WorldWideScience

Sample records for electrochemical energy conversion

  1. Electrochemical solar energy conversion

    International Nuclear Information System (INIS)

    Gerischer, H.

    1991-01-01

    The principles of solar energy conversion in photoelectrochemical cells are briefly reviewed. Cells for the generation of electric power and for energy storage in form of electrochemical energy are described. These systems are compared with solid state photovoltaic devices, and the inherent difficulties for the operation of the electrochemical systems are analyzed. (author). 28 refs, 10 figs

  2. Emerging electrochemical energy conversion and storage technologies

    Science.gov (United States)

    Badwal, Sukhvinder P. S.; Giddey, Sarbjit S.; Munnings, Christopher; Bhatt, Anand I.; Hollenkamp, Anthony F.

    2014-01-01

    Electrochemical cells and systems play a key role in a wide range of industry sectors. These devices are critical enabling technologies for renewable energy; energy management, conservation, and storage; pollution control/monitoring; and greenhouse gas reduction. A large number of electrochemical energy technologies have been developed in the past. These systems continue to be optimized in terms of cost, life time, and performance, leading to their continued expansion into existing and emerging market sectors. The more established technologies such as deep-cycle batteries and sensors are being joined by emerging technologies such as fuel cells, large format lithium-ion batteries, electrochemical reactors; ion transport membranes and supercapacitors. This growing demand (multi billion dollars) for electrochemical energy systems along with the increasing maturity of a number of technologies is having a significant effect on the global research and development effort which is increasing in both in size and depth. A number of new technologies, which will have substantial impact on the environment and the way we produce and utilize energy, are under development. This paper presents an overview of several emerging electrochemical energy technologies along with a discussion some of the key technical challenges. PMID:25309898

  3. Innovative oxide materials for electrochemical energy conversion and oxygen separation

    Science.gov (United States)

    Belousov, V. V.

    2017-10-01

    Ion-conducting solid metal oxides are widely used in high-temperature electrochemical devices for energy conversion and oxygen separation. However, liquid metal oxides possessing unique electrochemical properties still remain of limited use. The review demonstrates the potential for practical applications of molten oxides. The transport properties of molten oxide materials are discussed. The emphasis is placed on the chemical diffusion of oxygen in the molten oxide membrane materials for electrochemical energy conversion and oxygen separation. The thermodynamics of these materials is considered. The dynamic polymer chain model developed to describe the oxygen ion transport in molten oxides is discussed. Prospects for further research into molten oxide materials are outlined. The bibliography includes 145 references.

  4. Efficient electrochemical CO2 conversion powered by renewable energy.

    Science.gov (United States)

    Kauffman, Douglas R; Thakkar, Jay; Siva, Rajan; Matranga, Christopher; Ohodnicki, Paul R; Zeng, Chenjie; Jin, Rongchao

    2015-07-22

    The catalytic conversion of CO2 into industrially relevant chemicals is one strategy for mitigating greenhouse gas emissions. Along these lines, electrochemical CO2 conversion technologies are attractive because they can operate with high reaction rates at ambient conditions. However, electrochemical systems require electricity, and CO2 conversion processes must integrate with carbon-free, renewable-energy sources to be viable on larger scales. We utilize Au25 nanoclusters as renewably powered CO2 conversion electrocatalysts with CO2 → CO reaction rates between 400 and 800 L of CO2 per gram of catalytic metal per hour and product selectivities between 80 and 95%. These performance metrics correspond to conversion rates approaching 0.8-1.6 kg of CO2 per gram of catalytic metal per hour. We also present data showing CO2 conversion rates and product selectivity strongly depend on catalyst loading. Optimized systems demonstrate stable operation and reaction turnover numbers (TONs) approaching 6 × 10(6) molCO2 molcatalyst(-1) during a multiday (36 h total hours) CO2 electrolysis experiment containing multiple start/stop cycles. TONs between 1 × 10(6) and 4 × 10(6) molCO2 molcatalyst(-1) were obtained when our system was powered by consumer-grade renewable-energy sources. Daytime photovoltaic-powered CO2 conversion was demonstrated for 12 h and we mimicked low-light or nighttime operation for 24 h with a solar-rechargeable battery. This proof-of-principle study provides some of the initial performance data necessary for assessing the scalability and technical viability of electrochemical CO2 conversion technologies. Specifically, we show the following: (1) all electrochemical CO2 conversion systems will produce a net increase in CO2 emissions if they do not integrate with renewable-energy sources, (2) catalyst loading vs activity trends can be used to tune process rates and product distributions, and (3) state-of-the-art renewable-energy technologies are sufficient

  5. Electrochemical energy conversion: methanol fuel cell as example

    Directory of Open Access Journals (Sweden)

    Vielstich Wolf

    2003-01-01

    Full Text Available Thermodynamic and kinetic limitations of the electrochemical energy conversion are presented for the case of a methanol/oxygen fuel cell. The detection of intermediates and products is demonstrated using insitu FTIR spectroscopy and online mass spectrometry. The bifunctional catalysis of methanol oxydation by PtRu model surfaces is explained. The formation of HCOOH and HCHO via parallel reaction pathways is discussed. An example of DMFC system technology is presented.

  6. Chemical Production of Graphene Catalysts for Electrochemical Energy Conversion

    DEFF Research Database (Denmark)

    Seselj, Nedjeljko

    by scanning tunneling microscopy (STM), to investigate the nature of L-cysteine bonds on Au. Synthesized electrocatalysts were characterized by spectroscopic, microscopic and electrochemical techniques. Electrocatalysis was examined by electrochemical oxidation of formic acid, methanol and ethanol, and oxygen......Recently developed FC technology is among many approaches aiming at solving the global energy challenges. FCs are electrochemical devices that convert chemical energy from fuel molecules into electrical energy via electrochemical reactions. FCs are, however, limited by the scarce and expensive...... was achieved via L-cysteine linker molecules that provided pathways for fast electron transfers during the electrocatalytic reactions. Electrochemical properties of selfassembled L-cysteine monolayers immobilized on single-crystal Au(111) surfaces were studied in ionic liquids and their structures imaged...

  7. Electrochemical Systems for Renewable Energy Conversion from Salinity and Proton Gradients

    OpenAIRE

    Morais, William G.; Lima, Gilberto; Gomes, Wellington J. A. S.; Huguenin, Fritz

    2018-01-01

    Ever-rising energy demand, fossil fuel dependence, and climate issues have harmful consequences to the society. Exploring clean and renewable energy to diversify the world energy matrix has become an urgent matter. Less explored or unexplored renewable energy sources like the salinity and proton gradient energy are an attractive alternative with great energy potential. This paper discusses important electrochemical systems for energy conversion from natural and artificial concentration gradie...

  8. Physical multiscale modeling and numerical simulation of electrochemical devices for energy conversion and storage from theory to engineering to practice

    CERN Document Server

    Franco, Alejandro A; Bessler, Wolfgang G

    2015-01-01

    This book reviews the use of innovative physical multiscale modeling methods to deeply understand the electrochemical mechanisms and numerically simulate the structure and properties of electrochemical devices for energy storage and conversion.

  9. Graphene-based Electrochemical Energy Conversion and Storage: Fuel cells, Supercapacitors and Lithium Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Junbo; Shao, Yuyan; Ellis, Michael A.; Moore, Robert; Yi, Baolian

    2011-09-14

    Graphene has attracted extensive research interest due to its strictly 2-dimensional (2D) structure, which results in its unique electronic, thermal, mechanical, and chemical properties and potential technical applications. These remarkable characteristics of graphene, along with the inherent benefits of a carbon material, make it a promising candidate for application in electrochemical energy devices. This article reviews the methods of graphene preparation, introduces the unique electrochemical behavior of graphene, and summarizes the recent research and development on graphene-based fuel cells, supercapacitors and lithium ion batteries. In addition, promising areas are identified for the future development of graphene-based materials in electrochemical energy conversion and storage systems.

  10. Chemical Expansion: Implications for Electrochemical Energy Storage and Conversion Devices

    DEFF Research Database (Denmark)

    Bishop, S.R.; Marrocchelli, D.; Chatzichristodoulou, Christodoulos

    2014-01-01

    Many energy-related materials rely on the uptake and release of large quantities of ions, for example, Li+ in batteries, H+ in hydrogen storage materials, and O2− in solid-oxide fuel cell and related materials. These compositional changes often result in large volumetric dilation of the material...

  11. Graphene-based electrochemical energy conversion and storage: fuel cells, supercapacitors and lithium ion batteries.

    Science.gov (United States)

    Hou, Junbo; Shao, Yuyan; Ellis, Michael W; Moore, Robert B; Yi, Baolian

    2011-09-14

    Graphene has attracted extensive research interest due to its strictly 2-dimensional (2D) structure, which results in its unique electronic, thermal, mechanical, and chemical properties and potential technical applications. These remarkable characteristics of graphene, along with the inherent benefits of a carbon material, make it a promising candidate for application in electrochemical energy devices. This article reviews the methods of graphene preparation, introduces the unique electrochemical behavior of graphene, and summarizes the recent research and development on graphene-based fuel cells, supercapacitors and lithium ion batteries. In addition, promising areas are identified for the future development of graphene-based materials in electrochemical energy conversion and storage systems. This journal is © the Owner Societies 2011

  12. Complex Nanostructures from Materials based on Metal-Organic Frameworks for Electrochemical Energy Storage and Conversion.

    Science.gov (United States)

    Guan, Bu Yuan; Yu, Xin Yao; Wu, Hao Bin; Lou, Xiong Wen David

    2017-12-01

    Metal-organic frameworks (MOFs) have drawn tremendous attention because of their abundant diversity in structure and composition. Recently, there has been growing research interest in deriving advanced nanomaterials with complex architectures and tailored chemical compositions from MOF-based precursors for electrochemical energy storage and conversion. Here, a comprehensive overview of the synthesis and energy-related applications of complex nanostructures derived from MOF-based precursors is provided. After a brief summary of synthetic methods of MOF-based templates and their conversion to desirable nanostructures, delicate designs and preparation of complex architectures from MOFs or their composites are described in detail, including porous structures, single-shelled hollow structures, and multishelled hollow structures, as well as other unusual complex structures. Afterward, their applications are discussed as electrode materials or catalysts for lithium-ion batteries, hybrid supercapacitors, water-splitting devices, and fuel cells. Lastly, the research challenges and possible development directions of complex nanostructures derived from MOF-based-templates for electrochemical energy storage and conversion applications are outlined. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Electrochemical energy generation

    International Nuclear Information System (INIS)

    Kreysa, G.; Juettner, K.

    1993-01-01

    The proceedings encompass 40 conference papers belonging to the following subject areas: Baseline and review papers; electrochemical fuel cells; batteries: Primary and secondary cells; electrochemical, regenerative systems for energy conversion; electrochemical hydrogen generation; electrochemistry for nuclear power plant; electrochemistry for spent nuclear fuel reprocessing; energy efficiency in electrochemical processes. There is an annex listing the authors and titles of the poster session, and compacts of the posters can be obtained from the office of the Gesellschaft Deutscher Chemiker, Abteilung Tagungen. (MM) [de

  14. 2D and 3D photonic crystal materials for photocatalysis and electrochemical energy storage and conversion

    Science.gov (United States)

    Collins, Gillian; Armstrong, Eileen; McNulty, David; O’Hanlon, Sally; Geaney, Hugh; O’Dwyer, Colm

    2016-01-01

    Abstract This perspective reviews recent advances in inverse opal structures, how they have been developed, studied and applied as catalysts, catalyst support materials, as electrode materials for batteries, water splitting applications, solar-to-fuel conversion and electrochromics, and finally as photonic photocatalysts and photoelectrocatalysts. Throughout, we detail some of the salient optical characteristics that underpin recent results and form the basis for light-matter interactions that span electrochemical energy conversion systems as well as photocatalytic systems. Strategies for using 2D as well as 3D structures, ordered macroporous materials such as inverse opals are summarized and recent work on plasmonic–photonic coupling in metal nanoparticle-infiltrated wide band gap inverse opals for enhanced photoelectrochemistry are provided. PMID:27877904

  15. Nanostructured Metal Oxide Coatings for Electrochemical Energy Conversion and Storage Electrodes

    Science.gov (United States)

    Cordova, Isvar Abraxas

    The realization of an energy future based on safe, clean, sustainable, and economically viable technologies is one of the grand challenges facing modern society. Electrochemical energy technologies underpin the potential success of this effort to divert energy sources away from fossil fuels, whether one considers alternative energy conversion strategies through photoelectrochemical (PEC) production of chemical fuels or fuel cells run with sustainable hydrogen, or energy storage strategies, such as in batteries and supercapacitors. This dissertation builds on recent advances in nanomaterials design, synthesis, and characterization to develop novel electrodes that can electrochemically convert and store energy. Chapter 2 of this dissertation focuses on refining the properties of TiO2-based PEC water-splitting photoanodes used for the direct electrochemical conversion of solar energy into hydrogen fuel. The approach utilized atomic layer deposition (ALD); a growth process uniquely suited for the conformal and uniform deposition of thin films with angstrom-level thickness precision. ALD's thickness control enabled a better understanding of how the effects of nitrogen doping via NH3 annealing treatments, used to reduce TiO2's bandgap, can have a strong dependence on TiO2's thickness and crystalline quality. In addition, it was found that some of the negative effects on the PEC performance typically associated with N-doped TiO2 could be mitigated if the NH 3-annealing was directly preceded by an air-annealing step, especially for ultrathin (i.e., transparent electrode based on a network of solution-processed Cu/Ni cores/shell nanowires (NWs) were activated by electrochemically converting the Ni metal shell into Ni(OH)2. Furthermore, an adjustment of the molar percentage of Ni plated onto the Cu NWs was found to result in a tradeoff between capacitance, transmittance, and stability of the resulting nickel hydroxide-based electrode. The nominal area capacitance and power

  16. Proton conducting polymeric materials for hydrogen based electrochemical energy conversion technologies

    DEFF Research Database (Denmark)

    Aili, David

    on the development and characterization of polymer based proton conducting membranes for operation at temperatures above 100 °C. The most frequently recurring experimental methods and techniques are described in Chapter 2. For PEM steam and liquid water electrolysis at temperatures up to 130 °C (Chapter 3 and 4...... and water electrolyzers. This thesis gives an overview of the principles and the current state-of-the-art technology of the hydrogen based electrochemical energy conversion technologies, with special emphasis on the PEM based water electrolyzers and fuel cells (Chapter 1). The fundamental thermodynamics...... of the recast Nafion® membranes at elevated temperature could be slightly improved by annealing the membrane in order to increase its degree of crystallinity. Short side chain (SSC) PFSA membranes such as Aquivion™ (Solvey Solexis), on the other hand, are generally characterized by a considerably higher degree...

  17. Growth of 2D Materials and Application in Electrochemical Energy Conversion

    Science.gov (United States)

    Ye, Gonglan

    The discovery of graphene in 2004 has generated numerous interests among scientists for graphene's versatile potentials. The enthusiasm for graphene has recently been extended to other members of two-dimensional (2D) materials for applications in electronics, optoelectronics, and catalysis. Different from graphene, atomically-thin transition metal dichalcogenides (TMDs) have varied band gaps and would benefit for applications in the semiconductor industry. One of the promising applications of 2D TMDs is for 2D integrated circuits to replace current Si based electronics. In addition to electronic applications, 2D materials are also good candidates for electrochemical energy storage and conversion due to their large surface area and atomic thickness. This thesis mainly focuses on the synthesis of 2D materials and their application in energy conversion. Firstly, we focus on the synthesis of two-dimensional Tin Disulfide (SnS2). SnS2 is considered to be a novel material in 2D family. 2D SnS2 has a large band gap ( 2.8 eV) and high carrier mobility, which makes it a potential applicant for electronics. Monolayer SnS2 with large scale and high crystal quality was successfully synthesized by chemical vapor deposition (CVD), and its performance as a photodetector was examined. The next chapter demonstrated a generic method for growing millimeter-scale single crystals as well as wafer-scale thin films of TMDs. This generic method was obtained by studying the precursors' behavior and the flow dynamics during the CVD process of growing MoSe2, and was extended to other TMD layers such as millimeter-scale WSe2 single crystals. Understanding the growth processes of high quality large area monolayers of TMDs is crucial for further fundamental research as well as future development for scalable complex electronics. Besides the synthesis of 2D materials with high qualities, we further explored the relationship between defects and electrochemical properties. By directly observing

  18. X-ray Absorption Spectroscopy Characterization of Electrochemical Processes in Renewable Energy Storage and Conversion Devices

    Energy Technology Data Exchange (ETDEWEB)

    Farmand, Maryam [George Washington Univ., Washington, DC (United States)

    2013-05-19

    The development of better energy conversion and storage devices, such as fuel cells and batteries, is crucial for reduction of our global carbon footprint and improving the quality of the air we breathe. However, both of these technologies face important challenges. The development of lower cost and better electrode materials, which are more durable and allow more control over the electrochemical reactions occurring at the electrode/electrolyte interface, is perhaps most important for meeting these challenges. Hence, full characterization of the electrochemical processes that occur at the electrodes is vital for intelligent design of more energy efficient electrodes. X-ray absorption spectroscopy (XAS) is a short-range order, element specific technique that can be utilized to probe the processes occurring at operating electrode surfaces, as well for studying the amorphous materials and nano-particles making up the electrodes. It has been increasingly used in recent years to study fuel cell catalysts through application of the and #916; and mgr; XANES technique, in combination with the more traditional X-ray Absorption Near Edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS) techniques. The and #916; and mgr; XANES data analysis technique, previously developed and applied to heterogeneous catalysts and fuel cell electrocatalysts by the GWU group, was extended in this work to provide for the first time space resolved adsorbate coverages on both electrodes of a direct methanol fuel cell. Even more importantly, the and #916; and mgr; technique was applied for the first time to battery relevant materials, where bulk properties such as the oxidation state and local geometry of a cathode are followed.

  19. A Critical Review of Spinel Structured Iron Cobalt Oxides Based Materials for Electrochemical Energy Storage and Conversion

    Directory of Open Access Journals (Sweden)

    Hongyan Gao

    2017-11-01

    Full Text Available Iron cobalt oxides, such as typical FeCo2O4 and CoFe2O4, are two spinel structured transitional metal oxide materials with excellent electrochemical performance. As the electrodes, they have been widely applied in the current energy storage and conversion processes such as supercapacitors, Lithium-ion batteries and fuel cells. Based on synthesis approaches and controlled conditions, these two materials exhibited broad morphologies and nanostructures and thus distinct electrochemical performance. Some of them have shown promising applications as electrodes in energy storage and conversion. The incorporation with other materials to form composites further improved their performance. This review briefly summarized the recent applications of FeCo2O4 and CoFe2O4 in energy storage and conversion, current understandings on mechanisms and especially the relevance of morphologies and structures and composites to electrochemical performance. Some recommendations were finally put forward addressing current issues and future prospects on electrodes of FeCo2O4 and CoFe2O4 based materials in energy storage and conversion, implying there was still space to further optimize their performance.

  20. Model for Calculating Electrolytic Shunt Path Losses in Large Electrochemical Energy Conversion Systems

    Science.gov (United States)

    Prokopius, P. R.

    1976-01-01

    Generalized analysis and solution techniques were developed to evaluate the shunt power losses in electrochemical systems designed with a common or circulating electrolyte supply. Sample data are presented for a hypothetical bulk energy storage redox system, and the general applicability of the analysis technique is discussed.

  1. Sustainable resource recovery and energy conversion processes using microbial electrochemical technologies

    Science.gov (United States)

    Yates, Matthew D.

    Microbial Electrochemical Technologies (METs) are emerging technological platforms for the conversion of waste into usable products. METs utilize naturally occurring bacteria, called exoelectrogens, capable of transferring electrons to insoluble terminal electron acceptors. Electron transfer processes in the exoelectrogen Geobacter sulfurreducens were exploited here to develop sustainable processes for synthesis of industrially and socially relevant end products. The first process examined was the removal of soluble metals from solution to form catalytic nanoparticles and nanoporous structures. The second process examined was the biocatalytic conversion of electrons into hydrogen gas using electrons supplied directly to an electrode. Nanoparticle formation is desirable because materials on the nanoscale possess different physical, optical, electronic, and mechanical properties compared to bulk materials. In the first process, soluble palladium was used to form catalytic palladium nanoparticles using extracellular electron transfer (EET) processes of G. sulfurreducens, typically the dominant member of mixedculture METs. Geobacter cells reduced the palladium extracellularly using naturally produced pili, which provided extracellular adsorption and reduction sites to help delay the diffusion of soluble metals into the cell. The extracellular reduction prevented cell inactivation due to formation of intracellular particles, and therefore the cells could be reused in multiple palladium reduction cycles. A G. sulfurreducens biofilm was next investigated as a biotemplate for the formation of a nanoporous catalytic palladium structure. G. sulfurreducens biofilms have a dense network of pili and extracellular cytochromes capable of high rates of electron transfer directly to an electrode surface. These pili and cytochromes provide a dense number of reduction sites for nanoparticle formation without the need for any synthetic components. The cells within the biofilm also can

  2. Transition Metal Coatings for Energy Conversion and Storage; Electrochemical and High Temperature Applications

    Science.gov (United States)

    Falola, Bamidele Daniel

    Energy storage provides sustainability when coupled with renewable but intermittent energy sources such as solar, wave and wind power, and electrochemical supercapacitors represent a new storage technology with high power and energy density. For inclusion in supercapacitors, transition metal oxide and sulfide electrodes such as RuO2, IrO2, TiS2, and MoS2 exhibit rapid faradaic electron-transfer reactions combined with low resistance. The pseudocapacitance of RuO2 is about 720 F/g, and is 100 times greater than double-layer capacitance of activated carbon electrodes. Due to the two-dimensional layered structure of MoS2, it has proven to be an excellent electrode material for electrochemical supercapacitors. Cathodic electrodeposition of MoS2 onto glassy carbon electrodes is obtained from electrolytes containing (NH4)2MoS 4 and KCl. Annealing the as-deposited Mo sulfide deposit improves the capacitance by a factor of 40x, with a maximum value of 360 F/g for 50 nm thick MoS2 films. The effects of different annealing conditions were investigated by XRD, AFM and charge storage measurements. The specific capacitance measured by cyclic voltammetry is highest for MoS2 thin films annealed at 500°C for 3h and much lower for films annealed at 700°C for 1 h. Inclusion of copper as a dopant element into electrodeposited MoS2 thin films for reducing iR drop during film charge/discharge is also studied. Thin films of Cu-doped MoS2 are deposited from aqueous electrolytes containing SCN-, which acts as a complexing agent to shift the cathodic Cu deposition potential, which is much more anodic than that of MoS2. Annealed, Cu-doped MoS2 films exhibit enhanced charge storage capability about 5x higher than undoped MoS2 films. Coal combustion is currently the largest single anthropogenic source of CO2 emissions, and due to the growing concerns about climate change, several new technologies have been developed to mitigate the problem, including oxyfuel coal combustion, which makes CO2

  3. Real space mapping of ionic diffusion and electrochemical activity in energy storage and conversion materials

    Science.gov (United States)

    Kalinin, Sergei V; Balke, Nina; Kumar, Amit; Dudney, Nancy J; Jesse, Stephen

    2014-05-06

    A method and system for probing mobile ion diffusivity and electrochemical reactivity on a nanometer length scale of a free electrochemically active surface includes a control module that biases the surface of the material. An electrical excitation signal is applied to the material and induces the movement of mobile ions. An SPM probe in contact with the surface of the material detects the displacement of mobile ions at the surface of the material. A detector measures an electromechanical strain response at the surface of the material based on the movement and reactions of the mobile ions. The use of an SPM tip to detect local deformations allows highly reproducible measurements in an ambient environment without visible changes in surface structure. The measurements illustrate effective spatial resolution comparable with defect spacing and well below characteristic grain sizes of the material.

  4. Electrochemical conversion technologies for optimal design of decentralized multi-energy systems : Modeling framework and technology assessment

    NARCIS (Netherlands)

    Gabrielli, Paolo; Gazzani, Matteo; Mazzotti, Marco

    2018-01-01

    The design and operation of integrated multi-energy systems require models that adequately describe the behavior of conversion and storage technologies. Typically, linear conversion performance or fixed data from technology manufacturers are employed, especially for new or advanced technologies.

  5. Electrochemical conversion of micropollutants in gray water

    NARCIS (Netherlands)

    Butkovskyi, A.; Jeremiasse, A.W.; Hernandez Leal, L.; Zande, van der T.; Rijnaarts, H.; Zeeman, G.

    2014-01-01

    Electrochemical conversion of micropollutants in real gray water effluent was studied for the first time. Six compounds that are frequently found in personal care and household products, namely methylparaben, propylparaben, bisphenol A, triclosan, galaxolide, and 4- methylbenzilidene camphor

  6. In Situ Real-Time Mechanical and Morphological Characterization of Electrodes for Electrochemical Energy Storage and Conversion by Electrochemical Quartz Crystal Microbalance with Dissipation Monitoring.

    Science.gov (United States)

    Shpigel, Netanel; Levi, Mikhael D; Sigalov, Sergey; Daikhin, Leonid; Aurbach, Doron

    2018-01-16

    variety of useful electrode-material properties are assessed noninvasively, in situ, and in real time frames of ion intercalation into the electrodes of interest. A detailed algorithm for the mechanical characterization of battery electrodes kept in the gas phase and immersed into the electrolyte solutions has been developed for fast recognition of stiff and viscoelastic materials in terms of EQCM-D signatures treated by the hydrodynamic and viscoelastic models. Working examples of the use of in situ hydrodynamic spectroscopy to characterize stiff rough/porous solids of complex geometry and viscoelastic characterization of soft electrodes are presented. The most demonstrative example relates to the formation of solid electrolyte interphase on Li 4 Ti 5 O 12 electrodes in the presence of different electrolyte solutions and additives: only a few cycles (an experiment during ∼30 min) were required for screening the electrolyte systems for their ability to form high-quality surface films in experimental EQCM-D cells as compared to 100 cycles (200 h cycling) in conventional coin cells. Thin/small-mass electrodes required for the EQCM-D analysis enable accelerated cycling tests for ultrafast mechanical characterization of these electrodes in different electrolyte solutions. Hence, this methodology can be easily implemented as a highly effective in situ analytical tool in the field of energy storage and conversion.

  7. Direct Conversion of Energy.

    Science.gov (United States)

    Corliss, William R.

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. Direct energy conversion involves energy transformation without moving parts. The concepts of direct and dynamic energy conversion plus the laws governing energy conversion are investigated. Among the topics…

  8. Elements of energy conversion

    CERN Document Server

    Russell, Charles R

    2013-01-01

    Elements of Energy Conversion brings together scattered information on the subject of energy conversion and presents it in terms of the fundamental thermodynamics that apply to energy conversion by any process. Emphasis is given to the development of the theory of heat engines because these are and will remain most important power sources. Descriptive material is then presented to provide elementary information on all important energy conversion devices. The book contains 10 chapters and opens with a discussion of forms of energy, energy sources and storage, and energy conversion. This is foll

  9. Electrochemical energy storage

    CERN Document Server

    Tarascon, Jean-Marie

    2015-01-01

    The electrochemical storage of energy has become essential in assisting the development of electrical transport and use of renewable energies. French researchers have played a key role in this domain but Asia is currently the market leader. Not wanting to see history repeat itself, France created the research network on electrochemical energy storage (RS2E) in 2011. This book discusses the launch of RS2E, its stakeholders, objectives, and integrated structure that assures a continuum between basic research, technological research and industries. Here, the authors will cover the technological

  10. Energy Conversion and Storage Program

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, E.J.

    1992-03-01

    The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes, and (5) application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Topics include identification of new electrochemical couples for advanced rechargeable batteries, improvements in battery and fuel-cell materials, and the establishment of engineering principles applicable to electrochemical energy storage and conversion. Chemical Applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing waste streams from synfuel plants and coal gasifiers. Other research projects seek to identify and characterize the constituents of liquid fuel-system streams and to devise energy-efficient means for their separation. Materials Applications research includes the evaluation of the properties of advanced materials, as well as the development of novel preparation techniques. For example, the use of advanced techniques, such as sputtering and laser ablation, are being used to produce high-temperature superconducting films.

  11. Energy conversion alternatives study

    Science.gov (United States)

    Shure, L. T.

    1979-01-01

    Comparison of coal based energy systems is given. Study identifies and compares various advanced energy conversion systems using coal or coal derived fuels for baselaoad electric power generation. Energy Conversion Alternatives Study (ECAS) reports provede government, industry, and general public with technically consistent basis for comparison of system's options of interest for fossilfired electric-utility application.

  12. Energy conversion statics

    CERN Document Server

    Messerle, H K; Declaris, Nicholas

    2013-01-01

    Energy Conversion Statics deals with equilibrium situations and processes linking equilibrium states. A development of the basic theory of energy conversion statics and its applications is presented. In the applications the emphasis is on processes involving electrical energy. The text commences by introducing the general concept of energy with a survey of primary and secondary energy forms, their availability, and use. The second chapter presents the basic laws of energy conversion. Four postulates defining the overall range of applicability of the general theory are set out, demonstrating th

  13. Solar energy conversion systems

    CERN Document Server

    Brownson, Jeffrey R S

    2013-01-01

    Solar energy conversion requires a different mind-set from traditional energy engineering in order to assess distribution, scales of use, systems design, predictive economic models for fluctuating solar resources, and planning to address transient cycles and social adoption. Solar Energy Conversion Systems examines solar energy conversion as an integrative design process, applying systems thinking methods to a solid knowledge base for creators of solar energy systems. This approach permits different levels of access for the emerging broad audience of scientists, engineers, architects, planners

  14. Place and role of electrochemical energy converters in the energetics

    Directory of Open Access Journals (Sweden)

    Andrey Kurbatov

    2012-05-01

    Full Text Available The position of the electrochemical method of energy conversion of a chemical reaction in the overall energy production was considered. The effective ways and tendencies of its implementation were shown. The variants of electrochemical systems for the production, accumulation and storage of energy was also considered.

  15. Photovoltaic solar energy conversion

    CERN Document Server

    Bauer, Gottfried H

    2015-01-01

    This concise primer on photovoltaic solar energy conversion invites readers to reflect on the conversion of solar light into energy at the most fundamental level and encourages newcomers to the field to help find meaningful answers on how photovoltaic solar energy conversion can work (better), eventually contributing to its ongoing advancement. The book is based on lectures given to graduate students in the Physics Department at the University of Oldenburg over the last two decades, yet also provides an easy-to-follow introduction for doctoral and postdoctoral students from related disciplines such as the materials sciences and electrical engineering. Inspired by classic textbooks in the field, it reflects the author’s own ideas on how to understand, visualize and eventually teach the microscopic physical mechanisms and effects, while keeping the text as concise as possible so as to introduce interested readers to the field and balancing essential knowledge with open questions.

  16. Ocean wave energy conversion

    CERN Document Server

    McCormick, Michael E

    2007-01-01

    This volume will prove of vital interest to those studying the use of renewable resources. Scientists, engineers, and inventors will find it a valuable review of ocean wave mechanics as well as an introduction to wave energy conversion. It presents physical and mathematical descriptions of the nine generic wave energy conversion techniques, along with their uses and performance characteristics.Author Michael E. McCormick is the Corbin A. McNeill Professor of Naval Engineering at the U.S. Naval Academy. In addition to his timely and significant coverage of possible environmental effects associa

  17. Magnetohydrodynamic energy conversion

    International Nuclear Information System (INIS)

    Rosa, R.J.

    1987-01-01

    The object of this book is to present a review of the basic principles and practical aspects of magnetohydrodynamic (MHD) energy conversion. The author has tried to give qualitative semiphysical arguments where possible for the benefit of the reader who is unfamiliar with plasma physics. The aim of MHD energy conversion is to apply to a specific practical goal a part of what has become a vast area of science called plasma physics. The author has attempted to note in the text where a broader view might be fruitful and to give appropriate references

  18. Electrochemistry of Nanocomposite Materials for Energy Conversion

    OpenAIRE

    Boni, Alessandro

    2016-01-01

    Energy is the most relevant technological issue that the world experiences today, and the development of efficient technologies able to store and convert energy in different forms is urgently needed. The storage of electrical energy is of major importance and electrochemical processes are particularly suited for the demanding task of an efficient inter-conversion. A potential strategy is to store electricity into the chemical bonds of electrogenerated fuels, like hydrogen and/or energy-den...

  19. Microbial Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, Merry [American Society for Microbiology (ASM), Washington, DC (United States); Wall, Judy D. [Univ. of Missouri, Columbia, MO (United States)

    2006-10-01

    The American Academy of Microbiology convened a colloquium March 10-12, 2006, in San Francisco, California, to discuss the production of energy fuels by microbial conversions. The status of research into various microbial energy technologies, the advantages and disadvantages of each of these approaches, research needs in the field, and education and training issues were examined, with the goal of identifying routes for producing biofuels that would both decrease the need for fossil fuels and reduce greenhouse gas emissions. Currently, the choices for providing energy are limited. Policy makers and the research community must begin to pursue a broader array of potential energy technologies. A diverse energy portfolio that includes an assortment of microbial energy choices will allow communities and consumers to select the best energy solution for their own particular needs. Funding agencies and governments alike need to prepare for future energy needs by investing both in the microbial energy technologies that work today and in the untested technologies that will serve the world’s needs tomorrow. More mature bioprocesses, such as ethanol production from starchy materials and methane from waste digestors, will find applications in the short term. However, innovative techniques for liquid fuel or biohydrogen production are among the longer term possibilities that should also be vigorously explored, starting now. Microorganisms can help meet human energy needs in any of a number of ways. In their most obvious role in energy conversion, microorganisms can generate fuels, including ethanol, hydrogen, methane, lipids, and butanol, which can be burned to produce energy. Alternatively, bacteria can be put to use in microbial fuel cells, where they carry out the direct conversion of biomass into electricity. Microorganisms may also be used some day to make oil and natural gas technologies more efficient by sequestering carbon or by assisting in the recovery of oil and

  20. Electrochemical to Mechanical Energy Conversion

    Science.gov (United States)

    2010-02-01

    E, of each half reaction is determined by the Nernst equation : E=Eo+RT In ao (1.3) zF aR where E is the standard potential of the reaction, R is the...the activity, a, of lithium in LiAl is less than for the pure metal taken at a standard state (unit activity).2 The Nernst equation ( Equation 1.3): E...species and the Nernst equation indicates LiAl will have a positive electric potential with respect to pure lithium. In fact, many pure metals and their

  1. Wind energy conversion system

    Science.gov (United States)

    Longrigg, Paul

    1987-01-01

    The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

  2. Solar energy conversion

    CERN Document Server

    Likhtenshtein, Gertz I

    2012-01-01

    Finally filling a gap in the literature for a text that also adopts the chemist?s view of this hot topic, Prof Likhtenshtein, an experienced author and internationally renowned scientist, considers different physical and engineering aspects in solar energy conversion. From theory to real-life systems, he shows exactly which chemical reactions take place when converting light energy, providing an overview of the chemical perspective from fundamentals to molecular harvesting systems and solar cells. This essential guide will thus help researchers in academia and industry better understa

  3. Thermodynamics and energy conversion

    CERN Document Server

    Struchtrup, Henning

    2014-01-01

    This textbook gives a thorough treatment of engineering thermodynamics with applications to classical and modern energy conversion devices.   Some emphasis lies on the description of irreversible processes, such as friction, heat transfer and mixing, and the evaluation of the related work losses. Better use of resources requires high efficiencies, therefore the reduction of irreversible losses should be seen as one of the main goals of a thermal engineer. This book provides the necessary tools.   Topics include: car and aircraft engines,  including Otto, Diesel and Atkinson cycles, by-pass turbofan engines, ramjet and scramjet;  steam and gas power plants, including advanced regenerative systems, solar tower, and compressed air energy storage; mixing and separation, including reverse osmosis, osmotic powerplants, and carbon sequestration; phase equilibrium and chemical equilibrium, distillation, chemical reactors, combustion processes, and fuel cells; the microscopic definition of entropy.    The book i...

  4. Study of electrochemical phosphate conversion coating of metallic surfaces

    International Nuclear Information System (INIS)

    Gougelin, Patrick

    1985-01-01

    After an overview on phosphate conversion coating processes, on models of iron electrochemical dissolution, on the passivation phenomenon, and on the phosphate conversion coating treatment, this research thesis reports a detailed study of this last process. The author presents the experimental method, reports the study of this process and of passivation under constant polarization. He reports the use of various techniques and conditions: chrono-amperometry, chrono-potentiometry, cyclic volt-amperometry

  5. Geothermal energy conversion facility

    Energy Technology Data Exchange (ETDEWEB)

    Kutscher, C.F.

    1997-12-31

    With the termination of favorable electricity generation pricing policies, the geothermal industry is exploring ways to improve the efficiency of existing plants and make them more cost-competitive with natural gas. The Geothermal Energy Conversion Facility (GECF) at NREL will allow researchers to study various means for increasing the thermodynamic efficiency of binary cycle geothermal plants. This work has received considerable support from the US geothermal industry and will be done in collaboration with industry members and utilities. The GECF is being constructed on NREL property at the top of South Table Mountain in Golden, Colorado. As shown in Figure 1, it consists of an electrically heated hot water loop that provides heating to a heater/vaporizer in which the working fluid vaporizes at supercritical or subcritical pressures as high as 700 psia. Both an air-cooled and water-cooled condenser will be available for condensing the working fluid. In order to minimize construction costs, available equipment from the similar INEL Heat Cycle Research Facility is being utilized.

  6. Electrobiorefineries: Unlocking the Synergy of Electrochemical and Microbial Conversions.

    Science.gov (United States)

    Harnisch, Falk; Urban, Carolin

    2017-12-13

    An integrated biobased economy urges an alliance of the two realms of "chemical production" and "electric power". The concept of electrobiorefineries provides a blueprint for such an alliance. Joining the forces of microbial and electrochemical conversions in electrobiorefineries allows interfacing the production, storage, and exploitation of electricity as well as biobased chemicals. Electrobiorefineries are a technological evolution of biorefineries by the addition of (bio)electrochemical transformations. This interfacing of microbial and electrochemical conversions will result in synergies affecting the entire process line, like enlarging the product portfolio, increasing the productivity, or exploiting new feedstock. A special emphasis is given to the utilization of oxidative and reductive electroorganic reactions of microbially produced intermediates that may serve as privileged building blocks. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A microfluidic chip for electrochemical conversions in drug metabolism studies

    NARCIS (Netherlands)

    Odijk, Mathieu; Baumann, A.; Lohmann, W.; van den Brink, Floris Teunis Gerardus; Olthuis, Wouter; Karst, U.; van den Berg, Albert

    2009-01-01

    We have designed a microfluidic microreactor chip for electrochemical conversion of analytes, containing a palladium reference electrode and platinum working and counter electrodes. The counter electrode is placed in a separate side-channel on chip to prevent unwanted side-products appearing in the

  8. HYDROKINETIC ENERGY CONVERSION SYSTEMS: PROSPECTS ...

    African Journals Online (AJOL)

    eobe

    Hydrokinetic energy conversion systems utilize the kinetic energy of flowing water bodies with little or no head to generate ... generator. ... Its principle of operation is analogous to that of wind ..... Crisis-solar and wind power systems, 2009,.

  9. Ocean energy conversion - A reality

    Digital Repository Service at National Institute of Oceanography (India)

    Sarkar, A.

    -depth analysis of application and achievements of OTEC, tidal energy, impact of astronomical forces on tide, prospects of tidal power plants, wave energy conversion and its mathematical approach for both linear and non-linear waves, economic viability, problems...

  10. Frontiers of Energy Storage and Conversion

    Directory of Open Access Journals (Sweden)

    Jiajun Chen

    2014-09-01

    Full Text Available This special issue of Inorganics features a Forum for novel materials and approaches for electrochemical energy storage and conversion. Diminishing non-renewable fossil fuels and the resulting unattainability of environment have made us search new sustainable energy resources and develop technology for efficient utilization of such resources. Green energy sources, such as solar, hydroelectric, thermal and wind energy are partially replacing fossil fuels as means to generate power. Inorganic (solid state materials are key in the development of advanced devices for the efficient storage and conversion of energy. The grand challenge facing the inorganic chemist is to discover, design rationally and utilize advanced technological materials made from earth-abound elements for these energy storage and conversion processes. Recent spectacular progress in inorganic materials synthesis, characterization, and computational screening has greatly advanced this field, which drove us to edit this issue to provide a window to view the development of this field for the community. This special issue comprises research articles, which highlights some of the most recent advances in new materials for energy storage and conversion. [...

  11. Direct conversion of fusion energy

    International Nuclear Information System (INIS)

    Johansson, Markus

    2003-03-01

    Deuterium and tritium are expected to be used as fuel in the first fusion reactors. Energy is released as kinetic energy of ions and neutrons, when deuterium reacts with tritium. One way to convert the kinetic energy to electrical energy, is to let the ions and neutrons hit the reactor wall and convert the heat that is caused by the particle bombardment to electrical energy with ordinary thermal conversion. If the kinetic energy of the ions instead is converted directly to electrical energy, a higher efficiency of the energy conversion is possible. The majority of the fusion energy is released as kinetic energy of neutrons, when deuterium reacts with tritium. Fusion reactions such as the D-D reactions, the D- 3 He reaction and the p- 11 B reaction, where a larger part of the fusion energy becomes kinetic energy of charged particles, appears therefore more suitable for direct conversion. Since they have lower reactivity than the D-T reaction, they need a larger βB 2 0 to give sufficiently high fusion power density. Because of this, the fusion configurations spherical torus (ST) and field-reversed configuration (FRC), where high β values are possible, appear interesting. Rosenbluth and Hinton come to the conclusion that efficient direct conversion isn't possible in closed field line systems and that open geometries, which facilitate direct conversion, provide inadequate confinement for D- 3 He. It is confirmed in this study that it doesn't seem possible to achieve as high direct conversion efficiency in closed systems as in open systems. ST and FRC fusion power plants that utilize direct conversion seem however interesting. Calculations with the help of Maple indicate that the reactor parameters needed for a D-D ST and a D 3 He ST hopefully are possible to achieve. The best energy conversion option for a D-D or D 3 He ST appears to be direct electrodynamic conversion (DEC) together with ordinary thermal conversion or liquid metal MHD conversion (LMMHD). For a D

  12. Direct conversion of fusion energy

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Markus

    2003-03-01

    Deuterium and tritium are expected to be used as fuel in the first fusion reactors. Energy is released as kinetic energy of ions and neutrons, when deuterium reacts with tritium. One way to convert the kinetic energy to electrical energy, is to let the ions and neutrons hit the reactor wall and convert the heat that is caused by the particle bombardment to electrical energy with ordinary thermal conversion. If the kinetic energy of the ions instead is converted directly to electrical energy, a higher efficiency of the energy conversion is possible. The majority of the fusion energy is released as kinetic energy of neutrons, when deuterium reacts with tritium. Fusion reactions such as the D-D reactions, the D-{sup 3}He reaction and the p-{sup 11}B reaction, where a larger part of the fusion energy becomes kinetic energy of charged particles, appears therefore more suitable for direct conversion. Since they have lower reactivity than the D-T reaction, they need a larger {beta}B{sup 2}{sub 0} to give sufficiently high fusion power density. Because of this, the fusion configurations spherical torus (ST) and field-reversed configuration (FRC), where high {beta} values are possible, appear interesting. Rosenbluth and Hinton come to the conclusion that efficient direct conversion isn't possible in closed field line systems and that open geometries, which facilitate direct conversion, provide inadequate confinement for D-{sup 3}He. It is confirmed in this study that it doesn't seem possible to achieve as high direct conversion efficiency in closed systems as in open systems. ST and FRC fusion power plants that utilize direct conversion seem however interesting. Calculations with the help of Maple indicate that the reactor parameters needed for a D-D ST and a D{sub 3} He ST hopefully are possible to achieve. The best energy conversion option for a D-D or D{sub 3} He ST appears to be direct electrodynamic conversion (DEC) together with ordinary thermal conversion

  13. Energy conversion at dipolarization fronts

    Science.gov (United States)

    Khotyaintsev, Yu. V.; Divin, A.; Vaivads, A.; André, M.; Markidis, S.

    2017-02-01

    We use multispacecraft observations by Cluster in the Earth's magnetotail and 3-D particle-in-cell simulations to investigate conversion of electromagnetic energy at the front of a fast plasma jet. We find that the major energy conversion is happening in the Earth (laboratory) frame, where the electromagnetic energy is being transferred from the electromagnetic field to particles. This process operates in a region with size of the order several ion inertial lengths across the jet front, and the primary contribution to E·j is coming from the motional electric field and the ion current. In the frame of the front we find fluctuating energy conversion with localized loads and generators at sub-ion scales which are primarily related to the lower hybrid drift instability excited at the front; however, these provide relatively small net energy conversion.

  14. Electrochemical energy engineering: a new frontier of chemical engineering innovation.

    Science.gov (United States)

    Gu, Shuang; Xu, Bingjun; Yan, Yushan

    2014-01-01

    One of the grand challenges facing humanity today is a safe, clean, and sustainable energy system where combustion no longer dominates. This review proposes that electrochemical energy conversion could set the foundation for such an energy system. It further suggests that a simple switch from an acid to a base membrane coupled with innovative cell designs may lead to a new era of affordable electrochemical devices, including fuel cells, electrolyzers, solar hydrogen generators, and redox flow batteries, for which recent progress is discussed using the authors' work as examples. It also notes that electrochemical energy engineering will likely become a vibrant subdiscipline of chemical engineering and a fertile ground for chemical engineering innovation. To realize this vision, it is necessary to incorporate fundamental electrochemistry and electrochemical engineering principles into the chemical engineering curriculum.

  15. Electrochemical energy storage systems for solar thermal applications

    Science.gov (United States)

    Krauthamer, S.; Frank, H.

    1980-01-01

    Existing and advanced electrochemical storage and inversion/conversion systems that may be used with terrestrial solar-thermal power systems are evaluated. The status, cost and performance of existing storage systems are assessed, and the cost, performance, and availability of advanced systems are projected. A prime consideration is the cost of delivered energy from plants utilizing electrochemical storage. Results indicate that the five most attractive electrochemical storage systems are the: iron-chromium redox (NASA LeRC), zinc-bromine (Exxon), sodium-sulfur (Ford), sodium-sulfur (Dow), and zinc-chlorine (EDA).

  16. Environmental effects of energy conversion

    International Nuclear Information System (INIS)

    Hansmeyer, K.H.; Fortak, H.; Knoepp, H.; Lindackers, K.H.; Schafhausen, F.; Schoedel, J.P.

    1984-01-01

    The article presents an analysis of energy conversion systems by the ''Council of Environmental Experts'' in order to correct the erroneous assumption that small energy conversion systems will also be small-scale and negligible emitters of pollutants. The additional pollution caused by Neurath power plant is considered to be low, at least in its immediate vicinity, owing to the implementation of the most recent technical developments. The environmental effects of energy conversion processes are discussed, including the waste heat problem and processes for water-cooling of power plants. General aspects of a new concept of energy taxation are discussed which is to reduce energy consumption. The problem of radioactive waste is discussed from spent fuel storage and reprocessing to the decommissioning of older power plants. The author points out that also new fossil-fuel technologies will pollute the environment. (orig.) [de

  17. Flow energy conversion system

    International Nuclear Information System (INIS)

    Sargsyan, R.A.

    2011-01-01

    A cost-effective hydropower system called here Flow Energy Converter was developed, patented, manufactured and tested for water pumping, electricity generation and other purposes especially useful for the rural communities. The system consists of water-driven turbine with plane-surface blades, power transmission means and pump and/or generator. Working sample of the Flow Energy Converter was designed and manufactured at the Institute of Radio Physics and Electronics

  18. Solar energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Kistler, J.

    1981-08-05

    The photovoltaic generator is the central part of all solar systems. Flat solar cells embedded in glass are preferred which can also convert diffuse solar radiation. Hybrid modules generate electrical and thermal energy simultaneously. With decreasing generator cost, the cost of energy storage becomes critical. Development activities are mostly directed on the development of stationary lead accumulator batteries and the electronic charging and protective systems. The block diagram of the current converter is presented, and applications of solar systems in domestic heating engineering, transportation technology, communications, and hydrological engineering. Solar villages are recommended which, established in bilateral cooperation with Third World authorities, may demonstrate the advantages of solar energy in heat and electric power generation.

  19. Solar energy conversion. Chemical aspects

    Energy Technology Data Exchange (ETDEWEB)

    Likhtenshtein, Gertz [Ben-Gurion Univ. of the Negev, Beersheba (Israel). Dept. of Chemistry

    2012-07-01

    Finally filling a gap in the literature for a text that also adopts the chemist's view of this hot topic, Professor Likhtenshtein, an experienced author and internationally renowned scientist, considers different physical and engineering aspects in solar energy conversion. From theory to real-life systems, he shows exactly which chemical reactions take place when converting light energy, providing an overview of the chemical perspective from fundamentals to molecular harvesting systems and solar cells. This essential guide will thus help researchers in academia and industry better understand solar energy conversion, and so ultimately help this promising, multibillion euro/dollar field to expand. (orig.)

  20. Energy conversion and utilization technologies

    International Nuclear Information System (INIS)

    1988-01-01

    The DOE Energy Conversion and Utilization Technologies (ECUT) Program continues its efforts to expand the generic knowledge base in emerging technological areas that support energy conservation initiatives by both the DOE end-use sector programs and US private industry. ECUT addresses specific problems associated with the efficiency limits and capabilities to use alternative fuels in energy conversion and end-use. Research is aimed at understanding and improving techniques, processes, and materials that push the thermodynamic efficiency of energy conversion and usage beyond the state of the art. Research programs cover the following areas: combustion, thermal sciences, materials, catalysis and biocatalysis, and tribology. Six sections describe the status of direct contact heat exchange; the ECUT biocatalysis project; a computerized tribology information system; ceramic surface modification; simulation of internal combustion engine processes; and materials-by-design. These six sections have been indexed separately for inclusion on the database. (CK)

  1. Evolution of energy conversion plants

    International Nuclear Information System (INIS)

    Osnaghi, C.

    2001-01-01

    The paper concerns the evolution and the future development of energy conversion plants and puts into evidence the great importance of the scientific and technological improvement in machines design, in order to optimize the use of energy resources and to improve ambient compatibility [it

  2. Photovoltaic conversion of laser energy

    Science.gov (United States)

    Stirn, R. J.

    1976-01-01

    The Schottky barrier photovoltaic converter is suggested as an alternative to the p/n junction photovoltaic devices for the conversion of laser energy to electrical energy. The structure, current, output, and voltage output of the Schottky device are summarized. The more advanced concepts of the multilayer Schottky barrier cell and the AMOS solar cell are briefly considered.

  3. Autonomous renewable energy conversion system

    Energy Technology Data Exchange (ETDEWEB)

    Valtchev, V. [Technical University of Varna (Bulgaria). Dept. of Electronics; Bossche, A. van den; Ghijselen, J.; Melkebeek, J. [University of Gent (Belgium). Dept. of Electrical Power Engineering

    2000-02-01

    This paper briefly reviews the need for renewable power generation and describes a medium-power Autonomous Renewable Energy Conversion System (ARECS), integrating conversion of wind and solar energy sources. The objectives of the paper are to extract maximum power from the proposed wind energy conversion scheme and to transfer this power and the power derived by the photovoltaic system in a high efficiency way to a local isolated load. The wind energy conversion operates at variable shaft speed yielding an improved annual energy production over constant speed systems. An induction generator (IG) has been used because of its reduced cost, robustness, absence of separate DC source for excitation, easier dismounting and maintenance. The maximum energy transfer of the wind energy is assured by a simple and reliable control strategy adjusting the stator frequency of the IG so that the power drawn is equal to the peak power production of the wind turbine at any wind speed. The presented control strategy also provides an optimal efficiency operation of the IG by applying a quadratic dependence between the IG terminal voltage and frequency V {approx} f{sup 2}. For improving the total system efficiency, high efficiency converters have been designed and implemented. The modular principle of the proposed DC/DC conversion provides the possibility for modifying the system structure depending on different conditions. The configuration of the presented ARECS and the implementation of the proposed control algorithm for optimal power transfer are fully discussed. The stability and dynamic performance as well as the different operation modes of the proposed control and the operation of the converters are illustrated and verified on an experimental prototype. (author)

  4. Electrochemical Approaches to Renewable Energy

    Science.gov (United States)

    Lobaccaro, Peter

    Renewable energy is becoming an increasingly important component of the world's energy supply as the threat of global warming continues to rise. There is a need to reduce the cost of this renewable energy and a future challenge to deal with the strain intermittent power sources like renewables place on the power grid. In this dissertation, electrochemistry is harnessed to address possible solutions to both of these issues. First, it is used to develop a low cost alternative photovoltaic material. Then, it is used to investigate the production of chemical fuel stocks which can be used for energy storage. In chapter 2, advances are made in the electrochemical deposition of indium (In) on molybdenum foil which enables the deposition of electronic-grade purity, continuous films with thicknesses in the micron range. As an example application, the electrodeposited In films are phosphorized via the thin-film vapor-liquid-solid growth method. The resulting poly-crystalline InP films display excellent optoelectronic quality, comparable to films grown from more standard vacuum deposition techniques. This demonstrates the versatility of the developed electrochemical deposition procedure. In the remaining chapters, renewable fuel production is investigated. First in chapter 3, molybdenum disulfide (MoS2) is examined as a catalyst for the hydrogen evolution reaction (HER). Typically, high-cost synthesized MoS2 is used as the catalyst because the pristine MoS 2 mineral is known to be a poor catalyst. The fundamental challenge with pristine MoS2 is the inert HER activity of the predominant (0001) basal surface plane. Here, we report a general thermal process in which the basal plane is texturized to increase the density of HER-active edge sites. The process generates high HER catalytic performance in pristine MoS 2 across various morphologies such as the bulk mineral, films composed of micron-scale flakes, and even films of a commercially-available spray of nanoflake MoS2. In

  5. Electrochemical Energy Storage Technical Team Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-06-01

    This U.S. DRIVE electrochemical energy storage roadmap describes ongoing and planned efforts to develop electrochemical energy storage technologies for plug-in electric vehicles (PEVs). The Energy Storage activity comprises a number of research areas (including advanced materials research, cell level research, battery development, and enabling R&D which includes analysis, testing and other activities) for advanced energy storage technologies (batteries and ultra-capacitors).

  6. Photoelectric conversion properties of electrochemically codeposited graphene oxide–ZnO nanocomposite films

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yiming; Wang, Dian; Li, Wenyou [School of Materials Science and Engineering, Tongji University, Shanghai, 201804 (China); He, Yunqiu, E-mail: heyunqiu@tongji.edu.cn [School of Materials Science and Engineering, Tongji University, Shanghai, 201804 (China); Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, Shanghai, 201804 (China)

    2015-11-05

    Graphene oxide (GO)–ZnO nanocomposite films were synthesized on Fluorine doped Tin Oxide (FTO) coated glasses by electrochemical codeposition. The films have a laminated architecture with GO and ZnO alternate layers arranged basically parallel to the substrate. The structures of the composites were characterized using XRD, FE-SEM, FT-IR, XPS, Raman, UV–visible, and electrochemical cyclic voltammetry analyses. The results showed that by increasing Zn:C ratio of the suspensions, there is a series of structural evolutions of the composites, and the percentages of the C–O bonds of GO in the composites decreased. The decreased C–O bonds of GO indicate an increase in the reduction degree of GO, with which its energy gap varies from 1.99 eV to 0.89 eV. Moreover, the energy levels of GO and ZnO in the composites were determined. The results of photoelectrochemical measurements of the films indicated the feasibility of using GO in photoelectric conversion as photoabsorbers. A preliminary study on the relationship between the changes in the photocurrent and the structure of the films has provided clues for further studies on improving the photoelectric conversion properties. - Highlights: • Graphene Oxide–ZnO nanocomposite films were obtained by electrochemical codeposition. • The structure of GO varies with the Zn:C ratio of the depositing suspensions. • The feasibility of using GO as photoabsorbers for photoelectric conversion was verified.

  7. Algal Energy Conversion and Capture

    Science.gov (United States)

    Hazendonk, P.

    2015-12-01

    We address the potential for energy conversions and capture for: energy generation; reduction in energy use; reduction in greenhouse gas emissions; remediation of water and air pollution; protection and enhancement of soil fertility. These processes have the potential to sequester carbon at scales that may have global impact. Energy conversion and capture strategies evaluate energy use and production from agriculture, urban areas and industries, and apply existing and emerging technologies to reduce and recapture energy embedded in waste products. The basis of biocrude production from Micro-algal feedstocks: 1) The nutrients from the liquid fraction of waste streams are concentrated and fed into photo bioreactors (essentially large vessels in which microalgae are grown) along with CO2 from flue gasses from down stream processes. 2) The algae are processed to remove high value products such as proteins and beta-carotenes. The advantage of algae feedstocks is the high biomass productivity is 30-50 times that of land based crops and the remaining biomass contains minimal components that are difficult to convert to biocrude. 3) The remaining biomass undergoes hydrothermal liquefaction to produces biocrude and biochar. The flue gasses of this process can be used to produce electricity (fuel cell) and subsequently fed back into the photobioreactor. The thermal energy required for this process is small, hence readily obtained from solar-thermal sources, and furthermore no drying or preprocessing is required keeping the energy overhead extremely small. 4) The biocrude can be upgraded and refined as conventional crude oil, creating a range of liquid fuels. In principle this process can be applied on the farm scale to the municipal scale. Overall, our primary food production is too dependent on fossil fuels. Energy conversion and capture can make food production sustainable.

  8. Layer-by-layer self-assembly in the development of electrochemical energy conversion and storage devices from fuel cells to supercapacitors.

    Science.gov (United States)

    Xiang, Yan; Lu, Shanfu; Jiang, San Ping

    2012-11-07

    As one of the most effective synthesis tools, layer-by-layer (LbL) self-assembly technology can provide a strong non-covalent integration and accurate assembly between homo- or hetero-phase compounds or oppositely charged polyelectrolytes, resulting in highly-ordered nanoscale structures or patterns with excellent functionalities and activities. It has been widely used in the developments of novel materials and nanostructures or patterns from nanotechnologies to medical fields. However, the application of LbL self-assembly in the development of highly efficient electrocatalysts, specific functionalized membranes for proton exchange membrane fuel cells (PEMFCs) and electrode materials for supercapacitors is a relatively new phenomenon. In this review, the application of LbL self-assembly in the development and synthesis of key materials of PEMFCs including polyelectrolyte multilayered proton-exchange membranes, methanol-blocking Nafion membranes, highly uniform and efficient Pt-based electrocatalysts, self-assembled polyelectrolyte functionalized carbon nanotubes (CNTs) and graphenes will be reviewed. The application of LbL self-assembly for the development of multilayer nanostructured materials for use in electrochemical supercapacitors will also be reviewed and discussed (250 references).

  9. High temperature thermoelectric energy conversion

    International Nuclear Information System (INIS)

    Wood, C.

    1986-01-01

    Considerable advances were made in the late '50's and early early '60's in the theory and development of materials for high-temperature thermoelectric energy conversion. This early work culminated in a variety of materials, spanning a range of temperatures, with the product of the figure of merit, Z, and temperature, T, i.e., the dimensionless figure of merit, ZT, of the order of one. This experimental limitation appeared to be universal and led a number of investigators to explore the possibility that a ZT - also represents a theoretical limitation. It was found not to be so

  10. Energy conversion in polyelectrolyte hydrogels

    Science.gov (United States)

    Olvera de La Cruz, Monica; Erbas, Aykut; Olvera de la Cruz Team

    Energy conversion and storage have been an active field of research in nanotechnology parallel to recent interests towards renewable energy. Polyelectrolyte (PE) hydrogels have attracted considerable attention in this field due to their mechanical flexibility and stimuli-responsive properties. Ideally, when a hydrogel is deformed, applied mechanical work can be converted into electrostatic, elastic and steric-interaction energies. In this talk, we discuss the results of our extensive molecular dynamics simulations of PE hydrogels. We demonstrate that, on deformation, hydrogels adjust their deformed state predominantly by altering electrostatic interactions between their charged groups rather than excluded-volume and bond energies. This is due to the hydrogel's inherent tendency to preserve electro-neutrality in its interior, in combination with correlations imposed by backbone charges. Our findings are valid for a wide range of compression ratios and ionic strengths. The electrostatic-energy alterations that we observe in our MD simulations may induce pH or redox-potential changes inside the hydrogels. The resulting energetic difference can be harvested, for instance, analogously to a Carnot engine, or facilitated for sensor applications. Center for Bio-inspired Energy Science (CBES).

  11. Energy Conversion and Storage Program. 1990 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, E.J.

    1992-03-01

    The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes, and (5) application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Topics include identification of new electrochemical couples for advanced rechargeable batteries, improvements in battery and fuel-cell materials, and the establishment of engineering principles applicable to electrochemical energy storage and conversion. Chemical Applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing waste streams from synfuel plants and coal gasifiers. Other research projects seek to identify and characterize the constituents of liquid fuel-system streams and to devise energy-efficient means for their separation. Materials Applications research includes the evaluation of the properties of advanced materials, as well as the development of novel preparation techniques. For example, the use of advanced techniques, such as sputtering and laser ablation, are being used to produce high-temperature superconducting films.

  12. Photoassisted electrolysis of water - Conversion of optical to chemical energy

    Science.gov (United States)

    Wrighton, M. S.; Bolts, J. M.; Kaiser, S. W.; Ellis, A. B.

    1976-01-01

    A description is given of devices, termed photoelectrochemical cells, which can, in principle, be used to directly convert light to fuels and/or electricity. The fundamental principles on which the photoelectrochemical cell is based are related to the observation that irradiation of a semiconductor electrode in an electrochemical cell can result in the flow of an electric current in the external circuit. Attention is given to the basic mechanisms involved, the energy conversion efficiency, the advantages of photoelectrochemical cells, and the results of investigations related to the study of energy conversion via photoelectrochemical cells.

  13. Ocean thermal-energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Ford, G; Niblett, C; Walker, L

    1983-03-01

    Ocean thermal-energy conversion (OTEC) is a novel 'alternative' energy technology that has created much interest in a number of countries; namely, the USA, Japan, France, Sweden, Holland, India and most recently, the UK. In particular, the first three of these have had programmes to develop the required technology. However, most interest has been centred in the USA, where the current hiatus in Federal funding provides a timely opportunity to assess progress. This paper offers a survey of the prevailing position there; outlining the outstanding technical and associated problems, and likely future developments. Non-USA programmes are only mentioned to contrast them with the American position. At present, it does not appear that OTEC plants will be commercially viable on a widespread basis even in the tropics. This is particularly true of the larger plants (400 MWe, MWe = megawatts of electrical energy, the final output of a power station) towards which the American programme is ultimately geared. There does seem to be a strong possibility that small OTEC plants, around 40 MWe or less, can be commercial in certain circumstances. This would be possible when one or, preferably, more of the following conditions are met: (i) where a land-based rather than 'at sea' plant is possible, (ii) where alternative energy supplies are at a premium, i.e. islands or regions without indigenous energy supplies, and (iii) where conditions are such that an OTEC plant could operate in conjunction with either or both an aquaculture or desalination plant.

  14. Confocal Raman Microscopy for the Determination of Protein and Quaternary Ammonium Ion Loadings in Biocatalytic Membranes for Electrochemical Energy Conversion and Storage

    International Nuclear Information System (INIS)

    Cai, Rong; Abdellaoui, Sofiene; Kitt, Jay P.; Irvine, Cullen; Harris, Joel M.

    2017-01-01

    Here, the need to immobilize active enzyme, while ensuring high rates of substrate turnover and electronic charge transfer with an electrode, is a centrally important challenge in the field of bioelectrocatalysis. In this work, we demonstrate the use of confocal Raman microscopy as a tool for quantitation and molecular-scale structural characterization of ionomers and proteins within biocatalytic membranes to aid in the development of energy efficient biofuel cells. A set of recently available short side chain Aquivion ionomers spanning a range of equivalent weight (EW) suitable for enzyme immobilization was investigated. Aquivion ionomers (790 EW, 830 EW and 980 EW) received in the proton-exchanged (SO 3 H) form were treated with tetra-n-butylammonium bromide (TBAB) to neutralize the ionomer and expand the size of ionic domains for enzyme incorporation. Through the use of confocal Raman microscopy, membrane TBA+ ion content was predicted in calibration studies to within a few percent of the conventional titrimetric method across the full range of TBA + : SO 3 - ratios of practical interest (0.1 to 1.7). Protein incorporation into membranes was quantified at the levels expected in biofuel cell electrodes. Furthermore, features associated with the catalytically active, enzyme-coordinated copper center were evident between 400 cm -1 - 500 cm -1 in spectra of laccase catalytic membranes, demonstrating the potential to interrogate mechanistic chemistry at the enzyme active site of biocathodes under fuel cell reaction conditions. When benchmarked against the 1100 EW Nafion ionomer in glucose/air enzymatic fuel cells (EFCs), EFCs with laccase air-breathing cathodes prepared from TBA + modified Aquivion ionomers were able to reach maximum power densities (P max ) up to 1.5 times higher than EFCs constructed with cathodes prepared from TBA + modified Nafion. The improved performance of EFCs containing the short side chain Aquivion ionomers relative to Nafion is traced to

  15. Multifunctional Graphene-based Hybrid Nanomaterials for Electrochemical Energy Storage.

    Science.gov (United States)

    Gupta, Sanju

    Intense research in renewable energy is stimulated by global demand of electric energy. Electrochemical energy storage and conversion systems namely, supercapacitors and batteries, represent the most efficient and environmentally benign technologies. Moreover, controlled nanoscaled architectures and surface chemistry of electrochemical electrodes is enabling emergent next-generation efficient devices approaching theoretical limit of energy and power densities. This talk will present our recent activities to advance design, development and deployment of composition, morphology and microstructure controlled two- and three-dimensional graphene-based hybrids architectures. They are chemically and molecularly bridged with carbon nanotubes, conducting polymers, transition metal oxides and mesoproprous silicon wrapped with graphene nanosheets as engineered electrodes for supercapacitor cathodes and battery anodes. They showed significant enhancement in terms of gravimetric specific capacitance, interfacial capacitance, charging-discharging rate and cyclability. We will also present fundamental physical-chemical interfacial processes (ion transfer kinetics and diffusion), imaging electroactive sites, and topography at electrode/electrolyte interface governing underlying electrochemical mechanisms via scanning electrochemical microscopy. KY NSF EPSCoR.

  16. Role of Bioreactors in Microbial Biomass and Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Liang [Chongqing University, Chongqing, China; Zhang, Biao [Chongqing University, Chongqing, China; Zhu, Xun [Chongqing University, Chongqing, China; Chang, Haixing [Chongqing University of Technology; Ou, Shawn [ORNL; Wang, HONG [Chongqing University, Chongqing, China

    2018-04-01

    Bioenergy is the world’s largest contributor to the renewable and sustainable energy sector, and it plays a significant role in various energy industries. A large amount of research has contributed to the rapidly evolving field of bioenergy and one of the most important topics is the use of the bioreactor. Bioreactors play a critical role in the successful development of technologies for microbial biomass cultivation and energy conversion. In this chapter, after a brief introduction to bioreactors (basic concepts, configurations, functions, and influencing factors), the applications of the bioreactor in microbial biomass, microbial biofuel conversion, and microbial electrochemical systems are described. Importantly, the role and significance of the bioreactor in the bioenergy process are discussed to provide a better understanding of the use of bioreactors in managing microbial biomass and energy conversion.

  17. Discovering Inexpensive, Effective Catalysts for Solar Energy Conversion: An Authentic Research Laboratory Experience

    Science.gov (United States)

    Shaner, Sarah E.; Hooker, Paul D.; Nickel, Anne-Marie; Leichtfuss, Amanda R.; Adams, Carissa S.; de la Cerda, Dionisia; She, Yuqi; Gerken, James B.; Pokhrel, Ravi; Ambrose, Nicholas J.; Khaliqi, David; Stahl, Shannon S.; Schuttlefield Christus, Jennifer D.

    2016-01-01

    Electrochemical water oxidation is a major focus of solar energy conversion efforts. A new laboratory experiment has been developed that utilizes real-time, hands-on research to discover catalysts for solar energy conversion. The HARPOON, or Heterogeneous Anodes Rapidly Perused for Oxygen Overpotential Neutralization, experiment allows an array of…

  18. Fundamentals of thermophotovoltaic energy conversion

    CERN Document Server

    Chubb, Donald L

    2007-01-01

    This is a text book presenting the fundamentals of thermophotovoltaic(TPV) energy conversion suitable for an upper undergraduate or first year graduate course. In addition it can serve as a reference or design aid for engineers developing TPV systems. Mathematica design programs for interference filters and a planar TPV system are included on a CD-Rom disk. Each chapter includes a summary and concludes with a set of problems. The first chapter presents the electromagnetic theory and radiation transfer theory necessary to calculate the optical properties of the components in a TPV optical cavity. Using a simplified model, Chapter 2 develops expressions for the maximum efficiency and power density for an ideal TPV system. The next three chapters consider the three major components in a TPV system; the emitter, filter and photovoltaic(PV) array. Chapter 3 applies the electromagnetic theory and radiation transfer theory presented in Chapter 1 in the calculation of spectral emittance. From the spectral emittance t...

  19. Optimization theory for ballistic energy conversion

    NARCIS (Netherlands)

    Xie, Yanbo; Versluis, Michel; Van Den Berg, Albert; Eijkel, Jan C.T.

    2016-01-01

    The growing demand of renewable energy stimulates the exploration of new materials and methods for clean energy. We recently demonstrated a high efficiency and power density energy conversion mechanism by using jetted charged microdroplets, termed as ballistic energy conversion. Hereby, we model and

  20. Tropospheric effects of energy conversion

    International Nuclear Information System (INIS)

    Derwent, R.G.

    1992-01-01

    The tropospheric concentrations of a number of trace gases are increasing due to man's activities. For some trace gases, their atmospheric life cycles are not fully understood and it is difficult to be certain about the role of man's activities. Emissions from the energy industries and energy conversion processes represent an important subset of source terms in these life cycles, along with agriculture, deforestation, cement manufacture, biomass burning, process industries and natural biospheric processes. Global Warming Potentials (GWPs) allow the tropospheric effects of a range of climate forcing trace gases to be assessed on a comparable basis. If a short term view of the commitment to global warming is adopted then the contribution from other trace gases may approach and exceed that of carbon dioxide, itself. Over longer time horizons, the long atmospheric lifetime of carbon dioxide shows through as a major influence and the contributions from the other trace gases appear to be much smaller, representing an additional 13-18% contribution on top of that from CO 2 itself

  1. Nanostructured Mo-based electrode materials for electrochemical energy storage.

    Science.gov (United States)

    Hu, Xianluo; Zhang, Wei; Liu, Xiaoxiao; Mei, Yueni; Huang, Yunhui

    2015-04-21

    The development of advanced energy storage devices is at the forefront of research geared towards a sustainable future. Nanostructured materials are advantageous in offering huge surface to volume ratios, favorable transport features, and attractive physicochemical properties. They have been extensively explored in various fields of energy storage and conversion. This review is focused largely on the recent progress in nanostructured Mo-based electrode materials including molybdenum oxides (MoO(x), 2 ≤ x ≤ 3), dichalconides (MoX2, X = S, Se), and oxysalts for rechargeable lithium/sodium-ion batteries, Mg batteries, and supercapacitors. Mo-based compounds including MoO2, MoO3, MoO(3-y) (0 energy storage systems because of their unique physicochemical properties, such as conductivity, mechanical and thermal stability, and cyclability. In this review, we aim to provide a systematic summary of the synthesis, modification, and electrochemical performance of nanostructured Mo-based compounds, as well as their energy storage applications in lithium/sodium-ion batteries, Mg batteries, and pseudocapacitors. The relationship between nanoarchitectures and electrochemical performances as well as the related charge-storage mechanism is discussed. Moreover, remarks on the challenges and perspectives of Mo-containing compounds for further development in electrochemical energy storage applications are proposed. This review sheds light on the sustainable development of advanced rechargeable batteries and supercapacitors with nanostructured Mo-based electrode materials.

  2. Technology Base Research Project for electrochemical energy storage

    Science.gov (United States)

    Kinoshita, K.

    1985-06-01

    The DOE Electrochemical Energy Storage Program is divided into two projects: (1) the exploratory technology development and testing (ETD) project and (2) the technology base research (TBR) project. The role of the TBR Project is to perform supporting research for the advanced battery systems under development by the ETD Project, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the TBR Project is to identify the most promising electrochemical technologies and transfer them to industry and/or the ETD Project for further development and scale-up. This report summarizes the research, financial, and management activities relevant to the TBR Project in CY 1984. General problem areas addressed by the project include identification of new electrochemical couples for advanced batteries, determination of technical feasibility of the new couples, improvements in battery components and materials, establishment of engineering principles applicable to electrochemical energy storage and conversion, and the assessment of fuel-cell technology for transportation applications. Major emphasis is given to applied research which will lead to superior performance and lower life-cycle costs. The TBR Project is divided into three major project elements: exploratory research, applied science research, and air systems research.

  3. Energy Conversion Alternatives Study (ECAS)

    Science.gov (United States)

    1977-01-01

    ECAS compared various advanced energy conversion systems that can use coal or coal-derived fuels for baseload electric power generation. It was conducted in two phases. Phase 1 consisted of parametric studies. From these results, 11 concepts were selected for further study in Phase 2. For each of the Phase 2 systems and a common set of ground rules, performance, cost, environmental intrusion, and natural resource requirements were estimated. In addition, the contractors defined the state of the associated technology, identified the advances required, prepared preliminary research and development plans, and assessed other factors that would affect the implementation of each type of powerplant. The systems studied in Phase 2 include steam systems with atmospheric- and pressurized-fluidized-bed boilers; combined cycle gas turbine/steam systems with integrated gasifiers or fired by a semiclean, coal derived fuel; a potassium/steam system with a pressurized-fluidized-bed boiler; a closed-cycle gas turbine/organic system with a high-temperature, atmospheric-fluidized-bed furnace; a direct-coal-fired, open- cycle magnetohydrodynamic/steam system; and a molten-carbonate fuel cell/steam system with an integrated gasifier. The sensitivity of the results to changes in the ground rules and the impact of uncertainties in capital cost estimates were also examined.

  4. Principles of energy conversion, second edition

    International Nuclear Information System (INIS)

    Culp, A.W. Jr.

    1991-01-01

    This book is organized under the following headings: Energy classification, sources, utilization, economics and terminology; Principal fuels for energy conversion; Production of thermal energy; Fossil-fuel systems (such as steam generators, etc.); Nuclear reactor design and operation; The environmental impact of power plant operation; Production of mechanical energy; Production of electrical energy; and Energy storage

  5. Electrochemically Powered, Energy-Conserving Carbon Nanotube Artificial Muscles.

    Science.gov (United States)

    Lee, Jae Ah; Li, Na; Haines, Carter S; Kim, Keon Jung; Lepró, Xavier; Ovalle-Robles, Raquel; Kim, Seon Jeong; Baughman, Ray H

    2017-08-01

    While artificial muscle yarns and fibers are potentially important for many applications, the combination of large strokes, high gravimetric work capacities, short cycle times, and high efficiencies are not realized for these fibers. This paper demonstrates here electrochemically powered carbon nanotube yarn muscles that provide tensile contraction as high as 16.5%, which is 12.7 times higher than previously obtained. These electrochemical muscles can deliver a contractile energy conversion efficiency of 5.4%, which is 4.1 times higher than reported for any organic-material-based artificial muscle. All-solid-state parallel muscles and braided muscles, which do not require a liquid electrolyte, provide tensile contractions of 11.6% and 5%, respectively. These artificial muscles might eventually be deployed for a host of applications, from robotics to perhaps even implantable medical devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Energy conversion and management principles and applications

    CERN Document Server

    Petrecca, Giovanni

    2014-01-01

    This book provides an overall view of energy conversion and management in industry and in buildings by following the streams of energy from the site boundaries to the end users. Written for an audience of both practitioners and faculty/students, Energy Conversion and Management: Principles and Applications presents general principles of energy conversion and energy sources, both traditional and renewable, in a broad range of facilities such as electrical substations, boiler plants, heat and power plants, electrical networks, thermal fluid distributions lines and insulations, pumps and fans, ai

  7. Advances in wind energy conversion technology

    CERN Document Server

    Sathyajith, Mathew

    2011-01-01

    The technology of generating energy from wind has significantly changed during the past five years. The book brings together all the latest aspects of wind energy conversion technology - from wind resource analysis to grid integration of generated electricity.

  8. Direct Energy Conversion Literature Abstracts

    Science.gov (United States)

    1962-12-01

    TMMOELECTRIC 6 CONVERSION SYSTEMS. compiled by Edda 7p.. Aug.1960. (Spec. Bibl. 430) Barber. 48p., Mar. 1962. (Lit. Search 392) (Contract NAS 7-100) Covers...2865 BaranskiiP.I ............... 2905, 2945 Brogan, T.R. .............. 3322 Barber, Edda ................. . 2866 Brooklyn Polytechnic

  9. Materials in energy conversion, harvesting, and storage

    CERN Document Server

    Lu, Kathy

    2014-01-01

    First authored book to address materials' role in the quest for the next generation of energy materials Energy balance, efficiency, sustainability, and so on, are some of many facets of energy challenges covered in current research. However, there has not been a monograph that directly covers a spectrum of materials issues in the context of energy conversion, harvesting and storage. Addressing one of the most pressing problems of our time, Materials in Energy Conversion, Harvesting, and Storage illuminates the roles and performance requirements of materials in energy an

  10. Entropy fluxes, endoreversibility, and solar energy conversion

    Science.gov (United States)

    de Vos, A.; Landsberg, P. T.; Baruch, P.; Parrott, J. E.

    1993-09-01

    A formalism illustrating the conversion of radiation energy into work can be obtained in terms of energy and entropy fluxes. Whereas the Landsberg equality was derived for photothermal conversion with zero bandgap, a generalized inequality for photothermal/photovoltaic conversion with a single, but arbitrary, bandgap was deduced. This result was derived for a direct energy and entropy balance. The formalism of endoreversible dynamics was adopted in order to show the correlation with the latter approach. It was a surprising fact that the generalized Landsberg inequality was derived by optimizing some quantity W(sup *), which obtains it maximum value under short-circuit condition.

  11. Energy Conversion & Storage Program, 1993 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, E.J.

    1994-06-01

    The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in: production of new synthetic fuels; development of high-performance rechargeable batteries and fuel cells; development of high-efficiency thermochemical processes for energy conversion; characterization of complex chemical processes and chemical species; and the study and application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis.

  12. Materials for Energy Conversion: Materials for Energy Conversion and Storage

    Energy Technology Data Exchange (ETDEWEB)

    Atanassov, Plamen [Univ. of New Mexico, Albuquerque, NM (United States)

    2017-03-30

    The main objective of this collaborative research project was to identify a formulation and develop a catalyst for electro-oxidation of ethanol. Ethanol is one of the most mass-produced biofuels, and such catalysts will enable the development of Direct Ethanol Fuel Cell technology and through it, will interconnect fuel cells with biofuels. Several catalysts for direct electrochemical oxidation of ethanol have been selected on the principles of rational desig from the knowledge build in studying aqueous oxidation of ethanol. The program involved fundamental study of ethanol oxidation in liquid media, and particularly in alakine solutions. The lessons learned from the heterogeneous catalysis of ethanol thermal oxidation have been applied to the design of an electrocatalyst for direct ethanol fuel cells. The successful chemical compositions are based on PdZn and NiZn allows. The studies reveled the role of the transition metal oxide phase as a co-catalyst and the role of the active support material. To complete the set of materials for ethanol fuel cell, this program also invested n the development of ctalysts for oxygen reduction that are selective against alcohol oxidation. Non-platinum ctalysts based on pyrolyzed macrocycles or similar composites have been studied. This program included also the development of stuctured supports as an integral part of the catalyst development. A new family of materials has been designed based on mesoporous silica templating with synthetic carbon resulting in hierarchicaly porous structure. Structure-to-property relationship of catalysis and catalysts has been the center of this program. This have been engaged in both surface and bulk level and pursued with the tools avialble at the academic institutions and at LANSCE at LANL. The structural studies have been built in interaction with a computational effort on the basis of DFT approach to materials structure and reactivity.

  13. Compact Energy Conversion Module, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This STTR project delivers a compact vibration-based Energy Conversion Module (ECM) that powers sensors for purposes such as structural health monitoring (SHM). NASA...

  14. Compact energy conversion module, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This STTR project delivers a compact vibration-based Energy Conversion Module (ECM) that powers sensors for purposes like structural health monitoring (SHM). NASA...

  15. NASA-OAST photovoltaic energy conversion program

    Science.gov (United States)

    Mullin, J. P.; Loria, J. C.

    1984-01-01

    The NASA program in photovoltaic energy conversion research is discussed. Solar cells, solar arrays, gallium arsenides, space station and spacecraft power supplies, and state of the art devices are discussed.

  16. Wind Energy Conversion Systems Technology and Trends

    CERN Document Server

    2012-01-01

    Wind Energy Conversion System covers the technological progress of wind energy conversion systems, along with potential future trends. It includes recently developed wind energy conversion systems such as multi-converter operation of variable-speed wind generators, lightning protection schemes, voltage flicker mitigation and prediction schemes for advanced control of wind generators. Modeling and control strategies of variable speed wind generators are discussed, together with the frequency converter topologies suitable for grid integration. Wind Energy Conversion System also describes offshore farm technologies including multi-terminal topology and space-based wind observation schemes, as well as both AC and DC based wind farm topologies. The stability and reliability of wind farms are discussed, and grid integration issues are examined in the context of the most recent industry guidelines. Wind power smoothing, one of the big challenges for transmission system operators, is a particular focus. Fault ride th...

  17. Urban energy conversion and its effects

    International Nuclear Information System (INIS)

    Geiger, B.

    1981-01-01

    The extent to which the building up and energy conversion affect the quality and energy economy of living space is shown by the example of Munich. The comparison of the energy economy of various ecological systems give qualified information for assessing the thermal loading in densely inhabited areas and show the basic differences between built-up and country areas. (DG) [de

  18. Conversion of Carbon Dioxide into Ethanol by Electrochemical Synthesis Method Using Cu-Zn Electrode

    Science.gov (United States)

    Riyanto; Ramadan, S.; Fariduddin, S.; Aminudin, A. R.; Hayatri, A. K.

    2018-01-01

    Research on conversion of carbon dioxide into ethanol has been done. The conversion process is carried out in a sodium bicarbonate electrolyte solution in an electrochemical synthesis reactor. As cathode was used Cu-Zn, while as anode carbon was utilized. Variations of voltage, concentration of sodium bicarbonate electrolyte solution and time of electrolysis were performed to determine the optimum conditions to convert carbon dioxide into ethanol. Sample of the electrochemical synthesis process was analyzed by gas chromatography. From the result, it is found that the optimum conditions of the electrochemical synthesis process of carbon dioxide conversion into ethanol are voltage, concentration of sodium bicarbonate electrolyte solution and time of electrolysis are 3 volts, 0.4 M and 90 minutes with the ethanol concentration of 10.44%.

  19. Corrosion behaviour of chemical conversion treatments on as-cast Mg-Al alloys: Electrochemical and non-electrochemical methods

    International Nuclear Information System (INIS)

    Rocca, E.; Juers, C.; Steinmetz, J.

    2010-01-01

    Magnesium alloys are often used in as-cast conditions. So, the aim of this work is to characterize the corrosion protection of as-cast AZ91D alloys coated with simple chemical conversion (phosphate-permanganate, and cerium-based coatings). With the two coatings, the electrochemical measurements show that the corrosion protection is due to both the inhibition of cathodic and anodic reactions, because of the presence of stable CeO 2 or manganese oxides in basic pH. Nevertheless, the non-electrochemical tests of corrosion are required to bring to light the healing effect of phosphate-permanganate coating compared to Ce-coating and to describe the corrosion behaviour completely. Finally phosphoric and soda pickling associated to phosphate-permanganate conversion treatment or cerium coating are ecologically efficient alternatives to fluoride-based pickling and the chromating treatment.

  20. Corrosion behaviour of chemical conversion treatments on as-cast Mg-Al alloys: Electrochemical and non-electrochemical methods

    Energy Technology Data Exchange (ETDEWEB)

    Rocca, E. [Institut Jean Lamour UMR CNRS 7198, Nancy Universite - Corrosion Group, B.P. 70239, 54506 Vandoeuvre-Les-Nancy (France)], E-mail: emmanuel.rocca@lcsm.uhp-nancy.fr; Juers, C.; Steinmetz, J. [Institut Jean Lamour UMR CNRS 7198, Nancy Universite - Corrosion Group, B.P. 70239, 54506 Vandoeuvre-Les-Nancy (France)

    2010-06-15

    Magnesium alloys are often used in as-cast conditions. So, the aim of this work is to characterize the corrosion protection of as-cast AZ91D alloys coated with simple chemical conversion (phosphate-permanganate, and cerium-based coatings). With the two coatings, the electrochemical measurements show that the corrosion protection is due to both the inhibition of cathodic and anodic reactions, because of the presence of stable CeO{sub 2} or manganese oxides in basic pH. Nevertheless, the non-electrochemical tests of corrosion are required to bring to light the healing effect of phosphate-permanganate coating compared to Ce-coating and to describe the corrosion behaviour completely. Finally phosphoric and soda pickling associated to phosphate-permanganate conversion treatment or cerium coating are ecologically efficient alternatives to fluoride-based pickling and the chromating treatment.

  1. Combined heat and power (cogeneration) plant based on renewable energy sources and electrochemical hydrogen systems

    Science.gov (United States)

    Grigor'ev, S. A.; Grigor'ev, A. S.; Kuleshov, N. V.; Fateev, V. N.; Kuleshov, V. N.

    2015-02-01

    The layout of a combined heat and power (cogeneration) plant based on renewable energy sources (RESs) and hydrogen electrochemical systems for the accumulation of energy via the direct and inverse conversion of the electrical energy from RESs into the chemical energy of hydrogen with the storage of the latter is described. Some efficient technical solutions on the use of electrochemical hydrogen systems in power engineering for the storage of energy with a cyclic energy conversion efficiency of more than 40% are proposed. It is shown that the storage of energy in the form of hydrogen is environmentally safe and considerably surpasses traditional accumulator batteries by its capacitance characteristics, being especially topical in the prolonged absence of energy supply from RESs, e.g., under the conditions of polar night and breathless weather. To provide the required heat consumption of an object during the peak period, it is proposed to burn some hydrogen in a boiler house.

  2. Electromagnetic wave energy conversion research

    Science.gov (United States)

    Bailey, R. L.; Callahan, P. S.

    1975-01-01

    Known electromagnetic wave absorbing structures found in nature were first studied for clues of how one might later design large area man-made radiant-electric converters. This led to the study of the electro-optics of insect dielectric antennae. Insights were achieved into how these antennae probably operate in the infrared 7-14um range. EWEC theoretical models and relevant cases were concisely formulated and justified for metal and dielectric absorber materials. Finding the electromagnetic field solutions to these models is a problem not yet solved. A rough estimate of losses in metal, solid dielectric, and hollow dielectric waveguides indicates future radiant-electric EWEC research should aim toward dielectric materials for maximum conversion efficiency. It was also found that the absorber bandwidth is a theoretical limitation on radiant-electric conversion efficiency. Ideally, the absorbers' wavelength would be centered on the irradiating spectrum and have the same bandwith as the irradiating wave. The EWEC concept appears to have a valid scientific basis, but considerable more research is needed before it is thoroughly understood, especially for the complex randomly polarized, wide band, phase incoherent spectrum of the sun. Specific recommended research areas are identified.

  3. Wind energy conversion 1994. Proceedings

    International Nuclear Information System (INIS)

    Elliot, G.

    1995-01-01

    At the British Wind Energy Association's 16th Annual Conference, held in Stirling, over 60 high quality papers were presented, including a session devoted to 'Wind Energy in Scotland'. Under the Non Fossil Fuel Obligation (NFFO) wind energy has experienced rapid growth in England and Wales and with Scotland now having its own 'Scottish Renewables Obligation' (SRO) the opportunity to tap one of Europe's most important renewable energy resources now exists. The main contemporary issues concerning wind farming today, namely technical, social, economic and environmental were examined in the Geoff Pontin Memorial Lecture, which focused on these aspects in the context of grid integrated wind energy development. The remaining conference themes included machine development, aerodynamics and control, small machines, fatigue and dynamics, public attitudes, noise emissions, electrical integration, resource measurement, and standards, safety and planning. (author)

  4. Integrated Photoelectrochemical Solar Energy Conversion and Organic Redox Flow Battery Devices

    KAUST Repository

    Li, Wenjie

    2016-09-21

    Building on regenerative photoelectrochemical solar cells and emerging electrochemical redox flow batteries (RFBs), more efficient, scalable, compact, and cost-effective hybrid energy conversion and storage devices could be realized. An integrated photoelectrochemical solar energy conversion and electrochemical storage device is developed by integrating regenerative silicon solar cells and 9,10-anthraquinone-2,7-disulfonic acid (AQDS)/1,2-benzoquinone-3,5-disulfonic acid (BQDS) RFBs. The device can be directly charged by solar light without external bias, and discharged like normal RFBs with an energy storage density of 1.15 Wh L−1 and a solar-to-output electricity efficiency (SOEE) of 1.7 % over many cycles. The concept exploits a previously undeveloped design connecting two major energy technologies and promises a general approach for storing solar energy electrochemically with high theoretical storage capacity and efficiency.

  5. Integrated Photoelectrochemical Solar Energy Conversion and Organic Redox Flow Battery Devices.

    Science.gov (United States)

    Li, Wenjie; Fu, Hui-Chun; Li, Linsen; Cabán-Acevedo, Miguel; He, Jr-Hau; Jin, Song

    2016-10-10

    Building on regenerative photoelectrochemical solar cells and emerging electrochemical redox flow batteries (RFBs), more efficient, scalable, compact, and cost-effective hybrid energy conversion and storage devices could be realized. An integrated photoelectrochemical solar energy conversion and electrochemical storage device is developed by integrating regenerative silicon solar cells and 9,10-anthraquinone-2,7-disulfonic acid (AQDS)/1,2-benzoquinone-3,5-disulfonic acid (BQDS) RFBs. The device can be directly charged by solar light without external bias, and discharged like normal RFBs with an energy storage density of 1.15 Wh L -1 and a solar-to-output electricity efficiency (SOEE) of 1.7 % over many cycles. The concept exploits a previously undeveloped design connecting two major energy technologies and promises a general approach for storing solar energy electrochemically with high theoretical storage capacity and efficiency. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Functional Carbon Materials for Electrochemical Energy Storage

    Science.gov (United States)

    Zhou, Huihui

    The ability to harvest and convert solar energy has been associated with the evolution of human civilization. The increasing consumption of fossil fuels since the industrial revolution, however, has brought to concerns in ecological deterioration and depletion of the fossil fuels. Facing these challenges, humankind is forced to seek for clean, sustainable and renewable energy resources, such as biofuels, hydraulic power, wind power, geothermal energy and other kinds of alternative energies. However, most alternative energy sources, generally in the form of electrical energy, could not be made available on a continuous basis. It is, therefore, essential to store such energy into chemical energy, which are portable and various applications. In this context, electrochemical energy-storage devices hold great promises towards this goal. The most common electrochemical energy-storage devices are electrochemical capacitors (ECs, also called supercapacitors) and batteries. In comparison to batteries, ECs posses high power density, high efficiency, long cycling life and low cost. ECs commonly utilize carbon as both (symmetric) or one of the electrodes (asymmetric), of which their performance is generally limited by the capacitance of the carbon electrodes. Therefore, developing better carbon materials with high energy density has been emerging as one the most essential challenges in the field. The primary objective of this dissertation is to design and synthesize functional carbon materials with high energy density at both aqueous and organic electrolyte systems. The energy density (E) of ECs are governed by E = CV 2/2, where C is the total capacitance and V is the voltage of the devices. Carbon electrodes with high capacitance and high working voltage should lead to high energy density. In the first part of this thesis, a new class of nanoporous carbons were synthesized for symmetric supercapacitors using aqueous Li2SO4 as the electrolyte. A unique precursor was adopted to

  7. Synergistic energy conversion process using nuclear energy and fossil fuels

    International Nuclear Information System (INIS)

    Hori, Masao

    2007-01-01

    Because primary energies such as fossil fuels, nuclear energy and renewable energy are limited in quantity of supply, it is necessary to use available energies effectively for the increase of energy demand that is inevitable this century while keeping environment in good condition. For this purpose, an efficient synergistic energy conversion process using nuclear energy and fossil fuels together converted to energy carriers such are electricity, hydrogen, and synthetic fuels seems to be effective. Synergistic energy conversion processes containing nuclear energy were surveyed and effects of these processes on resource saving and the CO 2 emission reduction were discussed. (T.T.)

  8. Advanced fluoride-based materials for energy conversion

    CERN Document Server

    Nakajima, Tsuyoshi

    2015-01-01

    Advanced Fluoride-Based Materials for Energy Conversion provides thorough and applied information on new fluorinated materials for chemical energy devices, exploring the electrochemical properties and behavior of fluorinated materials in lithium ion and sodium ion batteries, fluoropolymers in fuel cells, and fluorinated carbon in capacitors, while also exploring synthesis applications, and both safety and stability issues. As electronic devices, from cell phones to hybrid and electric vehicles, are increasingly common and prevalent in modern lives and require dependable, stable chemical energy devices with high-level functions are becoming increasingly important. As research and development in this area progresses rapidly, fluorine compounds play a critical role in this rapid progression. Fluorine, with its small size and the highest electronegativity, yields stable compounds under various conditions for utilization as electrodes, electrolytes, and membranes in energy devices. The book is an ideal reference f...

  9. Energy production, conversion, storage, conservation, and coupling

    CERN Document Server

    Demirel, Yaşar

    2012-01-01

    Understanding the sustainable use of energy in various processes is an integral part of engineering and scientific studies, which rely on a sound knowledge of energy systems. Whilst many institutions now offer degrees in energy-related programs, a comprehensive textbook, which introduces and explains sustainable energy systems and can be used across engineering and scientific fields, has been lacking. Energy: Production, Conversion, Storage, Conservation, and Coupling provides the reader with a practical understanding of these five main topic areas of energy including 130 examples and over 600 practice problems. Each chapter contains a range of supporting figures, tables, thermodynamic diagrams and charts, while the Appendix supplies the reader with all the necessary data including the steam tables. This new textbook presents a clear introduction of basic vocabulary, properties, forms, sources, and balances of energy before advancing to the main topic areas of: • Energy production and conversion in importa...

  10. Energy technology sources, systems and frontier conversion

    CERN Document Server

    Ohta, Tokio

    1994-01-01

    This book provides a concise and technical overview of energy technology: the sources of energy, energy systems and frontier conversion. As well as serving as a basic reference book for professional scientists and students of energy, it is intended for scientists and policy makers in other disciplines (including practising engineers, biologists, physicists, economists and managers in energy related industries) who need an up-to-date and authoritative guide to the field of energy technology.Energy systems and their elemental technologies are introduced and evaluated from the view point

  11. OPTIMIZATION OF AEOLIAN ENERGY CONVERSION ...

    African Journals Online (AJOL)

    30 juin 2010 ... wind energy based on a criterion optimization that must maintain specific speed of the turbine at optimum speed which corresponds to the maximum power ... ainsi que la structure et les méthodes de contrôle-commande ...

  12. Polymers for energy storage and conversion

    CERN Document Server

    Mittal, Vikas

    2013-01-01

    One of the first comprehensive books to focus on the role of polymers in the burgeoning energy materials market Polymers are increasingly finding applications in the areas of energy storage and conversion. A number of recent advances in the control of the polymer molecular structure which allows the polymer properties to be more finely tuned have led to these advances and new applications. Polymers for Energy Storage and Conversion assimilates these advances in the form of a comprehensive text that includes the synthesis and properties of a large number of polymer systems for

  13. Optical Energy Transfer and Conversion System

    Science.gov (United States)

    Hogan, Bartholomew P. (Inventor); Stone, William C. (Inventor)

    2018-01-01

    An optical energy transfer and conversion system comprising a fiber spooler and an electrical power extraction subsystem connected to the spooler with an optical waveguide. Optical energy is generated at and transferred from a base station through fiber wrapped around the spooler, and ultimately to the power extraction system at a remote mobility platform for conversion to another form of energy. The fiber spooler may reside on the remote mobility platform which may be a vehicle, or apparatus that is either self-propelled or is carried by a secondary mobility platform either on land, under the sea, in the air or in space.

  14. Synchronous generator wind energy conversion control system

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, A.L.R. [Wind Energy Group, Recife (Brazil); Lima, A.M.N.; Jacobina, C.B.; Simoes, F.J. [DEE, Campina Grande (Brazil)

    1996-12-31

    This paper presents the performance evaluation and the design of the control system of a WECS (Wind Energy Conversion System) that employs a synchronous generator based on its digital simulation. The WECS discussed in this paper is connected to the utility grid through two Pulse Width Modulated (PWM) power converters. The structure of the proposed WECS enables us to achieve high performance energy conversion by: (i) maximizing the wind energy capture and (ii) minimizing the reactive power flowing between the grid and the synchronous generator. 8 refs., 19 figs.

  15. Power production with direct energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Rochau, G.; Lipinski, R.; Polansky, G.; Seidel, D.; Slutz, S. [Sandia National Labs., Albuquerque, NM (United States); Morrow, C. [Morrow Consulting, Albuquerque, NM (United States); Anghaie, S. [Florida Univ., Gainesville, FL (United States); Beller, D. [Los Alamos National Lab., NM (United States); Brown, L. [General Atomic Co., San Diego, CA (United States); Parish, T. [Texas A and M Univ., College Station, TX (United States). Dept. of Nuclear Engineering

    2001-07-01

    The direct energy conversion (DEC) project has as its main goal the development of a direct energy conversion process suitable for commercial development. We define direct energy conversion as any fission process that returns usable energy without using an intermediate thermal process. During the first phase of study, nine different concepts were investigated and 3 were selected: 1) quasi-spherical magnetically insulated fission electrode cell, 2) fission fragment magnetic collimator, and 3) gaseous core reactor with MHD generator. Selection was based on efficiency and feasibility. The realization of their potential requires an investment in both technically and commercially oriented research. The DEC project has a process in place to take one of these concepts forward and to outline the road map for further development. (A.C.)

  16. Power production with direct energy conversion

    International Nuclear Information System (INIS)

    Rochau, G.; Lipinski, R.; Polansky, G.; Seidel, D.; Slutz, S.; Morrow, C.; Anghaie, S.; Beller, D.; Brown, L.; Parish, T.

    2001-01-01

    The direct energy conversion (DEC) project has as its main goal the development of a direct energy conversion process suitable for commercial development. We define direct energy conversion as any fission process that returns usable energy without using an intermediate thermal process. During the first phase of study, nine different concepts were investigated and 3 were selected: 1) quasi-spherical magnetically insulated fission electrode cell, 2) fission fragment magnetic collimator, and 3) gaseous core reactor with MHD generator. Selection was based on efficiency and feasibility. The realization of their potential requires an investment in both technically and commercially oriented research. The DEC project has a process in place to take one of these concepts forward and to outline the road map for further development. (A.C.)

  17. US energy conversion and use characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Imhoff, C.H.; Liberman, A.; Ashton, W.B.

    1982-02-01

    The long-range goal of the Energy Conversion and Utilization Technology (ECUT) Program is to enhance energy productivity in all energy-use sectors by supporting research on improved efficiency and fuel switching capability in the conversion and utilization of energy. Regardless of the deficiencies of current information, a summary of the best available energy-use information is needed now to support current ECUT program planning. This document is the initial draft of this type of summary and serves as a data book that will present current and periodically updated descriptions of the following aspects of energy use: gross US energy consumption in each major energy-use sector; energy consumption by fuel type in each sector; energy efficiency of major equipment/processes; and inventories, replacement rates, and use patterns for major energy-using capital stocks. These data will help the ECUT program staff perform two vital planning functions: determine areas in which research to improve energy productivity might provide significant energy savings or fuel switching and estimate the actual effect that specific research projects may have on energy productivity and conservation. Descriptions of the data sources and examples of the uses of the different types of data are provided in Section 2. The energy-use information is presented in the last four sections; Section 3 contains general, national consumption data; and Sections 4 through 6 contain residential/commercial, industrial, and transportation consumption data, respectively. (MCW)

  18. Improved Conversion Rates in Drug Screening Applications sing Miniaturized Electrochemical Cells with Frit Channels

    NARCIS (Netherlands)

    Odijk, Mathieu; Olthuis, Wouter; van den Berg, Albert; Qiao, L.; Girault, H.

    2012-01-01

    This paper reports a novel design of a miniaturized three-electrode electrochemical cell, the purpose of which is aimed at generating drug metabolites with a high conversion efficiency. The working electrode and the counter electrode are placed in two separate channels to isolate the reaction

  19. Energy conversion in natural and artificial photosynthesis.

    Science.gov (United States)

    McConnell, Iain; Li, Gonghu; Brudvig, Gary W

    2010-05-28

    Modern civilization is dependent upon fossil fuels, a nonrenewable energy source originally provided by the storage of solar energy. Fossil-fuel dependence has severe consequences, including energy security issues and greenhouse gas emissions. The consequences of fossil-fuel dependence could be avoided by fuel-producing artificial systems that mimic natural photosynthesis, directly converting solar energy to fuel. This review describes the three key components of solar energy conversion in photosynthesis: light harvesting, charge separation, and catalysis. These processes are compared in natural and in artificial systems. Such a comparison can assist in understanding the general principles of photosynthesis and in developing working devices, including photoelectrochemical cells, for solar energy conversion. 2010 Elsevier Ltd. All rights reserved.

  20. Conversion of Carbon Dioxide to Ethanol by Electrochemical Synthesis Method Using Brass as A Cathode

    Directory of Open Access Journals (Sweden)

    Septian Ramadan

    2017-09-01

    Full Text Available The effect of potential and gas flow rate were investigated to determine the optimum conditions of the electrochemical synthesis process to convert carbon dioxide to ethanol. The conversion process is carried out using a NaHCO3 electrolyte solution in an electrochemical reactor equipped with a cathode and anode. As cathode is used brass, while as anode is used carbon. The result of the electrochemical synthesis process was analyzed by gas chromatography to determine the content of the compounds produced qualitatively and quantitatively. The optimum electrochemical synthesis conditions to convert carbon dioxide to ethanol are potential and gas flow rate are 3 volts and 0.5 L/minutes with ethanol concentration yielded 1.32%.

  1. Surface Plasmon-Assisted Solar Energy Conversion.

    Science.gov (United States)

    Dodekatos, Georgios; Schünemann, Stefan; Tüysüz, Harun

    2016-01-01

    The utilization of localized surface plasmon resonance (LSPR) from plasmonic noble metals in combination with semiconductors promises great improvements for visible light-driven photocatalysis, in particular for energy conversion. This review summarizes the basic principles of plasmonic photocatalysis, giving a comprehensive overview about the proposed mechanisms for enhancing the performance of photocatalytically active semiconductors with plasmonic devices and their applications for surface plasmon-assisted solar energy conversion. The main focus is on gold and, to a lesser extent, silver nanoparticles in combination with titania as semiconductor and their usage as active plasmonic photocatalysts. Recent advances in water splitting, hydrogen generation with sacrificial organic compounds, and CO2 reduction to hydrocarbons for solar fuel production are highlighted. Finally, further improvements for plasmonic photocatalysts, regarding performance, stability, and economic feasibility, are discussed for surface plasmon-assisted solar energy conversion.

  2. Energy conversion & storage program. 1995 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, E.J.

    1996-06-01

    The 1995 annual report discusses laboratory activities in the Energy Conversion and Storage (EC&S) Program. The report is divided into three categories: electrochemistry, chemical applications, and material applications. Research performed in each category during 1995 is described. Specific research topics relate to the development of high-performance rechargeable batteries and fuel cells, the development of high-efficiency thermochemical processes for energy conversion, the characterization of new chemical processes and complex chemical species, and the study and application of novel materials related to energy conversion and transmission. Research projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials and deposition technologies, and advanced methods of analysis.

  3. Nanoscale Protection Layers To Mitigate Degradation in High-Energy Electrochemical Energy Storage Systems.

    Science.gov (United States)

    Lin, Chuan-Fu; Qi, Yue; Gregorczyk, Keith; Lee, Sang Bok; Rubloff, Gary W

    2018-01-16

    In the pursuit of energy storage devices with higher energy and power, new ion storage materials and high-voltage battery chemistries are of paramount importance. However, they invite-and often enhance-degradation mechanisms, which are reflected in capacity loss with charge/discharge cycling and sometimes in safety problems. Degradation mechanisms are often driven by fundamentals such as chemical and electrochemical reactions at electrode-electrolyte interfaces, volume expansion and stress associated with ion insertion and extraction, and profound inhomogeneity of electrochemical behavior. While it is important to identify and understand these mechanisms at some reasonable level, it is even more critical to design strategies to mitigate these degradation pathways and to develop means to implement and validate the strategies. A growing set of research highlights the mitigation benefits achievable by forming thin protection layers (PLs) intentionally created as artificial interphase regions at the electrode-electrolyte interface. These advances illustrate a promising-perhaps even generic-pathway for enabling higher-energy and higher-voltage battery configurations. In this Account, we summarize examples of such PLs that serve as mitigation strategies to avoid degradation in lithium metal anodes, conversion-type electrode materials, and alloy-type electrodes. Examples are chosen from a larger body of electrochemical degradation research carried out in Nanostructures for Electrical Energy Storage (NEES), our DOE Energy Frontier Research Center. Overall, we argue on the basis of experimental and theoretical evidence that PLs effectively stabilize the electrochemical interfaces to prevent parasitic chemical and electrochemical reactions and mitigate the structural, mechanical, and compositional degradation of the electrode materials at the electrode-electrolyte interfaces. The evidenced improvement in performance metrics is accomplished by (1) establishing a homogeneous

  4. Silicon nanowires for photovoltaic solar energy conversion.

    Science.gov (United States)

    Peng, Kui-Qing; Lee, Shuit-Tong

    2011-01-11

    Semiconductor nanowires are attracting intense interest as a promising material for solar energy conversion for the new-generation photovoltaic (PV) technology. In particular, silicon nanowires (SiNWs) are under active investigation for PV applications because they offer novel approaches for solar-to-electric energy conversion leading to high-efficiency devices via simple manufacturing. This article reviews the recent developments in the utilization of SiNWs for PV applications, the relationship between SiNW-based PV device structure and performance, and the challenges to obtaining high-performance cost-effective solar cells.

  5. MATERIALS REQUIREMENTS FOR THERMIONIC ENERGY CONVERSION

    Energy Technology Data Exchange (ETDEWEB)

    Allen, R. C.; Skeen, C. H.

    1963-03-15

    The fundamentals of the thermionic energy conversion and its potential applications are reviewed. Materials problems associated with thermionic emitters are considered in relation to the following: work function; emissivity; vaporization; thermal, mechanical, and electrical properties; chemical stability; permeation; and stability under nuclear radiation. Cesium purity and materials suitable for collectors, electrical leads, support structures, insulators, and seals are also discussed. Experimental work on problems involved is reviewed. It is concluded that significant developments have occurred recently in all areas of thermionic energy conversion. (40 references) (A.G.W.)

  6. Energy conversion technology by chemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Oh, I W; Yoon, K S; Cho, B W [Korea Inst. of Science and Technology, Seoul (Korea, Republic of); and others

    1996-12-01

    The sharp increase in energy usage according to the industry development has resulted in deficiency of energy resources and severe pollution problems. Therefore, development of the effective way of energy usage and energy resources of low pollution is needed. Development of the energy conversion technology by chemical processes is also indispensable, which will replace the pollutant-producing and inefficient mechanical energy conversion technologies. Energy conversion technology by chemical processes directly converts chemical energy to electrical one, or converts heat energy to chemical one followed by heat storage. The technology includes batteries, fuel cells, and energy storage system. The are still many problems on performance, safety, and manufacturing of the secondary battery which is highly demanded in electronics, communication, and computer industries. To overcome these problems, key components such as carbon electrode, metal oxide electrode, and solid polymer electrolyte are developed in this study, followed by the fabrication of the lithium secondary battery. Polymer electrolyte fuel cell, as an advanced power generating apparatus with high efficiency, no pollution, and no noise, has many applications such as zero-emission vehicles, on-site power plants, and military purposes. After fabricating the cell components and operating the single cells, the fundamental technologies in polymer electrolyte fuel cell are established in this study. Energy storage technology provides the safe and regular heat energy, irrespective of the change of the heat energy sources, adjusts time gap between consumption and supply, and upgrades and concentrates low grade heat energy. In this study, useful chemical reactions for efficient storage and transport are investigated and the chemical heat storage technology are developed. (author) 41 refs., 90 figs., 20 tabs.

  7. Exploratory Technology Research Program for electrochemical energy storage. Annual report fr 1994

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, K. [ed.

    1995-09-01

    The US Department of Energy`s Office of Propulsion Systems provides support for an Electrochemical Energy Storage Program, that includes research and development (R&D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs). The program centers on advanced systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electrochemical Energy Storage Program is divided into two projects: the Electric Vehicle Advanced Battery Systems (EVABS) Development Program and the Exploratory Technology Research (ETR) Program. The general R&D areas addressed by the program include identification of new electrochemical couples for advanced batteries, determination of technical feasibility of the new couples, improvements in battery components and materials, establishment of engineering principles applicable to electrochemical energy storage and conversion, and the development of air-system (fuel cell, metal/air) technology for transportation applications. Major emphasis is given to applied research which will lead to superior performance and lower life-cycle costs. The ETR Program is divided into three major program elements: Exploratory Research, Applied Science Research, and Air Systems Research. Highlights of each program element are summarized according to the appropriate battery system or electrochemical research area.

  8. Metal oxide-carbon composites for energy conversion and storage

    Science.gov (United States)

    Perera, Sanjaya Dulip

    The exponential growth of the population and the associated energy demand requires the development of new materials for sustainable energy conversion and storage. Expanding the use of renewable energy sources to generate electricity is still not sufficient enough to fulfill the current energy demand. Electricity generation by wind and solar is the most promising alternative energy resources for coal and oil. The first part of the dissertation addresses an alternative method for preparing TiO2 nanotube based photoanodes for DSSCs. This would involve smaller diameter TiO2 nanotubes (˜10 nm), instead of nanoparticles or electrochemically grown larger nanotubes. Moreover, TiO2 nanotube-graphene based photocatalysts were developed to treat model pollutants. In the second part of this dissertation, the development of electrical energy storage systems, which provide high storage capacity and power output using low cost materials are discussed. Among different types of energy storage systems, batteries are the most convenient method to store electrical energy. However, the low power performance of batteries limits the application in different types of electrical energy storage. The development of electrical energy storage systems, which provide high storage capacity and power output using low cost materials are discussed.

  9. Integrated Photoelectrochemical Solar Energy Conversion and Organic Redox Flow Battery Devices

    KAUST Repository

    Li, Wenjie; Fu, Hui-chun; Li, Linsen; Cabá n-Acevedo, Miguel; He, Jr-Hau; Jin, Song

    2016-01-01

    photoelectrochemical solar energy conversion and electrochemical storage device is developed by integrating regenerative silicon solar cells and 9,10-anthraquinone-2,7-disulfonic acid (AQDS)/1,2-benzoquinone-3,5-disulfonic acid (BQDS) RFBs. The device can be directly

  10. Systems and methods for wave energy conversion

    Science.gov (United States)

    MacDonald, Daniel G.; Cantara, Justin; Nathan, Craig; Lopes, Amy M.; Green, Brandon E.

    2017-02-28

    Systems for wave energy conversion that have components that can survive the harsh marine environment and that can be attached to fixed structures, such as a pier, and having the ability to naturally adjust for tidal height and methods for their use are presented.

  11. WIND ENERGY CONVERSION SYSTEMS - A TECHNICAL REVIEW

    Directory of Open Access Journals (Sweden)

    N. RAMESH BABU

    2013-08-01

    Full Text Available Wind power production has been under the main focus for the past decade in power production and tremendous amount of research work is going on renewable energy, specifically on wind power extraction. Wind power provides an eco-friendly power generation and helps to meet the national energy demand when there is a diminishing trend in terms of non-renewable resources. This paper reviews the modeling of Wind Energy Conversion Systems (WECS, control strategies of controllers and various Maximum Power Point Tracking (MPPT technologies that are being proposed for efficient production of wind energy from the available resource.

  12. Energy conversion using hydrogen PEM fuel cells

    International Nuclear Information System (INIS)

    Stoenescu, D.; Patularu, L.; Culcer, M.; Lazar, R.; Mirica, D.; Varlam, M.; Carcadea, E.; Stefanescu, I.

    2004-01-01

    It is well known that hydrogen is the most promising solution of future energy, both for long and medium term strategies. Hydrogen can be produced using many primary sources (naphthalene, natural gas, methanol, coal, biomass), solar cells power, etc. It can be burned or chemically reacted having a high yield of energy conversion and is a non-polluted fuel. This paper presents the results obtained by ICSI Rm. Valcea in an experimental-demonstrative conversion energy system consisting in a catalytic methane reforming plant for hydrogen production and three synthesis gas purification units in order to get pure hydrogen with a CO level lower than 10 ppm that finally feeds a hydrogen fuel stock. (authors)

  13. Novel Nuclear Powered Photocatalytic Energy Conversion

    International Nuclear Information System (INIS)

    White, John R.; Kinsmen, Douglas; Regan, Thomas M.; Bobek, Leo M.

    2005-01-01

    The University of Massachusetts Lowell Radiation Laboratory (UMLRL) is involved in a comprehensive project to investigate a unique radiation sensing and energy conversion technology with applications for in-situ monitoring of spent nuclear fuel (SNF) during cask transport and storage. The technology makes use of the gamma photons emitted from the SNF as an inherent power source for driving a GPS-class transceiver that has the ability to verify the position and contents of the SNF cask. The power conversion process, which converts the gamma photon energy into electrical power, is based on a variation of the successful dye-sensitized solar cell (DSSC) design developed by Konarka Technologies, Inc. (KTI). In particular, the focus of the current research is to make direct use of the high-energy gamma photons emitted from SNF, coupled with a scintillator material to convert some of the incident gamma photons into photons having wavelengths within the visible region of the electromagnetic spectrum. The high-energy gammas from the SNF will generate some power directly via Compton scattering and the photoelectric effect, and the generated visible photons output from the scintillator material can also be converted to electrical power in a manner similar to that of a standard solar cell. Upon successful implementation of an energy conversion device based on this new gammavoltaic principle, this inherent power source could then be utilized within SNF storage casks to drive a tamper-proof, low-power, electronic detection/security monitoring system for the spent fuel. The current project has addressed several aspects associated with this new energy conversion concept, including the development of a base conceptual design for an inherent gamma-induced power conversion unit for SNF monitoring, the characterization of the radiation environment that can be expected within a typical SNF storage system, the initial evaluation of Konarka's base solar cell design, the design and

  14. Organometallics and related molecules for energy conversion

    CERN Document Server

    Wong, Wai-Yeung

    2015-01-01

    This book presents a critical perspective of the applications of organometallic compounds (including those with metal or metalloid elements) and other related metal complexes as versatile functional materials in the transformation of light into electricity (solar energy conversion) and electricity into light (light generation in light emitting diode), in the reduction of carbon dioxide to useful chemicals, as well as in the safe and efficient production and utilization of hydrogen, which serves as an energy storage medium (i.e. energy carrier). This book focuses on recent research developmen

  15. Energy Conversion at Micro and Nanoscale

    International Nuclear Information System (INIS)

    Gammaitoni, Luca

    2014-01-01

    Energy management is considered a task of strategic importance in contemporary society. It is a common fact that the most successful economies of the planet are the economies that can transform and use large quantities of energy. In this talk we will discuss the role of energy with specific attention to the processes that happens at micro and nanoscale. The description of energy conversion processes at these scales requires approaches that go way beyond the standard equilibrium termodynamics of macroscopic systems. In this talk we will address from a fundamental point of view the physics of the dissipation of energy and will focus our attention to the energy transformation processes that take place in the modern micro and nano information and communication devices

  16. Particle Discrimination Experiment for Direct Energy Conversion

    International Nuclear Information System (INIS)

    Yasaka, Y.; Kiriyama, Y.; Yamamoto, S.; Takeno, H.; Ishikawa, M.

    2005-01-01

    A direct energy conversion system designed for D- 3 He fusion reactor based on a field reversed configuration employs a venetian-blind type converter for thermal ions to produce DC power and a traveling wave type converter for fusion protons to produce RF power. It is therefore necessary to separate, discriminate, and guide the particle species. For this purpose, a cusp magnetic field is proposed, in which the electrons are deflected and guided along the field line to the line cusp, while the ions pass through the point cusp. A small-scale experimental device was used to study the basic characteristics of discrimination of electrons and ions in the cusp magnetic field. Ions separated from electrons are guided to an ion collector, which is operated as a one-stage direct energy converter. The conversion efficiency was measured for cases with different values of mean and spread of ion energy. These experiments successfully demonstrate direct energy conversion from plasma beams using particle discrimination by a cusp magnetic field

  17. Ultrafast Electron Dynamics in Solar Energy Conversion.

    Science.gov (United States)

    Ponseca, Carlito S; Chábera, Pavel; Uhlig, Jens; Persson, Petter; Sundström, Villy

    2017-08-23

    Electrons are the workhorses of solar energy conversion. Conversion of the energy of light to electricity in photovoltaics, or to energy-rich molecules (solar fuel) through photocatalytic processes, invariably starts with photoinduced generation of energy-rich electrons. The harvesting of these electrons in practical devices rests on a series of electron transfer processes whose dynamics and efficiencies determine the function of materials and devices. To capture the energy of a photogenerated electron-hole pair in a solar cell material, charges of opposite sign have to be separated against electrostatic attractions, prevented from recombining and being transported through the active material to electrodes where they can be extracted. In photocatalytic solar fuel production, these electron processes are coupled to chemical reactions leading to storage of the energy of light in chemical bonds. With the focus on the ultrafast time scale, we here discuss the light-induced electron processes underlying the function of several molecular and hybrid materials currently under development for solar energy applications in dye or quantum dot-sensitized solar cells, polymer-fullerene polymer solar cells, organometal halide perovskite solar cells, and finally some photocatalytic systems.

  18. One-step electrochemical synthesis and photoelectric conversion of a ZnO/Se/RGO composite

    International Nuclear Information System (INIS)

    Wang, Lei; Zhang, Chunyan; Zhang, Shengyi; Niu, Helin; Song, Jiming; Mao, Changjie; Jin, Baokang; Tian, Yupeng

    2015-01-01

    Using Zn(NO 3 ) 2 , H 2 SeO 3 and graphene oxide as precursors, the zinc oxide/selenium/reduced graphene oxide (ZnO/Se/RGO) composite was facilely electrodeposited on the surface of indium tin oxide glass. The conditions for electrochemical synthesis such as electrodeposition potential and electrolyte composition were studied. The morphology and crystallization of the products as-prepared were characterized using scanning electron microscopy (SEM) and x-ray diffractometry (XRD) respectively. The light absorption and conductivity of the products were studied by UV-visible spectroscopy (UV-vis) and electrochemical impedance spectroscopy (EIS). Based on a series of experimental results, the photoelectrical conversion mechanism and effect factors of the products were explored. By means of synergistic action of n-type ZnO, p-type Se and conductive RGO, the ZnO/Se/RGO composite showed excellent photoelectric conversion under visible light irradiation. (paper)

  19. Microstructural and electrochemical characterization of environmentally friendly conversion layers on aluminium alloys

    Directory of Open Access Journals (Sweden)

    Palomino Luis Enrique M.

    2003-01-01

    Full Text Available Cerium conversion layers (CeCL have been investigated as a replacement for chromium conversion layers to protect Al alloys against corrosion. In this work the microstructure and the electrochemical behaviour of aluminium alloy 2024 with and without CeCL were investigated using, respectively, SEM-EDX and EIS. EDX results have shown that the presence of dispersed plated Cu particles on the alloy surface enhances the formation of the CeCL increasing the intensity of Ce peaks in the EDX spectra. EIS measurements on conversion-coated samples have shown that the presence of the layer increases the impedance, and that its presence is detected by the presence of a high frequency time constant. Results of potentiodynamic experiments have shown that the corrosion protection afforded by the conversion layer is due to the hindrance of the oxygen reduction reaction and that the pitting potential of the alloy is not changed.

  20. EPR's energy conversion system. Alstom's solutions

    International Nuclear Information System (INIS)

    Ledermann, P.

    2009-01-01

    ARABELLE steam turbines have been developed by Alstom to be used as the energy conversion system of light water reactors with high output power like the N4 PWR and the EPR. ARABELLE turbines cumulate 200.000 hours of service with a reliability ratio of 99.97 per cent. This series of slides presents the main features of the turbine including: the use of the simple flux, the very large shape of low pressure blades, the technology of welded rotors. The other main equipment like the alternator, the condenser, the moisture separator-reheaters, the circulating pumps that Alstom integrates in the energy conversion system have benefited with technological improvements that are also presented. (A.C.)

  1. Air Turbines for Wave Energy Conversion

    Directory of Open Access Journals (Sweden)

    Manabu Takao

    2012-01-01

    Full Text Available This paper describes the present status of the art on air turbines, which could be used for wave energy conversion. The air turbines included in the paper are as follows: Wells type turbines, impulse turbines, radial turbines, cross-flow turbine, and Savonius turbine. The overall performances of the turbines under irregular wave conditions, which typically occur in the sea, have been compared by numerical simulation and sea trial. As a result, under irregular wave conditions it is found that the running and starting characteristics of the impulse type turbines could be superior to those of the Wells turbine. Moreover, as the current challenge on turbine technology, the authors explain a twin-impulse turbine topology for wave energy conversion.

  2. The Energy Conversation: The First 3 Years

    Science.gov (United States)

    2009-07-01

    emerging clear and present reality] 7“Facing the Hard Truths about Energy” National Petroleum Council, 2007. www.npchardtruthsreport.org 8 Verrastro and...commuting five days/week, dispersing eight tons of pollutants into the environment and using 233 hours for travel to and from work w Telecommuting three... The Energy Conversation the first 3 years Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of

  3. Multifunctional Energy Storage and Conversion Devices.

    Science.gov (United States)

    Huang, Yan; Zhu, Minshen; Huang, Yang; Pei, Zengxia; Li, Hongfei; Wang, Zifeng; Xue, Qi; Zhi, Chunyi

    2016-10-01

    Multifunctional energy storage and conversion devices that incorporate novel features and functions in intelligent and interactive modes, represent a radical advance in consumer products, such as wearable electronics, healthcare devices, artificial intelligence, electric vehicles, smart household, and space satellites, etc. Here, smart energy devices are defined to be energy devices that are responsive to changes in configurational integrity, voltage, mechanical deformation, light, and temperature, called self-healability, electrochromism, shape memory, photodetection, and thermal responsivity. Advisable materials, device designs, and performances are crucial for the development of energy electronics endowed with these smart functions. Integrating these smart functions in energy storage and conversion devices gives rise to great challenges from the viewpoint of both understanding the fundamental mechanisms and practical implementation. Current state-of-art examples of these smart multifunctional energy devices, pertinent to materials, fabrication strategies, and performances, are highlighted. In addition, current challenges and potential solutions from materials synthesis to device performances are discussed. Finally, some important directions in this fast developing field are considered to further expand their application. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. The electrochemical reduction of biotin (vitamin B7) and conversion into its ester

    International Nuclear Information System (INIS)

    Lauw, Sherman J.L.; Ganguly, Rakesh; Webster, Richard D.

    2013-01-01

    Highlights: •Biotin can be reduced electrochemically, by one-electron, at a platinum electrode. •The reduction likely follows a direct discharge mechanism of the carboxyl group. •Electrochemically generated biotin carboxylate was reacted with iodomethane (91%). •ATR–FTIR characterization of biotin, its carboxylate anion, and its methyl ester. -- Abstract: An electrochemical study on biotin (vitamin B7), performed in aprotic solvents and at a platinum electrode, revealed that at approximately E f 0 =−1.6to−1.8 vs. (Fc/Fc + )/V (E f 0 =formal reduction potential and Fc=ferrocene), biotin is reduced by one-electron to form its carboxylate anion and dihydrogen via a direct discharge of the carboxylic acid at the platinum surface. The electrochemical reduction process appeared to be chemically reversible on the time-frame of cyclic voltammetry (CV) (t ≤ s), but not over the extended period of controlled potential electrolysis (CPE) (t ≥ min) where the conversion of biotin into its carboxylate anion was found to be chemically irreversible. A strategy to functionalize biotin's carboxyl group was established by performing a bulk reductive electrolysis, and then reacting the electrochemically generated carboxylate anion with iodomethane to afford biotin methyl ester in excellent yield (91%). Attenuated total reflectance–Fourier transform infrared (ATR–FTIR) spectroscopy was successful in identifying several distinct and characteristic carbonyl absorbance peaks associated with the analogous forms of biotin available before electrolysis, after electrolysis, and after methylation

  5. Thermoelectric Energy Conversion: Materials, Devices, and Systems

    International Nuclear Information System (INIS)

    Chen, Gang

    2015-01-01

    This paper will present a discussion of challenges, progresses, and opportunities in thermoelectric energy conversion technology. We will start with an introduction to thermoelectric technology, followed by discussing advances in thermoelectric materials, devices, and systems. Thermoelectric energy conversion exploits the Seebeck effect to convert thermal energy into electricity, or the Peltier effect for heat pumping applications. Thermoelectric devices are scalable, capable of generating power from nano Watts to mega Watts. One key issue is to improve materials thermoelectric figure- of-merit that is linearly proportional to the Seebeck coefficient, the square of the electrical conductivity, and inversely proportional to the thermal conductivity. Improving the figure-of-merit requires good understanding of electron and phonon transport as their properties are often contradictory in trends. Over the past decade, excellent progresses have been made in the understanding of electron and phonon transport in thermoelectric materials, and in improving existing and identify new materials, especially by exploring nanoscale size effects. Taking materials to real world applications, however, faces more challenges in terms of materials stability, device fabrication, thermal management and system design. Progresses and lessons learnt from our effort in fabricating thermoelectric devices will be discussed. We have demonstrated device thermal-to-electrical energy conversion efficiency ∼10% and solar-thermoelectric generator efficiency at 4.6% without optical concentration of sunlight (Figure 1) and ∼8-9% efficiency with optical concentration. Great opportunities exist in advancing materials as well as in using existing materials for energy efficiency improvements and renewable energy utilization, as well as mobile applications. (paper)

  6. Mechanically stable ternary heterogeneous electrodes for energy storage and conversion.

    Science.gov (United States)

    Gao, Libo; Zhang, Hongti; Surjadi, James Utama; Li, Peifeng; Han, Ying; Sun, Dong; Lu, Yang

    2018-02-01

    Recently, solid asymmetric supercapacitor (ASC) has been deemed as an emerging portable power storage or backup device for harvesting natural resources. Here we rationally engineered a hierarchical, mechanically stable heterostructured FeCo@NiCo layered double hydroxide (LDH) with superior capacitive performance by a simple two-step electrodeposition route for energy storage and conversion. In situ scanning electron microscope (SEM) nanoindentation and electrochemical tests demonstrated the mechanical robustness and good conductivity of FeCo-LDH. This serves as a reliable backbone for supporting the NiCo-LDH nanosheets. When employed as the positive electrode in the solid ASC, the assembly presents high energy density of 36.6 W h kg -1 at a corresponding power density of 783 W kg -1 and durable cycling stability (87.3% after 5000 cycles) as well as robust mechanical stability without obvious capacitance fading when subjected to bending deformation. To demonstrate its promising capability for practical energy storage applications, the ASC has been employed as a portable energy source to power a commercially available digital watch, mini motor car, or household lamp bulb as well as an energy storage reservoir, coupled with a wind energy harvester to power patterned light-emitting diodes (LEDs).

  7. Energy and fuels from electrochemical interfaces

    Science.gov (United States)

    Stamenkovic, Vojislav R.; Strmcnik, Dusan; Lopes, Pietro P.; Markovic, Nenad M.

    2017-01-01

    Advances in electrocatalysis at solid-liquid interfaces are vital for driving the technological innovations that are needed to deliver reliable, affordable and environmentally friendly energy. Here, we highlight the key achievements in the development of new materials for efficient hydrogen and oxygen production in electrolysers and, in reverse, their use in fuel cells. A key issue addressed here is the degree to which the fundamental understanding of the synergy between covalent and non-covalent interactions can form the basis for any predictive ability in tailor-making real-world catalysts. Common descriptors such as the substrate-hydroxide binding energy and the interactions in the double layer between hydroxide-oxides and H---OH are found to control individual parts of the hydrogen and oxygen electrochemistry that govern the efficiency of water-based energy conversion and storage systems. Links between aqueous- and organic-based environments are also established, encouraging the 'fuel cell' and 'battery' communities to move forward together.

  8. Pristine Metal-Organic Frameworks and their Composites for Energy Storage and Conversion.

    Science.gov (United States)

    Liang, Zibin; Qu, Chong; Guo, Wenhan; Zou, Ruqiang; Xu, Qiang

    2017-11-22

    Metal-organic frameworks (MOFs), a new class of crystalline porous organic-inorganic hybrid materials, have recently attracted increasing interest in the field of energy storage and conversion. Herein, recent progress of MOFs and MOF composites for energy storage and conversion applications, including photochemical and electrochemical fuel production (hydrogen production and CO 2 reduction), water oxidation, supercapacitors, and Li-based batteries (Li-ion, Li-S, and Li-O 2 batteries), is summarized. Typical development strategies (e.g., incorporation of active components, design of smart morphologies, and judicious selection of organic linkers and metal nodes) of MOFs and MOF composites for particular energy storage and conversion applications are highlighted. A broad overview of recent progress is provided, which will hopefully promote the future development of MOFs and MOF composites for advanced energy storage and conversion applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Nanoscale Materials and Architectures for Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Grulke, Eric A. [Univ. of Kentucky, Lexington, KY (United States); Sunkara, Mahendra K. [University of Louisville, KY (United States)

    2011-05-25

    The Kentucky EPSCoR Program supported an inter-university, multidisciplinary energy-related research cluster studying nanomaterials for converting solar radiation and residual thermal energy to electrical energy and hydrogen. It created a collaborative center of excellence based on research expertise in nanomaterials, architectures, and their synthesis. The project strengthened and improved the collaboration between the University of Louisville, the University of Kentucky, and NREL. The cluster hired a new faculty member for ultra-fast transient spectroscopy, and enabled the mentoring of one research scientist, two postdoctoral scholars and ten graduate students. Work was accomplished with three focused cluster projects: organic and photoelectrochemical solar cells, solar fuels, and thermionic energy conversion.

  10. Improved conversion rates in drug screening applications using miniaturized electrochemical cells with frit channels.

    Science.gov (United States)

    Odijk, Mathieu; Olthuis, Wouter; van den Berg, A; Qiao, Liang; Girault, Hubert

    2012-11-06

    This paper reports a novel design of a miniaturized three-electrode electrochemical cell, the purpose of which is aimed at generating drug metabolites with a high conversion efficiency. The working electrode and the counter electrode are placed in two separate channels to isolate the reaction products generated at both electrodes. The novel design includes connecting channels between these two electrode channels to provide a uniform distribution of the current density over the entire working electrode. In addition, the effect of ohmic drop is decreased. Moreover, two flow resistors are included to ensure an equal flow of analyte through both electrode channels. Total conversion of fast reacting ions is achieved at flow rates up to at least 8 μL/min, while the internal chip volume is only 175 nL. Using this electrochemical chip, the metabolism of mitoxantrone is studied by microchip electrospray ionization-mass spectrometry. At an oxidation potential of 700 mV, all known metabolites from direct oxidation are observed. The electrochemical chip performs equally well, compared to a commercially available cell, but at a 30-fold lower flow of reagents.

  11. Graphene for thermoelectronic solar energy conversion

    Science.gov (United States)

    De, Dilip K.; Olukunle, Olawole C.

    2017-08-01

    Graphene is a high temperature material which can stand temperature as high as 4600 K in vacuum. Even though its work function is high (4.6 eV) the thermionic emission current density at such temperature is very high. Graphene is a wonderful material whose work function can be engineered as desired. Kwon et al41 reported a chemical approach to reduce work function of graphene using K2CO3, Li2CO3, Rb2CO3, Cs2CO3. The work functions are reported to be 3.7 eV, 3.8 eV, 3.5 eV and 3.4 eV. Even though they did not report the high temperature tolerance of such alkali metal carbonate doped graphene, their works open a great promise for use of pure graphene and doped graphene as emitter (cathode) and collector (anode) in a solar thermionic energy converter. This paper discusses the dynamics of solar energy conversion to electrical energy using thermionic energy converter with graphene as emitter and collector. We have considered parabolic mirror concentrator to focus solar energy onto the emitter to achieve temperature around 4300 K. Our theoretical calculations and the modelling show that efficiency as high as 55% can easily be achieved if space-charge problem can be reduced and the collector can be cooled to certain proper temperature. We have discussed methods of controlling the associated space-charge problems. Richardson-Dushman equation modified by the authors have been used in this modelling. Such solar energy conversion would reduce the dependence on silicon solar panel and has great potential for future applications.

  12. Comparative investigation of the adhesion of Ce conversion layers and silane layers to a AA 2024-T3 substrate through mechanical and electrochemical tests

    Directory of Open Access Journals (Sweden)

    Luis Enrique Morales Palomino

    2007-12-01

    Full Text Available Cerium conversion layers and silane films are among the potential substitutes for the carcinogenic chromate conversion layers used to protect high-strength Al alloys. In the present work the adhesion of a cerium conversion layer and of a silane film to an aluminium alloy (AA 2024-T3 substrate was investigated using mechanical and electrochemical tests. Scanning electron microscopy (SEM- X ray energy dispersive spectroscopy (EDS, Fourier transform infrared spectroscopy (FT-IR and X ray photoelectron spectroscopy (XPS were used to characterize the layers prior and after the mechanical test consisting of ultrasonic rinse in deionized water during 30 minutes. Mechanically tested and untested layers were also submitted to electrochemical impedance spectroscopy (EIS and anodic polarization measurements in 0.1 M NaCl solution. The results of the characterization tests have pointed to a stronger adhesion of the Ce layer to the substrate in comparison with the silane film, which was confirmed by the electrochemical tests. The adhesion between the silane film and the Ce conversion layer was also tested, to evaluate the possibility of using the system as a protective bi-layer in accordance with the new trends being developed to substitute chromate conversion layers.

  13. Carbon aerogel electrodes for direct energy conversion

    Science.gov (United States)

    Mayer, Steven T.; Kaschmitter, James L.; Pekala, Richard W.

    1997-01-01

    A direct energy conversion device, such as a fuel cell, using carbon aerogel electrodes, wherein the carbon aerogel is loaded with a noble catalyst, such as platinum or rhodium and soaked with phosphoric acid, for example. A separator is located between the electrodes, which are placed in a cylinder having plate current collectors positioned adjacent the electrodes and connected to a power supply, and a pair of gas manifolds, containing hydrogen and oxygen positioned adjacent the current collectors. Due to the high surface area and excellent electrical conductivity of carbon aerogels, the problems relative to high polarization resistance of carbon composite electrodes conventionally used in fuel cells are overcome.

  14. Attempts To Catalyze the Electrochemical CO2-to-Methanol Conversion by Biomimetic 2e(-) + 2H(+) Transferring Molecules.

    Science.gov (United States)

    Saveant, Jean-Michel; Tard, Cédric

    2016-01-27

    In the context of the electrochemical and photochemical conversion of CO2 to liquid fuels, one of the most important issues of contemporary energy and environmental issues, the possibility of pushing the reduction beyond the CO and formate level and catalytically generate products such as methanol is particularly attractive. Biomimetic 2e(-) + 2H(+) is often viewed as a potential hydride donor. This has been the object of a recent interesting attempt (J. Am. Chem. Soc. 2014, 136, 14007) in which 6,7-dimethyl-4-hydroxy-2-mercaptopteridine was reported as a catalyst of the electrochemical conversion of CO2 to methanol and formate, based on cyclic voltammetric, (13)C NMR, IR, and GC analyses. After checking electrolysis at the reported potential and at a more negative potential to speed up the reaction, it appears, on (1)H NMR and gas chromatographic grounds, that there is neither catalysis nor methanol and nor formate production. (1)H NMR (with H2O presaturation) brings about an unambiguous answer to the eventual production of methanol and formate, much more so than (13)C NMR, which can even be misleading when no internal standard is used as in the above-mentioned paper. IR analysis is even less conclusive. Use of a GC technique with sufficient sensitivity confirmed the lack of methanol formation. The direct or indirect hydride transfer electrochemical reduction of CO2 to formate and to methanol remains an open question. Original ideas and efforts such as those discussed here are certainly worth tempting. However, in view of the importance of the stakes, it appears necessary to carefully check reports in this area.

  15. Direct energy conversion of radiation energy in fusion reactor

    International Nuclear Information System (INIS)

    Yamaguchi, S.; Iiyoshi, A.; Motojima, O.; Okamoto, M.; Sudo, S.; Ohnishi, M.; Onozuka, M.; Uenosono, C.

    1993-11-01

    Direct energy conversion from plasma heat flux has been studied. Since major parts of fusion energy in the advanced fusion reactor are radiation and charged particle energies, the flexible design of the blanket is possible. We discuss the potentiality of the thermoelectric element that generates electricity by temperature gradient in conductors. A strong magnetic field is used to confine the fusion plasma, therefore, it is appropriate to consider the effect of the magnetic field. We propose a new element which is called Nernst element. The new element needs the magnetic field and the temperature gradient. We compare the efficiency of these two elements in a semiconductor model. Finally, a direct energy conversion are mentioned. (author)

  16. Direct energy conversion of radiation energy in fusion reactor

    Science.gov (United States)

    Yamaguchi, S.; Iiyoshi, A.; Motojima, O.; Okamoto, M.; Sudo, S.; Ohnishi, M.; Onozuka, M.; Uenosono, C.

    1993-11-01

    Direct energy conversion from plasma heat flux has been studied. Since major parts of fusion energy in the advanced fusion reactor are radiation and charged particle energies, the flexible design of the blanket is possible. We discuss the potentiality of the thermoelectric element that generates electricity by temperature gradient in conductors. A strong magnetic field is used to confine the fusion plasma, therefore, it is appropriate to consider the effect of the magnetic field. We propose a new element which is called Nernst element. The new element needs the magnetic field and the temperature gradient. We compare the efficiency of these two elements in a semiconductor model. Finally, a direct energy conversion are mentioned.

  17. Direct energy conversion of radiation energy in fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, S.; Iiyoshi, A.; Motojima, O.; Okamoto, M.; Sudo, S.; Ohnishi, M.; Onozuka, M.; Uenosono, C.

    1993-11-01

    Direct energy conversion from plasma heat flux has been studied. Since major parts of fusion energy in the advanced fusion reactor are radiation and charged particle energies, the flexible design of the blanket is possible. We discuss the potentiality of the thermoelectric element that generates electricity by temperature gradient in conductors. A strong magnetic field is used to confine the fusion plasma, therefore, it is appropriate to consider the effect of the magnetic field. We propose a new element which is called Nernst element. The new element needs the magnetic field and the temperature gradient. We compare the efficiency of these two elements in a semiconductor model. Finally, a direct energy conversion are mentioned. (author).

  18. Electronic and optical properties of doped oxides for energy conversion

    International Nuclear Information System (INIS)

    Silva, Antonio Ferreira da

    2016-01-01

    Full text: Photocatalytic materials have gained remarkable attention in the field of solar fuel production, which is a promising approach for efficient solar energy conversion and storage . Among other oxides, doped BiNb(Ta)O 4 , ZnO , SnO 2 , WO 3 and TiO 2 have been identified as potential photocatalytic materials due to their appropriate band gap energies. We have used high quality materials as for instance by the citrate method according to reference [1], a modified ion beam assisted deposition technique [2] and as titanium dioxide nanotubes (TiO 2 -NTs) arrays synthesized by electrochemical anodization [3]. We present the optical properties spectra of these materials using the X-ray Photoelectron Spectroscopy (XPS), Ellipsometry and first principles approach by DFT respectively [1,2]. In this work, position of reduction and oxidation level with respect to the vacuum level are identified for these materials. We can conclude that some of them are good candidates for the production of hydrogen by splitting of water in the presence of sunlight and for efficient solar energy conversion as well. [1] C. G. Almeida, R. B. Araujo, R. G. Yoshimura, A. J. S. Mascarenhas, A. Ferreira da Silva, C. M.Araujo, L. A. Silva,Int. J. Hyd. Energy 39, 1220 (2014). [2] M. Kumar, G.Baldissera, C.Persson, D.G.F.David ,M.V.S.da Silva , J.A.Freitas Jr., J.G. Tischler , J.F.D.Chubaci, M.Matsuoka , A.Ferreira da Silva, , J. of Crystal Growth 403, 124 (2014). [3] J. R. Gonzalez et all., Nanotechnology (2016 in press). (author)

  19. Electronic and optical properties of doped oxides for energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Antonio Ferreira da, E-mail: ferreira.fis@gmail.com [Universidade Federal da Bahia (UFBA), Salvador (Brazil)

    2016-07-01

    Full text: Photocatalytic materials have gained remarkable attention in the field of solar fuel production, which is a promising approach for efficient solar energy conversion and storage . Among other oxides, doped BiNb(Ta)O{sub 4}, ZnO , SnO{sub 2}, WO{sub 3} and TiO{sub 2} have been identified as potential photocatalytic materials due to their appropriate band gap energies. We have used high quality materials as for instance by the citrate method according to reference [1], a modified ion beam assisted deposition technique [2] and as titanium dioxide nanotubes (TiO{sub 2}-NTs) arrays synthesized by electrochemical anodization [3]. We present the optical properties spectra of these materials using the X-ray Photoelectron Spectroscopy (XPS), Ellipsometry and first principles approach by DFT respectively [1,2]. In this work, position of reduction and oxidation level with respect to the vacuum level are identified for these materials. We can conclude that some of them are good candidates for the production of hydrogen by splitting of water in the presence of sunlight and for efficient solar energy conversion as well. [1] C. G. Almeida, R. B. Araujo, R. G. Yoshimura, A. J. S. Mascarenhas, A. Ferreira da Silva, C. M.Araujo, L. A. Silva,Int. J. Hyd. Energy 39, 1220 (2014). [2] M. Kumar, G.Baldissera, C.Persson, D.G.F.David ,M.V.S.da Silva , J.A.Freitas Jr., J.G. Tischler , J.F.D.Chubaci, M.Matsuoka , A.Ferreira da Silva, , J. of Crystal Growth 403, 124 (2014). [3] J. R. Gonzalez et all., Nanotechnology (2016 in press). (author)

  20. A Conversation on Zero Net Energy Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Torcellini, Paul A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Eley, Charles [Consultant; Gupta, Smita [Itron; McHugh, Jon [McHugh Energy Consultants; Lui, Bing [Pacific Northwest National Laboratory; Higgins, Cathy [New Buildings Institute; Iplikci, Jessica [Energy Trust of Oregon; Rosenberg, Michael [Pacific Northwest National Laboratory

    2017-06-01

    Recently, zero net energy (ZNE) buildings have moved from state-of-the-art small project demonstrations to a more widely adopted approach across the country among various building types and sizes. States such as California set policy goals of all new residential construction to be NZE by 2020 and all commercial buildings to be NZE by 2030. However, the market for designing, constructing, and operating ZNE buildings is still relatively small. We bring together distinguished experts to share their thoughts on making ZNE buildings more widespread and mainstream from a broad perspective, including governments, utilities, energy-efficiency research institutes, and building owners. This conversation also presents the benefits of ZNE and ways to achieve that goal in the design and operation of buildings. The following is a roundtable conducted by ASHRAE Journal and Bing Liu with Charles Eley, Smita Gupta, Cathy Higgins, Jessica Iplikci, Jon McHugh, Michael Rosenberg, and Paul Torcellini.

  1. Solar thermal energy conversion to electrical power

    International Nuclear Information System (INIS)

    Trinh, Anh-Khoi; González, Ivan; Fournier, Luc; Pelletier, Rémi; Sandoval V, Juan C.; Lesage, Frédéric J.

    2014-01-01

    The conversion of solar energy to electricity currently relies primarily on the photovoltaic effect in which photon bombardment of photovoltaic cells drives an electromotive force within the material. Alternatively, recent studies have investigated the potential of converting solar radiation to electricity by way of the Seebeck effect in which charge carrier mobility is generated by an asymmetric thermal differential. The present study builds upon these latest advancements in the state-of-the-art of thermoelectric system management by combining solar evacuated tube technology with commercially available Bismuth Telluride semiconductor modules. The target heat source is solar radiation and the target heat sink is thermal convection into the ambient air relying on wind aided forced convection. These sources of energy are reproduced in a laboratory controlled environment in order to maintain a thermal dipole across a thermoelectric module. The apparatus is then tested in a natural environment. The novelty of the present work lies in a net thermoelectric power gain for ambient environment applications and an experimental validation of theoretical electrical characteristics relative to a varying electrical load. - Highlights: • Solar radiation maintains a thermal tension which drives an electromotive force. • Voltage, current and electric power are reported and discussed. • Theoretical optimal thermoelectric conversion predictions are presented. • Theory is validated with experimentally measured data

  2. Technology assessment of wind energy conversion systems

    Energy Technology Data Exchange (ETDEWEB)

    Meier, B. W.; Merson, T. J.

    1980-09-01

    Environmental data for wind energy conversion systems (WECSs) have been generated in support of the Technology Assessment of Solar Energy (TASE) program. Two candidates have been chosen to characterize the WECS that might be deployed if this technology makes a significant contribution to the national energy requirements. One WECS is a large machine of 1.5-MW-rated capacity that can be used by utilities. The other WECS is a small machine that is characteristic of units that might be used to meet residential or small business energy requirements. Energy storage systems are discussed for each machine to address the intermittent nature of wind power. Many types of WECSs are being studied and a brief review of the technology is included to give background for choosing horizontal axis designs for this study. Cost estimates have been made for both large and small systems as required for input to the Strategic Environmental Assessment Simulation (SEAS) computer program. Material requirements, based on current generation WECSs, are discussed and a general discussion of environmental impacts associated with WECS deployment is presented.

  3. Neodymium conversion layers formed on zinc powder for improving electrochemical properties of zinc electrodes

    International Nuclear Information System (INIS)

    Zhu Liqun; Zhang Hui; Li Weiping; Liu Huicong

    2008-01-01

    Zinc powder, as active material of secondary alkaline zinc electrode, can greatly limit the performance of zinc electrode due to corrosion and dendritic growth of zinc resulting in great capacity-loss and short cycle life of the electrode. This work is devoted to modification study of zinc powder with neodymium conversion films coated directly onto it using ultrasonic immersion method for properties improvement of zinc electrodes. Scanning electron microscopy and other characterization techniques are applied to prove that neodymium conversion layers are distributing on the surface of modified zinc powder. The electrochemical performance of zinc electrodes made of such modified zinc powder is investigated through potentiodynamic polarization, potentiostatic polarization and cyclic voltammetry. The neodymium conversion films are found to have a significant effect on inhibition corrosion capability of zinc electrode in a beneficial way. It is also confirmed that the neodymium conversion coatings can obviously suppress dendritic growth of zinc electrode, which is attributed to the amelioration of deposition state of zinc. Moreover, the results of cyclic voltammetry reveal that surface modification of zinc powder enhances the cycle performance of the electrode mainly because the neodymium conversion films decrease the amounts of ZnO or Zn(OH) 2 dissolved in the electrolyte

  4. Biomass energy conversion: conventional and advanced technologies

    Energy Technology Data Exchange (ETDEWEB)

    Young, B C; Hauserman, W B [Energy and Environmental Research Center, University of North Dakota, Grand Forks, ND (United States)

    1995-12-01

    Increasing interest in biomass energy conversion in recent years has focused attention on enhancing the efficiency of technologies converting biomass fuels into heat and power, their capital and operating costs and their environmental emissions. Conventional combustion systems, such as fixed-bed or grate units and entrainment units, deliver lower efficiencies (<25%) than modem coal-fired combustors (30-35%). The gasification of biomass will improve energy conversion efficiency and yield products useful for heat and power generation and chemical synthesis. Advanced biomass gasification technologies using pressurized fluidized-bed systems, including those incorporating hot-gas clean-up for feeding gas turbines or fuel cells, are being demonstrated. However, many biomass gasification processes are derivatives of coal gasification technologies and do not exploit the unique properties of biomass. This paper examines some existing and upcoming technologies for converting biomass into electric power or heat. Small-scale 1-30 MWe units are emphasized, but brief reference is made to larger and smaller systems, including those that bum coal-biomass mixtures and gasifiers that feed pilot-fuelled diesel engines. Promising advanced systems, such as a biomass integrated gasifier/gas turbine (BIG/GT) with combined-cycle operation and a biomass gasifier coupled to a fuel cell, giving cycle efficiencies approaching 50% are also described. These advanced gasifiers, typically fluid-bed designs, may be pressurized and can use a wide variety of biomass materials to generate electricity, process steam and chemical products such as methanol. Low-cost, disposable catalysts are becoming available for hot-gas clean-up (enhanced gas composition) for turbine and fuel cell systems. The advantages, limitations and relative costs of various biomass gasifier systems are briefly discussed. The paper identifies the best known biomass power projects and includes some information on proposed and

  5. Biomass energy conversion: conventional and advanced technologies

    International Nuclear Information System (INIS)

    Young, B.C.; Hauserman, W.B.

    1995-01-01

    Increasing interest in biomass energy conversion in recent years has focused attention on enhancing the efficiency of technologies converting biomass fuels into heat and power, their capital and operating costs and their environmental emissions. Conventional combustion systems, such as fixed-bed or grate units and entrainment units, deliver lower efficiencies (<25%) than modem coal-fired combustors (30-35%). The gasification of biomass will improve energy conversion efficiency and yield products useful for heat and power generation and chemical synthesis. Advanced biomass gasification technologies using pressurized fluidized-bed systems, including those incorporating hot-gas clean-up for feeding gas turbines or fuel cells, are being demonstrated. However, many biomass gasification processes are derivatives of coal gasification technologies and do not exploit the unique properties of biomass. This paper examines some existing and upcoming technologies for converting biomass into electric power or heat. Small-scale 1-30 MWe units are emphasized, but brief reference is made to larger and smaller systems, including those that bum coal-biomass mixtures and gasifiers that feed pilot-fuelled diesel engines. Promising advanced systems, such as a biomass integrated gasifier/gas turbine (BIG/GT) with combined-cycle operation and a biomass gasifier coupled to a fuel cell, giving cycle efficiencies approaching 50% are also described. These advanced gasifiers, typically fluid-bed designs, may be pressurized and can use a wide variety of biomass materials to generate electricity, process steam and chemical products such as methanol. Low-cost, disposable catalysts are becoming available for hot-gas clean-up (enhanced gas composition) for turbine and fuel cell systems. The advantages, limitations and relative costs of various biomass gasifier systems are briefly discussed. The paper identifies the best known biomass power projects and includes some information on proposed and

  6. Electrochemical energy storage for renewable sources and grid balancing

    CERN Document Server

    Moseley, Patrick T

    2015-01-01

    Electricity from renewable sources of energy is plagued by fluctuations (due to variations in wind strength or the intensity of insolation) resulting in a lack of stability if the energy supplied from such sources is used in 'real time'. An important solution to this problem is to store the energy electrochemically (in a secondary battery or in hydrogen and its derivatives) and to make use of it in a controlled fashion at some time after it has been initially gathered and stored. Electrochemical battery storage systems are the major technologies for decentralized storage systems and hydrogen

  7. Simulation of diesel engine energy conversion processes

    Directory of Open Access Journals (Sweden)

    А. С. Афанасьев

    2016-12-01

    Full Text Available In order to keep diesel engines in good working order the troubleshooting methods shall be improved. For their further improvement by parameters of associated processes a need has arisen to develop a diesel engine troubleshooting method based on time parameters of operating cycle. For such method to be developed a computational experiment involving simulation of diesel engine energy conversion processes has been carried out. The simulation was based on the basic mathematical model of reciprocating internal combustion engines, representing a closed system of equations and relationships. The said model has been supplemented with the engine torque dynamics taking into account the current values of in-cylinder processes with different amounts of fuel injected, including zero feed.The torque values obtained by the in-cylinder pressure conversion does not account for mechanical losses, which is why the base simulation program has been supplemented with calculations for the friction and pumping forces. In order to determine the indicator diagram of idle cylinder a transition to zero fuel feed mode and exclusion of the combustion process from calculation have been provisioned.

  8. IECEC '91; Proceedings of the 26th Intersociety Energy Conversion Engineering Conference, Boston, MA, Aug. 4-9, 1991. Vol 6

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Papers are presented on aerospace power systems (burst and pulse power, simulation, solar dynamics, and space nuclear systems, etc.), conversion technologies, electrochemical conversion, and energy conservation. Consideration is also given to energy systems and alternative fuels, renewable resource systems, Stirling engines and applications, and innovative and advanced systems (e.g., superconducting power and magnetic devices at high temperature)

  9. Electrical Systems for Wave Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Bostroem, Cecilia

    2011-07-01

    Wave energy is a renewable energy source with a large potential to contribute to the world's electricity production. There exist several technologies on how to convert the energy in the ocean waves into electric energy. The wave energy converter (WEC) presented in this thesis is based on a linear synchronous generator. The generator is placed on the seabed and driven by a point absorbing buoy on the ocean surface. Instead of having one large unit, several smaller units are interconnected to increase the total installed power. To convert and interconnect the power from the generators, marine substations are used. The marine substations are placed on the seabed and convert the fluctuating AC from the generators into an AC suitable for grid connection. The work presented in the thesis focuses on the first steps in the electric energy conversion, converting the voltage out from the generators into DC, which have an impact on the WEC's ability to absorb and produce power. The purpose has been to investigate how the generator will operate when it is subjected to different load cases and to obtain guidelines on how future systems could be improved. Offshore experiments and simulations have been done on full scale generators connected to four different loads, i.e. one linear resistive load and three different non-linear loads representing different cases for grid connected WECs. The results show that the power can be controlled and optimized by choosing a suitable system for the WEC. It is not obvious which kind of system is the most preferable, since there are many different parameters that have an impact on the system performance, such as the size of the buoy, how the generator is designed, the number of WECs, the highest allowed complexity of the system, costs and so on. Therefore, the design of the electrical system should preferably be carried out in parallel with the design of the WEC in order to achieve an efficient system

  10. Revisit ocean thermal energy conversion system

    International Nuclear Information System (INIS)

    Huang, J.C.; Krock, H.J.; Oney, S.K.

    2003-01-01

    The earth, covered more than 70.8% by the ocean, receives most of its energy from the sun. Solar energy is transmitted through the atmosphere and efficiently collected and stored in the surface layer of the ocean, largely in the tropical zone. Some of the energy is re-emitted to the atmosphere to drive the hydrologic cycle and wind. The wind field returns some of the energy to the ocean in the form of waves and currents. The majority of the absorbed solar energy is stored in vertical thermal gradients near the surface layer of the ocean, most of which is in the tropical region. This thermal energy replenished each day by the sun in the tropical ocean represents a tremendous pollution-free energy resource for human civilization. Ocean Thermal Energy Conversion (OTEC) technology refers to a mechanical system that utilizes the natural temperature gradient that exists in the tropical ocean between the warm surface water and the deep cold water, to generate electricity and produce other economically valuable by-products. The science and engineering behind OTEC have been studied in the US since the mid-seventies, supported early by the U.S. Government and later by State and private industries. There are two general types of OTEC designs: closed-cycle plants utilize the evaporation of a working fluid, such as ammonia or propylene, to drive the turbine-generator, and open-cycle plants use steam from evaporated sea water to run the turbine. Another commonly known design, hybrid plants, is a combination of the two. OTEC requires relatively low operation and maintenance costs and no fossil fuel consumption. OTEC system possesses a formidable potential capacity for renewable energy and offers a significant elimination of greenhouse gases in producing power. In addition to electricity and drinking water, an OTEC system can produce many valuable by-products and side-utilizations, such as: hydrogen, air-conditioning, ice, aquaculture, and agriculture, etc. The potential of these

  11. Engineered nanomaterials for solar energy conversion.

    Science.gov (United States)

    Mlinar, Vladan

    2013-02-01

    Understanding how to engineer nanomaterials for targeted solar-cell applications is the key to improving their efficiency and could lead to breakthroughs in their design. Proposed mechanisms for the conversion of solar energy to electricity are those exploiting the particle nature of light in conventional photovoltaic cells, and those using the collective electromagnetic nature, where light is captured by antennas and rectified. In both cases, engineered nanomaterials form the crucial components. Examples include arrays of semiconductor nanostructures as an intermediate band (so called intermediate band solar cells), semiconductor nanocrystals for multiple exciton generation, or, in antenna-rectifier cells, nanomaterials for effective optical frequency rectification. Here, we discuss the state of the art in p-n junction, intermediate band, multiple exciton generation, and antenna-rectifier solar cells. We provide a summary of how engineered nanomaterials have been used in these systems and a discussion of the open questions.

  12. Localized Oscillatory Energy Conversion in Magnetopause Reconnection

    Science.gov (United States)

    Burch, J. L.; Ergun, R. E.; Cassak, P. A.; Webster, J. M.; Torbert, R. B.; Giles, B. L.; Dorelli, J. C.; Rager, A. C.; Hwang, K.-J.; Phan, T. D.; Genestreti, K. J.; Allen, R. C.; Chen, L.-J.; Wang, S.; Gershman, D.; Le Contel, O.; Russell, C. T.; Strangeway, R. J.; Wilder, F. D.; Graham, D. B.; Hesse, M.; Drake, J. F.; Swisdak, M.; Price, L. M.; Shay, M. A.; Lindqvist, P.-A.; Pollock, C. J.; Denton, R. E.; Newman, D. L.

    2018-02-01

    Data from the NASA Magnetospheric Multiscale mission are used to investigate asymmetric magnetic reconnection at the dayside boundary between the Earth's magnetosphere and the solar wind. High-resolution measurements of plasmas and fields are used to identify highly localized ( 15 electron Debye lengths) standing wave structures with large electric field amplitudes (up to 100 mV/m). These wave structures are associated with spatially oscillatory energy conversion, which appears as alternatingly positive and negative values of J · E. For small guide magnetic fields the wave structures occur in the electron stagnation region at the magnetosphere edge of the electron diffusion region. For larger guide fields the structures also occur near the reconnection X-line. This difference is explained in terms of channels for the out-of-plane current (agyrotropic electrons at the stagnation point and guide field-aligned electrons at the X-line).

  13. Systems Engineering Model for ART Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Mendez Cruz, Carmen Margarita [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rochau, Gary E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wilson, Mollye C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-02-01

    The near-term objective of the EC team is to establish an operating, commercially scalable Recompression Closed Brayton Cycle (RCBC) to be constructed for the NE - STEP demonstration system (demo) with the lowest risk possible. A systems engineering approach is recommended to ensure adequate requirements gathering, documentation, and mode ling that supports technology development relevant to advanced reactors while supporting crosscut interests in potential applications. A holistic systems engineering model was designed for the ART Energy Conversion program by leveraging Concurrent Engineering, Balance Model, Simplified V Model, and Project Management principles. The resulting model supports the identification and validation of lifecycle Brayton systems requirements, and allows designers to detail system-specific components relevant to the current stage in the lifecycle, while maintaining a holistic view of all system elements.

  14. Theoretical efficiency limits for thermoradiative energy conversion

    International Nuclear Information System (INIS)

    Strandberg, Rune

    2015-01-01

    A new method to produce electricity from heat called thermoradiative energy conversion is analyzed. The method is based on sustaining a difference in the chemical potential for electron populations above and below an energy gap and let this difference drive a current through an electric circuit. The difference in chemical potential originates from an imbalance in the excitation and de-excitation of electrons across the energy gap. The method has similarities to thermophotovoltaics and conventional photovoltaics. While photovoltaic cells absorb thermal radiation from a body with higher temperature than the cell itself, thermoradiative cells are hot during operation and emit a net outflow of photons to colder surroundings. A thermoradiative cell with an energy gap of 0.25 eV at a temperature of 500 K in surroundings at 300 K is found to have a theoretical efficiency limit of 33.2%. For a high-temperature thermoradiative cell with an energy gap of 0.4 eV, a theoretical efficiency close to 50% is found while the cell produces 1000 W/m 2 has a temperature of 1000 K and is placed in surroundings with a temperature of 300 K. Some aspects related to the practical implementation of the concept are discussed and some challenges are addressed. It is, for example, obvious that there is an upper boundary for the temperature under which solid state devices can work properly over time. No conclusions are drawn with regard to such practical boundaries, because the work is aimed at establishing upper limits for ideal thermoradiative devices

  15. OPTIMIZATION OF AEOLIAN ENERGY CONVERSION OPTIMISATION DE LA CONVERSION DE L’ENERGIE EOLIENNE

    Directory of Open Access Journals (Sweden)

    Y. Soufi

    2015-08-01

    Full Text Available The use of renewable energy increases, because people are increasingly concerned with environmental issues. Among renewable, wind power is now widely used. Their study showed that a value of wind speed, there is a maximum mechanical power supplied by the turbine. So, power is supplied are particularly changes with maximum speed.However, the objective of this paper is to present an algorithm for optimal conversion of wind energy based on a criterion optimization that must maintain specific speed of the turbine at optimum speed which corresponds to the maximum power provided by the steady wind turbine. To this end, the object is to preserve the position of any static operating point on the characteristic of optimal.To validate the model and algorithm for optimal conversion of wind energy, a series of numerical simulations carried out using the software MatLab Simulink will be presented is discussed.

  16. Microstructure and electrochemical behavior of cerium conversion coating modified with silane agent on magnesium substrates

    Science.gov (United States)

    Lei, Li; Shi, Jing; Wang, Xin; Liu, Dan; Xu, Haigang

    2016-07-01

    The cerium conversion coating with and without different concentrations of silane agent bis-(γ-triethoxysilylpropyl)-tetrasulfide (BTESPT) modification is obtained on magnesium alloys. Detailed properties of the coatings and the role of BTESPT as an additive are studied and followed with careful discussion. The coating morphology, wettability, chemical composition and corrosion resistance are characterized by scanning electronic microscope (SEM), water contact-angle, X-ray photoelectron spectroscopy (XPS), potentiodynamic measurements and electrochemical impedance spectroscopy (EIS). The electrochemical behavior of the coatings is investigated using EIS. The results indicate that the coating morphology and composition can be controlled by changing silane concentration. The combination of cerium ions and silane molecules could promote the formation of more homogenous and higher hydrophobic coating. The coating turns to be more compact and the adhesive strength between the coating and the magnesium substrate are strongly improved with the formation of Sisbnd Osbnd Si and Sisbnd Osbnd M chemical bonds. The optimum corrosion resistance of the coating in the corrosive media is obtained by 25 ml L-1 BTESPT modification. This whole study implies that the cerium conversion coating modified with certain silane agent deserves cautiousness before its application for corrosion resistance.

  17. Pseudocapacitive Oxides and Sulfides for High-Performance Electrochemical Energy Storage

    KAUST Repository

    Xia, Chuan

    2018-01-01

    The intermittent nature of several sustainable energy sources such as solar and wind energy has ignited the demand of electrochemical energy storage devices in the form of batteries and electrochemical capacitors. The future generation

  18. Advanced nanostructured materials for energy storage and conversion

    Science.gov (United States)

    Hutchings, Gregory S.

    Due to a global effort to reduce greenhouse gas emissions and to utilize renewable sources of energy, much effort has been directed towards creating new alternatives to fossil fuels. Identifying novel materials for energy storage and conversion can enable radical changes to the current fuel production infrastructure and energy utilization. The use of engineered nanostructured materials in these systems unlocks unique catalytic activity in practical configurations. In this work, research efforts have been focused on the development of nanostructured materials to address the need for both better energy conversion and storage, with applications toward Li-O2 battery electrocatalysts, electrocatalytic generation of H2, conversion of furfural to useful chemicals and fuels, and Li battery anode materials. Highly-active alpha-MnO2 materials were synthesized for use as bifunctional oxygen reduction (ORR) and evolution (OER) catalysts in Li-O2 batteries, and were evaluated under operating conditions with a novel in situ X-ray absorption spectroscopy configuration. Through detailed analysis of local coordination and oxidation states of Mn atoms at key points in the electrochemical cycle, a self-switching behavior affecting the bifunctional activity was identified and found to be critical. In an additional study of materials for lithium batteries, nanostructured TiO2 anode materials doped with first-row transition metals were synthesized and evaluated for improving battery discharge capacity and rate performance, with Ni and Co doping at low levels found to cause the greatest enhancement. In addition to battery technology research, I have also sought to find inexpensive and earth-abundant electrocatalysts to replace state-of-the-art Pt/C in the hydrogen evolution reaction (HER), a systematic computational study of Cu-based bimetallic electrocatalysts was performed. During the screening of dilute surface alloys of Cu mixed with other first-row transition metals, materials with

  19. Ocean thermal energy conversion: Perspective and status

    Science.gov (United States)

    Thomas, Anthony; Hillis, David L.

    The use of the thermal gradient between the warm surface waters and the deep cold waters of tropical oceans was first proposed by J. A. d'Arsonval in 1881 and tried unsuccessfully by George Claude in 1930. Interest in Ocean Thermal Energy Conversion (OTEC) and other renewable energy sources revived in the 1970s as a result of oil embargoes. At that time, the emphasis was on large floating plants miles from shore producing 250 to 400 MW for maintained grids. When the problems of such plants became better understood and the price of oil reversed its upward trend, the emphasis shifted to smaller (10 MW) shore based plants on tropical islands. Such plants would be especially attractive if they produce fresh water as a by-product. During the past 15 years, major progress has been made in converting OTEC unknowns into knowns. Mini-OTEC proved the closed cycle concept. Cost effective heat exchanger concepts were identified. An effective biofouling control technique was discovered. Aluminum was determined to be promising for OTEC heat exchangers. Heat transfer augmentation techniques were identified, which promised a reduction on heat exchanger size and cost. Fresh water was produced by an OTEC open cycle flash evaporator, using the heat energy in the seawater itself. The current R and D emphasis is on the design and construction of a test facility to demonstrate the technical feasibility of the open cycle process. The 10 MW shore-based, closed cycle plant can be built with today's technology; with the incorporation of a flash evaporator, it will produce fresh water as well as electrical power; both valuable commodities on many tropical islands. The open cycle process has unknowns that require solution before the technical feasibility can be demonstrated. The economic viability of either cycle depends on reducing the capital costs of OTEC plants and on future trends in the costs of conventional energy sources.

  20. The Carbon Nanotube Fibers for Optoelectric Conversion and Energy Storage

    Directory of Open Access Journals (Sweden)

    Yongfeng Luo

    2014-01-01

    Full Text Available This review summarizes recent studies on carbon nanotube (CNT fibers for weavable device of optoelectric conversion and energy storage. The intrinsic properties of individual CNTs make the CNT fibers ideal candidates for optoelectric conversion and energy storage. Many potential applications such as solar cell, supercapacitor, and lithium ion battery have been envisaged. The recent advancement in CNT fibers for optoelectric conversion and energy storage and the current challenge including low energy conversion efficiency and low stability and future direction of the energy fiber have been finally summarized in this paper.

  1. Photochemical Energy Storage and Electrochemically Triggered Energy Release in the Norbornadiene-Quadricyclane System: UV Photochemistry and IR Spectroelectrochemistry in a Combined Experiment.

    Science.gov (United States)

    Brummel, Olaf; Waidhas, Fabian; Bauer, Udo; Wu, Yanlin; Bochmann, Sebastian; Steinrück, Hans-Peter; Papp, Christian; Bachmann, Julien; Libuda, Jörg

    2017-07-06

    The two valence isomers norbornadiene (NBD) and quadricyclane (QC) enable solar energy storage in a single molecule system. We present a new photoelectrochemical infrared reflection absorption spectroscopy (PEC-IRRAS) experiment, which allows monitoring of the complete energy storage and release cycle by in situ vibrational spectroscopy. Both processes were investigated, the photochemical conversion from NBD to QC using the photosensitizer 4,4'-bis(dimethylamino)benzophenone (Michler's ketone, MK) and the electrochemically triggered cycloreversion from QC to NBD. Photochemical conversion was obtained with characteristic conversion times on the order of 500 ms. All experiments were performed under full potential control in a thin-layer configuration with a Pt(111) working electrode. The vibrational spectra of NBD, QC, and MK were analyzed in the fingerprint region, permitting quantitative analysis of the spectroscopic data. We determined selectivities for both the photochemical conversion and the electrochemical cycloreversion and identified the critical steps that limit the reversibility of the storage cycle.

  2. Iron disulfide for solar energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Ennaoui, A. (Hahn-Meitner-Inst., Abt. Solare Energetik und Materialforschung, Berlin (Germany)); Fiechter, S. (Hahn-Meitner-Inst., Abt. Solare Energetik und Materialforschung, Berlin (Germany)); Pettenkofer, C. (Hahn-Meitner-Inst., Abt. Solare Energetik und Materialforschung, Berlin (Germany)); Alonso-Vante, N. (Hahn-Meitner-Inst., Abt. Solare Energetik und Materialforschung, Berlin (Germany)); Bueker, K. (Hahn-Meitner-Inst., Abt. Solare Energetik und Materialforschung, Berlin (Germany)); Bronold, M. (Hahn-Meitner-Inst., Abt. Solare Energetik und Materialforschung, Berlin (Germany)); Hoepfner, C. (Hahn-Meitner-Inst., Abt. Solare Energetik und Materialforschung, Berlin (Germany)); Tributsch, H. (Hahn-Meitner-Inst., Abt. Solare Energetik und Materialforschung, Berlin (Germany))

    1993-05-01

    Pyrite (E[sub g] = 0.95 eV) is being developed as a solar energy material due to its environmental compatibility and its very high light absorption coefficient. A compilation of material, electronic and interfacial chemical properties is presented, which is considered relevant for quantum energy conversion. In spite of intricate problems existing within material chemistry, high quantum efficiencies for photocurrent generation (> 90%) and high photovoltages ([approx] 500 mV) have been observed with single crystal electrodes and thin layers respectively. The most interesting aspect of this study is the use of pyrite as an ultrathin (10-20 nm) layer sandwiched between large gap p-type and n-type materials in a p-i-n like structure. Such a system, in which the pyrite layer only acts as photon absorber and mediates injection of excited electrons can be defined as sensitization solar cell. The peculiar electron transfer properties of pyrite interfaces, facilitating interfacial coordination chemical pathways, may turn out to be very helpful. Significant research challenges are discussed in the hope of attracting interest in the development of solar cells from this abundant material. (orig.)

  3. Photovoltaic conversion of the solar energy

    International Nuclear Information System (INIS)

    Gordillo G, Gerardo

    1998-01-01

    In this work, a short description of the basic aspect of the performance of homojunction solar cells and of the technological aspects of the fabrication of low cost thin film solar cells is made. Special emphasis on the historical aspects of the evolution of the conversion efficiency of photovoltaic devices based on crystalline silicon, amorphous silicon, Cd Te and CulnSe 2 is also made. The state of art of the technology of photovoltaic devices and modules is additionally presented. The contribution to the development of high efficiency solar cells and modules, carried out by research centers of universities such us: Stuttgart university (Germany), Stockholm university (Sweden), University of South Florida (USA), university of south gales (Australia), by the national renewable energy laboratory of USA and by research centers of companies such us: Matsushita (Japan), BP-solar (England), Boeing (USA), Arco solar (USA), Siemens (Germany) etc. are specially emphasized. Additionally, a section concerning economical aspect of the photovoltaic generation of electric energy is enclosed. In this section an overview of the evolution of price and world market of photovoltaic system is presented

  4. Hierarchically structured carbon nanotubes for energy conversion and storage

    Science.gov (United States)

    Du, Feng

    As the world population continues to increase, large amounts of energy are consumed. Reality pushes us to find new energy or use our current energy more efficiently. Researches on energy conversion and storage have become increasingly important and essential. This grand challenge research has led to a recent focus on nanostructured materials. Carbon nanomaterials such as carbon nanotubes (CNTs) play a critical role in all of these nanotechnology challenges. CNTs have a very large surface area, a high electrochemical accessibility, high electronic conductivity and strong mechanical properties. This combination of properties makes them promising materials for energy device applications, such as FETs, supercapacitors, fuel cells, and lithium batteries. This study focuses on exploring the possibility of using vertically aligned carbon nanotubes (VA-CNTs) as the electrode materials in these energy applications. For the application of electrode materials, electrical conductive, vertically aligned CNTs with controllable length and diameter were synthesized. Several CVD methods for VA-CNT growth have been explored, although the iron / aluminum pre-coated catalyst CVD system was the main focus. A systematic study of several factors, including growth time, temperature, gas ratio, catalyst coating was conducted. The mechanism of VA-CNTs was discussed and a model for VA-CNT length / time was proposed to explain the CNT growth rate. Furthermore, the preferential growth of semiconducting (up to 96 atom% carbon) VA-SWNTs by using a plasma enhanced CVD process combined with fast heating was also explored, and these semiconducting materials have been directly used for making FETs using simple dispersion in organic solvent, without any separation and purification. Also, by inserting electron-accepting nitrogen atoms into the conjugated VA-CNT structure during the growth process, we synthesized vertically aligned nitrogen containing carbon nanotubes (VA-NCNTs). After purification of

  5. Fundamental formulae for wave-energy conversion.

    Science.gov (United States)

    Falnes, Johannes; Kurniawan, Adi

    2015-03-01

    The time-average wave power that is absorbed from an incident wave by means of a wave-energy conversion (WEC) unit, or by an array of WEC units-i.e. oscillating immersed bodies and/or oscillating water columns (OWCs)-may be mathematically expressed in terms of the WEC units' complex oscillation amplitudes, or in terms of the generated outgoing (diffracted plus radiated) waves, or alternatively, in terms of the radiated waves alone. Following recent controversy, the corresponding three optional expressions are derived, compared and discussed in this paper. They all provide the correct time-average absorbed power. However, only the first-mentioned expression is applicable to quantify the instantaneous absorbed wave power and the associated reactive power. In this connection, new formulae are derived that relate the 'added-mass' matrix, as well as a couple of additional reactive radiation-parameter matrices, to the difference between kinetic energy and potential energy in the water surrounding the immersed oscillating WEC array. Further, a complex collective oscillation amplitude is introduced, which makes it possible to derive, by a very simple algebraic method, various simple expressions for the maximum time-average wave power that may be absorbed by the WEC array. The real-valued time-average absorbed power is illustrated as an axisymmetric paraboloid defined on the complex collective-amplitude plane. This is a simple illustration of the so-called 'fundamental theorem for wave power'. Finally, the paper also presents a new derivation that extends a recently published result on the direction-average maximum absorbed wave power to cases where the WEC array's radiation damping matrix may be singular and where the WEC array may contain OWCs in addition to oscillating bodies.

  6. Direct energy conversion of radiation energy in fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, S.; Iiyoshi, A.; Motojima, O.; Okamoto, M.; Sudo, S. [National Inst. for Fusion Science, Nagoya (Japan); Ohnishi, M.; Onozuka, M.; Uenosono, C.

    1994-12-31

    Direct energy conversion from plasma heat flux has been studied. Since major parts of fusion energy in the advanced fusion reactor are radiation and charged particle energies, the flexible design of the blanket is possible. We discuss the potentiality of the thermoelectric element that generate electricity by temperature gradient in conductors. A Strong magnetic field is used to confine the fusion plasma, therefore, it is appropriate to consider the effect of the magnetic field. We propose a new element which is called Nernst element. The new element needs the magnetic field and the temperature gradient. We compare the efficiency of these two elements in a semiconductor model. Finally, a direct energy converter are mentioned. (author).

  7. Direct energy conversion of radiation energy in fusion reactor

    International Nuclear Information System (INIS)

    Yamaguchi, S.; Iiyoshi, A.; Motojima, O.; Okamoto, M.; Sudo, S.; Ohnishi, M.; Onozuka, M.; Uenosono, C.

    1994-01-01

    Direct energy conversion from plasma heat flux has been studied. Since major parts of fusion energy in the advanced fusion reactor are radiation and charged particle energies, the flexible design of the blanket is possible. We discuss the potentiality of the thermoelectric element that generate electricity by temperature gradient in conductors. A Strong magnetic field is used to confine the fusion plasma, therefore, it is appropriate to consider the effect of the magnetic field. We propose a new element which is called Nernst element. The new element needs the magnetic field and the temperature gradient. We compare the efficiency of these two elements in a semiconductor model. Finally, a direct energy converter are mentioned. (author)

  8. 2nd Workshop on the Chemistry of Energy Conversion

    CERN Document Server

    2016-01-01

    A sustainable energy future that does not rely on fossil fuels requires the advances of new materials design and development with efficient energy conversion. However, materials development is still at its infancy. There is an imperative to develop new energy conversion strategies. In Nature, plants harness sunlight and convert them into chemical energy. The ability to mimic Nature by combining synthetic nanoscopic and molecular components to produce chemical fuels is the Holy Grail to achieve sustainable energy production.​ The Institute of Advanced Studies (IAS) and the School of Physical and Mathematical Sciences (SPMS), NTU, are jointly organizing this workshop. We aim to create dialogues among scientists in the energy conversion field, with the ultimate goal of facilitating breakthroughs in materials design for energy conversion. It will also bring the expertise on Chemistry of Energy Conversion to the door steps of the materials research community in Singapore and also provide a platform for partic...

  9. Demonstrating Energy Conversion with Piezoelectric Crystals and a Paddle Fan

    Science.gov (United States)

    Rakbamrung, Prissana; Putson, Chatchai; Muensit, Nantakan

    2014-01-01

    A simple energy conversion system--particularly, the conversion of mechanical energy into electrical energy by using shaker flashlights--has recently been presented. This system uses hand generators, consisting of a magnet in a tube with a coil wrapped around it, and acts as an ac source when the magnet passes back and forth through the coil.…

  10. Organohalide Perovskites for Solar Energy Conversion.

    Science.gov (United States)

    Lin, Qianqian; Armin, Ardalan; Burn, Paul L; Meredith, Paul

    2016-03-15

    Lead-based organohalide perovskites have recently emerged as arguably the most promising of all next generation thin film solar cell technologies. Power conversion efficiencies have reached 20% in less than 5 years, and their application to other optoelectronic device platforms such as photodetectors and light emitting diodes is being increasingly reported. Organohalide perovskites can be solution processed or evaporated at low temperatures to form simple thin film photojunctions, thus delivering the potential for the holy grail of high efficiency, low embedded energy, and low cost photovoltaics. The initial device-driven "perovskite fever" has more recently given way to efforts to better understand how these materials work in solar cells, and deeper elucidation of their structure-property relationships. In this Account, we focus on this element of organohalide perovskite chemistry and physics in particular examining critical electro-optical, morphological, and architectural phenomena. We first examine basic crystal and chemical structure, and how this impacts important solar-cell related properties such as the optical gap. We then turn to deeper electronic phenomena such as carrier mobilities, trap densities, and recombination dynamics, as well as examining ionic and dielectric properties and how these two types of physics impact each other. The issue of whether organohalide perovskites are predominantly nonexcitonic at room temperature is currently a matter of some debate, and we summarize the evidence for what appears to be the emerging field consensus: an exciton binding energy of order 10 meV. Having discussed the important basic chemistry and physics we turn to more device-related considerations including processing, morphology, architecture, thin film electro-optics and interfacial energetics. These phenomena directly impact solar cell performance parameters such as open circuit voltage, short circuit current density, internal and external quantum efficiency

  11. Data on flow cell optimization for membrane-based electrokinetic energy conversion

    Directory of Open Access Journals (Sweden)

    David Nicolas Østedgaard-Munck

    2017-12-01

    Full Text Available This article elaborates on the design and optimization of a specialized flow cell for the measurement of direct conversion of pressure into electrical energy (Electrokinetic Energy Conversion, EKEC which has been presented in Østedgaard-Munck et al. (2017 [1]. Two main flow cell parameters have been monitored and optimized: A the hydraulic pressure profile on each side of the membrane introduced by pumps recirculating the electrolyte solution through the flow fields and B the electrical resistance between the current collectors across the combined flow cell. The latter parameter has been measured using four-point Electrochemical Impedance spectroscopy (EIS for different flow rates and concentrations. The total cell resistance consists of contributions from different components: the membrane (Rmem, anode charge transfer (RA, cathode charge transfer (RC, and ion diffusion in the porous electrodes (RD.The intrinsic membrane properties of Nafion 117 has been investigated experimentally in LiI/I2 solutions with concentrations ranging between 0.06 and 0.96 M and used to identify the preferred LiI/I2 solution concentration. This was achieved by measuring the solution uptake, internal solution concentration and ion exchange capacity. The membrane properties were further used to calculate the transport coefficients and electrokinetic Figure of merit in terms of the Uniform potential and Space charge models. Special attention has been put on the streaming potential coefficient which is an intrinsic property. Keywords: Electrokinetic energy conversion, Electrochemical flow cell, Conversion efficiency

  12. Nano-materials for solar energy conversion

    International Nuclear Information System (INIS)

    Davenas, J.; Boiteux, G.; Ltaief, A.; Barlier, V.

    2006-01-01

    Nano-materials present an important development potential in the field of photovoltaic conversion in opening new outlooks in the reduction of the solar energy cost. The organic or hybrid solar cells principle is based on the electron-hole pairs dissociation, generated under solar radiation on a conjugated polymer, by chemical species acting as electrons acceptors. The two ways based on fullerenes dispersion or on TiO 2 particles in a semi-conductor polymer (MEH-PPV, PVK) are discussed. The acceptors concentration is high in order to allow the conduction of the electrons on a percolation way, the polymer providing the holes conduction. A new preparation method of the mixtures MEH-PPV/fullerenes based on the use of specific solvents has allowed to produce fullerenes having nano-metric sizes ranges. It has then been possible to decrease the fullerenes concentration allowing the dissociation and the transport of photoinduced charges. The way based on the in-situ generation of TiO 2 from an organometallic precursor has allowed to obtain dispersions of nano-metric inorganic particles. The optimization of the photovoltaic properties of these nano-composites requires a particular adjustment of their composition and size ranges leading to a better control of the synthesis processes. (O.M.)

  13. High-capacity electrode materials for electrochemical energy storage

    Indian Academy of Sciences (India)

    2015-06-02

    Jun 2, 2015 ... We discuss the role of nanoscale effects on the electrochemical ..... tems and BASF for developing high energy density lithium ion cells for plug-in electric ..... SEM and STEM images showing typical shapes and sizes of FeF2 ...

  14. Exploratory technology research program for electrochemical energy storage. Annual report for 1995

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, Kim [ed.

    1996-06-01

    The US DOE Office of Transportation Technologies provides support for an Electrochemical Energy Storage Program, that includes research and development (R&D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EV`s)and hybrid systems. The program centers on advanced electrochemical systems that offer the potential for high performance and low life- cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electric Vehicle Technology Program is divided into two project areas: the US Advanced Battery Consortium (USABC) and Advanced battery R&D which includes the Exploratory Technology Research (ETR) program managed by the Lawrence Berkeley National Laboratory. The role of the ETR program is to perform supporting research on the advanced battery systems under development by the USABC and the Sandia Laboratories (SNL) Electric Vehicle Advanced Battery Systems (EVABS) program, and to evaluate new systems with potentially superior performance, durability and/of cost characteristics. The specific goal of the ETR program is to identify the most promising electrochemical technologies and development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR program in CY 1995. This is a continuing program, and reports for prior years have been published; they are listed in this report.The general R&D areas addressed by the program include identification of new electrochemical couples for advanced batteries, determination of technical feasibility of the new couples, improvements in battery components and materials, establishment of engineering principles applicable to electrochemical energy storage and conversion, and the development of fuel cell technology for transportation applications.

  15. Conversion of zero point energy into high-energy photons

    Energy Technology Data Exchange (ETDEWEB)

    Ivlev, B. I. [Universidad Autonoma de San Luis Potosi, Instituto de Fisica, Av. Manuel Nava No. 6, Zona Universitaria, 78290 San Luis Potosi, SLP (Mexico)

    2016-11-01

    An unusual phenomenon, observed in experiments is studied. X-ray laser bursts of keV energy are emitted from a metal where long-living states, resulting in population inversion, are totally unexpected. Anomalous electron-photon states are revealed to be formed inside the metal. These states are associated with narrow, 10{sup -11} cm, potential well created by the local reduction of zero point electromagnetic energy. In contrast to analogous van der Waals potential well, leading to attraction of two hydrogen atoms, the depth of the anomalous well is on the order of 1 MeV. The states in that well are long-living which results in population inversion and subsequent laser generation observed. The X-ray emission, occurring in transitions to lower levels, is due to the conversion of zero point electromagnetic energy. (Author)

  16. Conversion of visible light to electrical energy - Stable cadmium selenide photoelectrodes in aqueous electrolytes

    Science.gov (United States)

    Wrighton, M. S.; Ellis, A. B.; Kaiser, S. W.

    1977-01-01

    Stabilization of n-type CdSe to photoanodic dissolution is reported. The stabilization is accomplished by the competitive oxidation of S(--) or S(n)(--) at the CdSe photoanode in an electrochemical cell. Such stabilized cells are shown to sustain the conversion of low energy (not less than 1.7 eV) visible light to electricity with good efficiency and no deterioration of the CdSe photoelectrode or of the electrolyte. The electrolyte undergoes no net chemical change because the oxidation occurring at the photoelectrode is reversed at the cathode. Conversion of monochromatic light at 633 nm to electricity is shown to be up to approximately 9% efficient with output potentials of approximately 0.4 V. Conversion of solar energy to electricity is estimated to be approximately 2% efficient.

  17. Electrochemical and conversion electron Moessbauer study of corrosion induced by acid rain

    International Nuclear Information System (INIS)

    Vertes, C.; Lakatos-Varsanyi, M.; Vertes, A.; Meisel, W.; Guetlich, P.

    1993-01-01

    The passivation of low carbon steel was studied in aqueous solution of 0.5M Na 2 SO 4 +0.001M NaHSO 3 (pH 3.5, 6.5 and 8.5) which can be considered as a model of acid rain. The used conversion electron Moessbauer spectroscopy (CEMS) with the complementary electrochemical investigations proved that the sulfite ions induce pitting corrosion at pH 3.5 and 6.5, while the measurements showed much weaker pitting at pH 8.5. The compositions and thicknesses of the passive films formed during the electrochemical treatments are determined from the CEM spectra. Only γ-FeOOH was found on the surface of the samples at pH 6.5 and 8.5. Nevertheless, at pH 3.5 the sextet belonging to Fe 3 C appears in the spectra, and also FeSO 4 .H 2 O could be detected in low concentration. (orig.)

  18. Recent Advances in Porous Carbon Materials for Electrochemical Energy Storage.

    Science.gov (United States)

    Wang, Libin; Hu, Xianluo

    2018-06-18

    Climate change and the energy crisis have promoted the rapid development of electrochemical energy-storage devices. Owing to many intriguing physicochemical properties, such as excellent chemical stability, high electronic conductivity, and a large specific surface area, porous carbon materials have always been considering as a promising candidate for electrochemical energy storage. To date, a wide variety of porous carbon materials based upon molecular design, pore control, and compositional tailoring have been proposed for energy-storage applications. This focus review summarizes recent advances in the synthesis of various porous carbon materials from the view of energy storage, particularly in the past three years. Their applications in representative electrochemical energy-storage devices, such as lithium-ion batteries, supercapacitors, and lithium-ion hybrid capacitors, are discussed in this review, with a look forward to offer some inspiration and guidelines for the exploitation of advanced carbon-based energy-storage materials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Integrating Microbial Electrochemical Technology with Forward Osmosis and Membrane Bioreactors: Low-Energy Wastewater Treatment, Energy Recovery and Water Reuse

    KAUST Repository

    Werner, Craig M.

    2014-06-01

    treatment process. The anaerobic electrochemical membrane bioreactor described here integrates a microbial electrolysis cell with a membrane bioreactor using conductive hollow fiber membrane to produce hydrogen gas, treat wastewater and reclaim treated water. The energy recovered as hydrogen gas in this system was sufficient to offset all the electrical energy requirements for operation. The findings from these studies significantly improve the prospects for simultaneous wastewater treatment, energy recovery and water reclamation in a single reactor but challenges such as membrane biofouling and conversion of hydrogen to methane by methanogenesis require further study.

  20. Highly efficient and energy-saving sectional treatment of landfill leachate with a synergistic system of biochemical treatment and electrochemical oxidation on a boron-doped diamond electrode

    International Nuclear Information System (INIS)

    Zhao Guohua; Pang Yaning; Liu Lei; Gao Junxia; Lv Baoying

    2010-01-01

    In this paper, a synergistic combination of the biochemical treatment and electrochemical oxidation (SBEO) of landfill leachate with sectional treatment on a boron-doped diamond (BDD) electrode is proposed. The first stage involves the synergistic system of biochemical treatment and electrochemical oxidation. Then, the second stage is followed by individual biochemical treatment. Comparisons among the SBEO, electrochemical oxidation, biochemical treatment and biochemical treatment with the pretreatment of electrochemical oxidation are made systematically, which show that this method is both highly efficient and energy-saving. The higher TOC removal and low energy cost on the BDD electrode can be explained by the conversion of the bio-refractory pollutants to biodegradable organics in the electrochemical oxidation process, improving the current efficiency and reducing the energy cost. The treated wastewater is degraded only with biochemical treatment in the second stage, which further improves efficiency and reduced the energy cost.

  1. Renewable energy systems advanced conversion technologies and applications

    CERN Document Server

    Luo, Fang Lin

    2012-01-01

    Energy conversion techniques are key in power electronics and even more so in renewable energy source systems, which require a large number of converters. Renewable Energy Systems: Advanced Conversion Technologies and Applications describes advanced conversion technologies and provides design examples of converters and inverters for renewable energy systems-including wind turbine and solar panel energy systems. Learn Cutting-Edge Techniques for Converters and Inverters Setting the scene, the book begins with a review of the basics of astronomy and Earth physics. It then systematically introduc

  2. Method for the manufacture of a thin film electrochemical energy source and device

    NARCIS (Netherlands)

    2008-01-01

    The invention relates to a method for the manuf. of a thin film electrochem. energy source. The invention also relates to a thin film electrochem. energy source. The invention also relates to an elec. device comprising such a thin film electrochem. energy source. The invention enables a more rapid

  3. Semiconductor Nanowires and Nanotubes for Energy Conversion

    Science.gov (United States)

    Fardy, Melissa Anne

    In recent years semiconductor nanowires and nanotubes have garnered increased attention for their unique properties. With their nanoscale dimensions comes high surface area and quantum confinement, promising enhancements in a wide range of applications. 1-dimensional nanostructures are especially attractive for energy conversion applications where photons, phonons, and electrons come into play. Since the bohr exciton radius and phonon and electron mean free paths are on the same length scales as nanowire diameters, optical, thermal, and electrical properties can be tuned by simple nanowire size adjustments. In addition, the high surface area inherent to nanowires and nanotubes lends them towards efficient charge separation and superior catalytic performance. In thermoelectric power generation, the nanoscale wire diameter can effectively scatter phonons, promoting reductions in thermal conductivity and enhancements in the thermoelectric figure of merit. To that end, single-crystalline arrays of PbS, PbSe, and PbTe nanowires have been synthesized by a chemical vapor transport approach. The electrical and thermal transport properties of the nanowires were characterized to investigate their potential as thermoelectric materials. Compared to bulk, the lead chalcogenide nanowires exhibit reduced thermal conductivity below 100 K by up to 3 orders of magnitude, suggesting that they may be promising thermoelectric materials. Smaller diameters and increased surface roughness are expected to give additional enhancements. The solution-phase synthesis of PbSe nanowires via oriented attachment of nanoparticles enables facile surface engineering and diameter control. Branched PbSe nanowires synthesized by this approach showed near degenerately doped charge carrier concentrations. Compared to the bulk, the PbSe nanowires exhibited a similar Seebeck coefficient and a significant reduction in thermal conductivity in the temperature range 20 K to 300 K. Thermal annealing of the Pb

  4. Microstructure and electrochemical behavior of cerium conversion coating modified with silane agent on magnesium substrates

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Li; Shi, Jing, E-mail: shijing@ouc.edu.cn; Wang, Xin, E-mail: wangxin.hd@163.com; Liu, Dan; Xu, Haigang

    2016-07-15

    Graphical abstract: The unmodified coating shows averaged static water contact angles of a little more than 50º, which is clearly hydrophilic for water solutions. With the silane concentration increases, the water contact angles show an increase tendency. Especially, when the silane addition is increased to 25 ml L-1, the coating surface presents a hydrophobic feature, with static water contact angle of more than 110º. - Highlights: • BTESPT modification can effectively improve the uniformity, hydrophobic performance, chemical stability and corrosion inhibition capability of traditional cerium conversion coating. • Si-O-Si linkage builds a robust structure to increase of the coating density. Si−O−Mg bonds strengthen the adhesion between the coating/substrate. • The system modified with 25 ml L{sup −1} BTESPT displays the optimum corrosion protection performance. - Abstract: The cerium conversion coating with and without different concentrations of silane agent bis-(γ-triethoxysilylpropyl)-tetrasulfide (BTESPT) modification is obtained on magnesium alloys. Detailed properties of the coatings and the role of BTESPT as an additive are studied and followed with careful discussion. The coating morphology, wettability, chemical composition and corrosion resistance are characterized by scanning electronic microscope (SEM), water contact-angle, X-ray photoelectron spectroscopy (XPS), potentiodynamic measurements and electrochemical impedance spectroscopy (EIS). The electrochemical behavior of the coatings is investigated using EIS. The results indicate that the coating morphology and composition can be controlled by changing silane concentration. The combination of cerium ions and silane molecules could promote the formation of more homogenous and higher hydrophobic coating. The coating turns to be more compact and the adhesive strength between the coating and the magnesium substrate are strongly improved with the formation of Si−O−Si and Si

  5. Microstructure and electrochemical behavior of cerium conversion coating modified with silane agent on magnesium substrates

    International Nuclear Information System (INIS)

    Lei, Li; Shi, Jing; Wang, Xin; Liu, Dan; Xu, Haigang

    2016-01-01

    Graphical abstract: The unmodified coating shows averaged static water contact angles of a little more than 50º, which is clearly hydrophilic for water solutions. With the silane concentration increases, the water contact angles show an increase tendency. Especially, when the silane addition is increased to 25 ml L-1, the coating surface presents a hydrophobic feature, with static water contact angle of more than 110º. - Highlights: • BTESPT modification can effectively improve the uniformity, hydrophobic performance, chemical stability and corrosion inhibition capability of traditional cerium conversion coating. • Si-O-Si linkage builds a robust structure to increase of the coating density. Si−O−Mg bonds strengthen the adhesion between the coating/substrate. • The system modified with 25 ml L"−"1 BTESPT displays the optimum corrosion protection performance. - Abstract: The cerium conversion coating with and without different concentrations of silane agent bis-(γ-triethoxysilylpropyl)-tetrasulfide (BTESPT) modification is obtained on magnesium alloys. Detailed properties of the coatings and the role of BTESPT as an additive are studied and followed with careful discussion. The coating morphology, wettability, chemical composition and corrosion resistance are characterized by scanning electronic microscope (SEM), water contact-angle, X-ray photoelectron spectroscopy (XPS), potentiodynamic measurements and electrochemical impedance spectroscopy (EIS). The electrochemical behavior of the coatings is investigated using EIS. The results indicate that the coating morphology and composition can be controlled by changing silane concentration. The combination of cerium ions and silane molecules could promote the formation of more homogenous and higher hydrophobic coating. The coating turns to be more compact and the adhesive strength between the coating and the magnesium substrate are strongly improved with the formation of Si−O−Si and Si−O−M chemical

  6. Exploratory Technology Research Program for electrochemical energy storage

    Science.gov (United States)

    Kinoshita, Kim

    1994-09-01

    The U.S. Department of Energy's Office of Propulsion Systems provides support for an Electrochemical Energy Storage Program, that includes research and development (R&D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EV's). The program centers on advanced systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electrochemical Energy Storage Program is divided into two projects: the Electric Vehicle Advanced Battery Systems (EVABS) Development Program and the Exploratory Technology Research (ETR) Program. The EVABS Program management responsibility has been assigned to Sandia National Laboratories (SNL); Lawrence Berkeley Laboratory (LBL) is responsible for management of the ETR Program. The EVABS and ETR Programs include an integrated matrix of R&D efforts designed to advance progress on selected candidate electrochemical systems. The United States Advanced Battery Consortium (USABC), a tripartite undertaking between DOE, the U.S. automobile manufacturers and the Electric Power Research Institute (EPRI), was formed in 1991 to accelerate the development of advanced batteries for consumer EV's. The role of the FIR Program is to perform supporting research on the advanced battery systems under development by the USABC and EVABS Program, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or the EVABS Program for further development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1993.

  7. Energy Conversion Alternatives Study (ECAS), General Electric Phase 1. Volume 3: Energy conversion subsystems and components. Part 1: Bottoming cycles and materials of construction

    Science.gov (United States)

    Shah, R. P.; Solomon, H. D.

    1976-01-01

    Energy conversion subsystems and components were evaluated in terms of advanced energy conversion systems. Results of the bottoming cycles and materials of construction studies are presented and discussed.

  8. Thermally responsive polymer electrolytes for inherently safe electrochemical energy storage

    Science.gov (United States)

    Kelly, Jesse C.

    Electrochemical double layer capacitors (EDLCs), supercapacitors and Li-ion batteries have emerged as premier candidates to meet the rising demands in energy storage; however, such systems are limited by thermal hazards, thermal runaway, fires and explosions, all of which become increasingly more dangerous in large-format devices. To prevent such scenarios, thermally-responsive polymer electrolytes (RPEs) that alter properties in electrochemical energy storage devices were designed and tested. These RPEs will be used to limit or halt device operation when temperatures increase beyond a predetermined threshold, therefore limiting further heating. The development of these responsive systems will offer an inherent safety mechanism in electrochemical energy storage devices, while preserving the performance, lifetimes, and versatility that large-format systems require. Initial work focused on the development of a model system that demonstrated the concept of RPEs in an electrochemical device. Aqueous electrolyte solutions of polymers exhibiting properties that change in response to temperature were developed for applications in EDLCs and supercapacitors. These "smart materials" provide a means to control electrochemical systems where polymer phase separation at high temperatures affects electrolyte properties and inhibits device performance. Aqueous RPEs were synthesized using N-isopropylacrylamide, which governs the thermal properties, and fractions of acrylic acid or vinyl sulfonic acids, which provide ions to the solution. The molecular properties of these aqueous RPEs, specifically the ionic composition, were shown to influence the temperature-dependent electrolyte properties and the extent to which these electrolytes control the energy storage characteristics of a supercapacitor device. Materials with high ionic content provided the highest room temperature conductivity and electrochemical activity; however, RPEs with low ionic content provided the highest "on

  9. Experimental Research of a New Wave Energy Conversion Device

    Science.gov (United States)

    Lu, Zhongyue; Shang, Jianzhong; Luo, Zirong; Sun, Chongfei; Chen, Gewei

    2018-01-01

    With the increasing tension of contemporary social energy, the development and utilization of renewable energy has become an important development direction. As an important part of renewable energy, wave energy has the characteristics of green environmental protection and abundant reserves, attracting more investment and research. For small marine equipment energy supply problem, this paper puts forward a micro wave energy conversion device as the basic of heaving motion of waves in the ocean. This paper designed a new type of power output device can solve the micro wave energy conversion problem.

  10. Reduced SnO2 Porous Nanowires with a High Density of Grain Boundaries as Catalysts for Efficient Electrochemical CO2 -into-HCOOH Conversion.

    Science.gov (United States)

    Kumar, Bijandra; Atla, Veerendra; Brian, J Patrick; Kumari, Sudesh; Nguyen, Tu Quang; Sunkara, Mahendra; Spurgeon, Joshua M

    2017-03-20

    Electrochemical conversion of CO 2 into energy-dense liquids, such as formic acid, is desirable as a hydrogen carrier and a chemical feedstock. SnO x is one of the few catalysts that reduce CO 2 into formic acid with high selectivity but at high overpotential and low current density. We show that an electrochemically reduced SnO 2 porous nanowire catalyst (Sn-pNWs) with a high density of grain boundaries (GBs) exhibits an energy conversion efficiency of CO 2 -into-HCOOH higher than analogous catalysts. HCOOH formation begins at lower overpotential (350 mV) and reaches a steady Faradaic efficiency of ca. 80 % at only -0.8 V vs. RHE. A comparison with commercial SnO 2 nanoparticles confirms that the improved CO 2 reduction performance of Sn-pNWs is due to the density of GBs within the porous structure, which introduce new catalytically active sites. Produced with a scalable plasma synthesis technology, the catalysts have potential for application in the CO 2 conversion industry. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Rectenna session: Micro aspects. [energy conversion

    Science.gov (United States)

    Gutmann, R. J.

    1980-01-01

    Two micro aspects of the rectenna design are addressed: evaluation of the degradation in net rectenna RF to DC conversion efficiency due to power density variations across the rectenna (power combining analysis) and design of Yagi-Uda receiving elements to reduce rectenna cost by decreasing the number of conversion circuits (directional receiving elements). The first of these micro aspects involves resolving a fundamental question of efficiency potential with a rectenna, while the second involves a design modification with a large potential cost saving.

  12. Porous solid backbone impregnation for electrochemical energy conversion systems

    KAUST Repository

    Boulfrad, Samir

    2013-09-19

    An apparatus and method for impregnating a porous solid backbone. The apparatus may include a platform for holding a porous solid backbone, an ink jet nozzle configured to dispense a liquid solution onto the porous solid backbone, a positioning mechanism configured to position the ink jet nozzle proximate to a plurality of locations of the porous solid backbone, and a control unit configured to control the positioning mechanism to position the ink jet nozzle proximate to the plurality of locations and cause the ink jet nozzle to dispense the liquid solution onto the porous solid backbone.

  13. Graphene Paper Based Nanomaterials for Electrochemical Sensing and Energy Conversion

    DEFF Research Database (Denmark)

    Zhang, Minwei

    of graphene-based materials to real world, graphene nanosheets must be assembled into macroscopic architecture with desired structures and functionality. To this end, graphene oxide (GO) is a very useful building block because it contains a significant number of oxygen-containing groups on the planar surface...... of hydrogen peroxide (H2O2). Graphene paper was finally explored as a sacrificial template for the synthesis of 2D ultra-fined nanostructured porous metal oxide (MO), as described in Chapters 6-8. In Chapter 6, we demonstrated that crystalline MO can be prepared by using GO papers as sacrificial templates...

  14. Porous solid backbone impregnation for electrochemical energy conversion systems

    KAUST Repository

    Boulfrad, Samir; Jabbour, Ghassan

    2013-01-01

    An apparatus and method for impregnating a porous solid backbone. The apparatus may include a platform for holding a porous solid backbone, an ink jet nozzle configured to dispense a liquid solution onto the porous solid backbone, a positioning mechanism configured to position the ink jet nozzle proximate to a plurality of locations of the porous solid backbone, and a control unit configured to control the positioning mechanism to position the ink jet nozzle proximate to the plurality of locations and cause the ink jet nozzle to dispense the liquid solution onto the porous solid backbone.

  15. The fractal nature materials microstructure influence on electrochemical energy sources

    Directory of Open Access Journals (Sweden)

    Mitić V.V.

    2015-01-01

    Full Text Available With increasing of the world energy crisis, research for new, renewable and alternative energy sources are in growth. The focus is on research areas, sometimes of minor importance and applications, where the different synthesis methods and microstructure properties optimization, performed significant improvement of output materials’ and components’ electro-physical properties, which is important for higher energy efficiency and in the electricity production (batteries and battery systems, fuel cells and hydrogen energy contribution. Also, the storage tanks capacity improvement, for the energy produced on such way, which is one of the most important development issues in the energy sphere, represents a very promising research and application area. Having in mind, the results achieved in the electrochemical energy sources field, especially electrolyte development, these energy sources, materials fractal nature optimization analysis contribution, have been investigated. Based on materials fractal structure research field, particularly electronic materials, we have performed microstructure influence parameters research in electrochemistry area. We have investigated the Ho2O3 concentration influence (from 0.01wt% to 1wt% and sintering temperature (from 1320°C to 1380°C, as consolidation parameters, and thus, also open the electrochemical function fractalization door and in the basic thermodynamic parameters the fractal correction introduced. The fractal dimension dependence on additive concentration is also investigated. [Projekat Ministarstva nauke Republike Srbije, br. 172057: Directed synthesis, structure and properties of multifunctional materials

  16. Energy dependence of fast neutron dosimetry using electrochemical etching

    International Nuclear Information System (INIS)

    Su, S.J.; Morgan, K.Z.

    1978-01-01

    Registration of fast-neutron induced recoil tracks by the electrochemical etching technique as applied to sensitive Lexan polycarbonate foils provides a simple and inexpensive means of fast neutron personnel dosimetry. The sensitivity (tracks/neutron) of recoil particle registration is given as a function of neutron energy. Neutrons of 7 Li (p,n) 7 Be, 3 T (d,n) 4 He and 9 B, respectively. Results are compared with other studies using other neutron sources and conventional etching method

  17. Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies.

    Science.gov (United States)

    Logan, Bruce E; Rabaey, Korneel

    2012-08-10

    Waste biomass is a cheap and relatively abundant source of electrons for microbes capable of producing electrical current outside the cell. Rapidly developing microbial electrochemical technologies, such as microbial fuel cells, are part of a diverse platform of future sustainable energy and chemical production technologies. We review the key advances that will enable the use of exoelectrogenic microorganisms to generate biofuels, hydrogen gas, methane, and other valuable inorganic and organic chemicals. Moreover, we examine the key challenges for implementing these systems and compare them to similar renewable energy technologies. Although commercial development is already underway in several different applications, ranging from wastewater treatment to industrial chemical production, further research is needed regarding efficiency, scalability, system lifetimes, and reliability.

  18. Conversion of Wastes into Bioelectricity and Chemicals by Using Microbial Electrochemical Technologies

    KAUST Repository

    Logan, B. E.

    2012-08-09

    Waste biomass is a cheap and relatively abundant source of electrons for microbes capable of producing electrical current outside the cell. Rapidly developing microbial electrochemical technologies, such as microbial fuel cells, are part of a diverse platform of future sustainable energy and chemical production technologies. We review the key advances that will enable the use of exoelectrogenic microorganisms to generate biofuels, hydrogen gas, methane, and other valuable inorganic and organic chemicals. Moreover, we examine the key challenges for implementing these systems and compare them to similar renewable energy technologies. Although commercial development is already underway in several different applications, ranging from wastewater treatment to industrial chemical production, further research is needed regarding efficiency, scalability, system lifetimes, and reliability.

  19. Sol-gel Technology and Advanced Electrochemical Energy Storage Materials

    Science.gov (United States)

    Chu, Chung-tse; Zheng, Haixing

    1996-01-01

    Advanced materials play an important role in the development of electrochemical energy devices such as batteries, fuel cells, and electrochemical capacitors. The sol-gel process is a versatile solution for use in the fabrication of ceramic materials with tailored stoichiometry, microstructure, and properties. This processing technique is particularly useful in producing porous materials with high surface area and low density, two of the most desirable characteristics for electrode materials. In addition,the porous surface of gels can be modified chemically to create tailored surface properties, and inorganic/organic micro-composites can be prepared for improved material performance device fabrication. Applications of several sol-gel derived electrode materials in different energy storage devices are illustrated in this paper. V2O5 gels are shown to be a promising cathode material for solid state lithium batteries. Carbon aerogels, amorphous RuO2 gels and sol-gel derived hafnium compounds have been studied as electrode materials for high energy density and high power density electrochemical capacitors.

  20. Semiconductor nanowires for photovoltaic and photoelectrochemical energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Dasgupta, Neil; Yang, Peidong

    2013-01-23

    Semiconductor nanowires (NW) possess several beneficial properties for efficient conversion of solar energy into electricity and chemical energy. Due to their efficient absorption of light, short distances for minority carriers to travel, high surface-to-volume ratios, and the availability of scalable synthesis methods, they provide a pathway to address the low cost-to-power requirements for wide-scale adaptation of solar energy conversion technologies. Here we highlight recent progress in our group towards implementation of NW components as photovoltaic and photoelectrochemical energy conversion devices. An emphasis is placed on the unique properties of these one-dimensional (1D) structures, which enable the use of abundant, low-cost materials and improved energy conversion efficiency compared to bulk devices.

  1. Carbon and energy footprint of electrochemical vinegar wastewater treatment

    Science.gov (United States)

    Gerek, Emine Esra; Yilmaz, Seval; Savaş Koparal, A.; Nezih Gerek, Ömer

    2017-11-01

    Electrochemical treatment of wastewaters that are rich in organic compounds is a popular method, due to its acidic nature that avoids biological treatment. In many cases, the pollution hazard is considered as the chemical oxygen demand (COD) from active carbon, and the success of the treatment is measured in terms of how much this specific parameter is reduced. However, if electricity is used during the treatment process, the treatment "itself" has manufacturing and operational energy costs. Many of the studies consider energy utilization as a monetary cost, and try to reduce its amount. However, the energy cost of the treatment also causes emission of carbon at the energy producing side of the closed loop. This carbon emission can be converted into oxygen demand, too. Therefore, it can be argued that one must look for the total optimal carbon efficiency (or oxygen demand), while reducing the COD. We chose a highly acidic wastewater case of vinegar production, which is a popular food product in Turkey, to demonstrate the high energy consumption and carbon emission problem of the electrochemical treatment approach. A novel strategy is presented to monitor total oxygen demand simultaneously at the treatment and energy production sides. Necessity of renewable energy utilization and conditions on process termination points are discussed.

  2. NASA-OAST program in photovoltaic energy conversion

    Science.gov (United States)

    Mullin, J. P.; Flood, D. J.

    1982-01-01

    The NASA program in photovoltaic energy conversion includes research and technology development efforts on solar cells, blankets, and arrays. The overall objectives are to increase conversion efficiency, reduce mass, reduce cost, and increase operating life. The potential growth of space power requirements in the future presents a major challenge to the current state of technology in space photovoltaic systems.

  3. Hydrogen-based electrochemical energy storage

    Science.gov (United States)

    Simpson, Lin Jay

    2013-08-06

    An energy storage device (100) providing high storage densities via hydrogen storage. The device (100) includes a counter electrode (110), a storage electrode (130), and an ion conducting membrane (120) positioned between the counter electrode (110) and the storage electrode (130). The counter electrode (110) is formed of one or more materials with an affinity for hydrogen and includes an exchange matrix for elements/materials selected from the non-noble materials that have an affinity for hydrogen. The storage electrode (130) is loaded with hydrogen such as atomic or mono-hydrogen that is adsorbed by a hydrogen storage material such that the hydrogen (132, 134) may be stored with low chemical bonding. The hydrogen storage material is typically formed of a lightweight material such as carbon or boron with a network of passage-ways or intercalants for storing and conducting mono-hydrogen, protons, or the like. The hydrogen storage material may store at least ten percent by weight hydrogen (132, 134) at ambient temperature and pressure.

  4. Examination of spent fuel radiation energy conversion for electricity generation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Haneol; Yim, Man-Sung, E-mail: msyim@kaist.ac.kr

    2016-04-15

    Highlights: • Utilizing conversion of radiation energy of spent fuel to electric energy. • MCNPX modeling and experiment were used to estimate energy conversion. • The converted energy may be useful for nuclear security applications. • The converted energy may be utilized for safety applications through energy storage. - Abstract: Supply of electricity inside nuclear power plant is one of the most important considerations for nuclear safety and security. In this study, generation of electric energy by converting radiation energy of spent nuclear fuel was investigated. Computational modeling work by using MCNPX 2.7.0 code along with experiment was performed to estimate the amount of electric energy generation. The calculation using the developed modeling work was validated through comparison with an integrated experiment. The amount of electric energy generation based on a conceptual design of an energy conversion module was estimated to be low. But the amount may be useful for nuclear security applications. An alternative way of utilizing the produced electric energy could be considered for nuclear safety application through energy storage. Further studies are needed to improve the efficiency of the proposed energy conversion concept and to examine the issue of radiation damage and economic feasibility.

  5. In operando spectroscopic studies of high temperature electrocatalysts used for energy conversion

    Science.gov (United States)

    McIntyre, Melissa Dawn

    Solid-state electrochemical cells are efficient energy conversion devices that can be used for clean energy production or for removing air pollutants from exhaust gas emitted by combustion processes. For example, solid oxide fuel cells generate electricity with low emissions from a variety of fuel sources; solid oxide electrolysis cells produce zero-emission H2 fuel; and solid-state DeNOx cells remove NOx gases from diesel exhaust. In order to maintain high conversion efficiencies, these systems typically operate at temperatures ≥ 500°C. The high operating temperatures, however, accelerate chemical and mechanical cell degradation. To improve device durability, a mechanistic understanding of the surface chemistry occurring at the cell electrodes (anode and cathode) is critical in terms of refining cell design, material selection and operation protocols. The studies presented herein utilized in operando Raman spectroscopy coupled with electrochemical measurements to directly correlate molecular/material changes with device performance in solid oxide cells under various operating conditions. Because excessive carbon accumulation with carbon-based fuels destroys anodes, the first three studies investigated strategies for mitigating carbon accumulation on Ni cermet anodes. Results from the first two studies showed that low amounts of solid carbon stabilized the electrical output and improved performance of solid oxide fuel cells operating with syn-gas (H 2/CO fuel mixture). The third study revealed that infiltrating anodes with Sn or BaO suppressed carbon accumulation with CH4 fuel and that H2O was the most effective reforming agent facilitating carbon removal. The last two studies explored how secondary phases formed in traditional solid oxide cell materials doped with metal oxides improve electrochemical performance. Results from the fourth study suggest that the mixed ion-electron conducting Zr5Ti7O24 secondary phase can expand the electrochemically active region

  6. Recent Progress on Integrated Energy Conversion and Storage Systems.

    Science.gov (United States)

    Luo, Bin; Ye, Delai; Wang, Lianzhou

    2017-09-01

    Over the last few decades, there has been increasing interest in the design and construction of integrated energy conversion and storage systems (IECSSs) that can simultaneously capture and store various forms of energies from nature. A large number of IECSSs have been developed with different combination of energy conversion technologies such as solar cells, mechanical generators and thermoelectric generators and energy storage devices such as rechargeable batteries and supercapacitors. This review summarizes the recent advancements to date of IECSSs based on different energy sources including solar, mechanical, thermal as well as multiple types of energies, with a special focus on the system configuration and working mechanism. With the rapid development of new energy conversion and storage technologies, innovative high performance IECSSs are of high expectation to be realised for diverse practical applications in the near future.

  7. Energy conversion device with support member having pore channels

    Science.gov (United States)

    Routkevitch, Dmitri [Longmont, CO; Wind, Rikard A [Johnstown, CO

    2014-01-07

    Energy devices such as energy conversion devices and energy storage devices and methods for the manufacture of such devices. The devices include a support member having an array of pore channels having a small average pore channel diameter and having a pore channel length. Material layers that may include energy conversion materials and conductive materials are coaxially disposed within the pore channels to form material rods having a relatively small cross-section and a relatively long length. By varying the structure of the materials in the pore channels, various energy devices can be fabricated, such as photovoltaic (PV) devices, radiation detectors, capacitors, batteries and the like.

  8. Space electric power design study. [laser energy conversion

    Science.gov (United States)

    Martini, W. R.

    1976-01-01

    The conversion of laser energy to electrical energy is discussed. Heat engines in which the laser heats the gas inside the engine through a window as well as heat engines in which the gas is heated by a thermal energy storage reservoir which has been heated by laser radiation are both evaluated, as well as the necessary energy storage, transmission and conversion components needed for a full system. Preliminary system concepts are presented and a recommended development program is outlined. It appears possible that a free displacer Stirling engine operating directly a linear electric generator can convert 65% of the incident laser energy into electricity.

  9. Feasibility study on conversion and storage of solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Senghaphan, W; Tunsiri, P; Trivijitkasem, P; Ratanathammaphan, K

    1982-01-01

    A study has been conducted on the energy conversion system from solar energy to mechanical energy and on the efficiency of energy storage by an ordinary battery. The conversion system makes use of a thermal cycle, that is to say, the solar energy is collected as heat, and this heat makes suitable working substances evaporate into vapor with volume and pressure which can be used to drive the turbine resulting in mechanical energy. The vapor which passes through the turbine will have reduced pressure and reduced temperature and will be recondensed into liquid after passing through a suitable radiator. This liquid can be pumped back into the hot part of the conversion system with little energy. It is found by this study that the turbine could be operated by using acetone as working substance with a 80-90/sup 0/C source of heat. In the energy conversion system from solar energy to electrical energy, it is essential to provide for an energy storage, so that energy can be used in the absence of sunshine. To store energy by using a batter is one of the convenient methods. Therefore the efficiency of the batteries has been studied. Owing to incompleteness of the researched system, a conventional DC power supply has been used for charging the batteries. It is found that the efficiency of the charging and discharging cycle of batteries is about 40-60%.

  10. Microfluidic energy conversion by application of two phase flow

    NARCIS (Netherlands)

    Xie, Yanbo

    2013-01-01

    We investigated the energy conversion performance by the streaming potential using totally different approaches. By introducing gas bubbles, which can be considered as perfect insulators, the internal electrical resistance of the system can be increased, decreasing the conduction current. Following

  11. Advanced Reactor Technology/Energy Conversion Project FY17 Accomplishments.

    Energy Technology Data Exchange (ETDEWEB)

    Rochau, Gary E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-02-01

    The purpose of the ART Energy Conversion (EC) Project is to provide solutions to convert the heat from an advanced reactor to useful products that support commercial application of the reactor designs.

  12. Integrated Electrochemical Processes for CO2 Capture and Conversion to Commodity Chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Hatton, T. Alan [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Jamison, Timothy [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2013-09-30

    The Massachusetts Institute of Technology (MIT) and Siemens Corporations (SCR) are developing new chemical synthesis processes for commodity chemicals from CO2. The process is assessed as a novel chemical sequestration technology that utilizes CO2 from dilute gas streams generated at industrial carbon emitters as a raw material to produce useful commodity chemicals. Work at Massachusetts Institute of Technology (MIT) commenced on October 1st, 2010, and finished on September 30th, 2013. During this period, we have investigated and accomplished five objectives that mainly focused on converting CO2 into high-value chemicals: 1) Electrochemical assessment of catalytic transformation of CO2 and epoxides to cyclic carbonates; 2) Investigation of organocatalytic routes to convert CO2 and epoxide to cyclic carbonates; 3) Investigation of CO2 Capture and conversion using simple olefins under continuous flow; 4) Microwave assisted synthesis of cyclic carbonates from olefins using sodium bicarbonates in a green pathway; 5) Life cycle analyses of integrated chemical sequestration process. In this final report, we will describe the detailed study performed during the three year period and findings and conclusions drawn from our research.

  13. Achieving sustainable biomass conversion to energy and bio products

    International Nuclear Information System (INIS)

    Matteson, G. C.

    2009-01-01

    The present effort in to maximize biomass conversion-to-energy and bio products is examined in terms of sustain ability practices. New goals, standards in practice, measurements and certification are needed for the sustainable biomass industry. Sustainable practices produce biomass energy and products in a manner that is secure, renewable, accessible locally, and pollution free. To achieve sustainable conversion, some new goals are proposed. (Author)

  14. Lead paste recycling based on conversion into battery grade oxides. Electrochemical tests and industrial production of new batteries

    Science.gov (United States)

    Fusillo, G.; Rosestolato, D.; Scura, F.; Cattarin, S.; Mattarozzi, L.; Guerriero, P.; Gambirasi, A.; Brianese, N.; Staiti, P.; Guerriero, R.; La Sala, G.

    2018-03-01

    We present the preparation and characterization of pure lead monoxide obtained through recycling of the lead paste recovered from exhausted lead acid batteries. The recycling is based on a hydrometallurgical procedure reported in a STC Patent, that includes simple chemical operations (desulphurisation, leaching, precipitation, filtration) and a final thermal conversion. Materials obtained by treatment at 600 °C consist predominantly of β-PbO. The electrochemical behaviour of Positive Active Mass (PAM) prepared from different materials (or mixtures) is then investigated and compared. An optimized oxide material, obtained by prolonged (8 h) thermal treatment at 600 °C, consists of pure β-PbO and appears suitable for preparation of battery elements, alone or in mixture with a small fraction (10%-30%) of traditional industrial leady oxide. The resulting battery performances are similar to those obtained from pure leady oxide. In comparison with traditional recycling processes, the proposed method guarantees lower energy consumption, limited environmental impact and reduced operating risk for industry workers.

  15. Ballistic energy conversion: physical modeling and optical characterization

    NARCIS (Netherlands)

    Xie, Yanbo; Bos, Diederik; van der Meulen, Mark-Jan; van der Meulen, Mark-Jan; Versluis, Michel; van den Berg, Albert; Eijkel, Jan C.T.

    2016-01-01

    The growing demand for renewable energy stimulates the exploration of new materials and methods for clean energy, a process which is boosted by nanoscience and emerging nanotechnologies. Recently a high efficiency and high power density energy conversion mechanism was demonstrated through the use of

  16. Conversion of biomass into energy source

    International Nuclear Information System (INIS)

    Antonescu, S.; Garjoaba, M.; Antonescu, A.

    2005-01-01

    This study assists the identification of possible application and markets of the CHP-plants in the NAS states, and forms the first part of a detailed study on economical and ecological prospects of small scale and large heat pipe reformers in NAS. It is well known that the energy strategy of the European Union, foresees the increase of the participation of the renewable energy from the total of the energy resources of the European Union, up to 12% in 2010. This participation is of a great importance for the adequate reduction of green house effect gases. From the energy production point of view it is proven the fact that in 2010 the production of renewable energy will be: electricity - 675 tWh; heat - 80 Mtoe (930 TWh). From the above mentioned energy demand, the biomass will cover: electricity - 230 TWh-34,1%; heat - 75 Mtoe (93,8%)

  17. Energy Conversion and Storage Requirements for Hybrid Electric Aircraft

    Science.gov (United States)

    Misra, Ajay

    2016-01-01

    Among various options for reducing greenhouse gases in future large commercial aircraft, hybrid electric option holds significant promise. In the hybrid electric aircraft concept, gas turbine engine is used in combination with an energy storage system to drive the fan that propels the aircraft, with gas turbine engine being used for certain segments of the flight cycle and energy storage system being used for other segments. The paper will provide an overview of various energy conversion and storage options for hybrid electric aircraft. Such options may include fuel cells, batteries, super capacitors, multifunctional structures with energy storage capability, thermoelectric, thermionic or a combination of any of these options. The energy conversion and storage requirements for hybrid electric aircraft will be presented. The role of materials in energy conversion and storage systems for hybrid electric aircraft will be discussed.

  18. Materials science for solar energy conversion systems

    CERN Document Server

    Granqvist, CG

    1991-01-01

    Rapid advances in materials technology are creating many novel forms of coatings for energy efficient applications in solar energy. Insulating heat mirrors, selective absorbers, transparent insulation and fluorescent concentrators are already available commercially. Radiative cooling, electrochromic windows and polymeric light pipes hold promise for future development, while chemical and photochemical processes are being considered for energy storage. This book investigates new material advances as well as applications, costs, reliability and industrial production of existing materials. Each c

  19. Teaching on ocean-wave-energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Falnes, J. [Norges teknisk-naturvitskaplege univ., Inst. for fysikk, Trondheim (Norway)

    2001-07-01

    Ocean-wave energy utilisation has for 27 years been a university research subject, in which the author has been active from the first year. In this paper he presents some information related to his teaching on the subject during many of these years. This includes teaching on the pre-university level and, in particular, development of the wave-energy module for an educational CD-ROM on sustainable technology and renewable energy. Education of the general public is very important. On the other hand teaching of doctor students and other wave-energy researchers is also a subject of the paper. (au)

  20. Biomass energy conversion workshop for industrial executives

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    The rising costs of energy and the risks of uncertain energy supplies are increasingly familiar problems in industry. Bottom line profits and even the simple ability to operate can be affected by spiralling energy costs. An often overlooked alternative is the potential to turn industrial waste or residue into an energy source. On April 9 and 10, 1979, in Claremont, California, the Solar Energy Research Institute (SERI), the California Energy Commission (CEC), and the Western Solar Utilization Network (WSUN) held a workshop which provided industrial managers with current information on using residues and wastes as industrial energy sources. Successful industrial experiences were described by managers from the food processing and forest product industries, and direct combustion and low-Btu gasification equipment was described in detail. These speakers' presentations are contained in this document. Some major conclusions of the conference were: numerous current industrial applications of wastes and residues as fuels are economic and reliable; off-the-shelf technologies exist for converting biomass wastes and residues to energy; a variety of financial (tax credits) and institutional (PUC rate structures) incentives can help make these waste-to-energy projects more attractive to industry. However, many of these incentives are still being developed and their precise impact must be evaluated on a case-by-case basis.

  1. Renewable Energy Operation and Conversion Schemes

    DEFF Research Database (Denmark)

    Spagnuolo, Giovanni; Petrone, Giovanni; Araujo, Samuel Vasconcelos

    2010-01-01

    A short summary of some speeches given during Seminar on Renewable Energy system (SERENE) is presented. The contributions have been mainly focused on power electronics for photovoltaic (PV) and sea wave energies, pointing out some aspects related to efficiency, reliability, and grid integration. ...

  2. Photonic Crystal Emitters for Thermophotovoltaic Energy Conversion

    International Nuclear Information System (INIS)

    Stelmakh, Veronika; Chan, Walker R; Joannopoulos, John D; Celanovic, Ivan; Ghebrebrhan, Michael; Soljacic, Marin

    2015-01-01

    This paper reports the design, fabrication, and characterization of 2D photonic crystal (PhC) thermal emitters for a millimeter-scale hydrocarbon TPV microgenerator as a possible replacement for batteries in portable microelectronics, robotics, etc. In our TPV system, combustion heats a PhC emitter to incandescence and the resulting radiation is converted by a low-bandgap TPV cell. The PhC tailors the photonic density of states to produce spectrally confined thermal emission that matches the bandgap of the TPV cell, enabling high heat-to-electricity conversion efficiency. The work builds on a previously developed fabrication process to produce a square array of cylindrical cavities in a metal substrate. We will present ongoing incremental improvements in the optical and thermo-mechanical properties, the fabrication process, and the system integration, as recently combined with fabrication using novel materials, such as sputtered coatings, to enable a monolithic system. (paper)

  3. Nanostructured carbon and carbon nanocomposites for electrochemical energy storage applications.

    Science.gov (United States)

    Su, Dang Sheng; Schlögl, Robert

    2010-02-22

    Electrochemical energy storage is one of the important technologies for a sustainable future of our society, in times of energy crisis. Lithium-ion batteries and supercapacitors with their high energy or power densities, portability, and promising cycling life are the cores of future technologies. This Review describes some materials science aspects on nanocarbon-based materials for these applications. Nanostructuring (decreasing dimensions) and nanoarchitecturing (combining or assembling several nanometer-scale building blocks) are landmarks in the development of high-performance electrodes for with long cycle lifes and high safety. Numerous works reviewed herein have shown higher performances for such electrodes, but mostly give diverse values that show no converging tendency towards future development. The lack of knowledge about interface processes and defect dynamics of electrodes, as well as the missing cooperation between material scientists, electrochemists, and battery engineers, are reasons for the currently widespread trial-and-error strategy of experiments. A concerted action between all of these disciplines is a prerequisite for the future development of electrochemical energy storage devices.

  4. Titanium dioxide nanotube membranes for solar energy conversion: effect of deep and shallow dopants.

    Science.gov (United States)

    Ding, Yuchen; Nagpal, Prashant

    2017-04-12

    Nanostructured titanium dioxide (TiO 2 ) has been intensively investigated as a material of choice for solar energy conversion in photocatalytic, photoelectrochemical, photovoltaic, and other photosensitized devices for converting light into chemical feedstocks or electricity. Towards management of light absorption in TiO 2 , while the nanotubular structure improves light absorption and simultaneous charge transfer to mitigate problems due to the indirect bandgap of the semiconductor, typically dopants are used to improve light absorption of incident solar irradiation in the wide bandgap of TiO 2 . While these dopants can be critical to the success of these solar energy conversion devices, their effect on photophysical and photoelectrochemical properties and detailed photokinetics are relatively under-studied. Here, we show the effect of deep and shallow metal dopants on the kinetics of photogenerated charged carriers in TiO 2 and the resulting effect on photocatalytic and photoelectrochemical processes using these nanotube membranes. We performed a detailed optical, electronic, voltammetry and electrochemical impedance study to understand the effect of shallow and deep metal dopants (using undoped and niobium- and copper-doped TiO 2 nanotubes) on light absorption, charge transport and charge transfer processes. Using wireless photocatalytic methylene blue degradation and carbon dioxide reduction, and wired photoelectrochemical device measurements, we elucidate the effect of different dopants on solar-to-fuel conversion efficiency and simultaneously describe the photokinetics using a model, to help design better energy conversion devices.

  5. Teaching elementary thermodynamics and energy conversion: Opinions

    International Nuclear Information System (INIS)

    Gaggioli, Richard A.

    2010-01-01

    This presentation deals with innovation in teaching and understanding of thermodynamic principles. Key features of the approach being advocated are: (a) postulation of the existence of entropy, (b) explicitly associating energy transfers with other transports, (c) stating the 2nd Law in terms of Gibbs' available-energy, (d) systematic use of software such as EES. The paper outlines and elaborates upon an introductory course. Major headings in the course are: basic concepts: properties, additive properties and balances, primitive properties, energy, 1st Law. entropy, elementary academic applications of balances, available-energy, second law, exergy, thermostatic property relations, EES. Applications to processes, fluid flow, Heat transfer, thermochemical. Applications to devices, single-process, compound-process, systems (consisting of devices and processes functioning together).

  6. Supramolecular Structures for Photochemical Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Gust, Devens; Moore, Thomas A.; Moore, Ana L.

    2003-08-26

    OAK B188 The goal of this project is to mimic the energy transduction processes by which photosynthetic organisms harvest sunlight and convert it to forms of energy that are more easily used and stored. The results may lead to new technologies for solar energy harvesting based on the natural photosynthetic process. They may also enrich our understanding and control of photosynthesis in living organisms, and lead to methods for increasing natural biomass production, carbon dioxide removal, and oxygen generation. In our work to date, we have learned how to make synthetic antenna and reaction center molecules that absorb light and undergo photoinduced electron transfer to generate long-lived, energetic charge-separated states. We have assembled a prototype system in which artificial reaction centers are inserted into liposomes (artificial cell-like constructs), where they carry out light-driven transmembrane translocation of hydrogen ions to generate proton motive force. By insertion of natural ATP synthase into the liposomal bilayer, this proton motive force has been used to power the synthesis of ATP. ATP is a natural biological energy currency. We are carrying out a systematic investigation of these artificial photosynthetic energy harvesting constructs in order to understand better how they operate. In addition, we are exploring strategies for reversing the direction of the light-powered proton pumping. Most recently, we have extended these studies to develop a light-powered transmembrane calcium ion pump that converts sunlight into energy stored as a calcium ion concentration gradient across a lipid bilayer.

  7. Graphitic design: prospects of graphene-based nanocomposites for solar energy conversion, storage, and sensing.

    Science.gov (United States)

    Lightcap, Ian V; Kamat, Prashant V

    2013-10-15

    Graphene not only possesses interesting electrochemical behavior but also has a remarkable surface area and mechanical strength and is naturally abundant, all advantageous properties for the design of tailored composite materials. Graphene-semiconductor or -metal nanoparticle composites have the potential to function as efficient, multifunctional materials for energy conversion and storage. These next-generation composite systems could possess the capability to integrate conversion and storage of solar energy, detection, and selective destruction of trace environmental contaminants or achieve single-substrate, multistep heterogeneous catalysis. These advanced materials may soon become a reality, based on encouraging results in the key areas of energy conversion and sensing using graphene oxide as a support structure. Through recent advances, chemists can now integrate such processes on a single substrate while using synthetic designs that combine simplicity with a high degree of structural and composition selectivity. This progress represents the beginning of a transformative movement leveraging the advancements of single-purpose chemistry toward the creation of composites designed to address whole-process applications. The promising field of graphene nanocomposites for sensing and energy applications is based on fundamental studies that explain the electronic interactions between semiconductor or metal nanoparticles and graphene. In particular, reduced graphene oxide is a suitable composite substrate because of its two-dimensional structure, outstanding surface area, and electrical conductivity. In this Account, we describe common assembly methods for graphene composite materials and examine key studies that characterize its excited state interactions. We also discuss strategies to develop graphene composites and control electron capture and transport through the 2D carbon network. In addition, we provide a brief overview of advances in sensing, energy conversion

  8. Assessment of Some Advanced Protective Schemes, Including Chromate and Non-Chromate Conversion Coatings for Mg Alloy ZE41A-T5 Using Electrochemical Impedance Spectroscopy

    National Research Council Canada - National Science Library

    Chang, Frank

    1994-01-01

    .... Electrochemical Impedance Spectroscopy (EIS) and salt spray tests have been employed to compare the corrosion behavior in chloride containing solutions of Mg alloy ZE41A-T5 which has been coated with various combinations of a conversion coating...

  9. A Conversation on Zero Net Energy Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Eley, Charles; Gupta, Smita; Torcellini, Paul; Mchugh, Jon; Liu, Bing; Higgins, Cathy; Iplikci, Jessica; Rosenberg, Michael I.

    2017-06-30

    The submitted Roundtable discussion covers zero net energy (ZNE) buildings and their expansion into the market as a more widely adopted approach for various building types and sizes. However, the market is still small, and this discussion brings together distinguished researchers, designers, policy makers, and program administrations to represent the key factors making ZNE building more widespread and mainstream from a broad perspective, including governments, utilities, energy-efficiency research institutes, and building owners. This roundtable was conducted by the ASHRAE Journal with Bing Liu, P.E., Member ASHRAE, Charles Eley, FAIA, P.E., Member ASHRAE; Smita Gupta, Itron; Cathy Higgins, New Buildings Institute; Jessica Iplikci, Energy Trust of Oregon; Jon McHugh, P.E., Member ASHRAE; Michael Rosenberg, Member ASHRAE; and Paul Torcellini, Ph.D., P.E., NREL.

  10. Rotating flux compressor for energy conversion

    International Nuclear Information System (INIS)

    Chowdhuri, P.; Linton, T.W.; Phillips, J.A.

    1983-01-01

    The rotating flux compressor (RFC) converts rotational kinetic energy into an electrical output pulse which would have higher energy than the electrical energy initially stored in the compressor. An RFC has been designed in which wedge-shaped rotor blades pass through the air gaps between successive turns of a solenoid, the stator. Magnetic flux is generated by pulsing the stator solenoids when the inductance is a maximum, i.e., when the flux fills the stator-solenoid volume. Connecting the solenoid across a load conserves the flux which is compressed within the small volume surrounding the stator periphery when the rotor blades cut into the free space between the stator plates, creating a minimum-inductance condition. The unique features of this design are: (1) no electrical connections (brushes) to the rotor; (2) no conventional windings; and (3) no maintenance. The device has been tested up to 5000 rpm of rotor speed

  11. Physical Limits of Solar Energy Conversion in the Earth System.

    Science.gov (United States)

    Kleidon, Axel; Miller, Lee; Gans, Fabian

    2016-01-01

    Solar energy provides by far the greatest potential for energy generation among all forms of renewable energy. Yet, just as for any form of energy conversion, it is subject to physical limits. Here we review the physical limits that determine how much energy can potentially be generated out of sunlight using a combination of thermodynamics and observed climatic variables. We first explain how the first and second law of thermodynamics constrain energy conversions and thereby the generation of renewable energy, and how this applies to the conversions of solar radiation within the Earth system. These limits are applied to the conversion of direct and diffuse solar radiation - which relates to concentrated solar power (CSP) and photovoltaic (PV) technologies as well as biomass production or any other photochemical conversion - as well as solar radiative heating, which generates atmospheric motion and thus relates to wind power technologies. When these conversion limits are applied to observed data sets of solar radiation at the land surface, it is estimated that direct concentrated solar power has a potential on land of up to 11.6 PW (1 PW=10(15) W), whereas photovoltaic power has a potential of up to 16.3 PW. Both biomass and wind power operate at much lower efficiencies, so their potentials of about 0.3 and 0.1 PW are much lower. These estimates are considerably lower than the incoming flux of solar radiation of 175 PW. When compared to a 2012 primary energy demand of 17 TW, the most direct uses of solar radiation, e.g., by CSP or PV, have thus by far the greatest potential to yield renewable energy requiring the least space to satisfy the human energy demand. Further conversions into solar-based fuels would be reduced by further losses which would lower these potentials. The substantially greater potential of solar-based renewable energy compared to other forms of renewable energy simply reflects much fewer and lower unavoidable conversion losses when solar

  12. Energy analysis of biochemical conversion processes of biomass to bioethanol

    Energy Technology Data Exchange (ETDEWEB)

    Bakari, M.; Ngadi, M.; Bergthorson, T. [McGill Univ., Ste-Anne-de-Bellevue, PQ (Canada). Dept. of Bioresource Engineering

    2010-07-01

    Bioethanol is among the most promising of biofuels that can be produced from different biomass such as agricultural products, waste and byproducts. This paper reported on a study that examined the energy conversion of different groups of biomass to bioethanol, including lignocelluloses, starches and sugar. Biochemical conversion generally involves the breakdown of biomass to simple sugars using different pretreatment methods. The energy needed for the conversion steps was calculated in order to obtain mass and energy efficiencies for the conversions. Mass conversion ratios of corn, molasses and rice straw were calculated as 0.3396, 0.2300 and 0.2296 kg of bioethanol per kg of biomass, respectively. The energy efficiency of biochemical conversion of corn, molasses and rice straw was calculated as 28.57, 28.21 and 31.33 per cent, respectively. The results demonstrated that lignocelluloses can be efficiently converted with specific microorganisms such as Mucor indicus, Rhizopus oryzae using the Simultaneous Saccharification and Fermentation (SSF) methods.

  13. High performance reversible electrochemical cell for H2O electrolysis or conversion of CO2 and H2O to fuel

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to a reversible electrochemical cell, such as an electrolysis cell for water splitting or for conversion of carbon dioxide and water into fuel. The present invention relates also to an electrochemical cell that when operated in reverse performs as a fuel cell...

  14. Aerodynamic Aspects of Wind Energy Conversion

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær

    2011-01-01

    This article reviews the most important aerodynamic research topics in the field of wind energy. Wind turbine aerodynamics concerns the modeling and prediction of aerodynamic forces, such as performance predictions of wind farms, and the design of specific parts of wind turbines, such as rotor...

  15. Direct energy conversion for fusion reactors

    International Nuclear Information System (INIS)

    Barr, W.L.

    1977-01-01

    Complex multistage plasma converters were tested at efficiencies approaching 90% at low energies and powers, and simpler, more cost-effective versions at 65% efficiency. Laboratory tests of neutral-beam direct converters at 15 keV and 2 kW gave 70% efficiency. A 120-keV, 1.5-MW version is being tested

  16. Innovative Breakwaters Design for Wave Energy Conversion

    DEFF Research Database (Denmark)

    Vicinanza, Diego; Stagonas, D.; Müller, G.

    2012-01-01

    the rubble mound breakwaters and seawalls related activity and the energy demand of small human communities. Wave loadings and overtopping on a seawall and rubble mound breakwater with front reservoir are discussed on the basis of physical 2-D model tests carried out at University of Southampton (UK...

  17. Graphene-Based Carbon Materials for Electrochemical Energy Storage

    Directory of Open Access Journals (Sweden)

    Fei Liu

    2013-01-01

    Full Text Available Because of their unique 2D structure and numerous fascinating properties, graphene-based materials have attracted particular attention for their potential applications in energy storage devices. In this review paper, we focus on the latest work regarding the development of electrode materials for batteries and supercapacitors from graphene and graphene-based carbon materials. To begin, the advantages of graphene as an electrode material and the existing problems facing its use in this application will be discussed. The next several sections deal with three different methods for improving the energy storage performance of graphene: the restacking of the nanosheets, the doping of graphene with other elements, and the creation of defects on graphene planes. State-of-the-art work is reviewed. Finally, the prospects and further developments in the field of graphene-based materials for electrochemical energy storage are discussed.

  18. Experimental facility for explosive energy conversion into coherent microwave radiation

    International Nuclear Information System (INIS)

    Vdovin, V.A.; Korzhenevskij, A.V.; Cherepenin, V.A.

    2003-01-01

    The explosive energy conversion into the microwave radiation energy is considered with application of the explosion magnetic generator, heavy-current electron accelerator and Cherenkov microwave range generator. The electron accelerator formed the beam of 33 cm in diameter and current of ∼ 25 kA. The electrodynamic system of the SHF-generator has the diameter of ∼ 35 cm and it is accomplished in the form of the periodical nonuniform dielectric. The proposed explosive energy conversion scheme makes it possible to obtain the radiation capacity of approximately 100 MW in the 3-cm wave range by the pulse duration of ∼ 800 ns [ru

  19. The alkali metal thermoelectric converter /AMTEC/ - A new direct energy conversion technology for aerospace power

    Science.gov (United States)

    Bankston, C. P.; Cole, T.; Jones, R.; Ewell, R.

    1982-01-01

    A thermally regenerative electrochemical device for the direct conversion of heat to electrical energy, the alkali metal thermoelectric converter (AMTEC), is characterized by potential efficiencies on the order of 15-40% and possesses no moving parts, making it a candidate for space power system applications. Device conversion efficiency is projected on the basis of experimental voltage vs current curves exhibiting power densities of 0.7 W/sq cm and measured electrode efficiencies of up to 40%. Preliminary radiative heat transfer measurements presented may be used in an investigation of methods for the reduction of AMTEC parasitic radiation losses. AMTEC assumes heat input and rejection temperatures of 900-1300 K and 400-800 K, respectively. The working fluid is liquid sodium, and the porous electrode employed is of molybdenum.

  20. Expansionary economic effects of energy conversion under stagnation

    International Nuclear Information System (INIS)

    Ono, Yoshiyasu

    2013-01-01

    After the Fukushima disaster, energy conversion such as nuclear power phaseout and deployment of renewable energy or survival of nuclear power had been actively argued pro and con. Both sides admitted extra costs were needed but their economic effects would be contrary dependent on business state. Under better economy, extra costs would be actual burden of total economy. Under stagnation as was long in Japan at present, extra costs brought about expansion of employment and economy with simulated consumption increase. Industry conversion would occur such industry intensively using power would depreciate and energy conserved industry would grow. Difference of power use intensity between industries made difficult in energy conversion because present Japanese industry constitution was mostly formed based on cheap power cost for industry use. Even taking account of international competition, the same would be true by adjusting finance balance sheet and currency exchange rate. (T. Tanaka)

  1. Standard Terminology Relating to Photovoltaic Solar Energy Conversion

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 This terminology pertains to photovoltaic (radiant-to-electrical energy conversion) device performance measurements and is not a comprehensive list of terminology for photovoltaics in general. 1.2 Additional terms used in this terminology and of interest to solar energy may be found in Terminology E 772.

  2. Electrochemical polymer electrolyte membranes

    CERN Document Server

    Fang, Jianhua; Wilkinson, David P

    2015-01-01

    Electrochemical Polymer Electrolyte Membranes covers PEMs from fundamentals to applications, describing their structure, properties, characterization, synthesis, and use in electrochemical energy storage and solar energy conversion technologies. Featuring chapters authored by leading experts from academia and industry, this authoritative text: Discusses cutting-edge methodologies in PEM material selection and fabricationPoints out important challenges in developing PEMs and recommends mitigation strategies to improve PEM performanceAnalyzes the cur

  3. Conversion of solar energy into heat

    International Nuclear Information System (INIS)

    Devin, B.; Etievant, C.

    1975-01-01

    Argument prevails regarding the main parameters involved in the definition of installations designed to convert by means of a thermal machine, solar energy into electrical or mechanical energy. Between the temperature of the cold source and the stagnation temperature, there exists an optimal temperature which makes for the maximum efficiency of the collector/thermal machine unit. The optimal operating conditions for different types of collector are examined. Optimization of the surface of the collector is dealt with in particular. The structure and cost of solar installations are also analyzed with some examples as basis: solar pumps of 1 to 25kW, a 50MWe electrosolar plant. The cost involves three main elements: the collector, the thermal unit and the heat storage device. The latter is necessary for the integration of diurnal and nocturnal fluctuations of isolation. It is shown that thermal storage is economically payable only under certain conditions [fr

  4. Photovoltaic and photoelectrochemical conversion of solar energy.

    Science.gov (United States)

    Grätzel, Michael

    2007-04-15

    The Sun provides approximately 100,000 terawatts to the Earth which is about 10000 times more than the present rate of the world's present energy consumption. Photovoltaic cells are being increasingly used to tap into this huge resource and will play a key role in future sustainable energy systems. So far, solid-state junction devices, usually made of silicon, crystalline or amorphous, and profiting from the experience and material availability resulting from the semiconductor industry, have dominated photovoltaic solar energy converters. These systems have by now attained a mature state serving a rapidly growing market, expected to rise to 300 GW by 2030. However, the cost of photovoltaic electricity production is still too high to be competitive with nuclear or fossil energy. Thin film photovoltaic cells made of CuInSe or CdTe are being increasingly employed along with amorphous silicon. The recently discovered cells based on mesoscopic inorganic or organic semiconductors commonly referred to as 'bulk' junctions due to their three-dimensional structure are very attractive alternatives which offer the prospect of very low cost fabrication. The prototype of this family of devices is the dye-sensitized solar cell (DSC), which accomplishes the optical absorption and the charge separation processes by the association of a sensitizer as light-absorbing material with a wide band gap semiconductor of mesoporous or nanocrystalline morphology. Research is booming also in the area of third generation photovoltaic cells where multi-junction devices and a recent breakthrough concerning multiple carrier generation in quantum dot absorbers offer promising perspectives.

  5. The Research and Development of the Radioisotope Energy Conversion System

    International Nuclear Information System (INIS)

    Steinfelds, E.V.; Ghosh, T.K.; Prelas, M.A.; Tompson, R.V.; Loyalka, S.K.

    2001-01-01

    The project of developing radioisotope energy conversion system (RECS) involves analytical computational assisted design and modeling and also laboratory research. The computational analysis consists of selecting various geometries and materials for the main RECS container and the internally located radioisotope, computing the fluxes of the beta (-) particles and of the visible (or ultraviolet) photons produced by the beta (-) s, computing the transport of these photons to the photovoltaic cells, and computing the overall efficiency of useful conversion of the radioisotope power

  6. Carbon nanomaterials for advanced energy conversion and storage.

    Science.gov (United States)

    Dai, Liming; Chang, Dong Wook; Baek, Jong-Beom; Lu, Wen

    2012-04-23

    It is estimated that the world will need to double its energy supply by 2050. Nanotechnology has opened up new frontiers in materials science and engineering to meet this challenge by creating new materials, particularly carbon nanomaterials, for efficient energy conversion and storage. Comparing to conventional energy materials, carbon nanomaterials possess unique size-/surface-dependent (e.g., morphological, electrical, optical, and mechanical) properties useful for enhancing the energy-conversion and storage performances. During the past 25 years or so, therefore, considerable efforts have been made to utilize the unique properties of carbon nanomaterials, including fullerenes, carbon nanotubes, and graphene, as energy materials, and tremendous progress has been achieved in developing high-performance energy conversion (e.g., solar cells and fuel cells) and storage (e.g., supercapacitors and batteries) devices. This article reviews progress in the research and development of carbon nanomaterials during the past twenty years or so for advanced energy conversion and storage, along with some discussions on challenges and perspectives in this exciting field. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Questions of economics. [solar energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Graeff, P

    1976-05-01

    The essay deals with questions of profitability in connection with the use of solar energy to heat buildings or to prepare hot water. The total problem is approached from 3 points of view: 1. General national economy point of view: Judgment by politicians determines the possibilities of support by the government. 2. The business economy aspect: Here the most important matter is to construct the plants with dimensions permitting to obtain the highest profits possible. 3. The financing model: possible incentives must be taken into consideration as well as technical aspects, e.g. the service life of the plants.

  8. Geomagnetic activity effects on plasma sheet energy conversion

    Directory of Open Access Journals (Sweden)

    M. Hamrin

    2010-10-01

    Full Text Available In this article we use three years (2001, 2002, and 2004 of Cluster plasma sheet data to investigate what happens to localized energy conversion regions (ECRs in the plasma sheet during times of high magnetospheric activity. By examining variations in the power density, E·J, where E is the electric field and J is the current density obtained by Cluster, we have studied the influence on Concentrated Load Regions (CLRs and Concentrated Generator Regions (CGRs from variations in the geomagnetic disturbance level as expressed by the Kp, the AE, and the Dst indices. We find that the ECR occurrence frequency increases during higher magnetospheric activities, and that the ECRs become stronger. This is true both for CLRs and for CGRs, and the localized energy conversion therefore concerns energy conversion in both directions between the particles and the fields in the plasma sheet. A higher geomagnetic activity hence increases the general level of energy conversion in the plasma sheet. Moreover, we have shown that CLRs live longer during magnetically disturbed times, hence converting more electromagnetic energy. The CGR lifetime, on the other hand, seems to be unaffected by the geomagnetic activity level. The evidence for increased energy conversion during geomagnetically disturbed times is most clear for Kp and for AE, but there are also some indications that energy conversion increases during large negative Dst. This is consistent with the plasma sheet magnetically mapping to the auroral zone, and therefore being more tightly coupled to auroral activities and variations in the AE and Kp indices, than to variations in the ring current region as described by the Dst index.

  9. Toward an Aqueous Solar Battery: Direct Electrochemical Storage of Solar Energy in Carbon Nitrides.

    Science.gov (United States)

    Podjaski, Filip; Kröger, Julia; Lotsch, Bettina V

    2018-03-01

    Graphitic carbon nitrides have emerged as an earth-abundant family of polymeric materials for solar energy conversion. Herein, a 2D cyanamide-functionalized polyheptazine imide (NCN-PHI) is reported, which for the first time enables the synergistic coupling of two key functions of energy conversion within one single material: light harvesting and electrical energy storage. Photo-electrochemical measurements in aqueous electrolytes reveal the underlying mechanism of this "solar battery" material: the charge storage in NCN-PHI is based on the photoreduction of the carbon nitride backbone and charge compensation is realized by adsorption of alkali metal ions within the NCN-PHI layers and at the solution interface. The photoreduced carbon nitride can thus be described as a battery anode operating as a pseudocapacitor, which can store light-induced charge in the form of long-lived, "trapped" electrons for hours. Importantly, the potential window of this process is not limited by the water reduction reaction due to the high intrinsic overpotential of carbon nitrides for hydrogen evolution, potentially enabling new applications for aqueous batteries. Thus, the feasibility of light-induced electrical energy storage and release on demand by a one-component light-charged battery anode is demonstrated, which provides a sustainable solution to overcome the intermittency of solar radiation. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Titanium composite conversion coating formation on CRS In the presence of Mo and Ni ions: Electrochemical and microstructure characterizations

    Energy Technology Data Exchange (ETDEWEB)

    Eivaz Mohammadloo, H.; Sarabi, A.A., E-mail: Sarabi@aut.ac.ir

    2016-11-30

    Highlights: • Eco-friendly protective thin films for covering the CRS substrates were presented. • Comprehensive analyses were performed to evaluate the surface characteristics. • Promising approach for the surface modification of CRS substrate by Ti-based conversion coatings. - Abstract: There have been an increasing interest in finding a replacement for the chromating process due to environmental and health concerns. Hence, in this study Chrome-free chemical conversion coatings were deposited on the surface of cold-rolled steel (CRS) on the basis of Titanium (TiCC), Titanium-Nickel (TiNiCC) and titanium-molybdate (TiMoCC) based conversion coating solutions. The surface characterization was performed by field emission scanning electron microscope (FESEM), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and contact angle measuring device. Also, the corrosion behavior was assessed by the means of potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) measurements. FESEM and AFM study show that the TiNiCC is denser and more uniform than that TiCC and TiMoCC since, TiMoCC conversion coating presents network feature, and there were abundant micro-cracks on the surface of the coating. XPS results confirmed the precipitation of Ti and Ni oxide/hydroxide, Mn dioxide/trioxide on the surface of different Ti-based conversion coatings. Electrochemical results revealed that all Ti-based conversion coatings have better anti-corrosion properties than bare CRS. Moreover, TiNiCC treatment inhibited the corrosion of CRS to a significant degree (polarization resistance (R{sub p}) = 5510 Ω cm{sup 2}) in comparison with TiCC (R{sub p} = 2705 Ω cm{sup 2}) and TiMoCC (R{sub p} = 805 Ω cm{sup 2}).

  11. Proceedings of the 25th intersociety energy conversion engineering conference

    International Nuclear Information System (INIS)

    Nelson, P.A.; Schertz, W.W.; Till, R.H.

    1990-01-01

    This book contains the proceedings of the 25th intersociety energy conversion engineering conference. Volume 1 is organized under the following headings: space power systems requirements and issues, space power systems; space power systems 2; space nuclear power reactors space nuclear reactor technology I; space nuclear reactor technology II; reactor technology; isotopic fueled power systems I, isotopic fueled power systems II, space power automation; space power automation II, space power automation III; space power automation IV; space power automation V; power systems hardware and design selection, power components, pulse power, power management and distribution, power management and distribution II, power management and distribution III; space energy conversion: solar dynamic, space energy conversion: static and dynamic, space solar array technology, advanced space solar cells

  12. Polyaniline (PANi based electrode materials for energy storage and conversion

    Directory of Open Access Journals (Sweden)

    Huanhuan Wang

    2016-09-01

    Full Text Available Polyaniline (PANi as one kind of conducting polymers has been playing a great role in the energy storage and conversion devices besides carbonaceous materials and metallic compounds. Due to high specific capacitance, high flexibility and low cost, PANi has shown great potential in supercapacitor. It alone can be used in fabricating an electrode. However, the inferior stability of PANi limits its application. The combination of PANi and other active materials (carbon materials, metal compounds or other polymers can surpass these intrinsic disadvantages of PANi. This review summarizes the recent progress in PANi based composites for energy storage/conversion, like application in supercapacitors, rechargeable batteries, fuel cells and water hydrolysis. Besides, PANi derived nitrogen-doped carbon materials, which have been widely employed as carbon based electrodes/catalysts, are also involved in this review. PANi as a promising material for energy storage/conversion is deserved for intensive study and further development.

  13. Optimizing Energy Conversion: Magnetic Nano-materials

    Science.gov (United States)

    McIntyre, Dylan; Dann, Martin; Ilie, Carolina C.

    2015-03-01

    We present herein the work started at SUNY Oswego as a part of a SUNY 4E grant. The SUNY 4E Network of Excellence has awarded SUNY Oswego and collaborators a grant to carry out extensive studies on magnetic nanoparticles. The focus of the study is to develop cost effective rare-earth-free magnetic materials that will enhance energy transmission performance of various electrical devices (solar cells, electric cars, hard drives, etc.). The SUNY Oswego team has started the preliminary work for the project and graduate students from the rest of the SUNY 4E team (UB, Alfred College, Albany) will continue the project. The preliminary work concentrates on analyzing the properties of magnetic nanoparticle candidates, calculating molecular orbitals and band gap, and the fabrication of thin films. SUNY 4E Network of Excellence Grant.

  14. An intertemporal decision framework for electrochemical energy storage management

    Science.gov (United States)

    He, Guannan; Chen, Qixin; Moutis, Panayiotis; Kar, Soummya; Whitacre, Jay F.

    2018-05-01

    Dispatchable energy storage is necessary to enable renewable-based power systems that have zero or very low carbon emissions. The inherent degradation behaviour of electrochemical energy storage (EES) is a major concern for both EES operational decisions and EES economic assessments. Here, we propose a decision framework that addresses the intertemporal trade-offs in terms of EES degradation by deriving, implementing and optimizing two metrics: the marginal benefit of usage and the average benefit of usage. These metrics are independent of the capital cost of the EES system, and, as such, separate the value of EES use from the initial cost, which provides a different perspective on storage valuation and operation. Our framework is proved to produce the optimal solution for EES life-cycle profit maximization. We show that the proposed framework offers effective ways to assess the economic values of EES, to make investment decisions for various applications and to inform related subsidy policies.

  15. Functionalization of graphene for efficient energy conversion and storage.

    Science.gov (United States)

    Dai, Liming

    2013-01-15

    As global energy consumption accelerates at an alarming rate, the development of clean and renewable energy conversion and storage systems has become more important than ever. Although the efficiency of energy conversion and storage devices depends on a variety of factors, their overall performance strongly relies on the structure and properties of the component materials. Nanotechnology has opened up new frontiers in materials science and engineering to meet this challenge by creating new materials, particularly carbon nanomaterials, for efficient energy conversion and storage. As a building block for carbon materials of all other dimensionalities (such as 0D buckyball, 1D nanotube, 3D graphite), the two-dimensional (2D) single atomic carbon sheet of graphene has emerged as an attractive candidate for energy applications due to its unique structure and properties. Like other materials, however, a graphene-based material that possesses desirable bulk properties rarely features the surface characteristics required for certain specific applications. Therefore, surface functionalization is essential, and researchers have devised various covalent and noncovalent chemistries for making graphene materials with the bulk and surface properties needed for efficient energy conversion and storage. In this Account, I summarize some of our new ideas and strategies for the controlled functionalization of graphene for the development of efficient energy conversion and storage devices, such as solar cells, fuel cells, supercapacitors, and batteries. The dangling bonds at the edge of graphene can be used for the covalent attachment of various chemical moieties while the graphene basal plane can be modified via either covalent or noncovalent functionalization. The asymmetric functionalization of the two opposite surfaces of individual graphene sheets with different moieties can lead to the self-assembly of graphene sheets into hierarchically structured materials. Judicious

  16. Rare-earth magnet applications in energy conversion

    International Nuclear Information System (INIS)

    Tripathi, K.C.

    1998-01-01

    In recent years there has been considerable progress in the field of development and variety of new applications of rare-earth and rare-earth transition metal magnets. High energy content Nd-Fe-B magnet system which competes with superconducting magnets is very promising for the use in energy conversion machines, levitation systems, magnetic resonance investigation and other magnetic applications. Energy conversion machines such as motors and generators are of interest in this context. Motor converts electrical energy into mechanical energy using permanent magnets and ferromagnetic materials as its components. Electric generator converts mechanical energy into electricity using permanent magnets and ferromagnetic material. In both cases symmetry and symmetry breaking play an important role. Symmetry exists above curie temperature, as temperature is lowered symmetry is broken due to spontaneous magnetisation. Author and coworkers developed some new and highest efficiency, permanent magnet based, electronically controlled, dynamically synchronised pulsed dc linear and rotational motors which are briefly described here. Based on such experience and considering field interactions inside material under dynamical conditions and special geometrical situations, order-disorder processes, symmetry breaking and energy transfer on the basis of manifold aspects as a cooperative many body interaction, thermal fluctuations, zero-point energy, dissipation of energy, entropy exchange are discussed in context of conversion of environmental heat into electricity as suggested by Tripathi earlier. (orig.)

  17. Light energy conversion by photocatalytic reaction

    Energy Technology Data Exchange (ETDEWEB)

    Fujishima, Akira; Yamagata, Sadamu [Univ. of Tokyo (Japan)

    1989-01-01

    The photocatalytic reaction, to be made to a suspended semiconductor powder system, was explained in summary. By using semiconductor as an electrode for the electrolyzation, etc. and projecting light on it to generate photoelectromotive force, a photocell can be composed. eg., by composing titanium oxide electrode, n-type semiconductor and platinum electrode, and irradiating light on the former electrode to generate electric current, oxygen and hydrogen are produced from the titanium oxide electrode and platinum electrode, respectively, which means the possibility of obtainment of clean energy from water as raw material. Such a wet type photocell, easy to produce, is active also in research. With white titanium oxide powder being suspended in water solution, hydrogen is produced by projecting light into it. Such a semiconductor is called photocatalyst, in which the research has been widely developed, mainly by taking notice of the hydrogen production on reduction side, since 1972. The photocatalysis using colloid and, differently, that doing heteropolyacid are also taken notice of. 24 refs., 6 figs.

  18. Nanogold plasmonic photocatalysis for organic synthesis and clean energy conversion.

    Science.gov (United States)

    Wang, Changlong; Astruc, Didier

    2014-01-01

    This review provides the basic concepts, an overall survey and the state-of-the art of plasmon-based nanogold photocatalysis using visible light including fundamental understanding and major applications to organic reactions and clean energy-conversion systems. First, the basic concepts of localized surface plasmon resonance (LSPR) are recalled, then the major preparation methods of AuNP-based plasmonic photocatalysts are reviewed. The major part of the review is dedicated to the latest progress in the application of nanogold plasmonic photocatalysis to organic transformations and energy conversions, and the proposed mechanisms are discussed. In conclusion, new challenges and perspectives are proposed and analyzed.

  19. A review of electrohydrodynamic casting energy conversion polymer composites

    Directory of Open Access Journals (Sweden)

    Yong X. Gan

    2018-03-01

    Full Text Available This paper provides a brief review on manufacturing polymer composite materials through the nontraditional electrohydrodynamic (EHD casting approach. First, the EHD technology will be introduced. Then, typical functional polymer composite materials including thermoelectric and photoelectric energy conversion polymers and their composites will be presented. Specifically, how to make composite materials containing functional nanoparticles will be discussed. Converting polymeric fibers into partially carbonized fiber composites will also be shown. The latest research results of polymeric composite materials with energy conversion and sensing functions will be given.

  20. Direct energy conversion system for D-3He fusion

    International Nuclear Information System (INIS)

    Tomita, Y.; Shu, L.Y.; Momota, H.

    1993-11-01

    A novel and highly efficient direct energy conversion system is proposed for utilizing D- 3 He fueled fusion. In order to convert kinetic energy of ions, we applied a pair of direct energy conversion systems each of which has a cusp-type DEC and a traveling wave DEC (TWDEC). In a cusp-type DEC, electrons are separated from the escaping ions at the first line-cusp and the energy of thermal ion components is converted at the second cusp DEC. The fusion protons go through the cusp-type DEC and arrive at the TWDEC, which principle is similar to 'LINAC.' The energy of fusion protons is recovered to electricity with an efficiency of more than 70%. These DECs bring about the high efficient fusion plant. (author)

  1. Advances in Electrocatalysis for Energy Conversion and Synthesis of Organic Molecules.

    Science.gov (United States)

    Holade, Yaovi; Servat, Karine; Tingry, Sophie; Napporn, Teko W; Remita, Hynd; Cornu, David; Kokoh, K Boniface

    2017-10-06

    Ubiquitous electrochemistry is expected to play a major role for reliable energy supply as well as for production of sustainable fuels and chemicals. The fundamental understanding of organics-based electrocatalysis in alkaline media at the solid-liquid interface involves complex mechanisms and performance descriptors (from the electrolyte and reaction intermediates), which undermine the roads towards advance and breakthroughs. Here, we review and diagnose recently designed strategies for the electrochemical conversion of organics into electricity and/or higher-value chemicals. To tune the mysterious workings of nanocatalysts in electrochemical devices, we examine the guiding principles by which the performance of a particular electrode material is governed, thus highlighting various tactics for the development of synthesis methods for nanomaterials with specific properties. We end by examining the production of chemicals by using electrochemical methods, from selective oxidation to reduction reactions. The intricate relationship between electrode and selectivity encourages both of the communities of electrocatalysis and organic synthesis to move forward together toward the renaissance of electrosynthesis methods. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Energy conversion processes for the use of geothermal heat

    Energy Technology Data Exchange (ETDEWEB)

    Minder, R. [Minder Energy Consulting, Oberlunkhofen (Switzerland); Koedel, J.; Schaedle, K.-H.; Ramsel, K. [Gruneko AG, Basel (Switzerland); Girardin, L.; Marechal, F. [Swiss Federal Institute of Technology (EPFL), Laboratory for industrial energy systems (LENI), Lausanne (Switzerland)

    2007-03-15

    This comprehensive final report for the Swiss Federal Office of Energy (SFOE) presents the results of a study made on energy conversion processes that can be used when geothermal heat is to be used. The study deals with both theoretical and practical aspects of the conversion of geothermal heat to electricity. The report is divided into several parts and covers general study, practical experience, planning and operation of geothermal power plants as well as methodology for the optimal integration of energy conversion systems in geothermal power plants. In the first part, the specific properties and characteristics of geothermal resources are discussed. Also, a general survey of conversion processes is presented with special emphasis on thermo-electric conversion. The second part deals with practical aspects related to planning, construction and operation of geothermal power plant. Technical basics, such as relevant site-specific conditions, drilling techniques, thermal water or brine quality and materials requirements. Further, planning procedures are discussed. Also, operation and maintenance aspects are examined and some basic information on costs is presented. The third part of the report presents the methodology and results for the optimal valorisation of the thermodynamic potential of deep geothermal systems.

  3. Energy harvesting solar, wind, and ocean energy conversion systems

    CERN Document Server

    Khaligh, Alireza

    2009-01-01

    Also called energy scavenging, energy harvesting captures, stores, and uses ""clean"" energy sources by employing interfaces, storage devices, and other units. Unlike conventional electric power generation systems, renewable energy harvesting does not use fossil fuels and the generation units can be decentralized, thereby significantly reducing transmission and distribution losses. But advanced technical methods must be developed to increase the efficiency of devices in harvesting energy from environmentally friendly, ""green"" resources and converting them into electrical energy.Recognizing t

  4. Electrochemical energy storage devices comprising self-compensating polymers

    Science.gov (United States)

    Johnson, Paul; Bautista-Martinez, Jose Antonio; Friesen, Cody; Switzer, Elise

    2018-01-30

    The disclosed technology relates generally to devices comprising conductive polymers and more particularly to electrochemical devices comprising self-compensating conductive polymers. In one aspect, electrochemical energy storage device comprises a negative electrode comprising an active material including a redox-active polymer. The device additionally comprises a positive electrode comprising an active material including a redox-active polymer. The device further comprises an electrolyte material interposed between the negative electrode and positive electrode and configured to conduct mobile counterions therethrough between the negative electrode and positive electrode. At least one of the negative electrode redox-active polymer and the positive electrode redox-active polymer comprises a zwitterionic polymer unit configured to reversibly switch between a zwitterionic state in which the zwitterionic polymer unit has first and second charge centers having opposite charge states that compensate each other, and a non-zwitterionic state in which the zwitterionic polymer unit has one of the first and second charge centers whose charge state is compensated by mobile counterions.

  5. Electrochemical thermodynamic measurement system

    Science.gov (United States)

    Reynier, Yvan [Meylan, FR; Yazami, Rachid [Los Angeles, CA; Fultz, Brent T [Pasadena, CA

    2009-09-29

    The present invention provides systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and electrochemical energy storage and conversion systems. Systems and methods of the present invention are configured for simultaneously collecting a suite of measurements characterizing a plurality of interconnected electrochemical and thermodynamic parameters relating to the electrode reaction state of advancement, voltage and temperature. Enhanced sensitivity provided by the present methods and systems combined with measurement conditions that reflect thermodynamically stabilized electrode conditions allow very accurate measurement of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and electrochemical systems, such as the energy, power density, current rate and the cycle life of an electrochemical cell.

  6. Complex Metal Hydrides for Hydrogen, Thermal and Electrochemical Energy Storage

    DEFF Research Database (Denmark)

    Moller, Kasper T.; Sheppard, Drew; Ravnsbaek, Dorthe B.

    2017-01-01

    Hydrogen has a very diverse chemistry and reacts with most other elements to form compounds, which have fascinating structures, compositions and properties. Complex metal hydrides are a rapidly expanding class of materials, approaching multi-functionality, in particular within the energy storage...... inspiration to solve the great challenge of our time: efficient conversion and large-scale storage of renewable energy....... field. This review illustrates that complex metal hydrides may store hydrogen in the solid state, act as novel battery materials, both as electrolytes and electrode materials, or store solar heat in a more efficient manner as compared to traditional heat storage materials. Furthermore, it is highlighted...

  7. Conversion of Wastes into Bioelectricity and Chemicals by Using Microbial Electrochemical Technologies

    KAUST Repository

    Logan, B. E.; Rabaey, K.

    2012-01-01

    Waste biomass is a cheap and relatively abundant source of electrons for microbes capable of producing electrical current outside the cell. Rapidly developing microbial electrochemical technologies, such as microbial fuel cells, are part of a

  8. Energy Storage System with Voltage Equalization Strategy for Wind Energy Conversion

    Directory of Open Access Journals (Sweden)

    Cheng-Tao Tsai

    2012-07-01

    Full Text Available In this paper, an energy storage system with voltage equalization strategy for wind energy conversion is presented. The proposed energy storage system provides a voltage equalization strategy for series-connected lead-acid batteries to increase their total storage capacity and lifecycle. In order to draw the maximum power from the wind energy, a perturbation-and-observation method and digital signal processor (DSP are incorporated to implement maximum power point tracking (MPPT algorithm and power regulating scheme. In the proposed energy storage system, all power switches have zero-voltage-switching (ZVS feature at turn-on transition. Therefore, the conversion efficiency can be increased. Finally, a prototype energy storage system for wind energy conversion is built and implemented. Experimental results have verified the performance and feasibility of the proposed energy storage system for wind energy conversion.

  9. Numerical Simulation of Energy Conversion Mechanism in Electric Explosion

    Science.gov (United States)

    Wanjun, Wang; Junjun, Lv; Mingshui, Zhu; Qiubo, Fu; EFIs Integration R&D Group Team

    2017-06-01

    Electric explosion happens when micron-scale metal films such as copper film is stimulated by short-time current pulse, while generating high temperature and high pressure plasma. The expansion process of the plasma plays an important role in the study of the generation of shock waves and the study of the EOS of matter under high pressure. In this paper, the electric explosion process is divided into two stages: the energy deposition stage and the quasi-isentropic expansion stage, and a dynamic EOS of plasma considering the energy replenishment is established. On this basis, flyer driven by plasma is studied numerically, the pressure and the internal energy of plasma in the energy deposition stage and the quasi - isentropic expansion stage are obtained by comparing the velocity history of the flyer with the experimental results. An energy conversion model is established, and the energy conversion efficiency of each process is obtained, and the influence of impedance matching relationship between flyer and metal plasma on the energy conversion efficiency is proposed in this paper.

  10. Energy Conversion Loops for Flux-Switching PM Machine Analysis

    Directory of Open Access Journals (Sweden)

    E. Ilhan

    2012-10-01

    Full Text Available Induction and synchronous machines have traditionally been the first choice of automotive manufacturers for electric/hybrid vehicles. However, these conventional machines are not able anymore to meet the increasing demands for a higher energy density due to space limitation in cars. Flux-switching PM (FSPM machines with their high energy density are very suitable to answer this demand. In this paper, the energy conversion loop technique is implemented on FSPM for the first time. The energy conversion technique is a powerful tool for the visualization of machine characteristics, both linear and nonlinear. Further, the technique provides insight into the torque production mechanism. A stepwise explanation is given on how to create these loops for FSPM along with the machine operation.

  11. Piezoelectric ribbons printed onto rubber for flexible energy conversion.

    Science.gov (United States)

    Qi, Yi; Jafferis, Noah T; Lyons, Kenneth; Lee, Christine M; Ahmad, Habib; McAlpine, Michael C

    2010-02-10

    The development of a method for integrating highly efficient energy conversion materials onto stretchable, biocompatible rubbers could yield breakthroughs in implantable or wearable energy harvesting systems. Being electromechanically coupled, piezoelectric crystals represent a particularly interesting subset of smart materials that function as sensors/actuators, bioMEMS devices, and energy converters. Yet, the crystallization of these materials generally requires high temperatures for maximally efficient performance, rendering them incompatible with temperature-sensitive plastics and rubbers. Here, we overcome these limitations by presenting a scalable and parallel process for transferring crystalline piezoelectric nanothick ribbons of lead zirconate titanate from host substrates onto flexible rubbers over macroscopic areas. Fundamental characterization of the ribbons by piezo-force microscopy indicates that their electromechanical energy conversion metrics are among the highest reported on a flexible medium. The excellent performance of the piezo-ribbon assemblies coupled with stretchable, biocompatible rubber may enable a host of exciting avenues in fundamental research and novel applications.

  12. Energy conversion of biomass in coping with global warming

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, Shin-ya; Ogi, Tomoko; Minowa, Tomoaki [National Inst. for Resources and Environment, Tsukuba, Ibaraki (Japan)

    1993-12-31

    The main purpose of the present paper is to propose energy conversion technologies of biomass in coping with global warming. Among thermochemical conversion, liquid fuel production by high pressure process is mainly introduced. Biomass is a term used to describe materials of biological origin, either purpose-grown or arising as by-products, residues or wastes from forestry, agriculture and food processing. Such biomass is a renewable energy sources dependent on solar energy. Through photosynthesis, plants converts carbon dioxide into organic materials used in their growth. Energy can be recovered from the plant materials by several processes, the simplest way is burning in air. As far as biomass is used in this way, there is no atmospheric accumulation of carbon dioxide making no effect on the Greenhouse Effect, provided that the cycle of regrowth and burning is sustained.

  13. Proceedings of the 27th intersociety energy conversion engineering conference

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This book contains the proceedings of the 27th Intersociety Energy Conversion Engineering Conference. Topics included: Stirling Cycle Analysis; Stirling Cycle Models; Stirling Refrigerators/Heat Pumps and Cryocoolers; Domestic Policy; Efficiency/Conservation; Stirling Solar Terrestrial; Stirling Component Technology; Environmental Impacts; Renewable Resource Systems; Stirling Power Generation; Stirling Heat Transport System Technology; and Stirling Cycle Loss Understanding

  14. Gate controlled high efficiency ballistic energy conversion system

    NARCIS (Netherlands)

    Xie, Yanbo; Bos, Diederik; de Boer, Hans L.; van den Berg, Albert; Eijkel, Jan C.T.; Zengerle, R.

    2013-01-01

    Last year we demonstrated the microjet ballistic energy conversion system[1]. Here we show that the efficiency of such a system can be further improved by gate control. With gate control the electrical current generation is enhanced a hundred times with respect to the current generated from the zeta

  15. Exploring driving forces and liquid properties for electrokinetic energy conversion

    NARCIS (Netherlands)

    Nguyen, Trieu

    2015-01-01

    This thesis presents an effort to understand electrokinetic energy conversion systems which are based on motion of ionic charges in micro- and nano-confinements. In particular, both experimentally and theoretically the utilization of different kind of liquids was investigated to convert mechanical

  16. Solar Program Assessment: Environmental Factors - Ocean Thermal Energy Conversion.

    Science.gov (United States)

    Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.

    This report presents the environmental problems which may arise with the further development of Ocean Thermal Energy Conversion, one of the eight Federally-funded solar technologies. To provide a background for this environmental analysis, the history and basic concepts of the technology are reviewed, as are its economic and resource requirements.…

  17. Proceedings of the 25th Intersociety Energy Conversion Engineering Conference

    International Nuclear Information System (INIS)

    Nelson, P.A.; Schertz, W.W.; Till, R.H.

    1990-01-01

    This book contains papers presented at a conference on energy conversion engineering. Topics covered include: USAF space power requirements, modelling of the dynamics of a low speed gas-liquid heat engine, and comparative assessment of single-axis force generation mechanisms for superconducting suspensions

  18. Hydrogen Gas Recycling for Energy Efficient Ammonia Recovery in Electrochemical Systems

    NARCIS (Netherlands)

    Kuntke, Philipp; Rodríguez Arredondo, Mariana; Widyakristi, Laksminarastri; Heijne, ter Annemiek; Sleutels, Tom H.J.A.; Hamelers, Hubertus V.M.; Buisman, Cees J.N.

    2017-01-01

    Recycling of hydrogen gas (H2) produced at the cathode to the anode in an electrochemical system allows for energy efficient TAN (Total Ammonia Nitrogen) recovery. Using a H2 recycling electrochemical system (HRES) we achieved high TAN transport rates at low energy input. At

  19. Review of direct energy conversion for fusion reactors

    International Nuclear Information System (INIS)

    Barr, W.L.; Moir, R.W.

    1976-01-01

    The direct conversion to electrical energy of the energy carried by the leakage plasma from a fusion reactor and by the ions that are not converted to neutrals in a neutral-beam injector is discussed. The conversion process is electrostatic deceleration and direct particle collection as distinct from plasma expansion against a time-varying magnetic field or conversion in an EXB duct (both MHD). Relatively simple 1-stage plasma direct converters are discussed which can have efficiencies of about 50 percent. More complex and costly (measured in $/kW) 2-, 3-, 4-, and 22-stage concepts have been tested at efficiencies approaching 90 percent. Beam direct converters have been tested at 15 keV and 2 kW of power at 70 +- 2 percent efficiency, and a test of a 120-keV, 1-MW version is being prepared. Designs for a 120-keV, 4-MW unit are presented. The beam direct converter, besides saving on power supplies and on beam dumps, should raise the efficiency of creating a neutral beam from 40 percent without direct conversion to 70 percent with direct conversion for a 120-keV deuterium beam. The technological limits determining power handling and lifetime such as space-charge effects, heat removal, electrode material, sputtering, blistering, voltage holding, and insulation design, are discussed. The application of plasma direct converters to toroidal plasma confinement concepts is also discussed

  20. Nano Sensing and Energy Conversion Using Surface Plasmon Resonance (SPR

    Directory of Open Access Journals (Sweden)

    Iltai (Isaac Kim

    2015-07-01

    Full Text Available Nanophotonic technique has been attracting much attention in applications of nano-bio-chemical sensing and energy conversion of solar energy harvesting and enhanced energy transfer. One approach for nano-bio-chemical sensing is surface plasmon resonance (SPR imaging, which can detect the material properties, such as density, ion concentration, temperature, and effective refractive index in high sensitivity, label-free, and real-time under ambient conditions. Recent study shows that SPR can successfully detect the concentration variation of nanofluids during evaporation-induced self-assembly process. Spoof surface plasmon resonance based on multilayer metallo-dielectric hyperbolic metamaterials demonstrate SPR dispersion control, which can be combined with SPR imaging, to characterize high refractive index materials because of its exotic optical properties. Furthermore, nano-biophotonics could enable innovative energy conversion such as the increase of absorption and emission efficiency and the perfect absorption. Localized SPR using metal nanoparticles show highly enhanced absorption in solar energy harvesting. Three-dimensional hyperbolic metamaterial cavity nanostructure shows enhanced spontaneous emission. Recently ultrathin film perfect absorber is demonstrated with the film thickness is as low as ~1/50th of the operating wavelength using epsilon-near-zero (ENZ phenomena at the wavelength close to SPR. It is expected to provide a breakthrough in sensing and energy conversion applications using the exotic optical properties based on the nanophotonic technique.

  1. Use of organic precursors and graphenes in the controlled synthesis of carbon-containing nanomaterials for energy storage and conversion.

    Science.gov (United States)

    Yang, Shubin; Bachman, Robert E; Feng, Xinliang; Müllen, Klaus

    2013-01-15

    The development of high-performance electrochemical energy storage and conversion devices, including supercapacitors, lithium-ion batteries, and fuel cells, is an important step on the road to alternative energy technologies. Carbon-containing nanomaterials (CCNMs), defined here as pure carbon materials and carbon/metal (oxide, hydroxide) hybrids with structural features on the nanometer scale, show potential application in such devices. Because of their pronounced electrochemical activity, high chemical and thermal stability and low cost, researchers are interested in CCNMs to serve as electrodes in energy-related devices. Various all-carbon materials are candidates for electrochemical energy storage and conversion devices. Furthermore, carbon-based hybrid materials, which consist of a carbon component with metal oxide- or metal hydroxide-based nanostructures, offer the opportunity to combine the attractive properties of these two components and tune the behavior of the resulting materials. As such, the design and synthesis of CCNMs provide an attractive route for the construction of high-performance electrode materials. Studies in these areas have revealed that both the composition and the fabrication protocol employed in preparing CCNMs influence the morphology and microstructure of the resulting material and its electrochemical performance. Consequently, researchers have developed several synthesis strategies, including hard-templated, soft-templated, and template-free synthesis of CCNMs. In this Account, we focus on recent advances in the controlled synthesis of such CCNMs and the potential of the resulting materials for energy storage or conversion applications. The Account is divided into four major categories based on the carbon precursor employed in the synthesis: low molecular weight organic or organometallic molecules, hyperbranched or cross-linked polymers consisting of aromatic subunits, self-assembling discotic molecules, and graphenes. In each case

  2. Sustainable nanocomposites toward electrochemical energy storage and environmental remediation

    Science.gov (United States)

    Zhu, Jiahua

    Energy shortage and environmental pollution are the two most concerns right now for the long term sustainable development of human society. New technology developments are the key solutions to these challenges, which strongly rely on the continuous upgrading of advanced material performance. In this dissertation, sustainable nanocomposites with multifunctionalities are designed and fabricated targeting to the applications in high energy/power density capacitor electrodes and efficient heavy metal adsorbent for polluted water purification. Contrary to the helical carbon structure from pure cotton fabrics under microwave heating and radical oxidized ignition of nanoparticles from conventional heating, magnetic carbon tubular nanocomposite fabrics decorated with unifromally dispersed Co-Co3O4 nanoparticles were successfully synthesized via a microwave heating process using cotton fabric and inorganic salt as precursors, which have shown better anti-corrosive performance and demonstrated great potential as novel electrochemical pseudocapacitor electrode. Polyaniline nanofibers (PANI-NFs)/graphite oxide (GO) nanocomposites with excellent interfacial interaction and elongated fiber structure were synthesized via a facile interfacial polymerization method. The PANI-NFs/GO hybrid materials showed orders of magnitude enhancement in capacitance and energy density than that of individual GO and PANI-NF components. At the same weight loading of PANI in the composites, fibrous PANI demonstrated higher energy density and long term stability than that of particle-shaped PANI at higher power density. Besides the efforts focusing on the inside of the capacitor including new electrodes, electrolyte materials, and capacitor configuration designs. A significant small external magnetic field (720 Gauss) induced capacitance enhancement is reported for graphene and graphene nanocomposite electrodes. The capacitance of Fe2O3/graphene nanocomposites increases by 154.6% after appling

  3. Engineering radical polymer electrodes for electrochemical energy storage

    Science.gov (United States)

    Nevers, Douglas R.; Brushett, Fikile R.; Wheeler, Dean R.

    2017-06-01

    In principle a wide range of organic materials can store energy in the form of reversible redox conversions of stable radicals. Such chemistry holds great promise for energy storage applications due to high theoretical capacities, high rate capabilities, intrinsic structural tunability, and the possibility of low-cost "green" syntheses from renewable sources. There have been steady improvements in the design of organic radical polymers, in which radicals are incorporated into the backbone and/or as pendant groups. This review highlights opportunities for improved redox molecule and polymer design along with the key challenges (e.g., transport phenomena, solubility, and reaction mechanisms) to transitioning known organic radicals into high-performance electrodes. Ultimately, organic-based batteries are still a nascent field with many open questions. Further advances in molecular design, electrode engineering, and device architecture will be required for these systems to reach their full potential and meet the diverse and increasing demands for energy storage.

  4. Method and device for current driven electric energy conversion

    DEFF Research Database (Denmark)

    2012-01-01

    Device comprising an electric power converter circuit for converting electric energy. The converter circuit comprises a switch arrangement with two or more controllable electric switches connected in a switching configuration and controlled so as to provide a current drive of electric energy from...... configurations such as half bridge buck, full bridge buck, half bridge boost, or full bridge boost. A current driven conversion is advantageous for high efficient energy conversion from current sources such as solar cells or where a voltage source is connected through long cables, e.g. powerline cables for long...... an associated electric source connected to a set of input terminals. This is obtained by the two or more electric swiches being connected and controlled to short-circuit the input terminals during a part of a switching period. Further, a low pass filter with a capacitor and an inductor are provided to low pass...

  5. Magnetic energy storage and conversion in the solar atmosphere

    Science.gov (United States)

    Spicer, D. S.; Mariska, J. T.; Boris, J. P.

    1986-01-01

    According to the approach employed in this investigation, particularly important simple configurations of magnetic field and plasma are identified, and it is attempted to achieve an understanding of the large-scale dynamic processes and transformations which these systems can undergo. Fundamental concepts are discussed, taking into account aspects of magnetic energy generation, ideal MHD theory, non-MHD properties, the concept of 'anomalous' resistivity, and global electrodynamic coupling. Questions of magnetically controlled energy conversion are examined, giving attention to magnetic modifications of plasma transport, the transition region structure and flows, channeling and acceleration of plasma, channeling and dissipation of MHD waves, and anomalous dissipation of field-aligned currents. A description of the characteristics of magnetohydrodynamic energy conversion is also provided, and outstanding questions are discussed.

  6. Assessment of tidal and wave energy conversion technologies in Canada

    International Nuclear Information System (INIS)

    2009-01-01

    This paper presented an attractive option to help meet Canada's future energy needs, notably the vast and energetic Atlantic, Pacific and Arctic coastal waters which make ocean renewable energy, particularly tidal in-stream energy conversion (TISEC) and wave energy conversion (WEC). There is much uncertainty regarding the possible environmental impacts associated with their deployment and operation. In support of commercial development of the industry, a review of scientific knowledge was needed for the development of policy and regulations consistent with Canada's conservation and sustainability priorities. In April 2009, Fisheries and Oceans Canada (DFO) hosted a two-day national science advisory process meeting in order to determine the current state of knowledge on the environmental impacts of tidal and wave energy conversion technologies and their application in the Canadian context based on published reports. Potential mitigation measures were identified and the feasibility of developing a relevant Canadian statement of practice was determined. This report presented an assessment and analysis of wave power, including the impacts on physical processes; impacts on habitat characteristics; impacts on water quality; impacts of noise and vibrations; impacts of electromagnetic fields; impacts of physical encounters; cumulative impacts; and mitigation measures. It was concluded that there is a recognized need to develop and maintain national and regional georeferenced, interoperable, standards-based databases that enable access by governments, developers, academics, non-governmental organizations and the general public. 1 ref., 1 fig.

  7. On the Energy Conversion Efficiency of Piezoelectric Vibration Energy Harvesting Devices

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Eun [Catholic University of Daegu, Kyungsan (Korea, Republic of)

    2015-05-15

    To properly design and assess a piezoelectric vibration energy harvester, it is necessary to consider the application of an efficiency measure of energy conversion. The energy conversion efficiency is defined in this work as the ratio of the electrical output power to the mechanical input power for a piezoelectric vibration energy harvester with an impedance-matched load resistor. While previous research works employed the electrical output power for approximate impedance-matched load resistance, this work derives an efficiency measure considering optimally matched resistance. The modified efficiency measure is validated by comparing it with finite element analysis results for piezoelectric vibration energy harvesters with three different values of the electro-mechanical coupling coefficient. New findings on the characteristics of energy conversion and conversion efficiency are also provided for the two different impedance matching methods.

  8. The Energy Conversion Analysis of HTR Gas Turbine System

    International Nuclear Information System (INIS)

    Utaja

    2000-01-01

    The energy conversion analysis of HTR gas turbine system by hand calculation is tedious work and need much time. This difficulty comes from the repeated thermodynamic process calculation, both on compression or expansion of the cycle. To make the analysis faster and wider variable analyzed, HTR-1 programme is used. In this paper, the energy conversion analysis of HTR gas turbine system by HTR-1 will be described. The result is displayed as efficiency curve and block diagram with the input and output temperature of the component. This HTR-1 programme is developed by Basic language programming and be compiled by Visual Basic 5.0 . By this HTR-1 programme, the efficiency, specific power and effective compression of the amount of gas can be recognized fast. For example, for CO 2 gas between 40 o C and 700 o C, the compression on maximum efficiency is 4.6 and the energy specific is 18.9 kcal/kg, while the temperature changing on input and output of the component can be traced on monitor. This process take less than one second, while the manual calculation take more than one hour. It can be concluded, that the energy conversion analysis of the HTR gas turbine system by HTR-1 can be done faster and more variable analyzed. (author)

  9. Adaptability of solar energy conversion systems on ships

    Science.gov (United States)

    Visa, I.; Cotorcea, A.; Neagoe, M.; Moldovan, M.

    2016-08-01

    International trade of goods largely uses maritime/transoceanic ships driven by engines using fossil fuels. This two centuries tradition is technologically mature but significantly adds to the CO2 emissions; therefore, recent trends focus on on-board implementation of systems converting the solar energy into power (photovoltaic systems) or heat (solar-thermal systems). These systems are carbon-emissions free but are still under research and plenty of effort is devoted to fast reach maturity and feasibility. Unlike the systems implemented in a specific continental location, the design of solar energy conversion systems installed on shipboard has to face the problem generated by the system base motion along with the ship travelling on routes at different latitudes: the navigation direction and sense and roll-pitch combined motion with reduced amplitude, but with relatively high frequency. These raise highly interesting challenges in the design and development of mechanical systems that support the maximal output in terms of electricity or heat. The paper addresses the modelling of the relative position of a solar energy conversion surface installed on a ship according to the current position of the sun; the model is based on the navigation trajectory/route, ship motion generated by waves and the relative sun-earth motion. The model describes the incidence angle of the sunray on the conversion surface through five characteristic angles: three used to define the ship orientation and two for the solar angles; based on, their influence on the efficiency in solar energy collection is analyzed by numerical simulations and appropriate recommendations are formulated for increasing the solar energy conversion systems adaptability on ships.

  10. Nanocellulose: a promising nanomaterial for advanced electrochemical energy storage.

    Science.gov (United States)

    Chen, Wenshuai; Yu, Haipeng; Lee, Sang-Young; Wei, Tong; Li, Jian; Fan, Zhuangjun

    2018-04-23

    Nanocellulose has emerged as a sustainable and promising nanomaterial owing to its unique structures, superb properties, and natural abundance. Here, we present a comprehensive review of the current research activities that center on the development of nanocellulose for advanced electrochemical energy storage. We begin with a brief introduction of the structural features of cellulose nanofibers within the cell walls of cellulose resources. We then focus on a variety of processes that have been explored to fabricate nanocellulose with various structures and surface chemical properties. Next, we highlight a number of energy storage systems that utilize nanocellulose-derived materials, including supercapacitors, lithium-ion batteries, lithium-sulfur batteries, and sodium-ion batteries. In this section, the main focus is on the integration of nanocellulose with other active materials, developing films/aerogel as flexible substrates, and the pyrolyzation of nanocellulose to carbon materials and their functionalization by activation, heteroatom-doping, and hybridization with other active materials. Finally, we present our perspectives on several issues that need further exploration in this active research field in the future.

  11. Fully solar-powered photoelectrochemical conversion for simultaneous energy storage and chemical sensing.

    Science.gov (United States)

    Wang, Yongcheng; Tang, Jing; Peng, Zheng; Wang, Yuhang; Jia, Dingsi; Kong, Biao; Elzatahry, Ahmed A; Zhao, Dongyuan; Zheng, Gengfeng

    2014-06-11

    We report the development of a multifunctional, solar-powered photoelectrochemical (PEC)-pseudocapacitive-sensing material system for simultaneous solar energy conversion, electrochemical energy storage, and chemical detection. The TiO2 nanowire/NiO nanoflakes and the Si nanowire/Pt nanoparticle composites are used as photoanodes and photocathodes, respectively. A stable open-circuit voltage of ∼0.45 V and a high pseudocapacitance of up to ∼455 F g(-1) are obtained, which also exhibit a repeating charging-discharging capability. The PEC-pseudocapacitive device is fully solar powered, without the need of any external power supply. Moreover, this TiO2 nanowire/NiO nanoflake composite photoanode exhibits excellent glucose sensitivity and selectivity. Under the sun light illumination, the PEC photocurrent shows a sensitive increase upon different glucose additions. Meanwhile in the dark, the open-circuit voltage of the charged pseudocapacitor also exhibits a corresponding signal over glucose analyte, thus serving as a full solar-powered energy conversion-storage-utilization system.

  12. Thermodynamic limits to the conversion of blackbody radiation by quantum systems. [with application to solar energy conversion devices

    Science.gov (United States)

    Buoncristiani, A. M.; Smith, B. T.; Byvik, C. E.

    1982-01-01

    Using general thermodynamic arguments, we analyze the conversion of the energy contained in the radiation from a blackbody to useful work by a quantum system. We show that the energy available for conversion is bounded above by the change in free energy in the incident and reradiated fields and that this free energy change depends upon the temperature of the receiving device. Universal efficiency curves giving the ultimate thermodynamic conversion efficiency of the quantum system are presented in terms of the blackbody temperature and the temperature and threshold energy of the quantum system. Application of these results is made to a variety of systems including biological photosynthetic, photovoltaic, and photoelectrochemical systems.

  13. Advanced materials and coatings for energy conversion systems

    Energy Technology Data Exchange (ETDEWEB)

    St Pierre, George R. [Ohio State Univ., Materials Science and Engineering Dept., Columbus, OH (United States)

    1997-12-31

    Following an historical review of the development of high-temperature alloys for energy conversion systems including turbine engines, some of the current advances in single crystal materials, intermetallics, metal-matrix composites, and ceramic-matrix composites are discussed. Particular attention is directed at creep phenomena, fatigue properties and oxidation resistance. Included within the discussions is the current status of carbon/carbon composites as potential high-temperature engineering materials and the development of coating systems for thermal barrier and oxidation protection. The specific influences of combustion gas compositions, i.e., oxidation potential, sulfur, halides, etc. are discussed. A current list of eligible advanced materials and coatings systems is presented and assessed. Finally, the critical failure mechanism and life-prediction parameters for some of the new classes of advanced structural materials are elaborated with the view to achieving affordability and extended life with a high degree of reliability. Examples are drawn from a variety of energy conversion systems. (Author)

  14. The total flow concept for geothermal energy conversion

    Science.gov (United States)

    Austin, A. L.

    1974-01-01

    A geothermal development project has been initiated at the Lawrence Livermore Laboratory (LLL) to emphasize development of methods for recovery and conversion of the energy in geothermal deposits of hot brines. Temperatures of these waters vary from 150 C to more than 300 C with dissolved solids content ranging from less than 0.1% to over 25% by weight. Of particular interest are the deposits of high-temperature/high-salinity brines, as well as less saline brines, known to occur in the Salton Trough of California. Development of this resource will depend on resolution of the technical problems of brine handling, scale and precipitation control, and corrosion/erosion resistant systems for efficient conversion of thermal to electrical energy. Research experience to date has shown these problems to be severe. Hence, the LLL program emphasizes development of an entirely different approach called the Total Flow concept.

  15. Covalent Organic Framework Electrocatalysts for Clean Energy Conversion.

    Science.gov (United States)

    Lin, Chun-Yu; Zhang, Detao; Zhao, Zhenghang; Xia, Zhenhai

    2018-02-01

    Covalent organic frameworks (COFs) are promising for catalysis, sensing, gas storage, adsorption, optoelectricity, etc. owning to the unprecedented combination of large surface area, high crystallinity, tunable pore size, and unique molecular architecture. Although COFs are in their initial research stage, progress has been made in the design and synthesis of COF-based electrocatalysis for the oxygen reduction reaction, oxygen evolution reaction, hydrogen evolution reaction, and CO 2 reduction in energy conversion and fuel generation. Design principles are also established for some of the COF materials toward rational design and rapid screening of the best electrocatalysts for a specific application. Herein, the recent advances in the design and synthesis of COF-based catalysts for clean energy conversion and storage are presented. Future research directions and perspectives are also being discussed for the development of efficient COF-based electrocatalysts. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Electrochemical, interfacial, and surface studies of the conversion of carbon dioxide to liquid fuels on tin electrodes

    Science.gov (United States)

    Wu, Jingjie

    The electrochemical reduction of carbon dioxide (CO2) into liquid fuels especially coupling with the intermittent renewable electricity offers a promising means of storing electricity in chemical form, which reduces the dependence on fossil fuels and mitigates the negative impact of anthropogenic CO2 emissions on the planet. Although converting CO2 to fuels is not in itself a new concept, the field has not substantially advanced in the last 30 years primarily because of the challenge of discovery of structural electrocatalysts and the development of membrane architectures for efficient collection of reactants and separation of products. An efficient catalyst for the electrochemical conversion of CO2 to fuels must be capable of mediating a proton-coupled electron transfer reaction at low overpotentials, reducing CO2 in the presence of water, selectively converting CO 2 to desirable chemicals, and sustaining long-term operations (Chapter 1). My Ph.D. research was an investigation of the electroreduction of CO2 on tin-based electrodes and development of an electrochemical cell to convert CO2 to liquid fuels. The initial study focused on understanding the CO2 reduction reaction chemistry in the electrical double layer with an emphasis on the effects of electrostatic adsorption of cations, specific adsorption of anion and electrolyte concentration on the potential and proton concentration at outer Helmholtz plane at which reduction reaction occurs. The variation of potential and proton concentration at outer Helmholtz plane accounts for the difference in activity and selectivity towards CO2 reduction when using different electrolytes (Chapter 2). Central to the highly efficient CO2 reduction is an optimum microstructure of catalyst layer in the Sn gas diffusion electrode (GDE) consisting of 100 nm Sn nanoparticles to facilitate gas diffusion and charge transfer. This microstructure in terms of the proton conductor fraction and catalyst layer thickness was optimized to

  17. Mechanochemical activation and synthesis of nanomaterials for hydrogen storage and conversion in electrochemical power sources.

    Science.gov (United States)

    Wronski, Zbigniew S; Varin, Robert A; Czujko, Tom

    2009-07-01

    In this study we discuss a process of mechanical activation employed in place of chemical or thermal activation to improve the mobility and reactivity of hydrogen atoms and ions in nanomaterials for energy applications: rechargeable batteries and hydrogen storage for fuel cell systems. Two materials are discussed. Both are used or intended for use in power sources. One is nickel hydroxide, Ni(OH)2, which converts to oxyhydroxide in the positive Ni electrode of rechargeable metal hydride batteries. The other is a complex hydride, Mg(AIH4)2, intended for use in reversible, solid-state hydrogen storage for fuel cells. The feature shared by these unlikely materials (hydroxide and hydride) is a sheet-like hexagonal crystal structure. The mechanical activation was conducted in high-energy ball mills. We discuss and demonstrate that the mechanical excitation of atoms and ions imparted on these powders stems from the same class of phenomena. These are (i) proliferation of structural defects, in particular stacking faults in a sheet-like structure of hexagonal crystals, and (ii) possible fragmentation of a faulted structure into a mosaic of layered nanocrystals. The hydrogen atoms bonded in such nanocrystals may be inserted and abstracted more easily from OH- hydroxyl group in Ni(OH)2 and AlH4- hydride complex in Mg(AlH4)2 during hydrogen charge and discharge reactions. However, the effects of mechanical excitation imparted on these powders are different. While the Ni(OH)2 powder is greatly activated for cycling in batteries, the Mg(AlH4)2 complex hydride phase is greatly destabilized for use in reversible hydrogen storage. Such a "synchronic" view of the structure-property relationship in respect to materials involved in hydrogen energy storage and conversion is supported in experiments employing X-ray diffraction (XRD), differential scanning calorimetry (DSC) and direct imaging of the structure with a high-resolution transmission-electron microscope (HREM), as well as in

  18. In-situ conversion of rGO/Ni2P composite from GO/Ni-MOF precursor with enhanced electrochemical property

    Science.gov (United States)

    Lv, Zijian; Zhong, Qin; Bu, Yunfei

    2018-05-01

    Owing to the metalloid characteristic and superior electrical conductivity, the metal phosphides have received increasing interests in energy storage systems. Here, xrGO/Ni2P composites are successfully synthesized via an In-situ phosphorization process with GO/Ni-MOF as precursors. Compared to pure Ni2P, the xrGO/Ni2P composites appear enhanced electrochemical properties in terms of the specific capacitance and cycling performance as electrodes for supercapacitors. Especially, the 2rGO/Ni2P electrode shows a highest specific capacitance of 890 F g-1 at 1 A g-1 among the obtained composites. The enhancement can be attributed to the inherited structure from Ni-MOF and the well assembled of rGO and Ni2P through the In-situ conversion process. Moreover, when applied as positive electrode in a hybrid supercapacitor, an energy density of 35.9 W h kg-1 at a power density of 752 W kg-1 has been achieved. This work provides an In-situ conversion strategy for the synthesis of rGO/Ni2P composite which might be a promising electrode material for SCs.

  19. Ocean Thermal Energy Conversion (OTEC) program. FY 1977 program summary

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    An overview is given of the ongoing research, development, and demonstration efforts. Each of the DOE's Ocean Thermal Energy Conversion projects funded during fiscal year 1977 (October 1, 1976 through September 30, 1977) is described and each project's status as of December 31, 1977 is reflected. These projects are grouped as follows: program support, definition planning, engineering development, engineering test and evaluation, and advanced research and technology. (MHR)

  20. Electrochemical energy storage device based on carbon dioxide as electroactive species

    Science.gov (United States)

    Nemeth, Karoly; van Veenendaal, Michel Antonius; Srajer, George

    2013-03-05

    An electrochemical energy storage device comprising a primary positive electrode, a negative electrode, and one or more ionic conductors. The ionic conductors ionically connect the primary positive electrode with the negative electrode. The primary positive electrode comprises carbon dioxide (CO.sub.2) and a means for electrochemically reducing the CO.sub.2. This means for electrochemically reducing the CO.sub.2 comprises a conductive primary current collector, contacting the CO.sub.2, whereby the CO.sub.2 is reduced upon the primary current collector during discharge. The primary current collector comprises a material to which CO.sub.2 and the ionic conductors are essentially non-corrosive. The electrochemical energy storage device uses CO.sub.2 as an electroactive species in that the CO.sub.2 is electrochemically reduced during discharge to enable the release of electrical energy from the device.

  1. Influence of e-Beam Irradiation on the Performance of Energy Storage and Conversion Electrode

    Energy Technology Data Exchange (ETDEWEB)

    Baeok, Sung Hyeon; Jo, Won Jun; Lee, Duwon; Lee, Myung An [Inha Univ., Incheon (Korea, Republic of); Shin, Joong Hyeok; Lee, Byung Cheol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-07-01

    Electron beam irradiation was known as an effective method to improve the stability and performance of electrodes by varying the chemical and physical properties. It has been reported that surface morphology, oxidation state, optical properties, and electrochemical properties can be modified by e-beam irradiation. In this work, influence of electron beam irradiation on the performance of electrode was studied for the applications in energy storage and conversion, such as secondary battery, supercapacitor, and fuel cell. Changes in physical and chemical properties of electrodes before and after e-beam irradiation were investigated. The crystallinity of the synthesized materials was investigated by X-ray diffraction, and the oxidation states were determined by X-ray photoelectron spectroscopy. Scanning electron microscopy was utilized to examine surface morphology. Crystallinity, surface morphology, and oxidation state were significantly changed by electron beam irradiation, and were found to be strongly dependent on irradiation time.

  2. Integrated solar capacitors for energy conversion and storage

    Institute of Scientific and Technical Information of China (English)

    Ruiyuan Liu; Yuqiang Liu; Haiyang Zou; Tao Song; Baoquan Sun

    2017-01-01

    Solar energy is one of the most popular clean energy sources and is a promising alternative to fulfill the increasing energy demands of modern society.Solar cells have long been under intensive research attention for harvesting energy from sunlight with a high power-conversion efficiency and low cost.However,the power outputs of photovoltaic devices suffer from fluctuations due to the intermittent instinct of the solar radiation.Integrating solar cells and energystorage devices as self-powering systems may solve this problem through the simultaneous storage of the electricity and manipulation of the energy output.This review summarizes the research progress in the integration of new-generation solar cells with supercapacitors,with emphasis on the structures,materials,performance,and new design features.The current challenges and future prospects are discussed with the aim of expanding research and development in this field.

  3. Energy Conversion in Imploding Z-Pinch Plasma

    International Nuclear Information System (INIS)

    Fisher, V.I.; Gregorian, L.; Davara, G.; Kroupp, E.; Bernshtam, V.A.; Ralchenko, Yu. V.; Starobinets, A.; Maron, Y.

    2002-01-01

    Due to important applications, Z-pinches became a subject of extensive studies. In these studies, main attention is directed towards improvement in efficiency of electric energy conversion into high-power radiation burst. At present, knowledge available on physics of Z-pinch operation, plasma motion, atomic kinetics, and energy conversion is mainly knowledge of numerical simulation results. We believe further progress require (i) experimental determination of spatial distribution and time history of thermodynamic parameters and magnetic field, as well as (ii) utilization of this data for experiment-based calculation of r,t-distribution of driving forces, mass and energy fluxes, and local energy deposition rates due to each of contributing mechanisms, what provides an insight into a process of conversion of stored electric energy into radiation burst. Moreover, experimentally determined r, t-distribution of parameters may serve for verification of computer programs developed for simulation of Z-pinch operation and optimization of radiation output. Within this research program we performed detailed spectroscopic study of plasmas imploding in modest-size (25 kV, 5 kJ, 1.2 μs quaterperiod) gas-puff Z-pinch. This facility has reasonably high repetition rate and provides good reproducibility of results. Consistent with plasma ionization degree in the implosion period, measurements are performed in UV-visible spectral range. Observation of spectral lines emitted at various azimuthal angles f showed no dependence on f. Dependence on axial coordinate z is found to be weak in near-anode half of the anode-cathode gap. Based on these observations and restricting the measurements to near-anode half of the gap, an evolution of parameters is studied in time and radial coordinate r only. In present talk we report on determination of radial component of plasma hydrodynamic velocity u r (r,t), magnetic field B ζ (r,t), electron density n e (r,t), density of ions in various

  4. Characteristic of oil palm residue for energy conversion system

    International Nuclear Information System (INIS)

    Muharnif; Zainal, Z.A.

    2006-01-01

    Malaysia is the major producer of palm oil in the world. It produces 8.5 tones per year (8.5 x 10 6 ty -1 ) of palm oil from 38.6 x 10 6 ty - 1 of fresh fruit bunches. Palm oil production generates large amounts of process residue such as fiber (5.4 x 10 6 ty - 1 ), shell (2.3 x 10 6 ty - 1 ), and empty fruit bunches (8.8 x 10 6 ty - 1 ). A large fraction of the fiber and much of the shell are used as fuel to generate process steam and electricity. The appropriate energy conversion system depends on the characteristic of the oil palm residue. In this paper, a description of characteristic of the oil palm residue is presented. The types of the energy conversion system presented are stoker type combustor and gasified. The paper focuses on the pulverized biomass material and the use of fluidized bed gasified. In the fluidized bed gasified, the palm shell and fiber has to be pulverized before feeding into gasified. For downdraft gasified and furnace, the palm shell and fiber can be used directly into the reactor for energy conversion. The heating value, burning characteristic, ash and moisture content of the oil palm residue are other parameters of the study

  5. Conversion of concentrated solar thermal energy into chemical energy.

    Science.gov (United States)

    Tamaura, Yutaka

    2012-01-01

    When a concentrated solar beam is irradiated to the ceramics such as Ni-ferrite, the high-energy flux in the range of 1500-2500 kW/m(2) is absorbed by an excess Frenkel defect formation. This non-equilibrium state defect is generated not by heating at a low heating-rate (30 K/min), but by irradiating high flux energy of concentrated solar beam rapidly at a high heating rate (200 K/min). The defect can be spontaneously converted to chemical energy of a cation-excess spinel structure (reduced-oxide form) at the temperature around 1773 K. Thus, the O(2) releasing reaction (α-O(2) releasing reaction) proceeds in two-steps; (1) high flux energy of concentrated solar beam absorption by formation of the non-equilibrium Frenkel defect and (2) the O(2) gas formation from the O(2-) in the Frenkel defect even in air atmosphere. The 2nd step proceeds without the solar radiation. We may say that the 1st step is light reaction, and 2nd step, dark reaction, just like in photosynthesis process.

  6. Nanostructured materials for advanced energy conversion and storage devices

    Science.gov (United States)

    Aricò, Antonino Salvatore; Bruce, Peter; Scrosati, Bruno; Tarascon, Jean-Marie; van Schalkwijk, Walter

    2005-05-01

    New materials hold the key to fundamental advances in energy conversion and storage, both of which are vital in order to meet the challenge of global warming and the finite nature of fossil fuels. Nanomaterials in particular offer unique properties or combinations of properties as electrodes and electrolytes in a range of energy devices. This review describes some recent developments in the discovery of nanoelectrolytes and nanoelectrodes for lithium batteries, fuel cells and supercapacitors. The advantages and disadvantages of the nanoscale in materials design for such devices are highlighted.

  7. Electrohydrodynamics: a high-voltage direct energy conversion process

    International Nuclear Information System (INIS)

    Brun, S.

    1967-04-01

    This analysis consists of a theoretical and practical study of a high-tension electrical power generator based on the Van de Graaff generator principle, the main difference being that the charges produced are transported by a gas in motion and not by a belt. The electrical and thermal properties of such a generator are studied, as well as the difficult problem of the production of the ionised particles used in the conversion. A certain number of results already published on this process for converting kinetic energy into electrical energy is given, as well as some possible applications in the field of space technology. (author) [fr

  8. Longitudinal density modulation and energy conversion in intense beams

    International Nuclear Information System (INIS)

    Harris, J. R.; Neumann, J. G.; Tian, K.; O'Shea, P. G.

    2007-01-01

    Density modulation of charged particle beams may occur as a consequence of deliberate action, or may occur inadvertently because of imperfections in the particle source or acceleration method. In the case of intense beams, where space charge and external focusing govern the beam dynamics, density modulation may, under some circumstances, be converted to velocity modulation, with a corresponding conversion of potential energy to kinetic energy. Whether this will occur depends on the properties of the beam and the initial modulation. This paper describes the evolution of discrete and continuous density modulations on intense beams and discusses three recent experiments related to the dynamics of density-modulated electron beams

  9. An efficiency booster for energy conversion in natural circulation loops

    International Nuclear Information System (INIS)

    Wang, Dongqing; Jiang, Jin

    2016-01-01

    Highlights: • Low driving power conversion efficiency of natural circulation loops is proved. • The low conversion efficiency leads to low heat transfer capacity of such loops. • An efficiency booster is designed with turbine to increase the efficiency. • Performance of the proposed booster has been numerically simulated. • The booster drastically enhances heat transfer capacity of such loops. - Abstract: In this paper, the capacity of a natural circulation loop for transferring heat from a heat source to a heat sink has been analyzed. It is concluded that the capacity of the natural circulation loop depends on the conversion efficiency of the thermal energy from the heat source to the driving force for the circulation of the flow. The low conversion efficiency leading to weak driving force in such loops has been demonstrated analytically and validated through simulation results. This issue has resulted in a low heat transfer capacity in the circulation loop. To increase the heat transfer capacity, one has to improve this efficiency. To meet such a need, a novel efficiency booster has been developed in this paper. The booster essentially increases the flow driving force and hence significantly improves the overall heat transfer capacity. Design and analysis of this booster have been performed in detail. The performance has been examined through extensive computer simulations. It is concluded that the booster can indeed drastically improve the heat transfer capacity of the natural circulation loop.

  10. An efficiency booster for energy conversion in natural circulation loops

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dongqing, E-mail: wangdongqing@stu.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Beijing Computational Science Research Center, Beijing 100084 (China); Jiang, Jin, E-mail: jjiang@eng.uwo.ca [Department of Electrical and Computer Engineering, The University of Western Ontario, London, Ontario N6A 5B9 (Canada); Beijing Computational Science Research Center, Beijing 100084 (China)

    2016-08-01

    Highlights: • Low driving power conversion efficiency of natural circulation loops is proved. • The low conversion efficiency leads to low heat transfer capacity of such loops. • An efficiency booster is designed with turbine to increase the efficiency. • Performance of the proposed booster has been numerically simulated. • The booster drastically enhances heat transfer capacity of such loops. - Abstract: In this paper, the capacity of a natural circulation loop for transferring heat from a heat source to a heat sink has been analyzed. It is concluded that the capacity of the natural circulation loop depends on the conversion efficiency of the thermal energy from the heat source to the driving force for the circulation of the flow. The low conversion efficiency leading to weak driving force in such loops has been demonstrated analytically and validated through simulation results. This issue has resulted in a low heat transfer capacity in the circulation loop. To increase the heat transfer capacity, one has to improve this efficiency. To meet such a need, a novel efficiency booster has been developed in this paper. The booster essentially increases the flow driving force and hence significantly improves the overall heat transfer capacity. Design and analysis of this booster have been performed in detail. The performance has been examined through extensive computer simulations. It is concluded that the booster can indeed drastically improve the heat transfer capacity of the natural circulation loop.

  11. Designing Energy Conversion Systems for the Next Decade

    Directory of Open Access Journals (Sweden)

    Slobodan N. Vukosavić

    2012-12-01

    Full Text Available Sustainable growth in energy consumption requires transition to clean and green energy sources and energy systems. Environment friendly and renewable energy systems deal with electrical energy and rely on efficient electrical power converters. High power electronics is the key technology to deal with the next generation of electrical energy systems. The door to future breakthroughs in high power electronics is opened by major improvement in semiconductor power devices and their packaging technologies. New materials allow for much higher junction temperatures and higher operating voltages. Most importantly, advanced power semiconductor devices and novel converter topology open the possibility to increase the energy efficiency of power conversion and reduce the amount of heat. Although the waste heat created by high power converters can be put to use by adding on to heating systems, this option is not always available and the conversion losses are mostly wasted. At the same time, wasted heat is a form of pollution that threatens the environment. Another task for high power converters is efficient harvesting of renewable energy sources, such as the wind energy and the sun. Intermittent in nature, they pose a difficult task to power converter topology and controls. Eventually, high power converters are entering power distribution and transmission networks. With their quick reaction, with fast communication between the grid nodes and with advanced controllability of high power converters, a number of innovations can be introduced, facilitating the power system control and allowing for optimizations and loss reduction. Coined smart grid, this solution comprises two key elements, and these are intelligent controls and large static power converters. At virtually no cost, smart grids allow for a better utilization of available resources and it enlarges the stable operating range of the transmission systems. Therefore, it is of interest to review the

  12. Solar energy conversion by photocatalytic overall water splitting

    KAUST Repository

    Takanabe, Kazuhiro

    2015-07-04

    Summary: Solar energy is abundant and renewable energy: however, extensive conversion of the solar energy can only be achieved by large-scale collection of solar flux. The technology that satisfies this requirement must be as simple as possible to reduce capital cost. Overall water splitting (OWS) by powder-form photocatalysts directly produces H2 as a chemical energy in a single reactor, which does not require any complicated parabolic mirrors and electronic devices. Because of its simplicity and low capital cost, it has tremendous potential to become the major technology of solar energy conversion. To achieve the OWS efficiently, the development of efficient photocatalysts is mandatory. The OWS hotocatalysis involves the electrocatalys is for both water reduction and oxidation on the surafce of photocatalysts, which is driven by particular semiconductors that absorb photons to generate excited carriers. Such photocatalysts must be designed to maximize the charge separation efficiency at the catalyst-semiconductor and semiconductor-electrolyte interface. In addition the low-overpotential electrocatalyts towards water redox reactions should be insensitive to the back-reaction of the produced H2 and O2 that produces H2O. In this presentation, some recent progress on the topic of the OWS in our group will be discussed.

  13. An estimate of spherical impactor energy transfer for mechanical frequency up-conversion energy harvester

    Directory of Open Access Journals (Sweden)

    L. R. Corr

    2016-08-01

    Full Text Available Vibration energy harvesters, which use the impact mechanical frequency up-conversion technique, utilize an impactor, which gains kinetic energy from low frequency ambient environmental vibrations, to excite high frequency systems that efficiently convert mechanical energy to electrical energy. To take full advantage of the impact mechanical frequency up-conversion technique, it is prudent to understand the energy transfer from the low frequency excitations, to the impactor, and finally to the high frequency systems. In this work, the energy transfer from a spherical impactor to a multi degree of freedom spring / mass system, due to Hertzian impact, is investigated to gain insight on how best to design impact mechanical frequency up-conversion energy harvesters. Through this academic work, it is shown that the properties of the contact (or impact area, i.e., radius of curvature and material properties, only play a minor role in energy transfer and that the equivalent mass of the target system (i.e., the spring / mass system dictates the total amount of energy transferred during the impact. The novel approach of utilizing the well-known Hertzian impact methodology to gain an understanding of impact mechanical frequency up-conversion energy harvesters has made it clear that the impactor and the high frequency energy generating systems must be designed together as one system to ensure maximum energy transfer, leading to efficient ambient vibration energy harvesters.

  14. A Nitrogen-Doped Carbon Catalyst for Electrochemical CO2 Conversion to CO with High Selectivity and Current Density.

    Science.gov (United States)

    Jhong, Huei-Ru Molly; Tornow, Claire E; Smid, Bretislav; Gewirth, Andrew A; Lyth, Stephen M; Kenis, Paul J A

    2017-03-22

    We report characterization of a non-precious metal-free catalyst for the electrochemical reduction of CO 2 to CO; namely, a pyrolyzed carbon nitride and multiwall carbon nanotube composite. This catalyst exhibits a high selectivity for production of CO over H 2 (approximately 98 % CO and 2 % H 2 ), as well as high activity in an electrochemical flow cell. The CO partial current density at intermediate cathode potentials (V=-1.46 V vs. Ag/AgCl) is up to 3.5× higher than state-of-the-art Ag nanoparticle-based catalysts, and the maximum current density is 90 mA cm -2 . The mass activity and energy efficiency (up to 48 %) were also higher than the Ag nanoparticle reference. Moving away from precious metal catalysts without sacrificing activity or selectivity may significantly enhance the prospects of electrochemical CO 2 reduction as an approach to reduce atmospheric CO 2 emissions or as a method for load-leveling in relation to the use of intermittent renewable energy sources. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Modeling power electronics and interfacing energy conversion systems

    CERN Document Server

    Simões, Marcelo Godoy

    2017-01-01

    Discusses the application of mathematical and engineering tools for modeling, simulation and control oriented for energy systems, power electronics and renewable energy. This book builds on the background knowledge of electrical circuits, control of dc/dc converters and inverters, energy conversion and power electronics. The book shows readers how to apply computational methods for multi-domain simulation of energy systems and power electronics engineering problems. Each chapter has a brief introduction on the theoretical background, a description of the problems to be solved, and objectives to be achieved. Block diagrams, electrical circuits, mathematical analysis or computer code are covered. Each chapter concludes with discussions on what should be learned, suggestions for further studies and even some experimental work.

  16. Thermo-electrochemical production of compressed hydrogen from methane with near-zero energy loss

    Science.gov (United States)

    Malerød-Fjeld, Harald; Clark, Daniel; Yuste-Tirados, Irene; Zanón, Raquel; Catalán-Martinez, David; Beeaff, Dustin; Morejudo, Selene H.; Vestre, Per K.; Norby, Truls; Haugsrud, Reidar; Serra, José M.; Kjølseth, Christian

    2017-11-01

    Conventional production of hydrogen requires large industrial plants to minimize energy losses and capital costs associated with steam reforming, water-gas shift, product separation and compression. Here we present a protonic membrane reformer (PMR) that produces high-purity hydrogen from steam methane reforming in a single-stage process with near-zero energy loss. We use a BaZrO3-based proton-conducting electrolyte deposited as a dense film on a porous Ni composite electrode with dual function as a reforming catalyst. At 800 °C, we achieve full methane conversion by removing 99% of the formed hydrogen, which is simultaneously compressed electrochemically up to 50 bar. A thermally balanced operation regime is achieved by coupling several thermo-chemical processes. Modelling of a small-scale (10 kg H2 day-1) hydrogen plant reveals an overall energy efficiency of >87%. The results suggest that future declining electricity prices could make PMRs a competitive alternative for industrial-scale hydrogen plants integrating CO2 capture.

  17. 3D printing technologies for electrochemical energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Feng; Wei, Min; Viswanathan, Vilayanur V.; Swart, Benjamin; Shao, Yuyan; Wu, Gang; Zhou, Chi

    2017-10-01

    Fabrication of electrodes and electrolytes play an important role in promoting the performance of electrochemical energy storage (EES) devices such as batteries and supercapacitors. Traditional fabrication techniques have limited capability in controlling the geometry and architecture of the electrode and solid-state electrolytes, which would otherwise compromise the performance. 3D printing, a disruptive manufacturing technology, has emerged as an innovative approach to fabricating EES devices from nanoscale to macroscale and from nanowatt to megawatt, providing great opportunities to accurately control device geometry (e.g., dimension, porosity, morphology) and structure with enhanced specific energy and power densities. Moreover, the additive manufacturing nature of 3D printing provides excellent controllability of the electrode thickness with much simplified process in a cost effective manner. With the unique spatial and temporal material manipulation capability, 3D printing can integrate multiple nanomaterials in the same print, and multi-functional EES devices (including functional gradient devices) can be fabricated. Herein, we review recent advances in 3D printing of EES devices. We focused on two major 3D printing technologies including direct writing and inkjet printing. The direct material deposition characteristics of these two processes enable them to print on a variety of flat substrates, even a conformal one, well suiting them to applications such as wearable devices and on-chip integrations. Other potential 3D printing techniques such as freeze nano-printing, stereolithography, fused deposition modeling, binder jetting, laminated object manufacturing, and metal 3D printing are also introduced. The advantages and limitations of each 3D printing technology are extensively discussed. More importantly, we provide a perspective on how to integrate the emerging 3D printing with existing technologies to create structures over multiple length scale from

  18. On-line supercapacitor dynamic models for energy conversion and management

    International Nuclear Information System (INIS)

    Wu, C.H.; Hung, Y.H.; Hong, C.W.

    2012-01-01

    Highlights: ► On-line supercapacitor dynamic models are derived from time and frequency domains. ► Equivalent circuits with an ANN identifier are derived for nonlinear effects. ► Nonlinear effects include environmental temperature and operating voltage. ► Supercapacitor models can achieve both system fidelity and computation efficiency. - Abstract: This paper develops on-line nonlinear dynamic models of electrochemical supercapacitors which are for energy conversion and management. Based on the theory of electrochemical impedance spectroscopy, extensive alternative current impedance tests have been conducted to investigate the frequency-domain dynamics of these supercapacitors. A Nyquist diagram is plotted to help establish an equivalent electric circuit, which is regarded as the first-phase linear model. Two performance-influencing factors, environmental temperature and operating voltage, are considered as nonlinear effects. The nonlinear relationships among parameters of the capacitances and resistances in the first-phase model are established by a multi-layer artificial neural network. The neural parameters are trained using a back-propagation algorithm by feeding the experimental data bank. Combining the first-phase model and the on-line neural “parameter identifier”, the algorithm produces an on-line nonlinear dynamic model. Simulation results have proved that this proposed model is able to achieve both system fidelity and computational efficiency.

  19. The Generalized Conversion Factor in Einstein's Mass-Energy Equation

    Directory of Open Access Journals (Sweden)

    Ajay Sharma

    2008-07-01

    Full Text Available Einstein's September 1905 paper is origin of light energy-mass inter conversion equation ($L = Delta mc^{2}$ and Einstein speculated $E = Delta mc^{2}$ from it by simply replacing $L$ by $E$. From its critical analysis it follows that $L = Delta mc^{2}$ is only true under special or ideal conditions. Under general cases the result is $L propto Delta mc^{2}$ ($E propto Delta mc^{2}$. Consequently an alternate equation $Delta E = A ub c^{2}Delta M$ has been suggested, which implies that energy emitted on annihilation of mass can be equal, less and more than predicted by $Delta E = Delta mc^{2}$. The total kinetic energy of fission fragments of U-235 or Pu-239 is found experimentally 20-60 MeV less than Q-value predicted by $Delta mc^{2}$. The mass of particle Ds (2317 discovered at SLAC, is more than current estimates. In many reactions including chemical reactions $E = Delta mc^{2}$ is not confirmed yet, but regarded as true. It implies the conversion factor than $c^{2}$ is possible. These phenomena can be explained with help of generalized mass-energy equation $Delta E = A ub c^{2}Delta M$.

  20. Combustion and direct energy conversion inside a micro-combustor

    International Nuclear Information System (INIS)

    Lei, Yafeng; Chen, Wei; Lei, Jiang

    2016-01-01

    Highlights: • The flammability range of micro-combustor was broadened with heat recirculation. • The quenching diameter decreased with heat recirculation compared to without recirculation. • The surface areas to volume ratio was the most important parameter affecting the energy conversion efficiency. • The maximum conversion efficiency (3.15%) was achieved with 1 mm inner diameter. - Abstract: Electrical energy can be generated by employing a micro-thermophotovoltaic (TPV) cell which absorbs thermal radiation from combustion taking place in a micro-combustor. The stability of combustion in a micro-combustor is essential for operating a micro-power system using hydrogen and hydrocarbon fuels as energy source. To understand the mechanism of sustaining combustion within the quenching distance of fuel, this study proposed an annular micro combustion tube with recirculation of exhaust heat. To explore the feasibility of combustion in the micro annular tube, the parameters influencing the combustion namely, quenching diameter, and flammability were studied through numerical simulation. The results indicated that combustion could be realized in micro- combustor using heat recirculation. Following results were obtained from simulation. The quenching diameter reduced from 1.3 mm to 0.9 mm for heat recirculation at equivalence ratio of 1; the lean flammability was 2.5%–5% lower than that of without heat recirculation for quenching diameters between 2 mm and 5 mm. The overall energy conversion efficiency varied at different inner diameters. A maximum efficiency of 3.15% was achieved at an inner diameter of 1 mm. The studies indicated that heat recirculation is an effective strategy to maintain combustion and to improve combustion limits in micro-scale system.

  1. Conceptual design of a FGM thermoelectric energy conversion system for high temperature heat source. 1. Design of thermoelectric energy conversion unit

    International Nuclear Information System (INIS)

    Kambe, Mitsuru; Teraki, Junichi; Hirano, Toru.

    1996-01-01

    Thermoelectric (TE) power conversion system has been focused as a candidate of direct energy conversion systems for high temperature heat source to meet the various power requirements in next century. A concept of energy conversion unit by using TE cell elements combined with FGM compliant pads has been presented to achieve high thermal energy density as well as high energy conversion efficiency. An energy conversion unit consists of 8 couples of P-N cell elements sandwiched between two FGM compliant pads. Performance analysis revealed that the power generated by this unit was 11 watts which is nearly ten times as much as conventional unit of the same size. Energy conversion efficiency of 12% was expected based on the assumption of ZT = 1. All the member of compliant pads as well as TE cells could be bonded together to avoid thermal resistance. (author)

  2. Monolithic three-dimensional electrochemical energy storage system on aerogel or nanotube scaffold

    Science.gov (United States)

    Farmer, Joseph C; Stadermann, Michael

    2013-11-12

    A monolithic three-dimensional electrochemical energy storage system is provided on an aerogel or nanotube scaffold. An anode, separator, cathode, and cathodic current collector are deposited on the aerogel or nanotube scaffold.

  3. Renewable energy from corn residues by thermochemical conversion

    Science.gov (United States)

    Yu, Fei

    Declining fossil oil reserve, skyrocket price, unsecured supplies, and environment pollution are among the many energy problems we are facing today. It is our conviction that renewable energy is a solution to these problems. The long term goal of the proposed research is to develop commercially practical technologies to produce energy from renewable resources. The overall objective of my research is to study and develop thermochemical processes for converting bulky and low-energy-density biomass materials into bio-fuels and value-added bio-products. The rationale for the proposed research is that, once such processes are developed, processing facility can be set up on or near biomass product sites, reducing the costs associated with transport of bulky biomass which is a key technical barrier to biomass conversion. In my preliminary research, several conversion technologies including atmospheric pressure liquefaction, high pressure liquefaction, and microwave pyrolysis have been evaluated. Our data indicated that microwave pyrolysis had the potential to become a simple and economically viable biomass conversion technology. Microwave pyrolysis is an innovative process that provides efficient and uniform heating, and are robust to type, size and uniformity of feedstock and therefore suitable for almost any waste materials without needing to reduce the particle size. The proposed thesis focused on in-depth investigations of microwave pyrolysis of corn residues. My first specific aim was to examine the effects of processing parameters on product yields. The second specific research aim was to characterize the products (gases, bio-oils, and solid residues), which was critical to process optimization and product developments. Other research tasks included conducting kinetic modeling and preliminary mass and energy balance. This study demonstrated that microwave pyrolysis could be optimized to produce high value syngas, liquid fuels and pyrolytic carbons, and had a great

  4. Innovative rubble mound breakwaters for wave energy conversion

    International Nuclear Information System (INIS)

    Contestabile, Pasquale; Vicinanza, Diego; Iuppa, Claudio; Cavallaro, Luca; Foti, Enrico

    2015-01-01

    This paper presents a new Wave Energy Converter named Overtopping BReakwater for Energy Conversion (OBREC) which consists of a rubble mound breakwater with a front reservoir designed with the aim of capturing the wave overtopping in order to produce electricity. The energy is extracted via low head turbines, using the difference in water levels between the reservoir and the mean sea water level. The new design should be capable of adding a revenue generation function to a breakwater while adding cost sharing benefits due to integration. The design can be applied to harbour expansions, existing breakwater maintenance or upgrades due to climate change for a relatively low cost, considering the breakwater would be built regardless of the inclusion of a WEC [it

  5. Experimental investigation of rubble mound breakwaters for wave energy conversion

    DEFF Research Database (Denmark)

    Luppa, C.; Contestabile, P.; Cavallaro, L.

    2015-01-01

    The paper describes recent laboratory investigation on the breakwater integrated device named “OBREC” (Overtopping BReakwater for Energy Conversion). This technology recently appeared on the wave energy converter scene as an executive outcome of improving composite seawalls by including overtoppi......-by-wave measurement of couples of hydraulic head-flow rate acting on a virtual turbine inlet. Finally, the influence of draft length on overtopping discharge has been identified....... type wave energy converters [1]. Two complementary experimental campaigns were carried out, in 2012 and in 2014. Several geometries and wave conditions were examined. Preliminary comparison of hydraulic behaviour has been summarized, focusing on reflection analysis and overtopping flow rate....... Preliminary design formulae are presented to predict overtopping at the rear side of the structure and in to the front reservoir based on both datasets. Moreover, some important results have been presented on hydraulic behaviour of OBREC with saturated reservoir. Particularly attention is paid to wave...

  6. Progress and Perspectives of Plasmon-Enhanced Solar Energy Conversion.

    Science.gov (United States)

    Cushing, Scott K; Wu, Nianqiang

    2016-02-18

    Plasmonics allows extraordinary control of light, making it attractive for application in solar energy harvesting. In metal-semiconductor heterojunctions, plasmons can enhance photoconversion in the semiconductor via three mechanisms, including light trapping, hot electron/hole transfer, and plasmon-induced resonance energy transfer (PIRET). To understand the plasmonic enhancement, the metal's geometry, constituent metal, and interface must be viewed in terms of the effects on the plasmon's dephasing and decay route. To simplify design of plasmonic metal-semiconductor heterojunctions for high-efficiency solar energy conversion, the parameters controlling the plasmonic enhancement can be distilled to the dephasing time. The plasmonic geometry can then be further refined to optimize hot carrier transfer, PIRET, or light trapping.

  7. Artificial photosynthesis: biomimetic approaches to solar energy conversion and storage.

    Science.gov (United States)

    Kalyanasundaram, K; Graetzel, M

    2010-06-01

    Using sun as the energy source, natural photosynthesis carries out a number of useful reactions such as oxidation of water to molecular oxygen and fixation of CO(2) in the form of sugars. These are achieved through a series of light-induced multi-electron-transfer reactions involving chlorophylls in a special arrangement and several other species including specific enzymes. Artificial photosynthesis attempts to reconstruct these key processes in simpler model systems such that solar energy and abundant natural resources can be used to generate high energy fuels and restrict the amount of CO(2) in the atmosphere. Details of few model catalytic systems that lead to clean oxidation of water to H(2) and O(2), photoelectrochemical solar cells for the direct conversion of sunlight to electricity, solar cells for total decomposition of water and catalytic systems for fixation of CO(2) to fuels such as methanol and methane are reviewed here. Copyright 2010 Elsevier Ltd. All rights reserved.

  8. Nanostructured Solar Irradiation Control Materials for Solar Energy Conversion

    Science.gov (United States)

    Kang, Jinho; Marshall, I. A.; Torrico, M. N.; Taylor, C. R.; Ely, Jeffry; Henderson, Angel Z.; Kim, J.-W.; Sauti, G.; Gibbons, L. J.; Park, C.; hide

    2012-01-01

    Tailoring the solar absorptivity (alpha(sub s)) and thermal emissivity (epsilon(sub T)) of materials constitutes an innovative approach to solar energy control and energy conversion. Numerous ceramic and metallic materials are currently available for solar absorbance/thermal emittance control. However, conventional metal oxides and dielectric/metal/dielectric multi-coatings have limited utility due to residual shear stresses resulting from the different coefficient of thermal expansion of the layered materials. This research presents an alternate approach based on nanoparticle-filled polymers to afford mechanically durable solar-absorptive and thermally-emissive polymer nanocomposites. The alpha(sub s) and epsilon(sub T) were measured with various nano inclusions, such as carbon nanophase particles (CNPs), at different concentrations. Research has shown that adding only 5 wt% CNPs increased the alpha(sub s) and epsilon(sub T) by a factor of about 47 and 2, respectively, compared to the pristine polymer. The effect of solar irradiation control of the nanocomposite on solar energy conversion was studied. The solar irradiation control coatings increased the power generation of solar thermoelectric cells by more than 380% compared to that of a control power cell without solar irradiation control coatings.

  9. Improper ferroelectrics as high-efficiency energy conversion materials

    Energy Technology Data Exchange (ETDEWEB)

    Wakamatsu, Toru; Tanabe, Kenji; Terasaki, Ichiro; Taniguchi, Hiroki [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan)

    2017-05-15

    An improper ferroelectric is a certain type of ferroelectrics whose primary order parameter is not polarization but another physical quantity such as magnetization. In contrast to a conventional proper ferroelectrics as represented by Pb(Zr,Ti)O{sub 3} and BaTiO{sub 3}, the improper ferroelectrics has been inconceivable for practical applications thus far. Herein, we illustrate the great potential of improper ferroelectrics for efficient conversion of temperature fluctuation to electric energy, as demonstrated with (Ca{sub 0.84}Sr{sub 0.16}){sub 8}[AlO{sub 2}]{sub 12}(MoO{sub 4}){sub 2} (CSAM-16). The present study has experimentally proven that CSAM-16 achieves an excellent electrothermal coupling factor and high electric field sensitivity for pyroelectric energy conversion that approach a practical level for application to self-powered autonomous electronic devices for rapidly spreading wireless sensor networks. The present results provide a novel approach to developing innovative pyroelectric energy harvesting devices using improper ferroelectrics. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Improper ferroelectrics as high-efficiency energy conversion materials

    International Nuclear Information System (INIS)

    Wakamatsu, Toru; Tanabe, Kenji; Terasaki, Ichiro; Taniguchi, Hiroki

    2017-01-01

    An improper ferroelectric is a certain type of ferroelectrics whose primary order parameter is not polarization but another physical quantity such as magnetization. In contrast to a conventional proper ferroelectrics as represented by Pb(Zr,Ti)O_3 and BaTiO_3, the improper ferroelectrics has been inconceivable for practical applications thus far. Herein, we illustrate the great potential of improper ferroelectrics for efficient conversion of temperature fluctuation to electric energy, as demonstrated with (Ca_0_._8_4Sr_0_._1_6)_8[AlO_2]_1_2(MoO_4)_2 (CSAM-16). The present study has experimentally proven that CSAM-16 achieves an excellent electrothermal coupling factor and high electric field sensitivity for pyroelectric energy conversion that approach a practical level for application to self-powered autonomous electronic devices for rapidly spreading wireless sensor networks. The present results provide a novel approach to developing innovative pyroelectric energy harvesting devices using improper ferroelectrics. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Visible light to electrical energy conversion using photoelectrochemical cells

    Science.gov (United States)

    Wrighton, Mark S. (Inventor); Ellis, Arthur B. (Inventor); Kaiser, Steven W. (Inventor)

    1983-01-01

    Sustained conversion of low energy visible or near i.r. light (>1.25 eV) to electrical energy has been obtained using wet photoelectrochemical cells where there are no net chemical changes in the system. Stabilization of n-type semi-conductor anodes of CdS, CdSe, CdTe, GaP, GaAs and InP to photoanodic dissolution is achieved by employing selected alkaline solutions of Na.sub.2 S, Na.sub.2 S/S, Na.sub.2 Se, Na.sub.2 Se/Se, Na.sub.2 Te and Na.sub.2 Te/Te as the electrolyte. The oxidation of (poly) sulfide, (poly)selenide or (poly)telluride species occurs at the irradiated anode, and reduction of polysulfide, polyselenide or polytelluride species occurs at the dark Pt cathode of the photoelectrochemical cell. Optical to electrical energy conversion efficiencies approaching 15% at selected frequencies have been observed in some cells. The wavelength for the onset of photocurrent corresponds to the band gap of the particular anode material used in the cell.

  12. Physical aspects of ferroelectric semiconductors for photovoltaic solar energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Varo, Pilar [Departamento de Electrónica y Tecnología de Computadores, CITIC-UGR, Universidad de Granada, 18071 Granada (Spain); Bertoluzzi, Luca [Institute of Advanced Materials (INAM), Universitat Jaume I, 12006 Castelló (Spain); Bisquert, Juan, E-mail: bisquert@uji.es [Institute of Advanced Materials (INAM), Universitat Jaume I, 12006 Castelló (Spain); Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah (Saudi Arabia); Alexe, Marin [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Coll, Mariona [Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193, Bellaterra, Catalonia (Spain); Huang, Jinsong [Department of Mechanical and Materials Engineering and Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE 68588-0656 (United States); Jimenez-Tejada, Juan Antonio [Departamento de Electrónica y Tecnología de Computadores, CITIC-UGR, Universidad de Granada, 18071 Granada (Spain); Kirchartz, Thomas [IEK5-Photovoltaik, Forschungszentrum Jülich, 52425 Jülich (Germany); Faculty of Engineering and CENIDE, University of Duisburg–Essen, Carl-Benz-Str. 199, 47057 Duisburg (Germany); Nechache, Riad; Rosei, Federico [INRS—Center Énergie, Matériaux et Télécommunications, Boulevard Lionel-Boulet, Varennes, Québec, J3X 1S2 (Canada); Yuan, Yongbo [Department of Mechanical and Materials Engineering and Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE 68588-0656 (United States)

    2016-10-07

    Solar energy conversion using semiconductors to fabricate photovoltaic devices relies on efficient light absorption, charge separation of electron–hole pair carriers or excitons, and fast transport and charge extraction to counter recombination processes. Ferroelectric materials are able to host a permanent electrical polarization which provides control over electrical field distribution in bulk and interfacial regions. In this review, we provide a critical overview of the physical principles and mechanisms of solar energy conversion using ferroelectric semiconductors and contact layers, as well as the main achievements reported so far. In a ferroelectric semiconductor film with ideal contacts, the polarization charge would be totally screened by the metal layers and no charge collection field would exist. However, real materials show a depolarization field, smooth termination of polarization, and interfacial energy barriers that do provide the control of interface and bulk electric field by switchable spontaneous polarization. We explore different phenomena as the polarization-modulated Schottky-like barriers at metal/ferroelectric interfaces, depolarization fields, vacancy migration, and the switchable rectifying behavior of ferroelectric thin films. Using a basic physical model of a solar cell, our analysis provides a general picture of the influence of ferroelectric effects on the actual power conversion efficiency of the solar cell device, and we are able to assess whether these effects or their combinations are beneficial or counterproductive. We describe in detail the bulk photovoltaic effect and the contact layers that modify the built-in field and the charge injection and separation in bulk heterojunction organic cells as well as in photocatalytic and water splitting devices. We also review the dominant families of ferroelectric materials that have been most extensively investigated and have provided the best photovoltaic performance.

  13. Physical aspects of ferroelectric semiconductors for photovoltaic solar energy conversion

    International Nuclear Information System (INIS)

    Lopez-Varo, Pilar; Bertoluzzi, Luca; Bisquert, Juan; Alexe, Marin; Coll, Mariona; Huang, Jinsong; Jimenez-Tejada, Juan Antonio; Kirchartz, Thomas; Nechache, Riad; Rosei, Federico; Yuan, Yongbo

    2016-01-01

    Solar energy conversion using semiconductors to fabricate photovoltaic devices relies on efficient light absorption, charge separation of electron–hole pair carriers or excitons, and fast transport and charge extraction to counter recombination processes. Ferroelectric materials are able to host a permanent electrical polarization which provides control over electrical field distribution in bulk and interfacial regions. In this review, we provide a critical overview of the physical principles and mechanisms of solar energy conversion using ferroelectric semiconductors and contact layers, as well as the main achievements reported so far. In a ferroelectric semiconductor film with ideal contacts, the polarization charge would be totally screened by the metal layers and no charge collection field would exist. However, real materials show a depolarization field, smooth termination of polarization, and interfacial energy barriers that do provide the control of interface and bulk electric field by switchable spontaneous polarization. We explore different phenomena as the polarization-modulated Schottky-like barriers at metal/ferroelectric interfaces, depolarization fields, vacancy migration, and the switchable rectifying behavior of ferroelectric thin films. Using a basic physical model of a solar cell, our analysis provides a general picture of the influence of ferroelectric effects on the actual power conversion efficiency of the solar cell device, and we are able to assess whether these effects or their combinations are beneficial or counterproductive. We describe in detail the bulk photovoltaic effect and the contact layers that modify the built-in field and the charge injection and separation in bulk heterojunction organic cells as well as in photocatalytic and water splitting devices. We also review the dominant families of ferroelectric materials that have been most extensively investigated and have provided the best photovoltaic performance.

  14. Energy conversion of source separated packaging; Energiutvinning ur kaellsorterade foerpackningsfraktioner

    Energy Technology Data Exchange (ETDEWEB)

    Blidholm, O; Wiklund, S E [AaF-Energikonsult (Sweden); Bauer, A C [Energikonsult A. Bauer (Sweden)

    1997-02-01

    The basic idea of this project is to study the possibilities to use source separated combustible material for energy conversion in conventional solid fuel boilers (i.e. not municipal waste incineration plants). The project has been carried out in three phases. During phase 1 and 2 a number of fuel analyses of different fractions were carried out. During phase 3 two combustion tests were carried out; (1) a boiler with grate equipped with cyclone, electrostatic precipitator and flue gas condenser, and (2) a bubbling fluidized bed boiler with electrostatic precipitator and flue gas condenser. During the tests source separated paper and plastic packagings were co-fired with biomass fuels. The mixing rate of packagings was approximately 15%. This study reports the results of phase 3 and the conclusions of the whole project. The technical terms of using packaging as fuel are good. The technique is available for shredding both paper and plastic packaging. The material can be co-fired with biomass. The economical terms of using source separated packaging for energy conversion can be very advantageous, but can also form obstacles. The result is to a high degree guided by such facts as how the fuel is collected, transported, reduced in size and handled at the combustion plant. The results of the combustion tests show that the environmental terms of using source separated packaging for energy conversion are good. The emissions of heavy metals into the atmosphere are very low. The emissions are well below the emission standards for waste incineration plants. 35 figs, 13 tabs, 8 appendices

  15. Advanced solar energy conversion. [solar pumped gas lasers

    Science.gov (United States)

    Lee, J. H.

    1981-01-01

    An atomic iodine laser, a candidate for the direct solar pumped lasers, was successfully excited with a 4 kW beam from a xenon arc solar simulator, thus proving the feasibility of the concept. The experimental set up and the laser output as functions of operating conditions are presented. The preliminary results of the iodine laser amplifier pumped with the HCP array to which a Q switch for giant pulse production was coupled are included. Two invention disclosures - a laser driven magnetohydrodynamic generator for conversion of laser energy to electricity and solar pumped gas lasers - are also included.

  16. Novel silicon phases and nanostructures for solar energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Wippermann, Stefan; He, Yuping; Vörös, Márton; Galli, Giulia

    2016-12-01

    Silicon exhibits a large variety of different bulk phases, allotropes, and composite structures, such as, e.g., clathrates or nanostructures, at both higher and lower densities compared with diamond-like Si-I. New Si structures continue to be discovered. These novel forms of Si offer exciting prospects to create Si based materials, which are non-toxic and earth-abundant, with properties tailored precisely towards specific applications. We illustrate how such novel Si based materials either in the bulk or as nanostructures may be used to significantly improve the efficiency of solar energy conversion devices.

  17. Photovoltaic and thermal energy conversion for solar powered satellites

    Science.gov (United States)

    Von Tiesenhausen, G. F.

    1976-01-01

    A summary is provided concerning the most important aspects of present investigations related to a use of solar power satellites (SPS) as a future source of terrestrial energy. General SPS characteristics are briefly considered, early work is reviewed, and a description of current investigations is presented. System options presently under study include a photovoltaic array, a thermionic system, and a closed Brayton cycle. Attention is given to system reference options, basic building blocks, questions of system analysis and engineering, photovoltaic conversion, and the utility interface. It is concluded that an SPS may be cost effective compared to terrestrial systems by 1995.

  18. Quantitative analysis of a wind energy conversion model

    International Nuclear Information System (INIS)

    Zucker, Florian; Gräbner, Anna; Strunz, Andreas; Meyn, Jan-Peter

    2015-01-01

    A rotor of 12 cm diameter is attached to a precision electric motor, used as a generator, to make a model wind turbine. Output power of the generator is measured in a wind tunnel with up to 15 m s −1 air velocity. The maximum power is 3.4 W, the power conversion factor from kinetic to electric energy is c p = 0.15. The v 3 power law is confirmed. The model illustrates several technically important features of industrial wind turbines quantitatively. (paper)

  19. Analysis of dynamic effects in solar thermal energy conversion systems

    Science.gov (United States)

    Hamilton, C. L.

    1978-01-01

    The paper examines a study the purpose of which is to assess the performance of solar thermal power systems insofar as it depends on the dynamic character of system components and the solar radiation which drives them. Using a dynamic model, the daily operation of two conceptual solar conversion systems was simulated under varying operating strategies and several different time-dependent radiation intensity functions. These curves ranged from smoothly varying input of several magnitudes to input of constant total energy whose intensity oscillated with periods from 1/4 hour to 6 hours.

  20. Direct energy conversion for IEC fusion for space applications

    International Nuclear Information System (INIS)

    Momota, Hiromu; Nadler, Jon; Miley, George H.

    2000-08-01

    The paper describes a concept of extracting fusion power from D- 3 He fueled IEC (Inertia Electrostatic Configuration) devices. The fusion system consists of a series of fusion modules and direct energy converters at an end or at both ends. This system of multiple units is linear and is connected by a magnetic field. A pair of coils anti-parallel to the magnetic field yields a field-null domain at the center of each unit as required for IEC operation. A stabilizing coil installed between the coil pairs eliminates the strong attractive force between the anti-parallel coils. Accessible regions for charged particle trajectories are essentially isolated from the coil structure. Thus, charged particles are directed along magnetic field lines to the direct energy converter without appreciable losses. A direct energy converter unit designed to be compatible to this unique system is also described. It basically consists of a separator and a traveling wave converter. A separator separates low energy ions and electron from the 14.7 MeV fusion protons and then converts their energy into electricity. In the traveling wave direct energy converter, fusion protons are modulated to form bunches. It couples with a transmission line to couple AC power out. The overall conversion efficiency of this system, combined with E- 3 He IEC cores, is estimated as high as 60%. (author)

  1. Direct energy conversion for IEC fusion for space applications

    Energy Technology Data Exchange (ETDEWEB)

    Momota, Hiromu; Nadler, Jon [National Inst. for Fusion Science, Toki, Gifu (Japan); Miley, George H. [Fusion Studies Laboratory, Urbana, IL (United States)

    2000-08-01

    The paper describes a concept of extracting fusion power from D-{sup 3}He fueled IEC (Inertia Electrostatic Configuration) devices. The fusion system consists of a series of fusion modules and direct energy converters at an end or at both ends. This system of multiple units is linear and is connected by a magnetic field. A pair of coils anti-parallel to the magnetic field yields a field-null domain at the center of each unit as required for IEC operation. A stabilizing coil installed between the coil pairs eliminates the strong attractive force between the anti-parallel coils. Accessible regions for charged particle trajectories are essentially isolated from the coil structure. Thus, charged particles are directed along magnetic field lines to the direct energy converter without appreciable losses. A direct energy converter unit designed to be compatible to this unique system is also described. It basically consists of a separator and a traveling wave converter. A separator separates low energy ions and electron from the 14.7 MeV fusion protons and then converts their energy into electricity. In the traveling wave direct energy converter, fusion protons are modulated to form bunches. It couples with a transmission line to couple AC power out. The overall conversion efficiency of this system, combined with E-{sup 3}He IEC cores, is estimated as high as 60%. (author)

  2. Water-energy nexus: Impact on electrical energy conversion and mitigation by smart water resources management

    International Nuclear Information System (INIS)

    Gjorgiev, Blaže; Sansavini, Giovanni

    2017-01-01

    Highlights: • The issues to energy conversion stemming from the water-energy nexus are investigated. • The objective is to minimize power curtailments caused by critical river water conditions. • A water-energy nexus model for smart management of water resources is developed. • Systemic risks to energy conversion stem from critical temperature and flow regimes. • Full coordination of the hydrologically-linked units provides the most effective strategy. - Abstract: The water-energy nexus refers to the water used to generate electricity and to the electric energy used to collect, clean, move, store, and dispose of water. Water is used in all stages of electric energy conversion making power systems vulnerable to water scarcity and warming. In particular, a water flow decrease and temperature increase in rivers can significantly limit the generation of electricity. This paper investigates the issues to energy conversion stemming from the water-energy nexus and mitigates them by developing a model for the smart utilization of water resources. The objective is to minimize power curtailments caused by a river water flow decrease and a temperature increase. The developed water-energy nexus model integrates the operational characteristics of hydro power plants, the environmental conditions, the river water temperature prediction and thermal load release in river bodies. The application to a hydraulic cascade of hydro and a thermal power plants under drought conditions shows that smart water management entails a significant reduction of power curtailments. In general, the full coordination of the power outputs of the units affected by the hydrological link provides the most effective mitigations of the potential issues stemming from the water-energy nexus. Finally, critical temperature and flow regimes are identified which severely impact the energy conversion and may cause systemic risks in case the generators in one region must be simultaneously curtailed.

  3. Electrochemically enhanced microbial CO conversion to volatile fatty acids using neutral red as an electron mediator.

    Science.gov (United States)

    Im, Chae Ho; Kim, Changman; Song, Young Eun; Oh, Sang-Eun; Jeon, Byong-Hun; Kim, Jung Rae

    2018-01-01

    Conversion of C1 gas feedstock, including carbon monoxide (CO), into useful platform chemicals has attracted considerable interest in industrial biotechnology. Nevertheless, the low conversion yield and/or growth rate of CO-utilizing microbes make it difficult to develop a C1 gas biorefinery process. The Wood-Ljungdahl pathway which utilize CO is a pathway suffered from insufficient electron supply, in which the conversion can be increased further when an additional electron source like carbohydrate or hydrogen is provided. In this study, electrode-based electron transference using a bioelectrochemical system (BES) was examined to compensate for the insufficient reducing equivalent and increase the production of volatile fatty acids. The BES including neutral red (BES-NR), which facilitated electron transfer between bacteria and electrode, was compared with BES without neutral red and open circuit control. The coulombic efficiency based on the current input to the system and the electrons recovered into VFAs, was significantly higher in BES-NR than the control. These results suggest that the carbon electrode provides a platform to regulate the redox balance for improving the bioconversion of CO, and amending the conventional C1 gas fermentation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Organic electronics on fibers for energy conversion applications

    Science.gov (United States)

    O'Connor, Brendan T.

    Currently, there is great demand for pollution-free and renewable sources of electricity. Solar cells are particularly attractive from the standpoint of sunlight abundance. However, truly widespread adoption of solar cells is impeded by the high cost and poor scalability of existing technologies. For example, while 53,000 mi2 of 10% efficient solar cell modules would be required to supply the current U.S. energy demand, only about 50 mi2 have been installed worldwide. Organic semiconductors potentially offer a route to realizing low-cost solar cell modules, but currently suffer from low conversion efficiency. For organic-based solar cells to become commercially viable, further research is required to improve device performance, develop scalable manufacturing methods, and reduce installation costs via, for example, novel device form factors. This thesis makes several contributions to the field of organic solar cells, including the replacement of costly and brittle indium tin oxide (ITO) electrodes by inexpensive and malleable, thin metal films, and the application of external dielectric coatings to improve power conversion efficiency. Furthermore, we show that devices with non-planar geometries (e.g. organic solar cells deposited onto long fibers) can have higher efficiencies than conventional planar devices. Building on these results, we demonstrate novel fiber-based organic light emitting devices (OLEDs) that offer substantially improved color quality and manufacturability as a next-generation solid-state lighting technology. An intriguing possibility afforded by the fiber-based device architectures is the ability to integrate energy conversion and lighting functionalities with textiles, a mature, commodity-scale technology.

  5. Controlled cellular energy conversion in brown adipose tissue thermogenesis

    Science.gov (United States)

    Horowitz, J. M.; Plant, R. E.

    1978-01-01

    Brown adipose tissue serves as a model system for nonshivering thermogenesis (NST) since a) it has as a primary physiological function the conversion of chemical energy to heat; and b) preliminary data from other tissues involved in NST (e.g., muscle) indicate that parallel mechanisms may be involved. Now that biochemical pathways have been proposed for brown fat thermogenesis, cellular models consistent with a thermodynamic representation can be formulated. Stated concisely, the thermogenic mechanism in a brown fat cell can be considered as an energy converter involving a sequence of cellular events controlled by signals over the autonomic nervous system. A thermodynamic description for NST is developed in terms of a nonisothermal system under steady-state conditions using network thermodynamics. Pathways simulated include mitochondrial ATP synthesis, a Na+/K+ membrane pump, and ionic diffusion through the adipocyte membrane.

  6. Model predictive control of wind energy conversion systems

    CERN Document Server

    Yaramasu, Venkata Narasimha R

    2017-01-01

    The authors provide a comprehensive analysis on the model predictive control of power converters employed in a wide variety of variable-speed wind energy conversion systems (WECS). The contents of this book includes an overview of wind energy system configurations, power converters for variable-speed WECS, digital control techniques, MPC, modeling of power converters and wind generators for MPC design. Other topics include the mapping of continuous-time models to discrete-time models by various exact, approximate, and quasi-exact discretization methods, modeling and control of wind turbine grid-side two-level and multilevel voltage source converters. The authors also focus on the MPC of several power converter configurations for full variable-speed permanent magnet synchronous generator based WECS, squirrel-cage induction generator based WECS, and semi-variable-speed doubly fed induction generator based WECS.

  7. Overview of SOFC/SOEC development at DTU Energy Conversion

    DEFF Research Database (Denmark)

    Hagen, Anke

    2014-01-01

    According to a broad political agreement in Denmark, the Danish energy system should become independent on fossil fuels like oil, coal and natural gas by the year 2050. This aim requires expansion of electricity production from renewable sources, in particular wind mills. In order to balance...... the fluctuating power production and to cope with the discrepancies between demand and supply of power, solid oxide fuel cells and electrolysis are considered key technologies. DTU Energy Conversion has a strong record in SOFC/SOEC research, with a close collaboration with industry, in particular with Danish...... Topsoe Fuel Cell A/S. Recent achievements will be presented ranging from development of new cell generations, manufacturability, up to testing under realistic operating conditions including degradation studies and high pressure testing. A strong focus will be on development of methodologies, e...

  8. Solid State Energy Conversion Alliance 2nd Annual Workshop Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    National Energy Technology Laboratory

    2001-03-30

    The National Energy Technology Laboratory (NETL) and the Pacific Northwest National Laboratory (PNNL) are pleased to provide the proceedings of the second annual Solid State Energy Conversion Alliance (SECA) Workshop held on March 29-30, 2001 in Arlington. The package includes the presentations made during the workshop, a list of participants, and the results of the breakout sessions. Those sessions covered stack materials and processes, power electronics, balance of plant and thermal integration, fuel processing technologies, and stack and system performance modeling. The breakout sessions have been reported as accurately as possible; however, due to the recording and transcription process errors may have occurred. If you note any significant omissions or wish to provide additional information, we welcome your comments and hope that all stakeholder groups will use the enclosed information in their planning endeavors.

  9. Wave loadings acting on Overtopping Breakwater for Energy Conversion

    DEFF Research Database (Denmark)

    Vicinanza, Diego; Nørgaard, Jørgen Harck; Contestabile, Pasquale

    2013-01-01

    distributions. Load measurements were compared with the most used prediction method for traditional breakwaters, available in the Coastal Engineering Manual (U.S. Army Corps of Engineers, 2002). These results suggest to use the experimental data as design loadings since the design criteria for the innovative......Any kind of Wave Energy Converter (WEC) requires information on reliability of technology and on time required for the return of the investment (reasonable payback). The structural response is one of the most important parameters to take in to account for a consistent assessment on innovative...... devices. This paper presents results on wave loading acting on an hybrid WEC named Overtopping BReakwater for Energy Conversion (OBREC). The new design is based on the concept of an integration between a traditional rubble mound breakwater and a front reservoir designed to store the wave overtopping from...

  10. Improvements in the electromechanical conversion of energy using shock waves

    International Nuclear Information System (INIS)

    Landure, Yves

    1971-01-01

    This report concerns the electrical mechanical conversion. In this study it was obtained by the depolarization of a ferroelectric ceramic. We are particularly interested by the high electrical horse-power. Shock wave which produces depolarization is created by a gun powder. The speed of the projectile is measured and the pressures generated in the ceramic is determined graphically. The energy freed is released on a linear resistive load. We were able to prove by different parameters how to obtain the maximum electrical energy. On a resistive load of 26 ohms, it was freed 0,91 J/cm 3 in less than 0,5 μs corresponding to an electrical horse-power superior to 2 MW/cm 3 . (author) [fr

  11. Solid State Energy Conversion Alliance 2nd Annual Workshop Proceedings

    International Nuclear Information System (INIS)

    National Energy Technology Laboratory

    2001-01-01

    The National Energy Technology Laboratory (NETL) and the Pacific Northwest National Laboratory (PNNL) are pleased to provide the proceedings of the second annual Solid State Energy Conversion Alliance (SECA) Workshop held on March 29-30, 2001 in Arlington. The package includes the presentations made during the workshop, a list of participants, and the results of the breakout sessions. Those sessions covered stack materials and processes, power electronics, balance of plant and thermal integration, fuel processing technologies, and stack and system performance modeling. The breakout sessions have been reported as accurately as possible; however, due to the recording and transcription process errors may have occurred. If you note any significant omissions or wish to provide additional information, we welcome your comments and hope that all stakeholder groups will use the enclosed information in their planning endeavors

  12. Proceedings of the Chernobyl phytoremediation and biomass energy conversion workshop

    International Nuclear Information System (INIS)

    Hartley, J.; Tokarevsky, V.

    1998-06-01

    Many concepts, systems, technical approaches, technologies, ideas, agreements, and disagreements were vigorously discussed during the course of the 2-day workshop. The workshop was successful in generating intensive discussions on the merits of the proposed concept that includes removal of radionuclides by plants and trees (phytoremediation) to clean up soil in the Chernobyl Exclusion Zone (CEZ), use of the resultant biomass (plants and trees) to generate electrical power, and incorporation of ash in concrete casks to be used as storage containers in a licensed repository for low-level waste. Twelve years after the Chernobyl Nuclear Power Plant (ChNPP) Unit 4 accident, which occurred on April 26, 1986, the primary 4radioactive contamination of concern is from radioactive cesium ( 137 Cs) and strontium ( 90 Sr). The 137 Cs and 90 Sr were widely distributed throughout the CEZ. The attendees from Ukraine, Russia, Belarus, Denmark and the US provided information, discussed and debated the following issues considerably: distribution and characteristics of radionuclides in CEZ; efficacy of using trees and plants to extract radioactive cesium (Cs) and strontium (Sr) from contaminated soil; selection of energy conversion systems and technologies; necessary infrastructure for biomass harvesting, handling, transportation, and energy conversion; radioactive ash and emission management; occupational health and safety concerns for the personnel involved in this work; and economics. The attendees concluded that the overall concept has technical and possibly economic merits. However, many issues (technical, economic, risk) remain to be resolved before a viable commercial-scale implementation could take place

  13. Supercritical Carbon Dioxide Brayton Cycle Energy Conversion System

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Jae Eun; Kim, S. O.; Seong, S. H.; Eoh, J. H.; Lee, T. H.; Choi, S. K.; Han, J. W.; Bae, S. W

    2007-12-15

    This report contains the description of the S-CO{sub 2} Brayton cycle coupled to KALIMER-600 as an alternative energy conversion system. For system development, a computer code was developed to calculate heat balance of 100% power operation condition. Based on the computer code, the S-CO{sub 2} Brayton cycle energy conversion system was constructed for the KALIMER-600. Using the developed turbomachinery models, the off-design characteristics and the sensitivities of the S-CO{sub 2} turbomachinery were investigated. For the development of PCHE models, a one-dimensional analysis computer code was developed to evaluate the performance of the PCHE. Possible control schemes for power control in the KALIMER-600 S-CO{sub 2} Brayton cycle were investigated by using the MARS code. Simple power reduction and recovery event was selected and analyzed for the transient calculation. For the evaluation of Na/CO{sub 2} boundary failure event, a computer was developed to simulate the complex thermodynamic behaviors coupled with the chemical reaction between liquid sodium and CO{sub 2} gas. The long term behavior of a Na/CO{sub 2} boundary failure event and its consequences which lead to a system pressure transient were evaluated.

  14. Supercritical Carbon Dioxide Brayton Cycle Energy Conversion System

    International Nuclear Information System (INIS)

    Cha, Jae Eun; Kim, S. O.; Seong, S. H.; Eoh, J. H.; Lee, T. H.; Choi, S. K.; Han, J. W.; Bae, S. W.

    2007-12-01

    This report contains the description of the S-CO 2 Brayton cycle coupled to KALIMER-600 as an alternative energy conversion system. For system development, a computer code was developed to calculate heat balance of 100% power operation condition. Based on the computer code, the S-CO 2 Brayton cycle energy conversion system was constructed for the KALIMER-600. Using the developed turbomachinery models, the off-design characteristics and the sensitivities of the S-CO 2 turbomachinery were investigated. For the development of PCHE models, a one-dimensional analysis computer code was developed to evaluate the performance of the PCHE. Possible control schemes for power control in the KALIMER-600 S-CO 2 Brayton cycle were investigated by using the MARS code. Simple power reduction and recovery event was selected and analyzed for the transient calculation. For the evaluation of Na/CO 2 boundary failure event, a computer was developed to simulate the complex thermodynamic behaviors coupled with the chemical reaction between liquid sodium and CO 2 gas. The long term behavior of a Na/CO 2 boundary failure event and its consequences which lead to a system pressure transient were evaluated

  15. Hybrid acoustic energy harvesting using combined electromagnetic and piezoelectric conversion

    Science.gov (United States)

    Khan, Farid Ullah; Izhar

    2016-02-01

    This paper reports a novel hybrid acoustic energy harvester. The harvester utilizes both the electromagnetic and piezoelectric conversion mechanisms simultaneously to convert the ambient acoustical noise into electrical power for self-powered wireless sensor nodes. The proposed harvester is comprised of a Helmholtz resonator, two magnets mounted on a piezoelectric plate, and a wound coil located under the magnets. The harvester is characterized both under harmonic and real random acoustical excitations. In-lab, under harmonic acoustical excitation at a sound pressure level of 130 dB and frequency of 2.1 kHz, an optimum power of 2.86 μW (at 114 Ω optimum load) is obtained from electromagnetic conversion and 50 μW (at 1000 Ω optimum load) is generated by the piezoelectric harvester's part. Moreover, in real acoustical environment of a domestic electric generator the peak voltages of 40 and 123 mV are produced by the electromagnetic and piezoelectric portions of the acoustic energy harvester.

  16. Proceedings of the Chornobyl phytoremediation and biomass energy conversion workshop

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, J. [Pacific Northwest National Lab., Richland, WA (United States); Tokarevsky, V. [State Co. for Treatment and Disposal of Mixed Hazardous Waste (Ukraine)

    1998-06-01

    Many concepts, systems, technical approaches, technologies, ideas, agreements, and disagreements were vigorously discussed during the course of the 2-day workshop. The workshop was successful in generating intensive discussions on the merits of the proposed concept that includes removal of radionuclides by plants and trees (phytoremediation) to clean up soil in the Chornobyl Exclusion Zone (CEZ), use of the resultant biomass (plants and trees) to generate electrical power, and incorporation of ash in concrete casks to be used as storage containers in a licensed repository for low-level waste. Twelve years after the Chornobyl Nuclear Power Plant (ChNPP) Unit 4 accident, which occurred on April 26, 1986, the primary 4radioactive contamination of concern is from radioactive cesium ({sup 137}Cs) and strontium ({sup 90}Sr). The {sup 137}Cs and {sup 90}Sr were widely distributed throughout the CEZ. The attendees from Ukraine, Russia, Belarus, Denmark and the US provided information, discussed and debated the following issues considerably: distribution and characteristics of radionuclides in CEZ; efficacy of using trees and plants to extract radioactive cesium (Cs) and strontium (Sr) from contaminated soil; selection of energy conversion systems and technologies; necessary infrastructure for biomass harvesting, handling, transportation, and energy conversion; radioactive ash and emission management; occupational health and safety concerns for the personnel involved in this work; and economics. The attendees concluded that the overall concept has technical and possibly economic merits. However, many issues (technical, economic, risk) remain to be resolved before a viable commercial-scale implementation could take place.

  17. Precision measurements of high-energy conversion electron lines and determination of neutron binding energies

    International Nuclear Information System (INIS)

    Braumandl, F.

    1979-01-01

    The paper first discusses the energy accuracy of the BILL conversion electron spectrometer at the Grenoble high flux reactor. With an improved temperature stabilisation of the magnets, an energy accuracy of ΔE/E -5 can be reached. After this, highly exact measurements of high-energy conversion electron lines of the 200 Hg, 114 Cd, 165 Dy, 168 Er, 239 U nuclei and the 13 C, 28 Al 3 H and 92 Zr photoelectron lines were carried out. Energy calibration of the spectrometer was carried out in the 1.5 MeV to 6.5 MeV range with intensive high-energy transitions of the 200 Hg nucleus. Systematic calibration errors could be investigated by means of combinations between the calibration lines. A calibration for absolute energies was obtained by comparing low-energy gamma transitions of 200 Hg with the 411.8 keV gold standard. (orig.) [de

  18. Experimental model of a wind energy conversion system

    Science.gov (United States)

    Vasar, C.; Rat, C. L.; Prostean, O.

    2018-01-01

    The renewable energy domain represents an important issue for the sustainable development of the mankind in the actual context of increasing demand for energy along with the increasing pollution that affect the environment. A significant quota of the clean energy is represented by the wind energy. As a consequence, the developing of wind energy conversion systems (WECS) in order to achieve high energetic performances (efficiency, stability, availability, competitive cost etc) represents a topic of permanent actuality. Testing and developing of an optimized control strategy for a WECS direct implemented on a real energetic site is quite difficult and not cost efficient. Thus a more convenient solution consists in a flexible laboratory setup which requires an experimental model of a WECS. Such approach would allow the simulation of various real conditions very similar with existing energetic sites. This paper presents a grid-connected wind turbine emulator. The wind turbine is implemented through a real-time Hardware-in-the-Loop (HIL) emulator, which will be analyzed extensively in the paper. The HIL system uses software implemented in the LabVIEW programming environment to control an ABB ACS800 electric drive. ACS800 has the task of driving an induction machine coupled to a permanent magnet synchronous generator. The power obtained from the synchronous generator is rectified, filtered and sent to the main grid through a controlled inverter. The control strategy is implemented on a NI CompactRIO (cRIO) platform.

  19. Efficient energy conversion in the pulp and paper industry

    Energy Technology Data Exchange (ETDEWEB)

    Marechal, F.; Perin-Levasseur, Z.

    2005-07-01

    This yearly report for the Swiss Federal Office of Energy (SFOE) takes a look at the work done in 2005 and the work planned for 2006 within the framework of the Efficient Energy Conversion in the Pulp and Paper Industry project. The results of investigations made at a large pulp and paper facility in Switzerland are presented and analysed. Data models of the steam and condensate networks and of the processes involved are examined. An additional model of the sulphur loop has been also elaborated. From this analysis, a list of required measurements has been developed. Several performance indicators have also been calculated: A systematic analysis method developed to identify sections where condensate could be recovered is discussed. A systematic definition of the hot and cold streams in the process is being developed in order to compute the minimum energy requirements of the process. Evaluating this minimum energy requirement from the data available is to be used to prepare definitions of the energy savings possible.

  20. Wind Energy Conversion by Plant-Inspired Designs.

    Science.gov (United States)

    McCloskey, Michael A; Mosher, Curtis L; Henderson, Eric R

    2017-01-01

    In 2008 the U.S. Department of Energy set a target of 20% wind energy by 2030. To date, induction-based turbines form the mainstay of this effort, but turbines are noisy, perceived as unattractive, a potential hazard to bats and birds, and their height hampers deployment in residential settings. Several groups have proposed that artificial plants containing piezoelectric elements may harvest wind energy sufficient to contribute to a carbon-neutral energy economy. Here we measured energy conversion by cottonwood-inspired piezoelectric leaves, and by a "vertical flapping stalk"-the most efficient piezo-leaf previously reported. We emulated cottonwood for its unusually ordered, periodic flutter, properties conducive to piezo excitation. Integrated over 0°-90° (azimuthal) of incident airflow, cottonwood mimics outperformed the vertical flapping stalk, but they produced < daW per conceptualized tree. In contrast, a modest-sized cottonwood tree may dissipate ~ 80 W via leaf motion alone. A major limitation of piezo-transduction is charge generation, which scales with capacitance (area). We thus tested a rudimentary, cattail-inspired leaf with stacked elements wired in parallel. Power increased systematically with capacitance as expected, but extrapolation to acre-sized assemblages predicts < daW. Although our results suggest that present piezoelectric materials will not harvest mid-range power from botanic mimics of convenient size, recent developments in electrostriction and triboelectric systems may offer more fertile ground to further explore this concept.

  1. Analytical investigation of low temperature lift energy conversion systems with renewable energy source

    International Nuclear Information System (INIS)

    Lee, Hoseong; Hwang, Yunho; Radermacher, Reinhard

    2014-01-01

    The efficiency of the renewable energy powered energy conversion system is typically low due to its moderate heat source temperature. Therefore, improving its energy efficiency is essential. In this study, the performance of the energy conversion system with renewable energy source was theoretically investigated in order to explore its design aspect. For this purpose, a computer model of n-stage low temperature lift energy conversion (LTLEC) system was developed. The results showed that under given operating conditions such as temperatures and mass flow rates of heat source and heat sink fluids the unit power generation of the system increased with the number of stage, and it became saturated when the number of staging reached four. Investigation of several possible working fluids for the optimum stage LTLEC system revealed that ethanol could be an alternative to ammonia. The heat exchanger effectiveness is a critical factor on the system performance. The power generation was increased by 7.83% for the evaporator and 9.94% for the condenser with 10% increase of heat exchanger effectiveness. When these low temperature source fluids are applied to the LTLEC system, the heat exchanger performance would be very critical and it has to be designed accordingly. - Highlights: •Energy conversion system with renewable energy is analytically investigated. •A model of multi-stage low temperature lift energy conversion systems was developed. •The system performance increases as the stage number is increased. •The unit power generation is increased with increase of HX effectiveness. •Ethanol is found to be a good alternative to ammonia

  2. Progress in inorganic cathode catalysts for electrochemical conversion of carbon dioxide into formate or formic acid

    OpenAIRE

    Du, Dongwei; Lan, Rong; Humphreys, John; Tao, Shanwen

    2017-01-01

    As a greenhouse gas, carbon dioxide in the atmosphere is one of the key contributors to climate change. Many strategies have been proposed to address this issue, such as CO2 capture and sequestration (CCS) and CO2 utilization (CCU). Electroreduction of CO2 into useful fuels is proving to be a promising technology as it not only consumes CO2 but can also store the redundant electrical energy generated from renewable energy sources (e.g., solar, wind, geothermal, wave, etc.) as chemical energy ...

  3. Direct energy conversion - state of the art in 1981

    International Nuclear Information System (INIS)

    Euler, K.J.

    1981-01-01

    Contemporary research and development of direct energy conversion (D.E.C.) started about 25 years ago. Having considered possibilities, cost, and advantages, the efforts have become more and more steady during the last decade. It has been recognized that, in most cases, D.E.C. methods will serve only as electricity sources for special application. This is true for radioisotopic generators used in space and submarine technologies, for thermoelectric devices used in air defence and along desert pipelines, and for thermionic convertors used in television satellites. Thus, the goal, to introduce these D.E.C. units in large scale manufacture has not been reached, and will not be reached even in the future. Only magneto-hydrodynamic channels exhibit a certain innovation potential as topping devices in advanced thermal power stations. Fuel cells will not be treated here, solar cells only mentioned briefly. (orig.) [de

  4. Onboard energy conversion and thermal analysis of the MTL system

    International Nuclear Information System (INIS)

    Kadiramangalam, M.N.; Hoffert, M.I.; Miller, G.

    1989-01-01

    A non-nuclear energy conversion concept-MTL (microwave power to low earth orbits) was previously presented in order to supply SDI platforms power in the housekeeping, alert and burst power modes. In this paper the major issues addressed are: system design, integration and analysis. Parametric design of the major subsystems of the MTL bus, which includes the rectenna, the monolithic solid oxide fuel cell etc., is presented. The results of the parametric design, and of computer simulation are used as inputs to construct a comprehensive systems design code. A reference MTL system design which meets the requirements of duty cycles spelled out in open literature is presented. A comparison of mass and power is made between the MTL system and the SP-100 and burst power systems, which demonstrates the competitiveness of the proposed MTL design

  5. Tandem photovoltaic solar cells and increased solar energy conversion efficiency

    Science.gov (United States)

    Loferski, J. J.

    1976-01-01

    Tandem photovoltaic cells, as proposed by Jackson (1955) to increase the efficiency of solar energy conversion, involve the construction of a system of stacked p/n homojunction photovoltaic cells composed of different semiconductors. It had been pointed out by critics, however, that the total power which could be extracted from the cells in the stack placed side by side was substantially greater than the power obtained from the stacked cells. A reexamination of the tandem cell concept in view of the development of the past few years is conducted. It is concluded that the use of tandem cell systems in flat plate collectors, as originally envisioned by Jackson, may yet become feasible as a result of the development of economically acceptable solar cells for large scale terrestrial power generation.

  6. Thermal power plant efficiency enhancement with Ocean Thermal Energy Conversion

    International Nuclear Information System (INIS)

    Soto, Rodrigo; Vergara, Julio

    2014-01-01

    In addition to greenhouse gas emissions, coastal thermal power plants would gain further opposition due to their heat rejection distressing the local ecosystem. Therefore, these plants need to enhance their thermal efficiency while reducing their environmental offense. In this study, a hybrid plant based on the principle of Ocean Thermal Energy Conversion was coupled to a 740 MW coal-fired power plant project located at latitude 28°S where the surface to deepwater temperature difference would not suffice for regular OTEC plants. This paper presents the thermodynamical model to assess the overall efficiency gained by adopting an ammonia Rankine cycle plus a desalinating unit, heated by the power plant condenser discharge and refrigerated by cold deep seawater. The simulation allowed us to optimize a system that would finally enhance the plant power output by 25–37 MW, depending on the season, without added emissions while reducing dramatically the water temperature at discharge and also desalinating up to 5.8 million tons per year. The supplemental equipment was sized and the specific emissions reduction was estimated. We believe that this approach would improve the acceptability of thermal and nuclear power plant projects regardless of the plant location. -- Highlights: • An Ocean Thermal Energy Conversion hybrid plant was designed. • The waste heat of a power plant was delivered as an OTEC heat source. • The effect of size and operating conditions on plant efficiency were studied. • The OTEC implementation in a Chilean thermal power plant was evaluated. • The net efficiency of the thermal power plant was increased by 1.3%

  7. Life cycle integrated thermoeconomic assessment method for energy conversion systems

    International Nuclear Information System (INIS)

    Kanbur, Baris Burak; Xiang, Liming; Dubey, Swapnil; Choo, Fook Hoong; Duan, Fei

    2017-01-01

    Highlights: • A new LCA integrated thermoeconomic approach is presented. • The new unit fuel cost is found 4.8 times higher than the classic method. • The new defined parameter increased the sustainability index by 67.1%. • The case studies are performed for countries with different CO 2 prices. - Abstract: Life cycle assessment (LCA) based thermoeconomic modelling has been applied for the evaluation of energy conversion systems since it provided more comprehensive and applicable assessment criteria. This study proposes an improved thermoeconomic method, named as life cycle integrated thermoeconomic assessment (LCiTA), which combines the LCA based enviroeconomic parameters in the production steps of the system components and fuel with the conventional thermoeconomic method for the energy conversion systems. A micro-cogeneration system is investigated and analyzed with the LCiTA method, the comparative studies show that the unit cost of fuel by using the LCiTA method is 3.8 times higher than the conventional thermoeconomic model. It is also realized that the enviroeconomic parameters during the operation of the system components do not have significant impacts on the system streams since the exergetic parameters are dominant in the thermoeconomic calculations. Moreover, the improved sustainability index is found roundly 67.2% higher than the previously defined sustainability index, suggesting that the enviroeconomic and thermoeconomic parameters decrease the impact of the exergy destruction in the sustainability index definition. To find the feasible operation conditions for the micro-cogeneration system, different assessment strategies are presented. Furthermore, a case study for Singapore is conducted to see the impact of the forecasted carbon dioxide prices on the thermoeconomic performance of the micro-cogeneration system.

  8. Combining Energy Conversion and Storage: A Solar Powered Supercapacitor

    International Nuclear Information System (INIS)

    Narayanan, Remya; Kumar, P. Naresh; Deepa, Melepurath; Srivastava, Avanish Kumar

    2015-01-01

    Graphical abstract: - Highlights: • A plasmonic TiO_2/CdS/Au fibers photoanode is fabricated for the first time. • The efficiency of the plasmonic cell is greater by 1.35 times than the non-plasmonic one. • A solar powered supercapacitor is developed with plasmonic photoanode and multiwalled carbon nanotubes. • The solar cell current charges the supercapacitor. • A specific capacitance of 150 F g"−"1 is achieved under sunlight without any external bias. - Abstract: A solar powered supercapacitor wherein a plasmonic quantum dot solar cell (QDSC) sources the photocurrent for charging/discharging a conjoined supercapacitor based on multiwalled carbon nanotubes (MWCNTs) is demonstrated. Gold or Au fibers are integrated into a titanium dioxide/cadmium sulfide (TiO_2/CdS) electrode to yield a TiO_2/CdS/Au photoanode. The plasmonic effect of Au fibers is reflected in the higher incident photon to current conversion efficiency (IPCE = 55%) and an improved overall power conversion efficiency (3.45%) produced by the TiO_2/CdS/Au photoanode relative to the non-plasmonic TiO_2/CdS photoanode. A Janus type bi-functional electrode composed of MWCNTs on either face separated by glass is prepared and it is coupled with the TiO_2/CdS/Au electrode and another MWCNT electrode to yield the tandem solar powered supercapacitor. By channelling the photocurrent produced by the QDSC part, under 0.1 sun illumination, the capacitance of the symmetric supercapacitor, without the application of any external bias is 150 F g"−"1 which compares well with reported values of electrically powered MWCNT supercapacitors. Our innovative design for a photo-supercapacitor offers a new paradigm for combining low cost photovoltaics with energy storage to yield a technologically useful device that needs nothing else other than solar energy to run.

  9. Design of Novel Metal Nanostructures for Broadband Solar Energy Conversion

    Directory of Open Access Journals (Sweden)

    Kristine A. Zhang

    2015-01-01

    Full Text Available Solar power holds great potential as an alternative energy source, but current photovoltaic cells have much room for improvement in cost and efficiency. Our objective was to develop metal nanostructures whose surface plasmon resonance (SPR spectra closely match the solar spectrum to enhance light absorption and scattering. We employed the finite-difference time-domain simulation method to evaluate the effect of varying key parameters. A novel nanostructure with SPR absorption matching a region of the solar spectrum (300 to 1500 nm that contains 90% of solar energy was successfully designed. This structure consists of a large gold-silica core-shell structure with smaller gold nanoparticles and nanorods on its surface. Such complex nanostructures are promising for broad and tunable absorption spectra. In addition, we investigated the SPR of silver nanoparticle arrays, which can achieve scattering close to the solar spectrum. We demonstrated an improvement in efficiency of over 30% with optimal nanoparticle radius and periods of 75 nm and 325 nm, respectively. In combination, our studies enable high-efficiency, tunable, and cost-effective enhancement of both light absorption and scattering, which has potential applications in solar energy conversion as well as biomedical imaging.

  10. Biological conversion of hydrogen to electricity for energy storage

    International Nuclear Information System (INIS)

    Karamanev, Dimitre; Pupkevich, Victor; Penev, Kalin; Glibin, Vassili; Gohil, Jay; Vajihinejad, Vahid

    2017-01-01

    Energy storage is currently one of the most significant problems associated with mass-scale usage of renewable (i.e. wind and solar) power sources. The use of hydrogen as an energy storage medium is very promising, but is hampered by the lack of commercially available hydrogen-to-electricity (H2e) converters. Here we are presenting the first commercially viable, biologically based technology for H2e conversion named the BioGenerator. It is a microbial fuel cell based on electron consumption resulting from the respiration of chemolithoautotrophic microorganisms. The results obtained during the scale-up study of the BioGenerator showed a maximum specific current of 1.35 A/cm 2 , maximum power density of 1800 W/m 2 and stable electricity generation over a period spanning longer than four years. The largest unit studied so far has a volume of 600 L and a power output of 0.3 kW. - Highlights: • A commercially viable biological convertor of H 2 to electricity (BioGenerator) is proposed. • It has a short-term commercial potential and its economic analysis is quite promising. • The BioGenerator is the first commercially viable bio-technology for energy storage. • It is a power generation technology of which has a negative CO 2 emission.

  11. Energy conversion options for ARIES-III - A conceptual D-3He tokamak reactor

    International Nuclear Information System (INIS)

    Santarius, J.F.; Blanchard, J.P.; Emmert, G.A.; Sviatoslavsky, I.N.; Wittenberg, L.J.; Ghoneim, N.M.; Hasan, M.Z.; Mau, T.K.; Greenspan, E.; Herring, J.S.; Kernbichler, W.; Klein, A.C.; Miley, G.H.; Miller, R.L.; Peng, Y.K.M.

    1989-01-01

    The potential for highly efficient conversion of fusion power to electricity provides one motivation for investigating D- 3 He fusion reactors. This stems from: (1) the large fraction of D- 3 He power produced in the forms of charged particles and synchrotron radiation which are amenable to direct conversion, and (2) the low neutron fluence and lack of tritium breeding constraints, which increase design flexibility. The design team for a conceptual D- 3 He tokamak reactor, ARIES-III, has investigated numerous energy conversion options at a scoping level in attempting to realize high efficiency. The energy conversion systems have been studied in the context of their use on one or more of three versions of a D- 3 He tokamak: a first stability regime device, a second stability regime device, and a spherical torus. The set of energy conversion options investigated includes bootstrap current conversion, compression-expansion cycles, direct electrodynamic conversion, electrostatic direct conversion, internal electric generator, liquid metal heat engine blanket, liquid metal MHD, plasma MHD, radiation boiler, scrape-off layer thermoelectric, synchrotron radiation conversion by rectennas, synchrotron radiation conversion by thermal cycles, thermionic/AMTEC/thermal systems, and traveling wave conversion. The original set of options is briefly discussed, and those selected for further study are described in more detail. The four selected are liquid metal MHD, plasma MHD, rectenna conversion, and direct electrodynamic conversion. Thermionic energy conversion is being considered, and some options may require a thermal cycle in parallel or series. 17 refs., 3 figs., 1 tab

  12. Power conversion and control methods for renewable energy sources

    Science.gov (United States)

    Yu, Dachuan

    2005-07-01

    In recent years, there has been an increase in the use of renewable energy due to the growing concern over the pollution caused by fossil-fuel-based energy. Renewable energy sources, such as photovoltaic (PV) and fuel cell, can be used to enhance the safety, reliability, sustainability, and transmission efficiency of a power system. This dissertation focuses on the power conversion and control for two major renewable-energy sources: PV and fuel cell. Firstly, a current-based, maximum power-point tracking (MPPT) algorithm is proposed for PV energy. An economical converter system using the above scheme for converting the output from PV panels into 60 Hz AC voltage is developed and built. Secondly, a novel circuit model for the Proton Exchange Membrane (PEM) fuel-cell stack that is useful in the design and analysis of fuel-cell-based power systems is proposed. This Pspice-based model uses elements available in the Pspice library with some modifications to represent both the static and dynamic responses of a PEM fuel-cell module. The accuracy of the model is verified by comparing the simulation and experimental results. Thirdly, a DSP-controlled three-phase induction-motor drive using constant voltage over frequency is built and can be used in a fuel-cell automobile. A hydrogen sensor is used in the drive to both sound an alarm and shut down the inverter trigger pulses through the DSP. Finally, a hybrid power system consisting of PV panels and fuel cell is proposed and built. In the proposed system, PV panels can supply most of the power when the sunlight is available, and the excess power required by the load is supplied by a fuel cell. Load sharing between a fuel cell (FC) and the PV panel is investigated by both simulation and experiments.

  13. Supporting Current Energy Conversion Projects through Numerical Modeling

    Science.gov (United States)

    James, S. C.; Roberts, J.

    2016-02-01

    The primary goals of current energy conversion (CEC) technology being developed today are to optimize energy output and minimize environmental impact. CEC turbines generate energy from tidal and current systems and create wakes that interact with turbines located downstream of a device. The placement of devices can greatly influence power generation and structural reliability. CECs can also alter the environment surrounding the turbines, such as flow regimes, sediment dynamics, and water quality. These alterations pose potential stressors to numerous environmental receptors. Software is needed to investigate specific CEC sites to simulate power generation and hydrodynamic responses of a flow through a CEC turbine array so that these potential impacts can be evaluated. Moreover, this software can be used to optimize array layouts that yield the least changes to the environmental (i.e., hydrodynamics, sediment dynamics, and water quality). Through model calibration exercises, simulated wake profiles and turbulence intensities compare favorably to the experimental data and demonstrate the utility and accuracy of a fast-running tool for future siting and analysis of CEC arrays in complex domains. The Delft3D modeling tool facilitates siting of CEC projects through optimization of array layouts and evaluation of potential environmental effect all while provide a common "language" for academics, industry, and regulators to be able to discuss the implications of marine renewable energy projects. Given the enormity of any full-scale marine renewable energy project, it necessarily falls to modeling to evaluate how array operations must be addressed in an environmental impact statement in a way that engenders confidence in the assessment of the CEC array to minimize environmental effects.

  14. The direct conversion of solar energy to electricity

    International Nuclear Information System (INIS)

    1992-01-01

    Half the world's population lives without access to electricity in the rural areas and villages of developing countries. In 1987, world population reached 5 billion and, according to World Bank projections, will increase to over 6 billion in the year 2000 and to over 8 billion in 2025. Such population growth is not uniformly distributed: developed countries have small or negative growth and account for a declining proportion of the world's population. Inasmuch as 95 per cent of the extra inhabitants added each year are in developing countries, rapid population growth in those countries raises serious questions about energy availability for basic human needs and, of course, more broadly about the environment's capacity to support that growth. The present report makes reference to one of the most comprehensively documented conservative scenarios for world energy demand in the year 2020, namely, Energy for a Sustainable World, which assumed that long-term world sustainability must entail constraints on (a) use of natural resources and (b) combustion of fossil fuels resulting in the greenhouse effect. Solar energy is abundant and could become a major source of electricity. Photovoltaics has three particular advantages. It accomplishes sunlight-to-electricity conversion entirely with solid-state electronic components, and with no moving parts required, thereby promising high equipment availability and very low operating and maintenance costs. PV also appears to have very limited environmental impact, with no emissions of the gaseous pollutants associated with fossil-fuel burning and few of the possible local problems associated with some other renewable energy technologies. Finally, the products of photovoltaic technology are modular in construction and can be built up on site in a flexible way, thus minimizing front-end financial risk and investment costs. Figs and tabs

  15. Energy conversion from aluminium and phosphate rich solution via ZnO activation of aluminium

    Energy Technology Data Exchange (ETDEWEB)

    Slaughter, Gymama, E-mail: gslaught@umbc.edu; Sunday, Joshua; Stevens, Brian

    2015-08-01

    Electrochemical power sources have motivated intense research efforts in the development of alternative ‘green’ power sources for ultra-low powered bioelectronic devices. Biofuel cells employ immobilized enzymes to convert the available chemical energy of organic fuels directly into electricity. However, biofuel cells are limited by short lifetime due to enzyme inactivation and frequent need to incorporate mediators to shuttle electrons to the final electron acceptor. In this context, other electrochemical power sources are necessary in energy conversion and storage device applications. Here we report on the fabrication and characterization of a membrane-free aluminium/phosphate cell based on the activation of aluminium (Al) using ZnO nanocrystal in an Al/phosphate cell as a ‘green’ alternative to the traditional enzymatic biofuel cells. The hybrid cell operates in neutral phosphate buffer solution and physiological saline buffer. The ZnO modifier in the phosphate rich electrolyte activated the pitting of Al resulting in the production of hydrogen, as the reducing agent for the reduction of H{sub 2}PO{sub 4}{sup −} ions to HPO{sub 3}{sup 2−} ions at a formal potential of −0.250 V vs. Ag/AgCl. Specifically, the fabricated cell operating in phosphate buffer and physiological saline buffer exhibit an open-circuit voltage of 0.810 V and 0.751 V and delivered a maximum power density of 0.225 mW cm{sup −2} and 1.77 mW cm{sup −2}, respectively. Our results demonstrate the feasibility of generating electricity by activating Al as anodic material in a hybrid cell supplied with phosphate rich electrolyte. Our approach simplifies the construction and operation of the electrochemical power source as a novel “green” alternative to the current anodic substrates used in enzymatic biofuel cells for low power bioelectronics applications. - Graphical abstract: Display Omitted - Highlights: • ZnO activation of metallic Al for generating electricity for

  16. Use of nuclear space technology of direct energy conversion for terrestrial application

    International Nuclear Information System (INIS)

    Chitaykin, V.I.; Meleta, Ye.A.; Yarygin, V.I.; Mikheyev, A.S.; Tulin, S.M.

    2000-01-01

    In due time the SSC RF-IPPE exercised the scientific supervision and directly participated in the development, fabrication, space flight test and maintenance of the direct energy conversion nuclear power plants (NPP) for space application under the 'BUK' and 'TOPAZ' programs. We have used the acquired experience and the high technologies developed for the 'BUK' NPP with a thermoelectric conversion of thermal (nuclear) energy into electrical one in the development under the order of RAO 'GAZPROM' of the natural gas fired self contained thermoelectric current sources (AIT-500) and heat and electricity sources (TEP-500). These are intended for electrochemical rust protection of gas pipelines and for the electricity and heat supply to the telemetric and microwave-link systems located along the gas pipelines. Of special interest at the moment are the new developments of self contained current sources with the electrical output of ∼500 Wel for new gas pipelines being constructed under the projects such as the 'Yamal-Europe' project. The electrochemical rust protection of gas pipelines laying on unsettled and non-electrified territory of arctic regions of Russia is performed by means of the so-called Cathodic Protection Stations (CPS). Accounting for a complex of rather rigid requirements imposed by arctic operating conditions, the most attractive sources of electricity supply to the CPS are the thermoelectric heat-into-electricity converters and the generators (TEG). This paper deals with the essential results of the development, investigation and testing of unconventional TEGs using the low-temperature bismuth-tellurium thermoelectric batteries assembled together as tubular thermoelectric batteries with a radial ring geometry built into the gas-heated thermoelectric modules, which are collected to make up either the thermoelectric plants for heat and electricity supply or the self contained power sources. One of the peculiarities of these plants is the combination of

  17. Atomic resolution observation of conversion-type anode RuO 2 during the first electrochemical lithiation

    KAUST Repository

    Mao, Minmin

    2015-03-05

    Transition metal oxides have attracted great interest as alternative anode materials for rechargeable lithium-ion batteries. Among them, ruthenium dioxide is considered to be a prototype material that reacts with the Li ions in the conversion type. In situ transmission electron microscopy reveals a two-step process during the initial lithiation of the RuO2 nanowire anode at atomic resolution. The first step is characterized by the formation of the intermediate phase LixRuO2 due to the Li-ion intercalation. The following step is manifested by the solid-state amorphization reaction driven by advancing the reaction front. The crystalline/amorphous interface is consisted of {011} atomic terraces, revealing the orientation-dependent mobility. In the crystalline matrix, lattice disturbance and dislocation are identified to be two major stress-induced distortions. The latter can be effective diffusion channels, facilitating transportation of the Li ions inside the bulk RuO2 crystal and further resulting in non-uniform Li-ion distribution. It is expected that the local enrichment of the Li ions may account for the homogeneous nucleation of dislocations in the bulk RuO2 crystal and the special island-like structures. These results elucidate the structural evolution and the phase transformation during electrochemical cycling, which sheds light on engineering RuO2 anode materials.

  18. Electro-mechanical energy conversion system having a permanent magnet machine with stator, resonant transfer link and energy converter controls

    Science.gov (United States)

    Skeist, S. Merrill; Baker, Richard H.

    2006-01-10

    An electro-mechanical energy conversion system coupled between an energy source and an energy load comprising an energy converter device including a permanent magnet induction machine coupled between the energy source and the energy load to convert the energy from the energy source and to transfer the converted energy to the energy load and an energy transfer multiplexer to control the flow of power or energy through the permanent magnetic induction machine.

  19. Near-field enhanced thermionic energy conversion for renewable energy recycling

    Science.gov (United States)

    Ghashami, Mohammad; Cho, Sung Kwon; Park, Keunhan

    2017-09-01

    This article proposes a new energy harvesting concept that greatly enhances thermionic power generation with high efficiency by exploiting the near-field enhancement of thermal radiation. The proposed near-field enhanced thermionic energy conversion (NETEC) system is uniquely configured with a low-bandgap semiconductor cathode separated from a thermal emitter with a subwavelength gap distance, such that a significant amount of electrons can be photoexcited by near-field thermal radiation to contribute to the enhancement of thermionic current density. We theoretically demonstrate that the NETEC system can generate electric power at a significantly lower temperature than the standard thermionic generator, and the energy conversion efficiency can exceed 40%. The obtained results reveal that near-field photoexcitation can enhance the thermionic power output by more than 10 times, making this hybrid system attractive for renewable energy recycling.

  20. Intelligent control with implementation on the wind energy conversion system

    International Nuclear Information System (INIS)

    Basma, Mohamad Khalil

    1997-05-01

    In this thesis our main job is to compare intelligent control and conventional control algorithms, by applying each scheme to the same control problem. Based on simulation, we analyze and compare the results of applying fuzzy logic and neural networks controllers on a popular control problem: variable speed wind energy conversion system. The reason behind our choice is the challenging nature of the problem where the plant should be controlled to maximize the power generated, while respecting its hardware constraints under varying operating conditions and disturbances. We have shown the effectiveness of fuzzy logic exciter controller for the adopted wind energy generator when compared to a conventional PI exciter. It showed better performance in the whole operating range. However, in the high wind speeds region, both controllers were unable to deliver the rpm requirements. We proposed the use of neural network intelligent techniques to supply us the optimal pitch. Our aim was to develop a simple and reliable controller that can deliver this optimal output, while remaining adaptive to system uncertainties and disturbances. The proposed fuzzy controller with a neural pitch controller showed best dynamic and robust performance as compared to the adaptive pitch controller together with the PI exciter. This study has shown that artificial neural networks and fuzzy logic control algorithms can be implemented for real time control implementations. the neuro-fuzzy control approach is robust and its performance is superior to that of traditional control methods. (author)

  1. The Cellulose Nanofibers for Optoelectronic Conversion and Energy Storage

    Directory of Open Access Journals (Sweden)

    Yongfeng Luo

    2014-01-01

    Full Text Available Cellulose widely exists in plant tissues. Due to the large pores between the cellulose units, the regular paper is nontransparent that cannot be used in the optoelectronic devices. But some chemical and physical methods such as 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO oxidation can be used to improve the pores scale between the cellulose units to reach nanometer level. The cellulose nanofibers (CNFs have good mechanical strength, flexibility, thermostability, and low thermal expansion. The paper made of these nanofibers represent a kind of novel nanostructured material with ultrahigh transparency, ultrahigh haze, conductivity, biodegradable, reproducible, low pollution, environment friendly and so on. These advantages make the novel nanostructured paper apply in the optoelectronic device possible, such as electronics energy storage devices. This kind of paper is considered most likely to replace traditional materials like plastics and glass, which is attracting widespread attention, and the related research has also been reported. The purpose of this paper is to review CNFs which are applied in optoelectronic conversion and energy storage.

  2. Diurnal Solar Energy Conversion and Photoprotection in Rice Canopies.

    Science.gov (United States)

    Meacham, Katherine; Sirault, Xavier; Quick, W Paul; von Caemmerer, Susanne; Furbank, Robert

    2017-01-01

    Genetic improvement of photosynthetic performance of cereal crops and increasing the efficiency with which solar radiation is converted into biomass has recently become a major focus for crop physiologists and breeders. The pulse amplitude modulated chlorophyll fluorescence technique (PAM) allows quantitative leaf level monitoring of the utilization of energy for photochemical light conversion and photoprotection in natural environments, potentially over the entire crop lifecycle. Here, the diurnal relationship between electron transport rate (ETR) and irradiance was measured in five cultivars of rice (Oryza sativa) in canopy conditions with PAM fluorescence under natural solar radiation. This relationship differed substantially from that observed for conventional short term light response curves measured under controlled actinic light with the same leaves. This difference was characterized by a reduced curvature factor when curve fitting was used to model this diurnal response. The engagement of photoprotective processes in chloroplast electron transport in leaves under canopy solar radiation was shown to be a major contributor to this difference. Genotypic variation in the irradiance at which energy flux into photoprotective dissipation became greater than ETR was observed. Cultivars capable of higher ETR at midrange light intensities were shown to produce greater leaf area over time, estimated by noninvasive imaging. © 2017 American Society of Plant Biologists. All Rights Reserved.

  3. High-Resolution Measurements of Low-Energy Conversion Electrons

    CERN Multimedia

    Gizon, A; Putaux, J

    2002-01-01

    Measurements of low-energy internal conversion electrons have been performed with high energy resolution in some N = 105 odd and odd-odd nuclei using a semi-circular spectrograph associated to a specific tape transport system. These experiments aimed to answer the following questions~: \\begin{itemize} \\item Do M3 isomeric transitions exist in $^{183}$Pt and $^{181}$Os, isotones of $^{184}$Au~? \\item Are the neutron configurations proposed to describe the isomeric and ground states of $^{184}$Au right or wrong~? \\item Does it exist an isomeric state in $^{182}$Ir, isotone of $^{181}$Os, $^{183}$Pt and $^{184}$Au~? \\item What are the spin and parity values of the excited states of $^{182}$Ir~? \\end{itemize} In $^{183}$Pt, the 35.0 keV M3 isomeric transition has been clearly observed and the reduced transition probability has been determined. The deduced hindrance factor is close to that observed in the neighbouring odd-odd $^{184}$Au nucleus. This confirms the neutron configurations previously proposed for the ...

  4. A theoretical analysis of price elasticity of energy demand in multistage energy conversion systems

    International Nuclear Information System (INIS)

    Lowe, R.

    2003-01-01

    The objective of this paper is an analytical exploration of the problem of price elasticity of energy demand in multi-stage energy conversion systems. The paper describes in some detail an analytical model of energy demand in such systems. Under a clearly stated set of assumptions, the model makes it possible to explore both the impacts of the number of sub-systems, and of varying sub-system elasticities on overall system elasticity. The analysis suggests that overall price elasticity of energy demand for such systems will tend asymptotically to unity as the number of sub-systems increases. (author)

  5. A theoretical analysis of price elasticity of energy demand in multi-stage energy conversion systems

    International Nuclear Information System (INIS)

    Lowe, Robert

    2003-01-01

    The objective of this paper is an analytical exploration of the problem of price elasticity of energy demand in multi-stage energy conversion systems. The paper describes in some detail an analytical model of energy demand in such systems. Under a clearly stated set of assumptions, the model makes it possible to explore both the impacts of the number of sub-systems, and of varying sub-system elasticities on overall system elasticity. The analysis suggests that overall price elasticity of energy demand for such systems will tend asymptotically to unity as the number of sub-systems increases

  6. Methods for locating ground faults and insulation degradation condition in energy conversion systems

    Science.gov (United States)

    Agamy, Mohamed; Elasser, Ahmed; Galbraith, Anthony William; Harfman Todorovic, Maja

    2015-08-11

    Methods for determining a ground fault or insulation degradation condition within energy conversion systems are described. A method for determining a ground fault within an energy conversion system may include, in part, a comparison of baseline waveform of differential current to a waveform of differential current during operation for a plurality of DC current carrying conductors in an energy conversion system. A method for determining insulation degradation within an energy conversion system may include, in part, a comparison of baseline frequency spectra of differential current to a frequency spectra of differential current transient at start-up for a plurality of DC current carrying conductors in an energy conversion system. In one embodiment, the energy conversion system may be a photovoltaic system.

  7. Energy Conversion Advanced Heat Transport Loop and Power Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Oh, C. H.

    2006-08-01

    The Department of Energy and the Idaho National Laboratory are developing a Next Generation Nuclear Plant (NGNP) to serve as a demonstration of state-of-the-art nuclear technology. The purpose of the demonstration is two fold 1) efficient low cost energy generation and 2) hydrogen production. Although a next generation plant could be developed as a single-purpose facility, early designs are expected to be dual-purpose. While hydrogen production and advanced energy cycles are still in its early stages of development, research towards coupling a high temperature reactor, electrical generation and hydrogen production is under way. Many aspects of the NGNP must be researched and developed in order to make recommendations on the final design of the plant. Parameters such as working conditions, cycle components, working fluids, and power conversion unit configurations must be understood. Three configurations of the power conversion unit were demonstrated in this study. A three-shaft design with 3 turbines and 4 compressors, a combined cycle with a Brayton top cycle and a Rankine bottoming cycle, and a reheated cycle with 3 stages of reheat were investigated. An intermediate heat transport loop for transporting process heat to a High Temperature Steam Electrolysis (HTSE) hydrogen production plant was used. Helium, CO2, and an 80% nitrogen, 20% helium mixture (by weight) were studied to determine the best working fluid in terms cycle efficiency and development cost. In each of these configurations the relative component size were estimated for the different working fluids. The relative size of the turbomachinery was measured by comparing the power input/output of the component. For heat exchangers the volume was computed and compared. Parametric studies away from the baseline values of the three-shaft and combined cycles were performed to determine the effect of varying conditions in the cycle. This gives some insight into the sensitivity of these cycles to various

  8. ECUT (Energy Conversion and Utilization Technologies) program: Biocatalysis project

    Science.gov (United States)

    Baresi, Larry

    1989-03-01

    The Annual Report presents the fiscal year (FY) 1988 research activities and accomplishments, for the Biocatalysis Project of the U.S. Department of Energy, Energy Conversion and Utilization Technologies (ECUT) Division. The ECUT Biocatalysis Project is managed by the Jet Propulsion Laboratory, California Institute of Technology. The Biocatalysis Project is a mission-oriented, applied research and exploratory development activity directed toward resolution of the major generic technical barriers that impede the development of biologically catalyzed commercial chemical production. The approach toward achieving project objectives involves an integrated participation of universities, industrial companies and government research laboratories. The Project's technical activities were organized into three work elements: (1) The Molecular Modeling and Applied Genetics work element includes research on modeling of biological systems, developing rigorous methods for the prediction of three-dimensional (tertiary) protein structure from the amino acid sequence (primary structure) for designing new biocatalysis, defining kinetic models of biocatalyst reactivity, and developing genetically engineered solutions to the generic technical barriers that preclude widespread application of biocatalysis. (2) The Bioprocess Engineering work element supports efforts in novel bioreactor concepts that are likely to lead to substantially higher levels of reactor productivity, product yields and lower separation energetics. Results of work within this work element will be used to establish the technical feasibility of critical bioprocess monitoring and control subsystems. (3) The Bioprocess Design and Assessment work element attempts to develop procedures (via user-friendly computer software) for assessing the energy-economics of biocatalyzed chemical production processes, and initiation of technology transfer for advanced bioprocesses.

  9. Direct Energy Conversion for Nuclear Propulsion at Low Specific Mass

    Science.gov (United States)

    Scott, John H.

    2014-01-01

    The project will continue the FY13 JSC IR&D (October-2012 to September-2013) effort in Travelling Wave Direct Energy Conversion (TWDEC) in order to demonstrate its potential as the core of a high potential, game-changing, in-space propulsion technology. The TWDEC concept converts particle beam energy into radio frequency (RF) alternating current electrical power, such as can be used to heat the propellant in a plasma thruster. In a more advanced concept (explored in the Phase 1 NIAC project), the TWDEC could also be utilized to condition the particle beam such that it may transfer directed kinetic energy to a target propellant plasma for the purpose of increasing thrust and optimizing the specific impulse. The overall scope of the FY13 first-year effort was to build on both the 2012 Phase 1 NIAC research and the analysis and test results produced by Japanese researchers over the past twenty years to assess the potential for spacecraft propulsion applications. The primary objective of the FY13 effort was to create particle-in-cell computer simulations of a TWDEC. Other objectives included construction of a breadboard TWDEC test article, preliminary test calibration of the simulations, and construction of first order power system models to feed into mission architecture analyses with COPERNICUS tools. Due to funding cuts resulting from the FY13 sequestration, only the computer simulations and assembly of the breadboard test article were completed. The simulations, however, are of unprecedented flexibility and precision and were presented at the 2013 AIAA Joint Propulsion Conference. Also, the assembled test article will provide an ion current density two orders of magnitude above that available in previous Japanese experiments, thus enabling the first direct measurements of power generation from a TWDEC for FY14. The proposed FY14 effort will use the test article for experimental validation of the computer simulations and thus complete to a greater fidelity the

  10. 4D nano-tomography of electrochemical energy devices using lab-based X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Heenan, T. M. M.; Finegan, D. P.; Tjaden, B.; Lu, X.; Iacoviello, F.; Millichamp, J.; Brett, D. J. L.; Shearing, P. R.

    2018-05-01

    Electrochemical energy devices offer a variety of alternate means for low-carbon, multi-scale energy conversion and storage. Reactions in these devices are supported by electrodes with characteristically complex microstructures. To meet the increasing capacity and lifetime demands across a range of applications, it is essential to understand microstructural evolutions at a cell and electrode level which are thought to be critical aspects influencing material and device lifetime and performance. X-ray computed tomography (CT) has become a highly employed method for non-destructive characterisation of such microstructures with high spatial resolution. However, sub-micron resolutions present significant challenges for sample preparation and handling particularly in 4D studies, (three spatial dimensions plus time). Here, microstructural information is collected from the same region of interest within two electrode materials: a solid oxide fuel cell and the positive electrode from a lithium-ion battery. Using a lab-based X-ray instrument, tomograms with sub-micron resolutions were obtained between thermal cycling. The intricate microstructural evolutions captured within these two materials provide model examples of 4D X-ray nano-CT capabilities in tracking challenging degradation mechanisms. This technique is valuable in the advancement of electrochemical research as well as broader applications for materials characterisation.

  11. Fundamental Challenges for Modeling Electrochemical Energy Storage Systems at the Atomic Scale.

    Science.gov (United States)

    Groß, Axel

    2018-04-23

    There is a strong need to improve the efficiency of electrochemical energy storage, but progress is hampered by significant technological and scientific challenges. This review describes the potential contribution of atomic-scale modeling to the development of more efficient batteries, with a particular focus on first-principles electronic structure calculations. Numerical and theoretical obstacles are discussed, along with ways to overcome them, and some recent examples are presented illustrating the insights into electrochemical energy storage that can be gained from quantum chemical studies.

  12. Ultrahigh porous materials and nanocatalysts for energy harvesting and conversion

    International Nuclear Information System (INIS)

    Stamatin, Ioan

    2009-01-01

    Full text: Fuel cells represent a clean alternative to current technologies utilizing hydrocarbon fuel resources and to the photovoltaic technologies as booster to hybrid systems. Since discovered by Groove they developed in few classes depending of the electrolyte type and the working temperatures. Polymer electrolyte membrane fuel cells (PEMFCs) have acquired due importance as they are best suited for applications where a quick start up is required such as in automobiles and by their versatility to be associated with different couples fuel-oxidant such as hydrogen-oxygen or methanol-air to name few. Four main major components are concurrent in designing and engineering of the performing and marketable fuel cells: thermal/fluidic management, bipolar plates, membrane-electrode assembly, hydrogen supply. The latest three involve advanced materials from different parts of the science and technology. The prime requirements of fuel cell membranes are high proton conductivity, low methanol/water permeability, good mechanical and thermal stability and moderate price. Membranes and the operating parameters together have a profound influence on performance of PEMFCs. Perfluorinated ionomers, hydrocarbon and aromatic polymers and acid-base complexes are reviewed considering their structure-property relationship. New materials with potential impact in FC performances and high proton conduction at moderate high temperatures to reduce the catalyst CO-poisoning are taken into account. The role of the semiconducting polymers as component in membranes and support for catalyst is reconsidered based on new results. Nanocatalysts based on Pt alloys or low cost Iron-alloys groups designed via polyol-MW-synthesis open a new direction to the engineering of high performance electrocatalysts by controlling size- shape- surface electrochemical activity. The role of the nanotubes and nanowalls as catalyst support and gas diffusion layer is reconsidered in the context of the new technology

  13. Conversion of gravity field energy. Konversion von Schwerkraft-Feld-Energie

    Energy Technology Data Exchange (ETDEWEB)

    Nieper, H A

    1981-01-01

    This book by Mittelstandsinstitut Niedersachsen is a proceedings volume on the conference on energy technology on November 27/28, 1980. The meeting was attended by about 360 persons. On the basis of the knowledge presented, conversion of tachyon field energy into useful electrical energy appears possible. The tachyon field is present everywhere in space. Seike estimated its field strength at 8.8 x 10/sup 8/ V/cm. Magnetic and electrostatic fields can intercept tachyon energy. Especially masses subject to strong magnetic induction take up much tachyon energy. Also abrupt changes of voltage seem to extract energy from tachyons. The Gray motor is based on this principle. Further devices taking energy from the tachyon field are presented, e.g. the Johnson motor which has recently been given the Pat. No. US 4 151 431.

  14. Synthesis and processing of materials for direct thermal-to-electric energy conversion and storage

    Science.gov (United States)

    Thompson, Travis

    Currently, fossil fuels are the primary source of energy. Mechanical heat engines convert the chemical potential energy in fossil fuels to useful electrical energy through combustion; a relatively low efficiency process that generates carbon dioxide. This practice has led to a significant increase in carbon dioxide emissions and is contributing to climate change. However, not all heat engines are mechanical. Alternative energy generation technologies to mechanical heat engines are known, yet underutilized. Thermoelectric generators are solid-state devices originally developed by NASA to power deep space spacecraft, which can also convert heat into electricity but without any moving parts. Similar to their mechanical counterparts, any heat source, including the burning of fossil fuels, can be used. However, clean heat sources, such as concentrated solar, can alternatively be used. Since the energy sources for many of the alternative energy technologies is intermittent, including concentrated solar for thermoelectric devices, load matching is difficult or impossible and an energy storage technology is needed in addition to the energy conversion technology. This increases the overall cost and complexity of the systems since two devices are required and represents a significant barrier for mass adoption of an alternative energy technology. However, it is possible to convert heat energy to electrical energy and store excess charge for use at a later time when the demand increases, in a single device. One such of a device is a thermogalvanic generator and is the electrochemical analog of electronic thermoelectric devices. Essentially, a thermogalvanic device represents the combination of thermoelectric and galvanic systems. As such, the rich history of strategies developed by both the thermoelectric community to better the performance of thermoelectric devices and by the electrochemical community to better traditional galvanic devices (i.e. batteries) can be applied to

  15. The photochemical conversion of solar energy into electrical energy: Eosin-Arabinose system

    Energy Technology Data Exchange (ETDEWEB)

    Gangotri, K.M. [Department of Chemistry, Solar Energy Laboratory, Jai Narain Vyas University, Jodhpur 342 033, Rajasthan (India); Bhimwal, Mukesh Kumar [Solar Energy Laboratory, Jai Narain Vyas University, Jodhpur 342 033, Rajasthan (India)

    2010-12-15

    A photosensitizer -Eosin and a reductant- Arabinose have been used in the photogalvanic cell for photochemical conversion of solar energy into electrical energy. The generated photopotential and photocurrent are 679.0 mV and 240.0 {mu}A respectively. The maximum power of the cell is 162.96 {mu}W whereas the observed power at power point is 73.08 {mu}W. The conversion efficiency is 0.7026% and the fill factor is 0.2856 at the power point of the photogalvanic cell. The photogalvanic cell so developed can work for 85.0 min in dark if it is irradiated for 140.0 min i.e. the storage capacity of photogalvanic cell is 60.71%. The effects of different parameters on the electrical output of the photogalvanic cell have been observed. A mechanism has also been proposed for the photogeneration of electrical energy. (author)

  16. Symposium on the Physical Chemistry of Solar Energy Conversion, Indianapolis American Chemical Society Meetings, Fall 2013

    Energy Technology Data Exchange (ETDEWEB)

    Lian, Tianquan [PI, Emory Univ.

    2013-09-20

    The Symposium on the Physical Chemistry of Solar Energy Conversion at the Fall ACS Meeting in Indianapolis, IN (Sept. 8-12) featured the following sessions (approx. 6 speakers per session): (1) Quantum Dots and Nanorods for Solar Energy Conversion (2 half-day sessions); (2) Artificial Photosynthesis: Water Oxidation; (3) Artificial Photosynthesis: Solar Fuels (2 half-day sessions); (4) Organic Solar Cells; (5) Novel Concepts for Solar Energy Conversion (2 half-day sessions); (6) Emerging Techniques for Solar Energy Conversion; (7) Interfacial Electron Transfer

  17. Graphene-Conducting Polymer Nanocomposites for Enhancing Electrochemical Capacitive Energy Storage

    DEFF Research Database (Denmark)

    Shen, Fei; Pankratov, Dmitry; Chi, Qijin

    2017-01-01

    The evolution of power generation, expansion of transportation and electrification, and popularization of portable electronic devices have altogether posed growing demands for more efficient energy storage systems. Supercapacitors, as one of major electrochemical energy storage devices, have...... recently received intensive attention. In this minireview, our focus is on graphene-conducting polymer nanocomposites and their applications in supercapacitors that have potential to perform high power and energy density, fast charge/discharge rate, low cost and eco-friendly operation conditions. We first...

  18. Electrochemical energy storage. Vol. 1. Fundamentals, aqueous storage batteries. Elektrochemische Energiespeicher. Bd. 1. Grundlagen, waessrige Akkumulatoren

    Energy Technology Data Exchange (ETDEWEB)

    Beck, F; Euler, K J

    1984-01-01

    Vol. 1 is a synthesis of electrochemical, battery-technical and energy industry aspects. The role of energy storage systems in the energy industry, e.g. in connection with a hydrogen technology, is discussed along with the thermodynamic, kinetic, materials-technical and process engineering fundamentals. ''Classic'' and new systems are described in full detail for the first time. Cyclisation and technical/economic criteria of selection are discussed. (orig./GG).

  19. Overall energy conversion efficiency of a photosynthetic vesicle

    Energy Technology Data Exchange (ETDEWEB)

    Sener, Melih [Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, United States; Department of Physics, University of Illinois at Urbana-Champaign, Urbana, United States; Strumpfer, Johan [Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, United States; Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, United States; Singharoy, Abhishek [Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, United States; Hunter, C. Neil [Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom; Schulten, Klaus [Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, United States; Department of Physics, University of Illinois at Urbana-Champaign, Urbana, United States; Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, United States

    2016-08-26

    The chromatophore of purple bacteria is an intracellular spherical vesicle that exists in numerous copies in the cell and that efficiently converts sunlight into ATP synthesis, operating typically under low light conditions. Building on an atomic-level structural model of a low-light-adapted chromatophore vesicle from Rhodobacter sphaeroides, we investigate the cooperation between more than a hundred protein complexes in the vesicle. The steady-state ATP production rate as a function of incident light intensity is determined after identifying quinol turnover at the cytochrome bc1 complex (cytbc1) as rate limiting and assuming that the quinone/quinol pool of about 900 molecules acts in a quasi-stationary state. For an illumination condition equivalent to 1% of full sunlight, the vesicle exhibits an ATP production rate of 82 ATP molecules/s. The energy conversion efficiency of ATP synthesis at illuminations corresponding to 1%–5% of full sunlight is calculated to be 0.12-0.04, respectively. The vesicle stoichiometry, evolutionarily adapted to the low light intensities in the habitat of purple bacteria, is suboptimal for steady-state ATP turnover for the benefit of protection against over-illumination.

  20. Aerojet Energy Conversion Company mobile volume reduction system

    International Nuclear Information System (INIS)

    Smith, K.R.

    1984-01-01

    Over the past few years, rapidly increasing costs for the disposal of low level radioactive waste (LLW) have generated the need for utilities to volume-reduce their LLW prior to shipment and burial. Incineration systems have been selected by several utilities to fulfill this need for maximum volume reduction. Until recently, all of the incineration systems selected by utilities were designed to be housed and operated in a facility erected by the utility. Now, however, lack of capital and rising design/erection costs are causing utilities to reevaluate their plans for purchasing incineration systems to process their LLW. The result is a growing demand for incineration services. Once again, Commonwealth Edison Company (Com-Ed) is leading the industry with an ongoing program to utilize incineration services provided by Aerojet Energy Conversion Company (AECC) for the Dresden Quad Cities, LaSalle, and Zion Nuclear Stations. At the stations, combustible dry active waste and contaminated oil will be processed in a Mobile Volume Reduction System (MVRS) designed and fabricated by AECC. The MVRS is a totally self-contained system consisting of a controlled-air incinerator and a liquid offgas cleanup system. No buildings are required to house the system, and the MVRS achieves volume reduction factors similar to systems currently available for permanent in-plant installation. The result is an option for the utility having the benefits of volume reduction without the capital commitment normally required by the utility

  1. Socio-economic overview of wind energy conversion systems

    International Nuclear Information System (INIS)

    Hardy, D.R.

    1992-01-01

    A social scientist's perspective is presented on the socio-economic impacts of wind energy conversion systems (WECS) in Ontario. The main organization for delivering electricity in Ontario is Ontario Hydro. This utility has two WECS, an experimental 3.5 kW generator and a hybrid wind/diesel facility at a remote northern community. Ontario Hydro is reviewing its supply options and anticipates wind power would likely be used in niche applications involving off-grid hybrid systems where the cost of displaced generation is high. On-grid applications would likely be in the form of dispersed non-utility generation. The potential contribution of wind power to Ontario's electricity supply mix could be as little as 1 MW by the year 2000 or as high as 40 MW by the year 2014, depending on costs and technological developments. Socio-economic criteria used by the utility for assessing individual supply options include job creation, regional economic development, local community impacts, social acceptance, and distribution of risks and benefits. Initial observations of potential effects of WECS are discussed, including site selection, manufacturing, construction, and operation. Barriers to implementation of WECS in Ontario include the limited number of good wind sites, the intermittent nature of WECS power, and the currently uneconomic nature of WECS for bulk electricity systems. However, WECS have environmentally attractive features and are socially acceptable. 10 refs., 3 figs

  2. Ocean Thermal Energy Conversion (OTEC) Programmatic Environmental Analysis--Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Authors, Various

    1980-01-01

    The programmatic environmental analysis is an initial assessment of Ocean Thermal Energy Conversion (OTEC) technology considering development, demonstration and commercialization. It is concluded that the OTEC development program should continue because the development, demonstration, and commercialization on a single-plant deployment basis should not present significant environmental impacts. However, several areas within the OTEC program require further investigation in order to assess the potential for environmental impacts from OTEC operation, particularly in large-scale deployments and in defining alternatives to closed-cycle biofouling control: (1) Larger-scale deployments of OTEC clusters or parks require further investigations in order to assess optimal platform siting distances necessary to minimize adverse environmental impacts. (2) The deployment and operation of the preoperational platform (OTEC-1) and future demonstration platforms must be carefully monitored to refine environmental assessment predictions, and to provide design modifications which may mitigate or reduce environmental impacts for larger-scale operations. These platforms will provide a valuable opportunity to fully evaluate the intake and discharge configurations, biofouling control methods, and both short-term and long-term environmental effects associated with platform operations. (3) Successful development of OTEC technology to use the maximal resource capabilities and to minimize environmental effects will require a concerted environmental management program, encompassing many different disciplines and environmental specialties. This volume contains these appendices: Appendix A -- Deployment Scenario; Appendix B -- OTEC Regional Characterization; and Appendix C -- Impact and Related Calculations.

  3. Amphoteric oxide semiconductors for energy conversion devices: a tutorial review.

    Science.gov (United States)

    Singh, Kalpana; Nowotny, Janusz; Thangadurai, Venkataraman

    2013-03-07

    In this tutorial review, we discuss the defect chemistry of selected amphoteric oxide semiconductors in conjunction with their significant impact on the development of renewable and sustainable solid state energy conversion devices. The effect of electronic defect disorders in semiconductors appears to control the overall performance of several solid-state ionic devices that include oxide ion conducting solid oxide fuel cells (O-SOFCs), proton conducting solid oxide fuel cells (H-SOFCs), batteries, solar cells, and chemical (gas) sensors. Thus, the present study aims to assess the advances made in typical n- and p-type metal oxide semiconductors with respect to their use in ionic devices. The present paper briefly outlines the key challenges in the development of n- and p-type materials for various applications and also tries to present the state-of-the-art of defect disorders in technologically related semiconductors such as TiO(2), and perovskite-like and fluorite-type structure metal oxides.

  4. Draft environmental assessment: Ocean Thermal Energy Conversion (OTEC) Pilot Plants

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, S.M.; Sands, M.D.; Donat, J.R.; Jepsen, P.; Smookler, M.; Villa, J.F.

    1981-02-01

    This Environmental Assessment (EA) has been prepared, in accordance with the National Environmental Policy Act of 1969, for the deployment and operation of a commercial 40-Megawatt (MW) Ocean Thermal Energy Conversion (OTEC) Pilot Plant (hereafter called the Pilot Plant). A description of the proposed action is presented, and a generic environment typical of the candidate Pilot Plant siting regions is described. An assessment of the potential environmental impacts associated with the proposed action is given, and the risk of credible accidents and mitigating measures to reduce these risks are considered. The Federal and State plans and policies the proposed action will encompass are described. Alternatives to the proposed action are presented. Appendix A presents the navigation and environmental information contained in the US Coast Pilot for each of the candidate sites; Appendix B provides a brief description of the methods and calculations used in the EA. It is concluded that environmental disturbances associated with Pilot Plant activities could potentially cause significant environmental impacts; however, the magnitude of these potential impacts cannot presently be assessed, due to insufficient engineering and environmental information. A site- and design-specific OTEC Pilot Plant Environmental Impact Statement (EIS) is required to resolve the potentially significant environmental effects associated with Pilot Plant deployment and operation. (WHK)

  5. Ocean Thermal Energy Conversion Using Double-Stage Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Yasuyuki Ikegami

    2018-03-01

    Full Text Available Ocean Thermal Energy Conversion (OTEC using non-azeotropic mixtures such as ammonia/water as working fluid and the multistage cycle has been investigated in order to improve the thermal efficiency of the cycle because of small ocean temperature differences. The performance and effectiveness of the multistage cycle are barely understood. In addition, previous evaluation methods of heat exchange process cannot clearly indicate the influence of the thermophysical characteristics of the working fluid on the power output. Consequently, this study investigated the influence of reduction of the irreversible losses in the heat exchange process on the system performance in double-stage Rankine cycle using pure working fluid. Single Rankine, double-stage Rankine and Kalina cycles were analyzed to ascertain the system characteristics. The simple evaluation method of the temperature difference between the working fluid and the seawater is applied to this analysis. From the results of the parametric performance analysis it can be considered that double-stage Rankine cycle using pure working fluid can reduce the irreversible losses in the heat exchange process as with the Kalina cycle using an ammonia/water mixture. Considering the maximum power efficiency obtained in the study, double-stage Rankine and Kalina cycles can improve the power output by reducing the irreversible losses in the cycle.

  6. Challenges of Iran's energy conversion agreements in future competitive market

    International Nuclear Information System (INIS)

    Sobhiyah, M.H.; Kashtiban, Y.Kh.

    2008-01-01

    Extensive need for electricity and lack of enough governmental resources for the development of related infrastructures forced the Iranian Government to invite private investors and to sign Energy Conversion Agreement (ECA) in the form of build-operate-transfer (BOT) and build-operate-own (BOO) contracts with them. Accordingly, electricity purchase would be based on a guaranteed price. Changes in some laws in 2007 caused the management of the ECAs and electricity purchase based on guaranteed price to face challenges. Shortening the commercial operation period of the earlier ECAs and signing some new short-term ECAs were the steps taken by the authorities to resolve the problems. By shortening the ECAs' commercial operation period, it is likely to cause serious problems concerning the payments of the project companies, because of shortages in the government's financial resources. The findings of the present viewpoint suggest signing of new long-term contracts (20 years long) in the form of a combinational agreement for buying the produced electricity with a guaranteed price (in the first 5 years) and supplying it in the competitive power market (for the following years) would be a better way to reduce the problems

  7. Magnetically insulated fission electric cells for direct energy conversion

    International Nuclear Information System (INIS)

    Slutz, S.A.; Seidel, D.B.; Lipinski, R.J.; Rochau, G.E.; Brown, L.C.

    2003-01-01

    The principles of fission electric cells are reviewed. A detailed Monte Carlo model of the efficiency of a fission electric cell is presented and a theory of magnetically insulated fission electric cells (MIFECs) is developed. It is shown that the low operating voltages observed in previous MIFEC experiments were due to nonoptimal magnetic field profiles. Improved magnetic field profiles are presented. It is further shown that the large electric field present in a MIFEC limits the structure of the cathode and can lead to a displacement instability of the cathode toward the anode. This instability places constraints on the number of cells that can be strung together without some external cathode support. The large electric field stress also leads to electrical surface breakdown of the cathode. It is shown that this leads to the formation of a virtual cathode resulting in geometry constraints for spherical cells. Finally it is shown that the requirements of magnetic insulation and high efficiency leads to very low average density of the fissile material. Thus a reactor using fission electric cells for efficient direct energy conversion will be large and require a very large number of cells. This could be mitigated somewhat by the use of exotic fuels

  8. Efficiency of a gyroscopic device for conversion of mechanical wave energy to electrical energy

    DEFF Research Database (Denmark)

    Carlsen, Martin; Darula, Radoslav; Gravesen, Jens

    2011-01-01

    We consider a recently proposed gyroscopic device for conversion of mechanical ocean wave energy to electrical energy. Two models of the device derived from standard engineering mechanics from the literature are analysed, and a model is derived from analytical mechanics considerations. From...... these models, estimates of the power production, eciency, forces and moments are made. We nd that it is possible to extract a signicant amount of energy from an ocean wave using the described device. Further studies are required for a full treatment of the device....

  9. Exploratory technology research program for electrochemical energy storage, annual report for 1997

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, K. [ed.

    1998-06-01

    The US Department of Energy`s (DOE) Office of Transportation Technologies provides support for an Electrochemical Energy Storage Program, that includes research and development on advanced rechargeable batteries. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs) and hybrid systems. The program centers on advanced electrochemical systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electric Vehicle Technology Program is divided into two project areas: the US Advanced Battery Consortium (USABC) and Advanced Battery R and D which includes the Exploratory Technology Research (ETR) Program managed by the Lawrence Berkeley National Laboratory (LBNL). The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or other Government agencies for further development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1997. This is a continuing program, and reports for prior years have been published; they are listed at the end of this Executive Summary. The general R and D areas addressed by the program include identification of new electrochemical couples for advanced batteries, determination of technical feasibility of the new couples, improvements in battery components and materials, and establishment of engineering principles applicable to electrochemical energy storage. Major emphasis is given to applied research which will lead to superior performance and lower life-cycle costs.

  10. Pseudocapacitive Oxides and Sulfides for High-Performance Electrochemical Energy Storage

    KAUST Repository

    Xia, Chuan

    2018-03-22

    The intermittent nature of several sustainable energy sources such as solar and wind energy has ignited the demand of electrochemical energy storage devices in the form of batteries and electrochemical capacitors. The future generation of electrochemical capacitors will in large part depend on the use of pseudocapacitive materials in one or both electrodes. Developing pseudocapacitors to have both high energy and power density is crucial for future energy storage systems. This dissertation evaluates two different material systems to achieve high energy density pseudocapacitive energy storage. This research presents the successful preparation and application of ternary NiCo2S4, which is based on the surface redox mechanism, in the area of pseudocapacitive energy storage. Attention has been paid to understanding its basic physical properties which can impact its electrochemical behavior. Well-defined single- and double-shell NiCo2S4 hollow spheres were fabricated for pseudocapacitor applications, showing much improved electrochemical storage performance with good energy and power densities, as well as excellent cycling stability. To overcome the complexity of the preparation methods of NiCo2S4 nanostructures, a one-step approach was developed for the first time. Asymmetric pseudocapacitors using NiCo2S4 as cathode and graphene as anode were also fabricated to extend the operation voltage in aqueous electrolyte, and thus enhance the overall capacity of the cells. Furthermore, high-performance on-chip pseudocapacitive energy storage was demonstrated using NiCo2S4 as electrochemically active materials. This dissertation also involves another material system, intercalation pseudocapacitive VO2 (B), that displays a different charge storage mechanism from NiCo2S4. By constructing high-quality, atomically-thin two-dimensional (2D) VO2 (B) sheets using a general monomer-assisted approach, we demonstrate that a rational design of atomically thin, 2D nanostructures of

  11. Polymer-directed synthesis of metal oxide-containing nanomaterials for electrochemical energy storage

    Science.gov (United States)

    Mai, Yiyong; Zhang, Fan; Feng, Xinliang

    2013-12-01

    Metal oxide-containing nanomaterials (MOCNMs) of controllable structures at the nano-scale have attracted considerable interest because of their great potential applications in electrochemical energy storage devices, such as lithium-ion batteries (LIBs) and supercapacitors. Among many structure-directing agents, polymers and macromolecules, including block copolymers (BCPs) and graphene, exhibit distinct advantages in the template-assisted synthesis of MOCNMs. In this feature article, we introduce the controlled preparation of MOCNMs employing BCPs and graphene as structure-directing agents. Typical synthetic strategies are presented for the control of structures and sizes as well as the improvement of physical properties and electrochemical performance of MOCNMs in LIBs and supercapacitors.

  12. Protective coatings on structural materials for energy conversion systems

    International Nuclear Information System (INIS)

    John, J.T.; De, P.K.; Srinivasa, R.S.

    2000-01-01

    Full text: Structural Materials and Components used in coal fired energy conversion systems, crude oil refineries and coal gasification plants are subjected to degradation due to oxidation, sulfidation, carbonization and halogenation. Suitable protective coatings can significantly enhance their life. Protective coatings work by forming a highly stable, self-healing and slow growing protective scale at the operating temperatures. These scales act as barriers between the corrosive environment and the alloy and prevent degradation of the substitute. Three types of scales that provide such protection are based on Al 2 O 3 , Cr 2 O 3 and SiO 2 . Aluminide coatings are major alumina forming protecting coatings, applied on nickel, cobalt and iron base alloys. Aluminide coatings are prepared by enriching the surface of a component by aluminum. In this paper the formation of aluminide coatings of nickel, IN738, Alloy 800, Zircaloy-2 and pure iron by chemical vapor deposition has been described. In this technique, Aluminum chloride vapors from bath kept at 353-373 K are carried in a stream of hydrogen gas into a Hot Walled CVD chamber kept at 1173-1373 K. The AlCl 3 vapors were allowed to react with pure aluminum whereby aluminum sub-chlorides like AlCl and AlCl 2 are produced which deposit aluminum on the substrates. At the high temperature of the deposition, aluminum diffuses into the substrate and forms the aluminide coating. The process can be represented by the reaction Al (i) + AlCl 3(g) AlCl 2(s) + AlCl 2 (g) . XRD and optical microscopic studies have characterized the coatings. On pure nickel and Alloy 800 the coating consists of Ni 2 Al 3 and NiAl respectively. On pure iron the coatings consisted of FeAl. On Zircaloy-2, ZrAl 2 was also detected. The CVD coating process, XRD and optical microscopy data will be discussed further

  13. Basic and applied research related to the technology of space energy conversion systems, 1982 - 1983

    Science.gov (United States)

    Hertzberg, A.

    1983-01-01

    Topics on solar energy conversion concepts and applications are discussed. An overview of the current status and future utilization of radiation receivers for electrical energy generation, liquid droplet radiation systems, and liquid droplet heat exchangers is presented.

  14. Effect of biomass feedstock chemical and physical properties on energy conversion processes: Volume 1, Overview

    Energy Technology Data Exchange (ETDEWEB)

    Butner, R.S.; Elliott, D.C.; Sealock, L.J. Jr.; Pyne, J.W.

    1988-12-01

    Pacific Northwest Laboratory has completed an initial investigation of the effects of physical and chemical properties of biomass feedstocks relative to their performance in biomass energy conversion systems. Both biochemical conversion routes (anaerobic digestion and ethanol fermentation) and thermochemical routes (combustion, pyrolysis, and gasification) were included in the study. Related processes including chemical and physical pretreatment to improve digestibility, and size and density modification processes such as milling and pelletizing were also examined. This overview report provides background and discussion of feedstock and conversion relationships, along with recommendations for future research. The recommendations include (1) coordinate production and conversion research programs; (2) quantify the relationship between feedstock properties and conversion priorities; (3) develop a common framework for evaluating and characterizing biomass feedstocks; (4) include conversion effects as part of the criteria for selecting feedstock breeding programs; and (5) continue emphasis on multiple feedstock/conversion options for biomass energy systems. 9 refs., 3 figs., 2 tabs.

  15. Gallium Nitride Direct Energy Conversion Betavoltaic Modeling and Optimization

    Science.gov (United States)

    2017-03-01

    power source. Autonomous systems such as space satellites require power sources that have strict size , weight, and power (SWaP) limitations, which...conversion process, called beta- photovoltaics , has a system efficiency that is dependent on both the conversion efficiency of the phosphor and the...effectively providing 9 J per day for autonomous systems . However, the volume for beta- photovoltaics is larger due to the need for phosphors to

  16. 2014 Overview of NASA GRC Electrochemical Power and Energy Storage Technology

    Science.gov (United States)

    Reid, Concha M.

    2014-01-01

    Overview presentation to the IAPG Chemical Working Group meeting, discussing current electrochemical power and energy storage R and D at NASA GRC including missions, demonstrations, and reserch projects. Activities such as ISS Lithium-Ion Battery Replacements, the Advanced Exploration Systems Modular Power Systems project, Enabling Electric Aviation with Ultra-High Energy Litium Metal Batteries, Advanced Space Power Systems project, and SBIR STTR work, will be discussed.

  17. 2D Materials with Nanoconfined Fluids for Electrochemical Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Augustyn, Veronica [North Carolina State Univ., Raleigh, NC (United States). Dept. of Materials Science and Engineering; Gogotsi, Yury [Drexel Univ., Philadelphia, PA (United States). Dept. of Materials Science and Engineering, A. J. Drexel Nanomaterials Inst.

    2017-10-11

    In the quest to develop energy storage with both high power and high energy densities, and while maintaining high volumetric capacity, recent results show that a variety of 2D and layered materials exhibit rapid kinetics of ion transport by the incorporation of nanoconfined fluids.

  18. A Review of Previous Research in Direct Energy Conversion Fission Reactors

    International Nuclear Information System (INIS)

    DUONG, HENRY; POLANSKY, GARY F.; SANDERS, THOMAS L.; SIEGEL, MALCOLM D.

    1999-01-01

    From the earliest days of power reactor development, direct energy conversion was an obvious choice to produce high efficiency electric power generation. Directly capturing the energy of the fission fragments produced during nuclear fission avoids the intermediate conversion to thermal energy and the efficiency limitations of classical thermodynamics. Efficiencies of more than 80% are possible, independent of operational temperature. Direct energy conversion fission reactors would possess a number of unique characteristics that would make them very attractive for commercial power generation. These reactors would be modular in design with integral power conversion and operate at low pressures and temperatures. They would operate at high efficiency and produce power well suited for long distance transmission. They would feature large safety margins and passively safe design. Ideally suited to production by advanced manufacturing techniques, direct energy conversion fission reactors could be produced more economically than conventional reactor designs. The history of direct energy conversion can be considered as dating back to 1913 when Moseleyl demonstrated that charged particle emission could be used to buildup a voltage. Soon after the successful operation of a nuclear reactor, E.P. Wigner suggested the use of fission fragments for direct energy conversion. Over a decade after Wigner's suggestion, the first theoretical treatment of the conversion of fission fragment kinetic energy into electrical potential appeared in the literature. Over the ten years that followed, a number of researchers investigated various aspects of fission fragment direct energy conversion. Experiments were performed that validated the basic physics of the concept, but a variety of technical challenges limited the efficiencies that were achieved. Most research in direct energy conversion ceased in the US by the late 1960s. Sporadic interest in the concept appears in the literature until this

  19. Porous One-Dimensional Nanomaterials: Design, Fabrication and Applications in Electrochemical Energy Storage.

    Science.gov (United States)

    Wei, Qiulong; Xiong, Fangyu; Tan, Shuangshuang; Huang, Lei; Lan, Esther H; Dunn, Bruce; Mai, Liqiang

    2017-05-01

    Electrochemical energy storage technology is of critical importance for portable electronics, transportation and large-scale energy storage systems. There is a growing demand for energy storage devices with high energy and high power densities, long-term stability, safety and low cost. To achieve these requirements, novel design structures and high performance electrode materials are needed. Porous 1D nanomaterials which combine the advantages of 1D nanoarchitectures and porous structures have had a significant impact in the field of electrochemical energy storage. This review presents an overview of porous 1D nanostructure research, from the synthesis by bottom-up and top-down approaches with rational and controllable structures, to several important electrochemical energy storage applications including lithium-ion batteries, sodium-ion batteries, lithium-sulfur batteries, lithium-oxygen batteries and supercapacitors. Highlights of porous 1D nanostructures are described throughout the review and directions for future research in the field are discussed at the end. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Control of electro-chemical processes using energy harvesting materials and devices.

    Science.gov (United States)

    Zhang, Yan; Xie, Mengying; Adamaki, Vana; Khanbareh, Hamideh; Bowen, Chris R

    2017-12-11

    Energy harvesting is a topic of intense interest that aims to convert ambient forms of energy such as mechanical motion, light and heat, which are otherwise wasted, into useful energy. In many cases the energy harvester or nanogenerator converts motion, heat or light into electrical energy, which is subsequently rectified and stored within capacitors for applications such as wireless and self-powered sensors or low-power electronics. This review covers the new and emerging area that aims to directly couple energy harvesting materials and devices with electro-chemical systems. The harvesting approaches to be covered include pyroelectric, piezoelectric, triboelectric, flexoelectric, thermoelectric and photovoltaic effects. These are used to influence a variety of electro-chemical systems such as applications related to water splitting, catalysis, corrosion protection, degradation of pollutants, disinfection of bacteria and material synthesis. Comparisons are made between the range harvesting approaches and the modes of operation are described. Future directions for the development of electro-chemical harvesting systems are highlighted and the potential for new applications and hybrid approaches are discussed.

  1. Exploratory Technology Research Program for electrochemical energy storage. Annual report for 1991

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, K. [ed.

    1992-06-01

    The US Department of Energy`s Office of Propulsion Systems provides support for an electrochemical energy storage program, that includes research and development (R&D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles. The program centers on advanced systems that offer the potential for high performance and low life-cycle costs. The DOE Electrochemical Energy Storage Program is divided into two projects: the Electric Vehicle Advanced Battery Systems Development (EVABS) Program and the Exploratory Technology Research (ETR) Program. The EVABS Program management responsibility has been assigned to Sandia National Laboratory, and the Lawrence Berkeley Laboratory is responsible for management of the ETR Program. The EVABS and ETR Programs include an integrated matrix of R&D efforts designed to advance progress on several candidate electrochemical systems. The United States Advanced Battery Consortium (USABC), a tripartite undertaking between DOE, the US automobile manufacturers and the Electric Power Research Institute (EPRI), was formed in 1991 to accelerate the development of advanced batteries for consumer EVs. The role of the ETR Program is to perform supporting research on the advanced battery systems under development by the USABC and EVABS Program, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or the EVABS Program for further development and scaleup. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1991.

  2. Energy Conversion Mechanism for Electron Perpendicular Energy in High Guide-Field Reconnection

    Science.gov (United States)

    Guo, Xuehan; Horiuchi, Ritoku; Kaminou, Yasuhiro; Cheng, Frank; Ono, Yasushi

    2016-10-01

    The energy conversion mechanism for electron perpendicular energy, both the thermal and the kinetic energy, is investigated by means of two-dimensional, full-particle simulations in an open system. It is shown that electron perpendicular heating is mainly due to the breaking of magnetic moment conservation in separatrix region because the charge separation generates intense variation of electric field within the electron Larmor radius. Meanwhile, electron perpendicular acceleration takes place manly due to the polarization drift term as well as the curvature drift term of E . u⊥ in the downstream near the X-point. The enhanced electric field due to the charge separation there results in a significant effect of the polarization drift term on the dissipation of magnetic energy within the ion inertia length in the downstream. Japan Society for the Promotion of Science (JSPS) Fellows 15J03758.

  3. Topotactic Conversion of Copper(I) Phosphide Nanowires for Sensitive Electrochemical Detection of H2O2 Release from Living Cells.

    Science.gov (United States)

    Li, Zhenzhen; Xin, Yanmei; Wu, Wenlong; Fu, Baihe; Zhang, Zhonghai

    2016-08-02

    In this work, we clearly demonstrate for the first time the use of transition-metal phosphides to set up a new cathodic analysis platform for sensitive and selective electrochemical nonenzymatic detection of H2O2. With the help of a facile topotactic conversion method, the noble metal-free electrocatalyst of copper(I) phosphide nanowires on three-dimensional porous copper foam (Cu3P NWs/CF) is fabricated with electrochemical anodized Cu(OH)2 NWs as precursor. The Cu3P NWs/CF-based sensor presents excellent electrocatalytic activity for H2O2 reduction with a detection limit of 2 nM, the lowest detection limit achieved by noble-metal free electrocatalyst, which guarantees the possibility of sensitive and reliable detection of H2O2 release from living tumorigenic cells, thus showing the potential application as a sensitive cancer cell detection probe.

  4. Achieving Simultaneous CO2 and H2 S Conversion via a Coupled Solar-Driven Electrochemical Approach on Non-Precious-Metal Catalysts.

    Science.gov (United States)

    Ma, Weiguang; Wang, Hong; Yu, Wei; Wang, Xiaomei; Xu, Zhiqiang; Zong, Xu; Li, Can

    2018-03-19

    Carbon dioxide (CO 2 ) and hydrogen sulfide (H 2 S) are generally concomitant with methane (CH 4 ) in natural gas and traditionally deemed useless or even harmful. Developing strategies that can simultaneously convert both CO 2 and H 2 S into value-added products is attractive; however it has not received enough attention. A solar-driven electrochemical process is demonstrated using graphene-encapsulated zinc oxide catalyst for CO 2 reduction and graphene catalyst for H 2 S oxidation mediated by EDTA-Fe 2+ /EDTA-Fe 3+ redox couples. The as-prepared solar-driven electrochemical system can realize the simultaneous conversion of CO 2 and H 2 S into carbon monoxide and elemental sulfur at near neutral conditions with high stability and selectivity. This conceptually provides an alternative avenue for the purification of natural gas with added economic and environmental benefits. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. The effects to the structure and electrochemical behavior of zinc phosphate conversion coatings with ethanolamine on magnesium alloy AZ91D

    International Nuclear Information System (INIS)

    Li Qing; Xu Shuqiang; Hu Junying; Zhang Shiyan; Zhong Xiankang; Yang Xiaokui

    2010-01-01

    This paper discussed a zinc phosphate conversion coating formed on magnesium alloy AZ91D from the phosphating bath with varying amounts of ethanolamine (MEA). The effects of MEA on the form, structure, phase composition and electrochemical behavior of the phosphate coatings were examined using an scanning electron microscopy (SEM), X-ray diffraction (XRD) potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS) measurements. Interpretations of the electrical elements of the equivalent circuit were obtained from the SEM structure of the coatings, assumed to be formed of two layers: an outer porous crystal layer and an inner flat amorphous layer. The result showed that adding MEA refined the microstructure of the crystal layer and that the phosphate coating, derived at the optimal content of 1.2 g/L, with the most uniform and compact outer crystal layer provided the best corrosion protection.

  6. Photonic design for efficient solid state energy conversion

    Science.gov (United States)

    Agrawal, Mukul

    The efficiency of conversion between electrical and photonic energy in optoelectronic devices such as light-emitting diodes, photodetectors and solar cells is strongly affected by the photonic modes supported by the device structure. In this thesis, we show how tuning of the local photon density of states in subwavelength structures can be used to optimize device performance. The first part of the thesis is focused on organic light emitting diodes (OLEDs), a candidate technology for next-generation displays and solid-state lighting. An important unsolved problem in OLEDs is to ensure that a significant fraction of photons emitted by the organic emissive layer couple out of the device structure instead of remaining trapped in the device. It is shown using modeling and experiments that optimized non-periodic dielectric multilayer stacks can significantly increase the photon outcoupling while maintaining display quality brightness uniformity over the viewing cone. In the second part, we discuss the theoretical limits to broadband light harvesting in photovoltaic cells. First, it is shown that the extent to which one-dimensional optical cavities can be used to enhance light absorption over a broad spectral range is limited by the requirement that the cavity mirrors have a causal response. This result is used as a guide to design practical dielectric structures that enhance light harvesting in planar thin-film organic solar cells. Finally, we consider the enhancement of optical absorption in two- and three-dimensional structures in which incident light is scattered into quasi-trapped modes for more effective utilization of solar radiation. It is shown that there is an upper bound to the degree to which optical absorption can be enhanced that is identical to the limit found in the geometric optics regime. Rigorous optical simulations are used to show that an optical structure consisting of a two-dimensional array of inverted pyramids comes close to this limit. Before

  7. Summary of State-of-the-Art Power Conversion Systems for Energy Storage Applications

    Energy Technology Data Exchange (ETDEWEB)

    Atcitty, S.; Gray-Fenner, A.; Ranade, S.

    1998-09-01

    The power conversion system (PCS) is a vital part of many energy storage systems. It serves as the interface between the storage device, an energy source, and an AC load. This report summarizes the results of an extensive study of state-of-the-art power conversion systems used for energy storage applications. The purpose of the study was to investigate the potential for cost reduction and performance improvement in these power conversion systems and to provide recommendations for fiture research and development. This report provides an overview of PCS technology, a description of several state-of-the-art power conversion systems and how they are used in specific applications, a summary of four basic configurations for l:he power conversion systems used in energy storage applications, a discussion of PCS costs and potential cost reductions, a summary of the stancku-ds and codes relevant to the technology, and recommendations for future research and development.

  8. Exploratory Technology Research Program for Electrochemical Energy Storage. Annual report, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, K. [ed.

    1993-10-01

    This report summarizes the progress made by the Exploratory Technology Research (ETR) Program for Electrochemical Energy Storage during calendar year 1992. The primary objective of the ETR Program, which is sponsored by the US Department of Energy (DOE) and managed by Lawrence Berkeley Laboratory (LBL), is to identify electrochemical technologies that can satisfy stringent performance, durability and economic requirements for electric vehicles (EVs). The ultimate goal is to transfer the most-promising electrochemical technologies to the private sector or to another DOE program (e.g., SNL`s Electric Vehicle Advanced Battery Systems Development Program, EVABS) for further development and scale-up. Besides LBL, which has overall responsibility for the ETR Program, LANL and BNL have participated in the ETR Program by providing key research support in several of the program elements. The ETR Program consists of three major elements: Exploratory Research; Applied Science Research; and Air Systems Research. The objectives and the specific battery and electrochemical systems addressed by each program element are discussed in the following sections, which also include technical summaries that relate to the individual programs. Financial information that relates to the various programs and a description of the management activities for the ETR Program are described in the Executive Summary.

  9. Exploratory Technology Research Program for electrochemical energy storage: Executive summary report for 1993

    International Nuclear Information System (INIS)

    Kinoshita, K.

    1994-09-01

    The U.S. Department of Energy's Office of Propulsion Systems provides support for an Electrochemical Energy Storage Program, that includes research and development (R ampersand D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs). The program centers on advanced systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electrochemical Energy Storage Program is divided into two projects: the Electric Vehicle Advanced Battery Systems (EVABS) Development Program and the Exploratory Technology Research (ETR) Program. The EVABS Program management responsibility has been assigned to Sandia National Laboratories (SNL); Lawrence Berkeley Laboratory (LBL) is responsible for management of the FIR Program. The EVABS and ETR Programs include an integrated matrix of R ampersand D efforts designed to advance progress on selected candidate electrochemical systems. The United States Advanced Battery Consortium (USABC), a tripartite undertaking between DOE, the U.S. automobile manufacturers and the Electric Power Research Institute (EPRI), was formed in 1991 to accelerate the development of advanced batteries for consumer EVs. The role of the FIR Program is to perform supporting research on the advanced battery systems under development by the USABC and EVABS Program, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or the EVABS Program for further development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1993

  10. Exploratory Technology Research Program for electrochemical energy storage: Annual report for 1993

    International Nuclear Information System (INIS)

    Kinoshita, K.

    1994-09-01

    The U.S. Department of Energy's Office of Propulsion Systems provides support for an Electrochemical Energy Storage Program, that includes research and development (R ampersand D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs). The program centers on advanced systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electrochemical Energy Storage Program is divided into two projects: the Electric Vehicle Advanced Battery Systems (EVABS) Development Program and the Exploratory Technology Research (ETR) Program. The EVABS Program management responsibility has been assigned to Sandia National Laboratories (SNL); Lawrence Berkeley Laboratory (LBL) is responsible for management of the ETR Program. The EVABS and ETR Programs include an integrated matrix of R ampersand D efforts designed to advance progress on selected candidate electrochemical systems. The United States Advanced Battery Consortium (USABC), a tripartite undertaking between DOE, the U.S. automobile manufacturers and the Electric Power Research Institute (EPRI), was formed in 1991 to accelerate the development of advanced batteries for consumer EVs. The role of the FIR Program is to perform supporting research on the advanced battery systems under development by the USABC and EVABS Program, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or the EVABS Program for further development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1993

  11. Photon energy conversion by near-zero permittivity nonlinear materials

    Science.gov (United States)

    Luk, Ting S.; Sinclair, Michael B.; Campione, Salvatore

    2017-12-19

    Efficient harmonic light generation can be achieved with ultrathin films by coupling an incident pump wave to an epsilon-near-zero (ENZ) mode of the thin film. As an example, efficient third harmonic generation from an indium tin oxide nanofilm (.lamda./42 thick) on a glass substrate for a pump wavelength of 1.4 .mu.m was demonstrated. A conversion efficiency of 3.3.times.10.sup.-6 was achieved by exploiting the field enhancement properties of the ENZ mode with an enhancement factor of 200. This nanoscale frequency conversion method is applicable to other plasmonic materials and reststrahlen materials in proximity of the longitudinal optical phonon frequencies.

  12. Synthesis of graphene nanomaterials and their application in electrochemical energy storage

    Science.gov (United States)

    Xiong, Guoping

    The need to store and use energy on diverse scales in a modern technological society necessitates the design of large and small energy systems, among which electrical energy storage systems such as batteries and capacitors have attracted much interest in the past several decades. Supercapacitors, also known as ultracapacitors, or electrochemical capacitors, with fast power delivery and long cycle life are complementing or even replacing batteries in many applications. The rapid development of miniaturized electronic devices has led to a growing need for rechargeable micro-power sources with high performance. Among different sources, electrochemical micro-capacitors or micro-supercapacitors provide higher power density than their counterparts and are gaining increased interest from the research and engineering communities. Rechargeable Li ion batteries with high energy and power density, long cycling life, high charge-discharge rate (1C - 3C) and safe operation are in high demand as power sources and power backup for hybrid electric vehicles and other applications. In the present work, graphene-based graphene materials have been designed and synthesized for electrochemical energy storage applications, e.g., conventional supercapacitors (macro-supercapacitors), microsupercapacitors and lithium ion batteries. Factors influencing the formation and structure of graphitic petals grown by microwave plasma-enhanced chemical vapor deposition on oxidized silicon substrates were investigated through process variation and materials analysis. Insights gained into the growth mechanism of these graphitic petals suggest a simple scribing method can be used to control both the location and formation of petals on flat Si substrates. Transitional metal oxides and conducting polymers have been coated on the graphitic petal-based electrodes by facile chemical methods for multifunctional energy storage applications. Detailed electrochemical characterization (e.g., cyclic voltammetry and

  13. Thermal to Electric Energy Conversion for Cyclic Heat Loads

    Science.gov (United States)

    Whitehead, Benjamin E.

    Today, we find cyclic heat loads almost everywhere. When we drive our cars, the engines heat up while we are driving and cool while parked. Processors heat while the computer is in use at the office and cool when idle at night. The sun heats the earth during the day and the earth radiates that heat into space at night. With modern technology, we have access to a number of methods to take that heat and convert it into electricity, but, before selecting one, we need to identify the parameters that inform decision making. The majority of the parameters for most systems include duty cycle, total cost, weight, size, thermal efficiency, and electrical efficiency. However, the importance of each of these will depend on the application. Size and weight take priority in a handheld device, while efficiency dominates in a power plant, and duty cycle is likely to dominate in highly demanding heat pump applications. Over the past decade, developments in semiconductor technology has led to the creation of the thermoelectric generator. With no moving parts and a nearly endlessly scalable nature, these generators present interesting opportunities for taking advantage of any source of waste heat. However, these generators are typically only capable of 5-8% efficiency from conversion of thermal to electric energy. [1]. Similarly, advancements in photovoltaic cells has led to the development of thermophotovoltaics. By heating an emitter to a temperature so it radiates light, a thermophotovoltaic cell then converts that light into electricity. By selecting materials that emit light in the optimal ranges of the appropriate photovoltaic cells, thermophotovoltaic systems can potentially exceed the current maximum of 10% efficiency. [2]. By pressurizing certain metal powders with hydrogen, hydrogen can be bound to the metal, creating a metal hydride, from which hydrogen can be later re-extracted under the correct pressure and temperature conditions. Since this hydriding reaction is

  14. Energy conversion efficiency of hybrid electric heavy-duty vehicles operating according to diverse drive cycles

    Energy Technology Data Exchange (ETDEWEB)

    Banjac, Titina [AVL-AST d.o.o., Trg Leona Stuklja 5, SI-2000 Maribor (Slovenia); Trenc, Ferdinand; Katrasnik, Tomaz [Faculty of Mechanical Engineering, Univ. of Ljubljana, Askerceva 6, SI-1000 Ljubljana (Slovenia)

    2009-12-15

    Energy consumption and exhaust emissions of hybrid electric vehicles (HEVs) strongly depend on the HEV topology, power ratios of their components and applied control strategy. Combined analytical and simulation approach was applied to analyze energy conversion efficiency of different HEV topologies. Analytical approach is based on the energy balance equations and considers all energy paths in the HEVs from the energy sources to the wheels and to other energy sinks. Simulation approach is based on a fast forward-facing simulation model for simulating parallel and series HEVs as well as for conventional internal combustion engine vehicles, and considers all components relevant for modeling energy conversion phenomena. Combined approach enables evaluation of energy losses on different energy paths and provides their impact on the fuel economy. It therefore enables identification of most suitable HEV topology and of most suitable power ratios of the components for targeted vehicle application, since it reveals and quantifies the mechanisms that could lead to improved energy conversion efficiency of particular HEV. The paper exposes characteristics of the test cycles that lead to improved energy conversion efficiency of HEVs. Mechanisms leading to improved fuel economy of parallel HEVs through drive-away and vehicle propulsion at low powertrain loads by electric motor are also analyzed. It was also shown that control strategies managing energy flow through electric storage devices significantly influence energy conversion efficiency of series HEVs. (author)

  15. Project ''Electrochemical Energy Storage Systems'' 1. Jan. 1980 - 31. Dec. 1980. Report for the Ministry of Energy, February 1981

    Energy Technology Data Exchange (ETDEWEB)

    1981-02-15

    The project ''Electrochemical Energy Storage Systems'' involves several scientific centers in Denmark (the Technical University, Odense University and Risoe National Laboratory) and Danish-English cooperation in ''Materials Research for Advanced Batteries''. The project is divided into four subprojects: (1) fabrication and properties of solid electrolytes; (2) new fast ion conductors; (3) characterisation and performance of solid solution electrodes; and (4) battery applications studies and battery assessment. The electrochemical research comprehends new materials with improved ionic conductivity - lithium nitrides and iodides, zeolites, some sodium ion conductors. Crystalline electrolytes (of TiS/sub 2//Li/sub 3/N type) are investigated. Efficient batteries for propulsion purposes have been evaluated from the economic and energy conservation point of view. Some informative activities in the field of energy conservation are reported.

  16. Renewable energy based catalytic CH4 conversion to fuels

    NARCIS (Netherlands)

    Baltrusaitis, Jonas; Jansen, I.; Schuttlefield, J.D.S.

    2014-01-01

    Natural gas is envisioned as a primary source of hydrocarbons in the foreseeable future. With the abundance of shale gas, the main concerns have shifted from the limited hydrocarbon availability to the sustainable methods of CH4 conversion to fuels. This is necessitated by high costs of natural gas

  17. Switching-mode Audio Power Amplifiers with Direct Energy Conversion

    DEFF Research Database (Denmark)

    Ljusev, Petar; Andersen, Michael Andreas E.

    2005-01-01

    has been replaced with a high frequency AC link. When compared to the conventional Class D amplifiers with a separate DC power supply, the proposed single conversion stage amplifier provides simple and compact solution with better efficiency and higher level of integration, leading to reduced...

  18. Energy conversion phenomena in plug-in hybrid-electric vehicles

    International Nuclear Information System (INIS)

    Katrasnik, Tomaz

    2011-01-01

    Research highlights: → Energy conversion phenomena of PHEVs for different drive cycles and depletion rates of energy sources. → Detailed physically based framework for analyzing energy conversion phenomena in PHEVs. → Interaction of energy flows and energy losses with energy consumption of the PHEV. → Identification and explanation of mechanisms leading to optimal tank-to-wheel efficiency. → Analysis of well-to-wheel efficiencies for different realistic well-to-tank scenarios. -- Abstract: Energy flows and energy conversion efficiencies of commercial plug-in hybrid-electric vehicles (PHEV) are analyzed for parallel and series PHEV topologies. The analysis is performed by a combined analytical and simulation approach. Combined approach enables evaluation of energy losses on different energy paths and provides their impact on the energy consumption of the PHEV. Thereby the paper reveals energy conversion phenomena of different PHEV topologies operating according to charge depleting and charge sustaining modes as well as according to different test cycles. It is shown in the paper that amount of the energy depleted from both on-board energy sources is significantly influenced by the efficiencies of energy conversion chains from on-board energy sources to the wheels. It is also shown that energy used to power the PHEV according to particular test cycles varies based on its operating mode, which influences energy flows on different energy paths within the PHEVs and consequently overall energy consumed by the PHEV. The paper additionally discusses well-to-wheel efficiencies considering different realistic well-to-tank scenarios. It is shown that well-to-tank efficiency of electric energy generation significantly influences optimal operating mode of the PHEV if consumption of primary energy sources is considered.

  19. Recent Development of Advanced Electrode Materials by Atomic Layer Deposition for Electrochemical Energy Storage.

    Science.gov (United States)

    Guan, Cao; Wang, John

    2016-10-01

    Electrode materials play a decisive role in almost all electrochemical energy storage devices, determining their overall performance. Proper selection, design and fabrication of electrode materials have thus been regarded as one of the most critical steps in achieving high electrochemical energy storage performance. As an advanced nanotechnology for thin films and surfaces with conformal interfacial features and well controllable deposition thickness, atomic layer deposition (ALD) has been successfully developed for deposition and surface modification of electrode materials, where there are considerable issues of interfacial and surface chemistry at atomic and nanometer scale. In addition, ALD has shown great potential in construction of novel nanostructured active materials that otherwise can be hardly obtained by other processing techniques, such as those solution-based processing and chemical vapor deposition (CVD) techniques. This review focuses on the recent development of ALD for the design and delivery of advanced electrode materials in electrochemical energy storage devices, where typical examples will be highlighted and analyzed, and the merits and challenges of ALD for applications in energy storage will also be discussed.

  20. Development of evaluation techniques for electrochemical energy storage systems

    Science.gov (United States)

    Gaines, L. H.; Nazimek, K.

    1980-03-01

    The development of standardized techniques for the comparative evaluation of electric vehicle battery technologies is summarized. The methodology considers both the traditional measures of battery performance (energy density, energy storage costs, and cycle life) and the equally important usage related battery characteristics (probability of technical success, operating and maintenance parameters, and safety/environmental impact). This comparative rationale is supplemented by the ability to generate battery test programs normalized to specific technologies and electric vehicle mission specifications. These test programs allow the evaluation of different battery technologies at comparable levels of electric vehicle performance. It was found that cost optimized electric passenger vehicles will have range specifications of 100 to 110 KM, depending on the specific performance of the battery. Longer range vehicles are penalized by higher first costs while shorter range vehicles suffer from reduced battery life and the need for more frequent alternative car rentals (presumably petroleum fueled) for trips which exceed the EV's range capability.

  1. EnerGis: A geographical information based system for the evaluation of integrated energy conversion systems in urban areas

    International Nuclear Information System (INIS)

    Girardin, Luc; Marechal, Francois; Dubuis, Matthias; Calame-Darbellay, Nicole; Favrat, Daniel

    2010-01-01

    A geographical information system has been developed to model the energy requirements of an urban area. The purpose of the platform is to model with sufficient detail the energy services requirements of a given geographical area in order to allow the evaluation of the integration of advanced integrated energy conversion systems. This tool is used to study the emergence of more efficient cities that realize energy efficiency measures, integrate energy efficient conversion technologies and promote the use of endogenous renewable energy. The model is illustrated with case studies for the energetic planning of the Geneva district (Switzerland).

  2. Design and Performance of Energy Conversion Units of Betavoltaic Isotopic Batteries

    International Nuclear Information System (INIS)

    Wang Guanquan; Yang Yuqing; Zhang Huaming; Hu Rui; Wei Hongyuan; Xiong Xiaoling; Luo Shunzhong

    2010-01-01

    Based on the single crystal silicon semiconductor junction devices, the relationships between their configurable parameters and the electrical properties were discussed for the purpose of design of energy conversion units of betavoltaic isotopic batteries. Two kinds of silicon semiconductor junction devices as energy conversion units of betavoltaic batteries were designed and customized. The electrical output properties of the devices irradiated by 63 Ni source were measured. The results show that the new designed devices perform better than the existing commercial one in open-circuit voltage, output power and energy conversion efficiency. (authors)

  3. Electrochemical energy storage devices using electrodes incorporating carbon nanocoils and metal oxides nanoparticles

    KAUST Repository

    Baby, Rakhi Raghavan

    2011-07-28

    Carbon nanocoil (CNC) based electrodes are shown to be promising candidates for electrochemical energy storage applications, provided the CNCs are properly functionalized. In the present study, nanocrystalline metal oxide (RuO 2, MnO2, and SnO2) dispersed CNCs were investigated as electrodes for supercapacitor applications using different electrochemical methods. In the two electrode configuration, the samples exhibited high specific capacitance with values reaching up to 311, 212, and 134 F/g for RuO2/CNCs, MnO2/CNCs, and SnO2/CNCs, respectively. The values obtained for specific capacitance and maximum storage energy per unit mass of the composites were found to be superior to those reported for metal oxide dispersed multiwalled carbon nanotubes in two electrode configuration. In addition, the fabricated supercapacitors retained excellent cycle life with ∼88% of the initial specific capacitance retained after 2000 cycles. © 2011 American Chemical Society.

  4. Minimizing Wind Power Producer's Balancing Costs Using Electrochemical Energy Storage: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Miettinen, J.; Tikka, V.; Lassila, J.; Partanen, J.; Hodge, B. M.

    2014-08-01

    This paper examines how electrochemical energy storage can be used to decrease the balancing costs of a wind power producer in the Nordic market. Because electrochemical energy storage is developing in both technological and financial terms, a sensitivity analysis was carried out for the most important variables in the wind-storage hybrid system. The system was studied from a wind power producer's point of view. The main result is that there are no technical limitations to using storage for reducing the balancing costs. However, in terms of economic feasibility, installing hybrid wind-storage systems such as the one studied in this paper faces challenges in both the short and long terms.

  5. Electrochemical Energy Storage Applications of CVD Grown Niobium Oxide Thin Films.

    Science.gov (United States)

    Fiz, Raquel; Appel, Linus; Gutiérrez-Pardo, Antonio; Ramírez-Rico, Joaquín; Mathur, Sanjay

    2016-08-24

    We report here on the controlled synthesis, characterization, and electrochemical properties of different polymorphs of niobium pentoxide grown by CVD of new single-source precursors. Nb2O5 films deposited at different temperatures showed systematic phase evolution from low-temperature tetragonal (TT-Nb2O5, T-Nb2O5) to high temperature monoclinic modifications (H-Nb2O5). Optimization of the precursor flux and substrate temperature enabled phase-selective growth of Nb2O5 nanorods and films on conductive mesoporous biomorphic carbon matrices (BioC). Nb2O5 thin films deposited on monolithic BioC scaffolds produced composite materials integrating the high surface area and conductivity of the carbonaceous matrix with the intrinsically high capacitance of nanostructured niobium oxide. Heterojunctions in Nb2O5/BioC composites were found to be beneficial in electrochemical capacitance. Electrochemical characterization of Nb2O5/BioC composites showed that small amounts of Nb2O5 (as low as 5%) in conjunction with BioCarbon resulted in a 7-fold increase in the electrode capacitance, from 15 to 104 F g(-1), while imparting good cycling stability, making these materials ideally suited for electrochemical energy storage applications.

  6. Design and analysis of Helium Brayton cycle for energy conversion system of RGTT200K

    International Nuclear Information System (INIS)

    Ignatius Djoko Irianto

    2016-01-01

    The helium Brayton cycle for the design of cogeneration energy conversion system for RGTT200K have been analyzed to obtain the higher thermal efficiency and energy utilization factor. The aim of this research is to analyze the potential of the helium Brayton cycle to be implemented in the design of cogeneration energy conversion system of RGTT200K. Three configuration models of cogeneration energy conversion systems have been investigated. In the first configuration model, an intermediate heat exchanger (IHX) is installed in series with the gas turbine, while in the second configuration model, IHX and gas turbines are installed in parallel. The third configuration model is similar to the first configuration, but with two compressors. Performance analysis of Brayton cycle used for cogeneration energy conversion system of RGTT200K has been done by simulating and calculating using CHEMCAD code. The simulation result shows that the three configuration models of cogeneration energy conversion system give the temperature of thermal energy in the secondary side of IHX more than 800 °C at the reactor coolant mass flow rate of 145 kg/s. Nevertheless, the performance parameters, which include thermal efficiency and energy utilization factor (EUF), are different for each configuration model. By comparing the performance parameter in the three configurations of helium Brayton cycle for cogeneration energy conversion systems RGTT200K, it is found that the energy conversion system with a first configuration has the highest thermal efficiency and energy utilization factor (EUF). Thermal efficiency and energy utilization factor for the first configuration of the reactor coolant mass flow rate of 145 kg/s are 35.82 % and 80.63 %. (author)

  7. Piezo-Electrochemical Energy Harvesting with Lithium-Intercalating Carbon Fibers.

    Science.gov (United States)

    Jacques, Eric; Lindbergh, Göran; Zenkert, Dan; Leijonmarck, Simon; Kjell, Maria Hellqvist

    2015-07-01

    The mechanical and electrochemical properties are coupled through a piezo-electrochemical effect in Li-intercalated carbon fibers. It is demonstrated that this piezo-electrochemical effect makes it possible to harvest electrical energy from mechanical work. Continuous polyacrylonitrile-based carbon fibers that can work both as electrodes for Li-ion batteries and structural reinforcement for composites materials are used in this study. Applying a tensile force to carbon fiber bundles used as Li-intercalating electrodes results in a response of the electrode potential of a few millivolts which allows, at low current densities, lithiation at higher electrode potential than delithiation. More electrical energy is thereby released from the cell at discharge than provided at charge, harvesting energy from the mechanical work of the applied force. The measured harvested specific electrical power is in the order of 1 μW/g for current densities in the order of 1 mA/g, but this has a potential of being increased significantly.

  8. Electrochemical generation and storage of electrical energy; Production et stockage electrochimiques de l'energie electrique

    Energy Technology Data Exchange (ETDEWEB)

    Fauvarque, J.F.

    2005-07-01

    Electrochemical systems have the remarkable property of being able to convert chemical energy into electrical energy and vice-versa, and this, in conditions close to the thermodynamical reversibility, without any pollutant and noise emissions, and without the need of heavy maintenance. These systems can find various applications in the different domains of the economical life, in particular in the transportation sector. Depending on the application in concern, the batteries, fuel cells and super-capacitors are more or less well-adapted and the choice of a given, or of a combination of technologies must be made with respect to the final objective of the application. This document presents the history, principle, electromotive force, capacity, power, and cyclability of closed electrochemical generators (batteries and capacitors). It presents also the principle and characteristics of open systems (fuel cells and redox systems). (J.S.)

  9. Direct conversion of infrared radiant energy for space power applications

    Science.gov (United States)

    Finke, R. C.

    1982-01-01

    A proposed technology to convert the earth radiant energy (infrared albedo) for spacecraft power is presented. The resultant system would eliminate energy storage requirements and simplify the spacecraft design. The design and performance of a infrared rectenna is discussed.

  10. Epp's energy strategy keys on conversation, efficiency research

    International Nuclear Information System (INIS)

    1991-01-01

    While energy industry players on both sides of the border were busy last week digesting the long-awaited United States National Energy Strategy, Canadian Energy Minister Jake Epp was unveiling his own plans to curb this country's appetite for hydrocarbons

  11. The state of the art of wind energy conversion systems and technologies: A review

    International Nuclear Information System (INIS)

    Cheng, Ming; Zhu, Ying

    2014-01-01

    Highlights: • This paper reviews the state of the art of wind energy conversion systems. • Different types of common wind energy conversion systems are classified and compared. • The four most popular MPPT control methods are reviewed and compared. • The latest development of wind energy conversion technologies is introduced. • Future trends of the wind energy conversion technologies are discussed. - Abstract: This paper gives a comprehensive review of the state of the art of wind energy conversion systems (WECS) and technologies, with an emphasis on wind power generator and control. First, different types of common WECSs are classified according to their features and drive train types. The WECSs are compared on the basis of the volume, weight, cost, efficiency, system reliability and fault ride through capability. The maximum power point tracking (MPPT) control, which aims to make the generator speed meet an optimum value to ensure the maximum energy yield, plays a key role in the variable speed WECSs. A comprehensive review and comparison of the four most popular MPPT control methods are carried out and improvements for each method are presented. Furthermore, the latest development of wind energy conversion technologies is introduced, such as the brushless doubly fed induction generator (BDFIG), the stator permanent magnet synchronous generators, the magnetic-geared generators, dual power flow WECS with the electrical variable transmission (EVT) machine, and direct grid-connected WECS. Finally, the future trends of the technologies are discussed

  12. Theoretical Comparison of the Energy Conversion Efficiencies of Electrostatic Energy Harvesters

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang-Kyu [Korea Polytechnic University, Siheung (Korea, Republic of)

    2017-02-15

    The characteristics of a new type of electrostatic energy harvesting device, called an out-of plane overlap harvester, are analyzed for the first time. This device utilizes a movable part that vibrates up and down on the surface of a wafer and a changing overlapping area between the vertical comb fingers. This operational principle enables the minimum capacitance to be close to 0 and significantly increases the energy conversion efficiency per unit volume. The characteristics of the out-of-plane overlap harvester, an in-plane gap-closing harvester, and an in-plane overlap harvester are compared in terms of the length, height, and width of the comb finger and the parasitic capacitance. The efficiency is improved as the length or the height increases and as the width or the parasitic capacitance decreases. In every case, the out-of-plane overlap harvester is able to create more energy and is, thus, preferable over other designs. It is also free from collisions between two electrodes caused by random vibration amplitudes and creates more energy from off axis perturbations. This device, given its small feature size, is expected to provide more energy to various types of wireless electronics devices and to offer high compatibility with other integrated circuits and ease of embedment.

  13. Iron Oxide Films Prepared by Rapid Thermal Processing for Solar Energy Conversion

    DEFF Research Database (Denmark)

    Wickman, B.; da Silva Fanta, Alice Bastos; Burrows, Andrew

    2017-01-01

    Hematite is a promising and extensively investigated material for various photoelectrochemical (PEC) processes for energy conversion and storage, in particular for oxidation reactions. Thermal treatments during synthesis of hematite are found to affect the performance of hematite electrodes...

  14. Topological energy conversion through the bulk or the boundary of driven systems

    Science.gov (United States)

    Peng, Yang; Refael, Gil

    2018-04-01

    Combining physical and synthetic dimensions allows a controllable realization and manipulation of high-dimensional topological states. In our work, we introduce two quasiperiodically driven one-dimensional systems which enable tunable topological energy conversion between different driving sources. Using three drives, we realize a four-dimensional quantum Hall state which allows energy conversion between two of the drives within the bulk of the one-dimensional system. With only two drives, we achieve energy conversion between the two at the edge of the chain. Both effects are a manifestation of the effective axion electrodynamics in a three-dimensional time-reversal-invariant topological insulator. Furthermore, we explore the effects of disorder and commensurability of the driving frequencies, and show the phenomena are robust. We propose two experimental platforms, based on semiconductor heterostructures and ultracold atoms in optical lattices, in order to observe the topological energy conversion.

  15. Overall efficiencies for conversion of solar energy to a chemical fuel

    Science.gov (United States)

    Fish, J. D.

    A complete and consistent scheme for determining the overall efficiency of a generalized process for the conversion of solar energy into a chemical fuel (e.g. hydrogen) is developed and applied to seven conversion processes: thermal, thermochemical, photovoltaic, photogalvanic, photoelectrolysis, photosynthesis and photochemical conversion. It is demonstrated that the overall efficiency of each of these processes is determined by ten common factors: maximum theoretical efficiency, inherent absorption losses, inherent internal losses, rate limiting effects, reflection losses, transmission losses, coverage losses, system construction requirements, parasitic losses and harvesting and conversion losses. Both state-of-the-art and optimistic values are assigned to each factor for each of the seven conversion processes. State-of-the-art overall efficiencies ranged from 5% for thermal conversion down to essentially zero for thermochemical. Optimistic values in the range of about 10 to 15% are calculated for several of the processes.

  16. Energy Conversion Alternatives Study (ECAS), General Electric Phase 1. Volume 2: Advanced energy conversion systems. Part 1: Open-cycle gas turbines

    Science.gov (United States)

    Brown, D. H.; Corman, J. C.

    1976-01-01

    Ten energy conversion systems are defined and analyzed in terms of efficiency. These include: open-cycle gas turbine recuperative; open-cycle gas turbine; closed-cycle gas turbine; supercritical CO2 cycle; advanced steam cycle; liquid metal topping cycle; open-cycle MHD; closed-cycle inert gas MHD; closed-cycle liquid metal MHD; and fuel cells. Results are presented.

  17. Acquisition of Preparative Gel Permeation Chromatography for Research and Education in Energy Conversion and Nanocomposites

    Science.gov (United States)

    2017-04-19

    AFRL-AFOSR-VA-TR-2017-0090 Acquisition of Preparative Gel Permeation Chromatography for Research and Education in Energy Conversion and...TITLE AND SUBTITLE Acquisition of Preparative Gel Permeation Chromatography for Research and Education in Energy Conversion and Nanocomposites 5a... research with education at all levels across a broad range of materials, and create important opportunities to expose and train undergraduates, women

  18. Efficiency calculations for the direct energy conversion system of the Cadarache neutral beam injectors

    International Nuclear Information System (INIS)

    White, R.C.

    1988-01-01

    A prototype energy conversion system is presently in operation at Cadarache, France. Such a device is planned for installation on each six neutral beam injectors for use in the Tore Supra experiment in 1989. We present calculations of beam performance that may influence design considerations. The calculations are performed with the DART charged particle beam code. We investigate the effects of cold plasma, direct energy conversion and neutral beam production. 4 refs., 6 figs., 4 tabs

  19. Quantitative feasibility study of magnetocaloric energy conversion utilizing industrial waste heat

    International Nuclear Information System (INIS)

    Vuarnoz, D.; Kitanovski, A.; Gonin, C.; Borgeaud, Y.; Delessert, M.; Meinen, M.; Egolf, P.W.

    2012-01-01

    Highlights: ► We model magnetic energy conversion machine for the use of industrial waste heat. ► Efficiencies and masses of the system are evaluated by a numerical model. ► Excellent potential of profitability is expected with large low-exergy heat sources. -- Abstract: The main objective of this theoretical study was to investigate under which conditions a magnetic energy conversion device (MECD) – utilizing industrial waste heat – is economically feasible. Furthermore, it was evaluated if magnetic energy conversion (MCE) has the potential of being a serious concurrent to already existing conventional energy conversion technologies. Up-today the availability of magnetocaloric materials with a high Curie temperature and a high magnetocaloric effect is rather limited. Therefore, this study was mainly focused on applications with heat sources of low to medium temperature levels. Magnetic energy conversion machines, containing permanent magnets, are numerically investigated for operation conditions with different temperature levels, defined by industrial waste heat sources and environmental heat sinks, different magnetic field intensities and different frequencies of operation (number of thermodynamic cycles per unit of time). Theoretical modeling and numerical simulations were performed in order to determine thermodynamic efficiencies and the exergy efficiencies as function of different operation conditions. From extracted data of our numerical results, approximate values of the total mass and total volume of magnetic energy conversion machines could be determined. These important results are presented dependent on the produced electric power. An economic feasibility study supplements the scientific study. It shows an excellent potential of profitability for certain machines. The most important result of this article is that the magnetic energy conversion technology can be economically and technically competitive to or even beat conventional energy

  20. DOE-EFRC Center on Nanostructuring for Efficient Energy Conversion (CNEEC)

    Energy Technology Data Exchange (ETDEWEB)

    Prinz, Friedrich B. [Stanford Univ., CA (United States). Mechanical Engineering. Materials Science and Engineering; Bent, Stacey F. [Stanford Univ., CA (United States). Chemical Engineering

    2015-10-22

    CNEEC’s mission has been to understand how nanostructuring of materials can enhance efficiency for solar energy conversion to produce hydrogen fuel and to solve fundamental cross-cutting problems. The overarching hypothesis underlying CNEEC research was that controlling, synthesizing and modifying materials at the nanometer scale increases the efficiency of energy conversion and storage devices and systems. In this pursuit, we emphasized the development of functional nanostructures that are based primarily on earth abundant and inexpensive materials.

  1. EXAMINING A SERIES RESONANT INVERTER CIRCUIT TO USE IN THE PHOTOVOLTAIC ENERGY CONVERSION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Engin ÇETİN

    2004-03-01

    Full Text Available As we know, solar energy is the energy source which is environment friendly, renewable, and can be found easily. Particularly, in the recent years, interest on producing electrical energy by alternative energy sources increased because of the fact that underground sources are not enough to produce energy in the future and also these sources cause enviromental pollution. The solar energy is one of the most popular one among the alternative energy sources. Photovoltaic systems produce the electrical energy from the sunlight. In this study, a series resonant inverter circuit which is used in the photovoltaic energy conversion systems has been examined.Effects of the series resonant inverter circuit on the photovoltaic energy conversion system have been investigated and examined

  2. 20th intersociety energy conversion engineering conference. Volume 2

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    This volume contains information on the mission and status of the DOE's battery energy storage program, the development of an advanced battery electric energy storage system for electric utility load leveling, and the aluminum-air power cell. Plastic-bonded, nonsintered nickel-cadmium batteries for submarines and the cycle life chemistry of ambient-temperature secondary lithium cells are also discussed. The development of zinc-bromine batteries for stationary energy storage, the development of a zinc-chloride battery for 10-kw electric energy storage, and sodium sulfur cells with high conductivity glass electrolytes are discussed. The recovery of lead/acid batteries from abusive deep discharge, and high rate lithium batteries safety testing for U.L. component recognition are reviewed. Enhanced energy recovery, geothermal power, and heat engine cycles are discussed. Hydrogen energy, magnetohydrodynamics and nuclear fission are examined

  3. Conversion of magnetic energy to runaway kinetic energy during the termination of runaway current on the J-TEXT tokamak

    Science.gov (United States)

    Dai, A. J.; Chen, Z. Y.; Huang, D. W.; Tong, R. H.; Zhang, J.; Wei, Y. N.; Ma, T. K.; Wang, X. L.; Yang, H. Y.; Gao, H. L.; Pan, Y.; the J-TEXT Team

    2018-05-01

    A large number of runaway electrons (REs) with energies as high as several tens of mega-electron volt (MeV) may be generated during disruptions on a large-scale tokamak. The kinetic energy carried by REs is eventually deposited on the plasma-facing components, causing damage and posing a threat on the operation of the tokamak. The remaining magnetic energy following a thermal quench is significant on a large-scale tokamak. The conversion of magnetic energy to runaway kinetic energy will increase the threat of runaway electrons on the first wall. The magnetic energy dissipated inside the vacuum vessel (VV) equals the decrease of initial magnetic energy inside the VV plus the magnetic energy flowing into the VV during a disruption. Based on the estimated magnetic energy, the evolution of magnetic-kinetic energy conversion are analyzed through three periods in disruptions with a runaway current plateau.

  4. Scientific Opinion on the energy conversion factor of D-tagatose for labelling purposes

    DEFF Research Database (Denmark)

    Sjödin, Anders Mikael

    2016-01-01

    Following a request from the European Commission, the EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA) was asked to deliver a scientific opinion on the energy conversion factor of D-tagatose to be used for calculating the energy value of foods to be declared in nutrition labelling....... Energy conversion factors for nutrients for the purpose of nutrition labelling have been set based on the concept of metabolisable energy (ME). The same methodology has been applied to calculate the energy conversion factor for D-tagatose in this opinion. The assessment is based on a dossier prepared...... for Nutrilab NV and submitted by Bioresco Ltd. At present, data are insufficient to derive an accurate ME value for D-tagatose. Relying on the human data indicating a mean absorption rate of 80% (range 69–88%) and a urinary excretion of either 1% or 5%, the corresponding energy values for D-tagatose would be 2...

  5. Proceedings of the 30. intersociety energy conversion engineering conference. Volume 1

    International Nuclear Information System (INIS)

    Goswami, D.Y.; Kannberg, L.D.; Somasundaram, S.

    1995-01-01

    This conference provides a forum to present and discuss the engineering aspects of energy conversion, advanced and unconventional energy systems and devices, energy conversion and utilization, environmental issues and policy implications on research, development, and implementation of technologies. The solution for a sustainable future will lie in a mix of all of the available energy resources (renewable and non-renewable) and diverse energy conversion technologies that will maintain quality of life in a sustainable manner. The 129 papers in Volume 1 deal with aerospace power and are divided into the following topical sections: Aircraft power; Aerospace power systems; Batteries for aerospace power; Computer simulation; Power electronics; Power management; Space solar power; Space power systems; Space energy statics/dynamics; Space power--requirements and issues; Space Station power; Terrestrial applications of space power; Thermal management; Wireless transmission; Space nuclear power; Bimodal propulsion; Electric propulsion; Solar thermal; and Solar bimodal. All papers have been processed separately for inclusion on the data base

  6. Large impact of reorganization energy on photovoltaic conversion due to interfacial charge-transfer transitions.

    Science.gov (United States)

    Fujisawa, Jun-ichi

    2015-05-14

    Interfacial charge-transfer (ICT) transitions are expected to be a novel charge-separation mechanism for efficient photovoltaic conversion featuring one-step charge separation without energy loss. Photovoltaic conversion due to ICT transitions has been investigated using several TiO2-organic hybrid materials that show organic-to-inorganic ICT transitions in the visible region. In applications of ICT transitions to photovoltaic conversion, there is a significant problem that rapid carrier recombination is caused by organic-inorganic electronic coupling that is necessary for the ICT transitions. In order to solve this problem, in this work, I have theoretically studied light-to-current conversions due to the ICT transitions on the basis of the Marcus theory with density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations. An apparent correlation between the reported incident photon-to-current conversion efficiencies (IPCE) and calculated reorganization energies was clearly found, in which the IPCE increases with decreasing the reorganization energy consistent with the Marcus theory in the inverted region. This activation-energy dependence was systematically explained by the equation formulated by the Marcus theory based on a simple excited-state kinetic scheme. This result indicates that the reduction of the reorganization energy can suppress the carrier recombination and enhance the IPCE. The reorganization energy is predominantly governed by the structural change in the chemical-adsorption moiety between the ground and ICT excited states. This work provides crucial knowledge for efficient photovoltaic conversion due to ICT transitions.

  7. Efficient conversion of solar energy to biomass and electricity.

    Science.gov (United States)

    Parlevliet, David; Moheimani, Navid Reza

    2014-01-01

    The Earth receives around 1000 W.m(-2) of power from the Sun and only a fraction of this light energy is able to be converted to biomass (chemical energy) via the process of photosynthesis. Out of all photosynthetic organisms, microalgae, due to their fast growth rates and their ability to grow on non-arable land using saline water, have been identified as potential source of raw material for chemical energy production. Electrical energy can also be produced from this same solar resource via the use of photovoltaic modules. In this work we propose a novel method of combining both of these energy production processes to make full utilisation of the solar spectrum and increase the productivity of light-limited microalgae systems. These two methods of energy production would appear to compete for use of the same energy resource (sunlight) to produce either chemical or electrical energy. However, some groups of microalgae (i.e. Chlorophyta) only require the blue and red portions of the spectrum whereas photovoltaic devices can absorb strongly over the full range of visible light. This suggests that a combination of the two energy production systems would allow for a full utilization of the solar spectrum allowing both the production of chemical and electrical energy from the one facility making efficient use of available land and solar energy. In this work we propose to introduce a filter above the algae culture to modify the spectrum of light received by the algae and redirect parts of the spectrum to generate electricity. The electrical energy generated by this approach can then be directed to running ancillary systems or producing extra illumination for the growth of microalgae. We have modelled an approach whereby the productivity of light-limited microalgae systems can be improved by at least 4% through using an LED array to increase the total amount of illumination on the microalgae culture.

  8. Experimental Study on Conversion of Stored Thermal Energy to Mechanical Work in FCI

    International Nuclear Information System (INIS)

    Fujii-e, Y.; Kondo, S.; Mivazaki, K.

    1976-01-01

    In the present study the process how the thermal energy stored in the coolant should be converted into the mechanical work is emphasized as well as the generation of pressure waves, eliminating the complicated problems involved in FCI, such as fragmentation, heat transfer from molten fuel to coolant, etc. A simulation experiment has been performed in a small scale vertical channel using stagnant potassium. Large superheat inherent in liquid metals was utilized as the method to accumulate the thermal energy. The following experimental parameters were chosen to examine their effects on the energy conversion ratio: the heat flux, the cover gas pressure, the liquid column length, the temperature of the upper unheated region and the incipient boiling superheat (corresponding to the stored thermal energy). The results are summarized that the conversion ratio from thermal to kinetic energies has increasing trends with increases of the incipient boiling superheat, the cover gas pressure and the temperature of upper unheated region, ranging over 0.02-0.75% in the present experiment. The important conclusions of the present experiment are summarized as follows. The thermal to kinetic energy conversion ratio n k ranges over 0.02-0.75 % for ΔT s = 10-150 deg.C, estimating from the maximum velocity measured. The thermal to mechanical work conversion ratio n w ranges over 0.14-5.6%. The effect of the heat flux on the both conversion ratios is small within the range covered by the present experiment (g≤133 W/cm 2 ). The effect of the liquid column length is not presented. The thermal to kinetic energy conversion ratio increases with the incipient boiling superheat which corresponds to the stored thermal energy in the present experiment. The both conversion ratio decrease with a decrease of the cover gas pressure. This is attributable to the thermal contact in the upper unheated region. The both conversion ratios increase with an increase in the temperature of the upper

  9. Remarks to a process-overlapping description of cost structures of energy conversion processes

    International Nuclear Information System (INIS)

    Barnert, H.

    1986-03-01

    The cost of energy conversion processes are more and more determined by capital expenses. These are partly used to improve the efficiency. With a mathematical formula for the relation between capital costs and efficiency a process-over-laping description is proposed and proved at 10 typically chosen energy conversion processes. The result is a classification of enery conversion processes in categories of efficiency-producing and efficiency-independent capital expenditures. Another result is that process-overlapping the relative capital cost supplement is described by the (1-eta)/eta-law. (orig.) [de

  10. Energy conversion, storage and transportation by means of hydrogen

    International Nuclear Information System (INIS)

    Friedlmeier, G; Mateos, P; Bolcich, J.C.

    1988-01-01

    Data concerning the present consumption of energy indicate that the industrialized countries (representing 25% of the world's population) consume almost 75% of the world's energy production, while the need for energy aimed at maintaining the growth of non-industrialized countries increases day after day. Since estimations indicate that the fossil reverses will exhaust within frightening terms, the production of hydrogen from fossil fuels and, fundamentally, from renewable sources constitute a response to future energy demand. The production of hydrogen from water is performed by four different methods: direct thermal, thermochemical, electrolysis and photolysis. Finally, different ways of storaging and using hydrogen are proposed. (Author)

  11. Low temperature radio-chemical energy conversion processes

    International Nuclear Information System (INIS)

    Gomberg, H.J.

    1986-01-01

    This patent describes a radio-chemical method of converting radiated energy into chemical energy form comprising the steps of: (a) establishing a starting chemical compound in the liquid phase that chemically reacts endothermically to radiation and heat energy to produce a gaseous and a solid constituent of the compound, (b) irradiating the compound in its liquid phase free of solvents to chemically release therefrom in response to the radiation the gaseous and solid constituents, (c) physically separating the solid and gaseous phase constituents from the liquid, and (d) chemically processing the constituents to recover therefrom energy stored therein by the irradiation step (b)

  12. EDITORIAL: The 6th International Workshop on Micro and Nanotechnologies for Power Generation and Energy Conversion Applications (PowerMEMS 2006)

    Science.gov (United States)

    Fréchette, Luc G.

    2007-09-01

    Energy is a sector of paramount importance over the coming decades if we are to ensure sustainable development that respects our environment. The research and development of novel approaches to convert available energy into usable forms using micro and nanotechnologies can contribute towards this goal and meet the growing need for power in small scale portable applications. The dominant power sources for handheld and other portable electronics are currently primary and rechargeable batteries. Their limited energy density and adverse effects on the environment upon disposal suggest that alternative approaches need to be explored. This special issue will showcase some of the leading work in this area, initially presented at PowerMEMS 2006, the 6th International Workshop on Micro and Nanotechnologies for Power Generation and Energy Conversion Applications. Power MEMS are defined as microsystems for electrical power generation and other energy conversion applications, including propulsion and cooling. The range of power MEMS technologies includes micro thermodynamic machines, such as microturbines, miniature internal combustion engines and micro-coolers; solid-state direct energy conversion, such as thermoelectric and photovoltaic microstructures; micro electrochemical devices, such as micro fuel cells and nanostructure batteries; vibration energy harvesting devices, such as piezoelectric, magnetic or electrostatic micro generators, as well as micro thrusters and rocket engines for propulsion. These can either be driven by scavenging thermal, mechanical or solar energy from the environment, or from a stored energy source, such as chemical fuel or radioactive material. The unique scope leads to unique challenges in the development of power MEMS, ranging from the integration of novel materials to the efficient small scale implementation of energy conversion principles. In this special issue, Mitcheson et al provide a comparative assessment of three inertial vibration

  13. Reduction in energy consumption of electrochemical pesticide degradation through combination with membrane filtration

    DEFF Research Database (Denmark)

    Madsen, Henrik Tækker; Søgaard, Erik Gydesen; Muff, Jens

    2015-01-01

    A significant challenge for large-scale use of electrochemical oxidation (EO) is high energy consumption, and for EO to become accepted as a standard technique, the amount of energy consumed in the process must be reduced. In this study, it was investigated how the energy consumption of EO could...... be lowered by combining the process with membrane filtration, in a setup where EO was applied to the membrane retentate stream. Use of two types of membranes, a nanofiltration (NF) and a reverse osmosis (RO) membrane, was investigated, and to provide realistic estimates on the energy consumption...... of the treatment, natural groundwater spiked with the pesticide residue 2,6-dichlorobenzamide (BAM) was used as matrix in the experiments. To understand the effect of the membranes on the energy consumption, their effect on the EO degradation efficiency was also determined. The results showed that membranes...

  14. Task Order 20: Supercritical Carbon Dioxide Brayton Cycle Energy Conversion Study

    Energy Technology Data Exchange (ETDEWEB)

    Murray, Paul [AREVA Federal Services, LLC, Charlotte, NC (United States); Lindsay, Edward [AREVA Federal Services, LLC, Charlotte, NC (United States); McDowell, Michael [AREVA Federal Services, LLC, Charlotte, NC (United States); Huang, Megan [AREVA Federal Services, LLC, Charlotte, NC (United States)

    2015-04-23

    AREVA Inc. developed this study for the US Department of Energy (DOE) office of Nuclear Energy (NE) in accordance with Task Order 20 Statement of Work (SOW) covering research and development activities for the Supercritical Carbon Dioxide (sCO2) Brayton Cycle energy conversion. The study addresses the conversion of sCO2 heat energy to electrical output by use of a Brayton Cycle system and focuses on the potential of a net efficiency increase via cycle recuperation and recompression stages. The study also addresses issues and study needed to advance development and implementation of a 10 MWe sCO2 demonstration project.

  15. Energy saving potential of energy services - experimentation on the life cycle of energy conversion equipment

    International Nuclear Information System (INIS)

    Dupont, M.

    2006-12-01

    Energy efficiency services are growing in Europe but their role is still limited. In order to evaluate the potential, we focused first of all on policy, economical and environmental mechanisms that support their development. European natural gas and electricity markets, that are now almost wholly de-regulated, are analysed and compared to their historical structure. By introducing uncertainty on energy prices, this new deal translates better the real energy costs. Energy performance contracts (EPC) limit the impact of these uncertainties on the customer energy bills by guaranteeing a financial result. As a result of the modelling of these contracts, namely operation and maintenance ones, we prove that they transfer technical and financial risks from building owners to energy service companies (ESCO) making energy saving measures easier and less expensive at the same time. These contracts are relatively widespread for heating or compressed-air processes but remain marginal for air-conditioning systems. So new methods were needed to guarantee on the long terms the efficiency of air-conditioning systems demand (1) to master the process and its performances and (2) to be able to determine precisely the energy saving potential and its realisation costs. A detailed energy audit is thus necessary for which we propose a guidance. Conclusions of audits carried out prove that energy saving potential is mainly located in equipment management and control. These optimizations are not always carried out because of a lack of contractual incentive and due to the weaknesses of audit methods. Through the involvement of an independent expert, the mandatory and regular inspection of air-conditioning systems may allow to verify and guide such practices. A three-step analysis procedure has been developed in order to maximize the inspection potential and to get higher benefits from service contracts. (author)

  16. Recent Advances in Layered Ti3 C2 Tx MXene for Electrochemical Energy Storage.

    Science.gov (United States)

    Xiong, Dongbin; Li, Xifei; Bai, Zhimin; Lu, Shigang

    2018-04-01

    Ti 3 C 2 T x , a typical representative among the emerging family of 2D layered transition metal carbides and/or nitrides referred to as MXenes, has exhibited multiple advantages including metallic conductivity, a plastic layer structure, small band gaps, and the hydrophilic nature of its functionalized surface. As a result, this 2D material is intensively investigated for application in the energy storage field. The composition, morphology and texture, surface chemistry, and structural configuration of Ti 3 C 2 T x directly influence its electrochemical performance, e.g., the use of a well-designed 2D Ti 3 C 2 T x as a rechargeable battery anode has significantly enhanced battery performance by providing more chemically active interfaces, shortened ion-diffusion lengths, and improved in-plane carrier/charge-transport kinetics. Some recent progresses of Ti 3 C 2 T x MXene are achieved in energy storage. This Review summarizes recent advances in the synthesis and electrochemical energy storage applications of Ti 3 C 2 T x MXene including supercapacitors, lithium-ion batteries, sodium-ion batteries, and lithium-sulfur batteries. The current opportunities and future challenges of Ti 3 C 2 T x MXene are addressed for energy-storage devices. This Review seeks to provide a rational and in-depth understanding of the relation between the electrochemical performance and the nanostructural/chemical composition of Ti 3 C 2 T x , which will promote the further development of 2D MXenes in energy-storage applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Current challenges in organic photovoltaic solar energy conversion.

    Science.gov (United States)

    Schlenker, Cody W; Thompson, Mark E

    2012-01-01

    Over the last 10 years, significant interest in utilizing conjugated organic molecules for solid-state solar to electric conversion has produced rapid improvement in device efficiencies. Organic photovoltaic (OPV) devices are attractive for their compatibility with low-cost processing techniques and thin-film applicability to flexible and conformal applications. However, many of the processes that lead to power losses in these systems still remain poorly understood, posing a significant challenge for the future efficiency improvements required to make these devices an attractive solar technology. While semiconductor band models have been employed to describe OPV operation, a more appropriate molecular picture of the pertinent processes is beginning to emerge. This chapter presents mechanisms of OPV device operation, based on the bound molecular nature of the involved transient species. With the intention to underscore the importance of considering both thermodynamic and kinetic factors, recent progress in elucidating molecular characteristics that dictate photovoltage losses in heterojunction organic photovoltaics is also discussed.

  18. Information-to-free-energy conversion: Utilizing thermal fluctuations.

    Science.gov (United States)

    Toyabe, Shoichi; Muneyuki, Eiro

    2013-01-01

    Maxwell's demon is a hypothetical creature that can convert information to free energy. A debate that has lasted for more than 100 years has revealed that the demon's operation does not contradict the laws of thermodynamics; hence, the demon can be realized physically. We briefly review the first experimental demonstration of Maxwell's demon of Szilard's engine type that converts information to free energy. We pump heat from an isothermal environment by using the information about the thermal fluctuations of a Brownian particle and increase the particle's free energy.

  19. A rationale plan for conversion of Malaysia for solar hydrogen energy system and its benefits

    International Nuclear Information System (INIS)

    Ludin, N.A.; Kamaruddin, W.N.; Kamaruzzaman Sopian; Verizoglu, T.N.

    2006-01-01

    It expected that early in the next century, Malaysia production of petroleum and natural gas will peak, and thereafter production will decline. In parallel with this production decline, Malaysia income from fossil fuels will start to decline, which would hurt the economy. One possible solution for Malaysia is the of Malaysia is the conversion to a hydrogen energy system. In order to move towards a sustainable hydrogen energy system, a future strategy must be outlined, followed, and continually revised. This paper will underline the available hydrogen technologies for production, storage, delivery, conversion, transportation and end use energy applications for the implementation of hydrogen energy system. Therefore, this paper will also emphasis the key success factors to drive the rationale plan for conversion to hydrogen energy system for Malaysia

  20. Electrochemical Science and Technology

    CERN Document Server

    Oldham, Keith; Bond, Alan

    2011-01-01

    The book addresses the scientific principles underlying electrochemistry. Starting with the basic concepts of electricity, the early chapters discuss the physics and chemistry of the materials from which electrochemical cells are constructed and the properties that make these materials appropriate as cell components. Much of the importance of electrochemistry lies in the conversion of electrical energy into chemical energy and vice versa; the thermodynamics of these processes is described, in the context of a wide range of applications of these interconversions. An electrode is a surface at wh