WorldWideScience

Sample records for electrochemical integrated plant

  1. Material protection control and accounting program activities at the Urals electrochemical integrated plant

    International Nuclear Information System (INIS)

    McAllister, S.

    1997-01-01

    The Urals Electrochemical Integrated Plant (UEIP) is the Russian Federation's largest uranium enrichment plant and one of three sites in Russia blending high enriched uranium (HEU) into commercial grade low enriched uranium. UEIP is located approximately 70 km north of Yekaterinburg in the closed city of Novouralsk (formerly Sverdlovsk- 44). DOE's MPC ampersand A program first met with UEIP in June of 1996, however because of some contractual issues the work did not start until September of 1997. The six national laboratories participating in DOE's Material Protection Control and Accounting program are cooperating with UEIP to enhance the capabilities of the physical protection, access control, and nuclear material control and accounting systems. The MPC ampersand A work at UEIP is expected to be completed during fiscal year 2001

  2. The Ural Electrochemical Integrated Plant Process for Managing Equipment Intended for Nuclear Material Protection, Control and Accounting System Upgrades

    International Nuclear Information System (INIS)

    Yuldashev, Rashid; Nosov, Andrei; Carroll, Michael F.; Garrett, Albert G.; Dabbs, Richard D.; Ku, Esther M.

    2008-01-01

    Since 1996, the Ural Electrochemical Integrated Plant (UEIP) located in the town of Novouralsk, Russia, (previously known as Sverdlovsk-44) and the United States Department of Energy (U.S. DOE) have been cooperating under the Nuclear Material Protection, Control and Accounting (MPC and A) Program. Because UEIP is involved in the processing of highly enriched uranium (HEU) into low enriched uranium (LEU), and there are highly enriched nuclear materials on its territory, the main goal of the MPC and A cooperation is to upgrade those systems that ensure secure storage, processing and transportation of nuclear materials at the plant. UEIP has completed key upgrades (equipment procurement and installation) aimed at improving MPC and A systems through significant investments made by both the U.S. DOE and UEIP. These joint cooperative efforts resulted in bringing MPC and A systems into compliance with current regulations, which led to nuclear material (NM) theft risk reduction and prevention from other unlawful actions with respect to them. Upon the U.S. MPC and A project team's suggestion, UEIP has developed an equipment inventory control process to track all the property provided through the MPC and A Program. The UEIP process and system for managing equipment provides many benefits including: greater ease and efficiency in determining the quantities, location, maintenance and repair schedule for equipment; greater assurance that MPC and A equipment is in continued satisfactory operation; and improved control in the development of a site sustainability program. While emphasizing UEIP's equipment inventory control processes, this paper will present process requirements and a methodology that may have practical and helpful applications at other sites.

  3. Safeguards and security modeling for electrochemical plants

    International Nuclear Information System (INIS)

    Cipiti, B.B.; Duran, F.A.; Mendoza, L.A.; Parks, M.J.; Dominguez, D.; Le, T.D.

    2013-01-01

    Safeguards and security design for reprocessing plants can lead to excessive costs if not incorporated early in the design process. The design for electrochemical plants is somewhat uncertain since these plants have not been built at a commercial scale in the past. The Separation and Safeguards Performance Model (SSPM), developed at Sandia National Laboratories, has been used for safeguards design and evaluation for multiple reprocessing plant types. The SSPM includes the following capabilities: -) spent fuel source term library, -) mass tracking of elements 1-99 and bulk solid/liquids, -) tracking of heat load and activity, -) customisable measurement points, -) automated calculation of ID and error propagation, -) alarm conditions and statistical tests, and -) user-defined diversion scenarios. Materials accountancy and process monitoring data can provide more timely detection of material loss specifically to protect against the insider threat. While the SSPM is capable of determining detection probabilities and examining detection times for material loss scenarios, it does not model the operations or spatial effects for a plant design. The STAGE software was chosen to model the physical protection system. STAGE provides a framework to create end-to-end scalable force-on-force combat simulations. It allows for a complete 3D model of a facility to be designed along with the design of physical protection elements. This software, then, can be used to model operations and response for various material loss scenarios. The future integration of the SSPM model data with the STAGE software will provide a more complete analysis of diversion scenarios to assist plant designers

  4. Safeguards and security modeling for electrochemical plants

    Energy Technology Data Exchange (ETDEWEB)

    Cipiti, B.B.; Duran, F.A.; Mendoza, L.A.; Parks, M.J.; Dominguez, D.; Le, T.D. [Sandia National Laboratories, PO Box 5800 MS 0747, Albuquerque, NM 87185 (United States)

    2013-07-01

    Safeguards and security design for reprocessing plants can lead to excessive costs if not incorporated early in the design process. The design for electrochemical plants is somewhat uncertain since these plants have not been built at a commercial scale in the past. The Separation and Safeguards Performance Model (SSPM), developed at Sandia National Laboratories, has been used for safeguards design and evaluation for multiple reprocessing plant types. The SSPM includes the following capabilities: -) spent fuel source term library, -) mass tracking of elements 1-99 and bulk solid/liquids, -) tracking of heat load and activity, -) customisable measurement points, -) automated calculation of ID and error propagation, -) alarm conditions and statistical tests, and -) user-defined diversion scenarios. Materials accountancy and process monitoring data can provide more timely detection of material loss specifically to protect against the insider threat. While the SSPM is capable of determining detection probabilities and examining detection times for material loss scenarios, it does not model the operations or spatial effects for a plant design. The STAGE software was chosen to model the physical protection system. STAGE provides a framework to create end-to-end scalable force-on-force combat simulations. It allows for a complete 3D model of a facility to be designed along with the design of physical protection elements. This software, then, can be used to model operations and response for various material loss scenarios. The future integration of the SSPM model data with the STAGE software will provide a more complete analysis of diversion scenarios to assist plant designers.

  5. Commissioning Measurements and Experience Obtained from the Installation of a Fissile Mass Flow monitor in the URAL Electrochemical Integrated Plant (UEIP) in Novouralsk

    International Nuclear Information System (INIS)

    March-Leuba, J.; Mastal, E.; Powell, D.; Sumner, J.; Uckan, T.; Vines, V.

    1999-01-01

    The Blend Down Monitoring System (BDMS) equipment sent earlier to the Ural Electrochemical Integrated Plant (UEIP) at Novouralsk, Russia, was installed and implemented successfully on February 2, 1999. The BDMS installation supports the highly enriched uranium (HEU) Transparency Implementation Program for material subject to monitoring under the HEU purchase agreement between the United States of America (USA) and the Russian Federation (RF). The BDMS consists of the Oak Ridge National Laboratory (ORNL) Fissile (uranium-235) Mass Flow Monitor (FMFM) and the Los Alamos National Laboratory (LANL) Enrichment Monitor (EM). Two BDMSs for monitoring the Main and Reserve HEU blending process lines were installed at UEIP. Independent operation of the FMFM Main and FMFM Reserve was successfully demonstrated for monitoring the fissile mass flow as well as the traceability of HEU to the product low enriched uranium. The FMFM systems failed when both systems were activated during the calibration phase due to a synchronization problem between the systems. This operational failure was caused by the presence of strong electromagnetic interference (EMI) in the blend point. The source-modulator shutter motion of the two FMFM systems was not being properly synchronized because of EMI producing a spurious signal on the synchronization cable connecting the two FMFM cabinets. The signature of this failure was successfully reproduced at ORNL after the visit. This unexpected problem was eliminated by a hardware modification and software improvements during a recent visit (June 9-11, 1999) to UEIP, and both systems are now operating as expected

  6. Electrochemical Power Plant for Terrestrial Flight Platforms, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — An electrochemical power plant is proposed by MicroCell Technologies to provide power to terrestrial flight platforms. Our power plant is based upon a proton...

  7. Integrated Nuclear Recycle Plant

    International Nuclear Information System (INIS)

    Patodi, Anuj; Parashar, Abhishek; Samadhiya, Akshay K.; Ray, Saheli; Dey, Mitun; Singh, K.K.

    2017-01-01

    Nuclear Recycle Board (NRB), Tarapur proposes to set up an 'Integrated Nuclear Recycle Plant' at Tarapur. This will be located in the premises of BARC facilities. The project location is at coastal town of Tarapur, 130 Km north of Mumbai. Project area cover of INRP is around 80 hectares. The plant will be designed to process spent fuel received from Pressurized Heavy Water Reactors (PHWRs). This is the first large scale integrated plant of the country. INRP will process spent fuel obtained from indigenous nuclear power plants and perform left over nuclear waste disposal

  8. Integrated turbomachine oxygen plant

    Science.gov (United States)

    Anand, Ashok Kumar; DePuy, Richard Anthony; Muthaiah, Veerappan

    2014-06-17

    An integrated turbomachine oxygen plant includes a turbomachine and an air separation unit. One or more compressor pathways flow compressed air from a compressor through one or more of a combustor and a turbine expander to cool the combustor and/or the turbine expander. An air separation unit is operably connected to the one or more compressor pathways and is configured to separate the compressed air into oxygen and oxygen-depleted air. A method of air separation in an integrated turbomachine oxygen plant includes compressing a flow of air in a compressor of a turbomachine. The compressed flow of air is flowed through one or more of a combustor and a turbine expander of the turbomachine to cool the combustor and/or the turbine expander. The compressed flow of air is directed to an air separation unit and is separated into oxygen and oxygen-depleted air.

  9. Equipment specifications for an electrochemical fuel reprocessing plant

    International Nuclear Information System (INIS)

    Hemphill, Kevin P.

    2010-01-01

    Electrochemical reprocessing is a technique used to chemically separate and dissolve the components of spent nuclear fuel, in order to produce new metal fuel. There are several different variations to electrochemical reprocessing. These variations are accounted for by both the production of different types of spent nuclear fuel, as well as different states and organizations doing research in the field. For this electrochemical reprocessing plant, the spent fuel will be in the metallurgical form, a product of fast breeder reactors, which are used in many nuclear power plants. The equipment line for this process is divided into two main categories, the fuel refining equipment and the fuel fabrication equipment. The fuel refining equipment is responsible for separating out the plutonium and uranium together, while getting rid of the minor transuranic elements and fission products. The fuel fabrication equipment will then convert this plutonium and uranium mixture into readily usable metal fuel.

  10. Development of techniques for electrochemical studies in power plant environments

    International Nuclear Information System (INIS)

    Maekelae, K.

    2000-01-01

    The properties of the oxide films on the engineering alloys used as construction materials in power plants change as a result of exposure to aqueous environments. The susceptibility of the materials to different forms of corrosion is influenced by the properties of these oxide films. The structure and electrochemical properties of the oxide films are in turn dependent on the applied water chemistry. Therefore, water chemistry control has been used in minimising the impact of different corrosion phenomena in operating power plants. Since there is not only one ideal operational specification for all light water reactors, individually designed water chemistry programs are needed to take into account plant-specific design features and particular problem areas. The applicability of alternative water chemistry practices require fast and reliable in-line electrochemical techniques to monitor possible changes in the oxidation behaviour of nuclear power plant materials. This thesis summarises the work done at the Technical Research Centre of Finland over the past 10 years to increase the knowledge of factors affecting the oxidation behaviour of construction materials in aqueous coolants at high temperatures. The work started with the development of electrodes for measurement of high temperature water chemistry parameters such as pH and the corrosion potential of construction materials. After laboratory testing these electrodes were used both in test reactors and in operating nuclear power plants. These measurements showed that high temperature water chemistry monitoring may be more accurate than corresponding room temperature measurements, particularly during transient situations. However, it was also found that understanding the processes taking place within and on oxide films requires a combination of electrochemical techniques enabling characterisation of the electronic properties of these films. This conclusion resulted in development of a controlled

  11. ELECTROCHEMICAL FINGERPRINT STUDIES OF SELECTED MEDICINAL PLANTS RICH IN FLAVONOIDS.

    Science.gov (United States)

    Konieczyński, Paweł

    2015-01-01

    The combination of a size-exclusion column (SEC) with electrochemical (voltammetric) detection at a boron-doped diamond electrode (BDDE) was applied for studying the correlations between electroactive Cu and Fe species with phenolic groups of flavonoids. For comparison with electrochemical results, SEC-HPLC-DAD detection was used. The studied plant material comprised of: Betula verrucosa Ehrh., Equisetun arvense L., Polygonum aviculare L., Viola tricolor L., Crataegus oxyacantha L., Sambucus nigra L. and Helichrysum arenarium (L.) Moench. Based upon the results, high negative correlation was found for the chromatographic peak currents at 45 min with the sum of Cu and Fe for the aqueous extracts of Sambucus, Crataegus and Betula species, and for the peak currents at 65 min of the aqueous extracts of Sambucus, Crataegus, Helichrysum and Betula botanical species. This behavior confirms that it is mainly the flavonoids with easily oxidizable phenolic groups which are strongly influenced by the presence of Cu and Fe. Moreover, the electrochemical profiles obtained thanks to the use of HPLC hyphenated with voltammetric detection can be potentially applied for fingerprint studies of the plant materials used in medicine.

  12. Integrated Electrochemical Analysis System with Microfluidic and Sensing Functions

    Directory of Open Access Journals (Sweden)

    Hiroaki Suzuki

    2008-02-01

    Full Text Available An integrated device that carries out the timely transport of solutions andconducts electroanalysis was constructed. The transport of solutions was based oncapillary action in overall hydrophilic flow channels and control by valves that operateon the basis of electrowetting. Electrochemical sensors including glucose, lactate,glutamic oxaloacetic transaminase (GOT, glutamic pyruvic transaminase (GPT, pH,ammonia, urea, and creatinine were integrated. An air gap structure was used for theammonia, urea, and creatinine sensors to realize a rapid response. To enhance thetransport of ammonia that existed or was produced by the enzymatic reactions, the pHof the solution was elevated by mixing it with a NaOH solution using a valve based onelectrowetting. The sensors for GOT and GPT used a freeze-dried substrate matrix torealize rapid mixing. The sample solution was transported to required sensing sites atdesired times. The integrated sensors showed distinct responses when a sample solutionreached the respective sensing sites. Linear relationships were observed between theoutput signals and the concentration or the logarithm of the concentration of theanalytes. An interferent, L-ascorbic acid, could be eliminated electrochemically in thesample injection port.

  13. Multi-target electrochemical biosensing enabled by integrated CMOS electronics

    International Nuclear Information System (INIS)

    Rothe, J; Lewandowska, M K; Heer, F; Frey, O; Hierlemann, A

    2011-01-01

    An integrated electrochemical measurement system, based on CMOS technology, is presented, which allows the detection of several analytes in parallel (multi-analyte) and enables simultaneous monitoring at different locations (multi-site). The system comprises a 576-electrode CMOS sensor chip, an FPGA module for chip control and data processing, and the measurement laptop. The advantages of the highly versatile system are demonstrated by two applications. First, a label-free, hybridization-based DNA sensor is enabled by the possibility of large-scale integration in CMOS technology. Second, the detection of the neurotransmitter choline is presented by assembling the chip with biosensor microprobe arrays. The low noise level enables a limit of detection of, e.g., 0.3 µM choline. The fully integrated system is self-contained: it features cleaning, functionalization and measurement functions without the need for additional electrical equipment. With the power supplied by the laptop, the system is very suitable for on-site measurements

  14. Non-destructive electrochemical techniques applied to the corrosion evaluation of the liner structures in nuclear power plants

    International Nuclear Information System (INIS)

    Martinez, I.; Castillo, A.; Andrade, C.

    2008-01-01

    The liner structure in nuclear power plants provides containment for the operation and therefore the study of its durability and integrity during its service life is an important issue. There are several causes for the deterioration of the liner, which in general involve corrosion due to its metallic nature. The present paper is aimed at describing the assessment of corrosion problems of two liners from two different nuclear power plants, which were evaluated using non-destructive electrochemical techniques. In spite of the testing difficulties arisen, from the results extracted it can be concluded that the electrochemical techniques applied are adequate for the corrosion evaluation. They provide important information about the integrity of the structure and allow for its evolution with time to be assessed

  15. Nuclear Plant Integrated Outage Management

    International Nuclear Information System (INIS)

    Gerstberger, C. R.; Coulehan, R. J.; Tench, W. A.

    1992-01-01

    This paper is a discussion of an emerging concept for improving nuclear plant outage performance - integrated outage management. The paper begins with an explanation of what the concept encompasses, including a scope definition of the service and descriptions of the organization structure, various team functions, and vendor/customer relationships. The evolvement of traditional base scope services to the integrated outage concept is addressed and includes discussions on changing customer needs, shared risks, and a partnership approach to outages. Experiences with concept implementation from a single service in 1984 to the current volume of integrated outage management presented in this paper. We at Westinghouse believe that the operators of nuclear power plants will continue to be aggressively challenged in the next decade to improve the operating and financial performance of their units. More and more customers in the U. S. are looking towards integrated outage as the way to meet these challenges of the 1990s, an arrangement that is best implemented through a long-term partnering with a single-source supplier of high quality nuclear and turbine generator outage services. This availability, and other important parameters

  16. Electrochemical protein cleavage in a microfluidic cell with integrated boron doped diamond electrodes

    NARCIS (Netherlands)

    van den Brink, Floris Teunis Gerardus; Zhang, Tao; Ma, Liwei; Odijk, Mathieu; Olthuis, Wouter; Permentier, Hjalmar P.; Bischoff, Rainer P.H.; van den Berg, Albert

    2015-01-01

    We present a microfluidic electrochemical cell with integrated boron doped diamond (BDD) electrodes which is designed for high electrochemical conversion efficiencies. With our newest developments, we aim to exploit the benefits of BDD as a novel electrode material to conduct tyrosine- and

  17. Electrochemical Carbon Dioxide Sensor for Plant Production Environments, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The aim of this proposal is to develop a low power consuming solid polymer electrolyte based, miniaturized electrochemical CO2 sensor that can continuously,...

  18. Electrochemical Carbon Dioxide Sensor for Plant Production Environments, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The aim of this proposal is to develop a low power consuming solid polymer electrolyte based, miniaturized electrochemical CO2 sensor that can continuously,...

  19. Corrosion monitoring in a straw-fired power plant using an electrochemical noise probe

    DEFF Research Database (Denmark)

    Cappeln, Frederik Vilhelm; Bjerrum, Niels; Petrushina, Irina

    2007-01-01

    Electrochemical Noise Measurements have been carried out in situ in a straw-fired power plant using an experimental probe constructed from alumina and AlSl 347 steel. Based on a framework of controlled laboratory experiments it has been found that electrochemical noise has the unique ability...... to provide in-situ monitoring of intergranular corrosion in progress. The probe had a lifetime of two months. It was shown that down-time corrosion in the boiler was negligible. Electrochemical noise data indicated that metal temperatures around 590 degrees C should be avoided as the intergranular corrosion...

  20. Integrated Gasification SOFC Plant with a Steam Plant

    DEFF Research Database (Denmark)

    Rokni, Masoud; Pierobon, Leonardo

    2011-01-01

    A hybrid Solid Oxide Fuel Cell (SOFC) and Steam Turbine (ST) plant is integrated with a gasification plant. Wood chips are fed to the gasification plant to produce biogas and then this gas is fed into the anode side of a SOFC cycle to produce electricity and heat. The gases from the SOFC stacks...... enter into a burner to burn the rest of the fuel. The offgases after the burner are now used to generate steam in a Heat Recovery Steam Generator (HRSG). The generated steam is expanded in a ST to produce additional power. Thus a triple hybrid plant based on a gasification plant, a SOFC plant...... and a steam plant is presented and studied. The plant is called as IGSS (Integrated Gasification SOFC Steam plant). Different systems layouts are presented and investigated. Electrical efficiencies up to 56% are achieved which is considerably higher than the conventional integrated gasification combined...

  1. Electrochemical materials and processes in Si integrated circuit technology

    Energy Technology Data Exchange (ETDEWEB)

    Dubin, V.M. [Intel Corp., Components Research, Hillsboro, OR 97124 (United States)]. E-mail: valery.m.dubin@intel.com; Akolkar, R. [Intel Corp., Components Research, Hillsboro, OR 97124 (United States); Cheng, C.C. [Intel Corp., Components Research, Hillsboro, OR 97124 (United States); Chebiam, R. [Intel Corp., Components Research, Hillsboro, OR 97124 (United States); Fajardo, A. [Intel Corp., Components Research, Hillsboro, OR 97124 (United States); Gstrein, F. [Intel Corp., Components Research, Hillsboro, OR 97124 (United States)

    2007-02-10

    Various technical issues related to feature scaling and recent electrochemical technologies advances for on-chip copper interconnects at Intel are reviewed. Effects of additives on electroplating, as well as performance of novel Cu direct plating on ruthenium liner are discussed. An electroless cobalt capping layer of Cu lines, which led to increased electromigration resistance, has been characterized. The potential application of carbon nanotubes as future interconnects materials, their properties and controlled placement by using dielectrophoresis are also reviewed.

  2. Integration of torrefaction with steam power plant

    Energy Technology Data Exchange (ETDEWEB)

    Zakri, B.; Saari, J.; Sermyagina, E.; Vakkilainen, E.

    2013-09-01

    Torrefaction is one of the pretreatment technologies to enhance the fuel characteristics of biomass. The efficient and continuous operation of a torrefaction reactor, in the commercial scale, demands a secure biomass supply, in addition to adequate source of heat. Biorefinery plants or biomass-fuelled steam power plants have the potential to integrate with the torrefaction reactor to exchange heat and mass, using available infrastructure and energy sources. The technical feasibility of this integration is examined in this study. A new model for the torrefaction process is introduced and verified by the available experimental data. The torrefaction model is then integrated in different steam power plants to simulate possible mass and energy exchange between the reactor and the plants. The performance of the integrated plant is investigated for different configurations and the results are compared. (orig.)

  3. PV integration into a CSP plant

    Science.gov (United States)

    Carvajal, Javier López; Barea, Jose M.; Barragan, Jose; Ortega, Carlos

    2017-06-01

    This paper describes a preliminary techno-economic analysis of the integration of a PV plant into an optimized Parabolic Trough Plant in order to reduce the online consumptions and thus, increase the net electricity injected into the grid. The idea is to assess the feasibility of such project and see what configuration would be the optimal. An extra effort has been made in terms of modelling as the analysis has to be done to the integrated CSP + PV plant instead of analyzing them independently. Two different technologies have been considered for the PV plant, fix and one-axis tracking. Additionally three different scenarios have been considered for the CSP plant auxiliary consumptions as they are essential for determining the optimal PV plant (the higher the auxiliary consumption the higher the optimal PV plant). As could be expected, the results for all cases with PV show an improvement in terms of electricity generation and also in terms of LCOE with respect to the CSP plant. Such improvement is slightly higher with tracking technology for this specific study. Although this exercise has been done to an already designed CSP plant (so only the PV plant had to be optimized), the methodology could be applied for the optimization of an integrated CSP + PV plant during the design phase.

  4. Integrating environmental control for coal plant efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, M

    1986-01-01

    As emission control requirements for power plants have grown more stringent, utilities have added new environmental protection technology. As environmental controls have been added one after another, plant designers have rarely had the opportunity to integrate these components with each other and the balance of the plant. Consequently they often cost more to build and operate and can reduce power plant efficiency and availability. With the aim of lowering the cost of environmental systems, a design approach known as integrated environmental control (IEC) has emerged. This is based on the premise that environmental controls can function most economically if they are designed integrally with other power generation equipment. EPRI has established an IEC progam to develop integrated design strategies and evaluate their net worth to utilities. Various aspects of this program are described. (3 refs.)

  5. Relay Feedback Analysis for Double Integral Plants

    Directory of Open Access Journals (Sweden)

    Zhen Ye

    2011-01-01

    Full Text Available Double integral plants under relay feedback are studied. Complete results on the uniqueness of solutions, existence, and stability of the limit cycles are established using the point transformation method. Analytical expressions are also given for determining the amplitude and period of a limit cycle from the plant parameters.

  6. Monitoring programmed cell death of living plant tissues in microfluidics using electrochemical and optical techniques

    DEFF Research Database (Denmark)

    Mark, Christina; Heiskanen, Arto; Svensson, Birte

    Programmed cell death (PCD) in plants can influence the outcome of yield and quality of crops through its important role in seed germination and the defence process against pathogens. The main scope of the project is to apply microfluidic cell culture for the measurement of electrochemically......, since it is known that reactive oxygen species, which are affected by changes in the redox activity of the cells3, are involved in PCD in plants, but the relationship between and mechanisms behind ROS and PCD is only poorly understood in plant cells4. Recently, it has been shown, using optical detection...

  7. Distribution Integrity Management Plant (DIMP)

    Energy Technology Data Exchange (ETDEWEB)

    Gonzales, Jerome F. [Los Alamos National Laboratory

    2012-05-07

    This document is the distribution integrity management plan (Plan) for the Los Alamos National Laboratory (LANL) Natural Gas Distribution System. This Plan meets the requirements of 49 CFR Part 192, Subpart P Distribution Integrity Management Programs (DIMP) for the LANL Natural Gas Distribution System. This Plan was developed by reviewing records and interviewing LANL personnel. The records consist of the design, construction, operation and maintenance for the LANL Natural Gas Distribution System. The records system for the LANL Natural Gas Distribution System is limited, so the majority of information is based on the judgment of LANL employees; the maintenance crew, the Corrosion Specialist and the Utilities and Infrastructure (UI) Civil Team Leader. The records used in this report are: Pipeline and Hazardous Materials Safety Administration (PHMSA) 7100.1-1, Report of Main and Service Line Inspection, Natural Gas Leak Survey, Gas Leak Response Report, Gas Leak and Repair Report, and Pipe-to-Soil Recordings. The specific elements of knowledge of the infrastructure used to evaluate each threat and prioritize risks are listed in Sections 6 and 7, Threat Evaluation and Risk Prioritization respectively. This Plan addresses additional information needed and a method for gaining that data over time through normal activities. The processes used for the initial assessment of Threat Evaluation and Risk Prioritization are the methods found in the Simple, Handy Risk-based Integrity Management Plan (SHRIMP{trademark}) software package developed by the American Pipeline and Gas Agency (APGA) Security and Integrity Foundation (SIF). SHRIMP{trademark} uses an index model developed by the consultants and advisors of the SIF. Threat assessment is performed using questions developed by the Gas Piping Technology Company (GPTC) as modified and added to by the SHRIMP{trademark} advisors. This Plan is required to be reviewed every 5 years to be continually refined and improved. Records

  8. Nuclear plants gain integrated information systems

    International Nuclear Information System (INIS)

    Villavicencio-Ramirez, A.; Rodriquez-Alvarez, J.M.

    1994-01-01

    With the objective of simplifying the complex mesh of computing devices employed within nuclear power plants, modern technology and integration techniques are being used to form centralized (but backed up) databases and distributed processing and display networks. Benefits are immediate as a result of the integration and the use of standards. The use of a unique data acquisition and database subsystem optimizes the high costs of engineering, as this task is done only once for the life span of the system. This also contributes towards a uniform user interface and allows for graceful expansion and maintenance. This article features an integrated information system, Sistema Integral de Informacion de Proceso (SIIP). The development of this system enabled the Laguna Verde Nuclear Power plant to fully use the already existing universe of signals and its related engineering during all plant conditions, namely, start up, normal operation, transient analysis, and emergency operation. Integrated systems offer many advantages over segregated systems, and this experience should benefit similar development efforts in other electric power utilities, not only for nuclear but also for other types of generating plants

  9. CANDU plant life management - An integrated approach

    International Nuclear Information System (INIS)

    Hopkins, J.R.

    1998-01-01

    An integrated approach to plant life management has been developed for CANDU reactors. Strategies, methods, and procedures have been developed for assessment of critical systems structures and components and for implementing a reliability centred maintenance program. A Technology Watch program is being implemented to eliminate 'surprises'. Specific work has been identified for 1998. AECL is working on the integrated program with CANDU owners and seeks participation from other CANDU owners

  10. Monitoring corrosion and biofilm formation in nuclear plants using electrochemical methods

    International Nuclear Information System (INIS)

    Licina, G.J.; Nekoksa, G.; Ward, G.L.; Howard, R.L.; Cubicciotti, D.

    1993-01-01

    During the 1980's, degradation of piping, heat exchangers, and other components in raw water cooled systems by a variety of corrosion mechanisms became an important in the reliability and cost effectiveness of U.S. nuclear plants. General and localized corrosion, including pitting and crevice corrosion, have all been shown to be operative in nuclear plant cooling systems. Microbiologically influenced corrosion (MIC) also afflicts nuclear cooling water and service water systems. The prediction of locations to be inspected, selection of mitigation measures, and control of water treatments and maintenance planning rely upon the accuracy and sensitivity of monitoring techniques. Electrochemical methods can provide rapid measurements of corrosion and biological activity on line. The results from a corrosion monitoring study in a service water system at a fresh water cooled nuclear plant are presented. This study utilized determinations of open circuit potential and reversed potentiodynamic scans on carbon steels, Admiralty, and stainless steels (Types 304 and 316 as well as high chromium, high molybdenum ferritic and austenitic grades) to evaluate the rate and form of corrosion to be anticipated in typical service. An electrochemical method that permits the monitoring of biofilm activity on-line has been developed. Results from laboratory and in-plant exposure in a nuclear power plant system are presented

  11. Integrating a SOFC Plant with a Steam Turbine Plant

    DEFF Research Database (Denmark)

    Rokni, Masoud; Scappin, Fabio

    2009-01-01

    A Solid Oxide Fuel Cell (SOFC) is integrated with a Steam Turbine (ST) cycle. Different hybrid configurations are studied. The fuel for the plants is assumed to be natural gas (NG). Since the NG cannot be sent to the anode side of the SOFC directly, a desulfurization reactor is used to remove...

  12. Establishment of the Integrated Plant Data Warehouse

    International Nuclear Information System (INIS)

    Oota, Yoshimi; Yoshinaga, Toshiaki

    1999-01-01

    This paper presents 'The Establishment of the Integrated Plant Data Warehouse and Verification Tests on Inter-corporate Electronic Commerce based on the Data Warehouse (PDWH)', one of the 'Shared Infrastructure for the Electronic Commerce Consolidation Project', promoted by the Ministry of International Trade and Industry (MITI) through the Information-Technology Promotion Agency (IPA), Japan. A study group called Japan Plant EC (PlantEC) was organized to perform relevant activities. One of the main activities of plantEC involves the construction of the Integrated (including manufacturers, engineering companies, plant construction companies, and machinery and parts manufacturers, etc.) Data Warehouse which is an essential part of the infrastructure necessary for a system to share information on industrial life cycle ranging from planning/designing to operation/maintenance. Another activity is the utilization of this warehouse for the purpose of conducting verification tests to prove its usefulness. Through these verification tests, PlantEC will endeavor to establish a warehouse with standardized data which can be used for the infrastructure of EC in the process plant industry. (author)

  13. Establishment of the Integrated Plant Data Warehouse

    Energy Technology Data Exchange (ETDEWEB)

    Oota, Yoshimi; Yoshinaga, Toshiaki [Hitachi Works, Hitachi Ltd., hitachi, Ibaraki (Japan)

    1999-07-01

    This paper presents 'The Establishment of the Integrated Plant Data Warehouse and Verification Tests on Inter-corporate Electronic Commerce based on the Data Warehouse (PDWH)', one of the 'Shared Infrastructure for the Electronic Commerce Consolidation Project', promoted by the Ministry of International Trade and Industry (MITI) through the Information-Technology Promotion Agency (IPA), Japan. A study group called Japan Plant EC (PlantEC) was organized to perform relevant activities. One of the main activities of plantEC involves the construction of the Integrated (including manufacturers, engineering companies, plant construction companies, and machinery and parts manufacturers, etc.) Data Warehouse which is an essential part of the infrastructure necessary for a system to share information on industrial life cycle ranging from planning/designing to operation/maintenance. Another activity is the utilization of this warehouse for the purpose of conducting verification tests to prove its usefulness. Through these verification tests, PlantEC will endeavor to establish a warehouse with standardized data which can be used for the infrastructure of EC in the process plant industry. (author)

  14. Integrating electrochemical oxidation into forward osmosis process for removal of trace antibiotics in wastewater.

    Science.gov (United States)

    Liu, Pengxiao; Zhang, Hanmin; Feng, Yujie; Shen, Chao; Yang, Fenglin

    2015-10-15

    During the rejection of trace pharmaceutical contaminants from wastewater by forward osmosis (FO), disposal of the FO concentrate was still an unsolved issue. In this study, by integrating the advantages of forward osmosis and electrochemical oxidation, a forward osmosis process with the function of electrochemical oxidation (FOwEO) was established for the first time to achieve the aim of rejection of trace antibiotics from wastewater and treatment of the concentrate at the same time. Results demonstrated that FOwEO (current density J=1 mA cm(-2)) exhibited excellent rejections of antibiotics (>98%) regardless of different operation conditions, and above all, antibiotics in the concentrate were well degraded (>99%) at the end of experiment (after 3h). A synergetic effect between forward osmosis and electrochemical oxidation was observed in FOwEO, which lies in that antibiotic rejections by FO were enhanced due to the degradation of antibiotics in the concentrate, while the electrochemical oxidation capacity was improved in the FOwEO channel, of which good mass transfer and the assist of indirect oxidation owing to the reverse NaCl from draw solution were supposed to be the mechanism. This study demonstrated that the FOwEO has the capability to thoroughly remove trace antibiotics from wastewater. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Combined heat and power (cogeneration) plant based on renewable energy sources and electrochemical hydrogen systems

    Science.gov (United States)

    Grigor'ev, S. A.; Grigor'ev, A. S.; Kuleshov, N. V.; Fateev, V. N.; Kuleshov, V. N.

    2015-02-01

    The layout of a combined heat and power (cogeneration) plant based on renewable energy sources (RESs) and hydrogen electrochemical systems for the accumulation of energy via the direct and inverse conversion of the electrical energy from RESs into the chemical energy of hydrogen with the storage of the latter is described. Some efficient technical solutions on the use of electrochemical hydrogen systems in power engineering for the storage of energy with a cyclic energy conversion efficiency of more than 40% are proposed. It is shown that the storage of energy in the form of hydrogen is environmentally safe and considerably surpasses traditional accumulator batteries by its capacitance characteristics, being especially topical in the prolonged absence of energy supply from RESs, e.g., under the conditions of polar night and breathless weather. To provide the required heat consumption of an object during the peak period, it is proposed to burn some hydrogen in a boiler house.

  16. Monitoring programmed cell death of living plant tissues in microfluidics using electrochemical and optical techniques

    DEFF Research Database (Denmark)

    Mark, Christina; Zor, Kinga; Heiskanen, Arto

    such as redox activity, O2 and H2O2 concentration, pH, cell viability and release of target enzymes such as α-amylase. We have optimised an intracellular, whole-cell redox activity assay[3] that detects changes in redox activity in barley aleurone layer during PCD. The assay uses a double mediator......This project focuses on developing and applying a tissue culture system with electrochemical and optical detection techniques for tissue culture of barley aleurone layer to increase understanding of the underlying mechanisms of programmed cell death (PCD) in plants. The major advantage......-system to electrochemically measure redox activity via changes in the NADP:NADPH ratio. Experiments show that redox activity changes depend on phytohormone activation or inactivation of aleurone layer metabolism and subsequent PCD. We have also successfully detected PCD induced by phytohormones in barley aleurone layer using...

  17. Interface Design for CMOS-Integrated Electrochemical Impedance Spectroscopy (EIS Biosensors

    Directory of Open Access Journals (Sweden)

    Arjang Hassibi

    2012-10-01

    Full Text Available Electrochemical Impedance Spectroscopy (EIS is a powerful electrochemical technique to detect biomolecules. EIS has the potential of carrying out label-free and real-time detection, and in addition, can be easily implemented using electronic integrated circuits (ICs that are built through standard semiconductor fabrication processes. This paper focuses on the various design and optimization aspects of EIS ICs, particularly the bio-to-semiconductor interface design. We discuss, in detail, considerations such as the choice of the electrode surface in view of IC manufacturing, surface linkers, and development of optimal bio-molecular detection protocols. We also report experimental results, using both macro- and micro-electrodes to demonstrate the design trade-offs and ultimately validate our optimization procedures.

  18. Interface design for CMOS-integrated Electrochemical Impedance Spectroscopy (EIS) biosensors.

    Science.gov (United States)

    Manickam, Arun; Johnson, Christopher Andrew; Kavusi, Sam; Hassibi, Arjang

    2012-10-29

    Electrochemical Impedance Spectroscopy (EIS) is a powerful electrochemical technique to detect biomolecules. EIS has the potential of carrying out label-free and real-time detection, and in addition, can be easily implemented using electronic integrated circuits (ICs) that are built through standard semiconductor fabrication processes. This paper focuses on the various design and optimization aspects of EIS ICs, particularly the bio-to-semiconductor interface design. We discuss, in detail, considerations such as the choice of the electrode surface in view of IC manufacturing, surface linkers, and development of optimal bio-molecular detection protocols. We also report experimental results, using both macro- and micro-electrodes to demonstrate the design trade-offs and ultimately validate our optimization procedures.

  19. Integrated chemical plants at the pulp mill

    Energy Technology Data Exchange (ETDEWEB)

    Ehtonen, P.; Hurme, M.; Jaervelaeinen, M.

    1995-12-31

    The goal of this paper is to present how the chemical plants can be integrated to the pulp mill. The integration renders possible to balance the chemical consumptions. The total mass balance of a pulp mill with the incoming fuel material and the outgoing waste and flue gases are discussed. The balance figures are presented for the chemicals of the modern fibre line, which will produce fully bleached softwood pulp with an improved effluent quality. The main benefits are lower chemical and transportation costs. The principal over-all plant process block diagrams and process descriptions are presented. The presented info system provides real time information on process and production status at overall mill and department levels. (author)

  20. The future of integrated coal gasification combined cycle power plants

    International Nuclear Information System (INIS)

    Mueller, R.; Termuehlen, H.

    1991-01-01

    This paper examines the future of integrated coal gasification combined cycle (IGCC) power plants as affected by various technical, economical and environmental trends in power generation. The topics of the paper include a description of natural gas-fired combined cycle power plants, IGCC plants, coal gasifier concepts, integration of gasifiers into combined cycle power plants, efficiency, environmental impacts, co-products of IGCC power plants, economics of IGCC power plants, and a review of IGCC power plant projects

  1. Water system integration of a chemical plant

    International Nuclear Information System (INIS)

    Zheng Pingyou; Feng Xiao; Qian Feng; Cao Dianliang

    2006-01-01

    Water system integration can minimize both the freshwater consumption and the wastewater discharge of a plant. In industrial applications, it is the key to determine reasonably the contaminants and the limiting concentrations, which will decide the freshwater consumption and wastewater discharge of the system. In this paper, some rules to determine the contaminants and the limiting concentrations are proposed. As a case study, the water system in a chemical plant that produces sodium hydroxide and PVC (polyvinyl chloride) is integrated. The plant consumes a large amount of freshwater and discharges a large amount of wastewater, so minimization of both the freshwater consumption and the wastewater discharge is very important to it. According to the requirements of each water using process on the water used in it, the contaminants and the limiting concentrations are determined. Then, the optimal water reuse scheme is firstly studied based on the water network with internal water mains. To reduce the freshwater consumption and the wastewater discharge further, decentralized regeneration recycling is considered. The water using network is simplified by mixing some of the used water. After the water system integration, the freshwater consumption is reduced 25.5%, and the wastewater discharge is reduced 48%

  2. Technical Integration of SMART Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. H.; Park, P. H.; Noh, P. C. (and others)

    2006-12-15

    Preliminary experimental tests were carried out using the thermal-hydraulic integral test facility, VISTA (Experimental Verification by Integral Simulation of Transients and Accidents), which has been constructed to simulate the SMART-P. The VISTA facility is an integral test facility including the primary and secondary systems as well as safety-related Passive Residual heat removal (PRHR) systems. The integrated SMART desalination plant consists of Multi Effect Distillation Process combined with Thermal-Vapor Compressor(MED-TVC) and coupled with the extracted steam from turbine through the steam transformer. Steam transformer produces the main pressure steam and supplies to the MED-TVC unit. MED-TVC was selected as a desalination process coupled with SMART, since the thermal vapor compression is very effective where the steam is available at high temperature and pressure conditions than required in the evaporator. The standard design of the SMART desalination plant is under development as a part of the SMART project. This report describes design concept of these systems and their requirements.

  3. Integrated plant information technology design support functionality

    International Nuclear Information System (INIS)

    Kim, Yeon Seung; Kim, Dae Jin; Barber, P. W.; Goland, D.

    1996-06-01

    This technical report was written as a result of Integrated Plant Information System (IPIS) feasibility study on CANDU 9 project which had been carried out from January, 1994 to March, 1994 at AECL (Atomic Energy Canada Limited) in Canada. From 1987, AECL had done endeavour to change engineering work process from paper based work process to computer based work process through CANDU 3 project. Even though AECL had a lot of good results form computerizing the Process Engineering, Instrumentation Control and Electrical Engineering, Mechanical Engineering, Computer Aided Design and Drafting, and Document Management System, but there remains the problem of information isolation and integration. On this feasibility study, IPIS design support functionality guideline was suggested by evaluating current AECL CAE tools, analyzing computer aided engineering task and work flow, investigating request for implementing integrated computer aided engineering and describing Korean request for future CANDU design including CANDU 9. 6 figs. (Author)

  4. Integrated plant information technology design support functionality

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeon Seung; Kim, Dae Jin [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Barber, P W; Goland, D [Atomic Energy Canada Ltd., (Canada)

    1996-06-01

    This technical report was written as a result of Integrated Plant Information System (IPIS) feasibility study on CANDU 9 project which had been carried out from January, 1994 to March, 1994 at AECL (Atomic Energy Canada Limited) in Canada. From 1987, AECL had done endeavour to change engineering work process from paper based work process to computer based work process through CANDU 3 project. Even though AECL had a lot of good results form computerizing the Process Engineering, Instrumentation Control and Electrical Engineering, Mechanical Engineering, Computer Aided Design and Drafting, and Document Management System, but there remains the problem of information isolation and integration. On this feasibility study, IPIS design support functionality guideline was suggested by evaluating current AECL CAE tools, analyzing computer aided engineering task and work flow, investigating request for implementing integrated computer aided engineering and describing Korean request for future CANDU design including CANDU 9. 6 figs. (Author).

  5. Analysis of a bio-electrochemical reactor containing carbon fiber textiles for the anaerobic digestion of tomato plant residues.

    Science.gov (United States)

    Hirano, Shin-Ichi; Matsumoto, Norio

    2018-02-01

    A bio-electrochemical system packed with supporting material can promote anaerobic digestion for several types of organic waste. To expand the target organic matters of a BES, tomato plant residues (TPRs), generated year-round as agricultural and cellulosic waste, were treated using three methanogenic reactors: a continuous stirred tank reactor (CSTR), a carbon fiber textile (CFT) reactor, and a bio-electrochemical reactor (BER) including CFT with electrochemical regulation (BER + CFT). CFT had positive effects on methane fermentation and methanogen abundance. The microbial population stimulated by electrochemical regulation, including hydrogenotrophic methanogens, cellulose-degrading bacteria, and acetate-degrading bacteria, suppressed acetate accumulation, as evidenced by the low acetate concentration in the suspended fraction in the BER + CFT. These results indicated that the microbial community in the BER + CFT facilitated the efficient decomposition of TPR and its intermediates such as acetate to methane. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Integrated design of SIGMA uranium enrichment plants

    International Nuclear Information System (INIS)

    Rivarola, Martin E.; Brasnarof, Daniel O.

    1999-01-01

    In the present work, we describe a preliminary analysis of the design feedbacks in a Uranium Enrichment Plant, using the SIGMA concept. Starting from the result of this analysis, a computer code has been generated, which allows finding the optimal configurations of plants, for a fixed production rate. The computer code developed includes the model of the Thermohydraulic loop of a SIGMA module. The model contains numerical calculations of the main components of the circuit. During the calculations, the main components are dimensioned, for a posterior cost compute. The program also makes an estimation of the enrichment gain of the porous membrane, for each separation stage. Once the dimensions of the main components are known, using the enrichment cascade calculation, the capital and operation costs of the plant could be determined. At this point it is simple to calculate a leveled cost of the Separative Work Unit (SWU). A numerical optimizer is also included in the program. This optimizer finds the optimal cascade configuration, for a given set of design parameters. The whole-integrated program permits to investigate in detail the feedback in the component design. Therefore, the sensibility of the more relevant parameters can be computed, with respect of the economical variables of the plant. (author)

  7. CANDU plant life management - An integrated approach

    International Nuclear Information System (INIS)

    Charlebois, P.; Hart, R.S.; Hopkins, J.R.

    1998-01-01

    Commercial versions of CANDU reactors were put into service starting more than 25 years ago. The first unit of Ontario Hydro's Pickering A station was put into service in 1971, and Bruce A in 1977. Most CANDU reactors, however, are only now approaching their mid-life of 15 to 20 years of operation. In particular, the first series of CANDU 6 plants which entered service in the early 1980's were designed for a 30 year life and are now approaching mid life. The current CANDU 6 design is based on a 40 year life as a result of advancement in design and materials through research and development. In order to assure safe and economic operation of these reactors, a comprehensive CANDU Plant Life Management (PLIM) program is being developed from the knowledge gained during the operation of Ontario Hydro's Pickering, Bruce, and Darlington stations, worldwide information from CANDU 6 stations, CANDU research and development programs, and other national and international sources. This integration began its first phase in 1994, with the identification of most of the critical systems structures and components in these stations, and a preliminary assessment of degradation and mechanisms that could affect their fitness for service for their planned life. Most of these preliminary assessments are now complete, together with the production of the first iteration of Life Management Plans for several of the systems and components. The Generic CANDU 6 PLIM program is now reaching its maturity, with formal processes to systematically identify and evaluate the major CSSCs in the station, and a plan to ensure that the plant surveillance, operation, and maintenance programs monitor and control component degradation well within the original design specifications essential for the plant life attainment. A Technology Watch program is being established to ensure that degradation mechanisms which could impact on plant life are promptly investigated and mitigating programs established. The

  8. Integrated monitoring of wind plant systems

    Science.gov (United States)

    Whelan, Matthew J.; Janoyan, Kerop D.; Qiu, Tong

    2008-03-01

    Wind power is a renewable source of energy that is quickly gaining acceptance by many. Advanced sensor technologies have currently focused solely on improving wind turbine rotor aerodynamics and increasing of the efficiency of the blade design and concentration. Alternatively, potential improvements in wind plant efficiency may be realized through reduction of reactionary losses of kinetic energy to the structural and substructural systems supporting the turbine mechanics. Investigation of the complete dynamic structural response of the wind plant is proposed using a large-scale, high-rate wireless sensor network. The wireless network enables sensors to be placed across the sizable structure, including the rotating blades, without consideration of cabling issues and the economic burden associated with large spools of measurement cables. A large array of multi-axis accelerometers is utilized to evaluate the modal properties of the system as well as individual members and would enable long-term structural condition monitoring of the wind turbine as well. Additionally, environmental parameters, including wind speed, temperature, and humidity, are wirelessly collected for correlation. Such a wireless system could be integrated with electrical monitoring sensors and actuators and incorporated into a remote multi-turbine centralized plant monitoring and control system.

  9. Laboratory and pilot plant scale study on the electrochemical oxidation of landfill leachate

    International Nuclear Information System (INIS)

    Anglada, Angela; Urtiaga, Ana M.; Ortiz, Inmaculada

    2010-01-01

    Kinetic data regarding COD oxidation were measured in a laboratory scale cell and used to scale-up an electro-oxidation process for landfill leachate treatment by means of boron-doped diamond anodes. A pilot-scale reactor with a total BDD anode area of 1.05 m 2 was designed. Different electrode gaps in the laboratory and pilot plant cells resulted in dissimilar reactor hydrodynamics. Consequently, generalised dimensionless correlations concerning mass transfer were developed in order to define the mass transfer conditions in both electrochemical systems. These correlations were then used in the design equations to validate the scale-up procedure. A series of experiments with biologically pre-treated landfill leachate were done to accomplish this goal. The evolution of ammonia and COD concentration could be well predicted.

  10. Evaluation of an integrated continuous stirred microbial electrochemical reactor: Wastewater treatment, energy recovery and microbial community.

    Science.gov (United States)

    Wang, Haiman; Qu, Youpeng; Li, Da; Zhou, Xiangtong; Feng, Yujie

    2015-11-01

    A continuous stirred microbial electrochemical reactor (CSMER) was developed by integrating anaerobic digestion (AD) and microbial electrochemical system (MES). The system was capable of treating high strength artificial wastewater and simultaneously recovering electric and methane energy. Maximum power density of 583±9, 562±7, 533±10 and 572±6 mW m(-2) were obtained by each cell in a four-independent circuit mode operation at an OLR of 12 kg COD m(-3) d(-1). COD removal and energy recovery efficiency were 87.1% and 32.1%, which were 1.6 and 2.5 times higher than that of a continuous stirred tank reactor (CSTR). Larger amount of Deltaproteobacteria (5.3%) and hydrogenotrophic methanogens (47%) can account for the better performance of CSMER, since syntrophic associations among them provided more degradation pathways compared to the CSTR. Results demonstrate the CSMER holds great promise for efficient wastewater treatment and energy recovery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Paper-based electrochemical sensing platform with integral battery and electrochromic read-out.

    Science.gov (United States)

    Liu, Hong; Crooks, Richard M

    2012-03-06

    We report a battery-powered, microelectrochemical sensing platform that reports its output using an electrochromic display. The platform is fabricated based on paper fluidics and uses a Prussian blue spot electrodeposited on an indium-doped tin oxide thin film as the electrochromic indicator. The integrated metal/air battery powers both the electrochemical sensor and the electrochromic read-out, which are in electrical contact via a paper reservoir. The sample activates the battery and the presence of analyte in the sample initiates the color change of the Prussian blue spot. The entire system is assembled on the lab bench, without the need for cleanroom facilities. The applicability of the device to point-of-care sensing is demonstrated by qualitative detection of 0.1 mM glucose and H(2)O(2) in artificial urine samples.

  12. Glutathione in plants: an integrated overview.

    Science.gov (United States)

    Noctor, Graham; Mhamdi, Amna; Chaouch, Sejir; Han, Yi; Neukermans, Jenny; Marquez-Garcia, Belen; Queval, Guillaume; Foyer, Christine H

    2012-02-01

    Plants cannot survive without glutathione (γ-glutamylcysteinylglycine) or γ-glutamylcysteine-containing homologues. The reasons why this small molecule is indispensable are not fully understood, but it can be inferred that glutathione has functions in plant development that cannot be performed by other thiols or antioxidants. The known functions of glutathione include roles in biosynthetic pathways, detoxification, antioxidant biochemistry and redox homeostasis. Glutathione can interact in multiple ways with proteins through thiol-disulphide exchange and related processes. Its strategic position between oxidants such as reactive oxygen species and cellular reductants makes the glutathione system perfectly configured for signalling functions. Recent years have witnessed considerable progress in understanding glutathione synthesis, degradation and transport, particularly in relation to cellular redox homeostasis and related signalling under optimal and stress conditions. Here we outline the key recent advances and discuss how alterations in glutathione status, such as those observed during stress, may participate in signal transduction cascades. The discussion highlights some of the issues surrounding the regulation of glutathione contents, the control of glutathione redox potential, and how the functions of glutathione and other thiols are integrated to fine-tune photorespiratory and respiratory metabolism and to modulate phytohormone signalling pathways through appropriate modification of sensitive protein cysteine residues. © 2011 Blackwell Publishing Ltd.

  13. Integrated Circuits for Rapid Sample Processing and Electrochemical Detection of Biomarkers

    Science.gov (United States)

    Besant, Justin

    The trade-off between speed and sensitivity of detection is a fundamental challenge in the design of point-of-care diagnostics. As the relevant molecules in many diseases exist natively at extremely low levels, many gold-standard diagnostic tests are designed with high sensitivity at the expense of long incubations needed to amplify the target analytes. The central aim of this thesis is to design new strategies to detect biologically relevant analytes with both high speed and sensitivity. The response time of a biosensor is limited by the ability of the target analyte to accumulate to detectable levels at the sensor surface. We overcome this limitation by designing a range of integrated devices to optimize the flux of the analyte to the sensor by increasing the effective analyte concentration, shortening the required diffusion distance, and confining the analyte in close proximity to the sensor. We couple these devices with novel ultrasensitive electrochemical transduction strategies to convert rare analytes into a detectable signal. We showcase the clinical utility of these approaches with several applications including cancer diagnosis, bacterial identification, and antibiotic susceptibility profiling. We design and optimize a device to isolate rare cancer cells from the bloodstream with near 100% efficiency and 10 000-fold specificity. We analyse pathogen specific nucleic acids by lysing bacteria in close proximity to an electrochemical sensor and find that this approach has 10-fold higher sensitivity than standard lysis in bulk solution. We design an electronic chip to readout the antibiotic susceptibility profile with an hour-long incubation by concentrating bacteria into nanoliter chambers with integrated electrodes. Finally, we report a strategy for ultrasensitive visual readout of nucleic acids as low as 100 fM within 10 minutes using an amplification cascade. The strategies presented could guide the development of fast, sensitive and low-cost diagnostics

  14. MXene Electrochemical Microsupercapacitor Integrated with Triboelectric Nanogenerator as a Wearable Self-charging Power Unit

    KAUST Repository

    Jiang, Qiu; Wu, Changsheng; Wang, Zhengjun; Wang, Aurelia Chi; He, Jr-Hau; Wang, Zhong Lin; Alshareef, Husam N.

    2018-01-01

    The development of miniaturized, wearable, and implantable electronics has increased the demand for small stand-alone power modules that have steady output and long life-time. Given the limited capacity of energy storage devices, one promising solution is to integrate energy harvesting and storage materials to efficiently convert ambient mechanical energy to electricity for direct use or to store the harvested energy by electrochemical means. Here, a highly compact self-charging power unit is proposed by integrating triboelectric nanogenerator with MXene-based microsupercapacitors in a wearable and flexible harvester-storage module. The device can utilize and store the random energy from human activities in a standby mode and provide power to electronics when active. As a result, our microsupercapacitor delivers a capacitance of 23 mF/cm with 95% capacitance retention after 10,000 charge-discharge cycles, while the triboelectric nanogenerator exhibits a maximum output power of 7.8 µW/cm. Given the simplicity and compact nature, our device can be integrated with a variety of electronic devices and sensors.

  15. MXene Electrochemical Microsupercapacitor Integrated with Triboelectric Nanogenerator as a Wearable Self-charging Power Unit

    KAUST Repository

    Jiang, Qiu

    2018-01-03

    The development of miniaturized, wearable, and implantable electronics has increased the demand for small stand-alone power modules that have steady output and long life-time. Given the limited capacity of energy storage devices, one promising solution is to integrate energy harvesting and storage materials to efficiently convert ambient mechanical energy to electricity for direct use or to store the harvested energy by electrochemical means. Here, a highly compact self-charging power unit is proposed by integrating triboelectric nanogenerator with MXene-based microsupercapacitors in a wearable and flexible harvester-storage module. The device can utilize and store the random energy from human activities in a standby mode and provide power to electronics when active. As a result, our microsupercapacitor delivers a capacitance of 23 mF/cm with 95% capacitance retention after 10,000 charge-discharge cycles, while the triboelectric nanogenerator exhibits a maximum output power of 7.8 µW/cm. Given the simplicity and compact nature, our device can be integrated with a variety of electronic devices and sensors.

  16. Approximation to the Modelling of Charge and Discharge Processes in Electrochemical Batteries by Integral Equations

    International Nuclear Information System (INIS)

    Balenzategui, J. L.

    1999-01-01

    A new way for the modelling of the charge and discharge processes in electrochemical batteries based on the use of integral equations is presented. The proposed method models the charge curves by the so called fractional or cumulative integrals of a certain objective function f(t) that must be sought. The charge figures can be easily fitted by breaking down this objective function as the addition of two different Lorentz type functions: the first one is associated to the own charge process and the second one to the overcharge process. The method allows calculating the starting voltage for overcharge as the intersection between both functions. The curve fitting of this model to different experimental charge curves, by using the Marquart algorithm, has shown very accurate results. In the case of discharge curves, two possible methods for modelling purposes are suggested, well by using the same kind of integral equations, well by the simple subtraction of an objective function f(t) from a constant value V O D. Many other aspects for the study and analysis of this method in order to improve its results in further developments are also discussed. (Author) 10 refs

  17. An integrated reliability management system for nuclear power plants

    International Nuclear Information System (INIS)

    Kimura, T.; Shimokawa, H.; Matsushima, H.

    1998-01-01

    The responsibility in the nuclear field of the Government, utilities and manufactures has increased in the past years due to the need of stable operation and great reliability of nuclear power plants. The need to improve the reliability is not only for the new plants but also for those now running. So, several measures have been taken to improve reliability. In particular, the plant manufactures have developed a reliability management system for each phase (planning, construction, maintenance and operation) and these have been integrated as a unified system. This integrated reliability management system for nuclear power plants contains information about plant performance, failures and incidents which have occurred in the plants. (author)

  18. Application of electrochemically synthesized ferrate(VI in the purification of wastewater from coal separation plant

    Directory of Open Access Journals (Sweden)

    Čekerevac Milan I.

    2010-01-01

    Full Text Available The oxidative and coagulation efficiency of Na2FeO4 solution, electrochemically generated by trans-passive anodic oxidation of electrical steel in 10M NaOH solution, is confirmed in the process of purification of heavily contaminated wastewater from coal separation plant. The decontamination efficiency is evaluated comparing the values of selected contamination parameters obtained by chemical and biochemical analysis of plant effluent water and water obtained after decontamination with ferrate(VI solution in relatively simple laboratory procedure. The sample of 450 ml of wastewater is treated in laboratory conditions with 100cm3 solution of 1 mg dm-3 Na2FeO4 in 10M NaOH. The chemical analysis of effluent water after treatment have shown almost 3 times lower permanganate index, about 3 times lower iron content, 1.45 times lower As3+ content, 7.35 times lower ammonia content. Turbidity and chemical oxygen demand (COD is reduced for more than 5.77and 13.4 times, respectively. The suspended and colloid matter is eliminated from effluent water after treatment with ferrate(VI solution. Also, biochemical exploration has confirmed high efficiency of ferrate(VI in organics and microbial elimination showing 7.1 times lower 5-days bio-chemical oxygen demand (BOD5, and total elimination of aerobic and anaerobic bacteria from effluent water. According to standards on quality of industrial wastewater effluents, it may be concluded that ferrate(VI treatment of wastewater almost completely eliminates excess of dangerous chemicals and pathogen bacteria, with the exemption of arsenic. Thus, ferrate(VI shows capable performance in treatment of coal separation plant wastewater.

  19. A Differential Electrochemical Readout ASIC With Heterogeneous Integration of Bio-Nano Sensors for Amperometric Sensing.

    Science.gov (United States)

    Ghoreishizadeh, Sara S; Taurino, Irene; De Micheli, Giovanni; Carrara, Sandro; Georgiou, Pantelis

    2017-10-01

    A monolithic biosensing platform is presented for miniaturized amperometric electrochemical sensing in CMOS. The system consists of a fully integrated current readout circuit for differential current measurement as well as on-die sensors developed by growing platinum nanostructures (Pt-nanoS) on top of electrodes implemented with the top metal layer. The circuit is based on the switch-capacitor technique and includes pseudodifferential integrators for concurrent sampling of the differential sensor currents. The circuit further includes a differential to single converter and a programmable gain amplifier prior to an ADC. The system is fabricated in [Formula: see text] technology and measures current within [Formula: see text] with minimum input-referred noise of [Formula: see text] and consumes [Formula: see text] from a [Formula: see text] supply. Differential sensing for nanostructured sensors is proposed to build highly sensitive and offset-free sensors for metabolite detection. This is successfully tested for bio-nano-sensors for the measurement of glucose in submilli molar concentrations with the proposed readout IC. The on-die electrodes are nanostructured and cyclic voltammetry run successfully through the readout IC to demonstrate detection of [Formula: see text].

  20. Integrated construction management technology for power plants

    International Nuclear Information System (INIS)

    Okada, Hisako; Miura, Jun; Nishitani, Yasuhiko

    2003-01-01

    The improvement and rationalization of the plant construction technology has been promoted in order to shorten the construction period, to improve the quality and reliability, and especially to reduce construction costs. With the recent remarkable advances of computer technology, it is necessary to introduce an electronic information technology (IT) into the construction field, and to develop a business process. In such a situation, Hitachi has developed and applied integrated construction support system, which is consistent among design, production and construction. This system has design information and schedule information made electronically as a basic database, and characterizes with project management function based on that information. By introduction of this system, electronic processing of information and reduction of paperwork has enabled high efficiency and standardization of on-site indirect work. Furthermore, by collaboration with the civil company, electrical data exchange has been carried out and developed techniques to improve the interface between mechanical and civil work. High accuracy of construction planning and unification of schedule data have been achieved, and consequently, rework and adjustment at the job site have been greatly reduced. (author)

  1. Energy optimization of integrated process plants

    Energy Technology Data Exchange (ETDEWEB)

    Sandvig Nielsen, J

    1996-10-01

    A general approach for viewing the process synthesis as an evolutionary process is proposed. Each step is taken according to the present level of information and knowledge. This is formulated in a Process Synthesis Cycle. Initially the synthesis is conducted at a high abstraction level maximizing use of heuristics (prior experience, rules of thumbs etc). When further knowledge and information are available, heuristics will gradually be replaced by exact problem formulations. The principles in the Process Synthesis Cycle, is used to develop a general procedure for energy synthesis, based on available tools. The procedure is based on efficient use of process simulators with integrated Pinch capabilities (energy targeting). The proposed general procedure is tailored to three specific problems (Humid Air Turbine power plant synthesis, Nitric Acid process synthesis and Sulphuric Acid synthesis). Using the procedure reduces the problem dimension considerable and thus allows for faster evaluation of more alternatives. At more detailed level a new framework for the Heat Exchanger Network synthesis problem is proposed. The new framework is object oriented based on a general functional description of all elements potentially present in the heat exchanger network (streams, exchangers, pumps, furnaces etc.). (LN) 116 refs.

  2. Villacidro solar demo plant: Integration of small-scale CSP and biogas power plants in an industrial microgrid

    Science.gov (United States)

    Camerada, M.; Cau, G.; Cocco, D.; Damiano, A.; Demontis, V.; Melis, T.; Musio, M.

    2016-05-01

    The integration of small scale concentrating solar power (CSP) in an industrial district, in order to develop a microgrid fully supplied by renewable energy sources, is presented in this paper. The plant aims to assess in real operating conditions, the performance, the effectiveness and the reliability of small-scale concentrating solar power technologies in the field of distributed generation. In particular, the potentiality of small scale CSP with thermal storage to supply dispatchable electricity to an industrial microgrid will be investigated. The microgrid will be realized in the municipal waste treatment plant of the Industrial Consortium of Villacidro, in southern Sardinia (Italy), which already includes a biogas power plant. In order to achieve the microgrid instantaneous energy balance, the analysis of the time evolution of the waste treatment plant demand and of the generation in the existing power systems has been carried out. This has allowed the design of a suitable CSP plant with thermal storage and an electrochemical storage system for supporting the proposed microgrid. At the aim of obtaining the expected energy autonomy, a specific Energy Management Strategy, which takes into account the different dynamic performances and characteristics of the demand and the generation, has been designed. In this paper, the configuration of the proposed small scale concentrating solar power (CSP) and of its thermal energy storage, based on thermocline principle, is initially described. Finally, a simulation study of the entire power system, imposing scheduled profiles based on weather forecasts, is presented.

  3. Integrating Electrochemical Detection with Centrifugal Microfluidics for Real-Time and Fully Automated Sample Testing

    DEFF Research Database (Denmark)

    Andreasen, Sune Zoëga; Kwasny, Dorota; Amato, Letizia

    2015-01-01

    Here we present a robust, stable and low-noise experimental set-up for performing electrochemical detection on a centrifugal microfluidic platform. By using a low-noise electronic component (electrical slip-ring) it is possible to achieve continuous, on-line monitoring of electrochemical experime......Here we present a robust, stable and low-noise experimental set-up for performing electrochemical detection on a centrifugal microfluidic platform. By using a low-noise electronic component (electrical slip-ring) it is possible to achieve continuous, on-line monitoring of electrochemical...

  4. Integral Indicator of Ecological Footprint for Croatian Power Plants

    International Nuclear Information System (INIS)

    Strijov, V.; Granic, G.; Juric, Z.; Jelavic, B.; Antesevic Maricic, S.

    2009-01-01

    The main goal of this paper is to present the methodology of construction of the Integral Indicator for Croatian Thermal Power Plants and Combined Heat and Power Plants. The Integral Indicator is necessary to compare Power Plants selected according to a certain criterion. The criterion of the Ecological Footprint is chosen. The following features of the Power Plants are used: generated electricity and heat; consumed coal and liquid fuel; sulphur content in fuel; emitted CO 2 , SO 2 , NO x and particles. To construct the Integral Indicator the linear model is used. The model parameters are tuned by the Principal Component Analysis algorithm. The constructed Integral Indicator is compared with several others, such as Pareto-Optimal Slicing Indicator and Metric Indicator. The Integral Indicator keeps as much information about features of the Power Plants as possible; it is simple and robust.(author).

  5. Electrochemical Microsensors for the Detection of Cadmium(II and Lead(II Ions in Plants

    Directory of Open Access Journals (Sweden)

    Olga Krystofova

    2010-05-01

    Full Text Available Routine determination of trace metals in complex media is still a difficult task for many analytical instruments. The aim of this work was to compare three electro-chemical instruments [a standard potentiostat (Autolab, a commercially available miniaturized potentiostat (PalmSens and a homemade micropotentiostat] for easy-to-use and sensitive determination of cadmium(II and lead(II ions. The lowest detection limits (hundreds of pM for both metals was achieved by using of the standard potentiostat, followed by the miniaturized potentiostat (tens of nM and the homemade instrument (hundreds of nM. Nevertheless, all potentiostats were sensitive enough to evaluate contamination of the environment, because the environmental limits for both metals are higher than detection limits of the instruments. Further, we tested all used potentiostats and working electrodes on analysis of environmental samples (rainwater, flour and plant extract with artificially added cadmium(II and lead(II. Based on the similar results obtained for all potentiostats we choose a homemade instrument with a carbon tip working electrode for our subsequent environmental experiments, in which we analyzed maize and sunflower seedlings and rainwater obtained from various sites in the Czech Republic.

  6. An integrated approach to plant life management

    International Nuclear Information System (INIS)

    Fredlund, L.

    1998-01-01

    Plant life is no longer determined by components, almost everything can be replaced. A plant life management program should aim at actions and replacements being performed at the right time. In order to manage this there is need for experience feedback systems, a plant specific risk study and safety upgrades. (author)

  7. Integrated Electrochemical Processes for CO2 Capture and Conversion to Commodity Chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Hatton, T. Alan [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Jamison, Timothy [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2013-09-30

    The Massachusetts Institute of Technology (MIT) and Siemens Corporations (SCR) are developing new chemical synthesis processes for commodity chemicals from CO2. The process is assessed as a novel chemical sequestration technology that utilizes CO2 from dilute gas streams generated at industrial carbon emitters as a raw material to produce useful commodity chemicals. Work at Massachusetts Institute of Technology (MIT) commenced on October 1st, 2010, and finished on September 30th, 2013. During this period, we have investigated and accomplished five objectives that mainly focused on converting CO2 into high-value chemicals: 1) Electrochemical assessment of catalytic transformation of CO2 and epoxides to cyclic carbonates; 2) Investigation of organocatalytic routes to convert CO2 and epoxide to cyclic carbonates; 3) Investigation of CO2 Capture and conversion using simple olefins under continuous flow; 4) Microwave assisted synthesis of cyclic carbonates from olefins using sodium bicarbonates in a green pathway; 5) Life cycle analyses of integrated chemical sequestration process. In this final report, we will describe the detailed study performed during the three year period and findings and conclusions drawn from our research.

  8. An integrated control and readout circuit for implantable multi-target electrochemical biosensing.

    Science.gov (United States)

    Ghoreishizadeh, Sara S; Baj-Rossi, Camilla; Cavallini, Andrea; Carrara, Sandro; De Micheli, Giovanni

    2014-12-01

    We describe an integrated biosensor capable of sensing multiple molecular targets using both cyclic voltammetry (CV) and chronoamperometry (CA). In particular, we present our custom IC to realize voltage control and current readout of the biosensors. A mixed-signal circuit block generates sub-Hertz triangular waveform for the biosensors by means of a direct-digital-synthesizer to control CV. A current to pulse-width converter is realized to output the data for CA measurement. The IC is fabricated in 0.18 μm technology. It consumes 220 μW from 1.8 V supply voltage, making it suitable for remotely-powered applications. Electrical measurements show excellent linearity in sub- μA current range. Electrochemical measurements including CA measurements of glucose and lactate and CV measurements of the anti-cancer drug Etoposide have been acquired with the fabricated IC and compared with a commercial equipment. The results obtained with the fabricated IC are in good agreement with those of the commercial equipment for both CV and CA measurements.

  9. Integration of reconfigurable potentiometric electrochemical sensors into a digital microfluidic platform.

    Science.gov (United States)

    Farzbod, Ali; Moon, Hyejin

    2018-05-30

    This paper presents the demonstration of on-chip fabrication of a potassium-selective sensor array enabled by electrowetting on dielectric digital microfluidics for the first time. This demonstration proves the concept that electrochemical sensors can be seamlessly integrated with sample preparation units in a digital microfluidic platform. More significantly, the successful on-chip fabrication of a sensor array indicates that sensors become reconfigurable and have longer lifetime in a digital microfluidic platform. The on-chip fabrication of ion-selective electrodes includes electroplating Ag followed by forming AgCl layer by chemical oxidation and depositing a thin layer of desired polymer-based ion selective membrane on one of the sensor electrodes. In this study, potassium ionophores work as potassium ion channels and make the membrane selective to potassium ions. This selectiveness results in the voltage difference across the membrane layer, which is correlated with potassium ion concentration. The calibration curve of the fabricated potassium-selective electrode demonstrates the slope of 58 mV/dec for potassium concentration in KCl sample solutions and shows good agreement with the ideal Nernstian response. The proposed sensor platform is an outstanding candidate for a portable home-use for continuous monitoring of ions thanks to its advantages such as easy automation of sample preparation and detection processes, elongated sensor lifetime, minimal membrane and sample consumption, and user-definable/reconfigurable sensor array. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Sophistication and integration of plant engineering CAD-CAE systems

    International Nuclear Information System (INIS)

    Yoshinaga, Toshiaki; Hanyu, Masaharu; Ota, Yoshimi; Kobayashi, Yasuhiro.

    1995-01-01

    In respective departments in charge of basic planning, design, manufacture, inspection and construction of nuclear power plants, by the positive utilization of CAD/CAE system, efficient workings have been advanced. This time, the plant integrated CAE system wich heightens the function of these individual systems, and can make workings efficient and advanced by unifying and integrating them was developed. This system is composed of the newly developed application system and the data base system which enables the unified management of engineering data and high speed data conversion in addition to the CAD system for three-dimensional plant layout planning. On the basis of the rich experience and the proposal of improvement of designers by the application of the CAD system for three-dimensional plant layout planning to actual machines, the automation, speed increase and the visualization of input and output by graphical user interface (GUI) in the processing of respective applications were made feasible. As the advancement of plant CAE system, scenic engineering system, integrated layout CAE system, electric instrumentation design CAE system and construction planning CAE system are described. As for the integration of plant CAE systems, the integrated engineering data base, the combination of plant CAE systems, and the operation management in the dispersed environment of networks are reported. At present, Hitachi Ltd. exerts efforts for the construction of atomic energy product in formation integrated management system as the second stage of integration. (K.I.)

  11. Working toward integrated models of alpine plant distribution.

    Science.gov (United States)

    Carlson, Bradley Z; Randin, Christophe F; Boulangeat, Isabelle; Lavergne, Sébastien; Thuiller, Wilfried; Choler, Philippe

    2013-10-01

    Species distribution models (SDMs) have been frequently employed to forecast the response of alpine plants to global changes. Efforts to model alpine plant distribution have thus far been primarily based on a correlative approach, in which ecological processes are implicitly addressed through a statistical relationship between observed species occurrences and environmental predictors. Recent evidence, however, highlights the shortcomings of correlative SDMs, especially in alpine landscapes where plant species tend to be decoupled from atmospheric conditions in micro-topographic habitats and are particularly exposed to geomorphic disturbances. While alpine plants respond to the same limiting factors as plants found at lower elevations, alpine environments impose a particular set of scale-dependent and hierarchical drivers that shape the realized niche of species and that require explicit consideration in a modelling context. Several recent studies in the European Alps have successfully integrated both correlative and process-based elements into distribution models of alpine plants, but for the time being a single integrative modelling framework that includes all key drivers remains elusive. As a first step in working toward a comprehensive integrated model applicable to alpine plant communities, we propose a conceptual framework that structures the primary mechanisms affecting alpine plant distributions. We group processes into four categories, including multi-scalar abiotic drivers, gradient dependent species interactions, dispersal and spatial-temporal plant responses to disturbance. Finally, we propose a methodological framework aimed at developing an integrated model to better predict alpine plant distribution.

  12. Integration of Microchip Electrophoresis with Electrochemical Detection Using an Epoxy-Based Molding Method to Embed Multiple Electrode Materials

    Science.gov (United States)

    Johnson, Alicia S.; Selimovic, Asmira; Martin, R. Scott

    2012-01-01

    This paper describes the use of epoxy-encapsulated electrodes to integrate microchip-based electrophoresis with electrochemical detection. Devices with various electrode combinations can easily be developed. This includes a palladium decoupler with a downstream working electrode material of either gold, mercury/gold, platinum, glassy carbon, or a carbon fiber bundle. Additional device components such as the platinum wires for the electrophoresis separation and the counter electrode for detection can also be integrated into the epoxy base. The effect of the decoupler configuration was studied in terms of the separation performance, detector noise, and the ability to analyze samples of a high ionic strength. The ability of both glassy carbon and carbon fiber bundle electrodes to analyze a complex mixture was demonstrated. It was also shown that a PDMS-based valving microchip can be used along with the epoxy embedded electrodes to integrate microdialysis sampling with microchip electrophoresis and electrochemical detection, with the microdialysis tubing also being embedded in the epoxy substrate. This approach enables one to vary the detection electrode material as desired in a manner where the electrodes can be polished and modified in a similar fashion to electrochemical flow cells used in liquid chromatography. PMID:22038707

  13. Integrated Network Analysis and Effective Tools in Plant Systems Biology

    Directory of Open Access Journals (Sweden)

    Atsushi eFukushima

    2014-11-01

    Full Text Available One of the ultimate goals in plant systems biology is to elucidate the genotype-phenotype relationship in plant cellular systems. Integrated network analysis that combines omics data with mathematical models has received particular attention. Here we focus on the latest cutting-edge computational advances that facilitate their combination. We highlight (1 network visualization tools, (2 pathway analyses, (3 genome-scale metabolic reconstruction, and (4 the integration of high-throughput experimental data and mathematical models. Multi-omics data that contain the genome, transcriptome, proteome, and metabolome and mathematical models are expected to integrate and expand our knowledge of complex plant metabolisms.

  14. Api Energia IGCC plant is fully integrated with refinery

    Energy Technology Data Exchange (ETDEWEB)

    Del Bravo, R. [api Energia, Rome (Italy); Trifilo, R. [ABB Sadelmi, Milan (Italy); Chiantore, P.V. [api anonima petroli Italiania Spa, Rome (Italy); Starace, F. [ABB Power Generation, Baden (Switzerland); O`Keefe, L.F. [Texico, White Plains (United States)

    1998-06-01

    The api Energia integrated gasification combined cycle (IGCC) plant being built at Falconara Marittima, on Italy`s Adriatic coast, is one of the three IGCC plants under construction in Italy following the liberalization of the electricity production sector. The plant will take 59.2 t/h of high sulphur heavy oil produced by the Falconara refinery, convert it to syngas and use the gas to generate 280 MW of electricity, plus steam and other gases for use in the refinery. The IGCC plant will be highly integrated into the refining process, with a large number of interchanges between the IGCC unit and the rest of the refinery. (author)

  15. An integrated electrochemical device based on immunochromatographic test strip and enzyme labels for sensitive detection of disease-related biomarkers

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Zhexiang; Wang, Jun; Wang, Hua; Li, Yao Q.; Lin, Yuehe

    2012-05-30

    A novel electrochemical biosensing device that integrates an immunochromatographic test strip and a screen-printed electrode (SPE) connected to a portable electrochemical analyzer was presented for rapid, sensitive, and quantitative detection of disease-related biomarker in human blood samples. The principle of the sensor is based on sandwich immunoreactions between a biomarker and a pair of its antibodies on the test strip, followed by highly sensitive square-wave voltammetry (SWV) detection. Horseradish peroxidase (HRP) was used as a signal reporter for electrochemical readout. Hepatitis B surface antigen (HBsAg) was employed as a model protein biomarker to demonstrate the analytical performance of the sensor in this study. Some critical parameters governing the performance of the sensor were investigated in detail. The sensor was further utilized to detect HBsAg in human plasma with an average recovery of 91.3%. In comparison, a colorimetric immunochromatographic test strip assay (ITSA) was also conducted. The result shows that the SWV detection in the electrochemical sensor is much more sensitive for the quantitative determination of HBsAg than the colorimetric detection, indicating that such a sensor is a promising platform for rapid and sensitive point-of-care testing/screening of disease-related biomarkers in a large population

  16. The Material Protection, Control and Accounting Sustainability Program Implementation at the Electrochemical Plant

    International Nuclear Information System (INIS)

    Sirotenko, Vladimir; Antonov, Eduard; Sirotenko, Alexei; Kukartsev, Alexander; Krivenko, Vladimir; Dabbs, Richard D.; Carroll, Michael F.; Garrett, Albert G.; Patrick, Scott W.; Ku, Esther M.

    2008-01-01

    Joint efforts by the Electrochemical Plant (ECP) in Zelenogorsk, Russia, and the United States Department of Energy National Nuclear Security Administration (US DOE/NNSA) Material Protection, Control and Accounting (MPC and A) Program to upgrade ECP security systems began in 1996. The commissioning of major MPC and A systems at ECP occurred in December 2004. Since that time, the US Project Team (USPT) and ECP personnel have focused jointly on the development and implementation of an enterprise-wide MPC and A Sustainability Program (SP) that address the seven essential MPC and A Program sustainability elements. This paper describes current operational experience at the ECP with the full implementation of the site SP utilizing an earned-value methodology. In support of this site program, ECP has established a Document Control Program (DCP) for sustainability-related documents; developed a robust master Work Breakdown Structure (WBS) that outlines all ECP MPC and A sustainability activities; and chartered an Enterprise-Wide Sustainability Working Group (ESWG) The earned value methodology uses ECP-completed (and USPT-verified) analyses to assess project performance on a quarterly basis. The MPC and A SP, presently operational through a contract between ECP and the Los Alamos National Laboratory (LANL), incorporates the seven essential MPC and A Program sustainability elements and governs all sustainability activities associated with MPC and A systems at ECP. The site SP is designed to ensure over the near term the upgraded MPC and A systems continuous operation at ECP as funding transitions from US-assisted to fully Russian supported and sustained

  17. Integrating Microbial Electrochemical Technology with Forward Osmosis and Membrane Bioreactors: Low-Energy Wastewater Treatment, Energy Recovery and Water Reuse

    KAUST Repository

    Werner, Craig M.

    2014-06-01

    Wastewater treatment is energy intensive, with modern wastewater treatment processes consuming 0.6 kWh/m3 of water treated, half of which is required for aeration. Considering that wastewater contains approximately 2 kWh/m3 of energy and represents a reliable alternative water resource, capturing part of this energy and reclaiming the water would offset or even eliminate energy requirements for wastewater treatment and provide a means to augment traditional water supplies. Microbial electrochemical technology is a novel technology platform that uses bacteria capable of producing an electric current outside of the cell to recover energy from wastewater. These bacteria do not require oxygen to respire but instead use an insoluble electrode as their terminal electron acceptor. Two types of microbial electrochemical technologies were investigated in this dissertation: 1) a microbial fuel cell that produces electricity; and 2) a microbial electrolysis cell that produces hydrogen with the addition of external power. On their own, microbial electrochemical technologies do not achieve sufficiently high treatment levels. Innovative approaches that integrate microbial electrochemical technologies with emerging and established membrane-based treatment processes may improve the overall extent of wastewater treatment and reclaim treated water. Forward osmosis is an emerging low-energy membrane-based technology for seawater desalination. In forward osmosis water is transported across a semipermeable membrane driven by an osmotic gradient. The microbial osmotic fuel cell described in this dissertation integrates a microbial fuel cell with forward osmosis to achieve wastewater treatment, energy recovery and partial desalination. This system required no aeration and generated more power than conventional microbial fuel cells using ion exchange membranes by minimizing electrochemical losses. Membrane bioreactors incorporate semipermeable membranes within a biological wastewater

  18. Integrated electrochemical sensor array for on-line monitoring of yeast fermentations

    NARCIS (Netherlands)

    Krommenhoek, E.E.; Gardeniers, Johannes G.E.; Bomer, Johan G.; Li, X.; Ottens, M.; van Dedem, G.W.K.; van Leeuwen, M.; van Gulik, W.M.; van der Wielen, L.A.M.; Heijnen, J.J.; van den Berg, Albert

    2007-01-01

    This paper describes the design, modeling, and experimental characterization of an electrochemical sensor array for on-line monitoring of fermentor conditions in both miniaturized cell assays and in industrial scale fertnentations. The viable biomass concentration is determined from impedance

  19. Plant-wide integrated equipment monitoring and analysis system

    International Nuclear Information System (INIS)

    Morimoto, C.N.; Hunter, T.A.; Chiang, S.C.

    2004-01-01

    A nuclear power plant equipment monitoring system monitors plant equipment and reports deteriorating equipment conditions. The more advanced equipment monitoring systems can also provide information for understanding the symptoms and diagnosing the root cause of a problem. Maximizing the equipment availability and minimizing or eliminating consequential damages are the ultimate goals of equipment monitoring systems. GE Integrated Equipment Monitoring System (GEIEMS) is designed as an integrated intelligent monitoring and analysis system for plant-wide application for BWR plants. This approach reduces system maintenance efforts and equipment monitoring costs and provides information for integrated planning. This paper describes GEIEMS and how the current system is being upgraded to meet General Electric's vision for plant-wide decision support. (author)

  20. Integrated multienzyme electrochemical biosensors for the determination of glycerol in wines.

    Science.gov (United States)

    Gamella, M; Campuzano, S; Reviejo, A J; Pingarrón, J M

    2008-02-25

    The construction and performance of integrated amperometric biosensors for the determination of glycerol are reported. Two different biosensor configurations have been evaluated: one based on the glycerol dehydrogenase/diaphorase (GDH/DP) bienzyme system, and another using glycerol kinase/glycerol-3-phosphate oxidase/peroxidase (GK/GPOx/HRP). Both enzyme systems were immobilized together with the mediator tetrathiafulvalene (TTF) on a 3-mercaptopropionic acid (MPA) self-assembled monolayer (SAM)-modified gold electrode by using a dialysis membrane. The electrochemical oxidation of TTF at +150mV (vs. Ag/AgCl), and the reduction of TTF(+) at 0mV were used for the monitoring of the enzyme reactions for the bienzyme and trienzyme configurations, respectively. Experimental variables concerning both the biosensors composition and the working conditions were optimized for each configuration. A good repeatability of the measurements with no need of cleaning or pretreatment of the biosensors was obtained in both cases. After 51 days of use, the GDH/DP biosensor still exhibited 87% of the original sensitivity, while the GK/GPOx/HRP biosensor yielded a 46% of the original response after 8 days. Calibration graphs for glycerol with linear ranges of 1.0x10(-6) to 2.0x10(-5) or 1.0x10(-6) to 1.0x10(-5)M glycerol and sensitivities of 1214+/-21 or 1460+/-34microAM(-1) were obtained with GDH/DP and GK/GPOx/HRP biosensors, respectively. The calculated detection limits were 4.0x10(-7) and 3.1x10(-7)M, respectively. The biosensors exhibited a great sensitivity with no significant interferences in the analysis of wines. The biosensors were applied to the determination of glycerol in 12 different wines and the results advantageously compared with those provided by a commercial enzyme kit.

  1. Knowledge representation for integrated plant operation and maintenance

    DEFF Research Database (Denmark)

    Lind, Morten

    2010-01-01

    Integrated operation and maintenance of process plants has many advantages. One advantage is the improved economy obtained by reducing the number of plant shutdowns. Another is to increase reliability of operation by monitoring of risk levels during on-line maintenance. Integrated plant operation...... and maintenance require knowledge bases which can capture the interactions between the two plant activities. As an example, taking out a component or a subsystem for maintenance during operation will require a knowledge base representing the interactions between plant structure, functions, operating states...... and goals and incorporate knowledge about redundancy and reliability data. Multilevel Flow Modeling can be used build knowledge bases representing plant goals and functions and has been applied for fault diagnosis and supervisory control but currently it does not take into account structural information...

  2. Demonstration of IGCC features - plant integration and syngas combustion

    Energy Technology Data Exchange (ETDEWEB)

    Hannemann, F.; Huth, M.; Karg, J.; Schiffers, U. [Siemens AG Power Generation (KWU), Erlanger/Muelheim (Germany)

    2000-07-01

    Siemens is involved in three IGCC plants in Europe that are currently in operation. Against the background of the Puertollano and Buggenum plants, some of the specific new features of fully integrated IGCC power plants are discussed, including: requirements and design features of the gas turbine syngas supply system; gas turbine operating experience with air extraction for the air separation unit from the gas turbine air compressor; and design requirements and operational features of the combustion system. 7 refs., 17 figs., 1 tab.

  3. Electrochemical energy generation

    International Nuclear Information System (INIS)

    Kreysa, G.; Juettner, K.

    1993-01-01

    The proceedings encompass 40 conference papers belonging to the following subject areas: Baseline and review papers; electrochemical fuel cells; batteries: Primary and secondary cells; electrochemical, regenerative systems for energy conversion; electrochemical hydrogen generation; electrochemistry for nuclear power plant; electrochemistry for spent nuclear fuel reprocessing; energy efficiency in electrochemical processes. There is an annex listing the authors and titles of the poster session, and compacts of the posters can be obtained from the office of the Gesellschaft Deutscher Chemiker, Abteilung Tagungen. (MM) [de

  4. Data integration aids understanding of butterfly-host plant networks.

    Science.gov (United States)

    Muto-Fujita, Ai; Takemoto, Kazuhiro; Kanaya, Shigehiko; Nakazato, Takeru; Tokimatsu, Toshiaki; Matsumoto, Natsushi; Kono, Mayo; Chubachi, Yuko; Ozaki, Katsuhisa; Kotera, Masaaki

    2017-03-06

    Although host-plant selection is a central topic in ecology, its general underpinnings are poorly understood. Here, we performed a case study focusing on the publicly available data on Japanese butterflies. A combined statistical analysis of plant-herbivore relationships and taxonomy revealed that some butterfly subfamilies in different families feed on the same plant families, and the occurrence of this phenomenon more than just by chance, thus indicating the independent acquisition of adaptive phenotypes to the same hosts. We consequently integrated plant-herbivore and plant-compound relationship data and conducted a statistical analysis to identify compounds unique to host plants of specific butterfly families. Some of the identified plant compounds are known to attract certain butterfly groups while repelling others. The additional incorporation of insect-compound relationship data revealed potential metabolic processes that are related to host plant selection. Our results demonstrate that data integration enables the computational detection of compounds putatively involved in particular interspecies interactions and that further data enrichment and integration of genomic and transcriptomic data facilitates the unveiling of the molecular mechanisms involved in host plant selection.

  5. Exotic plant species receive adequate pollinator service despite variable integration into plant-pollinator networks.

    Science.gov (United States)

    Thompson, Amibeth H; Knight, Tiffany M

    2018-05-01

    Both exotic and native plant species rely on insect pollinators for reproductive success, and yet few studies have evaluated whether and how exotic plant species receive services from native pollinators for successful reproduction in their introduced range. Plant species are expected to successfully reproduce in their exotic range if they have low reliance on animal pollinators or if they successfully integrate themselves into resident plant-pollinator networks. Here, we quantify the breeding system, network integration, and pollen limitation for ten focal exotic plant species in North America. Most exotic plant species relied on animal pollinators for reproduction, and these species varied in their network integration. However, plant reproduction was limited by pollen receipt for only one plant species. Our results demonstrate that even poorly integrated exotic plant species can still have high pollination service and high reproductive success. The comprehensive framework considered here provides a method to consider the contribution of plant breeding systems and the pollinator community to pollen limitation, and can be applied to future studies to provide a more synthetic understanding of the factors that determine reproductive success of exotic plant species.

  6. Market integration of Virtual Power Plants

    DEFF Research Database (Denmark)

    Petersen, Mette Kirschmeyer; Hansen, Lars Henrik; Bendtsen, Jan Dimon

    2013-01-01

    develop a three stage market model, which includes Day-Ahead (Spot), Intra-Day and Regulating Power Markets. This allows us to test the hypothesis that the Virtual Power Plant can generate additional profit by trading across several markets. We find that even though profits do increase as more markets...

  7. Integrated omics analysis of specialized metabolism in medicinal plants.

    Science.gov (United States)

    Rai, Amit; Saito, Kazuki; Yamazaki, Mami

    2017-05-01

    Medicinal plants are a rich source of highly diverse specialized metabolites with important pharmacological properties. Until recently, plant biologists were limited in their ability to explore the biosynthetic pathways of these metabolites, mainly due to the scarcity of plant genomics resources. However, recent advances in high-throughput large-scale analytical methods have enabled plant biologists to discover biosynthetic pathways for important plant-based medicinal metabolites. The reduced cost of generating omics datasets and the development of computational tools for their analysis and integration have led to the elucidation of biosynthetic pathways of several bioactive metabolites of plant origin. These discoveries have inspired synthetic biology approaches to develop microbial systems to produce bioactive metabolites originating from plants, an alternative sustainable source of medicinally important chemicals. Since the demand for medicinal compounds are increasing with the world's population, understanding the complete biosynthesis of specialized metabolites becomes important to identify or develop reliable sources in the future. Here, we review the contributions of major omics approaches and their integration to our understanding of the biosynthetic pathways of bioactive metabolites. We briefly discuss different approaches for integrating omics datasets to extract biologically relevant knowledge and the application of omics datasets in the construction and reconstruction of metabolic models. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  8. Electrochemical construction

    Science.gov (United States)

    Einstein, Harry; Grimes, Patrick G.

    1983-08-23

    An electrochemical cell construction features a novel co-extruded plastic electrode in an interleaved construction with a novel integral separator-spacer. Also featured is a leak and impact resistant construction for preventing the spill of corrosive materials in the event of rupture.

  9. ITER Construction--Plant System Integration

    International Nuclear Information System (INIS)

    Tada, E.; Matsuda, S.

    2009-01-01

    This brief paper introduces how the ITER will be built in the international collaboration. The ITER Organization plays a central role in constructing ITER and leading it into operation. Since most of the ITER components are to be provided in-kind from the member countries, integral project management should be scoped in advance of real work. Those include design, procurement, system assembly, testing, licensing and commissioning of ITER.

  10. Integral design small nuclear power plant UNITHERM

    International Nuclear Information System (INIS)

    Adamovich, L. A.; Grechko, G. I.; Ulasevich, V. K.; Shishkin, V. A.

    1995-01-01

    The need to erect expensive energy transmission lines to these places demands to use independent local energy sources. Therefore, a reasonable alternative to the plants fired fossil fuel, mostly hydrocarbon fuel, may come from the nuclear power plants (NPP) of relatively small capacity which are nonattended, shipped to the site by large-assembled modules and completely withdrawable from the site during decommissioning. Application of NPPs for power and heat supply may prove to be cost-efficient and rather positive from social and ecological point of view. UNITHERM NPP belongs to such energy sources and may be used for heat and power supply. Heat can be provided both as hot water and superheated steam. The consumers are able to specify heat/energy supply ratio. NPP design provides for independent energy supply to the consumers and the possibility to disconnect each of them without disruption of operation of the others. Thermal hydraulic diagram of UNITHERM NPP provides for the use of three interconnected, process circuits. The consumers of thermal energy (turbogenerator unit and boilers of the central heating unit) are arranged in the last circuit

  11. A high-throughput electrochemical impedance spectroscopy evaluation of bioresponsibility of the titanium microelectrode array integrated with hydroxyapatite and silver

    International Nuclear Information System (INIS)

    Zhang Fan; Lin Longxiang; Wang Guowei; Hu Ren; Lin Changjian; Chen Yong

    2012-01-01

    Highlights: ► The EIS of living MG63 cells on the Ti MEA chip with Ag, HA, and Ag–HA was monitored. ► The R cell can be related to the bioresponsibility of the coatings. ► The bioactivity order was evaluated as follows: Ti–Ag–HA > Ti–HA ≈ Ti–Ag > Ti. - Abstract: This paper reports a transparent Ti microelectrode array (MEA) system for a high-throughput evaluation of bioresponsibility using electrochemical impedance spectroscopy (EIS). The MEA chip integrated with hydroxyapatite (HA) and Ag coatings was selectively prepared by electrochemical deposition based on a novel procedure of multichannel current control. The EIS measurement of living MG63 osteosarcoma cells in the integrated MEA chip was conducted, and the result was analyzed using an equivalent circuit corresponding to a titanium oxide film, protein adsorption layer, cell adhesion layer, and medium. It is shown that the bioresponsibility of Ti–Ag–HA on the MEA chip can be improved, compared with the Ti, Ti–HA, and Ti–Ag coatings. The system was further used for real-time EIS monitoring during continuous cell culture for a long period (12 days). The effect of the long-term cell proliferation on the EIS behavior was discussed. This integrated system is valuable to significantly simplify the operation procedures and quickly evaluate the bioresponsibility of biomaterials.

  12. Economic evaluation of the integrated SMART desalination plant

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Young Dong; Lee, Man Kye; Yeo, Ji Won; Kim, Hee Chul; Chang, Moon Hee

    2001-04-01

    In this study, an economic evaluation methodology of the integrated SMART desalination plant was established and the economic evaluation of SMART was performed. The plant economics was evaluated with electricity generation costs calculated using approximate estimates of SMART cost data and the result was compared with the result calculated using the SMART design data and estimated bulk materials. In addition, a series of sensitivity studies on the power generation cost was performed for the main economic parameters of SMART Power credit method was used for the economic analysis of the integrated SMART desalination plant. Power credit method is a widely used economic analysis method for the cogeneration plant when the major portion of the energy is used for the electricity generation. In the case of using SMART fot power generation only, the result shows that the electricity generation cost of SMART is higher than that of the alternative power options. However, it can be competitive with the other power options in the limited cases, especially with the gas fired combined plant. In addition, an economic analysis of the integrated SMART desalination plant coupled with MED was performed. The calculated water production cost is in the range of 0.56 approx. 0.88($/m{sup 3}) for the plant availability of 80% or higher, which is close to the study results presented by the various other countries. This indicates that SMART can be considered as a competitive choice for desalination among various alternative energy sources.

  13. Economic evaluation of the integrated SMART desalination plant

    International Nuclear Information System (INIS)

    Hwang, Young Dong; Lee, Man Kye; Yeo, Ji Won; Kim, Hee Chul; Chang, Moon Hee

    2001-04-01

    In this study, an economic evaluation methodology of the integrated SMART desalination plant was established and the economic evaluation of SMART was performed. The plant economics was evaluated with electricity generation costs calculated using approximate estimates of SMART cost data and the result was compared with the result calculated using the SMART design data and estimated bulk materials. In addition, a series of sensitivity studies on the power generation cost was performed for the main economic parameters of SMART Power credit method was used for the economic analysis of the integrated SMART desalination plant. Power credit method is a widely used economic analysis method for the cogeneration plant when the major portion of the energy is used for the electricity generation. In the case of using SMART fot power generation only, the result shows that the electricity generation cost of SMART is higher than that of the alternative power options. However, it can be competitive with the other power options in the limited cases, especially with the gas fired combined plant. In addition, an economic analysis of the integrated SMART desalination plant coupled with MED was performed. The calculated water production cost is in the range of 0.56 approx. 0.88($/m 3 ) for the plant availability of 80% or higher, which is close to the study results presented by the various other countries. This indicates that SMART can be considered as a competitive choice for desalination among various alternative energy sources

  14. Plant life management. Progress for structural integrity

    International Nuclear Information System (INIS)

    Solin, J.

    2003-03-01

    A joint project cluster of industry, VTT and other R and D suppliers is dealing with managing of lifetime of critical structures and components in energy and process industry. The research topics include systematic component lifetime management, data management, integrity and lifetime of pressure bearing components, non-destructive inspection, interactions of coolant and materials, environmentally assisted cracking and ageing of reactor internals. This Symposium is a compilation of selected papers describing an intermediate status of the projects after three years of research and development. (orig.)

  15. Market Integration of Virtual Power Plants

    DEFF Research Database (Denmark)

    Petersen, Mette Kirschmeyer

    increasingly challenging due to the intrinsic variability of production technologies such as photovoltaics and wind turbines. In a Smart Grid system the balancing task will therefore be handled by mobilizing flexibility on the consumption side. This Thesis assumes that the Smart Grid should be commercially......Global efforts to reduce emissions of carbon dioxide drives the introduction of renewable power production technologies into the existing power system. The real-time balance between production and consumption must, however, still be maintained at all times. Unfortunately, this is becoming....... It does however significantly sharpen the discussion of the flexibility concept and provides a categorization of flexible systems. This Thesis also investigates what value can be created from the different types of flexibility by assuming that the Virtual Power Plant will generate profit by trading...

  16. System 80+ integrated design of a complete plant

    International Nuclear Information System (INIS)

    Turk, R.S.; Stamm, S.L.; Fox, W.A.

    1992-01-01

    In 1985, ABB-Combustion Engineering Nuclear Power (ABB-CENP) and elements of Duke Power Company [now Duke Engineering ampersand Services (DE ampersand S)] joined forces under the aegis of the Electric Power Research Institute (EPRI) Advanced Light Water Reactor (ALWR) Program to develop, with the sponsoring utilities, the design requirements for the next generation of nuclear power plants. With support from the US Department of Energy, ABB-CENP and DE ampersand S again teamed up the following year to initiate a project to design and license the System 80+ standard plant design, an advanced pressurized water reactor that meets these utility requirements. A distinguishing feature of the System 80+ standard design is that it is an essentially complete plant, predesigned and prelicensed to ensure rapid and economical construction. This is in stark contrast to typical prior conduct, where the reactor vendor offered only the nuclear steam supply system and the plant was built on a design-as-you-go basis with constant pressure to release individual elements of the plant design for construction or procurement as soon as possible. Now, however, the design process can be integrated over the total plant, ensuring that the goals set for ALWRs can be met. This integrated design process is manifested in several ways: (1) broad-based participation during the design process by involving designers, analysts, suppliers, constructors, and operators; (2) use of probabilistic risk assessment (PRA) as a design tool to aid in evaluating design features on a total-plant basis; (3) application of human factors engineering methods to a total plant distributed control system to improve the human-machine interface in the design; and (4) use of computer-aided design to enhance assessment of interactions and impacts of all aspects of the total plant. Each of these aspects of integrated plant design is discussed in this paper

  17. Integrated color face graphs for plant accident display

    International Nuclear Information System (INIS)

    Hara, Fumio

    1987-01-01

    This paper presents an integrated man-machine interface that uses cartoon-like colored graphs in the form of faces, that, through different facial expressions, display a plant condition. This is done by drawing the face on a CRT by nonlinearly transforming 31 variables and coloring the face. This integrated color graphics technique is applied to display the progess of events in the Three Mile Island nuclear power plant accident. Human visual perceptive characteristics are investigated in relation to the perception of the plant accident process, the naturality in face color change, and the consistency between facial expressions and colors. This paper concludes that colors used in an integrated color face graphs must be completely consistent with emotional feelings perceived from the colors. (author)

  18. Integrated control centre concepts for CANDU power plants

    International Nuclear Information System (INIS)

    Lupton, L.R.; Davey, E.C.; Lapointe, P.A.; Shah, R.R.

    1990-01-01

    The size and complexity of nuclear power plants has increased significantly in the last 20 years. There is general agreement that plant safety and power production can be enhanced if more operational support systems that are significantly different from the ones based on the more conventional technologies used in plant control rooms. In particular, artificial intelligence and related technologies will play a major role in the development of innovative methods for information processing and presentation. These technologies must be integrated into the overall management and control philosophy of the plant and not be treated as vehicles to implement point solutions. The underlying philosophy behind our approach is discussed in this paper. Operator support systems will integrate into the overall control philosophy by complementing the operator. Four support systems are described; each is a prototype of a system being considered for the CANDU 3 control centre

  19. Nuclear plant engineering work and integrated management system

    International Nuclear Information System (INIS)

    Ohkubo, Y.; Obata, T.; Tanaka, K.

    1992-01-01

    The Application of computers to the design, engineering, manufacturing and construction works of nuclear power plants has greatly contributed to improvement of productivity and reliability in the nuclear power plants constructed by Mitsubishi Nuclear Group for more than ten years. However, in most cases, those systems have been developed separately and utilized independently in different computer software and hardware environments and have not been fully utilized to achieve high efficiency and reliability. In order to drastically increase the productivity and efficiency, development of NUclear power plant engineering Work and INtegrated manaGement System (NUWINGS) started in 1987 to unify and integrate various conventional and developing systems using the state-of-the-art computer technology. The NUWINGS is almost completed and is now applied to actual plant construction. (author)

  20. Integrated control centre concepts for CANDU power plants

    Energy Technology Data Exchange (ETDEWEB)

    Lupton, L. R.; Davey, E. C.; Lapointe, P. A.; Shah, R. R.

    1990-01-15

    The size and complexity of nuclear power plants has increased significantly in the last 20 years. There is general agreement that plant safety and power production can be enhanced if more operational support systems that are significantly different from the ones based on the more conventional technologies used in plant control rooms. In particular, artificial intelligence and related technologies will play a major role in the development of innovative methods for information processing and presentation. These technologies must be integrated into the overall management and control philosophy of the plant and not be treated as vehicles to implement point solutions. The underlying philosophy behind our approach is discussed in this paper. Operator support systems will integrate into the overall control philosophy by complementing the operator. Four support systems are described; each is a prototype of a system being considered for the CANDU 3 control centre.

  1. Integrated living schedule for nuclear plants

    International Nuclear Information System (INIS)

    Milhiser, R.J.

    1985-01-01

    This paper addresses the change process, including decision making and a credible prioritization methodology. It is intended to result in an integrated plan being jointly accepted and defensible by the utility and the Nuclear Regulatory Commission (NRC). The program described has several advantages: the methodology is consistent with and defensible to NRC criteria; safety and economic factors are placed on a common basis for balancing; the use of valuation factors permits the utility to introduce judgements concerning the importance of any particular benefit; alternative value judgments can easily be examined; explicit indications of the level of confidence in investment outcome is provided; and a definitive framework for establishing and reviewing decision criteria and application is provided

  2. Nuclear thermionic power plant integration problems

    International Nuclear Information System (INIS)

    Fraas, A.P.

    1967-02-01

    The numerous boundary conditions to be met in preparing a well proportioned, properly integrated design for a thermionic cell reactor are discussed with the emphasis on materials and fabrication problems. Pertinent experience with fuel elements, tube header sheets, electric heaters, and pressure vessels is cited to highlight key limitations that have been encountered in structurally similar equipment. A reference design is presented to indicate how one might attempt to satisfy all of the many boundary conditions. The study indicates that it will be difficult to get a reactor core power density greater than about 35 w/cm 3 and that, while it is possible to minimize the ill effects of failures within individual cells by employing series-parallel connections, the study further indicates that there is inherently a high probability of leaks and electrical shorts and arcs within the reactor so that it is doubtful that good reliability can be obtained

  3. Diablo Canyon plant information management system and integrated communication system

    International Nuclear Information System (INIS)

    Stanley, J.W.; Groff, C.

    1990-01-01

    The implementation of a comprehensive maintenance system called the plant information management system (PIMS) at the Diablo Canyon plant, together with its associated integrated communication system (ICS), is widely regarded as the most comprehensive undertaking of its kind in the nuclear industry. This paper provides an overview of the program at Diablo Canyon, an evaluation of system benefits, and highlights the future course of PIMS

  4. Diablo Canyon plant information management system and integrated communication system

    Energy Technology Data Exchange (ETDEWEB)

    Stanley, J.W.; Groff, C.

    1990-06-01

    The implementation of a comprehensive maintenance system called the plant information management system (PIMS) at the Diablo Canyon plant, together with its associated integrated communication system (ICS), is widely regarded as the most comprehensive undertaking of its kind in the nuclear industry. This paper provides an overview of the program at Diablo Canyon, an evaluation of system benefits, and highlights the future course of PIMS.

  5. Information Integration and Communication in Plant Growth Regulation.

    Science.gov (United States)

    Chaiwanon, Juthamas; Wang, Wenfei; Zhu, Jia-Ying; Oh, Eunkyoo; Wang, Zhi-Yong

    2016-03-10

    Plants are equipped with the capacity to respond to a large number of diverse signals, both internal ones and those emanating from the environment, that are critical to their survival and adaption as sessile organisms. These signals need to be integrated through highly structured intracellular networks to ensure coherent cellular responses, and in addition, spatiotemporal actions of hormones and peptides both orchestrate local cell differentiation and coordinate growth and physiology over long distances. Further, signal interactions and signaling outputs vary significantly with developmental context. This review discusses our current understanding of the integrated intracellular and intercellular signaling networks that control plant growth. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Data integration aids understanding of butterfly–host plant networks

    Science.gov (United States)

    Muto-Fujita, Ai; Takemoto, Kazuhiro; Kanaya, Shigehiko; Nakazato, Takeru; Tokimatsu, Toshiaki; Matsumoto, Natsushi; Kono, Mayo; Chubachi, Yuko; Ozaki, Katsuhisa; Kotera, Masaaki

    2017-01-01

    Although host-plant selection is a central topic in ecology, its general underpinnings are poorly understood. Here, we performed a case study focusing on the publicly available data on Japanese butterflies. A combined statistical analysis of plant–herbivore relationships and taxonomy revealed that some butterfly subfamilies in different families feed on the same plant families, and the occurrence of this phenomenon more than just by chance, thus indicating the independent acquisition of adaptive phenotypes to the same hosts. We consequently integrated plant–herbivore and plant–compound relationship data and conducted a statistical analysis to identify compounds unique to host plants of specific butterfly families. Some of the identified plant compounds are known to attract certain butterfly groups while repelling others. The additional incorporation of insect–compound relationship data revealed potential metabolic processes that are related to host plant selection. Our results demonstrate that data integration enables the computational detection of compounds putatively involved in particular interspecies interactions and that further data enrichment and integration of genomic and transcriptomic data facilitates the unveiling of the molecular mechanisms involved in host plant selection. PMID:28262809

  7. B Plant low level waste system integrity assessment report

    International Nuclear Information System (INIS)

    Walter, E.J.

    1995-09-01

    This document provides the report of the integrity assessment activities for the B Plant low level waste system. The assessment activities were in response to requirements of the Washington State Dangerous Waste Regulations, Washington Administrative Code (WAC), 173-303-640. This integrity assessment report supports compliance with Hanford Federal Facility Agreement and Consent Order interim milestone target action M-32-07-T03

  8. Integration of torrefaction in CHP plants – A case study

    International Nuclear Information System (INIS)

    Starfelt, Fredrik; Tomas Aparicio, Elena; Li, Hailong; Dotzauer, Erik

    2015-01-01

    Highlights: • We model the integration of a torrefaction reactor in a CHP plant. • Techno-economic analysis for the system is performed. • Flue gas integration of torrefaction show better performance. • Heat or electricity production is not compromised in the proposed system. - Abstract: Torrefied biomass shows characteristics that resemble those of coal. Therefore, torrefied biomass can be co-combusted with coal in existing coal mills and burners. This paper presents simulation results of a case study where a torrefaction reactor was integrated in an existing combined heat and power plant and sized to replace 25%, 50%, 75% or 100% of the fossil coal in one of the boilers. The simulations show that a torrefaction reactor can be integrated with existing plants without compromising heat or electricity production. Economic and sensitivity analysis show that the additional cost for integrating a torrefaction reactor is low which means that with an emission allowance cost of 37 €/ton CO 2 , the proposed integrated system can be profitable and use 100% renewable fuels. The development of subsidies will affect the process economy. The determinant parameters are electricity and fuel prices

  9. Integrated systems for power plant cooling and wastewater management

    International Nuclear Information System (INIS)

    Haith, D.A.

    1975-01-01

    The concept of integrated management of energy and water resources, demonstrated in hydropower development, may be applicable to steam-generated power, also. For steam plants water is a means of disposing of a waste product, which is unutilized energy in the form of heat. One framework for the evolution of integrated systems is the consideration of possible technical linkages between power plant cooling and municipal wastewater management. Such linkages include the use of waste heat as a mechanism for enhancing wastewater treatment, the use of treated wastewater as make-up for evaporative cooling structures, and the use of a pond or reservoir for both cooling and waste stabilization. This chapter reports the results of a systematic evaluation of possible integrated systems for power plant cooling and waste water management. Alternatives were analyzed for each of three components of the system--power plant cooling (condenser heat rejection), thermally enhanced waste water treatment, and waste water disposal. Four cooling options considered were evaporative tower, open cycle, spray pond, and cooling pond. Three treatment alternatives considered were barometric condenser-activated sludge, sectionalized condenser-activated sludge, and cooling/stabilization pond. Three disposal alternatives considered were ocean discharge, land application (spray irrigation), and make-up (for evaporative cooling). To facilitate system comparisons, an 1100-MW nuclear power plant was selected. 31 references

  10. Transgenic plants as vital components of integrated pest management

    NARCIS (Netherlands)

    Kos, Martine; van Loon, J.J.A.; Dicke, M.; Vet, L.E.M.

    2009-01-01

    Although integrated pest management (IPM) strategies have been developed worldwide, further improvement of IPM effectiveness is required. The use of transgenic technology to create insect-resistant plants can offer a solution to the limited availability of highly insect-resistant cultivars.

  11. Design and control of integrated styrene aniline production plant

    NARCIS (Netherlands)

    Partenie, O.; Van der Last, V.; Sorin Bildea, C.; Altimari, P.

    2009-01-01

    This paper illustrates the operational difficulties arising from simultaneously performing exothermic and endothermic reactions, and demonstrates that a plant can be built and safely operated by integrating the design and plantwide control issues. The behaviour of reactor – separation – recycle

  12. Localizing genes using linkage disequilibrium in plants: integrating ...

    African Journals Online (AJOL)

    GREGO

    2007-03-19

    Mar 19, 2007 ... Localizing genes using linkage disequilibrium in plants: integrating lessons ... reduce that association as a function of the marker distance from the QTL. ..... the gene locus enhanced the resolution power of asso- ciation tests .... agents, such as insects, birds, water and wind, so mating is determined by a ...

  13. Integration of oxygen membranes for oxygen production in cement plants

    DEFF Research Database (Denmark)

    Puig Arnavat, Maria; Søgaard, Martin; Hjuler, Klaus

    2015-01-01

    The present paper describes the integration of oxygen membranes in cement plants both from an energy, exergy and economic point of view. Different configurations for oxygen enrichment of the tertiary air for combustion in the pre-calciner and full oxy-fuel combustion in both pre-calciner and kiln...

  14. Operational experience with the Sizewell B integrated plant computer system

    International Nuclear Information System (INIS)

    Ladner, J.E.J.; Alexander, N.C.; Fitzpatrick, J.A.

    1997-01-01

    The Westinghouse Integrated System for Centralised Operation (WISCO) is the primary plant control system at the Sizewell B Power Station. It comprises three subsystems; the High Integrity Control System (HICS), the Process Control System (PCS) and the Distributed Computer system (DCS). The HICS performs the control and data acquisition of nuclear safety significant plant systems. The PCS uses redundant data processing unit pairs. The workstations and servers of the DCS communicate with each other over a standard ethernet. The maintenance requirements for every plant system are covered by a Maintenance Strategy Report. The breakdown of these reports is listed. The WISCO system has performed exceptionally well. Due to the diagnostic information presented by the HICS, problems could normally be resolved within 24 hours. There have been some 200 outstanding modifications to the system. The procedure of modification is briefly described. (A.K.)

  15. Analysis of integrated plant upgrading/life extension programs

    International Nuclear Information System (INIS)

    McCutchan, D.A.; Massie, H.W. Jr.; McFetridge, R.H.

    1988-01-01

    A present-worth generating cost model has been developed and used to evaluate the economic value of integrated plant upgrading life extension project in nuclear power plants. This paper shows that integrated plant upgrading programs can be developed in which a mix of near-term availability, power rating, and heat rate improvements can be obtained in combination with life extension. All significant benefits and costs are evaluated from the viewpoint of the utility, as measured in discounted revenue requirement differentials between alternative plans which are equivalent in system generating capacity. The near-term upgrading benefits are shown to enhance the benefit picture substantially. In some cases the net benefit is positive, even if the actual life extension proves to be less than expected

  16. DPTEdb, an integrative database of transposable elements in dioecious plants.

    Science.gov (United States)

    Li, Shu-Fen; Zhang, Guo-Jun; Zhang, Xue-Jin; Yuan, Jin-Hong; Deng, Chuan-Liang; Gu, Lian-Feng; Gao, Wu-Jun

    2016-01-01

    Dioecious plants usually harbor 'young' sex chromosomes, providing an opportunity to study the early stages of sex chromosome evolution. Transposable elements (TEs) are mobile DNA elements frequently found in plants and are suggested to play important roles in plant sex chromosome evolution. The genomes of several dioecious plants have been sequenced, offering an opportunity to annotate and mine the TE data. However, comprehensive and unified annotation of TEs in these dioecious plants is still lacking. In this study, we constructed a dioecious plant transposable element database (DPTEdb). DPTEdb is a specific, comprehensive and unified relational database and web interface. We used a combination of de novo, structure-based and homology-based approaches to identify TEs from the genome assemblies of previously published data, as well as our own. The database currently integrates eight dioecious plant species and a total of 31 340 TEs along with classification information. DPTEdb provides user-friendly web interfaces to browse, search and download the TE sequences in the database. Users can also use tools, including BLAST, GetORF, HMMER, Cut sequence and JBrowse, to analyze TE data. Given the role of TEs in plant sex chromosome evolution, the database will contribute to the investigation of TEs in structural, functional and evolutionary dynamics of the genome of dioecious plants. In addition, the database will supplement the research of sex diversification and sex chromosome evolution of dioecious plants.Database URL: http://genedenovoweb.ticp.net:81/DPTEdb/index.php. © The Author(s) 2016. Published by Oxford University Press.

  17. Fully integrated safeguards and security for reprocessing plant monitoring

    International Nuclear Information System (INIS)

    Duran, Felicia Angelica; Ward, Rebecca; Cipiti, Benjamin B.; Middleton, Bobby D.

    2011-01-01

    Nuclear fuel reprocessing plants contain a wealth of plant monitoring data including material measurements, process monitoring, administrative procedures, and physical protection elements. Future facilities are moving in the direction of highly-integrated plant monitoring systems that make efficient use of the plant data to improve monitoring and reduce costs. The Separations and Safeguards Performance Model (SSPM) is an analysis tool that is used for modeling advanced monitoring systems and to determine system response under diversion scenarios. This report both describes the architecture for such a future monitoring system and present results under various diversion scenarios. Improvements made in the past year include the development of statistical tests for detecting material loss, the integration of material balance alarms to improve physical protection, and the integration of administrative procedures. The SSPM has been used to demonstrate how advanced instrumentation (as developed in the Material Protection, Accounting, and Control Technologies campaign) can benefit the overall safeguards system as well as how all instrumentation is tied into the physical protection system. This concept has the potential to greatly improve the probability of detection for both abrupt and protracted diversion of nuclear material.

  18. Analysis of Waste Isolation Pilot Plant Samples: Integrated Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Britt, Phillip F [ORNL

    2015-03-01

    Analysis of Waste Isolation Pilot Plant Samples: Integrated Summary Report. Summaries of conclusions, analytical processes, and analytical results. Analysis of samples taken from the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico in support of the WIPP Technical Assessment Team (TAT) activities to determine to the extent feasible the mechanisms and chemical reactions that may have resulted in the breach of at least one waste drum and release of waste material in WIPP Panel 7 Room 7 on February 14, 2014. This report integrates and summarizes the results contained in three separate reports, described below, and draws conclusions based on those results. Chemical and Radiochemical Analyses of WIPP Samples R-15 C5 SWB and R16 C-4 Lip; PNNL-24003, Pacific Northwest National Laboratory, December 2014 Analysis of Waste Isolation Pilot Plant (WIPP) Underground and MgO Samples by the Savannah River National Laboratory (SRNL); SRNL-STI-2014-00617; Savannah River National Laboratory, December 2014 Report for WIPP UG Sample #3, R15C5 (9/3/14); LLNL-TR-667015; Lawrence Livermore National Laboratory, January 2015 This report is also contained in the Waste Isolation Pilot Plant Technical Assessment Team Report; SRNL-RP-2015-01198; Savannah River National Laboratory, March 17, 2015, as Appendix C: Analysis Integrated Summary Report.

  19. Decoding Network Structure in On-Chip Integrated Flow Cells with Synchronization of Electrochemical Oscillators

    Science.gov (United States)

    Jia, Yanxin; Kiss, István Z.

    2017-04-01

    The analysis of network interactions among dynamical units and the impact of the coupling on self-organized structures is a challenging task with implications in many biological and engineered systems. We explore the coupling topology that arises through the potential drops in a flow channel in a lab-on-chip device that accommodates chemical reactions on electrode arrays. The networks are revealed by analysis of the synchronization patterns with the use of an oscillatory chemical reaction (nickel electrodissolution) and are further confirmed by direct decoding using phase model analysis. In dual electrode configuration, a variety coupling schemes, (uni- or bidirectional positive or negative) were identified depending on the relative placement of the reference and counter electrodes (e.g., placed at the same or the opposite ends of the flow channel). With three electrodes, the network consists of a superposition of a localized (upstream) and global (all-to-all) coupling. With six electrodes, the unique, position dependent coupling topology resulted spatially organized partial synchronization such that there was a synchrony gradient along the quasi-one-dimensional spatial coordinate. The networked, electrode potential (current) spike generating electrochemical reactions hold potential for construction of an in-situ information processing unit to be used in electrochemical devices in sensors and batteries.

  20. Electrodeposition of enzymes-integrated mesoporous composite films by interfacial templating: A paradigm for electrochemical biosensors

    International Nuclear Information System (INIS)

    Wang, Dongming; Tan, Yiwei

    2014-01-01

    The development of nanostructured electrodes for electrochemical biosensors is of significant interest for modern detection, portable devices, and enhanced performance. However, development of such sensors still remains challenging due to the time-consuming, detriment-to-nature, and costly modifications of both electrodes and enzymes. In this work, we report a simple one-step approach to fabricating high-performance, direct electron transfer (DET) based nanoporous enzyme-embedded electrodes by electrodeposition coupled with recent progress in potential-controlled interfacial surfactant assemblies. In contrast to those previously electrodeposited mesoporous materials that are not bioactive, we imparted the biofunctionality to electrodeposited mesoporous thin films by means of the amphiphilic phospholipid templates strongly interacting with enzymes. Thus, phospholipid-templated mesoporous ZnO films covalently inlaid with the pristine enzymes were prepared by simple one-step electrodeposition. We further demonstrate two examples of such hybrid film electrodes embedded with alcohol dehydrogenase (ADH) and glucose oxidase (GOx), which are effectively employed as electrochemical biosensors for amperometric sensing of ethanol and glucose without using any electron relays. The favorable mass transport and large contact surface area provided by nanopores play an important role in improving the performance of these two biosensors, such as excellent sensitivities, low detection limits, and fast response. The matrix mesoporous films acting as effective electronic bridges are responsible for DET between enzyme molecules and metal electrode

  1. Electrochemical techniques application in corrosion problems of fossil power plants; Aplicacion de tecnicas electroquimicas en problemas de corrosion en centrales termoelectricas

    Energy Technology Data Exchange (ETDEWEB)

    Cano Castillo, Ulises; Garcia Ochoa, Esteban Miguel; Martinez Villafane, Alberto; Mariaca Rodriguez, Liboria; Malo Tamayo, Jose Maria; Uruchurtu Chavarin, Jorge [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1990-12-31

    Some aspects of the electrochemical techniques employed to evaluate the corrosion at low temperature in fossil power plants are commented, as well as the results obtained with the application of them in three power plants of this type. [Espanol] Se comentan algunos aspectos de tecnicas electroquimicas utilizadas para evaluar la corrosion en baja temperatura en centrales termoelectricas, asi como los resultados de la aplicacion de las mismas en tres centrales de este tipo.

  2. Electrochemical techniques application in corrosion problems of fossil power plants; Aplicacion de tecnicas electroquimicas en problemas de corrosion en centrales termoelectricas

    Energy Technology Data Exchange (ETDEWEB)

    Cano Castillo, Ulises; Garcia Ochoa, Esteban Miguel; Martinez Villafane, Alberto; Mariaca Rodriguez, Liboria; Malo Tamayo, Jose Maria; Uruchurtu Chavarin, Jorge [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1991-12-31

    Some aspects of the electrochemical techniques employed to evaluate the corrosion at low temperature in fossil power plants are commented, as well as the results obtained with the application of them in three power plants of this type. [Espanol] Se comentan algunos aspectos de tecnicas electroquimicas utilizadas para evaluar la corrosion en baja temperatura en centrales termoelectricas, asi como los resultados de la aplicacion de las mismas en tres centrales de este tipo.

  3. Technology success: Integration of power plant reliability and effective maintenance

    International Nuclear Information System (INIS)

    Ferguson, K.

    2008-01-01

    The nuclear power generation sector has a tradition of utilizing technology as a key attribute for advancement. Companies that own, manage, and operate nuclear power plants can be expected to continue to rely on technology as a vital element of success. Inherent with the operations of the nuclear power industry in many parts of the world is the close connection between efficiency of power plant operations and successful business survival. The relationship among power plant availability, reliability of systems and components, and viability of the enterprise is more evident than ever. Technology decisions need to be accomplished that reflect business strategies, work processes, as well as needs of stakeholders and authorities. Such rigor is needed to address overarching concerns such as power plant life extension and license renewal, new plant orders, outage management, plant safety, inventory management etc. Particular to power plant reliability, the prudent leveraging of technology as a key to future success is vital. A dominant concern is effective asset management as physical plant assets age. Many plants are in, or are entering in, a situation in which systems and component design life and margins are converging such that failure threats can come into play with increasing frequency. Wisely selected technologies can be vital to the identification of emerging threats to reliable performance of key plant features and initiating effective maintenance actions and investments that can sustain or enhance current reliability in a cost effective manner. This attention to detail is vital to investment in new plants as well This paper and presentation will address (1) specific technology success in place at power plants, including nuclear, that integrates attention to attaining high plant reliability and effective maintenance actions as well as (2) complimentary actions that maximize technology success. In addition, the range of benefits that accrue as a result of

  4. Toshiba integrated information system for design of nuclear power plants

    International Nuclear Information System (INIS)

    Abe, Yoko; Kawamura, Hirobumi; Sasaki, Norio; Takasaka, Kiyoshi

    1993-01-01

    TOSHIBA aims to secure safety, increase reliability and improve efficiency through the engineering for nuclear power plants and has been introducing Computer Aided Engineering (CAE). Up to the present, TOSHIBA has been developing computer systems which support each field of design and applying them to the design of nuclear power plants. The new design support system has been developed to integrate each of those systems in order to realize much greater improvement in accuracy and increase of reliability in design using state-of-the-art computer technology

  5. Capabilities for managing high-volume production of electric engineering equipment at the Electrochemical Production Plant

    Energy Technology Data Exchange (ETDEWEB)

    Podlednev, V.M.

    1996-04-01

    The Electromechanical Production Plant is essentially a research center with experimental facilities and power full testing base. Major products of the plant today include heat pipes and devices of their basis of different functions and power from high temperature ranges to cryogenics. This report describes work on porous titanium and carbon-graphite current collectors, electrocatalyst synthesis, and electrocatalyst applications.

  6. Partial synchronization of relaxation oscillators with repulsive coupling in autocatalytic integrate-and-fire model and electrochemical experiments

    Science.gov (United States)

    Kori, Hiroshi; Kiss, István Z.; Jain, Swati; Hudson, John L.

    2018-04-01

    Experiments and supporting theoretical analysis are presented to describe the synchronization patterns that can be observed with a population of globally coupled electrochemical oscillators close to a homoclinic, saddle-loop bifurcation, where the coupling is repulsive in the electrode potential. While attractive coupling generates phase clusters and desynchronized states, repulsive coupling results in synchronized oscillations. The experiments are interpreted with a phenomenological model that captures the waveform of the oscillations (exponential increase) followed by a refractory period. The globally coupled autocatalytic integrate-and-fire model predicts the development of partially synchronized states that occur through attracting heteroclinic cycles between out-of-phase two-cluster states. Similar behavior can be expected in many other systems where the oscillations occur close to a saddle-loop bifurcation, e.g., with Morris-Lecar neurons.

  7. Development of an integrated microsystem for the multiplexed detection of breast cancer markers in serum using electrochemical immunosensors

    Science.gov (United States)

    Fragoso, Alex; Laboria, Noemi; Botero, Mary Luz; Bejarano, Diego; Latta, Daniel; Hansen-Hagge, Thomas E.; Kemmner, Wolfgang; Katakis, Ioanis; Gärtner, Claudia; Drese, Klaus; O'Sullivan, Ciara K.

    2010-02-01

    A microsystem integrating electrochemical biosensoric detection for the simultaneous multiplexed detection of protein markers of breast cancer is reported. The immobilization of antibodies against each of carcinoembryonic antigen (CEA), prostate specific antigen (PSA) and cancer antigen 15-3 (CA15-3) was achieved via crosslinking to a bipodal dithiol chemisorbed on gold electrodes. This bipodal dithiol had the double function of eliminating non-specific binding and optimal spacing of the anchor antibodies for maximum accessibility to the target proteins. Storage conditions were optimized, demonstrating a long-term stability of the reporter conjugates jointly stored within a single reservoir in the microsystem. The final system has been optimized in terms of incubation times, temperatures and simultaneous, multiplexed detection of the protein markers was achieved in less than 10 minutes with less than ng/mL detection limits. The microsystem has been validated using real patient serum samples and excellent correlation with ELISA results obtained.

  8. Plant Clonal Integration Mediates the Horizontal Redistribution of Soil Resources, Benefiting Neighboring Plants.

    Science.gov (United States)

    Ye, Xue-Hua; Zhang, Ya-Lin; Liu, Zhi-Lan; Gao, Shu-Qin; Song, Yao-Bin; Liu, Feng-Hong; Dong, Ming

    2016-01-01

    Resources such as water taken up by plants can be released into soils through hydraulic redistribution and can also be translocated by clonal integration within a plant clonal network. We hypothesized that the resources from one (donor) microsite could be translocated within a clonal network, released into different (recipient) microsites and subsequently used by neighbor plants in the recipient microsite. To test these hypotheses, we conducted two experiments in which connected and disconnected ramet pairs of Potentilla anserina were grown under both homogeneous and heterogeneous water regimes, with seedlings of Artemisia ordosica as neighbors. The isotopes [(15)N] and deuterium were used to trace the translocation of nitrogen and water, respectively, within the clonal network. The water and nitrogen taken up by P. anserina ramets in the donor microsite were translocated into the connected ramets in the recipient microsites. Most notably, portions of the translocated water and nitrogen were released into the recipient microsite and were used by the neighboring A. ordosica, which increased growth of the neighboring A. ordosica significantly. Therefore, our hypotheses were supported, and plant clonal integration mediated the horizontal hydraulic redistribution of resources, thus benefiting neighboring plants. Such a plant clonal integration-mediated resource redistribution in horizontal space may have substantial effects on the interspecific relations and composition of the community and consequently on ecosystem processes.

  9. Plant clonal integration mediates the horizontal redistribution of soil resources, benefiting neighbouring plants

    Directory of Open Access Journals (Sweden)

    Xuehua eYe

    2016-02-01

    Full Text Available Resources such as water taken up by plants can be released into soils through hydraulic redistribution and can also be translocated by clonal integration within a plant clonal network. We hypothesized that the resources from one (donor microsite could be translocated within a clonal network, released into different (recipient microsites and subsequently used by neighbour plants in the recipient microsite. To test these hypotheses, we conducted two experiments in which connected and disconnected ramet pairs of Potentilla anserina were grown under both homogeneous and heterogeneous water regimes, with seedlings of Artemisia ordosica as neighbours. The isotopes [15N] and deuterium were used to trace the translocation of nitrogen and water, respectively, within the clonal network. The water and nitrogen taken up by P. anserina ramets in the donor microsite were translocated into the connected ramets in the recipient microsites. Most notably, portions of the translocated water and nitrogen were released into the recipient microsite and were used by the neighbouring A. ordosica, which increased growth of the neighbouring A. ordosica significantly. Therefore, our hypotheses were supported, and plant clonal integration mediated the horizontal hydraulic redistribution of resources, thus benefiting neighbouring plants. Such a plant clonal integration-mediated resource redistribution in horizontal space may have substantial effects on the interspecific relations and composition of the community and consequently on ecosystem processes.

  10. Role of plant pathology in integrated pest management.

    Science.gov (United States)

    Jacobsen, B J

    1997-01-01

    Integrated Pest Management (IPM) is a paradigm that is widely adopted by all pest control disciplines but whose early definitions and philosophical basis belong to entomologists. Plant pathology research and extension work has historically emphasized integration of several control strategies and fits both historical and modern definitions of IPM. While the term IPM has been used only sparingly in the phytopathology literature, the integrated disease management strategies emphasized are now considered to be at the forefront of ecologically based or biointensive pest management. While IPM is broadly endorsed by crop protection disciplines, farmers, other agriculturalists, and consumers, the potential for Integrated Pest Management has not been fully realized. Most IPM programs reflect a package of tools and decision aids for individual crop insect, weed, nematode, and plant disease management. IPM programs that integrate all types of pests with the agroecosystem, crop growth and loss models still await the formation of interdisciplinary teams focusing on growers needs. Lack of funding for both discipline and interdisciplinary developmental research and implementation is responsible for the paucity of comprehensive IPM programs for the majority of the U.S. crop acreage. This review explores the origins and evolution of the IPM paradigm and reviews efforts to achieve the body of knowledge and implementation structure to achieve IPM's full potential.

  11. An integrated approach to site selection for nuclear power plants

    International Nuclear Information System (INIS)

    Hassan, E.M.A.

    1975-01-01

    A method of analysing and evaluating the large number of factors influencing site selection is proposed, which can interrelate these factors and associated problems in an integrated way and at the same time establish a technique for site evaluation. The objective is to develop an integrated programme that illustrates the complexity and dynamic interrelationships of the various factors to develop an improved understanding of the functions and objectives of siting nuclear power plants and would aim finally at the development of an effective procedure and technique for site evaluation and/or comparative evaluation for making rational site-selection decisions. (author)

  12. Integrated Lateral Flow Test Strip with Electrochemical Sensor for Quantification of Phosphorylated Cholinesterase: Biomarker of Exposure to Organophosphorus Agents

    Energy Technology Data Exchange (ETDEWEB)

    Du, Dan; Wang, Jun; Wang, Limin; Lu, Donglai; Lin, Yuehe

    2012-02-08

    An integrated lateral flow test strip with electrochemical sensor (LFTSES) device with rapid, selective and sensitive response for quantification of exposure to organophosphorus (OP) pesticides and nerve agents has been developed. The principle of this approach is based on parallel measurements of post-exposure and baseline acetylcholinesterase (AChE) enzyme activity, where reactivation of the phosphorylated AChE is exploited to enable measurement of total amount of AChE (including inhibited and active) which is used as a baseline for calculation of AChE inhibition. Quantitative measurement of phosphorylated adduct (OP-AChE) was realized by subtracting the active AChE from the total amount of AChE. The proposed LFTSES device integrates immunochromatographic test strip technology with electrochemical measurement using a disposable screen printed electrode which is located under the test zone. It shows linear response between AChE enzyme activity and enzyme concentration from 0.05 to 10 nM, with detection limit of 0.02 nM. Based on this reactivation approach, the LFTSES device has been successfully applied for in vitro red blood cells inhibition studies using chlorpyrifos oxon as a model OP agent. This approach not only eliminates the difficulty in screening of low-dose OP exposure because of individual variation of normal AChE values, but also avoids the problem in overlapping substrate specificity with cholinesterases and avoids potential interference from other electroactive species in biological samples. It is baseline free and thus provides a rapid, sensitive, selective and inexpensive tool for in-field and point-of-care assessment of exposures to OP pesticides and nerve agents.

  13. Multichannel Bipotentiostat Integrated With a Microfluidic Platform for Electrochemical Real-Time Monitoring of Cell Cultures

    DEFF Research Database (Denmark)

    Vergani, Marco; Carminati, Marco; Ferrari, Giorgio

    2012-01-01

    An electrochemical detection system specifically designed for multi-parameter real-time monitoring of stem cell culturing/differentiation in a microfluidic system is presented. It is composed of a very compact 24-channel electronic board, compatible with arrays of microelectrodes and coupled...... to a microfluidic cell culture system. A versatile data acquisition software enables performing amperometry, cyclic voltammetry and impedance spectroscopy in each of the 12 independent chambers over a 100 kHz bandwidth with current resolution down to 5 pA for 100 ms measuring time. The design of the platform, its...... realization and experimental characterization are reported, with emphasis on the analysis of impact of input capacitance (i.e., microelectrode size) and microfluidic pump operation on current noise. Programmable sequences of successive injections of analytes (ferricyanide and dopamine) and rinsing buffer...

  14. Integrating Paper Chromatography with Electrochemical Detection for the Trace Analysis of TNT in Soil

    Directory of Open Access Journals (Sweden)

    Patrick Ryan

    2015-07-01

    Full Text Available We report on the development of an electrochemical probe for the trace analysis of 2,4,6-trinitrotoluene (TNT in soil samples. The probe is a combination of graphite electrodes, filter paper, with ethylene glycol and choline chloride as the solvent/electrolyte. Square wave chromatovoltammograms show the probes have a sensitivity for TNT of 0.75 nA/ng and a limit of detection of 100 ng. In addition, by taking advantage of the inherent paper chromatography step, TNT can be separated in both time and cathodic peak potential from 4-amino-dinitrotolene co-spotted on the probe or in soil samples with the presence of methyl parathion as a possible interferent.

  15. Integrated electrochemical treatment systems for facilitating the bioremediation of oil spill contaminated soil.

    Science.gov (United States)

    Cheng, Ying; Wang, Liang; Faustorilla, Vilma; Megharaj, Mallavarapu; Naidu, Ravi; Chen, Zuliang

    2017-05-01

    Bioremediation plays an important role in oil spill management and bio-electrochemical treatment systems are supposed to represent a new technology for both effective remediation and energy recovery. Diesel removal rate increased by four times in microbial fuel cells (MFCs) since the electrode served as an electron acceptor, and high power density (29.05 W m -3 ) at current density 72.38 A m -3 was achieved using diesel (v/v 1%) as the sole substrate. As revealed by Scanning electron microscope images, carbon fibres in the anode electrode were covered with biofilm and the bacterial colloids which build the link between carbon fibres and enhance electron transmission. Trace metabolites produced during the anaerobic biodegradation were identified by gas chromatography-mass spectrometry. These metabolites may act as emulsifying agents that benefit oil dispersion and play a vital role in bioremediation of oil spills in field applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Model Predictive Control of Integrated Gasification Combined Cycle Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    B. Wayne Bequette; Priyadarshi Mahapatra

    2010-08-31

    The primary project objectives were to understand how the process design of an integrated gasification combined cycle (IGCC) power plant affects the dynamic operability and controllability of the process. Steady-state and dynamic simulation models were developed to predict the process behavior during typical transients that occur in plant operation. Advanced control strategies were developed to improve the ability of the process to follow changes in the power load demand, and to improve performance during transitions between power levels. Another objective of the proposed work was to educate graduate and undergraduate students in the application of process systems and control to coal technology. Educational materials were developed for use in engineering courses to further broaden this exposure to many students. ASPENTECH software was used to perform steady-state and dynamic simulations of an IGCC power plant. Linear systems analysis techniques were used to assess the steady-state and dynamic operability of the power plant under various plant operating conditions. Model predictive control (MPC) strategies were developed to improve the dynamic operation of the power plants. MATLAB and SIMULINK software were used for systems analysis and control system design, and the SIMULINK functionality in ASPEN DYNAMICS was used to test the control strategies on the simulated process. Project funds were used to support a Ph.D. student to receive education and training in coal technology and the application of modeling and simulation techniques.

  17. Introducing the term 'Biocontrol Plants' for integrated pest management

    Directory of Open Access Journals (Sweden)

    Pia Parolin

    2014-02-01

    Full Text Available Studies of interactions between crops, additional plants, pests and beneficial organisms already exist as well as studies of natural enemy preference, dispersal, and abundance. However, these studies focus on tri-trophic interactions from an "arthropod" point of view. We think that in order to optimize crop protection methods we need to understand the effects that plant structures have on the various arthropods and on subsequent tri-trophic interactions. Although studies and reviews describing the role of secondary plants in Integrated Pest Management (IPM exist, to date a general term which encompasses all plants added to a cropping system with the aim of enhancing IPM strategies has yet to be formulated. Therefore, we suggest a new term, "biocontrol plants", which we define as plants that are intentionally added to a crop system with the aim of enhancing crop productivity through pest attraction and/or pest regulation; a term that will promote the use of biocontrol services, and can ultimately lead to an increase in the sustainability of cropping systems.

  18. Oxidation and adduct formation of xenobiotics in a microfluidic electrochemical cell with boron doped diamond electrodes and an integrated passive gradient rotation mixer

    NARCIS (Netherlands)

    van den Brink, Floris Teunis Gerardus; Wigger, Tina; Ma, Liwei; Odijk, Mathieu; Olthuis, Wouter; Karst, U.; van den Berg, Albert

    2016-01-01

    Reactive xenobiotic metabolites and their adduct formation with biomolecules such as proteins are important to study as they can be detrimental to human health. Here, we present a microfluidic electrochemical cell with integrated micromixer to study phase I and phase II metabolism as well as protein

  19. Integrated online condition monitoring system for nuclear power plants

    International Nuclear Information System (INIS)

    Hashemian, Hashem M.

    2010-01-01

    Online condition monitoring or online monitoring (OLM) uses data acquired while a nuclear power is operating to continuously assess the health of the plant's sensors, processes, and equipment; to measure the dynamic performance of the plant's process instrumentation; to verify in-situ the calibration of the process instrumentation; to detect blockages, voids, and leaks in the pressure sensing lines; to identify core flow anomalies; to extend the life of neutron detectors and other sensors; and to measure the vibration of reactor internals. Both the steady-state or DC output of plant sensors and their AC signal or noise output can be used to assess sensor health, depending on whether the application is monitoring a rapidly changing (e.g., core barrel motion) or a slowly changing (e.g., sensor calibration) process. The author has designed, developed, installed, and tested OLM systems (comprised of software/hardware-based data acquisition and data processing modules) that integrate low-frequency (1 mHz to 1 Hz) techniques such as RTD cross-calibration, pressure transmitter calibration monitoring, and equipment condition monitoring and high-frequency (1 Hz to 1 kHz) techniques such as the noise analysis technique. The author has demonstrated the noise analysis technique's effectiveness for measuring the dynamic response-time of pressure transmitters and their sensing lines; for performing predictive maintenance on reactor internals; for detecting core flow anomalies; and for extending neutron detector life. Integrated online condition monitoring systems can combine AC and DC data acquisition and signal processing techniques, can use data from existing process sensors during all modes of plant operation, including startup, normal operation, and shutdown; can be retrofitted into existing PWRs, BWRs, and other reactor types and will be integrated into next-generation plants. (orig.)

  20. Integrated online condition monitoring system for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Hashemian, Hashem M. [Analysis and Measurement Services Corporation, Knoxville, TN (United States). AMS Technology Center

    2010-09-15

    Online condition monitoring or online monitoring (OLM) uses data acquired while a nuclear power is operating to continuously assess the health of the plant's sensors, processes, and equipment; to measure the dynamic performance of the plant's process instrumentation; to verify in-situ the calibration of the process instrumentation; to detect blockages, voids, and leaks in the pressure sensing lines; to identify core flow anomalies; to extend the life of neutron detectors and other sensors; and to measure the vibration of reactor internals. Both the steady-state or DC output of plant sensors and their AC signal or noise output can be used to assess sensor health, depending on whether the application is monitoring a rapidly changing (e.g., core barrel motion) or a slowly changing (e.g., sensor calibration) process. The author has designed, developed, installed, and tested OLM systems (comprised of software/hardware-based data acquisition and data processing modules) that integrate low-frequency (1 mHz to 1 Hz) techniques such as RTD cross-calibration, pressure transmitter calibration monitoring, and equipment condition monitoring and high-frequency (1 Hz to 1 kHz) techniques such as the noise analysis technique. The author has demonstrated the noise analysis technique's effectiveness for measuring the dynamic response-time of pressure transmitters and their sensing lines; for performing predictive maintenance on reactor internals; for detecting core flow anomalies; and for extending neutron detector life. Integrated online condition monitoring systems can combine AC and DC data acquisition and signal processing techniques, can use data from existing process sensors during all modes of plant operation, including startup, normal operation, and shutdown; can be retrofitted into existing PWRs, BWRs, and other reactor types and will be integrated into next-generation plants. (orig.)

  1. Integrated inspection programs at Bruce Heavy Water Plant

    International Nuclear Information System (INIS)

    Brown, K.C.

    1992-01-01

    Quality pressure boundary maintenance and an excellent loss prevention record at Bruce Heavy Water Plant are the results of the Material and Inspection Unit's five inspection programs. Experienced inspectors are responsible for the integrity of the pressure boundary in their own operating area. Inspectors are part of the Technical Section, and along with unit engineering staff, they provide technical input before, during, and after the job. How these programs are completed, and the results achieved, are discussed. 5 figs., 1 appendix

  2. Integrated inspection programs at Bruce Heavy Water Plant

    Energy Technology Data Exchange (ETDEWEB)

    Brown, K C [Ontario Hydro, Tiverton, ON (Canada)

    1993-12-31

    Quality pressure boundary maintenance and an excellent loss prevention record at Bruce Heavy Water Plant are the results of the Material and Inspection Unit`s five inspection programs. Experienced inspectors are responsible for the integrity of the pressure boundary in their own operating area. Inspectors are part of the Technical Section, and along with unit engineering staff, they provide technical input before, during, and after the job. How these programs are completed, and the results achieved, are discussed. 5 figs., 1 appendix.

  3. Energy management system for an integrated steel plant

    Energy Technology Data Exchange (ETDEWEB)

    Perti, A.K.; Sankarasubramian, K.; Shivramakrishnan, J. (Bhilai Steel Plant, Bhilai (India))

    1992-09-01

    The cost of energy contributes 35 to 40% to the cost of steel production. Thus a lot of importance is being given to energy conservation in steel production. The paper outlines energy conservation measures at the Bhilai Steel Plant, India. Measures include: modifications to furnaces; partial briquetting of coal charge; and setting up an energy centre to integrate measurement and computer systems with despatches, engineers and managers of energy. 4 refs., 4 figs., 3 tabs.

  4. Flexible operation of thermal plants with integrated energy storage technologies

    Science.gov (United States)

    Koytsoumpa, Efthymia Ioanna; Bergins, Christian; Kakaras, Emmanouil

    2017-08-01

    The energy system in the EU requires today as well as towards 2030 to 2050 significant amounts of thermal power plants in combination with the continuously increasing share of Renewables Energy Sources (RES) to assure the grid stability and to secure electricity supply as well as to provide heat. The operation of the conventional fleet should be harmonised with the fluctuating renewable energy sources and their intermittent electricity production. Flexible thermal plants should be able to reach their lowest minimum load capabilities while keeping the efficiency drop moderate as well as to increase their ramp up and down rates. A novel approach for integrating energy storage as an evolutionary measure to overcome many of the challenges, which arise from increasing RES and balancing with thermal power is presented. Energy storage technologies such as Power to Fuel, Liquid Air Energy Storage and Batteries are investigated in conjunction with flexible power plants.

  5. Alpha-Glucosidase Enzyme Biosensor for the Electrochemical Measurement of Antidiabetic Potential of Medicinal Plants.

    Science.gov (United States)

    Mohiuddin, M; Arbain, D; Islam, A K M Shafiqul; Ahmad, M S; Ahmad, M N

    2016-12-01

    A biosensor for measuring the antidiabetic potential of medicinal plants was developed by covalent immobilization of α-glucosidase (AG) enzyme onto amine-functionalized multi-walled carbon nanotubes (MWCNTs-NH2). The immobilized enzyme was entrapped in freeze-thawed polyvinyl alcohol (PVA) together with p-nitrophenyl-α-D-glucopyranoside (PNPG) on the screen-printed carbon electrode at low pH to prevent the premature reaction between PNPG and AG enzyme. The enzymatic reaction within the biosensor is inhibited by bioactive compounds in the medicinal plant extracts. The capability of medicinal plants to inhibit the AG enzyme on the electrode correlates to the potential of the medicinal plants to inhibit the production of glucose from the carbohydrate in the human body. Thus, the inhibition indicates the antidiabetic potential of the medicinal plants. The performance of the biosensor was evaluated to measure the antidiabetic potential of three medicinal plants such as Tebengau (Ehretis laevis), Cemumar (Micromelum pubescens), and Kedondong (Spondias dulcis) and acarbose (commercial antidiabetic drug) via cyclic voltammetry, amperometry, and spectrophotometry. The cyclic voltammetry (CV) response for the inhibition of the AG enzyme activity by Tebengau plant extracts showed a linear relation in the range from 0.423-8.29 μA, and the inhibition detection limit was 0.253 μA. The biosensor exhibited good sensitivity (0.422 μA/mg Tebengau plant extracts) and rapid response (22 s). The biosensor retains approximately 82.16 % of its initial activity even after 30 days of storage at 4 °C.

  6. Architecturally integrated PV system at the Ford Bridgend Engine Plant

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, K.; Phillips, R.

    2001-07-01

    The aim of the project was to design and install a solar photovoltaic (PV) plant that could be retrofitted into an existing factory and to evaluate the cost and advantages of using the most recent advances in photovoltaic technology as follows: to demonstrate the use of the latest mono crystalline silicon technology within a large scale manufacturing environment, with the long term view of designing a state of the art installation for use in an environmentally sensitive {sup F}actory of the Future{sup .} To determine the performance and operating costs of a photovoltaic plant in northern latitudes thus providing data for the potential use of similar integrated systems elsewhere in the UK and Northern Europe. To evaluate the long term behaviour of an integrated system and its component parts. To demonstrate the feasibility of retrofitting PV roof lights into a fully operational manufacturing plant. To provide natural daylight into the manufacturing facility thereby improving the working environment, enhancing productivity and reducing the electrical lighting load within the plant during daylight hours. (author)

  7. Removal of arsenic, phosphates and ammonia from well water using electrochemical/chemical methods and advanced oxidation: a pilot plant approach.

    Science.gov (United States)

    Orescanin, Visnja; Kollar, Robert; Nad, Karlo; Halkijevic, Ivan; Kuspilic, Marin; Findri Gustek, Stefica

    2014-01-01

    The purpose of this work was to develop a pilot plant purification system and apply it to groundwater used for human consumption, containing high concentrations of arsenic and increased levels of phosphates, ammonia, mercury and color. The groundwater used was obtained from the production well in the Vinkovci County (Eastern Croatia). Due to a complex composition of the treated water, the purification system involved a combined electrochemical treatment, using iron and aluminum electrode plates with simultaneous ozonation, followed by a post-treatment with UV, ozone and hydrogen peroxide. The removal of the contaminant with the waste sludge collected during the electrochemical treatment was also tested. The combined electrochemical and advanced oxidation treatment resulted in the complete removal of arsenic, phosphates, color, turbidity, suspended solids and ammonia, while the removal of other contaminants of interest was up to 96.7%. Comparable removal efficiencies were obtained by using waste sludge as a coagulant.

  8. The enhancement of heavy metal removal from polluted river water treatment by integrated carbon-aluminium electrodes using electrochemical method

    Science.gov (United States)

    Yussuf, N. M.; Embong, Z.; Abdullah, S.; Masirin, M. I. M.; Tajudin, S. A. A.; Ahmad, S.; Sahari, S. K.; Anuar, A. A.; Maxwell, O.

    2018-01-01

    The heavy metal removal enhancement from polluted river water was investigated using two types of electrodes consist of integrated carbon-aluminium and a conventional aluminium plate electrode at laboratory-scale experiments. In the integrated electrode systems, the aluminium electrode surface was coated with carbon using mixed slurry containing carbon black, polyvinyl acetate and methanol. The electrochemical treatment was conducted on the parameter condition of 90V applied voltage, 3cm of electrode distance and 60 minutes of electrolysis operational time. Surface of both electrodes was investigated for pre and post electrolysis treatment by using SEM-EDX analytical technique. Comparison between both of the electrode configuration exhibits that more metals were accumulated on carbon integrated electrode surfaces for both anode and cathode, and more heavy metals were detected on the cathode. The atomic percentage of metals distributed on the cathode conventional electrode surface consist of Al (94.62%), Zn (1.19%), Mn (0.73%), Fe (2.81%) and Cu (0.64%), while on the anode contained O (12.08%), Al (87.63%) and Zn (0.29%). Meanwhile, cathode surface of integrated electrode was accumulated with more metals; O (75.40%), Al (21.06%), Zn (0.45%), Mn (0.22), Fe (0.29%), Cu (0.84%), Pb (0.47%), Na (0.94%), Cr (0.08%), Ni (0.02%) and Ag (0.22%), while on anode contain Al (3.48%), Fe (0.49 %), C (95.77%), and Pb (0.26%). According to this experiment, it was found that integrated carbon-aluminium electrodes have a great potential to accumulate more heavy metal species from polluted water compare to the conventional aluminium electrode. Here, heavy metal accumulation process obviously very significant on the cathode surface.

  9. Integrating data to acquire new knowledge: Three modes of integration in plant science.

    Science.gov (United States)

    Leonelli, Sabina

    2013-12-01

    This paper discusses what it means and what it takes to integrate data in order to acquire new knowledge about biological entities and processes. Maureen O'Malley and Orkun Soyer have pointed to the scientific work involved in data integration as important and distinct from the work required by other forms of integration, such as methodological and explanatory integration, which have been more successful in captivating the attention of philosophers of science. Here I explore what data integration involves in more detail and with a focus on the role of data-sharing tools, like online databases, in facilitating this process; and I point to the philosophical implications of focusing on data as a unit of analysis. I then analyse three cases of data integration in the field of plant science, each of which highlights a different mode of integration: (1) inter-level integration, which involves data documenting different features of the same species, aims to acquire an interdisciplinary understanding of organisms as complex wholes and is exemplified by research on Arabidopsis thaliana; (2) cross-species integration, which involves data acquired on different species, aims to understand plant biology in all its different manifestations and is exemplified by research on Miscanthus giganteus; and (3) translational integration, which involves data acquired from sources within as well as outside academia, aims at the provision of interventions to improve human health (e.g. by sustaining the environment in which humans thrive) and is exemplified by research on Phytophtora ramorum. Recognising the differences between these efforts sheds light on the dynamics and diverse outcomes of data dissemination and integrative research; and the relations between the social and institutional roles of science, the development of data-sharing infrastructures and the production of scientific knowledge. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Integration of Photovoltaic Plants and Supercapacitors in Tramway Power Systems

    Directory of Open Access Journals (Sweden)

    Flavio Ciccarelli

    2018-02-01

    Full Text Available The growing interest in the use of energy storage systems to improve the performance of tramways has prompted the development of control techniques and optimal storage devices, displacement, and sizing to obtain the maximum profit and reduce the total installation cost. Recently, the rapid diffusion of renewable energy generation from photovoltaic panels has also created a large interest in coupling renewable energy and storage units. This study analyzed the integration of a photovoltaic power plant, supercapacitor energy storage system, and railway power system. Random optimization was used to verify the feasibility of this integration in a real tramway electric system operating in the city of Naples, and the benefits and total cost of this integration were evaluated.

  11. Cost benefit analysis of power plant database integration

    International Nuclear Information System (INIS)

    Wilber, B.E.; Cimento, A.; Stuart, R.

    1988-01-01

    A cost benefit analysis of plant wide data integration allows utility management to evaluate integration and automation benefits from an economic perspective. With this evaluation, the utility can determine both the quantitative and qualitative savings that can be expected from data integration. The cost benefit analysis is then a planning tool which helps the utility to develop a focused long term implementation strategy that will yield significant near term benefits. This paper presents a flexible cost benefit analysis methodology which is both simple to use and yields accurate, verifiable results. Included in this paper is a list of parameters to consider, a procedure for performing the cost savings analysis, and samples of this procedure when applied to a utility. A case study is presented involving a specific utility where this procedure was applied. Their uses of the cost-benefit analysis are also described

  12. Thermodynamic and economic analysis on geothermal integrated combined-cycle power plants

    International Nuclear Information System (INIS)

    Bettocchi, R.; Cantore, G.; Negri di Montenegro, G.; Gadda, E.

    1992-01-01

    This paper considers geothermal integrated power plants obtained matching a geothermal plant with, a two pressure level combined plant. The purpose of the paper is the evaluation of thermodynamic and economic aspects on geothermal integrated combined-cycle power plant and a comparison with conventional solutions. The results show that the integrated combined plant power is greater than the sum of combined cycle and geothermal plant powers considered separately and that the integrated plant can offer economic benefits reaching the 16% of the total capital required

  13. Robust electrochemical analysis of As(III) integrating with interference tests: A case study in groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhong-Gang [Nanomaterials and Environmental Detection Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031 (China); Department of Chemistry, University of Science and Technology of China, Hefei 230026 (China); Chen, Xing; Liu, Jin-Huai [Nanomaterials and Environmental Detection Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031 (China); Huang, Xing-Jiu, E-mail: xingjiuhuang@iim.ac.cn [Nanomaterials and Environmental Detection Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031 (China); Department of Chemistry, University of Science and Technology of China, Hefei 230026 (China)

    2014-08-15

    Graphical abstract: - Highlights: • Robust determination of As(III) in Togtoh water samples has been demonstrated. • The results were comparable to that obtained by ICP–AES. • No obvious interference was observed after a series of interference tests. • Robust stability was obtained in long-term measurements. - Abstract: In Togtoh region of Inner Mongolia, northern China, groundwater encountered high concentrations As contamination (greater than 50 μg L{sup −1}) causes an increasing concern. This work demonstrates an electrochemical protocol for robust (efficient and accurate) determination of As(III) in Togtoh water samples using Au microwire electrode without the need of pretreatment or clean-up steps. Considering the complicated conditions of Togtoh water, the efficiency of Au microwire electrode was systematically evaluated by a series of interference tests, stability and reproducibility measurements. No obvious interference on the determination of As(III) was observed. Especially, the influence of humic acid (HA) was intensively investigated. Electrode stability was also observed with long-term measurements (70 days) in Togtoh water solution and under different temperatures (0–35 °C). Excellent reproducibility (RSD:1.28%) was observed from different batches of Au microwire electrodes. The results obtained at Au microwire electrode were comparable to that obtained by inductively coupled plasma atomic emission spectroscopy (ICP–AES), indicating a good accuracy. These evaluations (efficiency, robustness, and accuracy) demonstrated that the Au microwire electrode was able to determine As(III) in application to real environmental samples.

  14. Integrated Plant Safety Assessment, Systematic Evaluation Program, Palisades Plant (Docket No. 50-255)

    International Nuclear Information System (INIS)

    1983-11-01

    This report documents the review completed under the SEP for those issues that required refined engineering evaluations or the continuation of ongoing evaluations after the Final IPSAR for the Palisades Plant was issued. The review has provided for (1) an assessment of the significance of differences between current technical positions on selected safety issues and those that existed when the Palisades Plant was licensed, (2) a basis for deciding on how these differences should be resolved in an integrated plant review, and (3) a documented evaluation of plant safety when the supplement to the Final IPSAR and the Safety Evaluation Report for converting the license from a provisional to a full-term license have been issued. The Final IPSAR and its supplement will form part of the bases for considering the conversion of the provisional operating license to a full-term operating license

  15. Analysis of silicon-based integrated photovoltaic-electrochemical hydrogen generation system under varying temperature and illumination

    Institute of Scientific and Technical Information of China (English)

    Vishwa Bhatt; Brijesh Tripathi; Pankaj Yadav; Manoj Kumar

    2017-01-01

    Last decade witnessed tremendous research and development in the area of photo-electrolytic hydrogen generation using chemically stable nanostructured photo-cathode/anode materials.Due to intimately coupled charge separation and photo-catalytic processes,it is very difficult to optimize individual components of such system leading to a very low demonstrated solar-to-fuel efficiency (SFE) of less than 1%.Recently there has been growing interest in an integrated photovoltaic-electrochemical (PV-EC) system based on GaAs solar cells with the demonstrated SFE of 24.5% under concentrated illumination condition.But a high cost of GaAs based solar cells and recent price drop of poly-crystalline silicon (pc-Si) solar cells motivated researchers to explore silicon based integrated PV-EC system.In this paper a theoretical framework is introduced to model silicon-based integrated PV-EC device.The theoretical framework is used to analyze the coupling and kinetic losses of a silicon solar cell based integrated PV-EC water splitting system under varying temperature and illumination.The kinetic loss occurs in the range of 19.1%-27.9% and coupling loss takes place in the range of 5.45%-6.74% with respect to varying illumination in the range of 20-100 mW/cm2.Similarly,the effect of varying temperature has severe impact on the performance of the system,wherein the coupling loss occurs in the range of 0.84%-21.51% for the temperature variation from 25 to 50 ℃.

  16. Integrated information system for analysis of nuclear power plants

    International Nuclear Information System (INIS)

    Galperin, A.

    1994-01-01

    Performing complicated engineering analyses of a nuclear power plant requires storage and manipulation of a large amount of information, both data and knowledge. This information is characterized by its multidisciplinary nature, complexity, and diversity. The problems caused by inefficient and lengthy manual operations involving the data flow management within the frame-work of the safety-related analysis of a power plant can be solved by applying the computer aided engineering principles. These principles are the basis of the design of an integrated information storage system (IRIS). The basic idea is to create a computerized environment, which includes both database and functional capabilities. Consideration and analysis of the data types and required data manipulation capabilities as well as operational requirements, resulted in the choice of an object-oriented data-base management system (OODBMS) as a development platform for solving the software engineering problems. Several advantages of OODBMSs over conventional relations database systems were found of crucial importance, especially providing the necessary flexibility for different data types and extensibility potential. A detailed design of a data model is produced for the plant technical data and for the storage of analysis results. The overall system architecture was designed to assure the feasibility of integrating database capabilities with procedures and functions written in conventional algorithmic programming languages

  17. Plant Reliability - an Integrated System for Management (PR-ISM)

    International Nuclear Information System (INIS)

    Aukeman, M.C.; Leininger, E.G.; Carr, P.

    1984-01-01

    The Toledo Edison Company, located in Toledo, Ohio, United States of America, recently implemented a comprehensive maintenance management information system for the Davis-Besse Nuclear Power Station. The system is called PR-ISM, meaning Plant Reliability - An Integrated System for Management. PR-ISM provides the tools needed by station management to effectively plan and control maintenance and other plant activities. The PR-ISM system as it exists today consists of four integrated computer applications: equipment data base maintenance, maintenance work order control, administrative activity tracking, and technical specification compliance. PR-ISM is designed as an integrated on-line system and incorporates strong human factors features. PR-ISM provides each responsible person information to do his job on a daily basis and to look ahead towards future events. It goes beyond 'after the fact' reporting. In this respect, PR-ISM is an 'interactive' control system which: captures work requirements and commitments as they are identified, provides accurate and up-to-date status immediately to those who need it, simplifies paperwork and reduces the associated time delays, provides the information base for work management and reliability analysis, and improves productivity by replacing clerical tasks and consolidating maintenance activities. The functional and technical features of PR-ISM, the experience of Toledo Edison during the first year of operation, and the factors which led to the success of the development project are highlighted. (author)

  18. Maintenance management for nuclear power plant 'Integrated valve maintenance'

    International Nuclear Information System (INIS)

    Gerner, P.; Zanner, G.

    2001-01-01

    The deregulation of Europe's power market does force many utilities, and especially nuclear power plant operators, to introduce extensive cost-cutting measures in order to be able to compete within this new environment. The optimization of plant outages provides considerable potential for raising plant availability but can also lower operating costs by reducing e.g. expenditure on maintenance. Siemens Nuclear Power GmbH, in cooperation with plant operators, is currently implementing new and improved service concepts which can have a major effect on the way in which maintenance will be performed in the future. Innovative service packages for maintenance in nuclear power plants are available which can be used to perform a time- and cost-effective maintenance. The concepts encompass optimization of the overall sequence from planning in advance to the individual measures including reduction of the scope of maintenance activities, identification of cost cutting potential and bundling of maintenance activities. The main features of these maintenance activities are illustrated here using the examples of outage planning and integrated valve maintenance. In nuclear power plants approx. 5000 valves are periodically preventively, condition-based or breakdown-based maintained. Because of this large number of valves to be maintained a high potential of improvements and cost reductions can be achieved by performing an optimized, cost-effective maintenance based on innovative methods and tools. Siemens Nuclear Power GmbH has developed and qualified such tools which allow to reduce service costs while maintaining high standards of safety and availability. By changing from preventive to predictive (condition-based) maintenance - the number of valves to be maintained may be reduced considerably. The predictive maintenance is based on the Siemens Nuclear Power GmbH diagnostic and evaluation method (ADAM). ADAM is used to monitor the operability of valves by analytical verification of

  19. Phototropic solar tracking in sunflower plants: an integrative perspective

    Science.gov (United States)

    Kutschera, Ulrich; Briggs, Winslow R.

    2016-01-01

    Background One of the best-known plant movements, phototropic solar tracking in sunflower (Helianthus annuus), has not yet been fully characterized. Two questions are still a matter of debate. (1) Is the adaptive significance solely an optimization of photosynthesis via the exposure of the leaves to the sun? (2) Is shade avoidance involved in this process? In this study, these concepts are discussed from a historical perspective and novel insights are provided. Scope and Methods Results from the primary literature on heliotropic growth movements led to the conclusion that these responses cease before anthesis, so that the flowering heads point to the East. Based on observations on 10-week-old plants, the diurnal East–West oscillations of the upper fifth of the growing stem and leaves in relation to the position of the sun (inclusive of nocturnal re-orientation) were documented, and photon fluence rates on the leaf surfaces on clear, cloudy and rainy days were determined. In addition, the light–response curve of net CO2 assimilation was determined on the upper leaves of the same batch of plants, and evidence for the occurrence of shade-avoidance responses in growing sunflower plants is summarized. Conclusions. Only elongating, vegetative sunflower shoots and the upper leaves perform phototropic solar tracking. Photon fluence response and CO2 assimilation measurements cast doubt on the ‘photosynthesis-optimization hypothesis’ as the sole explanation for the evolution of these plant movements. We suggest that the shade-avoidance response, which maximizes light-driven CO2 assimilation, plays a major role in solar tracking populations of competing sunflower plants, and an integrative scheme of these growth movements is provided. PMID:26420201

  20. One-step electrochemical composite polymerization of polypyrrole integrated with functionalized graphene/carbon nanotubes nanostructured composite film for electrochemical capacitors

    International Nuclear Information System (INIS)

    Ding Bing; Lu Xiangjun; Yuan Changzhou; Yang Sudong; Han Yongqin; Zhang Xiaogang; Che Qian

    2012-01-01

    Graphical abstract: A novel one-step electrochemical co-deposition strategy was first proposed to prepare unique polypyrrole/reduced graphene oxide/carbon nanotubes (PPy/F-RGO/CNTs) ternary composites, where F-RGO, CNTs, and PPy were electrodeposited simultaneously to construct a three-dimensional (3-D) highly porous film electrode. Highlights: ► Isolated, water-soluble graphene was obtained through benzenesulfonic functionalization. ► PPy/F-RGO/CNTs ternary composite film was prepared via one-step electrochemical co-deposition route. ► PPy/F-RGO/CNTs film shows 3-D highly porous nanostructure and high electrical conductivity. ► PPy/F-RGO/CNTs film exhibits high capacitance, good high-rate performance with a remarkable cycling stability. - Abstract: A novel one-step electrochemical composite polymerization strategy was first proposed to prepare unique polypyrrole/reduced graphene oxide/carbon nanotubes (PPy/F-RGO/CNTs) ternary composites, where F-RGO, CNTs, and PPy were electrodeposited simultaneously to construct a three-dimensional (3-D) highly porous film electrode. Such ternary composite film electrode exhibits a high specific capacitance of 300 F g −1 at 1 A g −1 as well as a remarkable cycling stability at high rates, which is related to its unique nanostructure and high electrical conductivity. F-RGO and CNTs act as an electron-transporting backbone of a 3-D porous nanostructure, leaving adequate working space for facile electrolyte penetration and better faradaic utilization of the electro-active PPy. Furthermore, the straightforward approach proposed here can be readily extended to prepare other composite film electrodes with good electrochemical performance for energy storage.

  1. The Plant Genome Integrative Explorer Resource: PlantGenIE.org.

    Science.gov (United States)

    Sundell, David; Mannapperuma, Chanaka; Netotea, Sergiu; Delhomme, Nicolas; Lin, Yao-Cheng; Sjödin, Andreas; Van de Peer, Yves; Jansson, Stefan; Hvidsten, Torgeir R; Street, Nathaniel R

    2015-12-01

    Accessing and exploring large-scale genomics data sets remains a significant challenge to researchers without specialist bioinformatics training. We present the integrated PlantGenIE.org platform for exploration of Populus, conifer and Arabidopsis genomics data, which includes expression networks and associated visualization tools. Standard features of a model organism database are provided, including genome browsers, gene list annotation, Blast homology searches and gene information pages. Community annotation updating is supported via integration of WebApollo. We have produced an RNA-sequencing (RNA-Seq) expression atlas for Populus tremula and have integrated these data within the expression tools. An updated version of the ComPlEx resource for performing comparative plant expression analyses of gene coexpression network conservation between species has also been integrated. The PlantGenIE.org platform provides intuitive access to large-scale and genome-wide genomics data from model forest tree species, facilitating both community contributions to annotation improvement and tools supporting use of the included data resources to inform biological insight. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  2. Plant integration of MITICA and SPIDER experiments with auxiliary plants and buildings on PRIMA site

    Energy Technology Data Exchange (ETDEWEB)

    Fellin, Francesco, E-mail: francesco.fellin@igi.cnr.it; Boldrin, Marco; Zaccaria, Pierluigi; Agostinetti, Piero; Battistella, Manuela; Bigi, Marco; Palma, Samuele Dal Bello Mauro Dalla; Fiorentin, Aldo; Luchetta, Adriano; Maistrello, Alberto; Marcuzzi, Diego; Ocello, Edoardo; Pasqualotto, Roberto; Pavei, Mauro; Pomaro, Nicola; Rizzolo, Andrea; Toigo, Vanni; Valente, Matteo; Zanotto, Loris; Calore, Luca; and others

    2015-10-15

    Highlights: • Focus on plant integration work supporting the realization of SPIDER and MITICA fusion experiments hosted in PRIMA buildings complex in Padova, Italy. • Huge effort of coordination and integration among many stakeholders, taking into account several constrains coming from experiments requirements (on-going) and precise time schedule and budget on buildings construction. • The paper also deals of interfaces management, coordination and integration of many competences, problems solving to find best solution also considering other aspects like safety and maintenance. - Abstract: This paper presents a description of the PRIMA (Padova Research on ITER Megavolt Accelerator) Plant Integration work, aimed at the construction of PRIMA Buildings, which will host two nuclear fusion test facilities named SPIDER and MITICA, finalized to test and optimize the neutral beam injectors for ITER experiment. These activities are very complex: inputs coming from the experiments design are changing time to time, while the buildings construction shall fulfill precise time schedule and budget. Moreover the decision process is often very long due to the high number of stakeholders (RFX, IO, third parties, suppliers, domestic agencies from different countries). The huge effort includes: forecasting what will be necessary for the integration of many experimental plants; collecting requirements and translating into inputs; interfaces management; coordination meetings with hundreds of people with various and different competences in construction and operation of fusion facilities, thermomechanics, electrical and control, buildings design and construction (civil plants plus architectural and structural aspects), safety, maintenance and management. The paper describes these activities and also the tools created to check and to validate the building design, to manage the interfaces and the organization put in place to achieve the required targets.

  3. Plant integration of MITICA and SPIDER experiments with auxiliary plants and buildings on PRIMA site

    International Nuclear Information System (INIS)

    Fellin, Francesco; Boldrin, Marco; Zaccaria, Pierluigi; Agostinetti, Piero; Battistella, Manuela; Bigi, Marco; Palma, Samuele Dal Bello Mauro Dalla; Fiorentin, Aldo; Luchetta, Adriano; Maistrello, Alberto; Marcuzzi, Diego; Ocello, Edoardo; Pasqualotto, Roberto; Pavei, Mauro; Pomaro, Nicola; Rizzolo, Andrea; Toigo, Vanni; Valente, Matteo; Zanotto, Loris; Calore, Luca

    2015-01-01

    Highlights: • Focus on plant integration work supporting the realization of SPIDER and MITICA fusion experiments hosted in PRIMA buildings complex in Padova, Italy. • Huge effort of coordination and integration among many stakeholders, taking into account several constrains coming from experiments requirements (on-going) and precise time schedule and budget on buildings construction. • The paper also deals of interfaces management, coordination and integration of many competences, problems solving to find best solution also considering other aspects like safety and maintenance. - Abstract: This paper presents a description of the PRIMA (Padova Research on ITER Megavolt Accelerator) Plant Integration work, aimed at the construction of PRIMA Buildings, which will host two nuclear fusion test facilities named SPIDER and MITICA, finalized to test and optimize the neutral beam injectors for ITER experiment. These activities are very complex: inputs coming from the experiments design are changing time to time, while the buildings construction shall fulfill precise time schedule and budget. Moreover the decision process is often very long due to the high number of stakeholders (RFX, IO, third parties, suppliers, domestic agencies from different countries). The huge effort includes: forecasting what will be necessary for the integration of many experimental plants; collecting requirements and translating into inputs; interfaces management; coordination meetings with hundreds of people with various and different competences in construction and operation of fusion facilities, thermomechanics, electrical and control, buildings design and construction (civil plants plus architectural and structural aspects), safety, maintenance and management. The paper describes these activities and also the tools created to check and to validate the building design, to manage the interfaces and the organization put in place to achieve the required targets.

  4. Data integration for plant genomics--exemplars from the integration of Arabidopsis thaliana databases.

    Science.gov (United States)

    Lysenko, Artem; Lysenko, Atem; Hindle, Matthew Morritt; Taubert, Jan; Saqi, Mansoor; Rawlings, Christopher John

    2009-11-01

    The development of a systems based approach to problems in plant sciences requires integration of existing information resources. However, the available information is currently often incomplete and dispersed across many sources and the syntactic and semantic heterogeneity of the data is a challenge for integration. In this article, we discuss strategies for data integration and we use a graph based integration method (Ondex) to illustrate some of these challenges with reference to two example problems concerning integration of (i) metabolic pathway and (ii) protein interaction data for Arabidopsis thaliana. We quantify the degree of overlap for three commonly used pathway and protein interaction information sources. For pathways, we find that the AraCyc database contains the widest coverage of enzyme reactions and for protein interactions we find that the IntAct database provides the largest unique contribution to the integrated dataset. For both examples, however, we observe a relatively small amount of data common to all three sources. Analysis and visual exploration of the integrated networks was used to identify a number of practical issues relating to the interpretation of these datasets. We demonstrate the utility of these approaches to the analysis of groups of coexpressed genes from an individual microarray experiment, in the context of pathway information and for the combination of coexpression data with an integrated protein interaction network.

  5. Integration of energy and environmental systems in wastewater treatment plants

    Energy Technology Data Exchange (ETDEWEB)

    Long, Suzanna [Department of Engineering Management and Systems Engineering, 600 W, 14th Street, 215 EMGT Building, Rolla, MO-65401, 573-341-7621 (United States); Cudney, Elizabeth [Department of Engineering Management and Systems Engineering, 600 W, 14th Street, 217 EMGT Building, Rolla, MO-65401, 573-341-7931 (United States)

    2012-07-01

    Most wastewater treatment facilities were built when energy costs were not a concern; however, increasing energy demand, changing climatic conditions, and constrained energy supplies have resulted in the need to apply more energy-conscious choices in the maintenance or upgrade of existing wastewater treatment facilities. This research develops an integrated energy and environmental management systems model that creates a holistic view of both approaches and maps linkages capable of meeting high-performing energy management while meeting environmental standards. The model has been validated through a case study on the Rolla, Missouri Southeast Wastewater Treatment Plant. Results from plant performance data provide guidance to improve operational techniques. The significant factors contributing to both energy and environmental systems are identified and balanced against considerations of cost.

  6. Integrity assessment of stationary blade ring for nuclear power plant

    International Nuclear Information System (INIS)

    Park, Jung Yong; Chung, Yong Keun; Park, Jong Jin; Kang, Yong Ho

    2004-01-01

    The inner side between HP stationary blades in no.1 turbine of nuclear power plant A is damaged by the FAC(Flow Assisted Corrosion) which is exposed to moisture. For many years the inner side is repaired by welding the damaged part, however, the FAC continues to deteriorate the original material of the welded blade ring. In this study, we have two stages to verify the integrity of stationary blade ring in nuclear power plant A. In the stage I, replication of blade ring is performed to survey the microstructure of blade ring. In the stage II, the stress analysis of blade ring is performed to verify the structural safety of blade ring. Throughout the two stages analysis of blade ring, the stationary blade ring had remained undamaged

  7. Buried piping integrity management at fossil power plants

    Energy Technology Data Exchange (ETDEWEB)

    Shulder, Stephen J. [Structural Integrity Associates, Annapolis, MD (United States); Biagiotti, Steve [Structural Integrity Associates, Inc., Centennial, CO (United States)

    2011-07-15

    In the last decade several industries (oil and gas pipelines, nuclear power, and municipal water) have experienced an increase in the frequency and public scrutiny of leaks and failures associated with buried piping and tank assets. In several industries, regulatory pressure has resulted in the mandated need for databases and inspection programs to document and ensure the continued integrity of these assets. Power plants are being extended beyond their design life and the condition of below grade assets is essential toward continued operation. This article shares the latest advances in managing design, operation, process, inspection, and historical data for power plant piping. Applications have also been developed to help with risk prioritization, inspection method selection, managing cathodic protection data for external corrosion control, and a wide variety of other information. This data can be managed in a GIS environment allowing two and three dimensional (2D and 3D) access to the database information. (orig.)

  8. Computer integrated construction at AB building in reprocessing plant

    International Nuclear Information System (INIS)

    Takami, Masahiro; Azuchi, Takehiro; Sekiguchi, Kenji

    1999-01-01

    JNFL (Japan Nuclear Fuel Limited) is now processing with construction of the spent nuclear fuel reprocessing plant at Rokkasho Village in Aomori Prefecture, which is coming near to the busiest period of construction. Now we are trying to complete the civil work of AB Building and KA Building in a very short construction term by applying CIC (Computer Integrated Construction) concept, in spite of its hard construction conditions, such as the massive and complicated building structure, interferences with M and E (Mechanical and Electrical) work, severe winter weather, remote site location, etc. The key technologies of CIC are three-dimensional CAD, information network, and prefabrication and mechanization of site work. (author)

  9. Hypertext-based integration for nuclear plant maintenance and operations

    International Nuclear Information System (INIS)

    Tsoukalas, L.H.; Upadhyaya, B.R.

    1991-01-01

    A methodology is presented that uses fuzzy graphs in the emerging paradigm of hypertext for the purpose of integrating data, information and multifaceted knowledge resources abounding in power plant operations and maintenance. A hypertext system is viewed as a set of nodes and links where with each link we associate membership functions embodying context-dependent criteria for navigating large information spaces. A general framework for navigation is outlined and graph-theory navigational tools are developed. A numerical example and a HyperCard-based prototype for monitoring special material in the MHTGR-NPR are included. 10 refs., 12 figs

  10. Clinical validation of integrated nucleic acid and protein detection on an electrochemical biosensor array for urinary tract infection diagnosis.

    Directory of Open Access Journals (Sweden)

    Ruchika Mohan

    Full Text Available BACKGROUND: Urinary tract infection (UTI is a common infection that poses a substantial healthcare burden, yet its definitive diagnosis can be challenging. There is a need for a rapid, sensitive and reliable analytical method that could allow early detection of UTI and reduce unnecessary antibiotics. Pathogen identification along with quantitative detection of lactoferrin, a measure of pyuria, may provide useful information towards the overall diagnosis of UTI. Here, we report an integrated biosensor platform capable of simultaneous pathogen identification and detection of urinary biomarker that could aid the effectiveness of the treatment and clinical management. METHODOLOGY/PRINCIPAL FINDINGS: The integrated pathogen 16S rRNA and host lactoferrin detection using the biosensor array was performed on 113 clinical urine samples collected from patients at risk for complicated UTI. For pathogen detection, the biosensor used sandwich hybridization of capture and detector oligonucleotides to the target analyte, bacterial 16S rRNA. For detection of the protein biomarker, the biosensor used an analogous electrochemical sandwich assay based on capture and detector antibodies. For this assay, a set of oligonucleotide probes optimized for hybridization at 37°C to facilitate integration with the immunoassay was developed. This probe set targeted common uropathogens including E. coli, P. mirabilis, P. aeruginosa and Enterococcus spp. as well as less common uropathogens including Serratia, Providencia, Morganella and Staphylococcus spp. The biosensor assay for pathogen detection had a specificity of 97% and a sensitivity of 89%. A significant correlation was found between LTF concentration measured by the biosensor and WBC and leukocyte esterase (p<0.001 for both. CONCLUSION/SIGNIFICANCE: We successfully demonstrate simultaneous detection of nucleic acid and host immune marker on a single biosensor array in clinical samples. This platform can be used for

  11. Sensitive Electrochemical Determination of Gallic Acid: Application in Estimation of Total Polyphenols in Plant Samples

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Sheikh-Mohseni

    2016-12-01

    Full Text Available A modified electrode was prepared by modification of the carbon paste electrode (CPE with graphene nano-sheets. The fabricated modified electrode exhibited an electrocatalytic activity toward gallic acid (GA oxidation because of good conductivity, low electron transfer resistance and catalytic effect. The graphene modified CPE had a lower overvoltage and enhanced electrical current respect to the bare CPE for the oxidation of GA. The oxidation potential of GA decreased more than 210 mV by the modified electrode. The modified electrode responded to the GA in the concentration range of 3.0 × 10-5-1.5 × 10-4 M with high sensitivity by the technique of differential pulse voltammetry. Also, detection limit of 1.1 × 10-7 M was obtained by this modified electrode for GA. This electrode was used for the successful determination of GA in plant samples. Therefore, the content of total polyphenols in plant samples can be determined by the proposed modified electrode based on the concentration of GA in the sample.

  12. An electrochemical approach to monitor pH change in agar media during plant tissue culture.

    Science.gov (United States)

    Wang, Min; Ha, Yang

    2007-05-15

    In this work, metal oxide microelectrodes were developed to monitor pH change in agar media during plant tissue culture. An antimony wire was produced by a new approach "capillary melt method". The surface of the obtained antimony wire was oxidized in a potassium nitrate melt to fabricate an antimony oxide film for pH sensing. Characterization results show that the oxide layer grown on the wire surface consists of Sb(2)O(3) crystal phase. The sensing response, open-circuit potential, of the electrode has a good linear relationship (R(2)=1.00) with pH value of the test solution. Adding organic compounds into the test media would not affect the linear relationship, although the slope of the lines varied with different ingredients added. The antimony oxide electrodes were employed to continuously monitor pH change of agar culture media during a 2-week plant tissue culture of Dendrobium candidum. The antimony oxide electrode fabricated this way has the advantages of low cost, easy fabrication, fast response, and almost no contamination introduced into the system. It would be suitable for in situ and continuous pH measurement in many bio applications.

  13. Integrating availability and maintenance objectives in plant design. EDF approach

    International Nuclear Information System (INIS)

    Degrave, Claude; Martin-Onraet, Michel

    1995-01-01

    Energy self sufficiency is a major strategic necessity for France. Regarding the fossil fuels power, competitiveness of nuclear energy is a key goal for Electricite de France. Accordingly, for future nuclear power plants to remain competitive, it is necessary to maintain the kWh production costs of the future units at a level close to those of the latest units under construction (N4 series), while raising the safety level. EDF therefore decided to implement an analytical and systematic process for study of the new projects to optimize the design by integration of the maintenance (durations, costs), availability and radiation exposure goals from the related operating experience. This approach, CIDEM (French acronym for Design Integrating Availability, operating Experience and Maintenance) aims at a single goal: to minimize the kWh production cost incorporating investment, operation and fuel costs, allowing for the operating experience from French and foreign units. The implementation of the CIDEM process constitutes for EDF a new approach to the study of the new Nuclear Power Plant projects. The competitivity of nuclear energy greatly depends on the success of such an approach. The studies conducted in the availability field have already highlighted a number of critical points and have made it possible to define the corresponding goal allocations and to establish a first series of structuring specifications for the project. (J.P.N.)

  14. Integrated management for aging of Atucha Nuclear Power Plant

    International Nuclear Information System (INIS)

    Ranalli, J.M.; Marchena, M.H.; Sabransky, M.; Fonseca, M.; Santich, J.; Pedernera, P.

    2012-01-01

    Atucha NPP is a two PHWR unit site located in Lima, Province of Buenos Aires, 120 km north of Buenos Aires, Argentina.. With the start-up of Atucha II and aiming to integrate the Ageing Management of the plants, the Utility (Nucleolectrica Argentina Sociedad Anonima - NASA) created an Ageing Management Department to cope with all ageing issues of both Atucha I and II. In this project both organization has formed a joint working group. The role of CNEA is providing technical support to the plant in the development of procedures a methodological framework for the Ageing Management Program of Atucha NPP. The main documents that have being issued so far are: . An Ageing Management Manual, including standard definition of Materials, Ageing Related Degradation Mechanisms, Operation Environments customized for Atucha NPP. . Walk down procedures and checklists aimed to systematize data collection during outages. . Procedures for performing Ageing Management Reviews and Maintenance Reviews for passive and active components. . Condition Assessments of several safety related systems. . Condition assessment of electrical components. In the present work a summary of the activities, documental structure and first outputs of the Integrated Ageing Management Program of Atucha NPP is presented (author)

  15. Integrated plant life management (PLiM)-the IAEA contribution

    International Nuclear Information System (INIS)

    Kang, K.-S.; Clark, C.R.; Omoto, A.; )

    2005-01-01

    For the past couple of decades there has been a change of emphasis in the world nuclear power from that of building new Nuclear Power Plants (NPP) to that of taking measures to optimize the life cycle of operational plants. National approaches in many countries showed an increase of interest in Plant Life Management (PLiM), both in terms of plant service life assurance and in optimizing the service or operational life of NPP. A strong convergence of views is emerging from different National approaches, particularly in the area of the economic aspects of NPP operation and in the evolution in the scope of NPP PLIM. The latter can directly affect the cost of electricity from NPP in an increasingly competitive environment. The safety considerations of a NPP are paramount and those requirements have to be met to obtain and to extend/renew the operating license. To achieve the goal of the long term safe, economic and reliable operation of the plant an integrated Plant Life Management Programme (PLiM) is necessary. Some countries already have advanced PLiM Programmes while others still have none. The PLiM objective is to identify all that factors and requirements for the overall plant life cycle. The optimization of these requirements would allow for the minimum period of the investment return and maximum of the revenue from the sell of the produced electricity. Recognizing the importance of this issue and in response to the requests of the Member States the IAEA Division of Nuclear Power implements the Sub-programme on 'Engineering and Management Support for Competitive Nuclear Power'. Four projects within this sub-programme deal with different aspects of the NPP life cycle management with the aim to increase the capabilities of interested Member States in implementing and maintenance of the competitive and sustainable nuclear power. Although all four projects contain certain issues of PLiM there is one specific project on guidance on engineering and management practices

  16. Integrated circuit-based electrochemical sensor for spatially resolved detection of redox-active metabolites in biofilms.

    Science.gov (United States)

    Bellin, Daniel L; Sakhtah, Hassan; Rosenstein, Jacob K; Levine, Peter M; Thimot, Jordan; Emmett, Kevin; Dietrich, Lars E P; Shepard, Kenneth L

    2014-01-01

    Despite advances in monitoring spatiotemporal expression patterns of genes and proteins with fluorescent probes, direct detection of metabolites and small molecules remains challenging. A technique for spatially resolved detection of small molecules would benefit the study of redox-active metabolites that are produced by microbial biofilms and can affect their development. Here we present an integrated circuit-based electrochemical sensing platform featuring an array of working electrodes and parallel potentiostat channels. 'Images' over a 3.25 × 0.9 mm(2) area can be captured with a diffusion-limited spatial resolution of 750 μm. We demonstrate that square wave voltammetry can be used to detect, identify and quantify (for concentrations as low as 2.6 μM) four distinct redox-active metabolites called phenazines. We characterize phenazine production in both wild-type and mutant Pseudomonas aeruginosa PA14 colony biofilms, and find correlations with fluorescent reporter imaging of phenazine biosynthetic gene expression.

  17. Integrated control algorithms for plant environment in greenhouse

    Science.gov (United States)

    Zhang, Kanyu; Deng, Lujuan; Gong, Youmin; Wang, Shengxue

    2003-09-01

    In this paper a survey of plant environment control in artificial greenhouse was put forward for discussing the future development. Firstly, plant environment control started with the closed loop control of air temperature in greenhouse. With the emergence of higher property computer, the adaptive control algorithm and system identification were integrated into the control system. As adaptation control is more depending on observation of variables by sensors and yet many variables are unobservable or difficult to observe, especially for observation of crop growth status, so model-based control algorithm were developed. In order to evade modeling difficulty, one method is predigesting the models and the other method is utilizing fuzzy logic and neural network technology that realize the models by the black box and gray box theory. Studies on control method of plant environment in greenhouse by means of expert system (ES) and artificial intelligence (AI) have been initiated and developed. Nowadays, the research of greenhouse environment control focus on energy saving, optimal economic profit, enviornment protection and continualy develop.

  18. An integrated platform for gas-diffusion separation and electrochemical determination of ethanol on fermentation broths

    Energy Technology Data Exchange (ETDEWEB)

    Giordano, Gabriela Furlan [Microfabrication Laboratory, Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP 13083-970 (Brazil); Department of Analytical Chemistry, Institute of Chemistry – UNICAMP, Campinas, SP 13083-970 (Brazil); National Institute of Science and Technology of Bioanalytics, Institute of Chemistry – UNICAMP, Campinas, SP 13083-970 (Brazil); Vieira, Luis Carlos Silveira; Gobbi, Angelo Luiz [Microfabrication Laboratory, Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP 13083-970 (Brazil); Lima, Renato Sousa [Microfabrication Laboratory, Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP 13083-970 (Brazil); Department of Analytical Chemistry, Institute of Chemistry – UNICAMP, Campinas, SP 13083-970 (Brazil); National Institute of Science and Technology of Bioanalytics, Institute of Chemistry – UNICAMP, Campinas, SP 13083-970 (Brazil); Kubota, Lauro Tatsuo, E-mail: kubota@iqm.unicamp.br [Department of Analytical Chemistry, Institute of Chemistry – UNICAMP, Campinas, SP 13083-970 (Brazil); National Institute of Science and Technology of Bioanalytics, Institute of Chemistry – UNICAMP, Campinas, SP 13083-970 (Brazil)

    2015-05-22

    Highlights: • Integrated platform was developed to determine ethanol in fermentation broths. • The designed system integrates gas diffusion separation with voltammetric detection. • Detector relied on Ni(OH){sub 2}-modified electrode stabilized by Co{sup 2+} and Cd{sup 2+} insertion. • Separation was made by PTFE membrane separating sample from electrolyte (receptor). • Despite the sample complexity, accurate tests were achieved by direct interpolation. - Abstract: An integrated platform was developed for point-of-use determination of ethanol in sugar cane fermentation broths. Such analysis is important because ethanol reduces its fuel production efficiency by altering the alcoholic fermentation step when in excess. The custom-designed platform integrates gas diffusion separation with voltammetric detection in a single analysis module. The detector relied on a Ni(OH){sub 2}-modified electrode. It was stabilized by uniformly depositing cobalt and cadmium hydroxides as shown by XPS measurements. Such tests were in accordance with the hypothesis related to stabilization of the Ni(OH){sub 2} structure by insertion of Co{sup 2+} and Cd{sup 2+} ions in this structure. The separation step, in turn, was based on a hydrophobic PTFE membrane, which separates the sample from receptor solution (electrolyte) where the electrodes were placed. Parameters of limit of detection and analytical sensitivity were estimated to be 0.2% v/v and 2.90 μA % (v/v){sup −1}, respectively. Samples of fermentation broth were analyzed by both standard addition method and direct interpolation in saline medium based-analytical curve. In this case, the saline solution exhibited ionic strength similar to those of the samples intended to surpass the tonometry colligative effect of the samples over analyte concentration data by attributing the reduction in quantity of diffused ethanol vapor majorly to the electrolyte. The approach of analytical curve provided rapid, simple and accurate

  19. French nuclear plants PWR vessel integrity assessment and life management

    Energy Technology Data Exchange (ETDEWEB)

    Bezdikian, G. [Electricite de France (EDF), Div. Production Nucleaire, 93 - Saint-Denis (France); Quinot, P. [FRAMATOME, Dept. Bloc Reacteur et Boucles Primaires, 92 - Paris-La-Defence (France); Faidy, C.; Churier-Bossennec, H. [Electricite de France (EDF), Div. Ingenierie et Service, 69 - Villeurbanne (France)

    2001-07-01

    The Reactor Pressure Vessel life management of 56 PWR 3 loop and 4 loop reactors units was engaged by the French Utility EDF (Electricite de France) a few years ago and is yet on going on. This paper will present the work carried out within the framework of justifying why the 34 three loop reactor vessels will remain acceptable for operation for a lifetime of at least 40-years. A summary of the measures will be given. An overall review of actions will be presented describing the French approach, using important existing databases, including studies related to irradiation surveillance monitoring program and end of life fluence assessment. The last results obtained are based on generic integrity analyses for all categories of situations (normal upset emergency and faulted conditions) until the end of lifetime, postulating circumferential an radial kinds of flaw located in the stainless steel cladding or shallow sub-cladding area. The results of structural integrity analyses beginning with elastic computations and completed with three-dimensional finite element elastic plastic computations for envelope cases, are compared with code criteria for operating plants. The objective is to evaluate the margins on different parameters as RTNDT (Reference Nil Ductility Transition Temperature), toughness or crack size, to justify the global fitness for service of all these Reactor Pressure Vessels. The paper introduces EDF's maintenance strategy, related to integrity assessment, for those nuclear power plants under operation, based on NDE in-service inspection of the first thirty millimeters in the thickness of the wall and major surveillance programs of the vessels. (author)

  20. French nuclear plants PWR vessel integrity assessment and life management

    International Nuclear Information System (INIS)

    Bezdikian, G.; Quinot, P.; Faidy, C.; Churier-Bossennec, H.

    2001-01-01

    The Reactor Pressure Vessel life management of 56 PWR 3 loop and 4 loop reactors units was engaged by the French Utility EDF (Electricite de France) a few years ago and is yet on going on. This paper will present the work carried out within the framework of justifying why the 34 three loop reactor vessels will remain acceptable for operation for a lifetime of at least 40-years. A summary of the measures will be given. An overall review of actions will be presented describing the French approach, using important existing databases, including studies related to irradiation surveillance monitoring program and end of life fluence assessment. The last results obtained are based on generic integrity analyses for all categories of situations (normal upset emergency and faulted conditions) until the end of lifetime, postulating circumferential an radial kinds of flaw located in the stainless steel cladding or shallow sub-cladding area. The results of structural integrity analyses beginning with elastic computations and completed with three-dimensional finite element elastic plastic computations for envelope cases, are compared with code criteria for operating plants. The objective is to evaluate the margins on different parameters as RTNDT (Reference Nil Ductility Transition Temperature), toughness or crack size, to justify the global fitness for service of all these Reactor Pressure Vessels. The paper introduces EDF's maintenance strategy, related to integrity assessment, for those nuclear power plants under operation, based on NDE in-service inspection of the first thirty millimeters in the thickness of the wall and major surveillance programs of the vessels. (author)

  1. Nuclear power plant Angra integrated enterprise management system

    International Nuclear Information System (INIS)

    Andrade, Ronaldo Barata de

    2009-01-01

    The characteristics and peculiarities of the Nuclear Power Plant ANGRA 3 enterprise, amongst which its technical complexity, the size of the project and of the supplies of goods and services contracted for for the Brazilian and foreign scopes, the variety of contractors and participants involved in the implementation, associated with the need of integrated management of all the activities of the enterprise, requires the setting of standardized criteria and procedures to be adopted by the enterprise Project Management Team and by all involved ELETRONUCLEAR (ETN) Units, Suppliers and Contractors for Brazilian and foreign goods and services for the execution of the activities related to overall enterprise planning. These criteria and procedures aim at covering the five Project Management Process Groups: Initiating Process Group, Planning Process Group, Execution Process Group, Monitoring and Controlling Process Group and Closing Process Group. For the ANGRA 3 enterprise, ETN developed the Integrated Enterprise Management System - INTEGRA, being the software 'Primavera Enterprise Project Management' a fundamental part of this system. The aim of this paper is to describe the main concepts involving the ANGRA 3 enterprise management, and the integration between the processes, including all disciplines in all phases of the enterprise life cycle, such as: Nuclear and Environmental Licensing, Infrastructure, National and Foreign Engineering, National and Import Supplies, Civil Works, Electromechanical Erection, Commissioning. (author)

  2. Electrochemical Quantification of the Antioxidant Capacity of Medicinal Plants Using Biosensors

    Directory of Open Access Journals (Sweden)

    Erika Rodríguez-Sevilla

    2014-08-01

    Full Text Available The working area of a screen-printed electrode, SPE, was modified with the enzyme tyrosinase (Tyr using different immobilization methods, namely entrapment with water-soluble polyvinyl alcohol (PVA, cross-linking using glutaraldehyde (GA, and cross-linking using GA and human serum albumin (HSA; the resulting electrodes were termed SPE/Tyr/PVA, SPE/Tyr/GA and SPE/Tyr/HSA/GA, respectively. These biosensors were characterized by means of amperometry and EIS techniques. From amperometric evaluations, the apparent Michaelis-Menten constant, Km′, of each biosensor was evaluated while the respective charge transfer resistance, Rct, was assessed from impedance measurements. It was found that the SPE/Tyr/GA had the smallest Km′ (57 ± 7 µM and Rct values. This electrode also displayed both the lowest detection and quantification limits for catechol quantification. Using the SPE/Tyr/GA, the Trolox Equivalent Antioxidant Capacity (TEAC was determined from infusions prepared with “mirto” (Salvia microphylla, “hHierba dulce” (Lippia dulcis and “salve real” (Lippia alba, medicinal plants commonly used in Mexico.

  3. Electrochemical Quantification of the Antioxidant Capacity of Medicinal Plants Using Biosensors

    Science.gov (United States)

    Rodríguez-Sevilla, Erika; Ramírez-Silva, María-Teresa; Romero-Romo, Mario; Ibarra-Escutia, Pedro; Palomar-Pardavé, Manuel

    2014-01-01

    The working area of a screen-printed electrode, SPE, was modified with the enzyme tyrosinase (Tyr) using different immobilization methods, namely entrapment with water-soluble polyvinyl alcohol (PVA), cross-linking using glutaraldehyde (GA), and cross-linking using GA and human serum albumin (HSA); the resulting electrodes were termed SPE/Tyr/PVA, SPE/Tyr/GA and SPE/Tyr/HSA/GA, respectively. These biosensors were characterized by means of amperometry and EIS techniques. From amperometric evaluations, the apparent Michaelis-Menten constant, Km′, of each biosensor was evaluated while the respective charge transfer resistance, Rct, was assessed from impedance measurements. It was found that the SPE/Tyr/GA had the smallest Km′ (57 ± 7) μM and Rct values. This electrode also displayed both the lowest detection and quantification limits for catechol quantification. Using the SPE/Tyr/GA, the Trolox Equivalent Antioxidant Capacity (TEAC) was determined from infusions prepared with “mirto” (Salvia microphylla), “hHierba dulce” (Lippia dulcis) and “salve real” (Lippia alba), medicinal plants commonly used in Mexico. PMID:25111237

  4. Electrochemical quantification of the antioxidant capacity of medicinal plants using biosensors.

    Science.gov (United States)

    Rodríguez-Sevilla, Erika; Ramírez-Silva, María-Teresa; Romero-Romo, Mario; Ibarra-Escutia, Pedro; Palomar-Pardavé, Manuel

    2014-08-08

    The working area of a screen-printed electrode, SPE, was modified with the enzyme tyrosinase (Tyr) using different immobilization methods, namely entrapment with water-soluble polyvinyl alcohol (PVA), cross-linking using glutaraldehyde (GA), and cross-linking using GA and human serum albumin (HSA); the resulting electrodes were termed SPE/Tyr/PVA, SPE/Tyr/GA and SPE/Tyr/HSA/GA, respectively. These biosensors were characterized by means of amperometry and EIS techniques. From amperometric evaluations, the apparent Michaelis-Menten constant, Km', of each biosensor was evaluated while the respective charge transfer resistance, Rct, was assessed from impedance measurements. It was found that the SPE/Tyr/GA had the smallest Km' (57 ± 7) µM and Rct values. This electrode also displayed both the lowest detection and quantification limits for catechol quantification. Using the SPE/Tyr/GA, the Trolox Equivalent Antioxidant Capacity (TEAC) was determined from infusions prepared with "mirto" (Salvia microphylla), "hHierba dulce" (Lippia dulcis) and "salve real" (Lippia alba), medicinal plants commonly used in Mexico.

  5. Integration of plant life management in operation and maintenance

    International Nuclear Information System (INIS)

    Hutin, Jean-Pierre

    2002-01-01

    Full text: 1 - INTRODUCTION. Electricite de France is now operating 58 PWR nuclear power plants which produce 75% of french electricity. Besides maintaining safety and availability on a routine basis, it is outmost important to protect the investment. Indeed, such an asset is a tremendous advantage just as the company is going to face the new european electricity market. That is the reason why EDF is devoting important effort to implement ageing management as an integral part of operation and maintenance programs. But it must be recognized that NPP lifetime is not threatened only by component-related problems: other less technical issues must be seriously considered like industrial support, information system, skilled people, public acceptance, etc. 2 - LIFE MANAGEMENT POLICY. In France, there is no limited licensing period for NPPs. The life management policy of nuclear power plants is based on three principles: - safe and cost-effective operation, looking for excellence in daily activities, with an effective experience feedback organisation taking advantage of the high level of standardization of the units, - every ten years, a new set of safety standards, a complete review of each facility and an upgrading of its safety level through appropriate modifications while maintaining unit standardization in all the fleet, - a Life Management Program, at corporate level, which permanently scrutinizes operation and maintenance activities to identify decisions which could impair plant lifetime and which surveys research and development programs related to ageing phenomenon understanding. 3 - INTEGRATION OF LIFETIME CONCERN IN O and M ACTIVITIES. It is outmost important to take in account lifetime concern in daily operation and maintenance activities and this must be done as early as possible in plant life. Even though sophisticated assessments require engineering capacity, many good ideas may arise from plant staff. For that reason, increasing lifetime awareness of plant

  6. The Ural Electrochemical Integrated Plant Sustainability Program of Nuclear Material Protection, Control and Accounting System Upgrades

    International Nuclear Information System (INIS)

    Vakhonin, Alexander; Yuldashev, Rashid; Dabbs, Richard D.; Carroll, Michael F.; Garrett, Albert G.; Patrick, Scott W.; Ku, Eshter M.

    2009-01-01

    UEIP has been working on a comprehensive sustainability program that includes establishing a site sustainability working group, information gathering, planning, organizing, developing schedule and estimated costs, trhough joint UEIP-US DOE/NNSA National Laboratory sustainability contracts. Considerable efforts have been necessary in the sustainability planning, monitoring, and control of the scope of work using tools such as Microsoft Excel, Microsoft Project and SAP R/3. While information interchanges within the sustainability program provides adequate US assurances that US funds are well spent through its quarterly reporting methodology, proper information security and protection measures are taken throughout the process. Decommissioning of outdated equipment has also become part of determining sustainability requirements and processes. The site's sustainability program has facilitated the development of a transition plan toward eventual full Russian funding of sustaining nuclear security upgrades.

  7. Integrating fuel cell power systems into building physical plants

    Energy Technology Data Exchange (ETDEWEB)

    Carson, J. [KCI Technologies, Inc., Hunt Valley, MD (United States)

    1996-12-31

    This paper discusses the integration of fuel cell power plants and absorption chillers to cogenerate chilled water or hot water/steam for all weather air conditioning as one possible approach to building system applications. Absorption chillers utilize thermal energy in an absorption based cycle to chill water. It is feasible to use waste heat from fuel cells to provide hydronic heating and cooling. Performance regimes will vary as a function of the supply and quality of waste heat. Respective performance characteristics of fuel cells, absorption chillers and air conditioning systems will define relationships between thermal and electrical load capacities for the combined systems. Specifically, this paper develops thermodynamic relationships between bulk electrical power and cooling/heating capacities for combined fuel cell and absorption chiller system in building applications.

  8. Integrated CAD/CAE for nuclear power plants

    International Nuclear Information System (INIS)

    Lecoq, P.; Lachat, J.C.

    1987-01-01

    The size of the French nuclear power program has led both EDF and Framatome to equip themselves progressively with management software, computer-assisted design (CAD) systems, and computer-assisted engineering (CAE) systems. The nature of the projects and of the respective activities of EDF and Framatome determined the essential specifications of these computerized systems. EDF and Framatome have pooled their CAD/CAE efforts in a joint venture (Groupement d'Interet Economique) called GIAO, set up in 1985 by EDF and Aquitaine Systeme (a subsidiary of Framatome and Elf Aquitaine). GIAO's ambition is to become a pole of French CAD/CAE efforts and to foster progress in integrated computer-assisted engineering, by enlarging the synergy of EDF and Framatome in this field to other enterprises that participate in design and construction of complex industrial plants

  9. Electrochemical cell with integrated hydrocarbon gas sensor for automobile exhaust gas; Elektrochemische Zelle mit integriertem Kohlenwasserstoff-Gassensor fuer das Automobilabgas

    Energy Technology Data Exchange (ETDEWEB)

    Biskupski, D.; Moos, R. [Univ. Bayreuth (Germany). Bayreuth Engine Research Center, Lehrstuhl fuer Funktionsmaterialien; Wiesner, K.; Fleischer, M. [Siemens AG, Corporate Technology, CT PS 6, Muenchen (Germany)

    2007-07-01

    In the future sensors will be necessary to control the compliance with hydrocarbon limiting values, allowing a direct detection of the hydrocarbons. Appropriate sensor-active functional materials are metal oxides, which have a hydrocarbon sensitivity but are also dependent on the oxygen partial pressure. It is proposed that the gas-sensing layer should be integrated into an electrochemical cell. The authors show that the integration of a resistive oxygen sensor into a pump cell allows a defined oxygen concentration level at the sensor layer in any exhaust gas.

  10. PGSB/MIPS PlantsDB Database Framework for the Integration and Analysis of Plant Genome Data.

    Science.gov (United States)

    Spannagl, Manuel; Nussbaumer, Thomas; Bader, Kai; Gundlach, Heidrun; Mayer, Klaus F X

    2017-01-01

    Plant Genome and Systems Biology (PGSB), formerly Munich Institute for Protein Sequences (MIPS) PlantsDB, is a database framework for the integration and analysis of plant genome data, developed and maintained for more than a decade now. Major components of that framework are genome databases and analysis resources focusing on individual (reference) genomes providing flexible and intuitive access to data. Another main focus is the integration of genomes from both model and crop plants to form a scaffold for comparative genomics, assisted by specialized tools such as the CrowsNest viewer to explore conserved gene order (synteny). Data exchange and integrated search functionality with/over many plant genome databases is provided within the transPLANT project.

  11. Integrating cell biology and proteomic approaches in plants.

    Science.gov (United States)

    Takáč, Tomáš; Šamajová, Olga; Šamaj, Jozef

    2017-10-03

    Significant improvements of protein extraction, separation, mass spectrometry and bioinformatics nurtured advancements of proteomics during the past years. The usefulness of proteomics in the investigation of biological problems can be enhanced by integration with other experimental methods from cell biology, genetics, biochemistry, pharmacology, molecular biology and other omics approaches including transcriptomics and metabolomics. This review aims to summarize current trends integrating cell biology and proteomics in plant science. Cell biology approaches are most frequently used in proteomic studies investigating subcellular and developmental proteomes, however, they were also employed in proteomic studies exploring abiotic and biotic stress responses, vesicular transport, cytoskeleton and protein posttranslational modifications. They are used either for detailed cellular or ultrastructural characterization of the object subjected to proteomic study, validation of proteomic results or to expand proteomic data. In this respect, a broad spectrum of methods is employed to support proteomic studies including ultrastructural electron microscopy studies, histochemical staining, immunochemical localization, in vivo imaging of fluorescently tagged proteins and visualization of protein-protein interactions. Thus, cell biological observations on fixed or living cell compartments, cells, tissues and organs are feasible, and in some cases fundamental for the validation and complementation of proteomic data. Validation of proteomic data by independent experimental methods requires development of new complementary approaches. Benefits of cell biology methods and techniques are not sufficiently highlighted in current proteomic studies. This encouraged us to review most popular cell biology methods used in proteomic studies and to evaluate their relevance and potential for proteomic data validation and enrichment of purely proteomic analyses. We also provide examples of

  12. Implementation of integrated safeguards at Nuclear Fuel Plant Pitesti, Romania

    International Nuclear Information System (INIS)

    Olaru, Vasilica; Ivana, Tiberiu; Epure, Gheorghe

    2010-01-01

    The nuclear activity in ROMANIA was for many years under Traditional Safeguards (TS) and has developed in good conditions this type of nuclear safeguards. Now, the opportunity exists to improve the performance and quality of the safeguards activity and increase the accountancy and control of nuclear material by passing to Integrated Safeguards (IS). The legal framework is the Law 100/2000 for ratification of the Protocol between Romania and International Atomic Energy Agency (IAEA), additional to the Agreement between the Socialist Republic of Romania Government and IAEA related to safeguards as part of the Treaty on the non-proliferation of nuclear weapons published in the Official Gazette no. 3/31 January 1970, and the Additional Protocol content published in the Official Gazette no. 295/ 29.06.2000. The first discussion about Integrated Safeguards (IS) between Nuclear Fuel Plant (NFP) representatives and IAEA inspectors was in June 2005. In Feb. 2007 an IAEA mission visited NFP and established the main steps for implementing the IS. There were visited the storages, technological flow, and was reviewed the disposal times for different nuclear materials, the applied chemical analysis, measuring methods, weighting method and elaborating procedure of the documents and lists. At that time the IAEA and NFP representatives established the main points for starting the IS at NFP: performing the Short Notice Random Inspections (SNRI); communication of the days established for SNRI for each year; communication of the estimated deliveries and shipments for first quarter and then for the rest of the year: daily mail box declaration (DD) with respect to the deposit time for several nuclear materials i.e. advance notification (AN) for each nuclear material transfer (shipments and receipts), others. At 01 June 2007 Romania has passed officially to Integrated Safeguards and NFP (WRMD) has taken all measures to implement this objective. (authors)

  13. Biofiltration and electrochemical treatment for the production of service water from outflows of small-scaled sewage treatment plants; Biofiltration und elektrochemische Behandlung zur Brauchwassererzeugung aus Kleinklaeranlagenablaeufen

    Energy Technology Data Exchange (ETDEWEB)

    Ilian, Jens

    2010-12-14

    Up to the 1990s a mechanical partly biological wastewater treatment was performed at remote locations or collected in reservoirs without outflow. The currently valid legal regulations require a biological treatment of wastewater. Thus, biological small-scale sewage treatment plants experience a broad dissemination recently. Under this aspect, the author of the contribution under consideration reports on the bio filtration and electrochemical treatment in order to produce service water from outflows of small-scale sewage treatment plants. The author investigates the legal regulations, and supplements these regulations by own definitions and requirements on the consideration of a hygienic potential for damage. Additionally, investigations on the cleaning performance of properly operated small-scaled sewage treatment plants are performed. The hygienic risk potential as an inflow condition of a disinfection is determined.

  14. PEA: an integrated R toolkit for plant epitranscriptome analysis.

    Science.gov (United States)

    Zhai, Jingjing; Song, Jie; Cheng, Qian; Tang, Yunjia; Ma, Chuang

    2018-05-29

    The epitranscriptome, also known as chemical modifications of RNA (CMRs), is a newly discovered layer of gene regulation, the biological importance of which emerged through analysis of only a small fraction of CMRs detected by high-throughput sequencing technologies. Understanding of the epitranscriptome is hampered by the absence of computational tools for the systematic analysis of epitranscriptome sequencing data. In addition, no tools have yet been designed for accurate prediction of CMRs in plants, or to extend epitranscriptome analysis from a fraction of the transcriptome to its entirety. Here, we introduce PEA, an integrated R toolkit to facilitate the analysis of plant epitranscriptome data. The PEA toolkit contains a comprehensive collection of functions required for read mapping, CMR calling, motif scanning and discovery, and gene functional enrichment analysis. PEA also takes advantage of machine learning technologies for transcriptome-scale CMR prediction, with high prediction accuracy, using the Positive Samples Only Learning algorithm, which addresses the two-class classification problem by using only positive samples (CMRs), in the absence of negative samples (non-CMRs). Hence PEA is a versatile epitranscriptome analysis pipeline covering CMR calling, prediction, and annotation, and we describe its application to predict N6-methyladenosine (m6A) modifications in Arabidopsis thaliana. Experimental results demonstrate that the toolkit achieved 71.6% sensitivity and 73.7% specificity, which is superior to existing m6A predictors. PEA is potentially broadly applicable to the in-depth study of epitranscriptomics. PEA Docker image is available at https://hub.docker.com/r/malab/pea, source codes and user manual are available at https://github.com/cma2015/PEA. chuangma2006@gmail.com. Supplementary data are available at Bioinformatics online.

  15. The Plant-Window System: A framework for an integrated computing environment at advanced nuclear power plants

    International Nuclear Information System (INIS)

    Wood, R.T.; Mullens, J.A.; Naser, J.A.

    1997-01-01

    Power plant data, and the information that can be derived from it, provide the link to the plant through which the operations, maintenance and engineering staff understand and manage plant performance. The extensive use of computer technology in advanced reactor designs provides the opportunity to greatly expand the capability to obtain, analyze, and present data about the plant to station personnel. However, to support highly efficient and increasingly safe operation of nuclear power plants, it is necessary to transform the vast quantity of available data into clear, concise, and coherent information that can be readily accessed and used throughout the plant. This need can be met by an integrated computer workstation environment that provides the necessary information and software applications, in a manner that can be easily understood and sued, to the proper users throughout the plan. As part of a Cooperative Research and Development Agreement with the Electric Power Research Institute, the Oak Ridge National laboratory has developed functional requirements for a Plant-Wide Integrated Environment Distributed On Workstations (Plant-Window) System. The Plant-Window System (PWS) can serve the needs of operations, engineering, and maintenance personnel at nuclear power stations by providing integrated data and software applications within a common computing environment. The PWS requirements identify functional capabilities and provide guidelines for standardized hardware, software, and display interfaces so as to define a flexible computing environment for both current generation nuclear power plants and advanced reactor designs

  16. Development of an integrated database management system to evaluate integrity of flawed components of nuclear power plant

    International Nuclear Information System (INIS)

    Mun, H. L.; Choi, S. N.; Jang, K. S.; Hong, S. Y.; Choi, J. B.; Kim, Y. J.

    2001-01-01

    The object of this paper is to develop an NPP-IDBMS(Integrated DataBase Management System for Nuclear Power Plants) for evaluating the integrity of components of nuclear power plant using relational data model. This paper describes the relational data model, structure and development strategy for the proposed NPP-IDBMS. The NPP-IDBMS consists of database, database management system and interface part. The database part consists of plant, shape, operating condition, material properties and stress database, which are required for the integrity evaluation of each component in nuclear power plants. For the development of stress database, an extensive finite element analysis was performed for various components considering operational transients. The developed NPP-IDBMS will provide efficient and accurate way to evaluate the integrity of flawed components

  17. The Waste Isolation Pilot Plant (WIPP) integrated project management system

    International Nuclear Information System (INIS)

    Olona, D.; Sala, D.

    1993-01-01

    The Waste Isolation Pilot Plant (WIPP), located 26 miles east of Carlsbad, New Mexico, is a research and development project of the Department of Energy (DOE), tasked with the mission of demonstrating the safe disposal of transuranic (TRU) radioactive wastes. This unique project was authorized by Congress in 1979 in response to the national need for long-term, safe methods for disposing of radioactive by-products from our national defense programs. The WIPP was originally established in December of 1979, by Public Law 96-164, DOE National Security and Military Applications of Nuclear Energy Authorization Act of 1980. Since the inception of the WIPP Project, work has continued to prepare the facility to receive TRU wastes. Studies continue to be conducted to demonstrate the safety of the WIPP facility in accordance with federal and state laws, state agreements, environmental regulations, and DOE Orders. The objectives of implementing an integrated project management system are to assure compliance with all regulatory and federal regulations, identify areas of concern, provide justification for funding, provide a management tool for control of program workscope, and establish a project baseline from which accountability and performance will be assessed. Program management and project controls are essential for the success of the WIPP Project. The WIPP has developed an integrated project management system to establish the process for the control of the program which has an expected total dollar value of $2B over the ten-year period from 1990-2000. The implementation of this project management system was motivated by the regulatory requirements of the project, the highly public environment in which the project takes place, limited funding and resources, and the dynamic nature of the project. Specific areas to be addressed in this paper include strategic planning, project organization, planning and scheduling, fiscal planning, and project monitoring and reporting

  18. Integrated safety assessment report, Haddam Neck Plant (Docket No. 50-213): Integrated Safety Assessment Program: Draft report

    International Nuclear Information System (INIS)

    1987-07-01

    The integrated assessment is conducted on a plant-specific basis to evaluate all licensing actions, licensee initiated plant improvements and selected unresolved generic/safety issues to establish implementation schedules for each item. Procedures allow for a periodic updating of the schedules to account for licensing issues that arise in the future. The Haddam Neck Plant is one of two plants being reviewed under the pilot program. This report indicates how 82 topics selected for review were addressed, and presents the staff's recommendations regarding the corrective actions to resolve the 82 topics and other actions to enhance plant safety. 135 refs., 4 figs., 5 tabs

  19. Combined cycle power plant with integrated low temperature heat (LOTHECO)

    International Nuclear Information System (INIS)

    Kakaras, E.; Doukelis, A.; Leithner, R.; Aronis, N.

    2004-01-01

    The major driver to enhance the efficiency of the simple gas turbine cycle has been the increase in process conditions through advancements in materials and cooling methods. Thermodynamic cycle developments or cycle integration are among the possible ways to further enhance performance. The current paper presents the possibilities and advantages from the LOTHECO natural gas-fired combined cycle concept. In the LOTHECO cycle, low-temperature waste heat or solar heat is used for the evaporation of injected water droplets in the compressed air entering the gas turbine's combustion chamber. Following a description of this innovative cycle, its advantages are demonstrated by comparison between different gas turbine power generation systems for small and large-scale applications, including thermodynamic and economic analysis. A commercial gas turbine (ALSTOM GT10C) has been selected and computed with the heat mass balance program ENBIPRO. The results from the energy analysis are presented and the features of each concept are discussed. In addition, the exergy analysis provides information on the irreversibilities of each process and suggested improvements. Finally, the economic analysis reveals that the combined cycle plant with a heavy-duty gas turbine is the most efficient and economic way to produce electricity at base load. However, on a smaller scale, innovative designs, such as the LOTHECO concept, are required to reach the same level of performance at feasible costs

  20. The Plant-Window system: A flexible, expandable computing environment for the integration of power plant activities

    International Nuclear Information System (INIS)

    Wood, R.T.; Mullens, J.A.; Naser, J.A.

    1994-01-01

    Power plant data, and the information that can be derived from it, provide the link to the plant through which the operations, maintenance and engineering staff understand and manage plant performance. The increasing use of computer technology in the US nuclear power industry has greatly expanded the capability to obtain, analyze, and present data about the plant to station personnel. However, it is necessary to transform the vast quantity of available data into clear, concise, and coherent information that can be readily accessed and used throughout the plant. This need can be met by an integrated computer workstation environment that provides the necessary information and software applications, in a manner that can be easily understood and used, to the proper users throughout the plant. As part of a Cooperative Research and Development Agreement with the Electric Power Research Institute, the Oak Ridge National Laboratory has developed functional requirements for a Plant-Wide Integrated Environment Distributed on Workstations (Plant-Window) System. The Plant-Window System (PWS) can serve the needs of operations, engineering, and maintenance personnel at nuclear power stations by providing integrated data and software applications (e.g., monitoring, analysis, diagnosis, and control applications) within a common environment. The PWS requirements identify functional capabilities and provide guidelines for standardized hardware, software, and display interfaces to define a flexible computer environment that permits a tailored implementation of workstation capabilities and facilitates future upgrades

  1. Electrochemical machining of internal built-up surfaces of large-sized vessels for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Ryabchenko, N N; Pulin, V Ya [Vsesoyuznyj Proektno-Tekhnologicheskij Inst. Atomnogo Mashinostroeniya i Kotlostroeniya, Rostov-na-Donu (USSR)

    1977-01-01

    Electrochemical machining (ECM) has been employed for finishing of mechanically processed inner surfaces of large lateral parts of construction bodies with welded 0Kh18N10T steel overlayer. The finishing technology developed reduces the surface roughness from 10 mcm to the standard 2.5 mcm at the efficiency of machining of 2-4 m/sup 2/ per hour.

  2. Integration of hydrothermal carbonization and a CHP plant: Part 2 –operational and economic analysis

    International Nuclear Information System (INIS)

    Saari, Jussi; Sermyagina, Ekaterina; Kaikko, Juha; Vakkilainen, Esa; Sergeev, Vitaly

    2016-01-01

    Wood-fired combined heat and power (CHP) plants are a proven technology for producing domestic, carbon-neutral heat and power in Nordic countries. One drawback of CHP plants is the low capacity factors due to varying heat loads. In the current economic environment, uncertainty over energy prices creates also uncertainty over investment profitability. Hydrothermal carbonization (HTC) is a promising thermochemical conversion technology for producing an improved, more versatile wood-based fuel. Integrating HTC with a CHP plant allows simplifying the HTC process and extending the CHP plant operating time. An integrated polygeneration plant producing three energy products is also less sensitive to price changes in any one product. This study compares three integration cases chosen from the previous paper, and the case of separate stand-alone plants. The best economic performance is obtained using pressurized hot water from the CHP plant boiler drum as HTC process water. This has the poorest efficiency, but allows the greatest cost reduction in the HTC process and longest CHP plant operating time. The result demonstrates the suitability of CHP plants for integration with a HTC process, and the importance of economic and operational analysis considering annual load variations in sufficient detail. - Highlights: • Integration of wood hydrothermal carbonization with a small CHP plant studied. • Operation and economics of three concepts and stand-alone plants are compared. • Sensitivity analysis is performed. • Results show technical and thermodynamic analysis inadequate and misleading alone. • Minimizing HTC investment, extending CHP operating time important for profitability.

  3. Plant bio-stimulator fertilizers can be applied in integrated plant management (IPM in forest nurseries

    Directory of Open Access Journals (Sweden)

    Tkaczyk Miłosz

    2015-12-01

    Full Text Available In the circumstances of only a limited number of pesticides being approved for use in forest nurseries, it is necessary to also examine the efficacy of new products available on the European market that stimulate growth and improve resilience and vitality among seedlings and saplings, with a view to the application of these products forming part of an integrated programme of plant protection. This paper describes trials of the three commercially available fertilizer products Actifos, Zielony Busz and Effective Microorganisms (EM, as carried out in seven Polish nurseries in an attempt to promote the growth of shoots and root systems of seedlings and saplings. In 64% of cases of it being used, Actifos was shown to stimulate growth significantly beyond control levels in the shoots of oak, beech, pine, spruce and alder saplings as well as the roots of young alders and oaks.

  4. Integrating Botany with Chemistry & Art to Improve Elementary School Children's Awareness of Plants

    Science.gov (United States)

    Çil, Emine

    2015-01-01

    Students need to be aware of plants in order to learn about, appreciate, care for, and protect them. However, research has found that many children are not aware of the plants in their environment. A way to address this issue might be integration of plants with various disciplines. I investigated the effectiveness of an instructional approach…

  5. Integrated plant safety assessment: systematic evaluation program. Haddam Neck Plant, Connecticut Yankee Atomic Power Company. Docket No. 50-213

    International Nuclear Information System (INIS)

    1983-03-01

    The Systematic Evaluation Program was initiated in February 1977 by the US Nuclear Regulatory Commission to review the designs of older operating nuclear reactor plants to confirm and document their safety. The review provides: (1) an assessment of how these plants compare with current licensing safety requirements relating to selected issues, (2) a basis for deciding on how these differences should be resolved in an integrated plant review, and (3) a documented evaluation of plant safety. This report documents the review of Haddam Neck Plant, operated by Connecticut Yankee Atomic Power Company. The Haddam Neck Plant is one of 10 plants reviewed under Phase II of this program. This report indicates how 137 topics selected for review under Phase I of the program were addressed. Equipment and procedural changes have been identified as a result of the review

  6. Integrated approach methodology: A handbook for power plant assessment

    International Nuclear Information System (INIS)

    Roush, M.L.; Modarres, M.; Hunt, R.N.M.; Kreps, D.; Pearce, R.

    1987-10-01

    This handbook is a practical document that provides the principles and steps of a method to help a utility's decision-making process on matters concerning plant safety and economy. It provides a framework for analyzing the manner in which plant equipment and personnel work together to achieve successful operation; also making possible the quantitative evaluation of individual contributors to success in overall plant operation. The methodology does not purport to instruct utilities on the proper way to run a power plant. Rather, it is an analytical tool to aid a utility in using plant data and other hands-on knowledge of its own personnel to solve practical problems

  7. B plant/WESF integrated annual safety appraisal

    International Nuclear Information System (INIS)

    Anderson, J.K.

    1990-12-01

    This report provides the results of the Fiscal Year 1990 Annual Integrated Safety Appraisal of the B Plant and Waste Encapsulation and Storage Facility in the Hanford Site 200 East Area. The appraisal was conducted in August and September 1990, by the Defense Waste Disposal Safety group, in conjunction with Health Physics and Emergency Preparedness. Reports of these three organizations for their areas of responsibility are presented. The purpose of the appraisal was to determine if the areas being appraised meet US Department of Energy (DOE) and Westinghouse Hanford Company (WHC) requirements and current industry standards of good practice. A further purpose was to identify areas in which program effectiveness could be improved. In accordance with the guidance of WHC Management Requirements and Procedures 5.6, previously identified deficiencies which are being resolved by line management were not repeated as Findings or Observations unless progress or intended disposition was considered to be unsatisfactory. The overall assessment is that there are no major safety problems associated with current operations. Programs are in place to provide the necessary safety controls, evaluations, overviews, and support. In most respects these programs are being implemented effectively. However, there are a number of deficiencies in details of program design and implementation. The appraisal identified a total of 23 Findings and 27 Observations of deficiencies. All Observations are Seriousness Category 3. Fifteen Findings were Category 2 and 8 were Category 3. Most of the Category 2 Findings were so categorized on the basis of noncompliance with mandatory DOE Orders or WHC policies and procedures, rather than potential risk to personnel

  8. Outside-in control -Does plant cell wall integrity regulate cell cycle progression?

    Science.gov (United States)

    Gigli-Bisceglia, Nora; Hamann, Thorsten

    2018-04-13

    During recent years it has become accepted that plant cell walls are not inert objects surrounding all plant cells but are instead highly dynamic, plastic structures. They are involved in a large number of cell biological processes and contribute actively to plant growth, development and interaction with environment. Therefore, it is not surprising that cellular processes can control plant cell wall integrity while, simultaneously, cell wall integrity can influence cellular processes. In yeast and animal cells such a bi-directional relationship also exists between the yeast/animal extra-cellular matrices and the cell cycle. In yeast, the cell wall integrity maintenance mechanism and a dedicated plasmamembrane integrity checkpoint are mediating this relationship. Recent research has yielded insights into the mechanism controlling plant cell wall metabolism during cytokinesis. However, knowledge regarding putative regulatory pathways controlling adaptive modifications in plant cell cycle activity in response to changes in the state of the plant cell wall are not yet identified. In this review, we summarize similarities and differences in regulatory mechanisms coordinating extra cellular matrices and cell cycle activity in animal and yeast cells, discuss the available evidence supporting the existence of such a mechanism in plants and suggest that the plant cell wall integrity maintenance mechanism might also control cell cycle activity in plant cells. This article is protected by copyright. All rights reserved.

  9. Integral power evaluation in fossil fuel power plants; Evaluacion energetica integral en unidades de centrales termoelectricas

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa I, Luis R; Sanchez H, Laura E; Rodriguez M, Jose H [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico); Nebradt G, Jesus [Unidad de Investigacion y Desarrollo de la Subdireccion de Generacion de la Comision Federal de Electricidad, (Mexico)

    2006-07-01

    In this occasion, a methodology is presented that carries out an integral energy evaluation of fossil fuel power plants units (FFPPU) with the purpose of determining the root of the significant decrements of power produced soon after the annual maintenance service. This proposal, besides identifying the origin of the energy efficiency problems, offers information about the contributions of each one of the involved equipment in the total decrement of the unit. With this methodology, the maintenance focuses in the equipment that contributes to the greater energy loss. This document presents such methodology along with its application in a real case, results and necessary remedial actions, demonstrating that its application offers bases for the investment in corrective measures. [Spanish] En esta ocasion se presenta una metodologia que efectua una evaluacion energetica integral de las unidades de centrales termoelectricas (UCT) con el fin de determinar la raiz de los decrementos de potencia significativos producidos luego del servicio anual de mantenimiento. Dicha propuesta, ademas de identificar el origen de los problemas de eficiencia energetica, brinda informacion acerca de las aportaciones de cada uno de los equipos involucrados al decremento total de la unidad. Con esta metodologia, el mantenimiento se enfoca a los equipos que contribuyen a la mayor perdida de potencia. Este documento exhibe tal metodologia junto con su aplicacion en un caso real, resultados y las acciones correctivas necesarias, demostrando que su aplicacion ofrece bases para una inversion futura en medidas correctivas.

  10. Epipremnum aureum and Dracaena braunii as indoor plants for enhanced bio-electricity generation in a plant microbial fuel cell with electrochemically modified carbon fiber brush anode.

    Science.gov (United States)

    Sarma, Pranab Jyoti; Mohanty, Kaustubha

    2018-04-13

    In this study, two different unexploited indoor plants, Epipremnum aureum and Dracaena braunii were used to produce clean and sustainable bio-electricity in a plant microbial fuel cell (PMFC). Acid modified carbon fiber brush electrodes as well as bare electrodes were used in both the PMFCs. A bentonite based clay membrane was successfully integrated in the PMFCs. Maximum performance of E. aureum was 620 mV which was 188 mV higher potential than D. braunii. The bio-electricity generation using modified electrode was 154 mV higher than the bare carbon fiber, probably due to the effective bacterial attachment to the carbon fiber owing to hydrogen bonding. Maximum power output of 15.38 mW/m 2 was obtained by E. aureum with an internal resistance of 200 Ω. Higher biomass yield was also obtained in case of E. aureum during 60 days of experiment, which may correlate with the higher bio-electricity generation than D. braunii. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  11. Influence of metallurgical and electrochemical factors on cracking of steels at nuclear power plants under high temperature

    International Nuclear Information System (INIS)

    Pokhmurskii, V.I.; Gnyp, I.P.

    1994-01-01

    The influence of metallurgical heterogeneities in steels and electrochemical factors on corrosion cracking under high temperature water environment is studied, with special emphasis on the influence of manganese sulfide inclusions and other non-metallic ones on the crack growth rate. Results show that the electro-chemical conditions for an hydrogen concentration increase in a pre-failure zone exist at a crack tip under cyclic loading; hydrogen penetrating into metals at high temperature reduces manganese sulfides, ferric carbides, and cause high pressure of gases in micro-discontinuities, thus leading to cyclic corrosion cracking; anodic (relatively to a metal matrix) inclusions are rather the cause of steel cracking resistance decrease than cathodic ones. 16 refs., 4 figs

  12. The integrated workstation: A common, consistent link between nuclear plant personnel and plant information and computerized resources

    International Nuclear Information System (INIS)

    Wood, R.T.; Knee, H.E.; Mullens, J.A.; Munro, J.K. Jr.; Swail, B.K.; Tapp, P.A.

    1993-01-01

    The increasing use of computer technology in the US nuclear power industry has greatly expanded the capability to obtain, analyze, and present data about the plant to station personnel. Data concerning a power plant's design, configuration, operational and maintenance histories, and current status, and the information that can be derived from them, provide the link between the plant and plant staff. It is through this information bridge that operations, maintenance and engineering personnel understand and manage plant performance. However, it is necessary to transform the vast quantity of data available from various computer systems and across communications networks into clear, concise, and coherent information. In addition, it is important to organize this information into a consolidated, structured form within an integrated environment so that various users throughout the plant have ready access at their local station to knowledge necessary for their tasks. Thus, integrated workstations are needed to provide the inquired information and proper software tools, in a manner that can be easily understood and used, to the proper users throughout the plant. An effort is underway at the Oak Ridge National Laboratory to address this need by developing Integrated Workstation functional requirements and implementing a limited-scale prototype demonstration. The integrated Workstation requirements will define a flexible, expandable computer environment that permits a tailored implementation of workstation capabilities and facilitates future upgrades to add enhanced applications. The functionality to be supported by the integrated workstation and inherent capabilities to be provided by the workstation environment win be described. In addition, general technology areas which are to be addressed in the Integrated Workstation functional requirements will be discussed

  13. Introducing WISDEM:An Integrated System Modeling for Wind Turbines and Plant (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Dykes, K.; Graf, P.; Scott, G.; Ning, A.; King, R.; Guo, Y.; Parsons, T.; Damiani, R.; Felker, F.; Veers, P.

    2015-01-01

    The National Wind Technology Center wind energy systems engineering initiative has developed an analysis platform to leverage its research capabilities toward integrating wind energy engineering and cost models across wind plants. This Wind-Plant Integrated System Design & Engineering Model (WISDEM) platform captures the important interactions between various subsystems to achieve a better National Wind Technology Center wind energy systems engineering initiative has developed an analysis platform to leverage its research capabilities toward integrating wind energy engineering and cost models across wind plants. This Wind-Plant Integrated System Design & Engineering Model (WISDEM) platform captures the important interactions between various subsystems to achieve a better understanding of how to improve system-level performance and achieve system-level cost reductions. This work illustrates a few case studies with WISDEM that focus on the design and analysis of wind turbines and plants at different system levels.

  14. Final Report: RPP-WTP Semi-Integrated Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    Duignan, M. R.; Adamson, D. J.; Calloway, T. B.; Fowley, M. D.; Qureshi, Z. H.; Steimke, J. L.; Williams, M. R.; Zamecnik, J. R.

    2005-06-01

    In August 2004 the last of the SIPP task testing ended--a task that formally began with the issuance of the RPP-WTP Test Specification in June 2003. The planning for the task was a major effort in itself and culminated with the input of all stakeholders, DOE, Bechtel National, Inc., Washington Group International, in October 2003 at Hanford, WA (Appendix A). This report documents the activities carried out as a result of that planning. Campaign IV, the fourth and final step towards the Semi-Integrated Pilot Plant (SIPP) task, conducted by the Savannah River National Laboratory (SRNL) at the Savannah River Site, was to take the several recycle streams produced in Campaign III, the third step of the task, and combine them with other simulated recycle and chosen waste streams. (Campaign III was fed recycles from Campaign II, as Campaign II was fed by Campaign I.) The combined stream was processed in a fashion that mimicked the pretreatment operations of the DOE River Protection Project--Waste Treatment and Immobilization Plant (RPP-WTP) with the exception of the Ion Exchange Process. The SIPP task is considered semi-integrated because it only deals with the pretreatment operations of the RPP-WTP. That is, the pilot plant starts by receiving waste from the tank farm and ends when waste is processed to the point of being sent for vitrification. The resulting pretreated LAW and HLW simulants produced by the SIPP were shipped to VSL (Vitreous State Laboratory) and successfully vitrified in pilot WTP melters. Within the SIPP task these steps are referred to as Campaigns and there were four Campaigns in all. Campaign I, which is completely different than other campaigns, subjected a simulant of Hanford Tank 241-AY-102/C-106 (AY102) waste to cross-flow ultrafiltration only and in that process several important recycle streams were produced as a result of washing the simulant and cleaning the cross-flow filter. These streams were fed to subsequent campaigns and that work was

  15. Final Report: RPP-WTP Semi-Integrated Pilot Plant

    International Nuclear Information System (INIS)

    Duignan, M. R.; Adamson, D. J.; Calloway, T. B.; Fowley, M. D.; Qureshi, Z. H.; Steimke, J. L.; Williams, M. R.; Zamecnik, J. R.

    2005-01-01

    In August 2004 the last of the SIPP task testing ended--a task that formally began with the issuance of the RPP-WTP Test Specification in June 2003. The planning for the task was a major effort in itself and culminated with the input of all stakeholders, DOE, Bechtel National, Inc., Washington Group International, in October 2003 at Hanford, WA (Appendix A). This report documents the activities carried out as a result of that planning. Campaign IV, the fourth and final step towards the Semi-Integrated Pilot Plant (SIPP) task, conducted by the Savannah River National Laboratory (SRNL) at the Savannah River Site, was to take the several recycle streams produced in Campaign III, the third step of the task, and combine them with other simulated recycle and chosen waste streams. (Campaign III was fed recycles from Campaign II, as Campaign II was fed by Campaign I.) The combined stream was processed in a fashion that mimicked the pretreatment operations of the DOE River Protection Project--Waste Treatment and Immobilization Plant (RPP-WTP) with the exception of the Ion Exchange Process. The SIPP task is considered semi-integrated because it only deals with the pretreatment operations of the RPP-WTP. That is, the pilot plant starts by receiving waste from the tank farm and ends when waste is processed to the point of being sent for vitrification. The resulting pretreated LAW and HLW simulants produced by the SIPP were shipped to VSL (Vitreous State Laboratory) and successfully vitrified in pilot WTP melters. Within the SIPP task these steps are referred to as Campaigns and there were four Campaigns in all. Campaign I, which is completely different than other campaigns, subjected a simulant of Hanford Tank 241-AY-102/C-106 (AY102) waste to cross-flow ultrafiltration only and in that process several important recycle streams were produced as a result of washing the simulant and cleaning the cross-flow filter. These streams were fed to subsequent campaigns and that work was

  16. Integration of distributed plant process computer systems to nuclear power generation facilities

    International Nuclear Information System (INIS)

    Bogard, T.; Finlay, K.

    1996-01-01

    Many operating nuclear power generation facilities are replacing their plant process computer. Such replacement projects are driven by equipment obsolescence issues and associated objectives to improve plant operability, increase plant information access, improve man machine interface characteristics, and reduce operation and maintenance costs. This paper describes a few recently completed and on-going replacement projects with emphasis upon the application integrated distributed plant process computer systems. By presenting a few recent projects, the variations of distributed systems design show how various configurations can address needs for flexibility, open architecture, and integration of technological advancements in instrumentation and control technology. Architectural considerations for optimal integration of the plant process computer and plant process instrumentation ampersand control are evident from variations of design features

  17. Integration of a Graphite/PMMA CompositeElectrode into a Poly(methyl methacrylate) (PMMA) Substrate for Electrochemical Detection in Microchips

    Science.gov (United States)

    Regel, Anne; Lunte, Susan

    2013-01-01

    Traditional fabrication methods for polymer microchips, the bonding of two substrates together to form the microchip, can make the integration of carbon electrodes difficult. We have developed a simple and inexpensive method to integrate graphite/PMMA composite electrodes (GPCEs) into a PMMA substrate. These substrates can be bonded to other PMMA layers using a solvent-assisted thermal bonding method. The optimal composition of the GPCEs for electrochemical detection was determined using cyclic voltammetry with dopamine as a test analyte. Using the optimized GPCEs in an all-PMMA flow cell with flow injection analysis, it was possible to detect 50 nM dopamine under the best conditions. These electrodes were also evaluated for the detection of dopamine and catechol following separation by microchip electrophoresis (ME). PMID:23670816

  18. Influence of integrated phosphorus supply and plant growth ...

    African Journals Online (AJOL)

    To guarantee a sufficient phosphorus supply for plants, a rapid and permanent mobilization of phosphorus from the labile phosphorus fractions is necessary, because phosphorus concentrations in soil solution are generally low. Several plant growth-promoting rhizobacteria (PGPR) have shown potential to enhance ...

  19. Integration of new nuclear power plants into transmission grids part I: Transmission system issues

    International Nuclear Information System (INIS)

    Abi-Samra, N.

    2008-01-01

    Integration of new nuclear plants into a transmission system is a two sided problem. On one side, adding the nuclear plant into an existing grid will change the attributes of that grid: e.g., loading of certain transmission lines will increase; voltages will be affected, etc. On the other side, the grid itself will affect the plant, and the plant needs to be designed to accommodate the specifics of the grid. Based on that, this paper is divided into two parts. Part I addresses the grid issues with the integration of the new plant, with emphasis on the electrical aspects of these issues. Part II of this paper, concentrates on the vulnerability of the plant from grid disturbances. Part II reintroduces a relatively new concept by this author called the Zone of Vulnerability (ZoV) for the new nuclear plants. (authors)

  20. Developments of integrity evaluation technology for pressurized components in nuclear power plant and IT based integrity evaluation system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Jin; Choi, Jae Boong; Shim, Do Jun [Sungkyunkwan Univ., Seoul (Korea, Republic of)] (and others)

    2003-03-15

    The objective of this research is to develop an efficient evaluation technology and to investigate applicability of newly-developed technology, such as internet-based cyber platform, to operating power plants. Development of efficient evaluation systems for Nuclear Power Plant components, based on structural integrity assessment techniques, are increasingly demanded for safe operation with the increasing operating period of Nuclear Power Plants. The following five topics are covered in this project: development of assessment method for wall-thinned nuclear piping based on pipe test; development of structural integrity program for steam generator tubes with cracks of various shape; development of fatigue life evaluation system for mam components of NPP; development of internet-based cyber platform and integrity program for primary components of NPP; effect of aging on strength of dissimilar welds.

  1. Disposable electrochemical sensor to evaluate the phytoremediation of the aquatic plant Lemna minor L. toward Pb(2+) and/or Cd(2+).

    Science.gov (United States)

    Neagu, Daniela; Arduini, Fabiana; Quintana, Josefina Calvo; Di Cori, Patrizia; Forni, Cinzia; Moscone, Danila

    2014-07-01

    In this work a miniaturized and disposable electrochemical sensor was developed to evaluate the cadmium and lead ion phytoremediation potential by the floating aquatic macrophyte Lemna minor L. The sensor is based on a screen-printed electrode modified "in-situ" with bismuth film, which is more environmentally friendly than the mercury-based sensor usually adopted for lead and cadmium ion detection. The sensor was coupled with a portable potentiostat for the simultaneous measurement of cadmium and lead ions by stripping analysis. The optimized analytical system allows the simultaneous detection of both heavy metals at the ppb level (LOD equal to 0.3 and 2 ppb for lead and cadmium ions, respectively) with the advantage of using a miniaturized and cost-effective system. The sensor was then applied for the evaluation of Pb(2+) or/and Cd(2+) uptake by measuring the amount of the heavy metals both in growth medium and in plant tissues during 1 week experiments. In this way, the use of Lemna minor coupled with a portable electrochemical sensor allows the set up of a model system able both to remove the heavy metals and to measure "in-situ" the magnitude of heavy metal removal.

  2. Optimal integration of linear Fresnel reflector with gas turbine cogeneration power plant

    International Nuclear Information System (INIS)

    Dabwan, Yousef N.; Mokheimer, Esmail M.A.

    2017-01-01

    Highlights: • A LFR integrated solar gas turbine cogeneration plant (ISGCPP) has been simulated. • The optimally integrated LFR with gas turbine cogeneration plant can achieve an annual solar share of 23%. • Optimal integration of LFR with gas turbine cogeneration system can reduce CO 2 emission by 18%. • Compared to a fully-solar-powered LFR plant, the optimal ISGCPP reduces the LEC by 83%. • ISGCPP reduces the LEC by 50% compared to plants integrated with carbon capture technology. - Abstract: Solar energy is an abundant resource in many countries in the Sunbelt, especially in the middle east, countries, where recent expansion in the utilization of natural gas for electricity generation has created a significant base for introducing integrated solar‐natural gas power plants (ISGPP) as an optimal solution for electricity generation in these countries. ISGPP reduces the need for thermal energy storage in traditional concentrated solar thermal plants and results in dispatchable power on demand at lower cost than stand-alone concentrated thermal power and much cheaper than photovoltaic plants. Moreover, integrating concentrated solar power (CSP) with conventional fossil fuel based thermal power plants is quite suitable for large-scale central electric power generation plants and it can be implemented in the design of new installed plants or during retrofitting of existing plants. The main objective of the present work is to investigate the possible modifications of an existing gas turbine cogeneration plant, which has a gas turbine of 150 MWe electricity generation capacity and produces steam at a rate of 81.4 at 394 °C and 45.88 bars for an industrial process, via integrating it with concentrated solar power system. In this regard, many simulations have been carried out using Thermoflow software to explore the thermo-economic performance of the gas turbine cogeneration plant integrated with LFR concentrated solar power field. Different electricity

  3. Technical Feasibility Study of Thermal Energy Storage Integration into the Conventional Power Plant Cycle

    Directory of Open Access Journals (Sweden)

    Jacek D. Wojcik

    2017-02-01

    Full Text Available The current load balance in the grid is managed mainly through peaking fossil-fuelled power plants that respond passively to the load changes. Intermittency, which comes from renewable energy sources, imposes additional requirements for even more flexible and faster responses from conventional power plants. A major challenge is to keep conventional generation running closest to the design condition with higher load factors and to avoid switching off periods if possible. Thermal energy storage (TES integration into the power plant process cycle is considered as a possible solution for this issue. In this article, a technical feasibility study of TES integration into a 375-MW subcritical oil-fired conventional power plant is presented. Retrofitting is considered in order to avoid major changes in the power plant process cycle. The concept is tested based on the complete power plant model implemented in the ProTRAX software environment. Steam and water parameters are assessed for different TES integration scenarios as a function of the plant load level. The best candidate points for heat extraction in the TES charging and discharging processes are evaluated. The results demonstrate that the integration of TES with power plant cycle is feasible and provide a provisional guidance for the design of the TES system that will result in the minimal influence on the power plant cycle.

  4. Analysis of Optimal Operation of an Energy Integrated Distillation Plant

    DEFF Research Database (Denmark)

    Li, Hong Wen; Hansen, C.A.; Gani, Rafiqul

    2003-01-01

    The efficiency of manufacturing systems can be significantly increased through diligent application of control based on mathematical models thereby enabling more tight integration of decision making with systems operation. In the present paper analysis of optimal operation of an energy integrated...

  5. Integration of the ITER diagnostic plant systems with CODAC

    International Nuclear Information System (INIS)

    Simrock, S.; Barnsley, R.; Bertalot, L.; Hansalia, C.; Klotz, W.D.; Makijarvi, P.; Reichle, R.; Vayakis, G.; Yonekawa, I.; Walker, C.; Wallander, A.; Walsh, M.; Winter, A.

    2011-01-01

    ITER requires extensive diagnostic systems in order to meet the requirements for machine operation, protection, plasma control and physics studies. The realization of these systems is a major challenge not only because of the harsh environment and the nuclear requirements but also with respect to Instrumentation and Control (I and C) of all the 59 diagnostics plants. The Plant Systems I and C are mostly 'in-kind', i.e. procured by the seven ITER Domestic Agencies (DAs), while the Central I and C Systems are 'in-fund', i.e. procured by ITER Organization (IO). Standardization of Plant Systems I and C is of primary importance and has been one of the highest priority tasks of CODAC. The standards are published in the Plant Control Design Handbook (PCDH) which will be followed to ensure a homogeneous design, guarantee high availability and simplify maintenance and support future upgrades. Most important for a successful commissioning and operation of the ITER facility are the concepts of interfacing the diagnostics plant systems with CODAC and the standards for instrumentation and control which must be followed all contributing parties. In this paper, we will elaborate on the concepts of interfacing the diagnostics plant systems with CODAC and the standards that must be followed for the design.

  6. Electrochemical biosensors

    CERN Document Server

    Cosnier, Serge

    2015-01-01

    "This is an excellent book on modern electrochemical biosensors, edited by Professor Cosnier and written by leading international experts. It covers state-of-the-art topics of this important field in a clear and timely manner."-Prof. Joseph Wang, UC San Diego, USA  "This book covers, in 13 well-illustrated chapters, the potential of electrochemical methods intimately combined with a biological component for the assay of various analytes of biological and environmental interest. Particular attention is devoted to the description of electrochemical microtools in close contact with a biological cell for exocytosis monitoring and to the use of nanomaterials in the electrochemical biosensor architecture for signal improvement. Interestingly, one chapter describes the concept and design of self-powered biosensors derived from biofuel cells. Each topic is reviewed by experts very active in the field. This timely book is well suited for providing a good overview of current research trends devoted to electrochemical...

  7. Integrated plant safety assessment. Systematic evaluation program, Big Rock Point Plant (Docket No. 50-155). Final report

    International Nuclear Information System (INIS)

    1984-05-01

    The Systematic Evaluation Program was initiated in February 1977 by the U.S. Nuclear Regulatory Commission to review the designs of older operating nuclear reactor plants to reconfirm and document their safety. The review provides (1) an assessment of how these plants compare with current licensing safety requirements relating to selected issues, (2) a basis for deciding how these differences should be resolved in an integrated plant review, and (3) a documented evaluation of plant safety when the supplement to the Final Integrated Plant Safety Assessment Report has been issued. This report documents the review of the Big Rock Point Plant, which is one of ten plants reviewed under Phase II of this program. This report indicates how 137 topics selected for review under Phase I of the program were addressed. It also addresses a majority of the pending licensing actions for Big Rock Point, which include TMI Action Plan requirements and implementation criteria for resolved generic issues. Equipment and procedural changes have been identified as a result of the review

  8. Interplant coordination, supply chain integration, and operational performance of a plant in a manufacturing network

    DEFF Research Database (Denmark)

    Yang, Cheng; Chaudhuri, Atanu; Farooq, Sami

    2016-01-01

    Purpose The objective of this paper is to investigate the relationships at the level of plant in a manufacturing network, labelled as networked plant in the paper, between (1) inter-plant coordination and operational performance, (2) supply chain integration (SCI) and operational performance......, and (3) inter-plant coordination and SCI. Design/methodology/approach This paper is developed based on the data obtained from the sixth version of International Manufacturing Strategy Survey (IMSS VI). Specifically, this paper uses a subset of the IMSS VI data set from the 606 plants that identified...

  9. Integrating Studies on Plant-Pollinator and Plant-Herbivore Interactions

    NARCIS (Netherlands)

    Lucas-Barbosa, Dani

    2016-01-01

    Research on herbivore-induced plant defence and research on pollination ecology have had a long history of separation. Plant reproduction of most angiosperm species is mediated by pollinators, and the effects of herbivore-induced plant defences on pollinator behaviour have been largely neglected.

  10. Integrated gasification gas combined cycle plant with membrane reactors: Technological and economical analysis

    International Nuclear Information System (INIS)

    Amelio, Mario; Morrone, Pietropaolo; Gallucci, Fausto; Basile, Angelo

    2007-01-01

    In the present work, the capture and storage of carbon dioxide from the fossil fuel power plant have been considered. The main objective was to analyze the thermodynamic performances and the technological aspects of two integrated gasification gas combined cycle plants (IGCC), as well as to give a forecast of the investment costs for the plants and the resulting energy consumptions. The first plant considered is an IGCC* plant (integrated gasification gas combined cycle plant with traditional shift reactors) characterized by the traditional water gas shift reactors and a CO 2 physical adsorption system followed by the power section. The second one is an IGCC M plant (integrated gasification gas combined cycle plant with membrane reactor) where the coal thermal input is the same as the first one, but the traditional shift reactors and the physical adsorption unit are replaced by catalytic palladium membrane reactors (CMR). In the present work, a mono-dimensional computational model of the membrane reactor was proposed to simulate and evaluate the capability of the IGCC M plant to capture carbon dioxide. The energetic performances, efficiency and net power of the IGCC* and IGCC M plants were, thus, compared, assuming as standard a traditional IGCC plant without carbon dioxide capture. The economical aspects of the three plants were compared through an economical analysis. Since the IGCC* and IGCC M plants have additional costs related to the capture and disposal of the carbon dioxide, a Carbon Tax (adopted in some countries like Sweden) proportional to the number of kilograms of carbon dioxide released in the environment was assumed. According to the economical analysis, the IGCC M plant proved to be more convenient than the IGCC* one

  11. Point of care with micro fluidic paper based device integrated with nano zeolite-graphene oxide nanoflakes for electrochemical sensing of ketamine.

    Science.gov (United States)

    Narang, Jagriti; Malhotra, Nitesh; Singhal, Chaitali; Mathur, Ashish; Chakraborty, Dhritiman; Anil, Anusree; Ingle, Aviraj; Pundir, Chandra S

    2017-02-15

    The present study was aimed to develop an ultrasensitive technique for electroanalysis of ketamine; a date rape drug. It involved the fabrication of nano-hybrid based electrochemical micro fluidic paper-based analytical device (EμPADs) for electrochemical sensing of ketamine. A paper chip was developed using zeolites nanoflakes and graphene-oxide nanocrystals (Zeo-GO). EμPAD offers many advantages such as facile approach, economical and potential for commercialization. Nanocrystal modified EμPAD showed wide linear range 0.001-5nM/mL and a very low detection limit of 0.001nM/mL. The developed sensor was tested in real time samples like alcoholic and non-alcoholic drinks and found good correlation (99%). The hyphenation of EμPAD integrated with nanocrystalline Zeo-GO for detection of ketamine has immense prospective for field-testing platforms. An extensive development could be made for industrial translation of this fabricated device. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Dominant integration locus drives continuous diversification of plant immune receptors with exogenous domain fusions.

    Science.gov (United States)

    Bailey, Paul C; Schudoma, Christian; Jackson, William; Baggs, Erin; Dagdas, Gulay; Haerty, Wilfried; Moscou, Matthew; Krasileva, Ksenia V

    2018-02-19

    The plant immune system is innate and encoded in the germline. Using it efficiently, plants are capable of recognizing a diverse range of rapidly evolving pathogens. A recently described phenomenon shows that plant immune receptors are able to recognize pathogen effectors through the acquisition of exogenous protein domains from other plant genes. We show that plant immune receptors with integrated domains are distributed unevenly across their phylogeny in grasses. Using phylogenetic analysis, we uncover a major integration clade, whose members underwent repeated independent integration events producing diverse fusions. This clade is ancestral in grasses with members often found on syntenic chromosomes. Analyses of these fusion events reveals that homologous receptors can be fused to diverse domains. Furthermore, we discover a 43 amino acid long motif associated with this dominant integration clade which is located immediately upstream of the fusion site. Sequence analysis reveals that DNA transposition and/or ectopic recombination are the most likely mechanisms of formation for nucleotide binding leucine rich repeat proteins with integrated domains. The identification of this subclass of plant immune receptors that is naturally adapted to new domain integration will inform biotechnological approaches for generating synthetic receptors with novel pathogen "baits."

  13. Integration of renewable energies into the German power system and their influence on investments in new power plants. Integrated consideration of effects on power plant investment and operation

    Energy Technology Data Exchange (ETDEWEB)

    Harthan, Ralph Oliver

    2015-01-14

    The increasing share of renewable energies in the power sector influences the economic viability of investments in new conventional power plants. Many studies have investigated these issues by considering power plant operation or the long-term development of the power plant fleet. However, power plant decommissioning, investment and operation are intrinsically linked. This doctoral thesis therefore presents a modelling framework for an integrated consideration of power plant decommissioning, investment and operation. In a case study focusing on Germany, the effects of the integration of renewable energies on power plant decommissioning, investment and operation are evaluated in the context of different assumptions regarding the remaining lifetime of nuclear power plants. With regard to the use of nuclear power, a phase-out scenario and a scenario with lifetime extension of nuclear power plants (by on average 12 years) are considered. The results show that static decommissioning (i.e. considering fixed technical lifetimes) underestimates the capacity available in the power sector in the scenario without lifetime extension since retrofit measures (versus decommissioning) are not taken into account. In contrast, capacity available in the case of nuclear lifetime extension is overestimated since mothballing (versus regular operation) is not considered. If the impact on decommissioning decisions of profit margins accrued during power plant operation are considered (''dynamic decommissioning''), the electricity price reduction effect due to a lifetime extension is reduced by more than half in comparison to static decommissioning. Scarcity situations do not differ significantly between the scenarios with and without lifetime extension with dynamic decommissioning; in contrast, there is a significantly higher need for imports without lifetime extension with static decommissioning. The case study demonstrates that further system flexibility is needed for

  14. Integration of renewable energies into the German power system and their influence on investments in new power plants. Integrated consideration of effects on power plant investment and operation

    International Nuclear Information System (INIS)

    Harthan, Ralph Oliver

    2015-01-01

    The increasing share of renewable energies in the power sector influences the economic viability of investments in new conventional power plants. Many studies have investigated these issues by considering power plant operation or the long-term development of the power plant fleet. However, power plant decommissioning, investment and operation are intrinsically linked. This doctoral thesis therefore presents a modelling framework for an integrated consideration of power plant decommissioning, investment and operation. In a case study focusing on Germany, the effects of the integration of renewable energies on power plant decommissioning, investment and operation are evaluated in the context of different assumptions regarding the remaining lifetime of nuclear power plants. With regard to the use of nuclear power, a phase-out scenario and a scenario with lifetime extension of nuclear power plants (by on average 12 years) are considered. The results show that static decommissioning (i.e. considering fixed technical lifetimes) underestimates the capacity available in the power sector in the scenario without lifetime extension since retrofit measures (versus decommissioning) are not taken into account. In contrast, capacity available in the case of nuclear lifetime extension is overestimated since mothballing (versus regular operation) is not considered. If the impact on decommissioning decisions of profit margins accrued during power plant operation are considered (''dynamic decommissioning''), the electricity price reduction effect due to a lifetime extension is reduced by more than half in comparison to static decommissioning. Scarcity situations do not differ significantly between the scenarios with and without lifetime extension with dynamic decommissioning; in contrast, there is a significantly higher need for imports without lifetime extension with static decommissioning. The case study demonstrates that further system flexibility is needed for

  15. Instructional Integration of Disciplines for Promoting Children's Positive Attitudes towards Plants

    Science.gov (United States)

    Çìl, Emine

    2016-01-01

    Plants are an integral part of nature. Many plant species in almost any part of the world are under serious threats due to various reasons such as deforestation, pollution--of air, water and soil--caused by industrialisation, overgrazing and rapid population growth. It is likely that people have strong positive attitudes towards conservation of…

  16. Heat integration in multipurpose batch plants using a robust scheduling framework

    CSIR Research Space (South Africa)

    Seid, ER

    2014-07-01

    Full Text Available This case study was taken from the petro- chemical plant by Kallrath [46] and used as a benchmark problem in the scheduling environment for multipurpose batch plants. We adapted this case study to incorporate energy integration. The recipe representa- tion...

  17. Promoter-Based Integration in Plant Defense Regulation

    DEFF Research Database (Denmark)

    Li, Baohua; Gaudinier, Allison; Tang, Michelle

    2014-01-01

    A key unanswered question in plant biology is how a plant regulates metabolism to maximize performance across an array of biotic and abiotic environmental stresses. In this study, we addressed the potential breadth of transcriptional regulation that can alter accumulation of the defensive...... glucosinolate metabolites in Arabidopsis (Arabidopsis thaliana). A systematic yeast one-hybrid study was used to identify hundreds of unique potential regulatory interactions with a nearly complete complement of 21 promoters for the aliphatic glucosinolate pathway. Conducting high-throughput phenotypic...... validation, we showed that >75% of tested transcription factor (TF) mutants significantly altered the accumulation of the defensive glucosinolates. These glucosinolate phenotypes were conditional upon the environment and tissue type, suggesting that these TFs may allow the plant to tune its defenses...

  18. C.A.S.H. - a transient integrated plant model for a HTR-module power plant. User manual

    International Nuclear Information System (INIS)

    Biesenbach, R.; Lauer, A.; Struth, S.

    1997-07-01

    The computer code C.A.S.H. has been developed as an integrated plant model for the HTR-Module reactor, in order to treat safety related questions about this type of power plant which require a detailed numeric simulation of the transient behaviour of the integrated plant. The present report contains the user manual for this plant model. It consists of three parts: In the first part, the code structure and functions, the course of the simulation calculations, and important code parts are described. The second part is devoted to the practical application and explains extensively the handling of the complex code system with several sample calculations. These computing cases comprise load-follow transients and the shutdown procedure of the HTR-Module and are presented and discussed with the full input data, job patterns, and numerous computer graphics. The third part contains the input manual of C.A.S.H. and is rather extensive as it includes the complete inputs of several reactor component computer codes along with the control program of the integrated plant model. (orig./DG) [de

  19. Grid Integration Issues for Large Scale Wind Power Plants (WPPs)

    DEFF Research Database (Denmark)

    Wu, Qiuwei; Xu, Zhao; Østergaard, Jacob

    2010-01-01

    transmission system operators (TSOs) over the world have come up the grid codes to request the wind power plants (WPPs) to have more or less the same operating capability as the conventional power plants. The grid codes requirements from other TSOs are under development. This paper covers the steady state......The penetration level of wind power into the power system over the world have been increasing very fast in the last few years and is still keeping the fast growth rate. It is just a matter of time that the wind power will be comparable to the conventional power generation. Therefore, many...

  20. Optimum heat storage design for heat integrated multipurpose batch plants

    CSIR Research Space (South Africa)

    Stamp, J

    2011-01-01

    Full Text Available procedure is presented tha journal homepage: www All rights reserved. ajozi T, Optimum heat storage grated multipurpose batch plants , South Africa y usage in multipurpose batch plants has been in published literature most present methods, time... � 2pL?u?kins ? 1 h3A3?u?cu?U (36) The internal area for heat loss by convection from the heat transfer medium is given by Constraint (37) and the area for convective heat transfer losses to the environment is given in Constraint (38). A1?u? ? 2...

  1. IEC 61850: integrating substation automation into the power plant control system; IEC 61850: Integration der Schaltanlagenautomatisierung in die Kraftwerksleittechnik

    Energy Technology Data Exchange (ETDEWEB)

    Orth, J. [ABB AG, Mannheim (Germany)

    2008-07-01

    The new communication standard IEC 61850 has been developed in the substation automation domain and was released 2004 as a worldwide standard. Meanwhile IEC 61850 is already established in many substation automation markets. The paper discusses the implementation of IEC 61850 integrating process control and substation automation into one consistent system in a power plant. (orig.)

  2. Electrochemical energy storage

    CERN Document Server

    Tarascon, Jean-Marie

    2015-01-01

    The electrochemical storage of energy has become essential in assisting the development of electrical transport and use of renewable energies. French researchers have played a key role in this domain but Asia is currently the market leader. Not wanting to see history repeat itself, France created the research network on electrochemical energy storage (RS2E) in 2011. This book discusses the launch of RS2E, its stakeholders, objectives, and integrated structure that assures a continuum between basic research, technological research and industries. Here, the authors will cover the technological

  3. Pyrolysis of rubber gloves in integral pyrolysis test plant

    International Nuclear Information System (INIS)

    Norasalwa Zakaria; Mohd Noor Muhd Yunus; Mohd Annuar Assadat Husain; Farid Nasir Ani

    2010-01-01

    Previously, pyrolysis of rubber gloves in laboratory study was described. In order to visualize the practical application of rubber gloves pyrolysis in terms of treating rubber gloves in medical waste, a new test plant was designed and constructed. The semi-continuous test plant was designed to accommodate rubber gloves that were not cut or shredded. The test plant has a capacity of 2kg/ hr and employed auxiliary fuel instead of the conventional electrical power for heating. The concept was based on moving bed reactor, but additional feature of sand jacket feature was also introduced in the design. Pyrolysis of the gloves was conducted at three temperatures, namely 350 degree Celsius, 400 degree Celsius and 450 degree Celsius. Oxygen presents inside of the reactor due to the combined effect of imperfect sealing and suction effect. This study addresses the performance of this test plant covering the time temperature profile, gas evolution profile and product yield. Comparison between the yield of the liquid, gas and char pyrolyzate was made against the laboratory study. It was found that the oil yield was less than the one obtained from bench scale study. Water formation was more pronounced. The presence of the oxygen also altered the tail gas composition but eliminate the sticky nature of solid residue, making it easier to handle. The chemical composition of the oil was determined and the main compounds in the oil were esters and phtalic acid. (author)

  4. ENEL overall PWR plant models and neutronic integrated computing systems

    International Nuclear Information System (INIS)

    Pedroni, G.; Pollachini, L.; Vimercati, G.; Cori, R.; Pretolani, F.; Spelta, S.

    1987-01-01

    To support the design activity of the Italian nuclear energy program for the construction of pressurized water reactors, the Italian Electricity Board (ENEL) needs to verify the design as a whole (that is, the nuclear steam supply system and balance of plant) both in steady-state operation and in transient. The ENEL has therefore developed two computer models to analyze both operational and incidental transients. The models, named STRIP and SFINCS, perform the analysis of the nuclear as well as the conventional part of the plant (the control system being properly taken into account). The STRIP model has been developed by means of the French (Electricite de France) modular code SICLE, while SFINCS is based on the Italian (ENEL) modular code LEGO. STRIP validation was performed with respect to Fessenheim French power plant experimental data. Two significant transients were chosen: load step and total load rejection. SFINCS validation was performed with respect to Saint-Laurent French power plant experimental data and also by comparing the SFINCS-STRIP responses

  5. Water-integrated scheduling of batch process plants

    NARCIS (Netherlands)

    Pulluru, Sai Jishna; Akkerman, Renzo

    2017-01-01

    Efficient water management is becoming increasingly important in production systems, but companies often do not have any concrete strategies to implement. While there are numerous technological options for improving water efficiency in process plants, there is a lack of effective decision support to

  6. Water-integrated scheduling of batch process plants

    NARCIS (Netherlands)

    Pulluru, Sai Jishna; Akkerman, Renzo

    2018-01-01

    Efficient water management is becoming increasingly important in production systems, but companies often do not have any concrete strategies to implement. While there are numerous technological options for improving water efficiency in process plants, there is a lack of effective decision support to

  7. Thermodynamic analysis and optimization of IT-SOFC-based integrated coal gasification fuel cell power plants

    NARCIS (Netherlands)

    Romano, M.C.; Campanari, S.; Spallina, V.; Lozza, G.

    2011-01-01

    This work discusses the thermodynamic analysis of integrated gasification fuel cell plants, where a simple cycle gas turbine works in a hybrid cycle with a pressurized intermediate temperature–solid oxide fuel cell (SOFC), integrated with a coal gasification and syngas cleanup island and a bottoming

  8. Integration of drinking water treatment plant process models and emulated process automation software

    NARCIS (Netherlands)

    Worm, G.I.M.

    2012-01-01

    The objective of this research is to limit the risks of fully automated operation of drinking water treatment plants and to improve their operation by using an integrated system of process models and emulated process automation software. This thesis contains the design of such an integrated system.

  9. Development of integrity evaluation technology for pressurized components in nuclear power plant and IT based integrity evaluation system

    International Nuclear Information System (INIS)

    Kim, Young Jin; Choi, Jae Boong; Shim, Do Jun

    2004-02-01

    The objective of this research is to develop on efficient integrity evaluation technology and to investigate the applicability of the newly-developed technology such as internet-based cyber platform etc. to Nuclear Power Plant(NPP) components. The development of an efficient structural integrity evaluation system is necessary for safe operation of NPP as the increase of operating periods. Moreover, material test data as well as emerging structural integrity assessment technology are also needed for the evaluation of aged components. The following five topics are covered in this project: development of the wall-thinning evaluation program for nuclear piping; development of structural integrity evaluation criteria for steam generator tubes with cracks of various shape; development of fatigue life evaluation system for major components of NPP; ingegration of internet-based cyber platform and integrity evaluation program for primary components of NPP; effects of aging on strength of dissimilar welds

  10. Development of integrity evaluation technology for pressurized components in nuclear power plant and IT based integrity evaluation system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Jin; Choi, Jae Boong; Shim, Do Jun [Sungkyunkwan Univ., Seoul (Korea, Republic of)] (and others)

    2004-02-15

    The objective of this research is to develop on efficient integrity evaluation technology and to investigate the applicability of the newly-developed technology such as internet-based cyber platform etc. to Nuclear Power Plant(NPP) components. The development of an efficient structural integrity evaluation system is necessary for safe operation of NPP as the increase of operating periods. Moreover, material test data as well as emerging structural integrity assessment technology are also needed for the evaluation of aged components. The following five topics are covered in this project: development of the wall-thinning evaluation program for nuclear piping; development of structural integrity evaluation criteria for steam generator tubes with cracks of various shape; development of fatigue life evaluation system for major components of NPP; ingegration of internet-based cyber platform and integrity evaluation program for primary components of NPP; effects of aging on strength of dissimilar welds.

  11. Municipal Solid Waste Gasification Plant Integrated With SOFC and Gas Turbine

    DEFF Research Database (Denmark)

    Bellomare, Filippo; Rokni, Masoud

    2012-01-01

    An interesting source of producing energy with low pollutants emission and reduced environmental impact are the biomasses; particularly using Municipal Solid Waste (MSW) as fuel, can be a competitive solution not only to produce energy with negligible costs but also to decrease the storage...... in landfills. A Municipal Solid Waste Gasification Plant Integrated with Solid Oxide Fuel Cell (SOFC) and Gas Turbine (GT) has been studied and the plant is called IGSG (Integrated Gasification SOFC and GT). Gasification plant is fed by MSW to produce syngas by which the anode side of a SOFC is fed wherein...

  12. Integration of a hydraulic production plant in a weak power system on a long radial line

    Energy Technology Data Exchange (ETDEWEB)

    Lariviere, P. [Hydro-Quebec TransEnergie, 5655 de Marseille, Montreal, Quebec (Canada); Racine, M. [Hydro-Quebec TransEnergie, C.P. 10 000, Montreal, Quebec (Canada)

    2009-03-15

    Integrating power plants on long lines and weak power systems requires some care. To this effect, a study was conducted to determine if severe disturbances could result when a hydraulic production plant is integrated along a very long radial transmission line. Frequency responses were evaluated to identify possible resonant system operating conditions. Many events such as faults, transformer energyzing and line opening were investigated. All power plant synchronous machines were represented including exciter and governor regulators. Impact of dynamic modeling of the load was examined. The study demonstrates that the overall protective strategy implemented will limit worst overvoltage constraints imposed to equipment and load within an acceptable level. (author)

  13. Integration of a municipal solid waste gasification plant with solid oxide fuel cell and gas turbine

    DEFF Research Database (Denmark)

    Bellomare, Filippo; Rokni, Masoud

    2013-01-01

    An interesting source of producing energy with low pollutants emission and reduced environmental impact are the biomasses; particularly using Municipal Solid Waste (MSW) as fuel, can be a competitive solution not only to produce energy with negligible costs but also to decrease the storage...... in landfills. A Municipal Solid Waste Gasification Plant Integrated with Solid Oxide Fuel Cell (SOFC) and Gas Turbine (GT) has been studied and the plant is called IGSG (Integrated Gasification SOFC and GT). Gasification plant is fed by MSW to produce syngas by which the anode side of an SOFC is fed wherein...

  14. Optimal integration of energy at the Combined Energy Plant in Norrkoeping -Integration of steam, hot water and district heat to biogas plants; Optimal integrering av energianvaendningen vid energikombinatet i Norrkoeping -Integrering av aanga, hetvatten och fjaerrvaerme till biogasanlaeggningar

    Energy Technology Data Exchange (ETDEWEB)

    Benjaminsson, Johan; Goldschmidt, Barbara; Uddgren, Roger

    2010-09-15

    The background of this report is to investigate and highlight the benefits of establishing a biogas plant nearby a combined energy plant where steam and district heat is available. By using heat from the combined energy plant, more biogas can be produced as vehicle fuel instead of being used as fuel to heat the digester, the biogas upgrading plant or the dryer. The project's objective is to analyze where it is interesting with integration of heat to the biogas plant and to compare alternative technologies and possible integration options. The stakeholders of the study are industries with access to organic matter for biogas production and heat producers who can deliver thermal energy into biogas plants. The project was implemented by collection of information from the Haendeloe combined energy plant outside Norrkoeping where there is a cogeneration plant, an ethanol plant and a biogas plant. Case studies for the study have been carried out with proposals regarding how heat flows from the power plant and ethanol plant can be further integrated with the biogas plant. As case studies, both the current design of the biogas plant, as well as a fictional case in which half of all distillery residues was digested, have been evaluated. The case studies show that in today's biogas plant it is not economical to replace the existing biogas upgrading unit with water absorption to chemical absorption. The upgrading cost with water absorption at today's smaller facility is 0.11 kr/kWh and in order to obtain the same total cost of chemical absorption a steam price of 0.15 kr/kWh is required. For large gas flows, chemical absorption is an advantage since the technology is more suitable for upscaling in comparison with water absorption that must be delivered in multiple lines. Nevertheless, a possibility to recover waste heat from chemical absorption is necessary if the technology shall be competitive. If waste heat from both water absorption and chemical absorption

  15. Cover plants with potential use for crop-livestock integrated systems in the Cerrado region

    Directory of Open Access Journals (Sweden)

    Arminda Moreira de Carvalho

    2011-10-01

    Full Text Available The objective of this work was to evaluate the effects of lignin, hemicellulose, and cellulose concentrations in the decomposition process of cover plant residues with potential use in no-tillage with corn, for crop-livestock integrated system, in the Cerrado region. The experiment was carried out at Embrapa Cerrados, in Planaltina, DF, Brazil in a split plot experimental design. The plots were represented by the plant species and the subplots by harvesting times, with three replicates. The cover plants Urochloa ruziziensis, Canavalia brasiliensis, Cajanus cajan, Pennisetum glaucum, Mucuna aterrima, Raphanus sativus, Sorghum bicolor were evaluated together with spontaneous plants in the fallow. Cover plants with lower lignin concentrations and, consequently, higher residue decomposition such as C. brasiliensis and U. ruziziensis promoted higher corn yield. High concentrations of lignin inhibit plant residue decomposition and this is favorable for the soil cover. Lower concentrations of lignin result in accelerated plant decomposition, more efficient nutrient cycling, and higher corn yield.

  16. Integrated operation and management system for a 700MW combined cycle power plant

    Energy Technology Data Exchange (ETDEWEB)

    Shiroumaru, I. (Yanai Power Plant Construction Office, Chugoku Electric Power Co., Inc., 1575-5 Yanai-Miyamoto-Shiohama, Yanai-shi, Yamaguchi-ken (JP)); Iwamiya, T. (Omika Works, Hitachi, Ltd., 5-2-1 Omika-cho, Hitachi-shi, Ibaraki-ken (JP)); Fukai, M. (Hitachi Works, Hitachi, Ltd., 3-1-1 Saiwai-cho, Hitachi-shi, Ibaraki-ken (JP))

    1992-03-01

    Yanai Power Plant of the Chugoku Electric Power Co., Inc. (Yamaguchi Pref., Japan) is in the process of constructing a 1400MW state-of-the-art combined cycle power plant. The first phase, a 350MW power plant, started operation on a commercial basis in November, 1990. This power plant has achieved high efficiency and high operability, major features of a combined cycle power plant. The integrated operation and management system of the power plant takes care of operation, maintenance, control of general business, etc., and was built using the latest computer and digital control and communication technologies. This paper reports that it is expected that this system will enhance efficient operation and management for the power plant.

  17. Thermodynamic investigation of an integrated gasification plant with solid oxide fuel cell and steam cycles

    Energy Technology Data Exchange (ETDEWEB)

    Rokni, Masoud [Technical Univ. of Denmark, Lyngby (Denmark). Dept. of Mechanical Engineering, Thermal Energy System

    2012-07-01

    A gasification plant is integrated on the top of a solid oxide fuel cell (SOFC) cycle, while a steam turbine (ST) cycle is used as a bottoming cycle for the SOFC plant. The gasification plant was fueled by woodchips to produce biogas and the SOFC stacks were fired with biogas. The produced gas was rather clean for feeding to the SOFC stacks after a simple cleaning step. Because all the fuel cannot be burned in the SOFC stacks, a burner was used to combust the remaining fuel. The off-gases from the burner were then used to produce steam for the bottoming steam cycle in a heat recovery steam generator (HRSG). The steam cycle was modeled with a simple single pressure level. In addition, a hybrid recuperator was used to recover more energy from the HRSG and send it back to the SOFC cycle. Thus two different configurations were investigated to study the plants characteristic. Such system integration configurations are completely novel and have not been studied elsewhere. Plant efficiencies of 56% were achieved under normal operation which was considerably higher than the IGCC (Integrated Gasification Combined Cycle) in which a gasification plant is integrated with a gas turbine and a steam turbine. Furthermore, it is shown that under certain operating conditions, plant efficiency of about 62 is also possible to achieve. (orig.)

  18. Electrochemical behavior of uranium oxide in a LiCl-Li2O molten salt with the integrated cathode assembly

    International Nuclear Information System (INIS)

    Park, Sung Bin; Park, Byung Heung; Kang, Dae Seoung; Kwon, Seon Gil; Seo, Chung Seok; Park, Seong Won

    2005-01-01

    Electrochemical reduction of uranium oxide to uranium metal was studied in a LiCl-Li 2 O molten salt system. By means of a cyclic voltammetry and a chronopotentiometry, the electrolytic reduction of uranium oxide has been studied to establish the reduction mechanisms and the effects of the thickness of the uranium oxide on the overpotential of the cathode and anode were investigated. From the voltamograms, the reduction potentials of the uranium oxide and Li 2 O were obtained and the two mechanisms of the electrolytic reduction were considered with regards to the applied cathode potential. In the chronopotentiograms, the exchange current, the transfer coefficient and the maximum allowable current based on the Tafel behavior were obtained according to the thickness of the uranium oxide which is loaded into the porous MgO membrane. (author)

  19. Development and integration of a LabVIEW-based modular architecture for automated execution of electrochemical catalyst testing.

    Science.gov (United States)

    Topalov, Angel A; Katsounaros, Ioannis; Meier, Josef C; Klemm, Sebastian O; Mayrhofer, Karl J J

    2011-11-01

    This paper describes a system for performing electrochemical catalyst testing where all hardware components are controlled simultaneously using a single LabVIEW-based software application. The software that we developed can be operated in both manual mode for exploratory investigations and automatic mode for routine measurements, by using predefined execution procedures. The latter enables the execution of high-throughput or combinatorial investigations, which decrease substantially the time and cost for catalyst testing. The software was constructed using a modular architecture which simplifies the modification or extension of the system, depending on future needs. The system was tested by performing stability tests of commercial fuel cell electrocatalysts, and the advantages of the developed system are discussed. © 2011 American Institute of Physics

  20. Development of web-based integrity evaluation system for primary components in a nuclear power plant

    International Nuclear Information System (INIS)

    Lee, S.M.; Kim, J.C.; Choi, J.B.; Kim, Y.J.; Choi, S.N.; Jang, K.S.; Hong, S.Y.

    2004-01-01

    A nuclear power plant is composed of a number of primary components. Maintaining the integrity of these components is one of the most critical issues in nuclear industry. In order to maintain the integrity of these primary components, a complicated procedure is required including periodical in-service inspection, failure assessment, fracture mechanics analysis, etc. Also, experts in different fields have to co-operate to resolve the integrity issues on the basis of inspection results. This integrity evaluation process usually takes long, and thus, is detrimental for the plant productivity. Therefore, an effective safety evaluation system is essential to manage integrity issues on a nuclear power plant. In this paper, a web-based integrity evaluation system for primary components in a nuclear power plant is proposed. The proposed system, which is named as WEBIES (web-based integrity evaluation system), has been developed in the form of 3-tier system architecture. The system consists of three servers; application program server, user interface program server and data warehouse server. The application program server includes the defect acceptance analysis module and the fracture mechanics analysis module which are programmed on the basis of ASME sec. XI, appendix A. The data warehouse server provides data for the integrity evaluation including material properties, geometry information, inspection data and stress data. The user interface program server provides information to all co- workers in the field of integrity evaluation. The developed system provides engineering knowledge-based information and concurrent and collaborative working environment through internet, and thus, is expected to raise the efficiency of integrity evaluation procedures on primary components of a nuclear power plant. (orig.)

  1. Development of web-based integrity evaluation system for primary components in a nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.M.; Kim, J.C.; Choi, J.B.; Kim, Y.J. [SAFE Research Center, Sungkyunkwan Univ., Suwon (Korea); Choi, S.N.; Jang, K.S.; Hong, S.Y. [Korea Electronic Power Research Inst., Daejeon (Korea)

    2004-07-01

    A nuclear power plant is composed of a number of primary components. Maintaining the integrity of these components is one of the most critical issues in nuclear industry. In order to maintain the integrity of these primary components, a complicated procedure is required including periodical in-service inspection, failure assessment, fracture mechanics analysis, etc. Also, experts in different fields have to co-operate to resolve the integrity issues on the basis of inspection results. This integrity evaluation process usually takes long, and thus, is detrimental for the plant productivity. Therefore, an effective safety evaluation system is essential to manage integrity issues on a nuclear power plant. In this paper, a web-based integrity evaluation system for primary components in a nuclear power plant is proposed. The proposed system, which is named as WEBIES (web-based integrity evaluation system), has been developed in the form of 3-tier system architecture. The system consists of three servers; application program server, user interface program server and data warehouse server. The application program server includes the defect acceptance analysis module and the fracture mechanics analysis module which are programmed on the basis of ASME sec. XI, appendix A. The data warehouse server provides data for the integrity evaluation including material properties, geometry information, inspection data and stress data. The user interface program server provides information to all co- workers in the field of integrity evaluation. The developed system provides engineering knowledge-based information and concurrent and collaborative working environment through internet, and thus, is expected to raise the efficiency of integrity evaluation procedures on primary components of a nuclear power plant. (orig.)

  2. Electrochemical Processes

    DEFF Research Database (Denmark)

    Bech-Nielsen, Gregers

    1997-01-01

    The notes describe in detail primary and secondary galvanic cells, fuel cells, electrochemical synthesis and electroplating processes, corrosion: measurments, inhibitors, cathodic and anodic protection, details of metal dissolution reactions, Pourbaix diagrams and purification of waste water from...

  3. Integrating women into operator type work at N Reactor Plant

    International Nuclear Information System (INIS)

    Vinther, A.P.

    1976-01-01

    The Affirmative Action Plan in place at the Hanford complex has the goal of filling jobs in all phases of the work force with qualified minority personnel. The paper deals with the special concern, adjustments, and results achieved within UNI as a result of integrating qualified women candidates into the operator and technologist training program

  4. Heat Integration and Renewable Energy in Meat Processing Plants

    OpenAIRE

    Colley, Tracey Anne

    2016-01-01

    This thesis aims to optimise energy efficiency at meat processing plants and minimise their carbon footprint, as a way of reducing operating costs and minimising the potential negative impacts of a carbon price on the red meat industry. In the context of the export meat industry, there is continual competition with the live export trade. Therefore, there is a risk that a carbon price could increase the live export trade over domestic processing of meat, thereby exporti...

  5. Plant life management in Belgium: an integrated project

    International Nuclear Information System (INIS)

    Wacquier, W.; Smet, M. de; Hennart, J.C.; Greer, J.L.; Breesch, Ch.; Havard, P.

    2001-01-01

    In Belgium, a specific plant life management project, named ''Continuous Operation of Belgian NPPs'' is currently developing. Its final objective is to centralize all safety and economic aspects of plant life management in order to determine, for each NPP unit, the optimal actions required to maintain their safe and reliable operation. As the lifetime of safety-related active components is permanently controlled by the current maintenance programs, the project focuses only on passive safety-related components and on non-safety components important for the availability of the plants. These structures and components were evaluated and compared on the basis of a set of weighted criteria in order to measure their criticality and to identify those which must be considered in the project. The selection and the ranking of those components is based on the KBM TM methodology (Knowledge Based Maintenance). This methodology facilitates the collection, formalization and exchange of know-how and gives immediate results thanks to a sequential and systematic step by step analysis. (author)

  6. Integrated Plant Safety Assessment, Systematic Evaluation Program: Yankee Nuclear Power Station (Docket No. 50-29)

    International Nuclear Information System (INIS)

    1987-10-01

    The US Nuclear Regulatory Commission (NRC) has prepared Supplement 1 to the final Integrated Plant Safety Assessment Report (IPSAR) (NUREG-0825), under the scope of the Systematic Evaluation Program (SEP), for Yankee Atomic Electric Company's Yankee Nuclear Power Station located in Rowe, Massachusetts. The SEP was initiated by the NRC to review the design of older operating nuclear power plants to reconfirm and document their safety. This report documents the review completed under the SEP for those issues that required refined engineering evaluations or the continuation of ongoing evaluations after the Final IPSAR for the Yankee plant was issued. The review has provided for (1) an assessment of the significance of differences between current technical positions on selected safety issues and those that existed when Yankee was licensed, (2) a basis for deciding how these differences should be resolved in an integrated plant review, and (3) a documented evaluation of plant safety. 2 tabs

  7. Electrochemical analysis

    International Nuclear Information System (INIS)

    Hwang, Hun

    2007-02-01

    This book explains potentiometry, voltametry, amperometry and basic conception of conductometry with eleven chapters. It gives the specific descriptions on electrochemical cell and its mode, basic conception of electrochemical analysis on oxidation-reduction reaction, standard electrode potential, formal potential, faradaic current and faradaic process, mass transfer and overvoltage, potentiometry and indirect potentiometry, polarography with TAST, normal pulse and deferential pulse, voltammetry, conductometry and conductometric titration.

  8. The Plant Phenology Ontology: A New Informatics Resource for Large-Scale Integration of Plant Phenology Data.

    Science.gov (United States)

    Stucky, Brian J; Guralnick, Rob; Deck, John; Denny, Ellen G; Bolmgren, Kjell; Walls, Ramona

    2018-01-01

    Plant phenology - the timing of plant life-cycle events, such as flowering or leafing out - plays a fundamental role in the functioning of terrestrial ecosystems, including human agricultural systems. Because plant phenology is often linked with climatic variables, there is widespread interest in developing a deeper understanding of global plant phenology patterns and trends. Although phenology data from around the world are currently available, truly global analyses of plant phenology have so far been difficult because the organizations producing large-scale phenology data are using non-standardized terminologies and metrics during data collection and data processing. To address this problem, we have developed the Plant Phenology Ontology (PPO). The PPO provides the standardized vocabulary and semantic framework that is needed for large-scale integration of heterogeneous plant phenology data. Here, we describe the PPO, and we also report preliminary results of using the PPO and a new data processing pipeline to build a large dataset of phenology information from North America and Europe.

  9. Thermodynamic Investigation of an Integrated Gasification Plant with Solid Oxide Fuel Cell and Steam Cycles

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2012-01-01

    A gasification plant is integrated on the top of a solid oxide fuel cell (SOFC) cycle, while a steam turbine (ST) cycle is used as a bottoming cycle for the SOFC plant. The gasification plant was fueled by woodchips to produce biogas and the SOFC stacks were fired with biogas. The produced gas...... generator (HRSG). The steam cycle was modeled with a simple single pressure level. In addition, a hybrid recuperator was used to recover more energy from the HRSG and send it back to the SOFC cycle. Thus two different configurations were investigated to study the plants characteristic. Such system...

  10. SASSYS-1 balance-of-plant component models for an integrated plant response

    International Nuclear Information System (INIS)

    Ku, J.-Y.

    1989-01-01

    Models of power plant heat transfer components and rotating machinery have been added to the balance-of-plant model in the SASSYS-1 liquid metal reactor systems analysis code. This work is part of a continuing effort in plant network simulation based on the general mathematical models developed. The models described in this paper extend the scope of the balance-of-plant model to handle non-adiabatic conditions along flow paths. While the mass and momentum equations remain the same, the energy equation now contains a heat source term due to energy transfer across the flow boundary or to work done through a shaft. The heat source term is treated fully explicitly. In addition, the equation of state is rewritten in terms of the quality and separate parameters for each phase. The models are simple enough to run quickly, yet include sufficient detail of dominant plant component characteristics to provide accurate results. 5 refs., 16 figs., 2 tabs

  11. Evolution of plant virus movement proteins from the 30K superfamily and of their homologs integrated in plant genomes

    Energy Technology Data Exchange (ETDEWEB)

    Mushegian, Arcady R., E-mail: mushegian2@gmail.com [Division of Molecular and Cellular Biosciences, National Science Foundation, 4201 Wilson Boulevard, Arlington, VA 22230 (United States); Elena, Santiago F., E-mail: sfelena@ibmcp.upv.es [Instituto de Biología Molecular y Celular de Plantas, CSIC-UPV, 46022 València (Spain); The Santa Fe Institute, Santa Fe, NM 87501 (United States)

    2015-02-15

    Homologs of Tobacco mosaic virus 30K cell-to-cell movement protein are encoded by diverse plant viruses. Mechanisms of action and evolutionary origins of these proteins remain obscure. We expand the picture of conservation and evolution of the 30K proteins, producing sequence alignment of the 30K superfamily with the broadest phylogenetic coverage thus far and illuminating structural features of the core all-beta fold of these proteins. Integrated copies of pararetrovirus 30K movement genes are prevalent in euphyllophytes, with at least one copy intact in nearly every examined species, and mRNAs detected for most of them. Sequence analysis suggests repeated integrations, pseudogenizations, and positive selection in those provirus genes. An unannotated 30K-superfamily gene in Arabidopsis thaliana genome is likely expressed as a fusion with the At1g37113 transcript. This molecular background of endopararetrovirus gene products in plants may change our view of virus infection and pathogenesis, and perhaps of cellular homeostasis in the hosts. - Highlights: • Sequence region shared by plant virus “30K” movement proteins has an all-beta fold. • Most euphyllophyte genomes contain integrated copies of pararetroviruses. • These integrated virus genomes often include intact movement protein genes. • Molecular evidence suggests that these “30K” genes may be selected for function.

  12. Development of an integrated cost model for nuclear plant decommissioning

    International Nuclear Information System (INIS)

    Amos, G.; Roy, R.

    2003-01-01

    A need for an integrated cost estimating tool for nuclear decommissioning and associated waste processing and storage facilities for Intermediate Level Waste (ILW) was defined during the authors recent MSc studies. In order to close the defined gap a prototype tool was developed using logically derived CER's and cost driver variables. The challenge in developing this was to be able to produce a model that could produce realistic cost estimates from the limited levels of historic cost data that was available for analysis. The model is an excel based tool supported by 3 point risk estimating output and is suitable for producing estimates for strategic or optional cost estimates (±30%) early in the conceptual stage of a decommissioning project. The model was validated using minimal numbers of case studies supported by expert opinion discussion. The model provides an enhanced approach for integrated decommissioning estimates which will be produced concurrently with strategic options analysis on a nuclear site

  13. Energetic and environmental performance of three biomass upgrading processes integrated with a CHP plant

    International Nuclear Information System (INIS)

    Kohl, Thomas; Laukkanen, Timo; Järvinen, Mika; Fogelholm, Carl-Johan

    2013-01-01

    Highlights: ► We simulate CHP-integrated production of wood pellets, torrefied wood pellets and pyrolysis slurry. ► Integration increases operation hours and district heat output by up to 38% and 22%. ► Additionally installed equipment reduces yearly power generation by up to 7%. ► Wood pellet production performs best energetically and environmentally. ► Integrated concepts substantially reduce fuel consumption and CO 2 emissions. - Abstract: In order to react on future expected increased competition on restricted biomass resources, communal combined heat and power (CHP) plants can be integrated with biomass upgrading processes that add valuable products to the portfolio. In this paper, outgoing from a base case, the retrofit integration of production of wood pellets (WPs), torrefied wood pellets (TWPs) and wood fast pyrolysis slurry (PS) with an existing wood-fired CHP plant was simulated. Within the integration concept, free boiler capacity during times of low district heat demands is used to provide energy for the upgrading processes. By detailed part-load modelling, critical process parameters are discussed. With help of a multiperiod model of the heat duration curve, the work further shows the influence of the integration on plant operating hours, electricity production and biomass throughput. Environmental and energetic performance is assessed according to European standard EN 15603 and compared to the base case as well as to stand-alone production in two separate units. The work shows that all three integration options are well possible within the operational limits of the CHP plant. Summarising, this work shows that integration of WP, TWP and PS production from biomass with a CHP plant by increasing the yearly boiler workload leads to improved primary energy efficiency, reduced CO 2 emissions, and, when compared to stand-alone production, also to substantial fuel savings

  14. Neste in 1996: Oil integration and new Chemicals plants

    International Nuclear Information System (INIS)

    Ihamuotila, J.

    1997-01-01

    Neste's net sales in 1996 continued at the previous year's level. Although trading losses weakened the Group's performance, the debt burden decreased substantially and there was a fundamental improvement in the equity-to-assets ratio. Neste's integrated downstream oil business began operations, oil production in Norway and Oman increased, and Chemicals commissioned several production units. In addition, a number of interesting oil and natural gas pipeline projects were moving forward. (orig.)

  15. Integrative modelling reveals mechanisms linking productivity and plant species richness.

    Science.gov (United States)

    Grace, James B; Anderson, T Michael; Seabloom, Eric W; Borer, Elizabeth T; Adler, Peter B; Harpole, W Stanley; Hautier, Yann; Hillebrand, Helmut; Lind, Eric M; Pärtel, Meelis; Bakker, Jonathan D; Buckley, Yvonne M; Crawley, Michael J; Damschen, Ellen I; Davies, Kendi F; Fay, Philip A; Firn, Jennifer; Gruner, Daniel S; Hector, Andy; Knops, Johannes M H; MacDougall, Andrew S; Melbourne, Brett A; Morgan, John W; Orrock, John L; Prober, Suzanne M; Smith, Melinda D

    2016-01-21

    How ecosystem productivity and species richness are interrelated is one of the most debated subjects in the history of ecology. Decades of intensive study have yet to discern the actual mechanisms behind observed global patterns. Here, by integrating the predictions from multiple theories into a single model and using data from 1,126 grassland plots spanning five continents, we detect the clear signals of numerous underlying mechanisms linking productivity and richness. We find that an integrative model has substantially higher explanatory power than traditional bivariate analyses. In addition, the specific results unveil several surprising findings that conflict with classical models. These include the isolation of a strong and consistent enhancement of productivity by richness, an effect in striking contrast with superficial data patterns. Also revealed is a consistent importance of competition across the full range of productivity values, in direct conflict with some (but not all) proposed models. The promotion of local richness by macroecological gradients in climatic favourability, generally seen as a competing hypothesis, is also found to be important in our analysis. The results demonstrate that an integrative modelling approach leads to a major advance in our ability to discern the underlying processes operating in ecological systems.

  16. The Planteome database: an integrated resource for reference ontologies, plant genomics and phenomics

    Science.gov (United States)

    Cooper, Laurel; Meier, Austin; Laporte, Marie-Angélique; Elser, Justin L; Mungall, Chris; Sinn, Brandon T; Cavaliere, Dario; Carbon, Seth; Dunn, Nathan A; Smith, Barry; Qu, Botong; Preece, Justin; Zhang, Eugene; Todorovic, Sinisa; Gkoutos, Georgios; Doonan, John H; Stevenson, Dennis W; Arnaud, Elizabeth

    2018-01-01

    Abstract The Planteome project (http://www.planteome.org) provides a suite of reference and species-specific ontologies for plants and annotations to genes and phenotypes. Ontologies serve as common standards for semantic integration of a large and growing corpus of plant genomics, phenomics and genetics data. The reference ontologies include the Plant Ontology, Plant Trait Ontology and the Plant Experimental Conditions Ontology developed by the Planteome project, along with the Gene Ontology, Chemical Entities of Biological Interest, Phenotype and Attribute Ontology, and others. The project also provides access to species-specific Crop Ontologies developed by various plant breeding and research communities from around the world. We provide integrated data on plant traits, phenotypes, and gene function and expression from 95 plant taxa, annotated with reference ontology terms. The Planteome project is developing a plant gene annotation platform; Planteome Noctua, to facilitate community engagement. All the Planteome ontologies are publicly available and are maintained at the Planteome GitHub site (https://github.com/Planteome) for sharing, tracking revisions and new requests. The annotated data are freely accessible from the ontology browser (http://browser.planteome.org/amigo) and our data repository. PMID:29186578

  17. Performance analysis of an integrated gas-, steam- and organic fluid-cycle thermal power plant

    International Nuclear Information System (INIS)

    Oko, C.O.C.; Njoku, I.H.

    2017-01-01

    This paper presents the performance analysis of an existing combined cycle power plant augmented with a waste heat fired organic Rankine cycle power plant for extra power generation. This was achieved by performing energy and exergy analysis of the integrated gas-, steam- and organic fluid-cycle thermal power plant (IPP). Heat source for the subcritical organic Rankine cycle (ORC) was the exhaust flue gases from the heat recovery steam generators of a 650 MW natural gas fired combined cycle power plant. The results showed that extra 12.4 MW of electricity was generated from the attached ORC unit using HFE7100 as working fluid. To select ORC working fluid, ten isentropic fluids were screened and HFE7100 produced the highest net power output and cycle efficiency. Exergy and energy efficiencies of the IPP improved by 1.95% and 1.93%, respectively. The rate of exergy destruction in the existing combined cycle plant was highest in the combustion chamber, 59%, whereas in the ORC, the highest rate of exergy destruction occurred in the evaporator, 62%. Simulations showed exergy efficiency of the IPP decreased with increasing ambient temperature. Exit stack flue gas temperature reduced from 126 °C in the combined cycle power plant to 100 °C in the integrated power plant. - Highlights: • Combined cycle plant retrofitted with ORC produced extra 12.4 MW electric power. • ORC is powered with low temperature flue gas from an existing combined cycle plant. • Exergy destruction rate in integrated plant(IPP) is less than in combined plant. • Exit stack temperature of the IPP has less environmental thermal pollution. • Exergy and energy efficiencies of the IPP improved by 1.95% and 1.93%, respectively.

  18. Exergy analysis of a combined heat and power plant with integrated lignocellulosic ethanol production

    DEFF Research Database (Denmark)

    Lythcke-Jørgensen, Christoffer Ernst; Haglind, Fredrik; Clausen, Lasse Røngaard

    2014-01-01

    production. An exergy analysis is carried out for a modelled polygeneration system in which lignocellulosic ethanol production based on hydrothermal pretreatment is integrated in an existing combined heat and power (CHP) plant. The ethanol facility is driven by steam extracted from the CHP unit when feasible...... district heating production in the ethanol facility. The results suggest that the efficiency of integrating lignocellulosic ethanol production in CHP plants is highly dependent on operation, and it is therefore suggested that the expected operation pattern of such polygeneration system is taken......Lignocellulosic ethanol production is often assumed integrated in polygeneration systems because of its energy intensive nature. The objective of this study is to investigate potential irreversibilities from such integration, and what impact it has on the efficiency of the integrated ethanol...

  19. Changes in carbon footprint when integrating production of filamentous fungi in 1st generation ethanol plants.

    Science.gov (United States)

    Brancoli, Pedro; Ferreira, Jorge A; Bolton, Kim; Taherzadeh, Mohammad J

    2018-02-01

    Integrating the cultivation of edible filamentous fungi in the thin stillage from ethanol production is presently being considered. This integration can increase the ethanol yield while simultaneously producing a new value-added protein-rich biomass that can be used for animal feed. This study uses life cycle assessment to determine the change in greenhouse gas (GHG) emissions when integrating the cultivation of filamentous fungi in ethanol production. The result shows that the integration performs better than the current scenario when the fungal biomass is used as cattle feed for system expansion and when energy allocation is used. It performs worse if the biomass is used as fish feed. Hence, integrating the cultivation of filamentous fungi in 1st generation ethanol plants combined with proper use of the fungi can lead to a reduction of GHG emissions which, considering the number of existing ethanol plants, can have a significant global impact. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Integration optimisation of elevated pressure air separation unit with gas turbine in an IGCC power plant

    International Nuclear Information System (INIS)

    Han, Long; Deng, Guangyi; Li, Zheng; Wang, Qinhui; Ileleji, Klein E.

    2017-01-01

    Highlights: • IGCC thermodynamic model was setup carefully. • Simulations focus on integration between an elevated pressure ASU with gas turbine. • Different recommended solutions from those of low pressure ASUs are figured out. • Full N 2 injection and 80% air extraction was suggested as the optimum integration. - Abstract: The integration optimisation between an elevated pressure air separation unit (EP-ASU) and gas turbine is beneficial to promote net efficiency of an integrated gasification combined cycle (IGCC) power plant. This study sets up the thermodynamic model for a 400 MW plant specially coupled with an EP-ASU, aiming to examine system performances under different integrations and acquire the optimum solution. Influences of air extraction rate at conditions of without, partial and full N 2 injection, as well as the effects of N 2 injection rate when adopting separate ASU, partial and full integrated ASU were both analysed. Special attention has been paid to performance differences between utilising an EP-ASU and a low pressure unit. Results indicated that integration solution with a separate EP-ASU or without N 2 injection would not be reasonable. Among various recommended solutions for different integration conditions, N 2 injection rate increased with the growth of air extraction rate. The integration with an air extraction rate of 80% and full N 2 injection was suggested as the optimum solution. It is concluded that the optimum integration solution when adopting an EP-ASU is different from that using a low pressure one.

  1. Performance Evaluation of Electrochem's PEM Fuel Cell Power Plant for NASA's 2nd Generation Reusable Launch Vehicle

    Science.gov (United States)

    Kimble, Michael C.; Hoberecht, Mark

    2003-01-01

    NASA's Next Generation Launch Technology (NGLT) program is being developed to meet national needs for civil and commercial space access with goals of reducing the launch costs, increasing the reliability, and reducing the maintenance and operating costs. To this end, NASA is considering an all- electric capability for NGLT vehicles requiring advanced electrical power generation technology at a nominal 20 kW level with peak power capabilities six times the nominal power. The proton exchange membrane (PEM) fuel cell has been identified as a viable candidate to supply this electrical power; however, several technology aspects need to be assessed. Electrochem, Inc., under contract to NASA, has developed a breadboard power generator to address these technical issues with the goal of maximizing the system reliability while minimizing the cost and system complexity. This breadboard generator operates with dry hydrogen and oxygen gas using eductors to recirculate the gases eliminating gas humidification and blowers from the system. Except for a coolant pump, the system design incorporates passive components allowing the fuel cell to readily follow a duty cycle profile and that may operate at high 6:1 peak power levels for 30 second durations. Performance data of the fuel cell stack along with system performance is presented to highlight the benefits of the fuel cell stack design and system design for NGLT vehicles.

  2. Method and system to estimate variables in an integrated gasification combined cycle (IGCC) plant

    Science.gov (United States)

    Kumar, Aditya; Shi, Ruijie; Dokucu, Mustafa

    2013-09-17

    System and method to estimate variables in an integrated gasification combined cycle (IGCC) plant are provided. The system includes a sensor suite to measure respective plant input and output variables. An extended Kalman filter (EKF) receives sensed plant input variables and includes a dynamic model to generate a plurality of plant state estimates and a covariance matrix for the state estimates. A preemptive-constraining processor is configured to preemptively constrain the state estimates and covariance matrix to be free of constraint violations. A measurement-correction processor may be configured to correct constrained state estimates and a constrained covariance matrix based on processing of sensed plant output variables. The measurement-correction processor is coupled to update the dynamic model with corrected state estimates and a corrected covariance matrix. The updated dynamic model may be configured to estimate values for at least one plant variable not originally sensed by the sensor suite.

  3. Integrated approach to knowledge acquisition and safety management of complex plants with emphasis on human factors

    International Nuclear Information System (INIS)

    Kosmowski, K.T.

    1998-01-01

    In this paper an integrated approach to the knowledge acquisition and safety management of complex industrial plants is proposed and outlined. The plant is considered within a man-technology-environment (MTE) system. The knowledge acquisition is aimed at the consequent reliability evaluation of human factor and probabilistic modeling of the plant. Properly structured initial knowledge is updated in life-time of the plant. The data and knowledge concerning the topology of safety related systems and their functions are created in a graphical CAD system and are object oriented. Safety oriented monitoring of the plant includes abnormal situations due to external and internal disturbances, failures of hard/software components and failures of human factor. The operation and safety related evidence is accumulated in special data bases. Data/knowledge bases are designed in such a way to support effectively the reliability and safety management of the plant. (author)

  4. Integration of artificial intelligence systems for nuclear power plants surveillance and diagnostics

    International Nuclear Information System (INIS)

    Chetry, Moon K.

    2012-01-01

    The objective of this program is to design, construct operate, test, and evaluate a prototype integrated monitoring and diagnostic system for a nuclear power plant. It is anticipated that this technology will have wide application to other complex systems (e.g., fossil power plants, chemical processing plants, and possibly air traffic control systems). Over the past decade, the University of Tennessee (UT) and others have carried out many projects utilizing various methodologies of artificial intelligence (expert systems, neural networks, fuzzy systems and genetic algorithms) to enhance the performance (safety, efficiency, reliability, and availability) of nuclear power plants. Investigations and studies have included a) instrumentation surveillance and calibration validation, b) inferential sensing to calibration of feed water venture flow during fouling, c) thermodynamic performance modeling with iterative improvement of plant heat rate, d) diagnosis of nuclear power plant transients

  5. Plant responses to precipitation in desert ecosystems: integrating functional types, pulses, thresholds, and delays.

    Science.gov (United States)

    Ogle, Kiona; Reynolds, James F

    2004-10-01

    The 'two-layer' and 'pulse-reserve' hypotheses were developed 30 years ago and continue to serve as the standard for many experiments and modeling studies that examine relationships between primary productivity and rainfall variability in aridlands. The two-layer hypothesis considers two important plant functional types (FTs) and predicts that woody and herbaceous plants are able to co-exist in savannas because they utilize water from different soil layers (or depths). The pulse-reserve model addresses the response of individual plants to precipitation and predicts that there are 'biologically important' rain events that stimulate plant growth and reproduction. These pulses of precipitation may play a key role in long-term plant function and survival (as compared to seasonal or annual rainfall totals as per the two-layer model). In this paper, we re-evaluate these paradigms in terms of their generality, strengths, and limitations. We suggest that while seasonality and resource partitioning (key to the two-layer model) and biologically important precipitation events (key to the pulse-reserve model) are critical to understanding plant responses to precipitation in aridlands, both paradigms have significant limitations. Neither account for plasticity in rooting habits of woody plants, potential delayed responses of plants to rainfall, explicit precipitation thresholds, or vagaries in plant phenology. To address these limitations, we integrate the ideas of precipitation thresholds and plant delays, resource partitioning, and plant FT strategies into a simple 'threshold-delay' model. The model contains six basic parameters that capture the nonlinear nature of plant responses to pulse precipitation. We review the literature within the context of our threshold-delay model to: (i) develop testable hypotheses about how different plant FTs respond to pulses; (ii) identify weaknesses in the current state-of-knowledge; and (iii) suggest future research directions that will

  6. Plant-integrated measurement of greenhouse gas emissions from a municipal wastewater treatment plant

    DEFF Research Database (Denmark)

    Yoshida, Hiroko; Mønster, Jacob; Scheutz, Charlotte

    2014-01-01

    experiencing operational problems, such as during foaming events in anaerobic digesters and during sub-optimal operation of biological nitrogen removal in the secondary treatment of wastewater. Methane emissions detected during measurement campaigns corresponded to 2.07-32.7% of the methane generated......Wastewater treatment plants (WWTPs) contribute to anthropogenic greenhouse gas (GHG) emissions. Due to its spatial and temporal variation in emissions, whole plant characterization of GHG emissions from WWTPs face a number of obstacles. In this study, a tracer dispersion method was applied...... in the plant. As high as 4.27% of nitrogen entering the WWTP was emitted as nitrous oxide under the sub-optimal operation of biological treatment processes. The study shows that the unit process configuration, as well as the operation of the WWTP, determines the rate of GHG emission. The applied plant...

  7. Concepts of intrinsic value and integrity of plants in organic plant breeding and propagation

    NARCIS (Netherlands)

    Lammerts Van Bueren, E.; Struik, P.C.; Tiemens-Hulscher, M.; Jacobsen, E.

    2003-01-01

    The natural approach taken by organic agriculture obviates the use of synthetic agrochemicals and emphasizes farming in accordance with agroecological principles. Also implicit in this approach is an appreciation for the integrity of living farm organisms, with the integrity being evaluated from a

  8. Power up your plant - An introduction to integrated process and power automation

    Energy Technology Data Exchange (ETDEWEB)

    Vasel, Jeffrey

    2010-09-15

    This paper discusses how a single integrated system can increase energy efficiency, improve plant uptime, and lower life cycle costs. Integrated Process and Power Automation is a new system integration architecture and power strategy that addresses the needs of the process and power generation industries. The architecture is based on Industrial Ethernet standards such as IEC 61850 and Profinet as well as Fieldbus technologies. The energy efficiency gains from integration are discussed in a power generation use case. A power management system success story from a major oil and gas company, Petrobras, is also discussed.

  9. The flora phenotype ontology (FLOPO): tool for integrating morphological traits and phenotypes of vascular plants

    KAUST Repository

    Hoehndorf, Robert

    2016-11-14

    Background The systematic analysis of a large number of comparable plant trait data can support investigations into phylogenetics and ecological adaptation, with broad applications in evolutionary biology, agriculture, conservation, and the functioning of ecosystems. Floras, i.e., books collecting the information on all known plant species found within a region, are a potentially rich source of such plant trait data. Floras describe plant traits with a focus on morphology and other traits relevant for species identification in addition to other characteristics of plant species, such as ecological affinities, distribution, economic value, health applications, traditional uses, and so on. However, a key limitation in systematically analyzing information in Floras is the lack of a standardized vocabulary for the described traits as well as the difficulties in extracting structured information from free text. Results We have developed the Flora Phenotype Ontology (FLOPO), an ontology for describing traits of plant species found in Floras. We used the Plant Ontology (PO) and the Phenotype And Trait Ontology (PATO) to extract entity-quality relationships from digitized taxon descriptions in Floras, and used a formal ontological approach based on phenotype description patterns and automated reasoning to generate the FLOPO. The resulting ontology consists of 25,407 classes and is based on the PO and PATO. The classified ontology closely follows the structure of Plant Ontology in that the primary axis of classification is the observed plant anatomical structure, and more specific traits are then classified based on parthood and subclass relations between anatomical structures as well as subclass relations between phenotypic qualities. Conclusions The FLOPO is primarily intended as a framework based on which plant traits can be integrated computationally across all species and higher taxa of flowering plants. Importantly, it is not intended to replace established

  10. The flora phenotype ontology (FLOPO): tool for integrating morphological traits and phenotypes of vascular plants.

    Science.gov (United States)

    Hoehndorf, Robert; Alshahrani, Mona; Gkoutos, Georgios V; Gosline, George; Groom, Quentin; Hamann, Thomas; Kattge, Jens; de Oliveira, Sylvia Mota; Schmidt, Marco; Sierra, Soraya; Smets, Erik; Vos, Rutger A; Weiland, Claus

    2016-11-14

    The systematic analysis of a large number of comparable plant trait data can support investigations into phylogenetics and ecological adaptation, with broad applications in evolutionary biology, agriculture, conservation, and the functioning of ecosystems. Floras, i.e., books collecting the information on all known plant species found within a region, are a potentially rich source of such plant trait data. Floras describe plant traits with a focus on morphology and other traits relevant for species identification in addition to other characteristics of plant species, such as ecological affinities, distribution, economic value, health applications, traditional uses, and so on. However, a key limitation in systematically analyzing information in Floras is the lack of a standardized vocabulary for the described traits as well as the difficulties in extracting structured information from free text. We have developed the Flora Phenotype Ontology (FLOPO), an ontology for describing traits of plant species found in Floras. We used the Plant Ontology (PO) and the Phenotype And Trait Ontology (PATO) to extract entity-quality relationships from digitized taxon descriptions in Floras, and used a formal ontological approach based on phenotype description patterns and automated reasoning to generate the FLOPO. The resulting ontology consists of 25,407 classes and is based on the PO and PATO. The classified ontology closely follows the structure of Plant Ontology in that the primary axis of classification is the observed plant anatomical structure, and more specific traits are then classified based on parthood and subclass relations between anatomical structures as well as subclass relations between phenotypic qualities. The FLOPO is primarily intended as a framework based on which plant traits can be integrated computationally across all species and higher taxa of flowering plants. Importantly, it is not intended to replace established vocabularies or ontologies, but rather

  11. More plant availability by local and integral strain measurement

    Energy Technology Data Exchange (ETDEWEB)

    Hulshof, H J.M.; Welberg, P G.M. [KEMA Nederland B.V., Arnhem (Netherlands); Bruijn, L.E. de [E.ON Benelux Generation N.V., Rotterdam (Netherlands). Power Plant Maasvlakte

    2002-07-01

    Industrial installations that are under pressure and are operating at high temperatures have a limited life due to creep and fatigue. It is, therefore, of critical importance to know the location of any possible weak spots in the installation. Welds in steam pipes, especially the heat-affected zones in these welds, are such weak spots in the long term. The material deforms and cracks may develop, with significant failure in the worst case. To avoid safety risks, unforeseen plant shutdown and, as a consequence, high costs for unavailability and repair, periodic inspections and strain measurements are recommended. KEMA's SPICA (Speckle Image Correlation Analysis) system is able to measure on-stream (during operation) deformation due to creep in critical areas, like the heat-affected zone in welds. (orig.)

  12. Cell wall integrity signaling in plants: "To grow or not to grow that's the question".

    Science.gov (United States)

    Voxeur, Aline; Höfte, Herman

    2016-09-01

    Plants, like yeast, have the ability to monitor alterations in the cell wall architecture that occur during normal growth or in changing environments and to trigger compensatory changes in the cell wall. We discuss how recent advances in our understanding of the cell wall architecture provide new insights into the role of cell wall integrity sensing in growth control. Next we review the properties of membrane receptor-like kinases that have roles in pH control, mechano-sensing and reactive oxygen species accumulation in growing cells and which may be the plant equivalents of the yeast cell wall integrity (CWI) sensors. Finally, we discuss recent findings showing an increasing role for CWI signaling in plant immunity and the adaptation to changes in the ionic environment of plant cells. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Conceptual design of an integrated hydrothermal liquefaction and biogas plant for sustainable bioenergy production

    DEFF Research Database (Denmark)

    Hoffmann, Jessica; Rudra, Souman; Toor, Saqib

    2013-01-01

    Initial process studies carried out in Aspen Plus on an integrated thermochemical conversion process are presented herein. In the simulations, a hydrothermal liquefaction (HTL) plant is combined with a biogas plant (BP), such that the digestate from the BP is converted to a biocrude in the HTL...... grid or for CHP. An estimated 62–84% of the biomass energy can be recovered in the biofuels....

  14. Integrated solidity test measurement of the airtight compartment system at the Paks nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Osztheimer, M.; Taubner, R.; Techy, Zs. (Villamosenergiaipari Kutato Intezet, Budapest (Hungary))

    1983-01-01

    A brief report on the purpose of the integrated solidity test measurements of the airtight compartment system of the Paks nuclear power plant and on the applied measuring principles is given. The measuring system and the selected measuring methods are evaluated. The characteristic features of the airtight system of the Paks nuclear power plant's 1st block and their effects on the measurement are mentioned.

  15. Integration of a nuclear power plant in electrical systems, alternative programs, optimization

    International Nuclear Information System (INIS)

    Souza, J.A.M. de.

    1991-01-01

    The problem of integration of a nuclear power plants in a electrical power system, to support the power demand of the system, and mainly also support the power demand at the critical period, I.E., peak demands, is analysed. The factors considered in this analysis are: the demand structure of the region, the availability of others power plants in the electrical net and the capacity factor. (author)

  16. An integrated translation of design data of a nuclear power plant from a specification-driven plant design system to neutral model data

    Energy Technology Data Exchange (ETDEWEB)

    Mun, Duhwan, E-mail: dhmun@moeri.re.k [Marine Safety and Pollution Response Research Department, Maritime and Ocean Engineering Research Institute, KORDI, 171 Jang-dong, Yuseong-gu, Daejeon 305-343 (Korea, Republic of); Yang, Jeongsam, E-mail: jyang@ajou.ac.k [Division of Industrial and Information Systems Engineering, Ajou University, San 5, Wonchun-dong, Yeongtong-gu, Suwon 443-749 (Korea, Republic of)

    2010-03-15

    How to efficiently integrate and manage lifecycle data of a nuclear power plant has gradually become an important object of study. Because plants usually have a very long period of operation and maintenance, the plant design data need to be presented in a computer-interpretable form and to be independent of any commercial systems. The conversion of plant design data from various design systems into neutral model data is therefore an important technology for the effective operation and maintenance of plants. In this study, a neutral model for the efficient integration of plant design data is chosen from among the currently available options and extended in order to cover the information model requirements of nuclear power plants in Korea. After the mapping of the neutral model and the data model of a specification-driven plant design system, a plant data translator is also implemented in accordance with the schema mapping results.

  17. An integrated translation of design data of a nuclear power plant from a specification-driven plant design system to neutral model data

    International Nuclear Information System (INIS)

    Mun, Duhwan; Yang, Jeongsam

    2010-01-01

    How to efficiently integrate and manage lifecycle data of a nuclear power plant has gradually become an important object of study. Because plants usually have a very long period of operation and maintenance, the plant design data need to be presented in a computer-interpretable form and to be independent of any commercial systems. The conversion of plant design data from various design systems into neutral model data is therefore an important technology for the effective operation and maintenance of plants. In this study, a neutral model for the efficient integration of plant design data is chosen from among the currently available options and extended in order to cover the information model requirements of nuclear power plants in Korea. After the mapping of the neutral model and the data model of a specification-driven plant design system, a plant data translator is also implemented in accordance with the schema mapping results.

  18. Role of CBFs as Integrators of Chloroplast Redox, Phytochrome and Plant Hormone Signaling during Cold Acclimation

    Directory of Open Access Journals (Sweden)

    Norman P. A. Hüner

    2013-06-01

    Full Text Available Cold acclimation of winter cereals and other winter hardy species is a prerequisite to increase subsequent freezing tolerance. Low temperatures upregulate the expression of C-repeat/dehydration-responsive element binding transcription factors (CBF/DREB1 which in turn induce the expression of COLD-REGULATED (COR genes. We summarize evidence which indicates that the integration of these interactions is responsible for the dwarf phenotype and enhanced photosynthetic performance associated with cold-acclimated and CBF-overexpressing plants. Plants overexpressing CBFs but grown at warm temperatures mimic the cold-tolerant, dwarf, compact phenotype; increased photosynthetic performance; and biomass accumulation typically associated with cold-acclimated plants. In this review, we propose a model whereby the cold acclimation signal is perceived by plants through an integration of low temperature and changes in light intensity, as well as changes in light quality. Such integration leads to the activation of the CBF-regulon and subsequent upregulation of COR gene and GA 2-oxidase (GA2ox expression which results in a dwarf phenotype coupled with increased freezing tolerance and enhanced photosynthetic performance. We conclude that, due to their photoautotrophic nature, plants do not rely on a single low temperature sensor, but integrate changes in light intensity, light quality, and membrane viscosity in order to establish the cold-acclimated state. CBFs appear to act as master regulators of these interconnecting sensing/signaling pathways.

  19. Containment integrity of SEP plants under combined loads

    International Nuclear Information System (INIS)

    Lo, T.; Nelson, T.A.; Chen, P.Y.; Persinko, D.; Grimes, C.

    1984-06-01

    Because the containment structure is the last barrier against the release of radioactivity, an assessment was undertaken to identify the design weaknesses and estimate the margins of safety for the SEP containments under the postulated, combined loading conditions of a safe shutdown earthquake (SSE) and a design basis accident (DBA). The design basis accident is either a loss-of-coolant accident (LOCA) or a main steam line break (MSLB). The containment designs analyzed consisted of three inverted light-bulb shaped drywells used in boiling water reactor (BWR) systems, and three steel-lined concrete containments and a spherical steel shell used in pressurized water reactor (PWR) systems. These designs cover a majority of the containment types used in domestic operating plants. The results indicate that five of the seven designs are adequate even under current design standards. For the remaining two designs, the possible design weaknesses identified were buckling of the spherical steel shell and over-stress in both the radial and tangential directions in one of the concrete containments near its base

  20. Thermal integration of SCWR nuclear and thermochemical hydrogen plants

    International Nuclear Information System (INIS)

    Wang, Z.; Naterer, G.F.; Gabriel, K.S.

    2010-01-01

    In this paper, the intermediate heat exchange between a Generation IV supercritical water-cooled nuclear reactor (SCWR) and a thermochemical hydrogen production cycle is discussed. It is found that the maximum and range of temperatures of a thermochemical cycle are the dominant parameters that affect the design of its coupling with SCWR. The copper-chlorine (Cu-Cl) thermochemical cycle is a promising cycle that can link with SCWRs. The location of extracting heat from a SCWR to a thermochemical cycle is investigated in this paper. Steam bypass lines downstream of the SCWR core are suggested for supplying heat to the Cu-Cl hydrogen production cycle. The stream extraction location is strongly dependent on the temperature requirements of the chemical steps of the thermochemical cycle. The available quantity of heat exchange at different hours of a day is also studied. It is found that the available heat at most hours of power demand in a day can support an industrial scale steam methane reforming plant if the SCWR power station is operating at full design capacity. (author)

  1. Turkey Point Plant application of an integrated flag system and quality in daily work

    International Nuclear Information System (INIS)

    Labarraque, J.A.

    1987-01-01

    The objective of this paper is to explain the approach and methodology that Turkey Point Nuclear Plant management selected to integrate management's accountabilities and workers' routine activities to support a safe and efficient plant operation. This integrated approach had a significant effect in aligning the whole organization to work toward a common goal and increasing the understanding and level of accountabilities of managers and workers throughout the organization. The new approach of monitoring and controlling organizational activities using Florida Power and Light Company's quality improvement program techniques has resulted in improved personnel performance and awareness with minimum permanent personnel increases

  2. Recovery of flue gas energy in heat integrated IGCC power plants using the contact economizer system

    CSIR Research Space (South Africa)

    Madzivhandila, V

    2010-10-01

    Full Text Available Asia Pacific Confederation of APCChE 2010 Chemical Engineering Congress October 5-8, 2010, Taipei � �� Recovery of flue gas energy in heat integrated IGCC power plants using the contact economizer system Vhutshilo Madzivhandilaa, Thokozani... temperature and the thermal efficiency of the plant. The 13th Asia Pacific Confederation of APCChE 2010 Chemical Engineering Congress October 5-8, 2010, Taipei � �� 1. Introduction The IGCC (Integrated Gasification Combined Cycle) is one...

  3. Integrity evaluation of Alloy 600 RV head penetration tubes in Korean PWR plants

    International Nuclear Information System (INIS)

    Kang, Young Hwan; Park, Sung Ho; Hong, Sung Yull; Choi, Kwang Hee

    1995-01-01

    The structural integrity assessment of Alloy 600 RV head penetration tubes has been an important issue for the economical and reliable operation of power plants. In this paper, an overview of the integrity evaluation program for the RV head penetration tubes in Korean nuclear power plants is presented. Since the crack growth mechanism of the penetration tube is due to the primary water stress corrosion cracking (PWSCC) which is mainly related to the stress at the tube, the present paper consists of three primary activities: the stress evaluation, the flaw evaluation, and data generation through material and mechanical tests. (author). 5 refs, 2 figs, 1 tab

  4. Location optimization of solar plants by an integrated hierarchical DEA PCA approach

    International Nuclear Information System (INIS)

    Azadeh, A.; Ghaderi, S.F.; Maghsoudi, A.

    2008-01-01

    Unique features of renewable energies such as solar energy has caused increasing demands for such resources. In order to use solar energy as a natural resource, environmental circumstances and geographical location related to solar intensity must be considered. Different factors may affect on the selection of a suitable location for solar plants. These factors must be considered concurrently for optimum location identification of solar plants. This article presents an integrated hierarchical approach for location of solar plants by data envelopment analysis (DEA), principal component analysis (PCA) and numerical taxonomy (NT). Furthermore, an integrated hierarchical DEA approach incorporating the most relevant parameters of solar plants is introduced. Moreover, 2 multivariable methods namely, PCA and NT are used to validate the results of DEA model. The prescribed approach is tested for 25 different cities in Iran with 6 different regions within each city. This is the first study that considers an integrated hierarchical DEA approach for geographical location optimization of solar plants. Implementation of the proposed approach would enable the energy policy makers to select the best-possible location for construction of a solar power plant with lowest possible costs

  5. Research on integrated managing system based on CIMS for nuclear power plant safety

    International Nuclear Information System (INIS)

    Zhou Gang

    2006-01-01

    In order to improve safety, economy and reliability of operation for nuclear power plant (NPP), a novel integrated managing method was proposed based on the ideas of computer and contemporary integrated manufacturing system (CIMS). The application of CIMS to nuclear power plant safety management was researched. In order to design an integrated managing system to meet the needs of NPP safety management, all work related to nuclear safety is divided into different category according to its characters. On basis of this work, general integrated managing system was designed at first. Then subsystems were designed and every subsystem implements a category of nuclear safety management work. All subsystems are independent relatively on the one hand and are interrelated on other hand by global information system. (authors)

  6. Exergy analysis of a combined heat and power plant with integrated lignocellulosic ethanol production

    International Nuclear Information System (INIS)

    Lythcke-Jørgensen, Christoffer; Haglind, Fredrik; Clausen, Lasse R.

    2014-01-01

    Highlights: • We model a system where lignocellulosic ethanol production is integrated with a combined heat and power (CHP) plant. • We conduct an exergy analysis for the ethanol production in six different system operation points. • Integrated operation, district heating (DH) production and low CHP loads all increase the exergy efficiency. • Separate operation has the largest negative impact on the exergy efficiency. • Operation is found to have a significant impact on the exergy efficiency of the ethanol production. - Abstract: Lignocellulosic ethanol production is often assumed integrated in polygeneration systems because of its energy intensive nature. The objective of this study is to investigate potential irreversibilities from such integration, and what impact it has on the efficiency of the integrated ethanol production. An exergy analysis is carried out for a modelled polygeneration system in which lignocellulosic ethanol production based on hydrothermal pretreatment is integrated in an existing combined heat and power (CHP) plant. The ethanol facility is driven by steam extracted from the CHP unit when feasible, and a gas boiler is used as back-up when integration is not possible. The system was evaluated according to six operation points that alternate on the following three different operation parameters: Load in the CHP unit, integrated versus separate operation, and inclusion of district heating production in the ethanol facility. The calculated standard exergy efficiency of the ethanol facility varied from 0.564 to 0.855, of which the highest was obtained for integrated operation at reduced CHP load and full district heating production in the ethanol facility, and the lowest for separate operation with zero district heating production in the ethanol facility. The results suggest that the efficiency of integrating lignocellulosic ethanol production in CHP plants is highly dependent on operation, and it is therefore suggested that the

  7. Application of contemporary integrated manufacture systems to nuclear power plants management

    International Nuclear Information System (INIS)

    Zhou Gang; Wang Lushuai; Tang Yaoyang

    2005-01-01

    In order to improve the safety, economy and reliability of the operation of a nuclear power plant (NPP), a novel integrated management method is proposed based on the 'integration' concept of the computer and contemporary integrated manufacture systems (CIMS). The design of integrated management system for NPP is studied. In the design of this system, information integration method based on the database and product data management (PDM) technology is adopted. In order to design and integrated management system satisfying the needs of NPP management, all activities of NPP are divided into different categories according to its characteristics. There are subsystems under the general management system to conduct the management work of different categories. All subsystems are interrelated in the environment of CIMS, but relatively independent. The application of CIMS to NPP provides a new way for scientific management of NPP, and makes the best of human, material and information resources. (authors)

  8. Mitigating Capability Analysis during LOCA for Korean Standard Nuclear Power Plants in Containment Integrity

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Young; Park, Soo Yong; Kim, D. H.; Song, Y. M. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2007-07-01

    The objective of this paper is to establish Containment spray operational technical bases for the typical Korean Standard Nuclear Power plants (Ulchin units 3 and 4) by modeling the plant, and analyzing a loss of coolant accident (LOCA) using the MAAP code. The severe accident phenomena at nuclear power plants have large uncertainties. For the integrity of the reactor vessel and containment safety against severe accidents, it is essential to understand severe accident sequences and to assess the accident progression accurately by computer codes. Furthermore, it is important to attain the capability to analyze a advanced nuclear reactor design for a severe accident prevention and mitigation.

  9. Integration of A Solid Oxide Fuel Cell into A 10 MW Gas Turbine Power Plant

    Directory of Open Access Journals (Sweden)

    Denver F. Cheddie

    2010-04-01

    Full Text Available Power generation using gas turbine power plants operating on the Brayton cycle suffers from low efficiencies. In this work, a solid oxide fuel cell (SOFC is proposed for integration into a 10 MW gas turbine power plant, operating at 30% efficiency. The SOFC system utilizes four heat exchangers for heat recovery from both the turbine outlet and the fuel cell outlet to ensure a sufficiently high SOFC temperature. The power output of the hybrid plant is 37 MW at 66.2% efficiency. A thermo-economic model predicts a payback period of less than four years, based on future projected SOFC cost estimates.

  10. Integration of a high-pressure piperazine capture plant with a power plant: an energetic evaluation

    NARCIS (Netherlands)

    Ham, L.V. van der; Kler, R.C.F. de; Goetheer, E.L.V.

    2013-01-01

    Post-combustion CO2 capture can have a significant contribution to the reduction of CO2 emissions. However, it also requires a considerable amount of energy, causing a significant decrease in the net electricity output of the power plant it is associated with. A vast array of research initiatives is

  11. Vestas Power Plant Solutions Integrating Wind, Solar PV and Energy Storage

    DEFF Research Database (Denmark)

    Petersen, Lennart; Hesselbæk, Bo; Martinez, Antonio

    2018-01-01

    This paper addresses a value proposition and feasible system topologies for hybrid power plant solutions integrating wind, solar PV and energy storage and moreover provides insights into Vestas hybrid power plant projects. Seen from the perspective of a wind power plant developer, these hybrid...... solutions provide a number of benefits that could potentially reduce the Levelized Cost of Energy and enable entrance to new markets for wind power and facilitate the transition to a more sustainable energy mix. First, various system topologies are described in order to distinguish the generic concepts...... for the electrical infrastructure of hybrid power plants. Subsequently, the benefits of combining wind and solar PV power as well as the advantages of combining variable renewable energy sources with energy storage are elaborated. Finally, the world’s first utility-scale hybrid power plant combining wind, solar PV...

  12. The IPRP (Integrated Pyrolysis Regenerated Plant) technology: From concept to demonstration

    International Nuclear Information System (INIS)

    D’Alessandro, Bruno; D’Amico, Michele; Desideri, Umberto; Fantozzi, Francesco

    2013-01-01

    Highlights: ► IPRP technology development for distributed conversion of biomass and wastes. ► IPRP demonstrative unit combines a rotary kiln pyrolyzer to a 80 kWe microturbine. ► Main performances and critical issues are pointed out for different residual fuels. -- Abstract: The concept of integrated pyrolysis regenerated plant (IPRP) is based on a Gas Turbine (GT) fuelled by pyrogas produced in a rotary kiln slow pyrolysis reactor, where waste heat from GT is used to sustain the pyrolysis process. The IPRP plant provides a unique solution for microscale (below 250 kW) power plants, opening a new and competitive possibility for distributed biomass or wastes to energy conversion systems. The paper summarizes the state of art of the IPRP technology, from preliminary numerical simulation to pilot plant facility, including some new available data on pyrolysis gas from laboratory and pilot plants.

  13. Heat integration of an Olefins Plant: Pinch Analysis and mathematical optimization working together

    Directory of Open Access Journals (Sweden)

    M. Beninca

    2011-03-01

    Full Text Available This work explores a two-step, complexity reducing methodology, to analyze heat integration opportunities of an existing Olefins Plant, identify and quantify reduction of energy consumption, and propose changes of the existing heat exchanger network to achieve these goals. Besides the analysis of plant design conditions, multiple operational scenarios were considered to propose modifications for handling real plant operation (flexibility. On the strength of plant complexity and large dimension, work methodology was split into two parts: initially, the whole plant was evaluated with traditional Pinch Analysis tools. Several opportunities were identified and modifications proposed. Modifications were segregated to represent small and independent portions of the original process. One of them was selected to be re-analyzed, considering two scenarios. Reduction of problem dimension allowed mathematical methodologies (formulation with decomposition, applying LP, MILP and NLP optimization methods to synthesize flexible networks to be applied, generating a feasible modification capable of fulfilling the proposed operational scenarios.

  14. Integration of artificial intelligence systems for nuclear power plant surveillance and diagnostics

    International Nuclear Information System (INIS)

    Uhrig, R.E.; Hines, J.W.; Nelson, W.R.

    1998-01-01

    The objective of this program is to design, construct, operate, test, and evaluate a prototype integrated monitoring and diagnostic system for a nuclear power plant. It is anticipated that this technology will have wide application to other complex systems (e.g., fossil power plants, chemical processing plants, and possibly air traffic control systems). Over the past decade, the University of Tennessee (UT) and others have carried out many projects utilizing various methodologies of artificial intelligence (expert systems, neural networks, fuzzy systems, and genetic algorithms) to enhance the performance (safety, efficiency, reliability, and availability) of nuclear power plants. Investigations and studies have included a) instrumentation surveillance and calibration validation, b) inferential sensing to calibration of feedwater venturi flow during fouling, c) thermodynamic performance modeling with iterative improvement of plant beat rate, d) diagnosis of nuclear power plant transients, and e) increase in thermal power through monitoring of DNBR (Departure from Nucleate Boiling Regime). To increase the likelihood of these individual systems being used in a nuclear power plant, they must be integrated into a single system that operates virtually autonomously, collecting, interpreting, and providing information to the operators in a simple and understandable format. (author)

  15. Integration of artificial intelligence systems for nuclear power plant surveillance and diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Uhrig, R.E.; Hines, J.W.; Nelson, W.R.

    1998-07-01

    The objective of this program is to design, construct, operate, test, and evaluate a prototype integrated monitoring and diagnostic system for a nuclear power plant. It is anticipated that this technology will have wide application to other complex systems (e.g., fossil power plants, chemical processing plants, and possibly air traffic control systems). Over the past decade, the University of Tennessee (UT) and others have carried out many projects utilizing various methodologies of artificial intelligence (expert systems, neural networks, fuzzy systems, and genetic algorithms) to enhance the performance (safety, efficiency, reliability, and availability) of nuclear power plants. Investigations and studies have included a) instrumentation surveillance and calibration validation, b) inferential sensing to calibration of feedwater venturi flow during fouling, c) thermodynamic performance modeling with iterative improvement of plant beat rate, d) diagnosis of nuclear power plant transients, and e) increase in thermal power through monitoring of DNBR (Departure from Nucleate Boiling Regime). To increase the likelihood of these individual systems being used in a nuclear power plant, they must be integrated into a single system that operates virtually autonomously, collecting, interpreting, and providing information to the operators in a simple and understandable format. (author)

  16. Technical and economic analysis of integrating low-medium temperature solar energy into power plant

    International Nuclear Information System (INIS)

    Wang, Fu; Li, Hailong; Zhao, Jun; Deng, Shuai; Yan, Jinyue

    2016-01-01

    Highlights: • Seven configurations were studied regarding the integration of solar thermal energy. • Economic analysis was conducted on new built plants and retrofitted power plants. • Using solar thermal energy to preheat high pressure feedwater shows the best performance. - Abstract: In order to mitigate CO_2 emission and improve the efficiency of the utilization of solar thermal energy (STE), solar thermal energy is proposed to be integrated into a power plant. In this paper, seven configurations were studied regarding the integration of STE. A 300 MWe subcritical coal-fired plant was selected as the reference, chemical absorption using monoethanolamine solvent was employed for CO_2 ​capture, and parabolic trough collectors and evacuated tube collectors were used for STE collection. Both technical analysis and economic evaluation were conducted. Results show that integrating solar energy with post-combustion CO_2​ capture can effectively increase power generation and reduce the electrical efficiency penalty caused by CO_2 capture. Among the different configurations, Config-2 and Config-6, which use medium temperature STE to replace high pressure feedwater without and with CO_2 capture, show the highest net incremental solar efficiency. When building new plants, integrating solar energy can effectively reduce the levelized cost of electricity (LCOE). The lowest LCOE, 99.28 USD/MWh, results from Config-6, with a parabolic trough collector price of 185 USD/m"2. When retrofitting existing power plants, Config-6 also shows the highest net present value (NPV), while Config-2 has the shortest payback time at a carbon tax of 50 USD/ton CO_2. In addition, both LCOE and NPV/payback time are clearly affected by the relative solar load fraction, the price of solar thermal collectors and the carbon tax. Comparatively, the carbon tax can affect the configurations with CO_2 capture more clearly than those without CO_2 capture.

  17. Electrochemical capacitor

    Science.gov (United States)

    Anderson, Marc A.; Liu, Kuo -Chuan; Mohr, Charles M.

    1999-10-05

    An inexpensive porous metal oxide material having high surface area, good conductivity and high specific capacitance is advantageously used in an electrochemical capacitor. The materials are formed in a sol-gel process which affords control over the properties of the resultant metal oxide materials.

  18. Electrochemical device

    Science.gov (United States)

    Grimes, Patrick G.; Einstein, Harry; Bellows, Richard J.

    1988-01-12

    A tunnel protected electrochemical device features channels fluidically communicating between manifold, tunnels and cells. The channels are designed to provide the most efficient use of auxiliary power. The channels have a greater hydraulic pressure drop and electrical resistance than the manifold. This will provide a design with the optimum auxiliary energy requirements.

  19. Electrochemical Cell

    DEFF Research Database (Denmark)

    1999-01-01

    The invention relates to a rechargeable electrochemical cell comprising a negative electrode, an electrolyte and a positive electrode in which the positive electrode structure comprises a lithium cobalt manganese oxide of the composition Li¿2?Co¿y?Mn¿2-y?O¿4? where 0 ... for capacity losses in lithium ion cells and lithium-alloy cells....

  20. Application of nanodisc technology for direct electrochemical investigation of plant cytochrome P450s and their NADPH P450 oxidoreductase

    DEFF Research Database (Denmark)

    Bavishi, Krutika; Laursen, Tomas; Martinez, Karen Laurence

    2016-01-01

    Direct electrochemistry of cytochrome P450 containing systems has primarily focused on investigating enzymes from microbes and animals for bio-sensing applications. Plant P450s receive electrons from NADPH P450 oxidoreductase (POR) to orchestrate the bio-synthesis of a plethora of commercially...... was electro-catalytically active while the P450s generated hydrogen peroxide (H2O2). These nanodisc-based investigations lay the prospects and guidelines for construction of a simplified platform to perform mediator-free, direct electrochemistry of non-engineered cytochromes P450 under native-like conditions...

  1. The importance of flexible power plant operation for Jiangsu's wind integration

    DEFF Research Database (Denmark)

    Hong, Lixuan; Lund, Henrik; Möller, Bernd

    2012-01-01

    This paper presents the influence of different regulation strategies on wind energy integration into the existing energy system of Jiangsu. The ability of wind integration is defined in terms of the ability to avoid excess electricity production, to conserve primary energy consumption and to redu...... regulations of Jiangsu’s energy system are compared and analyzed in the range of a wind input from 0% to 42% of the total electricity demand. It is concluded that operating power plants in a flexible way facilitates the promotion of more intermittent wind integration....

  2. The need for integrated pollution prevention control of the environment concerning industrial and power plants

    International Nuclear Information System (INIS)

    Trpevska T, Magdalena; Kostova, Brankitsa

    2008-01-01

    Within the Low on the Environment, Regulations of the Directive 96/61/Eu regarding Integrated Pollution Prevention Control are implemented. The Low significantly changes the manner of industrial plants operation in reference to environmental protection. The study presents description of the system for Integrated Pollution Prevention Control, list of production branches to which this system refers, and as well as experiences of Tehnolab Ltd, Skopje - expert consulting company, concerning preparation of A and B Integrated Environmental Permits for several installation from R. Macedonia.(Author)

  3. Pivoting from Arabidopsis to wheat to understand how agricultural plants integrate responses to biotic stress

    Science.gov (United States)

    Here we argue for a research initiative on gene-for-gene (g-f-g) interactions between wheat and its parasites. One aim is to begin a conversation between the disparate communities of plant pathology and entomology. Another is to understand how responses to biotic stress are integrated in an import...

  4. Physiological integration affects growth form and competitive ability in clonal plants

    Czech Academy of Sciences Publication Activity Database

    Herben, Tomáš

    2004-01-01

    Roč. 18, - (2004), s. 493-520 ISSN 0269-7653 R&D Projects: GA ČR(CZ) GA206/02/0953 Institutional research plan: CEZ:AV0Z6005908 Keywords : competitive ability * Physiological integration * clonal plants Subject RIV: EF - Botanics Impact factor: 3.215, year: 2004

  5. Efficient genome-wide genotyping strategies and data integration in crop plants.

    Science.gov (United States)

    Torkamaneh, Davoud; Boyle, Brian; Belzile, François

    2018-03-01

    Next-generation sequencing (NGS) has revolutionized plant and animal research by providing powerful genotyping methods. This review describes and discusses the advantages, challenges and, most importantly, solutions to facilitate data processing, the handling of missing data, and cross-platform data integration. Next-generation sequencing technologies provide powerful and flexible genotyping methods to plant breeders and researchers. These methods offer a wide range of applications from genome-wide analysis to routine screening with a high level of accuracy and reproducibility. Furthermore, they provide a straightforward workflow to identify, validate, and screen genetic variants in a short time with a low cost. NGS-based genotyping methods include whole-genome re-sequencing, SNP arrays, and reduced representation sequencing, which are widely applied in crops. The main challenges facing breeders and geneticists today is how to choose an appropriate genotyping method and how to integrate genotyping data sets obtained from various sources. Here, we review and discuss the advantages and challenges of several NGS methods for genome-wide genetic marker development and genotyping in crop plants. We also discuss how imputation methods can be used to both fill in missing data in genotypic data sets and to integrate data sets obtained using different genotyping tools. It is our hope that this synthetic view of genotyping methods will help geneticists and breeders to integrate these NGS-based methods in crop plant breeding and research.

  6. Multi-fields' coordination information integrated platform for nuclear power plant operation preparation

    International Nuclear Information System (INIS)

    Yuan Chang; Li Yong; Ye Zhiqiang

    2011-01-01

    To realize the coordination in multi-fields' work and information sharing, by applying the method of Enterprise Architecture (EA), the business architecture, functional flow and application architecture of Nuclear Power Plant's operation preparation information integrated platform are designed, which can realize the information sharing and coordination of multi fields. (authors)

  7. Assessment of parameters of gas centrifuge and separation cascade basing on integral characteristics of separation plant

    Energy Technology Data Exchange (ETDEWEB)

    Borisevich, Valentin, E-mail: VDBorisevich@mephi.ru [National Research Nuclear University MEPhI, Kashirskoe Shosse 31, Moscow 115409 (Russian Federation); National Research Center “Kurchatov Institute”, Kurchatov Square 1, Moscow 123182 (Russian Federation); Borshchevskiy, Michael, E-mail: Michael_mephi@mail.ru [National Research Nuclear University MEPhI, Kashirskoe Shosse 31, Moscow 115409 (Russian Federation); Andronov, Igor, E-mail: andronov@imp.kiae.ru [National Research Center “Kurchatov Institute”, Kurchatov Square 1, Moscow 123182 (Russian Federation); Senchenkov, Sergey, E-mail: senchenkov@imp.kiae.ru [National Research Center “Kurchatov Institute”, Kurchatov Square 1, Moscow 123182 (Russian Federation)

    2013-12-15

    Highlights: • We developed the calculation method to assess a feed flow rate into a gas centrifuge. • It is based on the knowledge of the integral characteristics of a separation plant. • Our method is verified by comparison with the results of the independent one. • The method also allows to specify other features of the separation cascade work. - Abstract: A calculation technique to assess a feed flow rate into a single GC, a total number of centrifuges in a separation cascade and to determine its likely configurations basing on the known integral characteristics of a centrifugal plant is developed. Evaluation of characteristics of the industrial gas centrifuge TC-12 and separation cascades of the NEF plant performed by two independent calculation techniques demonstrates their satisfactory agreement. This methodology would help to some extent the nuclear inspectors in evaluating and assessing the capability of an enrichment facility, and discovering any use for undeclared purposes.

  8. Case study: centralized wastewater treatment plant at Rawang Integrated Industrial Park

    International Nuclear Information System (INIS)

    Ting Teo Ming; Khomsaton Abu Bakar; Zulkafli Ghazali; Khairul Zaman Mohd Dahlan

    2006-01-01

    Survey has been conducted at Rawang Integrated Industrial Park (RIIP) to investigate the possibility of setting up centralized industrial wastewater treatment plant. Rawang integrated industrial park is selected based on suggestion from department of environment. RIIP consists of about 150 industries with various type of activities operated in the area. Only 9 out of estimated 150 industries have individual wastewater treatment plant. The business activities of the 9 industries include food processing, textile, welding rods manufacturing, steel galvanizing and battery manufacturing. Wastewater generated by the industries are characterized by high oil and grease, cod, bod, organic matter, metal hydroxide and acidic. Besides that most of industries do the monitoring only once a month. This paper will also discuss the advantages of setting up of centralized industrial wastewater treatment plant to the government authorities, industries, people and environment. (Author)

  9. Issues of integrating high-tech concepts into nuclear power plant operation

    International Nuclear Information System (INIS)

    Kisner, R.A.; Carter, R.J.; Lindsay, R.W.

    1990-01-01

    The stockpile of new ideas continues to grow for monitoring nuclear power plant parameters, characteristics, and vital signs and for controlling systems, subsystems, and components. This wide selection of monitoring and control software increases the difficulty of designing an integrated control room. As plant control room operators increase their reliance on computerized systems, including real-time plant data and data base systems, the integration of monitoring, diagnostics, and control software into uniform and seamless environment becomes imperative. A systematic approach to evaluating the usefulness of such high-tech control concepts is needed. This paper concentrates on methods to evaluate control concepts by assessing factors that determine a system's potential effectiveness within the context of the overall environment, including both human and machine components. Although not an in-depth study, this paper serves to outline several measures of utility. 21 refs., 3 figs., 2 tabs

  10. Introduction of Integrity Evaluation Criteria Developing during and after fire for Nuclear Power Plant Buildings

    International Nuclear Information System (INIS)

    Lee, Jin Woo

    2016-01-01

    The first project for nuclear power plant built in Korea to taking account the engineering based approach was started on October 2015 including the whole process such as fire hazard analysis, standard fire modeling, cable tray fire with multi spurious operation, structural fire integrity evaluation, and large area fire induced air craft crash. This paper covers the brief developing scheme and roadmap focusing on structural fire evaluation criteria. The meaningful first step for developing the structural fire integrity in nuclear power plant building is started with the series of fire related sub sections mentioned in earlier section. The recognition and sufficient effort of fire research leads to set up the safe and reliable design of nuclear power plant

  11. Introduction of Integrity Evaluation Criteria Developing during and after fire for Nuclear Power Plant Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin Woo [KEPCo, Gimcheon (Korea, Republic of)

    2016-05-15

    The first project for nuclear power plant built in Korea to taking account the engineering based approach was started on October 2015 including the whole process such as fire hazard analysis, standard fire modeling, cable tray fire with multi spurious operation, structural fire integrity evaluation, and large area fire induced air craft crash. This paper covers the brief developing scheme and roadmap focusing on structural fire evaluation criteria. The meaningful first step for developing the structural fire integrity in nuclear power plant building is started with the series of fire related sub sections mentioned in earlier section. The recognition and sufficient effort of fire research leads to set up the safe and reliable design of nuclear power plant.

  12. The Integration of Electrical Signals Originating in the Root of Vascular Plants

    Directory of Open Access Journals (Sweden)

    Javier Canales

    2018-01-01

    Full Text Available Plants have developed different signaling systems allowing for the integration of environmental cues to coordinate molecular processes associated to both early development and the physiology of the adult plant. Research on systemic signaling in plants has traditionally focused on the role of phytohormones as long-distance signaling molecules, and more recently the importance of peptides and miRNAs in building up this communication process has also been described. However, it is well-known that plants have the ability to generate different types of long-range electrical signals in response to different stimuli such as light, temperature variations, wounding, salt stress, or gravitropic stimulation. Presently, it is unclear whether short or long-distance electrical communication in plants is linked to nutrient uptake. This review deals with aspects of sensory input in plant roots and the propagation of discrete signals to the plant body. We discuss the physiological role of electrical signaling in nutrient uptake and how nutrient variations may become an electrical signal propagating along the plant.

  13. Optimised heat recovery steam generators for integrated solar combined cycle plants

    Science.gov (United States)

    Peterseim, Jürgen H.; Huschka, Karsten

    2017-06-01

    The cost of concentrating solar power (CSP) plants is decreasing but, due to the cost differences and the currently limited value of energy storage, implementation of new facilities is still slow compared to photovoltaic systems. One recognized option to lower cost instantly is the hybridization of CSP with other energy sources, such as natural gas or biomass. Various references exist for the combination of CSP with natural gas in combined cycle plants, also known as Integrated Solar Combined Cycle (ISCC) plants. One problem with current ISCC concepts is the so called ISCC crisis, which occurs when CSP is not contributing and cycle efficiency falls below efficiency levels of solely natural gas only fired combined cycle plants. This paper analyses current ISCC concepts and compares them with two optimised designs. The comparison is based on a Kuraymat type ISCC plant and shows that cycle optimization enables a net capacity increase of 1.4% and additional daily generation of up to 7.9%. The specific investment of the optimised Integrated Solar Combined Cycle plant results in a 0.4% cost increase, which is below the additional net capacity and daily generation increase.

  14. Organic, integrated and conventional management in apple orchards: effect on plant species composition, richness and diversity

    Directory of Open Access Journals (Sweden)

    Zdeňka Lososová

    2011-01-01

    Full Text Available The study was conducted to assess the effect of conventional, integrated and organic management on differences in plant species composition, richness and diversity. The plants were studied in triads of orchards situated in three regions of the Czech Republic. Data about species occurrences were collected on 15 permanent plots in the tree rows and 15 plots between tree rows in each of the apple orchards during 2009. A total of 201 vascular plant species (127 native species, 65 archaeophytes, and 9 neophytes were found. Management type and also different regional conditions had a significant effect on plant species composition and on diversity parameters of orchard spontaneous vegetation. Species richness and species pool was significantly higher in the organic orchards than in the differently managed orchards. Management type had significant effect on proportions of archaeophytes, and also neophytes in apple orchards. The results showed that a change from conventional to integrated and organic management in apple orchards lead to higher plant species diversity and to changes in plant species composition.

  15. Process integration in bioprocess indystry: waste heat recovery in yeast and ethyl alcohol plant

    International Nuclear Information System (INIS)

    Raskovic, P.; Anastasovski, A.; Markovska, Lj.; Mesko, V.

    2010-01-01

    The process integration of the bioprocess plant for production of yeast and alcohol was studied. Preliminary energy audit of the plant identified the huge amount of thermal losses, caused by waste heat in exhausted process streams, and reviled the great potential for energy efficiency improvement by heat recovery system. Research roadmap, based on process integration approach, is divided on six phases, and the primary tool used for the design of heat recovery network was Pinch Analysis. Performance of preliminary design are obtained by targeting procedure, for three process stream sets, and evaluated by the economic criteria. The results of process integration study are presented in the form of heat exchanger networks which fulfilled the utilization of waste heat and enable considerable savings of energy in short payback period.

  16. Electrochemical ion separation in molten salts

    Science.gov (United States)

    Spoerke, Erik David; Ihlefeld, Jon; Waldrip, Karen; Wheeler, Jill S.; Brown-Shaklee, Harlan James; Small, Leo J.; Wheeler, David R.

    2017-12-19

    A purification method that uses ion-selective ceramics to electrochemically filter waste products from a molten salt. The electrochemical method uses ion-conducting ceramics that are selective for the molten salt cations desired in the final purified melt, and selective against any contaminant ions. The method can be integrated into a slightly modified version of the electrochemical framework currently used in pyroprocessing of nuclear wastes.

  17. Integrating sequencing batch reactor with bio-electrochemical treatment for augmenting remediation efficiency of complex petrochemical wastewater.

    Science.gov (United States)

    Yeruva, Dileep Kumar; Jukuri, Srinivas; Velvizhi, G; Naresh Kumar, A; Swamy, Y V; Venkata Mohan, S

    2015-01-01

    The present study evaluates the sequential integration of two advanced biological treatment methods viz., sequencing batch reactor (SBR) and bioelectrochemical treatment systems (BET) for the treatment of real-field petrochemical wastewater (PCW). Initially two SBR reactors were operated in aerobic (SBR(Ae)) and anoxic (SBR(Ax)) microenvironments with an organic loading rate (OLR) of 9.68 kg COD/m(3)-day. Relatively, SBR(Ax) showed higher substrate degradation (3.34 kg COD/m(3)-day) compared to SBR(Ae) (2.9 kg COD/m(3)-day). To further improve treatment efficiency, the effluents from SBR process were fed to BET reactors. BET(Ax) depicted higher SDR (1.92 kg COD/m(3)-day) with simultaneous power generation (17.12 mW/m(2)) followed by BET(Ae) (1.80 kg COD/m(3)-day; 14.25 mW/m(2)). Integrating both the processes documented significant improvement in COD removal efficiency due to the flexibility of combining multiple microenvironments sequentially. Results were supported with GC-MS and FTIR, which confirmed the increment in biodegradability of wastewater. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Electrochemical solid-phase microextraction of anions and cations using polypyrrole coatings and an integrated three-electrode device.

    Science.gov (United States)

    Liljegren, Gustav; Pettersson, Jean; Markides, Karin E; Nyholm, Leif

    2002-05-01

    A method for the extraction, transfer and desorption of anions and cations under controlled potential conditions employing a new integrated three-electrode device is described. The device, containing working, reference and counter electrodes, was prepared from tubes that could be moved vertically with respect to each other. In this way, a small amount of solvent, held by capillary force, remained between the electrodes when the device was lifted out of a solution after an extraction. This design allowed the potential control to be maintained at all times. With the new integrated device, it was possible to perform potential controlled desorption into vials containing as little as 200 microl of solution. The required ion exchange capacity was obtained by electrodeposition of a polypyrrole coating on the surface of the glassy carbon working electrode. Solid-phase microextractions of several cations or anions were performed simultaneously under potentiostatic control by doping the polypyrrole coating with different anions such as perchlorate and p-toluenesulfonate. The efficiency of the extractions, which could be altered by varying the potential of the working electrode, could be increased by 150 to 200% compared to extractions using normal solid-phase microextraction conditions under open circuit conditions. A constant potential of +1.0 V and -0.5 V with respect to the silver pseudo reference electrode, was found to be well-suited for the extraction of samples containing ppm concentrations of anions (chloride, nitrite, bromide, nitrate, sulfate and phosphate) and cations (cadmium, cobalt and zinc), respectively.

  19. Encapsulation of Fluidic Tubing and Microelectrodes in Microfluidic Devices: Integrating Off-Chip Process and Coupling Conventional Capillary Electrophoresis with Electrochemical Detection.

    Science.gov (United States)

    Becirovic, Vedada; Doonan, Steven R; Martin, R Scott

    2013-08-21

    In this paper, an approach to fabricate epoxy or polystyrene microdevices with encapsulated tubing and electrodes is described. Key features of this approach include a fixed alignment between the fluidic tubing and electrodes, the ability to polish the device when desired, and the low dead volume nature of the fluidic interconnects. It is shown that a variety of tubing can be encapsulated with this approach, including fused silica capillary, polyetheretherketone (PEEK), and perfluoroalkoxy (PFA), with the resulting tubing/microchip interface not leading to significant band broadening or plug dilution. The applicability of the devices with embedded tubing is demonstrated by integrating several off-chip analytical methods to the microchip. This includes droplet transfer, droplet desegmentation, and microchip-based flow injection analysis. Off-chip generated droplets can be transferred to the microchip with minimal coalescence, while flow injection studies showed improved peak shape and sensitivity when compared to the use of fluidic interconnects with an appreciable dead volume. Importantly, it is shown that this low dead volume approach can be extended to also enable the integration of conventional capillary electrophoresis (CE) with electrochemical detection. This is accomplished by embedding fused silica capillary along with palladium (for grounding the electrophoresis voltage) and platinum (for detection) electrodes. With this approach, up to 128,000 theoretical plates for dopamine was possible. In all cases, the tubing and electrodes are housed in a rigid base; this results in extremely robust devices that will be of interest to researchers wanting to develop microchips for use by non-experts.

  20. An update technology for integrated biomass gasification combined cycle power plant

    International Nuclear Information System (INIS)

    Bhattacharya, P.; Dey, S.

    2014-01-01

    A discussion is presented on the technical analysis of a 6.4 M W_e integrated biomass gasification combined cycle (IBGCC) plant. It features three numbers of downdraft biomass gasifier systems with suitable gas clean-up trains, three numbers of internal combustion (IC) producer gas engines for producing 5.85 MW electrical power in open cycle and 550 kW power in a bottoming cycle using waste heat. Comparing with IC gas engine single cycle systems, this technology route increases overall system efficiency of the power plant, which in turn improves plant economics. Estimated generation cost of electricity indicates that mega-watt scale IBGCC power plants can contribute to good economies of scale in India. This paper also highlight's the possibility of activated carbon generation from the char, a byproduct of gasification process, and use of engine's jacket water heat to generate chilled water through VAM for gas conditioning. (author)

  1. Thermodynamic Analysis of an Integrated Gasification Solid Oxide Fuel Cell Plant with a Kalina Cycle

    DEFF Research Database (Denmark)

    Pierobon, Leonardo; Rokni, Masoud

    2015-01-01

    % is achieved; plant size and nominal power are selected based on the required cultivation area. SOFC heat recovery with SKC is compared to a Steam Cycle (SC). Although ammonia-water more accurately fits the temperature profile of the off-gases, the presence of a Hybrid Recuperator enhances the available work......-treated fuel then enters the anode side of the SOFC. Complete fuel oxidation is ensured in a burner by off-gases exiting the SOFC stacks. Off-gases are utilized as heat source for a SKC where a mixture of ammonia and water is expanded in a turbine to produce additional electric power. Thus, a triple novel......A hybrid plant that consists of a gasification system, Solid Oxide Fuel Cells (SOFC) and a Simple Kalina Cycle (SKC) is investigated. Woodchips are introduced into a fixed bed gasification plant to produce syngas, which is then fed into an integrated SOFC-SKC plant to produce electricity. The pre...

  2. Redox processes in the rhizosphere of restored peatlands - The impact of vascular plant species on electrochemical properties of dissolved organic matter

    Science.gov (United States)

    Agethen, Svenja; Wolff, Franziska; Knorr, Klaus-Holger

    2016-04-01

    organic EDCs and EACs via mediated electrochemical reduction/oxidation. We also characterize DOM with fluorescence spectroscopy and monitor the growth of above ground biomass as proxy for photosynthetic activity and potential DOM source. Preliminary results showed after initially equal magnitude of EACs and EDCs in all batches an increase in total electron exchange capacity (Σ EAC, EDC) four weeks later, but EACs increased significantly higher for rooted plants (fivefold vs. threefold in Sphagnum and controls). Subsequently, higher CH4 concentrations were found for Sphagnum and the controls. In our ongoing study we will also try to relate the effect of vegetation on rhizosphere redox conditions to root and shoot biomass and photosynthesis. First results indicate that oxidation of organic EAs occurs for all tested graminoid species. The analysis of EACs and EDCs in the rhizosphere of dominant species may improve our understanding under which conditions methane production and emission is stimulated or reduced by presence of vascular, aerenchymatic plants.

  3. Integrated electrochemical-biological process as an alternative mean for ammonia monitoring during anaerobic digestion of organic wastes

    DEFF Research Database (Denmark)

    Zhao, Nannan; Li, Xiaohu; Jin, Xiangdan

    2017-01-01

    Ammonia monitoring is important to control anaerobic digestion (AD) process due to inhibition effect. Here, an electrolysis cell (EC) was integrated with a complete nitrification reactor as an alternative approach for online monitoring of ammonia during AD processes. The AD effluent was pumped...... into nitrification reactor to convert ammonia to nitrate, followed by the introduction of nitrate-rich effluent to EC cathode. It was first evaluated with synthetic ammonia-rich digesters and was observed that the current at 5 min were linearly corresponding to the ammonia levels (from 0 to 7.5 mM NH4+-N, R2....... The simple and reliable biosensor showed great promising for online ammonia monitoring of AD processes....

  4. The operational benefits of integrated PC control of gamma irradiation plants

    International Nuclear Information System (INIS)

    Comben, M.; Stephens, P.

    1998-01-01

    Compared with the traditional PLC control systems used on many gamma irradiation plants, the semi-intelligent decision making capabilities of a fully integrated PC control system can bring many benefits to the plant operator. The authors will describe how plant operation is fully automatic with the PC control providing all the input-output data required to run the plant efficiently and safely. Detailed product tracking, with live on-screen data, can be incorporated to give both plant operator and product manufacturer complete confidence in the irradiation process. Advanced features such as on-line diagnostics and mechanical part failure prediction are also described. Also available is automated dosimetry, reducing the opportunity for human error, whilst at the same time saving on staff costs and providing highly professional dose validation reports and comprehensive routine dosimetry documentation. The benefits of PURIDEC's PC control system are not only available with its new plants. The system can be supplied as an upgrade to plants of all ages and design giving the current operator all the benefits described in the paper

  5. The impact of solarisation integrated with plant bio-fermentation on root knot nematodes

    International Nuclear Information System (INIS)

    Ibrahim, S. K.; Traboulsi, A. F.

    2009-01-01

    The impact of different freshly/dried chopped medicinal or aromatic plant materials as an organic amendment in pot cultures, as well as integrated with solarisation under greenhouse conditions on the root knot nematodes population was evaluated. Results indicated that application of solarisation alone gave good control (72%) but when integrated with different plant materials, the control level increased to 95% with Allium sativum and 90% with Mentha microphylla and slightly less with other plant materials which ranged from75 to 80%. The results of pot experiments revealed that the most significant effect on the number of nematodes was achieved with Tagetes patula followed by Pimpinella anisum, Melia azadirach and Origanium syriacum reaching 0.0, 1.2, 1.2 and 2.5/g of roots, respectively. Total control was obtained with Allium sativum. Origanium syriacum contained the highest amount of essential oil (6%). Results obtained indicated that integrated approach using solarisation combined with plant materials could be the best alternative control for the root-knot nematodes. (author)

  6. Development and application of integrated digital I and C system in Japanese PWR plants

    International Nuclear Information System (INIS)

    Tominaga, M.

    1995-01-01

    The Integrated Digital Instrumentation and Control (I and C) System has been developed and applied to non-safety grade I and C systems in the latest 5 Japanese PWR plants in 1990's. Based on the experience in these plants, the Integrated Digital I and C System will be planned to apply also to safety grade I and C systems in Advanced PWR (APWR) as the overall application of digital technology. The basic design task has been just started for APWR which is to be in commercial operation in early 2000's and under the development about various issues of safety grade digital I and C systems. On the other hand, in conventional Japanese PWR plants, digital I and C systems have been applied step by step since 1980's. For example, digital I and C systems for radio-active waste processing system have been adopted to 13 units, and dedicated digital I and C systems for Local loop control system to 8 units. The trend and status of development and application of the digital I and C systems, especially the Integrated Digital I and C System in Japanese PWR plants are presented. (5 refs., 4 figs.)

  7. Application of integrated logistic techniques to operation, maintenance and re engineering processes in Nuclear Power plants

    International Nuclear Information System (INIS)

    Santiago Diez, P.

    1997-01-01

    This paper addresses the advisability of adapting and applying management and Integrated Logistic engineering techniques to nuclear power plants instead of using more traditional maintenance management methods. It establishes a historical framework showing the origins of integrated approaches based on traditional logistic support concepts, their phases and the real results obtained in the aeronautic world where they originated. It reviews the application of integrated management philosophy, and logistic support and engineering analysis techniques regarding Availability, Reliability and Maintainability (ARM) and shows their inter dependencies in different phases of the system's life (Design, Development and Operation). It describes how these techniques are applied to nuclear power plant operation, their impact on plant availability and the optimisation of maintenance and replacement plans. The paper analyses the need for data (type and volume), which will have to be collected, and the different tools to manage such data. It examines the different CALS tools developed by EA for engineering and for logistic management. It also explains the possibility of using these tools for process and data operations through the INTERNET. It also focuses on the qualities of some simple examples of possible applications, and how they would be used in the framework of Integrated Logistic Support (ILS). (Author)

  8. Test requirements for the integral effect test to simulate Korean PWR plants

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chul Hwa; Park, C. K.; Lee, S. J.; Kwon, T. S.; Yun, B. J.; Chung, M. K

    2001-02-01

    In this report, the test requirements are described for the design of the integral effect test facility to simulate Korean PWR plants. Since the integral effect test facility should be designed so as to simulate various thermal hydraulic phenomena, as closely as possible, to be occurred in real plants during operation or anticipated transients, the design and operational characteristics of the reference plants (Korean Standard Nuclear Plant and Korean Next Generation Reactor)were analyzed in order to draw major components, systems, and functions to be satisfied or simulated in the test facility. The test matrix is set up by considering major safety concerns of interest and the test objectives to confirm and enhance the safety of the plants. And the analysis and prioritization of the test matrix leads to the general design requirements of the test facility. Based on the general design requirements, the design criteria is set up for the basic and detailed design of the test facility. And finally it is drawn the design requirements specific to the fluid system and measurement system of the test facility. The test requirements in this report will be used as a guideline to the scaling analysis and basic design of the test facility. The test matrix specified in this report can be modified in the stage of main testing by considering the needs of experiments and circumstances at that time.

  9. Test requirements for the integral effect test to simulate Korean PWR plants

    International Nuclear Information System (INIS)

    Song, Chul Hwa; Park, C. K.; Lee, S. J.; Kwon, T. S.; Yun, B. J.; Chung, M. K.

    2001-02-01

    In this report, the test requirements are described for the design of the integral effect test facility to simulate Korean PWR plants. Since the integral effect test facility should be designed so as to simulate various thermal hydraulic phenomena, as closely as possible, to be occurred in real plants during operation or anticipated transients, the design and operational characteristics of the reference plants (Korean Standard Nuclear Plant and Korean Next Generation Reactor)were analyzed in order to draw major components, systems, and functions to be satisfied or simulated in the test facility. The test matrix is set up by considering major safety concerns of interest and the test objectives to confirm and enhance the safety of the plants. And the analysis and prioritization of the test matrix leads to the general design requirements of the test facility. Based on the general design requirements, the design criteria is set up for the basic and detailed design of the test facility. And finally it is drawn the design requirements specific to the fluid system and measurement system of the test facility. The test requirements in this report will be used as a guideline to the scaling analysis and basic design of the test facility. The test matrix specified in this report can be modified in the stage of main testing by considering the needs of experiments and circumstances at that time

  10. A study of a high temperature nuclear power plant incorporating a non-integrated indirect cycle gas turbine

    International Nuclear Information System (INIS)

    Sarlos, G.; Helbling, W.; Zollinger, E.; Gregory, N.; Luchsinger, H.

    1982-04-01

    In connection with the HHT-project, the Swiss Federal Institute for Reactor Research has performed a study of a 1640-MWth HTR-plant incorporating a non-integrated indirect cycle gas turbine with two-stage intercooling, as a possibility of simplifying and reducing the cost of the HHT-demonstration plant. In this paper, the plant design is described and compared with the HHT-demonstration plant (a CCGT integrated plant with single stage intercooling). Also included is an evaluation of the various advantages and disadvantages of this design together with the presentation of some of the sensitivity results. (Auth.)

  11. Heat integration of fractionating systems in para-xylene plants based on column optimization

    International Nuclear Information System (INIS)

    Chen, Ting; Zhang, Bingjian; Chen, Qinglin

    2014-01-01

    In this paper, the optimization of xylene fractionation and disproportionation units in a para-xylene plant is performed through a new method for systematic design based on GCC (grand composite curve) and CGCC (column grand composite curve). The distillation columns are retrofitted by CGCC firstly. Heat Integration between the columns and the background xylene separation process are then explored by GCC. We found that potential retrofits for columns suggested by CGCC provide better possibilities for further Heat Integration. The effectiveness of the retrofits is finally evaluated by means of thermodynamics and economic analysis. The results show that energy consumption of the retrofitted fractionating columns decreases by 7.13 MW. With the improved thermodynamic efficiencies, all columns operate with less energy requirements. Coupled with Heat Integration, the energy input of the para-xylene plant is reduced by 30.90 MW, and the energy outputs are increased by 17 MW and 58 MW for generation of the 3.5 MPa and 2.5 MPa steams. The energy requirement after the Heat Integration is reduced by 12% compared to the original unit. The retrofits required a fixed capital cost of 6268.91 × 10 3  $ and saved about 24790.74 × 10 3  $/year worth of steam. The payback time is approximately 0.26 year for the retrofits. - Highlights: • A new method for systematic design is proposed to improve energy saving of the PX plant in retrofit scenarios. • An optimization approach is developed to identify maximum heat recovery in distillation columns. • An efficient Heat Integration procedure of the PX plant is addressed based on the optimal retrofitted distillation columns. • The energy consumption is reduced by 12% after improvement to an industrial case

  12. Electrochemical determination of the levels of cadmium, copper and lead in polluted soil and plant samples from mining areas in Zamfara State, Nigeria

    Directory of Open Access Journals (Sweden)

    Modupe Mabel Ogunlesi

    2017-12-01

    Full Text Available The concentrations of lead, copper and cadmium in soil and plant samples collected from Abare and Dareta villages in Anka local government area of Zamfara State, Nigeria have been electrochemically determined. The study was carried out because of the high mortality of women and children under five, reported for these areas in June 2010. The cause was ascribed to the lead poisoning which has been related to the mining and processing of gold-containing ores. Linear sweep anodic stripping voltammetry technique was used with the glassy carbon working, Ag/AgCl reference and platinum auxiliary electrodes. Voltammetric peaks for lead, copper and cadmium that were observed at -495 mV, -19.4 mV and -675 mV, respectively, have formed a basis for construction of the corresponding calibration plots. The concentrations (in mg/kg of lead, copper and cadmium in the soil samples were found in the ranges of 18.99−26087.70, 2.96−584.60 and 0.00−1354.25, respectively. The concentration values for lead were far above already established USEPA (2002 and WHO (1996 maximum permissible limits for residential areas. The concentrations of lead, copper and cadmium in the food samples ranged between 5.70−79.91, 11.17−41.21 and 0.00−5.74 mg/kg. Several of these values are found well above the FAO/WHO limits of 0.1, 2 and 0.1 mg/kg, respectively. The results indicate that in addition to the lead poisoning, copper and cadmium poisoning may also be responsible for sudden and high mortality in this population.

  13. Pollution control activities for waste-water treatment plants: planning, integrated approach, functionality controls and small plants

    International Nuclear Information System (INIS)

    Serena, F.; Tomiato, L.; Ostoich, M.; Falletti, L.

    2009-01-01

    The work presents the problem of the Wastewater Treatment Plants' (WWTPs) controls and the organization of the consequential activities with reference to the priorities of the Environmental Agencies through a hierarchy assessment according to the environmental importance of the pressure sources. The European Recommendation 2001/331/EC bases the environmental controls of industrial sites and also of WWTPs on an integrated approach overtaking the simple analytic control; the integrated approach requires documentary, technical, management and analytic controls. The Veneto Regional Environmental Prevention and Protection Agency (ARPAV) has recently developed and applied a check-list for the implementation of the European Recommendation for WWTPs. The check-list includes the functionality assessment of the WWTP in case of discharge control delegation to the plant manager as consented with Annex 5 third part Italian Decree 3/04/2006 n. 152. In the paper the general framework of environmental controls on public WWTPs in the Veneto region is described. Particular importance for the numerousness and for the required control typology is referred to the small WWTP ( [it

  14. Integration of vectors by homologous recombination in the plant pathogen Glomerella cingulata.

    Science.gov (United States)

    Rikkerink, E H; Solon, S L; Crowhurst, R N; Templeton, M D

    1994-03-01

    An homologous transformation system has been developed for the plant pathogenic fungus Glomerella cingulata (Colletotrichum gloeosporioides). A transformation vector containing the G. cingulata gpdA promoter fused to the hygromycin phosphotransferase gene was constructed. Southern analyses indicated that this vector integrated at single sites in most transformants. A novel method of PCR amplification across the recombination junction point indicated that the integration event occurred by homologous recombination in more than 95% of the transformants. Deletion studies demonstrated that 505 bp (the minimum length of homologous promoter DNA analysed which was still capable of promoter function) was sufficient to target integration events. Homologous integration of the vector resulted in duplication of the gdpA promoter region. When transformants were grown without selective pressure, a high incidence of vector excision by recombination between the duplicated regions was evident. The significance of these recombination characteristics is discussed with reference to the feasibility of performing gene disruption experiments.

  15. Use of planted biofilters in integrated recirculating aquaculture-hydroponics systems in the Mekong Delta, Vietnam

    DEFF Research Database (Denmark)

    Trang, N.T.D.; Brix, Hans

    2014-01-01

    The feasibility of using planted biofilters for purification of recirculated aquaculture water in the Mekong Delta of Vietnam was assessed. The plant trenches were able to clean tilapia aquaculture water and to maintain good water quality in the fish tanks without renewal of the water. NH4-N was ...... rates of 725 kg N and 234 kg P ha-1 year-1. This research demonstrates that integrated recirculating aquaculture-hydroponics (aquaponics) systems provide significant water savings and nutrient recycling as compared with traditional fish ponds....

  16. LiBr absorption systems integrated with high–efficiency IGSG plant

    DEFF Research Database (Denmark)

    Rokni, Masoud; Bellomare, Filippo

    2015-01-01

    vapor compression inverse cycles; waste heat from other systems can in fact be used as an efficient input instead of electrical energy. The opportunity to integrate Li-Br absorption systems with a high-efficiency energy plant was studied; rejected heat from a Municipal Solid Waste Gasification Plant......Over the last few years, the energy demand for cooling systems is increasing; different solutions in fact have been proposed in order to minimize the energetic and environmental impact of this trend. In this direction, absorption cooling systems are recognized as a valid alternative to traditional...

  17. An Invasive Clonal Plant Benefits from Clonal Integration More than a Co-Occurring Native Plant in Nutrient-Patchy and Competitive Environments

    Science.gov (United States)

    You, Wenhua; Fan, Shufeng; Yu, Dan; Xie, Dong; Liu, Chunhua

    2014-01-01

    Many notorious invasive plants are clonal, however, little is known about the different roles of clonal integration effects between invasive and native plants. Here, we hypothesize that clonal integration affect growth, photosynthetic performance, biomass allocation and thus competitive ability of invasive and native clonal plants, and invasive clonal plants benefit from clonal integration more than co-occurring native plants in heterogeneous habitats. To test these hypotheses, two stoloniferous clonal plants, Alternanthera philoxeroides (invasive), Jussiaea repens (native) were studied in China. The apical parts of both species were grown either with or without neighboring vegetation and the basal parts without competitors were in nutrient- rich or -poor habitats, with stolon connections were either severed or kept intact. Competition significantly reduced growth and photosynthetic performance of the apical ramets in both species, but not the biomass of neighboring vegetation. Without competition, clonal integration greatly improved the growth and photosynthetic performance of both species, especially when the basal parts were in nutrient-rich habitats. When grown with neighboring vegetation, growth of J. repens and photosynthetic performance of both species were significantly enhanced by clonal integration with the basal parts in both nutrient-rich and -poor habitats, while growth and relative neighbor effect (RNE) of A. philoxeroides were greatly improved by clonal integration only when the basal parts were in nutrient-rich habitats. Moreover, clonal integration increased A. philoxeroides's biomass allocation to roots without competition, but decreased it with competition, especially when the basal ramets were in nutrient-rich sections. Effects of clonal integration on biomass allocation of J. repens was similar to that of A. philoxeroides but with less significance. These results supported our hypothesis that invasive clonal plants A. philoxeroides benefits

  18. Establishment of the Integrated Data of Mechanical and Physical Properties of Nuclear Structural Materials for the Safety of Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Ho; Maeng, Wan Young; Kim, Woogun; and others

    2012-01-15

    It is essential to have a evaluation mock system for integrity verification of operating nuclear power plants. There is no material evaluation facility in Korea with operating conditions. It is needed to develop a large scale materials and components integrity evaluation mock system for a design, construction, and operation of Korean nuclear power plants. Improvement of nuclear technology in materials design, construction, and operation Korea had a chance to export nuclear power plant to other country. In order to keep a competitive power in the nuclear industries, it is important to set up a materials and components integrity evaluation system. Standard or code of materials and component design and operation is also essential for keeping the initiative in the nuclear industries. It takes a long period of time under simulated conditions close to the conditions of nuclear power plants (NPPs), to have flow accelerated corrosion (FAC) tests for the piping in their secondary system. Therefore, it will be efficient to design the multipurpose test section. A device to monitor electrochemical properties continuously is installed to evaluate environmental conditions for FAC of the piping. The flow velocity of the loop is controlled by a valve under high temperature and high pressure conditions, since the measured electrochemical value is influenced by the flow velocity. Dummy sensors are installed to accelerate the FAC by making turbulence of the flow. It is designed to test the piping with different diameters and of alternative modified materials, at the same time. The specimens are checked during or after each test by destruct ve and non-destructive methods. And small rotating specimens will be tested in an autoclave to measure the very small amount of weight change, when the thickness change is not significant. A test loop has been designed to check electrochemical properties and it can control flow velocity, dissolved oxygen, pH and temperature of the coolant. The

  19. Integration of the steam cycle and CO2 capture process in a decarbonization power plant

    International Nuclear Information System (INIS)

    Xu, Gang; Hu, Yue; Tang, Baoqiang; Yang, Yongping; Zhang, Kai; Liu, Wenyi

    2014-01-01

    A new integrated system with power generation and CO 2 capture to achieve higher techno-economic performance is proposed in this study. In the new system, three measures are adopted to recover the surplus energy from the CO 2 capture process. The three measures are as follows: (1) using a portion of low-pressure steam instead of high-pressure extracted steam by installing the steam ejector, (2) mixing a portion of flash-off water with the extracted steam to utilize the superheat degree of the extracted steam, and (3) recycling the low-temperature waste heat from the CO 2 capture process to heat the condensed water. As a result, the power output of the new integrated system is 107.61 MW higher than that of a decarbonization power plant without integration. The efficiency penalty of CO 2 capture is expected to decrease by 4.91%-points. The increase in investment produced by the new system is 3.25 M$, which is only 0.88% more than the total investment of a decarbonization power plant without integration. Lastly, the cost of electricity and CO 2 avoided is 15.14% and 33.1% lower than that of a decarbonization power generation without integration, respectively. The promising results obtained in this study provide a new approach for large-scale CO 2 removal with low energy penalty and economic cost. - Highlights: • Energy equilibrium in CO 2 capture process is deeply analyzed in this paper. • System integration is conducted in a coal-fired power plant with CO 2 capture. • The steam ejector is introduced to utilize the waste energy from CO 2 capture process. • Thermodynamic, exergy and techno-economic analyses are quantitatively conducted. • Energy-saving effects are found in the new system with minimal investment

  20. Integration of Plant Defense Traits with Biological Control of Arthropod Pests: Challenges and Opportunities.

    Science.gov (United States)

    Peterson, Julie A; Ode, Paul J; Oliveira-Hofman, Camila; Harwood, James D

    2016-01-01

    Crop plants exhibit a wide diversity of defensive traits and strategies to protect themselves from damage by herbivorous pests and disease. These defensive traits may be naturally occurring or artificially selected through crop breeding, including introduction via genetic engineering. While these traits can have obvious and direct impacts on herbivorous pests, many have profound effects on higher trophic levels, including the natural enemies of herbivores. Multi-trophic effects of host plant resistance have the potential to influence, both positively and negatively, biological control. Plant defense traits can influence both the numerical and functional responses of natural enemies; these interactions can be semiochemically, plant toxin-, plant nutrient-, and/or physically mediated. Case studies involving predators, parasitoids, and pathogens of crop pests will be presented and discussed. These diverse groups of natural enemies may respond differently to crop plant traits based on their own unique biology and the ecological niches they fill. Genetically modified crop plants that have been engineered to express transgenic products affecting herbivorous pests are an additional consideration. For the most part, transgenic plant incorporated protectant (PIP) traits are compatible with biological control due to their selective toxicity to targeted pests and relatively low non-target impacts, although transgenic crops may have indirect effects on higher trophic levels and arthropod communities mediated by lower host or prey number and/or quality. Host plant resistance and biological control are two of the key pillars of integrated pest management; their potential interactions, whether they are synergistic, complementary, or disruptive, are key in understanding and achieving sustainable and effective pest management.

  1. Integration of plant defense traits with biological control of arthropod pests: challenges and opportunities

    Directory of Open Access Journals (Sweden)

    Julie A Peterson

    2016-11-01

    Full Text Available Crop plants exhibit a wide diversity of defensive traits and strategies to protect themselves from damage by herbivorous pests and disease. These defensive traits may be naturally occurring or artificially selected through crop breeding, including introduction via genetic engineering. While these traits can have obvious and direct impacts on herbivorous pests, many have profound effects on higher trophic levels, including the natural enemies of herbivores. Multi-trophic effects of host plant resistance have the potential to influence, both positively and negatively, biological control. Plant defense traits can influence both the numerical and functional responses of natural enemies; these interactions can be semiochemically-, plant toxin-, plant nutrient-, and/or physically-mediated. Case studies involving predators, parasitoids, and pathogens of crop pests will be presented and discussed. These diverse groups of natural enemies may respond differently to crop plant traits based on their own unique biology and the ecological niches they fill. Genetically modified crop plants that have been engineered to express transgenic products affecting herbivorous pests are an additional consideration. For the most part, transgenic plant incorporated protectant (PIP traits are compatible with biological control due to their selective toxicity to targeted pests and relatively low non-target impacts, although transgenic crops may have indirect effects on higher trophic levels and arthropod communities mediated by lower host or prey number and/or quality. Host plant resistance and biological control are two of the key pillars of integrated pest management; their potential interactions, whether they are synergistic, complementary, or disruptive, are key in understanding and achieving sustainable and effective pest management.

  2. Integrated approach to optimize operation and maintenance costs for operating nuclear power plants

    International Nuclear Information System (INIS)

    2006-06-01

    In the context of increasingly open electricity markets and the 'unbundling' of generating companies from former utility monopolies, an area of major concern is the economic performance of the existing fleet of nuclear power plants. Nuclear power, inevitably, must compete directly with other electricity generation sources. Coping with this competitive pressure is a challenge that the nuclear industry should meet if the nuclear option is to remain a viable one. This competitive environment has significant implications for nuclear plant operations, including, among others, the need for the more cost effective management of plant activities, and the greater use of analytical tools to balance the costs and benefits of proposed activities, in order to optimize operation and maintenance costs, and thus insure the economic competitiveness of existing nuclear power plants. In the framework of the activities on Nuclear Economic Performance Information System (NEPIS), the IAEA embarked in developing guidance on optimization of operation and maintenance costs for nuclear power plants. The report was prepared building on the fundamental that optimization of operation and maintenance costs of a nuclear power plant is a key component of a broader integrated business strategic planning process, having as overall result achievement of organization's business objectives. It provides advice on optimization of O and M costs in the framework of strategic business planning, with additional details on operational planning and controlling. This TECDOC was elaborated in 2004-2005 in the framework of the IAEA's programme on Nuclear Power Plant Operating Performance and Life Cycle Management, with the support of two consultants meetings and one technical meeting and based on contributions provided by participants. It can serve as a useful reference for the management and operation staff within utilities, nuclear power plant operators and regulators and other organizations involved in

  3. Integrity evaluation of power plant components by fracture mechanics and related techniques

    International Nuclear Information System (INIS)

    Mukherjee, B.; Vanderglas, M.L.; Davies, P.H.

    1982-01-01

    Power plant components can be subject to unexpected failures with serious consequences, unless careful attention is paid to minute crack defects and their possible growth. The Linear Elastic Fracture Mechanics approach to structural integrity evaluation, as it appears in the ASME Code, is discussed. Projects related to material data generation and the development of structural analysis methods to make the above method usable are described. Several integrity-related questions outside the scope of the Code guidelines are documented, concluding with comments on possible future developments

  4. Exergetic analysis of cogeneration plants through integration of internal combustion engine and process simulators

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Leonardo de Oliveira [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil)], E-mail: leonardo.carvalho@petrobras.com.br; Leiroz, Albino Kalab; Cruz, Manuel Ernani [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), RJ (Brazil). Programa de Engenharia Mecanica], Emails: leiroz@mecanica.ufrj.br, manuel@mecanica.ufrj.br

    2010-07-01

    Internal combustion engines (ICEs) have been used in industry and power generation much before they were massively employed for transportation. Their high reliability, excellent power-to-weight ratio, and thermal efficiency have made them a competitive choice as main energy converters in small to medium sized power plants. Process simulators can model ICE powered energy plants with limited depth, due to the highly simplified ICE models used. Usually a better understanding of the global effects of different engine parameters is desirable, since the combustion process within the ICE is typically the main cause of exergy destruction in systems which utilize them. Dedicated commercial ICE simulators have reached such a degree of maturity, that they can adequately model a wide spectrum of phenomena that occur in ICEs. However, ICE simulators are unable to incorporate the remaining of power plant equipment and processes in their models. This paper presents and exploits the integration of an internal combustion engine simulator with a process simulator, so as to evaluate the construction of a fully coupled simulation platform to analyze the performance of ICE-based power plants. A simulation model of an actual cogeneration plant is used as a vehicle for application of the proposed computational methodology. The results show that by manipulating the engine mapping parameters, the overall efficiency of the plant can be improved. (author)

  5. The interrelationship between environmental goals, productivity improvement, and increased energy efficiency in integrated paper and steel plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    This report presents the results of an investigation into the interrelationships between plant-level productivity, energy efficiency, and environmental improvements for integrated pulp and paper mills and integrated steel mills in the US. Integrated paper and steel plants are defined as those facilities that use some form of onsite raw material to produce final products (for example, paper and paperboard or finished steel). Fully integrated pulp and paper mills produce onsite the pulp used to manufacture paper from virgin wood fiber, secondary fiber, or nonwood fiber. Fully integrated steel mills process steel from coal, iron ore, and scrap inputs and have onsite coke oven facilities.

  6. Integration of Plant Metabolomics Data with Metabolic Networks: Progresses and Challenges.

    Science.gov (United States)

    Töpfer, Nadine; Seaver, Samuel M D; Aharoni, Asaph

    2018-01-01

    In the last decade, plant genome-scale modeling has developed rapidly and modeling efforts have advanced from representing metabolic behavior of plant heterotrophic cell suspensions to studying the complex interplay of cell types, tissues, and organs. A crucial driving force for such developments is the availability and integration of "omics" data (e.g., transcriptomics, proteomics, and metabolomics) which enable the reconstruction, extraction, and application of context-specific metabolic networks. In this chapter, we demonstrate a workflow to integrate gas chromatography coupled to mass spectrometry (GC-MS)-based metabolomics data of tomato fruit pericarp (flesh) tissue, at five developmental stages, with a genome-scale reconstruction of tomato metabolism. This method allows for the extraction of context-specific networks reflecting changing activities of metabolic pathways throughout fruit development and maturation.

  7. International symposium on nuclear techniques in integrated plant nutrient, water and soil management. Book of extended synopses

    International Nuclear Information System (INIS)

    2000-10-01

    This document contains extended synopsis of 92 papers presented at the International Symposium on Nuclear Techniques in Integrated Plant Nutrient, Water, and Soil Management held in Vienna, Austria, 16-20 October 2000. The efficient use of plant nutrient and fertilizer using carbon 13 and nitrogen 15 tracers; plant water use using oxygen 18 and moisture gauges, as well as soil and plant radioactivity monitoring, are some of the major subjects covered by these papers

  8. Electrochemical cell

    Science.gov (United States)

    Kaun, T.D.

    An improved secondary electrochemical cell is disclosed having a negative electrode of lithium aluminum, a positive electrode of iron sulfide, a molten electrolyte of lithium chloride and potassium chloride, and the combination that the fully charged theoretical capacity of the negative electrode is in the range of 0.5 to 1.0 that of the positive electrode. The cell thus is negative electrode limiting during discharge cycling. Preferably, the negative electrode contains therein, in the approximate range of 1 to 10 volume % of the electrode, an additive from the materials of graphitized carbon, aluminum-iron alloy, and/or magnesium oxide.

  9. Optimal and Modular Configuration of Wind Integrated Hybrid Power Plants for Off-Grid Systems

    DEFF Research Database (Denmark)

    Petersen, Lennart; Iov, Florin; Tarnowski, German Claudio

    2018-01-01

    This paper focusses on the system configuration of offgrid hybrid power plants including wind power generation. First, a modular and scalable system topology is proposed. Secondly, an optimal sizing algorithm is developed in order to determine the installed capacities of wind turbines, PV system......, battery energy storage system and generator sets. The novelty of this work lies in a robust sizing algorithm with respect to the required resolution of resource data in order to account for intra-hour power variations. Moreover, the involvement of the electrical infrastructure enables a precise estimation...... of power losses within the hybrid power plant as well as the consideration of both active and reactive power load demand for optimally sizing the plant components. The main outcome of this study is a methodology to determine feasible system configurations of modular and scalable wind integrated hybrid...

  10. Quality assurance systems - a means for an integrating organization of nuclear power plants

    International Nuclear Information System (INIS)

    Adams, H.W.

    1984-01-01

    The operators of nuclear power plants are in the process of introducing quality assurance systems of the type required in Rule 1401 by the German Kerntechnischer Ausschuss (Nuclear Technology Committee). These systems as a cross sectional function cover most of the organizational areas of a nuclear power plant. Their introduction offers an opportunity to harmonize and supplement existing systems where necessary. Integrated quality assurance systems built up on a data base allow existing DP data and other logical data to be organized in such a way that certain sequences of events can be managed by enforced control. This relieves the personnel responsible for the safety of a nuclear power plant of routine jobs and routine decisions. Greater flexibility is created for personal decisions. Organized sequences of events can be monitored by having lists printed out in which the necessary data are combined into data sets. (orig.) [de

  11. Integrated structural design of nuclear power plants for high seismic areas

    International Nuclear Information System (INIS)

    Rieck, P.J.

    1979-01-01

    A design approach which structurally interconnects NPP buildings to be located in high seismic areas is described. The design evolution of a typical 600 MWe steel cylindrical containment PWR is described as the plant is structurally upgraded for higher seismic requirements, while maintaining the original plant layout. The plant design is presented as having separate reactor building and auxiliary structures for a low seismic area (0.20 g) and is structurally combined at the foundation for location in a higher seismic area (0.30 g). The evolution is completed by a fully integrated design which structurally connects the reactor building and auxiliary structures at superstructure elevations as well as foundation levels for location in very severe seismic risk areas (0.50 g). (orig.)

  12. Psychology in nuclear power plants: an integrative approach to safety - general statement

    International Nuclear Information System (INIS)

    Shikiar, R.

    1983-08-01

    Since the accident at the Three Mile Island nuclear power plant on March 28, 1979, the commercial nuclear industry in the United States has paid increasing attention to the role of humans in overall plant safety. As the regulatory body with primary responsibility for ensuring public health and safety involving nuclear operations, the United States Nuclear Regulatory Commission (NRC) has also become increasingly involved with the ''human'' side of nuclear operations. The purpose of this symposium is to describe a major program of research and technical assistance that the Pacific Northwest Laboratory is performing for the NRC that deals with the issues of safety at nuclear power plants (NPPs). This program addresses safety from several different levels of analysis, which are all important within the context of an integrative approach to system safety

  13. Advanced modeling and simulation of integrated gasification combined cycle power plants with CO2-capture

    International Nuclear Information System (INIS)

    Rieger, Mathias

    2014-01-01

    The objective of this thesis is to provide an extensive description of the correlations in some of the most crucial sub-processes for hard coal fired IGCC with carbon capture (CC-IGCC). For this purpose, process simulation models are developed for four industrial gasification processes, the CO-shift cycle, the acid gas removal unit, the sulfur recovery process, the gas turbine, the water-/steam cycle and the air separation unit (ASU). Process simulations clarify the influence of certain boundary conditions on plant operation, performance and economics. Based on that, a comparative benchmark of CC-IGCC concepts is conducted. Furthermore, the influence of integration between the gas turbine and the ASU is analyzed in detail. The generated findings are used to develop an advanced plant configuration with improved economics. Nevertheless, IGCC power plants with carbon capture are not found to be an economically efficient power generation technology at present day boundary conditions.

  14. Integrated Level 3 risk assessment for the LaSalle Unit 2 nuclear power plant

    International Nuclear Information System (INIS)

    Payne, A.C. Jr.; Brown, T.D.; Miller, L.A.

    1991-01-01

    An integrated Level 3 probabilistic risk assessment (PRA) was performed on the LaSalle County Station nuclear power plant using state-of-the-art PRA analysis techniques. The objective of this study was to provide an estimate of the risk to the offsite population during full power operation of the plant and to include a characterization of the uncertainties in the calculated risk values. Uncertainties were included in the accident frequency analysis, accident progression analysis, and the source term analysis. Only weather uncertainties were included in the consequence analysis. In this paper selected results from the accident frequency, accident progression, source term, consequence, and integrated risk analyses are discussed and the methods used to perform a fully integrated Level 3 PRA are examined. LaSalle County Station is a two-unit nuclear power plant located 55 miles southwest of Chicago, Illinois. Each unit utilizes a Mark 2 containment to house a General Electric 3323 MWt BWR-5 reactor. This PRA, which was performed on Unit 2, included internal as well as external events. External events that were propagated through the risk analysis included earthquakes, fires, and floods. The internal event accident scenarios included transients, transient-induced LOCAs (inadvertently stuck open relief valves), anticipated transients without scram, and loss of coolant accidents

  15. Sewage sludge drying process integration with a waste-to-energy power plant.

    Science.gov (United States)

    Bianchini, A; Bonfiglioli, L; Pellegrini, M; Saccani, C

    2015-08-01

    Dewatered sewage sludge from Waste Water Treatment Plants (WWTPs) is encountering increasing problems associated with its disposal. Several solutions have been proposed in the last years regarding energy and materials recovery from sewage sludge. Current technological solutions have relevant limits as dewatered sewage sludge is characterized by a high water content (70-75% by weight), even if mechanically treated. A Refuse Derived Fuel (RDF) with good thermal characteristics in terms of Lower Heating Value (LHV) can be obtained if dewatered sludge is further processed, for example by a thermal drying stage. Sewage sludge thermal drying is not sustainable if the power is fed by primary energy sources, but can be appealing if waste heat, recovered from other processes, is used. A suitable integration can be realized between a WWTP and a waste-to-energy (WTE) power plant through the recovery of WTE waste heat as energy source for sewage sludge drying. In this paper, the properties of sewage sludge from three different WWTPs are studied. On the basis of the results obtained, a facility for the integration of sewage sludge drying within a WTE power plant is developed. Furthermore, energy and mass balances are set up in order to evaluate the benefits brought by the described integration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Valuing flexibility: The case of an Integrated Gasification Combined Cycle power plant

    International Nuclear Information System (INIS)

    Abadie, Luis M.; Chamorro, Jose M.

    2008-01-01

    In this paper we analyze the choice between two technologies for producing electricity. In particular, the firm has to decide whether and when to invest either in a Natural Gas Combined Cycle (NGCC) power plant or in an Integrated Gasification Combined Cycle (IGCC) power plant, which may burn either coal or natural gas. Instead of assuming that fuel prices follow standard geometric Brownian motions, here they are assumed to show mean reversion, specifically to follow an inhomogeneous geometric Brownian motion. First we consider the opportunity to invest in a NGCC power plant. We derive the optimal investment rule as a function of natural gas price and the remaining life of the right to invest. In addition, the analytical solution for a perpetual option to invest is obtained. Then we turn to the IGCC power plant. We analyse the valuation of an operating plant when there are switching costs between modes of operation, and the choice of the best operation mode. This serves as an input to evaluate the option to invest in this plant. Finally we derive the value of an opportunity to invest either in a NGCC or IGCC power plant, i.e. to choose between an inflexible and a flexible technology, respectively. Depending on the opportunity's time to maturity, we derive the pairs of coal and gas prices for which it is optimal to invest in NGCC, in IGCC, or simply not to invest. Numerical computations involve the use of one- and two-dimensional binomial lattices that support a mean-reverting process for coal and gas prices. Basic parameter values are taken from an actual IGCC power plant currently in operation. Sensitivity of some results with respect to the underlying stochastic process for fuel price is also checked

  17. Study on integrity evaluation of structures associated with nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    The 3.11 Tohoku District -off the Pacific Ocean Earthquake and tsunami made us observations of tsunami height in large exceedance of the design, and besides it gave the most damages to several nuclear power plants facing the Pacific Ocean at source area of the earthquake. Particularly, at Fukushima-Daiichi Nuclear Power Plant, the great tsunami caused the simultaneous failure on several plant's equipment and components, which escalated into the core damage. Considering these background, the objective of this research is to enhance fundamental technology relative to integrity evaluation of SSC's (System, Structure, components) targeting external events such as earthquakes and tsunamis. Specifically, it is performed to develop structure evaluation methods against tsunami, to develop seismic isolation system, and to enhance non-liner analysis methods for building and so on. In viewpoint of the other external events except earthquake and tsunami, it was performed to develop impact analysis methods on building and outdoor structure against swept things caused by tornadoes. After that on the basis of these developments, it is performed to draw up guidelines such as the base isolation structure review guide, and the structure design and risk evaluation guide against tsunami, which are to be used in cross-check analysis targeting integrity evaluation of nuclear power plant's structures against external events such as earthquakes and tsunamis. (author)

  18. Study on integrity evaluation of structures associated with nuclear power plants

    International Nuclear Information System (INIS)

    2013-01-01

    The 3.11 Tohoku District -off the Pacific Ocean Earthquake and tsunami made us observations of tsunami height in large exceedance of the design, and besides it gave the most damages to several nuclear power plants facing the Pacific Ocean at source area of the earthquake. Particularly, at Fukushima-Daiichi Nuclear Power Plant, the great tsunami caused the simultaneous failure on several plant's equipment and components, which escalated into the core damage. Considering these background, the objective of this research is to enhance fundamental technology relative to integrity evaluation of SSC's (System, Structure, components) targeting external events such as earthquakes and tsunamis. Specifically, it is performed to develop structure evaluation methods against tsunami, to develop seismic isolation system, and to enhance non-liner analysis methods for building and so on. In viewpoint of the other external events except earthquake and tsunami, it was performed to develop impact analysis methods on building and outdoor structure against swept things caused by tornadoes. After that on the basis of these developments, it is performed to draw up guidelines such as the base isolation structure review guide, and the structure design and risk evaluation guide against tsunami, which are to be used in cross-check analysis targeting integrity evaluation of nuclear power plant's structures against external events such as earthquakes and tsunamis. (author)

  19. Technology development on the assessment of structural integrity of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jeong Moon; Choun, Y. S.; Choi, I. K. and others

    1999-04-01

    Nuclear power plants in Korea show drop off in their performance and safety margin as the age of plants increase. The reevaluation of Kori-1 Unit on its performance and safety for life extension is expected in the near future. However, technologies and information related are insufficient to quantitatively estimate them. The final goal of this study is to develop the basic testing and evaluation techniques related with structural integrity of important nuclear equipment and structures. A part of the study includes development of equipment qualification technique. To ensure the structural integrity of structures, systems, and equipment in nuclear power plants, the following 5 research tasks were performed in the first year. - Analysis of dynamic characteristics of reactor internals - Analysis of engineering characteristics of instrumental earthquakes recorded in Korea - Analysis of ultimate pressure capacity and failure mode of containments building - Development of advanced NDE techniques using ultrasonic resonance scattering - Development of equipment qualification technique against vibration aging. These technologies developed in this study can be used to ensure the structural safety of operational nuclear power plants, and for the long-term life management. (author)

  20. Integrated Wireless Monitoring and Control System in Reverse Osmosis Membrane Desalination Plants

    Directory of Open Access Journals (Sweden)

    Al Haji Ahmad

    2015-01-01

    Full Text Available The operational processes of the Reverse Osmosis (RO membrane desalination plants require continuous monitoring through the constant attendance of operators to ensure proper productivity and minimize downtime and prevent membrane failure. Therefore, the plant must be equipped with a control system that monitors and controls the operational variables. Monitoring and controlling the affecting parameters are critical to the evaluation of the performance of the desalination plant, which will help the operator find and resolve problems immediately. Therefore, this paper was aimed at developing an RO unit by utilizing a wireless sensor network (WSN system. Hence, an RO pilot plant with a feed capacity of 1.2 m3/h was utilized, commissioned, and tested in Kuwait to assess and verify the performance of the integrated WSN in RO membrane desalination system. The investigated system allowed the operators to remotely monitor the operational process of the RO system. The operational data were smoothly recorded and monitored. Furthermore, the technical problems were immediately determined, which reduced the time and effort in rectifying the technical problems relevant to the RO performance. The manpower requirements of such treatment system were dramatically reduced by about 50%. Based on a comparison between manual and wireless monitoring operational processes, the availability of the integrated RO unit with a wireless monitoring was increased by 10%

  1. Thermodynamic evaluation of CHP (combined heat and power) plants integrated with installations of coal gasification

    International Nuclear Information System (INIS)

    Ziębik, Andrzej; Malik, Tomasz; Liszka, Marcin

    2015-01-01

    Integration of a CHP steam plant with an installation of coal gasification and gas turbine leads to an IGCC-CHP (integrated gasification combined cycle-combined heat and power). Two installations of coal gasification have been analyzed, i.e. pressurized entrained flow gasifier – case 1 and pressurized fluidized bed gasifier with CO_2 recirculation – case 2. Basing on the results of mathematical modelling of an IGCC-CHP plant, the algorithms of calculating typical energy indices have been derived. The following energy indices are considered, i.e. coefficient of heat performance and relative savings of chemical energy of fuels. The results of coefficients of heat performance are contained between 1.87 and 2.37. Values exceeding 1 are thermodynamically justified because the idea of cogeneration of heat and electricity based on combining cycles of the heat engine and heat pump the efficiency of which exceeds 1. Higher values concerning waste heat replace more thermodynamically effective sources of heat in CHP plants. Relative savings of the chemical energy of fuels are similar in both cases of IGCC-CHP plants and are contained between the lower value of the CHP (combined heat and power) plants fuelled with coal and higher value of CHP plants fired with natural gas. - Highlights: • Energy savings of fuel is an adequate measure of cogeneration. • Relative energy savings of IGCC-CHP is near the result of a gas and steam CHP. • COHP (coefficient of heat performance) can help to divide fuel between heat fluxes. • Higher values of COHP in the case of waste heat recovery result from the lower thermal parameters.

  2. Integration of distributed plant lifecycle data using ISO 15926 and Web services

    International Nuclear Information System (INIS)

    Kim, Byung Chul; Teijgeler, Hans; Mun, Duhwan; Han, Soonhung

    2011-01-01

    Highlights: → The ISO 15926 parts that provide implementation methods are under development. → A prototype of an ISO 15926-based data repository called a facade was implemented. → The prototype facade has the advantages of data interoperability and integration. → These are obtained through the features of ISO 15926 and Web services. - Abstract: Considering the financial, safety, and environmental risks related to industrial installations, it is of paramount importance that all relevant lifecycle information is readily available. Parts of this lifecycle information are stored in a plethora of computer systems, often scattered around the world and in many native formats and languages. These parts can create a complete, holistic set of lifecycle data only when they are integrated together. At present, no software is available that can integrate these parts into one coherent, distributed, and up-to-date set. The ISO 15926 standard has been developed, and in part is still under development, to overcome this problem. In this paper, the authors discuss a prototype of an ISO 15926-based data repository called a facade, and its Web services are implemented for storing the equipment data of a nuclear power plant and servicing the data to interested organizations. This prototype is for a proof-of-concept study regarding the ISO 15926 parts that are currently under development and that are expected to provide implementation methods for the integration of distributed plant systems.

  3. Electrochemical attosyringe.

    Science.gov (United States)

    Laforge, François O; Carpino, James; Rotenberg, Susan A; Mirkin, Michael V

    2007-07-17

    The ability to manipulate ultrasmall volumes of liquids is essential in such diverse fields as cell biology, microfluidics, capillary chromatography, and nanolithography. In cell biology, it is often necessary to inject material of high molecular weight (e.g., DNA, proteins) into living cells because their membranes are impermeable to such molecules. All techniques currently used for microinjection are plagued by two common problems: the relatively large injector size and volume of injected fluid, and poor control of the amount of injected material. Here we demonstrate the possibility of electrochemical control of the fluid motion that allows one to sample and dispense attoliter-to-picoliter (10(-18) to 10(-12) liter) volumes of either aqueous or nonaqueous solutions. By changing the voltage applied across the liquid/liquid interface, one can produce a sufficient force to draw solution inside a nanopipette and then inject it into an immobilized biological cell. A high success rate was achieved in injections of fluorescent dyes into cultured human breast cells. The injection of femtoliter-range volumes can be monitored by video microscopy, and current/resistance-based approaches can be used to control injections from very small pipettes. Other potential applications of the electrochemical syringe include fluid dispensing in nanolithography and pumping in microfluidic systems.

  4. Statistical modeling of an integrated boiler for coal fired thermal power plant

    Directory of Open Access Journals (Sweden)

    Sreepradha Chandrasekharan

    2017-06-01

    Full Text Available The coal fired thermal power plants plays major role in the power production in the world as they are available in abundance. Many of the existing power plants are based on the subcritical technology which can produce power with the efficiency of around 33%. But the newer plants are built on either supercritical or ultra-supercritical technology whose efficiency can be up to 50%. Main objective of the work is to enhance the efficiency of the existing subcritical power plants to compensate for the increasing demand. For achieving the objective, the statistical modeling of the boiler units such as economizer, drum and the superheater are initially carried out. The effectiveness of the developed models is tested using analysis methods like R2 analysis and ANOVA (Analysis of Variance. The dependability of the process variable (temperature on different manipulated variables is analyzed in the paper. Validations of the model are provided with their error analysis. Response surface methodology (RSM supported by DOE (design of experiments are implemented to optimize the operating parameters. Individual models along with the integrated model are used to study and design the predictive control of the coal-fired thermal power plant. Keywords: Chemical engineering, Applied mathematics

  5. Importance of Mediator complex in the regulation and integration of diverse signaling pathways in plants

    Directory of Open Access Journals (Sweden)

    Subhasis eSamanta

    2015-09-01

    Full Text Available Basic transcriptional machinery in eukaryotes is assisted by a number of cofactors, which either increase or decrease the rate of transcription. Mediator complex is one such cofactor, and recently has drawn a lot of interest because of its integrative power to converge different signaling pathways before channelling the transcription instructions to the RNA polymerase II machinery. Like yeast and metazoans, plants do possess the Mediator complex across the kingdom, and its isolation and subunit analyses have been reported from the model plant, Arabidopsis. Genetic and molecular analyses have unravelled important regulatory roles of Mediator subunits at every stage of plant life cycle starting from flowering to embryo and organ development, to even size determination. It also contributes immensely to the survival of plants against different environmental vagaries by the timely activation of its resistance mechanisms. Here, we have provided an overview of plant Mediator complex starting from its discovery to regulation of stoichiometry of its subunits. We have also reviewed involvement of different Mediator subunits in different processes and pathways including defense response pathways evoked by diverse biotic cues. Wherever possible, attempts have been made to provide mechanistic insight of Mediator’s involvement in these processes.

  6. Integrated safeguards and security for the INEL Special Isotope Separation Plant

    International Nuclear Information System (INIS)

    Warner, G.F.; Zack, N.R.

    1990-01-01

    This paper describes the development of the safeguards and security system that was to be used for the Special Isotope Separation (SIS) Production Plant. The US Department of Energy has postponed the construction of the SIS Plant that was to be built at the Idaho National Engineering Laboratory (INEL) site near Idaho Falls, Idaho. The Plant was designed to produce weapons grade plutonium from DOE owned fuel grade plutonium by converting off-spec. plutonium dioxide into metal buttons that would meet required chemical and isotopic specifications. Because this was to be a completely new facility there was a unique opportunity to provide an in-depth, ''state-of-the- art'' safeguards and security system without attempting to overlay upon an existing, older system. This facility was being designed to be in complete compliance with the new DOE Orders by integrating safeguards and security into the plant operating system and by providing graded protection to the areas of varying sensitivity within the plant

  7. Importance of Mediator complex in the regulation and integration of diverse signaling pathways in plants.

    Science.gov (United States)

    Samanta, Subhasis; Thakur, Jitendra K

    2015-01-01

    Basic transcriptional machinery in eukaryotes is assisted by a number of cofactors, which either increase or decrease the rate of transcription. Mediator complex is one such cofactor, and recently has drawn a lot of interest because of its integrative power to converge different signaling pathways before channeling the transcription instructions to the RNA polymerase II machinery. Like yeast and metazoans, plants do possess the Mediator complex across the kingdom, and its isolation and subunit analyses have been reported from the model plant, Arabidopsis. Genetic, and molecular analyses have unraveled important regulatory roles of Mediator subunits at every stage of plant life cycle starting from flowering to embryo and organ development, to even size determination. It also contributes immensely to the survival of plants against different environmental vagaries by the timely activation of its resistance mechanisms. Here, we have provided an overview of plant Mediator complex starting from its discovery to regulation of stoichiometry of its subunits. We have also reviewed involvement of different Mediator subunits in different processes and pathways including defense response pathways evoked by diverse biotic cues. Wherever possible, attempts have been made to provide mechanistic insight of Mediator's involvement in these processes.

  8. Statistical modeling of an integrated boiler for coal fired thermal power plant.

    Science.gov (United States)

    Chandrasekharan, Sreepradha; Panda, Rames Chandra; Swaminathan, Bhuvaneswari Natrajan

    2017-06-01

    The coal fired thermal power plants plays major role in the power production in the world as they are available in abundance. Many of the existing power plants are based on the subcritical technology which can produce power with the efficiency of around 33%. But the newer plants are built on either supercritical or ultra-supercritical technology whose efficiency can be up to 50%. Main objective of the work is to enhance the efficiency of the existing subcritical power plants to compensate for the increasing demand. For achieving the objective, the statistical modeling of the boiler units such as economizer, drum and the superheater are initially carried out. The effectiveness of the developed models is tested using analysis methods like R 2 analysis and ANOVA (Analysis of Variance). The dependability of the process variable (temperature) on different manipulated variables is analyzed in the paper. Validations of the model are provided with their error analysis. Response surface methodology (RSM) supported by DOE (design of experiments) are implemented to optimize the operating parameters. Individual models along with the integrated model are used to study and design the predictive control of the coal-fired thermal power plant.

  9. Development of integrated parameter database for risk assessment at the Rokkasho Reprocessing Plant

    International Nuclear Information System (INIS)

    Tamauchi, Yoshikazu

    2011-01-01

    A study to develop a parameter database for Probabilistic Safety Assessment (PSA) for the application of risk information on plant operation and maintenance activity is important because the transparency, consistency, and traceability of parameters are needed to explanation adequacy of the evaluation to third parties. Application of risk information for the plant operation and maintenance activity, equipment reliability data, human error rate, and 5 factors of 'five-factor formula' for estimation of the amount of radioactive material discharge (source term) are key inputs. As a part of the infrastructure development for the risk information application, we developed the integrated parameter database, 'R-POD' (Rokkasho reprocessing Plant Omnibus parameter Database) on the trial basis for the PSA of the Rokkasho Reprocessing Plant. This database consists primarily of the following 3 parts, 1) an equipment reliability database, 2) a five-factor formula database, and 3) a human reliability database. The underpinning for explaining the validity of the risk assessment can be improved by developing this database. Furthermore, this database is an important tool for the application of risk information, because it provides updated data by incorporating the accumulated operation experiences of the Rokkasho reprocessing plant. (author)

  10. Integration of two RAB5 groups during endosomal transport in plants

    Science.gov (United States)

    Ebine, Kazuo; Choi, Seung-won; Ichinose, Sakura; Uemura, Tomohiro; Nakano, Akihiko

    2018-01-01

    RAB5 is a key regulator of endosomal functions in eukaryotic cells. Plants possess two different RAB5 groups, canonical and plant-unique types, which act via unknown counteracting mechanisms. Here, we identified an effector molecule of the plant-unique RAB5 in Arabidopsis thaliana, ARA6, which we designated PLANT-UNIQUE RAB5 EFFECTOR 2 (PUF2). Preferential colocalization with canonical RAB5 on endosomes and genetic interaction analysis indicated that PUF2 coordinates vacuolar transport with canonical RAB5, although PUF2 was identified as an effector of ARA6. Competitive binding of PUF2 with GTP-bound ARA6 and GDP-bound canonical RAB5, together interacting with the shared activating factor VPS9a, showed that ARA6 negatively regulates canonical RAB5-mediated vacuolar transport by titrating PUF2 and VPS9a. These results suggest a unique and unprecedented function for a RAB effector involving the integration of two RAB groups to orchestrate endosomal trafficking in plant cells. PMID:29749929

  11. Integrated Plant Safety Assessment: Systematic Evaluation Program. Haddam Neck Plant, Connecticut Yankee Atomic Power Company, Docket No. 50-213. Final report

    International Nuclear Information System (INIS)

    1983-01-01

    The Systematic Evaluation Progam was initiated in February 1977 by the US Nuclear Regulatory Commission review the designs of older operating nuclear reactor plants to confirm and document their safety. The review provides: (1) an assessment of how these plants compare with curent licensing safety requirements relating to selected issues, (2) a basis for deciding on how these differences should be resolved in an integrated plant review, and (3) a documented evaluation of plant safety. This report documents the review of Haddam Neck Plant, operated by Connecticut Yankee Atomic Power Company. The Haddam Neck Plant is one of 10 plants reviewed under Phase II of this program. This report indicates how 137 topics selected for review under Phase I of the program were addressed. Equipment and procedural changes have been identified as a result of the review

  12. Solar fired combined RO/MED desalination plant integrated with electrical power grid

    International Nuclear Information System (INIS)

    Alrobaei, H.

    2006-01-01

    Currently, there is a strong demand for efficient seawater desalination plants, which can meet the tougher environment regulation and energy saving requirements. From this standpoint the present work was undertaken to include proposed scheme (solar Fired Combined Reverse Osmosis (ROY Multi-Effect Distillation (MED) Seawater desalination Plant (SCDP) integrated with electrical power grid (EPG)) for repowering and modification of the conventional grid connected RO desalination plants. The model of SCDP during sunny periods may be applied to the following modes operation: *Full solar desalination (i.e. solar thermal and electrical power generation in solar plant is elivered to the desalination process and the surplus electricity is fed into EPG). *Hybrid solar desalination (I.e. a small share of the electrical power consumption for desalination process compensated by EPG). During cloudly periods and at night the SCDP operates as a conventional RO desalination plant. To establish the range, in which solar energy for seawater desalination would be competitive to fossil energy and investigates the potential effect of the proposed scheme on the repowering effectiveness, mathematical model has been developed. The repowered effectiveness, mathematical model has been developed.The repowered effectiveness in optaimizing model was characterized by the condition of attaining maximum fuel saving in the EPG. The study result shows the effectiveness of proposed scheme for modification and repowering the RO plant. For the case study. (SCDP with maual share of solar electrical power generation 67.4%) the economical effect amount 138.9 ton fuel/year for each MW design thermal energy of parabolic solar collectors array and the corresponding decrease in exhaust gases emission (Nitrogen oxides (NO x ) 0.55 ton/year.MW, carbon dioxides (CO2) 434.9 ton/year.MW). Moreover, implementation of combined RO/MED design for repowering and modification of conventional grid connected RO plant will

  13. Degradation of pharmaceutical beta-blockers by electrochemical advanced oxidation processes using a flow plant with a solar compound parabolic collector.

    Science.gov (United States)

    Isarain-Chávez, Eloy; Rodríguez, Rosa María; Cabot, Pere Lluís; Centellas, Francesc; Arias, Conchita; Garrido, José Antonio; Brillas, Enric

    2011-08-01

    The degradation of the beta-blockers atenolol, metoprolol tartrate and propranolol hydrochloride was studied by electro-Fenton (EF) and solar photoelectro-Fenton (SPEF). Solutions of 10 L of 100 mg L⁻¹ of total organic carbon of each drug in 0.1 M Na₂SO₄ with 0.5 mM Fe²⁺ of pH 3.0 were treated in a recirculation flow plant with an electrochemical reactor coupled with a solar compound parabolic collector. Single Pt/carbon felt (CF) and boron-doped diamond (BDD)/air-diffusion electrode (ADE) cells and combined Pt/ADE-Pt/CF and BDD/ADE-Pt/CF cells were used. SPEF treatments were more potent with the latter cell, yielding 95-97% mineralization with 100% of maximum current efficiency and energy consumptions of about 0.250 kWh g TOC⁻¹. However, the Pt/ADE-Pt/CF cell gave much lower energy consumptions of about 0.080 kWh g TOC⁻¹ with slightly lower mineralization of 88-93%, then being more useful for its possible application at industrial level. The EF method led to a poorer mineralization and was more potent using the combined cells by the additional production of hydroxyl radicals (•OH) from Fenton's reaction from the fast Fe²⁺ regeneration at the CF cathode. Organics were also more rapidly destroyed at BDD than at Pt anode. The decay kinetics of beta-blockers always followed a pseudo first-order reaction, although in SPEF, it was accelerated by the additional production of •OH from the action of UV light of solar irradiation. Aromatic intermediates were also destroyed by hydroxyl radicals. Ultimate carboxylic acids like oxalic and oxamic remained in the treated solutions by EF, but their Fe(III) complexes were photolyzed by solar irradiation in SPEF, thus explaining its higher oxidation power. NO₃⁻ was the predominant inorganic ion lost in EF, whereas the SPEF process favored the production of NH₄⁺ ion and volatile N-derivatives. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Process integration of chemical looping combustion with oxygen uncoupling in a coal-fired power plant

    International Nuclear Information System (INIS)

    Spinelli, Maurizio; Peltola, Petteri; Bischi, Aldo; Ritvanen, Jouni; Hyppänen, Timo; Romano, Matteo C.

    2016-01-01

    High-temperature solid looping processes for CCS (carbon capture and storage) represent a class of promising technologies that enables CO2 capture with relatively low net efficiency penalties. The novel concept of the CLOU (Chemical Looping with Oxygen Uncoupling) process is based on a system of two interconnected fluidized bed reactors that operate at atmospheric pressure. In the fuel reactor, the capability of certain metal oxides to spontaneously release molecular oxygen at high temperatures is exploited to promote the direct conversion of coal in an oxygen-rich atmosphere. As a novel CO_2 capture concept, the CLOU process requires the optimization of design and operation parameters, which may substantially influence the total power plant performance. This study approaches this issue by performing joint simulations of CLOU reactors using a 1.5D model and a steam cycle power plant. A sensitivity analysis has been performed to investigate the performance and main technical issues that are related to the integration of a CLOU island in a state-of-the-art USC (ultra-supercritical) power plant. In particular, the effect of the key process parameters has been evaluated. Superior performance has been estimated for the power plant, with electrical efficiencies of approximately 42% and more than 95% CO2 avoided. - Highlights: • Process modeling and simulation of CLOU integrated in USC coal power plant carried out. • Comprehensive sensitivity analysis on Cu-based CLOU process performed. • Electrical efficiencies of 42% and more than 95% CO_2 avoided obtained. • Reactor size and operating conditions suitable for industrial applications.

  15. Design of an integral missile shield in integrated head assembly for pressurized water reactor at commercial nuclear plants

    International Nuclear Information System (INIS)

    Baliga, Ravi; Watts, Tom Neal; Kamath, Harish

    2015-01-01

    In ICONE22, the authors presented the Integrated Head Assembly (IHA) design concept implemented at Callaway Nuclear Power Plant in Missouri, USA. The IHA concept is implemented to reduce the outage duration and the associated radiation exposure to the workers by reducing critical path time during Plant Refueling Outage. One of the head area components in the IHA is a steel missile shield designed to protect the Control Rod Drive Mechanism (CRDM) assembly from damaging other safety-related components in the vicinity in the Containment. Per Federally implemented General Design Criteria for commercial nuclear plants in the USA, the design of Nuclear Steam Supply System (NSSS) must provide protection from the damages caused by a postulated event of CRDM housing units and their associated parts disengaging from the reactor vessel assembly. This event is considered as a Loss of Coolant Accident (LOCA) and assumes that once the CRDM housing unit and their associated parts disengage from the reactor vessel internals assembly, they travel upward by the water jet with the following sequence of events: Per Reference 1, the drive shaft and control rod cluster are forced out of the reactor core by the differential pressure across the drive shaft with the assumption that the drive shaft and control rod cluster, latched together, are fully inserted when the accident occurs. After the travel, the rod cluster control spider will impact the lower side of the upper support plate inside the reactor vessel fracturing the flexure arms in the joint freeing the drive shaft from the control rod cluster. The control rod cluster is stopped by the upper support plate and will remain below the upper support plate during this accident. However, the drive shaft will continue to accelerate in the upward direction until it is stopped by a safety feature in the IHA. The integral missile shield as a safety feature in the IHA is designed to stop the CRDM drive shaft from moving further up in the

  16. Development of self-powered wireless high temperature electrochemical sensor for in situ corrosion monitoring of coal-fired power plant.

    Science.gov (United States)

    Aung, Naing Naing; Crowe, Edward; Liu, Xingbo

    2015-03-01

    Reliable wireless high temperature electrochemical sensor technology is needed to provide in situ corrosion information for optimal predictive maintenance to ensure a high level of operational effectiveness under the harsh conditions present in coal-fired power generation systems. This research highlights the effectiveness of our novel high temperature electrochemical sensor for in situ coal ash hot corrosion monitoring in combination with the application of wireless communication and an energy harvesting thermoelectric generator (TEG). This self-powered sensor demonstrates the successful wireless transmission of both corrosion potential and corrosion current signals to a simulated control room environment. Copyright © 2014 ISA. All rights reserved.

  17. Conformational analysis of large and highly disulfide-stabilized proteins by integrating online electrochemical reduction into an optimized H/D exchange mass spectrometry workflow

    DEFF Research Database (Denmark)

    Trabjerg, Esben; Jakobsen, Rasmus Uffe; Mysling, Simon

    2015-01-01

    Analysis of disulfide-bonded proteins by HDX-MS requires effective and rapid reduction of disulfide bonds before enzymatic digestion in order to increase sequence coverage. In a conventional HDX-MS workflow, disulfide bonds are reduced chemically by addition of a reducing agent to the quench......-antibody, respectively. The presented results demonstrate the successful electrochemical reduction during HDX-MS analysis of both a small exceptional tightly disulfide-bonded protein (NGF) as well as the largest protein attempted to date (IgG1-antibody). We envision that online electrochemical reduction...... the electrochemical reduction efficiency during HDX-MS analysis of two particularly challenging disulfide stabilized proteins: a therapeutic IgG1-antibody and Nerve Growth Factor-β (NGF). Several different parameters (flow rate, applied square wave potential as well as the type of labeling- and quench buffer) were...

  18. Evolution of endogenous non-retroviral genes integrated into plant genomes

    Directory of Open Access Journals (Sweden)

    Hyosub Chu

    2014-08-01

    Full Text Available Numerous comparative genome analyses have revealed the wide extent of horizontal gene transfer (HGT in living organisms, which contributes to their evolution and genetic diversity. Viruses play important roles in HGT. Endogenous viral elements (EVEs are defined as viral DNA sequences present within the genomes of non-viral organisms. In eukaryotic cells, the majority of EVEs are derived from RNA viruses using reverse transcription. In contrast, endogenous non-retroviral elements (ENREs are poorly studied. However, the increasing availability of genomic data and the rapid development of bioinformatics tools have enabled the identification of several ENREs in various eukaryotic organisms. To date, a small number of ENREs integrated into plant genomes have been identified. Of the known non-retroviruses, most identified ENREs are derived from double-strand (ds RNA viruses, followed by single-strand (ss DNA and ssRNA viruses. At least eight virus families have been identified. Of these, viruses in the family Partitiviridae are dominant, followed by viruses of the families Chrysoviridae and Geminiviridae. The identified ENREs have been primarily identified in eudicots, followed by monocots. In this review, we briefly discuss the current view on non-retroviral sequences integrated into plant genomes that are associated with plant-virus evolution and their possible roles in antiviral resistance.

  19. Integrated software system for seismic evaluation of nuclear power plant structures

    International Nuclear Information System (INIS)

    Xu, J.; Graves, H.L.

    1993-01-01

    The computer software CARES (Computer Analysis for Rapid Evaluation of Structures) was developed by the Brookhaven National Laboratory for the U.S. Nuclear Regulatory Commission. It represents an effort to utilize established numerical methodologies commonly employed by industry for structural safety evaluations of nuclear power plant facilities and incorporates them into an integrated computer software package operated on personal computers. CARES was developed with the objective of including all aspects of seismic performance evaluation of nuclear power structures. It can be used to evaluate the validity and accuracy of analysis methodologies used for structural safety evaluations of nuclear power plants by various utilities. CARES has a modular format, each module performing a specific type of analysis. The seismic module integrates all the steps of a complete seismic analysis into a single package with many user-friendly features such as interactiveness and quick turnaround. Linear structural theory and pseudo-linear convolution theory are utilized as the bases for the development with a special emphasis on the nuclear regulatory requirements for structural safety of nuclear plants. The organization of the seismic module is arranged in eight options, each performing a specific step of the analysis with most of input/output interfacing processed by the general manager. Finally, CARES provides comprehensive post-processing capability for displaying results graphically or in tabular form so that direct comparisons can be easily made. (author)

  20. Integral parameters for characterizing water, energy, and aeration properties of soilless plant growth media

    Science.gov (United States)

    Chamindu Deepagoda, T. K. K.; Chen Lopez, Jose Choc; Møldrup, Per; de Jonge, Lis Wollesen; Tuller, Markus

    2013-10-01

    Over the last decade there has been a significant shift in global agricultural practice. Because the rapid increase of human population poses unprecedented challenges to production of an adequate and economically feasible food supply for undernourished populations, soilless greenhouse production systems are regaining increased worldwide attention. The optimal control of water availability and aeration is an essential prerequisite to successfully operate plant growth systems with soilless substrates such as aggregated foamed glass, perlite, rockwool, coconut coir, or mixtures thereof. While there are considerable empirical and theoretical efforts devoted to characterize water retention and aeration substrate properties, a holistic, physically-based approach considering water retention and aeration concurrently is lacking. In this study, the previously developed concept of integral water storage and energy was expanded to dual-porosity substrates and an analog integral oxygen diffusivity parameter was introduced to simultaneously characterize aeration properties of four common soilless greenhouse growth media. Integral parameters were derived for greenhouse crops in general, as well as for tomatoes. The integral approach provided important insights for irrigation management and for potential optimization of substrate properties. Furthermore, an observed relationship between the integral parameters for water availability and oxygen diffusivity can be potentially applied for the design of advanced irrigation and management strategies to ensure stress-free growth conditions, while conserving water resources.

  1. An integrated computer-based procedure for teamwork in digital nuclear power plants.

    Science.gov (United States)

    Gao, Qin; Yu, Wenzhu; Jiang, Xiang; Song, Fei; Pan, Jiajie; Li, Zhizhong

    2015-01-01

    Computer-based procedures (CBPs) are expected to improve operator performance in nuclear power plants (NPPs), but they may reduce the openness of interaction between team members and harm teamwork consequently. To support teamwork in the main control room of an NPP, this study proposed a team-level integrated CBP that presents team members' operation status and execution histories to one another. Through a laboratory experiment, we compared the new integrated design and the existing individual CBP design. Sixty participants, randomly divided into twenty teams of three people each, were assigned to the two conditions to perform simulated emergency operating procedures. The results showed that compared with the existing CBP design, the integrated CBP reduced the effort of team communication and improved team transparency. The results suggest that this novel design is effective to optim team process, but its impact on the behavioural outcomes may be moderated by more factors, such as task duration. The study proposed and evaluated a team-level integrated computer-based procedure, which present team members' operation status and execution history to one another. The experimental results show that compared with the traditional procedure design, the integrated design reduces the effort of team communication and improves team transparency.

  2. The integrated criticality safety evaluation for the Hanford tank waste treatment and immobilization plant

    International Nuclear Information System (INIS)

    Losey, D. C.; Miles, R. E.; Perks, M. F.

    2009-01-01

    The Criticality Safety Evaluation Report (CSER) for the Hanford Tank Waste Treatment and Immobilization Plant (WTP) has been developed as a single, integrated evaluation with a scope that covers all of the planned WTP operations. This integrated approach is atypical, as the scopes of criticality evaluations are usually more narrowly defined. Several adjustments were made in developing the WTP CSER, but the primary changes were to provide introductory overview for the criticality safety control strategy and to provide in-depth analysis of the underlying physical and chemical mechanisms that contribute to ensuring safety. The integrated approach for the CSER allowed a more consistent evaluation of safety and avoided redundancies that occur when evaluation is distributed over multiple documents. While the approach used with the WTP CSER necessitated more coordination and teamwork, it has yielded a report is that more integrated and concise than is typical. The integrated approach with the CSER produced a simple criticality control scheme that uses relatively few controls. (authors)

  3. Study on system integration of robots operated in nuclear fusion facility and nuclear power plant facilities

    International Nuclear Information System (INIS)

    Oka, Kiyoshi

    2004-07-01

    A present robot is required to apply to many fields such as amusement, welfare and protection against disasters. The are however only limited numbers of the robots, which can work under the actual conditions as a robot system. It is caused by the following reasons: (1) the robot system cannot be realized by the only collection of the elemental technologies, (2) the performance of the robot is determined by that of the integrated system composed of the complicated elements with many functions, and (3) the respective elements have to be optimized in the integrated robot system with a well balance among them, through their examination, adjustment and improvement. Therefore, the system integration of the robot composed of a large number of elements is the most critical issue to realize the robot system for actual use. In the present paper, I describe the necessary approaches and elemental technologies to solve the issues on the system integration of the typical robot systems for maintenance in the nuclear fusion facility and rescue in the accident of the nuclear power plant facilities. These robots work under the intense radiation condition and restricted space in place of human. In particular, I propose a new approach to realize the system integration of the robot for actual use from the viewpoints of not only the environment and working conditions but also the restructure and optimization of the required elemental technologies with a well balance in the robot system. Based on the above approach, I have a contribution to realize the robot systems working under the actual conditions for maintenance in the nuclear fusion facility and rescue in the accident of the nuclear power plant facilities. (author)

  4. Interacting effects of temperature integration and light intensity on growth and development of single-stemmed cut rose plants

    NARCIS (Netherlands)

    Dieleman, J.A.; Meinen, E.

    2007-01-01

    Energy conservation in horticulture can be achieved by allowing temperatures to fluctuate within predefined bandwidths instead of using rigid set points for heating and ventilation. In temperature integration, plants are supposed to compensate effects of temporarily deviations of the average

  5. The 10 MWe solar thermal central receiver pilot plant solar facilities design integration, RADL item 1-10

    Science.gov (United States)

    1980-08-01

    Work on the plant support subsystems and engineering services is reported. The master control system, thermal storage subsystem, receiver unit, and the beam characterization system were reviewed. Progress in program management and system integration is highlighted.

  6. An evaluation of the performance of an integrated solar combined cycle plant provided with air-linear parabolic collectors

    International Nuclear Information System (INIS)

    Amelio, Mario; Ferraro, Vittorio; Marinelli, Valerio; Summaria, Antonio

    2014-01-01

    An evaluation of the performance of an innovative solar system integrated in a combined cycle plant is presented, in which the heat transfer fluid flowing in linear parabolic collectors is the same oxidant air that is introduced into the combustion chamber of the plant. This peculiarity allows a great simplification of the plant. There is a 22% saving of fossil fuel results in design conditions and 15.5% on an annual basis, when the plant works at nominal volumetric flow rate in the daily hours. The net average year efficiency is 60.9% against the value of 51.4% of a reference combined cycle plant without solar integration. Moreover, an economic evaluation of the plant is carried out, which shows that the extra-cost of the solar part is recovered in about 5 years. - Highlights: • A model to calculate an innovative ISCCS (Integrated solar Combined Cycle Systems) solar plant is presented. • The plant uses air as heat transfer fluid as well as oxidant in the combustor. • The plant presents a very high thermodynamic efficiency. • The plant is very simple in comparison with existing ISCCS

  7. One System Integrated Project Team Progress in Coordinating Hanford Tank Farms and the Waste Treatment Plant

    International Nuclear Information System (INIS)

    Skwarek, Raymond J.; Harp, Ben J.; Duncan, Garth M.

    2013-01-01

    The One System Integrated Project Team (IPT) was formed at the Hanford Site in late 2011 as a way to improve coordination and itegration between the Hanford Tank Waste Treatment and Immobilization Plant (WTP) and the Tank Operations Contractor (TOC) on interfaces between the two projects, and to eliminate duplication and exploit opportunities for synergy. The IPT is composed of jointly staffed groups that work on technical issues of mutal interest, front-end design and project definition, nuclear safety, plant engineering system integration, commissioning, planning and scheduling, and environmental, safety, health and quality (ESH&Q) areas. In the past year important progress has been made in a number of areas as the organization has matured and additional opportunities have been identified. Areas covered in this paper include: Support for development of the Office of Envirnmental Management (EM) framework document to progress the Office of River Protection's (ORP) River Protection Project (RPP) mission; Stewardship of the RPP flowsheet; Collaboration with Savannah River Site (SRS), Savannah River National Laboratory (SRNL), and Pacific Northwest National Laboratory (PNNL); Operations programs integration; and, Further development of the waste acceptance criteria

  8. Structural integrity analysis of an Ignalina nuclear power plant building subjected to an airplane crash

    International Nuclear Information System (INIS)

    Dundulis, Gintautas; Kulak, Ronald F.; Marchertas, Algirdas; Uspuras, Eugenijus

    2007-01-01

    Recent terrorist attacks using commandeered commercial airliners on civil structures have raised the issue of the ability of nuclear power plants to survive the consequences of an airliner crash. The structural integrity analysis due to the effects of an aircraft crash on an Ignalina nuclear power plant (INPP) accident localization system (ALS) building is the subject of this paper. A combination of the finite element method and empirical relationships were used for the analysis. A global structural integrity analysis was performed for a portion of the ALS building using the dynamic loading from an aircraft crash impact model. The local effects caused by impact of the aircraft's engine on the building wall were evaluated independently by using an empirical formula. The results from the crash analysis of a twin engine commercial aircraft show that the impacted reinforced concrete wall of the ALS building will not have through-the-wall concrete failure, and the reinforcement will not fail. Strain-rate effects were found to delay the onset of cracking. Therefore, the structural integrity of the impacted wall of the INPP ALS building will be maintained during the crash event studied

  9. COMSY- A Software Tool For Aging And Plant Life Management With An Integrated Documentation Tool

    International Nuclear Information System (INIS)

    Baier, Roman; Zander, Andre

    2008-01-01

    For the aging and plant life management the integrity of the mechanical components and structures is one of the key objectives. In order to ensure this integrity it is essential to implement a comprehensive aging management. This should be applied to all safety relevant mechanical systems or components, civil structures, electrical systems as well as instrumentation and control (I and C). The following aspects should be covered: - Identification and assessment of relevant degradation mechanisms; - Verification and evaluation of the quality status of all safety relevant systems, structures and components (SSC's); - Verification and modernization of I and C and electrical systems; - Reliable and up-to-date documentation. For the support of this issue AREVA NP GmbH has developed the computer program COMSY, which utilizes more than 30 years of experience resulting from research activities and operational experience. The program provides the option to perform a plant-wide screening for identifying system areas, which are sensitive to specific degradation mechanisms. Another object is the administration and evaluation of NDE measurements from different techniques. An integrated documentation tool makes the document management and maintenance fast, reliable and independent from staff service. (authors)

  10. Structural integrity analysis of an Ignalina nuclear power plant building subjected to an airplane crash

    Energy Technology Data Exchange (ETDEWEB)

    Dundulis, Gintautas [Laboratory of Nuclear Installation Safety, Lithuanian Energy Institute, 3 Breslaujos, 44403 Kaunas-35 (Lithuania)]. E-mail: gintas@isag.lei.lt; Kulak, Ronald F. [RFK Engineering Mechanics Consultants (United States); Marchertas, Algirdas [Northern Illinois University (United States); Uspuras, Eugenijus [Laboratory of Nuclear Installation Safety, Lithuanian Energy Institute, 3 Breslaujos, 44403 Kaunas-35 (Lithuania)

    2007-08-15

    Recent terrorist attacks using commandeered commercial airliners on civil structures have raised the issue of the ability of nuclear power plants to survive the consequences of an airliner crash. The structural integrity analysis due to the effects of an aircraft crash on an Ignalina nuclear power plant (INPP) accident localization system (ALS) building is the subject of this paper. A combination of the finite element method and empirical relationships were used for the analysis. A global structural integrity analysis was performed for a portion of the ALS building using the dynamic loading from an aircraft crash impact model. The local effects caused by impact of the aircraft's engine on the building wall were evaluated independently by using an empirical formula. The results from the crash analysis of a twin engine commercial aircraft show that the impacted reinforced concrete wall of the ALS building will not have through-the-wall concrete failure, and the reinforcement will not fail. Strain-rate effects were found to delay the onset of cracking. Therefore, the structural integrity of the impacted wall of the INPP ALS building will be maintained during the crash event studied.

  11. Integration of Lithium-Ion Battery Storage Systems in Hydroelectric Plants for Supplying Primary Control Reserve

    Directory of Open Access Journals (Sweden)

    Fabio Bignucolo

    2017-01-01

    Full Text Available The ever-growing diffusion of renewables as electrical generation sources is forcing the electrical power system to face new and challenging regulation problems to preserve grid stability. Among these, the primary control reserve is reckoned to be one of the most important issues, since the introduction of generators based on renewable energies and interconnected through static converters, if relieved from the primary reserve contribution, reduces both the system inertia and the available power reserve in case of network events involving frequency perturbations. In this scenario, renewable plants such as hydroelectric run-of-river generators could be required to provide the primary control reserve ancillary service. In this paper, the integration between a multi-unit run-of-river power plant and a lithium-ion based battery storage system is investigated, suitably accounting for the ancillary service characteristics as required by present grid codes. The storage system is studied in terms of maximum economic profitability, taking into account its operating constraints. Dynamic simulations are carried out within the DIgSILENT PowerFactory 2016 software environment in order to analyse the plant response in case of network frequency contingencies, comparing the pure hydroelectric plant with the hybrid one, in which the primary reserve is partially or completely supplied by the storage system. Results confirm that the battery storage system response to frequency perturbations is clearly faster and more accurate during the transient phase compared to a traditional plant, since time delays due to hydraulic and mechanical regulations are overpassed. A case study, based on data from an existing hydropower plant and referring to the Italian context in terms of operational constraints and ancillary service remuneration, is presented.

  12. Little Botany: A Mobile Game Utilizing Data Integration to Enhance Plant Science Education

    Directory of Open Access Journals (Sweden)

    Suphanut Jamonnak

    2017-01-01

    Full Text Available Mobile devices are rapidly becoming the new medium of educational and social life for young people, and hence mobile educational games have become an important mechanism for learning. To help school-aged children learn about the fascinating world of plants, we present a mobile educational game called Little Botany, where players can create their own virtual gardens in any location on earth. One unique feature of Little Botany is that the game is built upon real-world data by leveraging data integration mechanism. The gardens created in Little Botany are augmented with real-world location data and real-time weather data. More specifically, Little Botany is using real-time weather data for the garden location to simulate how the weather affects plants growth. Little Botany players can learn to select what crops to plant, maintain their own garden, watch crops to grow, tend the crops on a daily basis, and harvest them. With this game, users can also learn plant structure and three chemical reactions.

  13. An Integrated Decision-Making Model for the Location of a PV Solar Plant

    Directory of Open Access Journals (Sweden)

    Amy H. I. Lee

    2015-09-01

    Full Text Available Due to the increasing demand for electricity, the depletion of fossil fuels and the increase in environmental consciousness, generating power from renewable energy resources has become necessary. How to select the most appropriate site is a critical and foremost decision that must be made when setting up a renewable energy plant. This research proposes a two-stage framework for evaluating the suitability of renewable energy plant site alternatives. In the first stage, a fuzzy analytic hierarchy process (FAHP is adopted to set the assurance region (AR of the quantitative factors, and the AR is incorporated into data envelopment analysis (DEA to assess the efficiencies of plant site candidates. A few sites are selected for further analysis. In the second stage, experts are invited to evaluate the qualitative characteristics of the selected sites, and FAHP is used to calculate the priorities of these sites. Solar energy is one of the most promising renewable energy sources, because of its abundance, inexhaustibility, safety and cleanliness. Based on the proposed integrated decision-making model, a case study for selecting the most appropriate photovoltaic (PV solar plant site is examined.

  14. Thermoeconomic analysis of Biomass Integrated Gasification Gas Turbine Combined Cycle (BIG GT CC) cogeneration plant

    Energy Technology Data Exchange (ETDEWEB)

    Arrieta, Felipe Raul Ponce; Lora, Electo Silva [Escola Federal de Engenharia de Itajuba, MG (Brazil). Nucleo de Estudos de Sistemas Termicos]. E-mails: aponce@iem.efei.br; electo@iem.efei.br; Perez, Silvia Azucena Nebra de [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Energia]. E-mail: sanebra@fem. unicamp.br

    2000-07-01

    Using thermoeconomics as a tool to identify the location and magnitude of the real thermodynamic losses (energy waste, or exergy destruction and exergy losses) it is possible to assess the production costs of each product (electric power and heat) and the exergetic and exergoeconomic cost of each flow in a cogeneration plant to assist in decision-marketing procedures concerning to plant design, investment, operation and allocations of research funds. Thermo economic analysis of Biomass Integrated Gasification Gas Turbine Combined Cycle (BIG GT CC) cogeneration plant for its applications in sugar cane mills brings the following results: the global exergetic efficiency is low; the highest irreversibilities occur in the following equipment, by order: scrubber (38%), gas turbine (16%), dryer (12%), gasifier and HRSG (6%); due to the adopted cost distribution methodology, the unit exergetic cost of the heat (4,11) is lower than electricity (4,71); the lower market price of biomass is one of the most sensible parameter in the possible implementation of BIG-GT technology in sugar cane industry; the production costs are 31 US$/MWh and 32 US$/MWh for electricity and heat, respectively. The electricity cost is, after all, competitive with the actual market price. The electricity and heat costs are lower or almost equal than other values reported for actual Rankine cycle cogeneration plants. (author)

  15. Strategy for establishing integrated l and c reliability of operating nuclear power plants in korea

    International Nuclear Information System (INIS)

    Kang, H. T.; Chung, H. Y.; Lee, Y. H.

    2008-01-01

    Korea hydro and nuclear power co. (KHNP) are in progress of developing a integrated I and C reliability establishing strategy for managing l and C obsolescence and phasing in new technology that both meets the needs of the fleet and captures the benefits of applying proven solutions to multiple plants, with reduced incremental costs. In view of this, we are developing I and C component management which covers major failure mode, symptom of performance degradation, condition-based or time-based preventive management (PM), monitoring, and failure finding and correction based on equipment reliability (ER). Furthermore, for the l and C system replacement management, we are in progress of 3-year-long I and C systems upgrade fundamental designing in developing the long-term major l and C systems implementation plan to improve plant operations, eliminate operator challenges, reduce maintenance costs, and cope with the challenges of component obsolescence. For accomplishing I and C digital upgrade in near future, we chose demonstration plant, Younggwang (YGN) unit 3 and 4 which are Korean Standard Nuclear Power Plant (KSNP). In this paper, we established the long term reliability strategy of I and C system based on ER in component replacement and furthermore I and C systems digital upgrade in system replacement. (authors)

  16. Technical and economic assessment of the integrated solar combined cycle power plants in Iran

    International Nuclear Information System (INIS)

    Soltani Hosseini, M.; Hosseini, R.; Valizadeh, G.H.

    2002-01-01

    Thermal efficiency, capacity factor, environmental considerations, investment cost, fuel and O and M costs are the main parameters for technical and economic assessment of solar power plants. This analysis has shown that the Integrated Solar Combined Cycle System with 67 MW e solar field(ISCCS-67) is the most suitable plan for the first solar power plant in Iran. The Levelized Energy Costs of combined cycle and ISCCS-67 power plants would be equal if 49 million dollars of ISCCS-67 capital cost supplied by the international environmental organizations such as Global Environmental Facilities and World Bank. This study shows that an ISCCS-67 saves 59 million dollars in fuel consumption and reduces about 2.4 million ton in CO 2 emission during 30 years operating period. Increasing of steam turbine capacity by 50%, and 4% improvement in overall efficiency are other advantages of iSCCS-67 power plant. The LEC of ISCCS-67 is 10% and so 33% lower than the combined cycle and gas turbine, respectively, at the same capacity factor with consideration of environmental costs

  17. Integrating natural and social science perspectives on plant disease risk, management and policy formulation

    Science.gov (United States)

    Mills, Peter; Dehnen-Schmutz, Katharina; Ilbery, Brian; Jeger, Mike; Jones, Glyn; Little, Ruth; MacLeod, Alan; Parker, Steve; Pautasso, Marco; Pietravalle, Stephane; Maye, Damian

    2011-01-01

    Plant diseases threaten both food security and the botanical diversity of natural ecosystems. Substantial research effort is focused on pathogen detection and control, with detailed risk management available for many plant diseases. Risk can be assessed using analytical techniques that account for disease pressure both spatially and temporally. We suggest that such technical assessments of disease risk may not provide an adequate guide to the strategies undertaken by growers and government to manage plant disease. Instead, risk-management strategies need to account more fully for intuitive and normative responses that act to balance conflicting interests between stakeholder organizations concerned with plant diseases within the managed and natural environments. Modes of effective engagement between policy makers and stakeholders are explored in the paper, together with an assessment of such engagement in two case studies of contemporary non-indigenous diseases in one food and in one non-food sector. Finally, a model is proposed for greater integration of stakeholders in policy decisions. PMID:21624923

  18. A preliminary analysis of incident investigation reports of an integrated steel plant: some reflection.

    Science.gov (United States)

    Verma, A; Maiti, J; Gaikwad, V N

    2018-06-01

    Large integrated steel plants employ an effective safety management system and gather a significant amount of safety-related data. This research intends to explore and visualize the rich database to find out the key factors responsible for the occurrences of incidents. The study was carried out on the data in the form of investigation reports collected from a steel plant in India. The data were processed and analysed using some of the quality management tools like Pareto chart, control chart, Ishikawa diagram, etc. Analyses showed that causes of incidents differ depending on the activities performed in a department. For example, fire/explosion and process-related incidents are more common in the departments associated with coke-making and blast furnace. Similar kind of factors were obtained, and recommendations were provided for their mitigation. Finally, the limitations of the study were discussed, and the scope of the research works was identified.

  19. Integration of error tolerance into the design of control rooms of nuclear power plants

    International Nuclear Information System (INIS)

    Sepanloo, Kamran

    1998-08-01

    Many complex technological systems' failures have been attributed to human errors. Today, based on extensive research on the role of human element in technological systems it is known that human error can not totally be eliminated in modern, flexible, or changing work environments by conventional style design strategies(e.g. defence in depth), or better instructions nor should they be. Instead, the operators' ability to explore degrees of freedom should be supported and means for recovering from the effects of errors should be included. This calls for innovative error tolerant design of technological systems. Integration of error tolerant concept into the design, construction, startup, and operation of nuclear power plants provides an effective means of reducing human error occurrence during all stages of life of it and therefore leads to considerable enhancement of plant's safety

  20. Power system integration of VSC-HVDC connected offshore wind power plants

    DEFF Research Database (Denmark)

    Zeni, Lorenzo; Kjær, Philip Carne

    This report presents an overview of challenges and solutions for the integration into the power system of offshore wind power plants (WPPs) connected to onshore grids through a voltage-source converter based high voltage direct current (VSC-HVDC) transmission system. Aspects that are touched upon...... of the network in the vicinity of the HVDC station and (iii) limiting characteristics of WPPs such as inherent control and communication delays, presence of mechanical resonances at the same frequency as POD and active power ramp-rate limitations. Clustering of wind power plants The proof of concept...... introduction to justify the study, describe the state-of-art and formulate the project’s objectives, the report is essentially divided into three parts, as follows. Control principles of offshore AC networks The control of offshore AC networks relies purely on power electronics, especially if Type 4 wind...

  1. Boolean Dynamic Modeling Approaches to Study Plant Gene Regulatory Networks: Integration, Validation, and Prediction.

    Science.gov (United States)

    Velderraín, José Dávila; Martínez-García, Juan Carlos; Álvarez-Buylla, Elena R

    2017-01-01

    Mathematical models based on dynamical systems theory are well-suited tools for the integration of available molecular experimental data into coherent frameworks in order to propose hypotheses about the cooperative regulatory mechanisms driving developmental processes. Computational analysis of the proposed models using well-established methods enables testing the hypotheses by contrasting predictions with observations. Within such framework, Boolean gene regulatory network dynamical models have been extensively used in modeling plant development. Boolean models are simple and intuitively appealing, ideal tools for collaborative efforts between theorists and experimentalists. In this chapter we present protocols used in our group for the study of diverse plant developmental processes. We focus on conceptual clarity and practical implementation, providing directions to the corresponding technical literature.

  2. Continuous thermal hydrolysis and energy integration in sludge anaerobic digestion plants.

    Science.gov (United States)

    Fdz-Polanco, F; Velazquez, R; Perez-Elvira, S I; Casas, C; del Barrio, D; Cantero, F J; Fdz-Polanco, M; Rodriguez, P; Panizo, L; Serrat, J; Rouge, P

    2008-01-01

    A thermal hydrolysis pilot plant with direct steam injection heating was designed and constructed. In a first period the equipment was operated in batch to verify the effect of sludge type, pressure and temperature, residence time and solids concentration. Optimal operation conditions were reached for secondary sludge at 170 degrees C, 7 bar and 30 minutes residence time, obtaining a disintegration factor higher than 10, methane production increase by 50% and easy centrifugation In a second period the pilot plant was operated working with continuous feed, testing the efficiency by using two continuous anaerobic digester operating in the mesophilic and thermophilic range. Working at 12 days residence time, biogas production increases by 40-50%. Integrating the energy transfer it is possible to design a self-sufficient system that takes advantage of this methane increase to produce 40% more electric energy. (c) IWA Publishing 2008.

  3. Plant life management. An integral part of operation and maintenance policy

    International Nuclear Information System (INIS)

    Faidy, C.; Hutin, J.-P.

    2002-01-01

    Electricite de France is now operating 58 PWR nuclear power plants that produce 75% of electricity in France. Besides maintaining safety and availability on a routine basis, it is outmost important to protect the investment. That is the reason why EDF is devoting important resources to implement ageing management concern as an integral part of operation and maintenance programs (for example through appropriate data collection and analysis, specific repair and replacement projects and important anticipation efforts, taking in account the high level of standardisation of the units). A particular organisation has been set up to continuously observe and analyse all activities so as to make sure that ageing concern is correctly taken in account in strategies and that no decisions are susceptible to impair plant lifetime. This 'lifetime program' is paying attention to technical issues associated with main components but is also dealing with issues related to economics and industry situation. (orig.)

  4. Integration of biomass fast pyrolysis and precedent feedstock steam drying with a municipal combined heat and power plant

    International Nuclear Information System (INIS)

    Kohl, Thomas; Laukkanen, Timo P.; Järvinen, Mika P.

    2014-01-01

    Biomass fast pyrolysis (BFP) is a promising pre-treatment technology for converting biomass to transport fuel and in the future also for high-grade chemicals. BFP can be integrated with a municipal combined heat and power (CHP) plant. This paper shows the influence of BFP integration on a CHP plant's main parameters and its effect on the energetic and environmental performance of the connected district heating network. The work comprises full- and part-load operation of a CHP plant integrated with BFP and steam drying. It also evaluates different usage alternatives for the BFP products (char and oil). The results show that the integration is possible and strongly beneficial regarding energetic and environmental performance. Offering the possibility to provide lower district heating loads, the operation hours of the plant can be increased by up to 57%. The BFP products should be sold rather than applied for internal use as this increases the district heating network's primary energy efficiency the most. With this integration strategy future CHP plants can provide valuable products at high efficiency and also can help to mitigate global CO 2 emissions. - Highlights: • Part load simulation of a cogeneration plant integrated with biomas fast pyrolysis. • Analysis of energetic and environmental performance. • Assessment of different uses of the pyrolysis products

  5. Future power plant control integrates process and substation automation into one system; Zukunftsorientierte Kraftwerksleittechnik vereint Prozess- und Stationsautomatisierung

    Energy Technology Data Exchange (ETDEWEB)

    Orth, J. [ABB AG, Mannheim (Germany). Div. Energietechnik-Systeme

    2007-07-01

    The new IEC 61850 standard has been established for substation control systems. In future, IEC 61850 may also be widely used for electrical systems in power plants. IEC 61850 simplifies the integration of process and substation control systems in power plants by creating one automated system across manufacturers and thus makes a significant contribution to cost efficiency in operation and maintenance. (orig.)

  6. Grid connected integrated community energy system. Phase II: final stage 2 report. Outline specifications of cogeneration plant; continued

    Energy Technology Data Exchange (ETDEWEB)

    1978-03-22

    Specifications are presented for the electrical equipment, site preparation, building construction and mechanical systems for a dual-purpose power plant to be located on the University of Minnesota campus. This power plant will supply steam and electrical power to a grid-connected Integrated Community Energy System. (LCL)

  7. Grid connected integrated community energy system. Phase II: final stage 2 report. Preliminary design of cogeneration plant

    Energy Technology Data Exchange (ETDEWEB)

    1978-03-22

    The preliminary design of a dual-purpose power plant to be located on the University of Minnesota is described. This coal-fired plant will produce steam and electric power for a grid-connected Integrated Community Energy System. (LCL)

  8. Evaluation of a Cogeneration Plant with Integrated Fuel Factory; Integrerad braenslefabrik med kraftvaermeanlaeggning - en utvaerdering

    Energy Technology Data Exchange (ETDEWEB)

    Atterhem, Lars

    2002-12-01

    A feasibility study was carried out in 1993 by Skellefteaa Kraft AB, to analyse the technical and economical possibilities to build a new baseload district heating production plant. The conclusion from the study was that, as a first step, a new cogeneration plant, based on a circulating fluidised bed boiler, should be built. The commissioning of the cogeneration plant took place in autumn 1996. The plant was prepared for a future integration with a biofuel drying process for pellets production. During spring 1996 an investment decision was taken and the fuel factory was erected in may 1997. Vaermeforsk Service AB has financed this research project and the Swedish state energy program (Fabel) has contributed with 33,7 Million SEK to the financing of the recovery electric power generation part of the fuel factory. The aim with this research project has been to evaluate and compare the integrated cogeneration plant fuel factory concept with a conventional co-generation plant, specially when it comes to increased power generation. The fuel factory comprises of fuel feeding system, fuel dryer, steam converter from fuel moisture to low pressure process steam, low pressure condensing turbine, cooling water system, fuel pellets production and storage with ship loading plant in the harbour of Skellefteaa. The steam to the fuel factory is extracted from the cogeneration turbine at a pressure level between 12-26 bar and the extraction flow has then already generated power in the cogeneration turbine. Power is also generated in the low pressure condensing turbine of the fuel factory. The low pressure steam is generated with fuel moisture in the steam converter. During the first years of operation there has been both conventional commissioning problems but also technical problems related to the new process concept. The last are for example corrosion and erosion problems, fouling problems of heat exchangers, capacity and leakage problems. The performance goals of the fuel

  9. Integrating nitric oxide into salicylic acid and jasmonic acid/ethylene plant defense pathways

    DEFF Research Database (Denmark)

    Mur, Luis A J; Prats, Elena; Pierre, Sandra

    2013-01-01

    to be tailored to particular biotic stresses. Nitric oxide (NO) has emerged as a major signal influencing resistance mediated by both signalling pathways but no attempt has been made to integrate NO into established SA/JA/ET interactions. NO has been shown to act as an inducer or suppressor of signalling along......Plant defence against pests and pathogens is known to be conferred by either salicylic acid (SA) or jasmonic acid (JA)/ethylene (ET) pathways, depending on infection or herbivore-grazing strategy. It is well attested that SA and JA/ET pathways are mutually antagonistic allowing defence responses...

  10. Integrity and life estimation of turbine runner cover in a hydro power plant

    Directory of Open Access Journals (Sweden)

    A. Sedmak

    2016-03-01

    Full Text Available This paper presents integrity and life estimation of turbine runner cover in a vertical pipe turbines, Kaplan 200 MW nominal output power, produced in Russia, and built in six hydro-generation units of hydroelectric power plant „Đerdap 1” in Serbia. Fatigue and corrosion-fatigue interaction have been taken into account using experimentally obtained material properties, as well as analytical and numerical calculations of stress state, to estimate appropriate safety factors. Fatigue crack growth rate, da/dN, was also calculated, indicated that internal defects of circular or elliptical shape, found out by ultrasonic testing, do not affect reliable operation of runner cover.

  11. Assessing dust exposure in an integrated iron and steel manufacturing plant in South India.

    Science.gov (United States)

    Ravichandran, B; Krishnamurthy, V; Ravibabu, K; Raghavan, S; Rajan, B K; Rajmohan, H R

    2008-01-01

    A study to monitor and estimate respirable particulate matter (RPM), toxic trace metal concentrations in the work environment was carried out in different sections of an integrated steel manufacturing industry. The average RPM concentration observed varied according to the section blast furnace was 2.41 mg/m;{3}; energy optimization furnace, 1.87 mg/m;{3}; sintering plant, 0.98 mg/m;{3}; continuous casting machine, 1.93 mg/m;{3}. The average trace metal concentration estimated from the RPM samples like iron, manganese, lead and chromium did not exceed ACGIH prescribed levels.

  12. Application of integrated computer-aided engineering for design, construction and operation of nuclear power plant

    International Nuclear Information System (INIS)

    Kyung-shick Min; Byung-hun Lee

    1987-01-01

    Computer-aided-engineering (CAE) is an essential tool for modern nuclear power plant engineering. It greatly varies in definition, application, and technology from project to project and company to company. Despite the fast growing technologies and applications of CAE, its complexty and variety have thrown aonther puzzle to management of a nuclear project. Without due consideration of an integrated CAE system in early planning stage, the overall efficiency of a nuclear project would slow down due to the inefficiency in data flow. In this paper, practices and perspectives of CAE appliation are discussed under the Korea Power Engineering Company (KOPEC) philosophy in CAE approach. (author)

  13. SDL-Based Protocol Validation for the Integrated Safety Communication Network in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kim, Jung-hun; Kim, Dong-hoon; Lee, Dong-young; Park, Sung-woo

    2006-01-01

    The communication protocol in nuclear power plants needs to be validated systematically to avoid the critical situation that may be caused by its own faults. We establish the methodology to validate the protocol designed for the Integrated Safety Communication Networks (ISCN) of Korea Nuclear Instrumentation and Control System (KNICS). The ISCN protocol is specified using the formal description technique called the SDL. The validation of ISCN protocol is done via the Simulator and Validator, both of which are main functions provided by the SDL

  14. An integral reactor design concept for a nuclear co-generation plant

    International Nuclear Information System (INIS)

    Lee, D.J.; Kim, J.I.; Kim, K.K.; Chang, M.H.; Moon, K.S.

    1997-01-01

    An integral reactor concept for nuclear cogeneration plant is being developed at KAERI as an attempt to expand the peaceful utilization of well established commercial nuclear technology, and related industrial infrastructure such as desalination technology in Korea. Advanced technologies such as intrinsic and passive safety features are implemented in establishing the design concepts to enhance the safety and performance. Research and development including laboratory-scale tests are concurrently underway to evaluate the characteristics of various passive safety concepts and provide the proper technical data for the conceptual design. This paper describes the preliminary safety and design concepts of the advanced integral reactor. Salient features of the design are hexagonal core geometry, once-through helical steam generator, self-pressurizer, and seismic resistant fine control CEDMS, passive residual heat removal system, steam injector driven passive containment cooling system. (author)

  15. Continuous processing of Aloe Vera juice in Reverse Osmosis integrated plant

    International Nuclear Information System (INIS)

    Nasim, H.; Younas, M.; Feroz, N.; Swati, I.K.

    2012-01-01

    Membrane technology is being applied in the food and beverages industry particularly in fruit juice concentration all over the world. The major advantages are lesser use of energy, better taste of products, and recovery of pure aroma/flavor and ease of operation. The current study is focused on the experimental investigation of clarification and concentration of Aloe juice through membrane separation technique. The experimental procedure consists of Aloe gel followed by pulping, a clarification by filtration and the concentration by reverse osmosis (RO). Experimental rig was integrated with spiral wound TFM-50 membrane, pre-treatment filters, pumps, rota meter and pressure sensors. The effect of feed pressure and temperature was studied on the dynamic behavior of RO integrated plant for water removal and permeate flux. It was found that Aloe juice was concentrated at optimum pressure and temperature of 40 bar and 40 degree C, respectively. (author)

  16. Retrograde Signals: Integrators of Interorganellar Communication and Orchestrators of Plant Development.

    Science.gov (United States)

    de Souza, Amancio; Wang, Jin-Zheng; Dehesh, Katayoon

    2017-04-28

    Interorganellar cooperation maintained via exquisitely controlled retrograde-signaling pathways is an evolutionary necessity for maintenance of cellular homeostasis. This signaling feature has therefore attracted much research attention aimed at improving understanding of the nature of these communication signals, how the signals are sensed, and ultimately the mechanism by which they integrate targeted processes that collectively culminate in organellar cooperativity. The answers to these questions will provide insight into how retrograde-signal-mediated regulatory mechanisms are recruited and which biological processes are targeted, and will advance our understanding of how organisms balance metabolic investments in growth against adaptation to environmental stress. This review summarizes the present understanding of the nature and the functional complexity of retrograde signals as integrators of interorganellar communication and orchestrators of plant development, and offers a perspective on the future of this critical and dynamic area of research.

  17. Integration of renewable energy plants based on generic data models in the energy management of a virtual power plant; Integration von erneuerbaren Energieanlagen auf Basis generischer Datenmodelle in das Energiemanagement eines virtuellen Kraftwerks

    Energy Technology Data Exchange (ETDEWEB)

    Wickert, Manuel; Slaby, Wolfgang; Hochloff, Patrick [Fraunhofer Institut fuer Windenergie und Energiesystemtechnik (IWES), Kassel (Germany); Winter, Martin [Siemens AG, Muenchen (Germany). Corporate Technology

    2012-07-01

    The integration of different types of energy resources manufactured by different vendors is one of the main challenges for virtual power plants. One of the important problems is a highly heterogeneous standardization environment for decentralized renewable energy resources. On the one hand proprietary solutions are implemented for some types of energy resources. In a future smart grid it is getting more and more important to handle decentralized energy generation. The project RegModHarz researched the dynamic integration of energy resources in virtual power plants based on generic data models. This paper introduces a concept for the integration of heterogeneous energy resources into the energy management of a virtual power plant using a uniform data model. On the assumption of a market-oriented virtual power plant the main attributes of this data model are generally identified and afterwards explained by examples. The capability of this data model is shown in a comprehensive field test with different renewable energy resources. (orig.)

  18. CMOS Electrochemical Instrumentation for Biosensor Microsystems: A Review

    Directory of Open Access Journals (Sweden)

    Haitao Li

    2016-12-01

    Full Text Available Modern biosensors play a critical role in healthcare and have a quickly growing commercial market. Compared to traditional optical-based sensing, electrochemical biosensors are attractive due to superior performance in response time, cost, complexity and potential for miniaturization. To address the shortcomings of traditional benchtop electrochemical instruments, in recent years, many complementary metal oxide semiconductor (CMOS instrumentation circuits have been reported for electrochemical biosensors. This paper provides a review and analysis of CMOS electrochemical instrumentation circuits. First, important concepts in electrochemical sensing are presented from an instrumentation point of view. Then, electrochemical instrumentation circuits are organized into functional classes, and reported CMOS circuits are reviewed and analyzed to illuminate design options and performance tradeoffs. Finally, recent trends and challenges toward on-CMOS sensor integration that could enable highly miniaturized electrochemical biosensor microsystems are discussed. The information in the paper can guide next generation electrochemical sensor design.

  19. Integrated CAE system for nuclear power plants. Development of piping design check system

    International Nuclear Information System (INIS)

    Narikawa, Noboru; Sato, Teruaki

    1994-01-01

    Toshiba Corporation has developed and operated the integrated CAE system for nuclear power plants, the core of which is the engineering data base to manage accurately and efficiently enormous amount of data on machinery, equipment and piping. As the first step of putting knowledge base system to practical use, piping design check system has been developed. By automatically checking up piping design, this system aims at the prevention of overlooking mistakes, efficient design works and the overall quality improvement of design. This system is based on the thought that it supports designers, and final decision is made by designers. This system is composed of the integrated data base, a two-dimensional CAD system and three-dimensional CAD system. The piping design check system is one of the application systems of the integrated CAE system. Object-oriented programming is the base of the piping design check system, and design knowledge and CAD data are necessary. As to the method of realizing the check system, the flow of piping design, the checkup functions, the checkup of interference and attribute base, and the integration of the system are explained. (K.I)

  20. Study concerning the power plant control and safety equipment by integrated distributed systems

    International Nuclear Information System (INIS)

    Optea, I.; Oprea, M.; Stanescu, P.

    1995-01-01

    The paper deals with the trends existing in the field of nuclear control and safety equipment and systems, proposing a high-efficiency integrated system. In order to enhance the safety of the plant and reliability of the structure system and components, we present a concept based on the latest computer technology with an open, distributed system, connected by a local area network with high redundancy. A modern conception for the control and safety system is to integrate all the information related to the reactor protection, active engineered safeguard and auxiliary systems parameters, offering a fast flow of information between all the agencies concerned so that situations can be quickly assessed. The integrated distributed control is based on a high performance operating system for realtime applications, flexible enough for transparent networking and modular for demanding configurations. The general design considerations for nuclear reactors instrumentation reliability and testing methods for real-time functions under dynamic regime are presented. Taking into account the fast progress in information technology, we consider the replacement of the old instrumentation of Cernavoda-1 NPP by a modern integrated system as an economical and efficient solution for the next units. (Author) 20 Refs

  1. Design of integrated passive safety system (IPSS) for ultimate passive safety of nuclear power plants

    International Nuclear Information System (INIS)

    Chang, Soon Heung; Kim, Sang Ho; Choi, Jae Young

    2013-01-01

    Highlights: • We newly propose the design concept of integrated passive safety system (IPSS). • It has five safety functions for decay heat removal and severe accident mitigation. • Simulations for IPSS show that core melt does not occur in accidents with SBO. • IPSS can achieve the passive in-vessel retention and ex-vessel cooling strategy. • The applicability of IPSS is high due to the installation outside the containment. -- Abstract: The design concept of integrated passive safety system (IPSS) which can perform various passive safety functions is proposed in this paper. It has the various functions of passive decay heat removal system, passive safety injection system, passive containment cooling system, passive in-vessel retention and cavity flooding system, and filtered venting system with containment pressure control. The objectives of this paper are to propose the conceptual design of an IPSS and to estimate the design characters of the IPSS with accident simulations using MARS code. Some functions of the IPSS are newly proposed and the other functions are reviewed with the integration of the functions. Consequently, all of the functions are modified and integrated for simplicity of the design in preparation for beyond design based accidents (BDBAs) focused on a station black out (SBO). The simulation results with the IPSS show that the decay heat can be sufficiently removed in accidents that occur with a SBO. Also, the molten core can be retained in a vessel via the passive in-vessel retention strategy of the IPSS. The actual application potential of the IPSS is high, as numerous strong design characters are evaluated. The installation of the IPSS into the original design of a nuclear power plant requires minimal design change using the current penetrations of the containment. The functions are integrated in one or two large tanks outside the containment. Furthermore, the operation time of the IPSS can be increased by refilling coolant from the

  2. Integration of computerized operation support systems on a nuclear power plant environment

    International Nuclear Information System (INIS)

    Jaime, Guilherme D.G.; Almeida, Jose C.S.; Oliveira, Mauro V.

    2015-01-01

    Automation of certain tasks in a Nuclear Power Plant (NPP) control room is expected to result in reduced operators' mental workload, which may induce other benefits such as enhanced situation awareness and improved system performance. The final goal should be higher level of operational safety. Thus, recent works are increasingly assessing automation. The LABIHS compact NPP simulator, though, still operates under strictly manual printed hard-copy procedures, despite of the fact that the simulator incorporates several advancements in design of digitalized Human-Interfaces (HSIs). This work presents the development, implementation and integration of selected components to achieve increased level of computerized/automated operation of the LABIHS compact NPP simulator. Specifically, we discuss three components: (I) Automatic Plant Mode Detection, (II) Automatic Alarm Filtering, and (III) Computerized Procedures. Each one of these components has to be carefully designed/integrated so that one can avoid the undesired effects of some known implementations of automated systems on NPP, such as the reduction in the operator's system awareness, an increase in monitoring workload, and the degradation in manual skills, which could lead to automation-induced system failures. (author)

  3. Integration of computerized operation support systems on a nuclear power plant environment

    Energy Technology Data Exchange (ETDEWEB)

    Jaime, Guilherme D.G.; Almeida, Jose C.S.; Oliveira, Mauro V., E-mail: gdjaime@ien.gov.br, E-mail: jcsa@ien.gov.br, E-mail: mvitor@ien.gov.br [Instituto Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Servico de Sistemas Complexos. Divisao de Engenharia Nuclear

    2015-07-01

    Automation of certain tasks in a Nuclear Power Plant (NPP) control room is expected to result in reduced operators' mental workload, which may induce other benefits such as enhanced situation awareness and improved system performance. The final goal should be higher level of operational safety. Thus, recent works are increasingly assessing automation. The LABIHS compact NPP simulator, though, still operates under strictly manual printed hard-copy procedures, despite of the fact that the simulator incorporates several advancements in design of digitalized Human-Interfaces (HSIs). This work presents the development, implementation and integration of selected components to achieve increased level of computerized/automated operation of the LABIHS compact NPP simulator. Specifically, we discuss three components: (I) Automatic Plant Mode Detection, (II) Automatic Alarm Filtering, and (III) Computerized Procedures. Each one of these components has to be carefully designed/integrated so that one can avoid the undesired effects of some known implementations of automated systems on NPP, such as the reduction in the operator's system awareness, an increase in monitoring workload, and the degradation in manual skills, which could lead to automation-induced system failures. (author)

  4. Integrated disturbance analysis (IDA): A basis for expert systems in nuclear power plants

    International Nuclear Information System (INIS)

    Bastl, W.

    1987-01-01

    In the framework of a project sponsored by the Bundesminister fur Forschung und Technologie (BMFT) and the Rheinisch-Westfalisches Elektrizitatswerk AG (RWE) the concept of Integrated Disturbance Analysis (IDA) has been developed and applied to the Biblis Unit B Nuclear Power Plant. Rather than using the classical approach, which aims at finding the cause of a plant disturbance, the main goal was to make transparent to the operator what it really means for the process, when a set of parameters begins to deviate from its normal state. Therefore the goal was to help the operator to combine the information on the individual process parameters to the complete picture of the evolving transient, thus facilitating the decision about the importance of a disturbance for operational safety. Considering this goal the most important subjects taken care of were: to extend event sequence analysis by means of analog information; to provide adequate modelling of time dependent processes and feedback loops; to integrate IDA information effectively into the existing control room environment

  5. Integrated logistic support concept in the design of nuclear power plants

    International Nuclear Information System (INIS)

    Martin-Onraet, M.; Degrave, C.; Meuwisse, C.

    1996-01-01

    Considering its plant operating experience, the analysis of foreign practice and the development of new design approaches and tools, Electricite de France (EDF) is convinced that it is possible to improve new plant design, operation and maintenance without increasing too much investment costs. To remain competitive it is necessary to maintain the kWh production cost of the future unit at a level close to those of the latest unit under construction (N4 series), while raising the Safety level. To minimize the kWh cost EDF has decided to implement the CIDEM project (French acronym for Design Integrating Availability, Operating Experience and Maintenance), an analytic and systematic process for studying new projects, aiming at a design optimization including investment, maintenance, availability and radiation exposure objectives. This approach aims at a single goal: to minimize the kWh production cost incorporating investment operation and fuel cost, based on experience from French and foreign units. This process, already widely practiced in other industries or services (aerospace, defense, ...), uses concepts known by the acronyms RAM (Reliability, Availability, Maintainability) RCM (Reliability, Centered Maintenance) and ILS (Integrated Logistic Support). The first CIDEM application is centered on the future French nuclear unit construction program, known as the REP 2000 program but the approach could be applied to other Reactor type or fossil-fired units in particular for its methodological aspect. The purpose of this paper is to introduce the EDF ILS concept

  6. Analysis of thermodynamics of two-fuel power unit integrated with a carbon dioxide separation plant

    Directory of Open Access Journals (Sweden)

    Kotowicz Janusz

    2014-12-01

    Full Text Available The article presents the results of thermodynamic analysis of the supercritical coal-fired power plant with gross electrical output of 900 MW and a pulverized coal boiler. This unit is integrated with the absorption-based CO2 separation installation. The heat required for carrying out the desorption process, is supplied by the system with the gas turbine. Analyses were performed for two variants of the system. In the first case, in addition to the gas turbine there is an evaporator powered by exhaust gases from the gas turbine expander. The second expanded variant assumes the application of gas turbine combined cycle with heat recovery steam generator and backpressure steam turbine. The way of determining the efficiency of electricity generation and other defined indicators to assess the energy performance of the test block was showed. The size of the gas turbine system was chosen because of the need for heat for the desorption unit, taking the value of the heat demand 4 MJ/kg CO2. The analysis results obtained for the both variants of the installation with integrated CO2 separation plant were compared with the results of the analysis of the block where the separation is not conducted.

  7. Tight integration of computerized procedures with plant information at the South Texas Project

    International Nuclear Information System (INIS)

    Brtis, J.S.; Green, T.

    1996-01-01

    This paper describes a unique undertaking that is underway at Houston Lighting and Power's South Texas Project (STP). The paper presents an information upgrade project that uses expert system technologies to computerize design change procedures and to tightly integrate the resulting on-line, interactive procedures with the on-line information that design change activities use and generate. This effort will show how procedure computerization can leverage the large investments in plant data. The expected benefits include reduced costs and improved quality of design change work, plus a significant reduction in the burden of configuration management that comes from design changes. Both process computerization and the integration of process with data are being implemented at STP. This work is part of a major migration of information from a mainframe to a LAN platform. This paper will be of greatest interest to those involved in: (1) configuration management, (2) coordinating information to support design change procedures, (3) plant information management, and (4) business process reengineering

  8. FUNCTION OF PHLOEM-BORNE INFORMATION MACROMOLECULES IN INTEGRATING PLANT GROWTH & DEVELOPMENT

    Energy Technology Data Exchange (ETDEWEB)

    William J. Lucas

    2012-11-12

    Studies on higher plants have revealed the operation of cell-to-cell and long-distance communication networks that mediate the transport of information macromolecules, such as proteins and RNA. Based on the findings from this DOE-funded project and results from other groups, it is now well established that the enucleate sieve tube system of the angiosperms contains a complex set of proteins including RNA binding proteins as well as a unique population of RNA molecules, comprised of both mRNA and small RNA species. Hetero-grafting experiments demonstrated that delivery of such RNA molecules, into the scion, is highly correlated with changes in developmental phenotypes. Furthermore, over the course of this project, our studies showed that plasmodesmata and the phloem are intimately involved in the local and systemic spread of sequence-specific signals that underlie gene silencing in plants. Major advances were also made in elucidating the underlying mechanisms that operate to mediate the selective entry and exit of proteins and RNA into and out of the phloem translocation stream. Our pioneering studies identified the first plant protein with the capacity to both bind specifically to small RNA molecules (si-RNA) and mediate in the cell-to-cell movement of such siRNA. Importantly, studies conducted with support from this DOE program also yielded a detailed characterization of the first phloem-mobile RNP complex isolated from pumpkin, namely the CmRBP50-RNP complex. This RNP complex was shown to bind, in a sequence-specific manner, to a set of transcripts encoding for transcription factors. The remarkable stability of this CmRBP50-RNP complex allows for long-distance delivery of bound transcripts from mature leaves into developing tissues and organs. Knowledge gained from this project can be used to exert control over the long-distance signaling networks used by plants to integrate their physiological and developmental programs at a whole plant level. Eventually, this

  9. Integrative approach to analyze biodiversity and anti-inflammatory bioactivity of Wedelia medicinal plants.

    Directory of Open Access Journals (Sweden)

    Wen-Ching Lin

    Full Text Available For the development of "medical foods" and/or botanical drugs as defined USA FDA, clear and systemic characterizations of the taxonomy, index phytochemical components, and the functional or medicinal bioactivities of the reputed or candidate medicinal plant are needed. In this study, we used an integrative approach, including macroscopic and microscopic examination, marker gene analysis, and chemical fingerprinting, to authenticate and validate various species/varieties of Wedelia, a reputed medicinal plant that grows naturally and commonly used in Asian countries. The anti-inflammatory bioactivities of Wedelia extracts were then evaluated in a DSS-induced murine colitis model. Different species/varieties of Wedelia exhibited distinguishable morphology and histological structures. Analysis of the ribosomal DNA internal transcribed spacer (ITS region revealed significant differences among these plants. Chemical profiling of test Wedelia species demonstrated candidate index compounds and distinguishable secondary metabolites, such as caffeic acid derivatives, which may serve as phytochemical markers or index for quality control and identification of specific Wedelia species. In assessing their effect on treating DSS induced-murine colitis, we observed that only the phytoextract from W. chinensis species exhibited significant anti-inflammatory bioactivity on DSS-induced murine colitis among the various Wedelia species commonly found in Taiwan. Our results provide a translational research approach that may serve as a useful reference platform for biotechnological applications of traditional phytomedicines. Our findings indicate that specific Wedelia species warrant further investigation for potential treatment of human inflammatory bowel disease.

  10. On thermoeconomics of energy systems at variable load conditions: Integrated optimization of plant design and operation

    International Nuclear Information System (INIS)

    Piacentino, A.; Cardona, F.

    2007-01-01

    Thermoeconomics has been assuming a growing role among the disciplines oriented to the analysis of energy systems, its different methodologies allowing solution of problems in the fields of cost accounting, plant design optimisation and diagnostic of malfunctions. However, the thermoeconomic methodologies as such are particularly appropriate to analyse large industrial systems at steady or quasi-steady operation, but they can be hardly applied to small to medium scale units operating in unsteady conditions to cover a variable energy demand. In this paper, the fundamentals of thermoeconomics for systems operated at variable load are discussed, examining the cost formation process and, separately, the cost fractions related to capital depreciation (which require additional distinctions with respect to plants in steady operation) and to exergy consumption. The relevant effects of the efficiency penalty due to off design operation on the exergetic cost of internal flows are also examined. An original algorithm is proposed for the integrated optimization of plant design and operation based on an analytical solution by the Lagrange multipliers method and on a multi-objective decision function, expressed either in terms of net cash flow or primary energy saving. The method is suitable for application in complex energy systems, such as 'facilities of components of a same product' connected to external networks for power or heat distribution. For demonstrative purposes, the proposed thermoeconomically aided optimization is performed for a grid connected trigeneration system to be installed in a large hotel

  11. MIPS Arabidopsis thaliana Database (MAtDB): an integrated biological knowledge resource for plant genomics

    Science.gov (United States)

    Schoof, Heiko; Ernst, Rebecca; Nazarov, Vladimir; Pfeifer, Lukas; Mewes, Hans-Werner; Mayer, Klaus F. X.

    2004-01-01

    Arabidopsis thaliana is the most widely studied model plant. Functional genomics is intensively underway in many laboratories worldwide. Beyond the basic annotation of the primary sequence data, the annotated genetic elements of Arabidopsis must be linked to diverse biological data and higher order information such as metabolic or regulatory pathways. The MIPS Arabidopsis thaliana database MAtDB aims to provide a comprehensive resource for Arabidopsis as a genome model that serves as a primary reference for research in plants and is suitable for transfer of knowledge to other plants, especially crops. The genome sequence as a common backbone serves as a scaffold for the integration of data, while, in a complementary effort, these data are enhanced through the application of state-of-the-art bioinformatics tools. This information is visualized on a genome-wide and a gene-by-gene basis with access both for web users and applications. This report updates the information given in a previous report and provides an outlook on further developments. The MAtDB web interface can be accessed at http://mips.gsf.de/proj/thal/db. PMID:14681437

  12. Technical comparison between Integrated Gasification Combined Cycle (IGCC) and Natural Gas Combined Cycle (NGCC) power plants

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, Pablo Andres Silva; Venturini, Osvaldo Jose; Lora, Electo Eduardo Silva [Federal University of Itajuba - UNIFEI, MG (Brazil). Excellence Group in Thermal Power and Distributed Generation - NEST], e-mails: osvaldo@unifei.edu.br, electo@unifei.edu.br

    2010-07-01

    Among the emerging clean coal technologies for power generation, Integrated Gasification Combined Cycle (IGCC) and Natural Gas Combined Cycle (NGCC) systems are receiving considerable attention as a potentially attractive option to reduce the emissions of greenhouse gases (GHG). The main reason is because these systems has high efficiency and low emissions in comparison with traditional power generation plants. Currently in IGCC and NGCC systems at demonstration stage is been considered to implement CCS technology. CO{sub 2} emissions can be avoided in a gasification-based power plant because by transferring almost all carbon compounds to CO{sub 2} through the water gas shift (WGS) reaction, then removing the CO{sub 2} before it is diluted in the combustion stage. The aim of this study is to compare the technical performance of an IGCC system that uses Brazilian coal and petroleum coke as fuel with a NGCC system, with the same fixed output power of 450 MW. The first section of this paper presents the plant configurations of IGCC systems. The following section presents an analysis of NGCC technology. (author)

  13. Comparative risk analysis for the Rocky Flats Plant integrated project planning

    International Nuclear Information System (INIS)

    Jones, M.E.; Shain, D.I.

    1994-01-01

    The Rocky Flats Plant is developing, with active stakeholder participation, a comprehensive planning strategy that will support transition of the Rocky Flats Plant from a nuclear weapons production facility to site cleanup and final disposition. Consideration of the interrelated nature of sitewide problems, such as material movement and disposition, facility and land use endstates, costs, relative risks to workers and the public, and waste disposition are all needed. Comparative Risk Analysis employs both incremental risk and cumulative risk evaluations to compare risks from postulated options or endstates and is an analytical tool for the Rocky Flats Plant Integrated Project Planning which can assist a decision-maker in evaluating relative risks among proposed remediation activity. However, risks from all of the remediation activities, decontamination and decommissioning activities, and normal ongoing operations are imposed upon the Rocky Flats workers, the surrounding public, and the environment. Comparative Risk Analysis will provide risk information, both human health and ecological, to aid in reducing unnecessary resource and monetary expenditures by focusing these resources on the largest risks first. Comparative Risk Analysis has been developed to aggregate various incremental risk estimates to develop a site cumulative risk estimate. The Comparative Risk Analysis methodology Group, consisting of community stakeholders, was established. Early stakeholder involvement in the risk analysis methodology development provides an opportunity for stakeholders to influence the risk information delivered to a decision-maker. This paper discusses development of the Comparative Risk Analysis methodology, stakeholder participation and lessons learned from these challenges

  14. The cost of integration of parabolic trough CSP plants in isolated Mediterranean power systems

    International Nuclear Information System (INIS)

    Poullikkas, Andreas; Hadjipaschalis, Ioannis; Kourtis, George

    2010-01-01

    In this work, a technical and economic analysis concerning the integration of parabolic trough concentrated solar power (CSP) technologies, with or without thermal storage capability, in an existing typical small isolated Mediterranean power generation system, in the absence of a feed-in tariff scheme, is carried out. In addition to the business as usual (BAU) scenario, five more scenarios are examined in the analysis in order to assess the electricity unit cost with the penetration of parabolic trough CSP plants of 50 MWe or 100 MWe, with or without thermal storage capability. Based on the input data and assumptions made, the simulations indicated that the scenario with the utilization of a single parabolic trough CSP plant (either 50 MWe or 100 MWe and with or without thermal storage capability) in combination with BAU will effect an insignificant change in the electricity unit cost of the generation system compared to the BAU scenario. In addition, a sensitivity analysis on natural gas price, showed that increasing fuel prices and the existence of thermal storage capability in the CSP plant make this scenario marginally more economically attractive compared to the BAU scenario. (author)

  15. Multi-Objective Analysis of a CHP Plant Integrated Microgrid in Pakistan

    Directory of Open Access Journals (Sweden)

    Asad Waqar

    2017-10-01

    Full Text Available In developing countries like Pakistan, the capacity shortage (CS of electricity is a critical problem. The frequent natural gas (NG outages compel consumers to use electricity to fulfill the thermal loads, which ends up as an increase in electrical load. In this scenario, the authors have proposed the concept of a combined heat & power (CHP plant to be a better option for supplying both electrical and thermal loads simultaneously. A CHP plant-based microgrid comprising a PV array, diesel generators and batteries (operating in grid-connected as well as islanded modes has been simulated using the HOMER Pro software. Different configurations of distributed generators (DGs with/without batteries have been evaluated considering multiple objectives. The multiple objectives include the minimization of the total net present cost (TNPC, cost of generated energy (COE and the annual greenhouse gas (GHG emissions, as well as the maximization of annual waste heat recovery (WHR of thermal units and annual grid sales (GS. These objectives are subject to the constraints of power balance, battery operation within state of charge (SOC limits, generator operation within capacity limits and zero capacity shortage. The simulations have been performed on six cities including Islamabad, Lahore, Karachi, Peshawar, Quetta and Gilgit. The simulation results have been analyzed to find the most optimal city for the CHP plant integrated microgrid.

  16. Improving yeast strains using recyclable integration cassettes, for the production of plant terpenoids

    Directory of Open Access Journals (Sweden)

    Johnson Christopher B

    2011-01-01

    Full Text Available Abstract Background Terpenoids constitute a large family of natural products, attracting commercial interest for a variety of uses as flavours, fragrances, drugs and alternative fuels. Saccharomyces cerevisiae offers a versatile cell factory, as the precursors of terpenoid biosynthesis are naturally synthesized by the sterol biosynthetic pathway. Results S. cerevisiae wild type yeast cells, selected for their capacity to produce high sterol levels were targeted for improvement aiming to increase production. Recyclable integration cassettes were developed which enable the unlimited sequential integration of desirable genetic elements (promoters, genes, termination sequence at any desired locus in the yeast genome. The approach was applied on the yeast sterol biosynthetic pathway genes HMG2, ERG20 and IDI1 resulting in several-fold increase in plant monoterpene and sesquiterpene production. The improved strains were robust and could sustain high terpenoid production levels for an extended period. Simultaneous plasmid-driven co-expression of IDI1 and the HMG2 (K6R variant, in the improved strain background, maximized monoterpene production levels. Expression of two terpene synthase enzymes from the sage species Salvia fruticosa and S. pomifera (SfCinS1, SpP330 in the modified yeast cells identified a range of terpenoids which are also present in the plant essential oils. Co-expression of the putative interacting protein HSP90 with cineole synthase 1 (SfCinS1 also improved production levels, pointing to an additional means to improve production. Conclusions Using the developed molecular tools, new yeast strains were generated with increased capacity to produce plant terpenoids. The approach taken and the durability of the strains allow successive rounds of improvement to maximize yields.

  17. Production characteristics of lettuce Lactuca sativa L. in the frame of the first crop tests in the Higher Plant Chamber integrated into the MELiSSA Pilot Plant

    Science.gov (United States)

    Tikhomirova, Natalia; Lawson, Jamie; Stasiak, Michael; Dixon, Mike; Paille, Christel; Peiro, Enrique; Fossen, Arnaud; Godia, Francesc

    Micro-Ecological Life Support System Alternative (MELiSSA) is an artificial closed ecosystem that is considered a tool for the development of a bioregenerative life support system for manned space missions. One of the five compartments of MELiSSA loop -Higher Plant Chamber was recently integrated into the MELiSSA Pilot Plant facility at Universitat Aut`noma deo Barcelona. The main contributions expected by integration of this photosynthetic compartment are oxygen, water, vegetable food production and CO2 consumption. Production characteristics of Lactuca sativa L., as a MELiSSA candidate crop, were investigated in this work in the first crop experiments in the MELiSSA Pilot Plant facility. The plants were grown in batch culture and totaled 100 plants with a growing area 5 m long and 1 m wide in a sealed controlled environment. Several replicates of the experiments were carried out with varying duration. It was shown that after 46 days of lettuce cultivation dry edible biomass averaged 27, 2 g per plant. However accumulation of oxygen in the chamber, which required purging of the chamber, and decrease in the food value of the plants was observed. Reducing the duration of the tests allowed uninterrupted test without opening the system and also allowed estimation of the crop's carbon balance. Results of productivity, tissue composition, nutrient uptake and canopy photosynthesis of lettuce regardless of test duration are discussed in the paper.

  18. Integrated System Validation of Barakah Nuclear Power Plant in UAE for The Human Factor Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Munsoo [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    APR1400 simulator has been developed based on the state-of-the-art object-oriented simulation technology of TH(Thermo-Hydraulic) and Reactor Core model, which is applied for the first time in the our country and for the exportation, to well simulate characteristics of APR1400. Barakah unit 1,2 simulator are constructed and supplied with this type simulator model. Integrated system validation was performed using a simulator to verify the HFE(Human Factor Engineering) design of the MCR(Maim Control Room) for instrumentation and control system validation of the UAE nuclear power plant. APR1400 for the Barakah unit 1,2 has many specific features such as digital I and C, and digitalized main control room (MCR) design. From January 2016 to February, during six weeks, the tests carried out three times repeatedly and the various proposals for ergonomical satisfactation were derived. However, the HFE errors that cause significant change of validation target for APR1400 MCR design safety fidelity wasn't found. This has resulted in the conclusion to prove the stability of the basic design of APR1400 MCR. In the future, using the simulator derives the HFE requirements of the MCR systems and continually improve the simulator will be built in close to real high-fidelity power plant. These Integrated system validations are likely to be a great help in operating safety and preventing human errors by operators. Therefore successful completion of the Integrated System Validation for BNPP simulation will be effective to promotion the distinction of our simulator and APR1400 NPP.

  19. The energy trilogy: An integrated sustainability model to bridge wastewater treatment plant energy and emissions gaps

    Science.gov (United States)

    Al-Talibi, A. Adhim

    An estimated 4% of national energy consumption is used for drinking water and wastewater services. Despite the awareness and optimization initiatives for energy conservation, energy consumption is on the rise owing to population and urbanization expansion and to commercial and industrial business advancement. The principal concern is since energy consumption grows, the higher will be the energy production demand, leading to an increase in CO2 footprints and the contribution to global warming potential. This research is in the area of energy-water nexus, focusing on wastewater treatment plant (WWTP) energy trilogy -- the group of three related entities, which includes processes: (1) consuming energy, (2) producing energy, and (3) the resulting -- CO2 equivalents. Detailed and measurable energy information is not readily obtained for wastewater facilities, specifically during facility preliminary design phases. These limitations call for data-intensive research approach on GHG emissions quantification, plant efficiencies and source reduction techniques. To achieve these goals, this research introduced a model integrating all plant processes and their pertinent energy sources. In a comprehensive and "Energy Source-to-Effluent Discharge" pattern, this model is capable of bridging the gaps of WWTP energy, facilitating plant designers' decision-making for meeting energy assessment, sustainability and the environmental regulatory compliance. Protocols for estimating common emissions sources are available such as for fuels, whereas, site-specific emissions for other sources have to be developed and are captured in this research. The dissertation objectives were met through an extensive study of the relevant literature, models and tools, originating comprehensive lists of processes and energy sources for WWTPs, locating estimation formulas for each source, identifying site specific emissions factors, and linking the sources in a mathematical model for site specific CO2 e

  20. Development of integral type forgings for steam generator of nuclear power plant

    International Nuclear Information System (INIS)

    Suzuki, Komei; Sato, Ikuo; Murai, Etsuo

    1992-01-01

    The use of integral type steel forgings for the construction of pressure vessel enhances the structural integrity of components and makes the fabrication of components and the execution of in-service inspection (ISI) easier than those fabrication from plate and casting materials. Such steel forgings have been realized for steam generator (SG) for nuclear power plant as follows : (1) Forged shell ring : change from welding fabrication of formed plates to forging ; (2) Forged conical shell ring : ditto ; (3) Forged head integral with nozzles (s) : (i) Primary head : change from casting to forging ; (ii) Secondary head : change from welding fabrication of formed plates to forging. These steel forgings have been realized by recent development in manufacturing technologies, such as steel making, forging processes and heat treatment which are vital to the quality of steel forgings. Some examples of recent typical high quality steel forgings developed by the Japan Steel Works, Ltd. (JSW) are introduced, and the main points of the manufacturing technique and the quality attained are also described. (author)

  1. Integrated coastal monitoring of a gas processing plant using native and caged mussels

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, Steven, E-mail: sbr@niva.no [Norwegian Institute for Water Research (NIVA), Gaustadalleen 21, NO-0349 Oslo (Norway); Harman, Christopher [Norwegian Institute for Water Research (NIVA), Gaustadalleen 21, NO-0349 Oslo (Norway); Soto, Manu; Cancio, Ibon [CBET Res Grp, R and D Centre for Experimental Marine Biology and Biotechnology (PIE), Univ Basque Country, Areatza Z/G, Plentzia-Bizkaia, E-48620 Basque Country (Spain); Glette, Tormod [Det Norske Veritas (DNV), Veritasveien 1, 1363 Hovik (Norway); Marigomez, Ionan [CBET Res Grp, R and D Centre for Experimental Marine Biology and Biotechnology (PIE), Univ Basque Country, Areatza Z/G, Plentzia-Bizkaia, E-48620 Basque Country (Spain)

    2012-06-01

    The biological effects of a coastal process water (PW) discharge on native and caged mussels (Mytilus edulis) were assessed. Chemical analyses of mussel tissues and semi permeable membrane devices, along with a suite of biomarkers of different levels of biological complexity were measured. These were lysosomal membrane stability in haemocytes and digestive cells; micronuclei formation in haemocytes; changes in cell-type composition in the digestive gland epithelium; integrity of digestive gland tissue; peroxisome proliferation; and oxidative stress. Additionally the Integrative Biological Response (IBR/n) index was calculated. This integrative biomarker approach distinguished mussels, both native and caged, exhibiting different stress conditions not identified from the contaminant exposure. Mussels exhibiting higher stress responses were found with increased proximity to the PW discharge outlet. However, the biological effects reported could not be entirely attributed to the PW discharge based on the chemicals measured, but were likely due to either other chemicals in the discharge that were not measured, the general impact of the processing plant and or other activities in the local vicinity. - Highlights: Black-Right-Pointing-Pointer Good agreement between biomarkers for the different mussel groups. Black-Right-Pointing-Pointer IBR/n was able to differentiate between exposed and reference mussels. Black-Right-Pointing-Pointer Mussels closest to the PW outlet were in poorest health. Black-Right-Pointing-Pointer Chemical concentrations were low or undetected in all SPMD and mussel samples. Black-Right-Pointing-Pointer Biomarker responses could not be entirely attributed to the PW discharge.

  2. Numerical simulation of the integrated solar/North Benghazi combined power plant

    International Nuclear Information System (INIS)

    Aldali, Y.; Morad, K.

    2016-01-01

    Highlights: • The thermodynamic and economic evaluation of power plant have been studied. • Saving and boosting modes are considered as the same solar field area. • Two modes of operation have been used and simulated on Libyan climate conditions. • The benefit/cost ratios are 1.74 and 1.30 for fuel saving and power boosting mode. • Fuel saving mode is more economical than power boosting mode. - Abstract: The aim of this paper is to study the thermodynamic performance of a proposed integrated solar/North Benghazi combined power plant under Libyan climatic conditions. The parabolic trough collector field with direct steam generation was considered as solar system. Two modes of operations with the same solar field area are considered: fuel saving mode in which the generated solar steam was used to preheat the combustion air in the gas turbine unit and power boosting mode in which the generated solar steam was added into the steam turbine for boosting the electrical power generated from steam turbine unit. Moreover, the economic impact of solar energy is assessed in the form of benefit/cost ratio to justify the substitution potential of such clean energy. This study shows that, for fuel saving mode: the annual saving of natural gas consumption and CO_2 emission are approximately 3001.56 and 7972.25 tons, respectively, in comparison with the conventional North Benghazi combined cycle power plant. For power boosting mode: the annual solar share of electrical energy is approximately 93.33 GW h. The economic analysis of solar supported plant has indicated that the benefit/cost ratios are 1.74 and 1.30 for fuel saving and power boosting mode, therefore, then fuel saving mode is more economical than power boosting mode for the same solar field area, moreover, it reduces the greenhouse CO_2 emission in order to avoid a collapse of the word climate.

  3. High performance integrated solar combined cycles with minimum modifications to the combined cycle power plant design

    International Nuclear Information System (INIS)

    Manente, Giovanni

    2016-01-01

    Highlights: • Off-design model of a 390 MW_e three pressure combined cycle developed and validated. • The off-design model is used to evaluate different hybridization schemes with solar. • Power boosting and fuel saving with different design modifications are considered. • Maximum solar share of total electricity is only 1% with the existing equipment. • The maximum incremental solar radiation-to-electrical efficiency approaches 29%. - Abstract: The integration of solar energy into natural gas combined cycles has been successfully demonstrated in several integrated solar combined cycles since the beginning of this decade in many countries. There are many motivations that drive investments on integrated solar combined cycles which are primarily the repowering of existing power plants, the compliance with more severe environmental laws on emissions and the mitigation of risks associated with large solar projects. Integrated solar combined cycles are usually developed as brownfield facilities by retrofitting existing natural gas combined cycles and keeping the existing equipment to minimize costs. In this work a detailed off-design model of a 390 MW_e three pressure level natural gas combined cycle is built to evaluate different integration schemes of solar energy which either keep the equipment of the combined cycle unchanged or include new equipment (steam turbine, heat recovery steam generator). Both power boosting and fuel saving operation strategies are analyzed in the search for the highest annual efficiency and solar share. Results show that the maximum incremental power output from solar at design solar irradiance is limited to 19 MW_e without modifications to the existing equipment. Higher values are attainable only including a larger steam turbine. High solar radiation-to-electrical efficiencies in the range 24–29% can be achieved in the integrated solar combined cycle depending on solar share and extension of tube banks in the heat recovery

  4. Restoring crop productivity of eroded lands through , integrated plant nutrient management (IPNM) for sustained production

    International Nuclear Information System (INIS)

    Bhatti, A.U.; Ali, S.

    2005-01-01

    Crop productivity of eroded lands is very poor due to removal of top fertile soil losing organic matter and plant nutrients, with consequent exposure of the sub-soil with poor fertility status. Crop productivity of such lands needs to be restored in order to help farmers feed many mouths because of increased population and high land pressure. Three field experiments were laid out at three sites, Thana, Malakand Agency; Kabal and Matta, Swat during 2003-2004 to study the effect of integrated plant nutrient management on the yield of wheat. The fertilizer treatments consisted of farmer's practice (60-45-0 kg N-P/sub 2/O/sub 5/-K/sub 2/O ha/sup -1/), recommended fertilizer rate (120-90-60 kg N-P/sub 2/O/sub 5/-K/sub 2/O ha/sup -l/ + 5 kg Zn ha/sup -1), and combined application of organic and inorganic sources of plant nutrients (FYM at the rate of 20 t ha/sup -1/ plus 60-90-60 kg N-P/sub 2/O/sub 5/-K/sub 2/O ha/sup -1/ + 5 kg Zn ha/sup -1/). The results obtained from these field trails showed that the combined application of FYM with NPK Zn increased the grain yield significantly over the other two treatments with an increase of 50-80% over the farmer's practice and 11 to 23 % over the recommended dose. As regards straw yields, T/sub 2/ and T/sub 3/ increased the yields significantly over farmer's practice (T) at all the sites; However, T/sub 2/ and T/sub 3/ at Thana and Kabal were at par with each other. As regards effect of various treatments on soil properties, organic matter content was improved at Thana and Kabal sites while at Matta the results were inconsistent. Similarly soil P and Zn contents were increased considerably in T/sub 2/ and T/sub 3/ at Thana and Kabal being at par with each other. It is apparent from these results that the crop productivity of eroded lands at all the three sties was considerably restored and the soil fertility status was improved by integrated plant nutrient management. (author)

  5. Overview of the ITER Tokamak complex building and integration of plant systems toward construction

    Energy Technology Data Exchange (ETDEWEB)

    Cordier, Jean-Jacques, E-mail: jean-jacques.cordier@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Bak, Joo-Shik [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Baudry, Alain [Engage Consortium, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Benchikhoune, Magali [Fusion For Energy (F4E), c/ Josep Pla, n.2, Torres Diagonal Litoral, E-08019 Barcelona (Spain); Carafa, Leontin; Chiocchio, Stefano [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Darbour, Romaric [Fusion For Energy (F4E), c/ Josep Pla, n.2, Torres Diagonal Litoral, E-08019 Barcelona (Spain); Elbez, Joelle; Di Giuseppe, Giovanni; Iwata, Yasuhiro; Jeannoutot, Thomas; Kotamaki, Miikka; Kuehn, Ingo; Lee, Andreas; Levesy, Bruno; Orlandi, Sergio [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Packer, Rachel [Engage Consortium, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Patisson, Laurent; Reich, Jens; Rigoni, Giuliano [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); and others

    2015-10-15

    The ITER Tokamak complex consists of Tokamak, diagnostic and tritium buildings. The Tokamak machine is located in the bioshield pit of the Tokamak building. Plant systems are implemented in the three buildings and are strongly interfacing with the Tokamak. The reference baseline (3D) configuration is a set of over 1000 models that today defines in an exhaustive way the overall layout of Tokamak and plant systems, needed for fixing the interfaces and to complete the construction design of the buildings. During the last two years, one of the main ITER challenges was to improve the maturity of the plant systems layout in order to confirm their integration in the building final design and freeze the interface definitions in-between the systems and to the buildings. The propagation of safety requirements in the design of the nuclear building like confinement, fire zoning and radiation shielding is of first priority. A major effort was placed by ITER Organization together with the European Domestic Agency (F4E) and the Architect Engineer as a joint team to fix the interfaces and the loading conditions to buildings. The most demanding systems in terms of interface definition are water cooling, cryogenic, detritiation, vacuum, cable trays and building services. All penetrations through the walls for piping, cables and other equipment have been defined, as well as all temporary openings needed for the installation phase. Project change requests (PCR) impacting the Tokamak complex buildings have been implemented in a tight allocated time schedule. The most demanding change was to implement a new design of the Tokamak basic machine supporting system. The 18 supporting columns of the cryostat (2001 baseline) were replaced at the end of 2012 by a concrete crown and radial concrete ribs linked to the basemat and to the bioshield surrounding the Tokamak. The change was implemented successfully in the building construction design to allow basemat construction phase being performed

  6. Effects of integrated designs of alarm and process information on diagnosis performance in digital nuclear power plants.

    Science.gov (United States)

    Wu, Xiaojun; She, Manrong; Li, Zhizhong; Song, Fei; Sang, Wei

    2017-12-01

    In the main control rooms of nuclear power plants (NPPs), operators frequently switch between alarm displays and system-information displays to incorporate information from different screens. In this study, we investigated two integrated designs of alarm and process information - integrating alarm information into process displays (denoted as Alarm2Process integration) and integrating process information into alarm displays (denoted as Process2Alarm integration). To analyse the effects of the two integration approaches and time pressure on the diagnosis performance, a laboratory experiment was conducted with ninety-six students. The results show that compared with the non-integrated case, Process2Alarm integration yields better diagnosis performance in terms of diagnosis accuracy, time required to generate correct hypothesis and completion time. In contrast, the Alarm2Process integration leads to higher levels of workload, with no improvement in diagnosis performance. The diagnosis performance of Process2Alarm integration was consistently better than that of Alarm2Process integration, regardless of the levels of time pressure. Practitioner Summary: To facilitate operator's synthesis of NPP information when performing diagnosis tasks, we proposed to integrate process information into alarm displays. The laboratory validation shows that the integration approach significantly improves the diagnosis performance for both low and high time-pressure levels.

  7. Supplementary Material for: The flora phenotype ontology (FLOPO): tool for integrating morphological traits and phenotypes of vascular plants

    KAUST Repository

    Hoehndorf, Robert

    2016-01-01

    Abstract Background The systematic analysis of a large number of comparable plant trait data can support investigations into phylogenetics and ecological adaptation, with broad applications in evolutionary biology, agriculture, conservation, and the functioning of ecosystems. Floras, i.e., books collecting the information on all known plant species found within a region, are a potentially rich source of such plant trait data. Floras describe plant traits with a focus on morphology and other traits relevant for species identification in addition to other characteristics of plant species, such as ecological affinities, distribution, economic value, health applications, traditional uses, and so on. However, a key limitation in systematically analyzing information in Floras is the lack of a standardized vocabulary for the described traits as well as the difficulties in extracting structured information from free text. Results We have developed the Flora Phenotype Ontology (FLOPO), an ontology for describing traits of plant species found in Floras. We used the Plant Ontology (PO) and the Phenotype And Trait Ontology (PATO) to extract entity-quality relationships from digitized taxon descriptions in Floras, and used a formal ontological approach based on phenotype description patterns and automated reasoning to generate the FLOPO. The resulting ontology consists of 25,407 classes and is based on the PO and PATO. The classified ontology closely follows the structure of Plant Ontology in that the primary axis of classification is the observed plant anatomical structure, and more specific traits are then classified based on parthood and subclass relations between anatomical structures as well as subclass relations between phenotypic qualities. Conclusions The FLOPO is primarily intended as a framework based on which plant traits can be integrated computationally across all species and higher taxa of flowering plants. Importantly, it is not intended to replace established

  8. The integrated in situ testing program for the Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    Matalucci, R.V.

    1987-03-01

    The US Department of Energy (DOE) is developing the Waste Isolation Pilot Plant (WIPP) Project in southeastern New Mexico as a research and development (R and D) facility for examining the response of bedded (layered) salt to the emplacement of radioactive wastes generated from defense programs. The WIPP Experimental Program consists of a technology development program, including laboratory testing and theoretical analysis activities, and an in situ testing program that is being done 659 m underground at the project site. This experimental program addresses three major technical areas that concern (1) thermal/structural interactions, (2) plugging and sealing, and (3) waste package performance. To ensure that the technical issues involved in these areas are investigated with appropriate emphasis and timing, an in situ testing plan was developed to integrate the many activities and tasks associated with the technical issues of waste disposal. 5 refs., 4 figs

  9. Integrating NRDA and CERCLA environmental evaluations at the Rocky Flats Plant: A case study

    International Nuclear Information System (INIS)

    Knudsen, T.L.

    1993-01-01

    The purpose of this paper is to briefly review cleanup regulations in reference to natural resource liability, protection, and restoration; to present a case study on the Rocky Flats Plant (RFP) showing how this DOE facility is approaching the task of integrating the ecological assessment/impact portion of three major regulatory mandates: Resource Conservation and Recovery Act (RCRA), Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), and the National Environmental Policy Act (NEPA) with the Natural Resource Damage Assessment (NRDA) regulations using a flow chart depicting RCRA/CERCLA interim and final actions; to present what has and has not worked at the RFP; and, finally to suggest some technical strategies when planning for remediation and restoration in the NRD process that should be considered

  10. An integrated framework for effective reduction of occupational radiation exposure in a nuclear power plant

    International Nuclear Information System (INIS)

    Joo, Hyun Moon; Hak, Soo Kim; Young, Ho Cho; Chang, Sun Kang

    1998-01-01

    For effective reduction of occupational radiation exposure in a nuclear power plant, it is necessary to identify repetitive high radiation jobs during maintenance and refueling operation and comprehensively assess them. An integrated framework for effective reduction of occupational radiation exposure is proposed in this study. The framework consists of three parts; data collection, statistical analysis, and ALARA findings. A PC-based database program, INSTORE, is used for data collection and reduction, and the Rank Sum Method is used in identifying high radiation jobs. As a case study, the data accumulated in Kori Units 3 and 4 have been analyzed. The results of this study show that the radiation job classifications of SG related work have much effect on annual ORE collective dose in Kori Units 3 and 4. As an example of ALARA findings, hence, the improvements for the radiation job classifications of SG related work are summarized

  11. Modeling of integrated environmental control systems for coal-fired power plants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, E.S.; Salmento, J.S.; Frey, H.C.; Abu-Baker, A.; Berkenpas, M.

    1991-05-01

    The Integrated Environmental Control Model (IECM) was designed to permit the systematic evaluation of environmental control options for pulverized coal-fired (PC) power plants. Of special interest was the ability to compare the performance and cost of advanced pollution control systems to ``conventional`` technologies for the control of particulate, SO{sub 2} and NO{sub x}. Of importance also was the ability to consider pre-combustion, combustion and post-combustion control methods employed alone or in combination to meet tough air pollution emission standards. Finally, the ability to conduct probabilistic analyses is a unique capability of the IECM. Key results are characterized as distribution functions rather than as single deterministic values. (VC)

  12. Modeling of integrated environmental control systems for coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, E.S.; Salmento, J.S.; Frey, H.C.; Abu-Baker, A.; Berkenpas, M.

    1991-05-01

    The Integrated Environmental Control Model (IECM) was designed to permit the systematic evaluation of environmental control options for pulverized coal-fired (PC) power plants. Of special interest was the ability to compare the performance and cost of advanced pollution control systems to conventional'' technologies for the control of particulate, SO{sub 2} and NO{sub x}. Of importance also was the ability to consider pre-combustion, combustion and post-combustion control methods employed alone or in combination to meet tough air pollution emission standards. Finally, the ability to conduct probabilistic analyses is a unique capability of the IECM. Key results are characterized as distribution functions rather than as single deterministic values. (VC)

  13. Human reliability analysis of performing tasks in plants based on fuzzy integral

    International Nuclear Information System (INIS)

    Washio, Takashi; Kitamura, Yutaka; Takahashi, Hideaki

    1991-01-01

    The effective improvement of the human working conditions in nuclear power plants might be a solution for the enhancement of the operation safety. The human reliability analysis (HRA) gives a methodological basis of the improvement based on the evaluation of human reliability under various working conditions. This study investigates some difficulties of the human reliability analysis using conventional linear models and recent fuzzy integral models, and provides some solutions to the difficulties. The following practical features of the provided methods are confirmed in comparison with the conventional methods: (1) Applicability to various types of tasks (2) Capability of evaluating complicated dependencies among working condition factors (3) A priori human reliability evaluation based on a systematic task analysis of human action processes (4) A conversion scheme to probability from indices representing human reliability. (author)

  14. Environmental and socioeconomic aspects in the strategic analysis of a biomass power plant integration

    International Nuclear Information System (INIS)

    Varela, M.; Lechon, Y.; Saez, R.

    1999-01-01

    The aim of the work was to assess the potential weaknesses and threats of the integration of a biomass power plant proposed in a depressed area of Spain as well as to analyse the inherent strengths and opportunities that such a project could have in economic, technical or environmental terms. For this purpose an analysis of site, biomass resources, problems associated to fuel mix combustion, electricity production and connection were assessed. The socioeconomic (employment, GDP effects or tax revenue impact) and environmental (human health, soil erosion, fertiliser application) outcomes associated with the proposed biomass scheme have been evaluated. Finally, a list of actions to take into account for successful implementation of this proposed project has been defined. (author)

  15. Integrated application of human factors to a power plant control room information system

    International Nuclear Information System (INIS)

    Fish, H.C. Jr.; Gutierrez, R.

    1988-01-01

    The human factors plan was developed as a methodology to apply human factors from the conceptual design of the EPIC system to the functional verification conducted at the plant. An integral part of the Human Factors Plan was the Functional Verification Plan. Developed in parallel, this second plan and its resultant programs verified functional appropriateness of the SPDS display, NSSS displays, EOP displays, man-machine interfaces (MMI), and workstation designs. The functional verification process was performed at the hardware/software developer's factory and at the JAFNPP, following installation of the EPIC system. Because the EPIC system replaces existing control room equipment, it is important that human factors be applied in a systematic manner consistent with other control room displays and controls. To ensure that this goal was met, a human factors plan was developed

  16. Development of an integrated signal validation system and application to operating power plants

    International Nuclear Information System (INIS)

    Upadhyaya, B.R.; Holbert, K.E.; Kerlin, T.W.

    1989-01-01

    The objective of the university-industry joint research program at the University of Tennessee and Combustion Engineering, Inc. is to develop and implement a comprehensive signal validation system for current power plants and future advanced reactors. The integrated system consists of several parallel signal processing modules. The multi-modular decision information is combined to detect, isolate and characterize faulty signals. The signal validation system has been implemented in a VAX workstation and applied to operational data from a pressurized water reactor (PWR) and the Experimental Breeder Reactor-II (EBR-II). The use of the various signal validation techniques may be extended to predictive maintenance advising, instrument calibration verification, and to the development of intelligent instrumentation systems. 18 refs., 6 figs

  17. Starch as a major integrator in the regulation of plant growth

    Science.gov (United States)

    Sulpice, Ronan; Pyl, Eva-Theresa; Ishihara, Hirofumi; Trenkamp, Sandra; Steinfath, Matthias; Witucka-Wall, Hanna; Gibon, Yves; Usadel, Björn; Poree, Fabien; Piques, Maria Conceição; Von Korff, Maria; Steinhauser, Marie Caroline; Keurentjes, Joost J. B.; Guenther, Manuela; Hoehne, Melanie; Selbig, Joachim; Fernie, Alisdair R.; Altmann, Thomas; Stitt, Mark

    2009-01-01

    Rising demand for food and bioenergy makes it imperative to breed for increased crop yield. Vegetative plant growth could be driven by resource acquisition or developmental programs. Metabolite profiling in 94 Arabidopsis accessions revealed that biomass correlates negatively with many metabolites, especially starch. Starch accumulates in the light and is degraded at night to provide a sustained supply of carbon for growth. Multivariate analysis revealed that starch is an integrator of the overall metabolic response. We hypothesized that this reflects variation in a regulatory network that balances growth with the carbon supply. Transcript profiling in 21 accessions revealed coordinated changes of transcripts of more than 70 carbon-regulated genes and identified 2 genes (myo-inositol-1-phosphate synthase, a Kelch-domain protein) whose transcripts correlate with biomass. The impact of allelic variation at these 2 loci was shown by association mapping, identifying them as candidate lead genes with the potential to increase biomass production. PMID:19506259

  18. Integrated Life Cycle Management: A Strategy for Plants to Extend Operating Lifetimes Safely with High Operational Reliability

    International Nuclear Information System (INIS)

    Esselman, Thomas; Bruck, Paul; Mengers, Charles

    2012-01-01

    Nuclear plant operators are studying the possibility of extending their existing generating facilities operating lifetime to 60 years and beyond. Many nuclear plants have been granted licenses to operate their facilities beyond the original 40 year term; however, in order to optimize the long term operating strategies, plant decision-makers need a consistent approach to support their options. This paper proposes a standard methodology to support effective decision-making for the long-term management of selected station assets. Methods detailed are intended to be used by nuclear plant site management, equipment reliability personnel, long term planners, capital asset planners, license renewal staff, and others that intend to look at operation between the current time and the end of operation. This methodology, named Integrated Life Cycle Management (ILCM), will provide a technical basis to assist decision makers regarding the timing of large capital investments required to get to the end of operation safely and with high plant reliability. ILCM seeks to identify end of life cycle failure probabilities for individual plant large capital assets and attendant costs associated with their refurbishment or replacement. It will provide a standard basis for evaluation of replacement and refurbishment options for these components. ILCM will also develop methods to integrate the individual assets over the entire plant thus assisting nuclear plant decision-makers in their facility long term operating strategies. (author)

  19. Structural integrity of rod cluster control assembly of Chashma Nuclear Power Plant -1

    International Nuclear Information System (INIS)

    Siddiqui, A.; Zafar, F.; Murtaza, G.

    2008-01-01

    This study has been made in an attempt to verify the structural integrity of Rod Cluster Control Assembly (RCCA) of Chashma Nuclear Power Plant-1(CHASNUPP-1) using ANSYS computer code. The CHASNUPP-1 (PWR type, 300 MWe capacity, unit 1) was built by China at Chashma (District Mianwali), Pakistan. The plant is successfully operating since 2000. The rod cluster control assemblies (RCCA) are used to control fast reactivity changes in PWR type reactors during the normal operation and accident conditions. To fulfill this function the RCCA is stepped upwards or downwards by control rod drive mechanism (CRDM). The stepping action produces a large amount of acceleration. The load produced during stepping is normally considered as limiting one. In this work we have considered the experimental results of a test conducted in China. The test was performed to measure the acceleration produced in upward and downward stepping by CRDM on RCCA, at room temperatures, both in air and static water. The test results showed acceleration (g, m/s 2 ) values, 10.8 - 51.0 and 46.4 - 78.0, in air and static water environments, respectively. Making the analysis on conservative side we selected the highest value of acceleration, 78 g, for our study. To ensure the structural strength, a finite element model of CHASNUPP-1 RCCA has been developed simulating the loading conditions prevailing during reactor operation. This model has been analyzed using the Finite Element Code. The Maximum Stress intensity obtained through this analysis, 186 MPa, is less than the yield stress of RCCA material (∼SS 321), 205 MPa, thus fulfills its structural integrity criteria. (authors)

  20. Techno-Economic Analysis of Integration of Low-Temperature Geothermal Resources for Coal-Fired Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Bearden, Mark D.; Davidson, Casie L.; Horner, Jacob A.; Heldebrant, David J.; Freeman, Charles J.

    2016-05-11

    Presented here are the results of a techno-economic (TEA) study of the potential for coupling low-grade geothermal resources to boost the electrical output from coal-fired power plants. This study includes identification of candidate 500 MW subcritical coal-fired power plants in the continental United States, followed by down-selection and characterization of the North Valmy generating station, a Nevada coal-fired plant. Based on site and plant characteristics, ASPEN Plus models were designed to evaluate options to integrate geothermal resources directly into existing processes at North Valmy. Energy outputs and capital costing are presented for numerous hybrid strategies, including integration with Organic Rankine Cycles (ORCs), which currently represent the primary technology for baseload geothermal power generation.

  1. Integration of solar process heat into an existing thermal desalination plant in Qatar

    Science.gov (United States)

    Dieckmann, S.; Krishnamoorthy, G.; Aboumadi, M.; Pandian, Y.; Dersch, J.; Krüger, D.; Al-Rasheed, A. S.; Krüger, J.; Ottenburger, U.

    2016-05-01

    The water supply of many countries in the Middle East relies mainly on water desalination. In Qatar, the water network is completely fed with water from desalination plants. One of these power and desalination plants is located in Ras Abu Fontas, 20 km south of the capital Doha. The heat required for thermal desalination is provided by steam which is generated in waste heat recovery boilers (HRB) connected to gas turbines. Additionally, gas fired boilers or auxiliary firing in the HRBs are used in order to decouple the water generation from the electricity generation. In Ras Abu Fontas some auxiliary boilers run 24/7 because the HRB capacity does not match the demand of the desalination units. This paper contains the techno-economic analysis of two large-scale commercial solar field options, which could reduce the fuel consumption significantly. Both options employ parabolic trough technology with a nominal saturated steam output of 350 t/h at 15 bar (198°C, 240 MW). The first option uses direct steam generation without storage while the second relies on common thermal oil in combination with a molten salt thermal storage with 6 hours full-load capacity. The economic benefit of the integration of solar power depends mainly on the cost of the fossil alternative, and thus the price (respectively opportunity costs) of natural gas. At a natural gas price of 8 US-/MMBtu the internal rate of return on equity (IRR) is expected at about 5%.

  2. The integrity of NSSS and containment during extended station blackout for Kuosheng BWR plant

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Keng-Hsien; Yuann, Yng-Ruey; Lin, Ansheng [Atomic Energy Council, Taoyuan City, Taiwan (China). Inst. of Nuclear Energy Research

    2017-11-15

    The Fukushima Daiichi accident occurring on March 11, 2011, reveals that Station Blackout (SBO) may last longer than 8 h. However, the original design may not have sufficient capacity to cope with a SBO for more than 8 h. In view of this, Taiwan Power Company has initiated several enhancements to mitigate the severity of the extended SBO. Based on the improved plant configuration, a SBO coping analysis is performed in this study to assess whether the Kuosheng BWR plant has sufficient capability to cope with SBO for 24 h with respect to maintaining the integrity of the reactor core and containment. The analyses in the Nuclear Steam Supply System (NSSS) and the containment are based on the RETRAN-3D and GOTHIC models, respectively. The flow conditions calculated by RETRAN-3D during the event are retrieved and input to the GOTHIC containment model to determine the containment pressure and temperature response. These boundary conditions include SRV flow rate, SRV flow enthalpy, and total reactor coolant system leakage flow rate.

  3. The integrity of NSSS and containment during extended station blackout for Kuosheng BWR plant

    International Nuclear Information System (INIS)

    Hsu, Keng-Hsien; Yuann, Yng-Ruey; Lin, Ansheng

    2017-01-01

    The Fukushima Daiichi accident occurring on March 11, 2011, reveals that Station Blackout (SBO) may last longer than 8 h. However, the original design may not have sufficient capacity to cope with a SBO for more than 8 h. In view of this, Taiwan Power Company has initiated several enhancements to mitigate the severity of the extended SBO. Based on the improved plant configuration, a SBO coping analysis is performed in this study to assess whether the Kuosheng BWR plant has sufficient capability to cope with SBO for 24 h with respect to maintaining the integrity of the reactor core and containment. The analyses in the Nuclear Steam Supply System (NSSS) and the containment are based on the RETRAN-3D and GOTHIC models, respectively. The flow conditions calculated by RETRAN-3D during the event are retrieved and input to the GOTHIC containment model to determine the containment pressure and temperature response. These boundary conditions include SRV flow rate, SRV flow enthalpy, and total reactor coolant system leakage flow rate.

  4. Integration of safety culture in transient analyses for nuclear power plants

    International Nuclear Information System (INIS)

    Stosic, Zoran V.; Stoll, Uwe

    2009-01-01

    In the nuclear field Safety Culture is the arrangement of attitudes and characteristics in individuals and organisations which determines first and foremost that nuclear power plant safety issues receive adequate attention due to their outstanding significance. It differs from general Corporate Culture via its concept of core hazards and the potentially large effects associated with the release of radioactivity. One can talk about positive and negative Safety Cultures. A positive Safety Culture assumes that the whole is more than the sum of the parts. The different parts interact to increase the overall effectiveness. In a negative Safety Culture the opposite is the case, with the action of some individuals restricted by the cynicism of others. Some examples of issues that contribute to a negative safety culture are: non-adherence to the established instructions and procedures, unclear definition of responsibilities, disinterest and inattentiveness, overestimation of own capabilities and arrogance, unclear rules, and mistrust between involved organisations. In addition to differentiation and importance of Safety Culture, necessary commitment levels, safety management framework, the paper discusses integration of Safety Culture in transient analyses of nuclear power plants. In this course the commitment to Safety Culture is defined as: a good Safety Culture depends on the continuous commitment and fulfilment of all involved organizations, persons and processes without any exception. (author)

  5. Design concept and its requirements of the integrated SMART nuclear desalination plant

    International Nuclear Information System (INIS)

    Hwang, Young Dong; Kim, Young In; Chon, Bong Hyun; Lee, Doo Jung; Chang, Moon Hee

    2001-02-01

    The integrated SMART desalination plant consists of four(4) units of Multi Effect Distillation Process combined with Thermal-Vapor Compressor(MED-TVC) and coupled with the extracted steam from turbine through the steam transformer. Steam transformer produces the main pressure steam and supplies to the MED-TVC unit. Each distillation unit has the production the capacity of 10,000 m3/day of distilled water per day at top brine temperature of 65 deg C using the seawater supplied at temperature of 33 deg C. MED-TVC was selected as a desalination process coupled with SMART, since the thermal vapor compression is very effective where the steam is available at high temperature and pressure conditions than required in the evaporator. The MED-TVC unit is consisted of the steam supply system, vapor and condensate system, seawater supply system, brine system and chemical dosing system. The standard design of the SMART desalination plant is under development as a part of the SMART project. This report describes design concept of these systems and their requirements

  6. Integrative response of plant mitochondrial electron transport chain to nitrogen source.

    Science.gov (United States)

    Hachiya, Takushi; Noguchi, Ko

    2011-02-01

    Nitrogen (N) availability is widely known as a determinant of plant growth and respiration rate. However, less attention has been paid to the effect of the type of N source (nitrate, nitrite or ammonium) on the respiratory system. This review summarizes the latest findings on this topic, with an emphasis on the effect of ammonium and nitric oxide (NO) on the respiratory system, and the physiological role of alternative oxidase (AOX). First, concentrated ammonium has been found to increase plant respiration rate (ammonium-dependent respiratory increase, ARI). We will introduce two hypotheses to explain ARI, futile ammonium cycling and excess reducing equivalents, and verify the validity of each hypothesis. We suggest that these two hypotheses are not necessarily mutually exclusive. Second, gene expression of AOX is suppressed when N is predominately available as nitrate instead of ammonium. We will discuss possible signaling pathways leading to this expression pattern. Third, while AOX expression is induced by NO, AOX activity itself is insensitive to NO. In contrast, activity of cytochrome c oxidase (COX) is sensitive to NO. We outline the NO production pathway, focusing on nitrite-dependent NO production, and discuss the physiological significance of the fact that AOX activity is insensitive to NO. Finally, this review aims to build an integrated scheme of the respiratory response to the type of N source, considering leaves in high light conditions or hypoxic roots.

  7. An integrated metagenome and -proteome analysis of the microbial community residing in a biogas production plant.

    Science.gov (United States)

    Ortseifen, Vera; Stolze, Yvonne; Maus, Irena; Sczyrba, Alexander; Bremges, Andreas; Albaum, Stefan P; Jaenicke, Sebastian; Fracowiak, Jochen; Pühler, Alfred; Schlüter, Andreas

    2016-08-10

    To study the metaproteome of a biogas-producing microbial community, fermentation samples were taken from an agricultural biogas plant for microbial cell and protein extraction and corresponding metagenome analyses. Based on metagenome sequence data, taxonomic community profiling was performed to elucidate the composition of bacterial and archaeal sub-communities. The community's cytosolic metaproteome was represented in a 2D-PAGE approach. Metaproteome databases for protein identification were compiled based on the assembled metagenome sequence dataset for the biogas plant analyzed and non-corresponding biogas metagenomes. Protein identification results revealed that the corresponding biogas protein database facilitated the highest identification rate followed by other biogas-specific databases, whereas common public databases yielded insufficient identification rates. Proteins of the biogas microbiome identified as highly abundant were assigned to the pathways involved in methanogenesis, transport and carbon metabolism. Moreover, the integrated metagenome/-proteome approach enabled the examination of genetic-context information for genes encoding identified proteins by studying neighboring genes on the corresponding contig. Exemplarily, this approach led to the identification of a Methanoculleus sp. contig encoding 16 methanogenesis-related gene products, three of which were also detected as abundant proteins within the community's metaproteome. Thus, metagenome contigs provide additional information on the genetic environment of identified abundant proteins. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Update on impact effects in nuclear plants Part I--overview and need for integrated approach

    International Nuclear Information System (INIS)

    Sliter, G.E.; Ravindra, M.K.

    1984-01-01

    In this paper, an ASCE working group on impact effects in nuclear plants updates the review of this technology contained in a five-yearold ASCE report. In Part I, an overview is given of the impact conditions addressed in nuclear plant design against missiles generated by such postulated extreme events as tornados, turbine failures, pipe ruptures, aircraft crashes, and drops of heavy objects from lifting devices. The conclusion of a brief evaluation of the state of the art in predicting structural response for the various missile impact types is that two of them--pipe whip and heavy object drop--would benefit most by further development of design and analysis methods. Parts II and III of this paper review current practice and identify its limitations for these two impact types. Part I continues with a discussion of the general characteristics of impacts and the structural response they produce and concludes with a recommendation for and brief description of an ''integrated approach'' for treating impact effects. The adoption of this systematic approach in future development of impact technology would guide engineers in the use of the most appropriate and accurate available techniques for designing against a particular impact event

  9. Design concept and its requirements of the integrated SMART nuclear desalination plant

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Young Dong; Kim, Young In; Chon, Bong Hyun; Lee, Doo Jung; Chang, Moon Hee

    2001-02-01

    The integrated SMART desalination plant consists of four(4) units of Multi Effect Distillation Process combined with Thermal-Vapor Compressor(MED-TVC) and coupled with the extracted steam from turbine through the steam transformer. Steam transformer produces the main pressure steam and supplies to the MED-TVC unit. Each distillation unit has the production the capacity of 10,000 m3/day of distilled water per day at top brine temperature of 65 deg C using the seawater supplied at temperature of 33 deg C. MED-TVC was selected as a desalination process coupled with SMART, since the thermal vapor compression is very effective where the steam is available at high temperature and pressure conditions than required in the evaporator. The MED-TVC unit is consisted of the steam supply system, vapor and condensate system, seawater supply system, brine system and chemical dosing system. The standard design of the SMART desalination plant is under development as a part of the SMART project. This report describes design concept of these systems and their requirements.

  10. Presence of indicator plant species as a predictor of wetland vegetation integrity

    Science.gov (United States)

    Stapanian, Martin A.; Adams, Jean V.; Gara, Brian

    2013-01-01

    We fit regression and classification tree models to vegetation data collected from Ohio (USA) wetlands to determine (1) which species best predict Ohio vegetation index of biotic integrity (OVIBI) score and (2) which species best predict high-quality wetlands (OVIBI score >75). The simplest regression tree model predicted OVIBI score based on the occurrence of three plant species: skunk-cabbage (Symplocarpus foetidus), cinnamon fern (Osmunda cinnamomea), and swamp rose (Rosa palustris). The lowest OVIBI scores were best predicted by the absence of the selected plant species rather than by the presence of other species. The simplest classification tree model predicted high-quality wetlands based on the occurrence of two plant species: skunk-cabbage and marsh-fern (Thelypteris palustris). The overall misclassification rate from this tree was 13 %. Again, low-quality wetlands were better predicted than high-quality wetlands by the absence of selected species rather than the presence of other species using the classification tree model. Our results suggest that a species’ wetland status classification and coefficient of conservatism are of little use in predicting wetland quality. A simple, statistically derived species checklist such as the one created in this study could be used by field biologists to quickly and efficiently identify wetland sites likely to be regulated as high-quality, and requiring more intensive field assessments. Alternatively, it can be used for advanced determinations of low-quality wetlands. Agencies can save considerable money by screening wetlands for the presence/absence of such “indicator” species before issuing permits.

  11. Mosses in Ohio wetlands respond to indices of disturbance and vascular plant integrity

    Science.gov (United States)

    Stapanian, Martin A.; Schumacher, William; Gara, Brian; Viau, Nick

    2016-01-01

    We examined the relationships between an index of wetland habitat quality and disturbance (ORAM score) and an index of vascular plant integrity (VIBI-FQ score) with moss species richness and a moss quality assessment index (MQAI) in 45 wetlands in three vegetation types in Ohio, USA. Species richness of mosses and MQAI were positively associated with ORAM and VIBI-FQ scores. VIBI-FQ score was a better predictor of both moss species richness and MQAI than was either ORAM score or vegetation type. This result was consistent with the strict microhabitat requirements for many moss species, which may be better assessed by VIBI-FQ than ORAM. Probability curves as a function of VIBI-FQ score were then generated for presence of groups of moss species having the same degree of fidelity to substrate and plant communities relative to other species in the moss flora (coefficients of conservatism, CCs). Species having an intermediate- or high degree of fidelity to substrate and plant communities (i.e., species with CC ≥ 5) had a 50% probability of presence (P50) and 90% probability of presence (P90) in wetlands with intermediate- and high VIBI-FQ scores, respectively. Although moss species richness, probability of presence of species based on CC, and MQAI may reflect wetland habitat quality, the 95% confidence intervals around P50 and P90 values may be too wide for regulatory use. Moss species richness, MQAI, and presence of groups of mosses may be more useful for evaluating moss habitat quality in wetlands than a set of “indicator species.”

  12. Aspen Plus simulation of biomass integrated gasification combined cycle systems at corn ethanol plants

    International Nuclear Information System (INIS)

    Zheng, Huixiao; Kaliyan, Nalladurai; Morey, R. Vance

    2013-01-01

    Biomass integrated gasification combined cycle (BIGCC) systems and natural gas combined cycle (NGCC) systems are employed to provide heat and electricity to a 0.19 hm 3 y −1 (50 million gallon per year) corn ethanol plant using different fuels (syrup and corn stover, corn stover alone, and natural gas). Aspen Plus simulations of BIGCC/NGCC systems are performed to study effects of different fuels, gas turbine compression pressure, dryers (steam tube or superheated steam) for biomass fuels and ethanol co-products, and steam tube dryer exhaust treatment methods. The goal is to maximize electricity generation while meeting process heat needs of the plant. At fuel input rates of 110 MW, BIGCC systems with steam tube dryers provide 20–25 MW of power to the grid with system thermal efficiencies (net power generated plus process heat rate divided by fuel input rate) of 69–74%. NGCC systems with steam tube dryers provide 26–30 MW of power to the grid with system thermal efficiencies of 74–78%. BIGCC systems with superheated steam dryers provide 20–22 MW of power to the grid with system thermal efficiencies of 53–56%. The life-cycle greenhouse gas (GHG) emission reduction for conventional corn ethanol compared to gasoline is 39% for process heat with natural gas (grid electricity), 117% for BIGCC with syrup and corn stover fuel, 124% for BIGCC with corn stover fuel, and 93% for NGCC with natural gas fuel. These GHG emission estimates do not include indirect land use change effects. -- Highlights: •BIGCC and natural gas combined cycle systems at corn ethanol plants are simulated. •The best performance results in 25–30 MW power to grid. •The best performance results in 74–78% system thermal efficiencies. •GHG reduction for corn ethanol with BIGCC systems compared to gasoline is over 100%

  13. Assessing the interaction effect of cost control systems and information technology integration on manufacturing plant financial performance

    OpenAIRE

    Maiga, Adam S; Nilsson, Anders; Jacobs, Fred

    2014-01-01

    The interface between management control and information technology is an under-developed research area with a knowledge gap concerning its implications for financial performance. This study contributes to bridging this gap by investigates the interaction effect of cost control systems and information technology integration on manufacturing plant financial performance. We surveyed a sample of 518 managers of U.S. manufacturing plants, approximately evenly distributed between those using activ...

  14. The plant cell wall integrity maintenance mechanism--a case study of a cell wall plasma membrane signaling network.

    Science.gov (United States)

    Hamann, Thorsten

    2015-04-01

    Some of the most important functions of plant cell walls are protection against biotic/abiotic stress and structural support during growth and development. A prerequisite for plant cell walls to perform these functions is the ability to perceive different types of stimuli in both qualitative and quantitative manners and initiate appropriate responses. The responses in turn involve adaptive changes in cellular and cell wall metabolism leading to modifications in the structures originally required for perception. While our knowledge about the underlying plant mechanisms is limited, results from Saccharomyces cerevisiae suggest the cell wall integrity maintenance mechanism represents an excellent example to illustrate how the molecular mechanisms responsible for stimulus perception, signal transduction and integration can function. Here I will review the available knowledge about the yeast cell wall integrity maintenance system for illustration purposes, summarize the limited knowledge available about the corresponding plant mechanism and discuss the relevance of the plant cell wall integrity maintenance mechanism in biotic stress responses. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Economic analysis of a supercritical coal-fired CHP plant integrated with an absorption carbon capture installation

    International Nuclear Information System (INIS)

    Bartela, Łukasz; Skorek-Osikowska, Anna; Kotowicz, Janusz

    2014-01-01

    Energy investments in Poland are currently focused on supercritical coal-fired unit technology. It is likely, that in the future, these units are to be integrated with carbon capture and storage (CCS) installations, which enable a significant reduction of greenhouse gas emissions into the atmosphere. A significant share of the energy market in Poland is constituted by coal-fired combined heat and power (CHP) plants. The integration of these units with CCS installation can be economically inefficient. However, the lack of such integration enhances the investment risk due to the possibility of appearing on the market in the near future high prices of emission allowances. The aforementioned factors and additional favorable conditions for the development of cogeneration can cause one to consider investing in large supercritical CHP plants. This paper presents the results of an economic analysis aimed at comparing three cases of CHP plants, one without an integrated CCS installation and two with such installations. The same steam cycle structure for all variants was adopted. The cases of integrated CHP plants differ from each other in the manner in which they recover heat. For the evaluation of the respective solutions, the break-even price of electricity and avoided emission cost were used. - Highlights: • The simulations of operation of CHP plants under changing load have been realized. • For analyzed cases sensitivity analyses of economic indices have been conducted. • Conditions of competitiveness for integration with CCS units have been identified. • Integration can be profitable if prices of allowance will reach high values, exceeding 50 €/MgCO 2 . • Others important factors are the investment costs and operation and maintenance costs

  16. Identifying Issues in Applying Integrated Project Delivery to Domestic Nuclear Power Plant Construction Projects

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Joo [Korean Nuclear Society, Daejeon (Korea, Republic of)

    2016-05-15

    Integrated Project Delivery (IPD) is defined as that people, systems, business structures, and practices of key stakeholders are incorporated into a single-team, with a single process, which executes a project in a way of optimizing the project's outcome, increasing values delivered to the end user, reducing waste, and maximizing efficiency throughout the phases of engineering to construction. The researcher had carried out literature review in terms of IPD to identify major characteristics of IPD which are presented in the following section and had compared such characteristics against peculiarities of nuclear power plant (NPP) construction projects in order to shed light on obstacles in possible application of IPD method to domestic NPP construction projects in the coming days. In this research, three (3) major characteristics of IPD were identified: 1) key stakeholders signing one balanced contract, forming de facto one body, sharing risk and reward 2) an integrated project team being formed in the early stage of a project and providing input to minimize time and cost loss from rework downstream 3) team members co-locating, having open and direct communication, making decisions on time, and pursuing the success of the project itself.

  17. Small-scale hybrid plant integrated with municipal energy supply system

    International Nuclear Information System (INIS)

    Bakken, B.H.; Fossum, M.; Belsnes, M.M.

    2001-01-01

    This paper describes a research program started in 2001 to optimize environmental impact and cost of a small-scale hybrid plant based on candidate resources, transportation technologies and conversion efficiency, including integration with existing energy distribution systems. Special attention is given to a novel hybrid energy concept fuelled by municipal solid waste. The commercial interest for the model is expected to be more pronounced in remote communities and villages, including communities subject to growing prosperity. To enable optimization of complex energy distribution systems with multiple energy sources and carriers a flexible and robust methodology must be developed. This will enable energy companies and consultants to carry out comprehensive feasibility studies prior to investment, including technological, economic and environmental aspects. Governmental and municipal bodies will be able to pursue scenario studies involving energy systems and their impact on the environment, and measure the consequences of possible regulation regimes on environmental questions. This paper describes the hybrid concept for conversion of municipal solid waste in terms of energy supply, as well as the methodology for optimizing such integrated energy systems. (author)

  18. Germany's nuclear power plant closures and the integration of electricity markets in Europe

    International Nuclear Information System (INIS)

    Menezes, Lilian M. de; Houllier, Melanie A.

    2015-01-01

    This paper examines the potential implications of national policies that lead to a sudden increase of wind power in the electricity mix for interconnected European electricity markets. More specifically, it examines market integration before and after the closures of eight nuclear power plants that occurred within a period of a few months in Germany during 2011. The short- and- long run interrelationships of daily electricity spot prices, from November 2009 to October 2012, in: APX-ENDEX, BELPEX, EPEX-DE, EPEX-FR, NORDPOOL, OMEL and SWISSIX; and wind power in the German system are analysed. Two MGARCH (Multivariate Generalized Autoregressive Conditional Heteroscedasticity) models with dynamic correlations are used to assess spot market behaviour in the short run, and a fractional cointegration analysis is conducted to investigate changes in the long-run behaviour of electricity spot prices. Results show: positive time-varying correlations between spot prices in markets with substantial shared interconnector capacity; a negative association between wind power penetration in Germany and electricity spot prices in the German and neighbouring markets; and, for most markets, a decreasing speed in mean reversion. -- Highlights: •Associations between spot prices and wind power are time-varying. •Greater spot price an