WorldWideScience

Sample records for electrochemical digital simulation

  1. Electrochemical Study of Esculetin Nitration by Digital Simulation of Cyclic Voltammograms

    Directory of Open Access Journals (Sweden)

    Lida Khalafi

    2013-01-01

    Full Text Available The reaction of electrochemically generated o-quinones from oxidation of esculetin as Michael acceptor with nitrite ion as nucleophile has been studied using cyclic voltammetry. The reaction mechanism is believed to be EC, including oxidation of catechol moiety of esculetin followed by Michael addition of nitrite ion. The observed homogeneous rate constants (obs for reactions were estimated by comparing the experimental voltammetric responses with the digitally simulated results based on the proposed mechanism. Also the effects of pH and nucleophile concentration on voltammetric behavior and the rate constants of chemical reactions were described.

  2. Electrochemical detection on electrowetting-on-dielectric digital microfluidic chip.

    Science.gov (United States)

    Karuwan, Chanpen; Sukthang, Kreeta; Wisitsoraat, Anurat; Phokharatkul, Ditsayut; Patthanasettakul, Viyapol; Wechsatol, Wishsanuruk; Tuantranont, Adisorn

    2011-06-15

    In this work, the use of three-electrode electrochemical sensing system with an electrowetting-on-dielectric (EWOD) digital microfluidic device is reported for quantitative analysis of iodide. T-junction EWOD mixer device was designed using arrays of 50-μm spaced square electrodes for mixing buffer reagent and analyte droplets. For fabrication of EWOD chips, 5-μm thick silver EWOD electrodes were formed on a glass substrate by means of sputtering and lift-off process. PDMS and Teflon thin films were then coated on the electrodes by spin coating to yield hydrophobic surface. An external three-electrode system consisting of Au working, Ag reference and Pt auxiliary wires were installed over EWOD electrodes at the end of T-junction mixer. In experiment, a few-microliter droplets of Tris buffer and iodide solutions were moved toward the mixing junction and transported toward electrochemical electrodes by EWOD process. A short processing time within seconds was achieved at EWOD applied voltage of 300V. The analyte droplets mixed with different concentrations were successfully analyzed by cyclic voltametry. Therefore, the combination of EWOD digital microfluidic and electrochemical sensing system has successfully been demonstrated for rapid chemical analysis with minimal reagent consumption. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. BEPLATE emdash simulation of electrochemical plating

    Energy Technology Data Exchange (ETDEWEB)

    Giles, G.E. (Oak Ridge K-25 Site, TN (USA)); Gray, L.J. (Oak Ridge National Lab., TN (USA)); Bullock, J.S. IV (Oak Ridge Y-12 Plant, TN (USA))

    1990-09-01

    BEPLATE is a FORTRAN code that uses the boundary element method to simulate the electrochemical plating of material on parts, primarily rotating axisymmetric parts. A boundary element technique is used to solve for the local current density and thus the plating rate on the part, which is used to calculate the growth in the plated layer over a user-specified time step. The surface is moved to reflect this growth, and the new surface is used to generate the local current density. This cycle is repeated until the final time specified by the analyst, producing the final plated thickness. BEPLATE includes models for the polarization effects at both the part (cathode) and anode and allows the use of symmetry planes and nonconducting shields. For electroplating simulations, the part shape is normally assumed to be axisymmetric with a centerline along the z-axis. More general part shapes can be analyzed by BEPLATE if the surface growth simulation is not needed. In either case, the shield, anode, and tank geometries are not restricted to specific shapes. This report includes the information required to run BEPLATE, specifically, a brief description of the BEPLATE system including hardware and software requirements, a description of the complete simulation process, discussion of rules for generating models, and additional reference material. This system of codes consists of model generators (PIGS or PATRAN), input processor (BEPIN), the simulation code (BEPLATE) and postprocessing codes (PATRAN or CONPLOT).

  4. Digital Simulation in the Geosciences

    Directory of Open Access Journals (Sweden)

    Alexandr A. Lobanov

    2014-09-01

    Full Text Available This article provides an analysis of methods for digital modeling in the area of Earth Sciences. The author illustrates the difference between digital modeling in radio communication and that in the area of Earth Sciences. The article examines the integration aspect of digital models, demonstrates the advantages of digital over analog models, and illustrates that digital models are discrete. The author outlines the characteristics of digital modeling and illustrates the logical structure of digital models.

  5. First Principle simulations of electrochemical interfaces - a DFT study

    DEFF Research Database (Denmark)

    Ahmed, Rizwan

    for the whole system to qualify as a proper electrochemical interface. I have also contributed to the model, which accounts for pH in the first principle electrode-electrolyte interface simulations. This is an important step forward, since electrochemical reaction rate and barrier for charge transfer can......In this thesis, I have looked beyond the computational hydrogen electrode (CHE) model, and focused on the first principle simulations which treats the electrode-electrolyte interfaces explicitly. Since obtaining a realistic electrode-electrolyte interface was difficult, I aimed to address various...... challenges regarding first principle electrochemical interface modeling in order to bridge the gap between the model interface used in simulations and real catalyst at operating conditions. Atomic scale insight for the processes and reactions that occur at the electrochemical interface presents a challenge...

  6. Voltage equilibration for reactive atomistic simulations of electrochemical processes

    International Nuclear Information System (INIS)

    Onofrio, Nicolas; Strachan, Alejandro

    2015-01-01

    We introduce electrochemical dynamics with implicit degrees of freedom (EChemDID), a model to describe electrochemical driving force in reactive molecular dynamics simulations. The method describes the equilibration of external electrochemical potentials (voltage) within metallic structures and their effect on the self-consistent partial atomic charges used in reactive molecular dynamics. An additional variable assigned to each atom denotes the local potential in its vicinity and we use fictitious, but computationally convenient, dynamics to describe its equilibration within connected metallic structures on-the-fly during the molecular dynamics simulation. This local electrostatic potential is used to dynamically modify the atomic electronegativities used to compute partial atomic changes via charge equilibration. Validation tests show that the method provides an accurate description of the electric fields generated by the applied voltage and the driving force for electrochemical reactions. We demonstrate EChemDID via simulations of the operation of electrochemical metallization cells. The simulations predict the switching of the device between a high-resistance to a low-resistance state as a conductive metallic bridge is formed and resistive currents that can be compared with experimental measurements. In addition to applications in nanoelectronics, EChemDID could be useful to model electrochemical energy conversion devices

  7. Digital simulation of anodic stripping voltammetry from thin film electrodes

    International Nuclear Information System (INIS)

    Magallanes, J.F.

    1984-01-01

    The anodic stripping voltammetry (ASV) is routinely applied to control of Cu(II) in heavy water in the primary cooling loop of the Nuclear Power Reactor. The anodic stripping voltammetry (ASV) is a very well-known technique in electroanalytical chemistry. However, due to the complexity of the phenomena, it is practised with the fundamentals of empiric considerations. A geometric model for the anodic stripping voltammetry (ASV) from thin film electrodes which can be calculated by explicit digital simulation method is proposed as a possibility of solving the electrochemically reversible, cuasi-reversible and irreversible reactions under linear potential scan and multiple potential scans. (Until now the analytical mathematical method was applied to reversible reactions). All the results are compared with analytical solutions and experimental results and it permits to conclude that the anodic stripping voltammetry (ASV) can be studied with the simplicity and potentialities of explicit digital simulation methods. (M.E.L.) [es

  8. Digital simulation of power electronic systems

    International Nuclear Information System (INIS)

    Mehring, P.; Jentsch, W.; John, G.; Kraemer, D.

    1981-01-01

    The following paper contains the final report on the NETSIM-Project. The purpose of this project is to develop a special digital simulation system, which could serve as a base for routine application of simulation in planning and development of power electronic systems. The project is realized in two steps. First a basic network analysis system is established. With this system the basic models and methods in treating power electronic networks could be probed. The resulting system is then integrated into a general digital simulation system for continous systems (CSSL-System). This integrated simulation system allows for convenient modeling and simulation of power electronic systems. (orig.) [de

  9. A short introduction to digital simulations in electrochemistry: simulating the Cottrell experiment in NI LabVIEW

    Directory of Open Access Journals (Sweden)

    Soma Vesztergom

    2018-05-01

    Full Text Available A brief introduction to the use of digital simulations in electrochemistry is given by a detailed description of the simulation of Cottrell’s experiment in the LabVIEW programming language. A step-by-step approach is followed and different simulation techniques (explicit and implicit Euler, Runge–Kutta and Crank–Nicolson methods are applied. The applied techniques are introduced and discussed on the basis of Padé approximants. The paper might be found useful by undergraduate and graduate students familiarizing themselves with the digital simulation of electrochemical problems, as well as by university lecturers involved with the teaching of theoretical electrochemistry.

  10. Security Information System Digital Simulation

    OpenAIRE

    Tao Kuang; Shanhong Zhu

    2015-01-01

    The study built a simulation model for the study of food security information system relay protection. MATLAB-based simulation technology can support the analysis and design of food security information systems. As an example, the food security information system fault simulation, zero-sequence current protection simulation and transformer differential protection simulation are presented in this study. The case studies show that the simulation of food security information system relay protect...

  11. A new simulation model for electrochemical metal deposition

    International Nuclear Information System (INIS)

    Schmickler, W.; Poetting, K.; Mariscal, M.

    2006-01-01

    A new atomistic simulation model for electrochemical systems is presented. It combines microcanonical molecular dynamics for the electrode with stochastic dynamics for the solution, and allows the simulation of electrochemical deposition and dissolution for specific electrode potentials. As first applications the deposition of silver and platinum on Au(1 1 1) have been studied; both flat surfaces and surfaces with islands have been considered. The two systems behave quite differently: Ag on Au(1 1 1) grows layer by layer, while Pt forms a surface alloy on Au(1 1 1), which is followed by three-dimensional growth

  12. Digital Simulation Games for Social Studies Classrooms

    Science.gov (United States)

    Devlin-Scherer, Roberta; Sardone, Nancy B.

    2010-01-01

    Data from ten teacher candidates studying teaching methods were analyzed to determine perceptions toward digital simulation games in the area of social studies. This research can be used as a conceptual model of how current teacher candidates react to new methods of instruction and determine how education programs might change existing curricula…

  13. Ship maneuvering digital simulator; Simulador digital de manobras de navios

    Energy Technology Data Exchange (ETDEWEB)

    Souza Junior, Jesse Rebello; Tannuri, Eduardo Aoun; Oshiro, Anderson Takehiro [Universidade de Sao Paulo (USP), SP (Brazil). Escola Politecnica. Dept. de Engenharia Naval e Oceanica

    2008-07-01

    This paper reports on two case studies making use of a digital simulator to investigate the maneuvering motions of ships in canals with shallow and restricted waters. The first case study corresponds to a maneuvering analysis conducted for the Port of Rio Grande (RS - Brazil), whose aim was to assess the potential impact upon maneuvers of the presence of a large offshore platform (the PETROBRAS P-53) which is to remain docked for several months at the Port to complete its construction. The second study made use of the simulator to evaluate the maneuvering conditions along the approach route and maneuvering basin of the Port of Ponta do Felix (PR - Brazil). The simulator includes a complete mathematical model of the ship dynamics in the horizontal plane when subjected to wind and current forces. It also comprises detailed models for the action of thrusters and propellers, both fixed and azimuth, employed to control maneuvers and dynamically position ships, as well as rudders and tugboats. He models used by the simulator allow for the effects of shallow and restricted waters, including the increase in resistance and lateral forces, increase in additional mass and the appearance of lateral and vertical suction (squatting). The simulator is implemented via an interactive interface through which the user is able to apply control actions (rudder angle, main engine, thrusters and tugboats) in real time during maneuvers, thereby reproducing to some extent the action of a pilot. (author)

  14. Process simulation in digital camera system

    Science.gov (United States)

    Toadere, Florin

    2012-06-01

    The goal of this paper is to simulate the functionality of a digital camera system. The simulations cover the conversion from light to numerical signal and the color processing and rendering. We consider the image acquisition system to be linear shift invariant and axial. The light propagation is orthogonal to the system. We use a spectral image processing algorithm in order to simulate the radiometric properties of a digital camera. In the algorithm we take into consideration the transmittances of the: light source, lenses, filters and the quantum efficiency of a CMOS (complementary metal oxide semiconductor) sensor. The optical part is characterized by a multiple convolution between the different points spread functions of the optical components. We use a Cooke triplet, the aperture, the light fall off and the optical part of the CMOS sensor. The electrical part consists of the: Bayer sampling, interpolation, signal to noise ratio, dynamic range, analog to digital conversion and JPG compression. We reconstruct the noisy blurred image by blending different light exposed images in order to reduce the photon shot noise, also we filter the fixed pattern noise and we sharpen the image. Then we have the color processing blocks: white balancing, color correction, gamma correction, and conversion from XYZ color space to RGB color space. For the reproduction of color we use an OLED (organic light emitting diode) monitor. The analysis can be useful to assist students and engineers in image quality evaluation and imaging system design. Many other configurations of blocks can be used in our analysis.

  15. pH in atomic scale simulations of electrochemical interfaces

    DEFF Research Database (Denmark)

    Rossmeisl, Jan; Chan, Karen; Ahmed, Rizwan

    2013-01-01

    Electrochemical reaction rates can strongly depend on pH, and there is increasing interest in electrocatalysis in alkaline solution. To date, no method has been devised to address pH in atomic scale simulations. We present a simple method to determine the atomic structure of the metal......|solution interface at a given pH and electrode potential. Using Pt(111)|water as an example, we show the effect of pH on the interfacial structure, and discuss its impact on reaction energies and barriers. This method paves the way for ab initio studies of pH effects on the structure and electrocatalytic activity...

  16. Simulation of Wireless Digital Communication Systems

    Directory of Open Access Journals (Sweden)

    A. Mohammed

    2004-12-01

    Full Text Available Due to the explosive demands for high speed wireless services, suchas wireless Internet, email and cellular video conferencing, digitalwireless communications has become one of the most exciting researchtopics in electrical and electronic engineering field. The never-endingdemand for such personal and multimedia services, however, demandstechnologies operating at higher data rates and broader bandwidths. Inaddition, the complexity of wireless communication and signalprocessing systems has grown considerably during the past decade.Therefore, powerful computer­aided techniques are required for theprocess of modeling, designing, analyzing and evaluating theperformance of digital wireless communication systems. In this paper wediscuss the basic propagation mechanisms affecting the performance ofwireless communication systems, and present a simple, powerful andefficient way to simulate digital wireless communication systems usingMatlab. The simulated results are compared with the theoreticalanalysis to validate the simulator. The simulator is useful inevaluating the performance of wireless multimedia services and theassociated signal processing structures and algorithms for current andnext generation wireless mobile communication systems.

  17. A generic digitization framework for the CDF simulation

    International Nuclear Information System (INIS)

    Kowalkowski, J.; Paterno, M.

    2001-01-01

    Digitization from GEANT tracking requires a predictable sequence of steps to produce raw simulated detector readout information. The authors have developed a software framework that simplifies the development and integration of digitizers by separating the coordination activities (sequencing and dispatching) from the actual digitization process. This separation allows the developers of digitizers to concentrate on digitization. The framework provides the sequencing infrastructure and a digitizer model, which means that all digitizers are required to follow the same sequencing rules and provide an interface that fits the model

  18. Atucha II nuclear power plant digital simulation

    International Nuclear Information System (INIS)

    Santome, D.; Rovere, L.A.T.

    1987-01-01

    This paper describes the start-up of a digital simulation code apt to be performed in real time of Atucha II nuclear power plant, foreseeing its subsequent usage in a Basic Principles Simulator. Adaptability and modification of existing routines and development of modules in order to incorporate the necessary variables dynamics to couple the different modes, were the main tasks. The mathematical model used allows the representation of the following sub-systems: a) a reactor's core point model, which comprehends the neutronic kinetics, fission and decaying powers, thermal transfer and Xe-poisoning calculation; b) pressurizer, which considers two sub-systems that may or may not be in thermodynamic equilibrium, both in two phases; c) coolants and moderators bonds considering separate moderator loops with the aim of introducing asymmetric perturbations; d) secondary sub-subsystem, which includes the feed water loop, pumps, steam generators and control valves; e) steam generators; f) control and safety systems, including power control, steam generators levels, moderator's temperature primary loop system, limitations and protection. (Author)

  19. Simulation study of pixel detector charge digitization

    Science.gov (United States)

    Wang, Fuyue; Nachman, Benjamin; Sciveres, Maurice; Lawrence Berkeley National Laboratory Team

    2017-01-01

    Reconstruction of tracks from nearly overlapping particles, called Tracking in Dense Environments (TIDE), is an increasingly important component of many physics analyses at the Large Hadron Collider as signatures involving highly boosted jets are investigated. TIDE makes use of the charge distribution inside a pixel cluster to resolve tracks that share one of more of their pixel detector hits. In practice, the pixel charge is discretized using the Time-over-Threshold (ToT) technique. More charge information is better for discrimination, but more challenging for designing and operating the detector. A model of the silicon pixels has been developed in order to study the impact of the precision of the digitized charge distribution on distinguishing multi-particle clusters. The output of the GEANT4-based simulation is used to train neutral networks that predict the multiplicity and location of particles depositing energy inside one cluster of pixels. By studying the multi-particle cluster identification efficiency and position resolution, we quantify the trade-off between the number of ToT bits and low-level tracking inputs. As both ATLAS and CMS are designing upgraded detectors, this work provides guidance for the pixel module designs to meet TIDE needs. Work funded by the China Scholarship Council and the Office of High Energy Physics of the U.S. Department of Energy under contract DE-AC02-05CH11231.

  20. Simulation of electrochemical processes in cardiac tissue based on cellular automaton

    International Nuclear Information System (INIS)

    Avdeev, S A; Bogatov, N M

    2014-01-01

    A new class of cellular automata using special accumulative function for nonuniformity distribution is presented. Usage of this automata type for simulation of excitable media applied to electrochemical processes in human cardiac tissue is shown

  1. Integration of reconfigurable potentiometric electrochemical sensors into a digital microfluidic platform.

    Science.gov (United States)

    Farzbod, Ali; Moon, Hyejin

    2018-05-30

    This paper presents the demonstration of on-chip fabrication of a potassium-selective sensor array enabled by electrowetting on dielectric digital microfluidics for the first time. This demonstration proves the concept that electrochemical sensors can be seamlessly integrated with sample preparation units in a digital microfluidic platform. More significantly, the successful on-chip fabrication of a sensor array indicates that sensors become reconfigurable and have longer lifetime in a digital microfluidic platform. The on-chip fabrication of ion-selective electrodes includes electroplating Ag followed by forming AgCl layer by chemical oxidation and depositing a thin layer of desired polymer-based ion selective membrane on one of the sensor electrodes. In this study, potassium ionophores work as potassium ion channels and make the membrane selective to potassium ions. This selectiveness results in the voltage difference across the membrane layer, which is correlated with potassium ion concentration. The calibration curve of the fabricated potassium-selective electrode demonstrates the slope of 58 mV/dec for potassium concentration in KCl sample solutions and shows good agreement with the ideal Nernstian response. The proposed sensor platform is an outstanding candidate for a portable home-use for continuous monitoring of ions thanks to its advantages such as easy automation of sample preparation and detection processes, elongated sensor lifetime, minimal membrane and sample consumption, and user-definable/reconfigurable sensor array. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Physical multiscale modeling and numerical simulation of electrochemical devices for energy conversion and storage from theory to engineering to practice

    CERN Document Server

    Franco, Alejandro A; Bessler, Wolfgang G

    2015-01-01

    This book reviews the use of innovative physical multiscale modeling methods to deeply understand the electrochemical mechanisms and numerically simulate the structure and properties of electrochemical devices for energy storage and conversion.

  3. MATLAB simulation for an experimental setup of digital feedback control

    International Nuclear Information System (INIS)

    Zheng Lifang; Liu Songqiang

    2005-01-01

    This paper describes the digital feedback simulation using MATLAB for an experimental accelerator control setup. By analyzing the plant characteristic in time-domain and frequency-domain, a guideline for design of digital filter and PID controller is derived. (authors)

  4. Digital Rock Simulation of Flow in Carbonate Samples

    Science.gov (United States)

    Klemin, D.; Andersen, M.

    2014-12-01

    Reservoir engineering has becomes more complex to deal with current challenges, so core analysts must understand and model pore geometries and fluid behaviors at pores scales more rapidly and realistically. We introduce an industry-unique direct hydrodynamic pore flow simulator that operates on pore geometries from digital rock models obtained using microCT or 3D scanning electron microscope (SEM) images. The PVT and rheological models used in the simulator represent real reservoir fluids. Fluid-solid interactions are introduced using distributed micro-scale wetting properties. The simulator uses density functional approach applied for hydrodynamics of complex systems. This talk covers selected applications of the simulator. We performed microCT scanning of six different carbonate rock samples from homogeneous limestones to vuggy carbonates. From these, we constructed digital rock models representing pore geometries for the simulator. We simulated nonreactive tracer flow in all six digital models using a digital fluid description that included a passive tracer solution. During the simulation, we evaluated the composition of the effluent. Results of tracer flow simulations corresponded well with experimental data of nonreactive tracer floods for the same carbonate rock types. This simulation data of the non-reactive tracer flow can be used to calculate the volume of the rock accessible by the fluid, which can be further used to predict response of a porous medium to a reactive fluid. The described digital core analysis workflow provides a basis for a wide variety of activities, including input to design acidizing jobs and evaluating treatment efficiency and EOR economics. Digital rock multiphase flow simulations of a scanned carbonate rock evaluated the effect of wettability on flow properties. Various wetting properties were tested: slightly oil wet, slightly water wet, and water wet. Steady-state relative permeability simulations yielded curves for all three

  5. Digitalization and networking of analog simulators and portal images

    Energy Technology Data Exchange (ETDEWEB)

    Pesznyak, C.; Zarand, P.; Mayer, A. [Uzsoki Hospital, Budapest (Hungary). Inst. of Oncoradiology

    2007-03-15

    Background: Many departments have analog simulators and irradiation facilities (especially cobalt units) without electronic portal imaging. Import of the images into the R and V (Record and Verify) system is required. Material and Methods: Simulator images are grabbed while portal films scanned by using a laser scanner and both converted into DICOM RT (Digital Imaging and Communications in Medicine Radiotherapy) images. Results: Image intensifier output of a simulator and portal films are converted to DICOM RT images and used in clinical practice. The simulator software was developed in cooperation at the authors' hospital. Conclusion: The digitalization of analog simulators is a valuable updating in clinical use replacing screen-film technique. Film scanning and digitalization permit the electronic archiving of films. Conversion into DICOM RT images is a precondition of importing to the R and V system. (orig.)

  6. Digitalization and networking of analog simulators and portal images.

    Science.gov (United States)

    Pesznyák, Csilla; Zaránd, Pál; Mayer, Arpád

    2007-03-01

    Many departments have analog simulators and irradiation facilities (especially cobalt units) without electronic portal imaging. Import of the images into the R&V (Record & Verify) system is required. Simulator images are grabbed while portal films scanned by using a laser scanner and both converted into DICOM RT (Digital Imaging and Communications in Medicine Radiotherapy) images. Image intensifier output of a simulator and portal films are converted to DICOM RT images and used in clinical practice. The simulator software was developed in cooperation at the authors' hospital. The digitalization of analog simulators is a valuable updating in clinical use replacing screen-film technique. Film scanning and digitalization permit the electronic archiving of films. Conversion into DICOM RT images is a precondition of importing to the R&V system.

  7. Simulating cyclic voltammetry under advection for electrochemical cantilevers

    DEFF Research Database (Denmark)

    Adesokan, Bolaji James; Evgrafov, Anton; Sørensen, Mads Peter

    2015-01-01

    We present a mathematical model describing an electrochemical system involving electrode–electrolyte interaction. The model is governed by a system of advection–diffusion equations with a nonlinear reaction term at the boundary. Our calculations based on such model demonstrate the dynamics of ionic...

  8. Computer Simulation and Digital Resources for Plastic Surgery Psychomotor Education.

    Science.gov (United States)

    Diaz-Siso, J Rodrigo; Plana, Natalie M; Stranix, John T; Cutting, Court B; McCarthy, Joseph G; Flores, Roberto L

    2016-10-01

    Contemporary plastic surgery residents are increasingly challenged to learn a greater number of complex surgical techniques within a limited period. Surgical simulation and digital education resources have the potential to address some limitations of the traditional training model, and have been shown to accelerate knowledge and skills acquisition. Although animal, cadaver, and bench models are widely used for skills and procedure-specific training, digital simulation has not been fully embraced within plastic surgery. Digital educational resources may play a future role in a multistage strategy for skills and procedures training. The authors present two virtual surgical simulators addressing procedural cognition for cleft repair and craniofacial surgery. Furthermore, the authors describe how partnerships among surgical educators, industry, and philanthropy can be a successful strategy for the development and maintenance of digital simulators and educational resources relevant to plastic surgery training. It is our responsibility as surgical educators not only to create these resources, but to demonstrate their utility for enhanced trainee knowledge and technical skills development. Currently available digital resources should be evaluated in partnership with plastic surgery educational societies to guide trainees and practitioners toward effective digital content.

  9. Paper-Based Digital Microfluidic Chip for Multiple Electrochemical Assay Operated by a Wireless Portable Control System

    DEFF Research Database (Denmark)

    Ruecha, Nipapan; Lee, Jumi; Chae, Heedo

    2017-01-01

    for multiple analysis assays are fabricated by affordable printing techniques. For enhanced sensitivity of the sensor, the working electrode is modified through the electrochemical method, namely by reducing graphene with voltammetry and coating gold nanoparticles by amperometry. Detachable sensor and absorber...... designed portable power supply and wireless control system, the active paper-based chip platform can be utilized as an advanced point-of-care device for multiple assays in digital microfluidics....

  10. Digital Quantum Simulation of Spin Models with Circuit Quantum Electrodynamics

    Directory of Open Access Journals (Sweden)

    Y. Salathé

    2015-06-01

    Full Text Available Systems of interacting quantum spins show a rich spectrum of quantum phases and display interesting many-body dynamics. Computing characteristics of even small systems on conventional computers poses significant challenges. A quantum simulator has the potential to outperform standard computers in calculating the evolution of complex quantum systems. Here, we perform a digital quantum simulation of the paradigmatic Heisenberg and Ising interacting spin models using a two transmon-qubit circuit quantum electrodynamics setup. We make use of the exchange interaction naturally present in the simulator to construct a digital decomposition of the model-specific evolution and extract its full dynamics. This approach is universal and efficient, employing only resources that are polynomial in the number of spins, and indicates a path towards the controlled simulation of general spin dynamics in superconducting qubit platforms.

  11. Digital Quantum Simulation of Spin Models with Circuit Quantum Electrodynamics

    OpenAIRE

    Salathé, Y.; Mondal, M.; Oppliger, M.; Heinsoo, J.; Kurpiers, P.; Potočnik, A.; Mezzacapo, Antonio; Las Heras García, Urtzi; Lamata Manuel, Lucas; Solano Villanueva, Enrique Leónidas; Filipp, S.; Wallraff, A.

    2015-01-01

    Systems of interacting quantum spins show a rich spectrum of quantum phases and display interesting many-body dynamics. Computing characteristics of even small systems on conventional computers poses significant challenges. A quantum simulator has the potential to outperform standard computers in calculating the evolution of complex quantum systems. Here, we perform a digital quantum simulation of the paradigmatic Heisenberg and Ising interacting spin models using a two transmon-qubit circuit...

  12. Digital Simulation-Based Training: A Meta-Analysis

    Science.gov (United States)

    Gegenfurtner, Andreas; Quesada-Pallarès, Carla; Knogler, Maximilian

    2014-01-01

    This study examines how design characteristics in digital simulation-based learning environments moderate self-efficacy and transfer of learning. Drawing on social cognitive theory and the cognitive theory of multimedia learning, the meta-analysis psychometrically cumulated k?=?15 studies of 25 years of research with a total sample size of…

  13. Status of test results of electrochemical organic oxidation of a tank 241-SY-101 simulated waste

    International Nuclear Information System (INIS)

    Colby, S.A.

    1994-06-01

    This report presents scoping test results of an electrochemical waste pretreatment process to oxidize organic compounds contained in the Hanford Site's radioactive waste storage tanks. Electrochemical oxidation was tested on laboratory scale to destroy organics that are thought to pose safety concerns, using a nonradioactive, simulated tank waste. Minimal development work has been applied to alkaline electrochemical organic destruction. Most electrochemical work has been directed towards acidic electrolysis, as in the metal purification industry, and silver catalyzed oxidation. Alkaline electrochemistry has traditionally been associated with the following: (1) inefficient power use, (2) electrode fouling, and (3) solids handling problems. Tests using a laboratory scale electrochemical cell oxidized surrogate organics by applying a DC electrical current to the simulated tank waste via anode and cathode electrodes. The analytical data suggest that alkaline electrolysis oxidizes the organics into inorganic carbonate and smaller carbon chain refractory organics. Electrolysis treats the waste without adding chemical reagents and at ambient conditions of temperature and pressure. Cell performance was not affected by varying operating conditions and supplemental electrolyte additions

  14. Advanced distributed simulation technology: Digital Voice Gateway Reference Guide

    Science.gov (United States)

    Vanhook, Dan; Stadler, Ed

    1994-01-01

    The Digital Voice Gateway (referred to as the 'DVG' in this document) transmits and receives four full duplex encoded speech channels over the Ethernet. The information in this document applies only to DVG's running firmware of the version listed on the title page. This document, previously named Digital Voice Gateway Reference Guide, BBN Systems and Technologies Corporation, Cambridge, MA 02138, was revised for revision 2.00. This new revision changes the network protocol used by the DVG, to comply with the SINCGARS radio simulation (For SIMNET 6.6.1). Because of the extensive changes to revision 2.00 a separate document was created rather than supplying change pages.

  15. Simulation of electrochemical behavior in Lithium ion battery during discharge process.

    Science.gov (United States)

    Chen, Yong; Huo, Weiwei; Lin, Muyi; Zhao, Li

    2018-01-01

    An electrochemical Lithium ion battery model was built taking into account the electrochemical reactions. The polarization was divided into parts which were related to the solid phase and the electrolyte mass transport of species, and the electrochemical reactions. The influence factors on battery polarization were studied, including the active material particle radius and the electrolyte salt concentration. The results showed that diffusion polarization exist in the positive and negative electrodes, and diffusion polarization increase with the conducting of the discharge process. The physicochemical parameters of the Lithium ion battery had the huge effect on cell voltage via polarization. The simulation data show that the polarization voltage has close relationship with active material particle size, discharging rate and ambient temperature.

  16. Electrochemical treatment of simulated sugar industrial effluent: Optimization and modeling using a response surface methodology

    Directory of Open Access Journals (Sweden)

    P. Asaithambi

    2016-11-01

    Full Text Available The removal of organic compounds from a simulated sugar industrial effluent was investigated through the electrochemical oxidation technique. Effect of various experimental parameters such as current density, concentration of electrolyte and flow rate in a batch electrochemical reactor was studied on the percentage of COD removal and power consumption. The electrochemical reactor performance was analyzed based on with and without recirculation of the effluent having constant inter-electrodes distance. It was found out that the percentage removal of COD increased with the increase of electrolyte concentration and current density. The maximum percentage removal of COD was achieved at 80.74% at a current density of 5 A/dm2 and 5 g/L of electrolyte concentration in the batch electrochemical reactor. The recirculation electrochemical reactor system parameters like current density, concentration of COD and flow rate were optimized using response surface methodology, while COD removal percents were maximized and power consumption minimized. It has been observed from the present analysis that the predicted values are in good agreement with the experimental data with a correlation coefficient of 0.9888.

  17. Effect of soil compositions on the electrochemical corrosion behavior of carbon steel in simulated soil solution

    Energy Technology Data Exchange (ETDEWEB)

    Liu, T.M. [College of Materials Science and Engineering, Chongqing University (China); Luo, S.X. [Department of Chemistry, Zunyi Normal College, Zunyi (China); Sun, C. [State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang (China); Wu, Y.H.

    2010-04-15

    In this study, effect of cations, Ca{sup 2+}, Mg{sup 2+}, K{sup +}, and anions, SO{sub 4}{sup 2-}, HCO{sub 3}{sup -}, NO{sub 3}{sup -} on electrochemical corrosion behavior of carbon steel in simulated soil solution was investigated through potentiodynamic polarization curves and electrochemical impedance spectroscopy. The results indicate that the Ca{sup 2+}and Mg{sup 2+} can decrease the corrosion current density of carbon steel in simulated soil solution, and K{sup +}, SO{sub 4}{sup 2-}, HCO{sub 3}{sup -}, and NO{sub 3}{sup -} can increase the corrosion density. All the above ions in the simulated soil solution can decrease its resistivity, but they have different effect on the charge transfer resistivity. This finding can be useful in evaluating the corrosivity of certain soil through chemical analysis, and provide data for construction engineers. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  18. Electrochemical deposition on surface nanometric defects: Thermodynamics and grand canonical Monte Carlo simulations

    International Nuclear Information System (INIS)

    Luque, Noelia B.; Reinaudi, Luis; Serra, Pablo; Leiva, Ezequiel P.M.

    2009-01-01

    A thermodynamic analysis is performed on electrochemical metal deposition in the cavity of a foreign substrate. In particular, the deposition of Cu and Ag in nanometer-sized holes on Au(1 1 1) is studied by means of off-lattice atomistic Grand Canonical Monte Carlo simulations, using embedded atom method potentials. The present simulation conditions emulate experiments of electrochemical metal deposition in nanocavities, as performed in the literature. Depending on the system, remarkable differences are found in the way in which the defects are decorated, as well as in their energetics. When the interaction of the adsorbate atoms with the substrate is less favorable than the bulk interaction of the adsorbate, clusters are found that grow stepwise over the level of the surface. In the opposite case, the filling of the cavity occurs stepwise, without the occurrence of cluster growth above the surface level. The results of the simulations present a good qualitative agreement with experimental results from the literature

  19. SIMULACIÓN DE CONTROLADORES DIGITALES SIMULATION OF DIGITAL CONTROLLERS

    Directory of Open Access Journals (Sweden)

    Carlos Álvarez G

    2009-12-01

    Full Text Available El presente trabajo tiene como objetivo la implementación de controladores digitales en un entorno de simulación controlado, para esto se desarrolla una plataforma de hardware que permite ejecutar los programas en lenguaje C generados en una estación de trabajo. Estos programas corresponden al controlador y a la planta que son generados por un software que genera dichos programas a partir de sus parámetros de modelación aplicando teoría de control digital sobre procesos reales.This paper describes an implementation of digital controllers in a simulation environment for including a hardware platform for running programs generated on a workstation. These programs for both the controller and the plant are generated by software based on parameters using digital control theory for real processes.

  20. Simulation of electrochemical nucleation in the presence of additives under galvanostatic and pulsed plating conditions

    International Nuclear Information System (INIS)

    Emekli, Ugur; West, Alan C.

    2010-01-01

    Galvanostatic nucleation of copper onto pretreated ruthenium is investigated using experimental methods and numerical simulations in the presence of two different suppressor molecules; polyethylene glycol (PEG) and ethylene glycol-propylene glycol-ethylene glycol block copolymer (EPE). The model parameters have been largely determined from electrochemical characterization. Results suggest that a fast adsorption rate of the suppressor results in higher nucleus densities. Simulation results provide insight why EPE is more effective than PEG at increasing nucleus density. In addition, the simulations are used to predict the impact of pulse plating paramaters, showing that both the properties of the additive and the waveform need to be considered to optimize nucleus density enhancement.

  1. Comparison of piping models for digital power plant simulators

    International Nuclear Information System (INIS)

    Sowers, G.W.

    1979-08-01

    Two piping models intended for use in a digital power plant simulator are compared. One is a finite difference approximation to the partial differential equation called PIPE, and the other is a function subroutine that acts as a delay operator called PDELAY. The two models are compared with respect to accuracy and execution time. In addition, the stability of the PIPE model is determined. The PDELAY model is found to execute faster than the PIPE model with comparable accuracy

  2. DIGITAL SIMULATIONS FOR IMPROVING EDUCATION: Learning Through Artificial Teaching Environments

    OpenAIRE

    Reviewed by Özlem OZAN

    2009-01-01

    DIGITAL SIMULATIONS FOR IMPROVING EDUCATION:Learning Through Artificial Teaching EnvironmentsGibson, David, Ed.D.; Information Science Reference, Hershey, PA,SBN-10: 1605663239, ISBN-13: 9781605663234, p.514 Jan 2009Reviewed byÖzlem OZANFaculty of Education, Eskişehir Osmangazi University,Eskisehir-TURKEYSimulations in education, both for children and adults,become popular with the development of computer technology, because they are fun and engaging and allow learners to internalize knowledg...

  3. Digital control computer upgrade at the Cernavoda NPP simulator

    International Nuclear Information System (INIS)

    Ionescu, T.

    2006-01-01

    The Plant Process Computer equips some Nuclear Power Plants, like CANDU-600, with Centralized Control performed by an assembly of two computers known as Digital Control Computers (DCC) and working in parallel for safely driving of the plan at steady state and during normal maneuvers but also during abnormal transients when the plant is automatically steered to a safe state. The Centralized Control means both hardware and software with obligatory presence in the frame of the Full Scope Simulator and subject to changing its configuration with specific requirements during the plant and simulator life and covered by this subsection

  4. Passivation and electrochemical behavior of 316L stainless steel in chlorinated simulated concrete pore solution

    Science.gov (United States)

    Luo, Hong; Su, Huaizhi; Dong, Chaofang; Li, Xiaogang

    2017-04-01

    In this paper, the passivation and electrochemical behavior of 316L stainless steel in chlorinated simulated concrete pore solutions at different pH was evaluated by potentiodynamic measurements, electrochemical impedance spectroscopy. The composition of the passive film and surface morphology were investigated by X-ray photoelectron spectroscopy (XPS), secondary ion mass spectrometry (SIMS), and scanning electron microscopy, respectively. The results reveal that metastable pitting susceptibility, stable pitting corrosion, and composition of the passive film are influenced by pH value. After long time immersion, a bilayer structure passive film can be formed in this environment. The appearance of molybdates on the outermost surface layer, further enhancing the stability of the passive film. Moreover, the good pitting corrosion resistance of 316L stainless steel in simulated concrete pore solution without carbonated is mainly due to the presence of high Cr/Fe ratio and molybdates ions within the passive film.

  5. D Digital Simulation of Minnan Temple Architecture CAISSON'S Craft Techniques

    Science.gov (United States)

    Lin, Y. C.; Wu, T. C.; Hsu, M. F.

    2013-07-01

    Caisson is one of the important representations of the Minnan (southern Fujian) temple architecture craft techniques and decorative aesthetics. The special component design and group building method present the architectural thinking and personal characteristics of great carpenters of Minnan temple architecture. In late Qing Dynasty, the appearance and style of caissons of famous temples in Taiwan apparently presented the building techniques of the great carpenters. However, as the years went by, the caisson design and craft techniques were not fully inherited, which has been a great loss of cultural assets. Accordingly, with the caisson of Fulong temple, a work by the well-known great carpenter in Tainan as an example, this study obtained the thinking principles of the original design and the design method at initial period of construction through interview records and the step of redrawing the "Tng-Ko" (traditional design, stakeout and construction tool). We obtained the 3D point cloud model of the caisson of Fulong temple using 3D laser scanning technology, and established the 3D digital model of each component of the caisson. Based on the caisson component procedure obtained from interview records, this study conducted the digital simulation of the caisson component to completely recode and present the caisson design, construction and completion procedure. This model of preserving the craft techniques for Minnan temple caisson by using digital technology makes specific contribution to the heritage of the craft techniques while providing an important reference for the digital preservation of human cultural assets.

  6. Electrochemical impedance spectroscopic characterization of titanium during alkali treatment and apatite growth in simulated body fluid

    International Nuclear Information System (INIS)

    Raman, V.; Tamilselvi, S.; Rajendran, N.

    2007-01-01

    Alkali treatment of titanium with subsequent heat treatment has been adapted as an important pre-treatment procedure for hydroxyapatite formation in orthopaedic applications. The electrochemical study during the alkali treatment process has not been explored yet. In the present work, electrochemical impedance spectroscopic (EIS) studies have been employed to analyse the electrochemical behaviour of titanium during the alkali treatment. The open circuit potential and potentiodynamic polarisation measurements were carried out in simulated body fluid (SBF) solution. Scanning electron microscopy and energy dispersive X-ray analysis were used to characterize the surface morphology and to correlate the results obtained from the electrochemical studies. An optimum growth of the passive film was found to occur at the end of 17th hour of treatment by alkali treatment. The alkali treated titanium immersed in SBF solution for various durations exhibited the formation of a duplex layer structure due to an inner barrier layer and an outer gel layer during the initial periods of immersion. However, with increase in immersion time to 10 days, a stable apatite layer was formed over the barrier layer and this was confirmed from the equivalent circuit fitted for the impedance data

  7. Electrochemical impedance spectroscopic characterization of titanium during alkali treatment and apatite growth in simulated body fluid

    Energy Technology Data Exchange (ETDEWEB)

    Raman, V.; Tamilselvi, S. [Department of Chemistry, MIT Campus, Anna University, Chennai 600 044 (India); Rajendran, N. [Department of Chemistry, MIT Campus, Anna University, Chennai 600 044 (India)], E-mail: nrajendran@annauniv.edu

    2007-09-30

    Alkali treatment of titanium with subsequent heat treatment has been adapted as an important pre-treatment procedure for hydroxyapatite formation in orthopaedic applications. The electrochemical study during the alkali treatment process has not been explored yet. In the present work, electrochemical impedance spectroscopic (EIS) studies have been employed to analyse the electrochemical behaviour of titanium during the alkali treatment. The open circuit potential and potentiodynamic polarisation measurements were carried out in simulated body fluid (SBF) solution. Scanning electron microscopy and energy dispersive X-ray analysis were used to characterize the surface morphology and to correlate the results obtained from the electrochemical studies. An optimum growth of the passive film was found to occur at the end of 17th hour of treatment by alkali treatment. The alkali treated titanium immersed in SBF solution for various durations exhibited the formation of a duplex layer structure due to an inner barrier layer and an outer gel layer during the initial periods of immersion. However, with increase in immersion time to 10 days, a stable apatite layer was formed over the barrier layer and this was confirmed from the equivalent circuit fitted for the impedance data.

  8. Mechanical-Electrochemical-Thermal Simulation of Lithium-Ion Cells

    Energy Technology Data Exchange (ETDEWEB)

    Santhanagopalan, Shriram; Zhang, Chao; Sprague, Michael A.; Pesaran, Ahmad

    2016-06-01

    Models capture the force response for single-cell and cell-string levels to within 15%-20% accuracy and predict the location for the origin of failure based on the deformation data from the experiments. At the module level, there is some discrepancy due to poor mechanical characterization of the packaging material between the cells. The thermal response (location and value of maximum temperature) agrees qualitatively with experimental data. In general, the X-plane results agree with model predictions to within 20% (pending faulty thermocouples, etc.); the Z-plane results show a bigger variability both between the models and test-results, as well as among multiple repeats of the tests. The models are able to capture the timing and sequence in voltage drop observed in the multi-cell experiments; the shapes of the current and temperature profiles need more work to better characterize propagation. The cells within packaging experience about 60% less force under identical impact test conditions, so the packaging on the test articles is robust. However, under slow-crush simulations, the maximum deformation of the cell strings with packaging is about twice that of cell strings without packaging.

  9. Method of simulating dose reduction for digital radiographic systems

    International Nuclear Information System (INIS)

    Baath, M.; Haakansson, M.; Tingberg, A.; Maansson, L. G.

    2005-01-01

    The optimisation of image quality vs. radiation dose is an important task in medical imaging. To obtain maximum validity of the optimisation, it must be based on clinical images. Images at different dose levels can then either be obtained by collecting patient images at the different dose levels sought to investigate - including additional exposures and permission from an ethical committee - or by manipulating images to simulate different dose levels. The aim of the present work was to develop a method of simulating dose reduction for digital radiographic systems. The method uses information about the detective quantum efficiency and noise power spectrum at the original and simulated dose levels to create an image containing filtered noise. When added to the original image this results in an image with noise which, in terms of frequency content, agrees with the noise present in an image collected at the simulated dose level. To increase the validity, the method takes local dose variations in the original image into account. The method was tested on a computed radiography system and was shown to produce images with noise behaviour similar to that of images actually collected at the simulated dose levels. The method can, therefore, be used to modify an image collected at one dose level so that it simulates an image of the same object collected at any lower dose level. (authors)

  10. Electrochemical destruction of organics and nitrates in simulated and actual radioactive Hanford tank waste

    International Nuclear Information System (INIS)

    Elmore, M.R.; Lawrence, W.E.

    1996-09-01

    Pacific Northwest National Laboratory has conducted an evaluation of electrochemical processing for use in radioactive tank waste cleanup activities. An electrochemical organic destruction (ECOD) process was evaluated, with the main focus being the destruction of organic compounds (especially organic complexants of radionuclides) in simulated and actual radioactive Hanford tank wastes. A primary reason for destroying the organic species in the complexant concentrate tank waste is to decomplex/defunctionalize species that chelate radionuclides. the separations processes required to remove the radionuclides are much less efficient when chelators are present. A second objective, the destruction of nitrates and nitrites in the wastes, was also assessed. Organic compounds, nitrates, and nitrites may affect waste management and safety considerations, not only at Hanford but at other US Department of Energy sites that maintain high- level waste storage tanks

  11. Electrochemical and corrosion properties of carbon steel in simulated geological disposal environments

    International Nuclear Information System (INIS)

    Sugimoto, Katsuhisa

    2011-01-01

    This paper reviews electrochemical and corrosion studies on the application of carbon steel to an overpack container, which is used for the geological disposal of radioactive wastes. Deaerated alkaline Na 2 SO 4 -NaHCO 3 - NaCl solutions and bentonite soaked with the solutions are used as simulated geological disposal environments. Electrochemical studies show the corrosion of the steel in an early stage is the activation control. Corrosion rates are controlled by the composition of the solutions, alloying elements, and the structure of the steel. The rates decrease with time due to the formation of FeCO 3 (siderite) film on the steel. Immersion corrosion tests show general corrosion morphology. Average corrosion rates of long duration have been evaluated. Clear proofs of the initiation of localized corrosion, such as pitting, crevice corrosion, hydrogen embrittlement and stress-corrosion cracking, have not been reported. (author)

  12. Electrochemical behaviour of iron and AISI 304 stainless steel in simulated acid rain solution

    Energy Technology Data Exchange (ETDEWEB)

    Pilic, Zora; Martinovic, Ivana [Mostar Univ. (Bosnia and Herzegovina). Dept. of Chemistry

    2016-10-15

    The growth mechanism and properties of the oxide films on iron and AISI 304 stainless steel were studied in simulated acid rain (pH 4.5) by means of electrochemical techniques and atomic absorption spectrometry. The layer-pore resistance model was applied to explain a potentiodynamic formation of surface oxides. It was found that the growth of the oxide film on iron takes place by the low-field migration mechanism, while that on the stainless steel takes place by the high-field mechanism. Kinetic parameters were determined. Impedance measurements revealed that Fe surface film has no protective properties at the open circuit potential, while the resistance of stainless steel oxide film is very high. The concentration of the metallic ions released into solution and measured by atomic absorption spectroscopy was in accordance with the results obtained from the electrochemical techniques.

  13. Application of the PRBS/FFT technique to digital simulations

    International Nuclear Information System (INIS)

    Hinds, H.W.

    1977-01-01

    This paper describes a method for obtaining a small-signal frequency response from a digital dynamic simulation. It employs a modified form of the PRBS/FFT technique, whereby a system is perturbed by a pseudo-random binary sequence and its response is analyzed using a fast Fourier transform-based program. Two applications of the technique are described; one involves a set of two coupled, second-order, ordinary differential equations; the other is a set of non-linear partial differential equations describing the thermohydraulic behaviour of water boiling in a fuel channel. (author)

  14. Catalytic and electrochemical behaviour of solid oxide fuel cell operated with simulated-biogas mixtures

    Science.gov (United States)

    Dang-Long, T.; Quang-Tuyen, T.; Shiratori, Y.

    2016-06-01

    Being produced from organic matters of wastes (bio-wastes) through a fermentation process, biogas mainly composed of CH4 and CO2 and can be considered as a secondary energy carrier derived from solar energy. To generate electricity from biogas through the electrochemical process in fuel cells is a state-of-the-art technology possessing higher energy conversion efficiency without harmful emissions compared to combustion process in heat engines. Getting benefits from high operating temperature such as direct internal reforming ability and activation of electrochemical reactions to increase overall system efficiency, solid oxide fuel cell (SOFC) system operated with biogas becomes a promising candidate for distributed power generator for rural applications leading to reductions of environmental issues caused by greenhouse effects and bio-wastes. CO2 reforming of CH4 and electrochemical oxidation of the produced syngas (H2-CO mixture) are two main reaction processes within porous anode material of SOFC. Here catalytic and electrochemical behavior of Ni-ScSZ (scandia stabilized-zirconia) anode in the feed of CH4-CO2 mixtures as simulated-biogas at 800 °C were evaluated. The results showed that CO2 had strong influences on both reaction processes. The increase in CO2 partial pressure resulted in the decrease in anode overvoltage, although open-circuit voltage was dropped. Besides that, the simulation result based on a power-law model for equimolar CH4-CO2 mixture revealed that coking hazard could be suppressed along the fuel flow channel in both open-circuit and closed-circuit conditions.

  15. Catalytic and electrochemical behaviour of solid oxide fuel cell operated with simulated-biogas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Dang-Long, T., E-mail: 3TE14098G@kyushu-u.ac.jp [Department of Hydrogen Energy Systems, Faculty of Engineering, Kyushu University Motooka 744, Nishiku, Fukuoka, 810-0395 (Japan); Quang-Tuyen, T., E-mail: tran.tuyen.quang.314@m.kyushu-u.ac.jp [International Research Center for Hydrogen Energy, Kyushu University Motooka 744, Nishiku, Fukuoka, 810-0395 (Japan); Shiratori, Y., E-mail: shiratori.yusuke.500@m.kyushu-u.ac.jp [Department of Hydrogen Energy Systems, Faculty of Engineering, Kyushu University Motooka 744, Nishiku, Fukuoka, 810-0395 (Japan); International Research Center for Hydrogen Energy, Kyushu University Motooka 744, Nishiku, Fukuoka, 810-0395 (Japan)

    2016-06-03

    Being produced from organic matters of wastes (bio-wastes) through a fermentation process, biogas mainly composed of CH{sub 4} and CO{sub 2} and can be considered as a secondary energy carrier derived from solar energy. To generate electricity from biogas through the electrochemical process in fuel cells is a state-of-the-art technology possessing higher energy conversion efficiency without harmful emissions compared to combustion process in heat engines. Getting benefits from high operating temperature such as direct internal reforming ability and activation of electrochemical reactions to increase overall system efficiency, solid oxide fuel cell (SOFC) system operated with biogas becomes a promising candidate for distributed power generator for rural applications leading to reductions of environmental issues caused by greenhouse effects and bio-wastes. CO{sub 2} reforming of CH{sub 4} and electrochemical oxidation of the produced syngas (H{sub 2}–CO mixture) are two main reaction processes within porous anode material of SOFC. Here catalytic and electrochemical behavior of Ni-ScSZ (scandia stabilized-zirconia) anode in the feed of CH{sub 4}–CO{sub 2} mixtures as simulated-biogas at 800 °C were evaluated. The results showed that CO{sub 2} had strong influences on both reaction processes. The increase in CO{sub 2} partial pressure resulted in the decrease in anode overvoltage, although open-circuit voltage was dropped. Besides that, the simulation result based on a power-law model for equimolar CH{sub 4}−CO{sub 2} mixture revealed that coking hazard could be suppressed along the fuel flow channel in both open-circuit and closed-circuit conditions.

  16. Research methods of simulate digital compensators and autonomous control systems

    Directory of Open Access Journals (Sweden)

    V. S. Kudryashov

    2016-01-01

    Full Text Available The peculiarity of the present stage of development of the production is the need to control and regulate a large number of process parameters, the mutual influence on each other that when using single-circuit systems significantly reduces the quality of the transition process, resulting in significant costs of raw materials and energy, reduce the quality of the products. Using a stand-alone digital control system eliminates the correlation of technological parameters, to give the system the desired dynamic and static properties, improve the quality of regulation. However, the complexity of the configuration and implementation of procedures (modeling compensators autonomous systems of this type, associated with the need to perform a significant amount of complex analytic transformation significantly limit the scope of their application. In this regard, the approach based on the decompo sition proposed methods of calculation and simulation (realization, consisting in submitting elements autonomous control part digital control system in a series parallel connection. The above theoretical study carried out in a general way for any dimension systems. The results of computational experiments, obtained during the simulation of the four autonomous control systems, comparative analysis and conclusions on the effectiveness of the use of each of the methods. The results obtained can be used in the development of multi-dimensional process control systems.

  17. Decolourisation of simulated reactive dyebath effluents by electrochemical oxidation assisted by UV light.

    Science.gov (United States)

    López-Grimau, V; Gutiérrez, M C

    2006-01-01

    This study is focused on the optimisation of the electrochemical decolourisation of textile effluents containing reactive dyes with the aim of making feasible-technically and economically-this method at industrial scale. Coloured waters were treated in continuous at low current density, to reduce the electrical consumption. Ti/PtO(x) electrodes were used to oxidize simulated dyebaths prepared with an azo/dichlorotriazine reactive dye (C.I. Reactive Orange 4). The decolourisation yield was dependent on the dyeing electrolyte (NaCl or Na(2)SO(4)). Dyeing effluents which contained from 0.5 to 20 gl(-1) of NaCl reached a high decolourisation yield, depending on the current density, immediately after the electrochemical process. These results were improved when the effluents were stored for several hours under solar light. After the electrochemical treatment the effluents were stored in a tank and exposed under different lighting conditions: UV light, solar light and darkness. The evolution of the decolourisation versus the time of storage was reported and kinetic constants were calculated. The time of storage was significantly reduced by the application of UV light. A dye mineralization study was also carried out on a concentrated dyebath. A TOC removal of 81% was obtained when high current density was applied for a prolonged treatment with recirculation. This treatment required a high electrical consumption.

  18. Simulated body-fluid tests and electrochemical investigations on biocompatibility of metallic glasses

    International Nuclear Information System (INIS)

    Lin, C.H.; Huang, C.H.; Chuang, J.F.; Lee, H.C.; Liu, M.C.; Du, X.H.; Huang, J.C.; Jang, J.S.C.; Chen, C.H.

    2012-01-01

    This paper presents the in-vitro and electrochemical investigations of four metallic glasses (MGs) for finding potential MG-based bio-materials. The simulation body-fluid Hanks solution is utilized for testing the corrosion resistance of MGs, and microorganisms of Escherichia coli are used in testing the bio-toxicity. In addition, a simple cyclic voltammetry method is used for rapid verification of the potential electrochemical responses. It is found that the Zr-based MG can sustain in the body-fluid, exhibiting the best corrosion resistance and electrochemical stability. The microbiologic test shows that E. coli can grow on the surface of the Zr-based metallic glass, confirming the low cell toxicity of this Zr-based MG. Highlights: ► Vanadium is added in Cu–Zr–Al alloy to induce B2-CuZr formation. ► The more induced B2-CuZr phase can improve compressive plasticity. ► The plasticity improvement might be caused by B2 phase dynamic coarsening.

  19. Simulation and experimental investigation of inner-jet electrochemical grinding of GH4169 alloy

    Directory of Open Access Journals (Sweden)

    Hansong LI

    2018-03-01

    Full Text Available GH4169 alloy is one of the most commonly used materials in aero engine turbine blades, but its machinability is poor because of its excellent strength at high temperatures. Electrochemical machining (ECM has become a common method for machining this alloy and other difficult-to-machine materials. Electrochemical grinding (ECG is a hybrid process combining ECM and conventional grinding. In this paper, investigations conducted on inner-jet ECG of GH4169 alloy are described. Two types of inner-jet ECG grinding wheels were used to machine a flat bottom surface. The machining process was simulated using COMSOL software, and machining gaps under different machining parameters were obtained. In addition, maximum feed rates and maximum material removal rates under different machining parameters were studied experimentally. The maximum sizes and the uniformity of the distributions of the gaps machined by the two grinding wheels were compared. The effects of different applied voltages on the machining results were also investigated. Keywords: Electrochemical grinding, GH4169 alloy, Inner-jet, Material removal rate, Maximum feed rate

  20. Electrochemical disinfection of simulated ballast water on PbO2/graphite felt electrode

    International Nuclear Information System (INIS)

    Chen, Shuiping; Hu, Weidong; Hong, Jianxun; Sandoe, Steve

    2016-01-01

    A novel PbO 2 /graphite felt electrode was constructed by electrochemical deposition of PbO 2 on graphite felt and characterized by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM) analysis. The prepared electrode is a viable technology for inactivation of Escherichia coli, Enterococcus faecalis, and Artemia salina as indicator organisms in simulated ballast water treatment, which meets the International Maritime Organization (IMO) Regulation D-2. The effects of contact time and current density on inactivation were investigated. An increase in current density generally had a beneficial effect on the inactivation of the three species. E.faecalis and A.salina were more resistant to electrochemical disinfection than E. coli. The complete disinfection of E.coli was achieved in <8 min at an applied current density of 253 A/m 2 . Complete inactivation of E. faecalis and A.salina was achieved at the same current density after 60 and 40 min of contact time, respectively. A. salina inactivation follows first-order kinetics. - Highlights: •A novel PbO 2 /graphite felt anode was developed for the electrochemical treatment of the simulated ballast water. •The technology meets the IMO D‐2 regulation and provides a high degree of removal of the microorganisms of ballast water without any additional chemical substances. •E.faecalis, E.coli, and A.salina cells in simulated ballast water were completely inactivated after 60, 8 and 40 min of contact time at 253 A/m 2 of current density, respectively.

  1. U(1) Wilson lattice gauge theories in digital quantum simulators

    Science.gov (United States)

    Muschik, Christine; Heyl, Markus; Martinez, Esteban; Monz, Thomas; Schindler, Philipp; Vogell, Berit; Dalmonte, Marcello; Hauke, Philipp; Blatt, Rainer; Zoller, Peter

    2017-10-01

    Lattice gauge theories describe fundamental phenomena in nature, but calculating their real-time dynamics on classical computers is notoriously difficult. In a recent publication (Martinez et al 2016 Nature 534 516), we proposed and experimentally demonstrated a digital quantum simulation of the paradigmatic Schwinger model, a U(1)-Wilson lattice gauge theory describing the interplay between fermionic matter and gauge bosons. Here, we provide a detailed theoretical analysis of the performance and the potential of this protocol. Our strategy is based on analytically integrating out the gauge bosons, which preserves exact gauge invariance but results in complicated long-range interactions between the matter fields. Trapped-ion platforms are naturally suited to implementing these interactions, allowing for an efficient quantum simulation of the model, with a number of gate operations that scales polynomially with system size. Employing numerical simulations, we illustrate that relevant phenomena can be observed in larger experimental systems, using as an example the production of particle-antiparticle pairs after a quantum quench. We investigate theoretically the robustness of the scheme towards generic error sources, and show that near-future experiments can reach regimes where finite-size effects are insignificant. We also discuss the challenges in quantum simulating the continuum limit of the theory. Using our scheme, fundamental phenomena of lattice gauge theories can be probed using a broad set of experimentally accessible observables, including the entanglement entropy and the vacuum persistence amplitude.

  2. Simulating Linear Sweep Voltammetry from First-Principles: Application to Electrochemical Oxidation of Water on Pt(111) and Pt3Ni(111)

    DEFF Research Database (Denmark)

    Viswanathan, Venkatasubramanian; Hansen, Heine Anton; Rossmeisl, Jan

    2012-01-01

    Cyclic voltammetry is a fundamental experimental method for characterizing adsorbates on electrochemical surfaces. We present a model for the electrochemical solid–liquid interface, and we simulate the linear sweep voltammogram of the electrochemical oxidation of H2O on Pt(111) and Pt3Ni(111...

  3. Dynamic simulation of hvdc transmission systems on digital computers

    Energy Technology Data Exchange (ETDEWEB)

    Hingorani, N G; Hay, J L; Crosbie, R E

    1966-05-01

    A digital computer technique is based on the fact that the operation of an hvdc converter consists of similar consecutive processes, each process having features which are common to all processes. Each bridge converter of an hvdc system is represented by a central process, and repetitive use of the latter simulates continuous converter operation. This technique may be employed to obtain the waveforms of transient or steady state voltages and currents anywhere in the dc system. To illustrate the method, an hvdc link is considered; the link which connects two independent ac systems conprises two converters with their control systems, and a dc transmission line. As an example, the transient behavior of the system is examined following changes in the current settings of the control system.

  4. Electrochemical reduction behavior of simplified simulants of vitrified radioactive waste in molten CaCl2

    Science.gov (United States)

    Katasho, Yumi; Yasuda, Kouji; Nohira, Toshiyuki

    2018-05-01

    The electrochemical reduction of two types of simplified simulants of vitrified radioactive waste, simulant 1 (glass component only: SiO2, B2O3, Na2O, Al2O3, CaO, Li2O, and ZnO) and simulant 2 (also containing long-lived fission product oxides, ZrO2, Cs2O, PdO, and SeO2), was investigated in molten CaCl2 at 1103 K. The behavior of each element was predicted from the potential-pO2- diagram constructed from thermodynamic data. After the immersion of simulant 1 into molten CaCl2 without electrolysis, the dissolution of Na, Li, and Cs was confirmed by inductively coupled plasma atomic emission spectrometry and mass spectrometry analysis of the samples. The scanning electron microscopy/energy dispersive X-ray and X-ray diffraction analyses of simulants 1 and 2 electrolyzed at 0.9 V vs. Ca2+/Ca confirmed that most of SiO2 had been reduced to Si. After the electrolysis of simulants 1 and 2, Al, Zr, and Pd remained in the solid phase. In addition, SeO2 was found to remain partially in the solid phase and partially evaporate, although a small quantity dissolved into the molten salt.

  5. Passivation and electrochemical behavior of 316L stainless steel in chlorinated simulated concrete pore solution

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Hong, E-mail: luohong@hhu.edu.cn [College of Mechanics and Materials, Hohai University, Nanjing 210098 (China); Su, Huaizhi [State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098,China (China); Dong, Chaofang; Li, Xiaogang [Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083,China (China)

    2017-04-01

    Highlights: • The pH value play an important role on passive mechanism of stainless steel. • The relationship between Cr/Fe ratio within the passive film and pH is non-linear. • Better corrosion resistance due to high Cr/Fe ratio and molybdates ions. - Abstract: In this paper, the passivation and electrochemical behavior of 316L stainless steel in chlorinated simulated concrete pore solutions at different pH was evaluated by potentiodynamic measurements, electrochemical impedance spectroscopy. The composition of the passive film and surface morphology were investigated by X-ray photoelectron spectroscopy (XPS), secondary ion mass spectrometry (SIMS), and scanning electron microscopy, respectively. The results reveal that metastable pitting susceptibility, stable pitting corrosion, and composition of the passive film are influenced by pH value. After long time immersion, a bilayer structure passive film can be formed in this environment. The appearance of molybdates on the outermost surface layer, further enhancing the stability of the passive film. Moreover, the good pitting corrosion resistance of 316L stainless steel in simulated concrete pore solution without carbonated is mainly due to the presence of high Cr/Fe ratio and molybdates ions within the passive film.

  6. Passivation and electrochemical behavior of 316L stainless steel in chlorinated simulated concrete pore solution

    International Nuclear Information System (INIS)

    Luo, Hong; Su, Huaizhi; Dong, Chaofang; Li, Xiaogang

    2017-01-01

    Highlights: • The pH value play an important role on passive mechanism of stainless steel. • The relationship between Cr/Fe ratio within the passive film and pH is non-linear. • Better corrosion resistance due to high Cr/Fe ratio and molybdates ions. - Abstract: In this paper, the passivation and electrochemical behavior of 316L stainless steel in chlorinated simulated concrete pore solutions at different pH was evaluated by potentiodynamic measurements, electrochemical impedance spectroscopy. The composition of the passive film and surface morphology were investigated by X-ray photoelectron spectroscopy (XPS), secondary ion mass spectrometry (SIMS), and scanning electron microscopy, respectively. The results reveal that metastable pitting susceptibility, stable pitting corrosion, and composition of the passive film are influenced by pH value. After long time immersion, a bilayer structure passive film can be formed in this environment. The appearance of molybdates on the outermost surface layer, further enhancing the stability of the passive film. Moreover, the good pitting corrosion resistance of 316L stainless steel in simulated concrete pore solution without carbonated is mainly due to the presence of high Cr/Fe ratio and molybdates ions within the passive film.

  7. A study of the electrode/solution interface during electrochemical reactions by digital holography

    Directory of Open Access Journals (Sweden)

    SHENHAO CHEN

    2006-10-01

    Full Text Available Digital holography was used to study in situ the dynamic changes of the electrode/solution interface and the solution near the electrode during the anodic process of iron in a sulfuric acid solution. The effects of chloride, bromide and iodine ions on this process were also investigated. The magnetic field also has effects on the process. The effects are discussed in combination with SEM results.

  8. Digital simulation of an enrichment process for solutions by means of an advection-diffusion chamber

    International Nuclear Information System (INIS)

    Artucio, G.; Suarez, R.; Uruguay Catholic University)

    1995-01-01

    An ab-initio digital simulation of the space-time dynamics of the concentration field of a solute in an advection-diffusion chamber is done. Some questions related to the digital simulation of the concentration field using the analytical solution obtained in a previous paper are discussed

  9. Detailed dynamic solid oxide fuel cell modeling for electrochemical impedance spectra simulation

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, Ph. [Laboratory of Steam Boilers and Thermal Plants, School of Mechanical Engineering, Thermal Engineering Section, National Technical University of Athens, Heroon Polytechniou 9, 15780 Athens (Greece); Panopoulos, K.D. [Institute for Solid Fuels Technology and Applications, Centre for Research and Technology Hellas, 4th km. Ptolemais-Mpodosakeio Hospital, Region of Kouri, P.O. Box 95, GR 502, 50200 Ptolemais (Greece)

    2010-08-15

    This paper presents a detailed flexible mathematical model for planar solid oxide fuel cells (SOFCs), which allows the simulation of steady-state performance characteristics, i.e. voltage-current density (V-j) curves, and dynamic operation behavior, with a special capability of simulating electrochemical impedance spectroscopy (EIS). The model is based on physico-chemical governing equations coupled with a detailed multi-component gas diffusion mechanism (Dusty-Gas Model (DGM)) and a multi-step heterogeneous reaction mechanism implicitly accounting for the water-gas-shift (WGS), methane reforming and Boudouard reactions. Spatial discretization can be applied for 1D (button-cell approximation) up to quasi-3D (full size anode supported cell in cross-flow configuration) geometries and is resolved with the finite difference method (FDM). The model is built and implemented on the commercially available modeling and simulations platform gPROMS trademark. Different fuels based on hydrogen, methane and syngas with inert diluents are run. The model is applied to demonstrate a detailed analysis of the SOFC inherent losses and their attribution to the EIS. This is achieved by means of a step-by-step analysis of the involved transient processes such as gas conversion in the main gas chambers/channels, gas diffusion through the porous electrodes together with the heterogeneous reactions on the nickel catalyst, and the double-layer current within the electrochemical reaction zone. The model is an important tool for analyzing SOFC performance fundamentals as well as for design and optimization of materials' and operational parameters. (author)

  10. How processing digital elevation models can affect simulated water budgets

    Science.gov (United States)

    Kuniansky, E.L.; Lowery, M.A.; Campbell, B.G.

    2009-01-01

    For regional models, the shallow water table surface is often used as a source/sink boundary condition, as model grid scale precludes simulation of the water table aquifer. This approach is appropriate when the water table surface is relatively stationary. Since water table surface maps are not readily available, the elevation of the water table used in model cells is estimated via a two-step process. First, a regression equation is developed using existing land and water table elevations from wells in the area. This equation is then used to predict the water table surface for each model cell using land surface elevation available from digital elevation models (DEM). Two methods of processing DEM for estimating the land surface for each cell are commonly used (value nearest the cell centroid or mean value in the cell). This article demonstrates how these two methods of DEM processing can affect the simulated water budget. For the example presented, approximately 20% more total flow through the aquifer system is simulated if the centroid value rather than the mean value is used. This is due to the one-third greater average ground water gradients associated with the centroid value than the mean value. The results will vary depending on the particular model area topography and cell size. The use of the mean DEM value in each model cell will result in a more conservative water budget and is more appropriate because the model cell water table value should be representative of the entire cell area, not the centroid of the model cell.

  11. Electrochemical disinfection of simulated ballast water on PbO2/graphite felt electrode.

    Science.gov (United States)

    Chen, Shuiping; Hu, Weidong; Hong, Jianxun; Sandoe, Steve

    2016-04-15

    A novel PbO2/graphite felt electrode was constructed by electrochemical deposition of PbO2 on graphite felt and characterized by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM) analysis. The prepared electrode is a viable technology for inactivation of Escherichia coli, Enterococcus faecalis, and Artemia salina as indicator organisms in simulated ballast water treatment, which meets the International Maritime Organization (IMO) Regulation D-2. The effects of contact time and current density on inactivation were investigated. An increase in current density generally had a beneficial effect on the inactivation of the three species. E.faecalis and A.salina were more resistant to electrochemical disinfection than E. coli. The complete disinfection of E.coli was achieved in <8min at an applied current density of 253A/m(2). Complete inactivation of E. faecalis and A.salina was achieved at the same current density after 60 and 40min of contact time, respectively. A. salina inactivation follows first-order kinetics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Atomic-Scale Simulation of Electrochemical Processes at Electrode/Water Interfaces under Referenced Bias Potential.

    Science.gov (United States)

    Bouzid, Assil; Pasquarello, Alfredo

    2018-04-19

    Based on constant Fermi-level molecular dynamics and a proper alignment scheme, we perform simulations of the Pt(111)/water interface under variable bias potential referenced to the standard hydrogen electrode (SHE). Our scheme yields a potential of zero charge μ pzc of ∼0.22 eV relative to the SHE and a double layer capacitance C dl of ≃19 μF cm -2 , in excellent agreement with experimental measurements. In addition, we study the structural reorganization of the electrical double layer for bias potentials ranging from -0.92 eV to +0.44 eV and find that O down configurations, which are dominant at potentials above the pzc, reorient to favor H down configurations as the measured potential becomes negative. Our modeling scheme allows one to not only access atomic-scale processes at metal/water interfaces, but also to quantitatively estimate macroscopic electrochemical quantities.

  13. Preparation, characterization and simulation studies of carbon nanotube electrodes for electrochemical energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Meissner, Frank; Endler, Ingolf [Fraunhofer-Institut fuer Keramische Technologien und Systeme (IKTS), Dresden (Germany); Lorrmann, Henning [Fraunhofer-Institut fuer Silicatforschung (ISC), Wuerzburg (Germany); Pastewka, Lars [Fraunhofer-Institut fuer Werkstoffmechanik (IWM), Freiburg im Breisgau (Germany)

    2010-07-01

    Chemical Vapor Deposition (CVD) was employed to synthesize multiwalled carbon nanotubes (MWCNT) on different carrier materials for electrode applications. In the field of electrochemical energy storage it is essential to grow MWCNT on conducting substrates. For this reason titanium nitride (TiN) layers as well as a copper foil were used as substrates. The MWCNT grown on TiN layers show diameters of about 20 nm and lengths up to 13 {mu}m. In the case of copper foil substrates a remarkably higher nanotube diameter of several tens of nanometers was found. First electrochemical characterization via cyclic voltammetry shows the potential of MWCNT as electrodes for energy storage applications. The CNT were measured in an organic carbonate electrolyte vs. a lithium counter electrode with various scan rates. Until now the preliminary investigations by cyclic voltammetry for electrodes consisting of aligned MWCNT on TiN showed a capacity of around 130 F g{sup -1} in the range of 1 - 3 V vs. Li/Li{sup +}. In support of the experiments we construct a one dimensional Poisson-Nernst-Planck (PNP) continuum model that has been shown to yield agreement with corresponding molecular dynamics simulations to model ion transport into these types of electrodes. Our simulations show that first the ions accumulate at the tips of the tubes because the inner volume of the electrodes is initially field-free. A homogeneous charge distribution is then established through diffusion. The PNP model is used to compute cyclic voltammograms which show qualitative agreement with the experiments. (orig.)

  14. In-situ electrochemical study of interaction of tribology and corrosion in artificial hip prosthesis simulators.

    Science.gov (United States)

    Yan, Yu; Dowson, Duncan; Neville, Anne

    2013-02-01

    The second generation Metal-on-Metal (MoM) hip replacements have been considered as an alternative to commonly used Polyethylene-on-Metal (PoM) joint prostheses due to polyethylene wear debris induced osteolysis. However, the role of corrosion and the biofilm formed under tribological contact are still not fully understood. Enhanced metal ion concentrations have been reported widely from hair, blood and urine samples of patients who received metal hip replacements and in isolated cases when abnormally high levels have caused adverse local tissue reactions. An understanding of the origin of metal ions is really important in order to design alloys for reduced ion release. Reciprocating pin-on-plate wear tester is a standard instrument to assess the interaction of corrosion and wear. However, more realistic hip simulator can provide a better understanding of tribocorrosion process for hip implants. It is very important to instrument the conventional hip simulator to enable electrochemical measurements. In this study, simple reciprocating pin-on-plate wear tests and hip simulator tests were compared. It was found that metal ions originated from two sources: (a) a depassivation of the contacting surfaces due to tribology (rubbing) and (b) corrosion of nano-sized wear particles generated from the contacting surfaces. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Development of simulation code for MOX dissolution using silver-mediated electrochemical method (Contract research)

    Energy Technology Data Exchange (ETDEWEB)

    Kida, Takashi; Umeda, Miki; Sugikawa, Susumu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    MOX dissolution using silver-mediated electrochemical method will be employed for the preparation of plutonium nitrate solution in the criticality safety experiments in the Nuclear Fuel Cycle Safety Engineering Research Facility (NUCEF). A simulation code for the MOX dissolution has been developed for the operating support. The present report describes the outline of the simulation code, a comparison with the experimental data and a parameter study on the MOX dissolution. The principle of this code is based on the Zundelevich's model for PuO{sub 2} dissolution using Ag(II). The influence of nitrous acid on the material balance of Ag(II) is taken into consideration and the surface area of MOX powder is evaluated by particle size distribution in this model. The comparison with experimental data was carried out to confirm the validity of this model. It was confirmed that the behavior of MOX dissolution could adequately be simulated using an appropriate MOX dissolution rate constant. It was found from the result of parameter studies that MOX particle size was major governing factor on the dissolution rate. (author)

  16. On the simulation of transients and accidents in PWRs with digital instrumentation and control using an LQR digital controller

    International Nuclear Information System (INIS)

    Alvarenga, M.A.B.; Melo, P.F. Frutuoso e; Medeiros, J.A.C.C.; Oliva, J.J. Rivero

    2015-01-01

    New nuclear power plant designs are including integrated I and C digital systems for protection, control, alarming and monitoring. Existing operating nuclear power plants, as is the case of Angra 1 nuclear power plant, have to consider the replacement of their I and C analog systems by digital systems for retrofitting their facilities. However, before replacing the analog control loops by digital ones it is necessary to design and evaluate their performance, which requires modeling of the plant and its control system with extensive simulations under several normal and abnormal operation conditions. This paper discusses the use of a linear quadratic regulator (LQR) digital controller for evaluating the plant stability behavior before the actuation of the reactor protection system. The objective is to evaluate the effect of digital controllers on plant behavior for several transients and accident conditions. For this purpose, a numerical model was developed and implemented as a MatlabTM tool. This paper discusses an adequate framework in order to simulate a set of transients and accidents that constitute the design basis in the final safety analysis report of PWR power plants to evaluate the performance of digital controllers such as LQR regulators.(author)

  17. Digital I and C system pre-tests using plant specific simulators

    International Nuclear Information System (INIS)

    Holl, B.; Probst, H.; Wischert, W.

    2006-01-01

    The paper focuses on strategic aspects of the implementation of modern digital instrumentation and control system (I and C) in nuclear power plant (NPP) training simulators and points out the way to identify the most appropriate implementation method of the digital I and C system in the simulator development environment which fulfils the requirement imposed by the nuclear power plants. This regards mainly training aspects, simulator as a test bed for design verification and validation (V and V), and software maintenance aspects with respect to future evolutions of the digital I and C system. (author)

  18. The establishment of Digital Image Capture System(DICS) using conventional simulator

    International Nuclear Information System (INIS)

    Oh, Tae Sung; Park, Jong Il; Byun, Young Sik; Shin, Hyun Kyoh

    2004-01-01

    The simulator is used to determine patient field and ensure the treatment field, which encompasses the required anatomy during patient normal movement such as during breathing. The latest simulator provide real time display of still, fluoroscopic and digitalized image, but conventional simulator is not yet. The purpose of this study is to introduce digital image capture system(DICS) using conventional simulator and clinical case using digital captured still and fluoroscopic image. We connect the video signal cable to the video terminal in the back up of simulator monitor, and connect the video jack to the A/D converter. After connection between the converter jack and computer, We can acquire still image and record fluoroscopic image with operating image capture program. The data created with this system can be used in patient treatment, and modified for verification by using image processing software. (j.e. photoshop, paintshop) DICS was able to establish easy and economical procedure. DCIS image was helpful for simulation. DICS imaging was powerful tool in the evaluation of the department specific patient positioning. Because the commercialized simulator based of digital capture is very expensive, it is not easily to establish DICS simulator in the most hospital. DICS using conventional simulator enable to utilize the practical use of image equal to high cost digitalized simulator and to research many clinical cases in case of using other software program.

  19. Disintegration of graphite matrix from the simulative high temperature gas-cooled reactor fuel element by electrochemical method

    International Nuclear Information System (INIS)

    Tian Lifang; Wen Mingfen; Li Linyan; Chen Jing

    2009-01-01

    Electrochemical method with salt as electrolyte has been studied to disintegrate the graphite matrix from the simulative high temperature gas-cooled reactor fuel elements. Ammonium nitrate was experimentally chosen as the appropriate electrolyte. The volume average diameter of disintegrated graphite fragments is about 100 μm and the maximal value is less than 900 μm. After disintegration, the weight of graphite is found to increase by about 20% without the release of a large amount of CO 2 probably owing to the partial oxidation to graphite in electrochemical process. The present work indicates that the improved electrochemical method has the potential to reduce the secondary nuclear waste and is a promising option to disintegrate graphite matrix from high temperature gas-cooled reactor spent fuel elements in the head-end of reprocessing.

  20. Development of Advanced Electrochemical Emission Spectroscopy for Monitoring Corrosion in Simulated DOE Liquid Waste

    Energy Technology Data Exchange (ETDEWEB)

    Digby Macdonald; Brian Marx; Balaji Soundararajan; Morgan Smith

    2005-07-28

    The different tasks that have been carried out under the current program are as follows: (1) Theoretical and experimental assessment of general corrosion of iron/steel in borate buffer solutions by using electrochemical impedance spectroscopy (EIS), ellipsometry and XPS techniques; (2) Development of a damage function analysis (DFA), which would help in predicting the accumulation of damage due to pitting corrosion in an environment prototypical of DOE liquid waste systems; (3) Experimental measurement of crack growth rate, acoustic emission signals, and coupling currents for fracture in carbon and low alloy steels as functions of mechanical (stress intensity), chemical (conductivity), electrochemical (corrosion potential, ECP), and microstructural (grain size, precipitate size, etc) variables in a systematic manner, with particular attention being focused on the structure of the noise in the current and its correlation with the acoustic emissions; (4) Development of fracture mechanisms for carbon and low alloy steels that are consistent with the crack growth rate, coupling current data and acoustic emissions; (5) Inserting advanced crack growth rate models for SCC into existing deterministic codes for predicting the evolution of corrosion damage in DOE liquid waste storage tanks; (6) Computer simulation of the anodic and cathodic activity on the surface of the steel samples in order to exactly predict the corrosion mechanisms; (7) Wavelet analysis of EC noise data from steel samples undergoing corrosion in an environment similar to that of the high level waste storage containers, to extract data pertaining to general, pitting and stress corrosion processes, from the overall data. The work has yielded a number of important findings, including an unequivocal demonstration of the role of chloride ion in passivity breakdown on nickel in terms of cation vacancy generation within the passive film, the first detection and characterization of individual micro fracture

  1. Development of the FIFI digital simulation language and an up-to-date users guide

    International Nuclear Information System (INIS)

    Hopkinson, A.

    1976-03-01

    The report describes some recent improvements to the FIFI digital simulation language following its conversion to FORTRAN IV for use on ICL 4-70 computers and including a stand alone guide for users. (author)

  2. Comparison of TiO2 photocatalysis, electrochemically assisted Fenton reaction and direct electrochemistry for simulation of phase I metabolism reactions of drugs

    NARCIS (Netherlands)

    Ruokolainen, Miina; Gül, Turan; Permentier, Hjalmar; Sikanen, Tiina; Kostiainen, Risto; Kotiaho, Tapio

    2016-01-01

    The feasibility of titanium dioxide (TiO2) photocatalysis, electrochemically assisted Fenton reaction (EC-Fenton) and direct electrochemical oxidation (EC) for simulation of phase I metabolism of drugs was studied by comparing the reaction products of buspirone, promazine, testosterone and

  3. [Precision of digital impressions with TRIOS under simulated intraoral impression taking conditions].

    Science.gov (United States)

    Yang, Xin; Sun, Yi-fei; Tian, Lei; Si, Wen-jie; Feng, Hai-lan; Liu, Yi-hong

    2015-02-18

    To evaluate the precision of digital impressions taken under simulated clinical impression taking conditions with TRIOS and to compare with the precision of extraoral digitalizations. Six #14-#17 epoxy resin dentitions with extracted #16 tooth preparations embedded were made. For each artificial dentition, (1)a silicone rubber impression was taken with individual tray, poured with type IV plaster,and digitalized with 3Shape D700 model scanner for 10 times; (2) fastened to a dental simulator, 10 digital impressions for each were taken with 3Shape TRIOS intraoral scanner. To assess the precision, best-fit algorithm and 3D comparison were conducted between repeated scan models pairwise by Geomagic Qualify 12.0, exported as averaged errors (AE) and color-coded diagrams. Non-parametric analysis was performed to compare the precisions of digital impressions and model images. The color-coded diagrams were used to show the deviations distributions. The mean of AE for digital impressions was 7.058 281 μm, which was greater than that of 4.092 363 μm for the model images (Pimpressions were no more than 10 μm, which meant that the consistency between the digital impressions was good. The deviations distribution was uniform in the model images,while nonuniform in the digital impressions with greater deviations lay mainly around the shoulders and interproximal surfaces. Digital impressions with TRIOS are of good precision and up to the clinical standard. Shoulders and interproximal surfaces scanning are more difficult.

  4. Electrochemical corrosion of carbon steel exposed to biodiesel/simulated seawater mixture

    Energy Technology Data Exchange (ETDEWEB)

    Wang Wei [College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100 (China); Department of Civil Engineering, University of Colorado Denver, Denver, CO 80217 (United States); Jenkins, Peter E. [Department of Mechanical Engineering, University of Colorado Denver, Denver, CO 80217 (United States); Ren Zhiyong, E-mail: zhiyong.ren@ucdenver.edu [Department of Civil Engineering, University of Colorado Denver, Denver, CO 80217 (United States)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Characterized the unique corrosion behaviour of carbon steel in the biodiesel/seawater environment. Black-Right-Pointing-Pointer Illustrated the in situ anode and cathode distribution using a wire beam electrode approach. Black-Right-Pointing-Pointer Elucidated the corrosion mechanisms based on ion transfer and oxygen concentration gradient. - Abstract: The electrochemical corrosion of carbon steel exposed to a mixture of biodiesel and 3.5% NaCl solution simulated seawater was characterized using wire beam electrode (WBE) technique. Both optical images and in situ potential and current measurements showed that all the anodes and most cathodes formed in the water phase, but the cathodes were mainly located along the water/biodiesel interface. Due to oxygen concentration gradient and cross-phase ion transfer, low corrosion currents were also detected in biodiesel phase. Further anode reaction was partially blocked by iron rust, but the alkali residual in biodiesel may interact with corrosion and deteriorate biodiesel quality.

  5. Electrochemical Corrosion Behavior of Low Carbon I-Beam Steels In Simulated Yucca Mountain Repository Environment

    Energy Technology Data Exchange (ETDEWEB)

    Arjunan, Venugopal; Lamb, Joshua; Chandra, Dhanesh; Daemen, Jack; Jones, Denny A.; Engelhard, Mark H.; Lea, Alan S.

    2005-04-01

    The electrochemical corrosion behavior of low carbon steel was examined in a simulated Yucca Mountain (YM) ground water by varying the electrolyte concentration and temperature under aerated and deaerated conditions. The results show that in deaerated conditions, the corrosion rate is low in the order of 0.6 to 4.5mpy, between 25 to 85 C, respectively. However, in aerated conditions the measured rates were expectedly very high, in the order of 3-55mpy in the above mentioned temperature levels. The rates initially increased up to 45 C, and a decreasing trend was observed with further increase in temperature from 65 to 85 C. The maximum corrosion rate was occurred at 45 C (54.5mpy). The low corrosion rates observed in all deaerated conditions, and in aerated solutions at higher temperatures were due to the preferential adsorption of Mg-species on the steel surface, as identified by XPS analyses. The results also indicate possible localized corrosion behavior of carbon steel in aerated conditions up to 45 C.

  6. Electrochemical Corrosion Behavior of Low Carbon I-Beam Steels In Simulated Yucca Mountain Repository Environment

    International Nuclear Information System (INIS)

    Arjunan, Venugopal; Lamb, Joshua; Chandra, Dhanesh; Daemen, Jack; Jones, Denny A.; Engelhard, Mark H.; Lea, Alan S.

    2005-01-01

    The electrochemical corrosion behavior of low carbon steel was examined in a simulated Yucca Mountain (YM) ground water by varying the electrolyte concentration and temperature under aerated and deaerated conditions. The results show that in deaerated conditions, the corrosion rate is low in the order of 0.6 to 4.5mpy, between 25 to 85 C, respectively. However, in aerated conditions the measured rates were expectedly very high, in the order of 3-55mpy in the above mentioned temperature levels. The rates initially increased up to 45 C, and a decreasing trend was observed with further increase in temperature from 65 to 85 C. The maximum corrosion rate was occurred at 45 C (54.5mpy). The low corrosion rates observed in all deaerated conditions, and in aerated solutions at higher temperatures were due to the preferential adsorption of Mg-species on the steel surface, as identified by XPS analyses. The results also indicate possible localized corrosion behavior of carbon steel in aerated conditions up to 45 C

  7. Modeling and simulation of the fluid flow in wire electrochemical machining with rotating tool (wire ECM)

    Science.gov (United States)

    Klocke, F.; Herrig, T.; Zeis, M.; Klink, A.

    2017-10-01

    Combining the working principle of electrochemical machining (ECM) with a universal rotating tool, like a wire, could manage lots of challenges of the classical ECM sinking process. Such a wire-ECM process could be able to machine flexible and efficient 2.5-dimensional geometries like fir tree slots in turbine discs. Nowadays, established manufacturing technologies for slotting turbine discs are broaching and wire electrical discharge machining (wire EDM). Nevertheless, high requirements on surface integrity of turbine parts need cost intensive process development and - in case of wire-EDM - trim cuts to reduce the heat affected rim zone. Due to the process specific advantages, ECM is an attractive alternative manufacturing technology and is getting more and more relevant for sinking applications within the last few years. But ECM is also opposed with high costs for process development and complex electrolyte flow devices. In the past, few studies dealt with the development of a wire ECM process to meet these challenges. However, previous concepts of wire ECM were only suitable for micro machining applications. Due to insufficient flushing concepts the application of the process for machining macro geometries failed. Therefore, this paper presents the modeling and simulation of a new flushing approach for process assessment. The suitability of a rotating structured wire electrode in combination with an axial flushing for electrodes with high aspect ratios is investigated and discussed.

  8. Signal-to-noise ratio estimation in digital computer simulation of lowpass and bandpass systems with applications to analog and digital communications, volume 3

    Science.gov (United States)

    Tranter, W. H.; Turner, M. D.

    1977-01-01

    Techniques are developed to estimate power gain, delay, signal-to-noise ratio, and mean square error in digital computer simulations of lowpass and bandpass systems. The techniques are applied to analog and digital communications. The signal-to-noise ratio estimates are shown to be maximum likelihood estimates in additive white Gaussian noise. The methods are seen to be especially useful for digital communication systems where the mapping from the signal-to-noise ratio to the error probability can be obtained. Simulation results show the techniques developed to be accurate and quite versatile in evaluating the performance of many systems through digital computer simulation.

  9. Simulation and Digitization of a Gas Electron Multiplier Detector Using Geant4 and an Object-Oriented Digitization Program

    Science.gov (United States)

    McMullen, Timothy; Liyanage, Nilanga; Xiong, Weizhi; Zhao, Zhiwen

    2017-01-01

    Our research has focused on simulating the response of a Gas Electron Multiplier (GEM) detector using computational methods. GEM detectors provide a cost effective solution for radiation detection in high rate environments. A detailed simulation of GEM detector response to radiation is essential for the successful adaption of these detectors to different applications. Using Geant4 Monte Carlo (GEMC), a wrapper around Geant4 which has been successfully used to simulate the Solenoidal Large Intensity Device (SoLID) at Jefferson Lab, we are developing a simulation of a GEM chamber similar to the detectors currently used in our lab. We are also refining an object-oriented digitization program, which translates energy deposition information from GEMC into electronic readout which resembles the readout from our physical detectors. We have run the simulation with beta particles produced by the simulated decay of a 90Sr source, as well as with a simulated bremsstrahlung spectrum. Comparing the simulation data with real GEM data taken under similar conditions is used to refine the simulation parameters. Comparisons between results from the simulations and results from detector tests will be presented.

  10. A methodology to simulate the cutting process for a nuclear dismantling simulation based on a digital manufacturing platform

    International Nuclear Information System (INIS)

    Hyun, Dongjun; Kim, Ikjune; Lee, Jonghwan; Kim, Geun-Ho; Jeong, Kwan-Seong; Choi, Byung Seon; Moon, Jeikwon

    2017-01-01

    Highlights: • Goal is to provide existing tech. with cutting function handling dismantling process. • Proposed tech. can handle various cutting situations in the dismantlement activities. • Proposed tech. can be implemented in existing graphical process simulation software. • Simulation results have demonstrated that the proposed technology achieves its goal. • Proposed tech. enlarges application of graphic simulation into dismantlement activity. - Abstract: This study proposes a methodology to simulate the cutting process in a digital manufacturing platform for the flexible planning of nuclear facility decommissioning. During the planning phase of decommissioning, visualization and verification using process simulation can be powerful tools for the flexible planning of the dismantling process of highly radioactive, large and complex nuclear facilities. However, existing research and commercial solutions are not sufficient for such a situation because complete segmented digital models for the dismantling objects such as the reactor vessel, internal assembly, and closure head must be prepared before the process simulation. The preparation work has significantly impeded the broad application of process simulation due to the complexity and workload. The methodology of process simulation proposed in this paper can flexibly handle various dismantling processes including repetitive object cuttings over heavy and complex structures using a digital manufacturing platform. The proposed methodology, which is applied to dismantling scenarios of a Korean nuclear power plant in this paper, is expected to reduce the complexity and workload of nuclear dismantling simulations.

  11. Simultaneously Coupled Mechanical-Electrochemical-Thermal Simulation of Lithium-Ion Cells: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chao; Santhanagopalan, Shriram; Sprague, Michael A.; Pesaran, Ahmad A.

    2016-08-01

    Understanding the combined electrochemical-thermal and mechanical response of a system has a variety of applications, for example, structural failure from electrochemical fatigue and the potential induced changes of material properties. For lithium-ion batteries, there is an added concern over the safety of the system in the event of mechanical failure of the cell components. In this work, we present a generic multi-scale simultaneously coupled mechanical-electrochemical-thermal model to examine the interaction between mechanical failure and electrochemical-thermal responses. We treat the battery cell as a homogeneous material while locally we explicitly solve for the mechanical response of individual components using a homogenization model and the electrochemical-thermal responses using an electrochemical model for the battery. A benchmark problem is established to demonstrate the proposed modeling framework. The model shows the capability to capture the gradual evolution of cell electrochemical-thermal responses, and predicts the variation of those responses under different short-circuit conditions.

  12. SIDAS - a block-diagram programming system for the interactive digital simulation of dynamic systems

    International Nuclear Information System (INIS)

    Moll, H.; Burkhardt, H.

    1978-01-01

    The paper describes a block-oriented digital simulation system. Some applications clarify the basic structure and operation. The main features of the system are: Easy handling and manipulation through interactive graphical input/output, operational flexibility through successive simulation runs and online modification of parameters, direct access to all facilities of a medium-sized computing system. (orig.) [de

  13. Methodology for digital radiography simulation using the Monte Carlo code MCNPX for industrial applications

    International Nuclear Information System (INIS)

    Souza, E.M.; Correa, S.C.A.; Silva, A.X.; Lopes, R.T.; Oliveira, D.F.

    2008-01-01

    This work presents a methodology for digital radiography simulation for industrial applications using the MCNPX radiography tally. In order to perform the simulation, the energy-dependent response of a BaFBr imaging plate detector was modeled and introduced in the MCNPX radiography tally input. In addition, a post-processing program was used to convert the MCNPX radiography tally output into 16-bit digital images. Simulated and experimental images of a steel pipe containing corrosion alveoli and stress corrosion cracking were compared, and the results showed good agreement between both images

  14. Development of a new approach to simulate a particle track under electrochemical etching in polymeric detectors

    International Nuclear Information System (INIS)

    Mostofizadeh, Ali; Huang, Yudong; Kardan, M. Reza; Babakhani, Asad; Sun Xiudong

    2012-01-01

    A numerical approach based on image processing was developed to simulate a particle track in a typical polymeric detector, e.g., polycarbonate, under electrochemical etching. The physical parameters such as applied voltage, detector thickness, track length, the radii of curvature at the tip of track, and the incidence angle of the particle were considered, and then the boundary condition of the problem was defined. A numerical method was developed to solve Laplace equation, and then the distribution of the applied voltage was obtained through the polymer volume. Subsequently, the electric field strengths in the detector elements were computed. In each step of the computation, an image processing technique was applied to convert the computed values to grayscale images. The results showed that a numerical solution to Laplace equation is dedicatedly an attractive approach to provide us the accurate values of electric field strength through the polymeric detector volume as well as the track area. According to the results, for a particular condition of the detector thickness equal to 445 μm, track length of 21 μm, the radii of 2.5 μm at track tip, the incidence angle of 90°, and the applied voltage of 2080 V, after computing Laplace equation for an extremely high population of 4000 × 4000 elements of detector, the average field strength at the tip of track was computed equal to 0.31 MV cm −1 which is in the range of dielectric strength for polymers. The results by our computation confirm Smythe’s model for estimating the ECE-tracks.

  15. Digitization

    DEFF Research Database (Denmark)

    Finnemann, Niels Ole

    2014-01-01

    what a concept of digital media might add to the understanding of processes of mediatization and what the concept of mediatization might add to the understanding of digital media. It is argued that digital media open an array of new trajectories in human communication, trajectories which were...

  16. Development of Advanced Electrochemical Emission Spectroscopy for Monitoring Corrosion in Simulated DOE Liquid Waste

    Energy Technology Data Exchange (ETDEWEB)

    Digby D. Macdonald; Brian M. Marx; Sejin Ahn; Julio de Ruiz; Balaji Soundararaja; Morgan Smith; and Wendy Coulson

    2008-01-15

    Various forms of general and localized corrosion represent principal threats to the integrity of DOE liquid waste storage tanks. These tanks, which are of a single wall or double wall design, depending upon their age, are fabricated from welded carbon steel and contain a complex waste-form comprised of NaOH and NaNO{sub 3}, along with trace amounts of phosphate, sulfate, carbonate, and chloride. Because waste leakage can have a profound environmental impact, considerable interest exists in predicting the accumulation of corrosion damage, so as to more effectively schedule maintenance and repair. The different tasks that are being carried out under the current program are as follows: (1) Theoretical and experimental assessment of general corrosion of iron/steel in borate buffer solutions by using electrochemical impedance spectroscopy (EIS), ellipsometry and XPS techniques; (2) Development of a damage function analysis (DFA) which would help in predicting the accumulation of damage due to pitting corrosion in an environment prototypical of DOE liquid waste systems; (3) Experimental measurement of crack growth rate, acoustic emission signals and coupling currents for fracture in carbon and low alloy steels as functions of mechanical (stress intensity), chemical (conductivity), electrochemical (corrosion potential, ECP), and microstructural (grain size, precipitate size, etc) variables in a systematic manner, with particular attention being focused on the structure of the noise in the current and its correlation with the acoustic emissions; (4) Development of fracture mechanisms for carbon and low alloy steels that are consistent with the crack growth rate, coupling current data and acoustic emissions; (5) Inserting advanced crack growth rate models for SCC into existing deterministic codes for predicting the evolution of corrosion damage in DOE liquid waste storage tanks; (6) Computer simulation of the anodic and cathodic activity on the surface of the steel samples

  17. Digital Quantum Simulation of Z2 Lattice Gauge Theories with Dynamical Fermionic Matter

    Science.gov (United States)

    Zohar, Erez; Farace, Alessandro; Reznik, Benni; Cirac, J. Ignacio

    2017-02-01

    We propose a scheme for digital quantum simulation of lattice gauge theories with dynamical fermions. Using a layered optical lattice with ancilla atoms that can move and interact with the other atoms (simulating the physical degrees of freedom), we obtain a stroboscopic dynamics which yields the four-body plaquette interactions, arising in models with (2 +1 ) and higher dimensions, without the use of perturbation theory. As an example we show how to simulate a Z2 model in (2 +1 ) dimensions.

  18. Method for simulating dose reduction in digital mammography using the Anscombe transformation

    OpenAIRE

    Borges, Lucas R.; de Oliveira, Helder C. R.; Nunes, Polyana F.; Bakic, Predrag R.; Maidment, Andrew D. A.; Vieira, Marcelo A. C.

    2016-01-01

    Purpose: This work proposes an accurate method for simulating dose reduction in digital mammography starting from a clinical image acquired with a standard dose. Methods: The method developed in this work consists of scaling a mammogram acquired at the standard radiation dose and adding signal-dependent noise. The algorithm accounts for specific issues relevant in digital mammography images, such as anisotropic noise, spatial variations in pixel gain, and the effect of dose reduction on the d...

  19. Noise-shaping all-digital phase-locked loops modeling, simulation, analysis and design

    CERN Document Server

    Brandonisio, Francesco

    2014-01-01

    This book presents a novel approach to the analysis and design of all-digital phase-locked loops (ADPLLs), technology widely used in wireless communication devices. The authors provide an overview of ADPLL architectures, time-to-digital converters (TDCs) and noise shaping. Realistic examples illustrate how to analyze and simulate phase noise in the presence of sigma-delta modulation and time-to-digital conversion. Readers will gain a deep understanding of ADPLLs and the central role played by noise-shaping. A range of ADPLL and TDC architectures are presented in unified manner. Analytical and simulation tools are discussed in detail. Matlab code is included that can be reused to design, simulate and analyze the ADPLL architectures that are presented in the book.   • Discusses in detail a wide range of all-digital phase-locked loops architectures; • Presents a unified framework in which to model time-to-digital converters for ADPLLs; • Explains a procedure to predict and simulate phase noise in oscil...

  20. Quantitative evaluation of fault coverage for digitalized systems in NPPs using simulated fault injection method

    International Nuclear Information System (INIS)

    Kim, Suk Joon

    2004-02-01

    Even though digital systems have numerous advantages such as precise processing of data, enhanced calculation capability over the conventional analog systems, there is a strong restriction on the application of digital systems to the safety systems in nuclear power plants (NPPs). This is because we do not fully understand the reliability of digital systems, and therefore we cannot guarantee the safety of digital systems. But, as the need for introduction of digital systems to safety systems in NPPs increasing, the need for the quantitative analysis on the safety of digital systems is also increasing. NPPs, which are quite conservative in terms of safety, require proving the reliability of digital systems when applied them to the NPPs. Moreover, digital systems which are applied to the NPPs are required to increase the overall safety of NPPs. however, it is very difficult to evaluate the reliability of digital systems because they include the complex fault processing mechanisms at various levels of the systems. Software is another obstacle in reliability assessment of the systems that requires ultra-high reliability. In this work, the fault detection coverage for the digital system is evaluated using simulated fault injection method. The target system is the Local Coincidence Logic (LCL) processor in Digital Plant Protection System (DPPS). However, as the LCL processor is difficult to design equally for evaluating the fault detection coverage, the LCL system has to be simplified. The simulations for evaluating the fault detection coverage of components are performed by dividing into two cases and the failure rates of components are evaluated using MIL-HDBK-217F. Using these results, the fault detection coverage of simplified LCL system is evaluated. In the experiments, heartbeat signals were just emitted at regular interval after executing logic without self-checking algorithm. When faults are injected into the simplified system, fault occurrence can be detected by

  1. Digital filter algorithm study and simulation of SSRF feedback system

    International Nuclear Information System (INIS)

    Han Lifeng; Yuan Renxian; Ye Kairong

    2008-01-01

    Least Square Fitting was used to design a FIR filter of the transverse feedback system for the Shanghai Synchrotron Radiation Facility (SSRF). The algorithm helped us to set appropriate gain and phase at special frequency points. This reduced the power needed for damping the beam oscillations, which was proved by System View signal simulation. And with AT (Accelerator Tool) simulation, the Gain calculation and settings to the output signals from the FIR filter were deduced. The relationship between the Kicker power and the system damping time was also given. (authors)

  2. Sustainability Enhancement of a Turbine Vane Manufacturing Cell through Digital Simulation-Based Design

    Directory of Open Access Journals (Sweden)

    Alessandra Caggiano

    2016-09-01

    Full Text Available Modern manufacturing systems should satisfy emerging needs related to sustainable development. The design of sustainable manufacturing systems can be valuably supported by simulation, traditionally employed mainly for time and cost reduction. In this paper, a multi-purpose digital simulation approach is proposed to deal with sustainable manufacturing systems design through Discrete Event Simulation (DES and 3D digital human modelling. DES models integrated with data on power consumption of the manufacturing equipment are utilized to simulate different scenarios with the aim to improve productivity as well as energy efficiency, avoiding resource and energy waste. 3D simulation based on digital human modelling is employed to assess human factors issues related to ergonomics and safety of manufacturing systems. The approach is implemented for the sustainability enhancement of a real manufacturing cell of the aerospace industry, automated by robotic deburring. Alternative scenarios are proposed and simulated, obtaining a significant improvement in terms of energy efficiency (−87% for the new deburring cell, and a reduction of energy consumption around −69% for the coordinate measuring machine, with high potential annual energy cost savings and increased energy efficiency. Moreover, the simulation-based ergonomic assessment of human operator postures allows 25% improvement of the workcell ergonomic index.

  3. Simulation Exercises for an Undergraduate Digital Process Control Course.

    Science.gov (United States)

    Reeves, Deborah E.; Schork, F. Joseph

    1988-01-01

    Presents six problems from an alternative approach to homework traditionally given to follow-up lectures. Stresses the advantage of longer term exercises which allow for creativity and independence on the part of the student. Problems include: "System Model,""Open-Loop Simulation,""PID Control,""Dahlin…

  4. Conventional and digital radiographic methods in the detection of simulated external root resorptions: A comparative study

    Directory of Open Access Journals (Sweden)

    C J Sanjay

    2009-01-01

    Full Text Available Objective : To evaluate and compare the efficacy of conventional and digital radiographic methods in the detection of simulated external root resorption cavities and also to evaluate whether the detectability was influenced by resorption cavity sizes. Methods : Thirty-two selected teeth from human dentate mandibles were radiographed in orthoradial, mesioradial and distoradial aspect using conventional film (Insight Kodak F-speed; Eastman Kodak, Rochester, NY and a digital sensor (Trophy RVG advanced imaging system with 0.7mm and 1.0mm deep cavities prepared on their vestibular, mesial and distal surfaces at the cervical, middle and apical thirds. Three dental professionals, an endodontist, a radiologist and a general practitioner, evaluated the images twice with a one-week time interval. Results : No statistical significance was seen in the first observation for both conventional and digital radiographic methods in the detection of simulated external root resorptions and for small and medium cavities but statistical difference was noted in the second observation (P< 0.001 for both the methods. Conclusion : Considering the methodology and the overall results, conventional radiographic method (F-speed performed slightly better than the digital radiographic method in the detection of simulated radiographic method but better consistency was seen with the digital system. Overall size of the resorption cavity had no influence on the performance of both methods and suggests that initial external root resorption lesion is not well-appreciated with both the methods as compared to the advanced lesion.

  5. The use of digital simulation to improve the cyclic voltammetric determination of rate constants for homogeneous chemical reactions following charge transfers

    International Nuclear Information System (INIS)

    Mozo, J.D.; Carbajo, J.; Sturm, J.C.; Nunez-Vergara, L.J.; Moscoso, R.; Squella, J.A.

    2011-01-01

    Cyclic voltammetry (CV) is a very useful electrochemical tool used to study reaction systems that include chemical steps that are coupled to electron transfers. This type of system generally involves the chemical reaction of an electrochemically generated free radical. Published methods exist that are used to determine the kinetics of electrochemically initiated chemical reactions from the measurements of the peak current ratio (i pa /i pc ) of a cyclic voltammogram. The published method requires working curves to relate a kinetic parameter to the peak current ratio. In the presented work, a digital simulation package was used to obtain improved working curves for specific working conditions. The curves were compared with the published results for the first- and second-order chemical reactions following the charge transfer step mechanisms. According to the presented results, the previously published working curve is reliable for a mechanism with a first-order chemical reaction; however, a change in the switching potential requires a recalculation of the curve. In the case of mechanisms with a second-order step (dimerisation and disproportionation), several different views exist on how the second-order chemical term should be expressed so that different values of the constant are obtained. Parameters such as electrode type, electrode area, electroactive species concentration, switching potential, scan rate and method for peak current ratio calculation modify the working curves and must always be specified. We propose a standardised method to obtain the most reliable kinetic constant values. The results of this work will permit researchers who handle simulation software to construct their own working curves. Additionally, those who do not have the simulation software could use the working curves described here. The revelations of the presented experiments may be useful to a broad chemistry audience because this study presents a simple and low-cost procedure for the

  6. Simulating Optical Correlation on a Digital Image Processing

    Science.gov (United States)

    Denning, Bryan

    1998-04-01

    Optical Correlation is a useful tool for recognizing objects in video scenes. In this paper, we explore the characteristics of a composite filter known as the equal correlation peak synthetic discriminant function (ECP SDF). Although the ECP SDF is commonly used in coherent optical correlation systems, the authors simulated the operation of a correlator using an EPIX frame grabber/image processor board to complete this work. Issues pertaining to simulating correlation using an EPIX board will be discussed. Additionally, the ability of the ECP SDF to detect objects that have been subjected to inplane rotation and small scale changes will be addressed by correlating filters against true-class objects placed randomly within a scene. To test the robustness of the filters, the results of correlating the filter against false-class objects that closely resemble the true class will also be presented.

  7. The use of digital games and simulators in veterinary education: an overview with examples

    NARCIS (Netherlands)

    de Bie, M.; Lipman, L.J.A.

    2012-01-01

    In view of current technological possibilities and the popularity of games, the interest in games for educational purposes is remarkably on the rise. This article outlines the (future) use of (digital) games and simulators in several disciplines, especially in the veterinary curriculum. The

  8. Development and validation of a digital work simulation to predict workplace deviance

    NARCIS (Netherlands)

    Dubbelt, L.; Oostrom, J.K.; drs. Hiemstra, A.M.F.; Modderman, J.P.L.

    2015-01-01

    ”This paper describes a new and innovative measure that is developed to predict workplace deviance through the measurement of Machiavellianism and Compliant Behavior. Two field studies were conducted to study the validity of the digital work simulation. In Study 1, (N = 113) support was found for

  9. Validation of a digital work simulation to assess Macchiavellianism and compliant behavior

    NARCIS (Netherlands)

    Dubbelt, L.; Oostrom, J.K.; Hiemstra, A.M.; Modderman, J.P.L.

    ”This paper describes a new and innovative measure that is developed to predict workplace deviance through the measurement of Machiavellianism and Compliant Behavior. Two field studies were conducted to study the validity of the digital work simulation. In Study 1, (N = 113) support was found for

  10. Effects of Simulated Conductive Hearing Loss on Dichotic Listening Performance for Digits.

    Science.gov (United States)

    Niccum, Nancy; And Others

    1987-01-01

    Conductive hearing losses were simulated in 12 subjects aged 19-35 and performance was compared with normal hearing performance. Digit dichotic performance was affected when test intensities were within 8 dB of the "knees" (95 percent correct point) of monotic performance intensity functions, but not when test intensities were 12 dB…

  11. A behavioral simulator for switched-capacitor sigma-delta modulator analog-to-digital converter

    International Nuclear Information System (INIS)

    San, H. Y.; Rezaul Hasan, S. M.

    1998-01-01

    In this paper, a PC-based simulator for state of the art oversampled switched-capacitor sigma-delta analog-to-digital converters is presented. The proposed simulator employs behavioral model of switched-capacitor integrator and non-linear quantizer to stimulate the system. The behavioral simulation of the integrator is also verified with SPICE. The simulator is fully integrated and standalone. It integrates an input netlist file interpreter, a behavioral simulator, a generic part library and a powerful post-processor to evaluate the SNR, SDR And TSNR. Both passive and active sensitivities can be investigated by the proposed simulator. The simulator is coded in C++, and is very fast

  12. Digitization of simulated clinical dental impressions: virtual three-dimensional analysis of exactness.

    Science.gov (United States)

    Persson, Anna S K; Odén, Agneta; Andersson, Matts; Sandborgh-Englund, Gunilla

    2009-07-01

    To compare the exactness of simulated clinical impressions and stone replicas of crown preparations, using digitization and virtual three-dimensional analysis. Three master dies (mandibular incisor, canine and molar) were prepared for full crowns, mounted in full dental arches in a plane line articulator. Eight impressions were taken using an experimental monophase vinyl polysiloxane-based material. Stone replicas were poured in type IV stone (Vel-Mix Stone; Kerr). The master dies and the stone replicas were digitized in a touch-probe scanner (Procera) Forte; Nobel Biocare AB) and the impressions in a laser scanner (D250, 3Shape A/S), to create virtual models. The resulting point-clouds from the digitization of the master dies were used as CAD-Reference-Models (CRM). Discrepancies between the points in the pointclouds and the corresponding CRM were measured by a matching-software (CopyCAD 6.504 SP2; Delcam Plc). The distribution of the discrepancies was analyzed and depicted on color-difference maps. The discrepancies of the digitized impressions and the stone replicas compared to the CRM were of similar size with a mean+/-SD within 40microm, with the exception of two of the digitized molar impressions. The precision of the digitized impressions and stone replicas did not differ significantly (F=4.2; p=0.053). However, the shape affected the digitization (F=5.4; p=0.013) and the interaction effect of shape and digitization source (impression or stone replica) was pronounced (F=28; pimpressions varied with shape. Both impressions and stone replicas can be digitized repeatedly with a high reliability.

  13. Operational characteristic analysis of conduction cooling HTS SMES for Real Time Digital Simulator based power quality enhancement simulation

    International Nuclear Information System (INIS)

    Kim, A.R.; Kim, G.H.; Kim, K.M.; Kim, D.W.; Park, M.; Yu, I.K.; Kim, S.H.; Sim, K.; Sohn, M.H.; Seong, K.C.

    2010-01-01

    This paper analyzes the operational characteristics of conduction cooling Superconducting Magnetic Energy Storage (SMES) through a real hardware based simulation. To analyze the operational characteristics, the authors manufactured a small-scale toroidal-type SMES and implemented a Real Time Digital Simulator (RTDS) based power quality enhancement simulation. The method can consider not only electrical characteristics such as inductance and current but also temperature characteristic by using the real SMES system. In order to prove the effectiveness of the proposed method, a voltage sag compensation simulation has been implemented using the RTDS connected with the High Temperature Superconducting (HTS) model coil and DC/DC converter system, and the simulation results are discussed in detail.

  14. Digital system verification a combined formal methods and simulation framework

    CERN Document Server

    Li, Lun

    2010-01-01

    Integrated circuit capacity follows Moore's law, and chips are commonly produced at the time of this writing with over 70 million gates per device. Ensuring correct functional behavior of such large designs before fabrication poses an extremely challenging problem. Formal verification validates the correctness of the implementation of a design with respect to its specification through mathematical proof techniques. Formal techniques have been emerging as commercialized EDA tools in the past decade. Simulation remains a predominantly used tool to validate a design in industry. After more than 5

  15. Detection of localized and general corrosion of mild steel in simulated defense nuclear waste solutions using electrochemical noise analysis

    International Nuclear Information System (INIS)

    Edgemon, G.L.; Ohl, P.C.; Bell, G.E.C.; Wilson, D.F.

    1995-12-01

    Underground waste tanks fabricated from mild steel store more than 60 million gallons of radioactive waste from 50 years of weapons production. Leaks are suspected in a significant number of tanks. The probable modes of corrosion failures are reported to be localized corrosion (e.g. nitrate stress corrosion cracking and pitting). The use of electrochemical noise (EN) for the monitoring and detection of localized corrosion processes has received considerable attention and application over the last several years. Proof of principle laboratory tests were conducted to verify the capability of EN evaluation to detect localized corrosion and to compare the predictions of general corrosion obtained from EN with those derived from other sources. Simple, pre-fabricated flat and U-bend specimens of steel alloys A516-Grade 60 (UNS K02100) and A537-CL 1 (UNS K02400) were immersed in temperature controlled simulated waste solutions. The simulated waste solution was either 5M NaNO 3 with 0.3M NaOH at 90 C or 11M NaNO 3 with 0.15M NaOH at 95 C. The electrochemical noise activity from the specimens was monitored and recorded for periods ranging between 140 and 240 hours. At the end of each test period, the specimens were metallographically examined to correlated EN data with corrosion damage

  16. DIGITAL

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — The Digital Flood Insurance Rate Map (DFIRM) Database depicts flood risk information and supporting data used to develop the risk data. The primary risk...

  17. Pyroprocess Deployment Analysis and Remote Accessibility Experiment using Digital Mockup and Simulation

    International Nuclear Information System (INIS)

    Kim, K. H.; Park, H. S.; Kim, S. H.; Choi, C. H.; Lee, H. J.; Park, B. S.; Yoon, G. S.; Kim, K. H.; Kim, H. D.

    2009-11-01

    Nuclear fuel cycle facility that treats with spent fuel must be designed and manufactured a Pyroprcess facility and process with considering a speciality as every process have to be processed remotely. To prevent an unexpected accident under a circumstance that must operate with a remote manipulator after done the Pyroprocess facility, an procedure related Pyroprocess operation and maintenance need to establish it in the early design stage. To develop the simulator that is mixed by 3D modelling and simulation, a system architecture was designed. A full-scale digital mockup with a real pyroprocess facility was designed and manufactured. An inverse kinematics algorithm of remote manipulator was created in order to simulate an accident and repair that could happen in pyroprocess operation and maintenance under a virtual digital mockup environment. Deployment analysis of process devices through a workspace analysis was carried out and Accessibility analysis by using haptic device was examined

  18. A 3D technique for simulation of irregular electron treatment fields using a digital camera

    International Nuclear Information System (INIS)

    Bassalow, Roustem; Sidhu, Narinder P.

    2003-01-01

    Cerrobend inserts, which define electron field apertures, are manufactured at our institution using perspex templates. Contours are reproduced manually on these templates at the simulator from the field outlines drawn on the skin or mask of a patient. A previously reported technique for simulation of electron treatment fields uses a digital camera to eliminate the need for such templates. However, avoidance of the image distortions introduced by non-flat surfaces on which the electron field outlines were drawn could only be achieved by limiting the application of this technique to surfaces which were flat or near flat. We present a technique that employs a digital camera and allows simulation of electron treatment fields contoured on an anatomical surface of an arbitrary three-dimensional (3D) shape, such as that of the neck, extremities, face, or breast. The procedure is fast, accurate, and easy to perform

  19. Six-degree-of-freedom missile simulation using the ADI AD 100 digital computer and ADSIM simulation language

    Science.gov (United States)

    Zwaanenburg, Koos

    1989-01-01

    The use of an AD 100 computer and the ADSIM language in the six-degree-of-freedom digital simulation of an air-to-ground missile is illustrated. The missile is launched from a moving platform, typically a helicopter, and is capable of striking a mobile target up to 10 kilometers away. The missile could be any tactical missile. The performance numbers of the AD 100 show that it is possible to implement a high performance missile model in a real-time simulation without the problems associated with an implementation on a general purpose computer using FORTRAN.

  20. Digital Quantum Simulation of Z_{2} Lattice Gauge Theories with Dynamical Fermionic Matter.

    Science.gov (United States)

    Zohar, Erez; Farace, Alessandro; Reznik, Benni; Cirac, J Ignacio

    2017-02-17

    We propose a scheme for digital quantum simulation of lattice gauge theories with dynamical fermions. Using a layered optical lattice with ancilla atoms that can move and interact with the other atoms (simulating the physical degrees of freedom), we obtain a stroboscopic dynamics which yields the four-body plaquette interactions, arising in models with (2+1) and higher dimensions, without the use of perturbation theory. As an example we show how to simulate a Z_{2} model in (2+1) dimensions.

  1. Method for Lumped Parameter simulation of Digital Displacement pumps/motors based on CFD

    DEFF Research Database (Denmark)

    Rømer, Daniel; Johansen, Per; Pedersen, Henrik C.

    2013-01-01

    Digital displacement fluid power pumps/motors offers improved efficiency and performance compared to traditional variable displacement pump/motors. These improvements are made possible by using efficient electronically controlled seat valves and careful design of the flow geometry. To optimize...... the design and control of digital displacement machines, there is a need for simulation models, preferably models with low computational cost. Therefore, a low computational cost generic lumped parameter model of digital displacement machine is presented, including a method for determining the needed model...... parameters based on steady CFD results, in order to take detailed geometry information into account. The response of the lumped parameter model is compared to a computational expensive transient CFD model for an example geometry....

  2. An Object-Oriented Simulator for 3D Digital Breast Tomosynthesis Imaging System

    Directory of Open Access Journals (Sweden)

    Saeed Seyyedi

    2013-01-01

    Full Text Available Digital breast tomosynthesis (DBT is an innovative imaging modality that provides 3D reconstructed images of breast to detect the breast cancer. Projections obtained with an X-ray source moving in a limited angle interval are used to reconstruct 3D image of breast. Several reconstruction algorithms are available for DBT imaging. Filtered back projection algorithm has traditionally been used to reconstruct images from projections. Iterative reconstruction algorithms such as algebraic reconstruction technique (ART were later developed. Recently, compressed sensing based methods have been proposed in tomosynthesis imaging problem. We have developed an object-oriented simulator for 3D digital breast tomosynthesis (DBT imaging system using C++ programming language. The simulator is capable of implementing different iterative and compressed sensing based reconstruction methods on 3D digital tomosynthesis data sets and phantom models. A user friendly graphical user interface (GUI helps users to select and run the desired methods on the designed phantom models or real data sets. The simulator has been tested on a phantom study that simulates breast tomosynthesis imaging problem. Results obtained with various methods including algebraic reconstruction technique (ART and total variation regularized reconstruction techniques (ART+TV are presented. Reconstruction results of the methods are compared both visually and quantitatively by evaluating performances of the methods using mean structural similarity (MSSIM values.

  3. An object-oriented simulator for 3D digital breast tomosynthesis imaging system.

    Science.gov (United States)

    Seyyedi, Saeed; Cengiz, Kubra; Kamasak, Mustafa; Yildirim, Isa

    2013-01-01

    Digital breast tomosynthesis (DBT) is an innovative imaging modality that provides 3D reconstructed images of breast to detect the breast cancer. Projections obtained with an X-ray source moving in a limited angle interval are used to reconstruct 3D image of breast. Several reconstruction algorithms are available for DBT imaging. Filtered back projection algorithm has traditionally been used to reconstruct images from projections. Iterative reconstruction algorithms such as algebraic reconstruction technique (ART) were later developed. Recently, compressed sensing based methods have been proposed in tomosynthesis imaging problem. We have developed an object-oriented simulator for 3D digital breast tomosynthesis (DBT) imaging system using C++ programming language. The simulator is capable of implementing different iterative and compressed sensing based reconstruction methods on 3D digital tomosynthesis data sets and phantom models. A user friendly graphical user interface (GUI) helps users to select and run the desired methods on the designed phantom models or real data sets. The simulator has been tested on a phantom study that simulates breast tomosynthesis imaging problem. Results obtained with various methods including algebraic reconstruction technique (ART) and total variation regularized reconstruction techniques (ART+TV) are presented. Reconstruction results of the methods are compared both visually and quantitatively by evaluating performances of the methods using mean structural similarity (MSSIM) values.

  4. SNOW: a digital computer program for the simulation of ion beam devices

    International Nuclear Information System (INIS)

    Boers, J.E.

    1980-08-01

    A digital computer program, SNOW, has been developed for the simulation of dense ion beams. The program simulates the plasma expansion cup (but not the plasma source itself), the acceleration region, and a drift space with neutralization if desired. The ion beam is simulated by computing representative trajectories through the device. The potentials are simulated on a large rectangular matrix array which is solved by iterative techniques. Poisson's equation is solved at each point within the configuration using space-charge densities computed from the ion trajectories combined with background electron and/or ion distributions. The simulation methods are described in some detail along with examples of both axially-symmetric and rectangular beams. A detailed description of the input data is presented

  5. Design and simulation of a totally digital image system for medical image applications

    International Nuclear Information System (INIS)

    Archwamety, C.

    1987-01-01

    The Totally Digital Imaging System (TDIS) is based on system requirements information from the Radiology Department, University of Arizona Health Science Center. This dissertation presents the design of this complex system, the TDIS specification, the system performance requirements, and the evaluation of the system using the computer-simulation programs. Discrete-event simulation models were developed for the TDIS subsystems, including an image network, imaging equipment, storage migration algorithm, data base archive system, and a control and management network. The simulation system uses empirical data generation and retrieval rates measured at the University Medical Center hospital. The entire TDIS system was simulated in Simscript II.5 using a VAX 8600 computer system. Simulation results show the fiber-optical-image network to be suitable; however, the optical-disk-storage system represents a performance bottleneck

  6. Improved importance sampling technique for efficient simulation of digital communication systems

    Science.gov (United States)

    Lu, Dingqing; Yao, Kung

    1988-01-01

    A new, improved importance sampling (IIS) approach to simulation is considered. Some basic concepts of IS are introduced, and detailed evolutions of simulation estimation variances for Monte Carlo (MC) and IS simulations are given. The general results obtained from these evolutions are applied to the specific previously known conventional importance sampling (CIS) technique and the new IIS technique. The derivation for a linear system with no signal random memory is considered in some detail. For the CIS technique, the optimum input scaling parameter is found, while for the IIS technique, the optimum translation parameter is found. The results are generalized to a linear system with memory and signals. Specific numerical and simulation results are given which show the advantages of CIS over MC and IIS over CIS for simulations of digital communications systems.

  7. A 4D digital phantom for patient-specific simulation of brain CT perfusion protocols.

    Science.gov (United States)

    van den Boom, Rieneke; Manniesing, Rashindra; Oei, Marcel T H; van der Woude, Willem-Jan; Smit, Ewoud J; Laue, Hendrik O A; van Ginneken, Bram; Prokop, Mathias

    2014-07-01

    Optimizing CT brain perfusion protocols is a challenge because of the complex interaction between image acquisition, calculation of perfusion data, and patient hemodynamics. Several digital phantoms have been developed to avoid unnecessary patient exposure or suboptimum choice of parameters. The authors expand this idea by using realistic noise patterns and measured tissue attenuation curves representing patient-specific hemodynamics. The purpose of this work is to validate that this approach can realistically simulate mean perfusion values and noise on perfusion data for individual patients. The proposed 4D digital phantom consists of three major components: (1) a definition of the spatial structure of various brain tissues within the phantom, (2) measured tissue attenuation curves, and (3) measured noise patterns. Tissue attenuation curves were measured in patient data using regions of interest in gray matter and white matter. By assigning the tissue attenuation curves to the corresponding tissue curves within the phantom, patient-specific CTP acquisitions were retrospectively simulated. Noise patterns were acquired by repeatedly scanning an anthropomorphic skull phantom at various exposure settings. The authors selected 20 consecutive patients that were scanned for suspected ischemic stroke and constructed patient-specific 4D digital phantoms using the individual patients' hemodynamics. The perfusion maps of the patient data were compared with the digital phantom data. Agreement between phantom- and patient-derived data was determined for mean perfusion values and for standard deviation in de perfusion data using intraclass correlation coefficients (ICCs) and a linear fit. ICCs ranged between 0.92 and 0.99 for mean perfusion values. ICCs for the standard deviation in perfusion maps were between 0.86 and 0.93. Linear fitting yielded slope values between 0.90 and 1.06. A patient-specific 4D digital phantom allows for realistic simulation of mean values and

  8. Design of DSP-based high-power digital solar array simulator

    Science.gov (United States)

    Zhang, Yang; Liu, Zhilong; Tong, Weichao; Feng, Jian; Ji, Yibo

    2013-12-01

    To satisfy rigid performance specifications, a feedback control was presented for zoom optical lens plants. With the increasing of global energy consumption, research of the photovoltaic(PV) systems get more and more attention. Research of the digital high-power solar array simulator provides technical support for high-power grid-connected PV systems research.This paper introduces a design scheme of the high-power digital solar array simulator based on TMS320F28335. A DC-DC full-bridge topology was used in the system's main circuit. The switching frequency of IGBT is 25kHz.Maximum output voltage is 900V. Maximum output current is 20A. Simulator can be pre-stored solar panel IV curves.The curve is composed of 128 discrete points .When the system was running, the main circuit voltage and current values was feedback to the DSP by the voltage and current sensors in real-time. Through incremental PI,DSP control the simulator in the closed-loop control system. Experimental data show that Simulator output voltage and current follow a preset solar panels IV curve. In connection with the formation of high-power inverter, the system becomes gridconnected PV system. The inverter can find the simulator's maximum power point and the output power can be stabilized at the maximum power point (MPP).

  9. A digital simulation of a pressurizer in a PWR nuclear power plant

    International Nuclear Information System (INIS)

    Sato, E.F.

    1980-11-01

    A model for pressurizer digital simulation of a PWR nuclear power plant during transients, considering all pressurizer control features, is presented. The pressurizer is divided into two regions separated by a water-vapor interface and non-equilibrium conditions are considered. The particular thermodynamic process followed during insurge and outsurges is determined at each instant of analysis without any previous assumption. The pressure behavior is defined by an explicit equation in any of four possible pressurizer thermodynamic conditions. Thermodynamic properties of steam and water are computed by ASME subroutines and the mathematical formulation presented in this study was programed in FORTRAN IV for a Burroughs-6700 digital computer system. This program was employed to simulate the Shippingport Atomic Power Station and Almirante Alvaro Alberto Nuclear Power Plant - Unit 1 pressurizers. The test results compared with experimental or vendor data show the validity of this analysis method. (Author) [pt

  10. Digital video timing analyzer for the evaluation of PC-based real-time simulation systems

    Science.gov (United States)

    Jones, Shawn R.; Crosby, Jay L.; Terry, John E., Jr.

    2009-05-01

    Due to the rapid acceleration in technology and the drop in costs, the use of commercial off-the-shelf (COTS) PC-based hardware and software components for digital and hardware-in-the-loop (HWIL) simulations has increased. However, the increase in PC-based components creates new challenges for HWIL test facilities such as cost-effective hardware and software selection, system configuration and integration, performance testing, and simulation verification/validation. This paper will discuss how the Digital Video Timing Analyzer (DiViTA) installed in the Aviation and Missile Research, Development and Engineering Center (AMRDEC) provides quantitative characterization data for PC-based real-time scene generation systems. An overview of the DiViTA is provided followed by details on measurement techniques, applications, and real-world examples of system benefits.

  11. Formulae for thermal feedback of group constants in digital reactor simulation

    International Nuclear Information System (INIS)

    Perneczky, L.; Toth, I.; Vigassy, J.

    1976-01-01

    The problem, how the feedback of the thermohydraulic field to the neutron density in a reactor can be calculated is analysed. After a brief survey of the digital models in reactor simulation the applied model based on the time-dependent two-group diffusion equations is described. Using the reactor physical code system THERESA numerical results for the VVER-440 reactor are presented. (Sz.Z.)

  12. Simulation of Digital Control Computer of Nuclear Power Plant Based on Virtual Machine Technology

    International Nuclear Information System (INIS)

    Hou, Xue Yan; Li, Shu; Li, Qing

    2011-01-01

    Based on analyzing DCC (Digital Control Computer) instruction sets, memory map, display controllers and I/O system, virtual machine of DCC (abbr. VM DCC) has been developed. The executive and control programs, same as running on NPP (Nuclear Power Plant) unit's DCC, can run on the VM DCC smoothly and get same control results. Dual VM DCC system has been successfully applied in NPP FSS(Full Scope Simulator) training. It not only improves FSS's fidelity but also makes maintaining easier

  13. A pneumatic bellows-driven setup for controlled-distance electrochemical impedance measurements of Zircaloy-2 in simulated BWR conditions

    International Nuclear Information System (INIS)

    Arilahti, E.; Bojinov, M.; Hansson-Lyyra, L.

    2004-01-01

    This paper describes a novel pneumatic bellows-driven arrangement designed for controlled distance electrochemistry (CDE) measurements. The feasibility of the new arrangement has been verified by performing contact electric impedance measurements to study corrosion of Zircaloy-2 in a re-circulation loop simulating the BWR conditions. Until now, the measurements have been carried out using a step-motor driven controlled-distance electrochemistry (CDE) arrangement. The electrical and electrochemical properties of the pre transition oxide on Zircaloy-2 determined from these measurements were in good agreement with those estimated from measurements with a step-motor driven CDE. Furthermore, the results indicate that the bellows-driven CDE device is less sensitive to the contact pressure variation than the step-motor driven arrangement. This property combined with the bellows driven displacement mechanism provides a clear advantage for future in-core corrosion studies of fuel cladding materials. (Author)

  14. Laser irradiation of Mg-Al-Zn alloy: Reduced electrochemical kinetics and enhanced performance in simulated body fluid.

    Science.gov (United States)

    Florian, David C; Melia, Michael A; Steuer, Fritz W; Briglia, Bruce F; Purzycki, Michael K; Scully, John R; Fitz-Gerald, James M

    2017-05-11

    As a lightweight metal with mechanical properties similar to natural bone, Mg and its alloys are great prospects for biodegradable, load bearing implants. However, rapid degradation and H 2 gas production in physiological media has prevented widespread use of Mg alloys. Surface heterogeneities in the form of intermetallic particles dominate the corrosion response. This research shows that surface homogenization significantly improved the biological corrosion response observed during immersion in simulated body fluid (SBF). The laser processed Mg alloy exhibited a 50% reduction in mass loss and H 2 evolution after 24 h of immersion in SBF when compared to the wrought, cast alloy. The laser processed samples exhibited increased wettability as evident from wetting angle studies, further suggesting improved biocompatibility. Electrochemical analysis by potentiodynamic polarization measurements showed that the anodic and cathodic kinetics were reduced following laser processing and are attributed to the surface chemical homogeneity.

  15. Digitization and simulation realization of full range control system for steam generator water level

    International Nuclear Information System (INIS)

    Qian Hong; Ye Jianhua; Qian Fei; Li Chao

    2010-01-01

    In this paper, a full range digital control system for the steam generator water level is designed by a control scheme of single element control and three-element cascade feed-forward control, and the method to use the software module configuration is proposed to realize the water level control strategy. This control strategy is then applied in the operation of the nuclear power simulation machine. The simulation result curves indicate that the steam generator water level maintains constant at the stable operation condition, and when the load changes, the water level changes but finally maintains the constant. (authors)

  16. Practical algorithms for simulation and reconstruction of digital in-line holograms.

    Science.gov (United States)

    Latychevskaia, Tatiana; Fink, Hans-Werner

    2015-03-20

    Here we present practical methods for simulation and reconstruction of in-line digital holograms recorded with plane and spherical waves. The algorithms described here are applicable to holographic imaging of an object exhibiting absorption as well as phase-shifting properties. Optimal parameters, related to distances, sampling rate, and other factors for successful simulation and reconstruction of holograms are evaluated and criteria for the achievable resolution are worked out. Moreover, we show that the numerical procedures for the reconstruction of holograms recorded with plane and spherical waves are identical under certain conditions. Experimental examples of holograms and their reconstructions are also discussed.

  17. Digitalized design of extraforaminal lumbar interbody fusion: a computer-based simulation and cadaveric study.

    Directory of Open Access Journals (Sweden)

    Mingjie Yang

    Full Text Available PURPOSE: This study aims to investigate the feasibility of a novel lumbar approach named extraforaminal lumbar interbody fusion (ELIF, a newly emerging minimally invasive technique for treating degenerative lumbar disorders, using a digitalized simulation and a cadaveric study. METHODS: The ELIF surgical procedure was simulated using the Mimics surgical simulator and included dissection of the superior articular process, dilation of the vertebral foramen, and placement of pedicle screws and a cage. ELIF anatomical measures were documented using a digitalized technique and subsequently validated on fresh cadavers. RESULTS: The use of the Mimics allowed for the vivid simulation of ELIF surgical procedures, while the cadaveric study proved the feasibility of this novel approach. ELIF had a relatively lateral access approach that was located 8-9 cm lateral to the median line with an access depth of approximately 9 cm through the intermuscular space. Dissection of the superior articular processes could fully expose the target intervertebral discs and facilitate a more inclined placement of the pedicle screws and cage with robust enhancement. CONCLUSIONS: According to the computer-based simulation and cadaveric study, it is feasible to perform ELIF. Further research including biomechanical study is needed to prove ELIF has a superior ability to preserve the posterior tension bands of the spinal column, with similar effects on spinal decompression, fixation, and fusion, and if it can enhance post-fusion spinal stability and expedites postoperative recovery.

  18. Digitalized design of extraforaminal lumbar interbody fusion: a computer-based simulation and cadaveric study.

    Science.gov (United States)

    Yang, Mingjie; Zeng, Cheng; Guo, Song; Pan, Jie; Han, Yingchao; Li, Zeqing; Li, Lijun; Tan, Jun

    2014-01-01

    This study aims to investigate the feasibility of a novel lumbar approach named extraforaminal lumbar interbody fusion (ELIF), a newly emerging minimally invasive technique for treating degenerative lumbar disorders, using a digitalized simulation and a cadaveric study. The ELIF surgical procedure was simulated using the Mimics surgical simulator and included dissection of the superior articular process, dilation of the vertebral foramen, and placement of pedicle screws and a cage. ELIF anatomical measures were documented using a digitalized technique and subsequently validated on fresh cadavers. The use of the Mimics allowed for the vivid simulation of ELIF surgical procedures, while the cadaveric study proved the feasibility of this novel approach. ELIF had a relatively lateral access approach that was located 8-9 cm lateral to the median line with an access depth of approximately 9 cm through the intermuscular space. Dissection of the superior articular processes could fully expose the target intervertebral discs and facilitate a more inclined placement of the pedicle screws and cage with robust enhancement. According to the computer-based simulation and cadaveric study, it is feasible to perform ELIF. Further research including biomechanical study is needed to prove ELIF has a superior ability to preserve the posterior tension bands of the spinal column, with similar effects on spinal decompression, fixation, and fusion, and if it can enhance post-fusion spinal stability and expedites postoperative recovery.

  19. Power system analysis of Hanlim superconducting HVDC system using real time digital simulator

    International Nuclear Information System (INIS)

    Won, Y.J.; Kim, J.G.; Kim, A.R.; Kim, G.H.; Park, M.; Yu, I.K.; Sim, K.D.; Cho, J.; Lee, S.; Jeong, K.W.; Watanabe, K.

    2011-01-01

    KEPCO has planned to construct a test site for renewable energy in Jeju power system. One kilometer length of total 8 km was designed as superconducting DC cable. We have developed a simulation model of the 8 km HVDC system using real time digital simulator. The simulation result shows that the HVDC line was not affected by wind power variation. Jeju island is located approximately 100 km south from the mainland of Korea, and had a peak load of about 553 MW in 2008. The demand increases 7.2% a year over the last 5 years. Since the wind profiles of Jeju island are more favorable than mainland of Korea, many companies have shown interest in the wind power business at the Jeju island. Moreover KEPCO has a plan for renewable energy test too whose power will be delivered by HVDC system. One kilometer length of total 8 km was designed as superconducting DC cable. Rest 7 km will be the conventional overhead line. In this paper, the authors have developed a simulation model of the power network around 8 km HVDC system using real time digital simulator (RTDS).

  20. DISPOSAL OF POISONOUS ORGANIC HALIDES BY USING THE ELECTROCHEMICAL METHOD: DFT SIMULATION

    Directory of Open Access Journals (Sweden)

    Tudor Spataru

    2016-12-01

    Full Text Available Geometry optimizations at the UBP86/6-311++G** level of electronic structure theory have been performed for DDT, β-hexachlorocyclohexane, and heptachlor organic polychlorides as well for their positive and negative ions. The HOMO composition of these neutral molecules show no participation of the carbon-chlorine atomic orbitals, while LUMO of the calculated molecules include a major contribution of the anti-bonding character atomic orbitals from the two or three carbon-chloride bonds of each calculated molecule. Consequently, the negative ions were the most sensitive structure during the geometry optimization, showing the carbon-chloride bonds cleaving during the electronic structure calculations. Further geometry optimization of the obtained neutral intermediate molecules after the fi rst and second reducing by two electrons show that the electrochemical dehalogenation of the organic poychlorides is sequential.

  1. Simulation of electrorefining process using time-dependent multi-component electrochemical model: REFIN

    Energy Technology Data Exchange (ETDEWEB)

    Park, Byung Gi; Hwang, Il Soon [Seoul National Univ., Seoul (Korea, Republic of)

    1999-10-01

    REFIN model is applied to analyze a series of experiments that had been conducted by Tomczuk, et al. at Argonne National Laboratory (ANL) in the U.S.A.. Predicted results from REFIN model for the electrorefining experiment are compared with the published experimental results. It is demonstrated that REFIN model can predict faradic current of each element and electrochemical potential as a function of time over the entire campaign of the electrorefining experiment. The elemental concentration changes agree with the experimental results well. Elemental concentration changes during an open-circuit equilibration period are revealed to suggest that the electrorefining process could not be adequately described by the equilibrium model often applied for an electrode surface. Surface potential drop is changed according to equilibrium potential of chemical species with high activity in liquid metal.

  2. The simulation of 3D microcalcification clusters in 2D digital mammography and breast tomosynthesis

    International Nuclear Information System (INIS)

    Shaheen, Eman; Van Ongeval, Chantal; Zanca, Federica; Cockmartin, Lesley; Marshall, Nicholas; Jacobs, Jurgen; Young, Kenneth C.; Dance, David R.; Bosmans, Hilde

    2011-01-01

    Purpose: This work proposes a new method of building 3D models of microcalcification clusters and describes the validation of their realistic appearance when simulated into 2D digital mammograms and into breast tomosynthesis images. Methods: A micro-CT unit was used to scan 23 breast biopsy specimens of microcalcification clusters with malignant and benign characteristics and their 3D reconstructed datasets were segmented to obtain 3D models of microcalcification clusters. These models were then adjusted for the x-ray spectrum used and for the system resolution and simulated into 2D projection images to obtain mammograms after image processing and into tomographic sequences of projection images, which were then reconstructed to form 3D tomosynthesis datasets. Six radiologists were asked to distinguish between 40 real and 40 simulated clusters of microcalcifications in two separate studies on 2D mammography and tomosynthesis datasets. Receiver operating characteristic (ROC) analysis was used to test the ability of each observer to distinguish between simulated and real microcalcification clusters. The kappa statistic was applied to assess how often the individual simulated and real microcalcification clusters had received similar scores (''agreement'') on their realistic appearance in both modalities. This analysis was performed for all readers and for the real and the simulated group of microcalcification clusters separately. ''Poor'' agreement would reflect radiologists' confusion between simulated and real clusters, i.e., lesions not systematically evaluated in both modalities as either simulated or real, and would therefore be interpreted as a success of the present models. Results: The area under the ROC curve, averaged over the observers, was 0.55 (95% confidence interval [0.44, 0.66]) for the 2D study, and 0.46 (95% confidence interval [0.29, 0.64]) for the tomosynthesis study, indicating no statistically significant difference between real and simulated

  3. Digital simulation of staining in histopathology multispectral images: enhancement and linear transformation of spectral transmittance.

    Science.gov (United States)

    Bautista, Pinky A; Yagi, Yukako

    2012-05-01

    Hematoxylin and eosin (H&E) stain is currently the most popular for routine histopathology staining. Special and/or immuno-histochemical (IHC) staining is often requested to further corroborate the initial diagnosis on H&E stained tissue sections. Digital simulation of staining (or digital staining) can be a very valuable tool to produce the desired stained images from the H&E stained tissue sections instantaneously. We present an approach to digital staining of histopathology multispectral images by combining the effects of spectral enhancement and spectral transformation. Spectral enhancement is accomplished by shifting the N-band original spectrum of the multispectral pixel with the weighted difference between the pixel's original and estimated spectrum; the spectrum is estimated using M transformed to the spectral configuration associated to its reaction to a specific stain by utilizing an N × N transformation matrix, which is derived through application of least mean squares method to the enhanced and target spectral transmittance samples of the different tissue components found in the image. Results of our experiments on the digital conversion of an H&E stained multispectral image to its Masson's trichrome stained equivalent show the viability of the method.

  4. Simulation, elaboration and analysis of inter-digitated back contacts photovoltaic cells

    International Nuclear Information System (INIS)

    Nichiporuk, O.

    2005-05-01

    Solar energy is the most promising and powerful energy source among renewable energies. Photovoltaic electricity is obtained by direct transformation of the sunlight into electricity by means of photovoltaic cells. The objective of this work is to develop photovoltaic cells with back inter-digitated contacts. In the first chapter, we recall the principle of operation and the fundamental parameters of a photovoltaic cell. In a second part, we explain specificities of the inter-digitated back-contact solar cells, as well as the advantages and the disadvantages of such cells. In the second chapter we study the operation of inter-digitated back-contacts solar cells by two dimensional numerical simulation in order to optimize the geometry and doping profiles of the cell. The third chapter relates to the techniques and the methods of characterization of photovoltaic devices and components. In the fourth chapter, we describe the elaboration of inter-digitated back-contact cells. Three technological processes are presented in order to develop a simple technology for cells realization. In particular, we develop the auto-aligned technological process, which enables to elaborate the cells by using only one lithography step. In the last chapter we examine various approaches to reduce the surface recombination: SiO 2 , silicon nitride deposited by UVCVD, hydrogen annealing, etc.. (author)

  5. Simulation, elaboration and analysis of inter-digitated back-contacts photovoltaic cells

    International Nuclear Information System (INIS)

    Nichiporuk, O.

    2005-05-01

    Solar energy is the most promising and powerful energy source among renewable energies. Photovoltaic electricity is obtained by direct transformation of the sunlight into electricity by means of photovoltaic cells. The objective of this work is to develop photovoltaic cells with back inter-digitated contacts. In the first chapter, we recall the principle of operation and the fundamental parameters of a photovoltaic cell. In a second part, we explain specificities of the inter-digitated back-contact solar cells, as well as the advantages and the disadvantages of such cells. In the second chapter we study the operation of inter-digitated back-contacts solar cells by two dimensional numerical simulation in order to optimize the geometry and doping profiles of the cell. The third chapter relates to the techniques and the methods of characterization of photovoltaic devices and components. In the fourth chapter, we describe the elaboration of inter-digitated back-contact cells. Three technological processes are presented in order to develop a simple technology for cells realization. In particular, we develop the auto-aligned technological process, which enables to elaborate the cells by using only one lithography step. In the last chapter we examine various approaches to reduce the surface recombination: SiO 2 , silicon nitride deposited by UVCVD, hydrogen annealing, etc... (author)

  6. 3D DIGITAL SIMULATION OF MINNAN TEMPLE ARCHITECTURE CAISSON'S CRAFT TECHNIQUES

    Directory of Open Access Journals (Sweden)

    Y. C. Lin

    2013-07-01

    Full Text Available Caisson is one of the important representations of the Minnan (southern Fujian temple architecture craft techniques and decorative aesthetics. The special component design and group building method present the architectural thinking and personal characteristics of great carpenters of Minnan temple architecture. In late Qing Dynasty, the appearance and style of caissons of famous temples in Taiwan apparently presented the building techniques of the great carpenters. However, as the years went by, the caisson design and craft techniques were not fully inherited, which has been a great loss of cultural assets. Accordingly, with the caisson of Fulong temple, a work by the well-known great carpenter in Tainan as an example, this study obtained the thinking principles of the original design and the design method at initial period of construction through interview records and the step of redrawing the "Tng-Ko" (traditional design, stakeout and construction tool. We obtained the 3D point cloud model of the caisson of Fulong temple using 3D laser scanning technology, and established the 3D digital model of each component of the caisson. Based on the caisson component procedure obtained from interview records, this study conducted the digital simulation of the caisson component to completely recode and present the caisson design, construction and completion procedure. This model of preserving the craft techniques for Minnan temple caisson by using digital technology makes specific contribution to the heritage of the craft techniques while providing an important reference for the digital preservation of human cultural assets.

  7. Method for simulating dose reduction in digital mammography using the Anscombe transformation.

    Science.gov (United States)

    Borges, Lucas R; Oliveira, Helder C R de; Nunes, Polyana F; Bakic, Predrag R; Maidment, Andrew D A; Vieira, Marcelo A C

    2016-06-01

    This work proposes an accurate method for simulating dose reduction in digital mammography starting from a clinical image acquired with a standard dose. The method developed in this work consists of scaling a mammogram acquired at the standard radiation dose and adding signal-dependent noise. The algorithm accounts for specific issues relevant in digital mammography images, such as anisotropic noise, spatial variations in pixel gain, and the effect of dose reduction on the detective quantum efficiency. The scaling process takes into account the linearity of the system and the offset of the detector elements. The inserted noise is obtained by acquiring images of a flat-field phantom at the standard radiation dose and at the simulated dose. Using the Anscombe transformation, a relationship is created between the calculated noise mask and the scaled image, resulting in a clinical mammogram with the same noise and gray level characteristics as an image acquired at the lower-radiation dose. The performance of the proposed algorithm was validated using real images acquired with an anthropomorphic breast phantom at four different doses, with five exposures for each dose and 256 nonoverlapping ROIs extracted from each image and with uniform images. The authors simulated lower-dose images and compared these with the real images. The authors evaluated the similarity between the normalized noise power spectrum (NNPS) and power spectrum (PS) of simulated images and real images acquired with the same dose. The maximum relative error was less than 2.5% for every ROI. The added noise was also evaluated by measuring the local variance in the real and simulated images. The relative average error for the local variance was smaller than 1%. A new method is proposed for simulating dose reduction in clinical mammograms. In this method, the dependency between image noise and image signal is addressed using a novel application of the Anscombe transformation. NNPS, PS, and local noise

  8. Simulation of the High Performance Time to Digital Converter for the ATLAS Muon Spectrometer trigger upgrade

    International Nuclear Information System (INIS)

    Meng, X.T.; Levin, D.S.; Chapman, J.W.; Zhou, B.

    2016-01-01

    The ATLAS Muon Spectrometer endcap thin-Resistive Plate Chamber trigger project compliments the New Small Wheel endcap Phase-1 upgrade for higher luminosity LHC operation. These new trigger chambers, located in a high rate region of ATLAS, will improve overall trigger acceptance and reduce the fake muon trigger incidence. These chambers must generate a low level muon trigger to be delivered to a remote high level processor within a stringent latency requirement of 43 bunch crossings (1075 ns). To help meet this requirement the High Performance Time to Digital Converter (HPTDC), a multi-channel ASIC designed by CERN Microelectronics group, has been proposed for the digitization of the fast front end detector signals. This paper investigates the HPTDC performance in the context of the overall muon trigger latency, employing detailed behavioral Verilog simulations in which the latency in triggerless mode is measured for a range of configurations and under realistic hit rate conditions. The simulation results show that various HPTDC operational configurations, including leading edge and pair measurement modes can provide high efficiency (>98%) to capture and digitize hits within a time interval satisfying the Phase-1 latency tolerance.

  9. A new parallel algorithm and its simulation on hypercube simulator for low pass digital image filtering using systolic array

    International Nuclear Information System (INIS)

    Al-Hallaq, A.; Amin, S.

    1998-01-01

    This paper introduces a new parallel algorithm and its simulation on a hypercube simulator for the low pass digital image filtering using a systolic array. This new algorithm is faster than the old one (Amin, 1988). This is due to the the fact that the old algorithm carries out the addition operations in a sequential mode. But in our new design these addition operations are divided into tow groups, which can be performed in parallel. One group will be performed on one half of the systolic array and the other on the second half, that is, by folding. This parallelism reduces the time required for the whole process by almost quarter the time of the old algorithm.(authors). 18 refs., 3 figs

  10. Evaluation of body simulator for chest and abdomen in digital X-ray equipment

    International Nuclear Information System (INIS)

    Soares, Sidney S.; Cardoso, Gabriela P.; Oliveira, Giovanni Antônio P.; Batista, Adriana S.M.; Pereira, Esther Lorrayne M.

    2017-01-01

    The use of body simulators to control the quality of X-ray images is a practice that guarantees the control of essential parameters for diagnosis by the technique. The evolution of the equipment, between the analogue, digital computerized radiology (CR) and direct radiography (DR), requires evaluation of the equivalence in grayscale, of simulators, for an adjustment according to the specific technology of obtaining the image. In this sense, the present work presents the evaluation of a body simulator with regard to the representation of mean values of signal, noise and contrast obtained in chest radiographs and panoramic of the abdomen. For the thorax the cardiac region was considered as simulation target and for the abdomen simulation of the liver and small intestine. We used a retrospective study of images obtained with X-ray equipment - CR system, in which the images were studied using the ImageJ program, generating a data catalog. These were subsequently compared with those obtained experimentally using gel filled polymer body simulator. For the validation of the simulator, it was observed the gel equivalence of filling of the polymer box required to reach the image parameters of the cataloged radiographs. The results are discussed as to the physical principles of radiation interaction with biological and equivalent tissues

  11. Matlab/Simulink-based simulation for digital-control system of marine three-shaft gas-turbine

    International Nuclear Information System (INIS)

    Yu Youhong; Chen Lingen; Sun Fengrui; Wu Chih

    2005-01-01

    A gas-turbine plant model is required in order to design and develop its control system. In this paper, a simulation model of a marine three-shaft gas-turbine's digital-control system is presented. Acceleration processes are simulated via a Matlab/Simulink program. The effects of some of the main variables on the system's performance are analyzed and the optimum values of parameters obtained. A simulation experiment upon a real gas-turbine plant is performed using the digital-control model. The results show that the simulation model is reliable

  12. Electrochemical characterization of corrosion in materials of grounding systems, simulating conditions of synthetic soils with characteristics of local soils

    Science.gov (United States)

    Salas, Y.; Guerrero, L.; Vera-Monroy, S. P.; Blanco, J.; Jimenez, C.

    2017-12-01

    The integrity of structures buried in earthing becomes relevant when analysing maintenance and replacement costs of these systems, as the deterioration is mainly due to two factors, namely: the failures caused in the electrical systems, which are due to the system. Failure in earthing due to corrosion at the interface cause an alteration in the structure of the component material and generates an undesirable resistivity that cause malfunction in this type of protection systems. Two local soils were chosen that were categorized as sandy loam and clay loam type, whose chemical characteristics were simulated by means of an electrolyte corresponding to the amount of ions present determined by a soil characterization based on the CICE (effective cation exchange coefficient), which allows us to deduce the percentage of chloride and sulphate ions present for the different levels established in the experimental matrix. The interaction of these soils with grounding electrodes is a complex problem involving many factors to consider. In this study, the rates and corrosion currents of the different soils on two types of electrodes, one copper and the other AISI 304 stainless steel, were approximated by electrochemical techniques such as potentiodynamic curves and electrochemical impedance spectra. Considerably higher speeds were determined for copper-type electrodes when compared to those based on steel. However, from the Nyquist diagrams, it was noted that copper electrodes have better electrical performance than steel ones. The soil with the highest ionic activity turned out to be the sandy loam. The clay loam soil presents a tendency to water retention and this may be the reason for the different behaviour with respect to ionic mobility. The diffusion control in the steel seems to alter the ionic mobility because its corrosion rates proved to be very similar regardless of the type of soil chemistry. In general, corrosion rates fell since tenths of a millimetre every year to

  13. Electrochemical characterization of AISI 316L stainless steel in contact with simulated body fluid under infection conditions.

    Science.gov (United States)

    López, Danián Alejandro; Durán, Alicia; Ceré, Silvia Marcela

    2008-05-01

    Titanium and cobalt alloys, as well as some stainless steels, are among the most frequently used materials in orthopaedic surgery. In industrialized countries, stainless steel devices are used only for temporary implants due to their lower corrosion resistance in physiologic media when compared to other alloys. However, due to economical reasons, the use of stainless steel alloys for permanent implants is very common in developing countries. The implantation of foreign bodies is sometimes necessary in the modern medical practice. However, the complex interactions between the host and the can implant weaken the local immune system, increasing the risk of infections. Therefore, it is necessary to further study these materials as well as the characteristics of the superficial film formed in physiologic media in infection conditions in order to control their potential toxicity due to the release of metallic ions in the human body. This work presents a study of the superficial composition and the corrosion resistance of AISI 316L stainless steel and the influence of its main alloying elements when they are exposed to an acidic solution that simulates the change of pH that occurs when an infection develops. Aerated simulated body fluid (SBF) was employed as working solution at 37 degrees C. The pH was adjusted to 7.25 and 4 in order to reproduce normal body and disease state respectively. Corrosion resistance was measured by means of electrochemical impedance spectroscopy (EIS) and anodic polarization curves.

  14. RESEARCH ON THE DIGITAL SIMULATION FOR THE WHOLE PROCESS OF MARS EXPLORATION

    Directory of Open Access Journals (Sweden)

    L. Lyu

    2018-05-01

    Full Text Available China has paid considerable attention to space exploration and made great strides in the field. The first Chinese Mars Exploration Mission will be carried out in 2020. Digital simulation has been proved to be an effective and efficient means for planning and deduction in many fields. Thus, it was introduced for the Mars exploration in this paper and key technologies was researched above three aspects. First of all, complicated time-space benchmark was combed to support the interplanetary simulation. Secondly, the multi-resolution pyramid model and indexing strategy were adopted to preprocess the geographical environment data, which ensured the efficiency of data loading, browsing, and querying. Then, the activity objects were abstracted and modelled based on four aspects, including property, ephemeris, geometry, and behavior. Therefore, a digital simulation system, called Sino-Mars, was developed. The architecture of Sino- Mars consists of five layers, including data collection, data processing, scenario modelling, visualization and application layer. Using the Chinese Mars Exploration Mission slated for 2020 as an example, we demonstrated the capabilities of Sino-Mars for data integration, visualization, process deduction, and auxiliary analysis.

  15. The benefit of accounting for DQE variations in simulated dose reduction of digital radiographic systems

    International Nuclear Information System (INIS)

    Svalkvist, A.; Baath, M.

    2010-01-01

    Adding noise to clinical radiographs to simulate dose reduction can be used to investigate the relationship between dose level and clinical image quality without exposing patients to additional radiation. The purpose of the present paper was to examine the benefits of using a method that accounts for detective quantum efficiency (DQE) variations that may occur in different dose ranges in the simulated dose reduction process. A method initially intended for simulated dose reduction in tomo-synthesis was applied to extremely low-dose posterio-anterior radiographs of an anthropomorphic chest phantom, selected from a group of projection images included in a tomo-synthesis examination and compared with a previous method that do not account for DQE variations. A comparison of images simulated to be collected at a lower dose level (73% of the original dose level) and images actually collected at this lower dose level revealed that the error in the integrated normalised noise power spectrum was smaller than 4% for the method that accounts for DQE variations in the simulated dose reduction, whereas the error was larger than 20% for the previous method. This indicates that an increased validity in dose reduction simulation of digital radiographic systems is obtained with a method accounting for DQE variations. (authors)

  16. Simulation of Digital Control Computer of Nuclear Power Plant Based on Virtual Machine Technology

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Xue Yan; Li, Shu; Li, Qing [China Nuclear Power Operation Technology Co., Wuhan (China)

    2011-08-15

    Based on analyzing DCC (Digital Control Computer) instruction sets, memory map, display controllers and I/O system, virtual machine of DCC (abbr. VM DCC) has been developed. The executive and control programs, same as running on NPP (Nuclear Power Plant) unit's DCC, can run on the VM DCC smoothly and get same control results. Dual VM DCC system has been successfully applied in NPP FSS(Full Scope Simulator) training. It not only improves FSS's fidelity but also makes maintaining easier.

  17. Developing Digital Simulations and its Impact on Physical Education of Pre-Service Teachers

    Directory of Open Access Journals (Sweden)

    Esther Zaretsky

    2006-08-01

    Full Text Available The creation of digital simulations through the use of computers improved physical education of pre-service teachers. The method which was based on up-to-date studies focuses on the visualization of the body's movements in space. The main program of the research concentrated on building curriculum for teaching physical education through computerized presentations. The pre-service teachers reported about their progress in a variety of physical skills and their motivation in both kinds of learning was enhanced.

  18. A digital simulation of message traffic for natural disaster warning communications satellite

    Science.gov (United States)

    Hein, G. F.; Stevenson, S. M.

    1972-01-01

    Various types of weather communications are required to alert industries and the general public about the impending occurrence of tornados, hurricanes, snowstorms, floods, etc. A natural disaster warning satellite system has been proposed for meeting the communications requirements of the National Oceanic and Atmospheric Administration. Message traffic for a communications satellite was simulated with a digital computer in order to determine the number of communications channels to meet system requirements. Poisson inputs are used for arrivals and an exponential distribution is used for service.

  19. A digital computer simulation and study of a direct-energy-transfer power-conditioning system

    Science.gov (United States)

    Burns, W. W., III; Owen, H. A., Jr.; Wilson, T. G.; Rodriguez, G. E.; Paulkovich, J.

    1975-01-01

    An investigation of the behavior of the power-conditioning system as a whole is a necessity to ensure the integrity of the aggregate system in the case of space applications. An approach for conducting such an investigation is considered. A description is given of the application of a general digital analog simulator program to the study of an aggregate power-conditioning system which is being developed for use on the International Ultraviolet Explorer spacecraft. The function of the direct energy transfer system studied involves a coupling of a solar array through a main distribution bus to the spacecraft electrical loads.

  20. A Monte Carlo-based model for simulation of digital chest tomo-synthesis

    International Nuclear Information System (INIS)

    Ullman, G.; Dance, D. R.; Sandborg, M.; Carlsson, G. A.; Svalkvist, A.; Baath, M.

    2010-01-01

    The aim of this work was to calculate synthetic digital chest tomo-synthesis projections using a computer simulation model based on the Monte Carlo method. An anthropomorphic chest phantom was scanned in a computed tomography scanner, segmented and included in the computer model to allow for simulation of realistic high-resolution X-ray images. The input parameters to the model were adapted to correspond to the VolumeRAD chest tomo-synthesis system from GE Healthcare. Sixty tomo-synthesis projections were calculated with projection angles ranging from + 15 to -15 deg. The images from primary photons were calculated using an analytical model of the anti-scatter grid and a pre-calculated detector response function. The contributions from scattered photons were calculated using an in-house Monte Carlo-based model employing a number of variance reduction techniques such as the collision density estimator. Tomographic section images were reconstructed by transferring the simulated projections into the VolumeRAD system. The reconstruction was performed for three types of images using: (i) noise-free primary projections, (ii) primary projections including contributions from scattered photons and (iii) projections as in (ii) with added correlated noise. The simulated section images were compared with corresponding section images from projections taken with the real, anthropomorphic phantom from which the digital voxel phantom was originally created. The present article describes a work in progress aiming towards developing a model intended for optimisation of chest tomo-synthesis, allowing for simulation of both existing and future chest tomo-synthesis systems. (authors)

  1. Electrochemical ion transfer across liquid/liquid interfaces confined within solid-state micropore arrays--simulations and experiments.

    Science.gov (United States)

    Strutwolf, Jörg; Scanlon, Micheál D; Arrigan, Damien W M

    2009-01-01

    Miniaturised liquid/liquid interfaces provide benefits for bioanalytical detection with electrochemical methods. In this work, microporous silicon membranes which can be used for interface miniaturisation were characterized by simulations and experiments. The microporous membranes possessed hexagonal arrays of pores with radii between 10 and 25 microm, a pore depth of 100 microm and pore centre-to-centre separations between 99 and 986 microm. Cyclic voltammetry was used to monitor ion transfer across arrays of micro-interfaces between two immiscible electrolyte solutions (microITIES) formed at these membranes, with the organic phase present as an organogel. The results were compared to computational simulations taking into account mass transport by diffusion and encompassing diffusion to recessed interfaces and overlapped diffusion zones. The simulation and experimental data were both consistent with the situation where the location of the liquid/liquid (l/l) interface was on the aqueous side of the silicon membrane and the pores were filled with the organic phase. While the current for the forward potential scan (transfer of the ion from the aqueous phase to the organic phase) was strongly dependent on the location of the l/l interface, the current peak during the reverse scan (transfer of the ion from the organic phase to the aqueous phase) was influenced by the ratio of the transferring ion's diffusion coefficients in both phases. The diffusion coefficient of the transferring ion in the gelified organic phase was ca. nine times smaller than in the aqueous phase. Asymmetric cyclic voltammogram shapes were caused by the combined effect of non-symmetrical diffusion (spherical and linear) and by the inequality of the diffusion coefficient in both phases. Overlapping diffusion zones were responsible for the observation of current peaks instead of steady-state currents during the forward scan. The characterisation of the diffusion behaviour is an important requirement

  2. Effects of water plasma immersion ion implantation on surface electrochemical behavior of NiTi shape memory alloys in simulated body fluids

    International Nuclear Information System (INIS)

    Liu, X.M.; Wu, S.L.; Chu, Paul K.; Chung, C.Y.; Chu, C.L.; Yeung, K.W.K.; Lu, W.W.; Cheung, K.M.C.; Luk, K.D.K.

    2007-01-01

    Water plasma immersion ion implantation (PIII) was conducted on orthopedic NiTi shape memory alloy to enhance the surface electrochemical characteristics. The surface composition of the NiTi alloy before and after H 2 O-PIII was determined by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) was utilized to determine the roughness and morphology of the NiTi samples. Potentiodynamic polarization tests and electrochemical impedance spectroscopy (EIS) were carried out to investigate the surface electrochemical behavior of the control and H 2 O-PIII NiTi samples in simulated body fluids (SBF) at 37 deg. C as well as the mechanism. The H 2 O-PIII NiTi sample showed a higher breakdown potential (E b ) than the control sample. Based on the AFM results, two different physical models with related equivalent electrical circuits were obtained to fit the EIS data and explain the surface electrochemical behavior of NiTi in SBF. The simulation results demonstrate that the higher resistance of the oxide layer produced by H 2 O-PIII is primarily responsible for the improvement in the surface corrosion resistance

  3. TRANP - a computer code for digital simulation of steady - state and transient behavior of a pressurizer water reactor primary circuit

    International Nuclear Information System (INIS)

    Chalhoub, E.S.

    1980-09-01

    A digital computer code TRANP was developed to simulate the steady-state and transient behavior of a pressurizer water reactor primary circuit. The development of this code was based on the combining of three codes already developed for the simulation of a PWR core, a pressurizer, a steam generator and a main coolant pump, representing the primary circuit components. (Author) [pt

  4. Science Based Human Reliability Analysis: Using Digital Nuclear Power Plant Simulators for Human Reliability Research

    Science.gov (United States)

    Shirley, Rachel Elizabeth

    Nuclear power plant (NPP) simulators are proliferating in academic research institutions and national laboratories in response to the availability of affordable, digital simulator platforms. Accompanying the new research facilities is a renewed interest in using data collected in NPP simulators for Human Reliability Analysis (HRA) research. An experiment conducted in The Ohio State University (OSU) NPP Simulator Facility develops data collection methods and analytical tools to improve use of simulator data in HRA. In the pilot experiment, student operators respond to design basis accidents in the OSU NPP Simulator Facility. Thirty-three undergraduate and graduate engineering students participated in the research. Following each accident scenario, student operators completed a survey about perceived simulator biases and watched a video of the scenario. During the video, they periodically recorded their perceived strength of significant Performance Shaping Factors (PSFs) such as Stress. This dissertation reviews three aspects of simulator-based research using the data collected in the OSU NPP Simulator Facility: First, a qualitative comparison of student operator performance to computer simulations of expected operator performance generated by the Information Decision Action Crew (IDAC) HRA method. Areas of comparison include procedure steps, timing of operator actions, and PSFs. Second, development of a quantitative model of the simulator bias introduced by the simulator environment. Two types of bias are defined: Environmental Bias and Motivational Bias. This research examines Motivational Bias--that is, the effect of the simulator environment on an operator's motivations, goals, and priorities. A bias causal map is introduced to model motivational bias interactions in the OSU experiment. Data collected in the OSU NPP Simulator Facility are analyzed using Structural Equation Modeling (SEM). Data include crew characteristics, operator surveys, and time to recognize

  5. Good mixing length: Digital simulation of fluid mixing with and without obstacles

    International Nuclear Information System (INIS)

    Suarez Antola, R.; Burgos, D.

    2006-07-01

    The good mixing length of a tracer assures that the samples or measures taken are fair. A non homogeneous tracer mixing through the cross section of the fluid medium involved in the experiment (eg. a river or a pipe) may conduct to erroneous conclusions. For establishing that length, a digital simulation of a two dimensional fluid flow, using Navier-Stokes equations, was done. A continuous tracer injection was simulated.The good mixing length was studied in two cases, first with a free of obstacles situation and then the effect of a significant obstacle located after the tracer injection point. As usual in practice, the good mixing length was estimated using a suitable upper bound for the concentration deviations from the mean in a given cross section. An analytical discussion of the obtained results is done

  6. Power system analysis of Hanlim superconducting HVDC system using real time digital simulator

    Science.gov (United States)

    Won, Y. J.; Kim, J. G.; Kim, A. R.; Kim, G. H.; Park, M.; Yu, I. K.; Sim, K. D.; Cho, J.; Lee, S.; Jeong, K. W.; Watanabe, K.

    2011-11-01

    Jeju island is located approximately 100 km south from the mainland of Korea, and had a peak load of about 553 MW in 2008. The demand increases 7.2% a year over the last 5 years. Since the wind profiles of Jeju island are more favorable than mainland of Korea, many companies have shown interest in the wind power business at the Jeju island. Moreover KEPCO has a plan for renewable energy test too whose power will be delivered by HVDC system. One kilometer length of total 8 km was designed as superconducting DC cable. Rest 7 km will be the conventional overhead line. In this paper, the authors have developed a simulation model of the power network around 8 km HVDC system using real time digital simulator (RTDS).

  7. The use of digital games and simulators in veterinary education: an overview with examples.

    Science.gov (United States)

    de Bie, M H; Lipman, L J A

    2012-01-01

    In view of current technological possibilities and the popularity of games, the interest in games for educational purposes is remarkably on the rise. This article outlines the (future) use of (digital) games and simulators in several disciplines, especially in the veterinary curriculum. The different types of game-based learning (GBL)-varying from simple interactive computer board games to more complex virtual simulation strategies-will be discussed as well as the benefits, possibilities, and limitations of the educational use of games. The real breakthrough seems to be a few years away. Technological developments in the future might diminish the limitations and stumbling blocks that currently exist. Consequently, educational games will play a new and increasingly important role in the future veterinary curriculum, providing an attractive and useful way of learning.

  8. Development of a digital solar simulator based on full-bridge converter

    Science.gov (United States)

    Liu, Chen; Feng, Jian; Liu, Zhilong; Tong, Weichao; Ji, Yibo

    2014-02-01

    With the development of solar photovoltaic, distribution schemes utilized in power grid had been commonly application, and photovoltaic (PV) inverter is an essential equipment in grid. In this paper, a digital solar simulator based on full-bridge structure is presented. The output characteristic curve of system is electrically similar to silicon solar cells, which can greatly simplify research methods of PV inverter, improve the efficiency of research and development. The proposed simulator consists on a main control board based on TM320F28335, phase-shifted zero-voltage-switching (ZVS) DC-DC full-bridge converter and voltage and current sampling circuit, that allows emulating the voltage-current curve with the open-circuit voltage (Voc) of 900V and the short-circuit current (Isc) of 18A .When the system connected to a PV inverter, the inverter can quickly track from the open-circuit to the maximum power point and keep stability.

  9. The electrochemical impedance spectroscopy of silver doped hydroxyapatite coating in simulated body fluid used as corrosive agent

    Directory of Open Access Journals (Sweden)

    Mišković-Stanković Vesna

    2012-01-01

    Full Text Available Titanium is a key biomedical material due its good biocompatibility, mechanical properties and corrosion stability, but infections of the implantation site still pose serious threat. One approach to prevent infection is to improve antimicrobial ability of the coating material. Silver doped hydroxyapatite (Ag/HAP nanoparticles were synthesized by new modified precipitation method. The synthesized powder was used for preparation of Ag/HAP coating on titanium by electrophoretic deposition. The coating was characterized in terms of phase composition and structure by Attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR and X-ray diffraction (XRD; surface morphology and chemical composition was assessed using scanning electron microscopy (SEM and energy dispersive spectroscopy (EDS. Research focused on evaluation of the corrosion behaviour of Ag/HAP coating in simulated body fluid (SBF at 37 ºC during prolonged immersion time by electrochemical impedance spectroscopy (EIS. Silver doped HAP coating provided good corrosion protection in SBF solution. [Acknowledgements. This research was financed by the Ministry of Education, Science and Technological Development of the Republic of Serbia, contracts No. III 45019 and by National Sciences and Engineering Research Council of Canada (NSERC. Dr Ana Jankovic was financed by the FP7 Nanotech FTM Grant Agreement 245916

  10. Modelling and simulation of a direct ethanol fuel cell considering multistep electrochemical reactions, transport processes and mixed potentials

    International Nuclear Information System (INIS)

    Meyer, Marco; Melke, Julia; Gerteisen, Dietmar

    2011-01-01

    Highlights: → A DEFC model considering the mixed potential formation at cathode and anode. → The low cell voltage at open circuit is due to the parasitic reaction of ethanol and oxygen. → Under load, only the parasitic oxidation of ethanol is significant. → Inhibiting the parasitic reactions can approximately double the current density. - Abstract: In this work a one-dimensional mathematical model of a direct ethanol fuel cell (DEFC) is presented. The electrochemical oxidation of ethanol in the catalyst layers is described by several reaction steps leading to surface coverage with adsorbed intermediates (CH 3 CO, CO, CH 3 and OH) and to the final products acetaldehyde, acetic acid and CO 2 . A bifunctional reaction mechanism is assumed for the activation of water on a binary catalyst favouring the further oxidation of adsorbates blocking active catalyst sites. The chemical reactions are highly coupled with the charge and reactant transport. The model accounts for crossover of the reactants through the membrane leading to the phenomenon of cathode and anode mixed potentials due to the parasitic oxidation and reduction of ethanol and oxygen, respectively. Polarisation curves of a DEFC were recorded for various ethanol feed concentrations and were used as reference data for the simulation. Based on one set of model parameters the characteristic of electronic and protonic potential, the relative surface coverage and the parasitic current densities in the catalyst layers were studied.

  11. Simulation of Controller Pilot Data Link Communications over VHF Digital Link Mode 3

    Science.gov (United States)

    Bretmersky, Steven C.; Murawski, Robert; Nguyen, Thanh C.; Raghavan, Rajesh S.

    2004-01-01

    The Federal Aviation Administration (FAA) has established an operational plan for the future Air Traffic Management (ATM) system, in which the Controller Pilot Data Link Communications (CPDLC) is envisioned to evolve into digital messaging that will take on an ever increasing role in controller to pilot communications, significantly changing the way the National Airspace System (NAS) is operating. According to FAA, CPDLC represents the first phase of the transition from the current analog voice system to an International Civil Aviation Organization (ICAO) compliant system in which digital communication becomes the alternate and perhaps primary method of routine communication. The CPDLC application is an Air Traffic Service (ATS) application in which pilots and controllers exchange messages via an addressed data link. CPDLC includes a set of clearance, information, and request message elements that correspond to existing phraseology employed by current Air Traffic Control (ATC) procedures. These message elements encompass altitude assignments, crossing constraints, lateral deviations, route changes and clearances, speed assignments, radio frequency assignments, and various requests for information. The pilot is provided with the capability to respond to messages, to request clearances and information, to report information, and to declare/rescind an emergency. A 'free text' capability is also provided to exchange information not conforming to defined formats. This paper presents simulated results of the aeronautical telecommunication application Controller Pilot Data Link Communications over VHF Digital Link Mode 3 (VDL Mode 3). The objective of this simulation study was to determine the impact of CPDLC traffic loads, in terms of timely message delivery and capacity of the VDL Mode 3 subnetwork. The traffic model is based on and is used for generating air/ground messages with different priorities. Communication is modeled for the en route domain of the Cleveland

  12. Online Synchrophasor-Based Dynamic State Estimation using Real-Time Digital Simulator

    DEFF Research Database (Denmark)

    Khazraj, Hesam; Adewole, Adeyemi Charles; Udaya, Annakkage

    2018-01-01

    Dynamic state estimation is a very important control center application used in the dynamic monitoring of state variables. This paper presents and validates a time-synchronized phasor measurement unit (PMU)-based for dynamic state estimation by unscented Kalman filter (UKF) method using the real-...... using the RTDS (real-time digital simulator). The dynamic state variables of multi-machine systems are monitored and measured for the study on the transient behavior of power systems.......Dynamic state estimation is a very important control center application used in the dynamic monitoring of state variables. This paper presents and validates a time-synchronized phasor measurement unit (PMU)-based for dynamic state estimation by unscented Kalman filter (UKF) method using the real......-time digital simulator (RTDS). The dynamic state variables of the system are the rotor angle and speed of the generators. The performance of the UKF method is tested with PMU measurements as inputs using the IEEE 14-bus test system. This test system was modeled in the RSCAD software and tested in real time...

  13. Simulation of the Direct Digital Synthesis module for Helium RFQ LLRF system

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hae-Seong; Ahn, Tae-Sung; Kim, Seong-Gu; Kwon, Hyeok-Jung; Kim, Han-Sung; Song, Young-Gi; Seol, Kyung-Tae; Cho, Yong-Sub [Korea Atomic Energy Research Institute, Gyeongju (Korea, Republic of)

    2015-10-15

    In this paper, the DDS module in the FPGA simulated and the analysis result will be introduced. Using Xilinx ISE design suite which is tool for developing the FPGA logic module, DDS module simulated. KOMAC (Korea Multi-purpose Accelerator Complex) has a plan to develop the helium irradiation system. This system includes the Ion source, LEBT, RFQ, MEBT systems to transport helium particles to the target. Especially, the RFQ (Radio Frequency Quadrupole) system should receive the 200 MHz RF within 1% amplitude error stability. For supplying stable 200 MHz RF to the RFQ, the LLRF (low-level radio frequency) should be controlled by control system. This helium RFQ LLRF control system have a concept to track the cavity resonance frequency. For tracking the cavity resonance frequency, the FPGA (Field Programmable Gate Array) in the digital board will tune the frequency of the output sinusoidal signal. In order to implement this frequency tracking concept, the DDS (Direct Digital Synthesis) module should be implemented in the FPGA. In the future, frequency tracking system will be tested using test cavity.

  14. Inclusion of pH and potential in atomic-scale simulations of the electrochemical interface

    DEFF Research Database (Denmark)

    Björketun, Mårten; Rossmeisl, Jan; Chan, Karen

    2013-01-01

    interest in the development of efficient electrocatalysts for alkaline environments [2]. Consideration of pH is thus a crucial challenge in ab initio simulations. Here we present a generalization of the computational hydrogen electrode to explicitly capture the respective pH and potential effects...... on the interface structure and its corresponding free energy. Using simple thermodynamic arguments, the method determines ground state interface structures as a function of pH and potential. As an example, we apply the method to a set of Pt(111)| water structures and determine the corresponding Pourbaix diagram...

  15. Method for simulating dose reduction in digital mammography using the Anscombe transformation

    International Nuclear Information System (INIS)

    Borges, Lucas R.; Oliveira, Helder C. R. de; Nunes, Polyana F.; Vieira, Marcelo A. C.; Bakic, Predrag R.; Maidment, Andrew D. A.

    2016-01-01

    Purpose: This work proposes an accurate method for simulating dose reduction in digital mammography starting from a clinical image acquired with a standard dose. Methods: The method developed in this work consists of scaling a mammogram acquired at the standard radiation dose and adding signal-dependent noise. The algorithm accounts for specific issues relevant in digital mammography images, such as anisotropic noise, spatial variations in pixel gain, and the effect of dose reduction on the detective quantum efficiency. The scaling process takes into account the linearity of the system and the offset of the detector elements. The inserted noise is obtained by acquiring images of a flat-field phantom at the standard radiation dose and at the simulated dose. Using the Anscombe transformation, a relationship is created between the calculated noise mask and the scaled image, resulting in a clinical mammogram with the same noise and gray level characteristics as an image acquired at the lower-radiation dose. Results: The performance of the proposed algorithm was validated using real images acquired with an anthropomorphic breast phantom at four different doses, with five exposures for each dose and 256 nonoverlapping ROIs extracted from each image and with uniform images. The authors simulated lower-dose images and compared these with the real images. The authors evaluated the similarity between the normalized noise power spectrum (NNPS) and power spectrum (PS) of simulated images and real images acquired with the same dose. The maximum relative error was less than 2.5% for every ROI. The added noise was also evaluated by measuring the local variance in the real and simulated images. The relative average error for the local variance was smaller than 1%. Conclusions: A new method is proposed for simulating dose reduction in clinical mammograms. In this method, the dependency between image noise and image signal is addressed using a novel application of the Anscombe

  16. Method for simulating dose reduction in digital mammography using the Anscombe transformation

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Lucas R., E-mail: lucas.rodrigues.borges@usp.br; Oliveira, Helder C. R. de; Nunes, Polyana F.; Vieira, Marcelo A. C. [Department of Electrical and Computer Engineering, São Carlos School of Engineering, University of São Paulo, 400 Trabalhador São-Carlense Avenue, São Carlos 13566-590 (Brazil); Bakic, Predrag R.; Maidment, Andrew D. A. [Department of Radiology, Hospital of the University of Pennsylvania, University of Pennsylvania, 3400 Spruce Street, Philadelphia, Pennsylvania 19104 (United States)

    2016-06-15

    Purpose: This work proposes an accurate method for simulating dose reduction in digital mammography starting from a clinical image acquired with a standard dose. Methods: The method developed in this work consists of scaling a mammogram acquired at the standard radiation dose and adding signal-dependent noise. The algorithm accounts for specific issues relevant in digital mammography images, such as anisotropic noise, spatial variations in pixel gain, and the effect of dose reduction on the detective quantum efficiency. The scaling process takes into account the linearity of the system and the offset of the detector elements. The inserted noise is obtained by acquiring images of a flat-field phantom at the standard radiation dose and at the simulated dose. Using the Anscombe transformation, a relationship is created between the calculated noise mask and the scaled image, resulting in a clinical mammogram with the same noise and gray level characteristics as an image acquired at the lower-radiation dose. Results: The performance of the proposed algorithm was validated using real images acquired with an anthropomorphic breast phantom at four different doses, with five exposures for each dose and 256 nonoverlapping ROIs extracted from each image and with uniform images. The authors simulated lower-dose images and compared these with the real images. The authors evaluated the similarity between the normalized noise power spectrum (NNPS) and power spectrum (PS) of simulated images and real images acquired with the same dose. The maximum relative error was less than 2.5% for every ROI. The added noise was also evaluated by measuring the local variance in the real and simulated images. The relative average error for the local variance was smaller than 1%. Conclusions: A new method is proposed for simulating dose reduction in clinical mammograms. In this method, the dependency between image noise and image signal is addressed using a novel application of the Anscombe

  17. Simulation of an electrostatic soot-filter with continuous electrochemical conversion during the stages of development

    International Nuclear Information System (INIS)

    Muri, M.

    1996-04-01

    The dissertation describes the simulation of an electrostatic Diesel-Soot-Converter during its stages of development. This simulation is not only necessary for the interpretation of the experimental results, it also shows results for assumptions that cannot be received experimentally. The Diesel-Soot-Converter consists of a charging electrode, which charges the particles by a high-voltage and a ceramic monolith, where the particles are precipitated in the open channels because of an electric field created also by a high-voltage. Afterwards the particles are burned by a plasma. The filter-function of the Diesel-Soot-Converter was formulated and the efficiency for a vehicle was calculated. In the first part of the calculation the mass flow of a BMW 318tds and a BMW 325tds was determined for an US-FTP75-testcycle and for fuel load. In the second part the efficiency of different Diesel-Soot-Converter-types was calculated for the US-FTP75-testcycle and for full load. The use of the program with other testcycles is possible. The results of the calculations show the best configuration of the Diesel-Soot-Converter for the corresponding vehicle. Therefore with the help of this program time and money for the production of the ceramic can be saved. (author)

  18. Application of digital image processing for the generation of voxels phantoms for Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Boia, L.S.; Menezes, A.F.; Cardoso, M.A.C. [Programa de Engenharia Nuclear/COPPE (Brazil); Rosa, L.A.R. da [Instituto de Radioprotecao e Dosimetria-IRD, Av. Salvador Allende, s/no Recreio dos Bandeirantes, CP 37760, CEP 22780-160 Rio de Janeiro, RJ (Brazil); Batista, D.V.S. [Instituto de Radioprotecao e Dosimetria-IRD, Av. Salvador Allende, s/no Recreio dos Bandeirantes, CP 37760, CEP 22780-160 Rio de Janeiro, RJ (Brazil); Instituto Nacional de Cancer-Secao de Fisica Medica, Praca Cruz Vermelha, 23-Centro, 20230-130 Rio de Janeiro, RJ (Brazil); Cardoso, S.C. [Departamento de Fisica Nuclear, Instituto de Fisica, Universidade Federal do Rio de Janeiro, Bloco A-Sala 307, CP 68528, CEP 21941-972 Rio de Janeiro, RJ (Brazil); Silva, A.X., E-mail: ademir@con.ufrj.br [Programa de Engenharia Nuclear/COPPE (Brazil); Departamento de Engenharia Nuclear/Escola Politecnica, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Caixa Postal 68509, 21945-970 Rio de Janeiro, RJ (Brazil); Facure, A. [Comissao Nacional de Energia Nuclear, R. Gal. Severiano 90, sala 409, 22294-900 Rio de Janeiro, RJ (Brazil)

    2012-01-15

    This paper presents the application of a computational methodology for optimizing the conversion of medical tomographic images in voxel anthropomorphic models for simulation of radiation transport using the MCNP code. A computational system was developed for digital image processing that compresses the information from the DICOM medical image before it is converted to the Scan2MCNP software input file for optimization of the image data. In order to validate the computational methodology, a radiosurgery treatment simulation was performed using the Alderson Rando phantom and the acquisition of DICOM images was performed. The simulation results were compared with data obtained with the BrainLab planning system. The comparison showed good agreement for three orthogonal treatment beams of {sup 60}Co gamma radiation. The percentage differences were 3.07%, 0.77% and 6.15% for axial, coronal and sagital projections, respectively. - Highlights: Black-Right-Pointing-Pointer We use a method to optimize the CT image conversion in voxel model for MCNP simulation. Black-Right-Pointing-Pointer We present a methodology to compress a DICOM image before conversion to input file. Black-Right-Pointing-Pointer To validate this study an idealized radiosurgery applied to the Alderson phantom was used.

  19. Digital simulation of a communication link for Pioneer Saturn Uranus atmospheric entry probe, part 1

    Science.gov (United States)

    Hinrichs, C. A.

    1975-01-01

    A digital simulation study is presented for a candidate modulator/demodulator design in an atmospheric scintillation environment with Doppler, Doppler rate, and signal attenuation typical of the conditions of an outer planet atmospheric probe. The simulation results indicate that the mean channel error rate with and without scintillation are similar to theoretical characterizations of the link. The simulation gives information for calculating other channel statistics and generates a quantized symbol stream on magnetic tape from which error correction decoding is analyzed. Results from the magnetic tape data analyses are also included. The receiver and bit synchronizer are modeled in the simulation at the level of hardware component parameters rather than at the loop equation level and individual hardware parameters are identified. The atmospheric scintillation amplitude and phase are modeled independently. Normal and log normal amplitude processes are studied. In each case the scintillations are low pass filtered. The receiver performance is given for a range of signal to noise ratios with and without the effects of scintillation. The performance is reviewed for critical reciever parameter variations.

  20. Digital simulation of FM-ZCS-quasi resonant converter fed DD servo drive using Matlab Simulink

    Directory of Open Access Journals (Sweden)

    Kattamuri Narasimha Rao

    2009-01-01

    Full Text Available This paper deals with digital simulation of FM-ZCS-quasi resonant converter fed DC servo drive using Matlab Simulink. Quasi Resonant Converter (QRC is fast replacing conventional PWM converters in high frequency operation. The salient feature of QRC is that the switching devices can be either switched on at zero voltage or switched off at zero current, so that switching losses are zero ideally. Switching stresses are low, volumes are low and power density is high. This property imparts high efficiency and high power density to the converters. The output of QRC is regulated by varying the switching frequency of the converter. Hence it is called Frequency modulated Zero current/zero voltage switching quasi resonant converter. The present work deals with simulation of DC Servo motor fed from ZCS-QRC using Matlab. Simulation results show that the ZCS-QRC's have low total harmonic distortion. The ZCS-QRC operating in half wave and full wave modes are simulated successfully. .

  1. Estimation of reliability on digital plant protection system in nuclear power plants using fault simulation with self-checking

    International Nuclear Information System (INIS)

    Lee, Jun Seok; Kim, Suk Joon; Seong, Poong Hyun

    2004-01-01

    Safety-critical digital systems in nuclear power plants require high design reliability. Reliable software design and accurate prediction methods for the system reliability are important problems. In the reliability analysis, the error detection coverage of the system is one of the crucial factors, however, it is difficult to evaluate the error detection coverage of digital instrumentation and control system in nuclear power plants due to complexity of the system. To evaluate the error detection coverage for high efficiency and low cost, the simulation based fault injections with self checking are needed for digital instrumentation and control system in nuclear power plants. The target system is local coincidence logic in digital plant protection system and a simplified software modeling for this target system is used in this work. C++ based hardware description of micro computer simulator system is used to evaluate the error detection coverage of the system. From the simulation result, it is possible to estimate the error detection coverage of digital plant protection system in nuclear power plants using simulation based fault injection method with self checking. (author)

  2. Surface analysis and electrochemical behavior of Ti–20Zr alloy in simulated physiological fluids

    Energy Technology Data Exchange (ETDEWEB)

    Calderon Moreno, Jose Maria; Vasilescu, Ecaterina; Drob, Paula; Osiceanu, Petre; Vasilescu, Cora; Drob, Silviu Iulian, E-mail: sidrob@chimfiz.icf.ro; Popa, Monica

    2013-11-01

    Highlights: • The advanced Ti–20Zr alloy shows fully lamellar α + β microstructure. • The alloy passive film improves its properties by deposition of HA (XPS, SEM, EDX, Raman, FT-IR). • Alloy revealed lower corrosion rates and higher polarization resistances than Ti. • EIS spectra depicted a more protective passive film on the alloy surface than on Ti. • The passive film is formed by two layers: an inner barrier and an outer porous layer. -- Abstract: An advanced Ti–20Zr alloy was obtained by double vacuum melting in a semi-levitation furnace with cold crucible. The alloy shows fully lamellar α + β microstructure. Cyclic potentiodynamic polarization curves revealed that the alloy passivated easier, more rapid than Ti, having a more stable passive film in Ringer solutions of different pH values, simulating severe functional conditions of an implant. In neutral and alkaline Ringer solutions, the alloy passive film improved its properties in time (1500 h) by the deposition of protective hydroxyapatite, as was demonstrated by XPS, SEM, EDX, Raman and FT-IR measurements. Alloy presented lower corrosion rates and higher polarization resistances (from linear polarization measurements) than those of Ti (tens of times) proving a more resistant passive film. Alloy open circuit potentials had more electropositive values in comparison with Ti and tended to nobler values in time, which denote better passive state and its enhancement in time, due to the new depositions from the physiological solutions. Nyquist and Bode spectra depicted a more protective passive film on the alloy surface than on Ti surface. The passive film is formed by two layers: an inner barrier layer and an outer porous layer. An electric equivalent circuit with two time constants was modeled.

  3. Surface analysis and electrochemical behavior of Ti–20Zr alloy in simulated physiological fluids

    International Nuclear Information System (INIS)

    Calderon Moreno, Jose Maria; Vasilescu, Ecaterina; Drob, Paula; Osiceanu, Petre; Vasilescu, Cora; Drob, Silviu Iulian; Popa, Monica

    2013-01-01

    Highlights: • The advanced Ti–20Zr alloy shows fully lamellar α + β microstructure. • The alloy passive film improves its properties by deposition of HA (XPS, SEM, EDX, Raman, FT-IR). • Alloy revealed lower corrosion rates and higher polarization resistances than Ti. • EIS spectra depicted a more protective passive film on the alloy surface than on Ti. • The passive film is formed by two layers: an inner barrier and an outer porous layer. -- Abstract: An advanced Ti–20Zr alloy was obtained by double vacuum melting in a semi-levitation furnace with cold crucible. The alloy shows fully lamellar α + β microstructure. Cyclic potentiodynamic polarization curves revealed that the alloy passivated easier, more rapid than Ti, having a more stable passive film in Ringer solutions of different pH values, simulating severe functional conditions of an implant. In neutral and alkaline Ringer solutions, the alloy passive film improved its properties in time (1500 h) by the deposition of protective hydroxyapatite, as was demonstrated by XPS, SEM, EDX, Raman and FT-IR measurements. Alloy presented lower corrosion rates and higher polarization resistances (from linear polarization measurements) than those of Ti (tens of times) proving a more resistant passive film. Alloy open circuit potentials had more electropositive values in comparison with Ti and tended to nobler values in time, which denote better passive state and its enhancement in time, due to the new depositions from the physiological solutions. Nyquist and Bode spectra depicted a more protective passive film on the alloy surface than on Ti surface. The passive film is formed by two layers: an inner barrier layer and an outer porous layer. An electric equivalent circuit with two time constants was modeled

  4. Creating high-resolution digital elevation model using thin plate spline interpolation and Monte Carlo simulation

    International Nuclear Information System (INIS)

    Pohjola, J.; Turunen, J.; Lipping, T.

    2009-07-01

    In this report creation of the digital elevation model of Olkiluoto area incorporating a large area of seabed is described. The modeled area covers 960 square kilometers and the apparent resolution of the created elevation model was specified to be 2.5 x 2.5 meters. Various elevation data like contour lines and irregular elevation measurements were used as source data in the process. The precision and reliability of the available source data varied largely. Digital elevation model (DEM) comprises a representation of the elevation of the surface of the earth in particular area in digital format. DEM is an essential component of geographic information systems designed for the analysis and visualization of the location-related data. DEM is most often represented either in raster or Triangulated Irregular Network (TIN) format. After testing several methods the thin plate spline interpolation was found to be best suited for the creation of the elevation model. The thin plate spline method gave the smallest error in the test where certain amount of points was removed from the data and the resulting model looked most natural. In addition to the elevation data the confidence interval at each point of the new model was required. The Monte Carlo simulation method was selected for this purpose. The source data points were assigned probability distributions according to what was known about their measurement procedure and from these distributions 1 000 (20 000 in the first version) values were drawn for each data point. Each point of the newly created DEM had thus as many realizations. The resulting high resolution DEM will be used in modeling the effects of land uplift and evolution of the landscape in the time range of 10 000 years from the present. This time range comes from the requirements set for the spent nuclear fuel repository site. (orig.)

  5. An assessment of the realism of digital human manikins used for simulation in ergonomics.

    Science.gov (United States)

    Nérot, Agathe; Skalli, Wafa; Wang, Xuguang

    2015-01-01

    In this study, the accuracy of the joint centres of the manikins generated by RAMSIS and Human Builder (HB), two digital human modelling (DHM) systems widely used in industry for virtual ergonomics simulation, was investigated. Eighteen variously sized females and males were generated from external anthropometric dimensions and six joint centres (knee, hip and four spine joints) were compared with their anatomic locations obtained from the three-dimensional reconstructed bones from a low-dose X-ray system. Both RAMSIS and HB could correctly reproduce external anthropometric dimensions, while the estimation of internal joint centres location presented an average error of 27.6 mm for HB and 38.3 mm for RAMSIS. Differences between both manikins showed that a more realistic kinematic linkage led to better accuracy in joint location. This study opens the way to further research on the relationship between the external body geometry and internal skeleton in order to improve the realism of the internal skeleton of DHMs, especially for a biomechanical analysis requiring information of joint load and muscle force estimation. This study assessed two digital human modelling (DHM) systems widely used in industry for virtual ergonomics. Results support the need of a more realistic human modelling, especially for a biomechanical analysis and a standardisation of DHMs.

  6. Use of different simulators to quality evaluation of image quality in digital mammography; Utilizacao de diferentes simuladores na avaliacao da qualidade da imagem em mamografia digital

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Leslie S.; Coutinho, Celia M.C., E-mail: leslie@ird.gov.br, E-mail: celia@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Magalhaes, Luis A.G.; Almeida, Carlos Eduardo de, E-mail: luisalexandregm@hotmail.com, E-mail: cea71@yahoo.com.br [Universidade do Estado do Rio de Janeiro (LCR/UERJ), Rio de Janeiro, RJ (Brazil). Laboratorio de Ciencias Radiologicas

    2013-11-01

    In this study, the digital images were acquired with different exposure simulators to evaluate the quality of the image, noting the tumor mass detection, microcalcification fiber and representing regions of interest during mammography. The technical parameters of exposure depends on the thickness and composition of the breast, thus affecting the dose and image quality. The simulators were used: ACR, SBP 1054, BREAST PHANTOM CIRS and for evaluation of image quality, as well as measures kerma incident on the entrance surface (Ki) and calculating the mean glandular dose (MGD)

  7. Phasor Measurement Unit and Phasor Data Concentrator test with Real Time Digital Simulator

    DEFF Research Database (Denmark)

    Diakos, Konstantinos; Wu, Qiuwei; Nielsen, Arne Hejde

    2014-01-01

    that is able to derive and communicate synchrophasor measurements of different parts of the power network and the development of tests, according to IEEE standards, that evaluate the performance of PMUs and PDCs. The tests are created by using a Real Time Digital Simulation (RTDS) system. The results obtained......The main focus of the electrical engineers nowadays, is to develop a smart grid that is able to monitor, evaluate and control the power system operation. The integration of Intelligent Electronic Devices (IED s) to the power network, is a strong indication of the inclination to lead the power...... network to a more reliable, secure and economic operation. The implementation of these devices though, demands the warranty of a secure operation and high-accuracy performance. This paper describes the procedure of establishing a PMU (Phasor Measurement Unit)–PDC (Phasor Data Concentrator) platform...

  8. Dose-image quality study in digital chest radiography using Monte Carlo simulation

    International Nuclear Information System (INIS)

    Correa, S.C.A.; Souza, E.M.; Silva, A.X.; Lopes, R.T.; Yoriyaz, H.

    2008-01-01

    One of the main preoccupations of diagnostic radiology is to guarantee a good image-sparing dose to the patient. In the present study, Monte Carlo simulations, with MCNPX code, coupled with an adult voxel female model (FAX) were performed to investigate how image quality and dose in digital chest radiography vary with tube voltage (80-150 kV) using air-gap technique and a computed radiography system. Calculated quantities were normalized to a fixed value of entrance skin exposure (ESE) of 0.0136 R. The results of the present analysis show that the image quality for chest radiography with imaging plate is improved and the dose reduced at lower tube voltage

  9. Digital simulation of a commercial scale high temperature gas-cooled reactor (HTGR) steam power plant

    International Nuclear Information System (INIS)

    Ray, A.; Bowman, H.F.

    1978-01-01

    A nonlinear dynamic model of a commercial scale high temperature gas-cooled reactor (HTGR) steam power plant was derived in state-space form from fundamental principles. The plant model is 40th order, time-invariant, deterministic and continuous-time. Numerical results were obtained by digital simulation. Steady-state performance of the nonlinear model was verified with plant heat balance data at 100, 75 and 50 percent load levels. Local stability, controllability and observability were examined in this range using standard linear algorithms. Transfer function matrices for the linearized models were also obtained. Transient response characteristics of 6 system variables for independent step distrubances in 2 different input variables are presented as typical results

  10. Real-time digital simulation of power electronics systems with Neutral Point Piloted multilevel inverter using FPGA

    Energy Technology Data Exchange (ETDEWEB)

    Rakotozafy, Mamianja [Groupe de Recherches en Electrotechnique et Electronique de Nancy (GREEN), Faculte des Sciences et Techniques, BP 70239, 54506 Vandoeuvre Cedex (France); CONVERTEAM SAS, Parc d' activites Techn' hom, 24 avenue du Marechal Juin, BP 40437, 90008 Belfort Cedex (France); Poure, Philippe [Laboratoire d' Instrumentation Electronique de Nancy (LIEN), Faculte des Sciences et Techniques, BP 70239, 54506 Vandoeuvre Cedex (France); Saadate, Shahrokh [Groupe de Recherches en Electrotechnique et Electronique de Nancy (GREEN), Faculte des Sciences et Techniques, BP 70239, 54506 Vandoeuvre Cedex (France); Bordas, Cedric; Leclere, Loic [CONVERTEAM SAS, Parc d' activites Techn' hom, 24 avenue du Marechal Juin, BP 40437, 90008 Belfort Cedex (France)

    2011-02-15

    Most of actual real time simulation platforms have practically about ten microseconds as minimum calculation time step, mainly due to computation limits such as processing speed, architecture adequacy and modeling complexities. Therefore, simulation of fast switching converters' instantaneous models requires smaller computing time step. The approach presented in this paper proposes an answer to such limited modeling accuracies and computational bandwidth of the currently available digital simulators.As an example, the authors present a low cost, flexible and high performance FPGA-based real-time digital simulator for a complete complex power system with Neutral Point Piloted (NPP) three-level inverter. The proposed real-time simulator can model accurately and efficiently the complete power system, reducing costs, physical space and avoiding any damage to the actual equipment in the case of any dysfunction of the digital controller prototype. The converter model is computed at a small fixed time step as low as 100 ns. Such a computation time step allows high precision account of the gating signals and thus avoids averaging methods and event compensations. Moreover, a novel high performance model of the NPP three-level inverter has also been proposed for FPGA implementation. The proposed FPGA-based simulator models the environment of the NPP converter: the dc link, the RLE load and the digital controller and gating signals. FPGA-based real time simulation results are presented and compared with offline results obtained using PLECS software. They validate the efficiency and accuracy of the modeling for the proposed high performance FPGA-based real-time simulation approach. This paper also introduces new potential FPGA-based applications such as low cost real time simulator for power systems by developing a library of flexible and portable models for power converters, electrical machines and drives. (author)

  11. Electrochemical studies of the corrosion behavior of a low-carbon steel in aqueous chloride solutions simulating accident conditions of radioactive waste disposal

    International Nuclear Information System (INIS)

    Farvaque-Bera, A.M.; Leistikow, S.

    1991-01-01

    The fine-grained structural steel DIN W.Nr. 1.0566 was exposed to various sulfate and chloride-containing aqueous solutions, the latter ones simulating the potential accidental environment of water intrusion into a salt mine. By electrochemical measurements in salt brines, the following results were achieved: (1) The corrosion rate is highly dependent on salt brine composition, pH and temperature. (2) Active metal dissolution led to formation of shallow pits as surface corrosion phenomenon. Thus, the application of electrochemical techniques - under non-polarized as well as under potentiodynamic conditions - proved to be suitable for fast qualitative testing of the influence of various environmental parameters on steel corrosion. (orig.)

  12. The simulation of 3D mass models in 2D digital mammography and breast tomosynthesis

    International Nuclear Information System (INIS)

    Shaheen, Eman; De Keyzer, Frederik; Bosmans, Hilde; Ongeval, Chantal Van; Dance, David R.; Young, Kenneth C.

    2014-01-01

    Purpose: This work proposes a new method of building 3D breast mass models with different morphological shapes and describes the validation of the realism of their appearance after simulation into 2D digital mammograms and breast tomosynthesis images. Methods: Twenty-five contrast enhanced MRI breast lesions were collected and each mass was manually segmented in the three orthogonal views: sagittal, coronal, and transversal. The segmented models were combined, resampled to have isotropic voxel sizes, triangularly meshed, and scaled to different sizes. These masses were referred to as nonspiculated masses and were then used as nuclei onto which spicules were grown with an iterative branching algorithm forming a total of 30 spiculated masses. These 55 mass models were projected into 2D projection images to obtain mammograms after image processing and into tomographic sequences of projection images, which were then reconstructed to form 3D tomosynthesis datasets. The realism of the appearance of these mass models was assessed by five radiologists via receiver operating characteristic (ROC) analysis when compared to 54 real masses. All lesions were also given a breast imaging reporting and data system (BIRADS) score. The data sets of 2D mammography and tomosynthesis were read separately. The Kendall's coefficient of concordance was used for the interrater observer agreement assessment for the BIRADS scores per modality. Further paired analysis, using the Wilcoxon signed rank test, of the BIRADS assessment between 2D and tomosynthesis was separately performed for the real masses and for the simulated masses. Results: The area under the ROC curves, averaged over all observers, was 0.54 (95% confidence interval [0.50, 0.66]) for the 2D study, and 0.67 (95% confidence interval [0.55, 0.79]) for the tomosynthesis study. According to the BIRADS scores, the nonspiculated and the spiculated masses varied in their degrees of malignancy from normal (BIRADS 1) to highly

  13. The simulation of 3D mass models in 2D digital mammography and breast tomosynthesis.

    Science.gov (United States)

    Shaheen, Eman; De Keyzer, Frederik; Bosmans, Hilde; Dance, David R; Young, Kenneth C; Van Ongeval, Chantal

    2014-08-01

    This work proposes a new method of building 3D breast mass models with different morphological shapes and describes the validation of the realism of their appearance after simulation into 2D digital mammograms and breast tomosynthesis images. Twenty-five contrast enhanced MRI breast lesions were collected and each mass was manually segmented in the three orthogonal views: sagittal, coronal, and transversal. The segmented models were combined, resampled to have isotropic voxel sizes, triangularly meshed, and scaled to different sizes. These masses were referred to as nonspiculated masses and were then used as nuclei onto which spicules were grown with an iterative branching algorithm forming a total of 30 spiculated masses. These 55 mass models were projected into 2D projection images to obtain mammograms after image processing and into tomographic sequences of projection images, which were then reconstructed to form 3D tomosynthesis datasets. The realism of the appearance of these mass models was assessed by five radiologists via receiver operating characteristic (ROC) analysis when compared to 54 real masses. All lesions were also given a breast imaging reporting and data system (BIRADS) score. The data sets of 2D mammography and tomosynthesis were read separately. The Kendall's coefficient of concordance was used for the interrater observer agreement assessment for the BIRADS scores per modality. Further paired analysis, using the Wilcoxon signed rank test, of the BIRADS assessment between 2D and tomosynthesis was separately performed for the real masses and for the simulated masses. The area under the ROC curves, averaged over all observers, was 0.54 (95% confidence interval [0.50, 0.66]) for the 2D study, and 0.67 (95% confidence interval [0.55, 0.79]) for the tomosynthesis study. According to the BIRADS scores, the nonspiculated and the spiculated masses varied in their degrees of malignancy from normal (BIRADS 1) to highly suggestive for malignancy (BIRADS 5

  14. The simulation of 3D mass models in 2D digital mammography and breast tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Shaheen, Eman, E-mail: eman.shaheen@uzleuven.be; De Keyzer, Frederik; Bosmans, Hilde; Ongeval, Chantal Van [Department of Radiology, University Hospitals Leuven, Herestraat 49, 3000 Leuven (Belgium); Dance, David R.; Young, Kenneth C. [National Coordinating Centre for the Physics of Mammography, Royal Surrey County Hospital, Guildford GU2 7XX, United Kingdom and Department of Physics, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH (United Kingdom)

    2014-08-15

    Purpose: This work proposes a new method of building 3D breast mass models with different morphological shapes and describes the validation of the realism of their appearance after simulation into 2D digital mammograms and breast tomosynthesis images. Methods: Twenty-five contrast enhanced MRI breast lesions were collected and each mass was manually segmented in the three orthogonal views: sagittal, coronal, and transversal. The segmented models were combined, resampled to have isotropic voxel sizes, triangularly meshed, and scaled to different sizes. These masses were referred to as nonspiculated masses and were then used as nuclei onto which spicules were grown with an iterative branching algorithm forming a total of 30 spiculated masses. These 55 mass models were projected into 2D projection images to obtain mammograms after image processing and into tomographic sequences of projection images, which were then reconstructed to form 3D tomosynthesis datasets. The realism of the appearance of these mass models was assessed by five radiologists via receiver operating characteristic (ROC) analysis when compared to 54 real masses. All lesions were also given a breast imaging reporting and data system (BIRADS) score. The data sets of 2D mammography and tomosynthesis were read separately. The Kendall's coefficient of concordance was used for the interrater observer agreement assessment for the BIRADS scores per modality. Further paired analysis, using the Wilcoxon signed rank test, of the BIRADS assessment between 2D and tomosynthesis was separately performed for the real masses and for the simulated masses. Results: The area under the ROC curves, averaged over all observers, was 0.54 (95% confidence interval [0.50, 0.66]) for the 2D study, and 0.67 (95% confidence interval [0.55, 0.79]) for the tomosynthesis study. According to the BIRADS scores, the nonspiculated and the spiculated masses varied in their degrees of malignancy from normal (BIRADS 1) to highly

  15. Patients setup verification tool for RT (PSVTs): DRR, simulation, portal and digital images

    International Nuclear Information System (INIS)

    Lee, Suk; Seong, Jin Sil; Chu, Sung Sil; Lee, Chang Geol; Suh, Chang Ok; Kwon, Soo Il

    2003-01-01

    To develop a patients' setup verification tool (PSVT) to verify the alignment of the machine and the target isocenters, and the reproducibility of patients' setup for three dimensional conformal radiotherapy (3DCRT) and intensity modulated radiotherapy (MRT). The utilization of this system is evaluated through phantom and patient case studies. We developed and clinically tested a new method for patients' setup verification, using digitally reconstructed radiography (DRR), simulation, portal and digital images. The PSVT system was networked to a Pentium PC for the transmission of the acquired images to the PC for analysis. To verify the alignment of the machine and target isocenters, orthogonal pairs of simulation images were used as verification images. Errors in the isocenter alignment were measured by comparing the verification images with DRR of CT images. Orthogonal films were taken of all the patients once a week. These verification films were compared with the DRR were used for the treatment setup. By performing this procedure every treatment, using humanoid phantom and patient cases, the errors of localization can be analyzed, with adjustments made from the translation. The reproducibility of the patients' setup was verified using portal and digital images. The PSVT system was developed to verify the alignment of the machine and the target isocenters, and the reproducibility of the patients' setup for 3DCRT and IMRT The results show that the localization errors are 0.8±0.2 mm (AP) and 1.0±0.3 mm (Lateral) in the cases relating to the brain and 1.1± 0.5 mm (AP) and 1.0±0.6 mm (Lateral) in the cases relating to the pelvis. The reproducibility of the patients' setup was verified by visualization, using real-time image acquisition, leading to the practical utilization of our software. A PSVT system was developed for the verification of the alignment between machine and the target isocenters, and the reproducibility of the patients' setup in 3DCRT and IMRT

  16. Research on real-time simulation test for upgrades of digital I and C system in nuclear power plant

    International Nuclear Information System (INIS)

    Shi Ji; Jiang Mingyu; Ma Yunqin

    2005-01-01

    The developing trend that digital instrument and control (I and C) system will supplant traditional analog I and C system in nuclear power plant is emphasized. This paper introduces mathematical model of steam generator of full scope simulator for nuclear power plant. The independent real-time simulation system, which forms the interactive closed loop together with the steam generator control system, can be applied to provide a simulation target for upgrades of instrument and control system and the research of control schemes. At the same time, a simulation method for this purpose is presented in this paper. In this method all of the hardware and software are composed of real distributed control system except the model of controlled object. This will not only create favorable conditions for commissioning on site in the future, but also give a theoretical analysis for upgrades of digital I and C system in nuclear power plant. (authors)

  17. Simulation and Measurement of the Transmission Distortions of the Digital Television DVB-T/H Part 2: Hierarchical Modulation Performance

    Directory of Open Access Journals (Sweden)

    R. Stukavec

    2010-09-01

    Full Text Available The paper deals with the second part of results of the Czech Science Foundation research project that was aimed into the simulation and measurement of the transmission distortions of the digital terrestrial television according to DVB-T/H standards. In this part the hierarchical modulation performance characteristics and its simulation and laboratory measurements are presented. The paper deals with the hierarchical oriented COFDM modulator for the digital terrestrial television transmission and DVB-T/H standards and possible utilization of this technique in real broadcasting scenarios – fixed, portable and mobile digital TV, all in one TV channel. Impact of the hierarchical modulation on Modulation Error Rate from I/Q constellations and Bit Error Rates before and after Viterbi decoding in DVB-T/H signal decoding are evaluated and discussed.

  18. Flexible Simulation E-Learning Environment for Studying Digital Circuits and Possibilities for It Deployment as Semantic Web Service

    Science.gov (United States)

    Radoyska, P.; Ivanova, T.; Spasova, N.

    2011-01-01

    In this article we present a partially realized project for building a distributed learning environment for studying digital circuits Test and Diagnostics at TU-Sofia. We describe the main requirements for this environment, substantiate the developer platform choice, and present our simulation and circuit parameter calculation tools.…

  19. Electrochemical impedance spectrometry using 316L steel, hastelloy, maraging, Inconel 600, Elgiloy, carbon steel, TiN and NiCr. Simulation in tritiated water. 2 volumes

    International Nuclear Information System (INIS)

    Bellanger, G.

    1994-03-01

    Polarization and electrochemical impedance spectrometry curves are presented and discussed. These curves make it possible to ascertain the corrosion domains and to compare the slow and fast kinetics (voltammetry) of different stainless steel alloys. These corrosion kinetics, the actual or simulated tritiated water redox potentials, and the corrosion potentials provide a classification of the steels studied here: 316L, Hastelloy, Maraging, Inconel 600, Elgiloy, carbon steel and TiN and NiCr deposits. From the results it can be concluded that Hastelloy and Elgiloy have the best corrosion resistance. (author). 49 refs., 695 figs., tabs

  20. Clinical Simulation and Workflow by use of two Clinical Information Systems, the Electronic Health Record and Digital Dictation

    DEFF Research Database (Denmark)

    Schou Jensen, Iben; Koldby, Sven

    2013-01-01

    digital dictation and the EHR (electronic health record) were simulated in realistic and controlled clinical environments. Useful information dealing with workflow and patient safety were obtained. The clinical simulation demonstrated that the EHR locks during use of the integration of digital dictation......Clinical information systems do not always support clinician workflows. An increasing number of unintended clinical inci-dents might be related to implementation of clinical infor-mation systems and to a new registration praxis of unin-tended clinical incidents. Evidence of performing clinical...... simulations before implementation of new clinical information systems provides the basis for use of this method. The intention has been to evaluate patient safety issues, functionality, workflow, and usefulness of a new solution before implementation in the hospitals. Use of a solution which integrates...

  1. Advanced Research and Education in Electrical Drives by Using Digital Real-Time Hardware-in-the-Loop Simulation

    DEFF Research Database (Denmark)

    Bojoi, R.; Profumo, F.; Griva, G.

    2002-01-01

    The authors present in this paper a digital real-time hardware-in-the-loop simulation of a three-phase induction motor drive. The main real-time simulation tool is the dSPACE DS1103 PPC Controller Board which simulates the power and signal conditioning parts. The control algorithm of the virtual...... drive has been implemented on the Evaluation Board of TMS320F240 DSP. The experimental results validate this solution as a powerful tool to be used in research and advanced education. Thus, the students can put in practic the theory without spending too much time with details concerning the hardware...

  2. Use of a graphical user interface approach for digital and physical simulation in power systems control education

    International Nuclear Information System (INIS)

    Shoults, R.R.; Barrera-Cardiel, E.

    1992-01-01

    This paper presents the design of a laboratory with software and hardware structures for digital and physical simulation in the area of Power Systems Control Education. The hardware structure includes a special man-machine interface designed with a graphical user interface approach. This interface allows the user full control over the simulation and provides facilities for the study of the response of the simulated system. This approach is illustrated with the design of a control system for a physically based HVDC transmission system model

  3. Comparison of conventional panoramic radiography and panoramic digital subtraction radiography in detection of simulated lesions of mandibular condyle

    Directory of Open Access Journals (Sweden)

    Panjnoush M.

    2008-12-01

    Full Text Available "n  "nBackground and Aim: Digital subtraction Radiography (DSR is a method of accurate assessing condylar head changes. several studies have been carried out in applying DSR in dentistry, however there is a few number of studies in efficacy of DSR method in assesment of condylar head changes, The aim of this study was to compare panoramic radiography and DSR detecting simulated lesions of the mandibular condyl. "nMaterials and Methods: this was a process reaserch study, in which two dry human skulls with no obvious temporomandibular joint pathology were used. Osteophytic lesions were simulated using three sizes of bone chips that were placed on the medial portion of anterior and superolateral aspects of the condyle. Osteolytic lesions were simulated making 1 and 2 mm holes using round burr in the central portion of anterior aspect and Lateral pole of the condyle. Panoramic radiographs were prepared with and without the lesions in place. These paired radiographs were digitized and digital- subtraction images of the original panoramic images were obtained. Eight observers evaluated 155 images of each modality for the presence or absence and the type of simulated lesions of the mandibular condyle. Sensitivity, specificity, reliability and measure of agreement were analyzed using kappa test and crossed tables and qualitative variables were assess by chi-square and fisher's Exact test. "nResults: Specificity of panoramic and DSR methods were 15.4% and 66.7% respectively. Sensitivity of panoramic and DSR methods were 61.1% and 80.6% for osteophytic lesions and 37.5% and 83.3% for Osteolytic lesions. The percentage of correct decisions made in DSR method was significantly more than conventional panoramic method (82.6% vs 41.9% (p<0.0001. "nConclusion: Based on the results of this study digital subtraction technique was significantly more accurate than the panoramic radiographs in detection of simulated lesions of the mandibular condyle.

  4. Comparison of TiO2 photocatalysis, electrochemically assisted Fenton reaction and direct electrochemistry for simulation of phase I metabolism reactions of drugs.

    Science.gov (United States)

    Ruokolainen, Miina; Gul, Turan; Permentier, Hjalmar; Sikanen, Tiina; Kostiainen, Risto; Kotiaho, Tapio

    2016-02-15

    The feasibility of titanium dioxide (TiO2) photocatalysis, electrochemically assisted Fenton reaction (EC-Fenton) and direct electrochemical oxidation (EC) for simulation of phase I metabolism of drugs was studied by comparing the reaction products of buspirone, promazine, testosterone and 7-ethoxycoumarin with phase I metabolites of the same compounds produced in vitro by human liver microsomes (HLM). Reaction products were analysed by UHPLC-MS. TiO2 photocatalysis simulated the in vitro phase I metabolism in HLM more comprehensively than did EC-Fenton or EC. Even though TiO2 photocatalysis, EC-Fenton and EC do not allow comprehensive prediction of phase I metabolism, all three methods produce several important metabolites without the need for demanding purification steps to remove the biological matrix. Importantly, TiO2 photocatalysis produces aliphatic and aromatic hydroxylation products where direct EC fails. Furthermore, TiO2 photocatalysis is an extremely rapid, simple and inexpensive way to generate oxidation products in a clean matrix and the reaction can be simply initiated and quenched by switching the UV lamp on/off. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. 3D pore-type digital rock modeling of natural gas hydrate for permafrost and numerical simulation of electrical properties

    Science.gov (United States)

    Dong, Huaimin; Sun, Jianmeng; Lin, Zhenzhou; Fang, Hui; Li, Yafen; Cui, Likai; Yan, Weichao

    2018-02-01

    Natural gas hydrate is being considered as an alternative energy source for sustainable development and has become a focus of research throughout the world. In this paper, based on CT scanning images of hydrate reservoir rocks, combined with the microscopic distribution of hydrate, a diffusion limited aggregation (DLA) model was used to construct 3D hydrate digital rocks of different distribution types, and the finite-element method was used to simulate their electrical characteristics in order to study the influence of different hydrate distribution types, hydrate saturation and formation of water salinity on electrical properties. The results show that the hydrate digital rocks constructed using the DLA model can be used to characterize the microscopic distribution of different types of hydrates. Under the same conditions, the resistivity of the adhesive hydrate digital rock is higher than the cemented and scattered type digital rocks, and the resistivity of the scattered hydrate digital rock is the smallest among the three types. Besides, the difference in the resistivity of the different types of hydrate digital rocks increases with an increase in hydrate saturation, especially when the saturation is larger than 55%, and the rate of increase of each of the hydrate types is quite different. Similarly, the resistivity of the three hydrate types decreases with an increase in the formation of water salinity. The single distribution hydrate digital rock constructed, combined with the law of microscopic distribution and influence of saturation on the electrical properties, can effectively improve the accuracy of logging identification of hydrate reservoirs and is of great significance for the estimation of hydrate reserves.

  6. Digital Simulation of a Hybrid Active Filter - An Active Filter in Series with a Shunt Passive Filter

    OpenAIRE

    Sitaram, Mahesh I; Padiyar, KR; Ramanarayanan, V

    1998-01-01

    Active filters have long been in use for the filtering of power system load harmonics. In this paper, the digital simulation results of a hybrid active power filter system for a rectifier load are presented. The active filter is used for filtering higher order harmonics as the dominant harmonics are filtered by the passive filter. This reduces the rating of the active filter significantly. The DC capacitor voltage of the active filter is controlled using a PI controller.

  7. Digital Simulation of Closed Loop Zvs-Zcs Bidirectional Dc-Dc Converter for Fuel Cell and Battery Application

    Directory of Open Access Journals (Sweden)

    V. V. Subrahmanya Kumar Bhajana

    2010-08-01

    Full Text Available A closed loop ZVS-ZCS bidirectional dc-dc converter is modeled and appropriate digital simulations are provided. With the ZVS-ZCS concept, the MATLAB simulation results of application to a fuel cell and battery application have been obtained whenever the input voltage exceeds the given 24V, at that time the load voltage will change from 180V to 230V. But due to this usage the load is disturbed and there is instability in the model. Using closed loop the output voltage is stabilized.

  8. Scatter correction using a primary modulator for dual energy digital radiography: A Monte Carlo simulation study

    Science.gov (United States)

    Jo, Byung-Du; Lee, Young-Jin; Kim, Dae-Hong; Kim, Hee-Joung

    2014-08-01

    In conventional digital radiography (DR) using a dual energy subtraction technique, a significant fraction of the detected photons are scattered within the body, making up the scatter component. Scattered radiation can significantly deteriorate image quality in diagnostic X-ray imaging systems. Various methods of scatter correction, including both measurement- and non-measurement-based methods, have been proposed in the past. Both methods can reduce scatter artifacts in images. However, non-measurement-based methods require a homogeneous object and have insufficient scatter component correction. Therefore, we employed a measurement-based method to correct for the scatter component of inhomogeneous objects from dual energy DR (DEDR) images. We performed a simulation study using a Monte Carlo simulation with a primary modulator, which is a measurement-based method for the DEDR system. The primary modulator, which has a checkerboard pattern, was used to modulate the primary radiation. Cylindrical phantoms of variable size were used to quantify the imaging performance. For scatter estimates, we used discrete Fourier transform filtering, e.g., a Gaussian low-high pass filter with a cut-off frequency. The primary modulation method was evaluated using a cylindrical phantom in the DEDR system. The scatter components were accurately removed using a primary modulator. When the results acquired with scatter correction and without scatter correction were compared, the average contrast-to-noise ratio (CNR) with the correction was 1.35 times higher than that obtained without the correction, and the average root mean square error (RMSE) with the correction was 38.00% better than that without the correction. In the subtraction study, the average CNR with the correction was 2.04 (aluminum subtraction) and 1.38 (polymethyl methacrylate (PMMA) subtraction) times higher than that obtained without the correction. The analysis demonstrated the accuracy of the scatter correction and the

  9. Electrochemical biosensors

    CERN Document Server

    Cosnier, Serge

    2015-01-01

    "This is an excellent book on modern electrochemical biosensors, edited by Professor Cosnier and written by leading international experts. It covers state-of-the-art topics of this important field in a clear and timely manner."-Prof. Joseph Wang, UC San Diego, USA  "This book covers, in 13 well-illustrated chapters, the potential of electrochemical methods intimately combined with a biological component for the assay of various analytes of biological and environmental interest. Particular attention is devoted to the description of electrochemical microtools in close contact with a biological cell for exocytosis monitoring and to the use of nanomaterials in the electrochemical biosensor architecture for signal improvement. Interestingly, one chapter describes the concept and design of self-powered biosensors derived from biofuel cells. Each topic is reviewed by experts very active in the field. This timely book is well suited for providing a good overview of current research trends devoted to electrochemical...

  10. A Monte-Carlo simulation framework for joint optimisation of image quality and patient dose in digital paediatric radiography

    International Nuclear Information System (INIS)

    Menser, Bernd; Manke, Dirk; Mentrup, Detlef; Neitzel, Ulrich

    2016-01-01

    In paediatric radiography, according to the as low as reasonably achievable (ALARA) principle, the imaging task should be performed with the lowest possible radiation dose. This paper describes a Monte-Carlo simulation framework for dose optimisation of imaging parameters in digital paediatric radiography. Patient models with high spatial resolution and organ segmentation enable the simultaneous evaluation of image quality and patient dose on the same simulated radiographic examination. The accuracy of the image simulation is analysed by comparing simulated and acquired images of technical phantoms. As a first application example, the framework is applied to optimise tube voltage and pre-filtration in newborn chest radiography. At equal patient dose, the highest CNR is obtained with low-kV settings in combination with copper filtration. (authors)

  11. Bioactivity and electrochemical behavior of hydroxyapatite-silicon-multi walled carbon nano-tubes composite coatings synthesized by EPD on NiTi alloys in simulated body fluid

    Energy Technology Data Exchange (ETDEWEB)

    Khalili, V., E-mail: V_khalili@sut.ac.ir [Department of Materials Engineering, Engineering Faculty, University of Bonab, Bonab (Iran, Islamic Republic of); Khalil-Allafi, J. [Research Center for Advanced Materials and Mineral Processing, Faculty of Materials Engineering, Sahand University of Technology, Tabriz (Iran, Islamic Republic of); Frenzel, J.; Eggeler, G. [Institute for Materials, Faculty of Mechanical Engineering, Ruhr-University Bochum, 44801 Bochum (Germany)

    2017-02-01

    In order to improve the surface bioactivity of NiTi bone implant and corrosion resistance, hydroxyapatite coating with addition of 20 wt% silicon, 1 wt% multi walled carbon nano-tubes and both of them were deposited on a NiTi substrate using a cathodic electrophoretic method. The apatite formation ability was estimated using immersion test in the simulated body fluid for 10 days. The SEM images of the surface of coatings after immersion in simulated body fluid show that the presence of silicon in the hydroxyapatite coatings accelerates in vitro growth of apatite layer on the coatings. The Open-circuit potential and electrochemical impedance spectroscopy were measured to evaluate the electrochemical behavior of the coatings in the simulated body fluid at 37 °C. The results indicate that the compact structure of hydroxyapatite-20 wt% silicon and hydroxyapatite-20 wt% silicon-1 wt% multi walled carbon nano-tubes coatings could efficiently increase the corrosion resistance of NiTi substrate. - Highlights: • The composite coatings of HA, Si and MWCNTs was prepared using electrophoretic deposition. • The presence of 1 wt.% MWCNTs in the HA coating provides more nucleation cites of apatite crystallites in SBF. • The presence of Si in HA coating increases the growth rate of apatite crystallites with the Ca/P atomic ratio of 1.67. • The EIS indicate the compact HA-20%Si and HA-20%Si-1%MWCNTs coatings efficiently increase corrosion resistance of NiTi. • The porous HA and HA-1%MWCNTs do not increase significantly corrosion resistance due to the easy diffusion path.

  12. CEC mechanism in electrochemical oxidation of nitrocatechol-boric acid complexes

    International Nuclear Information System (INIS)

    Rafiee, Mohammad; Nematollahi, Davood; Salehzadeh, Hamid

    2011-01-01

    Graphical abstract: Display Omitted Highlights: → Nitrochetechol and its anionic form undergo complex reaction with boric acid. → The electron transfer of complex is coupled with both proceeding and following chemical reactions. → Electrochemical behavior of complex is resolved by diagnostic criteria and digital simulation. - Abstract: The electrochemical behavior of nitrocatechols-boric acid complexes in aqueous solution has been studied using cyclic voltammetry. The results indicate that nitrocatechol-boric acid complex derivatives are involved in the CEC mechanism. In this work, the impact of empirical parameters on the shape of the voltammograms is examined based on a CEC mechanism. In addition, homogeneous rate constants of both the preceding and the following reactions were estimated by comparing the experimental cyclic voltammograms with the digitally simulated results. The calculated dissociation constants for the complexes (K d ) and for ring cleavage of nitroquinone (k f2 ) were found to vary in the following order: 4-nitrocatechol > 3-methylnitrocatechol > 3-metoxynitrocatechol.

  13. Digital techniques in simulation, communication and control. Proceedings of the IMACS European meeting held at University of Patras, Patras, Greece, July 9-12, 1984

    Energy Technology Data Exchange (ETDEWEB)

    Tzafestas, S G

    1985-01-01

    The book contains 90 papers which are classified in the following five parts: Modelling and simulation; Digital signal processing and 2-D system design; Information and communication systems; Control systems; and Applications (robotics, industrial and miscellaneous applications). The volume reflects the state-of-art of the field of digital techniques. (Auth.).

  14. Quality comparison between DEF-10 digital image from simulation technique and Computed Tomography (CR) technique in industrial radiography

    International Nuclear Information System (INIS)

    Siti Nur Syatirah Ismail

    2012-01-01

    The study was conducted to make comparison of digital image quality of DEF-10 from the techniques of simulation and computed radiography (CR). The sample used is steel DEF-10 with thickness of 15.28 mm. In this study, the sample is exposed to radiation from X-ray machine (ISOVOLT Titan E) with certain parameters. The parameters used in this study such as current, volt, exposure time and distance are specified. The current and distance of 3 mA and 700 mm respectively are specified while the applied voltage varies at 140, 160, 180 and 200 kV. The exposure time is reduced at a rate of 0, 20, 40, 60 and 80 % for each sample exposure. Digital image of simulation produced from aRTist software whereas digital image of computed radiography produced from imaging plate. Therefore, both images were compared qualitatively (sensitivity) and quantitatively (Signal to-Noise Ratio; SNR, Basic Spatial Resolution; SRb and LOP size) using Isee software. Radiographic sensitivity is indicated by Image Quality Indicator (IQI) which is the ability of the CR system and aRTist software to identify IQI of wire type when the time exposure is reduced up to 80% according to exposure chart ( D7; ISOVOLT Titan E). The image of the thinnest wire diameter achieved by radiograph from simulation and CR are the wire numbered 7 rather than the wire numbered 8 required by the standard. In quantitative comparison, this study shows that the SNR values decreases with reducing exposure time. SRb values increases for simulation and decreases for CR when the exposure time decreases and the good image quality can be achieved at 80% reduced exposure time. The high SNR and SRb values produced good image quality in CR and simulation techniques respectively. (author)

  15. A 4D Digital Phantom for Patient-Specific Simulation of Brain CT Perfusion Protocols

    NARCIS (Netherlands)

    Boom, R. van den; Manniesing, R.; Oei, M.T.H.; Woude, W.J. van der; Smit, E.J.; Laue, H.O.A.; Ginneken, B. van; Prokop, M.

    2014-01-01

    Purpose Optimizing CT brain perfusion protocols is a challenge because of the complex interaction between image acquisition, calculation of perfusion data and patient hemodynamics. Several digital phantoms have been developed to avoid unnecessary patient exposure or suboptimum choice of parameters.

  16. Digital Full-Scope Simulation of a Conventional Nuclear Power Plant Control Room, Phase 2: Installation of a Reconfigurable Simulator to Support Nuclear Plant Sustainability

    Energy Technology Data Exchange (ETDEWEB)

    Ronald L. Boring; Vivek Agarwal; Kirk Fitzgerald; Jacques Hugo; Bruce Hallbert

    2013-03-01

    The U.S. Department of Energy’s Light Water Reactor Sustainability program has developed a control room simulator in support of control room modernization at nuclear power plants in the U.S. This report highlights the recent completion of this reconfigurable, full-scale, full-scope control room simulator buildout at the Idaho National Laboratory. The simulator is fully reconfigurable, meaning it supports multiple plant models developed by different simulator vendors. The simulator is full-scale, using glasstop virtual panels to display the analog control boards found at current plants. The present installation features 15 glasstop panels, uniquely achieving a complete control room representation. The simulator is also full-scope, meaning it uses the same plant models used for training simulators at actual plants. Unlike in the plant training simulators, the deployment on glasstop panels allows a high degree of customization of the panels, allowing the simulator to be used for research on the design of new digital control systems for control room modernization. This report includes separate sections discussing the glasstop panels, their layout to mimic control rooms at actual plants, technical details on creating a multi-plant and multi-vendor reconfigurable simulator, and current efforts to support control room modernization at U.S. utilities. The glasstop simulator provides an ideal testbed for prototyping and validating new control room concepts. Equally importantly, it is helping create a standardized and vetted human factors engineering process that can be used across the nuclear industry to ensure control room upgrades maintain and even improve current reliability and safety.

  17. Degradation of graphene coated copper in simulated proton exchange membrane fuel cell environment: Electrochemical impedance spectroscopy study

    Science.gov (United States)

    Ren, Y. J.; Anisur, M. R.; Qiu, W.; He, J. J.; Al-Saadi, S.; Singh Raman, R. K.

    2017-09-01

    Metallic materials are most suitable for bipolar plates of proton exchange membrane fuel cell (PEMFC) because they possess the required mechanical strength, durability, gas impermeability, acceptable cost and are suitable for mass production. However, metallic bipolar plates are prone to corrosion or they can passivate under PEMFC environment and interrupt the fuel cell operation. Therefore, it is highly attractive to develop corrosion resistance coating that is also highly conductive. Graphene fits these criteria. Graphene coating is developed on copper by chemical vapor deposition (CVD) with an aim to improving corrosion resistance of copper under PEMFC condition. The Raman Spectroscopy shows the graphene coating to be multilayered. The electrochemical degradation of graphene coated copper is investigated by electrochemical impedance spectroscopy (EIS) in 0.5 M H2SO4 solution at room temperature. After exposure to the electrolyte for up to 720 h, the charge transfer resistance (Rt) of the graphene coated copper is ∼3 times greater than that of the bare copper, indicating graphene coatings could improve the corrosion resistance of copper bipolar plates.

  18. Application of digital human modeling and simulation for vision analysis of pilots in a jet aircraft: a case study.

    Science.gov (United States)

    Karmakar, Sougata; Pal, Madhu Sudan; Majumdar, Deepti; Majumdar, Dhurjati

    2012-01-01

    Ergonomic evaluation of visual demands becomes crucial for the operators/users when rapid decision making is needed under extreme time constraint like navigation task of jet aircraft. Research reported here comprises ergonomic evaluation of pilot's vision in a jet aircraft in virtual environment to demonstrate how vision analysis tools of digital human modeling software can be used effectively for such study. Three (03) dynamic digital pilot models, representative of smallest, average and largest Indian pilot population were generated from anthropometric database and interfaced with digital prototype of the cockpit in Jack software for analysis of vision within and outside the cockpit. Vision analysis tools like view cones, eye view windows, blind spot area, obscuration zone, reflection zone etc. were employed during evaluation of visual fields. Vision analysis tool was also used for studying kinematic changes of pilot's body joints during simulated gazing activity. From present study, it can be concluded that vision analysis tool of digital human modeling software was found very effective in evaluation of position and alignment of different displays and controls in the workstation based upon their priorities within the visual fields and anthropometry of the targeted users, long before the development of its physical prototype.

  19. Practical study on the electrochemical simultaneous removal of copper and zinc from simulated binary-metallic industrial wastewater using a packed-bed cathode

    Directory of Open Access Journals (Sweden)

    Meshaal F. Alebrahim

    2017-06-01

    Full Text Available In this work, electrochemical-simultaneous removal of copper and zinc from simulated binary-metallic industrial wastewater containing different ratios of copper to zinc was studied using a packed-bed continuous-recirculation flow electrolytic reactor. The total nominal initial concentration of both metals, circulating rate of flow and nominal initial pH were held constant. Parameters affecting the removal percent and current efficiency of removal, such as applied current and time of electrolysis were investigated. Results revealed that increased current intensity accelerated the removal of metals and diminish current efficiency. It was also observed that selective removal of both metals is possible when the applied current was of small intensity. Moreover, the factors that led to loss of faradaic efficiency were discussed.

  20. Electrochemical Processes

    DEFF Research Database (Denmark)

    Bech-Nielsen, Gregers

    1997-01-01

    The notes describe in detail primary and secondary galvanic cells, fuel cells, electrochemical synthesis and electroplating processes, corrosion: measurments, inhibitors, cathodic and anodic protection, details of metal dissolution reactions, Pourbaix diagrams and purification of waste water from...

  1. Electrochemical analysis

    International Nuclear Information System (INIS)

    Hwang, Hun

    2007-02-01

    This book explains potentiometry, voltametry, amperometry and basic conception of conductometry with eleven chapters. It gives the specific descriptions on electrochemical cell and its mode, basic conception of electrochemical analysis on oxidation-reduction reaction, standard electrode potential, formal potential, faradaic current and faradaic process, mass transfer and overvoltage, potentiometry and indirect potentiometry, polarography with TAST, normal pulse and deferential pulse, voltammetry, conductometry and conductometric titration.

  2. Three dimensional electrochemical simulation of solid oxide fuel cell cathode based on microstructure reconstructed by marching cubes method

    Science.gov (United States)

    He, An; Gong, Jiaming; Shikazono, Naoki

    2018-05-01

    In the present study, a model is introduced to correlate the electrochemical performance of solid oxide fuel cell (SOFC) with the 3D microstructure reconstructed by focused ion beam scanning electron microscopy (FIB-SEM) in which the solid surface is modeled by the marching cubes (MC) method. Lattice Boltzmann method (LBM) is used to solve the governing equations. In order to maintain the geometries reconstructed by the MC method, local effective diffusivities and conductivities computed based on the MC geometries are applied in each grid, and partial bounce-back scheme is applied according to the boundary predicted by the MC method. From the tortuosity factor and overpotential calculation results, it is concluded that the MC geometry drastically improves the computational accuracy by giving more precise topology information.

  3. Laboratory Experiments on the Electrochemical Remediation of Environment. Part 4: Color Removal of Simulated Wastewater by Electrocoagulation-Electroflotation

    Science.gov (United States)

    Ibanez, Jorge G.; Singh, M. M.; Szafran, Z.

    1998-08-01

    Due to the large production of aqueous waste streams from textile mills and dye production plants, several processes have been under intense study. Electrochemical processes offer some distinctive advantages, including effects due to: 1) the production of electrolysis gases, and 2) the production of polyvalent cations from the oxidation of corrodible anodes (like Fe and Al). The gas bubbles can carry the pollutant to the top of the solution where it can be more easily concentrated, collected and removed. The metallic ions can react with the OH- ions produced at the cathode during the evolution of H2 gas to yield insoluble hydroxides that will adsorb pollutants out of the solution and also contribute to coagulation by neutralizing any negatively charged colloidal particles that might be present. In this experiment an iron electrode (paper clip) is used in conjunction with pH indicator dyes, so dramatic color changes will be noticed.

  4. References and benchmarks for pore-scale flow simulated using micro-CT images of porous media and digital rocks

    Science.gov (United States)

    Saxena, Nishank; Hofmann, Ronny; Alpak, Faruk O.; Berg, Steffen; Dietderich, Jesse; Agarwal, Umang; Tandon, Kunj; Hunter, Sander; Freeman, Justin; Wilson, Ove Bjorn

    2017-11-01

    We generate a novel reference dataset to quantify the impact of numerical solvers, boundary conditions, and simulation platforms. We consider a variety of microstructures ranging from idealized pipes to digital rocks. Pore throats of the digital rocks considered are large enough to be well resolved with state-of-the-art micro-computerized tomography technology. Permeability is computed using multiple numerical engines, 12 in total, including, Lattice-Boltzmann, computational fluid dynamics, voxel based, fast semi-analytical, and known empirical models. Thus, we provide a measure of uncertainty associated with flow computations of digital media. Moreover, the reference and standards dataset generated is the first of its kind and can be used to test and improve new fluid flow algorithms. We find that there is an overall good agreement between solvers for idealized cross-section shape pipes. As expected, the disagreement increases with increase in complexity of the pore space. Numerical solutions for pipes with sinusoidal variation of cross section show larger variability compared to pipes of constant cross-section shapes. We notice relatively larger variability in computed permeability of digital rocks with coefficient of variation (of up to 25%) in computed values between various solvers. Still, these differences are small given other subsurface uncertainties. The observed differences between solvers can be attributed to several causes including, differences in boundary conditions, numerical convergence criteria, and parameterization of fundamental physics equations. Solvers that perform additional meshing of irregular pore shapes require an additional step in practical workflows which involves skill and can introduce further uncertainty. Computation times for digital rocks vary from minutes to several days depending on the algorithm and available computational resources. We find that more stringent convergence criteria can improve solver accuracy but at the expense

  5. Materials for electrochemical capacitors

    Science.gov (United States)

    Simon, Patrice; Gogotsi, Yury

    2008-11-01

    Electrochemical capacitors, also called supercapacitors, store energy using either ion adsorption (electrochemical double layer capacitors) or fast surface redox reactions (pseudo-capacitors). They can complement or replace batteries in electrical energy storage and harvesting applications, when high power delivery or uptake is needed. A notable improvement in performance has been achieved through recent advances in understanding charge storage mechanisms and the development of advanced nanostructured materials. The discovery that ion desolvation occurs in pores smaller than the solvated ions has led to higher capacitance for electrochemical double layer capacitors using carbon electrodes with subnanometre pores, and opened the door to designing high-energy density devices using a variety of electrolytes. Combination of pseudo-capacitive nanomaterials, including oxides, nitrides and polymers, with the latest generation of nanostructured lithium electrodes has brought the energy density of electrochemical capacitors closer to that of batteries. The use of carbon nanotubes has further advanced micro-electrochemical capacitors, enabling flexible and adaptable devices to be made. Mathematical modelling and simulation will be the key to success in designing tomorrow's high-energy and high-power devices.

  6. X-ray photoelectron spectroscopy and electrochemical studies of mild steel FeE500 passivation in concrete simulated water

    Science.gov (United States)

    Miserque, F.; Huet, B.; Azou, G.; Bendjaballah, D.; L'Hostis, V.

    2006-11-01

    In the context of the prediction of the long-term behaviour of reinforced concrete structures involved in the nuclear waste storage, the corrosion mechanisms of steels have to be assessed. When mild steel rebars are embedded in concrete, the chemical environment of the reinforcement is progressively modified, due to the carbonation of the concrete matrix. This modification leads to the variation of iron oxides properties formed at the steel/concrete interface, and the active corrosion can be initiated. The aim of this study is to evaluate the passivation behaviour and to provide insights into the depassivation of mild steel in concrete pore solution. In a young concrete, due to the alkalinity of the interstitial solution, steel reinforcement remains passive. Immersion tests of mild steel substrate in various alkaline solutions (from pH 13 to 10) have been performed. Due to the low thickness of the corrosion layers formed, X-ray photoelectron spectroscopy has been used to characterize them. In the passive domain, the corrosion products are similar for the various solutions. The corrosion layer is composed of a mixture of Fe3+ and Fe2+. A similar approach is used to determine the depassivation mechanism. The effect of various components such as carbonates, sulfates and silicates resulting from the dissolution of minerals of cement during the carbonation process is investigated. In addition to the surface analysis, the evolution of the electrochemical behaviour as function of the solution nature (pH) is evaluated with the help of electrochemical measurements (free corrosion potential, cyclic voltamperometry).

  7. A computer simulation study comparing lesion detection accuracy with digital mammography, breast tomosynthesis, and cone-beam CT breast imaging

    International Nuclear Information System (INIS)

    Gong Xing; Glick, Stephen J.; Liu, Bob; Vedula, Aruna A.; Thacker, Samta

    2006-01-01

    Although conventional mammography is currently the best modality to detect early breast cancer, it is limited in that the recorded image represents the superposition of a three-dimensional (3D) object onto a 2D plane. Recently, two promising approaches for 3D volumetric breast imaging have been proposed, breast tomosynthesis (BT) and CT breast imaging (CTBI). To investigate possible improvements in lesion detection accuracy with either breast tomosynthesis or CT breast imaging as compared to digital mammography (DM), a computer simulation study was conducted using simulated lesions embedded into a structured 3D breast model. The computer simulation realistically modeled x-ray transport through a breast model, as well as the signal and noise propagation through a CsI based flat-panel imager. Polyenergetic x-ray spectra of Mo/Mo 28 kVp for digital mammography, Mo/Rh 28 kVp for BT, and W/Ce 50 kVp for CTBI were modeled. For the CTBI simulation, the intensity of the x-ray spectra for each projection view was determined so as to provide a total average glandular dose of 4 mGy, which is approximately equivalent to that given in conventional two-view screening mammography. The same total dose was modeled for both the DM and BT simulations. Irregular lesions were simulated by using a stochastic growth algorithm providing lesions with an effective diameter of 5 mm. Breast tissue was simulated by generating an ensemble of backgrounds with a power law spectrum, with the composition of 50% fibroglandular and 50% adipose tissue. To evaluate lesion detection accuracy, a receiver operating characteristic (ROC) study was performed with five observers reading an ensemble of images for each case. The average area under the ROC curves (A z ) was 0.76 for DM, 0.93 for BT, and 0.94 for CTBI. Results indicated that for the same dose, a 5 mm lesion embedded in a structured breast phantom was detected by the two volumetric breast imaging systems, BT and CTBI, with statistically

  8. Internet-Based Digital Simulation for Cleft Surgery Education: A 5-Year Assessment of Demographics, Usage, and Global Effect.

    Science.gov (United States)

    Kantar, Rami S; Plana, Natalie M; Cutting, Court B; Diaz-Siso, Jesus Rodrigo; Flores, Roberto L

    2018-01-29

    In October 2012, a freely available, internet-based cleft simulator was created in partnership between academic, nonprofit, and industry sectors. The purpose of this educational resource was to address global disparities in cleft surgery education. This report assesses demographics, usage, and global effect of our simulator, in its fifth year since inception. Evaluate the global effect, usage, and demographics of an internet-based educational digital simulation cleft surgery software. Simulator modules, available in five languages demonstrate surgical anatomy, markings, detailed procedures, and intraoperative footage to supplement digital animation. Available data regarding number of users, sessions, countries reached, and content access were recorded. Surveys evaluating the demographic characteristics of registered users and simulator use were collected by direct e-mail. The total number of simulator new and active users reached 2865 and 4086 in June 2017, respectively. By June 2017, users from 136 countries had accessed the simulator. From 2015 to 2017, the number of sessions was 11,176 with a monthly average of 399.0 ± 190.0. Developing countries accounted for 35% of sessions and the average session duration was 9.0 ± 7.3 minutes. This yields a total simulator screen time of 100,584 minutes (1676 hours). Most survey respondents were surgeons or trainees (87%) specializing in plastic, maxillofacial, or general surgery (89%). Most users found the simulator to be useful (88%), at least equivalent or more useful than other resources (83%), and used it for teaching (58%). Our internet-based interactive cleft surgery platform reaches its intended target audience, is not restricted by socioeconomic barriers to access, and is judged to be useful by surgeons. More than 4000 active users have been reached since inception. The total screen time over approximately 2 years exceeded 1600 hours. This suggests that future surgical simulators of this kind may be sustainable by

  9. Steering the conversation: A linguistic exploration of natural language interactions with a digital assistant during simulated driving.

    Science.gov (United States)

    Large, David R; Clark, Leigh; Quandt, Annie; Burnett, Gary; Skrypchuk, Lee

    2017-09-01

    Given the proliferation of 'intelligent' and 'socially-aware' digital assistants embodying everyday mobile technology - and the undeniable logic that utilising voice-activated controls and interfaces in cars reduces the visual and manual distraction of interacting with in-vehicle devices - it appears inevitable that next generation vehicles will be embodied by digital assistants and utilise spoken language as a method of interaction. From a design perspective, defining the language and interaction style that a digital driving assistant should adopt is contingent on the role that they play within the social fabric and context in which they are situated. We therefore conducted a qualitative, Wizard-of-Oz study to explore how drivers might interact linguistically with a natural language digital driving assistant. Twenty-five participants drove for 10 min in a medium-fidelity driving simulator while interacting with a state-of-the-art, high-functioning, conversational digital driving assistant. All exchanges were transcribed and analysed using recognised linguistic techniques, such as discourse and conversation analysis, normally reserved for interpersonal investigation. Language usage patterns demonstrate that interactions with the digital assistant were fundamentally social in nature, with participants affording the assistant equal social status and high-level cognitive processing capability. For example, participants were polite, actively controlled turn-taking during the conversation, and used back-channelling, fillers and hesitation, as they might in human communication. Furthermore, participants expected the digital assistant to understand and process complex requests mitigated with hedging words and expressions, and peppered with vague language and deictic references requiring shared contextual information and mutual understanding. Findings are presented in six themes which emerged during the analysis - formulating responses; turn-taking; back

  10. Magnification mammography: a comparison of full-field digital mammography and screen-film mammography for the detection of simulated small masses and microcalcifications

    International Nuclear Information System (INIS)

    Hermann, K.P.; Obenauer, S.; Funke, M.; Grabbe, E.H.

    2002-01-01

    The objective of this study was a comparison of a full-field digital mammography (FFDM) system and a conventional screen-film mammography (SFM) system with respect to the detectability of simulated small masses and microcalcifications in the magnification mode. All images were obtained using 1.8 times magnification. The FFDM images were obtained at radiation dose levels of 1.39, 1.0, 0.7, 0.49 and 0.24 times that of the SFM images. A contrast-detail phantom was used to compare the detection of simulated lesions using a four alternative forced-choice reader study with three readers. The correct observation ratio (COR) was calculated as the fraction of correctly identified lesions to the total number of simulated lesions. Soft-copy reading was performed for all digital images. Direct magnification images acquired with the digital system showed a lower object contrast threshold than those acquired with the conventional system. For equal radiation dose, the digital system provided a significantly increased COR (0.95) compared with the screen-film system (0.82). For simulated microcalcifications, the corresponding difference was 0.90 to 0.72. The digital system allowed equal detection to screen-film at 40% of the radiation dose used for screen film. Digital magnification images are superior to screen-film magnification images for the detection of simulated small masses and microcalcifications even at a lower radiation dose. (orig.)

  11. Digital libraries applications CBIR, education, social networks, eScience/simulation, and GIS

    CERN Document Server

    Fox, Edward A

    2014-01-01

    Digital libraries (DLs) have evolved since their launch in 1991 into an important type of information system, with widespread application. This volume advances that trend further by describing new research and development in the DL field that builds upon the 5S (Societies, Scenarios, Spaces, Structures, Streams) framework, which is discussed in three other DL volumes in this series.While the 5S framework may be used to describe many types of information systems, and is likely to have even broader utility and appeal, we focus here on digital libraries.Drawing upon six (Akbar, Kozievitch, Leidig

  12. Effect of replacement of vanadium by iron on the electrochemical behaviour of titanium alloys in simulated physiological media

    Directory of Open Access Journals (Sweden)

    Mareci, D.

    2009-02-01

    Full Text Available The electrochemical behaviour of Ti6Al4V, Ti6Al3.5Fe and Ti5Al2.5Fe alloys has been evaluated in Ringer’s solution at 25 °C. The effect of the substitution of vanadium in Ti6Al4V alloy has been specifically addressed. The evaluation of the corrosion resistance was carried out through the analysis of the open circuit potential variation with time, potentiodynamic polarization curves, and electrochemical impedance spectroscopy (EIS tests. Very low current densities were obtained (order of nA/cm2 from the polarization curves and EIS, indicating a typical passive behaviour for all investigated alloys. The EIS results exhibited relative capacitive behaviour (large corrosion resistance with phase angle close to –80° and relative high impedance values (order of 105 Ω•cm2 at low and medium frequencies, which are indicative of the formation of a highly stable film on these alloys in Ringer’s solution. In conclusion, the electrochemical behaviour of Ti6Al4V is not affected by the substitution of vanadium with iron.

    El comportamiento electroquímico de las aleaciones Ti6Al4V, Ti6Al3.5Fe y Ti5Al2.5Fe fue evaluado en una disolución Ringer a 25 °C. Se ha estudiado especialmente el efecto de la sustitución del vanadio en la aleación Ti6Al4V. La evaluación de la resistencia a la corrosión se ha llevado a cabo a través del análisis de la variación del potencial de un circuito abierto con el tiempo, las curvas de polarización potenciodinámicas y los ensayos de espectroscopía de impedancia electroquímica (EIS. Se han obtenido densidades de corriente muy bajas (del orden de nA/cm2 en las curvas de polarización y EIS, indicando un comportamiento pasivo típico para todas las aleaciones investigadas. Los resultados de la EIS mostraron un comportamiento capacitivo relativo (gran resistencia a la corrosión con ángulos de fase próximos a –80° y valores de impedancia relativamente altos (del orden de

  13. Digital linear control theory applied to automatic stepsize control in electrical circuit simulation

    NARCIS (Netherlands)

    Verhoeven, A.; Beelen, T.G.J.; Hautus, M.L.J.; Maten, ter E.J.W.; Di Bucchianico, A.; Mattheij, R.M.M.; Peletier, M.A.

    2006-01-01

    Adaptive stepsize control is used to control the local errors of the numerical solution. For optimization purposes smoother stepsize controllers are wanted, such that the errors and stepsizes also behave smoothly. We consider approaches from digital linear control theory applied to multistep

  14. Digital linear control theory applied to automatic stepsize control in electrical circuit simulation

    NARCIS (Netherlands)

    Verhoeven, A.; Beelen, T.G.J.; Hautus, M.L.J.; Maten, ter E.J.W.

    2005-01-01

    Adaptive stepsize control is used to control the local errors of the numerical solution. For optimization purposes smoother stepsize controllers are wanted, such that the errors and stepsizes also behave smoothly. We consider approaches from digital linear control theory applied to multistep

  15. Electrochemical Evaluation of Hydroxyapatite/ZrN Coated Magnesium Biodegradable Alloy in Ringer Solution as a Simulated Body Fluid

    Directory of Open Access Journals (Sweden)

    Seyed Rahim Kiahosseini

    2015-02-01

    Full Text Available Magnesium alloys as biodegradable materials can be used in body as an implant materials but since they have poor corrosion resistance, it is required to decrease their corrosion rate by biocompatible coatings. In this study, hydroxyapatite (HA coatings in the presence of an intermediate layer of ZrN as a biocompatible material, deposited on AZ91 magnesium alloy by ion beam sputtering method at 300 °C temperature and at different times 180, 240, 300, 360 and 420 min. Then changes in corrosion resistance of samples in Ringer's solution as a solution similar to the human body was evaluated in two ways, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS. To investigate the causes of the destruction of the samples, the surface of samples was studied by scanning electron microscopy (SEM. The results showed that because of porous coatings created, the corrosion potential of the samples was about +55mV higher than the uncoated substrate that by changing the deposition time, was not observed the significant change But with increasing deposition time to 360 min, corrosion current decreased which represents an increase of corrosion resistance of magnesium alloy in body solution. However, a further increase in deposition time to 420 min, due to increase thickness and stress in the layer, the corrosion resistance of the samples was reduced. The results of the EIS confirm the corrosion behavior of the polarization method, too.   

  16. Electrochemical Corrosion and In Vitro Bioactivity of Nano-Grained Biomedical Ti-20Nb-13Zr Alloy in a Simulated Body Fluid

    Directory of Open Access Journals (Sweden)

    Mohamed A. Hussein

    2017-12-01

    Full Text Available The bioactivity and the corrosion protection for a novel nano-grained Ti-20Nb-13Zr at % alloy were examined in a simulated body fluid (SBF. The effect of the SPS’s temperature on the corrosion performance was investigated. The phases and microstructural details of the developed alloy were analyzed by XRD (X-ray Diffraction, SEM (Scanning Electron Microscopy, and TEM (Transmission Electron Microscope. The electrochemical study was investigated using linear potentiodynamic polarization and electrochemical impedance spectroscopy in a SBF, and the bioactivity was examined by immersing the developed alloy in a SBF for 3, 7, and 14 days. The morphology of the depositions after immersion was examined using SEM. Alloy surface analysis after immersion in the SBF was characterized by XPS (X-ray Photoelectron Spectroscopy. The results of the bioactivity test in SBF revealed the growth of a hydroxyapatite layer on the surface of the alloy. The analysis of XPS showed the formation of protective oxides of TiO2, Ti2O3, ZrO2, Nb2O5, and a Ca3(PO42 compound (precursor of hydroxyapatite deposited on the alloy surface, indicating that the presented alloy can stimulate bone formation. The corrosion resistance increased by increasing the sintering temperature and the highest corrosion resistance was obtained at 1200 °C. The improved corrosion protection was found to be related to the alloy densification. The bioactivity and the corrosion resistance of the developed nanostructured alloy in a SBF renders the nanostructured Ti-20Nb-13Zr alloy a promising candidate as an implant material.

  17. Porphyrins as Corrosion Inhibitors for N80 Steel in 3.5% NaCl Solution: Electrochemical, Quantum Chemical, QSAR and Monte Carlo Simulations Studies

    Directory of Open Access Journals (Sweden)

    Ambrish Singh

    2015-08-01

    Full Text Available The inhibition of the corrosion of N80 steel in 3.5 wt. % NaCl solution saturated with CO2 by four porphyrins, namely 5,10,15,20-tetrakis(4-hydroxyphenyl-21H,23H-porphyrin (HPTB, 5,10,15,20-tetra(4-pyridyl-21H,23H-porphyrin (T4PP, 4,4′,4″,4‴-(porphyrin-5,10,15,20-tetrayltetrakis(benzoic acid (THP and 5,10,15,20-tetraphenyl-21H,23H-porphyrin (TPP was studied using electrochemical impedance spectroscopy (EIS, potentiodynamic polarization, scanning electrochemical microscopy (SECM and scanning electron microscopy (SEM techniques. The results showed that the inhibition efficiency, η% increases with increasing concentration of the inhibitors. The EIS results revealed that the N80 steel surface with adsorbed porphyrins exhibited non-ideal capacitive behaviour with reduced charge transfer activity. Potentiodynamic polarization measurements indicated that the studied porphyrins acted as mixed type inhibitors. The SECM results confirmed the adsorption of the porphyrins on N80 steel thereby forming a relatively insulated surface. The SEM also confirmed the formation of protective films of the porphyrins on N80 steel surface thereby protecting the surface from direct acid attack. Quantum chemical calculations, quantitative structure activity relationship (QSAR were also carried out on the studied porphyrins and the results showed that the corrosion inhibition performances of the porphyrins could be related to their EHOMO, ELUMO, ω, and μ values. Monte Carlo simulation studies showed that THP has the highest adsorption energy, while T4PP has the least adsorption energy in agreement with the values of σ from quantum chemical calculations.

  18. Electrochemical Behavior and Hydrophobic Properties of CrN and CrNiN Coatings in Simulated Proton Exchange Membrane Fuel Cell Environment

    Directory of Open Access Journals (Sweden)

    JIN Jie

    2016-10-01

    Full Text Available The CrN and CrNiN coatings were prepared on the surface of 304 stainless steel by closed field unbalanced magnetron sputtering.X ray diffraction and field emission scanning electron microscopy were used to characterize the structure and morphology of the coatings.The electrochemical corrosion properties under the simulated proton exchange membrane fuel cell(PEMFC environment, interfacial contact resistance and hydrophobic properties of the two kinds of different coatings were investigated by electrochemical methods,contact resistance test and hydrophobic test,respectively.The results indicate that CrN coating mainly consists of CrN and Cr2N phase,CrN and Cr2N phases in the CrNiN coating are less compared to CrN film, and Ni exist as element in CrNiN coating; dynamic polarization tests show the coating is of better corrosion resistance,whereas the corrosion resistance of CrNiN coating is worse than that of CrN coating,constant potential polarization test shows the corrosion current density of CrN and CrNiN coatings are equivalent; CrN and CrNiN coatings significantly reduce the interfacial contact resistance of the 304 stainless steel,among which CrN coating has the smallest contact resistance; and CrNiN coating which has better hydrophobicity than that of CrN coating is more beneficial for the water management in proton exchange membrane fuel cell.

  19. Surface analytical and electrochemical characterization of oxide films formed on Incoloy-800 and carbon steel in simulated secondary water chemistry conditions of PHWRs

    International Nuclear Information System (INIS)

    Rangarajan, S.; Sinu, C.; Balaji, V.; Narasimhan, S.V.

    2010-01-01

    The water chemistry in the Steam Generator (SG) Circuits of Indian Pressurized Heavy Water Reactors (PHWRs) is controlled by the all volatile treatment (AVT) procedure, wherein volatile amines are used to maintain the alkaline pH required for minimizing the corrosion of the structural materials. Earlier, Monel and morpholine were used as the Steam Generator material and the alkalizing agent respectively. However, currently they are replaced by Incoloy-800 and Ethanolamine (ETA). ETA was chosen because of its beneficial effects due to low pK b and K d values, loading behaviour on condensate polishing unit (CPU) and also on cost comparison with other amines. Since we have Incoloy-800 on the tube side and Carbon steel(CS) on the shell side in the SG circuits, efforts were taken to study the nature of the oxide films formed on these surfaces and to evaluate the corrosion resistance and electrochemical properties of the same, under simulated secondary water chemistry conditions of PHWRs containing different dissolved oxygen (DO) concentration. In this context, experiments were carried out by exposing finely polished CS and Incoloy -800 coupons to ETA based medium in the presence and absence of Hydrazine (pH: 9.2) at 240 o C under two different DO conditions (< 10 ppb and 200 ppb) for 24 hours. Oxide films formed under these conditions were characterized using SEM, Raman spectroscopy, electrochemical impedance, polarization and Mott-Schottky techniques. Further, studies at a controlled DO level ( < 10 ppb) were carried out for different time durations viz., 7- and 30- days. The composition, surface morphology, oxide thickness, resistance, type of semi-conductivity and defect density of the oxide films were evaluated and correlated with the DO levels and discussed elaborately in this paper. (author)

  20. Technical study of real-time simulation system for digital I and C system of steam generator in nuclear power plant

    International Nuclear Information System (INIS)

    Shi Ji; Jiang Mingyu; Ma Yunqin

    2004-01-01

    The real-time simulation system, which forms a interactive closed circle together with the steam generator control system, has been developed using a dynamic mathematical model of steam generator in this paper. It can provide a simulation target for upgrades of digital Instrument and Control system in Nuclear Power Plant (NPP) and is applicable for further research of control schemes. With this program, the authors have studied and analyzed the response of transient parameters to some different disturbance, the calculated results are in good agreement with those calculated by NPP simulator program. This will give a theoretical analysis for upgrades of digital I and C system in nuclear power plant

  1. First principles simulation of the electrochemical behaviour of lithium battery materials; Modelisation du comportement electrochimique de materiaux pour batteries au lithium a partir de calculs de premiers principes

    Energy Technology Data Exchange (ETDEWEB)

    Rocquefelte, X.

    2001-10-01

    The functioning of a positive electrode in a lithium battery is based on the reversible intercalation of lithium. In some cases, such a reaction can lead to important structural modifications and therefore to an amorphization of the material. A theoretical approach is presented here that leads to structural predictions and simulations of electrochemical behaviour of positive electrode materials. In the first part, DFT (Density Functional Theory) formalisms and the respective advantages of FLAPW (Full potential Linearized Augmented Plane Waves) and PP/PW (Pseudopotential / Plane Waves) methods are discussed. In the second part are given some fundamental electrochemistry considerations related to the intercalation process, thermodynamics aspects and relationships with electronic structure. Then, an approach combining experimental data and geometry optimisation of structural hypotheses is given. This approach was first applied to a model compound LiMoS{sub 2}, and has been then generalised to systems of industrial interest such as Li{sub x}V{sub 2}O{sub 5} (0 {<=} x {<=} 3). The simulated X-ray diagrams of the optimised structures for LiMoS{sub 2} and {omega} - Li{sub 3}V{sub 2}O{sub 5} are in good agreement with experimental data. In the case of Li{sub x}V{sub 2}O{sub 5}, the first discharge curves starting from {alpha} - V{sub 2}O{sub 5} and {gamma}' - V{sub 2}O{sub 5} were then successfully simulated. A chemical bond analysis was carried out to help understand the origin of the distortion in LiMoS{sub 2} and the voltage variations in the electrochemical curves of Li{sub x}V{sub 2}O{sub 5}. This study clearly demonstrates that an approach combining first-principle calculations and available experimental data is invaluable in the structure determination of poorly crystallized compounds. Such a procedure contributes to the understanding of the phase transitions induced by the lithium intercalation in vanadium oxide compounds and can really be used in the research

  2. First principles simulation of the electrochemical behaviour of lithium battery materials; Modelisation du comportement electrochimique de materiaux pour batteries au lithium a partir de calculs de premiers principes

    Energy Technology Data Exchange (ETDEWEB)

    Rocquefelte, X

    2001-10-01

    The functioning of a positive electrode in a lithium battery is based on the reversible intercalation of lithium. In some cases, such a reaction can lead to important structural modifications and therefore to an amorphization of the material. A theoretical approach is presented here that leads to structural predictions and simulations of electrochemical behaviour of positive electrode materials. In the first part, DFT (Density Functional Theory) formalisms and the respective advantages of FLAPW (Full potential Linearized Augmented Plane Waves) and PP/PW (Pseudopotential / Plane Waves) methods are discussed. In the second part are given some fundamental electrochemistry considerations related to the intercalation process, thermodynamics aspects and relationships with electronic structure. Then, an approach combining experimental data and geometry optimisation of structural hypotheses is given. This approach was first applied to a model compound LiMoS{sub 2}, and has been then generalised to systems of industrial interest such as Li{sub x}V{sub 2}O{sub 5} (0 {<=} x {<=} 3). The simulated X-ray diagrams of the optimised structures for LiMoS{sub 2} and {omega} - Li{sub 3}V{sub 2}O{sub 5} are in good agreement with experimental data. In the case of Li{sub x}V{sub 2}O{sub 5}, the first discharge curves starting from {alpha} - V{sub 2}O{sub 5} and {gamma}' - V{sub 2}O{sub 5} were then successfully simulated. A chemical bond analysis was carried out to help understand the origin of the distortion in LiMoS{sub 2} and the voltage variations in the electrochemical curves of Li{sub x}V{sub 2}O{sub 5}. This study clearly demonstrates that an approach combining first-principle calculations and available experimental data is invaluable in the structure determination of poorly crystallized compounds. Such a procedure contributes to the understanding of the phase transitions induced by the lithium intercalation in vanadium oxide compounds and can really be used in the research of

  3. Modelling, simulation and experimental verification for renewable agents connected to a distorted utility grid using a Real-Time Digital Simulation Platform

    International Nuclear Information System (INIS)

    Guerrero-Rodríguez, N.F.; Rey-Boué, Alexis B.

    2014-01-01

    Highlights: • A MSOGI-FLL is used to detect the frequency. • A PR harmonic-compensator is used. • Grid-connected PV system insensitive to harmonic pollution. • RTDS reinforced the final validation of the control algorithms. • Several algorithms are combined in this paper. - Abstract: The large number of Photovoltaic plants and its utilization as agents of a Distributed Generation Systems justified the increasing efforts towards the optimal design of the overall grid-connected System. In a Distributed Generation environment the low voltage 3-phase utility grid could be affected by some disturbances such as voltage unbalanced, variations of frequency and harmonics distortion and it is mandatory that the control algorithms used in the inverter can be able to maintain the power flow between the renewable agent and the low voltage 3-phase utility grid; in addition a unitary power factor must be attained. A Proportional-Resonant regulator is used to performance a current control with the output current of the inverter and a Multiple Second Order Generalized Integrator Frequency-Locked Loop (MSOGI-FLL) is used to detect the frequency of the low voltage 3-phase utility grid. Some low order harmonics are introduced in the low voltage 3-phase utility grid in order to see the effect of the harmonic compensator. In order to validate the model of the Photovoltaic Renewable agent, the synchronization algorithm and the inverter control algorithm, some simulations using MATLAB/SIMULINK from The MathWorks, Inc. are shown firstly, and secondly, some Real-Time Digital Simulation tests using a Real-Time Digital Simulation (RTDS) Platform are carried out

  4. Ideas in Practice (3): A Simulated Laboratory Experience in Digital Design.

    Science.gov (United States)

    Cleaver, Thomas G.

    1988-01-01

    Gives an example of the use of a simplified logic simulator in a logic design course. Discusses some problems in logic design classes, commercially available software, and software problems. Describes computer-aided engineering (CAE) software. Lists 14 experiments in the simulated laboratory and presents students' evaluation of the course. (YP)

  5. Electrochemical capacitor

    Science.gov (United States)

    Anderson, Marc A.; Liu, Kuo -Chuan; Mohr, Charles M.

    1999-10-05

    An inexpensive porous metal oxide material having high surface area, good conductivity and high specific capacitance is advantageously used in an electrochemical capacitor. The materials are formed in a sol-gel process which affords control over the properties of the resultant metal oxide materials.

  6. Electrochemical construction

    Science.gov (United States)

    Einstein, Harry; Grimes, Patrick G.

    1983-08-23

    An electrochemical cell construction features a novel co-extruded plastic electrode in an interleaved construction with a novel integral separator-spacer. Also featured is a leak and impact resistant construction for preventing the spill of corrosive materials in the event of rupture.

  7. Electrochemical device

    Science.gov (United States)

    Grimes, Patrick G.; Einstein, Harry; Bellows, Richard J.

    1988-01-12

    A tunnel protected electrochemical device features channels fluidically communicating between manifold, tunnels and cells. The channels are designed to provide the most efficient use of auxiliary power. The channels have a greater hydraulic pressure drop and electrical resistance than the manifold. This will provide a design with the optimum auxiliary energy requirements.

  8. Electrochemical Cell

    DEFF Research Database (Denmark)

    1999-01-01

    The invention relates to a rechargeable electrochemical cell comprising a negative electrode, an electrolyte and a positive electrode in which the positive electrode structure comprises a lithium cobalt manganese oxide of the composition Li¿2?Co¿y?Mn¿2-y?O¿4? where 0 ... for capacity losses in lithium ion cells and lithium-alloy cells....

  9. Integument pattern formation involves genetic and epigenetic controls: feather arrays simulated by digital hormone models.

    Science.gov (United States)

    Jiang, Ting-Xin; Widelitz, Randall B; Shen, Wei-Min; Will, Peter; Wu, Da-Yu; Lin, Chih-Min; Jung, Han-Sung; Chuong, Cheng-Ming

    2004-01-01

    Pattern formation is a fundamental morphogenetic process. Models based on genetic and epigenetic control have been proposed but remain controversial. Here we use feather morphogenesis for further evaluation. Adhesion molecules and/or signaling molecules were first expressed homogenously in feather tracts (restrictive mode, appear earlier) or directly in bud or inter-bud regions ( de novo mode, appear later). They either activate or inhibit bud formation, but paradoxically colocalize in the bud. Using feather bud reconstitution, we showed that completely dissociated cells can reform periodic patterns without reference to previous positional codes. The patterning process has the characteristics of being self-organizing, dynamic and plastic. The final pattern is an equilibrium state reached by competition, and the number and size of buds can be altered based on cell number and activator/inhibitor ratio, respectively. We developed a Digital Hormone Model which consists of (1) competent cells without identity that move randomly in a space, (2) extracellular signaling hormones which diffuse by a reaction-diffusion mechanism and activate or inhibit cell adhesion, and (3) cells which respond with topological stochastic actions manifested as changes in cell adhesion. Based on probability, the results are cell clusters arranged in dots or stripes. Thus genetic control provides combinational molecular information which defines the properties of the cells but not the final pattern. Epigenetic control governs interactions among cells and their environment based on physical-chemical rules (such as those described in the Digital Hormone Model). Complex integument patterning is the sum of these two components of control and that is why integument patterns are usually similar but non-identical. These principles may be shared by other pattern formation processes such as barb ridge formation, fingerprints, pigmentation patterning, etc. The Digital Hormone Model can also be applied to

  10. Modeling and numerical techniques for high-speed digital simulation of nuclear power plants

    International Nuclear Information System (INIS)

    Wulff, W.; Cheng, H.S.; Mallen, A.N.

    1987-01-01

    Conventional computing methods are contrasted with newly developed high-speed and low-cost computing techniques for simulating normal and accidental transients in nuclear power plants. Six principles are formulated for cost-effective high-fidelity simulation with emphasis on modeling of transient two-phase flow coolant dynamics in nuclear reactors. Available computing architectures are characterized. It is shown that the combination of the newly developed modeling and computing principles with the use of existing special-purpose peripheral processors is capable of achieving low-cost and high-speed simulation with high-fidelity and outstanding user convenience, suitable for detailed reactor plant response analyses

  11. Simulation of 3D-treatment plans in head and neck tumors aided by matching of digitally reconstructed radiographs (DRR) and on-line distortion corrected simulator images

    International Nuclear Information System (INIS)

    Lohr, Frank; Schramm, Oliver; Schraube, Peter; Sroka-Perez, Gabriele; Seeber, Steffen; Schlepple, Gerd; Schlegel, Wolfgang; Wannenmacher, Michael

    1997-01-01

    Background and purpose: Simulation of 3D-treatment plans for head and neck malignancy is difficult due to complex anatomy. Therefore, CT-simulation and stereotactic techniques are becoming more common in the treatment preparation, overcoming the need for simulation. However, if simulation is still performed, it is an important step in the treatment preparation/execution chain, since simulation errors, if not detected immediately, can compromise the success of treatment. A recently developed PC-based system for on-line image matching and comparison of digitally reconstructed radiographs (DRR) and distortion corrected simulator monitor images that enables instant correction of field placement errors during the simulation process was evaluated. The range of field placement errors with noncomputer aided simulation is reported. Materials and methods: For 14 patients either a primary 3D-treatment plan or a 3D-boost plan after initial treatment with opposing laterals for head and neck malignancy with a coplanar or non-coplanar two- or three-field technique was simulated. After determining the robustness of the matching process and the accuracy of field placement error detection with phantom measurements, DRRs were generated from the treatment planning CT-dataset of each patient and were interactively matched with on-line simulator images that had undergone correction for geometrical distortion, using a landmark algorithm. Translational field placement errors in all three planes as well as in-plane rotational errors were studied and were corrected immediately. Results: The interactive matching process is very robust with a tolerance of <2 mm when suitable anatomical landmarks are chosen. The accuracy for detection of translational errors in phantom measurements was <1 mm and for in-plane rotational errors the accuracy had a maximum of only 1.5 deg.. For patient simulation, the mean absolute distance of the planned versus simulated isocenter was 6.4 ± 3.9 mm. The in

  12. Ergonomic aspects simulation digital online: an educational game proposal to promote environmental education.

    Science.gov (United States)

    Arbex, D F; Jappur, R; Selig, P; Varvakis, G

    2012-01-01

    This article addresses the ergonomic criteria that guide the construction of an educational game called Environmental Simulator. The focus is on environment navigation considering aspects of content architecture and its esthetics functionality.

  13. Digitized Onondaga Lake Dissolved Oxygen Concentrations and Model Simulated Values using Bayesian Monte Carlo Methods

    Data.gov (United States)

    U.S. Environmental Protection Agency — The dataset is lake dissolved oxygen concentrations obtained form plots published by Gelda et al. (1996) and lake reaeration model simulated values using Bayesian...

  14. Real-time simulation of MHD/steam power plants by digital parallel processors

    International Nuclear Information System (INIS)

    Johnson, R.M.; Rudberg, D.A.

    1981-01-01

    Attention is given to a large FORTRAN coded program which simulates the dynamic response of the MHD/steam plant on either a SEL 32/55 or VAX 11/780 computer. The code realizes a detailed first-principle model of the plant. Quite recently, in addition to the VAX 11/780, an AD-10 has been installed for usage as a real-time simulation facility. The parallel processor AD-10 is capable of simulating the MHD/steam plant at several times real-time rates. This is desirable in order to develop rapidly a large data base of varied plant operating conditions. The combined-cycle MHD/steam plant model is discussed, taking into account a number of disadvantages. The disadvantages can be overcome with the aid of an array processor used as an adjunct to the unit processor. The conversion of some computations for real-time simulation is considered

  15. Estimation variance bounds of importance sampling simulations in digital communication systems

    Science.gov (United States)

    Lu, D.; Yao, K.

    1991-01-01

    In practical applications of importance sampling (IS) simulation, two basic problems are encountered, that of determining the estimation variance and that of evaluating the proper IS parameters needed in the simulations. The authors derive new upper and lower bounds on the estimation variance which are applicable to IS techniques. The upper bound is simple to evaluate and may be minimized by the proper selection of the IS parameter. Thus, lower and upper bounds on the improvement ratio of various IS techniques relative to the direct Monte Carlo simulation are also available. These bounds are shown to be useful and computationally simple to obtain. Based on the proposed technique, one can readily find practical suboptimum IS parameters. Numerical results indicate that these bounding techniques are useful for IS simulations of linear and nonlinear communication systems with intersymbol interference in which bit error rate and IS estimation variances cannot be obtained readily using prior techniques.

  16. Simulation of continuously logical base cells (CL BC) with advanced functions for analog-to-digital converters and image processors

    Science.gov (United States)

    Krasilenko, Vladimir G.; Lazarev, Alexander A.; Nikitovich, Diana V.

    2017-10-01

    The paper considers results of design and modeling of continuously logical base cells (CL BC) based on current mirrors (CM) with functions of preliminary analogue and subsequent analogue-digital processing for creating sensor multichannel analog-to-digital converters (SMC ADCs) and image processors (IP). For such with vector or matrix parallel inputs-outputs IP and SMC ADCs it is needed active basic photosensitive cells with an extended electronic circuit, which are considered in paper. Such basic cells and ADCs based on them have a number of advantages: high speed and reliability, simplicity, small power consumption, high integration level for linear and matrix structures. We show design of the CL BC and ADC of photocurrents and their various possible implementations and its simulations. We consider CL BC for methods of selection and rank preprocessing and linear array of ADCs with conversion to binary codes and Gray codes. In contrast to our previous works here we will dwell more on analogue preprocessing schemes for signals of neighboring cells. Let us show how the introduction of simple nodes based on current mirrors extends the range of functions performed by the image processor. Each channel of the structure consists of several digital-analog cells (DC) on 15-35 CMOS. The amount of DC does not exceed the number of digits of the formed code, and for an iteration type, only one cell of DC, complemented by the device of selection and holding (SHD), is required. One channel of ADC with iteration is based on one DC-(G) and SHD, and it has only 35 CMOS transistors. In such ADCs easily parallel code can be realized and also serial-parallel output code. The circuits and simulation results of their design with OrCAD are shown. The supply voltage of the DC is 1.8÷3.3V, the range of an input photocurrent is 0.1÷24μA, the transformation time is 20÷30nS at 6-8 bit binary or Gray codes. The general power consumption of the ADC with iteration is only 50÷100μW, if the

  17. Real-time simulation of a Doubly-Fed Induction Generator based wind power system on eMEGASimRTM Real-Time Digital Simulator

    Science.gov (United States)

    Boakye-Boateng, Nasir Abdulai

    The growing demand for wind power integration into the generation mix prompts the need to subject these systems to stringent performance requirements. This study sought to identify the required tools and procedures needed to perform real-time simulation studies of Doubly-Fed Induction Generator (DFIG) based wind generation systems as basis for performing more practical tests of reliability and performance for both grid-connected and islanded wind generation systems. The author focused on developing a platform for wind generation studies and in addition, the author tested the performance of two DFIG models on the platform real-time simulation model; an average SimpowerSystemsRTM DFIG wind turbine, and a detailed DFIG based wind turbine using ARTEMiSRTM components. The platform model implemented here consists of a high voltage transmission system with four integrated wind farm models consisting in total of 65 DFIG based wind turbines and it was developed and tested on OPAL-RT's eMEGASimRTM Real-Time Digital Simulator.

  18. Integrated Design Validation: Combining Simulation and Formal Verification for Digital Integrated Circuits

    Directory of Open Access Journals (Sweden)

    Lun Li

    2006-04-01

    Full Text Available The correct design of complex hardware continues to challenge engineers. Bugs in a design that are not uncovered in early design stages can be extremely expensive. Simulation is a predominantly used tool to validate a design in industry. Formal verification overcomes the weakness of exhaustive simulation by applying mathematical methodologies to validate a design. The work described here focuses upon a technique that integrates the best characteristics of both simulation and formal verification methods to provide an effective design validation tool, referred as Integrated Design Validation (IDV. The novelty in this approach consists of three components, circuit complexity analysis, partitioning based on design hierarchy, and coverage analysis. The circuit complexity analyzer and partitioning decompose a large design into sub-components and feed sub-components to different verification and/or simulation tools based upon known existing strengths of modern verification and simulation tools. The coverage analysis unit computes the coverage of design validation and improves the coverage by further partitioning. Various simulation and verification tools comprising IDV are evaluated and an example is used to illustrate the overall validation process. The overall process successfully validates the example to a high coverage rate within a short time. The experimental result shows that our approach is a very promising design validation method.

  19. The Passive Film Growth Mechanism of New Corrosion-Resistant Steel Rebar in Simulated Concrete Pore Solution: Nanometer Structure and Electrochemical Study.

    Science.gov (United States)

    Jiang, Jin-Yang; Wang, Danqian; Chu, Hong-Yan; Ma, Han; Liu, Yao; Gao, Yun; Shi, Jinjie; Sun, Wei

    2017-04-14

    An elaborative study was carried out on the growth mechanism and properties of the passive film for a new kind of alloyed corrosion-resistant steel (CR steel). The passive film naturally formed in simulated concrete pore solutions (pH = 13.3). The corrosion resistance was evaluated by various methods including open circuit potential (OCP), linear polarization resistance (LPR) measurements, and electrochemical impedance spectroscopy (EIS). Meanwhile, the 2205 duplex stainless steel (SS steel) was evaluated for comparison. Moreover, the passive film with CR steel was studied by means of X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), Atomic Force Microscope (AFM), and the Mott‑Schottky approach. The results showed that the excellent passivity of CR steel could be detected in a high alkaline environment. The grain boundaries between the fine passive film particles lead to increasing Cr oxide content in the later passivation stage. The filling of cation vacancies in the later passivation stage as well as the orderly crystalized inner layer contributed to the excellent corrosion resistance of CR steel. A passive film growth model for CR steel was proposed.

  20. Analysis of lightning fault detection, location and protection on short and long transmission lines using Real Time Digital Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Andre Luiz Pereira de [Siemens Ltda., Sao Paulo, SP (Brazil)], E-mail: andreluiz.oliveira@siemens.com

    2007-07-01

    The purpose of this paper is to present an analysis of lightning fault detection, location and protection using numeric distance relays applied in high voltage transmission lines, more specifically in the 500 kV transmission lines of CEMIG (Brazilian Energy Utility) between the Vespasiano 2 - Neves 1 (short line - 23.9 km) and Vespasiano 2 - Mesquita (long line - 148.6 km) substations. The analysis was based on the simulations results of numeric distance protective relays on power transmission lines, realized in September 02 to 06, 2002, at Siemens AG's facilities (Erlangen - Germany), using Real Time Digital Simulator (RTDS{sup TM}). Several lightning faults simulations were accomplished, in several conditions of the electrical power system where the protective relays would be installed. The results are presented not only with the times of lightning faults elimination, but also all the functionality of a protection system, including the correct detection, location and other advantages that these modern protection devices make possible to the power system. (author)

  1. Visibility Analysis of the Oriental Pearl Based on Digital Landscape Simulation – View from East Daming Road of Shanghai

    Directory of Open Access Journals (Sweden)

    S. Liu

    2015-08-01

    Full Text Available As the demand for visual quality of environment increases, visual analysis therefore plays progressively important role in current urban landscape construction and management. Guided by the City Image theory, this paper presents a covered scene index “X” to describe the visibility of the target scene, and formulates a digital analysis model based on ArcGIS and 3D simulation. This method is applied to the viewpoint analysis from the East Daming Road of the North Bund to the Oriental Pearl in Shanghai and optimized solutions are proposed according to the results. It turns out that this simple and objective technique can serve as a good tool for the reference of urban landscape planning and management.

  2. Main control system verification and validation of NPP digital I and C system based on engineering simulator

    International Nuclear Information System (INIS)

    Lin Meng; Hou Dong; Liu Pengfei; Yang Zongwei; Yang Yanhua

    2010-01-01

    Full-scope digital instrumentation and controls system (I and C) technique is being introduced in Chinese new constructed Nuclear Power Plant (NPP), which mainly includes three parts: control system, reactor protection system and engineered safety feature actuation system. For example, SIEMENS TELEPERM XP and XS distributed control system (DCS) have been used in Ling Ao Phase II NPP, which is located in Guangdong province, China. This is the first NPP project in China that Chinese engineers are fully responsible for all the configuration of actual analog and logic diagram, although experience in NPP full-scope digital I and C is very limited. For the safety, it has to be made sure that configuration is right and control functions can be accomplished before the phase of real plant testing on reactor. Therefore, primary verification and validation (V and V) of I and C needs to be carried out. Except the common and basic way, i.e. checking the diagram configuration one by one according to original design, NPP engineering simulator is applied as another effective approach of V and V. For this purpose, a virtual NPP thermal-hydraulic model is established as a basis according to Ling Ao Phase II NPP design, and the NPP simulation tools can provide plant operation parameters to DCS, accept control signal from I and C and give response. During the test, one set of data acquisition equipments are used to build a connection between the engineering simulator (software) and SIEMENS DCS I/O cabinet (hardware). In this emulation, original diagram configuration in DCS and field hardware structures are kept unchanged. In this way, firstly judging whether there are some problems by observing the input and output of DCS without knowing the internal configuration. Then secondly, problems can be found and corrected by understanding and checking the exact and complex configuration in detail. At last, the correctness and functionality of the control system are verified. This method is

  3. Simulation of proportional control of hydraulic actuator using digital hydraulic valves

    Science.gov (United States)

    Raghuraman, D. R. S.; Senthil Kumar, S.; Kalaiarasan, G.

    2017-11-01

    Fluid power systems using oil hydraulics in earth moving and construction equipment have been using proportional and servo control valves for a long time to achieve precise and accurate position control backed by system performance. Such valves are having feedback control in them and exhibit good response, sensitivity and fine control of the actuators. Servo valves and proportional valves are possessing less hysteresis when compared to on-off type valves, but when the servo valve spools get stuck in one position, a high frequency called as jitter is employed to bring the spool back, whereas in on-off type valves it requires lesser technology to retract the spool. Hence on-off type valves are used in a technology known as digital valve technology, which caters to precise control on slow moving loads with fast switching times and with good flow and pressure control mimicking the performance of an equivalent “proportional valve” or “servo valve”.

  4. Upgrading of the KSU simulators with new digital I and C systems

    International Nuclear Information System (INIS)

    Randen, K.

    1997-01-01

    Nearly all Swedish nuclear power plants, 9 ABB Atom BWRs and 3 Westinghouse PWRs in total, are presently in various stages of modernizing their I and C systems. This includes also major changes to the main control room with the introduction of large numbers of workstations for soft process control and supervision. These modernization programs also have implications on the seven plant specific full-scope simulators used at the KSU Nuclear Training and Safety Center for operator training. The utilities are considering this training to be an integral part of their programs and have requested KSU to provide training of operators before commissioning of the new equipment in the plants. There is also a request to validate modified operating procedures with the new I and C systems integrated into the simulators. Since the utilities are using different vendors, KSU is now Working with equipment from three vendors in the upgrading of the simulators. (author)

  5. Understanding the concept of resolving power in the Fabry-Perot interferometer using a digital simulation

    International Nuclear Information System (INIS)

    Juvells, I; Carnicer, A; Ferre-Borrull, J; MartIn-Badosa, E; Montes-Usategui, M

    2006-01-01

    The resolution concept in connection with the Fabry-Perot interferometer is difficult to understand for undergraduate students enrolled in physical optics courses. The resolution criterion proposed in textbooks for distinguishing equal intensity maxima and the deduction of the resolving power equation is formal and non-intuitive. In this paper, we study the practical meaning of the resolution criterion and resolution power using a computer simulation of a Fabry-Perot interferometer. The light source in the program has two monochromatic components, the wavelength difference being tunable by the user. The student can also adjust other physical parameters so as to obtain different simulation results. By analysing the images and graphics of the simulation, the resolving power concept becomes intuitive and understandable

  6. Optimization of x-ray spectra in digital mammography through Monte Carlo simulations.

    Science.gov (United States)

    Cunha, D M; Tomal, A; Poletti, M E

    2012-04-07

    In this work, a Monte Carlo code was used to investigate the performance of different x-ray spectra in digital mammography, through a figure of merit (FOM), defined as FOM = CNR²/(¯)D(g), with CNR being the contrast-to-noise ratio in image and [Formula: see text] being the average glandular dose. The FOM was studied for breasts with different thicknesses t (2 cm ≤ t ≤ 8 cm) and glandular contents (25%, 50% and 75% glandularity). The anode/filter combinations evaluated were those traditionally employed in mammography (Mo/Mo, Mo/Rh, Rh/Rh), and a W anode combined with Al or K-edge filters (Zr, Mo, Rh, Pd, Ag, Cd, Sn), for tube potentials between 22 and 34 kVp. Results show that the W anode combined with K-edge filters provides higher values of FOM for all breast thicknesses investigated. Nevertheless, the most suitable filter and tube potential depend on the breast thickness, and for t ≥ 6 cm, they also depend on breast glandularity. Particularly for thick and dense breasts, a W anode combined with K-edge filters can greatly improve the digital technique, with the values of FOM up to 200% greater than that obtained with the anode/filter combinations and tube potentials traditionally employed in mammography. For breasts with t < 4 cm, a general good performance was obtained with the W anode combined with 60 μm of the Mo filter at 24-25 kVp, while 60 μm of the Pd filter provided a general good performance at 24-26 kVp for t = 4 cm, and at 28-30 and 29-31 kVp for t = 6 and 8 cm, respectively.

  7. Digital simulation of chronoamperometry at a disk electrode under a flat polymer film containing an enzyme

    DEFF Research Database (Denmark)

    Britz, Dieter; Strutwolf, Jörg

    2015-01-01

    Current-time and steady state current behaviour were simulated for an ultramicrodisk electrode (UMDE) inlaid flush with an insulating plane and overlaid by a flat film of polymer containing an enzyme, of various film thicknesses and essentially infinite extent. Steady state currents go through a maxim...

  8. Digital design and fabrication of simulation model for measuring orthodontic force.

    Science.gov (United States)

    Liu, Yun-Feng; Zhang, Peng-Yuan; Zhang, Qiao-Fang; Zhang, Jian-Xing; Chen, Jie

    2014-01-01

    Three dimensional (3D) forces are the key factors for determining movement of teeth during orthodontic treatment. Designing precise forces and torques on tooth before treatment can result accurate tooth movements, but it is too difficult to realize. In orthodontic biomechanical systems, the periodontal tissues, including bones, teeth, and periodontal ligaments (PDL), are affected by braces, and measuring the forces applied on the teeth by braces should be based on a simulated model composed of these three types of tissues. This study explores the design and fabrication of a simulated oral model for 3D orthodontic force measurements. Based on medical image processing, tissue reconstruction, 3D printing, and PDL simulation and testing, a model for measuring force was designed and fabricated, which can potentially be used for force prediction, design of treatment plans, and precise clinical operation. The experiment illustrated that bi-component silicones with 2:8 ratios had similar mechanical properties to PDL, and with a positioning guide, the teeth were assembled in the mandible sockets accurately, and so a customized oral model for 3D orthodontic force measurement was created.

  9. Electrochemical noise study on 2024-T3 Aluminum alloy corrosion in simulated acid rain under cyclic wet-dry condition

    International Nuclear Information System (INIS)

    Shi Yanyan; Zhang Zhao; Su Jingxin; Cao Fahe; Zhang Jianqing

    2006-01-01

    Potential noise records have been collected for 2024-T3 aluminum alloy, which was exposed to simulated acid rain with different pH value for 15 wet-dry cycles. Meanwhile, Potentiodynamic polarization and SEM techniques were also used as assistant measurements. Three mathematic methods including average, standard deviation and wavelet transformation have been employed to analyze the records. The results showed that each single wet-dry cycle can be divided into three regions with respect to the change of the cathodic reaction rate, and with the increase of pH value the main cathodic reaction changes from the reduction of protons to that of oxygen molecules. The analysis of the EDP versus time evolution clearly indicates that the whole corrosion process can be divided into three segments for the case of pH 3.5 and only one for the cases of pH 4.5 and 6.0, which have been theoretically interpreted according to the corrosion theory and experimentally proved by SEM. The results also showed that the corrosion in the case of pH 3.5 was much more rigorous than that in the cases of pH 4.5 and 6.0. It may due to synergistic effects of that, the characteristic of hydrogen ions which is much more active than that of oxygen molecules, the high diffusion/migration rate of hydrogen ions in solution or through surface films and the lower stability of surface passive film at low pH value system

  10. Digital quantum simulation, Schrödinger cat state spectroscopy and setting up a linear ion trap

    International Nuclear Information System (INIS)

    Hempel, C.

    2014-01-01

    This PhD thesis reports on two experiments in the field of quantum information processing using trapped calcium ions. In addition, the text covers the setup and characterization of a new linear Paul trap accompanied by a novel implementation of single-ion addressing using an acousto-optic deflector. The first of the two experiments is concerned with the proof-of-principle implementation of digital quantum simulations using up to 6 ions and 100 gate operations. It investigates the scaling behavior of simulations of elementary models of magnetism in terms of the number of involved spins and the complexity of their mutual interactions. The second experiment introduces the application of a Schroedinger cat state in the indirect detection of photon scattering events on a broad electronic transition. The method is shown to have a sensitivity down to the single photon level in a proof-of-principle demonstration using a mixed-isotope crystal of 40Ca+ and 44Ca+. A brief outlook towards future experiments and extensions of the experimental setup concludes the manuscript.(author) [de

  11. Digital simulation of an arbitrary stationary stochastic process by spectral representation.

    Science.gov (United States)

    Yura, Harold T; Hanson, Steen G

    2011-04-01

    In this paper we present a straightforward, efficient, and computationally fast method for creating a large number of discrete samples with an arbitrary given probability density function and a specified spectral content. The method relies on initially transforming a white noise sample set of random Gaussian distributed numbers into a corresponding set with the desired spectral distribution, after which this colored Gaussian probability distribution is transformed via an inverse transform into the desired probability distribution. In contrast to previous work, where the analyses were limited to auto regressive and or iterative techniques to obtain satisfactory results, we find that a single application of the inverse transform method yields satisfactory results for a wide class of arbitrary probability distributions. Although a single application of the inverse transform technique does not conserve the power spectra exactly, it yields highly accurate numerical results for a wide range of probability distributions and target power spectra that are sufficient for system simulation purposes and can thus be regarded as an accurate engineering approximation, which can be used for wide range of practical applications. A sufficiency condition is presented regarding the range of parameter values where a single application of the inverse transform method yields satisfactory agreement between the simulated and target power spectra, and a series of examples relevant for the optics community are presented and discussed. Outside this parameter range the agreement gracefully degrades but does not distort in shape. Although we demonstrate the method here focusing on stationary random processes, we see no reason why the method could not be extended to simulate non-stationary random processes. © 2011 Optical Society of America

  12. Merging LIDAR digital terrain model with direct observed elevation points for urban flood numerical simulation

    Science.gov (United States)

    Arrighi, Chiara; Campo, Lorenzo

    2017-04-01

    In last years, the concern about the economical and lives loss due to urban floods has grown hand in hand with the numerical skills in simulating such events. The large amount of computational power needed in order to address the problem (simulating a flood in a complex terrain such as a medium-large city) is only one of the issues. Among them it is possible to consider the general lack of exhaustive observations during the event (exact extension, dynamic, water level reached in different parts of the involved area), needed for calibration and validation of the model, the need of considering the sewers effects, and the availability of a correct and precise description of the geometry of the problem. In large cities the topographic surveys are in general available with a number of points, but a complete hydraulic simulation needs a detailed description of the terrain on the whole computational domain. LIDAR surveys can achieve this goal, providing a comprehensive description of the terrain, although they often lack precision. In this work an optimal merging of these two sources of geometrical information, measured elevation points and LIDAR survey, is proposed, by taking into account the error variance of both. The procedure is applied to a flood-prone city over an area of 35 square km approximately starting with a DTM from LIDAR with a spatial resolution of 1 m, and 13000 measured points. The spatial pattern of the error (LIDAR vs points) is analysed, and the merging method is tested with a series of Jackknife procedures that take into account different densities of the available points. A discussion of the results is provided.

  13. The problem of a digital simulation of Xe oscillations in power reactors

    International Nuclear Information System (INIS)

    Elzmann, H.J.

    1974-04-01

    Xe-induced power oscillations are simulated in a pressurized water reactor. The coupled balance equation for the neutrons and the decay products iodine/xenon are decoupled via a quasi-stationary approach. The stationary multigroup diffusion equation is solved with a difference method. The whole model is realized with the aid of already existing modules of the reactor program system RSYST. Its basic usefulness is established. A further expansion of the method is discussed with the aim to develop rod drive programs for real reactors. (orig./LN) [de

  14. Electrochemical cell

    Science.gov (United States)

    Kaun, T.D.

    An improved secondary electrochemical cell is disclosed having a negative electrode of lithium aluminum, a positive electrode of iron sulfide, a molten electrolyte of lithium chloride and potassium chloride, and the combination that the fully charged theoretical capacity of the negative electrode is in the range of 0.5 to 1.0 that of the positive electrode. The cell thus is negative electrode limiting during discharge cycling. Preferably, the negative electrode contains therein, in the approximate range of 1 to 10 volume % of the electrode, an additive from the materials of graphitized carbon, aluminum-iron alloy, and/or magnesium oxide.

  15. Comparing the Performance of Commonly Available Digital Elevation Models in GIS-based Flood Simulation

    Science.gov (United States)

    Ybanez, R. L.; Lagmay, A. M. A.; David, C. P.

    2016-12-01

    With climatological hazards increasing globally, the Philippines is listed as one of the most vulnerable countries in the world due to its location in the Western Pacific. Flood hazards mapping and modelling is one of the responses by local government and research institutions to help prepare for and mitigate the effects of flood hazards that constantly threaten towns and cities in floodplains during the 6-month rainy season. Available digital elevation maps, which serve as the most important dataset used in 2D flood modelling, are limited in the Philippines and testing is needed to determine which of the few would work best for flood hazards mapping and modelling. Two-dimensional GIS-based flood modelling with the flood-routing software FLO-2D was conducted using three different available DEMs from the ASTER GDEM, the SRTM GDEM, and the locally available IfSAR DTM. All other parameters kept uniform, such as resolution, soil parameters, rainfall amount, and surface roughness, the three models were run over a 129-sq. kilometer watershed with only the basemap varying. The output flood hazard maps were compared on the basis of their flood distribution, extent, and depth. The ASTER and SRTM GDEMs contained too much error and noise which manifested as dissipated and dissolved hazard areas in the lower watershed where clearly delineated flood hazards should be present. Noise on the two datasets are clearly visible as erratic mounds in the floodplain. The dataset which produced the only feasible flood hazard map is the IfSAR DTM which delineates flood hazard areas clearly and properly. Despite the use of ASTER and SRTM with their published resolution and accuracy, their use in GIS-based flood modelling would be unreliable. Although not as accessible, only IfSAR or better datasets should be used for creating secondary products from these base DEM datasets. For developing countries which are most prone to hazards, but with limited choices for basemaps used in hazards

  16. Electrochemical attosyringe.

    Science.gov (United States)

    Laforge, François O; Carpino, James; Rotenberg, Susan A; Mirkin, Michael V

    2007-07-17

    The ability to manipulate ultrasmall volumes of liquids is essential in such diverse fields as cell biology, microfluidics, capillary chromatography, and nanolithography. In cell biology, it is often necessary to inject material of high molecular weight (e.g., DNA, proteins) into living cells because their membranes are impermeable to such molecules. All techniques currently used for microinjection are plagued by two common problems: the relatively large injector size and volume of injected fluid, and poor control of the amount of injected material. Here we demonstrate the possibility of electrochemical control of the fluid motion that allows one to sample and dispense attoliter-to-picoliter (10(-18) to 10(-12) liter) volumes of either aqueous or nonaqueous solutions. By changing the voltage applied across the liquid/liquid interface, one can produce a sufficient force to draw solution inside a nanopipette and then inject it into an immobilized biological cell. A high success rate was achieved in injections of fluorescent dyes into cultured human breast cells. The injection of femtoliter-range volumes can be monitored by video microscopy, and current/resistance-based approaches can be used to control injections from very small pipettes. Other potential applications of the electrochemical syringe include fluid dispensing in nanolithography and pumping in microfluidic systems.

  17. A Software Prototype For Accessing Large Climate Simulation Data Through Digital Globe Interface

    Science.gov (United States)

    Chaudhuri, A.; Sorokine, A.

    2010-12-01

    The IPCC suite of global Earth system models produced terabytes of data for the CMIP3/AR4 archive and is expected to reach the petabyte scale by CMIP5/AR5. Dynamic downscaling of global models based on regional climate models can potentially lead to even larger data volumes. The model simulations for global or regional climate models like CCSM3 or WRF are typically run on supercomputers like the ORNL/DOE Jaguar and the results are stored on high performance storage systems. Access to these results from a user workstation is impeded by a number of factors such as enormous data size, limited bandwidth of standard office networks, data formats which are not fully supported by applications. So, a user-friendly interface for accessing and visualizing these results over standard Internet connection is required to facilitate collaborative work among geographically dispersed groups of scientists. To address this problem, we have developed a virtual globe based application which enables the scientists to query, visualize and analyze the results without the need of large data transfers to desktops and department-level servers. We have used open-source NASA WorldWind as a virtual globe platform and extended it with modules capable of visualizing model outputs stored in NetCDF format, while the data resides on the high-performance system. Based on the query placed by the scientist, our system initiates data processing routines on the high performance storage system to subset the data and reduce its size and then transfer it back to scientist's workstation through secure shell tunnel. The whole operation is kept totally transparent to the scientist and for the most part is controlled from a point-and-click GUI. The virtual globe also serves as a common platform for geospatial data, allowing smooth integration of the model simulation results with geographic data from other sources such as various web services or user-specific data in local files, if required. Also the system has

  18. Monte Carlo simulation for the estimation of the glandular breast dose for a digital breast tomosynthesis system

    International Nuclear Information System (INIS)

    Rodrigues, Leonardo; Braz, Delson; Goncalves Magalhaes, Luis Alexandre

    2015-01-01

    Digital breast tomosynthesis (DBT) is a screening and diagnostic modality that acquires images of the breast at multiple angles during a short scan. The Selenia Dimensions (Hologic, Bedford, Mass) DBT system can perform both full-field digital mammography and DBT. The system acquires 15 projections over a 15 deg. angular range (from -7.5 deg. to +7.5 deg.). An important factor in determining the optimal imaging technique for breast tomosynthesis is the radiation dose. In breast imaging, the radiation dose of concern is that deposited in the glandular tissue of the breast because this is the tissue that has a risk of developing cancer. The concept of the normalised mean glandular dose (DgN) has been introduced as the metric for the dose in breast imaging. The DgN is difficult to measure. The Monte Carlo techniques offer an alternative method for a realistic estimation of the radiation dose. The purpose of this work was to use the Monte Carlo code MCNPX technique to generate monoenergetic glandular dose data for estimating the breast tissue dose in tomosynthesis for arbitrary spectra as well as to observe the deposited radiation dose by projection on the glandular portion of the breast in a Selenia Dimensions DBT system. A Monte Carlo simulation of the system was developed to compute the DgN in a craniocaudal view. Monoenergetic X-ray beams from 10 to 49 keV in 1-keV increments were used. The simulation utilised the assumption of a homogeneous breast composition and three compositions (0 % glandular, 50 % glandular and 100 % glandular). The glandular and adipose tissue compositions were specified according ICRU Report 44. A skin layer of 4 mm was assumed to encapsulate the breast on all surfaces. The breast size was varied using the chest wall-to-nipple distance (CND) and compressed breast thickness (t). In this work, the authors assumed a CND of 5 cm and the thicknesses ranged from 2 to 8 cm, in steps of 2 cm. The fractional energy absorption increases (up to 44

  19. Patient dose simulations for scanning-beam digital x-ray tomosynthesis of the lungs

    International Nuclear Information System (INIS)

    Nelson, Geoff; Fahrig, Rebecca; Yoon, Sungwon; Krishna, Ganesh; Wilfley, Brian

    2013-01-01

    Purpose: An improved method of image guidance for lung tumor biopsies could help reduce the high rate of false negatives. The aim of this work is to optimize the geometry of the scanning-beam digital tomography system (SBDX) for providing real-time 3D tomographic reconstructions for target verification. The unique geometry of the system requires trade-offs between patient dose, imaging field of view (FOV), and tomographic angle.Methods: Tomosynthetic angle as a function of tumor-to-detector distance was calculated. Monte Carlo Software (PCXMC) was used to calculate organ doses and effective dose for source-to-detector distances (SDDs) from 90 to 150 cm, patient locations with the tumor at 20 cm from the source to 20 cm from the detector, and FOVs centered on left lung and right lung as well as medial and distal peripheries of the lungs. These calculations were done for two systems, a SBDX system and a GE OEC-9800 C-arm fluoroscopic unit. To evaluate the dose effect of the system geometry, results from PCXMC were calculated using a scan of 300 mAs for both SBDX and fluoroscopy. The Rose Criterion was used to find the fluence required for a tumor SNR of 5, factoring in scatter, air-gap, system geometry, and patient position for all models generated with PCXMC. Using the calculated fluence for constant tumor SNR, the results from PCXMC were used to compare the patient dose for a given SNR between SBDX and fluoroscopy.Results: Tomographic angle changes with SDD only in the region near the detector. Due to their geometry, the source array and detector have a peak tomographic angle for any given SDD at a source to tumor distance that is 69.7% of the SDD assuming constant source and detector size. Changing the patient location in order to increase tomographic angle has a significant effect on organ dose distribution due to geometrical considerations. With SBDX and fluoroscopy geometries, the dose to organs typically changes in an opposing manner with changing patient

  20. Patient dose simulations for scanning-beam digital x-ray tomosynthesis of the lungs

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Geoff; Fahrig, Rebecca [Department of Radiology, Stanford University, Stanford, California 94305 (United States); Yoon, Sungwon [Varian Medical Systems, Palo Alto, California 94304 (United States); Krishna, Ganesh [Palo Alto Medical Foundation, Mountain View, California 94040 (United States); Wilfley, Brian [Triple Ring Technologies, Inc., Newark, California 94560 (United States)

    2013-11-15

    Purpose: An improved method of image guidance for lung tumor biopsies could help reduce the high rate of false negatives. The aim of this work is to optimize the geometry of the scanning-beam digital tomography system (SBDX) for providing real-time 3D tomographic reconstructions for target verification. The unique geometry of the system requires trade-offs between patient dose, imaging field of view (FOV), and tomographic angle.Methods: Tomosynthetic angle as a function of tumor-to-detector distance was calculated. Monte Carlo Software (PCXMC) was used to calculate organ doses and effective dose for source-to-detector distances (SDDs) from 90 to 150 cm, patient locations with the tumor at 20 cm from the source to 20 cm from the detector, and FOVs centered on left lung and right lung as well as medial and distal peripheries of the lungs. These calculations were done for two systems, a SBDX system and a GE OEC-9800 C-arm fluoroscopic unit. To evaluate the dose effect of the system geometry, results from PCXMC were calculated using a scan of 300 mAs for both SBDX and fluoroscopy. The Rose Criterion was used to find the fluence required for a tumor SNR of 5, factoring in scatter, air-gap, system geometry, and patient position for all models generated with PCXMC. Using the calculated fluence for constant tumor SNR, the results from PCXMC were used to compare the patient dose for a given SNR between SBDX and fluoroscopy.Results: Tomographic angle changes with SDD only in the region near the detector. Due to their geometry, the source array and detector have a peak tomographic angle for any given SDD at a source to tumor distance that is 69.7% of the SDD assuming constant source and detector size. Changing the patient location in order to increase tomographic angle has a significant effect on organ dose distribution due to geometrical considerations. With SBDX and fluoroscopy geometries, the dose to organs typically changes in an opposing manner with changing patient

  1. Virtual patient simulation in psychiatric care - A pilot study of digital support for collaborate learning.

    Science.gov (United States)

    Sunnqvist, Charlotta; Karlsson, Karin; Lindell, Lisbeth; Fors, Uno

    2016-03-01

    Psychiatric and mental health nursing is built on a trusted nurse and patient relationship. Therefore communication and clinical reasoning are two important issues. Our experiences as teachers in psychiatric educational programmes are that the students feel anxiety and fear before they start their clinical practices in psychiatry. Therefore there is a need for bridging over the fear. Technology enhanced learning might support such activities so we used Virtual patients (VPs), an interactive computer simulations of real-life clinical scenarios. The aim of this study was to investigate 4th term nursing students' opinions on the use of Virtual Patients for assessment in a Mental Health and Ill-health course module. We asked 24 volunteering students to practise with five different VP cases during almost 10 weeks before the exam. The participants were gathered together for participating in a written and an oral evaluation. The students were positive to the use of VPs in psychiatry and were very positive to use VPs in their continued nursing education. It seems that Virtual Patients can be an activity producing pedagogic model promoting students' independent knowledge development, critical thinking, reflection and problem solving ability for nurse students in psychiatric care. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Digital Controller Development Methodology Based on Real-Time Simulations with LabVIEW FPGA Hardware-Software Toolset

    Directory of Open Access Journals (Sweden)

    Tommaso Caldognetto

    2013-12-01

    Full Text Available In this paper, we exemplify the use of NI Lab-VIEW FPGA as a rapid prototyping environment for digital controllers. In our power electronics laboratory, it has been successfully employed in the development, debugging, and test of different power converter controllers for microgrid applications.The paper shows how this high level programming language,together with its target hardware platforms, including CompactRIO and Single Board RIO systems, allows researchers and students to develop even complex applications in reasonable times. The availability of efficient drivers for the considered hardware platforms frees the users from the burden of low level programming. At the same time, the high level programming approach facilitates software re-utilization, allowing the laboratory know-how to steadily grow along time. Furthermore, it allows hardware-in-the-loop real-time simulation, that proved to be effective, and safe, in debugging even complex hardware and software co-designed controllers. To illustrate the effectiveness of these hardware-software toolsets and of the methodology based upon them, two case studies are

  3. Design and Simulation of Seido Buffer for Analog to Digital Converter (ADC) on Multichannel Analyzer (MCA) Application

    International Nuclear Information System (INIS)

    Harzawadi Hasim; Maslina Ibrahim; Nolida Yusop; Mohd Ashhar Khalid

    2011-01-01

    Most of our electronic equipment has buffer, thus this make buffer as one of importance in electronic gadget. This paper introduced Single Ended Input Differential Output (SEIDO) buffer to predict the bias at approximately 2.5 V. For this purpose, the input range between -1 mV to 4 V was implemented. The software used to cascade SEIDO buffer is called LTspice IV; an open source software developed by Linear Technology Incorporation. The component involve in this development was Operational Amplifier (OP AMP) AD826 from Analog Devices Incorporation, capacitor and resistor. Kirchhoffs Current Law and Kirchhoffs Voltage Law was applied to calculated voltage gain and biasing voltage. All design has been verified by LTspice IV. The result produced from simulation was between -0.3 V to 6.3 V with bias roughly at 2.5 V. These results prove that it was capable to drive Analog Digital Converter (ADC) that can subsequently apply for Multichannel Analyzer (MCA). (author)

  4. Using LabVIEW for the design and control of digital signal processing systems. Simulation of the ultra slow extraction at COSY

    International Nuclear Information System (INIS)

    Heinrichs, G.; Rongen, H.; Jamal, R.

    1994-01-01

    For the ultraslow extraction system of the COler SYnchrotron COSY a direct digital synthesis system is being developed. LabVIEW from National Instruments has been chosen as a tool for the simulation of the digital signal processing algorithms as well as the generation of test sequences. In order to generate adjustable band-limited noise centered at a carrier frequency, alternative algorithms have been studied. LabVIEW permits the interactive variation of relevant system parameters by means of a graphical language in order to study the quality of the frequency band limitation as a function of noise parameters, digital accuracy and frequency range and to generate test sequences by means of a real-time function generator. Advantages and limitations of LabVIEW for such applications are discussed. ((orig.))

  5. Power quality improvement by using multi-pulse AC-DC converters for DC drives: Modeling, simulation and its digital implementation

    Directory of Open Access Journals (Sweden)

    Mohd Tariq

    2014-12-01

    Full Text Available The paper presents the modeling, simulation and digital implementation of power quality improvement of DC drives by using multi pulse AC–DC converter. As it is a well-known fact that power quality determines the fitness of electrical power to consumer devices, hence an effort has been made to improve power quality in this work. Simulation and digital implementation with the help of MATLAB/Simulink has been done and results obtained are discussed in detail to verify the theoretical results. The multipulse converter was connected with DC drives and was run at no load condition to find out the transient and steady state performances. FFT analysis has been performed and Total Harmonic Distortion (THD results obtained at different pulses are shown here.

  6. Design of a digital beam attenuation system for computed tomography: Part I. System design and simulation framework

    International Nuclear Information System (INIS)

    Szczykutowicz, Timothy P.; Mistretta, Charles A.

    2013-01-01

    Purpose: The purpose of this work is to introduce a new device that allows for patient-specific imaging-dose modulation in conventional and cone-beam CT. The device is called a digital beam attenuator (DBA). The DBA modulates an x-ray beam by varying the attenuation of a set of attenuating wedge filters across the fan angle. The ability to modulate the imaging dose across the fan beam represents another stride in the direction of personalized medicine. With the DBA, imaging dose can be tailored for a given patient anatomy, or even tailored to provide signal-to-noise ratio enhancement within a region of interest. This modulation enables decreases in: dose, scatter, detector dynamic range requirements, and noise nonuniformities. In addition to introducing the DBA, the simulation framework used to study the DBA under different configurations is presented. Finally, a detailed study on the choice of the material used to build the DBA is presented. Methods: To change the attenuator thickness, the authors propose to use an overlapping wedge design. In this design, for each wedge pair, one wedge is held stationary and another wedge is moved over the stationary wedge. The composite thickness of the two wedges changes as a function of the amount of overlap between the wedges. To validate the DBA concept and study design changes, a simulation environment was constructed. The environment allows for changes to system geometry, different source spectra, DBA wedge design modifications, and supports both voxelized and analytic phantom models. A study of all the elements from atomic number 1 to 92 were evaluated for use as DBA filter material. The amount of dynamic range and tube loading for each element were calculated for various DBA designs. Tube loading was calculated by comparing the attenuation of the DBA at its minimum attenuation position to a filtered non-DBA acquisition. Results: The design and parametrization of DBA implemented FFMCT has been introduced. A simulation

  7. Development of a system based in a digital signal processor (DSP) for a simulator of power regulation in a reactor: first stage

    International Nuclear Information System (INIS)

    Benitez R, J.S.; Perez C, B.

    2002-01-01

    The first stage of the development of a digital system based on a DSP is presented which forms part of an hybrid simulator for the power regulation in am model of the punctual kinetics of a TRIGA reactor type. The DSP performs the regulation, using a Mandami type algorithm of diffuse control. In the algorithm, the universe of the output variable is discretized for performing in an unique stage the aggregation functions and dis-diffusization. (Author)

  8. Test of the little Higgs model in Atlas at LHC: simulation of the digitization of the electromagnetic calorimeter

    International Nuclear Information System (INIS)

    Lechowski, M.

    2005-04-01

    LHC is a proton-proton collider with an energy of 14 TeV in the center of mass, which will start operating in 2007 at CERN. Two of its experiments, ATLAS, and CMS, will search and study in particular the Higgs boson, Supersymmetry and other new physics. This thesis was about two aspects of the ATLAS experiment. On one hand the simulation of the liquid Argon electromagnetic calorimeter, with the emulation of the electronic chain in charge of the digitization of the signal and also the evaluation of the electronic noise and the pile-up noise (coming from minimum bias events of inelastic collisions at LHC). These two points have been validated by the analysis of the data taken during beam tests in 2002 and 2004. On the other hand, a physics study concerning the Little Higgs model. This recent model solves the hierarchy problem of the Standard Model, in introducing new heavy particles to cancel quadratic divergences arising in the calculation of the Higgs boson mass. These new particles, with a mass about the TeV/c 2 , are a heavy quark top, heavy gauge bosons Z H , W H and A H , and a heavy Higgs boson triplet. The physics study dealt with the characteristic decays of the model, Z H in Z + H and W H in W + H, with a Higgs mass either at 120 GeV/c 2 decaying in two photons or at 200 GeV/c 2 decaying in ZZ or WW. Results show that in both cases, for 300 fb -1 (3 years at high luminosity), an observation of the signal at 5 σ for Z H et W H masses less than 2 TeV/c 2 is possible, covering a large part of the parameter space. (author)

  9. COUNTS-IN-CYLINDERS IN THE SLOAN DIGITAL SKY SURVEY WITH COMPARISONS TO N-BODY SIMULATIONS

    International Nuclear Information System (INIS)

    Berrier, Heather D.; Barton, Elizabeth J.; Bullock, James S.; Berrier, Joel C.; Zentner, Andrew R.; Wechsler, Risa H.

    2011-01-01

    Environmental statistics provide a necessary means of comparing the properties of galaxies in different environments, and a vital test of models of galaxy formation within the prevailing hierarchical cosmological model. We explore counts-in-cylinders, a common statistic defined as the number of companions of a particular galaxy found within a given projected radius and redshift interval. Galaxy distributions with the same two-point correlation functions do not necessarily have the same companion count distributions. We use this statistic to examine the environments of galaxies in the Sloan Digital Sky Survey Data Release 4 (SDSS DR4). We also make preliminary comparisons to four models for the spatial distributions of galaxies, based on N-body simulations and data from SDSS DR4, to study the utility of the counts-in-cylinders statistic. There is a very large scatter between the number of companions a galaxy has and the mass of its parent dark matter halo and the halo occupation, limiting the utility of this statistic for certain kinds of environmental studies. We also show that prevalent empirical models of galaxy clustering, that match observed two- and three-point clustering statistics well, fail to reproduce some aspects of the observed distribution of counts-in-cylinders on 1, 3, and 6 h -1 Mpc scales. All models that we explore underpredict the fraction of galaxies with few or no companions in 3 and 6 h -1 Mpc cylinders. Roughly 7% of galaxies in the real universe are significantly more isolated within a 6 h -1 Mpc cylinder than the galaxies in any of the models we use. Simple phenomenological models that map galaxies to dark matter halos fail to reproduce high-order clustering statistics in low-density environments.

  10. Simulación digital de procesos de construcción de estructura en concreto: casos de estudio práctico en Bogotá Digital simulation of concrete structure construction: practical case-study in Bogota

    Directory of Open Access Journals (Sweden)

    Diego Echeverry

    2008-08-01

    Full Text Available Se están desarrollando actividades de simulación digital de procesos encaminadas a modelar la construcción de la estructura de muros y losas en concreto en proyectos inmobiliarios de una firma constructora colombiana. En un primer proyecto se generaron modelos que permitieron emitir recomendaciones prácticas para reducir el tiempo total de construcción. Actualmente se está concluyendo otro proceso de modelación aplicado en un proyecto nuevo de la misma firma constructora. Con estas herramientas de simulación se logra poner en manos de los planeadores de proyectos un instrumento que permite evaluar diferentes escenarios de manera probabilística, permitiendo así una mejor toma de decisiones ante condiciones de incertidumbre.Activities are in progress to develop digital simulation of the construction of structural walls and slabs made of concrete, in building projects of a Colombian construction firm. In an initial project, the models that were generated allowed to produce recommendations to reduce the total construction time. At present another simulation process is concluding, applied to two new construction projects of the same firm. With these simulation tools the planning staff can evaluate different scenarios with a probabilistic approach, enabling an improved decision making in uncertain conditions.

  11. A feasibility study of projection-based energy weighting based on a photon-counting detector in contrast-enhanced digital subtraction mammography: a simulation study

    International Nuclear Information System (INIS)

    Choi, Sunghoon; Lee, Seungwan; Choi, Yuna; Kim, Heejoung

    2014-01-01

    Contrast media, such as iodine and gadolinium, are generally used in digital subtraction mammography to enhance the contrast between target and background materials. In digital subtraction mammography, where one image (with contrast medium) is subtracted from another (anatomical background) to facilitate visualization of the tumor structure, tumors can be more easily distinguished after the injection of a contrast medium. In order to have more an effective method to increase the contrast-to-noise ratio (CNR), we applied a projection-based energy-weighting method. The purpose of this study is to demonstrate the feasibility of using the projection-based energy-weighting method in digital subtraction mammography. Unlike some other previous studies, we applied the projection-based energy-weighting method to more practical mammography conditions by using the Monte Carlo method to simulate four different iodine solutions embedded in a breast phantom comprised of 50% adipose and 50% glandular tissues. We also considered an optimal tube voltage and anode/filter combination in digital iodine contrast media mammography in order to maximize the figure-of-merit (FOM). The simulated source energy was from 20 to 45 keV to prevent electronic noise and include the k-edge energy of iodine (33.2 keV). The results showed that the projection-based energy-weighting improved the CNR by factors of 1.05 - 1.86 compared to the conventionally integrated images. Consequently, the CNR of digital subtraction mammography images can be improved by using projection-based energy-weighting with photon-counting detectors.

  12. A feasibility study of projection-based energy weighting based on a photon-counting detector in contrast-enhanced digital subtraction mammography: a simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sunghoon; Lee, Seungwan; Choi, Yuna; Kim, Heejoung [Yonsei University, Wonju (Korea, Republic of)

    2014-06-15

    Contrast media, such as iodine and gadolinium, are generally used in digital subtraction mammography to enhance the contrast between target and background materials. In digital subtraction mammography, where one image (with contrast medium) is subtracted from another (anatomical background) to facilitate visualization of the tumor structure, tumors can be more easily distinguished after the injection of a contrast medium. In order to have more an effective method to increase the contrast-to-noise ratio (CNR), we applied a projection-based energy-weighting method. The purpose of this study is to demonstrate the feasibility of using the projection-based energy-weighting method in digital subtraction mammography. Unlike some other previous studies, we applied the projection-based energy-weighting method to more practical mammography conditions by using the Monte Carlo method to simulate four different iodine solutions embedded in a breast phantom comprised of 50% adipose and 50% glandular tissues. We also considered an optimal tube voltage and anode/filter combination in digital iodine contrast media mammography in order to maximize the figure-of-merit (FOM). The simulated source energy was from 20 to 45 keV to prevent electronic noise and include the k-edge energy of iodine (33.2 keV). The results showed that the projection-based energy-weighting improved the CNR by factors of 1.05 - 1.86 compared to the conventionally integrated images. Consequently, the CNR of digital subtraction mammography images can be improved by using projection-based energy-weighting with photon-counting detectors.

  13. Integration of airborne Thematic Mapper Simulator (TMS) data and digitized aerial photography via an ISH transformation. [Intensity Saturation Hue

    Science.gov (United States)

    Ambrosia, Vincent G.; Myers, Jeffrey S.; Ekstrand, Robert E.; Fitzgerald, Michael T.

    1991-01-01

    A simple method for enhancing the spatial and spectral resolution of disparate data sets is presented. Two data sets, digitized aerial photography at a nominal spatial resolution 3,7 meters and TMS digital data at 24.6 meters, were coregistered through a bilinear interpolation to solve the problem of blocky pixel groups resulting from rectification expansion. The two data sets were then subjected to intensity-saturation-hue (ISH) transformations in order to 'blend' the high-spatial-resolution (3.7 m) digitized RC-10 photography with the high spectral (12-bands) and lower spatial (24.6 m) resolution TMS digital data. The resultant merged products make it possible to perform large-scale mapping, ease photointerpretation, and can be derived for any of the 12 available TMS spectral bands.

  14. Digital broadcasting

    International Nuclear Information System (INIS)

    Park, Ji Hyeong

    1999-06-01

    This book contains twelve chapters, which deals with digitization of broadcast signal such as digital open, digitization of video signal and sound signal digitization of broadcasting equipment like DTPP and digital VTR, digitization of equipment to transmit such as digital STL, digital FPU and digital SNG, digitization of transmit about digital TV transmit and radio transmit, digital broadcasting system on necessity and advantage, digital broadcasting system abroad and Korea, digital broadcasting of outline, advantage of digital TV, ripple effect of digital broadcasting and consideration of digital broadcasting, ground wave digital broadcasting of DVB-T in Europe DTV in U.S.A and ISDB-T in Japan, HDTV broadcasting, satellite broadcasting, digital TV broadcasting in Korea, digital radio broadcasting and new broadcasting service.

  15. Dosimetric characterization and organ dose assessment in digital breast tomosynthesis: Measurements and Monte Carlo simulations using voxel phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Baptista, Mariana, E-mail: marianabaptista@ctn.ist.utl.pt; Di Maria, Salvatore; Barros, Sílvia; Vaz, Pedro [Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, km 139,7, Bobadela LRS 2695-066 (Portugal); Figueira, Catarina [Centre for Plasma Physics, School of Mathematics and Physics, Queen’s University, Belfast BT7 1NN (United Kingdom); Sarmento, Marta; Orvalho, Lurdes [Serviço de Imagiologia, Hospital da Luz, Avenida Lusíada, 100, Lisboa 1500-650 (Portugal)

    2015-07-15

    Purpose: Due to its capability to more accurately detect deep lesions inside the breast by removing the effect of overlying anatomy, digital breast tomosynthesis (DBT) has the potential to replace the standard mammography technique in clinical screening exams. However, the European Guidelines for DBT dosimetry are still a work in progress and there are little data available on organ doses other than to the breast. It is, therefore, of great importance to assess the dosimetric performance of DBT with respect to the one obtained with standard digital mammography (DM) systems. The aim of this work is twofold: (i) to study the dosimetric properties of a combined DBT/DM system (MAMMOMAT Inspiration Siemens{sup ®}) for a tungsten/rhodium (W/Rh) anode/filter combination and (ii) to evaluate organs doses during a DBT examination. Methods: For the first task, measurements were performed in manual and automatic exposure control (AEC) modes, using two homogeneous breast phantoms: a PMMA slab phantom and a 4 cm thick breast-shaped rigid phantom, with 50% of glandular tissue in its composition. Monte Carlo (MC) simulations were performed using Monte Carlo N-Particle eXtended v.2.7.0. A MC model was implemented to mimic DM and DBT acquisitions for a wide range of x-ray spectra (24 –34 kV). This was used to calculate mean glandular dose (MGD) and to compute series of backscatter factors (BSFs) that could be inserted into the DBT dosimetric formalism proposed by Dance et al. Regarding the second aim of the study, the implemented MC model of the clinical equipment, together with a female voxel phantom (“Laura”), was used to calculate organ doses considering a typical DBT acquisition. Results were compared with a standard two-view mammography craniocaudal (CC) acquisition. Results: Considering the AEC mode, the acquisition of a single CC view results in a MGD ranging from 0.53 ± 0.07 mGy to 2.41 ± 0.31 mGy in DM mode and from 0.77 ± 0.11 mGy to 2.28 ± 0.32 mGy in DBT mode

  16. Electrochemical Oscillation of Vanadium Ions in Anolyte

    Directory of Open Access Journals (Sweden)

    Hao Peng

    2017-08-01

    Full Text Available Periodic electrochemical oscillation of the anolyte was reported for the first time in a simulated charging process of the vanadium redox flow batteries. The electrochemical oscillation could be explained in terms of the competition between the growth and the chemical dissolution of V2O5 film. Also, the oscillation phenomenon was possible to regular extra power consumption. The results of this paper might enable new methods to improve the charge efficiency and energy saving for vanadium redox flow batteries.

  17. Electrochemical energy generation

    International Nuclear Information System (INIS)

    Kreysa, G.; Juettner, K.

    1993-01-01

    The proceedings encompass 40 conference papers belonging to the following subject areas: Baseline and review papers; electrochemical fuel cells; batteries: Primary and secondary cells; electrochemical, regenerative systems for energy conversion; electrochemical hydrogen generation; electrochemistry for nuclear power plant; electrochemistry for spent nuclear fuel reprocessing; energy efficiency in electrochemical processes. There is an annex listing the authors and titles of the poster session, and compacts of the posters can be obtained from the office of the Gesellschaft Deutscher Chemiker, Abteilung Tagungen. (MM) [de

  18. Budget Impact Analysis of Switching to Digital Mammography in a Population-Based Breast Cancer Screening Program: A Discrete Event Simulation Model

    Science.gov (United States)

    Comas, Mercè; Arrospide, Arantzazu; Mar, Javier; Sala, Maria; Vilaprinyó, Ester; Hernández, Cristina; Cots, Francesc; Martínez, Juan; Castells, Xavier

    2014-01-01

    Objective To assess the budgetary impact of switching from screen-film mammography to full-field digital mammography in a population-based breast cancer screening program. Methods A discrete-event simulation model was built to reproduce the breast cancer screening process (biennial mammographic screening of women aged 50 to 69 years) combined with the natural history of breast cancer. The simulation started with 100,000 women and, during a 20-year simulation horizon, new women were dynamically entered according to the aging of the Spanish population. Data on screening were obtained from Spanish breast cancer screening programs. Data on the natural history of breast cancer were based on US data adapted to our population. A budget impact analysis comparing digital with screen-film screening mammography was performed in a sample of 2,000 simulation runs. A sensitivity analysis was performed for crucial screening-related parameters. Distinct scenarios for recall and detection rates were compared. Results Statistically significant savings were found for overall costs, treatment costs and the costs of additional tests in the long term. The overall cost saving was 1,115,857€ (95%CI from 932,147 to 1,299,567) in the 10th year and 2,866,124€ (95%CI from 2,492,610 to 3,239,638) in the 20th year, representing 4.5% and 8.1% of the overall cost associated with screen-film mammography. The sensitivity analysis showed net savings in the long term. Conclusions Switching to digital mammography in a population-based breast cancer screening program saves long-term budget expense, in addition to providing technical advantages. Our results were consistent across distinct scenarios representing the different results obtained in European breast cancer screening programs. PMID:24832200

  19. Fully iterative scatter corrected digital breast tomosynthesis using GPU-based fast Monte Carlo simulation and composition ratio update

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyungsang; Ye, Jong Chul, E-mail: jong.ye@kaist.ac.kr [Bio Imaging and Signal Processing Laboratory, Department of Bio and Brain Engineering, KAIST 291, Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of); Lee, Taewon; Cho, Seungryong [Medical Imaging and Radiotherapeutics Laboratory, Department of Nuclear and Quantum Engineering, KAIST 291, Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of); Seong, Younghun; Lee, Jongha; Jang, Kwang Eun [Samsung Advanced Institute of Technology, Samsung Electronics, 130, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 443-803 (Korea, Republic of); Choi, Jaegu; Choi, Young Wook [Korea Electrotechnology Research Institute (KERI), 111, Hanggaul-ro, Sangnok-gu, Ansan-si, Gyeonggi-do, 426-170 (Korea, Republic of); Kim, Hak Hee; Shin, Hee Jung; Cha, Joo Hee [Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro, 43-gil, Songpa-gu, Seoul, 138-736 (Korea, Republic of)

    2015-09-15

    Purpose: In digital breast tomosynthesis (DBT), scatter correction is highly desirable, as it improves image quality at low doses. Because the DBT detector panel is typically stationary during the source rotation, antiscatter grids are not generally compatible with DBT; thus, a software-based scatter correction is required. This work proposes a fully iterative scatter correction method that uses a novel fast Monte Carlo simulation (MCS) with a tissue-composition ratio estimation technique for DBT imaging. Methods: To apply MCS to scatter estimation, the material composition in each voxel should be known. To overcome the lack of prior accurate knowledge of tissue composition for DBT, a tissue-composition ratio is estimated based on the observation that the breast tissues are principally composed of adipose and glandular tissues. Using this approximation, the composition ratio can be estimated from the reconstructed attenuation coefficients, and the scatter distribution can then be estimated by MCS using the composition ratio. The scatter estimation and image reconstruction procedures can be performed iteratively until an acceptable accuracy is achieved. For practical use, (i) the authors have implemented a fast MCS using a graphics processing unit (GPU), (ii) the MCS is simplified to transport only x-rays in the energy range of 10–50 keV, modeling Rayleigh and Compton scattering and the photoelectric effect using the tissue-composition ratio of adipose and glandular tissues, and (iii) downsampling is used because the scatter distribution varies rather smoothly. Results: The authors have demonstrated that the proposed method can accurately estimate the scatter distribution, and that the contrast-to-noise ratio of the final reconstructed image is significantly improved. The authors validated the performance of the MCS by changing the tissue thickness, composition ratio, and x-ray energy. The authors confirmed that the tissue-composition ratio estimation was quite

  20. Measurements of simulated periodontal bone defects in inverted digital image and film-based radiograph: an in vitro study

    International Nuclear Information System (INIS)

    Molon, Rafael Scaf; Morais Camillo, Juliana Aparecida Najarro Dearo; Ferreira, Mauricio Goncalves; Loffredo, Leonor Castro Monteiro; Scaf, Gulnara; Sakakura, Celso Eduardo

    2012-01-01

    This study was performed to compare the inverted digital images and film-based images of dry pig mandibles to measure the periodontal bone defect depth. Forty 2-wall bone defects were made in the proximal region of the premolar in the dry pig mandibles. The digital and conventional radiographs were taken using a Schick sensor and Kodak F-speed intraoral film. Image manipulation (inversion) was performed using Adobe Photoshop 7.0 software. Four trained examiners made all of the radiographic measurements in millimeters a total of three times from the cementoenamel junction to the most apical extension of the bone loss with both types of images: inverted digital and film. The measurements were also made in dry mandibles using a periodontal probe and digital caliper. The Student's t-test was used to compare the depth measurements obtained from the two types of images and direct visual measurement in the dry mandibles. A significance level of 0.05 for a 95% confidence interval was used for each comparison. There was a significant difference between depth measurements in the inverted digital images and direct visual measurements (p>|t|=0.0039), with means of 6.29 mm (IC 95% :6.04-6.54) and 6.79 mm (IC 95% :6.45-7.11), respectively. There was a non-significant difference between the film-based radiographs and direct visual measurements (p>|t|=0.4950), with means of 6.64 mm(IC 95% :6.40-6.89) and 6.79 mm(IC 95% :6.45-7.11), respectively. The periodontal bone defect measurements in the inverted digital images were inferior to film-based radiographs, underestimating the amount of bone loss.

  1. Measurements of simulated periodontal bone defects in inverted digital image and film-based radiograph: an in vitro study

    Energy Technology Data Exchange (ETDEWEB)

    Molon, Rafael Scaf; Morais Camillo, Juliana Aparecida Najarro Dearo; Ferreira, Mauricio Goncalves; Loffredo, Leonor Castro Monteiro; Scaf, Gulnara [Araraquara Dental School, Universidade Estadual Paulista, Sao Paulo (Brazil); Sakakura, Celso Eduardo [Barretos Dental School, Barretos Educational Fundation, Sao Paulo (Brazil)

    2012-09-15

    This study was performed to compare the inverted digital images and film-based images of dry pig mandibles to measure the periodontal bone defect depth. Forty 2-wall bone defects were made in the proximal region of the premolar in the dry pig mandibles. The digital and conventional radiographs were taken using a Schick sensor and Kodak F-speed intraoral film. Image manipulation (inversion) was performed using Adobe Photoshop 7.0 software. Four trained examiners made all of the radiographic measurements in millimeters a total of three times from the cementoenamel junction to the most apical extension of the bone loss with both types of images: inverted digital and film. The measurements were also made in dry mandibles using a periodontal probe and digital caliper. The Student's t-test was used to compare the depth measurements obtained from the two types of images and direct visual measurement in the dry mandibles. A significance level of 0.05 for a 95% confidence interval was used for each comparison. There was a significant difference between depth measurements in the inverted digital images and direct visual measurements (p>|t|=0.0039), with means of 6.29 mm (IC{sub 95%}:6.04-6.54) and 6.79 mm (IC{sub 95%}:6.45-7.11), respectively. There was a non-significant difference between the film-based radiographs and direct visual measurements (p>|t|=0.4950), with means of 6.64 mm(IC{sub 95%}:6.40-6.89) and 6.79 mm(IC{sub 95%}:6.45-7.11), respectively. The periodontal bone defect measurements in the inverted digital images were inferior to film-based radiographs, underestimating the amount of bone loss.

  2. Electrochemical studies of the corrosion behavior of the fine-grained structural steel DIN W.Nr. 1.0566 between 55 and 90deg C in simulated salt brine repository environments

    International Nuclear Information System (INIS)

    Farvaque-Bera, A.M.; Leistikow, S.

    1991-05-01

    The electrochemical corrosion of the fine-grained structural steel DIN W. Nr. 1.0566 was tested between 55 and 90deg C in three simulated salt brines of similar compositions as analyzed for the Gorleben repository environment. As test parameters the temperature, the salt brine composition, the stirring velocity and the oxygen content as well as the state of the steel surface were varied. As experimental results are presented: (1) the free corrosion potentials of the steel in three brines, (2) Tafel plots of current densities as measured potentiodynamically in the anodic and cathodic vicinity of the corrosion potentials and being representative for the rate of metal dissolution, (3) the surface morphology of the corroded specimens. As mechanisms - in the absence of oxygen - the cathodic reduction of water and the anodic dissolution of iron are considered to prevail the corrosion reaction. It is shown that the applied electrochemical techniques are able to determine within an accelerated procedure the most important corrosion parameters in respect to their influence on rate of metal dissolution and morphology of corrosion attack. (orig.) [de

  3. Simulation of dynamic behaviour of a digital displacement motor using transient 3d computational fluid dynamics analysis

    DEFF Research Database (Denmark)

    Rømer, Daniel; Johansen, Per; Pedersen, Henrik C.

    2013-01-01

    . Movement of the low and high pressure valves is coupled to fluid forces and valve actuation is included to control the valve movement according to the pressure cycle of the digital displacement motor. The fluid domain is meshed using a structured/unstructured non-conformal mesh, which is updated throughout...

  4. Development of digital phantoms based on a finite element model to simulate low-attenuation areas in CT imaging for pulmonary emphysema quantification.

    Science.gov (United States)

    Diciotti, Stefano; Nobis, Alessandro; Ciulli, Stefano; Landini, Nicholas; Mascalchi, Mario; Sverzellati, Nicola; Innocenti, Bernardo

    2017-09-01

    To develop an innovative finite element (FE) model of lung parenchyma which simulates pulmonary emphysema on CT imaging. The model is aimed to generate a set of digital phantoms of low-attenuation areas (LAA) images with different grades of emphysema severity. Four individual parameter configurations simulating different grades of emphysema severity were utilized to generate 40 FE models using ten randomizations for each setting. We compared two measures of emphysema severity (relative area (RA) and the exponent D of the cumulative distribution function of LAA clusters size) between the simulated LAA images and those computed directly on the models output (considered as reference). The LAA images obtained from our model output can simulate CT-LAA images in subjects with different grades of emphysema severity. Both RA and D computed on simulated LAA images were underestimated as compared to those calculated on the models output, suggesting that measurements in CT imaging may not be accurate in the assessment of real emphysema extent. Our model is able to mimic the cluster size distribution of LAA on CT imaging of subjects with pulmonary emphysema. The model could be useful to generate standard test images and to design physical phantoms of LAA images for the assessment of the accuracy of indexes for the radiologic quantitation of emphysema.

  5. Simulating single-phase and two-phase non-Newtonian fluid flow of a digital rock scanned at high resolution

    Science.gov (United States)

    Tembely, Moussa; Alsumaiti, Ali M.; Jouini, Mohamed S.; Rahimov, Khurshed; Dolatabadi, Ali

    2017-11-01

    Most of the digital rock physics (DRP) simulations focus on Newtonian fluids and overlook the detailed description of rock-fluid interaction. A better understanding of multiphase non-Newtonian fluid flow at pore-scale is crucial for optimizing enhanced oil recovery (EOR). The Darcy scale properties of reservoir rocks such as the capillary pressure curves and the relative permeability are controlled by the pore-scale behavior of the multiphase flow. In the present work, a volume of fluid (VOF) method coupled with an adaptive meshing technique is used to perform the pore-scale simulation on a 3D X-ray micro-tomography (CT) images of rock samples. The numerical model is based on the resolution of the Navier-Stokes equations along with a phase fraction equation incorporating the dynamics contact model. The simulations of a single phase flow for the absolute permeability showed a good agreement with the literature benchmark. Subsequently, the code is used to simulate a two-phase flow consisting of a polymer solution, displaying a shear-thinning power law viscosity. The simulations enable to access the impact of the consistency factor (K), the behavior index (n), along with the two contact angles (advancing and receding) on the relative permeability.

  6. Simulation of digital pixel readout chip architectures with the RD53 SystemVerilog-UVM verification environment using Monte Carlo physics data

    International Nuclear Information System (INIS)

    Conti, E.; Marconi, S.; Christiansen, J.; Placidi, P.; Hemperek, T.

    2016-01-01

    The simulation and verification framework developed by the RD53 collaboration is a powerful tool for global architecture optimization and design verification of next generation hybrid pixel readout chips. In this paper the framework is used for studying digital pixel chip architectures at behavioral level. This is carried out by simulating a dedicated, highly parameterized pixel chip description, which makes it possible to investigate different grouping strategies between pixels and different latency buffering and arbitration schemes. The pixel hit information used as simulation input can be either generated internally in the framework or imported from external Monte Carlo detector simulation data. The latter have been provided by both the CMS and ATLAS experiments, featuring HL-LHC operating conditions and the specifications related to the Phase 2 upgrade. Pixel regions and double columns were simulated using such Monte Carlo data as inputs: the performance of different latency buffering architectures was compared and the compliance of different link speeds with the expected column data rate was verified

  7. Digital positron annihilation spectrometer

    International Nuclear Information System (INIS)

    Cheng Bin; Weng Huimin; Han Rongdian; Ye Bangjiao

    2010-01-01

    With the high speed development of digital signal process, the technique of the digitization and processing of signals was applied in the domain of a broad class of nuclear technique. The development of digital positron lifetime spectrometer (DPLS) is more promising than the conventional positron lifetime spectrometer equipped with nuclear instrument modules. And digital lifetime spectrometer has many advantages, such as low noise, long term stability, flexible online or offline digital processing, simple setup, low expense, easy to setting, and more physical information. Digital constant fraction discrimination is for timing. And a new method of optimizing energy windows setting for digital positron lifetime spectrometer is also developed employing the simulated annealing for the convenient use. The time resolution is 220ps and the count rate is 200cps. (authors)

  8. Electrochemical impedance spectrometry using Inconel 690, zircaloy 4, 316Ti steel, 17-4-PH, UR52N et URSB8. Simulation in tritiated water. Tome 2

    International Nuclear Information System (INIS)

    Bellanger, G.

    1994-11-01

    The redox potential of 3 H 2 O, as well as the corrosion potentials in this medium are found, abnormally, in the trans-passive region. This is completely different from behavior in the chemical industry or in the water in nuclear powers. With such behavior, there will be breakdowns of the protective oxide layers, and in the presence of chloride there will be immediate pitting. Polarization and electrochemical impedance spectrometry curves are presented and discussed. These curves make it possible to ascertain the corrosion domains and to compare the kinetics of different stainless steel alloys. These corrosion kinetics and the corrosion potentials provide a classification of the steels studied here: Inconel 690, zircaloy 4, 316 Ti steel, 17-4-PH, UR52N et URSB8. From the results it can be concluded that URSB8 has the best corrosion resistance. (author). 13 refs., 522 figs., tabs

  9. Electrochemical impedance spectrometry using Inconel 690, zircaloy 4, 316Ti steel, 17-4-PH, UR52N et URSB8. Simulation in tritiated water. Tome 1

    International Nuclear Information System (INIS)

    Bellanger, G.

    1994-11-01

    The redox potential of 3 H 2 O, as well as the corrosion potentials in this medium are found, abnormally, in the trans-passive region. This is completely different from the behavior in the chemical industry or in the water in nuclear powers. With such behavior, there will be breakdowns of the protective oxide layers, and in the presence of chloride there will be immediate pitting. Polarization and electrochemical impedance spectrometry curves are presented and discussed. These curves make it possible to ascertain the corrosion domains and to compare the kinetics of different stainless alloys. These corrosion kinetics and the corrosion potentials provide a classification of the steels studied here: Inconel 690, zircaloy 4, 316 Ti steel, 17-4-PH, UR52N et URSB8. From the results it can be concluded that URSB8 has the best corrosion resistance. (author). 279 figs., tabs

  10. Developing Digital Dashboard Management for Learning System Dynamic Cooperative Simulation Behavior of Indonesia. (Study on Cooperative Information Organization in the Ministry of Cooperatives and SME)

    Science.gov (United States)

    Eni, Yuli; Aryanto, Rudy

    2014-03-01

    There are problems being experienced by the Ministry of cooperatives and SME (Small and Medium Enterprise) including the length of time in the decision by the Government to establish a policy that should be taken for local cooperatives across the province of Indonesia. The decision-making process is still analyzed manually, so that sometimes the decisions taken are also less appropriate, effective and efficient. The second problem is the lack of monitoring data cooperative process province that is too much, making it difficult for the analysis of dynamic information to be useful. Therefore the authors want to fix the system that runs by using digital dashboard management system supported by the modeling of system dynamics. In addition, the author also did the design of a system that can support the system. Design of this system is aimed to ease the experts, head, and the government to decide (DSS - Decision Support System) accurately effectively and efficiently, because in the system are raised alternative simulation in a description of the decision to be taken and the result from the decision. The system is expected to be designed dan simulated can ease and expedite the decision making. The design of dynamic digital dashboard management conducted by method of OOAD (Objects Oriented Analysis and Design) complete with UML notation.

  11. DESIGN OF AN EDUCATIONAL SIMULATION PROGRAM USING DIGITAL VIDEO PROCESSING TO DETERMINE THE THERMAL EXPANSION OF MATERIALS

    Directory of Open Access Journals (Sweden)

    V. Gökhan BÖCEKÇİ

    2013-01-01

    Full Text Available The present report describes the realization of an educational simulation program to determine the amount of linear thermal expansion in experimental materials. An interferogram signal derived from an interferometric measurement system was modeled as a video signal in a computer environment. A simulation program was designed from the model signal in order to detect the amount of expansion in materials. The simulation program determined the amount of to heat by detecting the number of fringes in interferogram video signals of the material. This simulation program facilitated experimental studies n academic institutions which are deprived of interferometric measurement systems.

  12. Contribution to the aid to computer-aided design. Simulation of digital and logical sets. The CHAMBOR software

    International Nuclear Information System (INIS)

    Mansuy, Guy

    1973-01-01

    This report presents a simulation software which belongs to a set of software aimed at the design, analysis, test and tracing of electronic and logical assemblies. This software simulates the operation in time, and considers the propagation of signals through the network elements, with taking the delay created by each of them into account. The author presents some generalities (modules, description, library, simulation of a network in function of time), proposes a general and then a detailed description of the software: data interpretation, processing of dynamic data and network simulation, display of results on a graphical workstation

  13. Simulations

    CERN Document Server

    Ngada, Narcisse

    2015-06-15

    The complexity and cost of building and running high-power electrical systems make the use of simulations unavoidable. The simulations available today provide great understanding about how systems really operate. This paper helps the reader to gain an insight into simulation in the field of power converters for particle accelerators. Starting with the definition and basic principles of simulation, two simulation types, as well as their leading tools, are presented: analog and numerical simulations. Some practical applications of each simulation type are also considered. The final conclusion then summarizes the main important items to keep in mind before opting for a simulation tool or before performing a simulation.

  14. Electrochemical impedance spectrometry using 316L steel, hastelloy, maraging, Inconel 600, Elgiloy, carbon steel, TiN and NiCr. Simulation in tritiated water. 2 volumes; Spectrometrie d`impedance electrochimique sur acier 316L, hastelloy, maraging inconel 600, elgiloy, acier au carbone, TiN, NiCr. Simulations en eau tritiee. 2 volumes

    Energy Technology Data Exchange (ETDEWEB)

    Bellanger, G.

    1994-03-01

    Polarization and electrochemical impedance spectrometry curves are presented and discussed. These curves make it possible to ascertain the corrosion domains and to compare the slow and fast kinetics (voltammetry) of different stainless steel alloys. These corrosion kinetics, the actual or simulated tritiated water redox potentials, and the corrosion potentials provide a classification of the steels studied here: 316L, Hastelloy, Maraging, Inconel 600, Elgiloy, carbon steel and TiN and NiCr deposits. From the results it can be concluded that Hastelloy and Elgiloy have the best corrosion resistance. (author). 49 refs., 695 figs., tabs.

  15. Effects of exposure equalization on image signal-to-noise ratios in digital mammography: A simulation study with an anthropomorphic breast phantom

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xinming; Lai Chaojen; Whitman, Gary J.; Geiser, William R.; Shen Youtao; Yi Ying; Shaw, Chris C. [Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030-4009 (United States); Department of Diagnostic Radiology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030-4009 (United States); Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030-4009 (United States)

    2011-12-15

    Purpose: The scan equalization digital mammography (SEDM) technique combines slot scanning and exposure equalization to improve low-contrast performance of digital mammography in dense tissue areas. In this study, full-field digital mammography (FFDM) images of an anthropomorphic breast phantom acquired with an anti-scatter grid at various exposure levels were superimposed to simulate SEDM images and investigate the improvement of low-contrast performance as quantified by primary signal-to-noise ratios (PSNRs). Methods: We imaged an anthropomorphic breast phantom (Gammex 169 ''Rachel,'' Gammex RMI, Middleton, WI) at various exposure levels using a FFDM system (Senographe 2000D, GE Medical Systems, Milwaukee, WI). The exposure equalization factors were computed based on a standard FFDM image acquired in the automatic exposure control (AEC) mode. The equalized image was simulated and constructed by superimposing a selected set of FFDM images acquired at 2, 1, 1/2, 1/4, 1/8, 1/16, and 1/32 times of exposure levels to the standard AEC timed technique (125 mAs) using the equalization factors computed for each region. Finally, the equalized image was renormalized regionally with the exposure equalization factors to result in an appearance similar to that with standard digital mammography. Two sets of FFDM images were acquired to allow for two identically, but independently, formed equalized images to be subtracted from each other to estimate the noise levels. Similarly, two identically but independently acquired standard FFDM images were subtracted to estimate the noise levels. Corrections were applied to remove the excess system noise accumulated during image superimposition in forming the equalized image. PSNRs over the compressed area of breast phantom were computed and used to quantitatively study the effects of exposure equalization on low-contrast performance in digital mammography. Results: We found that the highest achievable PSNR improvement

  16. Effects of exposure equalization on image signal-to-noise ratios in digital mammography: A simulation study with an anthropomorphic breast phantom

    International Nuclear Information System (INIS)

    Liu Xinming; Lai Chaojen; Whitman, Gary J.; Geiser, William R.; Shen Youtao; Yi Ying; Shaw, Chris C.

    2011-01-01

    Purpose: The scan equalization digital mammography (SEDM) technique combines slot scanning and exposure equalization to improve low-contrast performance of digital mammography in dense tissue areas. In this study, full-field digital mammography (FFDM) images of an anthropomorphic breast phantom acquired with an anti-scatter grid at various exposure levels were superimposed to simulate SEDM images and investigate the improvement of low-contrast performance as quantified by primary signal-to-noise ratios (PSNRs). Methods: We imaged an anthropomorphic breast phantom (Gammex 169 ''Rachel,'' Gammex RMI, Middleton, WI) at various exposure levels using a FFDM system (Senographe 2000D, GE Medical Systems, Milwaukee, WI). The exposure equalization factors were computed based on a standard FFDM image acquired in the automatic exposure control (AEC) mode. The equalized image was simulated and constructed by superimposing a selected set of FFDM images acquired at 2, 1, 1/2, 1/4, 1/8, 1/16, and 1/32 times of exposure levels to the standard AEC timed technique (125 mAs) using the equalization factors computed for each region. Finally, the equalized image was renormalized regionally with the exposure equalization factors to result in an appearance similar to that with standard digital mammography. Two sets of FFDM images were acquired to allow for two identically, but independently, formed equalized images to be subtracted from each other to estimate the noise levels. Similarly, two identically but independently acquired standard FFDM images were subtracted to estimate the noise levels. Corrections were applied to remove the excess system noise accumulated during image superimposition in forming the equalized image. PSNRs over the compressed area of breast phantom were computed and used to quantitatively study the effects of exposure equalization on low-contrast performance in digital mammography. Results: We found that the highest achievable PSNR improvement factor was 1.89 for

  17. Development of electrochemical impedance spectroscopy based sensing system for DEHP detection

    KAUST Repository

    Zia, Asif I.; Mohd. Syaifudin, A. R.; Mukhopadhyay, Subhas Chandra; Al-Bahadly, Ibrahim H.; Yu, Paklam; Gooneratne, Chinthaka Pasan; Kosel, Jü rgen

    2011-01-01

    This research work presents a real time and non invasive technique to detect Di(2-ethylhexyl) phthalate (DEHP)content in purified water and quantify its concentration by Electrochemical Impedance Spectroscopy(E.I.S.). Planar Inter-digital capacitive

  18. Electrochemical Corrosion Behavior of Carbon Steel and Hot Dip Galvanized Steel in Simulated Concrete Solution with Different pH Values

    Directory of Open Access Journals (Sweden)

    Wanchen XIE

    2017-08-01

    Full Text Available Hot dip galvanizing technology is now widely used as a method of protection for steel rebars. The corrosion behaviors of Q235 carbon steel and hot galvanized steel in a Ca(OH2 solution with a pH from 10 to 13 was investigated by electrode potential and polarization curves testing. The results indicated that carbon steel and hot galvanized steel were all passivated in a strong alkaline solution. The electrode potential of hot dip galvanized steel was lower than that of carbon steel; thus, hot dip galvanized steel can provide very good anodic protection for carbon steel. However, when the pH value reached 12.5, a polarity reversal occurred under the condition of a certain potential. Hot dip galvanized coating became a cathode, and the corrosion of carbon steel accelerated. The electrochemical behaviors and passivation abilities of hot dip galvanized steel and carbon steel were affected by pH. The higher the pH value was, the more easily they were passivated.DOI: http://dx.doi.org/10.5755/j01.ms.23.3.16675

  19. Electrochemical solar energy conversion

    International Nuclear Information System (INIS)

    Gerischer, H.

    1991-01-01

    The principles of solar energy conversion in photoelectrochemical cells are briefly reviewed. Cells for the generation of electric power and for energy storage in form of electrochemical energy are described. These systems are compared with solid state photovoltaic devices, and the inherent difficulties for the operation of the electrochemical systems are analyzed. (author). 28 refs, 10 figs

  20. Electrochemical thermodynamic measurement system

    Science.gov (United States)

    Reynier, Yvan [Meylan, FR; Yazami, Rachid [Los Angeles, CA; Fultz, Brent T [Pasadena, CA

    2009-09-29

    The present invention provides systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and electrochemical energy storage and conversion systems. Systems and methods of the present invention are configured for simultaneously collecting a suite of measurements characterizing a plurality of interconnected electrochemical and thermodynamic parameters relating to the electrode reaction state of advancement, voltage and temperature. Enhanced sensitivity provided by the present methods and systems combined with measurement conditions that reflect thermodynamically stabilized electrode conditions allow very accurate measurement of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and electrochemical systems, such as the energy, power density, current rate and the cycle life of an electrochemical cell.

  1. Blending technology in teaching advanced health assessment in a family nurse practitioner program: using personal digital assistants in a simulation laboratory.

    Science.gov (United States)

    Elliott, Lydia; DeCristofaro, Claire; Carpenter, Alesia

    2012-09-01

    This article describes the development and implementation of integrated use of personal handheld devices (personal digital assistants, PDAs) and high-fidelity simulation in an advanced health assessment course in a graduate family nurse practitioner (NP) program. A teaching tool was developed that can be utilized as a template for clinical case scenarios blending these separate technologies. Review of the evidence-based literature, including peer-reviewed articles and reviews. Blending the technologies of high-fidelity simulation and handheld devices (PDAs) provided a positive learning experience for graduate NP students in a teaching laboratory setting. Combining both technologies in clinical case scenarios offered a more real-world learning experience, with a focus on point-of-care service and integration of interview and physical assessment skills with existing standards of care and external clinical resources. Faculty modeling and advance training with PDA technology was crucial to success. Faculty developed a general template tool and systems-based clinical scenarios integrating PDA and high-fidelity simulation. Faculty observations, the general template tool, and one scenario example are included in this article. ©2012 The Author(s) Journal compilation ©2012 American Academy of Nurse Practitioners.

  2. Dosimetric quality control of treatment planning systems in external radiation therapy using Digital Test Objects calculated by PENELOPE Monte-Carlo simulations

    International Nuclear Information System (INIS)

    Ben Hdech, Yassine

    2011-01-01

    To ensure the required accuracy and prevent from mis-administration, cancer treatments, by external radiation therapy are simulated on Treatment Planning System or TPS before radiation delivery in order to ensure that the prescription is achieved both in terms of target volumes coverage and healthy tissues protection. The TPS calculates the patient dose distribution and the treatment time per beam required to deliver the prescribed dose. TPS is a key system in the decision process of treatment by radiation therapy. It is therefore essential that the TPS be subject to a thorough check of its performance (quality control or QC) and in particular its ability to accurately compute dose distributions for patients in all clinical situations that be met. The 'traditional' methods recommended to carry out dosimetric CQ of algorithms implemented in the TPS are based on comparisons between dose distributions calculated with the TPS and dose measured in physical test objects (PTO) using the treatment machine. In this thesis we propose to substitute the reference dosimetric measurements performed in OTP by benchmark dose calculations in Digital Test Objects using PENELOPE Monte-Carlo code. This method has three advantages: (i) it allows simulation in situations close to the clinic and often too complex to be experimentally feasible; (ii) due to the digital form of reference data the QC process may be automated; (iii) it allows a comprehensive TPS CQ without hindering the use of an equipment devoted primarily to patients treatments. This new method of CQ has been tested successfully on the Eclipse TPS from Varian Medical Systems Company. (author) [fr

  3. Electrochemical gating in scanning electrochemical microscopy

    NARCIS (Netherlands)

    Ahonen, P.; Ruiz, V.; Kontturi, K.; Liljeroth, P.; Quinn, B.M.

    2008-01-01

    We demonstrate that scanning electrochemical microscopy (SECM) can be used to determine the conductivity of nanoparticle assemblies as a function of assembly potential. In contrast to conventional electron transport measurements, this method is unique in that electrical connection to the film is not

  4. Electrochemical desalination of bricks - Experimental and modeling

    DEFF Research Database (Denmark)

    Skibsted, Gry; Ottosen, Lisbeth M.; Jensen, Pernille Erland

    2015-01-01

    Chlorides, nitrates and sulfates play an important role in the salt-decay of porous materials in buildings and monuments. Electrochemical desalination is a technology able to remove salts from such porous materials in order to stop or prevent the decay. In this paper, experimental and numerical......-contaminated bricks with respect to the monovalent ions is discussed. Comparison between the experimental and the simulation results showed that the proposed numerical model is able to predict electrochemical desalination treatments with remarkable accuracy, and it can be used as a predictive tool...

  5. SU-F-J-204: Carbon Digitally Reconstructed Radiography (CDRR): A GPU Based Tool for Fast and Versatile Carbonimaging Simulation

    International Nuclear Information System (INIS)

    Dias, M F; Seco, J; Baroni, G; Riboldi, M

    2016-01-01

    Purpose: Research in carbon imaging has been growing over the past years, as a way to increase treatment accuracy and patient positioning in carbon therapy. The purpose of this tool is to allow a fast and flexible way to generate CDRR data without the need to use Monte Carlo (MC) simulations. It can also be used to predict future clinically measured data. Methods: A python interface has been developed, which uses information from CT or 4DCT and thetreatment calibration curve to compute the Water Equivalent Path Length (WEPL) of carbon ions. A GPU based ray tracing algorithm computes the WEPL of each individual carbon traveling through the CT voxels. A multiple peak detection method to estimate high contrast margin positioning has been implemented (described elsewhere). MC simulations have been used to simulate carbons depth dose curves in order to simulate the response of a range detector. Results: The tool allows the upload of CT or 4DCT images. The user has the possibility to selectphase/slice of interested as well as position, angle…). The WEPL is represented as a range detector which can be used to assess range dilution and multiple peak detection effects. The tool also provides knowledge of the minimum energy that should be considered for imaging purposes. The multiple peak detection method has been used in a lung tumor case, showing an accuracy of 1mm in determine the exact interface position. Conclusion: The tool offers an easy and fast way to simulate carbon imaging data. It can be used for educational and for clinical purposes, allowing the user to test beam energies and angles before real acquisition. An analysis add-on is being developed, where the used will have the opportunity to select different reconstruction methods and detector types (range or energy). Fundacao para a Ciencia e a Tecnologia (FCT), PhD Grant number SFRH/BD/85749/2012

  6. SU-F-J-204: Carbon Digitally Reconstructed Radiography (CDRR): A GPU Based Tool for Fast and Versatile Carbonimaging Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Dias, M F [Dipartamento di Elettronica, Informazione e Bioingegneria - DEIB, Politecnico di Milano (Italy); Department of Radiation Oncology, Francis H. Burr Proton Therapy Center Massachusetts General Hospital (MGH), Boston, Massachusetts (United States); Seco, J [Department of Radiation Oncology, Francis H. Burr Proton Therapy Center Massachusetts General Hospital (MGH), Boston, Massachusetts (United States); Baroni, G; Riboldi, M [Dipartamento di Elettronica, Informazione e Bioingegneria - DEIB, Politecnico di Milano (Italy); Bioengineering Unit, Centro Nazionale di Adroterapia Oncologica, Pavia (Italy)

    2016-06-15

    Purpose: Research in carbon imaging has been growing over the past years, as a way to increase treatment accuracy and patient positioning in carbon therapy. The purpose of this tool is to allow a fast and flexible way to generate CDRR data without the need to use Monte Carlo (MC) simulations. It can also be used to predict future clinically measured data. Methods: A python interface has been developed, which uses information from CT or 4DCT and thetreatment calibration curve to compute the Water Equivalent Path Length (WEPL) of carbon ions. A GPU based ray tracing algorithm computes the WEPL of each individual carbon traveling through the CT voxels. A multiple peak detection method to estimate high contrast margin positioning has been implemented (described elsewhere). MC simulations have been used to simulate carbons depth dose curves in order to simulate the response of a range detector. Results: The tool allows the upload of CT or 4DCT images. The user has the possibility to selectphase/slice of interested as well as position, angle…). The WEPL is represented as a range detector which can be used to assess range dilution and multiple peak detection effects. The tool also provides knowledge of the minimum energy that should be considered for imaging purposes. The multiple peak detection method has been used in a lung tumor case, showing an accuracy of 1mm in determine the exact interface position. Conclusion: The tool offers an easy and fast way to simulate carbon imaging data. It can be used for educational and for clinical purposes, allowing the user to test beam energies and angles before real acquisition. An analysis add-on is being developed, where the used will have the opportunity to select different reconstruction methods and detector types (range or energy). Fundacao para a Ciencia e a Tecnologia (FCT), PhD Grant number SFRH/BD/85749/2012.

  7. Electrochemical force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kalinin, Sergei V.; Jesse, Stephen; Collins, Liam F.; Rodriguez, Brian J.

    2017-01-10

    A system and method for electrochemical force microscopy are provided. The system and method are based on a multidimensional detection scheme that is sensitive to forces experienced by a biased electrode in a solution. The multidimensional approach allows separation of fast processes, such as double layer charging, and charge relaxation, and slow processes, such as diffusion and faradaic reactions, as well as capturing the bias dependence of the response. The time-resolved and bias measurements can also allow probing both linear (small bias range) and non-linear (large bias range) electrochemical regimes and potentially the de-convolution of charge dynamics and diffusion processes from steric effects and electrochemical reactivity.

  8. Theoretical analysis and simulation study of low-power CMOS electrochemical impedance spectroscopy biosensor in 55 nm deeply depleted channel technology for cell-state monitoring

    Science.gov (United States)

    Itakura, Keisuke; Kayano, Keisuke; Nakazato, Kazuo; Niitsu, Kiichi

    2018-01-01

    We present an impedance-detection complementary metal oxide semiconductor (CMOS) biosensor circuit for cell-state observation. The proposed biosensor can measure the expected impedance values encountered by a cell-state observation measurement system within a 0.1-200 MHz frequency range. The proposed device is capable of monitoring the intracellular conditions necessary for real-time cell-state observation, and can be fabricated using a 55 nm deeply depleted channel CMOS process. Operation of the biosensor circuit with 0.9 and 1.7 V supply voltages is verified via a simulated program with integrated circuit emphasis (SPICE) simulation. The power consumption is 300 µW. Further, the standby power consumption is 290 µW, indicating that this biosensor is a low-power instrument suitable for use in Internet of Things (IoT) devices.

  9. Design of a digital system for operational parameters simulation of IPR-R1 TRIGA nuclear research reactor

    International Nuclear Information System (INIS)

    Lage, Aldo M.F.; Mesquita, Amir Z.; Felippe, Adriano de A.M.

    2017-01-01

    The instrumentation of nuclear reactors is designed based on the reliability, redundancy and diversification of control systems. The monitoring of the parameters is of crucial importance with regard to the operational efficiency and safety of the installation. Since the first criticality of a nuclear reactor, achieved by Fermi et al. in 1942, there has been concern about the reliable monitoring of the parameters involved in the chain reaction. This paper presents the current stage of the system of simulation, which is under development at the CDTN, which intends to simulate the operation of the TRIGA IPR-R1 nuclear reactor, involving the evolution of neutron flux and reactor power related events. The system will be developed using LabVIEW® software, using the modern concept of virtual instruments (VIs) that are visualized in a video monitor. For the implementation of this model, computational tools and systems analysis are necessary, which help and facilitate the implementation of the simulator. In this article we will show some of these techniques and the initial design of the model to be implemented. The design of a computational system is of great importance, since it guides in the implementation stages and generates the documentation for later maintenance and updating of the computational system. It is noteworthy that the innovations developed in research reactors are normally used in power reactors. The relatively low costs enable research reactors to be an excellent laboratory for developing techniques for future reactors. (author)

  10. Design of a digital system for operational parameters simulation of IPR-R1 TRIGA nuclear research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lage, Aldo M.F.; Mesquita, Amir Z.; Felippe, Adriano de A.M., E-mail: aldo@cdtn.br, E-mail: amir@cdtn.br, E-mail: adrianoamfelippe@gmail.com [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN /CNEN-MG), Belo Horizonte, MG (Brazil); Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)

    2017-11-01

    The instrumentation of nuclear reactors is designed based on the reliability, redundancy and diversification of control systems. The monitoring of the parameters is of crucial importance with regard to the operational efficiency and safety of the installation. Since the first criticality of a nuclear reactor, achieved by Fermi et al. in 1942, there has been concern about the reliable monitoring of the parameters involved in the chain reaction. This paper presents the current stage of the system of simulation, which is under development at the CDTN, which intends to simulate the operation of the TRIGA IPR-R1 nuclear reactor, involving the evolution of neutron flux and reactor power related events. The system will be developed using LabVIEW® software, using the modern concept of virtual instruments (VIs) that are visualized in a video monitor. For the implementation of this model, computational tools and systems analysis are necessary, which help and facilitate the implementation of the simulator. In this article we will show some of these techniques and the initial design of the model to be implemented. The design of a computational system is of great importance, since it guides in the implementation stages and generates the documentation for later maintenance and updating of the computational system. It is noteworthy that the innovations developed in research reactors are normally used in power reactors. The relatively low costs enable research reactors to be an excellent laboratory for developing techniques for future reactors. (author)

  11. Magnetic field effects on electrochemical metal depositions

    Directory of Open Access Journals (Sweden)

    Andreas Bund, Adriana Ispas and Gerd Mutschke

    2008-01-01

    Full Text Available This paper discusses recent experimental and numerical results from the authors' labs on the effects of moderate magnetic (B fields in electrochemical reactions. The probably best understood effect of B fields during electrochemical reactions is the magnetohydrodynamic (MHD effect. In the majority of cases it manifests itself in increased mass transport rates which are a direct consequence of Lorentz forces in the bulk of the electrolyte. This enhanced mass transport can directly affect the electrocrystallization. The partial currents for the nucleation of nickel in magnetic fields were determined using an in situ micro-gravimetric technique and are discussed on the basis of the nucleation model of Heerman and Tarallo. Another focus of the paper is the numerical simulation of MHD effects on electrochemical metal depositions. A careful analysis of the governing equations shows that many MHD problems must be treated in a 3D geometry. In most cases there is a complex interplay of natural and magnetically driven convection.

  12. Wind turbine rotor blade monitoring using digital image correlation: a comparison to aeroelastic simulations of a multi-megawatt wind turbine

    International Nuclear Information System (INIS)

    Winstroth, J; Ernst, B; Seume, J R; Schoen, L

    2014-01-01

    Optical full-field measurement methods such as Digital Image Correlation (DIC) provide a new opportunity for measuring deformations and vibrations with high spatial and temporal resolution. However, application to full-scale wind turbines is not trivial. Elaborate preparation of the experiment is vital and sophisticated post processing of the DIC results essential. In the present study, a rotor blade of a 3.2 MW wind turbine is equipped with a random black-and-white dot pattern at four different radial positions. Two cameras are located in front of the wind turbine and the response of the rotor blade is monitored using DIC for different turbine operations. In addition, a Light Detection and Ranging (LiDAR) system is used in order to measure the wind conditions. Wind fields are created based on the LiDAR measurements and used to perform aeroelastic simulations of the wind turbine by means of advanced multibody codes. The results from the optical DIC system appear plausible when checked against common and expected results. In addition, the comparison of relative out-ofplane blade deflections shows good agreement between DIC results and aeroelastic simulations

  13. Wind turbine rotor blade monitoring using digital image correlation: a comparison to aeroelastic simulations of a multi-megawatt wind turbine

    Science.gov (United States)

    Winstroth, J.; Schoen, L.; Ernst, B.; Seume, J. R.

    2014-06-01

    Optical full-field measurement methods such as Digital Image Correlation (DIC) provide a new opportunity for measuring deformations and vibrations with high spatial and temporal resolution. However, application to full-scale wind turbines is not trivial. Elaborate preparation of the experiment is vital and sophisticated post processing of the DIC results essential. In the present study, a rotor blade of a 3.2 MW wind turbine is equipped with a random black-and-white dot pattern at four different radial positions. Two cameras are located in front of the wind turbine and the response of the rotor blade is monitored using DIC for different turbine operations. In addition, a Light Detection and Ranging (LiDAR) system is used in order to measure the wind conditions. Wind fields are created based on the LiDAR measurements and used to perform aeroelastic simulations of the wind turbine by means of advanced multibody codes. The results from the optical DIC system appear plausible when checked against common and expected results. In addition, the comparison of relative out-ofplane blade deflections shows good agreement between DIC results and aeroelastic simulations.

  14. Fundamentals of electrochemical science

    CERN Document Server

    Oldham, Keith

    1993-01-01

    Key Features* Deals comprehensively with the basic science of electrochemistry* Treats electrochemistry as a discipline in its own right and not as a branch of physical or analytical chemistry* Provides a thorough and quantitative description of electrochemical fundamentals

  15. Electrochemical Analysis of Neurotransmitters

    Science.gov (United States)

    Bucher, Elizabeth S.; Wightman, R. Mark

    2015-07-01

    Chemical signaling through the release of neurotransmitters into the extracellular space is the primary means of communication between neurons. More than four decades ago, Ralph Adams and his colleagues realized the utility of electrochemical methods for the study of easily oxidizable neurotransmitters, such as dopamine, norepinephrine, and serotonin and their metabolites. Today, electrochemical techniques are frequently coupled to microelectrodes to enable spatially resolved recordings of rapid neurotransmitter dynamics in a variety of biological preparations spanning from single cells to the intact brain of behaving animals. In this review, we provide a basic overview of the principles underlying constant-potential amperometry and fast-scan cyclic voltammetry, the most commonly employed electrochemical techniques, and the general application of these methods to the study of neurotransmission. We thereafter discuss several recent developments in sensor design and experimental methodology that are challenging the current limitations defining the application of electrochemical methods to neurotransmitter measurements.

  16. Organic electrochemical transistors

    KAUST Repository

    Rivnay, Jonathan; Inal, Sahika; Salleo, Alberto; Owens, Ró isí n M.; Berggren, Magnus; Malliaras, George G.

    2018-01-01

    Organic electrochemical transistors (OECTs) make effective use of ion injection from an electrolyte to modulate the bulk conductivity of an organic semiconductor channel. The coupling between ionic and electronic charges within the entire volume

  17. Electrochemical polymer electrolyte membranes

    CERN Document Server

    Fang, Jianhua; Wilkinson, David P

    2015-01-01

    Electrochemical Polymer Electrolyte Membranes covers PEMs from fundamentals to applications, describing their structure, properties, characterization, synthesis, and use in electrochemical energy storage and solar energy conversion technologies. Featuring chapters authored by leading experts from academia and industry, this authoritative text: Discusses cutting-edge methodologies in PEM material selection and fabricationPoints out important challenges in developing PEMs and recommends mitigation strategies to improve PEM performanceAnalyzes the cur

  18. Digital simulation of two-dimensional random fields with arbitrary power spectra and non-Gaussian probability distribution functions.

    Science.gov (United States)

    Yura, Harold T; Hanson, Steen G

    2012-04-01

    Methods for simulation of two-dimensional signals with arbitrary power spectral densities and signal amplitude probability density functions are disclosed. The method relies on initially transforming a white noise sample set of random Gaussian distributed numbers into a corresponding set with the desired spectral distribution, after which this colored Gaussian probability distribution is transformed via an inverse transform into the desired probability distribution. In most cases the method provides satisfactory results and can thus be considered an engineering approach. Several illustrative examples with relevance for optics are given.

  19. Effects of zirconium and nitrogen plasma immersion ion implantation on the electrochemical corrosion behavior of Mg–Y–RE alloy in simulated body fluid and cell culture medium

    International Nuclear Information System (INIS)

    Jamesh, Mohammed Ibrahim; Wu, Guosong; Zhao, Ying; Jin, Weihong; McKenzie, David R.; Bilek, Marcela M.M.; Chu, Paul K.

    2014-01-01

    Highlights: • Dual Zr and N plasma ion implantation are conducted on WE43Mg alloy. • Zr and N implanted WE43 (ZrN-WE43) enhanced corrosion resistance in cell culture medium. • ZrN-WE43 enhanced corrosion resistance in simulated body fluid (SBF). • ZrN-WE43 shows near capacitive impedance spectra in cell culture medium. • Calcium phosphate is formed on the corrosion product. - Abstract: The effects of dual Zr and N plasma immersion ion implantation (PIII) on the corrosion behavior of WE43Mg alloy are evaluated in simulated body fluid (SBF) and cell culture medium (cDMEM). Zr and N PIII improves the corrosion resistance of WE43 which exhibits smaller i corr , larger R 1 and R 2 , smaller CPE 2 , and larger phase angle maxima in SBF and cDMEM. The Zr and N PIII WE43 samples exhibit 12-folds decrease in i corr in SBF and 71-folds decrease in i corr with near capacitive EIS in cDMEM. Analysis of the corrosion products reveals calcium phosphate

  20. Accessing the dynamics of end-grafted flexible polymer chains by atomic force-electrochemical microscopy. Theoretical modeling of the approach curves by the elastic bounded diffusion model and Monte Carlo simulations. Evidence for compression-induced lateral chain escape.

    Science.gov (United States)

    Abbou, Jeremy; Anne, Agnès; Demaille, Christophe

    2006-11-16

    The dynamics of a molecular layer of linear poly(ethylene glycol) (PEG) chains of molecular weight 3400, bearing at one end a ferrocene (Fc) label and thiol end-grafted at a low surface coverage onto a gold substrate, is probed using combined atomic force-electrochemical microscopy (AFM-SECM), at the scale of approximately 100 molecules. Force and current approach curves are simultaneously recorded as a force-sensing microelectrode (tip) is inserted within the approximately 10 nm thick, redox labeled, PEG chain layer. Whereas the force approach curve gives access to the structure of the compressed PEG layer, the tip-current, resulting from tip-to-substrate redox cycling of the Fc head of the chain, is controlled by chain dynamics. The elastic bounded diffusion model, which considers the motion of the Fc head as diffusion in a conformational field, complemented by Monte Carlo (MC) simulations, from which the chain conformation can be derived for any degree of confinement, allows the theoretical tip-current approach curve to be calculated. The experimental current approach curve can then be very satisfyingly reproduced by theory, down to a tip-substrate separation of approximately 2 nm, using only one adjustable parameter characterizing the chain dynamics: the effective diffusion coefficient of the chain head. At closer tip-substrate separations, an unpredicted peak is observed in the experimental current approach curve, which is shown to find its origin in a compression-induced escape of the chain from within the narrowing tip-substrate gap. MC simulations provide quantitative support for lateral chain elongation as the escape mechanism.

  1. Student-directed investigation of natural phenomena: Using digital simulations to achieve NGSS-aligned 3D learning in middle school

    Science.gov (United States)

    Selvans, M. M.; Spafford, C. D.

    2016-12-01

    Many Earth Science phenomena cannot be observed directly because they happen slowly (e.g., Plate Motion) or at large spatial scales (e.g., Weather Patterns). Such topics are investigated by scientists through analysis of large data sets, numerical modeling, and laboratory studies that isolate aspects of the overall phenomena. Middle school students have limited time and lab equipment in comparison, but can employ authentic science practices through investigations using interactive digital simulations (sims). Designing a sim aligned to the Next Generation Science Standards (NGSS) allows students to explore and connect to science ideas in a seamless and supportive way that also deepens their understanding of the phenomena. We helped develop seven units, including the two above, that cover the middle school Earth Science Disciplinary Core Ideas and give students exposure to the other two dimensions of the NGSS (science practices and cross-cutting concepts). These units are developed by the Learning Design Group and Amplify Science. Sims are key to how students engage in 3D learning in these units. For example, in the Rock Transformations Sim students can investigate the ideas that energy from the sun and from Earth's interior can transform rock, and that the transformation processes change the Earth's surface at varying time and spatial scales (ESS2.A). Students can choose and selectively apply transformation processes (melting, weathering, etc.) or energy sources to rock in a cross-section landscape to explore their effects. Students are able to plan steps for making a particular rock transformation happen and carry out their own investigations. A benefit of using a digital platform for student learning is the ability to embed formative assessment. When students plan and carry out missions to achieve specific objectives, the digital platform can capture a record of their actions to measure how they apply science ideas from instruction. Data of these actions, combined

  2. Service water electrochemical monitoring development at Ontario Hydro

    International Nuclear Information System (INIS)

    Brennenstuhl, A.M.

    1994-01-01

    Ontario Hydro (OH) is currently investigating the feasibility of using electrochemical techniques for the corrosion monitoring of service water systems. To date all evaluations have been carried out in a field simulator. The studies include examining the effects of; system startup after periods of stagnation, sodium hypochlorite injection, and zebra mussel settlement on metallic surfaces. Carbon steel and Type 304L stainless steel have been evaluated. Electrochemical potential noise (EPN), electrochemical current noise (ECN) potential and coupling current were semi-continuously monitored over a period of up to one year. Data obtained from the electrochemical noise monitoring has given OH valuable insights into the mechanisms of degradation in service water systems. The high sensitivity of the electrochemical noise technique, particularly to localized corrosion has proved to be the major attraction of the system

  3. Optimization of the resolution of remotely sensed digital elevation model to facilitate the simulation and spatial propagation of flood events in flat areas

    Science.gov (United States)

    Karapetsas, Nikolaos; Skoulikaris, Charalampos; Katsogiannos, Fotis; Zalidis, George; Alexandridis, Thomas

    2013-04-01

    The use of satellite remote sensing products, such as Digital Elevation Models (DEMs), under specific computational interfaces of Geographic Information Systems (GIS) has fostered and facilitated the acquisition of data on specific hydrologic features, such as slope, flow direction and flow accumulation, which are crucial inputs to hydrology or hydraulic models at the river basin scale. However, even though DEMs of different resolution varying from a few km up to 20m are freely available for the European continent, these remotely sensed elevation data are rather coarse in cases where large flat areas are dominant inside a watershed, resulting in an unsatisfactory representation of the terrain characteristics. This scientific work aims at implementing a combing interpolation technique for the amelioration of the analysis of a DEM in order to be used as the input ground model to a hydraulic model for the assessment of potential flood events propagation in plains. More specifically, the second version of the ASTER Global Digital Elevation Model (GDEM2), which has an overall accuracy of around 20 meters, was interpolated with a vast number of aerial control points available from the Hellenic Mapping and Cadastral Organization (HMCO). The uncertainty that was inherent in both the available datasets (ASTER & HMCO) and the appearance of uncorrelated errors and artifacts was minimized by incorporating geostatistical filtering. The resolution of the produced DEM was approximately 10 meters and its validation was conducted with the use of an external dataset of 220 geodetic survey points. The derived DEM was then used as an input to the hydraulic model InfoWorks RS, whose operation is based on the relief characteristics contained in the ground model, for defining, in an automated way, the cross section parameters and simulating the flood spatial distribution. The plain of Serres, which is located in the downstream part of the Struma/Strymon transboundary river basin shared

  4. Digital radiography

    International Nuclear Information System (INIS)

    Brody, W.R.

    1984-01-01

    Digital Radiography begins with an orderly introduction to the fundamental concepts of digital imaging. The entire X-ray digital imagining system is described, from an overall characterization of image quality to specific components required for a digital radiographic system. Because subtraction is central to digital radiographic systems, the author details the use of various subtraction methods for image enhancement. Complex concepts are illustrated with numerous examples and presented in terms that can readily be understood by physicians without an advanced mathematics background. The second part of the book discusses implementations and applications of digital imagining systems based on area and scanned detector technologies. This section includes thorough coverage of digital fluoroscopy, scanned projection radiography, and film-based digital imaging systems, and features a state-of-the-art synopsis of the applications of digital subtraction angiography. The book concludes with a timely assessment of anticipated technological advances

  5. La simulación digital como herramienta para el reacondicionamiento bioclimático de edificios = Digital simulation as a tool for bioclimatic re-conditioning of buildings

    Directory of Open Access Journals (Sweden)

    Andrea Sancho Salas

    2017-04-01

    Full Text Available El presente estudio propone e implementa una metodología para analizar el comportamiento de edificios existentes en respuesta a variables climáticas y geográficas específicas, mediante el uso de simulaciones termodinámicas digitales que permitan modificaciones para mejorar el confort interno. El análisis se realizó por medio de seis casos de estudio ubicados en tres zonas de vida de Costa Rica: Bosque Seco Tropical (Bs-T, Bosque Húmedo Premontano (Bh-p y Bosque Muy Húmedo Premontano (Bmh-p. Las edificaciones estudiadas son iglesias vernaculares de la época de 1901-1950. La metodología permite identificar los factores principales que influyen dentro del comportamiento térmico interior y establecer cuáles modificaciones se pueden implementar para lograr mayor bienestar, tanto en los casos de estudio, como en futuros diseños con condiciones similares. Abstract The present study proposes and implements a methodology to analyze the behavior of existing buildings in response to specific climatic and geographic variables, through the use of digital thermodynamic simulations that allow modifications to improve internal comfort. The analysis was carried out by means of six case studies located in three zones of life of Costa Rica: Tropical Dry Forest (Bs-T, Premontane Wet Forest (Bh-p and Premontane Very Humid Forest (Bmh-p. The buildings studied are vernacular churches dating from 1901-1950. The methodology allows to identify the main factors that influence the internal thermal behavior and to establish which modifications can be implemented to achieve greater welfare, both in the case studies and in future designs with similar conditions.

  6. Real-Time Digital Simulation of Inertial Response with Hardware-in-the-Loop Implementation on the CART3 Wind Turbine at the National Wind Technology Center

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Wenzhong; Wang, Xiao; Muljadi, Eduard; Gevorgian, Vahan; Scholbrock, Andrew

    2017-09-01

    With increasing penetrations of wind power on electric grids, the stability and reliability of interconnected power systems may be impacted. In some countries that have developed renewable energy sources and systems, grid codes have been revised to require wind power plants (WPPs) to provide ancillary services to support the power system frequency in case of severe grid events. To do this, wind turbine generators (WTGs) should be deloaded to reserve a certain amount of active power for primary frequency response; however, deloading curtails annual energy production, and the market for this type of service needs to be further developed. In this report, we focus on the temporary frequency support provided by WTGs through inertial response. WTGs have potential to provide inertial response, but appropriate control methods should be implemented. With the implemented inertial control methods, wind turbines are capable of increasing their active power output by releasing some of their stored kinetic energy when a frequency excursion occurs. Active power can be temporarily boosted above the maximum power points, after which the rotor speed decelerates, and subsequently an active power output reduction restores the kinetic energy. In this report, we develop two types of models for wind power systems: the first is common, based on the wind power aerodynamic equation, and the power coefficient can be regressed using nonlinear functions; the second is much more complicated, wherein the wind turbine system is modeled using the Fatigue, Aerodynamics, Structures, and Turbulence Modeling (FAST) tool with several degrees of freedoms. A nine-bus test power system is built in Simulink and the Real-Time Digital Simulator, respectively, which are used to evaluate the frequency support performance of the WPPs. We implement two distinct types of inertial control methods in the modeled wind turbines: frequency-based inertial control (FBIC) and stepwise inertial control (SIC). We compare

  7. Physical-chemistry aspects of water in steam turbines associated with material stress and electrochemical assessment of the AISI 403 to simulate real condition

    Energy Technology Data Exchange (ETDEWEB)

    Pacheco, D S; Franco, C V; Godinho, J F; Frech, W A; Sonai, G G [Univ. Federal de Santa Catarina, Florianopolis (Brazil); Torres, L A.M.; Ellwanger, A R.F. [Tractebel Energia, Capivari de Baixo (Brazil)

    2009-07-01

    This study described a methodology developed to prevent the occurrence of corrosion failure in steam turbines. The methodology was developed after the failure of a turbine blade at a plant in Brazil. Deposits were collected from various locations along the turbine blade path and analyzed. A turbine deposit collector and simulator was installed to determine the concentrations of steam impurities. Samples were collected from the low pressure turbine at the crossover point and from the polishing station and analyzed using inductive coupled plasma-mass spectrometry (ICP-MS) in order to determine if sodium levels exceeded 3 ppb. Filters were weighed in order to determine the accumulation of impurities. A 3-electrode system was used to determine the influence of chloride ions. The design of the system's condensate polisher beds was modified in order to improve condensate effluent conductivity. The condensate treatment procedure lowered the concentrations of salt impurities and established a monitoring methodology for water and steam used at the plant. It was concluded that the methodology can be used to to reduce inspection intervals and increase system reliability. 10 refs., 1 tab., 7 figs.

  8. Electrochemical reduction of NOx

    DEFF Research Database (Denmark)

    Traulsen, Marie Lund

    NO and NO2 (collectively referred to as NOx) are air pollutants, and the largest single contributor to NOx pollution is automotive exhaust. This study investigates electrochemical deNOx, a technology which aims to remove NOx from automotive diesel exhaust by electrochemical reduction of NOx to N2...... and O2. The focus in this study is on improving the activity and selectivity of solid oxide electrodes for electrochemical deNOx by addition of NOx storage compounds to the electrodes. Two different composite electrodes, La0.85Sr0.15MnO3-δ-Ce0.9Gd0.1O1.95 (LSM15-CGO10) and La0.85Sr0.15FeO3-δ-Ce0.9Gd0.1O......1.95 (LSF15-CGO10), have been investigated in combination with three different NOx storage compounds: BaO, K2O and MnOx. The main focus in the investigation has been on conversion measurements and electrochemical characterization, the latter by means of electrochemical impedance spectroscopy...

  9. Digital Culture and Digital Library

    Directory of Open Access Journals (Sweden)

    Yalçın Yalçınkaya

    2016-12-01

    Full Text Available In this study; digital culture and digital library which have a vital connection with each other are examined together. The content of the research consists of the interaction of culture, information, digital culture, intellectual technologies, and digital library concepts. The study is an entry work to integrity of digital culture and digital library theories and aims to expand the symmetry. The purpose of the study is to emphasize the relation between the digital culture and digital library theories acting intersection of the subjects that are examined. Also the perspective of the study is based on examining the literature and analytical evaluation in both studies (digital culture and digital library. Within this context, the methodology of the study is essentially descriptive and has an attribute for the transmission and synthesis of distributed findings produced in the field of the research. According to the findings of the study results, digital culture is an inclusive term that describes the effects of intellectual technologies in the field of information and communication. Information becomes energy and the spectrum of the information is expanding in the vertical rise through the digital culture. In this context, the digital library appears as a new living space of a new environment. In essence, the digital library is information-oriented; has intellectual technology support and digital platform; is in a digital format; combines information resources and tools in relationship/communication/cooperation by connectedness, and also it is the dynamic face of the digital culture in time and space independence. Resolved with the study is that the digital libraries are active and effective in the formation of global knowing and/or mass wisdom in the process of digital culture.

  10. Dose optimization for dual-energy contrast-enhanced digital mammography based on an energy-resolved photon-counting detector: A Monte Carlo simulation study

    International Nuclear Information System (INIS)

    Lee, Youngjin; Lee, Seungwan; Kang, Sooncheol; Eom, Jisoo

    2017-01-01

    Dual-energy contrast-enhanced digital mammography (CEDM) has been used to decompose breast images and improve diagnostic accuracy for tumor detection. However, this technique causes an increase of radiation dose and an inaccuracy in material decomposition due to the limitations of conventional X-ray detectors. In this study, we simulated the dual-energy CEDM with an energy-resolved photon-counting detector (ERPCD) for reducing radiation dose and improving the quantitative accuracy of material decomposition images. The ERPCD-based dual-energy CEDM was compared to the conventional dual-energy CEDM in terms of radiation dose and quantitative accuracy. The correlation between radiation dose and image quality was also evaluated for optimizing the ERPCD-based dual-energy CEDM technique. The results showed that the material decomposition errors of the ERPCD-based dual-energy CEDM were 0.56–0.67 times lower than those of the conventional dual-energy CEDM. The imaging performance of the proposed technique was optimized at the radiation dose of 1.09 mGy, which is a half of the MGD for a single view mammogram. It can be concluded that the ERPCD-based dual-energy CEDM with an optimal exposure level is able to improve the quality of material decomposition images as well as reduce radiation dose. - Highlights: • Dual-energy mammography based on a photon-counting detector was simulated. • Radiation dose and image quality were evaluated for optimizing the proposed technique. • The proposed technique reduced radiation dose as well as improved image quality. • The proposed technique was optimized at the radiation dose of 1.09 mGy.

  11. Simulation

    DEFF Research Database (Denmark)

    Gould, Derek A; Chalmers, Nicholas; Johnson, Sheena J

    2012-01-01

    Recognition of the many limitations of traditional apprenticeship training is driving new approaches to learning medical procedural skills. Among simulation technologies and methods available today, computer-based systems are topical and bring the benefits of automated, repeatable, and reliable p...... performance assessments. Human factors research is central to simulator model development that is relevant to real-world imaging-guided interventional tasks and to the credentialing programs in which it would be used....

  12. The Influence of E-learning Use to Student Cognitive Performance and Motivation in Digital Simulation Course

    Directory of Open Access Journals (Sweden)

    Tigowati Tigowati

    2017-12-01

    Full Text Available Currently the technology is growing and sophisticated. Technological advances have also entered the world of education. One of them their is  online learning. Examples of learning that utilizes technology that is using Schoology and Edmodo. By using Schoology and Edmodo is expected to increase student motivation and learning outcomes. This study investigates whether the use of different learning management would affect (1 the student’s cognitive achievement (2 student’s motivation (3 the level motivation. This research method using mixed methods. The data collection technique using the test method to determine the cognitive performance. Questionnaires and interviews to find the motivation. The analysis of quantitative data using normality test, homogeneity test, tests of balance and hypothesis testing using independent t test, while the analysis of qualitative data using interactive models. Based on the results of the study (1 there are differences in the cognitive performance between classes that use e-learning based Schoology and e-learning based Edmodo. The cognitive performance classes that use Schoology better than the class that uses Edmodo, because schoology easiness to acces, the students has a target value, better understand the lesson and more active in study this may have an effect on cognitive performance.(2 there is a difference in motivation between classes that use e-learning based Schoology and e-learning based Edmodo. Motivation class with Schoology based e-learning is better than classes with e-learning based Edmodo, because schoology can interested in simulation course, more passion, make happy, easier to learn anywhere and more motivated to learn. (3 the level of motivation of students using e-learning based Schoology and Edmodo included in the medium category

  13. Dose optimization for dual-energy contrast-enhanced digital mammography based on an energy-resolved photon-counting detector: A Monte Carlo simulation study

    Science.gov (United States)

    Lee, Youngjin; Lee, Seungwan; Kang, Sooncheol; Eom, Jisoo

    2017-03-01

    Dual-energy contrast-enhanced digital mammography (CEDM) has been used to decompose breast images and improve diagnostic accuracy for tumor detection. However, this technique causes an increase of radiation dose and an inaccuracy in material decomposition due to the limitations of conventional X-ray detectors. In this study, we simulated the dual-energy CEDM with an energy-resolved photon-counting detector (ERPCD) for reducing radiation dose and improving the quantitative accuracy of material decomposition images. The ERPCD-based dual-energy CEDM was compared to the conventional dual-energy CEDM in terms of radiation dose and quantitative accuracy. The correlation between radiation dose and image quality was also evaluated for optimizing the ERPCD-based dual-energy CEDM technique. The results showed that the material decomposition errors of the ERPCD-based dual-energy CEDM were 0.56-0.67 times lower than those of the conventional dual-energy CEDM. The imaging performance of the proposed technique was optimized at the radiation dose of 1.09 mGy, which is a half of the MGD for a single view mammogram. It can be concluded that the ERPCD-based dual-energy CEDM with an optimal exposure level is able to improve the quality of material decomposition images as well as reduce radiation dose.

  14. Digital mammography; Mamografia digital

    Energy Technology Data Exchange (ETDEWEB)

    Chevalier, M.; Torres, R.

    2010-07-01

    Mammography represents one of the most demanding radiographic applications, simultaneously requiring excellent contrast sensitivity, high spatial resolution, and wide dynamic range. Film/screen is the most widely extended image receptor in mammography due to both its high spatial resolution and contrast. The film/screen limitations are related with its narrow latitude, structural noise and that is at the same time the medium for the image acquisition, storage and presentation. Several digital detector made with different technologies can overcome these difficulties. Here, these technologies as well as their main advantages and disadvantages are analyzed. Also it is discussed its impact on the mammography examinations, mainly on the breast screening programs. (Author).

  15. Digital Tectonics

    DEFF Research Database (Denmark)

    Christiansen, Karl; Borup, Ruben; Søndergaard, Asbjørn

    2014-01-01

    Digital Tectonics treats the architectonical possibilities in digital generation of form and production. The publication is the first volume of a series, in which aspects of the strategic focus areas of the Aarhus School of Architecture will be disseminated.......Digital Tectonics treats the architectonical possibilities in digital generation of form and production. The publication is the first volume of a series, in which aspects of the strategic focus areas of the Aarhus School of Architecture will be disseminated....

  16. Digital squares

    DEFF Research Database (Denmark)

    Forchhammer, Søren; Kim, Chul E

    1988-01-01

    Digital squares are defined and their geometric properties characterized. A linear time algorithm is presented that considers a convex digital region and determines whether or not it is a digital square. The algorithm also determines the range of the values of the parameter set of its preimages....... The analysis involves transforming the boundary of a digital region into parameter space of slope and y-intercept...

  17. Digital skrivedidaktik

    DEFF Research Database (Denmark)

    Digital skrivedidaktik består af to dele. Første del præsenterer teori om skrivekompetence og digital skrivning. Digital skrivning er karakteriseret ved at tekster skrives på computer og med digitale værktøjer, hvilket ændrer skrivningens traditionelle praksis, produkt og processer. Hvad er digital...... om elevens skriveproces) og Blogskrivning (der styrker eleverne i at bruge blogs i undervisningen)....

  18. Electrochemical energy storage

    CERN Document Server

    Tarascon, Jean-Marie

    2015-01-01

    The electrochemical storage of energy has become essential in assisting the development of electrical transport and use of renewable energies. French researchers have played a key role in this domain but Asia is currently the market leader. Not wanting to see history repeat itself, France created the research network on electrochemical energy storage (RS2E) in 2011. This book discusses the launch of RS2E, its stakeholders, objectives, and integrated structure that assures a continuum between basic research, technological research and industries. Here, the authors will cover the technological

  19. Electrochemical Hydrogen Evolution

    DEFF Research Database (Denmark)

    Laursen, A.B.; Varela Gasque, Ana Sofia; Dionigi, F.

    2012-01-01

    The electrochemical hydrogen evolution reaction (HER) is growing in significance as society begins to rely more on renewable energy sources such as wind and solar power. Thus, research on designing new, inexpensive, and abundant HER catalysts is important. Here, we describe how a simple experiment...... catalysts based on this. Suited for upper-level high school and first-year university students, this exercise involves using a basic two-cell electrochemical setup to test multiple electrode materials as catalysts at one applied potential, and then constructing a volcano curve with the resulting currents...

  20. Digital Citizenship

    Science.gov (United States)

    Isman, Aytekin; Canan Gungoren, Ozlem

    2014-01-01

    Era in which we live is known and referred as digital age.In this age technology is rapidly changed and developed. In light of these technological advances in 21st century, schools have the responsibility of training "digital citizen" as well as a good citizen. Digital citizens must have extensive skills, knowledge, Internet and …

  1. Simulation

    CERN Document Server

    Ross, Sheldon

    2006-01-01

    Ross's Simulation, Fourth Edition introduces aspiring and practicing actuaries, engineers, computer scientists and others to the practical aspects of constructing computerized simulation studies to analyze and interpret real phenomena. Readers learn to apply results of these analyses to problems in a wide variety of fields to obtain effective, accurate solutions and make predictions about future outcomes. This text explains how a computer can be used to generate random numbers, and how to use these random numbers to generate the behavior of a stochastic model over time. It presents the statist

  2. Digital subtraktion

    DEFF Research Database (Denmark)

    Mussmann, Bo Redder

    2004-01-01

    Digital subtraktion er en metode til at fjerne uønskede oplysninger i et røntgenbillede. Subtraktionsteknikken bruges primært i forbindelse med angiografi hvor man kun er interesseret i at se selve karret. Derfor er digital subtraktion i daglig tale synonymt med DSA eller DVI – hhv. Digital...... Subtraction Angiography eller Digital Vascular Imaging. Benævnelserne er to røntgenfirmaers navn for den samme teknik. Digital subtraktion kræver speciel software, samt at apparaturet kan eksponere i serier....

  3. Digital preservation

    CERN Document Server

    Deegan, Marilyn

    2013-01-01

    Digital preservation is an issue of huge importance to the library and information profession right now. With the widescale adoption of the internet and the rise of the world wide web, the world has been overwhelmed by digital information. Digital data is being produced on a massive scale by individuals and institutions: some of it is born, lives and dies only in digital form, and it is the potential death of this data, with its impact on the preservation of culture, that is the concern of this book. So how can information professionals try to remedy this? Digital preservation is a complex iss

  4. Electrochemical Power Sources

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 7. Electrochemical Power Sources - Rechargeable Batteries. A K Shukla S K Martha. General Article Volume 6 Issue 7 July 2001 pp 52-63. Fulltext. Click here to view fulltext PDF. Permanent link:

  5. Electro-chemical grinding

    Science.gov (United States)

    Feagans, P. L.

    1972-01-01

    Electro-chemical grinding technique has rotation speed control, constant feed rates, and contour control. Hypersonic engine parts of nickel alloys can be almost 100% machined, keeping tool pressure at virtual zero. Technique eliminates galling and permits constant surface finish and burr-free interrupted cutting.

  6. Digital Natives or Digital Tribes?

    Science.gov (United States)

    Watson, Ian Robert

    2013-01-01

    This research builds upon the discourse surrounding digital natives. A literature review into the digital native phenomena was undertaken and found that researchers are beginning to identify the digital native as not one cohesive group but of individuals influenced by other factors. Primary research by means of questionnaire survey of technologies…

  7. Digital Communication and Modulation

    DEFF Research Database (Denmark)

    Sørensen, John Aasted

    2011-01-01

    system. Having passed the course, the student will be able to accomplish the following, within the areas shown below: Model for Communication System. Prepare and explain the functional block in a digital communication system, corresponding to the specific course contents. Model for Communication Channel...... system.   Sessions in class with active participation by the students. The time will be divided between lectures and the students solving problems, including simulating digital communication building blocks in Matlab. Combines lectures and hands-on work. Semester: E2011 Extent: 7.5 ects......, the fundamental principles for modulation and detection in Gaussian noise is treated. This includes the principles for the determination of the bit-error rate for a digital communication system. During the course, a selection of small Matlab exercises are prepared, for simulation of parts of a communication...

  8. Digital Communication and Modulation

    DEFF Research Database (Denmark)

    Sørensen, John Aasted

    2011-01-01

    system. Having passed the course, the student will be able to accomplish the following, within the areas shown below: Model for Communication System. Prepare and explain the functional block in a digital communication system, corresponding to the specific course contents. Model for Communication Channel...... system. Sessions in class with active participation by the students. The time will be divided between lectures and the students solving problems, including simulating digital communication building blocks in Matlab. Combines lectures and hands-on work. Semester: F2011 Extent: 7.5 ects......, the fundamental principles for modulation and detection in Gaussian noise is treated. This includes the principles for the determination of the bit-error rate for a digital communication system. During the course, a selection of small Matlab exercises are prepared, for simulation of parts of a communication...

  9. Preliminary results of the comparison of the electrochemical behavior of a thioether and biphenyl

    Science.gov (United States)

    Morales, W.; Jones, W. R.

    1983-01-01

    An electrochemical cell was constructed to explore the feasibility of using electrochemical techniques to simulate the tribochemistry of various substances. The electrochemical cell was used to study and compare the behavior of a thioether 1,3-bis(phenylthio) benzene and biphenyl. It is found that under controlled conditions biphenyl undergoes a reversible reduction to a radical anion whereas the thioether undergoes an irreversible reduction yielding several products. The results are discussed in relationship to boundary lubrication.

  10. Digital mammography

    International Nuclear Information System (INIS)

    Bick, Ulrich; Diekmann, Felix

    2010-01-01

    This state-of-the-art reference book provides in-depth coverage of all aspects of digital mammography, including detector technology, image processing, computer-aided diagnosis, soft-copy reading, digital workflow, and PACS. Specific advantages and disadvantages of digital mammography in comparison to screen-film mammography are thoroughly discussed. By including authors from both North America and Europe, the book is able to outline variations in the use, acceptance, and quality assurance of digital mammography between the different countries and screening programs. Advanced imaging techniques and future developments such as contrast mammography and digital breast tomosynthesis are also covered in detail. All of the chapters are written by internationally recognized experts and contain numerous high-quality illustrations. This book will be of great interest both to clinicians who already use or are transitioning to digital mammography and to basic scientists working in the field. (orig.)

  11. Digital Insights

    DEFF Research Database (Denmark)

    Knudsen, Gry Høngsmark

    , by incorporating media as both channel, frame, and apparatus for advertising response, the dissertation brings into attention that more aspects than the text-reader relationship influence ad response. Finally, the dissertation proposes the assemblage approach for exploring big data in consumer culture research...... and practices with digital media, when they meet and interpret advertising. Through studies of advertising response on YouTube and experiments with consumers’ response to digitally manipulated images, the dissertation shows how digital media practices facilitate polysemic and socially embedded advertising......This dissertation forwards the theory of digital consumer-response as a perspective to examine how digital media practices influence consumers’ response to advertising. Digital consumer-response is a development of advertising theory that encompasses how consumers employ their knowledge...

  12. Digital Signage

    OpenAIRE

    Fischer, Karl Peter

    2011-01-01

    Digital Signage for in-store advertising at gas stations/retail stores in Germany: A field study Digital Signage networks provide a novel means of advertising with the advantage of easily changeable and highly customizable animated content. Despite the potential and increasing use of these media empirical research is scarce. In a field study at 8 gas stations (with integrated convenience stores) we studied the effect of digital signage advertising on sales for different products and servi...

  13. Sports Digitalization

    DEFF Research Database (Denmark)

    Xiao, Xiao; Hedman, Jonas; Tan, Felix Ter Chian

    2017-01-01

    evolution, as digital technologies are increasingly entrenched in a wide range of sporting activities and for applications beyond mere performance enhancement. Despite such trends, research on sports digitalization in the IS discipline is surprisingly still nascent. This paper aims at establishing...... a discourse on sports digitalization within the discipline. Toward this, we first provide an understanding of the institutional characteristics of the sports industry, establishing its theoretical importance and relevance in our discipline; second, we reveal the latest trends of digitalization in the sports...

  14. Digital printing

    Science.gov (United States)

    Sobotka, Werner K.

    1997-02-01

    Digital printing is described as a tool to replace conventional printing machines completely. Still this goal was not reached until now with any of the digital printing technologies to be described in the paper. Productivity and costs are still the main parameters and are not really solved until now. Quality in digital printing is no problem anymore. Definition of digital printing is to transfer digital datas directly on the paper surface. This step can be carried out directly or with the use of an intermediate image carrier. Keywords in digital printing are: computer- to-press; erasable image carrier; image carrier with memory. Digital printing is also the logical development of the new digital area as it is pointed out in Nicholas Negropotes book 'Being Digital' and also the answer to networking and Internet technologies. Creating images text and color in one country and publishing the datas in another country or continent is the main advantage. Printing on demand another big advantage and last but not least personalization the last big advantage. Costs and being able to coop with this new world of prepress technology is the biggest disadvantage. Therefore the very optimistic growth rates for the next few years are really nonexistent. The development of complete new markets is too slow and the replacing of old markets is too small.

  15. Digitization errors using digital charge division positionsensitive detectors

    International Nuclear Information System (INIS)

    Berliner, R.; Mildner, D.F.R.; Pringle, O.A.

    1981-01-01

    The data acquisition speed and electronic stability of a charge division position-sensitive detector may be improved by using digital signal processing with a table look-up high speed multiply to form the charge division quotient. This digitization process introduces a positional quantization difficulty which reduces the detector position sensitivity. The degree of the digitization error is dependent on the pulse height spectrum of the detector and on the resolution or dynamic range of the system analog-to-digital converters. The effects have been investigated analytically and by computer simulation. The optimum algorithm for position sensing determination using 8-bit digitization and arithmetic has a digitization error of less than 1%. (orig.)

  16. Estimation of Parameters Obtained by Electrochemical Impedance Spectroscopy on Systems Containing High Capacities

    Directory of Open Access Journals (Sweden)

    Mirjana Rajčić Vujasinović

    2009-09-01

    Full Text Available Electrochemical systems with high capacities demand devices for electrochemical impedance spectroscopy (EIS with ultra-low frequencies (in order of mHz, that are almost impossible to accomplish with analogue techniques, but this becomes possible by using a computer technique and accompanying digital equipment. Recently, an original software and hardware for electrochemical measurements, intended for electrochemical systems exhibiting high capacities, such as supercapacitors, has been developed. One of the included methods is EIS. In this paper, the method of calculation of circuit parameters from an EIS curve is described. The results of testing on a physical model of an electrochemical system, constructed of known elements (including a 1.6 F capacitor in a defined arrangement, proved the validity of the system and the method.

  17. Thermal models of pulse electrochemical machining

    International Nuclear Information System (INIS)

    Kozak, J.

    2004-01-01

    Pulse electrochemical machining (PECM) provides an economical and effective method for machining high strength, heat-resistant materials into complex shapes such as turbine blades, die, molds and micro cavities. Pulse Electrochemical Machining involves the application of a voltage pulse at high current density in the anodic dissolution process. Small interelectrode gap, low electrolyte flow rate, gap state recovery during the pulse off-times lead to improved machining accuracy and surface finish when compared with ECM using continuous current. This paper presents a mathematical model for PECM and employs this model in a computer simulation of the PECM process for determination of the thermal limitation and energy consumption in PECM. The experimental results and discussion of the characteristics PECM are presented. (authors)

  18. Advances in Electrochemical Models for Predicting the Cycling Performance of Traction Batteries: Experimental Study on Ni-MH and Simulation Développement de modèles électrochimiques de batteries de traction pour la prédiction de performances : étude expérimentale de batteries NiMH et simulations

    Directory of Open Access Journals (Sweden)

    Bernard J.

    2009-11-01

    Full Text Available Rigorous electrochemical models to simulate the cycling performance of batteries have been successfully developed and reported in the literature. They constitute a very promising approach for State-of-Charge (SoC estimation based on the physics of the cell with regards to other methods since SoC is an internal parameter of these physical models. However, the computational time needed to solve electrochemical battery models for online applications requires to develop a simplified physics-based battery model. In this work, our goal is to present and validate an advanced 0D-electrochemical model of a Ni-MH cell, as an example. This lumped-parameter model will be used to design an extended Kalman filter to predict the SoC of a Ni-MH pack. It is presented, followed by an extensive experimental study conducted on Ni-MH cells to better understand the mechanisms of physico-chemical phenomena occurring at both electrodes and support the model development. The last part of the paper focuses on the evaluation of the model with regards to experimental results obtained on Ni-MH sealed cells but also on the related commercial HEV battery pack. Des modèles électrochimiques fins permettant de simuler le comportement de batteries ont été développés avec succès et reportés dans la littérature. Ils constituent une alternative aux méthodes classiques pour estimer l’état de charge (SoC pour State of Charge des batteries, cette variable étant ici un paramètre interne du modèle physique. Cependant, pour les applications embarquées, il est nécessaire de développer des modèles simplifiés sur la base de ces modèles physiques afin de diminuer le temps de calcul nécessaire à la résolution des équations. Ici, nous présenterons à titre d’exemple un modèle électrochimique 0D avancé d’un accumulateur NiMH et sa validation. Ce modèle à paramètres concentrés sera utilisé pour réaliser un filtre de Kalman qui permettra la prédiction de l

  19. Digital Audiobooks

    DEFF Research Database (Denmark)

    Have, Iben; Pedersen, Birgitte Stougaard

    Audiobooks are rapidly gaining popularity with widely accessible digital downloading and streaming services. The paper is framing how the digital audiobook expands and changes the target groups for book publications and how it as an everyday activity is creating new reading experiences, places...

  20. Digital TMI

    Science.gov (United States)

    Rios, Joseph

    2012-01-01

    Presenting the current status of the Digital TMI project to visiting members of the FAA Command Center. Digital TMI is an effort to store national-level traffic management initiatives in a standards-compliant manner. Work is funded by the FAA.

  1. Test of the little Higgs model in Atlas at LHC: simulation of the digitization of the electromagnetic calorimeter; Test du modele du petit Higgs dans ATLAS au LHC: simulation de la numerisation du calorimetre electromagnetique

    Energy Technology Data Exchange (ETDEWEB)

    Lechowski, M

    2005-04-15

    LHC is a proton-proton collider with an energy of 14 TeV in the center of mass, which will start operating in 2007 at CERN. Two of its experiments, ATLAS, and CMS, will search and study in particular the Higgs boson, Supersymmetry and other new physics. This thesis was about two aspects of the ATLAS experiment. On one hand the simulation of the liquid Argon electromagnetic calorimeter, with the emulation of the electronic chain in charge of the digitization of the signal and also the evaluation of the electronic noise and the pile-up noise (coming from minimum bias events of inelastic collisions at LHC). These two points have been validated by the analysis of the data taken during beam tests in 2002 and 2004. On the other hand, a physics study concerning the Little Higgs model. This recent model solves the hierarchy problem of the Standard Model, in introducing new heavy particles to cancel quadratic divergences arising in the calculation of the Higgs boson mass. These new particles, with a mass about the TeV/c{sup 2}, are a heavy quark top, heavy gauge bosons Z{sub H}, W{sub H} and A{sub H}, and a heavy Higgs boson triplet. The physics study dealt with the characteristic decays of the model, Z{sub H} in Z + H and W{sub H} in W + H, with a Higgs mass either at 120 GeV/c{sup 2} decaying in two photons or at 200 GeV/c{sup 2} decaying in ZZ or WW. Results show that in both cases, for 300 fb{sup -1} (3 years at high luminosity), an observation of the signal at 5 {sigma} for Z{sub H} et W{sub H} masses less than 2 TeV/c{sup 2} is possible, covering a large part of the parameter space. (author)

  2. Digital displacements

    DEFF Research Database (Denmark)

    Pors, Anja Svejgaard

    2014-01-01

    In recent years digital reforms are being introduced in the municipal landscape of Denmark. The reforms address the interaction between citizen and local authority. The aim is, that by 2015 at least 80 per cent of all correspondence between citizens and public authority will be transmitted through...... digital interface. However, the transformation of citizen services from traditional face-to-face interaction to digital self-service gives rise to new practices; some citizens need support to be able to manage self-service through digital tools. A mixture of support and teaching, named co......-service, is a new task in public administration, where street level bureaucrats assist citizens in using the new digital solutions. The paper is based on a case study conducted primarily in a citizen service centre in Copenhagen, Denmark. Based on ethnography the paper gives an empirical account of the ongoing...

  3. Digitized mammograms

    International Nuclear Information System (INIS)

    Bruneton, J.N.; Balu-Maestro, C.; Rogopoulos, A.; Chauvel, C.; Geoffray, A.

    1988-01-01

    Two observers conducted a blind evaluation of 100 mammography files, including 47 malignant cases. Films were read both before and after image digitization at 50 μm and 100 μm with the FilmDRSII. Digitization permitted better analysis of the normal anatomic structures and moderately improved diagnostic sensitivity. Searches for microcalcifications before and after digitization at 100 μm and 50 μm showed better analysis of anatomic structures after digitization (especially for solitary microcalcifications). The diagnostic benefit, with discovery of clustered microcalcifications, was more limited (one case at 100 μm, nine cases at 50 μm). Recognition of microcalcifications was clearly improved in dense breasts, which can benefit from reinterpretation after digitization at 50 μm rather 100μm

  4. Electrochemical Sensors for Clinic Analysis

    Directory of Open Access Journals (Sweden)

    Guang Li

    2008-03-01

    Full Text Available Demanded by modern medical diagnosis, advances in microfabrication technology have led to the development of fast, sensitive and selective electrochemical sensors for clinic analysis. This review addresses the principles behind electrochemical sensor design and fabrication, and introduces recent progress in the application of electrochemical sensors to analysis of clinical chemicals such as blood gases, electrolytes, metabolites, DNA and antibodies, including basic and applied research. Miniaturized commercial electrochemical biosensors will form the basis of inexpensive and easy to use devices for acquiring chemical information to bring sophisticated analytical capabilities to the non-specialist and general public alike in the future.

  5. Evaluation of body simulator for chest and abdomen in digital X-ray equipment; Avaliação de simulador de corpo para regiões do tórax e abdômen em equipamento de raios-X digital

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Sidney S.; Cardoso, Gabriela P.; Oliveira, Giovanni Antônio P.; Batista, Adriana S.M., E-mail: sidneyss70soares@gmail.com, E-mail: gabrielapontesc@gmail.com, E-mail: giovanni.paiva@pbh.gov.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Anatomia e Imagem; Pereira, Esther Lorrayne M., E-mail: esther_machado@outlook.com.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear

    2017-07-01

    The use of body simulators to control the quality of X-ray images is a practice that guarantees the control of essential parameters for diagnosis by the technique. The evolution of the equipment, between the analogue, digital computerized radiology (CR) and direct radiography (DR), requires evaluation of the equivalence in grayscale, of simulators, for an adjustment according to the specific technology of obtaining the image. In this sense, the present work presents the evaluation of a body simulator with regard to the representation of mean values of signal, noise and contrast obtained in chest radiographs and panoramic of the abdomen. For the thorax the cardiac region was considered as simulation target and for the abdomen simulation of the liver and small intestine. We used a retrospective study of images obtained with X-ray equipment - CR system, in which the images were studied using the ImageJ program, generating a data catalog. These were subsequently compared with those obtained experimentally using gel filled polymer body simulator. For the validation of the simulator, it was observed the gel equivalence of filling of the polymer box required to reach the image parameters of the cataloged radiographs. The results are discussed as to the physical principles of radiation interaction with biological and equivalent tissues.

  6. Digital Ethics/Going Digital.

    Science.gov (United States)

    Wilson, Bradley

    1996-01-01

    Finds that the recent National Press Photographers Association code of ethics can serve as a model for any photography staff. Discusses how digital imaging is becoming commonplace in classrooms, due to decreasing costs and easier software. Explains digital terminology. Concludes that time saved in the darkroom and at the printer is now spent on…

  7. Digital radiography

    International Nuclear Information System (INIS)

    Coulomb, M.; Dal Soglio, S.; Pittet-Barbier, L.; Ranchoup, Y.; Thony, F.; Ferretti, G.; Robert, F.

    1992-01-01

    Digital projection radiography may replace conventional radiography some day, provided it can meet several requirements: equal or better diagnostic effectiveness of the screen-film systems; reasonable image cost; real improvement in the productivity of the Departments of Imaging. All digital radiographic systems include an X-ray source, an image acquisition and formatting sub-system, a display and manipulation sub-system, and archiving subsystem and a laser editing system, preferably shared by other sources of digital images. Three digitization processes are available: digitization of the radiographic film, digital fluorography and phospholuminescent detectors with memory. The advantages of digital fluoroscopy are appealing: real-time image acquisition, suppression of cassettes; but its disadvantages are far from negligible: it cannot be applied to bedside radiography, the field of examination is limited, and the wide-field spatial resolution is poor. Phospholuminescent detectors with memory have great advantages: they can be used for bedside radiographs and on all the common radiographic systems; spatial resolution is satisfactory; its current disadvantages are considerable. These two systems, have common properties making up the entire philosophy of digital radiology and specific features that must guide our choice according to the application. Digital fluorography is best applied in pediatric radiology. However, evaluation works have showed that it was applicable with sufficient quality to many indications of general radiology in which a fluoroscopic control and fast acquisition of the images are essential; the time gained on the examination may be considerable, as well as the savings on film. Detectors with memory are required for bedside radiographs, in osteoarticular and thoracic radiology, in all cases of traumatic emergency and in the resuscitation and intensive care departments

  8. Electrochemical destruction of nitrosamines

    Energy Technology Data Exchange (ETDEWEB)

    Lejen, T; Volchek, K; Ladanowski, C; Velicogna, D; Whittaker, H [Environment Canada, Ottawa, ON (Canada). Emergencies Engineering Div.

    1996-09-01

    Treatment conditions for the electrolytic destruction of nitrosamines were studied. The joint investigation between Canada and the Ukraine was part of an assessment of hazardous contaminants at former Soviet ICBM missile sites. The electrochemical destruction of N-dimethylnitrosamines (NDMA) on carbon/platinum electrodes was studied under basic and acidic conditions by UV spectroscopy, gas chromatography, mass spectroscopy, and colorimetry. Experiments with a 100 ppm NDMA solution showed that electrolytic-reduction was pH sensitive within a range of pH 0.5 to 4.0. Electrolysis was effective for the reduction of NDMA in strong acidic conditions. 30 refs., 1 tab., 4 figs.

  9. Electrochemical Science and Technology

    CERN Document Server

    Oldham, Keith; Bond, Alan

    2011-01-01

    The book addresses the scientific principles underlying electrochemistry. Starting with the basic concepts of electricity, the early chapters discuss the physics and chemistry of the materials from which electrochemical cells are constructed and the properties that make these materials appropriate as cell components. Much of the importance of electrochemistry lies in the conversion of electrical energy into chemical energy and vice versa; the thermodynamics of these processes is described, in the context of a wide range of applications of these interconversions. An electrode is a surface at wh

  10. Becoming digital

    DEFF Research Database (Denmark)

    Pors, Anja Svejgaard

    2015-01-01

    . An ethnographic account of how digital reforms are implemented in practice shows how street-level bureaucrat’s classic tasks such as specialized casework are being reconfigured into educational tasks that promote the idea of “becoming digital”. In the paper, the author argues that the work of “becoming digital....... Originality/value: The study contributes to ethnographic research in public administration by combining two separate subfields, e-government and street-level bureaucracy, to discern recent transformations in public service delivery. In the digital era, tasks, control and equality are distributed in ways...

  11. Digital Humanities

    DEFF Research Database (Denmark)

    Brügger, Niels

    2016-01-01

    , and preserving material to study, as an object of study in its own right, as an analytical tool, or for collaborating, and for disseminating results. The term "digital humanities" was coined around 2001, and gained currency within academia in the following years. However, computers had been used within......Digital humanities is an umbrella term for theories, methodologies, and practices related to humanities scholarship that use the digital computer as an integrated and essential part of its research and teaching activities. The computer can be used for establishing, finding, collecting...

  12. Digital Snaps

    DEFF Research Database (Denmark)

    Sandbye, Mette; Larsen, Jonas

    . Distance as the New Punctum / Mikko Villi -- pt. II. FAMILY ALBUMS IN TRANSITION -- ch. 4. How Digital Technologies Do Family Snaps, Only Better / Gillian Rose -- ch. 5. Friendship Photography: Memory, Mobility and Social Networking / Joanne Garde-Hansen -- ch. 6. Play, Process and Materiality in Japanese...... -- ch. 9. Retouch Yourself: The Pleasures and Politics of Digital Cosmetic Surgery / Tanya Sheehan -- ch. 10. Virtual Selves: Art and Digital Autobiography / Louise Wolthers -- ch. 11. Mobile-Media Photography: New Modes of Engagement / Michael Shanks and Connie Svabo....

  13. Digital electronics

    CERN Document Server

    Morris, John

    2013-01-01

    An essential companion to John C Morris's 'Analogue Electronics', this clear and accessible text is designed for electronics students, teachers and enthusiasts who already have a basic understanding of electronics, and who wish to develop their knowledge of digital techniques and applications. Employing a discovery-based approach, the author covers fundamental theory before going on to develop an appreciation of logic networks, integrated circuit applications and analogue-digital conversion. A section on digital fault finding and useful ic data sheets completes th

  14. Digital Leadership

    DEFF Research Database (Denmark)

    Zupancic, Tadeja; Verbeke, Johan; Achten, Henri

    2016-01-01

    Leadership is an important quality in organisations. Leadership is needed to introduce change and innovation. In our opinion, in architectural and design practices, the role of leadership has not yet been sufficiently studied, especially when it comes to the role of digital tools and media....... With this paper we intend to initiate a discussion in the eCAADe community to reflect and develop ideas in order to develop digital leadership skills amongst the membership. This paper introduces some important aspects, which may be valuable to look into when developing digital leadership skills....

  15. Digital radiography

    International Nuclear Information System (INIS)

    Zani, M.L.

    2002-01-01

    X-ray radiography is a very common technique used to check the homogeneity of a material or the inside of a mechanical part. Generally the radiation that goes through the material to check, produced an image on a sensitized film. This method requires time because the film needs to be developed, digital radiography has no longer this inconvenient. In digital radiography the film is replaced by digital data and can be processed as any computer file. This new technique is promising but its main inconvenient is that today its resolution is not so good as that of film radiography. (A.C.)

  16. Digital radiography

    International Nuclear Information System (INIS)

    Kusano, Shoichi

    1993-01-01

    Firstly, from an historic point of view, fundamental concepts on digital imaging were reviewed to provide a foundation for discussion of digital radiography. Secondly, this review summarized the results of ongoing research in computed radiography that replaces the conventional film-screen system with a photo-stimulable phosphor plate; and thirdly, image quality, radiation protection, and image processing techniques were discussed with emphasis on picture archiving and communication system environment as our final goal. Finally, future expansion of digital radiography was described based on the present utilization of computed tomography at the National Defense Medical College Hospital. (author) 60 refs

  17. Digital Hadron Calorimetry

    Science.gov (United States)

    Bilki, Burak

    2018-03-01

    The Particle Flow Algorithms attempt to measure each particle in a hadronic jet individually, using the detector providing the best energy/momentum resolution. Therefore, the spatial segmentation of the calorimeter plays a crucial role. In this context, the CALICE Collaboration developed the Digital Hadron Calorimeter. The Digital Hadron Calorimeter uses Resistive Plate Chambers as active media and has a 1-bit resolution (digital) readout of 1 × 1 cm2 pads. The calorimeter was tested with steel and tungsten absorber structures, as well as with no absorber structure, at the Fermilab and CERN test beam facilities over several years. In addition to conventional calorimetric measurements, the Digital Hadron Calorimeter offers detailed measurements of event shapes, rigorous tests of simulation models and various tools for improved performance due to its very high spatial granularity. Here we report on the results from the analysis of pion and positron events. Results of comparisons with the Monte Carlo simulations are also discussed. The analysis demonstrates the unique utilization of detailed event topologies.

  18. Electrochemical photovoltaic cells and electrodes

    Science.gov (United States)

    Skotheim, Terje A.

    1984-01-01

    Improved electrochemical photovoltaic cells and electrodes for use therein, particularly electrodes employing amorphous silicon or polyacetylene coating are produced by a process which includes filling pinholes or porous openings in the coatings by electrochemical oxidation of selected monomers to deposit insulating polymer in the openings.

  19. Thermodynamics of irreversible electrochemical phenomena

    NARCIS (Netherlands)

    Groot, S.R. de; Mazur, P.; Tolhoek, H.A.

    1953-01-01

    A discussion from first principles is given of the energy and entropy laws in electrochemical systems. It is found that it is possible to clarify such controversial concepts as the form of the second law and the role of the electrochemical potential in the systems concerned.

  20. Digital fabrication

    CERN Document Server

    2012-01-01

    The Winter 2012 (vol. 14 no. 3) issue of the Nexus Network Journal features seven original papers dedicated to the theme “Digital Fabrication”. Digital fabrication is changing architecture in fundamental ways in every phase, from concept to artifact. Projects growing out of research in digital fabrication are dependent on software that is entirely surface-oriented in its underlying mathematics. Decisions made during design, prototyping, fabrication and assembly rely on codes, scripts, parameters, operating systems and software, creating the need for teams with multidisciplinary expertise and different skills, from IT to architecture, design, material engineering, and mathematics, among others The papers grew out of a Lisbon symposium hosted by the ISCTE-Instituto Universitario de Lisboa entitled “Digital Fabrication – A State of the Art”. The issue is completed with four other research papers which address different mathematical instruments applied to architecture, including geometric tracing system...

  1. Digital Relationships

    DEFF Research Database (Denmark)

    Ledborg Hansen, Richard

    -­rich information and highly interesting communication are sky-­high and rising. With a continuous increase in digitized communication follows a decrease in face-­to-­face encounters and our ability to engage in inter-­personal relationships are suffering for it (Davis, 2013). The behavior described in this paper......-­‐Jones, 2011) for increases in effectiveness and efficiency we indiscriminately embrace digital communication and digitized information dissemination with enthusiasm – at the risk of ignoring the potentially dark side of technology. However, technology also holds a promise for better understanding precisely...... for the same reasons – that the growing amount of digitized communication “out there” represents data waiting to be sifted, analyzed and decoded. In this paper “Facebook behavior” refers to a particular behavior characterized by presenting your self and representations of selected self in the hope of getting...

  2. Digital Discretion

    DEFF Research Database (Denmark)

    Busch, Peter Andre; Zinner Henriksen, Helle

    2018-01-01

    discretion is suggested to reduce this footprint by influencing or replacing their discretionary practices using ICT. What is less researched is whether digital discretion can cause changes in public policy outcomes, and under what conditions such changes can occur. Using the concept of public service values......This study reviews 44 peer-reviewed articles on digital discretion published in the period from 1998 to January 2017. Street-level bureaucrats have traditionally had a wide ability to exercise discretion stirring debate since they can add their personal footprint on public policies. Digital......, we suggest that digital discretion can strengthen ethical and democratic values but weaken professional and relational values. Furthermore, we conclude that contextual factors such as considerations made by policy makers on the macro-level and the degree of professionalization of street...

  3. Electrochemical biosensors for hormone analyses.

    Science.gov (United States)

    Bahadır, Elif Burcu; Sezgintürk, Mustafa Kemal

    2015-06-15

    Electrochemical biosensors have a unique place in determination of hormones due to simplicity, sensitivity, portability and ease of operation. Unlike chromatographic techniques, electrochemical techniques used do not require pre-treatment. Electrochemical biosensors are based on amperometric, potentiometric, impedimetric, and conductometric principle. Amperometric technique is a commonly used one. Although electrochemical biosensors offer a great selectivity and sensitivity for early clinical analysis, the poor reproducible results, difficult regeneration steps remain primary challenges to the commercialization of these biosensors. This review summarizes electrochemical (amperometric, potentiometric, impedimetric and conductometric) biosensors for hormone detection for the first time in the literature. After a brief description of the hormones, the immobilization steps and analytical performance of these biosensors are summarized. Linear ranges, LODs, reproducibilities, regenerations of developed biosensors are compared. Future outlooks in this area are also discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Research on digital multi-channel pulse height analysis techniques

    International Nuclear Information System (INIS)

    Xiao Wuyun; Wei Yixiang; Ai Xianyun; Ao Qi

    2005-01-01

    Multi-channel pulse height analysis techniques are developing in the direction of digitalization. Based on digital signal processing techniques, digital multi-channel analyzers are characterized by powerful pulse processing ability, high throughput, improved stability and flexibility. This paper analyzes key techniques of digital nuclear pulse processing. With MATLAB software, main algorithms are simulated, such as trapezoidal shaping, digital baseline estimation, digital pole-zero/zero-pole compensation, poles and zeros identification. The preliminary general scheme of digital MCA is discussed, as well as some other important techniques about its engineering design. All these lay the foundation of developing homemade digital nuclear spectrometers. (authors)

  5. Impact of compressed breast thickness and dose on lesion detectability in digital mammography: FROC study with simulated lesions in real mammograms

    Energy Technology Data Exchange (ETDEWEB)

    Salvagnini, Elena, E-mail: elena.salvagnini@gmail.com [Department of Imaging and Pathology, Radiology, KUL, Herestraat 49, Leuven B-3000 (Belgium); SCK-CEN, Boeretang 200, Mol 2400 (Belgium); Bosmans, Hilde; Marshall, Nicholas W. [Department of Imaging and Pathology, Radiology, KUL, Herestraat 49, Leuven B-3000 (Belgium); Department of Radiology, Radiology, UZ Gasthuisberg, Herestraat 49, Leuven B-3000 (Belgium); Van Ongeval, Chantal; Van Steen, Andreas; Cockmartin, Lesley [Department of Radiology, Radiology, UZ Gasthuisberg, Herestraat 49, Leuven B-3000 (Belgium); Michielsen, Koen [Department of Imaging and Pathology, Nuclear Medicine and Molecular Imaging, KUL, Herestraat 49, Leuven B-3000 (Belgium); Struelens, Lara [SCK-CEN, Boeretang 200, Mol 2400 (Belgium)

    2016-09-15

    Purpose: The aim of this work was twofold: (1) to examine whether, with standard automatic exposure control (AEC) settings that maintain pixel values in the detector constant, lesion detectability in clinical images decreases as a function of breast thickness and (2) to verify whether a new AEC setup can increase lesion detectability at larger breast thicknesses. Methods: Screening patient images, acquired on two identical digital mammography systems, were collected over a period of 2 yr. Mammograms were acquired under standard AEC conditions (part 1) and subsequently with a new AEC setup (part 2), programmed to use the standard AEC settings for compressed breast thicknesses ≤49 mm, while a relative dose increase was applied above this thickness. The images were divided into four thickness groups: T1 ≤ 29 mm, T2 = 30–49 mm, T3 = 50–69 mm, and T4 ≥ 70 mm, with each thickness group containing 130 randomly selected craniocaudal lesion-free images. Two measures of density were obtained for every image: a BI-RADS score and a map of volumetric breast density created with a software application (VolparaDensity, Matakina, NZ). This information was used to select subsets of four images, containing one image from each thickness group, matched to a (global) BI-RADS score and containing a region with the same (local) VOLPARA volumetric density value. One selected lesion (a microcalcification cluster or a mass) was simulated into each of the four images. This process was repeated so that, for a given thickness group, half the images contained a single lesion and half were lesion-free. The lesion templates created and inserted in groups T3 and T4 for the first part of the study were then inserted into the images of thickness groups T3 and T4 acquired with higher dose settings. Finally, all images were visualized using the ViewDEX software and scored by four radiologists performing a free search study. A statistical jackknife-alternative free-response receiver operating

  6. Digital Collections, Digital Libraries & the Digitization of Cultural Heritage Information.

    Science.gov (United States)

    Lynch, Clifford

    2002-01-01

    Discusses digital collections and digital libraries. Topics include broadband availability; digital rights protection; content, both non-profit and commercial; digitization of cultural content; sustainability; metadata harvesting protocol; infrastructure; authorship; linking multiple resources; data mining; digitization of reference works;…

  7. Electrochemical hydrogen Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Digby Macdonald

    2010-08-09

    As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not

  8. Electrochemical hydrogen Storage Systems

    International Nuclear Information System (INIS)

    Macdonald, Digby

    2010-01-01

    As the global need for energy increases, scientists and engineers have found a possible solution by using hydrogen to power our world. Although hydrogen can be combusted as a fuel, it is considered an energy carrier for use in fuel cells wherein it is consumed (oxidized) without the production of greenhouse gases and produces electrical energy with high efficiency. Chemical storage of hydrogen involves release of hydrogen in a controlled manner from materials in which the hydrogen is covalently bound. Sodium borohydride and aminoborane are two materials given consideration as chemical hydrogen storage materials by the US Department of Energy. A very significant barrier to adoption of these materials as hydrogen carriers is their regeneration from 'spent fuel,' i.e., the material remaining after discharge of hydrogen. The U.S. Department of Energy (DOE) formed a Center of Excellence for Chemical Hydrogen Storage, and this work stems from that project. The DOE has identified boron hydrides as being the main compounds of interest as hydrogen storage materials. The various boron hydrides are then oxidized to release their hydrogen, thereby forming a 'spent fuel' in the form of a lower boron hydride or even a boron oxide. The ultimate goal of this project is to take the oxidized boron hydrides as the spent fuel and hydrogenate them back to their original form so they can be used again as a fuel. Thus this research is essentially a boron hydride recycling project. In this report, research directed at regeneration of sodium borohydride and aminoborane is described. For sodium borohydride, electrochemical reduction of boric acid and sodium metaborate (representing spent fuel) in alkaline, aqueous solution has been investigated. Similarly to literature reports (primarily patents), a variety of cathode materials were tried in these experiments. Additionally, approaches directed at overcoming electrostatic repulsion of borate anion from the cathode, not described in the

  9. digital natives and digital immigrants

    OpenAIRE

    Cardina, Bruno; Francisco, Jerónimo; Reis, Pedro; trad. Silva, Fátima

    2011-01-01

    This article focuses on the generational gaps in school learning. Initially, we have tried to provide the framework in relation to the term digital native in order to understand the key aspects of the generation born after the advent and the global use of the Internet. They were found to be “multitasking” people, linked to technology and connectivity, as opposed to digital immigrants, born in an earlier period and seeking to adapt to the technological world. We also present some r...

  10. Study on electrochemical corrosion mechanism of steel foot of insulators for HVDC lines

    Science.gov (United States)

    Zheng, Weihua; Sun, Xiaoyu; Fan, Youping

    2017-09-01

    The main content of this paper is the mechanism of electrochemical corrosion of insulator steel foot in HVDC transmission line, and summarizes five commonly used artificial electrochemical corrosion accelerated test methods in the world. Various methods are analyzed and compared, and the simulation test of electrochemical corrosion of insulator steel feet is carried out by water jet method. The experimental results show that the experimental environment simulated by water jet method is close to the real environment. And the three suspension modes of insulators in the actual operation, the most serious corrosion of the V type suspension hardware, followed by the tension string suspension, and the linear string corrosion rate is the slowest.

  11. Electrochemical impedance spectroscopy on Co-Cr-Mo alloy in two media simulating physiological liquid. Caractérisation par spectroscopie d'impédance électrochimique d'un alliage de Co-Cr-Mo dans différents milieux simulant le liquide physiologique.

    OpenAIRE

    Geringer , Jean; Normand , Bernard; Diemiaszonek , Robert; Alémany-Dumont , Catherine; Mary , Nicolas

    2007-01-01

    National audience; Co-Cr-Mo is an alloy which allows manufacturing orthopedic implants, especially hip total joint prostheses. This alloy has good tribological and biocompatibility properties. This work aims at studying electrochemical behavior of this alloy. Moreover, measurements reproductibility has been improved: polarization and electrochemical impedance spectroscopy. Measurements have been carried out with phosphate buffered solution and this one containing albumin, 1 g.L-1. Three diffe...

  12. Electrochemical treatment of graphite

    Energy Technology Data Exchange (ETDEWEB)

    Podlovilin, V.I.; Egorov, I.M.; Zhernovoj, A.I.

    1983-01-01

    In the course of investigating various modes of electrochemical treatment (ECT) it has been found that graphite anode treatment begins under the ''glow mode''. A behaviour of some marks of graphite with the purpose of ECT technique development in different electrolytes has been tested. Electrolytes have been chosen of three types: highly alkaline (pH 13-14), neutral (pH-Z) and highly acidic (pH 1-2). For the first time parallel to mechanical electroerosion treatment, ECT of graphite and carbon graphite materials previously considered chemically neutral is proposed. ECT of carbon graphite materials has a number of advantages as compared with electroerrosion and mechanical ones with respect to the treatment rate and purity (ronghness) of the surface. A small quantity of sludge (6-8%) under ECT is in highly alkali electrolytes.

  13. Organic electrochemical transistors

    Science.gov (United States)

    Rivnay, Jonathan; Inal, Sahika; Salleo, Alberto; Owens, Róisín M.; Berggren, Magnus; Malliaras, George G.

    2018-02-01

    Organic electrochemical transistors (OECTs) make effective use of ion injection from an electrolyte to modulate the bulk conductivity of an organic semiconductor channel. The coupling between ionic and electronic charges within the entire volume of the channel endows OECTs with high transconductance compared with that of field-effect transistors, but also limits their response time. The synthetic tunability, facile deposition and biocompatibility of organic materials make OECTs particularly suitable for applications in biological interfacing, printed logic circuitry and neuromorphic devices. In this Review, we discuss the physics and the mechanism of operation of OECTs, focusing on their identifying characteristics. We highlight organic materials that are currently being used in OECTs and survey the history of OECT technology. In addition, form factors, fabrication technologies and applications such as bioelectronics, circuits and memory devices are examined. Finally, we take a critical look at the future of OECT research and development.

  14. Electrochemical Hydrogen Compressor

    Energy Technology Data Exchange (ETDEWEB)

    Lipp, Ludwig [FuelCell Energy, Inc., Torrington, CT (United States)

    2016-01-21

    Conventional compressors have not been able to meet DOE targets for hydrogen refueling stations. They suffer from high capital cost, poor reliability and pose a risk of fuel contamination from lubricant oils. This project has significantly advanced the development of solid state hydrogen compressor technology for multiple applications. The project has achieved all of its major objectives. It has demonstrated capability of Electrochemical Hydrogen Compression (EHC) technology to potentially meet the DOE targets for small compressors for refueling sites. It has quantified EHC cell performance and durability, including single stage hydrogen compression from near-atmospheric pressure to 12,800 psi and operation of EHC for more than 22,000 hours. Capital cost of EHC was reduced by 60%, enabling a path to meeting the DOE cost targets for hydrogen compression, storage and delivery ($2.00-2.15/gge by 2020).

  15. Fast electrochemical actuator

    International Nuclear Information System (INIS)

    Uvarov, I V; Postnikov, A V; Svetovoy, V B

    2016-01-01

    Lack of fast and strong microactuators is a well-recognized problem in MEMS community. Electrochemical actuators can develop high pressure but they are notoriously slow. Water electrolysis produced by short voltage pulses of alternating polarity can overcome the problem of slow gas termination. Here we demonstrate an actuation regime, for which the gas pressure is relaxed just for 10 μs or so. The actuator consists of a microchamber filled with the electrolyte and covered with a flexible membrane. The membrane bends outward when the pressure in the chamber increases. Fast termination of gas and high pressure developed in the chamber are related to a high density of nanobubbles in the chamber. The physical processes happening in the chamber are discussed so as problems that have to be resolved for practical applications of this actuation regime. The actuator can be used as a driving engine for microfluidics. (paper)

  16. Organic electrochemical transistors

    KAUST Repository

    Rivnay, Jonathan

    2018-01-16

    Organic electrochemical transistors (OECTs) make effective use of ion injection from an electrolyte to modulate the bulk conductivity of an organic semiconductor channel. The coupling between ionic and electronic charges within the entire volume of the channel endows OECTs with high transconductance compared with that of field-effect transistors, but also limits their response time. The synthetic tunability, facile deposition and biocompatibility of organic materials make OECTs particularly suitable for applications in biological interfacing, printed logic circuitry and neuromorphic devices. In this Review, we discuss the physics and the mechanism of operation of OECTs, focusing on their identifying characteristics. We highlight organic materials that are currently being used in OECTs and survey the history of OECT technology. In addition, form factors, fabrication technologies and applications such as bioelectronics, circuits and memory devices are examined. Finally, we take a critical look at the future of OECT research and development.

  17. Digital evidence

    Directory of Open Access Journals (Sweden)

    Lukić Tatjana

    2012-01-01

    Full Text Available Although computer makes human activities faster and easier, innovating and creating new forms of work and other kinds of activities, it also influenced the criminal activity. The development of information technology directly affects the development of computer forensics without which, it can not even imagine the discovering and proving the computer offences and apprehending the perpetrator. Information technology and computer forensic allows us to detect and prove the crimes committed by computer and capture the perpetrators. Computer forensics is a type of forensics which can be defined as a process of collecting, preserving, analyzing and presenting digital evidence in court proceedings. Bearing in mind, that combat against crime, in which computers appear as an asset or object of the offense, requires knowledge of digital evidence as well as specific rules and procedures, the author in this article specifically addresses the issues of digital evidence, forensic (computer investigation, specific rules and procedures for detecting, fixing and collecting digital evidence and use of this type of evidence in criminal proceedings. The author also delas with international standards regarding digital evidence and cyber-space investigation.

  18. Digital watermark

    Directory of Open Access Journals (Sweden)

    Jasna Maver

    2000-01-01

    Full Text Available The huge amount of multimedia contents available on the World-Wide-Web is beginning to raise the question of their protection. Digital watermarking is a technique which can serve various purposes, including intellectual property protection, authentication and integrity verification, as well as visible or invisible content labelling of multimedia content. Due to the diversity of digital watermarking applicability, there are many different techniques, which can be categorised according to different criteria. A digital watermark can be categorised as visible or invisible and as robust or fragile. In contrast to the visible watermark where a visible pattern or image is embedded into the original image, the invisible watermark does not change the visual appearance of the image. The existence of such a watermark can be determined only through a watermark ex¬traction or detection algorithm. The robust watermark is used for copyright protection, while the fragile watermark is designed for authentication and integrity verification of multimedia content. A watermark must be detectable or extractable to be useful. In some watermarking schemes, a watermark can be extracted in its exact form, in other cases, we can detect only whether a specific given watermarking signal is present in an image. Digital libraries, through which cultural institutions will make multimedia contents available, should support a wide range of service models for intellectual property protection, where digital watermarking may play an important role.

  19. Digital Creativity

    DEFF Research Database (Denmark)

    Petersson Brooks, Eva; Brooks, Anthony Lewis

    2014-01-01

    This paper reports on a study exploring the outcomes from children’s play with technology in early childhood learning practices. The paper addresses questions related to how digital technology can foster creativity in early childhood learning environments. It consists of an analysis of children......’s interaction with the KidSmart furniture focusing on digital creativity potentials and play values suggested by the technology. The study applied a qualitative approach and included125 children (aged three to five), 10 pedagogues, and two librarians. The results suggests that educators should sensitively...... consider intervening when children are interacting with technology, and rather put emphasize into the integration of the technology into the environment and to the curriculum in order to shape playful structures for children’s digital creativity....

  20. Digital radiography

    International Nuclear Information System (INIS)

    Rath, M.; Lissner, J.; Rienmueller, R.; Haendle, J.; Siemens A.G., Erlangen

    1984-01-01

    Using a prototype of an electronic, universal examination unit equipped with a special X-ray TV installation, spotfilm exposures and digital angiographies with high spatial resolution and wide-range contrast could be made in the clinic for the first time. With transvenous contrast medium injection, the clinical results of digital angiography show excellent image quality in the region of the carotids and renal arteries as well as the arteries of the extremities. The electronic series exposures have an image quality almost comparable to the quality obtained with cutfilm changers in conventional angiography. There are certain limitations due to the input field of 25 cm X-ray image intensified used. In respect of the digital angiography imaging technique, the electronic universal unit is fully suitable for clinical application. (orig.) [de

  1. Digital photogrammetry

    CERN Document Server

    Egels, Yves

    2003-01-01

    Photogrammetry is the use of photography for surveying primarily and is used for the production of maps from aerial photographs. Along with remote sensing, it represents the primary means of generating data for Geographic Information Systems (GIS). As technology develops, it is becoming easier to gain access to it. The cost of digital photogrammetric workstations are falling quickly and these new tools are therefore becoming accessible to more and more users. Digital Photogrammetry is particularly useful as a text for graduate students in geomantic and is also suitable for people with a good basic scientific knowledge who need to understand photogrammetry, and who wish to use the book as a reference.

  2. Digital Marketing

    OpenAIRE

    Jerry Wind; Vijay Mahajan

    2002-01-01

    The digital revolution has shaken marketing to its core with consumers being offered greater price transparency and often even the chance to dictate the price. What does pricing mean in a world in which customers propose their own prices (as at priceline.com) or buyers and sellers haggle independently in auctions (as at e-Bay)? The most significant changes in the digital marketing show the emergence of 'cyber consumers', the cyber business-to-business world and the changing reality of an incr...

  3. Digital "X"

    DEFF Research Database (Denmark)

    Baiyere, Abayomi; Grover, Varun; Gupta, Alok

    2017-01-01

    Interest in using digital before existing research concepts seem to be on the rise in the IS field. This panel is positioned to explore what value lies in labelling our research as digital “x” as opposed to the well established IT “x” (where “x” can be strategy, infrastructure, innovation, artifa...... between this stream of research and existing research. Central among the expected output of the panel is the advancement of suggestions for future research and the critical pitfalls to avoid in doing so....

  4. Digital Radiography

    Science.gov (United States)

    1986-01-01

    System One, a digital radiography system, incorporates a reusable image medium (RIM) which retains an image. No film is needed; the RIM is read with a laser scanner, and the information is used to produce a digital image on an image processor. The image is stored on an optical disc. System allows the radiologist to "dial away" unwanted images to compare views on three screens. It is compatible with existing equipment and cost efficient. It was commercialized by a Stanford researcher from energy selective technology developed under a NASA grant.

  5. Digital filters

    CERN Document Server

    Hamming, Richard W

    1997-01-01

    Digital signals occur in an increasing number of applications: in telephone communications; in radio, television, and stereo sound systems; and in spacecraft transmissions, to name just a few. This introductory text examines digital filtering, the processes of smoothing, predicting, differentiating, integrating, and separating signals, as well as the removal of noise from a signal. The processes bear particular relevance to computer applications, one of the focuses of this book.Readers will find Hamming's analysis accessible and engaging, in recognition of the fact that many people with the s

  6. Digital voltmeter

    International Nuclear Information System (INIS)

    Yohannes Kamadi; Soekarno.

    1976-01-01

    The electrical voltage measuring equipment with digital display has been made. This equipment uses four digits display with single polarity measurement and integrating system. Pulses from the oscillator will be counted and converted to the staircase voltages, and compared to the voltage measured. When the balance is already achieved, the pulse will appear at the comparator circuit. This pulse will be used to trigger univibrator circuit. The univibrator output is used as signal for stopping the counting, and when reading time T already stops, the counting system will be reset. (authors)

  7. Digital communication

    CERN Document Server

    Das, Apurba

    2010-01-01

    ""Digital Communications"" presents the theory and application of the philosophy of Digital Communication systems in a unique but lucid form. This book inserts equal importance to the theory and application aspect of the subject whereby the authors selected a wide class of problems. The Salient features of the book are: the foundation of Fourier series, Transform and wavelets are introduces in a unique way but in lucid language; the application area is rich and resemblance to the present trend of research, as we are attached with those areas professionally; a CD is included which contains code

  8. Digital literacies

    CERN Document Server

    Hockly, Nicky; Pegrum, Mark

    2014-01-01

    Dramatic shifts in our communication landscape have made it crucial for language teaching to go beyond print literacy and encompass the digital literacies which are increasingly central to learners' personal, social, educational and professional lives. By situating these digital literacies within a clear theoretical framework, this book provides educators and students alike with not just the background for a deeper understanding of these key 21st-century skills, but also the rationale for integrating these skills into classroom practice. This is the first methodology book to address not jus

  9. Electrochemical measurements in PWR steam generators to follow crevice chemistry

    International Nuclear Information System (INIS)

    Feron, D.

    1991-01-01

    In PWR steam generator crevices, the evolution of chemistry is important for the understanding of corrosion phenomena. Electrochemical measurements have been performed in high temperature simulated crevice environments in order to follow hideout processes and remedial actions (on-line addition of boric acid). Reported tests have been conducted with model boilers of AJAX facilities. Eccentric and concentric tube support plate crevices have been instrumented with platinum electrodes. Electrochemical measurements have been collected when model boiler was under nominal conditions (primary temperature: 335 deg C, secondary temperature: 280 deg C). They include Electrochemical Impedance Spectroscopy (EIS) and potential measurements: with EIS, sodium and boric acid hideouts have been detected and followed. Potential measurements have been performed in an attempt to measure crevice PH evolution

  10. MODELING OF TUBULAR ELECTROCHEMICAL REACTOR FOR DYE REMOVAL

    Directory of Open Access Journals (Sweden)

    V. VIJAYAKUMAR

    2017-06-01

    Full Text Available The aim of the present investigation is to model a tubular electrochemical reactor for the treatment of synthetic dye wastewater. The tubular reactor was modeled and solved by finite difference method. For the model solution, the column was divided into 11 nodes in the axial direction and the variation in the radial direction has been neglected. An initial dye concentration of 200 mg L-1was taken in the reservoir. The reactor was operated in a batch with recirculation operation. Based on preliminary experiments all parameters have been optimized. The model simulation is compared with the experimental value and it is observed that the model fairly matches well with the experiment. The modeling of tubular electrochemical reactors for dye waste water treatment could be useful in the design and scale up of electrochemical process.

  11. Procedures for high precision setup verification and correction of lung cancer patients using CT-simulation and digitally reconstructed radiographs (DRR).

    NARCIS (Netherlands)

    Sornsen de Koste, van J.R.; Boer, de HC; Schuchhard-Schipper, RH; Senan, S.; Heijmen, BJ

    2003-01-01

    PURPOSE: In a recent study, large systematic setup errors were detected in patients with lung cancer when a conventional simulation procedure was used to define and mark the treatment isocenter. In the present study, we describe a procedure to omit the session at a conventional simulator to remove

  12. Digital delicacies

    OpenAIRE

    Holley, Rose

    2001-01-01

    This presentation outlines the purpose and work of the newly appointed Digital Projects Librarian at the University of Auckland. It gives a brief overview of what digitisation is, the benefits, the stages of a digitisation project and also samples of interesting international digitisation projects and new University of Auckland Library Digitisation projects.

  13. Digital Forensics

    Science.gov (United States)

    Harron, Jason; Langdon, John; Gonzalez, Jennifer; Cater, Scott

    2017-01-01

    The term forensic science may evoke thoughts of blood-spatter analysis, DNA testing, and identifying molds, spores, and larvae. A growing part of this field, however, is that of digital forensics, involving techniques with clear connections to math and physics. This article describes a five-part project involving smartphones and the investigation…

  14. Digital Disruption

    DEFF Research Database (Denmark)

    Rosenstand, Claus Andreas Foss

    det digitale domæne ud over det niveau, der kendetegner den nuværende debat, så præsenteres der ny viden om digital disruption. Som noget nyt udlægges Clayton Christens teori om disruptiv innovation med et særligt fokus på små organisationers mulighed for eksponentiel vækst. Specielt udfoldes...... forholdet mellem disruption og den stadig accelererende digitale udvikling i konturerne til ny teoridannelse om digital disruption. Bogens undertitel ”faretruende og fascinerende forandringer” peger på, at der er behov for en nuanceret debat om digital disruption i modsætning til den tone, der er slået an i...... videre kalder et ”disruption-råd”. Faktisk er rådet skrevet ind i 2016 regeringsgrundlaget for VLK-regeringen. Disruption af organisationer er ikke et nyt fænomen; men hastigheden, hvormed det sker, er stadig accelererende. Årsagen er den globale mega-trend: Digitalisering. Og derfor er specielt digital...

  15. Digital books.

    Science.gov (United States)

    Wink, Diane M

    2011-01-01

    In this bimonthly series, the author examines how nurse educators can use the Internet and Web-based computer technologies such as search, communication, and collaborative writing tools; social networking and social bookmarking sites; virtual worlds; and Web-based teaching and learning programs. This article describes digital books.

  16. Digital forvaltning

    DEFF Research Database (Denmark)

    Remmen, Arne; Larsen, Torben; Mosgaard, Mette

    2004-01-01

    Større effektivitet, bedre service og mere demokrai er blot nogle af forventningerne til indførelse af digital forveltning i kommunerne. Kapitlet giver bland andet svar på spørgsmålene : Hvordan lever kommunerne op hertil i dagligdagen? hvilke virkemidler anvender de? Hvilke barrierer har der været...

  17. Digital Methods

    NARCIS (Netherlands)

    Rogers, R.

    2013-01-01

    In Digital Methods, Richard Rogers proposes a methodological outlook for social and cultural scholarly research on the Web that seeks to move Internet research beyond the study of online culture. It is not a toolkit for Internet research, or operating instructions for a software package; it deals

  18. Efficacy of conventional and digital radiographic imaging methods for diagnosis of simulated external root resorption Eficácia dos métodos radiográficos convencional e digital no diagnóstico de reabsorções radiculares simuladas

    Directory of Open Access Journals (Sweden)

    Vânia Portela Ditzel Westphalen

    2004-06-01

    Full Text Available This in vitro study evaluated and compared the efficacy of conventional (Kodak F-speed (Insight, Kodak and a digital (DRS Gnatus System, Gnatus radiographic imaging for diagnosis of simulated external root resorption cavities. Human mandibles containing teeth were covered with bovine muscle slices in order to simulate the soft tissues. Nine teeth out of each group of teeth were investigated. Initially, three periapical radiographs of each tooth were taken using a tube shift technique with mesial and distal angulations in both methods. All teeth were subsequently extracted and had 0.7 and 1.0-mm deep cavities prepared on their buccal, mesial and distal surfaces at the cervical, middle and apical thirds. Steel cylinder burs (DORMER® - HSS with 0.7 and 1.0-mm diameter were used. Each tooth was replaced on its socket and new radiographs were taken. Three examiners, an endodontist (1, a radiologist (2 and a general dentist (3, evaluated the images. Results were compared by z-test and showed a higher number of cavities detected by the digital method compared to the conventional, regardless of the deepness of the cavity. In decreasing order, examiners 2, 3 and 1 exhibited different potentials of detection of cavities with the conventional method. Examiners 1 and 3 exhibited superior potential than examiner 2 for detection of cavities of different sizes with the digital method.O presente estudo visou avaliar e comparar, in vitro, a eficácia dos métodos radiográficos convencional (filmes de grupos de sensibilidade E/F Kodak Insight e digital (Sistema Gnatus DRS, no diagnóstico de cavidades simulando reabsorções radiculares externas, em dentes contidos em mandíbulas humanas secas com músculo bovino simulando o tecido mole. As variáveis consideradas foram: tamanhos das cavidades e examinadores envolvidos. Foram utilizadas nove unidades de cada grupo dentário, incisivos (central e lateral, caninos, pré-molares e molares, sem lesões periapicais

  19. Destructive impact of molecular noise on nanoscale electrochemical oscillators

    Science.gov (United States)

    Cosi, Filippo G.; Krischer, Katharina

    2017-06-01

    We study the loss of coherence of electrochemical oscillations on meso- and nanosized electrodes with numeric simulations of the electrochemical master equation for a prototypical electrochemical oscillator, the hydrogen peroxide reduction on Pt electrodes in the presence of halides. On nanoelectrodes, the electrode potential changes whenever a stochastic electron-transfer event takes place. Electrochemical reaction rate coefficients depend exponentially on the electrode potential and become thus fluctuating quantities as well. Therefore, also the transition rates between system states become time-dependent which constitutes a fundamental difference to purely chemical nanoscale oscillators. Three implications are demonstrated: (a) oscillations and steady states shift in phase space with decreasing system size, thereby also decreasing considerably the oscillating parameter regions; (b) the minimal number of molecules necessary to support correlated oscillations is more than 10 times as large as for nanoscale chemical oscillators; (c) the relation between correlation time and variance of the period of the oscillations predicted for chemical oscillators in the weak noise limit is only fulfilled in a very restricted parameter range for the electrochemical nano-oscillator.

  20. Electrochemical organic destruction in support of Hanford tank waste pretreatment

    International Nuclear Information System (INIS)

    Lawrence, W.E.; Surma, J.E.; Gervais, K.L.; Buehler, M.F.; Pillay, G.; Schmidt, A.J.

    1994-10-01

    The US Department of Energy's Hanford Site in Richland, Washington, has 177 underground storage tanks that contain approximately 61 million gallons of radioactive waste. The current cleanup strategy is to retrieve the waste and separate components into high-level and low-level waste. However, many of the tanks contain organic compounds that create concerns associated with tank safety and efficiency of anticipated separation processes. Therefore, a need exists for technologies that can safely and efficiently destroy organic compounds. Laboratory-scale studies conducted during FY 93 have shown proof-of-principle for electrochemical destruction of organics. Electrochemical oxidation is an inherently safe technology and shows promise for treating Hanford complexant concentrate aqueous/ slurry waste. Therefore, in support of Hanford tank waste pretreatment needs, the development of electrochemical organic destruction (ECOD) technology has been undertaken. The primary objective of this work is to develop an electrochemical treatment process for destroying organic compounds, including tank waste complexants. Electroanalytical analyses and bench-scale flow cell testing will be conducted to evaluate the effect of anode material and process operating conditions on the rate of organic destruction. Cyclic voltammetry will be used to identify oxygen overpotentials for the anode materials and provide insight into reaction steps for the electrochemical oxidation of complexants. In addition, a bench-scale flow cell evaluation will be conducted to evaluate the influence of process operating conditions and anode materials on the rate and efficiency of organic destruction using the nonradioactive a Hanford tank waste simulant

  1. An accelerated electrochemical MIC test for stainless alloys

    International Nuclear Information System (INIS)

    Gendron, T.S.; Cleland, R.D.

    1994-01-01

    Previous work in our laboratory and elsewhere has suggested that MIC of stainless steels and nickel-base alloys occurs in locally anaerobic regions that support the growth of sulfate reducing bacteria (SRB). The cathodic reaction is provided by oxygen reduction at remote sites. Such a coupling between anode and cathode is difficult to reproduce in the laboratory, but can be simulated indirectly using a double electrochemical cell, as in previous work. A more realistic simulation using a single aerated electrochemical cell has now been developed, in which a second organism (P. aeruginosa) is used to provide an anoxic habitat for SRB growth and possibly a source of organic carbon, within a layer of silt. A bare alloy electrode is used as the oxygen cathode. Tests of this kind using rigorous microbiological procedures have generated pitting corrosion of several alloys in low chloride media simulating freshwater heat exchanger conditions. Similar test procedures are applicable to other environments of interest to this symposium

  2. Characterization of Electrochemically Generated Silver

    Science.gov (United States)

    Adam, Niklas; Martinez, James; Carrier, Chris

    2014-01-01

    Silver biocide offers a potential advantage over iodine, the current state of the art in US spacecraft disinfection technology, in that silver can be safely consumed by the crew. Low concentrations of silver (Silver does not require hardware to remove it from a water system, and therefore can provide a simpler means for disinfecting water. The Russian segment of the International Space Station has utilized an electrochemically generated silver solution, which is colloidal in nature. To be able to reliably provide a silver biocide to drinking water by electrochemical means would reduce mass required for removing another biocide such as iodine from the water. This would also aid in crew time required to replace iodine removal cartridges. Future long term missions would benefit from electrochemically produced silver as the biocide could be produced on demand and requires only a small concentration to be effective. Since it can also be consumed safely, there is less mass in removal hardware and little consumables required for production. The goal of this project initially is to understand the nature of the electrochemically produced silver, the particle sizes produced by the electrochemical cell and the effect that voltage adjustment has on the particle size. In literature, it has been documented that dissolved oxygen and pH have an effect on the ionization of the electrochemical silver so those parameters would be measured and possibly adjusted to understand their effect on the silver.

  3. Electrochemical incineration of wastes

    Science.gov (United States)

    Kaba, L.; Hitchens, G. D.; Bockris, J. OM.

    1989-01-01

    The disposal of domestic organic waste in its raw state is a matter of increasing public concern. Earlier, it was regarded as permissible to reject wastes into the apparently infinite sink of the sea but, during the last 20 years, it has become clear that this is environmentally unacceptable. On the other hand, sewage farms and drainage systems for cities and for new housing developments are cumbersome and expensive to build and operate. New technology whereby waste is converted to acceptable chemicals and pollution-free gases at site is desirable. The problems posed by wastes are particularly demanding in space vehicles where it is desirable to utilize treatments that will convert wastes into chemicals that can be recycled. In this situation, the combustion of waste is undesirable due to the inevitable presence of oxides of nitrogen and carbon monoxide in the effluent gases. Here, in particular, electrochemical techniques offer several advantages including the low temperatures which may be used and the absence of any NO and CO in the evolved gases. Work done in this area was restricted to technological papers, and the present report is an attempt to give a more fundamental basis to the early stages of a potentially valuable technology.

  4. Electrochemically reduced titanocene dichloride as a catalyst of reductive dehalogenation of organic halides

    International Nuclear Information System (INIS)

    Magdesieva, Tatiana V.; Graczyk, Magdalena; Vallat, Alain; Nikitin, Oleg M.; Demyanov, Petr I.; Butin, Kim P.; Vorotyntsev, Mikhail A.

    2006-01-01

    We have studied a reaction between the reduced form of titanocene dichloride (Cp 2 TiCl 2 ) and a group of organic halides: benzyl derivatives (4-X-C 6 H 4 CH 2 Cl, X = H, NO 2 , CH 3 ; 4-X-C 6 H 4 CH 2 Br, X = H, NO 2 , PhC(O); 4-X-C 6 H 4 CH 2 SCN, X = H, NO 2 ) as well as three aryl halides (4-NO 2 C 6 H 4 Hal, Hal = Cl, Br; 4-CH 3 O-C 6 H 4 Cl). It has been shown that the electrochemical reduction of Cp 2 TiCl 2 in the presence of these benzyl halides leads to a catalytic cycle resulting in the reductive dehalogenation of these organic substrates to yield mostly corresponding toluene derivatives as the main product. No dehalogenation has been observed for aryl derivatives. Based on electrochemical data and digital simulation, possible schemes of the catalytic process have been outlined. For non-substituted benzyl halides halogen atom abstraction is a key step. For the reaction of nitrobenzyl halides the complexation of Ti(III) species with the nitro group takes place, with the electron transfer from Ti(III) to this group (owing to its highest coefficient in LUMO of the nitro benzyl halide) followed by an intramolecular dissociative electron redistribution in the course of the heterolytic C-Hal bond cleavage. The results for reduced titanocene dichloride centers immobilized inside a polymer film showed that the catalytic reductive dehalogenation of the p-nitrobenzyl chloride does occur but with a low efficiency because of the partial deactivation of the film due to the blocking of the electron charge transport between the electrode and catalytic centers

  5. Digital data monitoring display and logging

    International Nuclear Information System (INIS)

    Ficaro, E.P.; Wehe, D.K.

    1987-01-01

    A digital data acquisition system for monitoring plant variables has been designed and implemented at the University of Michigan's Ford Nuclear Reactor (FNR), a 2 Megawatt, open-pool, research reactor. The digital data provided by this system is useful for: closed loop control, real time experimental calculations, advanced simulation-as-knowledge techniques, improved operator training, and expert system applications. The purpose of this paper is to discuss the transition to the digital data world and the anticipated applications and benefits

  6. Digital Humanities and networked digital media

    DEFF Research Database (Denmark)

    Finnemann, Niels Ole

    2014-01-01

    This article discusses digital humanities and the growing diversity of digital media, digital materials and digital methods. The first section describes the humanities computing tradition formed around the interpretation of computation as a rule-based process connected to a concept of digital...... materials centred on the digitisation of non-digital, finite works, corpora and oeuvres. The second section discusses “the big tent” of contemporary digital humanities. It is argued that there can be no unifying interpretation of digital humanities above the level of studying digital materials with the help...... of software-supported methods. This is so, in part, because of the complexity of the world and, in part, because digital media remain open to the projection of new epistemologies onto the functional architecture of these media. The third section discusses the heterogeneous character of digital materials...

  7. Numerical stability of finite difference algorithms for electrochemical kinetic simulations: Matrix stability analysis of the classic explicit, fully implicit and Crank-Nicolson methods and typical problems involving mixed boundary conditions

    DEFF Research Database (Denmark)

    Bieniasz, Leslaw K.; Østerby, Ole; Britz, Dieter

    1995-01-01

    The stepwise numerical stability of the classic explicit, fully implicit and Crank-Nicolson finite difference discretizations of example diffusional initial boundary value problems from electrochemical kinetics has been investigated using the matrix method of stability analysis. Special attention...... has been paid to the effect of the discretization of the mixed, linear boundary condition with time-dependent coefficients on stability, assuming the two-point forward-difference approximations for the gradient at the left boundary (electrode). Under accepted assumptions one obtains the usual...... stability criteria for the classic explicit and fully implicit methods. The Crank-Nicolson method turns out to be only conditionally stable in contrast to the current thought regarding this method....

  8. Digital Materia

    OpenAIRE

    Lindgren, Marcus; Richey, Emma

    2014-01-01

    Med tankar från pedagogen Montessori och filosoferna Platon och Baudrillard har detta arbete behandlat frågor om datorn och dess betydelse för en grafiker. Frågeställningen formulerades efter hand och lydde tillslut: ”Hur kan materia te sig i digital form?” Forskningen resulterade i en hypotes för hur digital materia skulle födas i datorn: genom att blanda två uppsättningar av data, såsom två genuppsättningar tillsammans skapar en ny organism. Under produktionen utvecklades därmed en metod fö...

  9. Becoming digital

    DEFF Research Database (Denmark)

    Pors, Anja Svejgaard

    2015-01-01

    government, and draws on empirical material generated through observations, field notes, interviews and policy documents. The material is documenting how service is performed by frontline agents in the ‘bureaucratic encounter’ with citizens, who needs assistance to use digital self-service in order to apply...... online for a public benefit. Findings: The paper shows that e-government technology changes the mode of professionalism in citizen service from service to support. The paper gives an empirical account of recent Danish digital reforms and shows how the reforms both enable and constrain the work...... of ‘becoming digital’ by frontline agents. Overall the street-level bureaucrat’s classical tasks such as specialized casework are being displaced into promoting and educational tasks. An implication of this is blurred distinctions between professional skills and personal competences of the frontline agent...

  10. Digital resources

    Directory of Open Access Journals (Sweden)

    Redazione Reti Medievali (a cura di

    2005-12-01

    Full Text Available Bibliotheca Latinitatis Mediaevalis (circa VII sec. - XIV sec. IntraText Digital Library [01/06] Corpus Scriptorum Latinorum. A digital library of Latin literature by David Camden [01/06] Fonti disponibili online concernenti la vita religiosa medievale Rete Vitae Religiosae Mediaevalis Studia Conectens [01/06] Fuentes del Medievo Hispanico Instituto de Historia, Consejo Superior de Investigaciones Científicas [01/06] Latin Literature Forum Romanum [01/06] Ludovico Antonio Muratori, Dissertazioni sopra le antichità italiane, 1751 Biblioteca dei Classici Italiani di Giuseppe Bonghi [01/06] Medieval Latin The Latin Library [01/06] Médiévales Presses Universitaires de Vincennes - Revues.org [01/06] Regesta imperii Deutsche Kommission für die Bearbeitung der Regesta Imperii e.V. [01/06] Suda On Line Byzantine Lexicography [01/06

  11. Digital teenagers

    Directory of Open Access Journals (Sweden)

    Rafael Conde Melguizo

    2011-12-01

    Full Text Available Espín, Manuel (Coord.(2011 Adolescentes Digitales.  Revista Estudios de Juventud, Nº 92. Marzo 2011. INJUVE, Madrid."Adolescentes digitales" se nos muestra como una obra que pretende explorar desde distintos puntos de vista la realidad de la generación conocida como “nativos digitales” (Prensky, la generación actual de adolescentes que ha crecido con internet y el mundo digital como su entorno normal de socialización.

  12. Digital Flora

    OpenAIRE

    Bunnell, Katie

    2007-01-01

    This research is concerned with developing a new business model for flexible small scale ceramic production that exploits the customisation capabilities of digital manufacturing technologies and the market potential and global connectivity of the world wide web. It is arguably of particular relevance to regional economic development in remote areas (Amin, Tomaney, Sabel) such as Cornwall where there is a culture of high quality small scale production, limited market and manufacturing opportun...

  13. Simulação humana digital na concepção de postos de trabalho: estudo comparativo de casos Digital human simulation for ergonomic workplace design: comparative study of cases

    Directory of Open Access Journals (Sweden)

    Daniel Braatz

    2012-01-01

    Full Text Available Este artigo apresenta como a ferramenta computacional de Modelagem e Simulação Humana contextualizada pela Análise Ergonômica do Trabalho (AET e pela análise da Atividade Futura Possível pode auxiliar nos processos de projeto de postos de trabalho. São analisados dois estudos de caso nos quais a Simulação Humana foi empregada com auxílio do software Jack. O primeiro estudo aborda a concepção de um balcão de atendimento em uma empresa pública de serviços postais. O segundo apresenta o desenvolvimento de uma estação de trabalho de abastecimento de agulhas cirúrgicas em uma empresa de manufatura de produtos relacionados às áreas de saúde e higiene. A partir dos resultados dos estudos de caso, são explicitadas as contribuições e desafios da utilização dessa tecnologia em projetos visando equacionar as questões de saúde e produtividade. O uso da simulação integrada ao processo de intervenção da AET permitiu melhorar a antecipação das futuras atividades prováveis das novas situações de trabalho e auxiliou a integração e comunicação dos atores envolvidos nesses processos sociais.This paper investigates a computational tool for Human Modeling and Simulation contextualized by Ergonomic Analysis of Work (EAW and future work activity forecasting that can assist in the design processes of workplaces. Two case studies using Human Simulation was employed and the software Jack were analyzed. The first study presents the design of a counter in a public post office. The second shows the development of a workstation for the supply of surgical needles in a company that manufactures hygiene and healthcare products. The results of the case studies show the contributions and challenges of using this design technology aiming to solve problems related to health and productivity. The use of simulation combined with EAW helped to improve future work activity forecasting of new work situations and helped the integration and

  14. Speckle reduction techniques in digital holography

    Energy Technology Data Exchange (ETDEWEB)

    Monaghan, David; Kelly, Damien; Hennelly, Bryan [Department of Computer Science, National University of Ireland, Maynooth, Co. Kildare (Ireland); Javidi, Bahram, E-mail: bryanh@cs.nuim.i [University of Connecticut Electrical and Computer Engineering Department 371 Fairfield Road, Unit 2157 Storrs, CT 06269-2157 (United States)

    2010-02-01

    We have studied several speckle reduction techniques, applicable to digital holography. These include the use of optical diffusers, wavelet filtering, simulating temporal incoherence and filtering in the Fourier domain. The Digital Holograms (DHs) used in this study are captured using a Phase Shift Interferometric (PSI) in-line setup and subsequently reconstructed numerically.

  15. Electrochemical oxidation of organic waste

    International Nuclear Information System (INIS)

    Almon, A.C.; Buchanan, B.R.

    1990-01-01

    Both silver catalyzed and direct electrochemical oxidation of organic species are examined in analytical detail. This paper describes the mechanisms, reaction rates, products, intermediates, capabilities, limitations, and optimal reaction conditions of the electrochemical destruction of organic waste. A small bench-top electrocell being tested for the treatment of small quantities of laboratory waste is described. The 200-mL electrochemical cell used has a processing capacity of 50 mL per day, and can treat both radioactive and nonradioactive waste. In the silver catalyzed process, Ag(I) is electrochemically oxidized to Ag(II), which attacks organic species such as tributylphosphate (TBP), tetraphenylborate (TPB), and benzene. In direct electrochemical oxidation, the organic species are destroyed at the surface of the working electrode without the use of silver as an electron transfer agent. This paper focuses on the destruction of tributylphosphate (TBP), although several organic species have been destroyed using this process. The organic species are converted to carbon dioxide, water, and inorganic acids

  16. Tracking of electrochemical impedance of batteries

    Science.gov (United States)

    Piret, H.; Granjon, P.; Guillet, N.; Cattin, V.

    2016-04-01

    This paper presents an evolutionary battery impedance estimation method, which can be easily embedded in vehicles or nomad devices. The proposed method not only allows an accurate frequency impedance estimation, but also a tracking of its temporal evolution contrary to classical electrochemical impedance spectroscopy methods. Taking into account constraints of cost and complexity, we propose to use the existing electronics of current control to perform a frequency evolutionary estimation of the electrochemical impedance. The developed method uses a simple wideband input signal, and relies on a recursive local average of Fourier transforms. The averaging is controlled by a single parameter, managing a trade-off between tracking and estimation performance. This normalized parameter allows to correctly adapt the behavior of the proposed estimator to the variations of the impedance. The advantage of the proposed method is twofold: the method is easy to embed into a simple electronic circuit, and the battery impedance estimator is evolutionary. The ability of the method to monitor the impedance over time is demonstrated on a simulator, and on a real Lithium ion battery, on which a repeatability study is carried out. The experiments reveal good tracking results, and estimation performance as accurate as the usual laboratory approaches.

  17. Digital citizens Digital nations: the next agenda

    NARCIS (Netherlands)

    A.W. (Bert) Mulder; M.W. (Martijn) Hartog

    2015-01-01

    DIGITAL CITIZENS CREATE A DIGITAL NATION Citizens will play the lead role as they – in the next phase of the information society – collectively create a digital nation. Personal adoption of information and communication technology will create a digital infrastructure that supports individual and

  18. Electrochemical corrosion potential and noise measurement in high temperature water

    International Nuclear Information System (INIS)

    Fong, Clinton; Chen, Yaw-Ming; Chu, Fang; Huang, Chia-Shen

    2000-01-01

    Hydrogen water chemistry (HWC) is one of the most important methods in boiling water reactor(BWR) system to mitigate and prevent stress corrosion cracking (SCC) problems of stainless steel components. Currently, the effectiveness of HWC in each BWR is mainly evaluated by the measurement of electrochemical corrosion potentials (ECP) and on-line monitoring of SCC behaviors of stainless steels. The objective of this work was to evaluate the characteristics and performance of commercially available high temperature reference electrodes. In addition, SCC monitoring technique based on electrochemical noise analysis (ECN) was also tested to examine its crack detection capability. The experimental work on electrochemical corrosion potential (ECP) measurements reveals that high temperature external Ag/AgCl reference electrode of highly dilute KCl electrolyte can adequately function in both NWC and HWC environments. The high dilution external Ag/AgCl electrode can work in conjunction with internal Ag/AgCl reference electrode, and Pt electrode to ensure the ECP measurement reliability. In simulated BWR environment, the electrochemical noise tests of SCC were carried out with both actively and passively loaded specimens of type 304 stainless steel with various electrode arrangements. From the coupling current and corrosion potential behaviors of the passive loading tests during immersion test, it is difficult to interpret the general state of stress corrosion cracking based on the analytical results of overall current and potential variations, local pulse patterns, statistical characteristics, or power spectral density of electrochemical noise signals. However, more positive SCC indication was observed in the power spectral density analysis. For aqueous environments of high solution impedance, successful application of electrochemical noise technique for SCC monitoring may require further improvement in specimen designs and analytical methods to enhance detection sensitivity

  19. Current status and progress of digital orthopaedics in China

    Directory of Open Access Journals (Sweden)

    Guo-Xian Pei

    2014-07-01

    Full Text Available Based on the development of digital medicine and digital anatomy, the concept of “digital orthopaedics” was raised by Pei Guo-Xian in China in 2006. The most striking feature of digital orthopaedics is the combination of basic and clinical orthopaedic knowledge with digital technology. In this review, we summarised the development of digital orthopaedics in China in recent years with respect to: the foundation of the Chinese Association of Digital Orthopedics, virtual human project (VHP, three-dimensional (3D reconstruction, finite element simulation, navigation in orthopaedic operations, and robot-assisted orthopaedic operations. In addition, we briefly reviewed digital orthopaedics in world leading institutes. We also looked into the future of digital orthopaedics in China and proposed the major challenges in digital technology and application in orthopaedics.

  20. Superhydrophobic surfaces by electrochemical processes.

    Science.gov (United States)

    Darmanin, Thierry; Taffin de Givenchy, Elisabeth; Amigoni, Sonia; Guittard, Frederic

    2013-03-13

    This review is an exhaustive representation of the electrochemical processes reported in the literature to produce superhydrophobic surfaces. Due to the intensive demand in the elaboration of superhydrophobic materials using low-cost, reproducible and fast methods, the use of strategies based on electrochemical processes have exponentially grown these last five years. These strategies are separated in two parts: the oxidation processes, such as oxidation of metals in solution, the anodization of metals or the electrodeposition of conducting polymers, and the reduction processed such as the electrodeposition of metals or the galvanic deposition. One of the main advantages of the electrochemical processes is the relative easiness to produce various surface morphologies and a precise control of the structures at a micro- or a nanoscale. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Geological and technological evaluation of gold-bearing mineral material after photo-electrochemical activation leaching

    Science.gov (United States)

    Manzyrev, DV

    2017-02-01

    The paper reports the lab test results on simulation of heap leaching of unoxidized rebellious ore extracted from deep levels of Pogromnoe open pit mine, with different flowsheets and photo-electrochemically activated solutions. It has been found that pre-treatment of rebellious ore particles -10 mm in size by photo-electrochemically activated solutions at the stage preceding agglomeration with the use of rich cyanide solutions enhances gold recovery by 6%.

  2. Digital fluorimeter

    International Nuclear Information System (INIS)

    Mello, H.A. de.

    1980-11-01

    The specifications of a digital fluorimeter. That with adequated analytical techniques permits to determine trace amounts of fluorescents materials in samples, are described. The fluorimeter is of the reflection type, and uses fluorescents lamps for the excitation and an optical system which is connected to a photomultiplyer machine and permits the measurement of the light intensity. In the case of IEN (Instituto de Engenharia Nuclear) the equipment is used for to determine the uranium content in sample materials to be exported. The precision of the instrument is about + - 1% in the scale of 0.1 which is the normally one used in the current researchs. (E.G.) [pt

  3. Digital entrepreneurship

    DEFF Research Database (Denmark)

    Brem, Alexander; Richter, Chris; Kraus, Sascha

    2017-01-01

    comprising guided interviews with 14 companies from Germany, Austria and Switzerland provides detailed insights into different aspects of the sharing economy phenomenon. Our results make a direct contribution to sharing economy research, especially regarding the new business models of start-ups. Here, we...... find a clear difference between the relevance of economic and social orientation. The latter appears to be in higher demand among customers than entrepreneurs. The increasingly digitalized environment has led to a changed living situation characterized by urbanity, openness to new solutions, changed...

  4. Focus: Digital

    DEFF Research Database (Denmark)

    Technology has been an all-important and defining element within the arts throughout the 20th century, and it has fundamentally changed the ways in which we produce and consume music. With this Focus we investigate the latest developments in the digital domain – and their pervasiveness and rapid...... production and reception of contemporary music and sound art. With ‘Digital’ we present four composers' very different answers to how technology impact their work. To Juliana Hodkinson it has become an integral part of her sonic writing. Rudiger Meyer analyses the relationships between art and design and how...

  5. [Constructing 3-dimensional colorized digital dental model assisted by digital photography].

    Science.gov (United States)

    Ye, Hong-qiang; Liu, Yu-shu; Liu, Yun-song; Ning, Jing; Zhao, Yi-jiao; Zhou, Yong-sheng

    2016-02-18

    To explore a method of constructing universal 3-dimensional (3D) colorized digital dental model which can be displayed and edited in common 3D software (such as Geomagic series), in order to improve the visual effect of digital dental model in 3D software. The morphological data of teeth and gingivae were obtained by intra-oral scanning system (3Shape TRIOS), constructing 3D digital dental models. The 3D digital dental models were exported as STL files. Meanwhile, referring to the accredited photography guide of American Academy of Cosmetic Dentistry (AACD), five selected digital photographs of patients'teeth and gingivae were taken by digital single lens reflex camera (DSLR) with the same exposure parameters (except occlusal views) to capture the color data. In Geomagic Studio 2013, after STL file of 3D digital dental model being imported, digital photographs were projected on 3D digital dental model with corresponding position and angle. The junctions of different photos were carefully trimmed to get continuous and natural color transitions. Then the 3D colorized digital dental model was constructed, which was exported as OBJ file or WRP file which was a special file for software of Geomagic series. For the purpose of evaluating the visual effect of the 3D colorized digital model, a rating scale on color simulation effect in views of patients'evaluation was used. Sixteen patients were recruited and their scores on colored and non-colored digital dental models were recorded. The data were analyzed using McNemar-Bowker test in SPSS 20. Universal 3D colorized digital dental model with better color simulation was constructed based on intra-oral scanning and digital photography. For clinical application, the 3D colorized digital dental models, combined with 3D face images, were introduced into 3D smile design of aesthetic rehabilitation, which could improve the patients' cognition for the esthetic digital design and virtual prosthetic effect. Universal 3D colorized

  6. Electrochemical assessment of magnetite anti corrosive paints

    International Nuclear Information System (INIS)

    Escobar, D. M.; Arroyave, C.; Jaramillo, F.; Mattos, O. R.; Margarit, I. c.; Calderon, J.

    2003-01-01

    With the purpose of deepening in the understanding of the mechanisms of protection of anticorrosive pigments based on iron oxides, this work has been carried out on the production of pure magnetite, and copper and chromium doped magnetite, which were evaluated by different characterization techniques. The paints were prepared with a solvent less epoxy resin maintaining the Pigment volume Content near the Practical Critical value (CPVC), established for each pigment. The paints were applied on polished steel and monitored with electrochemical techniques at total immersion conditions. Permeability and impedance measurements of free films were also done. Impedance data were simulated with the Boukamp software. Results show that the paints pigmented with doped magnetite present better behaviour than a paint prepared with commercial hematite. (Author) 8 refs

  7. ELECTROCHEMICAL PROPERTIES OF NANOPOROUS CARBON ELECTRODES

    Directory of Open Access Journals (Sweden)

    P.Nigu

    2002-01-01

    Full Text Available Electrical double layer and electrochemical characteristics at the nanoporous carbon | (C2H54NBF4 + acetonitrile interface have been studied by the cyclic voltammetry and impedance spectroscopy methods. The value of zero charge potential (0.23 V vs. SCE in H2O, the region of ideal polarizability and other characteristics have been established. Analysis of complex plane plots shows that the nanoporous carbon | x M (C2H54NBF4 + acetonitrile interface can be simulated by the equivalent circuit, in which the two parallel conduction parts in the solid and liquid phases are interconnected by the double layer capacitance in parallel with the complex admittance of hindered reaction of the charge transfer process. The values of the characteristic frequency depend on the electrolyte concentration and on the electrode potential, i.e. on the nature of ions adsorbed at the surface of nanoporous carbon electrode.

  8. Electrochemical corrosion testing of metal waste forms

    International Nuclear Information System (INIS)

    Abraham, D. P.; Peterson, J. J.; Katyal, H. K.; Keiser, D. D.; Hilton, B. A.

    1999-01-01

    Electrochemical corrosion tests have been conducted on simulated stainless steel-zirconium (SS-Zr) metal waste form (MWF) samples. The uniform aqueous corrosion behavior of the samples in various test solutions was measured by the polarization resistance technique. The data show that the MWF corrosion rates are very low in groundwaters representative of the proposed Yucca Mountain repository. Galvanic corrosion measurements were also conducted on MWF samples that were coupled to an alloy that has been proposed for the inner lining of the high-level nuclear waste container. The experiments show that the steady-state galvanic corrosion currents are small. Galvanic corrosion will, hence, not be an important mechanism of radionuclide release from the MWF alloys

  9. Switching Transient Generation in Surface Interrogation Scanning Electrochemical Microscopy and Time-of-Flight Techniques.

    Science.gov (United States)

    Ahn, Hyun S; Bard, Allen J

    2015-12-15

    In surface interrogation scanning electrochemical microscopy (SI-SECM), fine and accurate control of the delay time between substrate generation and tip interrogation (tdelay) is crucial because tdelay defines the decay time of the reactive intermediate. In previous applications of the SI-SECM, the resolution in the control of tdelay has been limited to several hundreds of milliseconds due to the slow switching of the bipotentiostat. In this work, we have improved the time resolution of tdelay control up to ca. 1 μs, enhancing the SI-SECM to be competitive in the time domain with the decay of many reactive intermediates. The rapid switching SI-SECM has been implemented in a substrate generation-tip collection time-of-flight (SG-TC TOF) experiment of a solution redox mediator, and the results obtained from the experiment exhibited good agreement with that obtained from digital simulation. The reaction rate constant of surface Co(IV) on oxygen-evolving catalyst film, which was inaccessible thus far due to the lack of tdelay control, has been measured by the rapid switching SI-SECM.

  10. The improvement of SiO2 nanotubes electrochemical behavior by hydrogen atmosphere thermal treatment

    Science.gov (United States)

    Spataru, Nicolae; Anastasescu, Crina; Radu, Mihai Marian; Balint, Ioan; Negrila, Catalin; Spataru, Tanta; Fujishima, Akira

    2018-06-01

    Highly defected SiO2 nanotubes (SiO2-NT) were obtained by a simple sol-gel procedure followed by calcination. Boron-doped diamond (BDD) polycrystalline films coated with SiO2-NT were used as working electrodes and, unexpectedly, cyclic voltammetric experiments have shown that the concentration of both positive and negative defects at the surface is high enough to enable redox processes involving positively charged Ru(bpy)32+/3+ to occur. Conversely, no electrochemical activity was put into evidence for Fe(CN)63-/4- species, most likely as a result of the strong electrostatic repulsion exerted by the negatively charged SiO2 surface. The concentration of surface defects was further increased by a subsequent thermal treatment in a hydrogen atmosphere which, as EIS measurements have shown, significantly promotes Ru(bpy)32+ anodic oxidation. Digital simulation of the voltammetric responses demonstrated that this treatment does not lead to a similar increase of the number of electron-donor sites. It was also found that methanol anodic oxidation at hydrogenated SiO2-NT-supported platinum results in Tafel slopes of 116-220 mV decade-1, comparable to those reported for both conventional PtRu and Pt-oxide catalysts.

  11. Development of the user Interface of digital simulation system of the operational parameters of the TRIGA IPR-R1 Nuclear Research Reactor

    International Nuclear Information System (INIS)

    Felippe, Adriano de A.M.; Lage, Aldo M.F.; Mesquita, Amir Z.

    2017-01-01

    The development of simulation systems has been increasingly improved to ensure security and reliability to the systems being associated. Computational tools, simulation systems and programming languages increasingly allow the diversification of control systems. With increasing concern about monitoring the key parameters involved in chain reactions inside a nuclear reactor, new technologies are being developed to ensure operations safety. This paper deals with a practical application of a work that is being developed in the Center for the Development of Nuclear Technology - CDTN, which intends to simulate the operation of the TRIGA-IPR-R1 nuclear research reactor using the LabVIEW® software, evaluating the evolution of the neutron flux and other related events. In this paper, the visual interface of the reactor control table, developed through virtual instruments that allow, in a vast repertoire of tools, replicating the panels of the control table in modern screens that can be operated by a user of an analogous form, but still more practical and complete. Since the innovations developed for research reactors can be replicated in power reactors, and because of their lower operating and maintenance costs, projects in this area allow the development of several technologies

  12. Digital Humanities

    DEFF Research Database (Denmark)

    Nielsen, Hans Jørn

    2015-01-01

    overgangen fra trykkekultur til digital kultur. For det første problemstillingen omkring digitalisering af litterær kulturarv med fokus på kodning og tagging af teksten samt organisering i hypertekststrukturer. For det andet reorganiseringen af det digitale dokument i dataelementer og database. For det......Artiklen præsenterer først nogle generelle problemstillinger omkring Digital Humanities (DH) med det formål at undersøge dem nærmere i relation til konkrete eksempler på forskellige digitaliseringsmåder og ændringer i dokumentproduktion. I en nærmere afgrænsning vælger artiklen den tendens i DH......, der betragter DH som forbundet med "making" og "building" af digitale objekter og former. Dette kan også karakteriseres som DH som praktisk-produktiv vending. Artiklen har valgt tre typer af digitalisering. De er valgt ud fra, at de skal repræsentere forskellige måder at håndtere digitaliseringen på...

  13. Electrochemical oxidation of propene by use of LSM15/CGO10 electrochemical reactor

    DEFF Research Database (Denmark)

    Ippolito, Davide; Andersen, Kjeld Bøhm; Kammer Hansen, Kent

    2012-01-01

    The propene catalytic oxidation was studied over an 11-layers porous electrochemical reactor made by La0.85Sr0.15MnO3 and Ce0.9Gd0.1O1.95 with the objective to simulate the abatement of exhaust gases emitted from Diesel engines. This work shows the possibility to enhance the catalytic activity th...... of catalysis (EPOC) was found at low temperature....

  14. SUPPLEMENTARY INFORMATION A combined Electrochemical ...

    Indian Academy of Sciences (India)

    DELL

    A combined Electrochemical and Theoretical study of pyridine-based Schiff bases as novel corrosion inhibitors for mild steel in hydrochloric acid medium. PARUL DOHAREa, M A QURAISHIb* and I B OBOTb. aDepartment of Chemistry, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar. Pradesh 221 ...

  15. Electrolytes for magnesium electrochemical cells

    Science.gov (United States)

    Burrell, Anthony K.; Sa, Niya; Proffit, Danielle Lee; Lipson, Albert; Liao, Chen; Vaughey, John T.; Ingram, Brian J.

    2017-07-04

    An electrochemical cell includes a high voltage cathode configured to operate at 1.5 volts or greater; an anode including Mg.sup.0; and an electrolyte including an ether solvent and a magnesium salt; wherein: a concentration of the magnesium salt in the ether is 1 M or greater.

  16. All-Polymer Electrochemical Sensors

    DEFF Research Database (Denmark)

    Kafka, Jan Robert

    This thesis presents fabrication strategies to produce different types of all-polymer electrochemical sensors based on electrodes made of the highly conductive polymer poly(3,4-ethylenedioxythiophene) (PEDOT). Three different systems are presented, fabricated either by using microdrilling or by hot...

  17. Electrochemical method for transferring graphene

    DEFF Research Database (Denmark)

    2015-01-01

    The present application discloses a method for separating a graphene-support layer laminate from a conducting substrate-graphene-support layer laminate, using a gentle, controllable electrochemical method. In this way, substrates which are fragile, expensive or difficult to manufacture can be used...... - and even re-used - without damage or destruction of the substrate or the graphene....

  18. Materials for electrochemical device safety

    Science.gov (United States)

    Vissers, Daniel R.; Amine, Khalil; Thackeray, Michael M.; Kahaian, Arthur J.; Johnson, Christopher S.

    2015-04-07

    An electrochemical device includes a thermally-triggered intumescent material or a gas-triggered intumescent material. Such devices prevent or minimize short circuits in a device that could lead to thermal run-away. Such devices may include batteries or supercapacitors.

  19. (Bio)electrochemical ammonia recovery

    NARCIS (Netherlands)

    Kuntke, P.; Sleutels, T.H.J.A.; Rodríguez Arredondo, M.; Georg, S.; Barbosa, S.G.; Heijne, Ter A.; Hamelers, Hubertus V.M.; Buisman, C.J.N.

    2018-01-01

    In recent years, (bio)electrochemical systems (B)ES have emerged as an energy efficient alternative for the recovery of TAN (total ammonia nitrogen, including ammonia and ammonium) from wastewater. In these systems, TAN is removed or concentrated from the wastewater under the influence of an

  20. Graphene-based electrochemical supercapacitors

    Indian Academy of Sciences (India)

    Graphenes prepared by three different methods have been investigated as electrode materials in electrochemical supercapacitors. The samples prepared by exfoliation of graphitic oxide and by the transformation of nanodiamond exhibit high specific capacitance in aq. H2SO4, the value reaching up to 117 F/g. By using an ...

  1. Graphene-based electrochemical supercapacitors

    Indian Academy of Sciences (India)

    WINTEC

    been great interest in graphene, which constitutes an entirely new class of carbon. Electrical characteriza- tion of single-layer graphene has been reported. 12,13. We have investigated the use of graphene as elec- trode material in electrochemical supercapacitors. For this purpose, we have employed graphene prepared.

  2. SURFACE PROPERTIES OF ELECTROCHEMICALLY REDUCED ...

    African Journals Online (AJOL)

    DJFLEX

    A viscose rayon based activated carbon cloth (ACC) was electrochemically reduced ..... bath of liquid nitrogen at a temperature of 77 K. ... that above 59,400 c/g extent of oxidation, the ..... ACC react with aldehyde groups to produce ether.

  3. ELECTROCHEMICAL DETERMINATION OF ETHANOL, 2 ...

    African Journals Online (AJOL)

    2014-12-31

    Dec 31, 2014 ... ABSTRACT. In this work, we present the modification of a glassy carbon electrode with nickel oxide film which is performed in two successive steps. In the first one, the electrochemical deposition of metallic nickel on the glassy carbon electrode (GCE) is achieved in 0.1M boric acid; in the second step, the ...

  4. Mejoramiento de procesos constructivos a partir de un módulo programable para captura de imágenes y simulación digital Improvement of constructive processes based on a programmable unit for images capture and digital simulation

    Directory of Open Access Journals (Sweden)

    Adriana Gómez Cabrera

    2012-08-01

    modelo de simulación digital del proceso constructivo. Los resultados obtenidos, permiten reducir tiempos de ciclo y dar un mejor uso a los recursos, representando ahorro de recursos para el proyecto.Civil projects executors are constantly dealing with the challenge of increasing productivity through resources optimization and their interaction; this has been addressed from different points of view using computational tools and manual tools. This challenge demands also, the implementation of new information technologies and digital tools as an effective strategy to capture reliable data that could contribute to improve the productivity quality and security indicators. This work presents a value generation in construction projects, through the use of new technologies to capture digital information that allows a construction process re-engineering using Lean Construction philosophy and digital simulation. At first, the design and development of an autonomous and programmable module is presented, powered with solar energy, used to capture digital images of construction processes. This system includes hardware and electronic components such as cameras, video cameras, electronic cards, computers, solar panels, web platform and communication systems; all controlled by a specially designed software which simplifies the control of the equipment and its components. This system simplifies the decision-making process regarding the construction methods and the resources involved, in order to minimize the costs and to increase the performance. The results obtained in the implementation of the module in a construction project in Bogota, Colombia, are presented in the second part of this paper. The analysis of the results, the constructive process characterization using Time-Lapse videos and a digital simulation model of the construction process are presented. These results allow reducing cycle times and using better the resources, which is translated into resources savings for the

  5. Research challenges in digital education.

    Science.gov (United States)

    Norman, Geoff

    2014-09-01

    Simulation and other forms of digital learning will occupy a place of increasing prominence in medical education in the future. However, to maximally use the potential of these media, we must go beyond a research agenda dictated by a 'Does it work?' question to one driven by careful analysis of the nature of the task to be learned and its relation to the characteristics of the technology. Secondly, we must change the focus from the characteristics of individual devices to a broader approach to design of a digital curriculum based on current understanding of the nature of human learning.

  6. Total filmless digital radiology service

    International Nuclear Information System (INIS)

    Mun, S.K.; Goeringer, F.; Benson, H.; Horii, S.C.

    1989-01-01

    The completion of a comprehensive picture archiving and communication system (PACS) at Georgetown University Hospital has allowed us to identify a number of technical, administrative, personnel, and operational issues that will affect a total digital radiology service. With a hospital-wide digital imaging network system, computer simulation of communications and storage options, and economic modeling, we have developed a feasibility study and implementation strategy for the smooth transition to a nearly filmless radiology service over the next several years. This paper describes the technical and operational requirements for various database operations, workstations (used in diagnosis, review, and education), and communications. Site and installation planning, personnel training, and transition operations are discussed

  7. Digital radiography

    DEFF Research Database (Denmark)

    Precht, H; Gerke, O; Rosendahl, K

    2012-01-01

    BACKGROUND: New developments in processing of digital radiographs (DR), including multi-frequency processing (MFP), allow optimization of image quality and radiation dose. This is particularly promising in children as they are believed to be more sensitive to ionizing radiation than adults....... OBJECTIVE: To examine whether the use of MFP software reduces the radiation dose without compromising quality at DR of the femur in 5-year-old-equivalent anthropomorphic and technical phantoms. MATERIALS AND METHODS: A total of 110 images of an anthropomorphic phantom were imaged on a DR system (Canon DR...... with CXDI-50 C detector and MLT[S] software) and analyzed by three pediatric radiologists using Visual Grading Analysis. In addition, 3,500 images taken of a technical contrast-detail phantom (CDRAD 2.0) provide an objective image-quality assessment. RESULTS: Optimal image-quality was maintained at a dose...

  8. Fokus: Digital

    DEFF Research Database (Denmark)

    2014-01-01

    i det digitale domæne – udviklinger, der foregår hastigt og er gennemgribende, og som derfor kræver et nærmere blik på forholdet mellem kunsten og teknologien. Komponistens forståelse af sin metier udfordres – samtidig med at befæstede ideer om kunstværket møder modstand fra nye mediemæssige...... sammenhænge og fra forandrede distributionsformer. Dette betyder ændrede betingelser for både produktion og reception af kunstmusik og lydkunst. Med Digital tager vi udgangspunkt i fire komponisters meget forskellige bud på hvordan teknologien spiller en rolle i arbejdet. Juliana Hodkinson beskriver hvordan...

  9. CORTAP: a coupled neutron kinetics-heat transfer digital computer program for the dynamic simulation of the high temperature gas cooled reactor core

    International Nuclear Information System (INIS)

    Cleveland, J.C.

    1977-01-01

    CORTAP (Core Transient Analysis Program) was developed to predict the dynamic behavior of the High Temperature Gas Cooled Reactor (HTGR) core under normal operational transients and postulated accident conditions. CORTAP is used both as a stand-alone component simulation and as part of the HTGR nuclear steam supply (NSS) system simulation code ORTAP. The core thermal neutronic response is determined by solving the heat transfer equations for the fuel, moderator and coolant in an average powered region of the reactor core. The space independent neutron kinetics equations are coupled to the heat transfer equations through a rapidly converging iterative technique. The code has the capability to determine conservative fuel, moderator, and coolant temperatures in the ''hot'' fuel region. For transients involving a reactor trip, the core heat generation rate is determined from an expression for decay heat following a scram. Nonlinear effects introduced by temperature dependent fuel, moderator, and coolant properties are included in the model. CORTAP predictions will be compared with dynamic test results obtained from the Fort St. Vrain reactor owned by Public Service of Colorado, and, based on these comparisons, appropriate improvements will be made in CORTAP

  10. Average glandular dose in digital mammography and digital breast tomosynthesis: comparison of phantom and patient data

    NARCIS (Netherlands)

    Bouwman, R. W.; van Engen, R. E.; Young, K. C.; den Heeten, G. J.; Broeders, M. J. M.; Schopphoven, S.; Jeukens, C. R. L. P. N.; Veldkamp, W. J. H.; Dance, D. R.

    2015-01-01

    For the evaluation of the average glandular dose (AGD) in digital mammography (DM) and digital breast tomosynthesis (DBT) phantoms simulating standard model breasts are used. These phantoms consist of slabs of polymethyl methacrylate (PMMA) or a combination of PMMA and polyethylene (PE). In the last

  11. Digital work in a digitally challenged organization

    NARCIS (Netherlands)

    Davison, R.M.; Ou, Carol

    Digitally literate employees are accustomed to having free access to digital media technologies. However, some organizations enact information technology (IT) governance structures that explicitly proscribe access to these technologies, resulting in considerable tension between employees and the

  12. Digital implementation, simulation and tests in MATLAB of the models of Steam line, the turbines, the pressure regulator of a BWR type nucleo electric power plant

    International Nuclear Information System (INIS)

    Lopez R, A.

    2004-01-01

    In this phase of the project they were carried out exhaustive tests to the models of the steam lines, turbines and pressure regulator of a BWR type nucleo electric central for to verify that their tendencies and behaviors are it more real possible. For it, it was necessary to also analyze the transfer functions of the different components along the steam line until the power generator. Such models define alone the dominant poles of the system, what is not limitation to reproduce a wide range of anticipated transitoriness of a power station operation. In the same manner, it was integrated and proved the integrated model form with the models of feeding water of the SUN-RAH, simulating the nuclear reactor starting from predetermined entrances of the prospective values of the vessel. Also it was coupled with the graphic interface developed with the libraries DirectX implementing a specific monitoring panel for this system. (Author)

  13. USNA DIGITAL FORENSICS LAB

    Data.gov (United States)

    Federal Laboratory Consortium — To enable Digital Forensics and Computer Security research and educational opportunities across majors and departments. Lab MissionEstablish and maintain a Digital...

  14. Can We Teach Digital Natives Digital Literacy?

    Science.gov (United States)

    Ng, Wan

    2012-01-01

    In recent years, there has been much debate about the concept of digital natives, in particular the differences between the digital natives' knowledge and adoption of digital technologies in informal versus formal educational contexts. This paper investigates the knowledge about educational technologies of a group of undergraduate students…

  15. Math for the digital factory

    CERN Document Server

    Hömberg, Dietmar; Landry, Chantal

    2017-01-01

    This volume provides a unique collection of mathematical tools and industrial case studies in digital manufacturing. It addresses various topics, ranging from models of single production technologies, production lines, logistics and workflows to models and optimization strategies for energy consumption in production. The digital factory represents a network of digital models and simulation and 3D visualization methods for the holistic planning, realization, control and ongoing improvement of all factory processes related to a specific product. In the past ten years, all industrialized countries have launched initiatives to realize this vision, sometimes also referred to as Industry 4.0 (in Europe) or Smart Manufacturing (in the United States). Its main goals are • reconfigurable, adaptive and evolving factories capable of small-scale production • high-performance production, combining flexibility, productivity, precision and zero defects • energy and resource efficiency in manufacturing None of these...

  16. INCORRECT PRESERVATION OF AMPUTATED DIGITS

    Directory of Open Access Journals (Sweden)

    Uroš Ahčan

    2004-09-01

    Full Text Available Background. A decision to replant is critically dependent on the condition of the amputated digit and the way it was preserved during transport. The most common error is exposing the amputated digit to very low temperatures. Preservation directly on ice, on cooling devices in portable refrigerators, or on top of packets of frozen meat often result in a frozen and therefore unusable body digit.Methods. An inquiry questionnaire on correct methods of preservation of amputated digits was conducted on a sample of 30 lay persons, 30 medical students, and 15 physicians.Three simulations of most frequently used methods of preservation of amputated digit were conducted (the correct method; directly on ice; on cooling devices of portable refrigerators. Environment temperature of the (simulated amputated digits stored was measured.In a retrospective study, hospital records of patients treated at the Clinical department of plastic surgery and burns in Ljubljana between 1998 and 2002 were examined. We determined the number of replantations performed, gender of the patients, their age, the mechanism of the injury, the success rate of the replantation, and the duration of hospitalisation. In five case described in detail, we present an inadequate treatment of the amputated digits.Results. The results of the questionnaire survey show that no less than 86.7% of lay person respondents would have treated the injuries in an incorrect way; same holds for 43.4% students of medicine, and 33.3% of practicing physicians.The temperature of the simulated amputated digit remained above 5°C throughout the simulated correct treatment. When preserved directly on ice on or coolant bodies, the temperature dropped below the freezing point and never climbed above 0°C throughout the duration of the simulation (150 minutes.Between years 1998 and 2002, Clinical department of plastic surgery and burns at the University clinical centre Ljubljana admitted 124 injured persons with

  17. Electrochemical and passive behaviour of tin alloyed ferritic stainless steel in concrete environment

    Science.gov (United States)

    Luo, Hong; Su, Huaizhi; Li, Baosong; Ying, Guobing

    2018-05-01

    In the present work, the electrochemical behavior and semiconducting properties of a tin alloyed ferritic stainless steel in simulated concrete solution in presence of NaCl were estimated by conventional electrochemical methods such as potentiodynamic polarization, electrochemical impedance spectroscopy, and capacitance measurement (Mott-Schottky approach). The surface passive film was analyzed by X-ray photoelectron spectroscopy. The results revealed a good agreement between pitting corrosion, electrochemical behaviour, and electronic properties. The p and n-type bilayer structure passive film were observed. The increase of Sn4+ oxide species in the passive film shows no beneficial effects on the pitting corrosion. In addition, the dehydration of the passive film was further discussed.

  18. Digital produktion

    DEFF Research Database (Denmark)

    Bogen sætter fokus på digital produktion, som er en stærk læringsform, der faciliterer elevernes læreprocesser og kvalificerer elevernes faglige læringsresultater. Det sker når lærerne udarbejder didaktiske rammedesign, hvor eleverne arbejder selvstændigt inden for dette rammedesign, og hvor mål og...... procesevaluering stilladserer elevernes faglige proces. I digitale produktionsprocesser arbejder eleverne iterativt, de udvikler ejerskab til produktionen og fastholder selv deres læreprocesser. It’s multimodalitet, elevernes kollaborative tilgange, videndeling mellem eleverne og elevernes uformelle lege- og...... elevernes digitale produktion er lærernes didaktiske rammesætning og stilladserende tilgange. Her lægger lærerne op til, at eleverne som didaktiske designere i relation til rammesætningen skal organisere og planlægge deres læreprocesser, inddrages i målsætning, evaluering og valg af digitale ressourcer...

  19. Digital dannelse

    DEFF Research Database (Denmark)

    Bundsgaard, Jeppe

    2012-01-01

    I al vores iver efter at få presset nogle flere digitale dimser ind i skolen, er vi i fare for at glemme hvad det er vi skal med disse dimser. Der er store forventninger til at de kan gøre det lettere at være lærer (og dermed billigere), og det kan det måske. Men der er jo også et dannelsesspørgs......I al vores iver efter at få presset nogle flere digitale dimser ind i skolen, er vi i fare for at glemme hvad det er vi skal med disse dimser. Der er store forventninger til at de kan gøre det lettere at være lærer (og dermed billigere), og det kan det måske. Men der er jo også et...... dannelsesspørgsmål knyttet til it. Hvad er egentlig digital dannelse? Og hvad betyder det for danskfaget?...

  20. Digital forensics digital evidence in criminal investigations

    CERN Document Server

    Marshall, Angus McKenzie

    2009-01-01

    The vast majority of modern criminal investigations involve some element of digital evidence, from mobile phones, computers, CCTV and other devices. Digital Forensics: Digital Evidence in Criminal Investigations provides the reader with a better understanding of how digital evidence complements "traditional" scientific evidence and examines how it can be used more effectively and efficiently in a range of investigations. Taking a new approach to the topic, this book presents digital evidence as an adjunct to other types of evidence and discusses how it can be deployed effectively in s