molecules of thiodione per cell per second are exported from monolayer cultures of Hep G2 cells. PMID:15601769

  5. Anaerobic electrochemical membrane bioreactor and process for wastewater treatment

    KAUST Repository

    Amy, Gary

    2015-07-09

    An anaerobic electrochemical membrane bioreactor (AnEMBR) can include a vessel into which wastewater can be introduced, an anode electrode in the vessel suitable for supporting electrochemically active microorganisms (EAB, also can be referred to as anode reducing bacteria, exoelectrogens, or electricigens) that oxidize organic compounds in the wastewater, and a cathode membrane electrode in the vessel, which is configured to pass a treated liquid through the membrane while retaining the electrochemically active microorganisms and the hydrogenotrophic methanogens (for example, the key functional microbial communities, including EAB, methanogens and possible synergistic fermenters) in the vessel. The cathode membrane electrode can be suitable for catalyzing the hydrogen evolution reaction to generate hydro en.

  6. Effect of magnetic field on the zero valent iron induced oxidation reaction

    International Nuclear Information System (INIS)

    Kim, Dong-hyo; Kim, Jungwon; Choi, Wonyong

    2011-01-01

    Highlights: → We investigate the zero valent iron induced oxidation in the presence of magnetic field. → The oxidative degradation of 4-chlorophenol is enhanced by the magnetic field. → ESR measurement confirms that more OH radicals are generated in the presence of magnetic field. → The magnetic field affects the mass transfer of O 2 and the recombination of radicals. - Abstract: The magnetic field (MF) effect on the zero valent iron (ZVI) induced oxidative reaction was investigated for the first time. The degradation of 4-chlorophenol (4-CP) in the ZVI system was employed as the test oxidative reaction. MF markedly enhanced the degradation of 4-CP with the concurrent production of chlorides. The consumption of dissolved O 2 by ZVI reaction was also enhanced in the presence of MF whereas the competing reaction of H 2 production from proton reduction was retarded. Since the ZVI-induced oxidation is mainly driven by the in situ generated hydroxyl radicals, the production of OH radicals was monitored by the spin trap method using electron spin resonance (ESR) spectroscopy. It was confirmed that the concentration of trapped OH radicals was enhanced in the presence of MF. Since both O 2 and Fe 0 are paramagnetic, the diffusion of O 2 onto the iron surface might be accelerated under MF. The magnetized iron can attract oxygen on itself, which makes the mass transfer process faster. As a result, the surface electrochemical reaction between Fe 0 and O 2 can be accelerated with the enhanced production of OH radicals. MF might retard the recombination of OH radicals as well.

  7. Native iron

    DEFF Research Database (Denmark)

    Brooks, Charles Kent

    2015-01-01

    System, was reduced. The oxidized outer layers of the Earth have formed by two processes. Firstly, water is decomposed to oxygen and hydrogen by solar radiation in the upper parts of the atmosphere, the light hydrogen diffusing to space, leaving oxygen behind. Secondly, plants, over the course......, hematite, or FeO.Fe2O3, magnetite), with carbon in the form of coke. This is carried out in a blast furnace. Although the Earth's core consists of metallic iron, which may also be present in parts of the mantle, this is inaccessible to us, so we must make our own. In West Greenland, however, some almost......We live in an oxidized world: oxygen makes up 22 percent of the atmosphere and by reacting with organic matter produces most of our energy, including the energy our bodies use to function: breathe, think, move, etc. It has not always been thus. Originally the Earth, in common with most of the Solar...

  8. Electrochemical Power Sources

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 7. Electrochemical Power Sources - Rechargeable Batteries. A K Shukla S K Martha. General Article Volume 6 Issue 7 July 2001 pp 52-63. Fulltext. Click here to view fulltext PDF. Permanent link:

  9. Electro-chemical grinding

    Science.gov (United States)

    Feagans, P. L.

    1972-01-01

    Electro-chemical grinding technique has rotation speed control, constant feed rates, and contour control. Hypersonic engine parts of nickel alloys can be almost 100% machined, keeping tool pressure at virtual zero. Technique eliminates galling and permits constant surface finish and burr-free interrupted cutting.

  10. [Generation of Superoxide Radicals by Complex III in Heart Mitochondria and Antioxidant Effect of Dinitrosyl Iron Complexes at Different Partial Pressure of Oxygen].

    Science.gov (United States)

    Dudylina, A L; Ivanova, M V; Shumaev, K B; Ruuge, E K

    2016-01-01

    The EPR spin-trapping technique and EPR-oximetry were used to study generation of superoxide radicals in heart mitochondria isolated from Wistar rats under conditions of variable oxygen concentration. Lithium phthalocyanine and TEMPONE-15N-D16 were chosen to determine oxygen content in a gas-permeable capillary tube containing mitochondria. TIRON was used as a spin trap. We investigated the influence of different oxygen concentrations in incubation mixture and demonstrated that heart mitochondria can generate superoxide in complex III at different partial pressure of oxygen as well as under the conditions of deep hypoxia (partial pressure of oxygen, but the magnitude and kinetic characteristics of the effect depended on the concentration of the drug.

  11. Iron and manganese removal from drinking water

    Directory of Open Access Journals (Sweden)

    Daniela-Elena Pascu

    2016-04-01

    Full Text Available The purpose of the present study is to find a suitable method for removal of iron and manganese from ground water, considering bothlocal economical and environmental aspects. Ground water is a highly important source of drinking water in Romania. Ground water is naturally pure from bacteria at a 25 m depth or more. However, solved metals may occur and if the levels are too high, the water is not drinkable. Different processes, such as electrochemical and combined electrochemical-adsorption methods have been applied to determine metals content in accordance to reports of National Water Agency from Romania (ANAR. Every water source contains dissolved or particulate compounds. The concentrations of these compounds can affect health, productivity, compliance requirements, or serviceability and cannot be economically removed by conventional filtration means. In this study, we made a comparison between the electrochemical and adsorption methods (using membranes. Both methods have been used to evaluate the efficiency of iron and manganese removal at various times and temperatures. We used two membrane types: composite and cellulose, respectively. Different approaches, including lowering the initial current density and increasing the initial pH were applied. Reaction kinetics was achieved using mathematical models: Jura and Temkin.

  12. CO2-Free Power Generation on an Iron Group Nanoalloy Catalyst via Selective Oxidation of Ethylene Glycol to Oxalic Acid in Alkaline Media

    Science.gov (United States)

    Matsumoto, Takeshi; Sadakiyo, Masaaki; Ooi, Mei Lee; Kitano, Sho; Yamamoto, Tomokazu; Matsumura, Syo; Kato, Kenichi; Takeguchi, Tatsuya; Yamauchi, Miho

    2014-07-01

    An Fe group ternary nanoalloy (NA) catalyst enabled selective electrocatalysis towards CO2-free power generation from highly deliverable ethylene glycol (EG). A solid-solution-type FeCoNi NA catalyst supported on carbon was prepared by a two-step reduction method. High-resolution electron microscopy techniques identified atomic-level mixing of constituent elements in the nanoalloy. We examined the distribution of oxidised species, including CO2, produced on the FeCoNi nanoalloy catalyst in the EG electrooxidation under alkaline conditions. The FeCoNi nanoalloy catalyst exhibited the highest selectivities toward the formation of C2 products and to oxalic acid, i.e., 99 and 60%, respectively, at 0.4 V vs. the reversible hydrogen electrode (RHE), without CO2 generation. We successfully generated power by a direct EG alkaline fuel cell employing the FeCoNi nanoalloy catalyst and a solid-oxide electrolyte with oxygen reduction ability, i.e., a completely precious-metal-free system.

  13. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... blocks the intestine from taking up iron. Other medical conditions Other medical conditions that may lead to iron-deficiency anemia ... daily amount of iron. If you have other medical conditions that cause iron-deficiency anemia , such as ...

  14. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Home / < Back To Health Topics / Iron-Deficiency Anemia Iron-Deficiency Anemia Also known as Leer en español ... bleeding Consuming less than recommended daily amounts of iron Iron-deficiency anemia can be caused by getting ...

  15. Serum iron test

    Science.gov (United States)

    Fe+2; Ferric ion; Fe++; Ferrous ion; Iron - serum; Anemia - serum iron; Hemochromatosis - serum iron ... A blood sample is needed. Iron levels are highest in the morning. Your health care provider will likely have you do this test in the morning.

  16. Nutritional iron deficiency

    NARCIS (Netherlands)

    Zimmermann, M.B.; Hurrell, R.F.

    2007-01-01

    Iron deficiency is one of the leading risk factors for disability and death worldwide, affecting an estimated 2 billion people. Nutritional iron deficiency arises when physiological requirements cannot be met by iron absorption from diet. Dietary iron bioavailability is low in populations consuming

  17. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... also are hoping to determine which iron supplements work best to treat iron-deficiency anemia in children who do not consume the daily recommended amount of iron. Read less Participate in NHLBI Clinical Trials We lead or sponsor many studies related to iron-deficiency anemia. See if you ...

  18. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... peas, tofu, dried fruits, and dark green leafy vegetables. Foods rich in vitamin C, such as oranges, strawberries, ... iron are meat, poultry, fish, and iron-fortified foods that have iron ... green leafy vegetables. You can also take an iron supplement. Follow ...

  19. Iron deficiency anemia

    Science.gov (United States)

    Anemia - iron deficiency ... iron from old red blood cells. Iron deficiency anemia develops when your body's iron stores run low. ... You may have no symptoms if the anemia is mild. Most of the time, ... slowly. Symptoms may include: Feeling weak or tired more often ...

  20. The Role of Iron in the Skin & Cutaneous Wound Healing

    Directory of Open Access Journals (Sweden)

    Josephine Anne Wright

    2014-07-01

    Full Text Available In this review article we discuss current knowledge about iron in the skin and the cutaneous wound healing process. Iron plays a key role in both oxidative stress and photo-induced skin damage. The main causes of oxidative stress in the skin include reactive oxygen species (ROS generated in the skin by ultraviolet (UVA 320-400 nm portion of the ultraviolet spectrum and biologically available iron. We also discuss the relationships between iron deficiency, anaemia and cutaneous wound healing. Studies looking at this fall into two distinct groups. Early studies investigated the effect of anaemia on wound healing using a variety of experimental methodology to establish anaemia or iron deficiency and focused on wound-strength rather than effect on macroscopic healing or re-epithelialisation. More recent animal studies have investigated novel treatments aimed at correcting the effects of systemic iron deficiency and localised iron overload. Iron overload is associated with local cutaneous iron deposition, which has numerous deleterious effects in chronic venous disease and hereditary haemochromatosis. Iron plays a key role in chronic ulceration and conditions such as Rheumatoid Arthritis (RA and Lupus Erythematosus are associated with both anaemia of chronic disease and dysregulation of local cutaneous iron haemostasis. Iron is a potential therapeutic target in the skin by application of topical iron chelators and novel pharmacological agents, and in delayed cutaneous wound healing by treatment of iron deficiency or underlying systemic inflammation.

  1. Efficient electrochemical degradation of multiwall carbon nanotubes.

    Science.gov (United States)

    Reipa, Vytas; Hanna, Shannon K; Urbas, Aaron; Sander, Lane; Elliott, John; Conny, Joseph; Petersen, Elijah J

    2018-07-15

    As the production mass of multiwall carbon nanotubes (MWCNT) increases, the potential for human and environmental exposure to MWCNTs may also increase. We have shown that exposing an aqueous suspension of pristine MWCNTs to an intense oxidative treatment in an electrochemical reactor, equipped with an efficient hydroxyl radical generating Boron Doped Diamond (BDD) anode, leads to their almost complete mineralization. Thermal optical transmittance analysis showed a total carbon mass loss of over two orders of magnitude due to the electrochemical treatment, a result consistent with measurements of the degraded MWCNT suspensions using UV-vis absorbance. Liquid chromatography data excludes substantial accumulation of the low molecular weight reaction products. Therefore, up to 99% of the initially suspended MWCNT mass is completely mineralized into gaseous products such as CO 2 and volatile organic carbon. Scanning electron microscopy (SEM) images show sporadic opaque carbon clusters suggesting the remaining nanotubes are transformed into structure-less carbon during their electrochemical mineralization. Environmental toxicity of pristine and degraded MWCNTs was assessed using Caenorhabditis elegans nematodes and revealed a major reduction in the MWCNT toxicity after treatment in the electrochemical flow-by reactor. Published by Elsevier B.V.

  2. Direct Reduction of Iron Ore

    Science.gov (United States)

    Small, M.

    1981-04-01

    In the search for a pure, available iron source, steelmakers are focusing their attention on Directly Reduced Iron (DRI). This material is produced by the reaction of a low gangue iron ore with a hydrocarbonaceous substance. Commercially, DRI is generated in four different reactors: shaft (moving-bed), rotary kiln, fluidized bed, and retort (fixed-bed). Annual worldwide production capacity approaches 33 million metric tons. Detailed assessments have been made of the uses of DRI, especially as a substitute for scrap in electric furnace (EF) steelmaking. DRI is generally of a quality superior to current grades of scrap, with steels produced more efficiently in the EF and containing lower levels of impurities. However, present economics favor EF steel production with scrap. But this situation could change within this decade because of a developing scarcity of good quality scrap.

  3. Corrosion of archaeological iron artefacts compared to modern iron at the waterlogged site Nydam, Denmark

    DEFF Research Database (Denmark)

    Matthiesen, Henning; Hilbert, Lisbeth Rischel; Gregory, David

    2004-01-01

    focuses solely on the iron objects. A three-pronged approach has been used in the studies in Nydam: Studies of the excavated artefacts, including the compositon of corrosion products and a mapping of their exact state of preservation. 2) Use of modern iron samples placed in the soil for studies of weight......Since 1859 several archaeological excavations have been carried out in Nydam, Denmark revealing a wealth of military equipment sacrificed in the period 200 - 500 AD. During the 1990's more than 16000 artefacts of mainly wood and iron were excavated within an area of only 600 m2. Due to the volume...... loss, corrosion potential, electrochemical impedance spectroscopy and electrical resistivity. 3) Measurements of environmental parameter such as water level, redox potential, oxygen concentration, soil pH, and the concentration of a range of dissolved species in the pore water. This presentation shows...

  4. Iron assessment to protect the developing brain.

    Science.gov (United States)

    Georgieff, Michael K

    2017-12-01

    Iron deficiency (ID) before the age of 3 y can lead to long-term neurological deficits despite prompt diagnosis of ID anemia (IDA) by screening of hemoglobin concentrations followed by iron treatment. Furthermore, pre- or nonanemic ID alters neurobehavioral function and is 3 times more common than IDA in toddlers. Given the global prevalence of ID and the enormous societal cost of developmental disabilities across the life span, better methods are needed to detect the risk of inadequate concentrations of iron for brain development (i.e., brain tissue ID) before dysfunction occurs and to monitor its amelioration after diagnosis and treatment. The current screening and treatment strategy for IDA fails to achieve this goal for 3 reasons. First, anemia is the final state in iron depletion. Thus, the developing brain is already iron deficient when IDA is diagnosed owing to the prioritization of available iron to red blood cells over all other tissues during negative iron balance in development. Second, brain ID, independently of IDA, is responsible for long-term neurological deficits. Thus, starting iron treatment after the onset of IDA is less effective than prevention. Multiple studies in humans and animal models show that post hoc treatment strategies do not reliably prevent ID-induced neurological deficits. Third, most currently used indexes of ID are population statistical cutoffs for either hematologic or iron status but are not bioindicators of brain ID and brain dysfunction in children. Furthermore, their relation to brain iron status is not known. To protect the developing brain, there is a need to generate serum measures that index brain dysfunction in the preanemic stage of ID, assess the ability of standard iron indicators to detect ID-induced brain dysfunction, and evaluate the efficacy of early iron treatment in preventing ID-induced brain dysfunction. © 2017 American Society for Nutrition.

  5. Graphene oxide nanoplatforms to enhance catalytic performance of iron phthalocyanine for oxygen reduction reaction in bioelectrochemical systems

    Science.gov (United States)

    Costa de Oliveira, Maida Aysla; Mecheri, Barbara; D'Epifanio, Alessandra; Placidi, Ernesto; Arciprete, Fabrizio; Valentini, Federica; Perandini, Alessando; Valentini, Veronica; Licoccia, Silvia

    2017-07-01

    We report the development of electrocatalysts based on iron phthalocyanine (FePc) supported on graphene oxide (GO), obtained by electrochemical oxidation of graphite in aqueous solution of LiCl, LiClO4, and NaClO4. Structure, surface chemistry, morphology, and thermal stability of the prepared materials were investigated by Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, atomic force microscopy (AFM), thermogravimetric analysis (TGA), and X-ray photoelectron spectroscopy (XPS). The catalytic activity toward oxygen reduction reaction (ORR) at neutral pH was evaluated by cyclic voltammetry. The experimental results demonstrate that the oxidation degree of GO supports affects the overall catalytic activity of FePc/GO, due to a modulation effect of the interaction between FePc and the basal plane of GO. On the basis of electrochemical, spectroscopic, and morphological investigations, FePc/GO_LiCl was selected to be assembled at the cathode side of a microbial fuel cell prototype, demonstrating a good electrochemical performance in terms of voltage and power generation.

  6. The role of mitochondria in cellular iron-sulfur protein biogenesis and iron metabolism.

    Science.gov (United States)

    Lill, Roland; Hoffmann, Bastian; Molik, Sabine; Pierik, Antonio J; Rietzschel, Nicole; Stehling, Oliver; Uzarska, Marta A; Webert, Holger; Wilbrecht, Claudia; Mühlenhoff, Ulrich

    2012-09-01

    Mitochondria play a key role in iron metabolism in that they synthesize heme, assemble iron-sulfur (Fe/S) proteins, and participate in cellular iron regulation. Here, we review the latter two topics and their intimate connection. The mitochondrial Fe/S cluster (ISC) assembly machinery consists of 17 proteins that operate in three major steps of the maturation process. First, the cysteine desulfurase complex Nfs1-Isd11 as the sulfur donor cooperates with ferredoxin-ferredoxin reductase acting as an electron transfer chain, and frataxin to synthesize an [2Fe-2S] cluster on the scaffold protein Isu1. Second, the cluster is released from Isu1 and transferred toward apoproteins with the help of a dedicated Hsp70 chaperone system and the glutaredoxin Grx5. Finally, various specialized ISC components assist in the generation of [4Fe-4S] clusters and cluster insertion into specific target apoproteins. Functional defects of the core ISC assembly machinery are signaled to cytosolic or nuclear iron regulatory systems resulting in increased cellular iron acquisition and mitochondrial iron accumulation. In fungi, regulation is achieved by iron-responsive transcription factors controlling the expression of genes involved in iron uptake and intracellular distribution. They are assisted by cytosolic multidomain glutaredoxins which use a bound Fe/S cluster as iron sensor and additionally perform an essential role in intracellular iron delivery to target metalloproteins. In mammalian cells, the iron regulatory proteins IRP1, an Fe/S protein, and IRP2 act in a post-transcriptional fashion to adjust the cellular needs for iron. Thus, Fe/S protein biogenesis and cellular iron metabolism are tightly linked to coordinate iron supply and utilization. This article is part of a Special Issue entitled: Cell Biology of Metals. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Predicting steam generator crevice chemistry

    International Nuclear Information System (INIS)

    Burton, G.; Strati, G.

    2006-01-01

    'Full text:' Corrosion of steam cycle components produces insoluble material, mostly iron oxides, that are transported to the steam generator (SG) via the feedwater and deposited on internal surfaces such as the tubes, tube support plates and the tubesheet. The build up of these corrosion products over time can lead to regions of restricted flow with water chemistry that may be significantly different, and potentially more corrosive to SG tube material, than the bulk steam generator water chemistry. The aim of the present work is to predict SG crevice chemistry using experimentation and modelling as part of AECL's overall strategy for steam generator life management. Hideout-return experiments are performed under CANDU steam generator conditions to assess the accumulation of impurities in hideout, and return from, model crevices. The results are used to validate the ChemSolv model that predicts steam generator crevice impurity concentrations, and high temperature pH, based on process parameters (e.g., heat flux, primary side temperature) and blowdown water chemistry. The model has been incorporated into ChemAND, AECL's system health monitoring software for chemistry monitoring, analysis and diagnostics that has been installed at two domestic and one international CANDU station. ChemAND provides the station chemists with the only method to predict SG crevice chemistry. In one recent application, the software has been used to evaluate the crevice chemistry based on the elevated, but balanced, SG bulk water impurity concentrations present during reactor startup, in order to reduce hold times. The present paper will describe recent hideout-return experiments that are used for the validation of the ChemSolv model, station experience using the software, and improvements to predict the crevice electrochemical potential that will permit station staff to ensure that the SG tubes are in the 'safe operating zone' predicted by Lu (AECL). (author)

  8. Electrochemical assessment of magnetite anti corrosive paints

    International Nuclear Information System (INIS)

    Escobar, D. M.; Arroyave, C.; Jaramillo, F.; Mattos, O. R.; Margarit, I. c.; Calderon, J.

    2003-01-01

    With the purpose of deepening in the understanding of the mechanisms of protection of anticorrosive pigments based on iron oxides, this work has been carried out on the production of pure magnetite, and copper and chromium doped magnetite, which were evaluated by different characterization techniques. The paints were prepared with a solvent less epoxy resin maintaining the Pigment volume Content near the Practical Critical value (CPVC), established for each pigment. The paints were applied on polished steel and monitored with electrochemical techniques at total immersion conditions. Permeability and impedance measurements of free films were also done. Impedance data were simulated with the Boukamp software. Results show that the paints pigmented with doped magnetite present better behaviour than a paint prepared with commercial hematite. (Author) 8 refs

  9. Iron absorption in relation to iron status

    International Nuclear Information System (INIS)

    Magnusson, B.; Bjoern-Rasmussen, E.; Hallberg, L.; Rossander, L.

    1981-01-01

    The absorption from a 3 mg dose of ferrous iron was measured in 250 male subjects. The absorption was related to the log concentration of serum ferritin in 186 subjects of whom 99 were regular blood donors (r= -0.76), and to bone marrow haemosiderin grading in 52 subjects with varying iron status. The purpose was to try and establish a percentage absorption from such a dose that is representative of subjects who are borderline iron deficient. This information is necessary for food iron absorption studies in order (1) to calculate the absorption of iron from the diet at a given iron status and (2) compare the absorption of iron from different meals studied in different groups of subjects by different investigarors. The results suggest that an absorption of about 40% of a 3 mg reference dose of ferrous iron is given in a fasting state, roughly corresponds to the absorption in borderline-iron-deficient subjects. The results indicate that this 40% absorption value corresponds to a serum ferritin level of 30 μg/l and that food iron absorption in a group of subjects should be expressed preferably as the absorption corresponding to a reference-dose absorption of 45%, or possibly a serum ferritin level of 30 μg/l. (author)

  10. Electrochemical peroxidation as a tool to remove arsenic and copper from smelter wastewater

    DEFF Research Database (Denmark)

    Gutiérrez, Claudia; Hansen, Henrik K.; Nuñez, Patricio

    2010-01-01

    Electrochemical peroxidation (ECP) is a method that recently has been applied in the treatment of heavy metal polluted wastewater. This method is based on the anodic dissolution of iron to ferrous ions that reacts with H2O2 to produce tiny particles of ferric oxides. These oxides adsorb metals ef...

  11. Mobilization of Iron by Plant-Borne Coumarins.

    Science.gov (United States)

    Tsai, Huei Hsuan; Schmidt, Wolfgang

    2017-06-01

    Iron is one of the most abundant elements in soils, but its low phytoavailability at high pH restricts plant communities on alkaline soils to taxa that have evolved efficient strategies to increase iron solubility. Recent evidence provides support for a previously underestimated role of root-secreted coumarins in mobilizing iron through reduction and chelation as part of an orchestrated strategy evolved to improve the acquisition of iron from recalcitrant pools. Understanding the mechanisms that tune the production of iron-mobilizing coumarins and their intricate interplay with other biosynthesis pathways could yield clues for deciphering the molecular basis of 'iron efficiency' - the ability of plants to thrive on soils with limited iron availability - and may open avenues for generating iron-fortified crops. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Influence of austempering heat treatment on mechanical and corrosion properties of ductile iron samples

    Directory of Open Access Journals (Sweden)

    M. Janjić

    2016-07-01

    Full Text Available Mechanical properties and corrosion resistance of metals are closely related to the microstructure characteristics of the material. The paper compares the results of these two sets of properties after investigating samples of base ductile iron and heat-treated samples of the base austempered ductile iron (ADI. The basic material is perlite ferritic iron alloyed with copper and nickel. To test the corrosion rate of the base material (ductile iron and the heattreated samples (ADI, electrochemical techniques of potentiostatic polarization were used (the technique of Tafel curves extrapolation and the potentiodynamic polarization technique.

  13. Formation and Reactivity of Biogenic Iron Minerals

    International Nuclear Information System (INIS)

    Ferris, F. Grant

    2002-01-01

    Dissimilatory iron-reducing bacteria (DIRB) play an important role in regulating the aqueous geochemistry of iron and other metals in anaerobic, non-sulfidogenic groundwater environments; however, little work has directly assessed the cell surface electrochemistry of DIRB, or the nature of the interfacial environment around individual cells. The electrochemical properties of particulate solids are often inferred from titrations in which net surface charge is determined, assuming electroneutrality, as the difference between known added amounts of acid and base and measured proton concentration. The resultant titration curve can then be fit to a speciation model for the system to determine pKa values and site densities of reactive surface sites. Moreover, with the development of non-contact electrostatic force microscopy (EFM), it is now possible to directly inspect and quantify charge development on surfaces. A combination of acid-base titrations and EFM are being used to assess the electrochemical surface properties of the groundwater DIRB, Shewanella putrefaciens. The pKa spectra and EFM data show together that a high degree of electrochemical heterogeneity exists within the cell wall and at the cell surface of S. putrefaciens. Recognition of variations in the nature and spatial distribution of reactive sites that contribute to charge development on these bacteria implies further that the cell surface of these Fe(III)-reducing bacteria functions as a highly differentiated interfacial system capable of supporting multiple intermolecular interactions with both solutes and solids. These include surface complexation reactions involving dissolved metals, as well as adherence to mineral substrates such as hydrous ferric oxide through longer-range electrostatic interactions, and surface precipitation of secondary reduced-iron minerals

  14. Electrochemical energy engineering: a new frontier of chemical engineering innovation.

    Science.gov (United States)

    Gu, Shuang; Xu, Bingjun; Yan, Yushan

    2014-01-01

    One of the grand challenges facing humanity today is a safe, clean, and sustainable energy system where combustion no longer dominates. This review proposes that electrochemical energy conversion could set the foundation for such an energy system. It further suggests that a simple switch from an acid to a base membrane coupled with innovative cell designs may lead to a new era of affordable electrochemical devices, including fuel cells, electrolyzers, solar hydrogen generators, and redox flow batteries, for which recent progress is discussed using the authors' work as examples. It also notes that electrochemical energy engineering will likely become a vibrant subdiscipline of chemical engineering and a fertile ground for chemical engineering innovation. To realize this vision, it is necessary to incorporate fundamental electrochemistry and electrochemical engineering principles into the chemical engineering curriculum.

  15. Iron and genome stability: An update

    International Nuclear Information System (INIS)

    Prá, Daniel; Franke, Silvia Isabel Rech; Henriques, João Antonio Pêgas; Fenech, Michael

    2012-01-01

    Iron is an essential micronutrient which is required in a relatively narrow range for maintaining metabolic homeostasis and genome stability. Iron participates in oxygen transport and mitochondrial respiration as well as in antioxidant and nucleic acid metabolism. Iron deficiency impairs these biological pathways, leading to oxidative stress and possibly carcinogenesis. Iron overload has been linked to genome instability as well as to cancer risk increase, as seen in hereditary hemochromatosis. Iron is an extremely reactive transition metal that can interact with hydrogen peroxide to generate hydroxyl radicals that form the 8-hydroxy-guanine adduct, cause point mutations as well as DNA single and double strand breaks. Iron overload also induces DNA hypermethylation and can reduce telomere length. The current Recommended Dietary Allowances (RDA) for iron, according with Institute of Medicine Dietary Reference Intake (DRI), is based in the concept of preventing anemia, and ranges from 7 mg/day to 18 mg/day depending on life stage and gender. Pregnant women need 27 mg/day. The maximum safety level for iron intake, the Upper Level (UL), is 40–45 mg/day, based on the prevention of gastrointestinal distress associated to high iron intakes. Preliminary evidence indicates that 20 mg/day iron, an intake slightly higher than the RDA, may reduce the risk of gastrointestinal cancer in the elderly as well as increasing genome stability in lymphocytes of children and adolescents. Current dietary recommendations do not consider the concept of genome stability which is of concern because damage to the genome has been linked to the origin and progression of many diseases and is the most fundamental pathology. Given the importance of iron for homeostasis and its potential influence over genome stability and cancer it is recommended to conduct further studies that conclusively define these relationships.

  16. Iron and genome stability: An update

    Energy Technology Data Exchange (ETDEWEB)

    Pra, Daniel, E-mail: daniel_pra@yahoo.com [PPG em Promocao da Saude, Universidade de Santa Cruz do Sul (UNISC), Santa Cruz do Sul, RS (Brazil); PPG em Saude e Comportamento, Universidade Catolica de Pelotas, Pelotas, RS (Brazil); Franke, Silvia Isabel Rech [PPG em Promocao da Saude, Universidade de Santa Cruz do Sul (UNISC), Santa Cruz do Sul, RS (Brazil); Henriques, Joao Antonio Pegas [Instituto de Biotecnologia, Universidade de Caxias do Sul, Caxias do Sul, RS (Brazil); Fenech, Michael [CSIRO Food and Nutritional Sciences, Adelaide, SA (Australia)

    2012-05-01

    Iron is an essential micronutrient which is required in a relatively narrow range for maintaining metabolic homeostasis and genome stability. Iron participates in oxygen transport and mitochondrial respiration as well as in antioxidant and nucleic acid metabolism. Iron deficiency impairs these biological pathways, leading to oxidative stress and possibly carcinogenesis. Iron overload has been linked to genome instability as well as to cancer risk increase, as seen in hereditary hemochromatosis. Iron is an extremely reactive transition metal that can interact with hydrogen peroxide to generate hydroxyl radicals that form the 8-hydroxy-guanine adduct, cause point mutations as well as DNA single and double strand breaks. Iron overload also induces DNA hypermethylation and can reduce telomere length. The current Recommended Dietary Allowances (RDA) for iron, according with Institute of Medicine Dietary Reference Intake (DRI), is based in the concept of preventing anemia, and ranges from 7 mg/day to 18 mg/day depending on life stage and gender. Pregnant women need 27 mg/day. The maximum safety level for iron intake, the Upper Level (UL), is 40-45 mg/day, based on the prevention of gastrointestinal distress associated to high iron intakes. Preliminary evidence indicates that 20 mg/day iron, an intake slightly higher than the RDA, may reduce the risk of gastrointestinal cancer in the elderly as well as increasing genome stability in lymphocytes of children and adolescents. Current dietary recommendations do not consider the concept of genome stability which is of concern because damage to the genome has been linked to the origin and progression of many diseases and is the most fundamental pathology. Given the importance of iron for homeostasis and its potential influence over genome stability and cancer it is recommended to conduct further studies that conclusively define these relationships.

  17. Nanostructured Electrode Materials for Electrochemical Capacitor Applications

    Directory of Open Access Journals (Sweden)

    Hojin Choi

    2015-06-01

    Full Text Available The advent of novel organic and inorganic nanomaterials in recent years, particularly nanostructured carbons, conducting polymers, and metal oxides, has enabled the fabrication of various energy devices with enhanced performance. In this paper, we review in detail different nanomaterials used in the fabrication of electrochemical capacitor electrodes and also give a brief overview of electric double-layer capacitors, pseudocapacitors, and hybrid capacitors. From a materials point of view, the latest trends in electrochemical capacitor research are also discussed through extensive analysis of the literature and by highlighting notable research examples (published mostly since 2013. Finally, a perspective on next-generation capacitor technology is also given, including the challenges that lie ahead.

  18. Electrochemical Sensors for Clinic Analysis

    Directory of Open Access Journals (Sweden)

    Guang Li

    2008-03-01

    Full Text Available Demanded by modern medical diagnosis, advances in microfabrication technology have led to the development of fast, sensitive and selective electrochemical sensors for clinic analysis. This review addresses the principles behind electrochemical sensor design and fabrication, and introduces recent progress in the application of electrochemical sensors to analysis of clinical chemicals such as blood gases, electrolytes, metabolites, DNA and antibodies, including basic and applied research. Miniaturized commercial electrochemical biosensors will form the basis of inexpensive and easy to use devices for acquiring chemical information to bring sophisticated analytical capabilities to the non-specialist and general public alike in the future.

  19. Lithium-aluminum-iron electrode composition

    Science.gov (United States)

    Kaun, Thomas D.

    1979-01-01

    A negative electrode composition is presented for use in a secondary electrochemical cell. The cell also includes an electrolyte with lithium ions such as a molten salt of alkali metal halides or alkaline earth metal halides that can be used in high-temperature cells. The cell's positive electrode contains a a chalcogen or a metal chalcogenide as the active electrode material. The negative electrode composition includes up to 50 atom percent lithium as the active electrode constituent in an alloy of aluminum-iron. Various binary and ternary intermetallic phases of lithium, aluminum and iron are formed. The lithium within the intermetallic phase of Al.sub.5 Fe.sub.2 exhibits increased activity over that of lithium within a lithium-aluminum alloy to provide an increased cell potential of up to about 0.25 volt.

  20. Fabrication, characterization and applications of iron selenide

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Raja Azadar, E-mail: hussainazadar@yahoo.com [Department of Chemistry, Quaid-i-Azam University, 45320 Islamabad (Pakistan); Badshah, Amin [Department of Chemistry, Quaid-i-Azam University, 45320 Islamabad (Pakistan); Lal, Bhajan [Department of Energy Systems Engineering, Sukkur Institute of Business Administration (Pakistan)

    2016-11-15

    This review article presents fabrication of FeSe by solid state reactions, solution chemistry routes, chemical vapor deposition, spray pyrolysis and chemical vapor transport. Different properties and applications such as crystal structure and phase transition, band structure, spectroscopy, superconductivity, photocatalytic activity, electrochemical sensing, and fuel cell activity of FeSe have been discussed. - Graphical abstract: Iron selenide can be synthesized by solid state reactions, chemical vapor deposition, solution chemistry routes, chemical vapor transport and spray pyrolysis. - Highlights: • Different fabrication methods of iron selenide (FeSe) have been reviewed. • Crystal structure, band structure and spectroscopy of FeSe have been discussed. • Superconducting, catalytic and fuel cell application of FeSe have been presented.

  1. Characterization of iron speciation in urban and rural single particles using XANES spectroscopy and micro X-ray fluorescence measurements: investigating the relationship between speciation and fractional iron solubility

    OpenAIRE

    Oakes, M.; Weber, R. J.; Lai, B.; Russell, A.; Ingall, E. D.

    2012-01-01

    Soluble iron in fine atmospheric particles has been identified as a public health concern by participating in reactions that generate reactive oxygen species (ROS). The mineralogy and oxidation state (speciation) of iron have been shown to influence fractional iron solubility (soluble iron/total iron). In this study, iron speciation was determined in single particles at urban and rural sites in Georgia USA using synchrotron-based techniques, such as X-ray Absorption Near-Edge Structure (XANES...

  2. Synthesis of magnetite nanoparticles using electrochemical oxidation

    Directory of Open Access Journals (Sweden)

    Ye. Ya. Levitin

    2014-08-01

    of 800 kA/m. Measurements were performed using microwebermeter Ф191. Results and discussion On lead dioxide anode in an acidic solution of FeSO4 the basic process is the process of Fe2+– = Fe3+ oxidation. The rate of this process increases at potentials higher than 1.3V, which is associated with the passage adjacent the reduction reaction of water to oxygen. At potentials higher than 1.7V passage of process conditions is achieved: 3Н2О – = О3 + 6Н+, which is more energy intensive and therefore undesirable. To intensify the anodic process it is necessary to apply the mixing that reduces the thickness of the diffusion layer near the electrode and allows oxidation at a current density of 0.7-1.2 A/dm2. Under appropriate conditions of electrolysis (high current density of the cathode, acidification of the solution loss of iron Fe2+ is avoided at the expense of cathodic discharge, as mainly at the cathode the reducing of cations H+ occurs. As the result of the electrolysis the solution containing Fe3++and Fe2+ (2:1 was obtained. After alkalization the precipitate Fe3O4i was formed. The particle size is 10 – 15 nm, the magnetic susceptibility is 1.18. On the basis of magnetite the experimental samples of magnetic fluid were synthesized. The saturation magnetization of the magnetic fluid is 35 kA/m. Conclusions 1. Electrochemical method of oxidation Fe2+ Fe3+ has been proposed using lead dioxide anode and the optimal conditions of electrolysis has been determined. 2. Obtained magnetite is of high purity and improved magnetic properties. It can be used to create new magnetically dosage forms.

  3. Electrochemical Approaches to Renewable Energy

    Science.gov (United States)

    Lobaccaro, Peter

    Renewable energy is becoming an increasingly important component of the world's energy supply as the threat of global warming continues to rise. There is a need to reduce the cost of this renewable energy and a future challenge to deal with the strain intermittent power sources like renewables place on the power grid. In this dissertation, electrochemistry is harnessed to address possible solutions to both of these issues. First, it is used to develop a low cost alternative photovoltaic material. Then, it is used to investigate the production of chemical fuel stocks which can be used for energy storage. In chapter 2, advances are made in the electrochemical deposition of indium (In) on molybdenum foil which enables the deposition of electronic-grade purity, continuous films with thicknesses in the micron range. As an example application, the electrodeposited In films are phosphorized via the thin-film vapor-liquid-solid growth method. The resulting poly-crystalline InP films display excellent optoelectronic quality, comparable to films grown from more standard vacuum deposition techniques. This demonstrates the versatility of the developed electrochemical deposition procedure. In the remaining chapters, renewable fuel production is investigated. First in chapter 3, molybdenum disulfide (MoS2) is examined as a catalyst for the hydrogen evolution reaction (HER). Typically, high-cost synthesized MoS2 is used as the catalyst because the pristine MoS 2 mineral is known to be a poor catalyst. The fundamental challenge with pristine MoS2 is the inert HER activity of the predominant (0001) basal surface plane. Here, we report a general thermal process in which the basal plane is texturized to increase the density of HER-active edge sites. The process generates high HER catalytic performance in pristine MoS 2 across various morphologies such as the bulk mineral, films composed of micron-scale flakes, and even films of a commercially-available spray of nanoflake MoS2. In

  4. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... fatigue or tiredness, shortness of breath, or chest pain. If your doctor diagnoses you with iron-deficiency ... Common symptoms of iron-deficiency anemia include: Chest pain Coldness in the hands and feet Difficulty concentrating ...

  5. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... body to absorb iron from the gastrointestinal tract (GI tract). Blood loss When you lose blood, you ... to iron-deficiency anemia include: Bleeding in your GI tract, from an ulcer, colon cancer, or regular ...

  6. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... complications, including heart failure and development delays in children. Explore this Health ... red blood cells. Iron-deficiency anemia usually develops over time because your body’s intake of iron ...

  7. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... heart failure . Increased risk of infections Motor or cognitive development delays in children Pregnancy complications, such as ... for iron-deficiency anemia. Learn about exciting research areas that NHLBI is exploring about iron-deficiency anemia. ...

  8. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Health and Human Development, we are investigating how best to treat premature newborns with low hemoglobin levels. ... are hoping to determine which iron supplements work best to treat iron-deficiency anemia in children who ...

  9. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... your doctor may recommend changes to help you meet the recommended daily amount of iron. If you ... stop bleeding. Healthy lifestyle changes To help you meet your daily recommended iron levels, your doctor may ...

  10. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... an MCV of less than 80 femtoliters (fL). Prevention strategies If you have certain risk factors , such ... drinking black tea, which reduces iron absorption. Other treatments If you have chronic kidney disease and iron- ...

  11. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... same for boys and girls. From birth to 6 months, babies need 0.27 mg of iron. ... for iron deficiency at certain ages: Infants between 6 and 12 months, especially if they are fed ...

  12. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... your blood may be normal even if the total amount of iron in your body is low. ... iron-deficiency anemia in blood donors affects the quality of donated red blood cells, such as how ...

  13. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... of the condition. Your doctor may recommend healthy eating changes, iron supplements, intravenous iron therapy for mild ... less Look for Treatment will discuss medicines and eating pattern changes that your doctors may recommend if ...

  14. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Disorders Lung Diseases Heart and Vascular Diseases Precision Medicine Activities Obesity, Nutrition, and Physical Activity Population and ... lose blood, you lose iron. Certain conditions or medicines can cause blood loss and lead to iron- ...

  15. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... absorb iron and lead to iron-deficiency anemia. These conditions include: Intestinal and digestive conditions, such as ... tract. Inflammation from congestive heart failure or obesity . These chronic conditions can lead to inflammation that may ...

  16. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... C to help your body absorb iron. Avoid drinking black tea, which reduces iron absorption. Other treatments ... improve health through research and scientific discovery. Improving health with current research Learn about the following ways ...

  17. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... higher risk, as most of a newborn’s iron stores are developed during the third trimester of pregnancy. ... red blood cells on hand, their bodies can store iron to prepare for blood loss during delivery. ...

  18. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... may be diagnosed with iron-deficiency anemia if you have low iron or ferritin levels in your blood. More testing may be needed to rule out other types of anemia. Tests for gastrointestinal ...

  19. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... were born prematurely may be at an even higher risk, as most of a newborn’s iron stores ... men of the same age. Women are at higher risk for iron-deficiency anemia under some circumstances, ...

  20. Iron supplements (image)

    Science.gov (United States)

    The mineral iron is an essential nutrient for humans because it is part of blood cells, which carry oxygen to all body cells. There is no conclusive evidence that iron supplements contribute to heart attacks.

  1. Total iron binding capacity

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003489.htm Total iron binding capacity To use the sharing features on this page, please enable JavaScript. Total iron binding capacity (TIBC) is a blood test to ...

  2. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... may require intravenous (IV) iron therapy or a blood transfusion . Iron supplements Your doctor may recommend that you ... Anemia Aplastic Anemia Arrhythmia Blood Donation Blood Tests Blood Transfusion Heart-Healthy Lifestyle Changes Heart Failure Hemolytic Anemia ...

  3. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... iron from the gastrointestinal tract (GI tract). Blood loss When you lose blood, you lose iron. Certain ... domestic small businesses that have strong potential for technology commercialization through the Small Business Innovation Research (SBIR) ...

  4. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... iron-rich foods, especially during certain stages of life when more iron is needed, such as ... to advancing science and translating discoveries into clinical practice to promote ...

  5. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... also often take other medicines—such as proton pump inhibitors, anticoagulants, or blood thinners—that may cause iron-deficiency anemia. Proton pump inhibitors interfere with iron absorption, and blood thinners ...

  6. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Look for Treatment will discuss medicines and eating pattern changes that your doctors may recommend if you ... iron-deficiency anemia, including: Vegetarian or vegan eating patterns. Not eating enough iron-rich foods, such as ...

  7. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... striking the ground, such as with marathon runners. Sex Girls and women between the ages of 14 ... developing iron-deficiency anemia. Foods that are good sources of iron include dried beans, dried fruits, eggs, ...

  8. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... increase your risk for iron-deficiency anemia, including: Vegetarian or vegan eating patterns. Not eating enough iron- ... factors , such as if you are following a vegetarian eating pattern, your doctor may recommend changes to ...

  9. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... deficiency anemia. Proton pump inhibitors interfere with iron absorption, and blood thinners increase the likelihood of bleeding ... oranges, strawberries, and tomatoes, may help increase your absorption of iron. If you are pregnant, talk to ...

  10. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Not eating enough iron-rich foods, such as meat and fish, may result in you getting less ... include dried beans, dried fruits, eggs, lean red meat, salmon, iron-fortified breads and cereals, peas, tofu, ...

  11. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... mg and women need 18 mg. After age 51, both men and women need 8 mg. Pregnant ... for iron-deficiency anemia. Learn about exciting research areas that NHLBI is exploring about iron-deficiency anemia. ...

  12. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... iron-deficiency anemia. These conditions include: Intestinal and digestive conditions, such as celiac disease; inflammatory bowel diseases, ... iron-deficiency anemia , such as bleeding in the digestive or urinary tract or heavy menstrual bleeding, your ...

  13. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... prevent complications such as abnormal heart rhythms and depression. Learn the warning signs of serious complications and ... donors for low iron stores. Reliable point-of-care testing may help identify iron deficiency before potentially ...

  14. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... breastfeeding women older than 18 need 9 mg. Problems absorbing iron Even if you consume the recommended ... interested in learning how having iron-deficiency anemia early in life affects later behavior, thinking, and mood ...

  15. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... conditions that can cause iron-deficiency anemia. Blood tests to screen for iron-deficiency anemia To screen ... the size of your liver and spleen. Blood tests Based on results from blood tests to screen ...

  16. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... as most of a newborn’s iron stores are developed during the third trimester of pregnancy. Children between ... This makes it harder to stop bleeding and can increase the risk of iron-deficiency anemia from ...

  17. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... your doctor may recommend you eat heart-healthy foods or control other conditions that can cause iron-deficiency anemia. Blood tests to screen for iron-deficiency anemia To screen ...

  18. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... have less hemoglobin than normal. Hemoglobin is a protein inside red blood cells that carries oxygen from ... stored iron has been used. Ferritin is a protein that helps store iron in your body. Reticulocyte ...

  19. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... and Strategic Vision Leadership Scientific Divisions Operations and Administration Advisory Committees Budget and Legislative Information Jobs and ... blood cells. Iron-deficiency anemia usually develops over time because your body’s intake of iron is too ...

  20. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... vegan eating patterns. Not eating enough iron-rich foods, such as meat and fish, may result in ... be hard to get the recommended amount from food alone. Pregnant women need more iron to support ...

  1. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... learning how having iron-deficiency anemia early in life affects later behavior, thinking, and mood during adolescence. ... iron-deficiency anemia in blood donors affects the quality of donated red blood cells, such as how ...

  2. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... iron-deficiency anemia in blood donors affects the quality of donated red blood cells, such as how ... Cells From Iron-deficient Donors: Recovery and Storage Quality. Learn more about participating in a clinical trial . ...

  3. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... endoscopy or colonoscopy, to stop bleeding. Healthy lifestyle changes To help you meet your daily recommended iron ... iron-deficiency anemia early in life affects later behavior, thinking, and mood during adolescence. Treating anemia in ...

  4. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... family history and genetics , lifestyle habits, or sex. Age You may be at increased risk for iron ... Signs, Symptoms, and Complications Iron-deficiency anemia can range from mild to severe. People with mild or ...

  5. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... leaving cells where it is stored or from being absorbed in the duodenum, the first part of ... treatments for iron-deficiency anemia. Living With After being diagnosed with iron-deficiency anemia, it is important ...

  6. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... iron to prepare for blood loss during delivery. Screening and Prevention Your doctor may screen you for ... and symptoms of iron-deficiency anemia. Return to Screening and Prevention to review tests to screen for ...

  7. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Teens, who have increased need for iron during growth spurts. Older adults, especially those over age 65. ... need for iron increases during these periods of growth and development, and it may be hard to ...

  8. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... endoscopy or colonoscopy, to stop bleeding. Healthy lifestyle changes To help you meet your daily recommended iron ... tofu, dried fruits, and spinach and other dark green leafy vegetables. You can also take an iron ...

  9. Iron bromide vapor laser

    Science.gov (United States)

    Sukhanov, V. B.; Shiyanov, D. V.; Trigub, M. V.; Dimaki, V. A.; Evtushenko, G. S.

    2016-03-01

    We have studied the characteristics of a pulsed gas-discharge laser on iron bromide vapor generating radiation with a wavelength of 452.9 nm at a pulse repetition frequency (PRF) of 5-30 kHz. The maximum output power amounted to 10 mW at a PRF within 5-15 kHz for a voltage of 20-25 kV applied to electrodes of the discharge tube. Addition of HBr to the medium produced leveling of the radial profile of emission. Initial weak lasing at a wavelength of 868.9 nm was observed for the first time, which ceased with buildup of the main 452.9-nm line.

  10. Electrochemical reduction of nitrate in the presence of an amide

    Science.gov (United States)

    Dziewinski, Jacek J.; Marczak, Stanislaw

    2002-01-01

    The electrochemical reduction of nitrates in aqueous solutions thereof in the presence of amides to gaseous nitrogen (N.sub.2) is described. Generally, electrochemical reduction of NO.sub.3 proceeds stepwise, from NO.sub.3 to N.sub.2, and subsequently in several consecutive steps to ammonia (NH.sub.3) as a final product. Addition of at least one amide to the solution being electrolyzed suppresses ammonia generation, since suitable amides react with NO.sub.2 to generate N.sub.2. This permits nitrate reduction to gaseous nitrogen to proceed by electrolysis. Suitable amides include urea, sulfamic acid, formamide, and acetamide.

  11. Technology-base research project for electrochemical storage report for 1981

    Science.gov (United States)

    McLarnon, F.

    1982-06-01

    The technology base research (TBR) project which provides the applied reseach base that supports all electrochemical energy storage applications: electric vehicles, electric load leveling, storage of solar electricity, and energy and resource conservation is described. The TBR identifies electrochemical technologies with the potential to satisfy stringent performance and economic requirements and transfer them to industry for further development and scale up. The TBR project consists of four major elements: electrochemical systems research, supporting research, electrochemical processes, and fuel cells for transportation. Activities in these four project elements during 1981 are summarized. Information is included on: iron-air batteries; aluminum-air batteries; lithium-metal sulfide cells; materials development for various batteries; and the characteristics of an NH3-air alkaline fuel cell in a vehicle.

  12. Iron absorption studies

    International Nuclear Information System (INIS)

    Ekenved, G.

    1976-01-01

    The main objective of the present work was to study iron absorption from different iron preparations in different types of subjects and under varying therapeutic conditions. The studies were performed with different radioiron isotope techniques and with a serum iron technique. The preparations used were solutions of ferrous sulphate and rapidly-disintegrating tablets containing ferrous sulphate, ferrous fumarate and ferrous carbonate and a slow-release ferrous sulphate tablet of an insoluble matrix type (Duroferon Durules). The serum iron method was evaluated and good correlation was found between the serum iron response and the total amount of iron absorbed after an oral dose of iron given in solution or in tablet form. New technique for studying the in-vivo release properties of tablets was presented. Iron tablets labelled with a radio-isotope were given to healthy subjects. The decline of the radioactivity in the tablets was followed by a profile scanning technique applied to different types of iron tablets. The release of iron from the two types of tablets was shown to be slower in vivo than in vitro. It was found that co-administration of antacids and iron tablets led to a marked reduction in the iron absorption and that these drugs should not be administered sumultaneously. A standardized meal markedly decreased the absorbability of iron from iron tablets. The influence of the meal was more marked with rapidly-disintegrating than with slow-release ferrous sulphate tablets. The absorption from rapidly-disintegrating and slow-release ferrous sulphate tablets was compared under practical clinical conditions during an extended treatment period. The studies were performed in healthy subjects, blood donors and patients with iron deficiency anaemia and it was found that the absorption of iron from the slow-release tablets was significantly better than from the rapidly-disintegrating tablets in all three groups of subjects. (author)

  13. Iron-oxidation processes in an electroflocculation (electrocoagulation) cell

    Energy Technology Data Exchange (ETDEWEB)

    Sasson, Moshe Ben, E-mail: mosheinspain@hotmail.com [Department of Soil and Water Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot 76100 (Israel); Calmano, Wolfgang [Institute of Environmental Technology and Energy Economics, Technical University of Hamburg-Harburg, 21073 Hamburg (Germany); Adin, Avner [Department of Soil and Water Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot 76100 (Israel)

    2009-11-15

    The processes of iron oxidation in an electroflocculation cell were investigated for a pH range of 5-9 and electric currents of 0.05-0.4 A (equivalent current densities of 8.6-69 A/m{sup 2}). At all pH values and electric currents investigated, it was demonstrated and proven that for all practical purposes, the form of iron that dissolves from the anode is Fe{sup 2+} (ferrous). The difference between the amount of theoretical dissolution as calculated by Faraday's law and the amount of observed dissolved iron ions may indicate two phenomena in electrochemical cells. The first is possible dissolution of the anode even without the operation of an electric current; this led to higher theoretical dissolution rates at lower pH. The second is the participation of some of the electrons of the electric current in reactions other than anode dissolution which led to lower theoretical dissolution rates at higher pH. Those other reactions did not lead to an increase in the local oxidation saturation level near the anode and did not affect iron-oxidation rates in the electroflocculation processes. The oxidation rates of the dissolved Fe{sup 2+} (ferrous) to Fe{sup 3+} (ferric) ions in electroflocculation processes were strongly dependent on the pH and were similar to the known oxidation rates of iron in non-electrochemical cells.

  14. Iron-oxidation processes in an electroflocculation (electrocoagulation) cell

    International Nuclear Information System (INIS)

    Sasson, Moshe Ben; Calmano, Wolfgang; Adin, Avner

    2009-01-01

    The processes of iron oxidation in an electroflocculation cell were investigated for a pH range of 5-9 and electric currents of 0.05-0.4 A (equivalent current densities of 8.6-69 A/m 2 ). At all pH values and electric currents investigated, it was demonstrated and proven that for all practical purposes, the form of iron that dissolves from the anode is Fe 2+ (ferrous). The difference between the amount of theoretical dissolution as calculated by Faraday's law and the amount of observed dissolved iron ions may indicate two phenomena in electrochemical cells. The first is possible dissolution of the anode even without the operation of an electric current; this led to higher theoretical dissolution rates at lower pH. The second is the participation of some of the electrons of the electric current in reactions other than anode dissolution which led to lower theoretical dissolution rates at higher pH. Those other reactions did not lead to an increase in the local oxidation saturation level near the anode and did not affect iron-oxidation rates in the electroflocculation processes. The oxidation rates of the dissolved Fe 2+ (ferrous) to Fe 3+ (ferric) ions in electroflocculation processes were strongly dependent on the pH and were similar to the known oxidation rates of iron in non-electrochemical cells.

  15. Electrochemical destruction of nitrosamines

    Energy Technology Data Exchange (ETDEWEB)

    Lejen, T; Volchek, K; Ladanowski, C; Velicogna, D; Whittaker, H [Environment Canada, Ottawa, ON (Canada). Emergencies Engineering Div.

    1996-09-01

    Treatment conditions for the electrolytic destruction of nitrosamines were studied. The joint investigation between Canada and the Ukraine was part of an assessment of hazardous contaminants at former Soviet ICBM missile sites. The electrochemical destruction of N-dimethylnitrosamines (NDMA) on carbon/platinum electrodes was studied under basic and acidic conditions by UV spectroscopy, gas chromatography, mass spectroscopy, and colorimetry. Experiments with a 100 ppm NDMA solution showed that electrolytic-reduction was pH sensitive within a range of pH 0.5 to 4.0. Electrolysis was effective for the reduction of NDMA in strong acidic conditions. 30 refs., 1 tab., 4 figs.

  16. Electrochemical Science and Technology

    CERN Document Server

    Oldham, Keith; Bond, Alan

    2011-01-01

    The book addresses the scientific principles underlying electrochemistry. Starting with the basic concepts of electricity, the early chapters discuss the physics and chemistry of the materials from which electrochemical cells are constructed and the properties that make these materials appropriate as cell components. Much of the importance of electrochemistry lies in the conversion of electrical energy into chemical energy and vice versa; the thermodynamics of these processes is described, in the context of a wide range of applications of these interconversions. An electrode is a surface at wh

  17. Enhancing electrochemical methods for producing and regenerating alane by using electrochemical catalytic additive

    Science.gov (United States)

    Zidan, Ragaiy

    2017-12-26

    A process of using an electrochemical cell to generate aluminum hydride (AlH.sub.3) and other high capacity hydrides is provided. The electrolytic cell uses an electro-catalytic-additive within a polar non-salt containing solvent to solubilize an ionic hydride such as NaAlH.sub.4 or LiAlH.sub.4. The resulting electrochemical process results in the formation of AlH.sub.3 adduct. AlH.sub.3 is obtained from the adduct by heating under vacuum. The AlH.sub.3 can be recovered and used as a source of hydrogen for the automotive industry. The resulting spent aluminum can be regenerated into NaAlH.sub.4 or LiAlH.sub.4 as part of a closed loop process of AlH.sub.3 generation.

  18. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... iron, in milligrams (mg) at different ages and stages of life. Until the teen years, the recommended amount of ... and choosing iron-rich foods, especially during certain stages of life when more iron is needed, such as childhood ...

  19. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... iron-fortified breads and cereals, peas, tofu, dried fruits, and dark green leafy vegetables. Foods rich in vitamin C, such as oranges, ... iron-fortified breads and cereals, beans, tofu, dried fruits, and spinach and other dark green leafy vegetables. You can also take an iron supplement. Follow ...

  20. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... because your body’s intake of iron is too low. Low intake of iron can happen because of blood ... a lot of cow’s milk. Cow’s milk is low in iron. Teens, who have increased need for ...

  1. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... This is sometimes used to deliver iron through a blood vessel to increase iron levels in the blood. One benefit of IV iron ... over 65 years of age had low hemoglobin levels. This was associated with a greater risk of death even with mild anemia. ...

  2. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Heart and Vascular Diseases Precision Medicine Activities Obesity, Nutrition, and Physical Activity Population and Epidemiology Studies Women’s ... making new blood cells. Visit our Aplastic Anemia Health Topic to learn more. ... recommend that you take iron supplements, also called iron pills or oral iron, by mouth once or several times a ...

  3. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... supplements. Iron supplements can change how certain medicines work. Your doctor may suggest check-ups to make sure your ... To prevent complications from iron-deficiency anemia, your doctor may ... during certain stages of life when more iron is needed, such as childhood ...

  4. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... if you are diagnosed with iron-deficiency anemia. Risk Factors You may have an increased risk for iron-deficiency anemia because of your age, ... or sex. Age You may be at increased risk for iron deficiency at certain ages: Infants between ...

  5. Iron and Immunity

    NARCIS (Netherlands)

    Verbon, E.H.|info:eu-repo/dai/nl/413534049; Trapet, P.L.; Stringlis, I.|info:eu-repo/dai/nl/41185206X; Kruijs, Sophie; Bakker, P.A.H.M.|info:eu-repo/dai/nl/074744623; Pieterse, C.M.J.|info:eu-repo/dai/nl/113115113

    2017-01-01

    Iron is an essential nutrient for most life on Earth because it functions as a crucial redox catalyst in many cellular processes. However, when present in excess iron can lead to the formation of harmful hydroxyl radicals. Hence, the cellular iron balance must be tightly controlled. Perturbation of

  6. Glutathione, Glutaredoxins, and Iron.

    Science.gov (United States)

    Berndt, Carsten; Lillig, Christopher Horst

    2017-11-20

    Glutathione (GSH) is the most abundant cellular low-molecular-weight thiol in the majority of organisms in all kingdoms of life. Therefore, functions of GSH and disturbed regulation of its concentration are associated with numerous physiological and pathological situations. Recent Advances: The function of GSH as redox buffer or antioxidant is increasingly being questioned. New functions, especially functions connected to the cellular iron homeostasis, were elucidated. Via the formation of iron complexes, GSH is an important player in all aspects of iron metabolism: sensing and regulation of iron levels, iron trafficking, and biosynthesis of iron cofactors. The variety of GSH coordinated iron complexes and their functions with a special focus on FeS-glutaredoxins are summarized in this review. Interestingly, GSH analogues that function as major low-molecular-weight thiols in organisms lacking GSH resemble the functions in iron homeostasis. Since these iron-related functions are most likely also connected to thiol redox chemistry, it is difficult to distinguish between mechanisms related to either redox or iron metabolisms. The ability of GSH to coordinate iron in different complexes with or without proteins needs further investigation. The discovery of new Fe-GSH complexes and their physiological functions will significantly advance our understanding of cellular iron homeostasis. Antioxid. Redox Signal. 27, 1235-1251.

  7. Iron Stain on Wood

    Science.gov (United States)

    Mark Knaebe

    2013-01-01

    Iron stain, an unsightly blue–black or gray discoloration, can occur on nearly all woods. Oak, redwood, cypress, and cedar are particularly prone to iron stain because these woods contain large amounts of tannin-like extractives. The discoloration is caused by a chemical reaction between extractives in the wood and iron in steel products, such as nails, screws, and...

  8. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... amounts of iron, in milligrams (mg) at different ages and stages of life. Until the teen years, the recommended amount of iron is the same for boys and girls. From birth to 6 months, babies need 0.27 mg of iron. This number goes up to 11 mg for children ages 7 to 12 months, and down to 7 ...

  9. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... bleeding or other abnormalities, such as growths or cancer of the lining of the colon. For this test, a ... that you take iron supplements, also called iron pills or oral iron, by mouth once or several times a ...

  10. Iron homeostasis during pregnancy.

    Science.gov (United States)

    Fisher, Allison L; Nemeth, Elizabeta

    2017-12-01

    During pregnancy, iron needs to increase substantially to support fetoplacental development and maternal adaptation to pregnancy. To meet these iron requirements, both dietary iron absorption and the mobilization of iron from stores increase, a mechanism that is in large part dependent on the iron-regulatory hormone hepcidin. In healthy human pregnancies, maternal hepcidin concentrations are suppressed in the second and third trimesters, thereby facilitating an increased supply of iron into the circulation. The mechanism of maternal hepcidin suppression in pregnancy is unknown, but hepcidin regulation by the known stimuli (i.e., iron, erythropoietic activity, and inflammation) appears to be preserved during pregnancy. Inappropriately increased maternal hepcidin during pregnancy can compromise the iron availability for placental transfer and impair the efficacy of iron supplementation. The role of fetal hepcidin in the regulation of placental iron transfer still remains to be characterized. This review summarizes the current understanding and addresses the gaps in knowledge about gestational changes in hematologic and iron variables and regulatory aspects of maternal, fetal, and placental iron homeostasis. © 2017 American Society for Nutrition.

  11. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Topics section only, or the News and Resources section. NHLBI Entire Site NHLBI Entire Site Health ... español Iron-deficiency anemia is a common type of anemia that occurs if you do not have enough iron in your body. People with mild or moderate iron-deficiency anemia ...

  12. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... for iron-deficiency anemia. Lifestyle habits Certain lifestyle habits may increase your risk for iron-deficiency anemia, including: Vegetarian or vegan eating patterns. Not eating enough iron-rich foods, such as meat and fish, may result in ...

  13. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... blood cells. Iron-deficiency anemia usually develops over time because your body’s intake of iron is too ... clamping of your newborn’s umbilical cord at the time of delivery. This may help prevent iron-deficiency ...

  14. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... severity of the condition. Your doctor may recommend healthy eating changes, iron supplements, intravenous iron therapy for mild ... you: Adopt healthy lifestyle changes such as heart-healthy eating patterns. Increase your daily intake of iron-rich ...

  15. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... iron-deficiency anemia, including: Vegetarian or vegan eating patterns. Not eating enough iron-rich foods, such as meat and fish, may result in you getting less than the recommended daily amount of iron. Frequent blood donation. Individuals who donate blood often may be ...

  16. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Topics News & Resources Intramural Research Home / < Back To Health Topics / Iron-Deficiency Anemia Iron-Deficiency Anemia Also known as Leer ... and symptoms as well as complications from iron-deficiency anemia. Research for Your Health The NHLBI is part of the U.S. Department ...

  17. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... anemia, your doctor may order the following blood tests to diagnose iron-deficiency anemia: Complete blood count (CBC) to ... than normal when viewed under a microscope. Different tests help your doctor diagnose iron-deficiency anemia. In iron-deficiency anemia, blood ...

  18. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... for iron-deficiency anemia if you have certain risk factors , including pregnancy. To prevent iron-deficiency anemia, your doctor may recommend you eat heart-healthy foods or control other conditions that can cause iron-deficiency anemia. ...

  19. Iron and Your Child

    Science.gov (United States)

    ... deficiency isn't corrected, it can lead to iron-deficiency anemia (a decrease in the number of red blood ... Parents Kids Teens Anemia Blood Test: Ferritin (Iron) Iron-Deficiency Anemia Vegetarianism Menstrual Problems Pregnant or Breastfeeding? Nutrients You ...

  20. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... normally stores but has used up. Increase your intake of vitamin C to help your body absorb iron. Avoid drinking black tea, which reduces iron absorption. Other treatments If you have chronic kidney disease and iron-deficiency anemia, your doctor may recommend ...