WorldWideScience

Sample records for electrochemical aptamer-based sensors

  1. Aptamer based electrochemical sensors for emerging environmental pollutants

    Directory of Open Access Journals (Sweden)

    Akhtar eHAYAT

    2014-06-01

    Full Text Available Environmental contaminants monitoring is one of the key issues in understanding and managing hazards to human health and ecosystems. In this context, aptamer based electrochemical sensors have achieved intense significance because of their capability to resolve a potentially large number of problems and challenges in environmental contamination. An aptasensor is a compact analytical device incorporating an aptamer (oligonulceotide as the sensing element either integrated within or intimately associated with a physiochemical transducer surface. Nucleic acid is well known for the function of carrying and passing genetic information, however, it has found a key role in analytical monitoring during recent years. Aptamer based sensors represent a novelty in environmental analytical science and there are great expectations for their promising performance as alternative to conventional analytical tools. This review paper focuses on the recent advances in the development of aptamer based electrochemical sensors for environmental applications with special emphasis on emerging pollutants.

  2. Effect of structure variation of the aptamer-DNA duplex probe on the performance of displacement-based electrochemical aptamer sensors.

    Science.gov (United States)

    Pang, Jie; Zhang, Ziping; Jin, Haizhu

    2016-03-15

    Electrochemical aptamer-based (E-AB) sensors employing electrode-immobilized, redox-tagged aptamer probes have emerged as a promising platform for the sensitive and quick detection of target analytes ranging from small molecules to proteins. Signal generation in this class of sensor is linked to change in electron transfer efficiency upon binding-induced change in flexibility/conformation of the aptamer probe. Because of this signaling mechanism, signal gains of these sensors can be improved by employing a displacement-based recognition system, which links target binding with a large-scale flexibility/conformation shift from the aptamer-DNA duplex to the single-stranded DNA or the native aptamer. Despite the relatively large number of displacement-based E-AB sensor samples, little attention has been paid to the structure variation of the aptamer-DNA duplex probe. Here we detail the effects of complementary length and position of the aptamer-DNA duplex probe on the performance of a model displacement-based E-AB sensor for ATP. We find that, greater background suppression and signal gain are observed with longer complementary length of the aptamer-DNA duplex probe. However, sensor equilibration time slows monotonically with increasing complementary length; and with too many target binding sites in aptamer sequence being occupied by the complementary DNA, the aptamer-target binding does not occur and no signal gain observed. We also demonstrate that signal gain of the displacement-based E-AB sensor is strongly dependent on the complementary position of the aptamer-DNA duplex probe, with complementary position located at the electrode-attached or redox-tagged end of the duplex probe, larger background suppression and signal increase than that of the middle position are observed. These results highlight the importance of rational structure design of the aptamer-DNA duplex probe and provide new insights into the optimization of displacement-based E-AB sensors. Copyright

  3. Aptamer-based impedimetric sensor for bacterial typing.

    Science.gov (United States)

    Labib, Mahmoud; Zamay, Anna S; Kolovskaya, Olga S; Reshetneva, Irina T; Zamay, Galina S; Kibbee, Richard J; Sattar, Syed A; Zamay, Tatiana N; Berezovski, Maxim V

    2012-10-02

    The development of an aptamer-based impedimetric sensor for typing of bacteria (AIST-B) is presented. Highly specific DNA aptamers to Salmonella enteritidis were selected via Cell-SELEX technique. Twelve rounds of selection were performed; each comprises a positive selection step against S. enteritidis and a negative selection step against a mixture of related pathogens, including Salmonella typhimurium, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Citrobacter freundii, to ensure the species-specificity of the selected aptamers. After sequencing of the pool showing the highest binding affinity to S. enteritidis, a DNA sequence of high affinity to the bacteria was integrated into an impedimetric sensor via self-assembly onto a gold nanoparticles-modified screen-printed carbon electrode (GNPs-SPCE). Remarkably, this aptasensor is highly selective and can successfully detect S. enteritidis down to 600 CFU mL(-1) (equivalent to 18 CFU in 30 μL assay volume) in 10 min and distinguish it from other Salmonella species, including S. typhimurium and S. choleraesuis. This report is envisaged to open a new venue for the aptamer-based typing of a variety of microorganisms using a rapid, economic, and label-free electrochemical platform.

  4. Aptamer-based viability impedimetric sensor for bacteria.

    Science.gov (United States)

    Labib, Mahmoud; Zamay, Anna S; Kolovskaya, Olga S; Reshetneva, Irina T; Zamay, Galina S; Kibbee, Richard J; Sattar, Syed A; Zamay, Tatiana N; Berezovski, Maxim V

    2012-11-06

    The development of an aptamer-based viability impedimetric sensor for bacteria (AptaVISens-B) is presented. Highly specific DNA aptamers to live Salmonella typhimurium were selected via the cell-systematic evolution of ligands by exponential enrichment (SELEX) technique. Twelve rounds of selection were performed; each comprises a positive selection step against viable S. typhimurium and a negative selection step against heat killed S. typhimurium and a mixture of related pathogens, including Salmonella enteritidis, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Citrobacter freundii to ensure the species specificity of the selected aptamers. The DNA sequence showing the highest binding affinity to the bacteria was further integrated into an impedimetric sensor via self-assembly onto a gold nanoparticle-modified screen-printed carbon electrode (GNP-SPCE). Remarkably, this aptasensor is highly selective and can successfully detect S. typhimurium down to 600 CFU mL(-1) (equivalent to 18 live cells in 30 μL of assay volume) and distinguish it from other Salmonella species, including S. enteritidis and S. choleraesuis. This report is envisaged to open a new venue for the aptamer-based viability sensing of a variety of microorganisms, particularly viable but nonculturable (VBNC) bacteria, using a rapid, economic, and label-free electrochemical platform.

  5. APTAMER-BASED SERRS SENSOR FOR THROMBIN DETECTION

    Energy Technology Data Exchange (ETDEWEB)

    Cho, H; Baker, B R; Wachsmann-Hogiu, S; Pagba, C V; Laurence, T A; Lane, S M; Lee, L P; Tok, J B

    2008-07-02

    We describe an aptamer-based Surface Enhanced Resonance Raman Scattering (SERRS) sensor with high sensitivity, specificity, and stability for the detection of a coagulation protein, human a-thrombin. The sensor achieves high sensitivity and a limit of detection of 100 pM by monitoring the SERRS signal change upon the single step of thrombin binding to immobilized thrombin binding aptamer. The selectivity of the sensor is demonstrated by the specific discrimination of thrombin from other protein analytes. The specific recognition and binding of thrombin by the thrombin binding aptamer is essential to the mechanism of the aptamer-based sensor, as shown through measurements using negative control oligonucleotides. In addition, the sensor can detect 1 nM thrombin in the presence of complex biofluids, such as 10% fetal calf serum, demonstrating that the immobilized, 5{prime}-capped, 3{prime}-capped aptamer is sufficiently robust for clinical diagnostic applications. Furthermore, the proposed sensor may be implemented for multiplexed detection using different aptamer-Raman probe complexes.

  6. Aptamer-conjugated silver nanoparticles for electrochemical dual-aptamer-based sandwich detection of staphylococcus aureus.

    Science.gov (United States)

    Abbaspour, Abdolkarim; Norouz-Sarvestani, Fatemeh; Noori, Abolhassan; Soltani, Noushin

    2015-06-15

    Staphylococcus aureus (S. aureus) is one of the most important human pathogens and causes numerous illnesses. In this study, we report a sensitive and highly selective dual-aptamer-based sandwich immunosensor for the detection of S. aureus. In this bioassay system, a biotinylated primary anti-S.aureus aptamer was immobilized on streptavidin coated magnetic beads (MB), which serves as a capture probe. A secondary anti-S.aureus aptamer was conjugated to silver nanoparticles (Apt-AgNP) that sensitively reports the detection of the target. In the presence of target bacterium, an Apt/S.aureus/apt-AgNP sandwich complex is formed on the MB surface and the electrochemical signal of AgNPs followed through anodic stripping voltammetry. The proposed sandwich assay benefits from advantageous of a sandwich assay for increased specificity, MB as carriers of affinity ligands for solution-phase recognition and fast magnetic separation, AgNPs for signal amplification, and an electrochemical stripping voltammetry read-out as a simple and sensitive detection. The electrochemical immunosensor shows an extended dynamic range from 10 to 1×10(6) cfu/mL with a low detection limit of 1.0 cfu/mL (S/N=3). Furthermore, the possible interference of other analog bacteria was studied. To assess the general applicability of this sensor, we investigated the quantification of S. aureus in real water samples. The results were compared to the experimental results obtained from a plate counting method, which demonstrated an acceptable consistency. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Aptamer based electrochemical sensor for detection of human lung adenocarcinoma A549 cells

    Science.gov (United States)

    Sharma, Rachna; Varun Agrawal, Ved; Sharma, Pradeep; Varshney, R.; Sinha, R. K.; Malhotra, B. D.

    2012-04-01

    We report results of the studies relating to development of an aptamer-based electrochemical biosensor for detection of human lung adenocarcinoma A549 cells. The aminated 85-mer DNA aptamer probe specific for the A549 cells has been covalently immobilized onto silane self assembled monolayer (SAM) onto ITO surface using glutaraldehyde as the crosslinker. The results of cyclic voltammetry and differential pulse voltammetry studies reveal that the aptamer functionalized bioelectrode can specifically detect lung cancer cells in the concentration range of 103 to 107 cells/ml with detection limit of 103 cells/ml within 60 s. The specificity studies of the bioelectrode have been carried out with control KB cells. No significant change in response is observed for control KB cells as compared to that of the A549 target cells.

  8. Aptamer-Based Electrochemical Sensing of Lysozyme

    Directory of Open Access Journals (Sweden)

    Alina Vasilescu

    2016-06-01

    Full Text Available Protein analysis and quantification are required daily by thousands of laboratories worldwide for activities ranging from protein characterization to clinical diagnostics. Multiple factors have to be considered when selecting the best detection and quantification assay, including the amount of protein available, its concentration, the presence of interfering molecules, as well as costs and rapidity. This is also the case for lysozyme, a 14.3-kDa protein ubiquitously present in many organisms, that has been identified with a variety of functions: antibacterial activity, a biomarker of several serious medical conditions, a potential allergen in foods or a model of amyloid-type protein aggregation. Since the design of the first lysozyme aptamer in 2001, lysozyme became one of the most intensively-investigated biological target analytes for the design of novel biosensing concepts, particularly with regards to electrochemical aptasensors. In this review, we discuss the state of the art of aptamer-based electrochemical sensing of lysozyme, with emphasis on sensing in serum and real samples.

  9. Aptamer-Based Paper Strip Sensor for Detecting Vibrio fischeri.

    Science.gov (United States)

    Shin, Woo-Ri; Sekhon, Simranjeet Singh; Rhee, Sung-Keun; Ko, Jung Ho; Ahn, Ji-Young; Min, Jiho; Kim, Yang-Hoon

    2018-05-14

    Aptamer-based paper strip sensor for detecting Vibrio fischeri was developed. Our method was based on the aptamer sandwich assay between whole live cells, V. fischeri and DNA aptamer probes. Following 9 rounds of Cell-SELEX and one of the negative-SELEX, V. fischeri Cell Aptamer (VFCA)-02 and -03 were isolated, with the former showing approximately 10-fold greater avidity (in the subnanomolar range) for the target cells when arrayed on a surface. The colorimetric response of a paper sensor based on VFCA-02 was linear in the range of 4 × 10 1 to 4 × 10 5 CFU/mL of target cell by using scanning reader. The linear regression correlation coefficient ( R 2 ) was 0.9809. This system shows promise for use in aptamer-conjugated gold nanoparticle probes in paper strip format for in-field detection of marine bioindicating bacteria.

  10. Aptamer sensor for cocaine using minor groove binder based energy transfer.

    Science.gov (United States)

    Zhou, Jinwen; Ellis, Amanda V; Kobus, Hilton; Voelcker, Nicolas H

    2012-03-16

    We report on an optical aptamer sensor for cocaine detection. The cocaine sensitive fluorescein isothiocyanate (FITC)-labeled aptamer underwent a conformational change from a partial single-stranded DNA with a short hairpin to a double-stranded T-junction in the presence of the target. The DNA minor groove binder Hoechst 33342 selectively bound to the double-stranded T-junction, bringing the dye within the Förster radius of FITC, and therefore initiating minor groove binder based energy transfer (MBET), and reporting on the presence of cocaine. The sensor showed a detection limit of 0.2 μM. The sensor was also implemented on a carboxy-functionalized polydimethylsiloxane (PDMS) surface by covalently immobilizing DNA aptamers. The ability of surface-bound cocaine detection is crucial for the development of microfluidic sensors. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. A novel sandwich-type electrochemical aptasensor based on GR-3D Au and aptamer-AuNPs-HRP for sensitive detection of oxytetracycline.

    Science.gov (United States)

    Liu, Su; Wang, Yu; Xu, Wei; Leng, Xueqi; Wang, Hongzhi; Guo, Yuna; Huang, Jiadong

    2017-02-15

    In this paper, a novel sandwich-type electrochemical aptasensor has been fabricated and applied for sensitive and selective detection of antibiotic oxytetracycline (OTC). This sensor was based on graphene-three dimensional nanostructure gold nanocomposite (GR-3D Au) and aptamer-AuNPs-horseradish peroxidase (aptamer-AuNPs-HRP) nanoprobes as signal amplification. Firstly, GR-3D Au film was modified on glassy carbon electrode only by one-step electrochemical coreduction with graphite oxide (GO) and HAuCl 4 at cathodic potentials, which enhanced the electron transfer and loading capacity of biomolecules. Then the aptamer and HRP modified Au nanoparticles provide high affinity and ultrasensitive electrochemical probe with excellent specificity for OTC. Under the optimized conditions, the peak current was linearly proportional to the concentration of OTC in the range of 5×10 -10 -2×10 -3 gL -1 , with a detection limit of 4.98×10 -10 gL -1 . Additionally, this aptasensor had the advantages in high sensitivity, superb specificity and showed good recovery in synthetic samples. Hence, the developed sandwich-type electrochemical aptasensor might provide a useful and practical tool for OTC determination and related food safety analysis and clinical diagnosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. A Low-Cost Inkjet-Printed Aptamer-Based Electrochemical Biosensor for the Selective Detection of Lysozyme

    Directory of Open Access Journals (Sweden)

    Niazul Islam Khan

    2018-01-01

    Full Text Available Recently, inkjet-printing has gained increased popularity in applications such as flexible electronics and disposable sensors, as well as in wearable sensors because of its multifarious advantages. This work presents a novel, low-cost immobilization technique using inkjet-printing for the development of an aptamer-based biosensor for the detection of lysozyme, an important biomarker in various disease diagnosis. The strong affinity between the carbon nanotube (CNT and the single-stranded DNA is exploited to immobilize the aptamers onto the working electrode by printing the ink containing the dispersion of CNT-aptamer complex. The inkjet-printing method enables aptamer density control, as well as high resolution patternability. Our developed sensor shows a detection limit of 90 ng/mL with high target selectivity against other proteins. The sensor also demonstrates a shelf-life for a reasonable period. This technology has potential for applications in developing low-cost point-of-care diagnostic testing kits for home healthcare.

  13. RNA aptamer-based electrochemical biosensor for selective and label-free analysis of dopamine

    DEFF Research Database (Denmark)

    Farjami, Elahe; Campos, Rui; Nielsen, Jesper Sejrup

    2013-01-01

    , including dopamine precursors and metabolites and other neurotransmitters (NT). Here we report an electrochemical RNA aptamer-based biosensor for analysis of dopamine in the presence of other NT. The biosensor exploits a specific binding of dopamine by the RNA aptamer, immobilized at a cysteamine......, norepinephrine, 3,4-dihydroxy-phenylalanine (l-DOPA), 3,4-dihydroxyphenylacetic acid (DOPAC), methyldopamine, and tyramine, which gave negligible signals under conditions of experiments (electroanalysis at 0.185 V vs Ag/AgCl). The interference from ascorbic and uric acids was eliminated by application...... as a general strategy not to restrict the conformational freedom and binding properties of surface-bound aptamers and, thus, be applicable for the development of other aptasensors...

  14. Aptamer/quantum dot-based simultaneous electrochemical detection of multiple small molecules

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Haixia [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Jiang Bingying [School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400040 (China); Xiang Yun, E-mail: yunatswu@swu.edu.cn [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Zhang Yuyong; Chai Yaqin [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Yuan Ruo, E-mail: yuanruo@swu.edu.cn [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China)

    2011-03-04

    A novel strategy for 'signal on' and sensitive one-spot simultaneous detection of multiple small molecular analytes based on electrochemically encoded barcode quantum dot (QD) tags is described. The target analytes, adenosine triphosphate (ATP) and cocaine, respectively, are sandwiched between the corresponding set of surface-immobilized primary binding aptamers and the secondary binding aptamer/QD bioconjugates. The captured QDs yield distinct electrochemical signatures after acid dissolution, whose position and size reflect the identity and level, respectively, of the corresponding target analytes. Due to the inherent amplification feature of the QD labels and the 'signal on' detection scheme, as well as the sensitive monitoring of the metal ions released upon acid dissolution of the QD labels, low detection limits of 30 nM and 50 nM were obtained for ATP and cocaine, respectively, in our assays. Our multi-analyte sensing system also shows high specificity to target analytes and promising applicability to complex sample matrix, which makes the proposed assay protocol an attractive route for screening of small molecules in clinical diagnosis.

  15. Homogeneous electrochemical aptamer-based ATP assay with signal amplification by exonuclease III assisted target recycling.

    Science.gov (United States)

    Liu, Shufeng; Wang, Ying; Zhang, Chengxin; Lin, Ying; Li, Feng

    2013-03-21

    A novel and homogeneous electrochemical aptamer-based adenosine triphosphate (ATP) assay was demonstrated with signal amplification by exonuclease III-assisted target recycling. A superior detection limit of 1 nM toward ATP with an excellent selectivity could be achieved.

  16. Graphene-Paper Based Electrochemical Sensors

    DEFF Research Database (Denmark)

    Zhang, Minwei; Halder, Arnab; Cao, Xianyi

    2017-01-01

    in electrochemical sensors and energy technologies amongothers. In this chapter, we present some examples to overview recent advances in theresearch and development of two-dimensional (2D) graphene papers as new materialsfor electrochemical sensors. The chapter covers the design, fabrication, functionalizationand...... functionalization ofgraphene papers with polymer and nanoscale functional building blocks for electrochemical-sensing purposes. In terms of electrochemical-sensing applications, the emphasis ison enzyme-graphene and nanoparticle-graphene paper-based systems for the detectionof glucose. We finally conclude...

  17. Target-responsive aptamer release from manganese dioxide nanosheets for electrochemical sensing of cocaine with target recycling amplification.

    Science.gov (United States)

    Chen, Zongbao; Lu, Minghua

    2016-11-01

    A novel electrochemical sensing platform based on manganese dioxide (MnO2) nanosheets was developed for sensitive screening of target cocaine with the signal amplification. Ferrocene-labeled cocaine aptamers were initially immobilized onto MnO2 nanosheets-modified screen-printed carbon electrode because of π-stacking interaction between nucleobases and nanosheets. The immobilized ferrocene-aptamer activated the electrical contact with the electrode, thereby resulting in the sensor circuit to switch on. Upon target cocaine introduction, the analyte reacted with the aptamer and caused the dissociation of ferrocene-aptamer from the electrode, thus giving rise to the detection circuit to switch off. The released aptamer was cleaved by DNase I with target recycling. Under optimal conditions, the decreasing percentage of the electronic signal relative to background current increased with the increasing cocaine concentration in the dynamic range of 0.1-20nM, and the detection limit was 32pM. The reproducibility, selectivity and method accuracy were acceptable. Importantly, this concept offers promise for rapid, simple, and cost-effective analysis of cocaine biological samples without the needs of sample separation and multiple washing steps. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Ultrasensitive aptamer-based multiplexed electrochemical detection by coupling distinguishable signal tags with catalytic recycling of DNase I.

    Science.gov (United States)

    Tang, Dianping; Tang, Juan; Li, Qunfang; Su, Biling; Chen, Guonan

    2011-10-01

    This work reports an aptamer-based, disposable, and multiplexed sensing platform for simultaneous electrochemical determination of small molecules, employing adenosine triphosphate (ATP) and cocaine as the model target analytes. The multiplexed sensing strategy is based on target-induced release of distinguishable redox tag-conjugated aptamers from a magnetic graphene platform. The electronic signal of the aptasensors could be further amplified by coupling DNase I with catalytic recycling of self-produced reactants. The assay was based on the change in the current at the various peak potentials in the presence of the corresponding signal tags. Experimental results revealed that the multiplexed electrochemical aptasensor enabled the simultaneous monitoring of ATP and cocaine in a single run with wide working ranges and low detection limits (LODs: 0.1 pM for ATP and 1.5 pM for cocaine). This concept offers promise for rapid, simple, and cost-effective analysis of biological samples.

  19. An aptamer-based fluorescence bio-sensor for chiral recognition of arginine enantiomers.

    Science.gov (United States)

    Yuan, Haiyan; Huang, Yunmei; Yang, Jidong; Guo, Yuan; Zeng, Xiaoqing; Zhou, Shang; Cheng, Jiawei; Zhang, Yuhui

    2018-07-05

    In this study, a novel aptamer - based fluorescence bio-sensor (aptamer-AuNps) was developed for chiral recognition of arginine (Arg) enantiomers based on aptamer and gold nanoparticles (AuNps). Carboxyfluorescein (FAM) labeled aptamers (Apt) were absorbed on AuNps and their fluorescence intensity could be significantly quenched by AuNps based on fluorescence resonance energy transfer (FRET). Once d-Arg or l-Arg were added into the above solution, the aptamer specifically bind to Arg enantiomers and released from AuNps, so the fluorescence intensity of d-Arg system and l-Arg system were all enhanced. The affinity of Apt to l-Arg is tighter to d-Arg, so the enhanced fluorescence signals of l-Arg system was stronger than d-Arg system. What's more, the enhanced fluorescence were directly proportional to the concentration of d-Arg and l-Arg ranging from 0-300 nM and 0-400 nM with related coefficients of 0.9939 and 0.9952, respectively. Furthermore, the method was successfully applied to detection l-Arg in human urine samples with satisfactory results. Eventually, a simple "OR" logic gate with d-Arg &l-Arg as inputs and AuNps aggregation state as outputs was fabricated, which can help us understand the chiral recognition process deeply. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. A highly sensitive and selective aptamer-based colorimetric sensor for the rapid detection of PCB 77.

    Science.gov (United States)

    Cheng, Ruojie; Liu, Siyao; Shi, Huijie; Zhao, Guohua

    2018-01-05

    A highly sensitive, specific and simple colorimetric sensor based on aptamer was established for the detection of polychlorinated biphenyls (PCB 77). The use of unmodified gold nanoparticles as a colorimetric probe for aptamer sensors enabled the highly sensitive and selective detection of polychlorinated biphenyls (PCB 77). A linear range of 0.5nM to 900nM was obtained for the colorimetric assay with a minimum detection limit of 0.05nM. In addition, by the methods of circular dichroism, UV and naked eyes, we found that the 35 base fragments retained after cutting 5 bases from the 5 'end of aptamer plays the most significant role in the PCB 77 specific recognition process. We found a novel way to truncated nucleotides to optimize the detection of PCB 77, and the selected nucleotides also could achieve high affinity with PCB 77. At the same time, the efficient detection of the PCB 77 by our colorimetric sensor in the complex environmental water samples was realized, which shows a good application prospect. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Electrochemical Aptasensors for Food and Environmental Safeguarding: A Review

    Directory of Open Access Journals (Sweden)

    Geetesh Kumar Mishra

    2018-03-01

    Full Text Available Food and environmental monitoring is one of the most important aspects of dealing with recent threats to human well-being and ecosystems. In this framework, electrochemical aptamer-based sensors are resilient due to their ability to resolve food and environmental contamination. An aptamer-based sensor is a compact analytical device combining an aptamer as the bio-sensing element integrated on the transducer surface. Aptamers display many advantages as biorecognition elements in sensor development when compared to affinity-based (antibodies sensors. Aptasensors are small, chemically unchanging, and inexpensive. Moreover, they offer extraordinary elasticity and expediency in the design of their assemblies, which has led to innovative sensors that show tremendous sensitivity and selectivity. This review will emphasize recent food and environmental safeguarding using aptasensors; there are good prospects for their performance as a supplement to classical techniques.

  2. Electrochemical Sensors Based on Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Md. Aminur Rahman

    2009-03-01

    Full Text Available This review focuses on recent contributions in the development of the electrochemical sensors based on carbon nanotubes (CNTs. CNTs have unique mechanical and electronic properties, combined with chemical stability, and behave electrically as a metal or semiconductor, depending on their structure. For sensing applications, CNTs have many advantages such as small size with larger surface area, excellent electron transfer promoting ability when used as electrodes modifier in electrochemical reactions, and easy protein immobilization with retention of its activity for potential biosensors. CNTs play an important role in the performance of electrochemical biosensors, immunosensors, and DNA biosensors. Various methods have been developed for the design of sensors using CNTs in recent years. Herein we summarize the applications of CNTs in the construction of electrochemical sensors and biosensors along with other nanomaterials and conducting polymers.

  3. A simple highly sensitive and selective aptamer-based colorimetric sensor for environmental toxins microcystin-LR in water samples.

    Science.gov (United States)

    Li, Xiuyan; Cheng, Ruojie; Shi, Huijie; Tang, Bo; Xiao, Hanshuang; Zhao, Guohua

    2016-03-05

    A simple and highly sensitive aptamer-based colorimetric sensor was developed for selective detection of Microcystin-LR (MC-LR). The aptamer (ABA) was employed as recognition element which could bind MC-LR with high-affinity, while gold nanoparticles (AuNPs) worked as sensing materials whose plasma resonance absorption peaks red shifted upon binding of the targets at a high concentration of sodium chloride. With the addition of MC-LR, the random coil aptamer adsorbed on Au NPs altered into regulated structure to form MC-LR-aptamer complexes and broke away from the surface of Au NPs, leading to the aggregation of AuNPs, and the color converted from red to blue due to the interparticle plasmon coupling. Results showed that our aptamer-based colorimetric sensor exhibited rapid and sensitive detection performance for MC-LR with linear range from 0.5 nM to 7.5 μM and the detection limit reached 0.37 nM. Meanwhile, the pollutants usually coexisting with MC-LR in pollutant water samples had not demonstrated disturbance for detecting of MC-LR. The mechanism was also proposed suggesting that high affinity interaction between aptamer and MC-LR significantly enhanced the sensitivity and selectivity for MC-LR detection. Besides, the established method was utilized in analyzing real water samples and splendid sensitivity and selectivity were obtained as well. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. An aptamer-based biosensing platform for highly sensitive detection of platelet-derived growth factor via enzyme-mediated direct electrochemistry

    International Nuclear Information System (INIS)

    Deng Kun; Xiang Yang; Zhang Liqun; Chen Qinghai; Fu Weiling

    2013-01-01

    Highlights: ► Direct electrochemistry of glucose oxidase used for signal generation in aptasensor. ► Using novel nanocomposite for immobilization and signal amplification. ► Sensitive electrochemical detection of platelet-derived growth factor. - Abstract: In this work, a new label-free electrochemical aptamer-based sensor (aptasensor) was constructed for detection of platelet-derived growth factor (PDGF) based on the direct electrochemistry of glucose oxidase (GOD). For this proposed aptasensor, poly(diallyldimethylammonium chloride) (PDDA)-protected graphene-gold nanoparticles (P-Gra-GNPs) composite was firstly coated on electrode surface to form the interface with biocompatibility and huge surface area for the adsorption of GOD layer. Subsequently, gold nanoclusters (GNCs) were deposited on the surface of GOD to capture PDGF binding aptamer (PBA). Finally, GOD as a blocking reagent was employed to block the remaining active sites of the GNCs and avoid the nonspecific adsorption. With the direct electron transfer of double layer GOD membranes, the aptasensor showed excellent electrochemical response and the peak current decreased linearly with increasing logarithm of PDGF concentration from 0.005 nM to 60 nM with a relatively low limit of detection of 1.7 pM. The proposed aptasensor exhibited high specificity, good reproducibility and long-term stability, which provided a new promising technique for aptamer-based protein detection.

  5. Electrochemical sensors and biosensors based on less aggregated graphene.

    Science.gov (United States)

    Bo, Xiangjie; Zhou, Ming; Guo, Liping

    2017-03-15

    As a novel single-atom-thick sheet of sp 2 hybridized carbon atoms, graphene (GR) has attracted extensive attention in recent years because of its unique and remarkable properties, such as excellent electrical conductivity, large theoretical specific surface area, and strong mechanical strength. However, due to the π-π interaction, GR sheets are inclined to stack together, which may seriously degrade the performance of GR with the unique single-atom layer. In recent years, an increasing number of GR-based electrochemical sensors and biosensors are reported, which may reflect that GR has been considered as a kind of hot and promising electrode material for electrochemical sensor and biosensor construction. However, the active sites on GR surface induced by the irreversible GR aggregations would be deeply secluded inside the stacked GR sheets and therefore are not available for the electrocatalysis. So the alleviation or the minimization of the aggregation level for GR sheets would facilitate the exposure of active sites on GR and effectively upgrade the performance of GR-based electrochemical sensors and biosensors. Less aggregated GR with low aggregation and high dispersed structure can be used in improving the electrochemical activity of GR-based electrochemical sensors or biosensors. In this review, we summarize recent advances and new progress for the development of electrochemical sensors based on less aggregated GR. To achieve such goal, many strategies (such as the intercalation of carbon materials, surface modification, and structural engineering) have been applied to alleviate the aggregation level of GR in order to enhance the performance of GR-based electrochemical sensors and biosensors. Finally, the challenges associated with less aggregated GR-based electrochemical sensors and biosensors as well as related future research directions are discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. A label-free and high sensitive aptamer biosensor based on hyperbranched polyester microspheres for thrombin detection

    International Nuclear Information System (INIS)

    Sun, Chong; Han, Qiaorong; Wang, Daoying; Xu, Weimin; Wang, Weijuan; Zhao, Wenbo; Zhou, Min

    2014-01-01

    Highlights: • A label-free thrombin aptamer biosensor applied in whole blood has been developed. • The aptamer biosensor showed a wide detection range and a low detection limit. • The antibiofouling idea utilized for biosensor is significant for diagnostics. - Abstract: In this paper, we have synthesized hyperbranched polyester microspheres with carboxylic acid functional groups (HBPE-CA) and developed a label-free electrochemical aptamer biosensor using thrombin-binding aptamer (TBA) as receptor for the measurement of thrombin in whole blood. The indium tin oxide (ITO) electrode surface modified with HBPE-CA microspheres was grafted with TBA, which has excellent binding affinity and selectivity for thrombin. Binding of the thrombin at the modified ITO electrode surface greatly restrained access of electrons for a redox probe of [Fe(CN) 6 ] 3−/4− . Moreover, the aptamer biosensor could be used for detection of thrombin in whole blood, a wide detection range (10 fM–100 nM) and a detection limit on the order of 0.90 fM were demonstrated. Control experiments were also carried out by using bull serum albumin (BSA) and lysozyme in the absence of thrombin. The good stability and repeatability of this aptamer biosensor were also proved. We expect that this demonstration will lead to the development of highly sensitive label-free sensors based on aptamer with lower cost than current technology. The integration of the technologies, which include anticoagulant, sensor and nanoscience, will bring significant input to high-performance biosensors relevant to diagnostics and therapy of interest for human health

  7. A label-free and high sensitive aptamer biosensor based on hyperbranched polyester microspheres for thrombin detection

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Chong [Jiangsu Key Laboratory of Biofunctional Materials, Biomedical Functional Materials Collaborative Innovation Center, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023 (China); Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014 (China); Han, Qiaorong [Jiangsu Key Laboratory of Biofunctional Materials, Biomedical Functional Materials Collaborative Innovation Center, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023 (China); Wang, Daoying; Xu, Weimin [Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014 (China); Wang, Weijuan [Jiangsu Key Laboratory of Biofunctional Materials, Biomedical Functional Materials Collaborative Innovation Center, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023 (China); Zhao, Wenbo, E-mail: zhaowenbo@njnu.edu.cn [Jiangsu Key Laboratory of Biofunctional Materials, Biomedical Functional Materials Collaborative Innovation Center, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023 (China); Zhou, Min, E-mail: zhouminnju@126.com [Department of Vascular Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008 (China)

    2014-11-19

    Highlights: • A label-free thrombin aptamer biosensor applied in whole blood has been developed. • The aptamer biosensor showed a wide detection range and a low detection limit. • The antibiofouling idea utilized for biosensor is significant for diagnostics. - Abstract: In this paper, we have synthesized hyperbranched polyester microspheres with carboxylic acid functional groups (HBPE-CA) and developed a label-free electrochemical aptamer biosensor using thrombin-binding aptamer (TBA) as receptor for the measurement of thrombin in whole blood. The indium tin oxide (ITO) electrode surface modified with HBPE-CA microspheres was grafted with TBA, which has excellent binding affinity and selectivity for thrombin. Binding of the thrombin at the modified ITO electrode surface greatly restrained access of electrons for a redox probe of [Fe(CN){sub 6}]{sup 3−/4−}. Moreover, the aptamer biosensor could be used for detection of thrombin in whole blood, a wide detection range (10 fM–100 nM) and a detection limit on the order of 0.90 fM were demonstrated. Control experiments were also carried out by using bull serum albumin (BSA) and lysozyme in the absence of thrombin. The good stability and repeatability of this aptamer biosensor were also proved. We expect that this demonstration will lead to the development of highly sensitive label-free sensors based on aptamer with lower cost than current technology. The integration of the technologies, which include anticoagulant, sensor and nanoscience, will bring significant input to high-performance biosensors relevant to diagnostics and therapy of interest for human health.

  8. Label-free aptamer-based sensor for specific detection of malathion residues by surface-enhanced Raman scattering

    Science.gov (United States)

    Nie, Yonghui; Teng, Yuanjie; Li, Pan; Liu, Wenhan; Shi, Qianwei; Zhang, Yuchao

    2018-02-01

    A novel label-free aptamer surface-enhanced Raman scattering (SERS) sensor for trace malathion residue detection was proposed. In this process, the binding of malathion molecule with aptamer is identified directly. The silver nanoparticles modified with positively charged spermine served as enhancing and capture reagents for the negatively charged aptamer. Then, the silver nanoparticles modified by aptamer were used to specifically capture the malathion. The SERS background spectra of spermine, aptamer, and malathion were recorded and distinguished with the spectrum of malathion-aptamer. To enhance the characteristic peak signal of malathion captured by the aptamer, the aggregate reagents (NaCl, KCl, MgCl2) were compared and selected. The selectivity of this method was verified in the mixed-pesticide standard solution, which included malathion, phosmet, chlorpyrifos-methyl, and fethion. Results show that malathion can be specifically identified when the mixed-pesticide interferences existed. The standard curve was established, presenting a good linear range of 5 × 10- 7 to 1 × 10- 5 mol·L- 1. The spiked experiments for tap water show good recoveries from 87.4% to 110.5% with a relative standard deviation of less than 4.22%. Therefore, the proposed label-free aptamer SERS sensor is convenient, specifically detects trace malathion residues, and can be applied for qualitative and quantitative analysis of other pesticides.

  9. An aptamer-based biosensing platform for highly sensitive detection of platelet-derived growth factor via enzyme-mediated direct electrochemistry.

    Science.gov (United States)

    Deng, Kun; Xiang, Yang; Zhang, Liqun; Chen, Qinghai; Fu, Weiling

    2013-01-08

    In this work, a new label-free electrochemical aptamer-based sensor (aptasensor) was constructed for detection of platelet-derived growth factor (PDGF) based on the direct electrochemistry of glucose oxidase (GOD). For this proposed aptasensor, poly(diallyldimethylammonium chloride) (PDDA)-protected graphene-gold nanoparticles (P-Gra-GNPs) composite was firstly coated on electrode surface to form the interface with biocompatibility and huge surface area for the adsorption of GOD layer. Subsequently, gold nanoclusters (GNCs) were deposited on the surface of GOD to capture PDGF binding aptamer (PBA). Finally, GOD as a blocking reagent was employed to block the remaining active sites of the GNCs and avoid the nonspecific adsorption. With the direct electron transfer of double layer GOD membranes, the aptasensor showed excellent electrochemical response and the peak current decreased linearly with increasing logarithm of PDGF concentration from 0.005 nM to 60 nM with a relatively low limit of detection of 1.7 pM. The proposed aptasensor exhibited high specificity, good reproducibility and long-term stability, which provided a new promising technique for aptamer-based protein detection. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. An aptamer-based biosensing platform for highly sensitive detection of platelet-derived growth factor via enzyme-mediated direct electrochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Deng Kun; Xiang Yang; Zhang Liqun; Chen Qinghai [Laboratory of the Clinical Experimental Base of Biosensor and Microarray, Center of Molecule and Gene Diagnosis, Southwest Hospital, Third Military Medical University, Chongqing 400042 (China); Fu Weiling, E-mail: weilingfu@yahoo.com [Laboratory of the Clinical Experimental Base of Biosensor and Microarray, Center of Molecule and Gene Diagnosis, Southwest Hospital, Third Military Medical University, Chongqing 400042 (China)

    2013-01-08

    Highlights: Black-Right-Pointing-Pointer Direct electrochemistry of glucose oxidase used for signal generation in aptasensor. Black-Right-Pointing-Pointer Using novel nanocomposite for immobilization and signal amplification. Black-Right-Pointing-Pointer Sensitive electrochemical detection of platelet-derived growth factor. - Abstract: In this work, a new label-free electrochemical aptamer-based sensor (aptasensor) was constructed for detection of platelet-derived growth factor (PDGF) based on the direct electrochemistry of glucose oxidase (GOD). For this proposed aptasensor, poly(diallyldimethylammonium chloride) (PDDA)-protected graphene-gold nanoparticles (P-Gra-GNPs) composite was firstly coated on electrode surface to form the interface with biocompatibility and huge surface area for the adsorption of GOD layer. Subsequently, gold nanoclusters (GNCs) were deposited on the surface of GOD to capture PDGF binding aptamer (PBA). Finally, GOD as a blocking reagent was employed to block the remaining active sites of the GNCs and avoid the nonspecific adsorption. With the direct electron transfer of double layer GOD membranes, the aptasensor showed excellent electrochemical response and the peak current decreased linearly with increasing logarithm of PDGF concentration from 0.005 nM to 60 nM with a relatively low limit of detection of 1.7 pM. The proposed aptasensor exhibited high specificity, good reproducibility and long-term stability, which provided a new promising technique for aptamer-based protein detection.

  11. Nanomaterials-based electrochemical sensors for nitric oxide

    International Nuclear Information System (INIS)

    Dang, Xueping; Hu, Hui; Wang, Shengfu; Hu, Shengshui

    2015-01-01

    Electrochemical sensing has been demonstrated to represent an efficient way to quantify nitric oxide (NO) in challenging physiological environments. A sensing interface based on nanomaterials opens up new opportunities and broader prospects for electrochemical NO sensors. This review (with 141 refs.) gives a general view of recent advances in the development of electrochemical sensors based on nanomaterials. It is subdivided into sections on (i) carbon derived nanomaterials (such as carbon nanotubes, graphenes, fullerenes), (ii) metal nanoparticles (including gold, platinum and other metallic nanoparticles); (iii) semiconductor metal oxide nanomaterials (including the oxides of titanium, aluminum, iron, and ruthenium); and finally (iv) nanocomposites (such as those formed from carbon nanomaterials with nanoparticles of gold, platinum, NiO or TiO 2 ). The various strategies are discussed, and the advances of using nanomaterials and the trends in NO sensor technology are outlooked in the final section. (author)

  12. Triple-helix molecular switch-based aptasensors and DNA sensors.

    Science.gov (United States)

    Bagheri, Elnaz; Abnous, Khalil; Alibolandi, Mona; Ramezani, Mohammad; Taghdisi, Seyed Mohammad

    2018-07-15

    Utilization of traditional analytical techniques is limited because they are generally time-consuming and require high consumption of reagents, complicated sample preparation and expensive equipment. Therefore, it is of great interest to achieve sensitive, rapid and simple detection methods. It is believed that nucleic acids assays, especially aptamers, are very important in modern life sciences for target detection and biological analysis. Aptamers and DNA-based sensors have been widely used for the design of various sensors owing to their unique features. In recent years, triple-helix molecular switch (THMS)-based aptasensors and DNA sensors have been broadly utilized for the detection and analysis of different targets. The THMS relies on the formation of DNA triplex via Watson-Crick and Hoogsteen base pairings under optimal conditions. This review focuses on recent progresses in the development and applications of electrochemical, colorimetric, fluorescence and SERS aptasensors and DNA sensors, which are based on THMS. Also, the advantages and drawbacks of these methods are discussed. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Aptamer-Based Technologies in Foodborne Pathogen Detection.

    Science.gov (United States)

    Teng, Jun; Yuan, Fang; Ye, Yingwang; Zheng, Lei; Yao, Li; Xue, Feng; Chen, Wei; Li, Baoguang

    2016-01-01

    Aptamers are single stranded DNA or RNA ligands, which can be selected by a method called systematic evolution of ligands by exponential enrichment (SELEX); and they can specifically recognize and bind to their targets. These unique characteristics of aptamers offer great potentials in applications such as pathogen detection and biomolecular screening. Pathogen detection is the critical means in detecting and identifying the problems related to public health and food safety; and only the rapid, sensitive and efficient detection technologies can enable the users to make the accurate assessments on the risks of infections (humans and animals) or contaminations (foods and other commodities) caused by various pathogens. This article reviews the development in the field of the aptamer-based approaches for pathogen detection, including whole-cell SELEX and Genomic SELEX. Nowadays, a variety of aptamer-based biosensors have been developed for pathogen detection. Thus, in this review, we also cover the development in aptamer-based biosensors including optical biosensors for multiple pathogen detection by multiple-labeling or label-free models such as fluorescence detection and surface plasmon resonance, electrochemical biosensors and lateral chromatography test strips, and their applications in pathogen detection and biomolecular screening. While notable progress has been made in the field in the last decade, challenges or drawbacks in their applications such as pathogen detection and biomolecular screening remain to be overcome.

  14. Aptamer-Based Technologies in Foodborne Pathogen Detection

    Directory of Open Access Journals (Sweden)

    Jun Teng

    2016-09-01

    Full Text Available Aptamers are single stranded DNA or RNA ligands, which can be selected by a method called systematic evolution of ligands by exponential enrichment (SELEX; and they can specifically recognize and bind to their targets. These unique characteristics of aptamers offer great potentials in applications such as pathogen detection and biomolecular screening. Pathogen detection is the first and critical means in detecting and identifying the problems related to public health and food safety; and only the rapid, sensitive and efficient detection technologies can enable the users to make to accurate assessments on the risk of infections (humans and animals or contaminations (foods and other commodities caused by various pathogens. This article reviews the developments in the field of the aptamer-based approaches for pathogen detection, including whole-cell SELEX and Genomic SELEX. Nowadays, a variety of aptamer-based biosensors have been developed for pathogen detection. Thus, in this review, we also cover the development of aptamer-based biosensors including optical biosensors for multiple pathogen detection in multiple-labeling or label-free models such as fluorescence detection and surface plasmon resonance, electrochemical biosensors, and lateral chromatography test strips, and their applications in the pathogen detection and biomolecular screening. While notable progress has been made in the field in the last decade, challenges or drawbacks in their applications such as pathogen detection and biomolecular screening, remain to be overcome.

  15. A versatile and highly sensitive homogeneous electrochemical strategy based on the split aptamer binding-induced DNA three-way junction and exonuclease III-assisted target recycling.

    Science.gov (United States)

    Hou, Ting; Li, Wei; Zhang, Lianfang; Li, Feng

    2015-08-21

    Herein, a highly sensitive and versatile homogeneous electrochemical biosensing strategy is proposed, based on the split aptamer-incorporated DNA three-way junction and the exonuclease (Exo) III-assisted target recycling. The aptamer of adenosine triphosphate (ATP, chosen as the model analyte) is split into two fragments and embedded in single-stranded DNA1 and DNA2, respectively. ATP specifically binds with the split aptamers, bringing DNA1 and DNA2 close to each other, thus inducing the DNA three-way junction formation through the partial hybridization among DNA1, DNA2 and the methylene blue-labelled MB-DNA. Subsequently, MB-DNA is specifically digested by Exo III, releasing a MB-labelled mononucleotide, as well as a DNA1-ATP-DNA2 complex, which acts as the recycled target and hybridizes with another intact MB-DNA to initiate the subsequent cycling cleavage process. As a result, large amounts of MB-labelled mononucleotides are released, generating a significantly amplified electrochemical signal toward the ATP assay. To the best of our knowledge, it is the first example to successfully incorporate split aptamers into DNA three-way junctions and to be adopted in a homogeneous electrochemical assay. In addition to high sensitivity, this strategy also exhibits the advantages of simplicity and convenience, because it is carried out in a homogeneous solution, and sophisticated electrode modification processes are avoided. By simply changing the sequences of the split aptamer fragments, this versatile strategy can be easily adopted to assay a large spectrum of targets. Due to its advantages of high sensitivity, excellent selectivity, versatility and simple operation, the as-proposed approach has great potential to be applied in biochemical research and clinical practices.

  16. Electrochemical DNA Hybridization Sensors Based on Conducting Polymers

    Science.gov (United States)

    Rahman, Md. Mahbubur; Li, Xiao-Bo; Lopa, Nasrin Siraj; Ahn, Sang Jung; Lee, Jae-Joon

    2015-01-01

    Conducting polymers (CPs) are a group of polymeric materials that have attracted considerable attention because of their unique electronic, chemical, and biochemical properties. This is reflected in their use in a wide range of potential applications, including light-emitting diodes, anti-static coating, electrochromic materials, solar cells, chemical sensors, biosensors, and drug-release systems. Electrochemical DNA sensors based on CPs can be used in numerous areas related to human health. This review summarizes the recent progress made in the development and use of CP-based electrochemical DNA hybridization sensors. We discuss the distinct properties of CPs with respect to their use in the immobilization of probe DNA on electrode surfaces, and we describe the immobilization techniques used for developing DNA hybridization sensors together with the various transduction methods employed. In the concluding part of this review, we present some of the challenges faced in the use of CP-based DNA hybridization sensors, as well as a future perspective. PMID:25664436

  17. Electrochemical DNA Hybridization Sensors Based on Conducting Polymers

    Directory of Open Access Journals (Sweden)

    Md. Mahbubur Rahman

    2015-02-01

    Full Text Available Conducting polymers (CPs are a group of polymeric materials that have attracted considerable attention because of their unique electronic, chemical, and biochemical properties. This is reflected in their use in a wide range of potential applications, including light-emitting diodes, anti-static coating, electrochromic materials, solar cells, chemical sensors, biosensors, and drug-release systems. Electrochemical DNA sensors based on CPs can be used in numerous areas related to human health. This review summarizes the recent progress made in the development and use of CP-based electrochemical DNA hybridization sensors. We discuss the distinct properties of CPs with respect to their use in the immobilization of probe DNA on electrode surfaces, and we describe the immobilization techniques used for developing DNA hybridization sensors together with the various transduction methods employed. In the concluding part of this review, we present some of the challenges faced in the use of CP-based DNA hybridization sensors, as well as a future perspective.

  18. Electrochemical Impedance Spectroscopic Sensing of Methamphetamine by a Specific Aptamer

    Directory of Open Access Journals (Sweden)

    Omid Mashinchian

    2012-05-01

    Full Text Available Introduction: Electrochemical impedance spectroscopy (EIS is a simple and highly sensitive technique that can be used for evaluation of the aptamer-target interaction even in a label-free approach. Methods: To pursue the effectiveness of EIS, in the current study, the folding properties of specific aptamer for methamphetamine (METH (i.e., aptaMETH were evaluated in the presence of METH and amphetamine (Amph. Folded and unfolded aptaMETH was mounted on the gold electrode surface and the electron charge transfer was measured by EIS. Results: The Ret of methamphetamine-aptaMETH was significantly increased in comparison with other folding conditions, indicating specific detection of METH by aptaMETH. Conclusion: Based on these findings, methamphetamine-aptaMETH on the gold electrode surface displayed the most interfacial electrode resistance and thus the most folding situation. This clearly indicates that the aptaMETH can profoundly and specifically pinpoint METH; as a result we suggest utilization of this methodology for fast and cost-effective identification of METH.

  19. A general excimer signaling approach for aptamer sensors.

    Science.gov (United States)

    Wu, Cuichen; Yan, Ling; Wang, Chunming; Lin, Haoxue; Wang, Chi; Chen, Xi; Yang, Chaoyong James

    2010-06-15

    Simple, fast and direct analysis or monitoring of significant molecules in complex biological samples is important for many biological study, clinical diagnosis and forensic investigations. Herein we highlight a general method to tailor aptamer sequence into functional subunits to design target-induced light-switching excimer sensors for rapid, sensitive and selective detection of important molecules in complex biological fluids. Our approach is to split one single strand aptamer into two pieces and each terminally labeled with a pyrene molecule while maintaining their binding affinity to target molecules. In the presence of target molecules, two aptamer fragments are induced to self-assemble to form aptamer-target complex and bring two pyrene molecules into a close proximity to form an excimer, resulting in fluorescent switching from approximately 400 nm to 485 nm. With an anti-cocaine sensor, as low as 1 microM of cocaine can be detected using steady-state fluorescence assays and more importantly low picomole level of target can be directly visualized with naked eyes. Because the excimer has a long fluorescence lifetime, time-resolved measurements were used to directly detect as low as 5 microM cocaine in urine samples quantitatively without any sample pretreatment. Copyright 2010 Elsevier B.V. All rights reserved.

  20. Electrochemical aptasensor for highly sensitive determination of cocaine using a supramolecular aptamer and rolling circle amplification

    International Nuclear Information System (INIS)

    Shen, Bo; Yan, Yurong; Tang, Renkuan; Li, Yongguo; Li, Jianbo; Cheng, Wei; Ju, Huangxian; Ding, Shijia

    2015-01-01

    We report on a novel strategy for the electrochemical detection of cocaine. It is based on the use of a supramolecular aptamer, rolling circle amplification (RCA), and multiplex binding of a biotin-strepavidin system. The aptamer fragments were assembled to a supramolecular aptamer which, in the presence of cocaine, conjugates to streptavidin for anchoring of biotinylated circular DNA. This initiates RCA and enables sensitive electrochemical-enzymatic readout. A significant signal amplification was obtained by using streptavidin linked to alkaline phosphatase that binds to the remaining biotinylated detection probes and catalyzes the hydrolysis of the synthetic enzyme substrate α-naphthylphosphate. This dual amplification strategy tremendously increases the detection limit of the aptasensor. Under optimal conditions and using differential pulse voltammetry, cocaine can be detected in the concentration range between 2 and 500 nM with a detection limit as low as 1.3 nM (at S/N = 3). The method is specific and acceptably reproducible. It was successfully applied to the detection of cocaine in (spiked) urine samples. The data were in good agreement with those obtained by the GC-MS reference method. (author)

  1. Development of paper-based electrochemical sensors for water quality monitoring

    Science.gov (United States)

    Smith, Suzanne; Bezuidenhout, Petroné; Mbanjwa, Mesuli; Zheng, Haitao; Conning, Mariette; Palaniyandy, Nithyadharseni; Ozoemena, Kenneth; Land, Kevin

    2016-02-01

    We present a method for the development of paper-based electrochemical sensors for detection of heavy metals in water samples. Contaminated water leads to serious health problems and environmental issues. Paper is ideally suited for point-of-care testing, as it is low cost, disposable, and multi-functional. Initial sensor designs were manufactured on paper substrates using combinations of inkjet printing and screen printing technologies using silver and carbon inks. Bismuth onion-like carbon nanoparticle ink was manufactured and used as the active material of the sensor for both commercial and paper-based sensors, which were compared using standard electrochemical analysis techniques. The results highlight the potential of paper-based sensors to be used effectively for rapid water quality monitoring at the point-of-need.

  2. Ultrasensitive electrochemical aptasensor based on sandwich architecture for selective label-free detection of colorectal cancer (CT26) cells.

    Science.gov (United States)

    Hashkavayi, Ayemeh Bagheri; Raoof, Jahan Bakhsh; Ojani, Reza; Kavoosian, Saeid

    2017-06-15

    Colorectal cancer is one of the most common cancers in the world and has no effective treatment. Therefore, development of new methods for early diagnosis is instantly required. Biological recognition probes such as synthetic receptor and aptamer is one of the candidate recognition layers to detect important biomolecules. In this work, an electrochemical aptasensor was developed by fabricating an aptamer-cell-aptamer sandwich architecture on an SBA-15-3-aminopropyltriethoxysilane (SBA-15-pr-NH 2 ) and Au nanoparticles (AuNPs) modified graphite screen printed electrode (GSPE) surface for the selective, label-free detection of CT26 cancer cells. Based on the incubation of the thiolated aptamer with CT26 cells, the electron-transfer resistance of Fe (CN) 6 3-/4- redox couple increased considerably on the aptasensor surface. The results obtained from cyclic voltammetry and electrochemical impedance spectroscopy studies showed that the fabricated aptasensor can specifically identify CT26 cells in the concentration ranges of 10-1.0×10 5 cells/mL and 1.0×10 5 -6.0×10 6 cells/mL, respectively, with a detection limit of 2cells/mL. Applying the thiol terminated aptamer (5TR1) as a recognition layer led to a sensor with high affinity for CT26 cancer cells, compared to control cancer cells of AGS cells, VERO Cells, PC3 cells and SKOV-3 cells. Therefore a simple, rapid, label free, inexpensive, excellent, sensitive and selective electrochemical aptasensor based on sandwich architecture was developed for detection of CT26 Cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Aptamer Based Microsphere Biosensor for Thrombin Detection

    Directory of Open Access Journals (Sweden)

    Xudong Fan

    2006-08-01

    Full Text Available We have developed an optical microsphere resonator biosensor using aptamer asreceptor for the measurement of the important biomolecule thrombin. The sphere surface ismodified with anti-thrombin aptamer, which has excellent binding affinity and selectivityfor thrombin. Binding of the thrombin at the sphere surface is monitored by the spectralposition of the microsphere’s whispering gallery mode resonances. A detection limit on theorder of 1 NIH Unit/mL is demonstrated. Control experiments with non-aptameroligonucleotide and BSA are also carried out to confirm the specific binding betweenaptamer and thrombin. We expect that this demonstration will lead to the development ofhighly sensitive biomarker sensors based on aptamer with lower cost and higher throughputthan current technology.

  4. Electrochemical and optical sugar sensors based on phenylboronic acid and its derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Egawa, Yuya; Seki, Toshinobu [Faculty of Pharmaceutical Sciences, Josai University, Keyakidai, Sakado, Saitama 350-0295 (Japan); Takahashi, Shigehiro [Graduate School of Pharmaceutical Sciecnes, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578 (Japan); Anzai, Jun-ichi, E-mail: junanzai@mail.pharm.tohoku.ac.jp [Graduate School of Pharmaceutical Sciecnes, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578 (Japan)

    2011-10-10

    Recent progress in electrochemical and optical sugar sensors based on phenylboronic acid (PBA) and its derivatives as recognition components is reviewed. PBAs are known to bind diol compounds including sugars to form cyclic boronate esters that are negatively charged as a result of the addition of OH{sup -} ions from solution. Based on the formation of PBA charged species, sugars and their derivatives can be detected by means of electrochemical and optical techniques. For the development of PBA-based electrochemical sensing systems or sensors, PBA is modified with a redox-active marker, because PBA itself is electrochemically inactive, and ferrocene derivatives are often employed for this purpose. Ferrocene-modified PBAs have been used as redox-active additives in solution for the electrochemical detection of sugars and derivatives. PBA-modified electrodes have also been constructed as reagentless electrochemical sensors, where PBAs are immobilized on the surface of metal and carbon electrodes through mainly two routes: as a self-assembled monolayer film and as a polymer thin film. PBA-modified electrodes can be successfully used to detect sugars and derivatives through potentiometric and voltammetric responses. In addition, PBA-modified electrodes can be used for the immobilization of glycoenzymes on an electrode surface by the formation of boronate esters with carbohydrate chains in the glycoenzymes, thus resulting in enzyme biosensors. For the development of PBA-based optical sensors, a variety of chromophores and fluorophores have been coupled with PBA. Azobenzene dyes have been most frequently used for the preparation of colorimetric sugar sensors, in which the absorption wavelength and intensity of the dye are dependent on the type and concentration of added sugars. The sensitivity of the sensors is significantly improved based on multi-component systems in which alizalin red S, pyrocatechol violet, starch-iodine complex, and cyclodextrin are employed as

  5. Electrochemical and optical sugar sensors based on phenylboronic acid and its derivatives

    International Nuclear Information System (INIS)

    Egawa, Yuya; Seki, Toshinobu; Takahashi, Shigehiro; Anzai, Jun-ichi

    2011-01-01

    Recent progress in electrochemical and optical sugar sensors based on phenylboronic acid (PBA) and its derivatives as recognition components is reviewed. PBAs are known to bind diol compounds including sugars to form cyclic boronate esters that are negatively charged as a result of the addition of OH - ions from solution. Based on the formation of PBA charged species, sugars and their derivatives can be detected by means of electrochemical and optical techniques. For the development of PBA-based electrochemical sensing systems or sensors, PBA is modified with a redox-active marker, because PBA itself is electrochemically inactive, and ferrocene derivatives are often employed for this purpose. Ferrocene-modified PBAs have been used as redox-active additives in solution for the electrochemical detection of sugars and derivatives. PBA-modified electrodes have also been constructed as reagentless electrochemical sensors, where PBAs are immobilized on the surface of metal and carbon electrodes through mainly two routes: as a self-assembled monolayer film and as a polymer thin film. PBA-modified electrodes can be successfully used to detect sugars and derivatives through potentiometric and voltammetric responses. In addition, PBA-modified electrodes can be used for the immobilization of glycoenzymes on an electrode surface by the formation of boronate esters with carbohydrate chains in the glycoenzymes, thus resulting in enzyme biosensors. For the development of PBA-based optical sensors, a variety of chromophores and fluorophores have been coupled with PBA. Azobenzene dyes have been most frequently used for the preparation of colorimetric sugar sensors, in which the absorption wavelength and intensity of the dye are dependent on the type and concentration of added sugars. The sensitivity of the sensors is significantly improved based on multi-component systems in which alizalin red S, pyrocatechol violet, starch-iodine complex, and cyclodextrin are employed as

  6. A new aptamer/graphene interdigitated gold electrode piezoelectric sensor for rapid and specific detection of Staphylococcus aureus.

    Science.gov (United States)

    Lian, Yan; He, Fengjiao; Wang, Huan; Tong, Feifei

    2015-03-15

    A novel aptamer/graphene interdigitated gold electrode piezoelectric sensor was developed for the rapid and specific detection of Staphylococcus aureus (S. aureus) by employing S. aureus aptamer as a biological recognition element. 4-Mercaptobenzene-diazonium tetrafluoroborate (MBDT) salt was used as a molecular cross-linking agent to chemically bind graphene to interdigital gold electrodes (IDE) that are connected to a series electrode piezoelectric quartz crystal (SPQC). S. aureus aptamers were assembly immobilized onto graphene via the π-π stacking of DNA bases. Due to the specific binding between S. aureus and aptamer, when S. aureus is present, the DNA bases interacted with the aptamer, thereby dropping the aptamer from the surface of the graphene. The electric parameters of the electrode surface was changed and resulted in the change of oscillator frequency of the SPQC. This detection was completed within 60min. The constructed sensor demonstrated a linear relationship between resonance frequency shifts with bacterial concentrations ranging from 4.1×10(1)-4.1×10(5)cfu/mL with a detection limit of 41cfu/mL. The developed strategy can detect S. aureus rapidly and specifically for clinical diagnosis and food testing. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Electrochemical aptasensor for detecting Der p2 allergen using polycarbonate-based double-generation gold nanoparticle chip

    Directory of Open Access Journals (Sweden)

    Ming-Che Shen

    2017-04-01

    Full Text Available In this study, a novel aptamer-based impedimetric biosensor for detecting the group 2 allergen of Dermatophagoides pteronyssinus (Der p2 was developed. First, an anodic aluminum oxide (AAO membrane was prepared. A modified AAO barrier-layer surface with an array of nanohemispheres of 400 nm in diameter was used as a template for the nanoelectroforming of a nickel mold. After electroforming, the AAO template was etched and a nickel nanomold with a concave nanostructure array was produced. The formed nanostructured nickel nanomold was then used in the replica molding of a nanostructured polycarbonate (PC substrate via hot embossing. Finally, a gold thin film was sputtered onto the PC substrate to form a double-generation gold nanoparticle electrode (array of nanohemispheres with smaller nanoparticles orderly distributed on each nanohemisphere. After immobilizing specifically designed aptamers on the fabricated electrode, electrochemical impedance spectroscopy was used to determine the concentration of Der p2. The sensitivity of the proposed scheme for the detection of the dust mite antigen Der p2 was 2.088 Ω / (ng/mL × cm2 with a dynamic detection range of 27.5–400 ng/mL and detection limit of 16.47 ng/mL.The aptamer-based impedimetric biosensor proposed in this study possesses many advantages such as high sensitivity, low cost, and high consistency over currently used sensors. The proposed sensor was found to be useful for the rapid detection of rare molecules present in an analyte. Keywords: Aptamers, Der p2 dust mite allergen detection, Nanostructured biosensors, Electrochemical impedance spectroscopy

  8. Novel membrane-based electrochemical sensor for real-time bio-applications

    DEFF Research Database (Denmark)

    Al Atraktchi, Fatima Al-Zahraa; Bakmand, Tanya; Dimaki, Maria

    2014-01-01

    This article presents a novel membrane-based sensor for real-time electrochemical investigations of cellular- or tissue cultures. The membrane sensor enables recording of electrical signals from a cell culture without any signal dilution, thus avoiding loss of sensitivity. Moreover, the porosity...... of the membrane provides optimal culturing conditions similar to existing culturing techniques allowing more efficient nutrient uptake and molecule release. The patterned sensor electrodes were fabricated on a porous membrane by electron-beam evaporation. The electrochemical performance of the membrane electrodes...

  9. Aptamer based vanillin sensor using an ion-sensitive field-effect transistor.

    Science.gov (United States)

    Kuznetsov, Alexander; Komarova, Natalia; Andrianova, Maria; Grudtsov, Vitaliy; Kuznetsov, Evgeniy

    2017-12-02

    An aptamer for vanillin was obtained and then used for the development of an aptasensor based on an ion-sensitive field-effect transistor (ISFET). This aptamer (a single-stranded DNA;ssDNA) was selected using the Capture-SELEX protocol, which suites well for selection of aptamers to small molecules. Among six aptamer candidates, the aptamer Van_74 with the highest affinity for vanillin was chosen (elution of 35% of the aptamer from a solid support in the presence of 2 mM of vanillin). Van_74 was characterized using nondenaturating PAGE of washouts from magnetic beads. It is shown that Van_74 binds to vanillin with an dissociation constant of >7.8 μM (determined by nondenaturating PAGE) and it was specific to vanillin in comparison with interferents: benzaldehyde, guaiacol, furaneol, ethyl guaiacol and ethyl vanillin. Also it was shown that change of buffer composition greatly affected the binding ability of Van_74. For biosensor fabrication aptamer was immobilised on the Ta 2 O 5 -sensitive surface of the ISFET via "click-chemistry". Detection scheme implied dehybridisation of the ssDNA probe from the aptamer and release in the solution during the addition of vanillin. As a result, the surface potential increase upon vanillin binding with the aptamer was detected by the transistor. The biosensor had a detection limit of 1.55 × 10 -7  M and a dynamic range from 1.55 × 10 -7  M to 1 × 10 -6  M. Effective constant K d,eff for vanillin binding on biosensor surface was calculated to be (9 ± 3) × 10 -7  M. This allows selective detection of vanillin in the mixture of interferents and in samples of coffee extract. Graphical abstract A biosensor for vanillin was developed on the basis of an aptamer that was obtained via Capture-SELEX and by using an ISFET. This biosensor can be used for vanillin detection in presence of interferents and in real sample using an approach of ssDNA probe dehybridization.

  10. Impedimetric aptamer-based determination of the mold toxin fumonisin B1

    International Nuclear Information System (INIS)

    Chen, Xiujuan; Huang, Yukun; Ma, Xiaoyuan; Jia, Fei; Guo, Xiaofei; Wang, Zhouping

    2015-01-01

    We are presenting an aptasensor for the sensitive determination of fumonisin B1 (FB-1) via electrochemical impedance spectroscopy (EIS) and applying aptamer-based biorecognition. A thiolated aptamer for FB-1 was anchored onto the surface of gold nanoparticles (AuNPs) on a glassy carbon electrode. A significant increase in resistance (R et ) is found on interaction with FB-1 in the 0.1 nM to 100 μM concentration range, and the detection limit is as low as 2 pM. The assay was applied to determine FB-1 in spiked maize samples and gave recovery rates ranging from 91 to 105 %. The results demonstrate this method to present new possibilities in the application of aptamers in food safety analysis. (author)

  11. A label free aptamer-based LPG sensor for detection of mercury in aquatic solutions

    Science.gov (United States)

    Nikbakht, Hamed; Latifi, Hamid; Ziaee, Farzaneh

    2015-09-01

    We demonstrate a label free fiber optic sensor for detection of mercury ions in aquatic solutions. This sensor utilizes aptamers as bio-recognition element which traps mercury ions and cause a refractive index change in the vicinity of the sensor. Refractive index variations lead to a change in the transmission spectrum that can be used to calculate the concentration of mercury ions in that solution. The concentration of 1 nM mercury ions was detected which is below the specific amount determined by the US environmental protection agency as the maximum authorized contaminant level of Hg2+ ions in drinking water.

  12. Graphene oxide and DNA aptamer based sub-nanomolar potassium detecting optical nanosensor

    Science.gov (United States)

    Datta, Debopam; Sarkar, Ketaki; Mukherjee, Souvik; Meshik, Xenia; Stroscio, Michael A.; Dutta, Mitra

    2017-08-01

    Quantum-dot (QD) based nanosensors are frequently used by researchers to detect small molecules, ions and different biomolecules. In this article, we present a sensor complex/system comprised of deoxyribonucleic acid (DNA) aptamer, gold nanoparticle and semiconductor QD, attached to a graphene oxide (GO) flake for detection of potassium. As reported herein, it is demonstrated that QD-aptamer-quencher nanosensor functions even when tethered to GO, opening the way to future applications where sensing can be accomplished simultaneously with other previously demonstrated applications of GO such as serving as a nanocarrier for drug delivery. Herein, it is demonstrated that the DNA based thrombin binding aptamer used in this study undergoes the conformational change needed for sensing even when the nanosensor complex is anchored to the GO. Analysis with the Hill equation indicates the interaction between aptamer and potassium follows sigmoidal Hill kinetics. It is found that the quenching efficiency of the optical sensor is linear with the logarithm of concentration from 1 pM to 100 nM and decreases for higher concentration due to unavailability of aptamer binding sites. Such a simple and sensitive optical aptasensor with minimum detection capability of 1.96 pM for potassium ion can also be employed in-vitro detection of different physiological ions, pathogens and disease detection methods.

  13. Electrochemical sensors based on gold nanoparticles modified with rhodamine B hydrazide to sensitively detect Cu(II)

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Donglai; Hu, Bin; Kang, Mengmeng [Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450001 (China); Wang, Minghua [Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, No.136, Science Avenue, Zhengzhou 450001 (China); He, Linghao [Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450001 (China); Zhang, Zhihong, E-mail: mainzhh@163.com [Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450001 (China); Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, No.136, Science Avenue, Zhengzhou 450001 (China); Fang, Shaoming, E-mail: mingfang@zzuli.edu.cn [Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450001 (China); Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, No.136, Science Avenue, Zhengzhou 450001 (China)

    2016-12-30

    Highlights: • An electrochemical sensor based on gold nanoparticles modified with rhodamine B hydrazide (AuNPs-RBH) was developed. • The sensor was applied in the highly sensitive and selective detection of Cu{sup 2+} in water. • The electrochemical sensor displays excellent regeneration, stability, and practicability for Cu{sup 2+} detection. • EIS was used to determine Cu{sup 2+} ions in an aqueous solution with the developed AuNPs-RBH-based electrochemical sensor. - Abstract: An electrochemical sensor based on gold nanoparticles (Au NPs) modified with rhodamine B hydrazide (RBH) (AuNPs-RBH) was developed and applied in the highly sensitive and selective detection of Cu{sup 2+} in water. RBH molecules were bounded onto the surface of AuNPs via the strong interaction between the amino groups and Au NPs. The chemical structure variations were characterized by X-ray photoelectron spectroscopy and fluoresence spectroscopy. Additionally, electrochemical impedance spectroscopy was used to determine Cu{sup 2+} ions in an aqueous solution with the developed AuNPs-RBH-based electrochemical sensor. Results show that the fabricated sensor exhibits good electrochemical performance because of the presence of Au NPs and high affinity with the Cu{sup 2+} resulting from the strong coordination chemistry between Cu{sup 2+} and RBH. The as-developed sensor towards detecting Cu{sup 2+} has a detection limitation of 12.5 fM within the concentration range of 0.1 pM–1 nM by using the electrochemical impedance technique. It also displays excellent selectivity, regeneration, stability, and practicability for Cu{sup 2+} detection. Therefore, the new strategy of the RBH-based electrochemical sensor exhibits great potential application in environment treatment and protection.

  14. Miniaturized Aptamer-Based Assays for Protein Detection

    Directory of Open Access Journals (Sweden)

    Alessandro Bosco

    2016-09-01

    Full Text Available The availability of devices for cancer biomarker detection at early stages of the disease is one of the most critical issues in biomedicine. Towards this goal, to increase the assay sensitivity, device miniaturization strategies empowered by the employment of high affinity protein binders constitute a valuable approach. In this work we propose two different surface-based miniaturized platforms for biomarker detection in body fluids: the first platform is an atomic force microscopy (AFM-based nanoarray, where AFM is used to generate functional nanoscale areas and to detect biorecognition through careful topographic measurements; the second platform consists of a miniaturized electrochemical cell to detect biomarkers through electrochemical impedance spectroscopy (EIS analysis. Both devices rely on robust and highly-specific protein binders as aptamers, and were tested for thrombin detection. An active layer of DNA-aptamer conjugates was immobilized via DNA directed immobilization on complementary single-stranded DNA self-assembled monolayers confined on a nano/micro area of a gold surface. Results obtained with these devices were compared with the output of surface plasmon resonance (SPR assays used as reference. We succeeded in capturing antigens in concentrations as low as a few nM. We put forward ideas to push the sensitivity further to the pM range, assuring low biosample volume (μL range assay conditions.

  15. A novel electrochemical aptamer-antibody sandwich assay for lysozyme detection.

    Science.gov (United States)

    Ocaña, Cristina; Hayat, Akhtar; Mishra, Rupesh; Vasilescu, Alina; del Valle, Manel; Marty, Jean-Louis

    2015-06-21

    In this paper, we have reported a novel electrochemical aptamer-antibody based sandwich biosensor for the detection of lysozyme. In the sensing strategy, an anti-lysozyme aptamer was immobilized onto the carbon electrode surface by covalent binding via diazonium salt chemistry. After incubating with a target protein (lysozyme), a biotinylated antibody was used to complete the sandwich format. The subsequent additions of avidin-alkaline phosphatase as an enzyme label, and a 1-naphthyl phosphate substrate (1-NPP) allowed us to determine the concentration of lysozyme (Lys) via Differential Pulse Voltammetry (DPV) of the generated enzyme reaction product, 1-naphthol. Using this strategy, a wide detection range from 5 fM to 5 nM was obtained for a target lysozyme, with a detection limit of 4.3 fM. The control experiments were carried out by using bovine serum albumin (BSA), cytochrome c and casein. The results showed that the proposed biosensor had good specificity, stability and reproducibility for lysozyme analysis. In addition, the biosensor was applied for detecting lysozyme in spiked wine samples, and very good recovery rates were obtained in the range from 95.2 to 102.0% for lysozyme detection. This implies that the proposed sandwich biosensor is a promising analytical tool for the analysis of lysozyme in real samples.

  16. Electrochemical sensors based on polyconjugated conducting polymers

    Energy Technology Data Exchange (ETDEWEB)

    Zotti, G. (Ist. di Polarografia ed Elettrochimica Preparativa, Consiglio Nazionale delle Ricerche, Padua (Italy))

    1992-09-01

    An overview of the applications of polyconjugated conducting polymers to electrochemical sensors is given. Gas sensors, ion sensors, and biosensors (non-enzyme and enzyme sensors) are presented and discussed. The role of the polymer as enzyme host and mediator of charge transfer is particularly emphasized in the light of recent results. (orig.).

  17. Facile conversion of ATP-binding RNA aptamer to quencher-free molecular aptamer beacon.

    Science.gov (United States)

    Park, Yoojin; Nim-Anussornkul, Duangrat; Vilaivan, Tirayut; Morii, Takashi; Kim, Byeang Hyean

    2018-01-15

    We have developed RNA-based quencher-free molecular aptamer beacons (RNA-based QF-MABs) for the detection of ATP, taking advantage of the conformational changes associated with ATP binding to the ATP-binding RNA aptamer. The RNA aptamer, with its well-defined structure, was readily converted to the fluorescence sensors by incorporating a fluorophore into the loop region of the hairpin structure. These RNA-based QF-MABs exhibited fluorescence signals in the presence of ATP relative to their low background signals in the absence of ATP. The fluorescence emission intensity increased upon formation of a RNA-based QF-MAB·ATP complex. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Iron-Based Nanomaterials/Graphene Composites for Advanced Electrochemical Sensors

    Directory of Open Access Journals (Sweden)

    Kaveh Movlaee

    2017-11-01

    Full Text Available Iron oxide nanostructures (IONs in combination with graphene or its derivatives—e.g., graphene oxide and reduced graphene oxide—hold great promise toward engineering of efficient nanocomposites for enhancing the performance of advanced devices in many applicative fields. Due to the peculiar electrical and electrocatalytic properties displayed by composite structures in nanoscale dimensions, increasing efforts have been directed in recent years toward tailoring the properties of IONs-graphene based nanocomposites for developing more efficient electrochemical sensors. In the present feature paper, we first reviewed the various routes for synthesizing IONs-graphene nanostructures, highlighting advantages, disadvantages and the key synthesis parameters for each method. Then, a comprehensive discussion is presented in the case of application of IONs-graphene based composites in electrochemical sensors for the determination of various kinds of (biochemical substances.

  19. Iron-Based Nanomaterials/Graphene Composites for Advanced Electrochemical Sensors

    Science.gov (United States)

    Movlaee, Kaveh; Ganjali, Mohmmad Reza; Norouzi, Parviz

    2017-01-01

    Iron oxide nanostructures (IONs) in combination with graphene or its derivatives—e.g., graphene oxide and reduced graphene oxide—hold great promise toward engineering of efficient nanocomposites for enhancing the performance of advanced devices in many applicative fields. Due to the peculiar electrical and electrocatalytic properties displayed by composite structures in nanoscale dimensions, increasing efforts have been directed in recent years toward tailoring the properties of IONs-graphene based nanocomposites for developing more efficient electrochemical sensors. In the present feature paper, we first reviewed the various routes for synthesizing IONs-graphene nanostructures, highlighting advantages, disadvantages and the key synthesis parameters for each method. Then, a comprehensive discussion is presented in the case of application of IONs-graphene based composites in electrochemical sensors for the determination of various kinds of (bio)chemical substances. PMID:29168771

  20. A Turn-on Fluorescence Sensor for Heparin Detection Based on a Release of Taiwan Cobra Cardiotoxin from a DNA Aptamer or Adenosine-Based Molecular Beacon.

    Science.gov (United States)

    Shi, Yi-Jun; Wang, Liang-Jun; Lee, Yuan-Chin; Huang, Chia-Hui; Hu, Wan-Ping; Chang, Long-Sen

    2018-02-19

    This study presents two sensitive fluorescent assays for sensing heparin on the basis of the electrostatic interaction between heparin and Naja naja atra cardiotoxin 3 (CTX3). Owing to CTX3-induced folded structure of an adenosine-based molecular beacon (MB) or a DNA aptamer against CTX3, a reduction in the fluorescent signal of the aptamer or MB 5'-end labeled with carboxyfluorescein (FAM) and 3'-end labeled with 4-([4-(dimethylamino)phenyl]azo)-benzoic acid (DABCYL) was observed upon the addition of CTX3. The presence of heparin and formation of the CTX3-heparin complex caused CTX3 detachment from the MB or aptamer, and restoration of FAM fluorescence of the 5'-FAM-and-3'-DABCYL-labeled MB and aptamer was subsequently noted. Moreover, the detection of heparin with these CTX3-aptamer and CTX3-MB sensors showed high sensitivity and selectivity toward heparin over chondroitin sulfate and hyaluronic acid regardless of the presence of plasma. The limit of detection for heparin in plasma was determined to be 16 ng/mL and 15 ng/mL, respectively, at a signal-to-noise ratio of 3. This study validates the practical utility of the CTX3-aptamer and CTX3-MB systems for determining the concentration of heparin in a biological matrix.

  1. Carbon nanomaterial based electrochemical sensors for biogenic amines

    International Nuclear Information System (INIS)

    Yang, Xiao; He, Xiulan; Li, Fangping; Fei, Junjie; Feng, Bo; Ding, Yonglan

    2013-01-01

    This review describes recent advances in the use of carbon nanomaterials for electroanalytical detection of biogenic amines (BAs). It starts with a short introduction into carbon nanomaterials such as carbon nanotubes, graphene, nanodiamonds, carbon nanofibers, fullerenes, and their composites. Next, electrochemical sensing schemes are discussed for various BAs including dopamine, serotonin, epinephrine, norepinephrine, tyramine, histamine and putrescine. Examples are then given for methods for simultaneous detection of various BAs. Finally, we discuss the current and future challenges of carbon nanomaterial-based electrochemical sensors for BAs. The review contains 175 references. (author)

  2. Sensitive determination of citrinin based on molecular imprinted electrochemical sensor

    Energy Technology Data Exchange (ETDEWEB)

    Atar, Necip [Department of Chemical Engineering, Faculty of Engineering, Pamukkale University, Denizli (Turkey); Yola, Mehmet Lütfi, E-mail: mehmetyola@gmail.com [Department of Metallurgical and Materials Engineering, Faculty of Engineering, Sinop University, Sinop (Turkey); Eren, Tanju [Department of Chemical Engineering, Faculty of Engineering, Pamukkale University, Denizli (Turkey)

    2016-01-30

    Graphical abstract: - Highlights: • Citrinin-imprinted electrochemical sensor is developed for the sensitive detection of citrinin. • The nanomaterial and citrinin-imprinted surfaces were characterized by several methods. • Citrinin-imprinted electrochemical sensor is sensitive and selective in analysis of food. • Citrinin-imprinted electrochemical sensor is preferred to the other methods. - Abstract: In this report, a novel molecular imprinted voltammetric sensor based on glassy carbon electrode (GCE) modified with platinum nanoparticles (PtNPs) involved in a polyoxometalate (H{sub 3}PW{sub 12}O{sub 40}, POM) functionalized reduced graphene oxide (rGO) was prepared for the determination of citrinin (CIT). The developed surfaces were characterized by using scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) method. CIT imprinted GCE was prepared via electropolymerization process of 80.0 mM pyrrole as monomer in the presence of phosphate buffer solution (pH 6.0) containing 20.0 mM CIT. The linearity range and the detection limit of the developed method were calculated as 1.0 × 10{sup −12}–1.0 × 10{sup −10} M and 2.0 × 10{sup −13} M, respectively. In addition, the voltammetric sensor was applied to rye samples. The stability and selectivity of the voltammetric sensor were also reported.

  3. Sensitive determination of citrinin based on molecular imprinted electrochemical sensor

    International Nuclear Information System (INIS)

    Atar, Necip; Yola, Mehmet Lütfi; Eren, Tanju

    2016-01-01

    Graphical abstract: - Highlights: • Citrinin-imprinted electrochemical sensor is developed for the sensitive detection of citrinin. • The nanomaterial and citrinin-imprinted surfaces were characterized by several methods. • Citrinin-imprinted electrochemical sensor is sensitive and selective in analysis of food. • Citrinin-imprinted electrochemical sensor is preferred to the other methods. - Abstract: In this report, a novel molecular imprinted voltammetric sensor based on glassy carbon electrode (GCE) modified with platinum nanoparticles (PtNPs) involved in a polyoxometalate (H_3PW_1_2O_4_0, POM) functionalized reduced graphene oxide (rGO) was prepared for the determination of citrinin (CIT). The developed surfaces were characterized by using scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) method. CIT imprinted GCE was prepared via electropolymerization process of 80.0 mM pyrrole as monomer in the presence of phosphate buffer solution (pH 6.0) containing 20.0 mM CIT. The linearity range and the detection limit of the developed method were calculated as 1.0 × 10"−"1"2–1.0 × 10"−"1"0 M and 2.0 × 10"−"1"3 M, respectively. In addition, the voltammetric sensor was applied to rye samples. The stability and selectivity of the voltammetric sensor were also reported.

  4. Recent trends in carbon nanomaterial-based electrochemical sensors for biomolecules: A review

    International Nuclear Information System (INIS)

    Yang, Cheng; Denno, Madelaine E.; Pyakurel, Poojan; Venton, B. Jill

    2015-01-01

    Carbon nanomaterials are advantageous for electrochemical sensors because they increase the electroactive surface area, enhance electron transfer, and promote adsorption of molecules. Carbon nanotubes (CNTs) have been incorporated into electrochemical sensors for biomolecules and strategies have included the traditional dip coating and drop casting methods, direct growth of CNTs on electrodes and the use of CNT fibers and yarns made exclusively of CNTs. Recent research has also focused on utilizing many new types of carbon nanomaterials beyond CNTs. Forms of graphene are now increasingly popular for sensors including reduced graphene oxide, carbon nanohorns, graphene nanofoams, graphene nanorods, and graphene nanoflowers. In this review, we compare different carbon nanomaterial strategies for creating electrochemical sensors for biomolecules. Analytes covered include neurotransmitters and neurochemicals, such as dopamine, ascorbic acid, and serotonin; hydrogen peroxide; proteins, such as biomarkers; and DNA. The review also addresses enzyme-based electrodes that are used to detect non-electroactive species such as glucose, alcohols, and proteins. Finally, we analyze some of the future directions for the field, pointing out gaps in fundamental understanding of electron transfer to carbon nanomaterials and the need for more practical implementation of sensors. - Highlights: • We review the types of carbon nanomaterials used in electrochemical sensors. • Different materials and sensor designs are compared for classes of biomolecules. • Future challenges of better sensor design and implementation are assessed

  5. Recent trends in carbon nanomaterial-based electrochemical sensors for biomolecules: A review

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Cheng; Denno, Madelaine E.; Pyakurel, Poojan; Venton, B. Jill, E-mail: jventon@virginia.edu

    2015-08-05

    Carbon nanomaterials are advantageous for electrochemical sensors because they increase the electroactive surface area, enhance electron transfer, and promote adsorption of molecules. Carbon nanotubes (CNTs) have been incorporated into electrochemical sensors for biomolecules and strategies have included the traditional dip coating and drop casting methods, direct growth of CNTs on electrodes and the use of CNT fibers and yarns made exclusively of CNTs. Recent research has also focused on utilizing many new types of carbon nanomaterials beyond CNTs. Forms of graphene are now increasingly popular for sensors including reduced graphene oxide, carbon nanohorns, graphene nanofoams, graphene nanorods, and graphene nanoflowers. In this review, we compare different carbon nanomaterial strategies for creating electrochemical sensors for biomolecules. Analytes covered include neurotransmitters and neurochemicals, such as dopamine, ascorbic acid, and serotonin; hydrogen peroxide; proteins, such as biomarkers; and DNA. The review also addresses enzyme-based electrodes that are used to detect non-electroactive species such as glucose, alcohols, and proteins. Finally, we analyze some of the future directions for the field, pointing out gaps in fundamental understanding of electron transfer to carbon nanomaterials and the need for more practical implementation of sensors. - Highlights: • We review the types of carbon nanomaterials used in electrochemical sensors. • Different materials and sensor designs are compared for classes of biomolecules. • Future challenges of better sensor design and implementation are assessed.

  6. A silicon-based electrochemical sensor for highly sensitive, specific, label-free and real-time DNA detection

    International Nuclear Information System (INIS)

    Guo, Yuanyuan; Su, Shao; Wei, Xinpan; Zhong, Yiling; Su, Yuanyuan; He, Yao; Huang, Qing; Fan, Chunhai

    2013-01-01

    We herein present a new kind of silicon-based electrochemical sensor using a gold nanoparticles-decorated silicon wafer (AuNPs@Si) as a high-performance electrode, which is facilely prepared via in situ AuNPs growth on a silicon wafer. Particularly significantly, the resultant electrochemical sensor is efficacious for label-free DNA detection with high sensitivity due to the unique merits of the prepared silicon-based electrode. Typically, DNA at remarkably low concentrations (1–10 fM) could be readily detected without requiring additional signal-amplification procedures, which is better than or comparable to the lowest DNA concentration ever detected via well-studied signal-amplification-assisted electrochemical sensors. Moreover, the silicon-based sensor features high specificity, allowing unambiguous discrimination of single-based mismatches. We further show that real-time DNA assembly is readily monitored via recording the intensity changes of current signals due to the robust thermal stability of the silicon-based electrode. The unprecedented advantages of the silicon-based electrochemical sensor would offer new opportunities for myriad sensing applications. (paper)

  7. Chitosan-iron oxide nanocomposite based electrochemical aptasensor for determination of malathion

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakar, Nirmal, E-mail: nirmalprabhakar@gmail.com; Thakur, Himkusha; Bharti, Anu; Kaur, Navpreet

    2016-10-05

    An electrochemical aptasensor based on chitosan-iron oxide nanocomposite (CHIT-IO) film deposited on fluorine tin Oxide (FTO) was developed for the detection of malathion. Iron oxide nanoparticles were prepared by co-precipitation method and characterized by Transmission electron microscopy and UV–Visible spectroscopy. The biotinylated DNA aptamer sequence specific to the malathion was immobilized onto the iron oxide doped-chitosan/FTO electrode by using streptavidin as linking molecule. Various characterization studies like Field Emission-Scanning Electron Microscopy (FE-SEM), Fourier Transform Infrared Spectroscopy (FT-IR), and Electrochemical studies were performed to attest the successful fabrication of bioelectrodes. Experimental parameters like aptamer concentration, response time, stability of electrode and reusability studies were optimized. Aptamer immobilized chitosan-iron oxide nanocomposite (APT/SA/CHIT-IO/FTO) bioelectrodes exhibited LOD of about 0.001 ng/mL within 15 min and spike-in studies revealed about 80–92% recovery of malathion from the lettuce leaves and soil sample. - Highlights: • An electrochemical aptasensor for the detection of Malathion has been developed. • Chitosan-iron oxide NP deposited FTO sheets provides platform for aptamer immobilization. • Aptasensor has efficiency to detect malathion upto 0.001 ng/mL within 15 min.

  8. Electrochemical sensors and biosensors based on redox polymer/carbon nanotube modified electrodes: a review.

    Science.gov (United States)

    Barsan, Madalina M; Ghica, M Emilia; Brett, Christopher M A

    2015-06-30

    The aim of this review is to present the contributions to the development of electrochemical sensors and biosensors based on polyphenazine or polytriphenylmethane redox polymers together with carbon nanotubes (CNT) during recent years. Phenazine polymers have been widely used in analytical applications due to their inherent charge transport properties and electrocatalytic effects. At the same time, since the first report on a CNT-based sensor, their application in the electroanalytical chemistry field has demonstrated that the unique structure and properties of CNT are ideal for the design of electrochemical (bio)sensors. We describe here that the specific combination of phenazine/triphenylmethane polymers with CNT leads to an improved performance of the resulting sensing devices, because of their complementary electrical, electrochemical and mechanical properties, and also due to synergistic effects. The preparation of polymer/CNT modified electrodes will be presented together with their electrochemical and surface characterization, with emphasis on the contribution of each component on the overall properties of the modified electrodes. Their importance in analytical chemistry is demonstrated by the numerous applications based on polymer/CNT-driven electrocatalytic effects, and their analytical performance as (bio) sensors is discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Carbon Nanomaterials Based Electrochemical Sensors/Biosensors for the Sensitive Detection of Pharmaceutical and Biological Compounds

    Directory of Open Access Journals (Sweden)

    Bal-Ram Adhikari

    2015-09-01

    Full Text Available Electrochemical sensors and biosensors have attracted considerable attention for the sensitive detection of a variety of biological and pharmaceutical compounds. Since the discovery of carbon-based nanomaterials, including carbon nanotubes, C60 and graphene, they have garnered tremendous interest for their potential in the design of high-performance electrochemical sensor platforms due to their exceptional thermal, mechanical, electronic, and catalytic properties. Carbon nanomaterial-based electrochemical sensors have been employed for the detection of various analytes with rapid electron transfer kinetics. This feature article focuses on the recent design and use of carbon nanomaterials, primarily single-walled carbon nanotubes (SWCNTs, reduced graphene oxide (rGO, SWCNTs-rGO, Au nanoparticle-rGO nanocomposites, and buckypaper as sensing materials for the electrochemical detection of some representative biological and pharmaceutical compounds such as methylglyoxal, acetaminophen, valacyclovir, β-nicotinamide adenine dinucleotide hydrate (NADH, and glucose. Furthermore, the electrochemical performance of SWCNTs, rGO, and SWCNT-rGO for the detection of acetaminophen and valacyclovir was comparatively studied, revealing that SWCNT-rGO nanocomposites possess excellent electrocatalytic activity in comparison to individual SWCNT and rGO platforms. The sensitive, reliable and rapid analysis of critical disease biomarkers and globally emerging pharmaceutical compounds at carbon nanomaterials based electrochemical sensor platforms may enable an extensive range of applications in preemptive medical diagnostics.

  10. Electrochemical sensor for detection of carcinoma

    International Nuclear Information System (INIS)

    Thakur, Bhawana; Sawant, Shilpa N.; Jayakumar, S.

    2012-01-01

    Detection of carcinoma in early stage is very important for its effective treatment. Although considerable advancement has been made in its detection and treatment, there is a significant need for rapid, low-cost, sensitive, and selective biosensors for detection of cancer. In recent years, electrochemical detection techniques have received much attention due to their rapid response, high sensitivity, and inherent selectivity. They can provide an inexpensive platform for detection of analytes in clinical diagnostics. Conducting polymers are a versatile material for development of electrochemical biosensors. Due to the conducting nature of these polymers, they act as a transducer to convert the biological signal into electrical signal. These polymers also exhibit good biocompatibility, hence are ideal for immobilisation of biological recognition element during the development of the sensor film. Recently author have demonstrated a whole cell based electrochemical biosensor for detection of the pesticide Lindane at very low concentrations. In the present study, we have tried to develop polyaniline based electrochemical sensor for detection of carcinoma. Polyaniline was deposited on gold interdigitated electrodes by electropolymerization using potentiodynamic method. The polymer film was suitably modified to obtain the sensor film for recognition of the tumour cells. Response of the sensor to various tumour cells such as lung cancer cells, human fibrosarcoma cells, prostate cancer cells, breast cancer cells was studied and was compared to that of normal cells. The sensor electrode could detect tumour cells based on the nature of response obtained

  11. An Electrochemical pH Sensor Based on the Amino-Functionalized Graphene and Polyaniline Composite Film.

    Science.gov (United States)

    Su, W; Xu, J; Ding, Xianting

    2016-12-01

    Conventional glass-based pH sensors are usually fragile and space consuming. Herein, a miniature electrochemical pH sensor based on amino-functionalized graphene fragments and polyaniline (NH 2 -G/PANI) composite film is developed via simply one-pot electrochemical polymerization on the ITO-coated glass substrates. Cyclic Voltammetry (CV), Scanning Electron Microscopy (SEM), Transmission electron microscopy (TEM), X-ray Photoelectron Spectroscopy (XPS), and Raman Spectra are involved to confirm the successful synthesis and to characterize the properties of the NH 2 -G/PANI composite film. The developed electrochemical pH sensor presents fast response, high sensitivity (51.1 mV/pH) and wide detection range when applied to PBS solutions of pH values from 1 to 11. The robust reproducibility and good stability of the developed pH sensors are investigated as well. Compared to the conventional glass-based pH meters, the NH 2 -G/PANI composite film-based pH sensor could be a promising contender for the flexible and miniaturized pH-sensing devices.

  12. A graphene-based electrochemical sensor for sensitive detection of paracetamol

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Xinhuang; Wang, Jun; Wu, Hong; Liu, Jun; Aksay, Ilhan A.; Lin, Yuehe

    2010-05-15

    An electrochemical sensor based on the electrocatalytic activity of functionalized graphene for sensitive detection of paracetamol is presented. The electrochemical behaviors of paracetamol on graphene-modified glassy carbon electrodes (GCEs) were investigated by cyclic voltammetry and square-wave voltammetry. The results showed that the graphene-modified electrode exhibited excellent electrocatalytic activity to paracetamol. A quasi-reversible redox process of paracetamol at the modified electrode was obtained, and the over-potential of paracetamol decreased significantly compared with that at the bare GCE. Such electrocatalytic behavior of graphene is attributed to its unique physical and chemical properties, e.g., subtle electronic characteristics, attractive π–π interaction, and strong adsorptive capability. The sensor shows great promise for simple, sensitive, and quantitative detection of paracetamol.

  13. Recent trends in carbon nanomaterial-based electrochemical sensors for biomolecules: A review

    Science.gov (United States)

    Yang, Cheng; Denno, Madelaine E.; Pyakurel, Poojan; Venton, B. Jill

    2015-01-01

    Carbon nanomaterials are advantageous for electrochemical sensors because they increase the electroactive surface area, enhance electron transfer, and promote adsorption of molecules. Carbon nanotubes (CNTs) have been incorporated into electrochemical sensors for biomolecules and strategies have included the traditional dip coating and drop casting methods, direct growth of CNTs on electrodes and the use of CNT fibers and yarns made exclusively of CNTs. Recent research has also focused on utilizing many new types of carbon nanomaterials beyond CNTs. Forms of graphene are now increasingly popular for sensors including reduced graphene oxide, carbon nanohorns, graphene nanofoams, graphene nanorods, and graphene nanoflowers. In this review, we compare different carbon nanomaterial strategies for creating electrochemical sensors for biomolecules. Analytes covered include neurotransmitters and neurochemicals, such as dopamine, ascorbic acid, and serotonin; hydrogen peroxide; proteins, such as biomarkers; and DNA. The review also addresses enzyme-based electrodes that are used to detect non-electroactive species such as glucose, alcohols, and proteins. Finally, we analyze some of the future directions for the field, pointing out gaps in fundamental understanding of electron transfer to carbon nanomaterials and the need for more practical implementation of sensors. PMID:26320782

  14. Electrochemical hydrogen isotope sensor based on solid electrolytes

    International Nuclear Information System (INIS)

    Matsumoto, Hiroshige; Hayashi, Hiroyuki; Iwahara, Hiroyasu

    2002-01-01

    An electrochemical sensor of hydrogen isotopes based on solid electrolytes for determining the hydrogen isotope ratios and/or total hydrogen pressures in gases has been developed. This paper describes the methodology of the hydrogen isotope sensing together with experimental results. When hydrogen isotope gases are introduced to an electrochemical cell using a proton-conducting electrolyte (hydrogen isotope cell), the electromotive force (EMF) of the cell agrees with that theoretically estimated. The EMF signals can be used for the determination of the hydrogen isotope ratio in gases if the total hydrogen pressure is predetermined. By supplementary use of an oxide ion conductor cell, both the ratio and total pressure of the hydrogen isotopes can be simultaneously determined. (author)

  15. Molecularly imprinted electrochemical sensor based on nickel nanoparticle-modified electrodes for phenobarbital determination

    International Nuclear Information System (INIS)

    Yu, Hui Cheng; Huang, Xue Yi; Lei, Fu Hou; Tan, Xue Cai; Wei, Yi Chun; Li, Hao

    2014-01-01

    Highlights: • Uniform Ni nanoparticles were synthesized. • A Ni nanoparticle-modified imprinted sensor was developed to detect phenobarbital. • The modified sensor exhibited high sensitivity for phenobarbital. • The electrochemical properties of the modified sensor were investigated. • The prepared sensor was applied to detect phenobarbital in fish samples. - Abstract: Uniform nickel nanoparticles were applied to improve the sensitivity of sensors for phenobarbital (PB) determination. A Ni nanoparticle-modified imprinted electrochemical sensor was developed by thermal polymerization with the use of methacrylic acid as the functional monomer and ethylene glycol maleic rosinate acrylate as the crosslinking agent. The chemical structures and morphologies of the imprinted films were characterized using Fourier transform infrared spectroscopy and scanning electron microscopy. The success of the fabrication of Ni nanoparticles, as well as the Ni nanoparticle-modified imprinted electrochemical sensor, was confirmed by the analytical results. The electrochemical properties of the modified molecularly imprinted and non-imprinted polymer sensors were investigated by cyclic voltammetry, differential pulse voltammetry, electrochemical impedance spectroscopy, and chronoamperometry. Results showed that the electrochemical properties of the molecularly imprinted sensor were remarkably different from those of the non-imprinted sensor. Linear responses of the imprinted sensor to PB were observed for concentrations ranging from 1.4 × 10 −7 mol L −1 to 1.3 × 10 −4 mol L −1 (r 2 = 0.9976), with a detection limit of 8.2 × 10 −9 mol L −1 (S/N = 3). The imprinted electrochemical sensor was used to determine PB in actual fish samples, in which average recoveries between 95.60% and 104.67% were achieved. The developed Ni nanoparticle-modified electrochemical sensor exhibited high sensitivity, high selectivity, and good recovery

  16. Electrochemical detection of avian influenza virus H5N1 gene sequence using a DNA aptamer immobilized onto a hybrid nanomaterial-modified electrode

    International Nuclear Information System (INIS)

    Liu Xianggang; Cheng Ziqiang; Fan Hai; Ai Shiyun; Han Ruixia

    2011-01-01

    Highlights: → A sensitive electrochemical biosensor for the detection of gene sequence was developed. → The biosensor was assembled by MWNT, polypyrrole nanowires and gold nanoparticles. → The hybrid nanomaterials could provide a porous structure with good properties. → The biosensor has highly selectivity and sensitivity. → The design strategy is expected to have extensive applications in other biosensors - Abstract: A sensitive electrochemical method for the detection of avian influenza virus (AIV) H5N1 gene sequence using a DNA aptamer immobilized onto a hybrid nanomaterial-modified electrode was developed. To enhance the selectivity and sensitivity, the modified electrode was assembled with multi-wall carbon nanotubes (MWNT), polypyrrole nanowires (PPNWs) and gold nanoparticles (GNPs). This electrode offered a porous structure with a large effective surface area, highly electrocatalytic activities and electronic conductivity. Therefore, the amount of DNA aptamer immobilized onto the electrode was increased while the accessibility of the detection target was maintained. The biosensor is based on the hybridization and preferred orientation of a DNA aptamer immobilized onto a modified electrode surface with its target (H5N1 specific sequence) present in solution. It is selective for the H5N1 specific sequence, and the signal of the indicator was approximately linear to log(concentration) of the H5N1 specific sequence from 5.0 x 10 -12 to 1.0 x 10 -9 M (R = 0.9863) with a detection limit of 4.3 x 10 -13 M. These studies showed that the new hybrid nanomaterial (MWNT/PPNWs/GNPs) and the DNA aptamer could be used to fabricate an electrochemical biosensor for gene sequence detection. Furthermore, this design strategy is expected to have extensive applications in other biosensors.

  17. Electrochemical detection of avian influenza virus H5N1 gene sequence using a DNA aptamer immobilized onto a hybrid nanomaterial-modified electrode

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xianggang [College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong (China); Cheng Ziqiang, E-mail: czqsd@126.com [College of Animal Science and Technology, Shandong Agricultural University, Taian 271018, Shandong (China); Fan Hai [College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong (China); Ai Shiyun, E-mail: ashy@sdau.edu.cn [College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong (China); Han Ruixia [College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong (China)

    2011-07-15

    Highlights: > A sensitive electrochemical biosensor for the detection of gene sequence was developed. > The biosensor was assembled by MWNT, polypyrrole nanowires and gold nanoparticles. > The hybrid nanomaterials could provide a porous structure with good properties. > The biosensor has highly selectivity and sensitivity. > The design strategy is expected to have extensive applications in other biosensors - Abstract: A sensitive electrochemical method for the detection of avian influenza virus (AIV) H5N1 gene sequence using a DNA aptamer immobilized onto a hybrid nanomaterial-modified electrode was developed. To enhance the selectivity and sensitivity, the modified electrode was assembled with multi-wall carbon nanotubes (MWNT), polypyrrole nanowires (PPNWs) and gold nanoparticles (GNPs). This electrode offered a porous structure with a large effective surface area, highly electrocatalytic activities and electronic conductivity. Therefore, the amount of DNA aptamer immobilized onto the electrode was increased while the accessibility of the detection target was maintained. The biosensor is based on the hybridization and preferred orientation of a DNA aptamer immobilized onto a modified electrode surface with its target (H5N1 specific sequence) present in solution. It is selective for the H5N1 specific sequence, and the signal of the indicator was approximately linear to log(concentration) of the H5N1 specific sequence from 5.0 x 10{sup -12} to 1.0 x 10{sup -9} M (R = 0.9863) with a detection limit of 4.3 x 10{sup -13} M. These studies showed that the new hybrid nanomaterial (MWNT/PPNWs/GNPs) and the DNA aptamer could be used to fabricate an electrochemical biosensor for gene sequence detection. Furthermore, this design strategy is expected to have extensive applications in other biosensors.

  18. Electrochemical Impedance Spectroscopic Analysis of RuO2 Based Thick Film pH Sensors

    International Nuclear Information System (INIS)

    Manjakkal, Libu; Djurdjic, Elvira; Cvejin, Katarina; Kulawik, Jan; Zaraska, Krzysztof; Szwagierczak, Dorota

    2015-01-01

    The conductimetric interdigitated thick film pH sensors based on RuO 2 were fabricated and their electrochemical reactions with solutions of different pH values were studied by electrochemical impedance spectroscopy (EIS) technique. The microstructural properties and composition of the sensitive films were examined by scanning electron microscopy, X-ray energy dispersive spectroscopy and Raman spectroscopy. The EIS analysis of the sensor was carried out in the frequency range 10 mHz–2 MHz for pH values of test solutions 2–12. The electrical parameters of the sensor were found to vary with changing pH. The conductance and capacitance of the film were distinctly dependent on pH in the low frequency range. The Nyquist and Bode plots derived from the impedance data for the metal oxide thick film pH sensor provided information about the underlying electrochemical reactions

  19. Electrochemical Sensor Coating Based on Electrophoretic Deposition of Au-Doped Self-Assembled Nanoparticles.

    Science.gov (United States)

    Zhang, Rongli; Zhu, Ye; Huang, Jing; Xu, Sheng; Luo, Jing; Liu, Xiaoya

    2018-02-14

    The electrophoretic deposition (EPD) of self-assembled nanoparticles (NPs) on the surface of an electrode is a new strategy for preparing sensor coating. By simply changing the deposition conditions, the electrochemical response for an analyte of deposited NPs-based coating can be controlled. This advantage can decrease the difference between different batches of sensor coating and ensure the reproducibility of each sensor. This work investigated the effects of deposition conditions (including deposition voltage, pH value of suspension, and deposition time) on the structure and the electrochemical response for l-tryptophan of sensor coating formed from Au-doped poly(sodium γ-glutamate) with pendant dopamine units nanohybrids (Au/γ-PGA-DA NBs) via the EPD method. The structure and thickness of the deposited sensor coating were measured by atomic force microscopy, which demonstrated that the structure and thickness of coating can be affected by the deposition voltage, the pH value of the suspension, and the deposition time. The responsive current for l-tryptophan of the deposited sensor coating were measured by differential pulse voltammetry, which showed that the responsive current value was affected by the structure and thickness of the deposited coating. These arguments suggested that a rich design-space for tuning the electrochemical response for analyte and a source of variability in the structure of sensor coating can be provided by the deposition conditions. When Au/γ-PGA-DA NBs were deposited on the electrode surface and formed a continuous coating with particle morphology and thinner thickness, the deposited sensor coating exhibited optimal electrochemical response for l-tryptophan.

  20. Electrochemical Sensors for Clinic Analysis

    Directory of Open Access Journals (Sweden)

    Guang Li

    2008-03-01

    Full Text Available Demanded by modern medical diagnosis, advances in microfabrication technology have led to the development of fast, sensitive and selective electrochemical sensors for clinic analysis. This review addresses the principles behind electrochemical sensor design and fabrication, and introduces recent progress in the application of electrochemical sensors to analysis of clinical chemicals such as blood gases, electrolytes, metabolites, DNA and antibodies, including basic and applied research. Miniaturized commercial electrochemical biosensors will form the basis of inexpensive and easy to use devices for acquiring chemical information to bring sophisticated analytical capabilities to the non-specialist and general public alike in the future.

  1. All-Polymer Electrochemical Sensors

    DEFF Research Database (Denmark)

    Kafka, Jan Robert

    This thesis presents fabrication strategies to produce different types of all-polymer electrochemical sensors based on electrodes made of the highly conductive polymer poly(3,4-ethylenedioxythiophene) (PEDOT). Three different systems are presented, fabricated either by using microdrilling or by hot...

  2. Practical Application of Aptamer-Based Biosensors in Detection of Low Molecular Weight Pollutants in Water Sources

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2018-02-01

    Full Text Available Water pollution has become one of the leading causes of human health problems. Low molecular weight pollutants, even at trace concentrations in water sources, have aroused global attention due to their toxicity after long-time exposure. There is an increased demand for appropriate methods to detect these pollutants in aquatic systems. Aptamers, single-stranded DNA or RNA, have high affinity and specificity to each of their target molecule, similar to antigen-antibody interaction. Aptamers can be selected using a method called Systematic Evolution of Ligands by EXponential enrichment (SELEX. Recent years we have witnessed great progress in developing aptamer selection and aptamer-based sensors for low molecular weight pollutants in water sources, such as tap water, seawater, lake water, river water, as well as wastewater and its effluents. This review provides an overview of aptamer-based methods as a novel approach for detecting low molecular weight pollutants in water sources.

  3. Electrochemical and AFM Characterization of G-Quadruplex Electrochemical Biosensors and Applications

    Science.gov (United States)

    2018-01-01

    Guanine-rich DNA sequences are able to form G-quadruplexes, being involved in important biological processes and representing smart self-assembling nanomaterials that are increasingly used in DNA nanotechnology and biosensor technology. G-quadruplex electrochemical biosensors have received particular attention, since the electrochemical response is particularly sensitive to the DNA structural changes from single-stranded, double-stranded, or hairpin into a G-quadruplex configuration. Furthermore, the development of an increased number of G-quadruplex aptamers that combine the G-quadruplex stiffness and self-assembling versatility with the aptamer high specificity of binding to a variety of molecular targets allowed the construction of biosensors with increased selectivity and sensitivity. This review discusses the recent advances on the electrochemical characterization, design, and applications of G-quadruplex electrochemical biosensors in the evaluation of metal ions, G-quadruplex ligands, and other small organic molecules, proteins, and cells. The electrochemical and atomic force microscopy characterization of G-quadruplexes is presented. The incubation time and cations concentration dependence in controlling the G-quadruplex folding, stability, and nanostructures formation at carbon electrodes are discussed. Different G-quadruplex electrochemical biosensors design strategies, based on the DNA folding into a G-quadruplex, the use of G-quadruplex aptamers, or the use of hemin/G-quadruplex DNAzymes, are revisited. PMID:29666699

  4. An Overview of Pesticide Monitoring at Environmental Samples Using Carbon Nanotubes-Based Electrochemical Sensors

    Directory of Open Access Journals (Sweden)

    Ademar Wong

    2017-03-01

    Full Text Available Carbon nanotubes have received enormous attention in the development of electrochemical sensors by promoting electron transfer reactions, decreasing the work overpotential within great surface areas. The growing concerns about environmental health emphasized the necessity of continuous monitoring of pollutants. Pesticides have been successfully used to control agricultural and public health pests; however, intense use can cause a number of damages for biodiversity and human health. In this sense, carbon nanotubes-based electrochemical sensors have been proposed for pesticide monitoring combining different electrode modification strategies and electroanalytical techniques. In this paper, we provide a review of the recent advances in the use of carbon nanotubes for the construction of electrochemical sensors dedicated to the environmental monitoring of pesticides. Future directions, perspectives, and challenges are also commented.

  5. Aptamer-Modified Semiconductor Quantum Dots for Biosensing Applications.

    Science.gov (United States)

    Wen, Lin; Qiu, Liping; Wu, Yongxiang; Hu, Xiaoxiao; Zhang, Xiaobing

    2017-07-28

    Semiconductor quantum dots have attracted extensive interest in the biosensing area because of their properties, such as narrow and symmetric emission with tunable colors, high quantum yield, high stability and controllable morphology. The introduction of various reactive functional groups on the surface of semiconductor quantum dots allows one to conjugate a spectrum of ligands, antibodies, peptides, or nucleic acids for broader and smarter applications. Among these ligands, aptamers exhibit many advantages including small size, high chemical stability, simple synthesis with high batch-to-batch consistency and convenient modification. More importantly, it is easy to introduce nucleic acid amplification strategies and/or nanomaterials to improve the sensitivity of aptamer-based sensing systems. Therefore, the combination of semiconductor quantum dots and aptamers brings more opportunities in bioanalysis. Here we summarize recent advances on aptamer-functionalized semiconductor quantum dots in biosensing applications. Firstly, we discuss the properties and structure of semiconductor quantum dots and aptamers. Then, the applications of biosensors based on aptamer-modified semiconductor quantum dots by different signal transducing mechanisms, including optical, electrochemical and electrogenerated chemiluminescence approaches, is discussed. Finally, our perspectives on the challenges and opportunities in this promising field are provided.

  6. Aptamer-Modified Semiconductor Quantum Dots for Biosensing Applications

    Directory of Open Access Journals (Sweden)

    Lin Wen

    2017-07-01

    Full Text Available Semiconductor quantum dots have attracted extensive interest in the biosensing area because of their properties, such as narrow and symmetric emission with tunable colors, high quantum yield, high stability and controllable morphology. The introduction of various reactive functional groups on the surface of semiconductor quantum dots allows one to conjugate a spectrum of ligands, antibodies, peptides, or nucleic acids for broader and smarter applications. Among these ligands, aptamers exhibit many advantages including small size, high chemical stability, simple synthesis with high batch-to-batch consistency and convenient modification. More importantly, it is easy to introduce nucleic acid amplification strategies and/or nanomaterials to improve the sensitivity of aptamer-based sensing systems. Therefore, the combination of semiconductor quantum dots and aptamers brings more opportunities in bioanalysis. Here we summarize recent advances on aptamer-functionalized semiconductor quantum dots in biosensing applications. Firstly, we discuss the properties and structure of semiconductor quantum dots and aptamers. Then, the applications of biosensors based on aptamer-modified semiconductor quantum dots by different signal transducing mechanisms, including optical, electrochemical and electrogenerated chemiluminescence approaches, is discussed. Finally, our perspectives on the challenges and opportunities in this promising field are provided.

  7. Electrochemical Biosensors - Sensor Principles and Architectures

    Science.gov (United States)

    Grieshaber, Dorothee; MacKenzie, Robert; Vörös, Janos; Reimhult, Erik

    2008-01-01

    Quantification of biological or biochemical processes are of utmost importance for medical, biological and biotechnological applications. However, converting the biological information to an easily processed electronic signal is challenging due to the complexity of connecting an electronic device directly to a biological environment. Electrochemical biosensors provide an attractive means to analyze the content of a biological sample due to the direct conversion of a biological event to an electronic signal. Over the past decades several sensing concepts and related devices have been developed. In this review, the most common traditional techniques, such as cyclic voltammetry, chronoamperometry, chronopotentiometry, impedance spectroscopy, and various field-effect transistor based methods are presented along with selected promising novel approaches, such as nanowire or magnetic nanoparticle-based biosensing. Additional measurement techniques, which have been shown useful in combination with electrochemical detection, are also summarized, such as the electrochemical versions of surface plasmon resonance, optical waveguide lightmode spectroscopy, ellipsometry, quartz crystal microbalance, and scanning probe microscopy. The signal transduction and the general performance of electrochemical sensors are often determined by the surface architectures that connect the sensing element to the biological sample at the nanometer scale. The most common surface modification techniques, the various electrochemical transduction mechanisms, and the choice of the recognition receptor molecules all influence the ultimate sensitivity of the sensor. New nanotechnology-based approaches, such as the use of engineered ion-channels in lipid bilayers, the encapsulation of enzymes into vesicles, polymersomes, or polyelectrolyte capsules provide additional possibilities for signal amplification. In particular, this review highlights the importance of the precise control over the delicate

  8. Copper-based electrochemical sensor with palladium electrode for cathodic stripping voltammetry of manganese.

    Science.gov (United States)

    Kang, Wenjing; Pei, Xing; Bange, Adam; Haynes, Erin N; Heineman, William R; Papautsky, Ian

    2014-12-16

    In this work, we report on the development of a palladium-based, microfabricated point-of-care electrochemical sensor for the determination of manganese using square wave cathodic stripping voltammetry. Heavy metals require careful monitoring, yet current methods are too complex for a point-of-care system. Voltammetry offers an attractive approach to metal detection on the microscale, but traditional carbon, gold, or platinum electrodes are difficult or expensive to microfabricate, preventing widespread use. Our sensor uses palladium working and auxiliary electrodes and integrates them with a copper-based reference electrode for simple fabrication and compatibility with microfabrication and printed circuit board processing, while maintaining competitive performance in electrochemical detection. Copper electrodes were prepared on glass substrate using a combination of microfabrication procedures followed by electrodeposition of palladium. The disposable sensor system was formed by bonding a poly(dimethylsiloxane) (PDMS) well to the glass substrate. Cathodic stripping voltammetry of manganese using our new disposable palladium-based sensors exhibited 334 nM (18.3 ppb) limit of detection in borate buffer. The sensor was used to demonstrate manganese determination in natural water samples from a pond in Burnet Woods, located in Cincinnati, OH, and the Ohio River.

  9. Woven electrochemical fabric-based test sensors (WEFTS): a new class of multiplexed electrochemical sensors.

    Science.gov (United States)

    Choudhary, Tripurari; Rajamanickam, G P; Dendukuri, Dhananjaya

    2015-05-07

    We present textile weaving as a new technique for the manufacture of miniature electrochemical sensors with significant advantages over current fabrication techniques. Biocompatible silk yarn is used as the material for fabrication instead of plastics and ceramics used in commercial sensors. Silk yarns are coated with conducting inks and reagents before being handloom-woven as electrodes into patches of fabric to create arrays of sensors, which are then laminated, cut and packaged into individual sensors. Unlike the conventionally used screen-printing, which results in wastage of reagents, yarn coating uses only as much reagent and ink as required. Hydrophilic and hydrophobic yarns are used for patterning so that sample flow is restricted to a small area of the sensor. This simple fluidic control is achieved with readily available materials. We have fabricated and validated individual sensors for glucose and hemoglobin and a multiplexed sensor, which can detect both analytes. Chronoamperometry and differential pulse voltammetry (DPV) were used to detect glucose and hemoglobin, respectively. Industrial quantities of these sensors can be fabricated at distributed locations in the developing world using existing skills and manufacturing facilities. We believe such sensors could find applications in the emerging area of wearable sensors for chemical testing.

  10. Covalent attachment of aptamer onto nanocomposite as a high performance electrochemical sensing platform: Fabrication of an ultra-sensitive ibuprofen electrochemical aptasensor

    Energy Technology Data Exchange (ETDEWEB)

    Roushani, Mahmoud, E-mail: mahmoudroushani@yahoo.com; Shahdost-fard, Faezeh

    2016-11-01

    In the present study, we report a selective electrochemical aptasensor for the ultrasensitive detection of an anti-inflammatory drug, ibuprofen (IBP). The proposed system was achieved by the modification of a glassy carbon electrode (GCE) with multiwalled carbon nanotubes/ionic liquid/chitosan (MWCNTs/IL/Chit) nanocomposite and the covalent immobilization of the IBP specific aptamer (Apt) onto the modified electrode surface followed by methylene blue (MB) intercalated onto the Apt as the electrochemical redox marker. Upon the incubation of the IBP as a target in the proposed aptasensor, the peak current of MB decreases due to the formation of the Apt-IBP complex and the displacement of MB from the immobilized Apt onto the modified electrode surface. The nanocomposite not only increases the electrode surface area and accelerate the electron transfer kinetics but also it provides a highly stable matrix to enhance the loading amount of the Apt DNA sequence. Through differential pulse voltammetry (DPV) experiments, it was found that the proposed aptasensor could detect the IBP with a linear range (70 pM up to 6 μM) and the detection limit (LOD) as low as 20 pM. The results showed that the aptasensor had good sensitivity, stability, reproducibility, and specificity to detect the IBP. The proposed aptasensor was successfully applied for measuring the IBP concentration in real samples. Based on our experiments we can say that the present method proposes new horizons for the development of other aptasensors for diagnostic application in biosensing. - Highlights: • An electrochemical aptasensor is developed for ultrasensitive detection of IBP. • The aptasensor is made by covalent immobilization of aptamer on a modified GCE. • A nanocomposite as a modifier provides a specific surface with high conductivity. • This nanocomposite leads to a high density of the DNA sequence on the GCE surface. • This method proposes new horizons for development other aptasensors for

  11. Covalent attachment of aptamer onto nanocomposite as a high performance electrochemical sensing platform: Fabrication of an ultra-sensitive ibuprofen electrochemical aptasensor

    International Nuclear Information System (INIS)

    Roushani, Mahmoud; Shahdost-fard, Faezeh

    2016-01-01

    In the present study, we report a selective electrochemical aptasensor for the ultrasensitive detection of an anti-inflammatory drug, ibuprofen (IBP). The proposed system was achieved by the modification of a glassy carbon electrode (GCE) with multiwalled carbon nanotubes/ionic liquid/chitosan (MWCNTs/IL/Chit) nanocomposite and the covalent immobilization of the IBP specific aptamer (Apt) onto the modified electrode surface followed by methylene blue (MB) intercalated onto the Apt as the electrochemical redox marker. Upon the incubation of the IBP as a target in the proposed aptasensor, the peak current of MB decreases due to the formation of the Apt-IBP complex and the displacement of MB from the immobilized Apt onto the modified electrode surface. The nanocomposite not only increases the electrode surface area and accelerate the electron transfer kinetics but also it provides a highly stable matrix to enhance the loading amount of the Apt DNA sequence. Through differential pulse voltammetry (DPV) experiments, it was found that the proposed aptasensor could detect the IBP with a linear range (70 pM up to 6 μM) and the detection limit (LOD) as low as 20 pM. The results showed that the aptasensor had good sensitivity, stability, reproducibility, and specificity to detect the IBP. The proposed aptasensor was successfully applied for measuring the IBP concentration in real samples. Based on our experiments we can say that the present method proposes new horizons for the development of other aptasensors for diagnostic application in biosensing. - Highlights: • An electrochemical aptasensor is developed for ultrasensitive detection of IBP. • The aptasensor is made by covalent immobilization of aptamer on a modified GCE. • A nanocomposite as a modifier provides a specific surface with high conductivity. • This nanocomposite leads to a high density of the DNA sequence on the GCE surface. • This method proposes new horizons for development other aptasensors for

  12. Electrochemical bisphenol A sensor based on N-doped graphene sheets

    International Nuclear Information System (INIS)

    Fan Haixia; Li Yan; Wu Dan; Ma Hongmin; Mao Kexia; Fan Dawei; Du Bin; Li He; Wei Qin

    2012-01-01

    Highlights: ► N-doped graphene sheets have catalytic activity towards the BPA oxidation. ► The biosensor based on N-doped graphene sheets and chitosan. ► This method was proposed for determination of BPA utilizing N-doped graphene sheets. - Abstract: Bisphenol A (BPA), which could disrupt endocrine system and cause cancer, has been considered as an endocrine disruptor. Therefore, it is very important and necessary to develop a sensitive and selective method for detection of BPA. Herein, nitrogen-doped graphene sheets (N-GS) and chitosan (CS) were used to prepare electrochemical BPA sensor. Compared with graphene, N-GS has favorable electron transfer ability and electrocatalytic property, which could enhance the response signal towards BPA. CS also exhibits excellent film forming ability and improves the electrochemical behavior of N-GS modified electrode. The sensor exhibits a sensitive response to BPA in the range of 1.0 × 10 −8 –1.3 × 10 −6 mol L −1 with a low detection limit of 5.0 × 10 −9 mol L −1 under the optimal conditions. Finally, this proposed sensor was successfully employed to determine BPA in water samples with satisfactory results.

  13. A Fast, Sensitive and Label Free Electrochemical DNA Sensor

    International Nuclear Information System (INIS)

    Chen Yu; Elling; Lee Yokeling; Chong Serchoong

    2006-01-01

    A label free and sensitive DNA/RNA silicon based electrochemical microsensor array was developed by using thin film of the conducting polymer polypyrrole doped with an oligonucleotide probe. The electrochemical potential pulse amperometry technique was used for a biowarfare pathogen target DNA detection. The electrical potential assistanted DNA hybridisation method was applied. The sensor signal was increased by increasing the electrical potential assistanted DNA hybridisation time. It was possible to detect 0.34pmol and 0.072fmol of complementary oligonucleotide target in 0.1ml in seconds by using unpolished and polished gold electrode respectively. The probe preparation was also in seconds time, comparing indirect electrochemical DNA sensor, it has a fast sensor preparation as well as sensor response and label free advantages. The silicon microfabrication technique was used for this sensor array fabrication, which holds the potential to integrate with sensor electrical circuits. The conducting polymer polypyrrole was electrochemically deposited on each electrode respectively which has a possibility to dope the different DNA probe into the individual electrode to form a sensor array

  14. Hydrogel-based electrochemical sensor for non-invasive and continuous glucose monitoring

    Science.gov (United States)

    Park, Habeen; Lee, Ji-Young; Kim, Dong-Chul; Koh, Younggook; Cha, Junhoe

    2017-07-01

    Monitoring blood glucose level of diabetic patients is crucial in diabetes care from life threating complications. Selfmonitoring blood glucose (SMBG) that involves finger prick to draw blood samples into the measurement system is a widely-used method of routine measurement of blood glucose levels to date. SMBG includes, however, unavoidable pain problems resulting from the repetitive measurements. We hereby present a hydrogel-based electrochemical (H-EC) sensor to monitor the glucose level, non-invasively. Glucose oxidase (GOx) was immobilized in the disc-type hydroxyethyl methacrylate (HEMA) based hydrogel and kept intact in the hydrogel. Fast electron transfer mediated by Prussian blue (PB, hexacyanoferrate) generated efficient signal amplifications to facilitate the detection of the extracted glucose from the interstitial fluid. The linear response and the selectivity against glucose of the H-EC sensor were validated by chronoamperometry. For the practical use, the outcomes from the correlation of the extracted glucose concentration and the blood glucose value by on-body extraction, as well as the validation of the hydrogel-based electrochemical (H-EC) device, were applied to the on-body glucose monitoring.

  15. Ionic Liquid-Based Optical and Electrochemical Carbon Dioxide Sensors

    Science.gov (United States)

    Behera, Kamalakanta; Pandey, Shubha; Kadyan, Anu; Pandey, Siddharth

    2015-01-01

    Due to their unusual physicochemical properties (e.g., high thermal stability, low volatility, high intrinsic conductivity, wide electrochemical windows and good solvating ability), ionic liquids have shown immense application potential in many research areas. Applications of ionic liquid in developing various sensors, especially for the sensing of biomolecules, such as nucleic acids, proteins and enzymes, gas sensing and sensing of various important ions, among other chemosensing platforms, are currently being explored by researchers worldwide. The use of ionic liquids for the detection of carbon dioxide (CO2) gas is currently a major topic of research due to the associated importance of this gas with daily human life. This review focuses on the application of ionic liquids in optical and electrochemical CO2 sensors. The design, mechanism, sensitivity and detection limit of each type of sensor are highlighted in this review. PMID:26690155

  16. Ionic Liquid-Based Optical and Electrochemical Carbon Dioxide Sensors.

    Science.gov (United States)

    Behera, Kamalakanta; Pandey, Shubha; Kadyan, Anu; Pandey, Siddharth

    2015-12-04

    Due to their unusual physicochemical properties (e.g., high thermal stability, low volatility, high intrinsic conductivity, wide electrochemical windows and good solvating ability), ionic liquids have shown immense application potential in many research areas. Applications of ionic liquid in developing various sensors, especially for the sensing of biomolecules, such as nucleic acids, proteins and enzymes, gas sensing and sensing of various important ions, among other chemosensing platforms, are currently being explored by researchers worldwide. The use of ionic liquids for the detection of carbon dioxide (CO₂) gas is currently a major topic of research due to the associated importance of this gas with daily human life. This review focuses on the application of ionic liquids in optical and electrochemical CO₂ sensors. The design, mechanism, sensitivity and detection limit of each type of sensor are highlighted in this review.

  17. Ionic Liquid-Based Optical and Electrochemical Carbon Dioxide Sensors

    Directory of Open Access Journals (Sweden)

    Kamalakanta Behera

    2015-12-01

    Full Text Available Due to their unusual physicochemical properties (e.g., high thermal stability, low volatility, high intrinsic conductivity, wide electrochemical windows and good solvating ability, ionic liquids have shown immense application potential in many research areas. Applications of ionic liquid in developing various sensors, especially for the sensing of biomolecules, such as nucleic acids, proteins and enzymes, gas sensing and sensing of various important ions, among other chemosensing platforms, are currently being explored by researchers worldwide. The use of ionic liquids for the detection of carbon dioxide (CO2 gas is currently a major topic of research due to the associated importance of this gas with daily human life. This review focuses on the application of ionic liquids in optical and electrochemical CO2 sensors. The design, mechanism, sensitivity and detection limit of each type of sensor are highlighted in this review.

  18. Community Sewage Sensors towards Evaluation of Drug Use Trends: Detection of Cocaine in Wastewater with DNA-Directed Immobilization Aptamer Sensors

    Science.gov (United States)

    Yang, Zhugen; Castrignanò, Erika; Estrela, Pedro; Frost, Christopher G.; Kasprzyk-Hordern, Barbara

    2016-02-01

    Illicit drug use has a global concern and effective monitoring and interventions are highly required to combat drug abuse. Wastewater-based epidemiology (WBE) is an innovative and cost-effective approach to evaluate community-wide drug use trends, compared to traditional population surveys. Here we report for the first time, a novel quantitative community sewage sensor (namely DNA-directed immobilization of aptamer sensors, DDIAS) for rapid and cost-effective estimation of cocaine use trends via WBE. Thiolated single-stranded DNA (ssDNA) probe was hybridized with aptamer ssDNA in solution, followed by co-immobilization with 6-mercapto-hexane onto the gold electrodes to control the surface density to effectively bind with cocaine. DDIAS was optimized to detect cocaine at as low as 10 nM with a dynamic range from 10 nM to 5 μM, which were further employed for the quantification of cocaine in wastewater samples collected from a wastewater treatment plant in seven consecutive days. The concentration pattern of the sampling week is comparable with that from mass spectrometry. Our results demonstrate that the developed DDIAS can be used as community sewage sensors for rapid and cost-effective evaluation of drug use trends, and potentially implemented as a powerful tool for on-site and real-time monitoring of wastewater by un-skilled personnel.

  19. Surfactant Sensors in Biotechnology; Part 1 – Electrochemical Sensors

    Directory of Open Access Journals (Sweden)

    Milan Sak-Bosnar

    2004-01-01

    Full Text Available An overview on electrochemical surfactant sensors is given with special attention to papers published since 1993. The importance of surfactants in modern biotechnology is stressed out. Electrochemical sensors are usually divided according to the measured physical quantity to potentiometric, amperometric, conductometric and impedimetric surfactant sensors. The last ones are very few. Potentiometric surfactant sensors are the most numerous due to their simplicity and versatility. They can be used either as end-point titration sensors or as direct EMF measurement sensors, in batch or flow-through mode. Some amperometric surfactant sensors are true biosensors that use microorganisms or living cells.

  20. A Microfluidic Love-Wave Biosensing Device for PSA Detection Based on an Aptamer Beacon Probe.

    Science.gov (United States)

    Zhang, Feng; Li, Shuangming; Cao, Kang; Wang, Pengjuan; Su, Yan; Zhu, Xinhua; Wan, Ying

    2015-06-11

    A label-free and selective aptamer beacon-based Love-wave biosensing device was developed for prostate specific antigen (PSA) detection. The device consists of the following parts: LiTaO3 substrate with SiO2 film as wave guide layer, two set of inter-digital transducers (IDT), gold film for immobilization of the biorecongniton layer and a polydimethylsiloxane (PDMS) microfluidic channels. DNA aptamer, or "artificial antibody", was used as the specific biorecognition probe for PSA capture. Some nucleotides were added to the 3'-end of the aptamer to form a duplex with the 3'-end, turning the aptamer into an aptamer-beacon. Taking advantage of the selective target-induced assembly changes arising from the "aptamer beacon", highly selective and specific detection of PSA was achieved. Furthermore, PDMS microfluidic channels were designed and fabricated to realize automated quantitative sample injection. After optimization of the experimental conditions, the established device showed good performance for PSA detection between 10 ng/mL to 1 μg/mL, with a detection limit of 10 ng/mL. The proposed sensor might be a promising alternative for point of care diagnostics.

  1. Detection of Cryptosporidium parvum Oocysts on Fresh Produce Using DNA Aptamers.

    Directory of Open Access Journals (Sweden)

    Asma Iqbal

    Full Text Available There are currently no standard methods for the detection of Cryptosporidium spp., or other protozoan parasites, in foods, and existing methods are often inadequate, with low and variable recovery efficiencies. Food testing is difficult due to the low concentrations of parasites, the difficulty in eluting parasites from some foods, the lack of enrichment methods, and the presence of PCR inhibitors. The main objectives of the present study were to obtain DNA aptamers binding to the oocyst wall of C. parvum, and to use the aptamers to detect the presence of this parasite in foods. DNA aptamers were selected against C. parvum oocysts using SELEX (Systematic Evolution of Ligands by EXponential enrichment. Ten rounds of selection led to the discovery of 14 aptamer clones with high affinities for C. parvum oocysts. For detecting parasite-bound aptamers, a simple electrochemical sensor was employed, which used a gold nanoparticle-modified screen-printed carbon electrode. This aptasensor was fabricated by self-assembling a hybrid of a thiolated ssDNA primer and the anti- C. parvum aptamer. Square wave voltammetry was employed to quantitate C. parvum in the range of 150 to 800 oocysts, with a detection limit of approximately 100 oocysts. The high sensitivity and specificity of the developed aptasensor suggests that this novel method is very promising for the detection and identification of C. parvum oocysts on spiked fresh fruits, as compared to conventional methods such as microscopy and PCR.

  2. Electrochemical surface plasmon resonance sensor based on two-electrode configuration

    International Nuclear Information System (INIS)

    Zhang, Bing; Dong, Wei; Wen, Yizhang; Pang, Kai; Wang, Xiaoping; Li, Yazhuo; Zhan, Shuyue

    2016-01-01

    To obtain detailed information about electrochemistry reactions, a two-electrode electrochemical surface plasmon resonance (EC-SPR) sensor has been proposed. We describe the theory of potential modulation for this novel sensor and determine the factors that can change the SPR resonance angle. The reference electrode in three-electrode configuration was eliminated, and comparing with several other electrode materials, activated carbon (AC) is employed as the suitable counter electrode for its potential stability. Just like three-electrode configuration, the simpler AC two-electrode system can also obtain detailed information about the electrochemical reactions. (paper)

  3. Electrochemically reduced graphene oxide-based electrochemical sensor for the sensitive determination of ferulic acid in A. sinensis and biological samples

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Linjie [School of Pharmacy, Lanzhou University, Lanzhou 730000 (China); Gou, Yuqiang [Lanzhou Military Command Center for Disease Prevention and Control, Lanzhou 730000 (China); Gao, Xia; Zhang, Pei; Chen, Wenxia; Feng, Shilan [School of Pharmacy, Lanzhou University, Lanzhou 730000 (China); Hu, Fangdi, E-mail: hufd@lzu.edu.cn [School of Pharmacy, Lanzhou University, Lanzhou 730000 (China); Li, Yingdong, E-mail: lydj412@163.com [Gansu College of Tradition Chinese Medicine, Lanzhou 730000 (China)

    2014-09-01

    An electrochemically reduced graphene oxide (ERGO) modified glassy carbon electrode (GCE) was used as a new voltammetric sensor for the determination of ferulic acid (FA). The morphology and microstructure of the modified electrodes were characterized by scanning electron microscopy (SEM) and Raman spectroscopy analysis, and the electrochemical effective surface areas of the modified electrodes were also calculated by chronocoulometry method. Sensing properties of the electrochemical sensor were investigated by means of cyclic voltammetry (CV) and differential pulse voltammetry (DPV). It was found that ERGO was electrodeposited on the surface of GCE by using potentiostatic method. The proposed electrode exhibited electrocatalytic activity to the redox of FA because of excellent electrochemical properties of ERGO. The transfer electron number (n), electrode reaction rate constant (k{sub s}) and electron-transfer coefficient (α) were calculated as 1.12, 1.24 s{sup −1}, and 0.40, respectively. Under the optimized conditions, the oxidation peak current was proportional to FA concentration at 8.49 × 10{sup −8} mol L{sup −1} to 3.89 × 10{sup −5} mol L{sup −1} with detection limit of 2.06 × 10{sup −8} mol L{sup −1}. This fabricated sensor also displayed acceptable reproducibility, long-term stability, and high selectivity with negligible interferences from common interfering species. The voltammetric sensor was successfully applied to detect FA in A. sinensis and biological samples with recovery values in the range of 99.91%-101.91%. - Highlights: • A novel ERGO–based electrochemical sensor of FA was successfully fabricated by using one-step electrodeposition method. • The electrode reaction was an adsorption–diffusion mixed controlled process. • The low detection limit with good selectivity and sensitivity were obtained. • This method was applied for the determination of FA in A. sinensis and biological samples.

  4. Highly sensitive antibody-aptamer sensor for vascular endothelial growth factor based on hybridization chain reaction and pH meter/indicator.

    Science.gov (United States)

    Xu, Huifeng; Kou, Fangxia; Ye, Hongzhi; Wang, Zongwen; Huang, Suixin; Liu, Xianxiang; Zhu, Xi; Lin, Zhenyu; Chen, Guonan

    2017-12-01

    Vascular endothelial growth factor (VEGF) is a crucial signaling protein for the tumor growth and metastasis, which is also acted as the biomarkers for various diseases. In this research, we fabricate an aptamer-antibody sensor for point-of-care test of VEGF. Firstly, target VEGF is captured by antibody immobilized on the microplate, and then binds with aptamer to form the sandwich structure. Next, with the assist of glucose oxidase (GOx)-functionalized ssDNAs, hybridization chain reaction occurs using the aptamer as the primer. Thus, GOx are greatly gathered on the microplate, which catalyzes the oxidization of glucose, leading to the pH change. As a result, the detect limit at a signal-to-noise was estimated to be 0.5pg/mL of target by pH meter, and 1.6pg/mL of VEGF was able to be distinguished by naked eyes. Meanwhile, this method has been used assay VEGF in the serum with the satisfactory results. Copyright © 2017. Published by Elsevier B.V.

  5. Determination of ascorbic acid, dopamine, and uric acid by a novel electrochemical sensor based on pristine graphene

    International Nuclear Information System (INIS)

    Qi, Shaopeng; Zhao, Bo; Tang, Heqing; Jiang, Xiaoqing

    2015-01-01

    In this article, a novel electrochemical sensor based on pristine graphene (PG) is successfully constructed to detect ascorbic acid (AA), dopamine (DA), and uric acid (UA). The PG is obtained by liquid-phase exfoliation of graphite and characterized by transmission electron microscopy and X-ray photoelectron spectroscopy. The sensor based on PG prepared by this method to realize simultaneous determination of AA, DA, and UA is firstly reported. The linear detection ranges for AA, DA, and UA are 9.00–2314 μM, 5.00–710 μM, and 6.00–1330 μM, respectively, with detection limits of 6.45, 2.00, and 4.82 μM. This PG based sensor exhibits excellent performance for detection of AA, DA, and UA, which is much better than those electrochemical sensors based on chemical converted graphene

  6. Development of radiopharmaceuticals based on aptamers: selection and characterization of DNA aptamers for CEA

    International Nuclear Information System (INIS)

    Correa, C.R.; Andrade, A.S.R.; Augusto-Pinto, L.; Goes, A.M.

    2011-01-01

    Colorectal cancer is among the top four causes of cancer deaths worldwide. Carcinoembryonic antigen (CEA) is a complex intracellular glycoprotein produced by about 90% of colorectal cancers. CEA has been identified as an attractive target for cancer research because of its pattern of expression in the surface cell and its likely functional role in tumorigenesis. Research on the rapid selection of ligands based on the SELEX (systematic evolution of ligands by exponential enrichment) forms the basis for the development of high affinity and high specificity molecules, which can bind to surface determinants of tumour cells, like CEA. The oligonucleotides ligands generated in this technique are called aptamers. Aptamers can potentially find applications as therapeutic or diagnostic tools for many kind of diseases, like a tumor. Aptamers offer low immunogenicity, good tumour penetration, rapid uptake and fast systemic clearance, which favour their application as effective vehicles for radiotherapy. In addition aptamers can be labeled with different radioactive isotopes. The aim of this work was select aptamers binding to the CEA tumor marker. The aptamers are obtained through by SELEX, in which aptamers are selected from a library of random sequences of synthetic DNA by repetitive binding of the oligonucleotides to target molecule (CEA). Analyses of the secondary structure of the aptamers were determined using the m fold toll. Three aptamers were selected to binding assay with target cells. These aptamers were confirmed to have affinity and specific binding for T84 cell line (target cell), showed by confocal imaging. We are currently studying the potential efficacy of these aptamers as targeted radiopharmaceuticals, for use as imaging agents or therapeutic applications. The development of aptamers specific to CEA open new perspectives for colorectal cancer diagnosis and treatment. Acknowledgments: This investigation was supported by the Centro de Desenvolvimento da

  7. Development of radiopharmaceuticals based on aptamers: selection and characterization of DNA aptamers for CEA

    Energy Technology Data Exchange (ETDEWEB)

    Correa, C.R.; Andrade, A.S.R., E-mail: antero@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Augusto-Pinto, L. [BioAptus, Belo Horizonte, MG (Brazil); Goes, A.M., E-mail: goes@icb.ufmg.br [Departamento de Imunologia e Bioquimica. Instituto de Ciencias Biologicas. Universidade Federal de Minas Gerais. Belo Horizonte, MG (Brazil)

    2011-07-01

    Colorectal cancer is among the top four causes of cancer deaths worldwide. Carcinoembryonic antigen (CEA) is a complex intracellular glycoprotein produced by about 90% of colorectal cancers. CEA has been identified as an attractive target for cancer research because of its pattern of expression in the surface cell and its likely functional role in tumorigenesis. Research on the rapid selection of ligands based on the SELEX (systematic evolution of ligands by exponential enrichment) forms the basis for the development of high affinity and high specificity molecules, which can bind to surface determinants of tumour cells, like CEA. The oligonucleotides ligands generated in this technique are called aptamers. Aptamers can potentially find applications as therapeutic or diagnostic tools for many kind of diseases, like a tumor. Aptamers offer low immunogenicity, good tumour penetration, rapid uptake and fast systemic clearance, which favour their application as effective vehicles for radiotherapy. In addition aptamers can be labeled with different radioactive isotopes. The aim of this work was select aptamers binding to the CEA tumor marker. The aptamers are obtained through by SELEX, in which aptamers are selected from a library of random sequences of synthetic DNA by repetitive binding of the oligonucleotides to target molecule (CEA). Analyses of the secondary structure of the aptamers were determined using the m fold toll. Three aptamers were selected to binding assay with target cells. These aptamers were confirmed to have affinity and specific binding for T84 cell line (target cell), showed by confocal imaging. We are currently studying the potential efficacy of these aptamers as targeted radiopharmaceuticals, for use as imaging agents or therapeutic applications. The development of aptamers specific to CEA open new perspectives for colorectal cancer diagnosis and treatment. Acknowledgments: This investigation was supported by the Centro de Desenvolvimento da

  8. Development of electrochemical sensor for the determination of toxic gases

    International Nuclear Information System (INIS)

    Ahmed, R.

    1997-01-01

    Monitoring release of flue and toxic gases and vapours of volatile organic toxic substances into the atmosphere is one of the most important problems in environmental pollution control studies particularly in industrial installations in order to avoid poisoning and other health hazards. In industrial areas continuous monitoring of toxic gases and vapours is required for the safety of workers and for this purpose different types of sensors and available such as thermal sensors mass sensors, biosensors, optical sensors and electrochemical sensors. Among all of these sensors electrochemical sensors are most cost-effective, accurate and very good for continuous monitoring. They can be categorized into potentiometric, conductometric, amperometric and voltammetric sensors. Applications of different types of electrochemical sensors are briefly reviewed. Development of polymer membrane and conducting polymers are most important for fabrication of electrochemical sensors, which can analyse up to twenty two gases and vapours simultaneously. Some of the commercially used electrochemical sensors are described. For the determination of hydrogen sulfide an electrochemical sensor was developed. Teflon based conduction polymer membrane was treated with some electrolytes and then silver metal was deposited on one side of the membrane. Metal part side was exposed to gases and the other side was deposited on one side of the membrane metal part side was exposed to gasses and the other side was connected with two electrodes including reference and counter electrodes, whereas metal part acted as working electrode. This system can also me used for the analysis of their gases like SO/sub 2/ etc; because they react at different potentials with the metal to generate the signals. (author)

  9. Fabrication of highly sensitive gold nanourchins based electrochemical sensor for nanomolar determination of primaquine

    International Nuclear Information System (INIS)

    Thapliyal, Neeta Bachheti; Chiwunze, Tirivashe Elton; Karpoormath, Rajshekhar; Cherukupalli, Srinivasulu

    2017-01-01

    A gold nanourchins modified glassy carbon electrode (AuNu/GCE) was developed for the determination of antimalarial drug, primaquine (PQ). The surface of AuNu/GCE was characterized by electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and cyclic voltammetry (CV). EIS results indicated that the electron transfer process at AuNu/GCE was faster as compared to the bare electrode. The SEM and TEM image confirmed the presence and uniform dispersion of gold nanourchins on the GCE surface. Upon investigating the electrochemical behavior of PQ at AuNu/GCE, the developed sensor was found to exhibit high electrocatalytic activity towards the oxidation of PQ. Under optimal experimental conditions, the sensor showed fast and sensitive current response to PQ over a linear concentration range of 0.01–1 μM and 0.001–1 μM with a detection limit of 3.5 nM and 0.9 nM using differential pulse voltammetry (DPV) and square wave voltammetry (SWV), respectively. The AuNu/GCE showed good selectivity, reproducibility and stability. Further, the developed sensor was successfully applied to determine the drug in human urine samples and pharmaceutical formulations demonstrating its analytical applicability in clinical analysis as well as quality control. The proposed method thus provides a promising alternative in routine sensing of PQ as well as promotes the application of gold nanourchins in electrochemical sensors. - Graphical abstract: A gold nanourchins modified glassy carbon electrode was fabricated and used as an electrochemical sensing platform for the determination of primaquine. Display Omitted - Highlights: • Gold nanourchins based electrochemical sensor for determination of primaquine • A detection limit of 0.9 nM was obtained using square wave voltammetry. • Proposed method was applied to quantify the drug in tablet and human urine samples. • Fast, simple and low-cost method for trace analysis of

  10. Fabrication of highly sensitive gold nanourchins based electrochemical sensor for nanomolar determination of primaquine

    Energy Technology Data Exchange (ETDEWEB)

    Thapliyal, Neeta Bachheti, E-mail: thapliyaln@ukzn.ac.za; Chiwunze, Tirivashe Elton; Karpoormath, Rajshekhar, E-mail: karpoormath@ukzn.ac.za; Cherukupalli, Srinivasulu

    2017-05-01

    A gold nanourchins modified glassy carbon electrode (AuNu/GCE) was developed for the determination of antimalarial drug, primaquine (PQ). The surface of AuNu/GCE was characterized by electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and cyclic voltammetry (CV). EIS results indicated that the electron transfer process at AuNu/GCE was faster as compared to the bare electrode. The SEM and TEM image confirmed the presence and uniform dispersion of gold nanourchins on the GCE surface. Upon investigating the electrochemical behavior of PQ at AuNu/GCE, the developed sensor was found to exhibit high electrocatalytic activity towards the oxidation of PQ. Under optimal experimental conditions, the sensor showed fast and sensitive current response to PQ over a linear concentration range of 0.01–1 μM and 0.001–1 μM with a detection limit of 3.5 nM and 0.9 nM using differential pulse voltammetry (DPV) and square wave voltammetry (SWV), respectively. The AuNu/GCE showed good selectivity, reproducibility and stability. Further, the developed sensor was successfully applied to determine the drug in human urine samples and pharmaceutical formulations demonstrating its analytical applicability in clinical analysis as well as quality control. The proposed method thus provides a promising alternative in routine sensing of PQ as well as promotes the application of gold nanourchins in electrochemical sensors. - Graphical abstract: A gold nanourchins modified glassy carbon electrode was fabricated and used as an electrochemical sensing platform for the determination of primaquine. Display Omitted - Highlights: • Gold nanourchins based electrochemical sensor for determination of primaquine • A detection limit of 0.9 nM was obtained using square wave voltammetry. • Proposed method was applied to quantify the drug in tablet and human urine samples. • Fast, simple and low-cost method for trace analysis of

  11. Predicting the Uncertain Future of Aptamer-Based Diagnostics and Therapeutics.

    Science.gov (United States)

    Bruno, John G

    2015-04-16

    Despite the great promise of nucleic acid aptamers in the areas of diagnostics and therapeutics for their facile in vitro development, lack of immunogenicity and other desirable properties, few truly successful aptamer-based products exist in the clinical or other markets. Core reasons for these commercial deficiencies probably stem from industrial commitment to antibodies including a huge financial investment in humanized monoclonal antibodies and a general ignorance about aptamers and their performance among the research and development community. Given the early failures of some strong commercial efforts to gain government approval and bring aptamer-based products to market, it may seem that aptamers are doomed to take a backseat to antibodies forever. However, the key advantages of aptamers over antibodies coupled with niche market needs that only aptamers can fill and more recent published data still point to a bright commercial future for aptamers in areas such as infectious disease and cancer diagnostics and therapeutics. As more researchers and entrepreneurs become familiar with aptamers, it seems inevitable that aptamers will at least be considered for expanded roles in diagnostics and therapeutics. This review also examines new aptamer modifications and attempts to predict new aptamer applications that could revolutionize biomedical technology in the future and lead to marketed products.

  12. A electrochemiluminescence aptasensor for detection of thrombin incorporating the capture aptamer labeled with gold nanoparticles immobilized onto the thio-silanized ITO electrode

    International Nuclear Information System (INIS)

    Fang Lanyun; Lue Zhaozi; Wei Hui; Wang Erkang

    2008-01-01

    A novel electrochemiluminescence (ECL) aptasensor was proposed for sensitive and cost-effective detection of the target thrombin adopted an aptamer-based sandwich format. To detect thrombin, capture aptamers labeled with gold nanoparticles (AuNPs) were first immobilized onto the thio-silanized ITO electrode surface through strong Au-S bonds. After catching the target thrombin, signal aptamers tagged with ECL labels were attached to the assembled electrode surface. As a result, an AuNPs-capture-aptamer/thrombin/ECL-tagged-signal-aptamer sandwich type was formed. Treating the resulting electrode surface with tri-n-propylamine (TPA) and applying a swept potential to the electrode, ECL response was generated which realized the detection of target protein. Spectroscopy and electrochemical impedance techniques were used to characterize and confirm the fabrication of the ECL aptasensor. AuNPs amplification and smart sensor fabrication art were implemented for the sensitive and cost-effective detection purpose. Signal-to-dose curve excellently followed a sandwich format equation and could be used to quantify the protein, and the detection limit was estimated to be 10 nM. Other forms of thrombin such as β- and γ-thrombins had negligible response, which indicated a high specificity of α-thrombin detection. The aptasensor opened up new fields of aptamer applications in ECL domain, a highly sensitive technique, and had a promising perspective to be applied in microarray analysis

  13. Actuation of chitosan-aptamer nanobrush borders for pathogen sensing.

    Science.gov (United States)

    Hills, Katherine D; Oliveira, Daniela A; Cavallaro, Nicholas D; Gomes, Carmen L; McLamore, Eric S

    2018-03-26

    We demonstrate a sensing mechanism for rapid detection of Listeria monocytogenes in food samples using the actuation of chitosan-aptamer nanobrush borders. The bio-inspired soft material and sensing strategy mimic natural symbiotic systems, where low levels of bacteria are selectively captured from complex matrices. To engineer this biomimetic system, we first develop reduced graphene oxide/nanoplatinum (rGO-nPt) electrodes, and characterize the fundamental electrochemical behavior in the presence and absence of chitosan nanobrushes during actuation (pH-stimulated osmotic swelling). We then characterize the electrochemical behavior of the nanobrush when receptors (antibodies or DNA aptamers) are conjugated to the surface. Finally, we test various techniques to determine the most efficient capture strategy based on nanobrush actuation, and then apply the biosensors in a food product. Maximum cell capture occurs when aptamers conjugated to the nanobrush bind cells in the extended conformation (pH 6). The aptamer-nanobrush hybrid material was more efficient than the antibody-nanobrush material, which was likely due to the relatively high adsorption capacity for aptamers. The biomimetic material was used to develop a rapid test (17 min) for selectively detecting L. monocytogenes at concentrations ranging from 9 to 107 CFU mL-1 with no pre-concentration, and in the presence of other Gram-positive cells (Listeria innocua and Staphylococcus aureus). Use of this bio-inspired material is among the most efficient for L. monocytogenes sensing to date, and does not require sample pretreatment, making nanobrush borders a promising new material for rapid pathogen detection in food.

  14. Design Strategies for Aptamer-Based Biosensors

    Science.gov (United States)

    Han, Kun; Liang, Zhiqiang; Zhou, Nandi

    2010-01-01

    Aptamers have been widely used as recognition elements for biosensor construction, especially in the detection of proteins or small molecule targets, and regarded as promising alternatives for antibodies in bioassay areas. In this review, we present an overview of reported design strategies for the fabrication of biosensors and classify them into four basic modes: target-induced structure switching mode, sandwich or sandwich-like mode, target-induced dissociation/displacement mode and competitive replacement mode. In view of the unprecedented advantages brought about by aptamers and smart design strategies, aptamer-based biosensors are expected to be one of the most promising devices in bioassay related applications. PMID:22399891

  15. Optimizing Stem Length To Improve Ligand Selectivity in a Structure-Switching Cocaine-Binding Aptamer.

    Science.gov (United States)

    Neves, Miguel A D; Shoara, Aron A; Reinstein, Oren; Abbasi Borhani, Okty; Martin, Taylor R; Johnson, Philip E

    2017-10-27

    Understanding how aptamer structure and function are related is crucial in the design and development of aptamer-based biosensors. We have analyzed a series of cocaine-binding aptamers with different lengths of their stem 1 in order to understand the role that this stem plays in the ligand-induced structure-switching binding mechanism utilized in many of the sensor applications of this aptamer. In the cocaine-binding aptamer, the length of stem 1 controls whether the structure-switching binding mechanism for this aptamer occurs or not. We varied the length of stem 1 from being one to seven base pairs long and found that the structural transition from unfolded to folded in the unbound aptamer is when the aptamer elongates from 3 to 4 base pairs in stem 1. We then used this knowledge to achieve new binding selectivity of this aptamer for quinine over cocaine by using an aptamer with a stem 1 two base pairs long. This selectivity is achieved by means of the greater affinity quinine has for the aptamer compared with cocaine. Quinine provides enough free energy to both fold and bind the 2-base pair-long aptamer while cocaine does not. This tuning of binding selectivity of an aptamer by reducing its stability is likely a general mechanism that could be used to tune aptamer specificity for tighter binding ligands.

  16. Imprinted electrochemical sensor for dopamine recognition and determination based on a carbon nanotube/polypyrrole film

    International Nuclear Information System (INIS)

    Kan Xianwen; Zhou Hong; Li Chen; Zhu Anhong; Xing Zonglan; Zhao Zhe

    2012-01-01

    An electrochemical sensor combining a molecular imprinted technique and an electropolymerization method was developed in this work. A molecular imprinted polymer (MIP) film was fabricated by electropolymerizing pyrrole in the presence of dopamine (DA) after electrodepositing carboxyl-functionalized multi-walled carbon nanotubes (MWNTs-COOH) onto a glassy carbon electrode (GCE) surface. Scanning electron microscopy (SEM), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS) were employed to characterize the constructed sensor. The effects of pH, the monomer concentration, the number of cycles for the electropolymerization, and the scan rate for the sensor preparation were optimized. The MIP-based sensor displayed an excellent recognition capacity toward DA compared with other structurally similar molecules. Additionally, the DPV peak current was linear to the DA concentration in the range from 6.25 × 10 −7 to 1 × 10 −4 mol/L, with a detection limit of 6 × 10 −8 mol/L. The prepared sensor also showed stable reproducibility and regeneration capacity.

  17. Electrochemical sensors: a powerful tool in analytical chemistry

    Directory of Open Access Journals (Sweden)

    Stradiotto Nelson R.

    2003-01-01

    Full Text Available Potentiometric, amperometric and conductometric electrochemical sensors have found a number of interesting applications in the areas of environmental, industrial, and clinical analyses. This review presents a general overview of the three main types of electrochemical sensors, describing fundamental aspects, developments and their contribution to the area of analytical chemistry, relating relevant aspects of the development of electrochemical sensors in Brazil.

  18. A highly selective and sensitive cocaine aptasensor based on covalent attachment of the aptamer-functionalized AuNPs onto nanocomposite as the support platform

    Energy Technology Data Exchange (ETDEWEB)

    Roushani, Mahmoud, E-mail: mahmoudroushani@yahoo.com; Shahdost-fard, Faezeh

    2015-01-01

    Highlights: • Functionalized thiol-terminated cocaine aptamer was functionalized with AuNPs. • MWCNTs/IL/Chit was employed for covalent attachment of Apt-capture probe onto electrode. • (K{sub 3}Fe(CN){sub 6}) was used as the redox probe and DPV as analytical technique. • The aptasensor showed high sensitivity and selectivity. • Linear range from 1 nM to 11,000 nM with LOD of 100 pM for cocaine detection was obtained. - Abstract: Based on the conformational changes of the aptamer-functionalized gold nanoparticles (AuNPs) onto MWCNTs/IL/Chit nanocomposite as the support platform, we have developed a sensitive and selective electrochemical aptasensor for the detection of cocaine. The 5′-amine-3′-AuNP terminated aptamer is covalently attached to a MWCNTs/IL/Chit nanocomposite. The interaction of cocaine with the aptamer functionalized AuNP caused the aptamer to be folded and the AuNPs with negative charge at the end of the aptamer came to the near of electrode surface therefore, the electron transfer between ferricyanide (K{sub 3}Fe(CN){sub 6}) as redox probe and electrode surface was inhibited. A decreased current of (K{sub 3}Fe(CN){sub 6}) was monitored by differential pulse voltammetry technique. In an optimized condition the calibration curve for cocaine concentration was linear up to 11 μM with detection limit (signal-to-noise ratio of 3) of 100 pM. To test the selectivity of the prepared aptasensor sensing platform applicability, some analgesic drugs as the interferes were examined. The potential of the aptasensor was successfully applied for measuring cocaine concentration in human blood serum. Based on our experiments it can be said that the present method is absolutely beneficial in developing other electrochemical aptasensor.

  19. A highly selective and sensitive cocaine aptasensor based on covalent attachment of the aptamer-functionalized AuNPs onto nanocomposite as the support platform

    International Nuclear Information System (INIS)

    Roushani, Mahmoud; Shahdost-fard, Faezeh

    2015-01-01

    Highlights: • Functionalized thiol-terminated cocaine aptamer was functionalized with AuNPs. • MWCNTs/IL/Chit was employed for covalent attachment of Apt-capture probe onto electrode. • (K 3 Fe(CN) 6 ) was used as the redox probe and DPV as analytical technique. • The aptasensor showed high sensitivity and selectivity. • Linear range from 1 nM to 11,000 nM with LOD of 100 pM for cocaine detection was obtained. - Abstract: Based on the conformational changes of the aptamer-functionalized gold nanoparticles (AuNPs) onto MWCNTs/IL/Chit nanocomposite as the support platform, we have developed a sensitive and selective electrochemical aptasensor for the detection of cocaine. The 5′-amine-3′-AuNP terminated aptamer is covalently attached to a MWCNTs/IL/Chit nanocomposite. The interaction of cocaine with the aptamer functionalized AuNP caused the aptamer to be folded and the AuNPs with negative charge at the end of the aptamer came to the near of electrode surface therefore, the electron transfer between ferricyanide (K 3 Fe(CN) 6 ) as redox probe and electrode surface was inhibited. A decreased current of (K 3 Fe(CN) 6 ) was monitored by differential pulse voltammetry technique. In an optimized condition the calibration curve for cocaine concentration was linear up to 11 μM with detection limit (signal-to-noise ratio of 3) of 100 pM. To test the selectivity of the prepared aptasensor sensing platform applicability, some analgesic drugs as the interferes were examined. The potential of the aptasensor was successfully applied for measuring cocaine concentration in human blood serum. Based on our experiments it can be said that the present method is absolutely beneficial in developing other electrochemical aptasensor

  20. Electrochemical Biosensors - Sensor Principles and Architectures

    Directory of Open Access Journals (Sweden)

    Erik Reimhult

    2008-03-01

    Full Text Available Quantification of biological or biochemical processes are of utmost importancefor medical, biological and biotechnological applications. However, converting the biologicalinformation to an easily processed electronic signal is challenging due to the complexity ofconnecting an electronic device directly to a biological environment. Electrochemical biosensorsprovide an attractive means to analyze the content of a biological sample due to thedirect conversion of a biological event to an electronic signal. Over the past decades severalsensing concepts and related devices have been developed. In this review, the most commontraditional techniques, such as cyclic voltammetry, chronoamperometry, chronopotentiometry,impedance spectroscopy, and various field-effect transistor based methods are presented alongwith selected promising novel approaches, such as nanowire or magnetic nanoparticle-basedbiosensing. Additional measurement techniques, which have been shown useful in combinationwith electrochemical detection, are also summarized, such as the electrochemical versionsof surface plasmon resonance, optical waveguide lightmode spectroscopy, ellipsometry,quartz crystal microbalance, and scanning probe microscopy.The signal transduction and the general performance of electrochemical sensors are often determinedby the surface architectures that connect the sensing element to the biological sampleat the nanometer scale. The most common surface modification techniques, the various electrochemicaltransduction mechanisms, and the choice of the recognition receptor moleculesall influence the ultimate sensitivity of the sensor. New nanotechnology-based approaches,such as the use of engineered ion-channels in lipid bilayers, the encapsulation of enzymesinto vesicles, polymersomes, or polyelectrolyte capsules provide additional possibilities forsignal amplification.In particular, this review highlights the importance of the precise control over the

  1. A label-free aptamer-fluorophore assembly for rapid and specific detection of cocaine in biofluids.

    Science.gov (United States)

    Roncancio, Daniel; Yu, Haixiang; Xu, Xiaowen; Wu, Shuo; Liu, Ran; Debord, Joshua; Lou, Xinhui; Xiao, Yi

    2014-11-18

    We report a rapid and specific aptamer-based method for one-step cocaine detection with minimal reagent requirements. The feasibility of aptamer-based detection has been demonstrated with sensors that operate via target-induced conformational change mechanisms, but these have generally exhibited limited target sensitivity. We have discovered that the cocaine-binding aptamer MNS-4.1 can also bind the fluorescent molecule 2-amino-5,6,7-trimethyl-1,8-naphthyridine (ATMND) and thereby quench its fluorescence. We subsequently introduced sequence changes into MNS-4.1 to engineer a new cocaine-binding aptamer (38-GC) that exhibits higher affinity to both ligands, with reduced background signal and increased signal gain. Using this aptamer, we have developed a new sensor platform that relies on the cocaine-mediated displacement of ATMND from 38-GC as a result of competitive binding. We demonstrate that our sensor can detect cocaine within seconds at concentrations as low as 200 nM, which is 50-fold lower than existing assays based on target-induced conformational change. More importantly, our assay achieves successful cocaine detection in body fluids, with a limit of detection of 10.4, 18.4, and 36 μM in undiluted saliva, urine, and serum samples, respectively.

  2. Electrochemical non-enzymatic glucose sensors

    International Nuclear Information System (INIS)

    Park, Sejin; Boo, Hankil; Chung, Taek Dong

    2006-01-01

    The electrochemical determination of glucose concentration without using enzyme is one of the dreams that many researchers have been trying to make come true. As new materials have been reported and more knowledge on detailed mechanism of glucose oxidation has been unveiled, the non-enzymatic glucose sensor keeps coming closer to practical applications. Recent reports strongly imply that this progress will be accelerated in 'nanoera'. This article reviews the history of unraveling the mechanism of direct electrochemical oxidation of glucose and making attempts to develop successful electrochemical glucose sensors. The electrochemical oxidation of glucose molecules involves complex processes of adsorption, electron transfer, and subsequent chemical rearrangement, which are combined with the surface reactions on the metal surfaces. The information about the direct oxidation of glucose on solid-state surfaces as well as new electrode materials will lead us to possible breakthroughs in designing the enzymeless glucose sensing devices that realize innovative and powerful detection. An example of those is to introduce nanoporous platinum as an electrode, on which glucose is oxidized electrochemically with remarkable sensitivity and selectivity. Better model of such glucose sensors is sought by summarizing and revisiting the previous reports on the electrochemistry of glucose itself and new electrode materials

  3. A DNA sequence obtained by replacement of the dopamine RNA aptamer bases is not an aptamer.

    Science.gov (United States)

    Álvarez-Martos, Isabel; Ferapontova, Elena E

    2017-08-05

    A unique specificity of the aptamer-ligand biorecognition and binding facilitates bioanalysis and biosensor development, contributing to discrimination of structurally related molecules, such as dopamine and other catecholamine neurotransmitters. The aptamer sequence capable of specific binding of dopamine is a 57 nucleotides long RNA sequence reported in 1997 (Biochemistry, 1997, 36, 9726). Later, it was suggested that the DNA homologue of the RNA aptamer retains the specificity of dopamine binding (Biochem. Biophys. Res. Commun., 2009, 388, 732). Here, we show that the DNA sequence obtained by the replacement of the RNA aptamer bases for their DNA analogues is not able of specific biorecognition of dopamine, in contrast to the original RNA aptamer sequence. This DNA sequence binds dopamine and structurally related catecholamine neurotransmitters non-specifically, as any DNA sequence, and, thus, is not an aptamer and cannot be used neither for in vivo nor in situ analysis of dopamine in the presence of structurally related neurotransmitters. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Imprinted propyl gallate electrochemical sensor based on graphene/single walled carbon nanotubes/sol-gel film.

    Science.gov (United States)

    Xu, Guilin; Chi, Yu; Li, Lu; Liu, Shouhua; Kan, Xianwen

    2015-06-15

    A novel imprinted sol-gel electrochemical sensor for the determination of propyl gallate (PG) was developed based on a composite of graphene and single walled carbon nanotubes (GR-SWCNTs). It was fabricated by stepwise modifying GR-SWCNTs and molecularly imprinted polymers and stored in 0.10 mol L(-1) phosphate buffer solution pH 6.0, which endowed the sensor good sensitivity and selective recognition towards template molecules. The morphology and specific adsorption capacity of the sensor was characterized by scanning electron microscope and electrochemical methods, respectively. Under the optimized conditions, a linear range of the sensor to PG was 8.0 × 10(-8)-2.6 × 10(-3)mo lL(-1) with a limit of detection of 5.0 × 10(-8)mol L(-1) (S/N=3). The sensor exhibited specificity and selectivity towards template molecules as well as excellent reproducibility, regeneration and stability. Furthermore, the sensor could be applied to determine PG in edible oils, instant noodles and cookies with satisfactory results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. An Optically-Transparent Aptamer-Based Detection System for Colon Cancer Applications Using Gold Nanoparticles Electrodeposited on Indium Tin Oxide

    Directory of Open Access Journals (Sweden)

    Mojgan Ahmadzadeh-Raji

    2016-07-01

    Full Text Available In this paper, a label-free aptamer based detection system (apta-DS was investigated for detecting colon cancer cells. For this purpose, we employed an aptamer specific to colon cancer cells like HCT116 expressing carcinoembryonic antigen (CEA on their surfaces. Capture aptamers were covalently immobilized on the surface of gold nanoparticles (GNPs through self-assembly monolayer of 11-mercaptoundecanoic acid (11-MUA activated with EDC (1-Ethyl-3-[3-dimethylaminopropyl]carbodiimide/N-hydroxysuccinimide (NHS. The cyclic voltammetry (CV and chronopotentiometry (CP methods were used for electrodeposition of GNPs on the surface of indium tin oxide (ITO. In this work, the CV method was also used to demonstrate the conjugation of GNPs and aptamers and identify the cancer cell capturing events. Additionally, Field Emission Scanning Electron Microscopy (FE-SEM confirmed the deposition of GNPs on ITO and the immobilization of aptamer on the apta-DS. The electrodeposited GNPs played the role of nanoprobes for cancer cell targeting without losing the optical transparency of the ITO substrate. A conventional optical microscope also verified the detection of captured cancer cells. Based on this study’s results relying on electrochemical and optical microscopic methods, the proposed apta-DS is reliable and high sensitive with a LOD equal to 6 cell/mL for colon cancer detection.

  6. A novel electrochemical sensor based on zirconia/ordered macroporous polyaniline for ultrasensitive detection of pesticides.

    Science.gov (United States)

    Wang, Yonglan; Jin, Jun; Yuan, Caixia; Zhang, Fan; Ma, Linlin; Qin, Dongdong; Shan, Duoliang; Lu, Xiaoquan

    2015-01-21

    A simple and mild strategy was proposed to develop a novel electrochemical sensor based on zirconia/ordered macroporous polyaniline (ZrO2/OMP) and further used for the detection of methyl parathion (MP), one of the organophosphate pesticides (OPPs). Due to the strong affinity of phosphate groups with ZrO2 and the advantages of OMP such as high catalytic activity and good conductivity, the developed sensor showed a limit of detection as low as 2.28 × 10(-10) mol L(-1) (S/N = 3) by square-wave voltammograms, and good selectivity, acceptable reproducibility and stability. Most importantly, this novel sensor was successfully applied to detect MP in real samples of apple and cabbage. It is expected that this method has potential applications in electrochemical sensing platforms with simple, sensitive, selective and fast analysis.

  7. A single use electrochemical sensor based on biomimetic nanoceria for the detection of wine antioxidants.

    Science.gov (United States)

    Andrei, Veronica; Sharpe, Erica; Vasilescu, Alina; Andreescu, Silvana

    2016-08-15

    We report the development and characterization of a disposable single use electrochemical sensor based on the oxidase-like activity of nanoceria particles for the detection of phenolic antioxidants. The use of nanoceria in the sensor design enables oxidation of phenolic compounds, particularly those with ortho-dihydroxybenzene functionality, to their corresponding quinones at the surface of a screen printed carbon electrode. Detection is carried out by electrochemical reduction of the resulting quinone at a low applied potential of -0.1V vs the Ag/AgCl electrode. The sensor was optimized and characterized with respect to particle loading, applied potential, response time, detection limit, linear concentration range and sensitivity. The method enabled rapid detection of common phenolic antioxidants including caffeic acid, gallic acid and quercetin in the µM concentration range, and demonstrated good functionality for the analysis of antioxidant content in several wine samples. The intrinsic oxidase-like activity of nanoceria shows promise as a robust tool for sensitive and cost effective analysis of antioxidants using electrochemical detection. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Electrochemical sensor based on magnetic molecularly imprinted nanoparticles modified magnetic electrode for determination of Hb.

    Science.gov (United States)

    Sun, Binghua; Ni, Xinjiong; Cao, Yuhua; Cao, Guangqun

    2017-05-15

    A fast and selective electrochemical sensor for determination of hemoglobin (Hb) was developed based on magnetic molecularly imprinted nanoparticles modified on the magnetic glassy carbon electrode. The nanoparticles Fe 3 O 4 @SiO 2 with a magnetic core and a molecularly imprinted shell had regular structures and good monodispersity. Hb could be determined directly by electrochemical oxidization with the modified electrode. A magnetic field increased electrochemical response to Hb by two times. Imprinting Hb on the surface of Fe 3 O 4 @SiO 2 shortened the response time within 7min. Under optimum conditions, the imprinting factor toward the non-imprinted sensor was 2.8, and the separation factor of Hb to horseradish peroxidase was 2.6. The oxidation peak current had a linear relationship with Hb concentration ranged from 0.005mg/ml to 0.1mg/ml with a detection limit (S/N =3) of 0.0010mg/ml. The sensors were successfully applied to analysis of Hb in whole blood samples with recoveries between 95.7% and 105%. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Diamond-based electrochemical aptasensor realizing a femtomolar detection limit of bisphenol A.

    Science.gov (United States)

    Ma, Yibo; Liu, Junsong; Li, Hongdong

    2017-06-15

    In this study, we designed and fabricated an electrochemical impedance aptasensor based on Au nanoparticles (Au-NPs) coated boron-doped diamond (BDD) modified with aptamers, and 6-mercapto-1-hexanol (MCH) for the detection of bisphenol A (BPA). The constructed BPA aptasensor exhibits good linearity from 1.0×10 -14 to 1.0×10 -9 molL -1 . The detection limitation of 7.2×10 -15 molL -1 was achieved, which can be attributed to the synergistic effect of combining BDD with Au-NPs, aptamers, and MCH. The examine results of BPA traces in Tris-HCl buffer and in milk, UV spectra of aptamer/BPA and interference test revealed that the novel aptasensors are of high sensitivity, specificity, stability and repeatability, which could be promising in practical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Recent Progress in Electrochemical HbA1c Sensors: A Review

    Directory of Open Access Journals (Sweden)

    Baozhen Wang

    2015-03-01

    Full Text Available This article reviews recent progress made in the development of electrochemical glycated hemoglobin (HbA1c sensors for the diagnosis and management of diabetes mellitus. Electrochemical HbA1c sensors are divided into two categories based on the detection protocol of the sensors. The first type of sensor directly detects HbA1c by binding HbA1c on the surface of an electrode through bio-affinity of antibody and boronic acids, followed by an appropriate mode of signal transduction. In the second type of sensor, HbA1c is indirectly determined by detecting a digestion product of HbA1c, fructosyl valine (FV. Thus, the former sensors rely on the selective binding of HbA1c to the surface of the electrodes followed by electrochemical signaling in amperometric, voltammetric, impedometric, or potentiometric mode. Redox active markers, such as ferrocene derivatives and ferricyanide/ferrocyanide ions, are often used for electrochemical signaling. For the latter sensors, HbA1c must be digested in advance by proteolytic enzymes to produce the FV fragment. FV is electrochemically detected through catalytic oxidation by fructosyl amine oxidase or by selective binding to imprinted polymers. The performance characteristics of HbA1c sensors are discussed in relation to their use in the diagnosis and control of diabetic mellitus.

  11. Ultrasensitive molecularly imprinted electrochemical sensor based on magnetism graphene oxide/β-cyclodextrin/Au nanoparticles composites for chrysoidine analysis

    International Nuclear Information System (INIS)

    Wang, Xiaojiao; Li, Xiangjun; Luo, Chuannan; Sun, Min; Li, Leilei; Duan, Huimin

    2014-01-01

    Highlights: • Synthesis and application of MGO/β-CD@AuNPs as a sensor for chrysoidine analysis. • The synthesized polymer had a laminar structure with high surface. • The propose sensor showed high selectivity and good sensitivity. - Abstract: A imprinted electrochemical sensor based on glassy carbon electrode (GCE) for ultrasensitive detection of chrysoidine was fabricated. A GCE was modified by magnetic graphene oxide/β-cyclodextrin/gold nanoparticles composites (MGO/β-CD@AuNPs). The sensing surface area and electronic transmission rate were increased, which was benefited from the distribution property of MGO/β-CD@AuNPs. The MGO/β-CD@AuNPs composite improved electrochemical response and sensitivity of the sensor. The molecularly imprinted electrochemical sensor was prepared by electropolymerization on modified electrode. Chrysoidine and pyrrole were used as template molecule and functional monomer, respectively. Under the optimization experimental conditions, the electrochemical sensor exhibited excellent analytical performance: the detection of chrysoidine ranged from 5.0 × 10 −8 mol/L to 5.0 × 10 −6 mol/L with the detection limit of 1.7 × 10 −8 mol/L. The sensor was applied to determine chrysoidine in spiked water samples and showed high selectivity, good sensitivity and acceptable reproducibility. The proposed method provides a promising platform for trace amount detection of other food additives

  12. Isolation of HL-60 cancer cells from the human serum sample using MnO2-PEI/Ni/Au/aptamer as a novel nanomotor and electrochemical determination of thereof by aptamer/gold nanoparticles-poly(3,4-ethylene dioxythiophene) modified GC electrode.

    Science.gov (United States)

    Amouzadeh Tabrizi, Mahmoud; Shamsipur, Mojtaba; Saber, Reza; Sarkar, Saeed

    2018-07-01

    Herein, aptamer-modified self-propelled nanomotors were used for transportation of human promyelocytic leukemia cells (HL-60) from a human serum sample. For this purpose, the fabricated manganese oxide nanosheets-polyethyleneimine decorated with nickel/gold nanoparticles (MnO 2 -PEI/Ni/Au) as nanomotors were added to a vial containing thiolated aptamer KH1C12 solution as a capture aptamer to attach to the gold nanoparticles on the surface of nanomotors covalently. The aptamer-modified self-propelled nanomotors (aptamer KH1C12 /nanomotors) were then separated by placing the vial in a magnetic stand. The aptamer-modified self-propelled nanomotors were rinsed three times with water to remove the non-attached aptamers. Then, the resulting aptamer KH1C12 /nanomotors were applied for the on-the-fly" transporting of HL-60 cancer cell from a human serum sample. To release of the captured HL-60 cancer cells, the complementary nucleotide sequences of KH1C12 aptamer solution (releasing aptamer) that has a with capture aptamer was added to phosphate buffer solution (1 M, pH 7.4) containing HL-60/aptamer KH1C12 /nanomotors. Because of the high affinity of capture aptamer to complementary nucleotide sequences of aptamer KH1C12 , the HL-60 cancer cells released on the surface of aptamer KH1C12 /nanomotors into the solution. The second goal of the present work was determining the concentration of HL-60 cancer cell in the human serum samples. The electrochemical impedance spectroscopy technique (EIS) was used for the determination of HL-60 cancer cell. The concentration of separated cancer cell was determined by aptamer/gold nanoparticles-poly(3,4-ethylene dioxythiophene) modified GC electrode (GC/PEDOT-Au nano /aptamer KH1C12 ). The proposed aptasensor exhibited a good response to the concentration of HL-60 cancer cells in the range of 2.5 × 10 1 to 5 × 10 5 cells mL -1 with a low limit of detection of 250 cells mL -1 . Copyright © 2018 Elsevier B.V. All rights reserved.

  13. A Printed Organic Amplification System for Wearable Potentiometric Electrochemical Sensors.

    Science.gov (United States)

    Shiwaku, Rei; Matsui, Hiroyuki; Nagamine, Kuniaki; Uematsu, Mayu; Mano, Taisei; Maruyama, Yuki; Nomura, Ayako; Tsuchiya, Kazuhiko; Hayasaka, Kazuma; Takeda, Yasunori; Fukuda, Takashi; Kumaki, Daisuke; Tokito, Shizuo

    2018-03-02

    Electrochemical sensor systems with integrated amplifier circuits play an important role in measuring physiological signals via in situ human perspiration analysis. Signal processing circuitry based on organic thin-film transistors (OTFTs) have significant potential in realizing wearable sensor devices due to their superior mechanical flexibility and biocompatibility. Here, we demonstrate a novel potentiometric electrochemical sensing system comprised of a potassium ion (K + ) sensor and amplifier circuits employing OTFT-based pseudo-CMOS inverters, which have a highly controllable switching voltage and closed-loop gain. The ion concentration sensitivity of the fabricated K + sensor was 34 mV/dec, which was amplified to 160 mV/dec (by a factor of 4.6) with high linearity. The developed system is expected to help further the realization of ultra-thin and flexible wearable sensor devices for healthcare applications.

  14. Label-free aptamer biosensor for thrombin detection based on functionalized graphene nanocomposites.

    Science.gov (United States)

    Wang, Qingqing; Zhou, Zhixue; Zhai, Yanling; Zhang, Lingling; Hong, Wei; Zhang, Zhiquan; Dong, Shaojun

    2015-08-15

    A label-free and amplified electrochemical impedimetric aptasensor based on functionalized graphene nanocomposites (rGO-AuNPs) was developed for the detection of thrombin, which played a vital role in thrombosis and hemostasis. The thiolated aptamer and dithiothreitol (TBA15-DTT) were firstly immobilized on the gold electrode to capture the thrombin molecules, and then aptamer functionalized graphene nanocomposites (rGO-TBA29) were used to fabricate a sandwich sensing platform for amplifying the impedimetric signals. As numerous negative charges of TBA29 on the electrode repelled to the [Fe(CN)6](4-/3-) anions, resulting in an obvious amplified charge-transfer resistance (Rct) signal. The Rct increase was linearly proportional to the thrombin concentration from 0.3 to 50nM and a detection limit of 0.01nM thrombin was achieved. In addition, graphene could also be labeled with other probes via electrostatic or π-π stacking interactions to produce signals, therefore different detection methods expanding wide application could be used in this model. Copyright © 2015. Published by Elsevier B.V.

  15. Fabrication a new modified electrochemical sensor based on Au–Pd bimetallic nanoparticle decorated graphene for citalopram determination

    Energy Technology Data Exchange (ETDEWEB)

    Daneshvar, Leili [Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of); Rounaghi, Gholam Hossein, E-mail: ghrounaghi@yahoo.com [Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of); Es' haghi, Zarrin [Department of Chemistry, Faculty of Sciences, Payame Noor University, Mashhad (Iran, Islamic Republic of); Chamsaz, Mahmoud; Tarahomi, Somayeh [Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of)

    2016-12-01

    This paper proposes a simple approach for sensing of citalopram (CTL) using gold–palladium bimetallic nanoparticles (Au–PdNPs) decorated graphene modified gold electrode. Au–PdNPs were deposited at the surface of a graphene modified gold electrode with simple electrodeposition method. The morphology and the electrochemical properties of the modified electrode were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), energy dispersion spectroscopy (EDS), electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and square wave voltammetry (SWV). The novel sensor exhibited an excellent catalytic activity towards the oxidation of CTL. The oxidation peak current of CTL, was linear in the range of 0.5–50 μM with a detection limit 0.049 μM with respect to concentration of citalopram. The proposed sensor was successfully applied for determination of CTL tablet and human plasma samples with satisfactory results. - Highlights: • A novel sensor based on Au-PdNPs deposited graphene modified gold electrode was fabricated. • The morphology and the electrochemical properties of the sensor were characterized by several methods. • The fabricated sensor was employed for the detection of antidepressant drug CTL with satisfactory results.

  16. A sensitive electrochemical aptasensor based on water soluble CdSe quantum dots (QDs) for thrombin determination

    Energy Technology Data Exchange (ETDEWEB)

    Li Yanfen; Han Min [Jiangsu Laboratory of New Power Batteries, Jiangsu Key Laboratory of Biofuctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097 (China); Bai Hongyan [Jiangsu Laboratory of New Power Batteries, Jiangsu Key Laboratory of Biofuctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097 (China); College of Biological and Chemical Engineering, Jiaxing College, Jiaxing 314001 (China); Wu Yong [Jiangsu Laboratory of New Power Batteries, Jiangsu Key Laboratory of Biofuctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097 (China); Dai Zhihui, E-mail: daizhihuii@njnu.edu.cn [Jiangsu Laboratory of New Power Batteries, Jiangsu Key Laboratory of Biofuctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097 (China); Bao Jianchun, E-mail: baojianchun@njnu.edu.cn [Jiangsu Laboratory of New Power Batteries, Jiangsu Key Laboratory of Biofuctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097 (China)

    2011-08-01

    A novel aptamer biosensor with easy operation and good sensitivity, specificity, stability and reproducibility was developed by immobilizing the aptamer on water soluble CdSe quantum dots (QDs) modified on the top of the glassy carbon electrode (GCE). Methylene blue (MB) was intercalated into the aptamer sequence and used as an electrochemical marker. CdSe QDs improved the electrochemical signal because of their larger surface area and ion centers of CdSe QDs may also had a major role on amplifying the signal. The higher ion concentration caused more combination of aptamer which caused larger signal. The thrombin was detected by differential pulse voltammetry (DPV) quantitatively. Under optimal conditions, the two linear ranges were obtained from 3 to 13 {mu}g mL{sup -1} and from 14 to 31 {mu}g mL{sup -1}, respectively. The detection limit was 0.08 {mu}g mL{sup -1} at 3{sigma}. The constructed biosensor had better responses compared with that in the absence of the CdSe QDs immobilizing. The control experiment was also carried out by using BSA, casein and IgG in the absence of thrombin. The results showed that the aptasensor had good specificity, stability and reproducibility to the thrombin. Moreover, the aptasensor could be used for detection of real sample with consistent results in comparison with those obtained by fluorescence method which could provide a promising platform for fabrication of aptamer based biosensors.

  17. Modified porous silicon for electrochemical sensor of para-nitrophenol

    International Nuclear Information System (INIS)

    Belhousse, S.; Belhaneche-Bensemra, N.; Lasmi, K.; Mezaache, I.; Sedrati, T.; Sam, S.; Tighilt, F.-Z.; Gabouze, N.

    2014-01-01

    Highlights: • Hybrid device based on Porous silicon (PSi) and polythiophene (PTh) was prepared. • Three types of PSi/PTh hybrid structures were elaborated: PSi/PTh, oxide/PSi/PTh and Amino-propyltrimethoxysilane (APTMES)/oxide/PSi/PTh. • PTh was grafted on PSi using electrochemical polymerization. • The electrodetection of para-nitrophenol (p-NPh) was performed by cyclic voltammetry. • Oxide/PSi/PTh and APTMES/oxide/PSi/PTh, based electrochemical sensor showed a good response toward p-NPh. - Abstract: Hybrid structures based on polythiophene modified porous silicon was used for the electrochemical detection of para-nitrophenol, which is a toxic derivative of parathion insecticide and it is considered as a major toxic pollutant. The porous silicon was prepared by anodic etching in hydrofluodic acid. Polythiophene films were then grown by electropolymerisation of thiophene monomer on three different surfaces: hydrogenated PSi, oxidized PSi and amine-terminated PSi. The morphology of the obtained structures were observed by scanning electron microscopy and characterized by spectroscopy (FTIR). Cyclic voltammetry was used to study the electrochemical response of proposed structures to para-nitrophenol. The results show a high sensitivity of the sensor and a linearity of the electrochemical response in a large concentration interval ranging from 1.5 × 10 −8 M to the 3 × 10 −4 M

  18. CELL-SELEX: Novel Perspectives of Aptamer-Based Therapeutics

    Directory of Open Access Journals (Sweden)

    Hans P. Wendel

    2008-04-01

    Full Text Available Aptamers, single stranded DNA or RNA molecules, generated by a method called SELEX (systematic evolution of ligands by exponential enrichment have been widely used in various biomedical applications. The newly developed Cell-SELEX (cell based-SELEX targeting whole living cells has raised great expectations for cancer biology, -therapy and regenerative medicine. Combining nanobiotechnology with aptamers, this technology opens the way to more sophisticated applications in molecular diagnosis. This paper gives a review of recent developments in SELEX technologies and new applications of aptamers.

  19. Boronic acid based imprinted electrochemical sensor for rutin recognition and detection.

    Science.gov (United States)

    Wang, Chunlei; Wang, Qi; Zhong, Min; Kan, Xianwen

    2016-10-21

    Multi-walled carbon nanotubes (MWNTs) and boronic acid based molecular imprinting polymer (MIP) were successively modified on a glassy carbon electrode surface to fabricate a novel electrochemical sensor for rutin recognition and detection. 3-Aminophenylboronic acid (APBA) was chosen as a monomer for the electropolymerization of MIP film in the presence of rutin. In addition to the imprinted cavities in MIP film to complement the template molecule in shape and functional groups, the high affinity between the boronic acid group of APBA and vicinal diols of rutin also enhanced the selectivity of the sensor, which made the sensor display a good selectivity to rutin. Moreover, the modified MWNTs improved the sensitivity of the sensor for rutin detection. The mole ratios of rutin and APBA, electropolymerized scan cycles and rates, and pH value of the detection solution were optimized. Under optimal conditions, the sensor was used to detect rutin in a linear range from 4.0 × 10 -7 to 1.0 × 10 -5 mol L -1 with a detection limit of 1.1 × 10 -7 mol L -1 . The sensor has also been applied to assay rutin in tablets with satisfactory results.

  20. Sensitive detection of pyoverdine with an electrochemical sensor based on electrochemically generated graphene functionalized with gold nanoparticles.

    Science.gov (United States)

    Gandouzi, Islem; Tertis, Mihaela; Cernat, Andreea; Bakhrouf, Amina; Coros, Maria; Pruneanu, Stela; Cristea, Cecilia

    2018-04-01

    The design and development of an electrochemical sensor for the sensitive and selective determination of pyoverdine, a virulence factor secreted by Pseudomonas aeruginosa, bacteria involved in nosocomial infections is presented in this work. The presence of pyoverdine in water and body fluids samples can be directly linked to the presence of the Pseudomonas bacteria, thus being a nontoxic and low cost marker for the detection of water pollution as well as for the biological contamination of other media. The sensor was elaborated using layer-by-layer technique for the deposition of a graphene‑gold nanoparticles composite film on the graphite-based screen printed electrode, from aqueous suspension. Under optimal conditions, the electrochemical signal corresponding to the pyoverdine oxidation process was proportional to its concentration, showing a wide linear range from 1 to 100μmolL -1 and a detection limit of 0.33μmolL -1 . This sensor discriminate with satisfactory recoveries the target analyte in different real matrices and also exhibited low response to other interfering species, proving that this technique is promising for medical and environmental applications. In addition, the proposed nanocomposite platform presented good reproducibility, high and long term stability, the sensitivity for pyoverdine remain unchanged after being stored at 4°C for four weeks. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. A Portable Smart-Phone Readout Device for the Detection of Mercury Contamination Based on an Aptamer-Assay Nanosensor.

    Science.gov (United States)

    Xiao, Wei; Xiao, Meng; Fu, Qiangqiang; Yu, Shiting; Shen, Haicong; Bian, Hongfen; Tang, Yong

    2016-11-08

    The detection of environmental mercury (Hg) contamination requires complex and expensive instruments and professional technicians. We present a simple, sensitive, and portable Hg 2+ detection system based on a smartphone and colorimetric aptamer nanosensor. A smartphone equipped with a light meter app was used to detect, record, and process signals from a smartphone-based microwell reader (MR S-phone), which is composed of a simple light source and a miniaturized assay platform. The colorimetric readout of the aptamer nanosensor is based on a specific interaction between the selected aptamer and Hg 2+ , which leads to a color change in the reaction solution due to an aggregation of gold nanoparticles (AuNPs). The MR S-phone-based AuNPs-aptamer colorimetric sensor system could reliably detect Hg 2+ in both tap water and Pearl River water samples and produced a linear colorimetric readout of Hg 2+ concentration in the range of 1 ng/mL-32 ng/mL with a correlation of 0.991, and a limit of detection (LOD) of 0.28 ng/mL for Hg 2+ . The detection could be quickly completed in only 20 min. Our novel mercury detection assay is simple, rapid, and sensitive, and it provides new strategies for the on-site detection of mercury contamination in any environment.

  2. Extraordinary tunable dynamic range of electrochemical aptasensor for accurate detection of ochratoxin A in food samples

    Directory of Open Access Journals (Sweden)

    Lin Cheng

    2017-06-01

    Full Text Available We report the design of a sensitive, electrochemical aptasensor for detection of ochratoxin A (OTA with an extraordinary tunable dynamic sensing range. This electrochemical aptasensor is constructed based on the target induced aptamer-folding detection mechanism and the recognition between OTA and its aptamers results in the conformational change of the aptamer probe and thus signal changes for measurement. The dynamic sensing range of the electrochemical aptasensor is successfully tuned by introduction of free assistant aptamer probes in the sensing system. Our electrochemical aptasensor shows an extraordinary dynamic sensing range of 11-order magnitude of OTA concentration from 10−8 to 102 ng/g. Of great significance, the signal response in all OTA concentration ranges is at the same current scale, demonstrating that our sensing protocol in this research could be applied for accurate detections of OTA in a broad range without using any complicated treatment of signal amplification. Finally, OTA spiked red wine and maize samples in different dynamic sensing ranges are determined with the electrochemical aptasensor under optimized sensing conditions. This tuning strategy of dynamic sensing range may offer a promising platform for electrochemical aptasensor optimizations in practical applications.

  3. Chip cleaning and regeneration for electrochemical sensor arrays

    Energy Technology Data Exchange (ETDEWEB)

    Bhalla, Vijayender [Biochemistry Department ' G.Moruzzi' , University of Bologna, Via Irnerio 48, 40126 Bologna (Italy); Carrara, Sandro, E-mail: sandro.carrara@epfl.c [Biochemistry Department ' G.Moruzzi' , University of Bologna, Via Irnerio 48, 40126 Bologna (Italy); Stagni, Claudio [Department DEIS, University of Bologna, viale Risorgimento 2, 40136 Bologna (Italy); Samori, Bruno [Biochemistry Department ' G.Moruzzi' , University of Bologna, Via Irnerio 48, 40126 Bologna (Italy)

    2010-04-02

    Sensing systems based on electrochemical detection have generated great interest because electronic readout may replace conventional optical readout in microarray. Moreover, they offer the possibility to avoid labelling for target molecules. A typical electrochemical array consists of many sensing sites. An ideal micro-fabricated sensor-chip should have the same measured values for all the equivalent sensing sites (or spots). To achieve high reliability in electrochemical measurements, high quality in functionalization of the electrodes surface is essential. Molecular probes are often immobilized by using alkanethiols onto gold electrodes. Applying effective cleaning methods on the chip is a fundamental requirement for the formation of densely-packed and stable self-assembly monolayers. However, the available well-known techniques for chip cleaning may not be so reliable. Furthermore, it could be necessary to recycle the chip for reuse. Also in this case, an effective recycling technique is required to re-obtain well cleaned sensing surfaces on the chip. This paper presents experimental results on the efficacy and efficiency of the available techniques for initial cleaning and further recycling of micro-fabricated chips. Piranha, plasma, reductive and oxidative cleaning methods were applied and the obtained results were critically compared. Some interesting results were attained by using commonly considered cleaning methodologies. This study outlines oxidative electrochemical cleaning and recycling as the more efficient cleaning procedure for electrochemical based sensor arrays.

  4. Gold atomic cluster mediated electrochemical aptasensor for the detection of lipopolysaccharide.

    Science.gov (United States)

    Posha, Biyas; Nambiar, Sindhu R; Sandhyarani, N

    2018-03-15

    We have constructed an aptamer immobilized gold atomic cluster mediated, ultrasensitive electrochemical biosensor (Apt/AuAC/Au) for LPS detection without any additional signal amplification strategy. The aptamer self-assemble onto the gold atomic clusters makes Apt/AuAC/Au an excellent platform for the LPS detection. Differential pulse voltammetry and EIS were used for the quantitative LPS detection. The Apt/AuAC/Au sensor offers an ultrasensitive and selective detection of LPS down to 7.94 × 10 -21 M level with a wide dynamic range from 0.01 attomolar to 1pM. The sensor exhibited excellent selectivity and stability. The real sample analysis was performed by spiking the diluted insulin sample with various concentration of LPS and obtained recovery within 2% error value. The sensor is found to be more sensitive than most of the literature reports. The simple and easy way of construction of this sensor provides an efficient and promising detection of an even trace amount of LPS. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Study on Electrochemical Insulin Sensing Utilizing a DNA Aptamer-Immobilized Gold Electrode

    Directory of Open Access Journals (Sweden)

    Izumi Kubo

    2015-07-01

    Full Text Available We investigated an insulin-sensing method by utilizing an insulin-binding aptamer IGA3, which forms an anti-parallel G-quadruplex with folded single strands. Spectroscopic observation indicates that some anti-parallel G-quadruplex bind hemin and show peroxidase activity. In this study, the peroxidase activity of IGA3 with hemin was confirmed by spectrophotometric measurements, i.e., the activity was three-times higher than hemin itself. IGA3 was then immobilized onto a gold electrode to determine its electrochemical activity. The peroxidase activity of the immobilized IGA3-hemin complex was determined by cyclic voltammetry, and a cathodic peak current of the electrode showed a dependence on the concentration of H2O2. The cathodic peak current of the IGA3-hemin complex decreased by binding it to insulin, and this decrease depended on the concentration of insulin.

  6. Specific detection of oxytetracycline using DNA aptamer-immobilized interdigitated array electrode chip

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeon Seok; Niazi, Javed H [School of Life Sciences and Biotechnology, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-701 (Korea, Republic of); Gu, Man Bock [School of Life Sciences and Biotechnology, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-701 (Korea, Republic of)], E-mail: mbgu@korea.ac.kr

    2009-02-23

    An electrochemical sensing system for oxytetracycline (OTC) detection was developed using ssDNA aptamer immobilized on gold interdigitated array (IDA) electrode chip. A highly specific ssDNA aptamer that bind to OTC with high affinity was employed to discriminate other tetracyclines (TCs), such as doxycycline (DOX) and tetracycline (TET). The immobilized thiol-modified aptamer on gold electrode chip served as a biorecognition element for the target molecules and the electrochemical signals generated from interactions between the aptamers and the target molecules was evaluated by cyclic voltammetry (CV) and square wave voltammetry (SWV). The current decrease due to the interference of bound OTC, DOX or TET was analyzed with the electron flow produced by a redox reaction between ferro- and ferricyanide. The specificity of developed EC-biosensor for OTC was highly distinguishable from the structurally similar antibiotics (DOX and TET). The dynamic range was determined to be 1-100 nM of OTC concentration in semi-logarithmic coordinates.

  7. Specific detection of oxytetracycline using DNA aptamer-immobilized interdigitated array electrode chip

    International Nuclear Information System (INIS)

    Kim, Yeon Seok; Niazi, Javed H.; Gu, Man Bock

    2009-01-01

    An electrochemical sensing system for oxytetracycline (OTC) detection was developed using ssDNA aptamer immobilized on gold interdigitated array (IDA) electrode chip. A highly specific ssDNA aptamer that bind to OTC with high affinity was employed to discriminate other tetracyclines (TCs), such as doxycycline (DOX) and tetracycline (TET). The immobilized thiol-modified aptamer on gold electrode chip served as a biorecognition element for the target molecules and the electrochemical signals generated from interactions between the aptamers and the target molecules was evaluated by cyclic voltammetry (CV) and square wave voltammetry (SWV). The current decrease due to the interference of bound OTC, DOX or TET was analyzed with the electron flow produced by a redox reaction between ferro- and ferricyanide. The specificity of developed EC-biosensor for OTC was highly distinguishable from the structurally similar antibiotics (DOX and TET). The dynamic range was determined to be 1-100 nM of OTC concentration in semi-logarithmic coordinates

  8. A sensitive electrochemical chlorophenols sensor based on nanocomposite of ZnSe quantum dots and cetyltrimethylammonium bromide

    International Nuclear Information System (INIS)

    Li, Jianjun; Li, Xiao; Yang, Ran; Qu, Lingbo; Harrington, Peter de B.

    2013-01-01

    Graphical abstract: A very sensitive and simple electrochemical sensor for chlorophenols (CPs) based on nanocomposite of cetyltrimethylammonium bromide (CTAB) and ZnSe quantum dots (ZnSe–CTAB) through electrostatic self-assembly technology was built for the first time. The nanocomposite of ZnSe–CTAB introduced a favorable access for the electron transfer and showed excellent electrocatalytic activity for the oxidation of CPs. -- Highlights: •Nanocomposite based ZnSe QDs and CTAB was prepared and characterized. •A novel electrochemical sensor for the determination of CPs was built. •The proposed sensor was more sensitive, simple and environment-friendly. -- Abstract: In this work, a very sensitive and simple electrochemical sensor for chlorophenols (CPs) based on a nanocomposite of cetyltrimethylammonium bromide (CTAB) and ZnSe quantum dots (ZnSe–CTAB) through electrostatic self-assembly technology was built for the first time. The composite of ZnSe–CTAB introduced a favorable access for the electron transfer and gave superior electrocatalytic activity for the oxidation of CPs than ZnSe QDs and CTAB alone. Differential pulse voltammetry (DPV) was used for the quantitative determination of the CPs including 2-chlorophenol (2-CP), 2,4-dichlorophenol (2,4-DCP) and pentachlorophenol (PCP). Under the optimum conditions, the peak currents of the CPs were proportional to their concentrations in the range from 0.02 to 10.0 μM for 2-CP, 0.006 to 9.0 μM for 2,4-DCP, and 0.06 to 8.0 for PCP. The detection limits were 0.008 μM for 2-CP, 0.002 μM for 2,4-DCP, and 0.01 μM for PCP, respectively. The method was successfully applied for the determination of CPs in waste water with satisfactory recoveries. This ZnSe–CTAB electrode system provides operational access to design environment-friendly CPs sensors

  9. A PVC/polypyrrole sensor designed for beef taste detection using electrochemical methods and sensory evaluation.

    Science.gov (United States)

    Zhu, Lingtao; Wang, Xiaodan; Han, Yunxiu; Cai, Yingming; Jin, Jiahui; Wang, Hongmei; Xu, Liping; Wu, Ruijia

    2018-03-01

    An electrochemical sensor for detection of beef taste was designed in this study. This sensor was based on the structure of polyvinyl chloride/polypyrrole (PVC/PPy), which was polymerized onto the surface of a platinum (Pt) electrode to form a Pt-PPy-PVC film. Detecting by electrochemical methods, the sensor was well characterized by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The sensor was applied to detect 10 rib-eye beef samples and the accuracy of the new sensor was validated by sensory evaluation and ion sensor detection. Several cluster analysis methods were used in the study to distinguish the beef samples. According to the obtained results, the designed sensor showed a high degree of association of electrochemical detection and sensory evaluation, which proved a fast and precise sensor for beef taste detection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Aptamer-based radioimmunotherapy. The feasibility and prospect in cancer therapy

    International Nuclear Information System (INIS)

    Li Li; Hui Wang; Shujie Liao; Wei Li; Weina Zhang; Dan Liu; Bo Cao; Shixuan Wang; Ding Ma; Wei Wang; Nanfang Hospital, Southern Medical University, Guangzhou; Xiangshang Xu; Keng Shen

    2011-01-01

    Radioimmunotherapy (RIT) has emerged as an attractive and promising strategy for the management of malignant diseases. It has been proven to be quite effective in the treatment of numerous tumors, such as non-Hodgkin lymphoma, metastatic prostate cancer, melanoma, thyroid cancer, colon cancer and so on. The RIT currently used is mainly based on monoclonal antibodies to recognize target antigens. As antibodies are large molecules, this method of RIT has some limitations in in vivo use, such as the immunogenicity, the high costs and low efficiency of production. Aptamer is discovered and selected by SELEX technology. As specific recognizers and binders, aptamers and antibodies have such a close similarity as to be interchangeable to some extent. But, aptamers have many advantages over antibodies: higher affinity and specificity, smaller molecular weight, more easily synthesized and modified, more rapidly penetrating into tumors, higher tumor-to-blood distribution ratio and more easily to be cleared. In addition, since aptamer has almost no immunogenicity in vivo, it can be repeatedly administered. Thus, we believe that aptamer-based RIT will be a feasible and promising way to treat human cancers, and it might display better results in cancer treatment than antibody-based RIT. In conclusion, aptamer-based RIT is hopeful to become a key therapeutics in cancer radiotherapy in the near future. (author)

  11. Modified porous silicon for electrochemical sensor of para-nitrophenol

    Energy Technology Data Exchange (ETDEWEB)

    Belhousse, S., E-mail: all_samia_b@yahoo.fr [Centre de Recherche en Technologie des Semi-conducteurs pour l’Energétique (CRTSE), Division Thin Films-Surface and Interface, 2, Bd. Frantz Fanon, B.P. 140, Alger-7 merveilles, Algiers (Algeria); Belhaneche-Bensemra, N., E-mail: nbelhaneche@yahoo.fr [Ecole Nationale Polytechnique (ENP), 10, Avenue Hassen Badi, B.P. 182, 16200, El Harrach, Algiers (Algeria); Lasmi, K., E-mail: kahinalasmi@yahoo.fr [Centre de Recherche en Technologie des Semi-conducteurs pour l’Energétique (CRTSE), Division Thin Films-Surface and Interface, 2, Bd. Frantz Fanon, B.P. 140, Alger-7 merveilles, Algiers (Algeria); Mezaache, I., E-mail: lyeso_44@hotmail.fr [Ecole Nationale Polytechnique (ENP), 10, Avenue Hassen Badi, B.P. 182, 16200, El Harrach, Algiers (Algeria); Sedrati, T., E-mail: tarek_1990m@hotmail.fr [Ecole Nationale Polytechnique (ENP), 10, Avenue Hassen Badi, B.P. 182, 16200, El Harrach, Algiers (Algeria); Sam, S., E-mail: Sabrina.sam@polytechnique.edu [Centre de Recherche en Technologie des Semi-conducteurs pour l’Energétique (CRTSE), Division Thin Films-Surface and Interface, 2, Bd. Frantz Fanon, B.P. 140, Alger-7 merveilles, Algiers (Algeria); Tighilt, F.-Z., E-mail: mli_zola@yahoo.fr [Centre de Recherche en Technologie des Semi-conducteurs pour l’Energétique (CRTSE), Division Thin Films-Surface and Interface, 2, Bd. Frantz Fanon, B.P. 140, Alger-7 merveilles, Algiers (Algeria); Gabouze, N., E-mail: ngabouze@yahoo.fr [Centre de Recherche en Technologie des Semi-conducteurs pour l’Energétique (CRTSE), Division Thin Films-Surface and Interface, 2, Bd. Frantz Fanon, B.P. 140, Alger-7 merveilles, Algiers (Algeria)

    2014-11-15

    Highlights: • Hybrid device based on Porous silicon (PSi) and polythiophene (PTh) was prepared. • Three types of PSi/PTh hybrid structures were elaborated: PSi/PTh, oxide/PSi/PTh and Amino-propyltrimethoxysilane (APTMES)/oxide/PSi/PTh. • PTh was grafted on PSi using electrochemical polymerization. • The electrodetection of para-nitrophenol (p-NPh) was performed by cyclic voltammetry. • Oxide/PSi/PTh and APTMES/oxide/PSi/PTh, based electrochemical sensor showed a good response toward p-NPh. - Abstract: Hybrid structures based on polythiophene modified porous silicon was used for the electrochemical detection of para-nitrophenol, which is a toxic derivative of parathion insecticide and it is considered as a major toxic pollutant. The porous silicon was prepared by anodic etching in hydrofluodic acid. Polythiophene films were then grown by electropolymerisation of thiophene monomer on three different surfaces: hydrogenated PSi, oxidized PSi and amine-terminated PSi. The morphology of the obtained structures were observed by scanning electron microscopy and characterized by spectroscopy (FTIR). Cyclic voltammetry was used to study the electrochemical response of proposed structures to para-nitrophenol. The results show a high sensitivity of the sensor and a linearity of the electrochemical response in a large concentration interval ranging from 1.5 × 10{sup −8} M to the 3 × 10{sup −4}M.

  12. The strategies of DNA immobilization and hybridization detection mechanism in the construction of electrochemical DNA sensor: A review

    Directory of Open Access Journals (Sweden)

    Jahwarhar Izuan Abdul Rashid

    2017-11-01

    Full Text Available In recent years, electrochemical deoxyribonucleic acid (DNA sensor has recently emerged as promising alternative clinical diagnostic devices especially for infectious disease by exploiting DNA recognition events and converting them into an electrochemical signal. This is because the existing DNA diagnostic method possesses certain drawbacks such as time-consuming, expensive, laborious, low selectivity and sensitivity. DNA immobilization strategies and mechanism of electrochemical detection are two the most important aspects that should be considered before developing highly selective and sensitive electrochemical DNA sensor. Here, we focus on some recent strategies for DNA probes immobilization on the surface of electrochemical transducer such as adsorption, covalent bonding and Avidin/Streptavidin-Biotin interaction on the electrode surface for specific interaction with its complementary DNA target. A numerous approach for DNA hybridization detection based electrochemical technique that frequently used including direct DNA electrochemical detection and label based electrochemical (redox-active indicator, enzyme label and nanoparticles were also discussed in aiming to provide general guide for the design of electrochemical DNA sensor. We also discussed the challenges and suggestions to improve the application of electrochemical DNA sensor at point-care setting. Keywords: Electrochemical DNA sensor, DNA immobilization, DNA hybridization, Electrochemical mechanism

  13. Thermal Annealing Effect on Structural, Morphological, and Sensor Performance of PANI-Ag-Fe Based Electrochemical E. coli Sensor for Environmental Monitoring

    Directory of Open Access Journals (Sweden)

    Norshafadzila Mohammad Naim

    2015-01-01

    Full Text Available PANI-Ag-Fe nanocomposite thin films based electrochemical E. coli sensor was developed with thermal annealing. PANI-Ag-Fe nanocomposite thin films were prepared by oxidative polymerization of aniline and the reduction process of Ag-Fe bimetallic compound with the presence of nitric acid and PVA. The films were deposited on glass substrate using spin-coating technique before they were annealed at 300°C. The films were characterized using XRD, UV-Vis spectroscopy, and FESEM to study the structural and morphological properties. The electrochemical sensor performance was conducted using I-V measurement electrochemical impedance spectroscopy (EIS. The sensitivity upon the presence of E. coli was measured in clean water and E. coli solution. From XRD analysis, the crystallite sizes were found to become larger for the samples after annealing. UV-Vis absorption bands for samples before and after annealing show maximum absorbance peaks at around 422 nm–424 nm and 426 nm–464 nm, respectively. FESEM images show the diameter size for nanospherical Ag-Fe alloy particles increases after annealing. The sensor performance of PANI-Ag-Fe nanocomposite thin films upon E. coli cells in liquid medium indicates the sensitivity increases after annealing.

  14. Electrochemical Affinity Biosensors Based on Disposable Screen-Printed Electrodes for Detection of Food Allergens

    Science.gov (United States)

    Vasilescu, Alina; Nunes, Gilvanda; Hayat, Akhtar; Latif, Usman; Marty, Jean-Louis

    2016-01-01

    Food allergens are proteins from nuts and tree nuts, fish, shellfish, wheat, soy, eggs or milk which trigger severe adverse reactions in the human body, involving IgE-type antibodies. Sensitive detection of allergens in a large variety of food matrices has become increasingly important considering the emergence of functional foods and new food manufacturing technologies. For example, proteins such as casein from milk or lysozyme and ovalbumin from eggs are sometimes used as fining agents in the wine industry. Nonetheless, allergen detection in processed foods is a challenging endeavor, as allergen proteins are degraded during food processing steps involving heating or fermentation. Detection of food allergens was primarily achieved via Enzyme-Linked Immuno Assay (ELISA) or by chromatographic methods. With the advent of biosensors, electrochemical affinity-based biosensors such as those incorporating antibodies and aptamers as biorecognition elements were also reported in the literature. In this review paper, we highlight the success achieved in the design of electrochemical affinity biosensors based on disposable screen-printed electrodes towards detection of protein allergens. We will discuss the analytical figures of merit for various disposable screen-printed affinity sensors in relation to methodologies employed for immobilization of bioreceptors on transducer surface. PMID:27827963

  15. Enhanced host–guest electrochemical recognition of herbicide MCPA using a b-cyclodextrin carbon nanotube sensor

    OpenAIRE

    Rahemi, V.; Vandamme, J.J.; Garrido, J.M.P.J.; Borges, F.; Brett, C.M.A.; Garrido, E.M.P.J.

    2012-01-01

    An electrochemical sensor for the determination of the chlorophenoxy herbicide MCPA has been developed, based on a combination of multi-walled carbon nanotubes with incorporated b-cyclodextrin and a polyaniline film modified glassy carbon electrode. The proposed molecular host–guest recogni-tion based sensor has a high electrochemical sensitivity for the determination of MCPA. The electrochemical behaviour of MCPA at the chemically modified electrode was investigated in detail by cyclic volta...

  16. A Portable Smart-Phone Readout Device for the Detection of Mercury Contamination Based on an Aptamer-Assay Nanosensor

    Directory of Open Access Journals (Sweden)

    Wei Xiao

    2016-11-01

    Full Text Available The detection of environmental mercury (Hg contamination requires complex and expensive instruments and professional technicians. We present a simple, sensitive, and portable Hg2+ detection system based on a smartphone and colorimetric aptamer nanosensor. A smartphone equipped with a light meter app was used to detect, record, and process signals from a smartphone-based microwell reader (MR S-phone, which is composed of a simple light source and a miniaturized assay platform. The colorimetric readout of the aptamer nanosensor is based on a specific interaction between the selected aptamer and Hg2+, which leads to a color change in the reaction solution due to an aggregation of gold nanoparticles (AuNPs. The MR S-phone-based AuNPs-aptamer colorimetric sensor system could reliably detect Hg2+ in both tap water and Pearl River water samples and produced a linear colorimetric readout of Hg2+ concentration in the range of 1 ng/mL–32 ng/mL with a correlation of 0.991, and a limit of detection (LOD of 0.28 ng/mL for Hg2+. The detection could be quickly completed in only 20 min. Our novel mercury detection assay is simple, rapid, and sensitive, and it provides new strategies for the on-site detection of mercury contamination in any environment.

  17. A Nanocoaxial-Based Electrochemical Sensor for the Detection of Cholera Toxin

    Science.gov (United States)

    Archibald, Michelle; Rizal, Binod; Connolly, Timothy; Burns, Michael J.; Naughton, Michael J.; Chiles, Thomas C.; Biology; Physics Collaboration

    We report a nanocoax-based electrochemical sensor for the detection of bacterial toxins using an electrochemical enzyme-linked immunosorbent assay (ELISA) and differential pulse voltammetry (DPV). The device architecture is composed of vertically-oriented, nanoscale coaxial electrodes, with coax cores and shields serving as integrated working and counter electrodes, respectively. Proof-of-concept was demonstrated for the detection of cholera toxin (CT), with a linear dynamic range of detection was 10 ng/ml - 1 µg/ml, and a limit of detection (LOD) of 2 ng/ml. This level of sensitivity is comparable to the standard optical ELISA used widely in clinical applications. The nanocoax array thus matches the detection profile of the standard ELISA while providing a simple electrochemical readout and a miniaturized platform with multiplexing capabilities, toward point-of-care (POC) implementation. In addition, next generation nanocoax devices with extended cores are currently under development, which would provide a POC platform amenable for biofunctionalization of ELISA receptor proteins directly onto the device. This work was supported by the National Institutes of Health (National Cancer Institute Award No. CA137681 and National Institute of Allergy and Infectious Diseases Award No. AI100216).

  18. An electrochemical aptasensor for chiral peptide detection using layer-by-layer assembly of polyelectrolyte-methylene blue/polyelectrolyte-graphene multilayer

    International Nuclear Information System (INIS)

    Qin Haixia; Liu Jiyang; Chen Chaogui; Wang Jiahi; Wang Erkang

    2012-01-01

    Highlights: ► An electrochemical aptasensor for selective detection of peptide is constructed. ► This aptasensor is based on grapheme multilayer via layer-by-layer assembly. ► Such multilayer facilitates electron transfer and provides more adsorption sites. - Abstract: Here we demonstrate for the first time that by physically adsorbing aptamer onto conductive film assembled via alternate adsorption of graphene/polyelectrolyte and methylene blue/polyelectrolyte, a label-free electrochemical aptasensor with high sensitivity and selectivity for peptide detection is constructed. Graphene multilayer derived from layer-by-layer assembly has played significant roles in this sensing strategy: allowing accumulation of methylene blue, facilitating electron transfer and providing much more adsorption site. As compared to previous electrochemical aptasensors, the current sensor based on graphene multilayer alternated with electroactive molecule layer offers extremely high capability for sensitive detection of target without interference of environmental surrounding. This electroactive probe-confined graphene multilayer confers great flexibility to combine with differential pulse voltammetry (DPV) together. In the presence of target D entiomer of arginine vasopressin (D-VP), the binding of peptide to aptamer block the electron transfer process of MB, leading to decreased current peak of DPV. By this way, this electrochemical aptasensor based on electroactive molecule-intercalated graphene multilayer provide highly sensitive and specific detection of D-VP with the lowest detectable concentration of 1 ng mL −1 and a wide detection range from 1 to 265 ng mL −1 .

  19. Ionic Liquid-Based Optical and Electrochemical Carbon Dioxide Sensors

    OpenAIRE

    Kamalakanta Behera; Shubha Pandey; Anu Kadyan; Siddharth Pandey

    2015-01-01

    Due to their unusual physicochemical properties (e.g., high thermal stability, low volatility, high intrinsic conductivity, wide electrochemical windows and good solvating ability), ionic liquids have shown immense application potential in many research areas. Applications of ionic liquid in developing various sensors, especially for the sensing of biomolecules, such as nucleic acids, proteins and enzymes, gas sensing and sensing of various important ions, among other chemosensing platforms, ...

  20. Recent Progress in Aptamer-Based Functional Probes for Bioanalysis and Biomedicine.

    Science.gov (United States)

    Zhang, Huimin; Zhou, Leiji; Zhu, Zhi; Yang, Chaoyong

    2016-07-11

    Nucleic acid aptamers are short synthetic DNA or RNA sequences that can bind to a wide range of targets with high affinity and specificity. In recent years, aptamers have attracted increasing research interest due to their unique features of high binding affinity and specificity, small size, excellent chemical stability, easy chemical synthesis, facile modification, and minimal immunogenicity. These properties make aptamers ideal recognition ligands for bioanalysis, disease diagnosis, and cancer therapy. This review highlights the recent progress in aptamer selection and the latest applications of aptamer-based functional probes in the fields of bioanalysis and biomedicine. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. An electrochemical methanol sensor based on a Pd-Ni/SiNWs catalytic electrode

    International Nuclear Information System (INIS)

    Tao Bairui; Zhang Jian; Hui Shichao; Chen Xuejiao; Wan Lijuan

    2010-01-01

    A novel electrochemical methanol sensor based on a catalytic electrode of palladium-nickel/silicon nanowires (Pd-Ni/SiNWs) is presented in this paper. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and electrochemical methods are employed to investigate the Pd-Ni/SiNWs electrode materials. These nanocomposite materials exhibit a highly ordered, wire-like structure with a wire length of ∼50 μm and a wire diameter ranging from 100 to 300 nm. The substrate has good electrocatalytic activity towards the oxidation of methanol in alkaline solutions. The performances of the prototype sensor are characterized by cyclic voltammetry and fixed potential amperometry techniques. In a 1 mol L -1 KOH solution containing different methanol concentrations, the sensor exhibits a good sensitivity of 1.96 mA mmol -1 L cm -2 with R 2 = 0.99 and the corresponding detection limit of 18 μmol L -1 (signal-to-noise ratio = 3, S/N = 3) for cyclic voltammetry. Meanwhile, the electrode also displays a sensitivity of 0.48 mA mmol -1 L cm -2 with R 2 = 0.98 and the corresponding detection limit of 25 μmol L -1 (S/N = 3) for a fixed potential amperometry at -0.3 V versus an Ag/AgCl reference electrode. The results demonstrate that the Pd-Ni/SiNWs catalytic electrode has potential as an efficient and integrated sensor for methanol detection.

  2. Aptamer-based technology for food analysis.

    Science.gov (United States)

    Liu, Xiaofei; Zhang, Xuewu

    2015-01-01

    Aptamers are short and functional single-stranded oligonucleotide sequences selected from systematic evolution of ligands by exponential enrichment (SELEX) process, which have the capacity to recognize various classes of target molecules with high affinity and specificity. Various analytical aptamers acquired by SELEX are widely used in many research fields, such as medicine, biology, and chemistry. However, the application of this innovative and emerging technology to food safety is just in infant stage. Food safety plays a very important role in our daily lives because varieties of poisonous and harmful substances in food affect human health. Aptamer technique is promising, which can overcome many disadvantages of existing detection methods in food safety, such as long detection time, low sensitivity, difficult, and expensive antibody preparation. This review provides an overview of various aptamer screening technologies and summarizes the recent applications of aptamers in food safety, and future prospects are also discussed.

  3. A sensitive electrochemical aptasensor for ATP detection based on exonuclease III-assisted signal amplification strategy.

    Science.gov (United States)

    Bao, Ting; Shu, Huawei; Wen, Wei; Zhang, Xiuhua; Wang, Shengfu

    2015-03-03

    A target-induced structure-switching electrochemical aptasensor for sensitive detection of ATP was successfully constructed which was based on exonuclease III-catalyzed target recycling for signal amplification. With the existence of ATP, methylene blue (MB) labeled hairpin DNA formed G-quadruplex with ATP, which led to conformational changes of the hairpin DNA and created catalytic cleavage sites for exonuclease III (Exo III). Then the structure-switching DNA hybridized with capture DNA which made MB close to electrode surface. Meanwhile, Exo III selectively digested aptamer from its 3'-end, thus G-quadruplex structure was destroyed and ATP was released for target recycling. The Exo III-assisted target recycling amplified electrochemical signal significantly. Fluorescence experiment was performed to confirm the structure-switching process of the hairpin DNA. In fluorescence experiment, AuNPs-aptamer conjugates were synthesized, AuNPs quenched fluorescence of MB, the target-induced structure-switching made Exo III digested aptamer, which restored fluorescence. Under optimized conditions, the proposed aptasensor showed a linear range of 0.1-20 nM with a detection limit of 34 pM. In addition, the proposed aptasensor had good stability and selectivity, offered promising choice for the detection of other small molecules. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Galaxy Workflows for Web-based Bioinformatics Analysis of Aptamer High-throughput Sequencing Data

    Directory of Open Access Journals (Sweden)

    William H Thiel

    2016-01-01

    Full Text Available Development of RNA and DNA aptamers for diagnostic and therapeutic applications is a rapidly growing field. Aptamers are identified through iterative rounds of selection in a process termed SELEX (Systematic Evolution of Ligands by EXponential enrichment. High-throughput sequencing (HTS revolutionized the modern SELEX process by identifying millions of aptamer sequences across multiple rounds of aptamer selection. However, these vast aptamer HTS datasets necessitated bioinformatics techniques. Herein, we describe a semiautomated approach to analyze aptamer HTS datasets using the Galaxy Project, a web-based open source collection of bioinformatics tools that were originally developed to analyze genome, exome, and transcriptome HTS data. Using a series of Workflows created in the Galaxy webserver, we demonstrate efficient processing of aptamer HTS data and compilation of a database of unique aptamer sequences. Additional Workflows were created to characterize the abundance and persistence of aptamer sequences within a selection and to filter sequences based on these parameters. A key advantage of this approach is that the online nature of the Galaxy webserver and its graphical interface allow for the analysis of HTS data without the need to compile code or install multiple programs.

  5. Amplified Detection of the Aptamer-Vanillin Complex with the Use of Bsm DNA Polymerase.

    Science.gov (United States)

    Andrianova, Mariia; Komarova, Natalia; Grudtsov, Vitaliy; Kuznetsov, Evgeniy; Kuznetsov, Alexander

    2017-12-26

    The electrochemical detection of interactions between aptamers and low-molecular-weight targets often lacks sensitivity. Signal amplification improves the detection of the aptamer-analyte complex; Bsm DNA polymerase was used to amplify the signal from the interaction of vanillin and its aptamer named Van_74 on an ion-sensitive field-effect transistor (ISFET)-based biosensor. The aptamer was immobilized on the ISFET sensitive surface. A short DNA probe was hybridized with the aptamer and dissociated from it upon vanillin addition. A free probe interacted with a special DNA molecular beacon initiated the Bsm DNA polymerase reaction that was detected by ISFET. A buffer solution suitable for both aptamer action and Bsm DNA polymerase activity was determined. The ISFET was shown to detect the Bsm DNA polymerase reaction under the selected conditions. Vanillin at different concentrations (1 × 10 -6 -1 × 10 -8 M) was detected using the biosensor with signal amplification. The developed detection system allowed for the determination of vanillin, starting at a 10 -8 M concentration. Application of the Bsm DNA polymerase resulted in a 15.5 times lower LoD when compared to the biosensor without signal amplification (10.1007/s00604-017-2586-4).

  6. Enzyme-Free Electrochemical Glucose Sensors Prepared by Dealloying Pd-Ni-P Metallic Glasses

    Directory of Open Access Journals (Sweden)

    Yuqiao Zeng

    2014-01-01

    Full Text Available We report the formation of enzyme-free electrochemical glucose sensors by electrochemical dealloying palladium-containing Pd-Ni-P metallic glasses. When metallic glasses with different Pd contents are used as the dealloying precursor alloys, palladium-based nanoporous metals with different ligament and pore sizes can be obtained. The chemical compositions of the nanoporous metals also vary according to the different precursor compositions. All the as-obtained nanoporous metals exhibit electrochemical catalytic activity towards the oxidation of d-glucose, indicating that the nanoporous metals prepared by dealloying the Pd-Ni-P metallic glasses are promising materials for enzyme-free electrochemical glucose sensor.

  7. Electrochemical impedance spectroscopy based MEMS sensors for phthalates detection in water and juices

    KAUST Repository

    Zia, Asif I

    2013-06-10

    Phthalate esters are ubiquitous environmental and food pollutants well known as endocrine disrupting compounds (EDCs). These developmental and reproductive toxicants pose a grave risk to the human health due to their unlimited use in consumer plastic industry. Detection of phthalates is strictly laboratory based time consuming and expensive process and requires expertise of highly qualified and skilled professionals. We present a real time, non-invasive, label free rapid detection technique to quantify phthalates\\' presence in deionized water and fruit juices. Electrochemical impedance spectroscopy (EIS) technique applied to a novel planar inter-digital (ID) capacitive sensor plays a vital role to explore the presence of phthalate esters in bulk fluid media. The ID sensor with multiple sensing gold electrodes was fabricated on silicon substrate using micro-electromechanical system (MEMS) device fabrication technology. A thin film of parylene C polymer was coated as a passivation layer to enhance the capacitive sensing capabilities of the sensor and to reduce the magnitude of Faradic current flowing through the sensor. Various concentrations, 0.002ppm through to 2ppm of di (2-ethylhexyl) phthalate (DEHP) in deionized water, were exposed to the sensing system by dip testing method. Impedance spectra obtained was analysed to determine sample conductance which led to consequent evaluation of its dielectric properties. Electro-chemical impedance spectrum analyser algorithm was employed to model the experimentally obtained impedance spectra. Curve fitting technique was applied to deduce constant phase element (CPE) equivalent circuit based on Randle\\'s equivalent circuit model. The sensing system was tested to detect different concentrations of DEHP in orange juice as a real world application. The result analysis indicated that our rapid testing technique is able to detect the presence of DEHP in all test samples distinctively.

  8. Electrochemical impedance spectroscopy based MEMS sensors for phthalates detection in water and juices

    International Nuclear Information System (INIS)

    Zia, Asif I; Syaifudin, A R Mohd; Mukhopadhyay, S C; Yu, P L; Al-Bahadly, I H; Gooneratne, Chinthaka P; Kosel, Juergen; Liao, Tai-Shan

    2013-01-01

    Phthalate esters are ubiquitous environmental and food pollutants well known as endocrine disrupting compounds (EDCs). These developmental and reproductive toxicants pose a grave risk to the human health due to their unlimited use in consumer plastic industry. Detection of phthalates is strictly laboratory based time consuming and expensive process and requires expertise of highly qualified and skilled professionals. We present a real time, non-invasive, label free rapid detection technique to quantify phthalates' presence in deionized water and fruit juices. Electrochemical impedance spectroscopy (EIS) technique applied to a novel planar inter-digital (ID) capacitive sensor plays a vital role to explore the presence of phthalate esters in bulk fluid media. The ID sensor with multiple sensing gold electrodes was fabricated on silicon substrate using micro-electromechanical system (MEMS) device fabrication technology. A thin film of parylene C polymer was coated as a passivation layer to enhance the capacitive sensing capabilities of the sensor and to reduce the magnitude of Faradic current flowing through the sensor. Various concentrations, 0.002ppm through to 2ppm of di (2-ethylhexyl) phthalate (DEHP) in deionized water, were exposed to the sensing system by dip testing method. Impedance spectra obtained was analysed to determine sample conductance which led to consequent evaluation of its dielectric properties. Electro-chemical impedance spectrum analyser algorithm was employed to model the experimentally obtained impedance spectra. Curve fitting technique was applied to deduce constant phase element (CPE) equivalent circuit based on Randle's equivalent circuit model. The sensing system was tested to detect different concentrations of DEHP in orange juice as a real world application. The result analysis indicated that our rapid testing technique is able to detect the presence of DEHP in all test samples distinctively.

  9. Electrochemical Carbon Dioxide Sensor for Plant Production Environments, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The aim of this proposal is to develop a low power consuming solid polymer electrolyte based, miniaturized electrochemical CO2 sensor that can continuously,...

  10. Electrochemical Carbon Dioxide Sensor for Plant Production Environments, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The aim of this proposal is to develop a low power consuming solid polymer electrolyte based, miniaturized electrochemical CO2 sensor that can continuously,...

  11. A highly sensitive electrochemical sensor for the determination of methanol based on PdNPs@SBA-15-PrEn modified electrode.

    Science.gov (United States)

    Karimi, Ziba; Shamsipur, Mojtaba; Tabrizi, Mahmoud Amouzadeh; Rostamnia, Sadegh

    2018-05-01

    In this study, a novel electrochemical sensor for the determination of methanol based on palladium nanoparticles supported on Santa barbara amorphous-15- PrNHEtNH 2 (PdNPs@SBA-15-PrEn) as nanocatalysis platform is presented. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and electrochemical methods are employed to characterize the PdNPs@SBA-15-PrEn nanocomposite. The Nafion-Pd@SBA-15-PrEn modified glassy carbon electrode (Nafion-PdNPs@SBA-15-PrEn/GCE) displayed the high electrochemical activity and excellent catalytic characteristic for electro-oxidation of methanol in an alkaline solution. The electro-oxidation performance of the proposed sensor was investigated using cyclic voltammetry (CV) and amperometry. The sensor exhibits a good sensitivity of 0.0905 Amol -1 Lcm -2 , linear range of 20-1000 μM and the corresponding detection limit of 12 μM (3σ). The results demonstrate that the Nafion-PdNPs@SBA-15-PrEn/GCE has potential as an efficient and integrated sensor for methanol detection. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Rapid diagnosis of multidrug resistance in cancer by electrochemical sensor based on carbon nanotubes-drug supramolecular nanocomposites.

    Science.gov (United States)

    Zhang, Haijun; Jiang, Hui; Sun, Feifei; Wang, Huangping; Zhao, Juan; Chen, Baoan; Wang, Xuemei

    2011-03-15

    The multidrug resistance (MDR) in cancer is a major chemotherapy obstacle, rendering many currently available chemotherapeutic drugs ineffective. The aim of this study was to explore the new strategy to early diagnose the MDR by electrochemical sensor based on carbon nanotubes-drug supramolecular interaction. The carbon nanotubes modified glassy carbon electrodes (CNTs/GCE) were directly immersed into the cells suspension of the sensitive leukemia cells K562 and/or its MDR cells K562/A02 to detect the response of the electrochemical probe of daunorubicin (DNR) residues after incubated with cells for 1h. The fresh evidence from the electrochemical studies based on CNTs/GCE demonstrated that the homogeneous, label-free strategy could directly measure the function of cell membrane transporters in MDR cancer cells, identify the cell phenotype (sensitive or MDR). When the different ratios of the sensitive leukemia cells K562 and its MDR ones K562/A02 were applied as a model of MDR levels to simulate the MDR occurrence in cancer, the cathodic peak current showed good linear response to the fraction of MDR with a correlation coefficient of 0.995. Therefore, the MDR fraction can be easily predicted based on the calibration curve of the cathodic peak current versus the fraction of MDR. These results indicated that the sensing strategy could provide a powerful tool for assessment of MDR in cancer. The new electrochemical sensor based on carbon nanotubes-drug supramolecular nanocomposites could represent promising approach in the rapid diagnosis of MDR in cancer. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Highly Selective Polypyrrole MIP-Based Gravimetric and Electrochemical Sensors for Picomolar Detection of Glyphosate

    Directory of Open Access Journals (Sweden)

    Zouhour Mazouz

    2017-11-01

    Full Text Available There is a global debate and concern about the use of glyphosate (Gly as an herbicide. New toxicological studies will determine its use in the future under new strict conditions or its replacement by alternative synthetic or natural herbicides. In this context, we designed biomimetic polymer sensing layers for the selective molecular recognition of Gly. Towards this end, complementary surface acoustic wave (SAW and electrochemical sensors were functionalized with polypyrrole (PPy-imprinted polymer for the selective detection of Gly. Their corresponding limits of detection were on the order of 1 pM, which are among the lowest values ever reported in literature. The relevant dissociation constants between PPy and Gly were estimated at [Kd1 = (0.7 ± 0.3 pM and Kd2 = (1.6 ± 1.4 µM] and [Kd1 = (2.4 ± 0.9 pM and Kd2 = (0.3 ± 0.1 µM] for electrochemical and gravimetric measurements, respectively. Quantum chemical calculations permitted to estimate the interaction energy between Gly and PPy film: ΔE = −145 kJ/mol. Selectivity and competitivity tests were investigated with the most common pesticides. This work conclusively shows that gravimetric and electrochemical results indicate that both MIP-based sensors are perfectly able to detect and distinguish glyphosate without any ambiguity.

  14. Laser-Scribed Graphene Electrodes for Aptamer-Based Biosensing

    KAUST Repository

    Fenzl, Christoph

    2017-04-25

    Graphene as a transducer material has produced some of the best performing sensing approaches to date opening the door toward integrated miniaturized all-carbon point-of-care devices. Addressing this opportunity, laser-scribed graphene(LSG) electrodes are demonstrated here as highly sensitive and reliable biosensor transducers in blood serum analysis. These flexible electrodes with large electrochemical surface areas were fabricated using a direct-write laser process on polyimide foils. A universal immobilization approach is established by anchoring 1-pyrenebutyric acid to the graphene and subsequently covalently attaching an aptamer against the coagulation factor thrombin as an exemplary bioreceptor to the carboxyl groups. The resulting biosensor displays extremely low detection limits of 1 pM in buffer and 5 pM in the complex matrix of serum.

  15. Selective Aptamers for Detection of Estradiol and Ethynylestradiol in Natural Waters

    KAUST Repository

    Akki, Spurti U.; Werth, Charles J.; Silverman, Scott K.

    2015-01-01

    © 2015 American Chemical Society. We used in vitro selection to identify new DNA aptamers for two endocrine-disrupting compounds often found in treated and natural waters, 17β-estradiol (E2) and 17α-ethynylestradiol (EE). We used equilibrium filtration to determine aptamer sensitivity/selectivity and dimethyl sulfate (DMS) probing to explore aptamer binding sites. The new E2 aptamers are at least 74-fold more sensitive for E2 than is a previously reported DNA aptamer, with dissociation constants (Kd values) of 0.6 μM. Similarly, the EE aptamers are highly sensitive for EE, with Kd of 0.5-1.0 μM. Selectivity values indicate that the E2 aptamers bind E2 and a structural analogue, estrone (E1), equally well and are up to 74-fold selective over EE. One EE aptamer is 53-fold more selective for EE over E2 or E1, but the other binds EE, E2, and E1 with similar affinity. The new aptamers do not lose sensitivity or selectivity in natural water from a local lake, despite the presence of natural organic matter (∼4 mg/L TOC). DMS probing suggests that E2 binding occurs in relatively flexible single-stranded DNA regions, an important finding for rational redesign of aptamers and their incorporation into sensing platforms. This is the first report of aptamers with strong selectivity for E2 and E1 over EE, or with strong selectivity for EE over E2 and E1. Such selectivity is important for achieving the goal of creating practically useful DNA-based sensors that can distinguish structurally similar estrogenic compounds in natural waters.

  16. Selective Aptamers for Detection of Estradiol and Ethynylestradiol in Natural Waters

    KAUST Repository

    Akki, Spurti U.

    2015-08-18

    © 2015 American Chemical Society. We used in vitro selection to identify new DNA aptamers for two endocrine-disrupting compounds often found in treated and natural waters, 17β-estradiol (E2) and 17α-ethynylestradiol (EE). We used equilibrium filtration to determine aptamer sensitivity/selectivity and dimethyl sulfate (DMS) probing to explore aptamer binding sites. The new E2 aptamers are at least 74-fold more sensitive for E2 than is a previously reported DNA aptamer, with dissociation constants (Kd values) of 0.6 μM. Similarly, the EE aptamers are highly sensitive for EE, with Kd of 0.5-1.0 μM. Selectivity values indicate that the E2 aptamers bind E2 and a structural analogue, estrone (E1), equally well and are up to 74-fold selective over EE. One EE aptamer is 53-fold more selective for EE over E2 or E1, but the other binds EE, E2, and E1 with similar affinity. The new aptamers do not lose sensitivity or selectivity in natural water from a local lake, despite the presence of natural organic matter (∼4 mg/L TOC). DMS probing suggests that E2 binding occurs in relatively flexible single-stranded DNA regions, an important finding for rational redesign of aptamers and their incorporation into sensing platforms. This is the first report of aptamers with strong selectivity for E2 and E1 over EE, or with strong selectivity for EE over E2 and E1. Such selectivity is important for achieving the goal of creating practically useful DNA-based sensors that can distinguish structurally similar estrogenic compounds in natural waters.

  17. MIP sensors--the electrochemical approach.

    Science.gov (United States)

    Malitesta, Cosimino; Mazzotta, Elisabetta; Picca, Rosaria A; Poma, Alessandro; Chianella, Iva; Piletsky, Sergey A

    2012-02-01

    This review highlights the importance of coupling molecular imprinting technology with methodology based on electrochemical techniques for the development of advanced sensing devices. In recent years, growing interest in molecularly imprinted polymers (MIPs) in the preparation of recognition elements has led researchers to design novel formats for improvement of MIP sensors. Among possible approaches proposed in the literature on this topic, we will focus on the electrosynthesis of MIPs and on less common hybrid technology (e.g. based on electrochemistry and classical MIPs, or nanotechnology). Starting from the early work reported in this field, an overview of the most innovative and successful examples will be reviewed.

  18. Development and characterization of an electrochemical sensor for furosemide detection based on electropolymerized molecularly imprinted polymer.

    Science.gov (United States)

    Kor, Kamalodin; Zarei, Kobra

    2016-01-01

    A novel electrochemical sensor based on a molecularly imprinted polymer, poly(o-phenylenediamine) (PoPD), has been developed for selective and sensitive detection of furosemide. The sensor was prepared by incorporating of furosemide as template molecules during the electropolymerization of o-phenylenediamine on a gold electrode. To develop the molecularly imprinted polymer (MIP), the template molecules were removed from the modified electrode's surface by washing it with 0.25 mol L(-1) NaOH solution. The imprinted layer was characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and atomic force microscopy (AFM). The sensor's preparation conditions including furosemide concentration, the number of CV cycles in the electropolymerization process, extraction solution of the template from the imprinted film, the incubation time and the pH level were optimized. The incubation of the MIP-modified electrode, with respect to furosemide concentration, resulted in a suppression of the K4[Fe(CN)6] oxidation process. Under the optimal experimental conditions, the response of the imprinted sensor was linear in the range of 1.0×10(-7)-7.0×10(-6) mol L(-1) of furosemide. The detection limit was obtained as 7.0×10(-8) mol L(-1) for furosemide by using this sensor. The sensor was successfully used to determine the furosemide amount in the tablet and in human urine samples with satisfactory results. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. An electrochemical sensor for monitoring oxygen or hydrogen in water

    International Nuclear Information System (INIS)

    Leitai Yang; Morris, D.R.; Lister, D.H.

    1997-01-01

    Preliminary studies have been done on a simple electrochemical sensor which shows promise as a cheap, robust instrument for measuring dissolved oxygen or hydrogen in water. The sensor is based upon the solid-state electrolyte ''Nafion'' (trade name of perfluorinated sulphonic acid, manufactured by DuPont Inc.). The Nafion was dissolved in a mixture of aliphatic alcohols, made into a slurry with platinum black, and applied to a ∼1 cm-square electrode made of stainless steel gauze. The potential of the electrode was measured relative to a standard calomel electrode (SCE) in acid solutions at room temperature through which mixtures of oxygen and nitrogen or hydrogen and nitrogen were bubbled. The sensor was responsive to the equilibrating gas with good reproducibility. A similar sensor without the Nafion was not at all sensitive to changes in oxygen concentration. The voltage response of the sensor showed non-Nernstian behaviour, which suggests that the electrochemical reactions at the electrode surface are complex. Further testing of the sensor is required to verify its sensitivity and responsiveness in typical reactor coolant chemistries and to demonstrate its durability over a range of temperatures. (author). 4 refs, 4 figs, 1 tab

  20. An electrochemical sensor for monitoring oxygen or hydrogen in water

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Leitai; Morris, D R; Lister, D H [University of New Brunswick, Fredericton (Canada). Dept. of Chemical Engineering

    1997-02-01

    Preliminary studies have been done on a simple electrochemical sensor which shows promise as a cheap, robust instrument for measuring dissolved oxygen or hydrogen in water. The sensor is based upon the solid-state electrolyte ``Nafion`` (trade name of perfluorinated sulphonic acid, manufactured by DuPont Inc.). The Nafion was dissolved in a mixture of aliphatic alcohols, made into a slurry with platinum black, and applied to a {approx}1 cm-square electrode made of stainless steel gauze. The potential of the electrode was measured relative to a standard calomel electrode (SCE) in acid solutions at room temperature through which mixtures of oxygen and nitrogen or hydrogen and nitrogen were bubbled. The sensor was responsive to the equilibrating gas with good reproducibility. A similar sensor without the Nafion was not at all sensitive to changes in oxygen concentration. The voltage response of the sensor showed non-Nernstian behaviour, which suggests that the electrochemical reactions at the electrode surface are complex. Further testing of the sensor is required to verify its sensitivity and responsiveness in typical reactor coolant chemistries and to demonstrate its durability over a range of temperatures. (author). 4 refs, 4 figs, 1 tab.

  1. Aptamer-based multiplexed proteomic technology for biomarker discovery.

    Directory of Open Access Journals (Sweden)

    Larry Gold

    2010-12-01

    Full Text Available The interrogation of proteomes ("proteomics" in a highly multiplexed and efficient manner remains a coveted and challenging goal in biology and medicine.We present a new aptamer-based proteomic technology for biomarker discovery capable of simultaneously measuring thousands of proteins from small sample volumes (15 µL of serum or plasma. Our current assay measures 813 proteins with low limits of detection (1 pM median, 7 logs of overall dynamic range (~100 fM-1 µM, and 5% median coefficient of variation. This technology is enabled by a new generation of aptamers that contain chemically modified nucleotides, which greatly expand the physicochemical diversity of the large randomized nucleic acid libraries from which the aptamers are selected. Proteins in complex matrices such as plasma are measured with a process that transforms a signature of protein concentrations into a corresponding signature of DNA aptamer concentrations, which is quantified on a DNA microarray. Our assay takes advantage of the dual nature of aptamers as both folded protein-binding entities with defined shapes and unique nucleotide sequences recognizable by specific hybridization probes. To demonstrate the utility of our proteomics biomarker discovery technology, we applied it to a clinical study of chronic kidney disease (CKD. We identified two well known CKD biomarkers as well as an additional 58 potential CKD biomarkers. These results demonstrate the potential utility of our technology to rapidly discover unique protein signatures characteristic of various disease states.We describe a versatile and powerful tool that allows large-scale comparison of proteome profiles among discrete populations. This unbiased and highly multiplexed search engine will enable the discovery of novel biomarkers in a manner that is unencumbered by our incomplete knowledge of biology, thereby helping to advance the next generation of evidence-based medicine.

  2. Aptamer-based multiplexed proteomic technology for biomarker discovery.

    Science.gov (United States)

    Gold, Larry; Ayers, Deborah; Bertino, Jennifer; Bock, Christopher; Bock, Ashley; Brody, Edward N; Carter, Jeff; Dalby, Andrew B; Eaton, Bruce E; Fitzwater, Tim; Flather, Dylan; Forbes, Ashley; Foreman, Trudi; Fowler, Cate; Gawande, Bharat; Goss, Meredith; Gunn, Magda; Gupta, Shashi; Halladay, Dennis; Heil, Jim; Heilig, Joe; Hicke, Brian; Husar, Gregory; Janjic, Nebojsa; Jarvis, Thale; Jennings, Susan; Katilius, Evaldas; Keeney, Tracy R; Kim, Nancy; Koch, Tad H; Kraemer, Stephan; Kroiss, Luke; Le, Ngan; Levine, Daniel; Lindsey, Wes; Lollo, Bridget; Mayfield, Wes; Mehan, Mike; Mehler, Robert; Nelson, Sally K; Nelson, Michele; Nieuwlandt, Dan; Nikrad, Malti; Ochsner, Urs; Ostroff, Rachel M; Otis, Matt; Parker, Thomas; Pietrasiewicz, Steve; Resnicow, Daniel I; Rohloff, John; Sanders, Glenn; Sattin, Sarah; Schneider, Daniel; Singer, Britta; Stanton, Martin; Sterkel, Alana; Stewart, Alex; Stratford, Suzanne; Vaught, Jonathan D; Vrkljan, Mike; Walker, Jeffrey J; Watrobka, Mike; Waugh, Sheela; Weiss, Allison; Wilcox, Sheri K; Wolfson, Alexey; Wolk, Steven K; Zhang, Chi; Zichi, Dom

    2010-12-07

    The interrogation of proteomes ("proteomics") in a highly multiplexed and efficient manner remains a coveted and challenging goal in biology and medicine. We present a new aptamer-based proteomic technology for biomarker discovery capable of simultaneously measuring thousands of proteins from small sample volumes (15 µL of serum or plasma). Our current assay measures 813 proteins with low limits of detection (1 pM median), 7 logs of overall dynamic range (~100 fM-1 µM), and 5% median coefficient of variation. This technology is enabled by a new generation of aptamers that contain chemically modified nucleotides, which greatly expand the physicochemical diversity of the large randomized nucleic acid libraries from which the aptamers are selected. Proteins in complex matrices such as plasma are measured with a process that transforms a signature of protein concentrations into a corresponding signature of DNA aptamer concentrations, which is quantified on a DNA microarray. Our assay takes advantage of the dual nature of aptamers as both folded protein-binding entities with defined shapes and unique nucleotide sequences recognizable by specific hybridization probes. To demonstrate the utility of our proteomics biomarker discovery technology, we applied it to a clinical study of chronic kidney disease (CKD). We identified two well known CKD biomarkers as well as an additional 58 potential CKD biomarkers. These results demonstrate the potential utility of our technology to rapidly discover unique protein signatures characteristic of various disease states. We describe a versatile and powerful tool that allows large-scale comparison of proteome profiles among discrete populations. This unbiased and highly multiplexed search engine will enable the discovery of novel biomarkers in a manner that is unencumbered by our incomplete knowledge of biology, thereby helping to advance the next generation of evidence-based medicine.

  3. Highly sensitive and selective detection of Pb2+ using a turn-on fluorescent aptamer DNA silver nanoclusters sensor.

    Science.gov (United States)

    Zhang, Baozhu; Wei, Chunying

    2018-05-15

    A novel turn-on fluorescent biosensor has been constructed using C-PS2.M-DNA-templated silver nanoclusters (Ag NCs) with an average diameter of about 1 nm. The proposed approach presents a low-toxic, simple, sensitive, and selective detection for Pb 2+ . The fluorescence intensity of C-PS2.M-DNA-Ag NCs enhances significantly in the presence of Pb 2+ , which is attributed to the special interaction between Pb 2+ and its aptamer DNA PS2.M. Pb 2+ induces the aptamer to form G-quadruplex and makes two darkish DNA/Ag NCs located at the 3' and 5' terminus close, resulting in the fluorescence light-up. Moreover, Pb 2+ can be detected as low as 3.0 nM within a good linear range from 5 to 50 nM (R = 0.9862). Furthermore, the application for detection of Pb 2+ in real water samples further demonstrates the reliability of the sensor. Thus, this sensor system shows a potential application for monitoring Pb 2+ in environmental samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. An electrochemical aptasensor based on TiO2/MWCNT and a novel synthesized Schiff base nanocomposite for the ultrasensitive detection of thrombin.

    Science.gov (United States)

    Heydari-Bafrooei, Esmaeil; Amini, Maryam; Ardakani, Mehdi Hatefi

    2016-11-15

    A sensitive aptasensor based on a robust nanocomposite of titanium dioxide nanoparticles, multiwalled carbon nanotubes (MWCNT), chitosan and a novel synthesized Schiff base (SB) (TiO2/MWCNT/CHIT/SB) on the surface of a glassy carbon electrode (GCE) was developed for thrombin detection. The resultant nanocomposite can provide a large surface area, excellent electrocatalytic activity, and high stability, which would improve immobilization sites for biological molecules, allow remarkable amplification of the electrochemical signal and contribute to improved sensitivity. Thrombin aptamers were simply immobilized onto the TiO2-MWCNT/CHIT-SB nanocomposite matrix through simple π - π stacking and electrostatic interactions between CHIT/SB and aptamer strands. The electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used to analyze the surface characterization of unmodified GCE and TiO2-MWCNT/CHIT-SB modified GCE, and also the interaction between aptamer and thrombin. In the presence of thrombin, the aptamer on the adsorbent layer captures the target on the electrode interface, which makes a barrier for electrons and inhibits electron transfer, thereby resulting in decreased DPV and increased impedance signals of the TiO2-MWCNT/CHIT-SB modified GCE. Furthermore, the proposed aptasensor has a very low LOD of 1.0fmolL(-1) thrombin within the detection range of 0.00005-10nmolL(-1). The aptasensor also presents high specificity and reproducibility for thrombin, which is unaffected by the coexistence of other proteins. Clinical application was performed with analysis of the thrombin levels in blood and CSF samples obtained from patients with MS, Parkinson, Epilepsy and Polyneuropathy using both the aptasensor and commercial ELISA kit. The results revealed the proposed system to be a promising candidate for clinical analysis of thrombin. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Fabrication of an electrochemical nanoaptasensor based on AuNPs for ultrasensitive determination of cocaine in serum sample

    International Nuclear Information System (INIS)

    Roushani, Mahmoud; Shahdost-fard, Faezeh

    2016-01-01

    Herein we describe an ultrasensitive electrochemical nanoaptasensor for the detection of one of the most dangerous narcotic drugs available, cocaine. The nanoaptasensor was constructed by the covalent attachment of a 5′-NH 2 -3′-gold nanoparticles terminated aptamer on the surface of a glassy carbon electrode which was deposited with gold nanoparticles (AuNPs/GCE). It is worth noting that the interaction of the cysteamine stable self-assembled monolayer on the AuNPs/GCE surface and the covalent attachment of terephthalaldehyde via amide coupling with the amine groups in the cysteamine and aptamer, respectively, resulted in the covalent attachment of the aptamer to AuNPs/GCE. The presence of gold nanoparticles both on surface of the glassy carbon electrode and in the end of the aptamer, can provide advantages such as increase of active surface area, high acceleration of the electron transfer and improved electrochemical signal, respectively. The decrease in the peak current of [Fe(CN) 6 ] 3−/4− as the probe redox with increase of cocaine concentration, in differential pulse voltammetry as the measuring technique, from 5 pM up to 5 nM was linear and an unprecedented detection limit of 0.5 pM was yielded. Furthermore, the effect of some common analgesic drugs as the potential interferents were investigated and also, to evaluate practical application of the proposed nanoaptasensor human blood serum sample as a real sample was used. Simple preparation, low operation cost, speed and validity are the decisive factors of this method motivating its application to biosensing investigation. - Highlights: • An electrochemical nanoaptasensor for the detection of cocaine is presented. • An AuNPs terminated aptamer was covalent bonded on the surface of the AuNPs/GCE. • The presence of AuNPs has many advantages and improved electrochemical signal. • Two linear ranges from 5 pM up to 5 nM and an unprecedented LOD of 0.5 pM were yielded. • It will shed light on new

  6. Fabrication of an electrochemical nanoaptasensor based on AuNPs for ultrasensitive determination of cocaine in serum sample

    Energy Technology Data Exchange (ETDEWEB)

    Roushani, Mahmoud, E-mail: mahmoudroushani@yahoo.com; Shahdost-fard, Faezeh

    2016-04-01

    Herein we describe an ultrasensitive electrochemical nanoaptasensor for the detection of one of the most dangerous narcotic drugs available, cocaine. The nanoaptasensor was constructed by the covalent attachment of a 5′-NH{sub 2}-3′-gold nanoparticles terminated aptamer on the surface of a glassy carbon electrode which was deposited with gold nanoparticles (AuNPs/GCE). It is worth noting that the interaction of the cysteamine stable self-assembled monolayer on the AuNPs/GCE surface and the covalent attachment of terephthalaldehyde via amide coupling with the amine groups in the cysteamine and aptamer, respectively, resulted in the covalent attachment of the aptamer to AuNPs/GCE. The presence of gold nanoparticles both on surface of the glassy carbon electrode and in the end of the aptamer, can provide advantages such as increase of active surface area, high acceleration of the electron transfer and improved electrochemical signal, respectively. The decrease in the peak current of [Fe(CN){sub 6}]{sup 3−/4−} as the probe redox with increase of cocaine concentration, in differential pulse voltammetry as the measuring technique, from 5 pM up to 5 nM was linear and an unprecedented detection limit of 0.5 pM was yielded. Furthermore, the effect of some common analgesic drugs as the potential interferents were investigated and also, to evaluate practical application of the proposed nanoaptasensor human blood serum sample as a real sample was used. Simple preparation, low operation cost, speed and validity are the decisive factors of this method motivating its application to biosensing investigation. - Highlights: • An electrochemical nanoaptasensor for the detection of cocaine is presented. • An AuNPs terminated aptamer was covalent bonded on the surface of the AuNPs/GCE. • The presence of AuNPs has many advantages and improved electrochemical signal. • Two linear ranges from 5 pM up to 5 nM and an unprecedented LOD of 0.5 pM were yielded. • It will shed

  7. Disposable Screen Printed Electrochemical Sensors: Tools for Environmental Monitoring

    Directory of Open Access Journals (Sweden)

    Akhtar Hayat

    2014-06-01

    Full Text Available Screen printing technology is a widely used technique for the fabrication of electrochemical sensors. This methodology is likely to underpin the progressive drive towards miniaturized, sensitive and portable devices, and has already established its route from “lab-to-market” for a plethora of sensors. The application of these sensors for analysis of environmental samples has been the major focus of research in this field. As a consequence, this work will focus on recent important advances in the design and fabrication of disposable screen printed sensors for the electrochemical detection of environmental contaminants. Special emphasis is given on sensor fabrication methodology, operating details and performance characteristics for environmental applications.

  8. Electrochemical impedimetric sensor based on molecularly imprinted polymers/sol-gel chemistry for methidathion organophosphorous insecticide recognition.

    Science.gov (United States)

    Bakas, Idriss; Hayat, Akhtar; Piletsky, Sergey; Piletska, Elena; Chehimi, Mohamed M; Noguer, Thierry; Rouillon, Régis

    2014-12-01

    We report here a novel method to detect methidathion organophosphorous insecticides. The sensing platform was architected by the combination of molecularly imprinted polymers and sol-gel technique on inexpensive, portable and disposable screen printed carbon electrodes. Electrochemical impedimetric detection technique was employed to perform the label free detection of the target analyte on the designed MIP/sol-gel integrated platform. The selection of the target specific monomer by electrochemical impedimetric methods was consistent with the results obtained by the computational modelling method. The prepared electrochemical MIP/sol-gel based sensor exhibited a high recognition capability toward methidathion, as well as a broad linear range and a low detection limit under the optimized conditions. Satisfactory results were also obtained for the methidathion determination in waste water samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. A highly sensitive label-free electrochemical aptasensor for interferon-gamma detection based on graphene controlled assembly and nuclease cleavage-assisted target recycling amplification.

    Science.gov (United States)

    Yan, Genping; Wang, Yonghong; He, Xiaoxiao; Wang, Kemin; Liu, Jinquan; Du, Yudan

    2013-06-15

    We report here a highly sensitive and label-free electrochemical aptasensing technology for detection of interferon-gamma (IFN-γ) based on graphene controlled assembly and enzyme cleavage-assisted target recycling amplification strategy. In this work, in the absence of IFN-γ, the graphene could not be assembled onto the 16-mercaptohexadecanoic acid (MHA) modified gold electrode because the IFN-γ binding aptamer was strongly adsorbed on the graphene due to the strong π-π interaction. Thus the electronic transmission was blocked (eT OFF). However, the presence of target IFN-γ and DNase I led to desorption of aptamer from the graphene surface and further cleavage of the aptamer, thereby releasing the IFN-γ. The released IFN-γ could then re-attack other aptamers on the graphene, resulting in the successive release of the aptamers from the graphene. At the same time, the "naked" graphene could be assembled onto the MHA modified gold electrode with hydrophobic interaction and π-conjunction, mediating the electron transfer between the electrode and the electroactive indicator. Then, measurable electrochemical signals were generated (eT ON), which was related to the concentration of the IFN-γ. By taking advantages of graphene and enzyme cleavage-assisted target recycling amplification, the developed label-free electrochemical aptasensing technology showed a linear response to concentration of IFN-γ range from 0.1 to 0.7 pM. The detection limit of IFN-γ was determined to be 0.065 pM. Moreover, this aptasensor shows good selectivity toward the target in the presence of other relevant proteins. Our strategy thus opens new opportunities for label-free and amplified detection of other kinds of proteins. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Incorporation of hydrogel as a sensing medium for recycle of sensing material in chemical sensors

    Science.gov (United States)

    Hwang, Yunjung; Park, Jeong Yong; Kwon, Oh Seok; Joo, Seokwon; Lee, Chang-Soo; Bae, Joonwon

    2018-01-01

    A hydrogel, produced with agarose extracted from seaweed, was introduced as a reusable medium in ultrasensitive sensors employing conducting polymer nanomaterials and aptamers. A basic dopamine (DA) sensor was constructed by placing a hydrogel, containing a sensing material composed of aptamer-linked carboxylated polypyrrole nanotubes (PPy-COOH NTs), onto a micropatterned gold electrode. The hydrogel provided a benign electrochemical environment, facilitated specific interactions between DA and the PPy-COOH NT sensing material, and simplified the retrieval of PPy-COOH NTs after detection. It was demonstrated that the agarose hydrogel was successfully employed as a sensing medium for detection of DA, providing a benign environment for the electrode type sensor. PPy-COOH NTs were recovered by simply heating the hydrogel in water. The hydrogel also afforded stable signal intensity after repeated use with a limit of detection of 1 nmol and a clear, stable signal up to 100 nmol DA. This work provides relevant information for future research on reusable or recyclable sensors.

  11. Nonenzymatic electrochemical sensor based on imidazole-functionalized graphene oxide for progesterone detection.

    Science.gov (United States)

    Gevaerd, Ava; Blaskievicz, Sirlon F; Zarbin, Aldo J G; Orth, Elisa S; Bergamini, Márcio F; Marcolino-Junior, Luiz H

    2018-07-30

    The modification of electrode surfaces has been the target of study for many researchers in order to improve the analytical performance of electrochemical sensors. Herein, the use of an imidazole-functionalized graphene oxide (GO-IMZ) as an artificial enzymatic active site for voltammetric determination of progesterone (P4) is described for the first time. The morphology and electrochemical performance of electrode modified with GO-IMZ were characterized by scanning electron microscopy and cyclic voltammetry, respectively. Under optimized conditions, the proposed sensor showed a synergistic effect of the GO sheets and the imidazole groups anchored on its backbone, which promoted a significant enhancement on electrochemical reduction of P4. Figures of merits such as linear dynamic response for P4 concentration ranging from 0.22 to 14.0 μmol L -1 , limit of detection of 68 nmol L -1 and limit of quantification and 210 nmol L -1 were found. In addition, presented a higher sensitivity, 426 nA L µmol -1 , when compared to the unmodified electrode. Overall, the proposed device showed to be a promising platform for a simple, rapid, and direct analysis of progesterone. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. A host-guest-recognition-based electrochemical aptasensor for thrombin detection.

    Science.gov (United States)

    Fan, Hao; Li, Hui; Wang, Qingjiang; He, Pingang; Fang, Yuzhi

    2012-05-15

    A sensitive electrochemical aptasensor for thrombin detection is presented based on the host-guest recognition technique. In this sensing protocol, a 15 based thrombin aptamer (ab. TBA) was dually labeled with a thiol at its 3' end and a 4-((4-(dimethylamino)phenyl)azo) benzoic acid (dabcyl) at its 5' end, respectively, which was previously immobilized on one Au electrode surface by AuS bond and used as the thrombin probe during the protein sensing procedure. One special electrochemical marker was prepared by modifying CdS nanoparticle with β-cyclodextrins (ab. CdS-CDs), which employed as electrochemical signal provider and would conjunct with the thrombin probe modified electrode through the host-guest recognition of CDs to dabcyl. In the absence of thrombin, the probe adopted linear structure to conjunct with CdS-CDs. In present of thrombin, the TBA bond with thrombin and transformed into its special G-quarter structure, which forced CdS-CDs into the solution. Therefore, the target-TBA binding event can be sensitively transduced via detecting the electrochemical oxidation current signal of Cd of CdS nanoparticles in the solution. Using this method, as low as 4.6 pM thrombin had been detected. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Characterization of an electrochemical mercury sensor using alternating current, cyclic, square wave and differential pulse voltammetry

    International Nuclear Information System (INIS)

    Guerreiro, Gabriela V.; Zaitouna, Anita J.; Lai, Rebecca Y.

    2014-01-01

    Graphical abstract: -- Highlights: •An electrochemical Hg(II) sensor based on T–Hg(II)–T sensing motif was fabricated. •A methylene blue-modified DNA probe was used to fabricate the sensor. •Sensor performance was evaluated using ACV, CV, SWV, and DPV. •The sensor behaves as a “signal-off” sensor in ACV and CV. •The sensor behaves as either a “signal-on” or “signal-off” sensor in SWV and DPV. -- Abstract: Here we report the characterization of an electrochemical mercury (Hg 2+ ) sensor constructed with a methylene blue (MB)-modified and thymine-containing linear DNA probe. Similar to the linear probe electrochemical DNA sensor, the resultant sensor behaved as a “signal-off” sensor in alternating current voltammetry and cyclic voltammetry. However, depending on the applied frequency or pulse width, the sensor can behave as either a “signal-off” or “signal-on” sensor in square wave voltammetry (SWV) and differential pulse voltammetry (DPV). In SWV, the sensor showed “signal-on” behavior at low frequencies and “signal-off” behavior at high frequencies. In DPV, the sensor showed “signal-off” behavior at short pulse widths and “signal-on” behavior at long pulse widths. Independent of the sensor interrogation technique, the limit of detection was found to be 10 nM, with a linear dynamic range between 10 nM and 500 nM. In addition, the sensor responded to Hg 2+ rather rapidly; majority of the signal change occurred in 2+ , which has not been previously reported. More importantly, the observed “switching” behavior in SWV and DPV is potentially generalizable and should be applicable to most sensors in this class of dynamics-based electrochemical biosensors

  14. Electrochemical, morphological and microstructural characterization of carbon film resistor electrodes for application in electrochemical sensors

    International Nuclear Information System (INIS)

    Gouveia-Caridade, Carla; Soares, David M.; Liess, Hans-Dieter; Brett, Christopher M.A.

    2008-01-01

    The electrochemical and microstructural properties of carbon film electrodes made from carbon film electrical resistors of 1.5, 15, 140 Ω and 2.0 kΩ nominal resistance have been investigated before and after electrochemical pre-treatment at +0.9 V vs SCE, in order to assess the potential use of these carbon film electrodes as electrochemical sensors and as substrates for sensors and biosensors. The results obtained are compared with those at electrodes made from previously investigated 2 Ω carbon film resistors. Cyclic voltammetry was performed in acetate buffer and phosphate buffer saline electrolytes and the kinetic parameters of the model redox system Fe(CN) 6 3-/4- obtained. The 1.5 Ω resistor electrodes show the best properties for sensor development with wide potential windows, similar electrochemical behaviour to those of 2 Ω and close-to-reversible kinetic parameters after electrochemical pre-treatment. The 15 and 140 Ω resistor electrodes show wide potential windows although with slower kinetics, whereas the 2.0 kΩ resistor electrodes show poor cyclic voltammetric profiles even after pre-treatment. Electrochemical impedance spectroscopy related these findings to the interfacial properties of the electrodes. Microstructural and morphological studies were carried out using contact mode Atomic Force Microscopy (AFM), Confocal Raman spectroscopy and X-ray diffraction. AFM showed more homogeneity of the films with lower nominal resistances, related to better electrochemical characteristics. X-ray diffraction and Confocal Raman spectroscopy indicate the existence of a graphitic structure in the carbon films

  15. DNA aptamer selection and aptamer-based fluorometric displacement assay for the hepatotoxin microcystin-RR

    International Nuclear Information System (INIS)

    Wu, Shijia; Li, Qi; Duan, Nuo; Wang, Zhouping; Ma, Haile

    2016-01-01

    Microcystin-RR (MC-RR) is a highly acute hepatotoxin produced by cyanobacteria. It is harmful to both humans and the environment. A novel aptamer was identified by the systemic evolution of ligands by exponential enrichment (SELEX) method as a recognition element for determination of MC-RR in aquatic products. The graphene oxide (GO) SELEX strategy was adopted to generate aptamers with high affinity and specificity. Of the 50 aptamer candidates tested, sequence RR-33 was found to display high affinity and selectivity, with a dissociation constant of 45.7 ± 6.8 nM. Aptamer RR-33 therefore was used as the recognition element in a fluorometric assay that proceeds as follows: (1) Biotinylated aptamer RR-33 is immobilized on the streptavidinylated wells of a microtiterplate, and carboxyfluorescein (FAM) labelled complementary DNA is then allowed to hybridize. (2) After removal of excess (unbound) cDNA, sample containing MC-RR is added and incubated at 37 °C for 2 h. (3) Displaced free cDNA is washed away and fluorescence intensity measured at excitation/emission wavelengths of 490/515 nm. The calibration plot is linear in the 0.20 to 2.5 ng·mL −1 concentration range, and the limit of detection is 80 pg·mL −1 . The results indicate that the GO-SELEX technology is appropriate for the screening of aptamers against small-molecule toxins. The detection scheme was applied to the determination of MC-RR in (spiked) water, mussel and fish and gave recoveries between 91 and 98 %. The method compares favorably to a known ELISA. Conceivably, this kind of assay is applicable to other toxins for which appropriate aptamers are available. (author)

  16. Development of Self-Powered Wireless-Ready High Temperature Electrochemical Sensors for In-Situ Corrosion Monitoring for Boiler Tubes in Next Generation Coal-based Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xingbo [West Virginia Univ., Morgantown, WV (United States)

    2015-06-30

    The key innovation of this project is the synergy of the high temperature sensor technology based on the science of electrochemical measurement and state-of-the-art wireless communication technology. A novel self-powered wireless high temperature electrochemical sensor system has been developed for coal-fired boilers used for power generation. An initial prototype of the in-situ sensor demonstrated the capability of the wireless communication system in the laboratory and in a pilot plant (Industrial USC Boiler Setting) environment to acquire electrochemical potential and current signals during the corrosion process. Uniform and localized under-coal ash deposit corrosion behavior of Inconel 740 superalloy has been studied at different simulated coal ash hot corrosion environments using the developed sensor. Two typical potential noise patterns were found to correlate with the oxidation and sulfidation stages in the hot coal ash corrosion process. Two characteristic current noise patterns indicate the extent of the corrosion. There was a good correlation between the responses of electrochemical test data and the results from corroded surface analysis. Wireless electrochemical potential and current noise signals from a simulated coal ash hot corrosion process were concurrently transmitted and recorded. The results from the performance evaluation of the sensor confirm a high accuracy in the thermodynamic and kinetic response represented by the electrochemical noise and impedance test data.

  17. eSensor: an electrochemical detection-based DNA microarray technology enabling sample-to-answer molecular diagnostics

    Science.gov (United States)

    Liu, Robin H.; Longiaru, Mathew

    2009-05-01

    DNA microarrays are becoming a widespread tool used in life science and drug screening due to its many benefits of miniaturization and integration. Microarrays permit a highly multiplexed DNA analysis. Recently, the development of new detection methods and simplified methodologies has rapidly expanded the use of microarray technologies from predominantly gene expression analysis into the arena of diagnostics. Osmetech's eSensor® is an electrochemical detection platform based on a low-to- medium density DNA hybridization array on a cost-effective printed circuit board substrate. eSensor® has been cleared by FDA for Warfarin sensitivity test and Cystic Fibrosis Carrier Detection. Other genetic-based diagnostic and infectious disease detection tests are under development. The eSensor® platform eliminates the need for an expensive laser-based optical system and fluorescent reagents. It allows one to perform hybridization and detection in a single and small instrument without any fluidic processing and handling. Furthermore, the eSensor® platform is readily adaptable to on-chip sample-to-answer genetic analyses using microfluidics technology. The eSensor® platform provides a cost-effective solution to direct sample-to-answer genetic analysis, and thus have a potential impact in the fields of point-of-care genetic analysis, environmental testing, and biological warfare agent detection.

  18. Designing an ultra-sensitive aptasensor based on an AgNPs/thiol-GQD nanocomposite for TNT detection at femtomolar levels using the electrochemical oxidation of Rutin as a redox probe.

    Science.gov (United States)

    Shahdost-Fard, Faezeh; Roushani, Mahmoud

    2017-01-15

    In this paper, for the first time a highly sensitive and low-cost electrochemical aptasensor was fabricated based on a silver nanoparticles/thiol functionalized graphene quantum dot (AgNPs/thiol-GQD) nanocomposite for the measurement of 2,4,6-Trinitrotoluen (TNT) as a nitroaromatic explosive. For the first time Rutin (RU) as a biological molecule with inherent properties was used as the redox probe in the development of the TNT aptasensor was used. The system was based on a TNT-binding aptamer which is covalently attached onto the surface of a glassy carbon electrode (GCE) modified with the nanocomposite for the formation of a sensing layer and improving the performance of the aptasensor. Using the proposed nanocomposite provides a specific platform with increased surface area which is capable of loading more Aptamer (Ap) molecules as a receptor element of TNT on the electrode surface. So, TNT molecules is in an upward position to be measured and the obtained results indicate that the aptasensor exhibits two wide linear ranges and an unprecedented LOD compared with previously reported analytical methods for TNT detection. Applicability of the developed aptasensor to easily detect TNT in real samples was evaluated. It seems that the proposed strategy can be expanded to other nanoparticles and is expected to have promising implications in the design of electrochemical sensors or biosensors for the detection of various targets. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Direct electrochemistry and electrocatalysis of lobetyolin via magnetic functionalized reduced graphene oxide film fabricated electrochemical sensor

    International Nuclear Information System (INIS)

    Sun, Bolu; Gou, Xiaodan; Bai, Ruibin; Abdelmoaty, Ahmed Attia Ahmed; Ma, Yuling; Zheng, Xiaoping; Hu, Fangdi

    2017-01-01

    A novel lobetyolin electrochemical sensor based on a magnetic functionalized reduced graphene oxide/Nafion nanohybrid film has been introduced in this work. The magnetic functionalized reduced graphene oxide was characterized by fourier transform infrared spectroscopy, atomic force microscope, X-ray diffraction, transmission electron microscopy and thermogravimetric analysis. The scanning electron microscopy characterized the morphology and microstructure of the prepared sensors, and the electrochemical effective surface areas of the prepared sensors were also calculated by chronocoulometry method. The electrochemical behavior of lobetyolin on the magnetic functionalized reduced graphene oxide/Nafion nanohybrid modified glassy carbon electrode was investigated by cyclic voltammetry and differential pulse voltammetry in a phosphate buffer solution of pH 6.0. The electron-transfer coefficient (α), electron transfer number (n), and electrode reaction rate constant (Κs) were calculated as 0.78, 0.73, and 4.63 s −1 , respectively. Under the optimized conditions, the sensor based on magnetic functionalized reduced graphene oxide/Nafion showed a linear voltammetric response to the lobetyolin concentration at 1.0 × 10 −7 to 1.0 × 10 −4 mol/L with detection limit (S/N = 3)of 4.3 × 10 −8 mol/L. The proposed sensor also displayed acceptable reproducibility, long-term stability, and high selectivity, and performs well for analysis of lobetyolin in real samples. The voltammetric sensor was successfully applied to detect lobetyolin in Codonopsis pilosula with recovery values in the range of 96.12% –102.66%. - Graphical abstract: Schematic diagram of the synthesis of MrGO hybrid and the fabrication process of the MrGO/Nafion/GCE for determination of lobetyolin. Display Omitted - Highlights: • The MrGO/Nafion@GCE electrochemical sensor was successfully fabricated. • The prepared MrGO was characterized by AFM, XRD, FTIR, VSM, TEM and SEM. • The proposed

  20. Direct electrochemistry and electrocatalysis of lobetyolin via magnetic functionalized reduced graphene oxide film fabricated electrochemical sensor

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Bolu [School of Pharmacy, Lanzhou University, Lanzhou 730000 (China); Gou, Xiaodan [School of Chemistry and Chemical Engineering, Nanjing University, 210046 (China); Bai, Ruibin; Abdelmoaty, Ahmed Attia Ahmed; Ma, Yuling; Zheng, Xiaoping [School of Pharmacy, Lanzhou University, Lanzhou 730000 (China); Hu, Fangdi, E-mail: hufd@lzu.edu.cn [School of Pharmacy, Lanzhou University, Lanzhou 730000 (China)

    2017-05-01

    A novel lobetyolin electrochemical sensor based on a magnetic functionalized reduced graphene oxide/Nafion nanohybrid film has been introduced in this work. The magnetic functionalized reduced graphene oxide was characterized by fourier transform infrared spectroscopy, atomic force microscope, X-ray diffraction, transmission electron microscopy and thermogravimetric analysis. The scanning electron microscopy characterized the morphology and microstructure of the prepared sensors, and the electrochemical effective surface areas of the prepared sensors were also calculated by chronocoulometry method. The electrochemical behavior of lobetyolin on the magnetic functionalized reduced graphene oxide/Nafion nanohybrid modified glassy carbon electrode was investigated by cyclic voltammetry and differential pulse voltammetry in a phosphate buffer solution of pH 6.0. The electron-transfer coefficient (α), electron transfer number (n), and electrode reaction rate constant (Κs) were calculated as 0.78, 0.73, and 4.63 s{sup −1}, respectively. Under the optimized conditions, the sensor based on magnetic functionalized reduced graphene oxide/Nafion showed a linear voltammetric response to the lobetyolin concentration at 1.0 × 10{sup −7} to 1.0 × 10{sup −4} mol/L with detection limit (S/N = 3)of 4.3 × 10{sup −8} mol/L. The proposed sensor also displayed acceptable reproducibility, long-term stability, and high selectivity, and performs well for analysis of lobetyolin in real samples. The voltammetric sensor was successfully applied to detect lobetyolin in Codonopsis pilosula with recovery values in the range of 96.12% –102.66%. - Graphical abstract: Schematic diagram of the synthesis of MrGO hybrid and the fabrication process of the MrGO/Nafion/GCE for determination of lobetyolin. Display Omitted - Highlights: • The MrGO/Nafion@GCE electrochemical sensor was successfully fabricated. • The prepared MrGO was characterized by AFM, XRD, FTIR, VSM, TEM and SEM.

  1. Carbon nanotube/polymer composite electrodes for flexible, attachable electrochemical DNA sensors.

    Science.gov (United States)

    Li, Jianfeng; Lee, Eun-Cheol

    2015-09-15

    All-solution-processed, easily-made, flexible multi-walled carbon nanotube (MWCNT)/polydimethylsiloxane (PDMS)-based electrodes were fabricated and used for electrochemical DNA sensors. These electrodes could serve as a recognition layer for DNA, without any surface modification, through π-π interactions between the MWCNTs and DNA, greatly simplifying the fabrication process for DNA sensors. The electrodes were directly connected to an electrochemical analyzer in the differential pulse voltammetry (DPV) and cyclic voltammetry (CV) measurements, where methylene blue was used as a redox indicator. Since neither functional groups nor probe DNA were immobilized on the surfaces of the electrodes, the sensor can be easily regenerated by washing these electrodes with water. The limit of detection was found to be 1.3 × 10(2)pM (S/N=3), with good DNA sequence differentiation ability. Fast fabrication of a DNA sensor was also achieved by cutting and attaching the MWCNT-PDMS composite electrodes at an analyte solution-containable region. Our results pave the way for developing user-fabricated easily attached DNA sensors at low costs. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Environmental analysis by electrochemical sensors and biosensors fundamentals

    CERN Document Server

    Moretto, Ligia Maria

    2014-01-01

    This book presents an exhaustive overview of electrochemical sensors and biosensors for the analysis and monitoring of the most important analytes in the environmental field, in industry, in treatment plants and in environmental research. The chapters give the reader a comprehensive, state-of-the-art picture of the field of electrochemical sensors suitable to environmental analytes, from the theoretical principles of their design to their implementation, realization and application. The first three chapters discuss fundamentals, and the last three chapters cover the main groups of analytes of environmental interest.

  3. Label-Free Aptasensor for Lysozyme Detection Using Electrochemical Impedance Spectroscopy

    OpenAIRE

    Dionisia Ortiz-Aguayo; Manel del Valle

    2018-01-01

    This research develops a label-free aptamer biosensor (aptasensor) based on graphite-epoxy composite electrodes (GECs) for the detection of lysozyme protein using Electrochemical Impedance Spectroscopy (EIS) technique. The chosen immobilization technique was based on covalent bonding using carbodiimide chemistry; for this purpose, carboxylic moieties were first generated on the graphite by electrochemical grafting. The detection was performed using [Fe(CN)6]3−/[Fe(CN)6]4− as redox probe. Afte...

  4. Distributed electrochemical sensors: recent advances and barriers to market adoption.

    Science.gov (United States)

    Hoekstra, Rafael; Blondeau, Pascal; Andrade, Francisco J

    2018-07-01

    Despite predictions of their widespread application in healthcare and environmental monitoring, electrochemical sensors are yet to be distributed at scale, instead remaining largely confined to R&D labs. This contrasts sharply with the situation for physical sensors, which are now ubiquitous and seamlessly embedded in the mature ecosystem provided by electronics and connectivity protocols. Although chemical sensors could be integrated into the same ecosystem, there are fundamental issues with these sensors in the three key areas of analytical performance, usability, and affordability. Nevertheless, advances are being made in each of these fields, leading to hope that the deployment of automated and user-friendly low-cost electrochemical sensors is on the horizon. Here, we present a brief survey of key challenges and advances in the development of distributed electrochemical sensors for liquid samples, geared towards applications in healthcare and wellbeing, environmental monitoring, and homeland security. As will be seen, in many cases the analytical performance of the sensor is acceptable; it is usability that is the major barrier to commercial viability at this moment. Were this to be overcome, the issue of affordability could be addressed. Graphical Abstract ᅟ.

  5. Investigation of the charge effect on the electrochemical transduction in a quinone-based DNA sensor

    DEFF Research Database (Denmark)

    Reisberg, S.; Piro, B.; Noel, V.

    2008-01-01

    To elucidate the mechanism involved in the electrochemical transduction process of a conducting polymer-based DNA sensor, peptide nucleic acids (PNA) were used. PNA are DNA analogues having similar hybridization properties but are neutral. This allows to discriminate the electrostatic effect of D...... strands from the steric hindrance generated on the bioelectrode upon hybridization. It can be concluded that DNA conformational changes are determinant in the transduction process and that the electrostatic effect is negligible....

  6. Characterization of an electrochemical mercury sensor using alternating current, cyclic, square wave and differential pulse voltammetry

    Energy Technology Data Exchange (ETDEWEB)

    Guerreiro, Gabriela V.; Zaitouna, Anita J.; Lai, Rebecca Y., E-mail: rlai2@unl.edu

    2014-01-31

    Graphical abstract: -- Highlights: •An electrochemical Hg(II) sensor based on T–Hg(II)–T sensing motif was fabricated. •A methylene blue-modified DNA probe was used to fabricate the sensor. •Sensor performance was evaluated using ACV, CV, SWV, and DPV. •The sensor behaves as a “signal-off” sensor in ACV and CV. •The sensor behaves as either a “signal-on” or “signal-off” sensor in SWV and DPV. -- Abstract: Here we report the characterization of an electrochemical mercury (Hg{sup 2+}) sensor constructed with a methylene blue (MB)-modified and thymine-containing linear DNA probe. Similar to the linear probe electrochemical DNA sensor, the resultant sensor behaved as a “signal-off” sensor in alternating current voltammetry and cyclic voltammetry. However, depending on the applied frequency or pulse width, the sensor can behave as either a “signal-off” or “signal-on” sensor in square wave voltammetry (SWV) and differential pulse voltammetry (DPV). In SWV, the sensor showed “signal-on” behavior at low frequencies and “signal-off” behavior at high frequencies. In DPV, the sensor showed “signal-off” behavior at short pulse widths and “signal-on” behavior at long pulse widths. Independent of the sensor interrogation technique, the limit of detection was found to be 10 nM, with a linear dynamic range between 10 nM and 500 nM. In addition, the sensor responded to Hg{sup 2+} rather rapidly; majority of the signal change occurred in <20 min. Overall, the sensor retains all the characteristics of this class of sensors; it is reagentless, reusable, sensitive, specific and selective. This study also highlights the feasibility of using a MB-modified probe for real-time sensing of Hg{sup 2+}, which has not been previously reported. More importantly, the observed “switching” behavior in SWV and DPV is potentially generalizable and should be applicable to most sensors in this class of dynamics-based electrochemical biosensors.

  7. Zirconia-based solid state chemical gas sensors

    CERN Document Server

    Zhuiykov, S

    2000-01-01

    This paper presents an overview of chemical gas sensors, based on solid state technology, that are sensitive to environmental gases, such as O sub 2 , SO sub x , NO sub x , CO sub 2 and hydrocarbons. The paper is focussed on performance of electrochemical gas sensors that are based on zirconia as a solid electrolyte. The paper considers sensor structures and selection of electrode materials. Impact of interfaces on sensor performance is discussed. This paper also provides a brief overview of electrochemical properties of zirconia and their effect on sensor performance. Impact of auxiliary materials on sensors performance characteristics, such as sensitivity, selectivity, response time and recovery time, is also discussed. Dual gas sensors that can be applied for simultaneous monitoring of the concentration of both oxygen and other gas phase components, are briefly considered

  8. Electrochemical sensors for detection of acetylsalicylic acid

    OpenAIRE

    Šupálková, Veronika; Petřek, Jiří; Havel, Ladislav; Křížková, Soňa; Petrlová, Jitka; Adam, Vojtěch; Potěšil, David; Babula, Petr; Beklová, Miroslava; Horna, Aleš; Kizek, René

    2006-01-01

    Acetylsalicylic acid ( AcSA), or aspirin, was introduced in the late 1890s and has been used to treat a variety of inflammatory conditions. The aim of this work was to suggest electrochemical sensor for acetylsalicylic detection. Primarily, we utilized square wave voltammetry ( SWV) using both carbon paste electrode ( CPE) and of graphite pencil electrode ( GPE) as working ones to indirect determination of AcSA. The principle of indirect determination of AcSA bases in its hydrolysis on salicy...

  9. Fluorometric graphene oxide-based detection of Salmonella enteritis using a truncated DNA aptamer.

    Science.gov (United States)

    Chinnappan, Raja; AlAmer, Saleh; Eissa, Shimaa; Rahamn, Anas Abdel; Abu Salah, Khalid M; Zourob, Mohammed

    2017-12-18

    The work describes a fluorescence-based study for mapping the highest affinity truncated aptamer from the full length sequence and its integration in a graphene oxide platform for the detection of Salmonella enteriditis. To identify the best truncated sequence, molecular beacons and a displacement assay design are applied. In the fluorescence displacement assay, the truncated aptamer was hybridized with fluorescein and quencher-labeled complementary sequences to form a fluorescence/quencher pair. In the presence of S. enteritidis, the aptamer dissociates from the complementary labeled oligonucleotides and thus, the fluorescein/quencher pair becomes physically separated. This leads to an increase in fluorescence intensity. One of the truncated aptamers identified has a 2-fold lower dissociation constant (3.2 nM) compared to its full length aptamer (6.3 nM). The truncated aptamer selected in this process was used to develop a fluorometric graphene oxide (GO) based assay. If fluorescein-labeled aptamer is adsorbed on GO via π stacking interaction, fluorescence is quenched. However, in the presence of target (S. enteriditis), the labeled aptamers is released from surface to form a stable complex with the bacteria and fluorescence is restored, depending on the quantity of bacteria being present. The resulting assay has an unsurpassed detection limit of 25 cfu·mL -1 in the best case. The cross reactivity to Salmonella typhimurium, Staphylococcus aureus and Escherichia coli is negligible. The assay was applied to analyze doped milk samples for and gave good recovery. Thus, we believe that the truncated aptamer/graphene oxide platform is a potential tool for the detection of S. Enteritidis. Graphical abstract Fluorescently labelled aptamer against Salmonella enteritidis was adsorbed on the surface of graphene oxide by π-stacking interaction. This results in quenching of the fluorescence of the label. Addition of Salmonella enteritidis restores fluorescence, and this

  10. A novel electrochemical sensor based on metal-organic framework for electro-catalytic oxidation of L-cysteine.

    Science.gov (United States)

    Hosseini, Hadi; Ahmar, Hamid; Dehghani, Ali; Bagheri, Akbar; Tadjarodi, Azadeh; Fakhari, Ali Reza

    2013-04-15

    A novel electrochemical sensor based on Au-SH-SiO₂ nanoparticles supported on metal-organic framework (Au-SH-SiO₂@Cu-MOF) has been developed for electrocatalytic oxidation and determination of L-cysteine. The Au-SH-SiO₂@Cu-MOF was characterized by scanning electron microscopy, transmission electron microscopy, x-ray diffraction and cyclic voltammetry. The electrochemical behavior of L-cysteine at the Au-SH-SiO₂@Cu-MOF was investigated by cyclic voltammetry. The Au-SH-SiO₂@Cu-MOF showed a very efficient electrocatalytic activity for the oxidation of L-cysteine in 0.1 M phosphate buffer solution (pH 5.0). The oxidation overpotentials of L-cysteine decreased significantly and their oxidation peak currents increased dramatically at Au-SH-SiO₂@Cu-MOF. The potential utility of the sensor was demonstrated by applying it to the analytical determination of L-cysteine concentration. The results showed that the electrocatalytic current increased linearly with the L-cysteine concentration in the range of 0.02-300 μM and the detection limit was 0.008 μM. Finally, the sensor was applied to determine L-cysteine in water and biological samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Electrochemical Aptasensor for Myoglobin-Specific Recognition Based on Porphyrin Functionalized Graphene-Conjugated Gold Nanocomposites

    Directory of Open Access Journals (Sweden)

    Guojuan Zhang

    2016-10-01

    Full Text Available In this work, a novel electrochemical aptasensor was developed for sensitive and selective detection of myoglobin based on meso-tetra (4-carboxyphenyl porphyrin-functionalized graphene-conjugated gold nanoparticles (TCPP–Gr/AuNPs. Due to its good electric conductivity, large specific surface area, and excellent mechanical properties, TCPP–Gr/AuNPs can act as an enhanced material for the electrochemical detection of myoglobin. Meanwhile, it provides an effective matrix for immobilizing myoglobin-binding aptamer (MbBA. The electrochemical aptasensor has a sensitive response to myoglobin in a linear range from 2.0 × 10−11 M to 7.7 × 10−7 M with a detection limit of 6.7 × 10−12 M (S/N = 3. Furthermore, the method has the merits of high sensitivity, low price, and high specificity. Our work will supply new horizons for the diagnostic applications of graphene-based materials in biomedicine and biosensors.

  12. Function and dynamics of aptamers: A case study on the malachite green aptamer

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Tianjiao [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    Aptamers are short single-stranded nucleic acids that can bind to their targets with high specificity and high affinity. To study aptamer function and dynamics, the malachite green aptamer was chosen as a model. Malachite green (MG) bleaching, in which an OH- attacks the central carbon (C1) of MG, was inhibited in the presence of the malachite green aptamer (MGA). The inhibition of MG bleaching by MGA could be reversed by an antisense oligonucleotide (AS) complementary to the MGA binding pocket. Computational cavity analysis of the NMR structure of the MGA-MG complex predicted that the OH- is sterically excluded from the C1 of MG. The prediction was confirmed experimentally using variants of the MGA with changes in the MG binding pocket. This work shows that molecular reactivity can be reversibly regulated by an aptamer-AS pair based on steric hindrance. In addition to demonstrate that aptamers could control molecular reactivity, aptamer dynamics was studied with a strategy combining molecular dynamics (MD) simulation and experimental verification. MD simulation predicted that the MG binding pocket of the MGA is largely pre-organized and that binding of MG involves reorganization of the pocket and a simultaneous twisting of the MGA terminal stems around the pocket. MD simulation also provided a 3D-structure model of unoccupied MGA that has not yet been obtained by biophysical measurements. These predictions were consistent with biochemical and biophysical measurements of the MGA-MG interaction including RNase I footprinting, melting curves, thermodynamic and kinetic constants measurement. This work shows that MD simulation can be used to extend our understanding of the dynamics of aptamer-target interaction which is not evident from static 3D-structures. To conclude, I have developed a novel concept to control molecular reactivity by an aptamer based on steric protection and a strategy to study the dynamics of aptamer-target interaction by combining MD

  13. An electrochemical sensor for indole in plasma based on MWCNTs-chitosan modified screen-printed carbon electrode.

    Science.gov (United States)

    Jin, Mingchao; Zhang, Xiaoqing; Zhen, Qianna; He, Yifan; Chen, Xiao; Lyu, Wenjing; Han, Runchuan; Ding, Min

    2017-12-15

    Indole is an essential metabolite in intestinal tract. The dysregulation of plasma indole concentration occurred in various diseases. In this study, the indole in plasma was determined directly using electrochemical sensor with multiwall carbon nanotubes-chitosan (MWCNTs-CS) modified screen-printed carbon electrode (SPCE). The electrochemical behavior of indole was elucidated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) on the MWCNTs-CS composites modified SPCE (MWCNTs-CS/SPCE). The results showed that the current responses of indole improved greatly due to the high catalytic activity and electron transfer reaction of nano-composites. Under the optimized conditions, the linear range of indole was from 5 to 100μgL -1 with the detection limit of 0.5μgL -1 (S/N = 3). This novel electrochemical sensor exhibited acceptable accuracies and precisions with the variations less than 7.3% and 9.0%, respectively. Furthermore, high performance liquid chromatography (HPLC) method was utilized to compare with the established electrochemical method for the determination of indole in plasma. The results showed a high correlation between the two methods. At last, the electrochemical sensor was successfully applied to detect the level of indole in plasma samples with satisfactory selectivity and sensitivity. The concentrations of plasma indole in healthy pregnant women and gestational diabetes mellitus (GDM) patients were 5.3 (4.1-7.0)μgL -1 and 7.2 (4.5-9.4)μgL -1 , respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Electrochemical Sensor for Determination of Parathion Based on Electropolymerization Poly(Safranine Film Electrode

    Directory of Open Access Journals (Sweden)

    Xingyuan Liu

    2011-01-01

    Full Text Available Parathion has been determined with voltammetric technique based on a novel sensor fabricated by electropolymerization of safranine on a glassy carbon electrode (GCE. The electrochemical behavior of poly(safranine film electrode and its electrocatalytic activity toward parathion were studied in detail by cyclic voltammetry (CV and linear sweep voltammetry (LSV. All experimental parameters were optimized, and LSV was proposed for its determination. In optimal working conditions, the reduction current of parathion at this poly(safranine-modified electrode exhibited a good linear relationship with parathion concentration in the range of 3.43×10−8 to 3.43×10−5 mol L−1. The detection limit was 1.0×10−8 mol L−1. The high sensitivity and selectivity of the sensor were demonstrated by its practical application for the determination of trace amounts of parathion in fruit samples.

  15. An Oxidase-Based Electrochemical Fluidic Sensor with High-Sensitivity and Low-Interference by On-Chip Oxygen Manipulation

    Directory of Open Access Journals (Sweden)

    Chang-Soo Kim

    2012-06-01

    Full Text Available Utilizing a simple fluidic structure, we demonstrate the improved performance of oxidase-based enzymatic biosensors. Electrolysis of water is utilized to generate bubbles to manipulate the oxygen microenvironment close to the biosensor in a fluidic channel. For the proper enzyme reactions to occur, a simple mechanical procedure of manipulating bubbles was developed to maximize the oxygen level while minimizing the pH change after electrolysis. The sensors show improved sensitivities based on the oxygen dependency of enzyme reaction. In addition, this oxygen-rich operation minimizes the ratio of electrochemical interference signal by ascorbic acid during sensor operation (i.e., amperometric detection of hydrogen peroxide. Although creatinine sensors have been used as the model system in this study, this method is applicable to many other biosensors that can use oxidase enzymes (e.g., glucose, alcohol, phenol, etc. to implement a viable component for in-line fluidic sensor systems.

  16. From electrochemical biosensors to biomimetic sensors based on molecularly imprinted polymers in environmental determination of heavy metals

    Science.gov (United States)

    Malitesta, Cosimino; Di Masi, Sabrina; Mazzotta, Elisabetta

    2017-07-01

    Recent work relevant to heavy metal determination by inhibition-enzyme electrochemical biosensors and by selected biomimetic sensors based on molecularly imprinted polymers has been reviewed. General features and peculiar aspects have been evidenced. The replace of biological component by artificial receptors promises higher selectivity and stability, while biosensors keep their capability of producing an integrated response directly related to toxicity of the samples.

  17. Aptamer-fluorescent silica nanoparticles bioconjugates based dual-color flow cytometry for specific detection of Staphylococcus aureus.

    Science.gov (United States)

    He, Xiaoxiao; Li, Yuhong; He, Dinggen; Wang, Kemin; Shangguan, Jingfang; Shi, Hui

    2014-07-01

    This paper describes a sensitive and specific determination strategy for Staphylococcus aureus (S. aureus) detection using aptamer recognition and fluorescent silica nanoparticles (FSiNPs) label based dual-color flow cytometry assay (Aptamer/FSiNPs-DCFCM). In the protocol, an aptamer, having high affinity to S. aureus, was first covalently immobilized onto chloropropyl functionalized FSiNPs through a click chemistry approach to generate aptamer-nanoparticles bioconjugates (Aptamer/FSiNPs). Next, S. aureus was incubated with Aptamer/FSiNPs, and then stained with SYBR Green I (a special staining material for the duplex DNA). Upon target binding and nucleic acid staining with SYBR Green I, the S. aureus was determined using two-color flow cytometry. The method took advantage of the specificity of aptamer, signal amplification of FSiNPs label and decreased false positives of two-color flow cytometry assay. It was demonstrated that these Aptamer/FSiNPs could efficiently recognize and fluorescently label target S. aureus. Through multiparameter determination with flow cytometry, this assay allowed for detection of as low as 1.5 x 10(2) and 7.6 x 10(2) cells mL(-1) S. aureus in buffer and spiked milk, respectively, with higher sensitivity than the Aptamer/FITC based flow cytometry.

  18. Microfluidic electrochemical sensor for on-line monitoring of aerosol oxidative activity.

    Science.gov (United States)

    Sameenoi, Yupaporn; Koehler, Kirsten; Shapiro, Jeff; Boonsong, Kanokporn; Sun, Yele; Collett, Jeffrey; Volckens, John; Henry, Charles S

    2012-06-27

    Particulate matter (PM) air pollution has a significant impact on human morbidity and mortality; however, the mechanisms of PM-induced toxicity are poorly defined. A leading hypothesis states that airborne PM induces harm by generating reactive oxygen species in and around human tissues, leading to oxidative stress. We report here a system employing a microfluidic electrochemical sensor coupled directly to a particle-into-liquid sampler (PILS) system to measure aerosol oxidative activity in an on-line format. The oxidative activity measurement is based on the dithiothreitol (DTT) assay, where, after being oxidized by PM, the remaining reduced DTT is analyzed by the microfluidic sensor. The sensor consists of an array of working, reference, and auxiliary electrodes fabricated in a poly(dimethylsiloxane)-based microfluidic device. Cobalt(II) phthalocyanine-modified carbon paste was used as the working electrode material, allowing selective detection of reduced DTT. The electrochemical sensor was validated off-line against the traditional DTT assay using filter samples taken from urban environments and biomass burning events. After off-line characterization, the sensor was coupled to a PILS to enable on-line sampling/analysis of aerosol oxidative activity. Urban dust and industrial incinerator ash samples were aerosolized in an aerosol chamber and analyzed for their oxidative activity. The on-line sensor reported DTT consumption rates (oxidative activity) in good correlation with aerosol concentration (R(2) from 0.86 to 0.97) with a time resolution of approximately 3 min.

  19. Whole-bacterium SELEX of DNA aptamers for rapid detection of E.coli O157:H7 using a QCM sensor.

    Science.gov (United States)

    Yu, Xiaofan; Chen, Fang; Wang, Ronghui; Li, Yanbin

    2018-01-20

    The rapid detection of foodborne pathogens is critical to ensure food safety. The objective of this study is to select aptamers specifically bound to Escherichia coli O157:H7 using the whole-bacterium SELEX (Systematic Evolution of Ligands by Exponential Enrichment) and apply the selected aptamer to a QCM (quartz crystal microbalance) sensor for rapid and sensitive detection of target bacteria. A total of 19 rounds of selection against live E. coli O157:H7 and 6 rounds of counter selection against a mixture of Staphylococcus aureus, Listeria monocytogenes, and Salmonella Typhimurium, were performed. The aptamer pool from the last round was cloned and sequenced. One sequence S1 that appeared 16 times was characterized and a dissociation constant (K d ) of 10.30nM was obtained. Subsequently, a QCM aptasensor was developed for the rapid detection of E. coli O157:H7. The limit of detection (LOD) and the detection time of the aptasensor was determined to be 1.46×10 3 CFU/ml and 50min, respectively. This study demonstrated that the ssDNA aptamer selected by the whole-bacterium SELEX possessed higher sensitivity than previous work and the potential use of the constructed QCM aptasensor in rapid screening of foodborne pathogens. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Highly sensitive detection for proteins using graphene oxide-aptamer based sensors.

    Science.gov (United States)

    Gao, Li; Li, Qin; Li, Raoqi; Yan, Lirong; Zhou, Yang; Chen, Keping; Shi, Haixia

    2015-07-07

    In recent years, the detection of proteins by using bare graphene oxide (GO) to quench the fluorescence of fluorescein-labeled aptamers has been reported. However, the proteins can be adsorbed on the surface of bare GO to prevent the sensitivity from further being improved. In order to solve this problem, polyethylene glycol (PEG)-protected GO was used to prevent the proteins using thrombin as an example from nonspecific binding. The detection limit was improved compared to bare GO under the optimized ratio of GO to PEG concentration. The results show that our method is a promising technique for the detection of proteins.

  1. Colorimetric detection with aptamer-gold nanoparticle conjugates: effect of aptamer length on response

    Energy Technology Data Exchange (ETDEWEB)

    Chavez, Jorge L. [Wright-Patterson Air Force Base, 711th Human Performance Wing, Human Effectiveness Directorate, Air Force Research Laboratory (United States); MacCuspie, Robert I. [National Institute of Standards and Technology, Ceramics Division (United States); Stone, Morley O.; Kelley-Loughnane, Nancy, E-mail: Nancy.Kelley-Loughnane@wpafb.af.mil [Wright-Patterson Air Force Base, 711th Human Performance Wing, Human Effectiveness Directorate, Air Force Research Laboratory (United States)

    2012-10-15

    A riboflavin binding aptamer (RBA) was used in combination with gold nanoparticles (AuNPs) to detect riboflavin in vitro. The RBA-AuNP conjugates (RBA-AuNPs) responded colorimetrically to the presence of riboflavin and this response could be followed by the naked eye. This system was used as a model to study how modifications on the aptamer sequence affect the RBA-AuNPs' stability and their response to their target. To mimic primers and other sequence modifications typically used in aptamer work, the RBA was extended by adding extra bases to its 5 Prime end. These extra bases were designed to avoid interactions with the RBA binding site. The response of these RBA-AuNPs was evaluated and compared. Dynamic light scattering and UV-aggregation kinetics studies showed that the length of the aptamer significantly affected the RBA-AuNPs' stability and, as a consequence, the magnitude of the detection response to riboflavin. The addition of thymine nucleotides instead of random tails to the RBA showed that the effects observed were not specific to the sequence used. This study shows that modifications of the aptamer sequence provide a means to improve the stability of aptamer-AuNPs conjugates and their sensing response.

  2. Light-Regulated Electrochemical Sensor Array for Efficiently Discriminating Hazardous Gases.

    Science.gov (United States)

    Liang, Hongqiu; Zhang, Xin; Sun, Huihui; Jin, Han; Zhang, Xiaowei; Jin, Qinghui; Zou, Jie; Haick, Hossam; Jian, Jiawen

    2017-10-27

    Inadequate detection limit and unsatisfactory discrimination features remain the challenging issues for the widely applied electrochemical gas sensors. Quite recently, we confirmed that light-regulated electrochemical reaction significantly enhanced the electrocatalytic activity, and thereby can potentially extend the detection limit to the parts per billion (ppb) level. Nevertheless, impact of the light-regulated electrochemical reaction on response selectivity has been discussed less. Herein, we systematically report on the effect of illumination on discrimination features via design and fabrication of a light-regulated electrochemical sensor array. Upon illumination (light on), response signal to the examined gases (C 3 H 6 , NO, and CO) is selectively enhanced, resulting in the sensor array demonstrating disparate response patterns when compared with that of the sensor array operated at light off. Through processing all the response patterns derived from both light on and light off with a pattern recognition algorithm, a satisfactory discrimination feature is observed. In contrast, apparent mutual interference between NO and CO is found when the sensor array is solely operated without illumination. The impact mechanism of the illumination is studied and it is deduced that the effect of the illumination on the discriminating features can be mainly attributed to the competition of electrocatalytic activity and gas-phase reactivity. If the enhanced electrocatalytic activity (to specific gas) dominates the whole sensing progress, enhancements in the corresponding response signal would be observed upon illumination. Otherwise, illumination gives a negligible impact. Hence, the response signal to part of the examined gases is selectively enhanced by illumination. Conclusively, light-regulated electrochemical reaction would provide an efficient approach to designing future smart sensing devices.

  3. Computer-assisted electrochemical fabrication of a highly selective and sensitive amperometric nitrite sensor based on surface decoration of electrochemically reduced graphene oxide nanosheets with CoNi bimetallic alloy nanoparticles.

    Science.gov (United States)

    Gholivand, Mohammad-Bagher; Jalalvand, Ali R; Goicoechea, Hector C

    2014-07-01

    For the first time, a novel, robust and very attractive statistical experimental design (ED) using minimum-run equireplicated resolution IV factorial design (Min-Run Res IV FD) coupled with face centered central composite design (FCCCD) and Derringer's desirability function (DF) was developed to fabricate a highly selective and sensitive amperometric nitrite sensor based on electrodeposition of CoNi bimetallic alloy nanoparticles (NPs) on electrochemically reduced graphene oxide (ERGO) nanosheets. The modifications were characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), energy dispersive X-ray spectroscopic (EDS), scanning electron microscopy (SEM) techniques. The CoNi bimetallic alloy NPs were characterized using digital image processing (DIP) for particle counting (density estimation) and average diameter measurement. Under the identified optimal conditions, the novel sensor detects nitrite in concentration ranges of 0.1-30.0 μM and 30.0-330.0 μM with a limit of detection (LOD) of 0.05 μM. This sensor selectively detects nitrite even in the presence of high concentration of common ions and biological interferents therefore, we found that the sensor is highly selective. The sensor also demonstrated an excellent operational stability and good antifouling properties. The proposed sensor was used to the determination of nitrite in several foodstuff and water samples. Copyright © 2014. Published by Elsevier B.V.

  4. From Electrochemical Biosensors to Biomimetic Sensors Based on Molecularly Imprinted Polymers in Environmental Determination of Heavy Metals

    Directory of Open Access Journals (Sweden)

    Cosimino Malitesta

    2017-07-01

    Full Text Available Recent work relevant to heavy metal determination by inhibition-enzyme electrochemical biosensors and by selected biomimetic sensors based on molecularly imprinted polymers has been reviewed. General features and peculiar aspects have been evidenced. The replace of biological component by artificial receptors promises higher selectivity and stability, while biosensors keep their capability of producing an integrated response directly related to biological toxicity of the samples.

  5. Aptamer-Modified Magnetic Beads in Biosensing

    Science.gov (United States)

    Scheper, Thomas; Walter, Johanna-Gabriela

    2018-01-01

    Magnetic beads (MBs) are versatile tools for the purification, detection, and quantitative analysis of analytes from complex matrices. The superparamagnetic property of magnetic beads qualifies them for various analytical applications. To provide specificity, MBs can be decorated with ligands like aptamers, antibodies and peptides. In this context, aptamers are emerging as particular promising ligands due to a number of advantages. Most importantly, the chemical synthesis of aptamers enables straightforward and controlled chemical modification with linker molecules and dyes. Moreover, aptamers facilitate novel sensing strategies based on their oligonucleotide nature that cannot be realized with conventional peptide-based ligands. Due to these benefits, the combination of aptamers and MBs was already used in various analytical applications which are summarized in this article. PMID:29601533

  6. Using Aptamers for Cancer Biomarker Discovery

    Directory of Open Access Journals (Sweden)

    Yun Min Chang

    2013-01-01

    Full Text Available Aptamers are single-stranded synthetic DNA- or RNA-based oligonucleotides that fold into various shapes to bind to a specific target, which includes proteins, metals, and molecules. Aptamers have high affinity and high specificity that are comparable to that of antibodies. They are obtained using iterative method, called (Systematic Evolution of Ligands by Exponential Enrichment SELEX and cell-based SELEX (cell-SELEX. Aptamers can be paired with recent advances in nanotechnology, microarray, microfluidics, and other technologies for applications in clinical medicine. One particular area that aptamers can shed a light on is biomarker discovery. Biomarkers are important in diagnosis and treatment of cancer. In this paper, we will describe ways in which aptamers can be used to discover biomarkers for cancer diagnosis and therapeutics.

  7. Comparison of classifications of aptamers against Vibrio ...

    African Journals Online (AJOL)

    As a novel method to detect the pathogen Vibrio alginolyticus, 45 aptamers were previously selected and tested. In order to better understand the properties of these aptamers, it was essential to classify these aptamers based on appropriate criteria. The primary structure of 45 aptamers against V. alginolyticus was analyzed ...

  8. Membrane-Coated Electrochemical Sensor for Corrosion Monitoring in Natural Gas Pipelines

    Directory of Open Access Journals (Sweden)

    J. Beck

    2017-07-01

    Full Text Available Electrochemical sensors can be used for a wide range of online in- situ process monitoring applications. However, the lack of a consistent electrolyte layer has previously limited electrochemical monitoring in gas and supercritical fluid streams. A solid state sensor is being designed that uses an ion conducting membrane to perform conductivity and corrosion measurements in natural gas pipelines up to 1000 psi. Initial results show that membrane conductivity measurements can be correlated directly to water content down to dew points of 1°C with good linearity. Corrosion monitoring can also be performed using methods such as linear polarization resistance and electrochemical impedance spectroscopy (EIS, though care must be taken in the electrode design to minimize deviation between sensors.

  9. Enzyme-linked, aptamer-based, competitive biolayer interferometry biosensor for palytoxin.

    Science.gov (United States)

    Gao, Shunxiang; Zheng, Xin; Hu, Bo; Sun, Mingjuan; Wu, Jihong; Jiao, Binghua; Wang, Lianghua

    2017-03-15

    In this study, we coupled biolayer interferometry (BLI) with competitive binding assay through an enzyme-linked aptamer and developed a real-time, ultra-sensitive, rapid quantitative method for detection of the marine biotoxin palytoxin. Horseradish peroxidase-labeled aptamers were used as biorecognition receptors to competitively bind with palytoxin, which was immobilized on the biosensor surface. The palytoxin: horseradish peroxidase-aptamer complex was then submerged in a 3,3'-diaminobenzidine solution, which resulted in formation of a precipitated polymeric product directly on the biosensor surface and a large change in the optical thickness of the biosensor layer. This change could obviously shift the interference pattern and generate a response profile on the BLI biosensor. The biosensor showed a broad linear range for palytoxin (200-700pg/mL) with a low detection limit (0.04pg/mL). Moreover, the biosensor was applied to the detection of palytoxin in spiked extracts and showed a high degree of selectivity for palytoxin, good reproducibility, and stability. This enzyme-linked, aptamer-based, competitive BLI biosensor offers a promising method for rapid and sensitive detection of palytoxin and other analytes. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. [Application of DNA-based electrochemical biosensor in rapid detection of Escherichia coli exist in licorice decoction].

    Science.gov (United States)

    Zhao, Yu-Wen; Wang, Hai-Xia; Bie, Song-Tao; Shao, Qian; Wang, Chun-Hua; Wang, Dong-Heng; Li, Zheng

    2018-03-01

    A new method for detection of Escherichia coli exist in licorice decoction was developed by using DNA-based electrochemical biosensor. The thiolated capture probe was immobilized on a gold electrode at first. Then the aptamer for Escherichia coli was combined with the capture probe by hybridization. Due to the stronger interaction between the aptamer and the E. coli, the aptamer can dissociate from the capture probe in the presence of E. coli in licorice decoction. The biotinylated detection probe was hybridized with the single-strand capture probe. As a result, the electrochemical response to Escherichia coli can be measured by using differential pulse voltammetric in the presence of α-naphthyl phosphate. The plot of peak current vs. the logarithm of concentration in the range from 2.7×10² to 2.7×10⁸ CFU·mL⁻¹ displayed a linear relationship with a detection limit of 50 CFU·mL⁻¹. The relative standard deviation of 3 successive scans was 2.5%,2.1%,4.6% for 2×10²,2×10⁴,2×106:⁶ CFU·mL⁻¹ E. coli, respectively. The proposed procedure showed better specificity to E. coli in comparison to Pseudomonas aeruginosa, Staphylococcus aureus and Bacillus subtilis. In the detection of the real extractum glycyrrhizae, the results between the proposed strategy and the GB assay showed high degree of agreement, demonstrating the designed biosensor could be utilized as a powerful tool for microbial examination for traditional Chinese medicine. Copyright© by the Chinese Pharmaceutical Association.

  11. Highly selective and sensitive sensor based on an organic electrochemical transistor for the detection of ascorbic acid.

    Science.gov (United States)

    Zhang, Lijun; Wang, Guiheng; Wu, Di; Xiong, Can; Zheng, Lei; Ding, Yunsheng; Lu, Hongbo; Zhang, Guobing; Qiu, Longzhen

    2018-02-15

    In this study, an organic electrochemical transistor sensor (OECT) with a molecularly imprinted polymer (MIP)-modified gate electrode was prepared for the detection of ascorbic acid (AA). The combination of the amplification function of an OECT and the selective specificity of MIPs afforded a highly sensitive, selective OECT sensor. Cyclic voltammetry and electrochemical impedance spectroscopy measurements were carried out to monitor the stepwise fabrication of the modified electrodes and the adsorption capacity of the MIP/Au electrodes. Atomic force microscopy was employed for examining the surface morphology of the electrodes. Important detection parameters, pH and detection temperature were optimized. With the change in the relative concentration of AA from 1μM to 100μM, the MIP-OECT sensor exhibited a low detection limit of 10nM (S/N > 3) and a sensitivity of 75.3μA channel current change per decade under optimal conditions. In addition, the MIP-OECT sensor exhibited excellent specific recognition ability to AA, which prevented the interference from other structurally similar compounds (e.g., aspartic acid, glucose, uric acid, glycine, glutathione, H 2 O 2 ), and common metal ions (K + , Na + , Ca 2+ , Mg 2+ , and Fe 2+ ). In addition, a series of vitamin C beverages were analyzed to demonstrate the feasibility of the MIP-OECT sensor. Using the proposed principle, several other sensors with improved performance can be constructed via the modification of organic electrochemical transistors with appropriate MIP films. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Portable Analyzer Based on Microfluidics/Nanoengineered Electrochemical Sensors for In-situ Characterization of Mixed Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Yuehe Lin; Glen E. Fryxell; Wassana Yantasee; Guodong Liu; Zheming Wang

    2006-06-01

    Required characterizations of the DOE's transuranic (TRU) and mixed wastes (MW) before disposing and treatment of the wastes are currently costly and have lengthy turnaround. Research toward developing faster and more sensitive characterization and analysis tools to reduce costs and accelerate throughputs is therefore desirable. This project is aimed at the development of electrochemical sensors, specific to toxic transition metals, uranium, and technetium, that can be integrated into the portable sensor systems. This system development will include fabrication and performance evaluation of electrodes as well as understanding of electrochemically active sites on the electrodes specifically designed for toxic metals, uranium and technetium detection. Subsequently, these advanced measurement units will be incorporated into a microfluidic prototype specifically designed and fabricated for field-deployable characterizations of such species.

  13. Pyrrole-phenylboronic acid: a novel monomer for dopamine recognition and detection based on imprinted electrochemical sensor.

    Science.gov (United States)

    Zhong, Min; Teng, Ying; Pang, Shufen; Yan, Liqin; Kan, Xianwen

    2015-02-15

    A molecular imprinting polymer (MIP) based electrochemical sensor was successfully prepared for dopamine (DA) recognition and detection using pyrrole-phenylboronic acid (py-PBA) as a novel electropolymerized monomer. py-PBA could form cyclic boronic ester bond with DA, thus endowing a double recognition capacity of the sensor to DA in the combination of the imprinted effect of MIP. Compared with the sensor prepared using pyrrole or phenylboronic acid as electropolymerized monomer, the present sensor exhibited a remarkable high imprinted factor to DA. The influence factors including pH value, the mole ratio between monomer and template molecule, electropolymerization scan rate, and scan cycles of electropolymerization process were investigated and optimized. Under the optimal conditions, the sensor could recognize DA from its analogs and monosaccharides. A linear ranging from 5.0 × 10(-8) to 1.0 × 10(-5) mol/L for the detection of DA was obtained with a detection limit of 3.3 × 10(-8) mol/L (S/N = 3). The sensor has been applied to analyze DA in injection samples with satisfactory results. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. A Facile Electrochemical Sensor for Nonylphenol Determination Based on the Enhancement Effect of Cetyltrimethylammonium Bromide

    Directory of Open Access Journals (Sweden)

    Qing Lu

    2013-01-01

    Full Text Available A facile electrochemical sensor for the determination of nonylphenol (NP was fabricated in this work. Cetyltrimethylammonium bromide (CTAB, which formed a bilayer on the surface of the carbon paste (CP electrode, displayed a remarkable enhancement effect for the electrochemical oxidation of NP. Moreover, the oxidation peak current of NP at the CTAB/CP electrode demonstrated a linear relationship with NP concentration, which could be applied in the direct determination of NP. Some experimental parameters were investigated, such as external solution pH, mode and time of accumulation, concentration and modification time of CTAB and so on. Under optimized conditions, a wide linear range from 1.0 × 10−7 mol·L−1 to 2.5 × 10−5 mol·L−1 was obtained for the sensor, with a low limit of detection at 1.0 × 10−8 mol·L−1. Several distinguishing advantages of the as-prepared sensor, including facile fabrication, easy operation, low cost and so on, suggest a great potential for its practical applications.

  15. Detection of Cu2+ in Water Based on Histidine-Gold Labeled Multiwalled Carbon Nanotube Electrochemical Sensor

    Directory of Open Access Journals (Sweden)

    Rilong Zhu

    2017-01-01

    Full Text Available Based on the strong interaction between histidine and copper ions and the signal enhancement effect of gold-labeling carbon nanotubes, an electrochemical sensor is established and used to measure copper ions in river water. In this study the results show that the concentrations of copper ion have well linear relationship with the peak current in the range of 10−11–10−7 mol/L, and the limit of detection is 10−12 mol/L. When using this method to detect copper ions in the Xiangjiang River, the test results are consistent with the atomic absorption method. This study shows that the sensor is convenient to be used in daily monitoring of copper ions in river water.

  16. Rapid one-step selection method for generating nucleic acid aptamers: development of a DNA aptamer against α-bungarotoxin.

    Directory of Open Access Journals (Sweden)

    Lasse H Lauridsen

    Full Text Available BACKGROUND: Nucleic acids based therapeutic approaches have gained significant interest in recent years towards the development of therapeutics against many diseases. Recently, research on aptamers led to the marketing of Macugen®, an inhibitor of vascular endothelial growth factor (VEGF for the treatment of age related macular degeneration (AMD. Aptamer technology may prove useful as a therapeutic alternative against an array of human maladies. Considering the increased interest in aptamer technology globally that rival antibody mediated therapeutic approaches, a simplified selection, possibly in one-step, technique is required for developing aptamers in limited time period. PRINCIPAL FINDINGS: Herein, we present a simple one-step selection of DNA aptamers against α-bungarotoxin. A toxin immobilized glass coverslip was subjected to nucleic acid pool binding and extensive washing followed by PCR enrichment of the selected aptamers. One round of selection successfully identified a DNA aptamer sequence with a binding affinity of 7.58 µM. CONCLUSION: We have demonstrated a one-step method for rapid production of nucleic acid aptamers. Although the reported binding affinity is in the low micromolar range, we believe that this could be further improved by using larger targets, increasing the stringency of selection and also by combining a capillary electrophoresis separation prior to the one-step selection. Furthermore, the method presented here is a user-friendly, cheap and an easy way of deriving an aptamer unlike the time consuming conventional SELEX-based approach. The most important application of this method is that chemically-modified nucleic acid libraries can also be used for aptamer selection as it requires only one enzymatic step. This method could equally be suitable for developing RNA aptamers.

  17. Aptamer-based radiopharmaceuticals for diagnostic imaging and targeted radiotherapy of epithelial tumors

    International Nuclear Information System (INIS)

    Missailidis, Sotiris; Perkins, Alan; Santos-Filho, Sebastiao David; Fonseca, Adenilson de Souza da; Bernardo-Filho, Mario

    2008-01-01

    In the continuous search for earlier diagnosis and improved therapeutic modalities against cancer, based on our constantly increasing knowledge of cancer biology, aptamers hold the promise to expand on current antibody success, but overcoming some of the problems faced with antibodies as therapeutic or delivery agents in cancer. However, as the first aptamer reached the market as an inhibitor against angiogenesis for the treatment of macular degeneration, aptamers have found only limited applications or interest in oncology, and even less as radiopharmaceuticals for diagnostic imaging and targeted radiotherapy of tumours. Yet, the chemistry for the labelling of aptamers and the options to alter their pharmacokinetic properties, to make them suitable for use as radiopharmaceuticals is now available and recent advances in their development can demonstrate that these molecules would make them ideal delivery vehicles for the development of targeted radiopharmaceuticals that could deliver their radiation load with accuracy to the tumour site, offering improved therapeutic properties and reduced side effects. (author)

  18. Aptamer-based radiopharmaceuticals for diagnostic imaging and targeted radiotherapy of epithelial tumors

    Energy Technology Data Exchange (ETDEWEB)

    Missailidis, Sotiris [The Open University, Milton Keynes (United Kingdom). Dept. of Chemistry and Analytical Sciences]. E-mail: s.missailidis@open.ac.uk; Perkins, Alan [University of Nottingham (United Kingdom). Dept. of Medical Physics; Santos-Filho, Sebastiao David; Fonseca, Adenilson de Souza da; Bernardo-Filho, Mario [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Inst. de Biologia Roberto Alcantara Gomes. Dept. de Biofisica e Biometria

    2008-12-15

    In the continuous search for earlier diagnosis and improved therapeutic modalities against cancer, based on our constantly increasing knowledge of cancer biology, aptamers hold the promise to expand on current antibody success, but overcoming some of the problems faced with antibodies as therapeutic or delivery agents in cancer. However, as the first aptamer reached the market as an inhibitor against angiogenesis for the treatment of macular degeneration, aptamers have found only limited applications or interest in oncology, and even less as radiopharmaceuticals for diagnostic imaging and targeted radiotherapy of tumours. Yet, the chemistry for the labelling of aptamers and the options to alter their pharmacokinetic properties, to make them suitable for use as radiopharmaceuticals is now available and recent advances in their development can demonstrate that these molecules would make them ideal delivery vehicles for the development of targeted radiopharmaceuticals that could deliver their radiation load with accuracy to the tumour site, offering improved therapeutic properties and reduced side effects. (author)

  19. A Novel of Multi-wall Carbon Nanotubes/Chitosan Electrochemical Sensor for Determination of Cupric ion

    Science.gov (United States)

    Tan, Funeng; Li, Lei

    2018-03-01

    A multi-wall carbon nanotubes/Chitosan electrochemical sensor had been fabricated by dropping CHS/MWNT solution directly onto the GC surface. The sensor was charactered by cyclic voltammetry and AC impedance with K3Fe(CN)6 as a electrochemical probe; Cyclic voltammograms(CV) and electrochemical impedance spectroscopy(EIS) indicated that the active area and electrochemical behavior of the sensor increased and improved significantly after the electrode was modified by carbon nanotubes dispersed by the chitosan. The sensor showed good electrocatalytic activity of K3Fe(CN)6. Also, from the cyclic voltammograms, we can see the process was diffusion controlled on the bare electrode and kinetics and diffusion controlled on the modified electrode. Finally Cu2+ responsed sensitively at the sensor which supplied a new method for the detection of Cu2+.

  20. Electrochemical sensors for biofilm and biocorrosion

    Energy Technology Data Exchange (ETDEWEB)

    Tribollet, B. [UPR 15 du CNRS, Universite Paris 6, 4 Place Jussieu, 75252 Paris Cedex05 (France)

    2003-07-01

    The presence of biofilm modifies the electrochemical properties of the interface and the mass transport near the interface. Two biofilm effects are damageable: the reduction of heat and/or mass transfer and the biocorrosion or microbiologically influenced corrosion (MIC). Two kinds of electrochemical sensors were developed: the first kind for the biofilm detection and the second one to evaluate the MIC risk. The biofilm detection is obtained by considering either the potential modification of the interface or the mass transport modification. The mass transport modification is analysed by considering the limiting diffusion current measured on a gold electrode where the biofilm development occurs. The MIC risk is evaluated with a sensor composed of two concentric electrodes in the material under investigation (e.g. carbon steel): a small disk electrode in the centre and a large ring. In a first step, a pit is artificially initiated by applying a current through these electrodes. In a second step, the risk factors of MIC are investigated by analysing the free coupling current circulating between these two short-circuited electrodes. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  1. Imprinted sol-gel electrochemical sensor for the determination of benzylpenicillin based on Fe3O4/SiO2 multi-walled carbon nanotubes-chitosans nanocomposite film modified carbon electrode

    International Nuclear Information System (INIS)

    Hu Yufang; Li Jiaxing; Zhang Zhaohui; Zhang Huabin; Luo Lijuan; Yao Shouzhuo

    2011-01-01

    Graphical abstract: A novel imprinted sol-gel electrochemical sensor based on Fe 3 O 4 /SiO 2 -MWNTs-CTS nanocomposite film and a thin MIP film has been developed on a carbon electrode. Highlights: → A novel imprinted sol-gel electrochemical sensor based on Fe 3 O 4 /SiO 2 -MWNTs-CTS nanocomposites has been developed. → Fe 3 O 4 /SiO 2 -MWNTs-CTS nanocomposites act as 'electronic wires' to enhance the electron transfer. → The inherent specificity of the MIPs brings about highly selectivity. The imprinted sensor detects benzylpenicillin in real samples successfully. - Abstract: Herein, a novel imprinted sol-gel electrochemical sensor based on multi-walled carbon nanotubes (MWNTs) doped with chitosan film on a carbon electrode has been developed. Prior to doped, the MWNTs have been decorated with Fe 3 O 4 nanoparticles which have been coated uniformly with SiO 2 layer. The characterization of imprinted sensor has been carried out by X-ray diffraction and scanning electron microscopy. The performance of the proposed imprinted sensor has been investigated using cyclic voltammetry and differential pulse voltammetry. The imprinted sensor offers a fast response and sensitive benzylpenicillin quantification. The fabricated benzylpenicillin imprinted sensor exhibits a linear response from 5.0 x 10 -8 to 1.0 x 10 -3 mol L -1 with a detection limit of 1.5 x 10 -9 mol L -1 . For samples analysis, perfect recoveries of the imprinted sensor for benzylpenicillin indicated that the imprinted sensor was able to detect benzylpenicillin in real samples successfully.

  2. Oligonucleotide Aptamers: New Tools for Targeted Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Hongguang Sun

    2014-01-01

    Full Text Available Aptamers are a class of small nucleic acid ligands that are composed of RNA or single-stranded DNA oligonucleotides and have high specificity and affinity for their targets. Similar to antibodies, aptamers interact with their targets by recognizing a specific three-dimensional structure and are thus termed “chemical antibodies.” In contrast to protein antibodies, aptamers offer unique chemical and biological characteristics based on their oligonucleotide properties. Hence, they are more suitable for the development of novel clinical applications. Aptamer technology has been widely investigated in various biomedical fields for biomarker discovery, in vitro diagnosis, in vivo imaging, and targeted therapy. This review will discuss the potential applications of aptamer technology as a new tool for targeted cancer therapy with emphasis on the development of aptamers that are able to specifically target cell surface biomarkers. Additionally, we will describe several approaches for the use of aptamers in targeted therapeutics, including aptamer-drug conjugation, aptamer-nanoparticle conjugation, aptamer-mediated targeted gene therapy, aptamer-mediated immunotherapy, and aptamer-mediated biotherapy.

  3. Modular Assembly of Cell-targeting Devices Based on an Uncommon G-quadruplex Aptamer

    Directory of Open Access Journals (Sweden)

    Felipe Opazo

    2015-01-01

    Full Text Available Aptamers are valuable tools that provide great potential to develop cost-effective diagnostics and therapies in the biomedical field. Here, we report a novel DNA aptamer that folds into an unconventional G-quadruplex structure able to recognize and enter specifically into human Burkitt's lymphoma cells. We further optimized this aptamer to a highly versatile and stable minimized version. The minimized aptamer can be easily equipped with different functionalities like quantum dots, organic dyes, or even a second different aptamer domain yielding a bi-paratopic aptamer. Although the target molecule of the aptamer remains unknown, our microscopy and pharmacological studies revealed that the aptamer hijacks the clathrin-mediated endocytosis pathway for its cellular internalization. We conclude that this novel class of aptamers can be used as a modular tool to specifically deliver different cargoes into malignant cells. This work provides a thorough characterization of the aptamer and we expect that our strategy will pave the path for future therapeutic applications.

  4. Electrochemically induced chemical sensor properties in graphite screen-printed electrodes: The case of a chemical sensor for uranium

    International Nuclear Information System (INIS)

    Kostaki, Vasiliki T.; Florou, Ageliki B.; Prodromidis, Mamas I.

    2011-01-01

    Highlights: → Electrochemical treatment endows analytical characteristics to SPEs. → A sensitive chemical sensor for uranium is described. → Performance is due to a synergy between electrochemical treatment and ink's solvents. → The amount of the solvent controls the achievable sensitivity. - Abstract: We report for the first time on the possibility to develop chemical sensors based on electrochemically treated, non-modified, graphite screen-printed electrodes (SPEs). The applied galvanostatic treatment (5 μA for 6 min in 0.1 M H 2 SO 4 ) is demonstrated to be effective for the development of chemical sensors for the determination of uranium in aqueous solutions. A detailed study of the effect of various parameters related to the fabrication of SPEs on the performance of the resulting sensors along with some diagnostic experiments on conventional graphite electrodes showed that the inducible analytical characteristics are due to a synergy between electrochemical treatment and ink's solvents. Indeed, the amount of the latter onto the printed working layer controls the achievable sensitivity. The preconcentration of the analyte was performed in an electroless mode in an aqueous solutions of U(VI), pH 4.6, and then, the accumulated species was reduced by means of a differential pulse voltammetry scan in 0.1 M H 3 BO 3 , pH 3. Under selected experimental conditions, a linear calibration curve over the range 5 x 10 -9 to 10 -7 M U(VI) was constructed. The 3σ limit of detection at a preconcentration time of 30 min, and the relative standard deviation of the method were 4.5 x 10 -9 M U(VI) and >12% (n = 5, 5 x 10 -8 M U(VI)), respectively. The effect of potential interferences was also examined.

  5. Electrochemical Sensor for Explosives Precursors’ Detection in Water

    Directory of Open Access Journals (Sweden)

    Cloé Desmet

    2017-03-01

    Full Text Available Although all countries are intensifying their efforts against terrorism and increasing their mutual cooperation, terrorist bombing is still one of the greatest threats to society. The discovery of hidden bomb factories is of primary importance in the prevention of terrorism activities. Criminals preparing improvised explosives (IE use chemical substances called precursors. These compounds are released in the air and in the waste water during IE production. Tracking sources of precursors by analyzing air or wastewater can then be an important clue for bomb factories’ localization. We are reporting here a new multiplex electrochemical sensor dedicated to the on-site simultaneous detection of three explosive precursors, potentially used for improvised explosive device preparation (hereafter referenced as B01, B08, and B15, for security disclosure reasons and to avoid being detrimental to the security of the counter-explosive EU action. The electrochemical sensors were designed to be disposable and to combine ease of use and portability in a screen-printed eight-electrochemical cell array format. The working electrodes were modified with different electrodeposited metals: gold, palladium, and platinum. These different coatings giving selectivity to the multi-sensor through a “fingerprint”-like signal subsequently analyzed using partial least squares-discriminant analysis (PLS-DA. Results are given regarding the detection of the three compounds in a real environment and in the presence of potentially interfering species.

  6. An electrochemical sensor for warfarin determination based on covalent immobilization of quantum dots onto carboxylated multiwalled carbon nanotubes and chitosan composite film modified electrode

    International Nuclear Information System (INIS)

    Gholivand, Mohammad Bagher; Mohammadi-Behzad, Leila

    2015-01-01

    A method is described for the construction of a novel electrochemical warfarin sensor based on covalent immobilization of CdS-quantum dots (CdS-QDs) onto carboxylated multiwalled carbon nanotubes/chitosan (CS) composite film on the surface of a glassy carbon electrode. The CdS-QDs/CS/MWCNTs were characterized by field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Fourier transform infra-red (FTIR) spectroscopy, XRD analysis and electrochemical impedance spectroscopy (EIS). The sensor showed optimum anodic stripping response within 90 s at an accumulation potential of 0.75 V. The modified electrode was used to detect the concentration of warfarin with a wide linear range of 0.05–80 μM and a detection limit (S/N = 3) of 8.5 nM. The proposed sensor has good storage stability, repeatability and reproducibility and was successfully applied for the determination of warfarin in real samples such as urine, serum and milk. - Highlights: • A new sensitive sensor for warfarin determination was developed. • The sensor was constructed based on covalent immobilization of CdS-QDs on the chitosan/MWCNTs/GCE. • The parameters affecting the stripping analysis of warfarin were optimized. • The proposed sensor is used for trace determination of warfarin in urine, serum and milk

  7. An electrochemical sensor for warfarin determination based on covalent immobilization of quantum dots onto carboxylated multiwalled carbon nanotubes and chitosan composite film modified electrode

    Energy Technology Data Exchange (ETDEWEB)

    Gholivand, Mohammad Bagher, E-mail: mbgholivand2013@gmail.com; Mohammadi-Behzad, Leila

    2015-12-01

    A method is described for the construction of a novel electrochemical warfarin sensor based on covalent immobilization of CdS-quantum dots (CdS-QDs) onto carboxylated multiwalled carbon nanotubes/chitosan (CS) composite film on the surface of a glassy carbon electrode. The CdS-QDs/CS/MWCNTs were characterized by field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Fourier transform infra-red (FTIR) spectroscopy, XRD analysis and electrochemical impedance spectroscopy (EIS). The sensor showed optimum anodic stripping response within 90 s at an accumulation potential of 0.75 V. The modified electrode was used to detect the concentration of warfarin with a wide linear range of 0.05–80 μM and a detection limit (S/N = 3) of 8.5 nM. The proposed sensor has good storage stability, repeatability and reproducibility and was successfully applied for the determination of warfarin in real samples such as urine, serum and milk. - Highlights: • A new sensitive sensor for warfarin determination was developed. • The sensor was constructed based on covalent immobilization of CdS-QDs on the chitosan/MWCNTs/GCE. • The parameters affecting the stripping analysis of warfarin were optimized. • The proposed sensor is used for trace determination of warfarin in urine, serum and milk.

  8. Label-free signal-on aptasensor for sensitive electrochemical detection of arsenite.

    Science.gov (United States)

    Cui, Lin; Wu, Jie; Ju, Huangxian

    2016-05-15

    A signal-on aptasensor was fabricated for highly sensitive and selective electrochemical detection of arsenite with a label-free Ars-3 aptamer self-assembled on a screen-printed carbon electrode (SPCE) via Au-S bond. The Ars-3 aptamer could adsorb cationic polydiallyldimethylammonium (PDDA) via electrostatic interaction to repel other cationic species. In the presence of arsenite, the change of Ars-3 conformation due to the formation of Ars-3/arsenite complex led to less adsorption of PDDA, and the complex could adsorb more positively charged [Ru(NH3)6](3+) as an electrochemically active indicator on the aptasensor surface, which produced a sensitive "turn-on" response. The target-induced structure switching could be used for sensitive detection of arsenite with a linear range from 0.2 nM to 100 nM and a detection limit down to 0.15 nM. Benefiting from Ars-3 aptamer, the proposed system exhibited excellent specificity against other heavy metal ions. The SPCE-based aptasensor exhibited the advantages of low cost and simple fabrication, providing potential application of arsenite detection in environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Molecularly imprinted polymer decorated nanoporous gold for highly selective and sensitive electrochemical sensors

    Science.gov (United States)

    Li, Yingchun; Liu, Yuan; Liu, Jie; Liu, Jiang; Tang, Hui; Cao, Cong; Zhao, Dongsheng; Ding, Yi

    2015-01-01

    Electrochemical nanosensors based on nanoporous gold leaf (NPGL) and molecularly imprinted polymer (MIP) are developed for pharmaceutical analysis by using metronidazole (MNZ) as a model analyte. NPGL, serving as the loading platform for MIP immobilization, possesses large accessible surface area with superb electric conductivity, while electrochemically synthesized MIP thin layer affords selectivity for specific recognition of MNZ molecules. For MNZ determination, the hybrid electrode shows two dynamic linear range of 5 × 10-11 to 1 × 10-9 mol L-1 and 1 × 10-9 to 1.4 × 10-6 mol L-1 with a remarkably low detection limit of 1.8 × 10-11 mol L-1 (S/N = 3). In addition, the sensor exhibits high binding affinity and selectivity towards MNZ with excellent reproducibility and stability. Finally, the reliability of MIP-NPGL for MNZ detection is proved in real fish tissue samples, demonstrating the potential for the proposed electrochemical sensors in monitoring drug and biological samples.

  10. Aptamers as Both Drugs and Drug-Carriers

    Directory of Open Access Journals (Sweden)

    Md. Ashrafuzzaman

    2014-01-01

    Full Text Available Aptamers are short nucleic acid oligos. They may serve as both drugs and drug-carriers. Their use as diagnostic tools is also evident. They can be generated using various experimental, theoretical, and computational techniques. The systematic evolution of ligands by exponential enrichment which uses iterative screening of nucleic acid libraries is a popular experimental technique. Theory inspired methodology entropy-based seed-and-grow strategy that designs aptamer templates to bind specifically to targets is another one. Aptamers are predicted to be highly useful in producing general drugs and theranostic drugs occasionally for certain diseases like cancer, Alzheimer’s disease, and so on. They bind to various targets like lipids, nucleic acids, proteins, small organic compounds, and even entire organisms. Aptamers may also serve as drug-carriers or nanoparticles helping drugs to get released in specific target regions. Due to better target specific physical binding properties aptamers cause less off-target toxicity effects. Therefore, search for aptamer based drugs, drug-carriers, and even diagnostic tools is expanding fast. The biophysical properties in relation to the target specific binding phenomena of aptamers, energetics behind the aptamer transport of drugs, and the consequent biological implications will be discussed. This review will open up avenues leading to novel drug discovery and drug delivery.

  11. A label-free electrochemical impedance aptasensor for cylindrospermopsin detection based on thionine-graphene nanocomposites.

    Science.gov (United States)

    Zhao, Zhen; Chen, Hongda; Ma, Lina; Liu, Dianjun; Wang, Zhenxin

    2015-08-21

    It is important to develop methods to determine cylindrospermopsin (CYN) at trace levels since CYN is a kind of widespread cyanobacterial toxin in water sources. In this study, a label-free impedimetric aptasensor has been fabricated for detecting CYN. In this case, the amino-substituted aptamer of CYN was covalently grafted onto the surface of the thionine-graphene (TH-G) nanocomposite through the cross-linker glutaraldehyde (GA). The reaction of the aptamer with CYN was monitored by electrochemical impedance spectroscopy because the CYN induced conformation change of the aptamer can cause a remarkable decrease of the electron transfer resistance. Under optimum conditions, the aptasensor exhibits high sensitivity and a low detection limit for CYN determination. The CYN can be quantified in a wide range of 0.39 to 78 ng mL(-1) with a good linearity (R(2) = 0.9968) and a low detection limit of 0.117 ng mL(-1). In addition, the proposed aptasensor displays excellent stability, reusability and reproducibility.

  12. Embroidered electrochemical sensors on gauze for rapid quantification of wound biomarkers.

    Science.gov (United States)

    Liu, Xiyuan; Lillehoj, Peter B

    2017-12-15

    Electrochemical sensors are an attractive platform for analytical measurements due to their high sensitivity, portability and fast response time. These attributes also make electrochemical sensors well suited for wearable applications which require excellent flexibility and durability. Towards this end, we have developed a robust electrochemical sensor on gauze via a unique embroidery fabrication process for quantitative measurements of wound biomarkers. For proof of principle, this biosensor was used to detect uric acid, a biomarker for wound severity and healing, in simulated wound fluid which exhibits high specificity, good linearly from 0 to 800µM, and excellent reproducibility. Continuous sensing of uric acid was also performed using this biosensor which reveals that it can generate consistent and accurate measurements for up to 7h. Experiments to evaluate the robustness of the embroidered gauze sensor demonstrate that it offers excellent resilience against mechanical stress and deformation, making it a promising wearable platform for assessing and monitoring wound status in situ. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. A Dual Electrochemical Sensor Based on a Test-strip Assay for the Quantitative Determination of Albumin and Creatinine.

    Science.gov (United States)

    Yasukawa, Tomoyuki; Kiba, Yuya; Mizutani, Fumio

    2015-01-01

    A dual-electrochemical sensor based on a test-strip assay with immunochemistry and enzyme reactions has been developed for the determination of albumin and creatinine. Each nitrocellulose membrane with an immobilization area of an anti-albumin antibody or three enzymes was prepared in the device with three working electrodes for measuring albumin, creatinine, and ascorbic acid, as well as an Ag/AgCl electrode used as a counter/pseudo-reference electrode. The reactions of three enzymes were initiated by flowing a solution containing creatinine to detect an oxidation current of hydrogen peroxide. A sandwich-type immunocomplex was formed by albumin and antibody labeled with glucose oxidase (GOx). Captured GOx catalyzed the reduction of Fe(CN)6(3-) to Fe(CN)6(4-), which was oxidized electrochemically to determine the captured albumin. The responses for creatinine and albumin increased with the concentrations in millimolar order and over the range 18.75 - 150 μg mL(-1), respectively. The present sensor would be a distinct demonstration for producing quantitative dual-assays for various biomolecules used for clinical diagnoses.

  14. Enzymatic and non-enzymatic electrochemical glucose sensor based on carbon nano-onions

    Science.gov (United States)

    Mohapatra, Jeotikanta; Ananthoju, Balakrishna; Nair, Vishnu; Mitra, Arijit; Bahadur, D.; Medhekar, N. V.; Aslam, M.

    2018-06-01

    A high sensitive glucose sensing characteristic has been realized in carbon nano-onions (CNOs). The CNOs of mean size 30 nm were synthesized by an energy-efficient, simple and inexpensive combustion technique. These as-synthesized CNOs could be employed as an electrochemical sensor by covalently immobilizing the glucose oxidase enzyme on them via carbodiimide chemistry. The sensitivity achieved by such a sensor is 26.5 μA mM-1 cm-2 with a linear response in the range of 1-10 mM glucose. Further to improve the catalytic activity of the CNOs and also to make them enzyme free, platinum nanoparticles of average size 2.5 nm are decorated on CNOs. This sensor fabricated using Pt-decorated CNOs (Pt@CNOs) nanostructure has shown an enhanced sensitivity of 21.6 μA mM-1 cm-2 with an extended linear response in the range of 2-28 mM glucose. Through these attempts we demonstrate CNOs as a versatile biosensing platform.

  15. Online Monitoring of Electrochemical Degradation of Paracetamol through a Biomimetic Sensor

    OpenAIRE

    Mariana Calora Quintino de Oliveira; Marcos Roberto de Vasconcelos Lanza; José Luis Paz Jara; Maria Del Pilar Taboada Sotomayor

    2011-01-01

    This paper reports, for the first time, the online monitoring to the electrochemical degradation of the paracetamol using a biomimetic sensor coupled to a Flow Injection Analysis (FIA) system. The electrochemical degradation of the drug was carried out in aqueous medium using a flow-by reactor with a DSA anode. The process efficiency was monitored at real time by the biomimetic sensor constructed by modifying a glassy carbon electrode with a Nafion membrane doped with iron tetrapyridinoporphy...

  16. Electrochemical sensors in breast cancer diagnostics and follow-up

    Directory of Open Access Journals (Sweden)

    Raquel Marques

    2015-12-01

    Full Text Available Purpose: The detection of tumor biomarkers can have a major contribution to the management of breast cancer. So far the only serum biomarker in current use in breast cancer is the cancer antigen 15-3 (CA15-3. This biomarker is used in advanced breast cancer to monitor patients and to help to identify treatment failure. The human epidermal growth factor receptor 2 (HER 2 is another biomarker whose characterization is usually made in tissue samples from primary tumour or metastasis and has been used as a prognostic factor but mainly as a target in immunotherapy treatment. Some previous studies suggest that the detection of the extracellular domain of HER2 (HER2-ECD in blood can be a prognostic factor, with even better results than its detection in tissue. Recent techniques for circulating protein biomarker detection use immunoassays, but some are, for example, not sufficiently sensitive for the detection of low biomarker concentrations. To overcome some of these problems, electrochemical (biosensors, and especially the ones using voltammetric detection, can be adequate alternatives because of their high selectivity and sensitivity which allows early detection of many diseases. Furthermore, electrochemical (biosensors are excellent to be included into point-of-care devices due to their fast response, simplicity, low cost, easy miniaturization and integration into automatic systems. Another advantage is the possibility of combining individual sensors into multiplexed detection systems. Like this they can provide fast recording of biomarker profiles of tumours which can play an important role in early detection and personalized medicine.Methods: Both individual as well as multiplexed electrochemical immunosensors were developed for the detection of CA15-3 and HER2-ECD. For this purpose a sandwich immunoassay was employed and the analytical signal was based on the voltammetric detection of enzymatically deposited silver. Screen-printed carbon

  17. Nanomaterial-based Electrochemical Sensors for the Detection of Glucose and Cholesterol

    Science.gov (United States)

    Ahmadalinezhad, Asieh

    designed glucose biosensor exhibits a wide linear range, up to 18 mM glucose, as well as high sensitivity and selectivity. Glucose measurements of human serum using the developed biosensor showed excellent agreement with the data recorded by a commercial blood glucose monitoring assay. Finally, we fabricated an enzyme-free glucose sensor based on nanoporous palladium-cadmium (PdCd) networks. A hydrothermal method was applied in the synthesis of PdCd nanomaterials. The effect of the composition of the PdCd nanomaterials on the performance of the electrode was investigated by cyclic voltammetry (CV). Amperometric studies showed that the nanoporous PdCd electrode was responsive to the direct oxidation of glucose with high electrocatalytic activity. The sensitivity of the sensor for continuous glucose monitoring was 146.21 microAmM--1cm--2, with linearity up to 10 mM and a detection limit of 0.05 mM. In summary, the electrochemical biosensors proposed in my PhD study exhibited high sensitivity and selectivity for the continuous monitoring of analytes in the presence of common interference species. Our results have shown that the performance of the biosensors is significantly dependent on the dimensions and morphologies of nanostructured materials. The unique nanomaterials-based platforms proposed in this dissertation open the door to the design and fabrication of high-performance electrochemical biosensors for medical diagnostics.

  18. Direct fluorescence anisotropy assay for cocaine using tetramethylrhodamine-labeled aptamer.

    Science.gov (United States)

    Liu, Yingxiong; Zhao, Qiang

    2017-06-01

    Development of simple, sensitive, and rapid method for cocaine detection is important in medicine and drug abuse monitoring. Taking advantage of fluorescence anisotropy and aptamer, this study reports a direct fluorescence anisotropy (FA) assay for cocaine by employing an aptamer probe with tetramethylrhodamine (TMR) labeled on a specific position. The binding of cocaine and the aptamer causes a structure change of the TMR-labeled aptamer, leading to changes of the interaction between labeled TMR and adjacent G bases in aptamer sequence, so FA of TMR varies with increasing of cocaine. After screening different labeling positions of the aptamer, including thymine (T) bases and terminals of the aptamer, we obtained a favorable aptamer probe with TMR labeled on the 25th base T in the sequence, which exhibited sensitive and significant FA-decreasing responses upon cocaine. Under optimized assay conditions, this TMR-labeled aptamer allowed for direct FA detection of cocaine as low as 5 μM. The maximum FA change reached about 0.086. This FA method also enabled the detection of cocaine spiked in diluted serum and urine samples, showing potential for applications. Graphical Abstract The binding of cocaine to the TMR-labeled aptamer causes conformation change and alteration of the intramolecular interaction between TMR and bases of aptamer, leading to variance of fluorescence anisotropy (FA) of TMR, so direct FA analyis of cocaine is achieved.

  19. A Selective Surface-Enhanced Raman Scattering Sensor for Mercury(II) Based on a Porous Polymer Material and the Target-Mediated Displacement of a T-Rich Strand

    Science.gov (United States)

    Kang, Y.; Zhang, L.; Zhang, H.; Wu, T.; Du, Y.

    2017-05-01

    A sensitive and selective surface-enhanced Raman scattering (SERS) sensor for mercury(II) was fabricated based on the target-mediated displacement of a T-rich oligonucleotide strand. A DNA/aptamer duplex was prepared by the hybridization between a tetramethylrhodamine(TMR)-labeled thymine(T)-rich Hg2+-specific aptamer (denoted as TMR-aptamer) and a thiolated adenine-rich capturing DNA. The duplex can be immobilized onto the SERS substrate of the Ag-moiety modified glycidyl methacrylate-ethylene dimethacrylate (denoted as Ag-GMA-EDMA) via self-assembly by the thiol anchor, in which the TMR-aptamer exists in a double-stranded chain. In this case, the label of the TMR moiety approaches the substrate surface and produces a strong SERS signal. Upon the addition of the target, a pair of TMR-aptamers could cooperatively coordinate with Hg2+ to form a stable duplex-like structure mediated by the T-Hg2+-T complex between two adjacent strands, which triggers the release of the TMR-aptamer from the SERS substrate surface, thus drawing the TMR tags away from the substrate with a significant decrease in the SERS signal. This optical sensor shows a sensitive response to Hg2+ in a concentration from 5 nM to 2.0 μM with a detection limit of 2.5 nM. The prepared sensor is negligibly responsive to other metal ions, can be easily regenerated, and shows good performance in real sample analysis.

  20. A sensitive electrochemical sensor for in vitro detection of parathyroid hormone based on a MoS2-graphene composite

    Science.gov (United States)

    Kim, Hyeong-U.; Kim, Hye Youn; Kulkarni, Atul; Ahn, Chisung; Jin, Yinhua; Kim, Yeongseok; Lee, Kook-Nyung; Lee, Min-Ho; Kim, Taesung

    2016-10-01

    This paper reports a biosensor based on a MoS2-graphene (MG) composite that can measure the parathyroid hormone (PTH) concentration in serum samples from patients. The interaction between PTH and MG was analysed via an electrochemical sensing technique. The MG was functionalized using L-cysteine. Following this, PTH could be covalently immobilized on the MG sensing electrode. The properties of MG were evaluated using scanning electron microscopy, high-resolution transmission electron microscopy, X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectrometry. Following optimization of immobilized materials—such as MG, PTH, and alkaline phosphatase (ALP)—the performance of the MG sensor was investigated via cyclic voltammetry, to assess its linearity, repeatability, and reproducibility. Electrochemical impedance spectroscopy was performed on graphene oxide (GO) and MG-modified electrodes to confirm the capture of a monoclonal antibody (MAb) targeting PTH. Furthermore, the ALP-PTH-MG sensor exhibits a linear response towards PTH from artificial serum over a range of 1-50 pg mL-1. Moreover, patient sera (n = 30) were evaluated using the ALP-PTH-MG sensor and compared using standard equipment (Roche E 170). The P-value is less than 0.01 when evaluated with a t-test using Welch’s correction. This implies that the fabricated sensor can be deployed for medical diagnosis.

  1. Current Status and Future Prospects for Aptamer-Based Mycotoxin Detection.

    Science.gov (United States)

    Ruscito, Annamaria; Smith, McKenzie; Goudreau, Daniel N; DeRosa, Maria C

    2016-07-01

    Aptamers are single-stranded oligonucleotides with the ability to bind tightly and selectively to a target analyte. High-affinity and specific aptamers for a variety of mycotoxins have been reported over the past decade. Increasingly, these molecular recognition elements are finding applications in biosensors and assays for the detection of mycotoxins in a variety of complex matrixes. This review article highlights the mycotoxin aptamers that are available for mycotoxin detection and the array of biosensing platforms into which they have been incorporated. Key advantages that aptamers have over analogous technology, and areas in which these advantages may be applied for the benefit of practical mycotoxin detection, are also discussed.

  2. Evaluation of Aquatic Environments Using a Sensorial System Based on Conducting Polymers and its Potential Application in Electrochemical Sensors

    Directory of Open Access Journals (Sweden)

    Nelson Consolin Filho

    2008-06-01

    Full Text Available A sensor array consisted of interdigitated gold electrodes modified with nanostructured ultra-thin films of conducting polymers was used to evaluate different water samples from three distinct reservoirs, located in the São Paulo State, Brazil, according to their eutrophic level, i.e. oligotrophic, eutrophic and hypereutrophic. These reservoirs samples presented different eutrophic levels. The sensor array data were processed and analyzed by using PCA (principal component analysis. In the near future, this will be a reliable and straightforward method to analyze water samples based on the concept of global selectivity and electrochemical impedance.

  3. A Review on the Electrochemical Sensors and Biosensors Composed of Nanowires as Sensing Material

    Directory of Open Access Journals (Sweden)

    Shen-Ming Chen

    2008-01-01

    Full Text Available The development and application of nanowires for electrochemical sensors and biosensors are reviewed in this article. Next generation sensor platforms will require significant improvements in sensitivity, specificity and parallelism in order to meet the future needs in variety of fields. Sensors made of nanowires exploit some fundamental nanoscopic effect in order to meet these requirements. Nanowires are new materials, which have the characteristic of low weight with extraordinary mechanical, electrical, thermal and multifunctional properties. The advantages such as size scale, aspect ratio and other properties of nanowires are especially apparent in the use of electrical sensors such as electrochemical sensors and in the use of field-effect transistors. The preparation methods of nanowires and their properties are discussed along with their advantages towards electrochemical sensors and biosensors. Some key results from each article are summarized, relating the concept and mechanism behind each sensor, with experimental conditions as well as their behavior at different conditions.

  4. A novel gold nanoparticle-DNA aptamer-based plasmonic chip for rapid and sensitive detection of bacterial pathogens

    DEFF Research Database (Denmark)

    Sun, Yi; Phuoc Long, Truong; Wolff, Anders

    2016-01-01

    Gold nanoparticles (AuNPs)-based biosensors are emerging technologies for rapid detection of pathogens. However, it is very challenging to develop chip-based AuNP-biosensors for whole cells. This paper describes a novel AuNPs-DNA aptamer-based plasmonic assay which allows DNA aptamers...

  5. Polypyrrole Composite Film for Highly Sensitive and Selective Electrochemical Determination Sensors

    International Nuclear Information System (INIS)

    Zheng, Xiangli; Tian, Dong; Duan, Shuo; Wei, Maochao; Liu, Shan; Zhou, Changli; Li, Qing; Wu, Gang

    2014-01-01

    In this paper, polypyrrole (PPy) and benz[a]anthracene-7,12-dione (BaD) were electro-polymerized onto a pyrolytic graphite electrode (PGE), constructing a novel BaD/PPy/PGE platform for electrochemical sensoring. The morphology and electrochemical properties of the fabricated BaD/PPy/PGE were characterized by scanning electron microscopy, cyclic voltammetry and electrochemical impedance spectroscopy. Furthermore, the electrochemical behavior of benzo[k]fluoranthene (BkF) at the BaD/PPy/PGE was investigated. Due to the specific interactions between BkF and BaD, a wide linear range of BkF detection from 1.0 × 10 −12 to 1.0 × 10 −9 M with good linearity (R 2 = 0.9962) and a low detection limit (1.0 × 10 −13 M, S/N = 3) were demonstrated. Importantly, other similar aromatics which had one ring or more than two rings, such as benzo[a]anthracene, benzo[a]pyrene, pyrene, benzo[ghi]peryle, anthracene, phenanthrene, naphthalene and parachlorophenol, showed insignificant interference on BkF detection. Consequently, this novel BaD/PPy/PGE with excellent stability and selectivity holds promise as an effective BkF electrochemical sensor in aqueous solution. As an example for its practical application, the newly developed sensor was applied to quantitative determination of BkF in waste water samples obtained from a coking plant with satisfactory sensitivity, selectivity, and reversibility

  6. Computational Methods for Modeling Aptamers and Designing Riboswitches

    Directory of Open Access Journals (Sweden)

    Sha Gong

    2017-11-01

    Full Text Available Riboswitches, which are located within certain noncoding RNA region perform functions as genetic “switches”, regulating when and where genes are expressed in response to certain ligands. Understanding the numerous functions of riboswitches requires computation models to predict structures and structural changes of the aptamer domains. Although aptamers often form a complex structure, computational approaches, such as RNAComposer and Rosetta, have already been applied to model the tertiary (three-dimensional (3D structure for several aptamers. As structural changes in aptamers must be achieved within the certain time window for effective regulation, kinetics is another key point for understanding aptamer function in riboswitch-mediated gene regulation. The coarse-grained self-organized polymer (SOP model using Langevin dynamics simulation has been successfully developed to investigate folding kinetics of aptamers, while their co-transcriptional folding kinetics can be modeled by the helix-based computational method and BarMap approach. Based on the known aptamers, the web server Riboswitch Calculator and other theoretical methods provide a new tool to design synthetic riboswitches. This review will represent an overview of these computational methods for modeling structure and kinetics of riboswitch aptamers and for designing riboswitches.

  7. Electrochemical Aptamer Scaffold Biosensors for Detection of Botulism and Ricin Proteins.

    Science.gov (United States)

    Daniel, Jessica; Fetter, Lisa; Jett, Susan; Rowland, Teisha J; Bonham, Andrew J

    2017-01-01

    Electrochemical DNA (E-DNA) biosensors enable the detection and quantification of a variety of molecular targets, including oligonucleotides, small molecules, heavy metals, antibodies, and proteins. Here we describe the design, electrode preparation and sensor attachment, and voltammetry conditions needed to generate and perform measurements using E-DNA biosensors against two protein targets, the biological toxins ricin and botulinum neurotoxin. This method can be applied to generate E-DNA biosensors for the detection of many other protein targets, with potential advantages over other systems including sensitive detection limits typically in the nanomolar range, real-time monitoring, and reusable biosensors.

  8. An aptamer-based biosensor for colorimetric detection of Escherichia coli O157:H7.

    Directory of Open Access Journals (Sweden)

    Wenhe Wu

    Full Text Available BACKGROUND: An aptamer based biosensor (aptasensor was developed and evaluated for rapid colorimetric detection of Escherichia coli (E. coli O157:H7. METHODOLOGY/PRINCIPAL FINDINGS: The aptasensor was assembled by modifying the truncated lipopolysaccharides (LPS-binding aptamer on the surface of nanoscale polydiacetylene (PDA vesicle using peptide bonding between the carboxyl group of the vesicle and the amine group of the aptamer. Molecular recognition between E. coli O157:H7 and aptamer at the interface of the vesicle lead to blue-red transition of PDA which was readily visible to the naked eyes and could be quantified by colorimetric responses (CR. Confocal laser scanning microscope (CLSM and transmission electron microscopy (TEM was used to confirm the specific interactions between the truncated aptamer and E. coli O157:H7. The aptasensor could detect cellular concentrations in a range of 10(4~ 10(8 colony-forming units (CFU/ml within 2 hours and its specificity was 100% for detection of E. coli O157:H7. Compared with the standard culture method, the correspondent rate was 98.5% for the detection of E. coli O157:H7 on 203 clinical fecal specimens with our aptasensor. CONCLUSIONS: The new aptasensor represents a significant advancement in detection capabilities based on the combination of nucleic acid aptamer with PDA vesicle, and offers a specific and convenient screening method for the detection of pathogenic bacteria. This technic could also be applied in areas from clinical analysis to biological terrorism defense, especially in low-resource settings.

  9. A micromachined electrochemical sensor for free chlorine monitoring in drinking water.

    Science.gov (United States)

    Mehta, A; Shekhar, H; Hyun, S H; Hong, S; Cho, H J

    2006-01-01

    In this work, we designed, fabricated and tested a disposable, flow-through amperometric sensor for free chlorine determination in water. The sensor is based on the principle of an electrochemical cell. The substrate, as well as the top microfluidic layer, is made up of a polymer material. The advantages include; (a) disposability from low cost; (b) stable operation range from three-electrode design; (c) fluidic interconnections that provide on line testing capabilities; and (d) transparent substrate which provides for future integration of on-chip optics. The sensor showed a good response and linearity in the chlorine concentration ranging from 0.3 to 1.6 ppm, which applies to common chlorination process for drinking water purification.

  10. Thick-film textile-based amperometric sensors and biosensors.

    Science.gov (United States)

    Yang, Yang-Li; Chuang, Min-Chieh; Lou, Shyh-Liang; Wang, Joseph

    2010-06-01

    The incorporation of amperometric sensors into clothing through direct screen-printing onto the textile substrate is described. Particular attention is given to electrochemical sensors printed directly on the elastic waist of underwear that offers tight direct contact with the skin. The textile-based printed carbon electrodes have a well-defined appearance with relatively smooth conductor edges and no apparent defects or cracks. Convenient voltammetric and chronoamperometric measurements of 0-3 mM ferrocyanide, 0-25 mM hydrogen peroxide, and 0-100 muM NADH have been documented. The favorable electrochemical behavior is maintained under folding or stretching stress, relevant to the deformation of clothing. The electrochemical performance and tolerance to mechanical stress are influenced by the physical characteristics of the textile substrate. The results indicate the potential of textile-based screen-printed amperometric sensors for future healthcare, sport or military applications. Such future applications would benefit from tailoring the ink composition and printing conditions to meet the specific requirements of the textile substrate.

  11. Aptamers for Targeted Drug Delivery

    Directory of Open Access Journals (Sweden)

    Partha Ray

    2010-05-01

    Full Text Available Aptamers are a class of therapeutic oligonucleotides that form specific three-dimensional structures that are dictated by their sequences. They are typically generated by an iterative screening process of complex nucleic acid libraries employing a process termed Systemic Evolution of Ligands by Exponential Enrichment (SELEX. SELEX has traditionally been performed using purified proteins, and cell surface receptors may be challenging to purify in their properly folded and modified conformations. Therefore, relatively few aptamers have been generated that bind cell surface receptors. However, improvements in recombinant fusion protein technology have increased the availability of receptor extracellular domains as purified protein targets, and the development of cell-based selection techniques has allowed selection against surface proteins in their native configuration on the cell surface. With cell-based selection, a specific protein target is not always chosen, but selection is performed against a target cell type with the goal of letting the aptamer choose the target. Several studies have demonstrated that aptamers that bind cell surface receptors may have functions other than just blocking receptor-ligand interactions. All cell surface proteins cycle intracellularly to some extent, and many surface receptors are actively internalized in response to ligand binding. Therefore, aptamers that bind cell surface receptors have been exploited for the delivery of a variety of cargoes into cells. This review focuses on recent progress and current challenges in the field of aptamer-mediated delivery.

  12. Radiolabelled aptamers for tumour imaging and therapy

    International Nuclear Information System (INIS)

    Perkins, A.C.; Missailidis, S.

    2005-01-01

    Full text: The growth in biotechnology has led to new techniques for the design, selection and production of ligands capable of molecular recognition. One promising approach is the production of specific receptor binding molecules based on specific nucleic acid sequences that are capable of recognising a wide array of target molecules. These oligonuclide ligands are known as aptamers. The technology that allows production of aptamer molecules is known as systematic evolution of ligands by exponential enrichment (SELEX). We have used combinatorial chemistry techniques coupled with polymerase chain reaction (PCR) to rapidly select aptamers from degenerate libraries that bind with high affinity and specificity to the protein core of the MUC1 antigen, a tumour marker previously extensively used in tumour imaging and therapy. MUC1 is widely expressed by normal glandular epithelial cells, however this expression is dramatically increased when the cells become malignant. This has been well documented for breast and ovarian cancer, as well as some lung, pancreatic and prostate cancers. Recently it has also been shown that MUC1 is a valuable marker for bladder and has been used for the imaging and targeted therapy of bladder cancer. The aptamer selection process was performed on affinity chromatography matrices. After ten rounds of selection and amplification, aptamers were cloned and sequenced. Post SELEX amino modifications have been used to confer nuclease resistance and coupling potential. The aptamers bound to MUC1 antigen with a Kd of 5nm and high specificity, demonstrated by fluorescent microscopy on MUC1-expressing tumour cells. Using peptide coupling reactions, we have successfully attached chelators for Tc-99m radiolabelling. Two of the constructs tested were based on mono-aptamer chelator complexes, one with commercially available MAG3 and one with a novel designed cyclen-based chelator. The other two constructs were based on the use of multi-aptamer complexes

  13. Modular Assembly of Cell-targeting Devices Based on an Uncommon G-quadruplex Aptamer

    DEFF Research Database (Denmark)

    Opazo, Felipe; Eiden, Laura; Hansen, Line

    2015-01-01

    cells. We further optimized this aptamer to a highly versatile and stable minimized version. The minimized aptamer can be easily equipped with different functionalities like quantum dots, organic dyes, or even a second different aptamer domain yielding a bi-paratopic aptamer. Although the target...

  14. Skin-Attachable, Stretchable Electrochemical Sweat Sensor for Glucose and pH Detection.

    Science.gov (United States)

    Oh, Seung Yun; Hong, Soo Yeong; Jeong, Yu Ra; Yun, Junyeong; Park, Heun; Jin, Sang Woo; Lee, Geumbee; Oh, Ju Hyun; Lee, Hanchan; Lee, Sang-Soo; Ha, Jeong Sook

    2018-04-25

    As part of increased efforts to develop wearable healthcare devices for monitoring and managing physiological and metabolic information, stretchable electrochemical sweat sensors have been investigated. In this study, we report on the fabrication of a stretchable and skin-attachable electrochemical sensor for detecting glucose and pH in sweat. A patterned stretchable electrode was fabricated via layer-by-layer deposition of carbon nanotubes (CNTs) on top of patterned Au nanosheets (AuNS) prepared by filtration onto stretchable substrate. For the detection of glucose and pH, CoWO 4 /CNT and polyaniline/CNT nanocomposites were coated onto the CNT-AuNS electrodes, respectively. A reference electrode was prepared via chlorination of silver nanowires. Encapsulation of the stretchable sensor with sticky silbione led to a skin-attachable sweat sensor. Our sensor showed high performance with sensitivities of 10.89 μA mM -1 cm -2 and 71.44 mV pH -1 for glucose and pH, respectively, with mechanical stability up to 30% stretching and air stability for 10 days. The sensor also showed good adhesion even to wet skin, allowing the detection of glucose and pH in sweat from running while being attached onto the skin. This work suggests the application of our stretchable and skin-attachable electrochemical sensor to health management as a high-performance healthcare wearable device.

  15. Estrone specific molecularly imprinted polymeric nanospheres: synthesis, characterization and applications for electrochemical sensor development.

    Science.gov (United States)

    Congur, Gulsah; Senay, Hilal; Turkcan, Ceren; Canavar, Ece; Erdem, Arzum; Akgol, Sinan

    2013-06-28

    The aim of this study is (i) to prepare estrone-imprinted nanospheres (nano-EST-MIPs) and (ii) to integrate them into the electrochemical sensor as a recognition layer. N-methacryloyl-(l)-phenylalanine (MAPA) was chosen as the complexing monomer. Firstly, estrone (EST) was complexed with MAPA and the EST-imprinted poly(2-hyroxyethylmethacrylate-co-N-methacryloyl-(l)-phenylalanine) [EST-imprinted poly(HEMA-MAPA)] nanospheres were synthesized by surfactant- free emulsion polymerization method. The specific surface area of the EST-imprinted poly(HEMA-MAPA) nanospheres was found to be 1275 m2/g with a size of 163.2 nm in diameter. According to the elemental analysis results, the nanospheres contained 95.3 mmole MAPA/g nanosphere. The application of EST specific MIP nanospheres for the development of an electrochemical biosensor was introduced for the first time in our study by using electrochemical impedance spectroscopy (EIS) technique. This nano-MIP based sensor presented a great specificity and selectivity for EST.

  16. Detection of Thrombin Based on Fluorescence Energy Transfer between Semiconducting Polymer Dots and BHQ-Labelled Aptamers

    Directory of Open Access Journals (Sweden)

    Yizhang Liu

    2018-02-01

    Full Text Available Carboxyl-functionalized semiconducting polymer dots (Pdots were synthesized as an energy donor by the nanoprecipitation method. A black hole quenching dye (BHQ-labelled thrombin aptamers was used as the energy acceptor, and fluorescence resonance energy transfer between the aptamers and Pdots was used for fluorescence quenching of the Pdots. The addition of thrombin restored the fluorescence intensity. Under the optimized experimental conditions, the fluorescence of the system was restored to the maximum when the concentration of thrombin reached 130 nM, with a linear range of 0–50 nM (R2 = 0.990 and a detection limit of 0.33 nM. This sensor was less disturbed by impurities, showing good specificity and signal response to thrombin, with good application in actual samples. The detection of human serum showed good linearity in the range of 0–30 nM (R2 = 0.997, with a detection limit of 0.56 nM and a recovery rate of 96.2–104.1%, indicating that this fluorescence sensor can be used for the detection of thrombin content in human serum.

  17. A Printed Organic Circuit System for Wearable Amperometric Electrochemical Sensors.

    Science.gov (United States)

    Shiwaku, Rei; Matsui, Hiroyuki; Nagamine, Kuniaki; Uematsu, Mayu; Mano, Taisei; Maruyama, Yuki; Nomura, Ayako; Tsuchiya, Kazuhiko; Hayasaka, Kazuma; Takeda, Yasunori; Fukuda, Takashi; Kumaki, Daisuke; Tokito, Shizuo

    2018-04-23

    Wearable sensor device technologies, which enable continuous monitoring of biological information from the human body, are promising in the fields of sports, healthcare, and medical applications. Further thinness, light weight, flexibility and low-cost are significant requirements for making the devices attachable onto human tissues or clothes like a patch. Here we demonstrate a flexible and printed circuit system consisting of an enzyme-based amperometric sensor, feedback control and amplification circuits based on organic thin-film transistors. The feedback control and amplification circuits based on pseudo-CMOS inverters were successfuly integrated by printing methods on a plastic film. This simple system worked very well like a potentiostat for electrochemical measurements, and enabled the quantitative and real-time measurement of lactate concentration with high sensitivity of 1 V/mM and a short response time of a hundred seconds.

  18. Rapid One-Step Selection Method for Generating Nucleic Acid Aptamers: Development of a DNA Aptamer against alpha-Bungarotoxin

    DEFF Research Database (Denmark)

    Lauridsen, Lasse Holm; Shamaileh, Hadi A.; Edwards, Stacey L.

    2012-01-01

    Background: Nucleic acids based therapeutic approaches have gained significant interest in recent years towards the development of therapeutics against many diseases. Recently, research on aptamers led to the marketing of Macugen (R), an inhibitor of vascular endothelial growth factor (VEGF......) for the treatment of age related macular degeneration (AMD). Aptamer technology may prove useful as a therapeutic alternative against an array of human maladies. Considering the increased interest in aptamer technology globally that rival antibody mediated therapeutic approaches, a simplified selection, possibly...... in one-step, technique is required for developing aptamers in limited time period. Principal Findings: Herein, we present a simple one-step selection of DNA aptamers against alpha-bungarotoxin. A toxin immobilized glass coverslip was subjected to nucleic acid pool binding and extensive washing followed...

  19. Computer-assisted electrochemical fabrication of a highly selective and sensitive amperometric nitrite sensor based on surface decoration of electrochemically reduced graphene oxide nanosheets with CoNi bimetallic alloy nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Gholivand, Mohammad-Bagher, E-mail: mbgholivand2013@gmail.com [Faculty of Chemistry, Razi University, Kermanshah 671496734 (Iran, Islamic Republic of); Jalalvand, Ali R. [Faculty of Chemistry, Razi University, Kermanshah 671496734 (Iran, Islamic Republic of); Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Universidad Nacional del Litoral, Ciudad Universitaria, CC 242 (S3000ZAA), Santa Fe (Argentina); Goicoechea, Hector C. [Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Universidad Nacional del Litoral, Ciudad Universitaria, CC 242 (S3000ZAA), Santa Fe (Argentina)

    2014-07-01

    For the first time, a novel, robust and very attractive statistical experimental design (ED) using minimum-run equireplicated resolution IV factorial design (Min-Run Res IV FD) coupled with face centered central composite design (FCCCD) and Derringer's desirability function (DF) was developed to fabricate a highly selective and sensitive amperometric nitrite sensor based on electrodeposition of CoNi bimetallic alloy nanoparticles (NPs) on electrochemically reduced graphene oxide (ERGO) nanosheets. The modifications were characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), energy dispersive X-ray spectroscopic (EDS), scanning electron microscopy (SEM) techniques. The CoNi bimetallic alloy NPs were characterized using digital image processing (DIP) for particle counting (density estimation) and average diameter measurement. Under the identified optimal conditions, the novel sensor detects nitrite in concentration ranges of 0.1–30.0 μM and 30.0–330.0 μM with a limit of detection (LOD) of 0.05 μM. This sensor selectively detects nitrite even in the presence of high concentration of common ions and biological interferents therefore, we found that the sensor is highly selective. The sensor also demonstrated an excellent operational stability and good antifouling properties. The proposed sensor was used to the determination of nitrite in several foodstuff and water samples. - Highlights: • Eight variables were screened by Min Run Res IV FD to identify the key variables. • Mathematical models for the two studied responses were developed by FCCCD. • By using DF the responses were optimized simultaneously. • The SEM image of the modified electrode was processed by digital image processing. • The sensor was successfully applied to determination of nitrite in real samples.

  20. Computer-assisted electrochemical fabrication of a highly selective and sensitive amperometric nitrite sensor based on surface decoration of electrochemically reduced graphene oxide nanosheets with CoNi bimetallic alloy nanoparticles

    International Nuclear Information System (INIS)

    Gholivand, Mohammad-Bagher; Jalalvand, Ali R.; Goicoechea, Hector C.

    2014-01-01

    For the first time, a novel, robust and very attractive statistical experimental design (ED) using minimum-run equireplicated resolution IV factorial design (Min-Run Res IV FD) coupled with face centered central composite design (FCCCD) and Derringer's desirability function (DF) was developed to fabricate a highly selective and sensitive amperometric nitrite sensor based on electrodeposition of CoNi bimetallic alloy nanoparticles (NPs) on electrochemically reduced graphene oxide (ERGO) nanosheets. The modifications were characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), energy dispersive X-ray spectroscopic (EDS), scanning electron microscopy (SEM) techniques. The CoNi bimetallic alloy NPs were characterized using digital image processing (DIP) for particle counting (density estimation) and average diameter measurement. Under the identified optimal conditions, the novel sensor detects nitrite in concentration ranges of 0.1–30.0 μM and 30.0–330.0 μM with a limit of detection (LOD) of 0.05 μM. This sensor selectively detects nitrite even in the presence of high concentration of common ions and biological interferents therefore, we found that the sensor is highly selective. The sensor also demonstrated an excellent operational stability and good antifouling properties. The proposed sensor was used to the determination of nitrite in several foodstuff and water samples. - Highlights: • Eight variables were screened by Min Run Res IV FD to identify the key variables. • Mathematical models for the two studied responses were developed by FCCCD. • By using DF the responses were optimized simultaneously. • The SEM image of the modified electrode was processed by digital image processing. • The sensor was successfully applied to determination of nitrite in real samples

  1. A facile electrochemical intercalation and microwave assisted exfoliation methodology applied to screen-printed electrochemical-based sensing platforms to impart improved electroanalytical outputs.

    Science.gov (United States)

    Pierini, Gastón D; Foster, Christopher W; Rowley-Neale, Samuel J; Fernández, Héctor; Banks, Craig E

    2018-06-12

    Screen-printed electrodes (SPEs) are ubiquitous with the field of electrochemistry allowing researchers to translate sensors from the laboratory to the field. In this paper, we report an electrochemically driven intercalation process where an electrochemical reaction uses an electrolyte as a conductive medium as well as the intercalation source, which is followed by exfoliation and heating/drying via microwave irradiation, and applied to the working electrode of screen-printed electrodes/sensors (termed EDI-SPEs) for the first time. This novel methodology results in an increase of up to 85% of the sensor area (electrochemically active surface area, as evaluated using an outer-sphere redox probe). Upon further investigation, it is found that an increase in the electroactive area of the EDI-screen-printed based electrochemical sensing platforms is critically dependent upon the analyte and its associated electrochemical mechanism (i.e. adsorption vs. diffusion). Proof-of-concept for the electrochemical sensing of capsaicin, a measure of the hotness of chillies and chilli sauce, within both model aqueous solutions and a real sample (Tabasco sauce) is demonstrated in which the electroanalytical sensitivity (a plot of signal vs. concentration) is doubled when utilising EDI-SPEs over that of SPEs.

  2. The pharmacokinetic study of rutin in rat plasma based on an electrochemically reduced graphene oxide modified sensor

    Directory of Open Access Journals (Sweden)

    Pei Zhang

    2016-04-01

    Full Text Available An electrochemical method based on a directly electrochemically reduced graphene oxide (ERGO film coated on a glassy carbon electrode (GCE was developed for the rapid and convenient determination of rutin in plasma. ERGO was modified on the surface of GCE by one-step electro-deposition method. Electrochemical behavior of rutin on ERGO/GCE indicated that rutin underwent a surface-controlled quasi-reversible process and the electrochemical parameters such as charge transfer coefficient (α, electron transfer number (n and electrode reaction standard rate constant (ks were 0.53, 2 and 3.4 s−1, respectively. The electrochemical sensor for rutin in plasma provided a wide linear response range of 4.70×10−7−1.25×10−5 M with the detection limit (s/n=3 of 1.84×10−8 M. The assay was successfully used to the pharmacokinetic study of rutin. The pharmacokinetic parameters such as elimination rate half-life (t1/2, area under curve (AUC, and plasma clearance (CL were calculated to be 3.345±0.647 min, 5750±656.0 µg min/mL, and 5.891±0.458 mL/min/kg, respectively. The proposed method utilized a small sample volume of 10 μL and had no complicated sample pretreatment (without deproteinization, which was simple, eco-friendly, and time- and cost-efficient for rutin pharmacokinetic studies.

  3. Nanomaterial-based electrochemical sensing of neurological drugs and neurotransmitters

    International Nuclear Information System (INIS)

    Sanghavi, Bankim J.; Swami, Nathan S.; Wolfbeis, Otto S.; Hirsch, Thomas

    2015-01-01

    Nanomaterial-modified detection systems represent a chief driver towards the adoption of electrochemical methods, since nanomaterials enable functional tunability, ability to self-assemble, and novel electrical, optical and catalytic properties that emerge at this scale. This results in tremendous gains in terms of sensitivity, selectivity and versatility. We review the electrochemical methods and mechanisms that may be applied to the detection of neurological drugs. We focus on understanding how specific nano-sized modifiers may be applied to influence the electron transfer event to result in gains in sensitivity, selectivity and versatility of the detection system. This critical review is structured on the basis of the Anatomical Therapeutic Chemical (ATC) Classification System, specifically ATC Code N (neurotransmitters). Specific sections are dedicated to the widely used electrodes based on the carbon materials, supporting electrolytes, and on electrochemical detection paradigms for neurological drugs and neurotransmitters within the groups referred to as ATC codes N01 to N07. We finally discuss emerging trends and future challenges such as the development of strategies for simultaneous detection of multiple targets with high spatial and temporal resolutions, the integration of microfluidic strategies for selective and localized analyte pre-concentration, the real-time monitoring of neurotransmitter secretions from active cell cultures under electro- and chemotactic cues, aptamer-based biosensors, and the miniaturization of the sensing system for detection in small sample volumes and for enabling cost savings due to manufacturing scale-up. The Electronic Supporting Material (ESM) includes review articles dealing with the review topic in last 40 years, as well as key properties of the analytes, viz., pK a values, half-life of drugs and their electrochemical mechanisms. The ESM also defines analytical figures of merit of the drugs and neurotransmitters. The

  4. Non-Enzymatic Wearable Sensor for Electrochemical Analysis of Perspiration Glucose.

    Science.gov (United States)

    Zhu, Xiaofei; Ju, Yinhui; Chen, Jian; Liu, Deye; Liu, Hong

    2018-05-16

    We report a non-enzymatic wearable sensor for electrochemical analysis of perspiration glucose. Multi-potential steps are applied on a Au electrode, including a high negative pretreatment potential step for proton reduction which produc-es a localized alkaline condition, a moderate potential step for electrocatalytic oxidation of glucose under the alkaline condi-tion, and a positive potential step to clean and reactivate the electrode surface for the next detection. Fluorocarbon-based materials were coated on the Au electrode for improving the selectivity and robustness of the sensor. A fully integrated wrist-band is developed for continuous real-time monitoring of perspiration glucose during physical activities, and uploading the test result to a Smartphone App via Bluetooth.

  5. Development of an aptamer-based affinity purification method for vascular endothelial growth factor

    Directory of Open Access Journals (Sweden)

    Maren Lönne

    2015-12-01

    Full Text Available Since aptamers bind their targets with high affinity and specificity, they are promising alternative ligands in protein affinity purification. As aptamers are chemically synthesized oligonucleotides, they can be easily produced in large quantities regarding GMP conditions allowing their application in protein production for therapeutic purposes. Several advantages of aptamers compared to antibodies are described in general within this paper. Here, an aptamer directed against the human Vascular Endothelial Growth Factor (VEGF was used as affinity ligand for establishing a purification platform for VEGF in small scale. The aptamer was covalently immobilized on magnetic beads in a controlled orientation resulting in a functional active affinity matrix. Target binding was optimized by introduction of spacer molecules and variation of aptamer density. Further, salt-induced target elution was demonstrated as well as VEGF purification from a complex protein mixture proving the specificity of protein-aptamer binding.

  6. 3D printed stretchable capacitive sensors for highly sensitive tactile and electrochemical sensing

    Science.gov (United States)

    Li, Kai; Wei, Hong; Liu, Wenguang; Meng, Hong; Zhang, Peixin; Yan, Chaoyi

    2018-05-01

    Developments of innovative strategies for the fabrication of stretchable sensors are of crucial importance for their applications in wearable electronic systems. In this work, we report the successful fabrication of stretchable capacitive sensors using a novel 3D printing method for highly sensitive tactile and electrochemical sensing applications. Unlike conventional lithographic or templated methods, the programmable 3D printing technique can fabricate complex device structures in a cost-effective and facile manner. We designed and fabricated stretchable capacitive sensors with interdigital and double-vortex designs and demonstrated their successful applications as tactile and electrochemical sensors. Especially, our stretchable sensors exhibited a detection limit as low as 1 × 10-6 M for NaCl aqueous solution, which could have significant potential applications when integrated in electronics skins.

  7. Combining Electrochemical Sensors with Miniaturized Sample Preparation for Rapid Detection in Clinical Samples

    Science.gov (United States)

    Bunyakul, Natinan; Baeumner, Antje J.

    2015-01-01

    Clinical analyses benefit world-wide from rapid and reliable diagnostics tests. New tests are sought with greatest demand not only for new analytes, but also to reduce costs, complexity and lengthy analysis times of current techniques. Among the myriad of possibilities available today to develop new test systems, amperometric biosensors are prominent players—best represented by the ubiquitous amperometric-based glucose sensors. Electrochemical approaches in general require little and often enough only simple hardware components, are rugged and yet provide low limits of detection. They thus offer many of the desirable attributes for point-of-care/point-of-need tests. This review focuses on investigating the important integration of sample preparation with (primarily electrochemical) biosensors. Sample clean up requirements, miniaturized sample preparation strategies, and their potential integration with sensors will be discussed, focusing on clinical sample analyses. PMID:25558994

  8. An electrochemical sensor for gallic acid based on Fe2O3/electro-reduced graphene oxide composite: Estimation for the antioxidant capacity index of wines

    International Nuclear Information System (INIS)

    Gao, Feng; Zheng, Delun; Tanaka, Hidekazu; Zhan, Fengping; Yuan, Xiaoning; Gao, Fei; Wang, Qingxiang

    2015-01-01

    A highly sensitive electrochemical sensor for gallic acid (GA), an important polyphenolic compound, was fabricated using the hybrid material of chitosan (CS), fishbone-shaped Fe 2 O 3 (fFe 2 O 3 ), and electrochemically reduced graphene oxide (ERGO) as the sensing matrix. The electrochemical characterization experiments showed that the CS–fFe 2 O 3 –ERGO modified glassy carbon electrode (CS–fFe 2 O 3 –ERGO/GCE) had large surface area, excellent electronic conductivity and high stability. The GA presented a superior electrochemical response on CS–fFe 2 O 3 –ERGO/GCE in comparison with the single-component modified electrode. The electrochemical mechanism and optimal test conditions of GA on the electrode surface were carefully investigated. Under the optimal conditions, the oxidation peak currents in differential pulse voltammetry (DPV) experiments exhibited a good linear relationship with the logarithmic values of GA concentration over the range from 1.0 × 10 −6 M to 1.0 × 10 −4 M. Based on signal-to-noise (S/N) characteristic of 3, the detection limit was estimated to be 1.5 × 10 −7 M. The proposed sensor has also been applied for estimating the antioxidant capacity index of real samples of red and white wines. - Highlights: • Fishbone-shaped Fe 2 O 3 (fFe 2 O 3 ) nanoparticles were synthesized by a simple template-free solvothermal method. • The nanocomposite of fFe 2 O 3 , graphene and chitosan was used as the sensing platform for gallic acid. • The sensor shows a wide linear range and low detection limit for gallic acid. • The antioxidant capacity index of wines was successfully evaluated by the sensor

  9. Construction of a zinc porphyrin-fullerene-derivative based nonenzymatic electrochemical sensor for sensitive sensing of hydrogen peroxide and nitrite.

    Science.gov (United States)

    Wu, Hai; Fan, Suhua; Jin, Xiaoyan; Zhang, Hong; Chen, Hong; Dai, Zong; Zou, Xiaoyong

    2014-07-01

    Enzymatic sensors possess high selectivity but suffer from some limitations such as instability, complicated modified procedure, and critical environmental factors, which stimulate the development of more sensitive and stable nonenzymatic electrochemical sensors. Herein, a novel nonenzymatic electrochemical sensor is proposed based on a new zinc porphyrin-fullerene (C60) derivative (ZnP-C60), which was designed and synthesized according to the conformational calculations and the electronic structures of two typical ZnP-C60 derivatives of para-ZnP-C60 (ZnP(p)-C60) and ortho-ZnP-C60 (ZnP(o)-C60). The two derivatives were first investigated by density functional theory (DFT) and ZnP(p)-C60 with a bent conformation was verified to possess a smaller energy gap and better electron-transport ability. Then ZnP(p)-C60 was entrapped in tetraoctylammonium bromide (TOAB) film and modified on glassy carbon electrode (TOAB/ZnP(p)-C60/GCE). The TOAB/ZnP(p)-C60/GCE showed four well-defined quasi-reversible redox couples with extremely fast direct electron transfer and excellent nonenzymatic sensing ability. The electrocatalytic reduction of H2O2 showed a wide linear range from 0.035 to 3.40 mM, with a high sensitivity of 215.6 μA mM(-1) and a limit of detection (LOD) as low as 0.81 μM. The electrocatalytic oxidation of nitrite showed a linear range from 2.0 μM to 0.164 mM, with a sensitivity of 249.9 μA mM(-1) and a LOD down to 1.44 μM. Moreover, the TOAB/ZnP(p)-C60/GCE showed excellent stability and reproducibility, and good testing recoveries for analysis of the nitrite levels of river water and rainwater. The ZnP(p)-C60 can be used as a novel material for the fabrication of nonenzymatic electrochemical sensors.

  10. From selection hits to clinical leads: progress in aptamer discovery

    Directory of Open Access Journals (Sweden)

    Keith E Maier

    2016-01-01

    Full Text Available Aptamers were discovered more than 25 years ago, yet only one has been approved by the US Food and Drug Administration to date. With some noteworthy advances in their chemical design and the enzymes we use to make them, aptamers and aptamer-based therapeutics have seen a resurgence in interest. New aptamer drugs are being approved for clinical evaluation, and it is certain that we will see increasingly more aptamers and aptamer-like drugs in the future. In this review, we will discuss the production of aptamers with an emphasis on the advances and modifications that enabled early aptamers to succeed in clinical trials as well as those that are likely to be important for future generations of these drugs.

  11. Fabrication of an electrochemical sensor based on computationally designed molecularly imprinted polymer for the determination of mesalamine in real samples

    Energy Technology Data Exchange (ETDEWEB)

    Torkashvand, M. [Department of Analytical Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Gholivand, M.B., E-mail: mbgholivand@yahoo.com [Department of Analytical Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Taherkhani, F. [Department of Physical Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of)

    2015-10-01

    A novel electrochemical sensor based on mesalamine molecularly imprinted polymer (MIP) film on a glassy carbon electrode was fabricated. Density functional theory (DFT) in gas and solution phases was developed to study the intermolecular interactions in the pre-polymerization mixture and to find the suitable functional monomers in MIP preparation. On the basis of computational results, o-phenylenediamine (OP), gallic acid (GA) and p-aminobenzoic acid (ABA) were selected as functional monomers. The MIP film was cast on glassy carbon electrode by electropolymerization of solution containing ternary monomers and then followed by Ag dendrites (AgDs) with nanobranch deposition. The surface feature of the modified electrode (AgDs/MIP/GCE) was characterized by scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). Under the optimal experimental conditions, the peak current was proportional to the concentration of mesalamine ranging from 0.05 to 100 μM, with the detection limit of 0.015 μM. The proposed sensor was applied successfully for mesalamine determination in real samples. - Highlights: • The determination of MES using AgDs/MIP/GCE is reported for the first time. • The computer assisted design of terpolymer MIPs was used to screen monomers. • Theoretical results of DFT approach were in agreement with experimental results. • The sensor displayed a high selectivity for template in the presence of interferes. • The developed sensor has been applied to determine mesalamine in real samples.

  12. Fabrication of an electrochemical sensor based on computationally designed molecularly imprinted polymer for the determination of mesalamine in real samples

    International Nuclear Information System (INIS)

    Torkashvand, M.; Gholivand, M.B.; Taherkhani, F.

    2015-01-01

    A novel electrochemical sensor based on mesalamine molecularly imprinted polymer (MIP) film on a glassy carbon electrode was fabricated. Density functional theory (DFT) in gas and solution phases was developed to study the intermolecular interactions in the pre-polymerization mixture and to find the suitable functional monomers in MIP preparation. On the basis of computational results, o-phenylenediamine (OP), gallic acid (GA) and p-aminobenzoic acid (ABA) were selected as functional monomers. The MIP film was cast on glassy carbon electrode by electropolymerization of solution containing ternary monomers and then followed by Ag dendrites (AgDs) with nanobranch deposition. The surface feature of the modified electrode (AgDs/MIP/GCE) was characterized by scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). Under the optimal experimental conditions, the peak current was proportional to the concentration of mesalamine ranging from 0.05 to 100 μM, with the detection limit of 0.015 μM. The proposed sensor was applied successfully for mesalamine determination in real samples. - Highlights: • The determination of MES using AgDs/MIP/GCE is reported for the first time. • The computer assisted design of terpolymer MIPs was used to screen monomers. • Theoretical results of DFT approach were in agreement with experimental results. • The sensor displayed a high selectivity for template in the presence of interferes. • The developed sensor has been applied to determine mesalamine in real samples

  13. A novel screen-printed mast cell-based electrochemical sensor for detecting spoilage bacterial quorum signaling molecules (N-acyl-homoserine-lactones) in freshwater fish.

    Science.gov (United States)

    Jiang, Donglei; Liu, Yan; Jiang, Hui; Rao, Shengqi; Fang, Wu; Wu, Mangang; Yuan, Limin; Fang, Weiming

    2018-04-15

    A novel screen-printed cell-based electrochemical sensor was developed to assess bacterial quorum signaling molecules, N-acylhomoserine lactones (AHLs). Screen-printed carbon electrode (SPCE), which possesses excellent properties such as low-cost, disposable and energy-efficient, was modified with multi-walled carbon nanotubes (MWNTs) to improve electrochemical signals and enhance the sensitivity. Rat basophilic leukemia (RBL-2H3) mast cells encapsulated in alginate/graphene oxide (NaAgl/GO) hydrogel were immobilized on the MWNTs/SPCE to serve as recognition element. Electrochemical impedance spectroscopy (EIS) was employed to record the cell impedance signal as-influenced by Pseudomonas aeruginosa quorum-sensing molecule, N-3-oxododecanoyl homoserine lactone (3OC 12 -HSL). Experimental results show that 3OC 12 -HSL caused a significant decrease in cell viability in a dose dependent manner. The EIS value decreased with concentrations of 3OC 12 -HSL in the range of 0.1-1μM, and the detection limit for 3OC 12 -HSL was calculated to be 0.094μM. These results were confirmed via cell viability, SEM, TEM analysis. Next, the sensor was successfully applied to monitoring the production of AHLs by spoilage bacteria in three different freshwater fish juice samples which efficiently proved the practicability of this cell based method. Therefore, the proposed cell sensor may serve as an innovative and effective approach to the measurement of quorum signaling molecule and thus provides a new avenue for real-time monitoring the spoilage bacteria in freshwater fish production. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Ultramicrosensors based on transition metal hexacyanoferrates for scanning electrochemical microscopy

    Directory of Open Access Journals (Sweden)

    Maria A. Komkova

    2013-10-01

    Full Text Available We report here a way for improving the stability of ultramicroelectrodes (UME based on hexacyanoferrate-modified metals for the detection of hydrogen peroxide. The most stable sensors were obtained by electrochemical deposition of six layers of hexacyanoferrates (HCF, more specifically, an alternating pattern of three layers of Prussian Blue and three layers of Ni–HCF. The microelectrodes modified with mixed layers were continuously monitored in 1 mM hydrogen peroxide and proved to be stable for more than 5 h under these conditions. The mixed layer microelectrodes exhibited a stability which is five times as high as the stability of conventional Prussian Blue-modified UMEs. The sensitivity of the mixed layer sensor was 0.32 A·M−1·cm−2, and the detection limit was 10 µM. The mixed layer-based UMEs were used as sensors in scanning electrochemical microscopy (SECM experiments for imaging of hydrogen peroxide evolution.

  15. Cobalt hexacyanoferrate modified multi-walled carbon nanotubes/graphite composite electrode as electrochemical sensor on microfluidic chip

    International Nuclear Information System (INIS)

    Li Xinchun; Chen Zuanguang; Zhong Yuwen; Yang Fan; Pan Jianbin; Liang Yajing

    2012-01-01

    Highlights: ► CoHCF nanoparticles modified MWCNTs/graphite electrode use for electrochemistry on electrophoresis microchip for the first time. ► Simultaneous, rapid, and sensitive electrochemical detection of hydrazine and isoniazid in real samples. ► An exemplary work of CME sensor assembly onto microchip for determination of analytes with environmental significance. ► Manifestation of the applicability and flexibility of CME sensor for electroanalysis on microfluidic chip. - Abstract: Nanomaterial-based electrochemical sensor has received significant interest. In this work, cobalt hexacyanoferrate modified multi-walled carbon nanotubes/graphite composite electrode was electrochemically prepared and exploited as an amperometric detector for microchip electrophoresis. The prepared sensor displayed rapid and sensitive response towards hydrazine and isoniazid oxidation, which was attributed to synergetic electrocatalytic effect of cobalt hexacyanoferrate and multi-walled carbon nanotubes. The sensitivity enhancement with nearly two orders of magnitude was gained, compared with the bare carbon paste electrode, with the detection limit of 0.91 μM (S/N = 3) for hydrazine. Acceptable repeatability of the microanalysis system was verified by consecutive eleven injections of hydrazine without chip and electrode treatments, the RSDs for peak current and migration time were 3.4% and 2.1%, respectively. Meanwhile, well-shaped electrophoretic peaks were observed, mainly due to fast electron transfer of electroactive species on the modified electrode. The developed microchip-electrochemistry setup was successfully applied to the determination of hydrazine and isoniazid in river water and pharmaceutical preparation, respectively. Several merits of the novel electrochemical sensor coupled with microfluidic platform, such as comparative stability, easy fabrication and high sensitivity, hold great potential for hydrazine compounds assay in the lab-on-a-chip system.

  16. Monodentate Schiff base ligands: their structural characterization, photoluminescence, anticancer, electrochemical and sensor properties.

    Science.gov (United States)

    Köse, Muhammet; Ceyhan, Gökhan; Tümer, Mehmet; Demirtaş, Ibrahim; Gönül, İlyas; McKee, Vickie

    2015-02-25

    Two Schiff base compounds, N,N'-bis(2-methoxy phenylidene)-1,5-diamino naphthalene (L(1)) and N,N'-bis(3,4,5-trimethoxy phenylidene)-1,5-diamino naphthalene (L(2)) were synthesized and characterized by the analytical and spectroscopic methods. The electrochemical and photoluminescence properties of the Schiff bases were investigated in the different conditions. The compounds L(1) and L(2) show the reversible redox processes at some potentials. The sensor properties of the Schiff bases were examined and color changes were observed upon addition of the metal cations, such as Hg(II), Cu(II), Co(II) and Al(III). The Schiff base compounds show the bathochromic shift from 545 to 585 nm. The single crystals of the compounds (L(1)) and (L(2)) were obtained from the methanol solution and characterized structurally by the X-ray crystallography technique. The molecule L(2) is centrosymmetric whereas the L(1) has no crystallographically imposed molecular symmetry. However, the molecular structures for these compounds are quite similar, differing principally in the conformation about methoxy groups and the dihedral angle between the two aromatic rings and diamine naphthalene. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Toward selective electrochemical 'E-tongue': Potentiometric DO sensor based on sub-micron ZnO-RuO{sub 2} sensing electrode

    Energy Technology Data Exchange (ETDEWEB)

    Zhuiykov, Serge, E-mail: serge.zhuiykov@csiro.au [CSIRO, Materials Science and Engineering Division, 37 Graham Road, Highett, VIC 3190 (Australia); Kats, Eugene [CSIRO, Materials Science and Engineering Division, 37 Graham Road, Highett, VIC 3190 (Australia); Plashnitsa, Vladimir [Research and Education Centre of Carbon Resources, Kyushu University, Kasuga-shi, Fukuoka 816-8580 (Japan); Miura, Norio [KASTEC, Kyushu University, Kasuga-shi, Fukuoka 816-8580 (Japan)

    2011-06-01

    Highlights: > We examine ZnO-doped RuO{sub 2} sensing electrode of DO sensor. > Study of ZnO-RuO{sub 2} confirmed the development of high surface-to-volume ratio. > Developed sensing electrode is insensitive to the presence of various dissolved salts. > 20 mol% ZnO-doped RuO{sub 2} sensing electrode enables maximum DO sensitivity. > We conclude that DO sensor based on ZnO-RuO{sub 2} electrode can work at 11-30 deg. C. - Abstract: Planar dissolved oxygen (DO) sensors based on thick-film ZnO-RuO{sub 2} sensing electrodes (SEs) with different mol% of ZnO were prepared on the alumina substrates using a screen-printing method and their structural and electrochemical properties were closely studied by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDX), electrochemical impedance spectroscopy (EIS) and energy-dispersive spectroscopy (EDS) techniques. Structural and electrochemical properties of ZnO-RuO{sub 2}-SEs have been investigated. Interference testing ascertained that the DO sensor based on sub-micron ZnO-RuO{sub 2}-SE is insensitive to the presence of various dissolved ions including Cl{sup -}, Li{sup +}, SO{sub 4}{sup 2-}, NO{sup 3-}, Ca{sup 2+}, PO{sub 4}{sup 3-}, Mg{sup 2+}, Na{sup +} and K{sup +} within a concentration range of 10{sup -7} to 10{sup -1} mol/L for DO measurement from 0.5 to 8.0 ppm in the test solution at a temperature range of 11-30 deg. C. These dissolved salts had practically no effect on the sensor's output potential difference response, whereas Br{sup -} ions had some effects at concentration more than 10{sup -3} mol/L. The relationship between DO and the sensor's potential difference was found to be relatively linear with the maximum sensitivity of -50.6 mV per decade was achieved at 20 mol% ZnO at 7.35 pH. The response and recovery time to pH changes for the planar device based on 20 mol% ZnO-RuO{sub 2}-SE was found to be 10 and 25 s

  18. Rapid Complexation of Aptamers by Their Specific Antidotes

    Directory of Open Access Journals (Sweden)

    Heidi Stoll

    2017-06-01

    Full Text Available Nucleic acid ligands, aptamers, harbor the unique characteristics of small molecules and antibodies. The specificity and high affinity of aptamers enable their binding to different targets, such as small molecules, proteins, or cells. Chemical modifications of aptamers allow increased bioavailability. A further great benefit of aptamers is the antidote (AD-mediated controllability of their effect. In this study, the AD-mediated complexation and neutralization of the thrombin binding aptamer NU172 and Toll-like receptor 9 (TLR9 binding R10-60 aptamer were determined. Thereby, the required time for the generation of aptamer/AD-complexes was analyzed at 37 °C in human serum using gel electrophoresis. Afterwards, the blocking of aptamers’ effects was analyzed by determining the activated clotting time (ACT in the case of the NU172 aptamer, or the expression of immune activation related genes IFN-1β, IL-6, CXCL-10, and IL-1β in the case of the R10-60 aptamer. Gel electrophoresis analyses demonstrated the rapid complexation of the NU172 and R10-60 aptamers by complementary AD binding after just 2 min of incubation in human serum. A rapid neutralization of anticoagulant activity of NU172 was also demonstrated in fresh human whole blood 5 min after addition of AD. Furthermore, the TLR9-mediated activation of PMDC05 cells was interrupted after the addition of the R10-60 AD. Using these two different aptamers, the rapid antagonizability of the aptamers was demonstrated in different environments; whole blood containing numerous proteins, cells, and different small molecules, serum, or cell culture media. Thus, nucleic acid ADs are promising molecules, which offer several possibilities for different in vivo applications, such as antagonizing aptamer-based drugs, immobilization, or delivery of oligonucleotides to defined locations.

  19. Development of an aptamer beacon for detection of interferon-gamma.

    Science.gov (United States)

    Tuleuova, Nazgul; Jones, Caroline N; Yan, Jun; Ramanculov, Erlan; Yokobayashi, Yohei; Revzin, Alexander

    2010-03-01

    Traditional antibody-based affinity sensing strategies employ multiple reagents and washing steps and are unsuitable for real-time detection of analyte binding. Aptamers, on the other hand, may be designed to monitor binding events directly, in real-time, without the need for secondary labels. The goal of the present study was to design an aptamer beacon for fluorescence resonance energy transfer (FRET)-based detection of interferon-gamma (IFN-gamma)--an important inflammatory cytokine. Variants of DNA aptamer modified with biotin moieties and spacers were immobilized on avidin-coated surfaces and characterized by surface plasmon resonance (SPR). The SPR studies showed that immobilization of aptamer via the 3' end resulted in the best binding IFN-gamma (K(d) = 3.44 nM). This optimal aptamer variant was then used to construct a beacon by hybridizing fluorophore-labeled aptamer with an antisense oligonucleotide strand carrying a quencher. SPR studies revealed that IFN-gamma binding with an aptamer beacon occurred within 15 min of analyte introduction--suggesting dynamic replacement of the quencher-complementary strand by IFN-gamma molecules. To further highlight biosensing applications, aptamer beacon molecules were immobilized inside microfluidic channels and challenged with varying concentration of analyte. Fluorescence microscopy revealed low fluorescence in the absence of analyte and high fluorescence after introduction of IFN-gamma. Importantly, unlike traditional antibody-based immunoassays, the signal was observed directly upon binding of analyte without the need for multiple washing steps. The surface immobilized aptamer beacon had a linear range from 5 to 100 nM and a lower limit of detection of 5 nM IFN-gamma. In conclusion, we designed a FRET-based aptamer beacon for monitoring of an inflammatory cytokine-IFN-gamma. In the future, this biosensing strategy will be employed to monitor dynamics of cytokine production by the immune cells.

  20. Novel Photochrome Aptamer Switch Assay (PHASA) for adaptive binding to aptamers.

    Science.gov (United States)

    Papper, Vladislav; Pokholenko, Oleksandr; Wu, Yuanyuan; Zhou, Yubin; Jianfeng, Ping; Steele, Terry W J; Marks, Robert S

    2014-11-01

    A novel Photochrome-Aptamer Switch Assay (PHASA) for the detection and quantification of small environmentally important molecules such as toxins, explosives, drugs and pollutants, which are difficult to detect using antibodies-based assays with high sensitivity and specificity, has been developed. The assay is based on the conjugation of a particular stilbene-analyte derivative to any aptamer of interest. A unique feature of the stilbene molecule is its reporting power via trans-cis photoisomerisation (from fluorescent trans-isomer to non-fluorescent cis-isomer) upon irradiation with the excitation light. The resulting fluorescence decay rate for the trans-isomer of the stilbene-analyte depends on viscosity and spatial freedom to rotate in the surrounding medium and can be used to indicate the presence of the analyte. Quantification of the assay is achieved by calibration of the fluorescence decay rate for the amount of the tested analyte. Two different formats of PHASA have been recently developed: direct conjugation and adaptive binding. New stilbene-maleimide derivatives used in the adaptive binding format have been prepared and characterised. They demonstrate effective binding to the model thiol compound and to the thiolated Malachite Green aptamer.

  1. Ionic Liquid based polymer electrolytes for electrochemical sensors

    Directory of Open Access Journals (Sweden)

    Jakub Altšmíd

    2015-09-01

    Full Text Available Amperometric NO2 printed sensor with a new type of solid polymer electrolyte and a carbon working electrode has been developed. The electrolytes based on 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonylimide [EMIM][N(Tf2], 1-butyl-3-methylimidazolium trifluoromethanesulfonate [BMIM][CF3SO3] and 1-ethyl-3-methylimidazolium tetrafluoroborate [EMIM][BF4] ionic liquids were immobilized in poly(vinylidene fluoride matrix [PVDF]. The analyte, gaseous nitrogen dioxide, was detected by reduction at -500 mV vs. platinum pseudoreference electrode. The sensors showed a linear behavior in the whole tested range, i.e., 0 - 5 ppm and their sensitivities were in order of 0.3 x∙10-6 A/ppm. The sensor sensitivity was influenced by the electric conductivity of printing formulation; the higher the conductivity, the higher the sensor sensitivity. The rise/recovery times were in order of tens of seconds. The use of  screen printing technology and platinum pseudoreference electrode simplify the sensor fabrication and it does not have any negative effect on the sensor stability.DOI: http://dx.doi.org/10.5755/j01.ms.21.3.7371

  2. Field calibration of electrochemical NO2 sensors in a citizen science context

    Science.gov (United States)

    Mijling, Bas; Jiang, Qijun; de Jonge, Dave; Bocconi, Stefano

    2018-03-01

    In many urban areas the population is exposed to elevated levels of air pollution. However, real-time air quality is usually only measured at few locations. These measurements provide a general picture of the state of the air, but they are unable to monitor local differences. New low-cost sensor technology is available for several years now, and has the potential to extend official monitoring networks significantly even though the current generation of sensors suffer from various technical issues.Citizen science experiments based on these sensors must be designed carefully to avoid generation of data which is of poor or even useless quality. This study explores the added value of the 2016 Urban AirQ campaign, which focused on measuring nitrogen dioxide (NO2) in Amsterdam, the Netherlands. Sixteen low-cost air quality sensor devices were built and distributed among volunteers living close to roads with high traffic volume for a 2-month measurement period. Each electrochemical sensor was calibrated in-field next to an air monitoring station during an 8-day period, resulting in R2 ranging from 0.3 to 0.7. When temperature and relative humidity are included in a multilinear regression approach, the NO2 accuracy is improved significantly, with R2 ranging from 0.6 to 0.9. Recalibration after the campaign is crucial, as all sensors show a significant signal drift in the 2-month measurement period. The measurement series between the calibration periods can be corrected for after the measurement period by taking a weighted average of the calibration coefficients.Validation against an independent air monitoring station shows good agreement. Using our approach, the standard deviation of a typical sensor device for NO2 measurements was found to be 7 µg m-3, provided that temperatures are below 30 °C. Stronger ozone titration on street sides causes an underestimation of NO2 concentrations, which 75 % of the time is less than 2.3 µg m-3.Our findings show that citizen science

  3. Ligand-regulated peptide aptamers.

    Science.gov (United States)

    Miller, Russell A

    2009-01-01

    The peptide aptamer approach employs high-throughput selection to identify members of a randomized peptide library displayed from a scaffold protein by virtue of their interaction with a target molecule. Extending this approach, we have developed a peptide aptamer scaffold protein that can impart small-molecule control over the aptamer-target interaction. This ligand-regulated peptide (LiRP) scaffold, consisting of the protein domains FKBP12, FRB, and GST, binds to the cell-permeable small-molecule rapamycin and the binding of this molecule can prevent the interaction of the randomizable linker region connecting FKBP12 with FRB. Here we present a detailed protocol for the creation of a peptide aptamer plasmid library, selection of peptide aptamers using the LiRP scaffold in a yeast two-hybrid system, and the screening of those peptide aptamers for a ligand-regulated interaction.

  4. Aptamer-Gated Nanoparticles for Smart Drug Delivery

    Directory of Open Access Journals (Sweden)

    Huseyin Avni Oktem

    2011-08-01

    Full Text Available Aptamers are functional nucleic acid sequences which can bind specific targets. An artificial combinatorial methodology can identify aptamer sequences for any target molecule, from ions to whole cells. Drug delivery systems seek to increase efficacy and reduce side-effects by concentrating the therapeutic agents at specific disease sites in the body. This is generally achieved by specific targeting of inactivated drug molecules. Aptamers which can bind to various cancer cell types selectively and with high affinity have been exploited in a variety of drug delivery systems for therapeutic purposes. Recent progress in selection of cell-specific aptamers has provided new opportunities in targeted drug delivery. Especially functionalization of nanoparticles with such aptamers has drawn major attention in the biosensor and biomedical areas. Moreover, nucleic acids are recognized as an attractive building materials in nanomachines because of their unique molecular recognition properties and structural features. A active controlled delivery of drugs once targeted to a disease site is a major research challenge. Stimuli-responsive gating is one way of achieving controlled release of nanoparticle cargoes. Recent reports incorporate the structural properties of aptamers in controlled release systems of drug delivering nanoparticles. In this review, the strategies for using functional nucleic acids in creating smart drug delivery devices will be explained. The main focus will be on aptamer-incorporated nanoparticle systems for drug delivery purposes in order to assess the future potential of aptamers in the therapeutic area. Special emphasis will be given to the very recent progress in controlled drug release based on molecular gating achieved with aptamers.

  5. nanocomposites chitosan /clay for electrochemical sensors

    International Nuclear Information System (INIS)

    Braga, Carla R. Costa; Melo, Frank M. Araujo de; Costa, Gilmara M. Silva; Silva, Suedina M. Lima

    2009-01-01

    This study was performed to obtain films of nanocomposites chitosan/bentonite and chitosan/montmorillonite intercalation by the technique of solution in the proportions of 5:1 and 10:1. The nanocomposites were characterized by infrared spectroscopy (FTIR), X-ray diffraction (XRD) and the nanocomposites Chitosan/montmorillonite also were characterized by thermogravimetric analysis (TG). The results indicated that the feasibility of obtaining films of nanocomposites exfoliate. Among the suggested applications for films developed in this study includes them use for electrochemical sensors. (author)

  6. Simple electrochemical sensor for caffeine based on carbon and Nafion-modified carbon electrodes.

    Science.gov (United States)

    Torres, A Carolina; Barsan, Madalina M; Brett, Christopher M A

    2014-04-15

    A simple, economic, highly sensitive and highly selective method for the detection of caffeine has been developed at bare and Nafion-modified glassy carbon electrodes (GCE). The electrochemical behaviour of caffeine was examined in electrolyte solutions of phosphate buffer saline, sodium perchlorate, and in choline chloride plus oxalic acid, using analytical determinations by fixed potential amperometry, phosphate buffer saline being the best. Modifications of the GCE surface with poly(3,4-ethylenedioxythiophene) (PEDOT), Nafion, and multi-walled carbon nanotubes were tested in order to evaluate possible sensor performance enhancements, Nafion giving the most satisfactory results. The effect of interfering compounds usually found in samples containing caffeine was examined at GCE without and with Nafion coating, to exclude interferences, and the sensors were successfully applied to determine the caffeine content in commercial beverages and drugs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Electro-chemical sensors, sensor arrays and circuits

    Science.gov (United States)

    Katz, Howard E.; Kong, Hoyoul

    2014-07-08

    An electro-chemical sensor includes a first electrode, a second electrode spaced apart from the first electrode, and a semiconductor channel in electrical contact with the first and second electrodes. The semiconductor channel includes a trapping material. The trapping material reduces an ability of the semiconductor channel to conduct a current of charge carriers by trapping at least some of the charge carriers to localized regions within the semiconductor channel. The semiconductor channel includes at least a portion configured to be exposed to an analyte to be detected, and the trapping material, when exposed to the analyte, interacts with the analyte so as to at least partially restore the ability of the semiconductor channel to conduct the current of charge carriers.

  8. Aptamer- and nucleic acid enzyme-based systems for simultaneous detection of multiple analytes

    Science.gov (United States)

    Lu, Yi [Champaign, IL; Liu, Juewen [Albuquerque, NM

    2011-11-15

    The present invention provides aptamer- and nucleic acid enzyme-based systems for simultaneously determining the presence and optionally the concentration of multiple analytes in a sample. Methods of utilizing the system and kits that include the sensor components are also provided. The system includes a first reactive polynucleotide that reacts to a first analyte; a second reactive polynucleotide that reacts to a second analyte; a third polynucleotide; a fourth polynucleotide; a first particle, coupled to the third polynucleotide; a second particle, coupled to the fourth polynucleotide; and at least one quencher, for quenching emissions of the first and second quantum dots, coupled to the first and second reactive polynucleotides. The first particle includes a quantum dot having a first emission wavelength. The second particle includes a second quantum dot having a second emission wavelength different from the first emission wavelength. The third polynucleotide and the fourth polynucleotide are different.

  9. Recent advances in synthesis of three-dimensional porous graphene and its applications in construction of electrochemical (bio)sensors for small biomolecules detection.

    Science.gov (United States)

    Lu, Lu

    2018-07-01

    Electrochemical (bio)sensors have attracted much attention due to their high sensitivity, fast response time, biocompatibility, low cost and easy miniaturization. Specially, ever-growing necessity and interest have given rise to the fast development of electrochemical (bio)sensors for the detection of small biomolecules. They play enormous roles in the life processes with various biological function, such as life signal transmission, genetic expression and metabolism. Moreover, their amount in body can be used as an indicator for diagnosis of many diseases. For example, an abnormal concentration of blood glucose can indicate hyperglycemia or hypoglycemia. Graphene (GR) shows great applications in electrochemical (bio)sensors. Compared with two-dimensional (2D) GR that is inclined to stack together due to the strong π-π interaction, monolithic 3D porous GR has larger specific area, superior mechanical strength, better stability, higher conductivity and electrocatalytic activity. So they attracted more and increasing attention as sensing materials for small biomolecules. This review focuses on the recent advances and strategies in the fabrication methods of 3D porous GR and the development of various electrochemical (bio)sensors based on porous GR and its nanocomposites for the detection of small biomolecules. The challenges and future efforts direction of high-performance electrochemical (bio)sensors based on 3D porous GR for more sensitive analysis of small biomolecules are discussed and proposed. It will give readers an overall understanding of their progress and provide some theoretical guidelines for their future efforts and development. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Aptamer therapeutics: A review of current practice

    International Nuclear Information System (INIS)

    Perkins, A.C.; Missailidis, S.

    2007-01-01

    Full text: The development of nuclease resistant oligonucleotide agents known as aptamers, offers an alternative to antibodies as targeting, diagnostic and delivery agents. The production technique of specific receptor binding molecules based on defined nucleic acid sequences is known as systematic evolution of ligands by exponential enrichment (SELEX). Using this technique, aptamers can be produced rapidly and with high homogeneity. Furthermore, they are stable over long term storage at ambient room temperatures. A monomeric aptamer is small in size, with a molecular weight as low as 5 to 10 kDa. However, the aptamer molecule may be used as a building block for custom designed targeting agents, offering several advantages. Aptamers have been found to bind their targets with high specificity and with dissociation constants in the subnanomolar or picomolar range. The first pharmaceutical aptamer formulation, Macugen (pegaptanib sodium injection) was approved in the United States in December of 2004. This is an anti-VEGF aptamer formulation used for the treatment of Neovascular agerelated macular degeneration. Other possibilities in cardiovascular, neurodegenerative and tropical medicine are apparent. As tumour targeting agents, aptamers penetrate tissues readily, reach peak levels quickly and clear from the body rapidly, thus having properties of low toxicity and immunoreactivity. Work with radiolabelled aptamers is limited to pre-clinical studies, but the body of evidence is steadily growing and aptamers are emerging as valuable clinical products for diagnostic imaging and therapy. Peptide coupling reactions between amino and carboxylic groups offer the possibility of labelling the aptamers with a number of chelators that, coupled with appropriate radionuclides, would generate novel targeted radiopharmaceuticals for the diagnosis and therapy of disease. The unparalleled combinatorial chemical diversity, small size and modification ability of aptamers is expected to

  11. Cobalt hexacyanoferrate modified multi-walled carbon nanotubes/graphite composite electrode as electrochemical sensor on microfluidic chip

    Energy Technology Data Exchange (ETDEWEB)

    Li Xinchun [School of Pharmaceutical Sciences, Sun Yat-sen University, 132 Waihuan East Road of Higher Education Mega Centre, Guangzhou 510006 (China); Chen Zuanguang, E-mail: chenzg@mail.sysu.edu.cn [School of Pharmaceutical Sciences, Sun Yat-sen University, 132 Waihuan East Road of Higher Education Mega Centre, Guangzhou 510006 (China); Zhong Yuwen, E-mail: yu0106@163.com [Center for Disease Control and Prevention of Guangdong Province, 176 Xingangxi, Guangzhou 510300 (China); Yang Fan; Pan Jianbin; Liang Yajing [School of Pharmaceutical Sciences, Sun Yat-sen University, 132 Waihuan East Road of Higher Education Mega Centre, Guangzhou 510006 (China)

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer CoHCF nanoparticles modified MWCNTs/graphite electrode use for electrochemistry on electrophoresis microchip for the first time. Black-Right-Pointing-Pointer Simultaneous, rapid, and sensitive electrochemical detection of hydrazine and isoniazid in real samples. Black-Right-Pointing-Pointer An exemplary work of CME sensor assembly onto microchip for determination of analytes with environmental significance. Black-Right-Pointing-Pointer Manifestation of the applicability and flexibility of CME sensor for electroanalysis on microfluidic chip. - Abstract: Nanomaterial-based electrochemical sensor has received significant interest. In this work, cobalt hexacyanoferrate modified multi-walled carbon nanotubes/graphite composite electrode was electrochemically prepared and exploited as an amperometric detector for microchip electrophoresis. The prepared sensor displayed rapid and sensitive response towards hydrazine and isoniazid oxidation, which was attributed to synergetic electrocatalytic effect of cobalt hexacyanoferrate and multi-walled carbon nanotubes. The sensitivity enhancement with nearly two orders of magnitude was gained, compared with the bare carbon paste electrode, with the detection limit of 0.91 {mu}M (S/N = 3) for hydrazine. Acceptable repeatability of the microanalysis system was verified by consecutive eleven injections of hydrazine without chip and electrode treatments, the RSDs for peak current and migration time were 3.4% and 2.1%, respectively. Meanwhile, well-shaped electrophoretic peaks were observed, mainly due to fast electron transfer of electroactive species on the modified electrode. The developed microchip-electrochemistry setup was successfully applied to the determination of hydrazine and isoniazid in river water and pharmaceutical preparation, respectively. Several merits of the novel electrochemical sensor coupled with microfluidic platform, such as comparative stability, easy fabrication and

  12. Aptasensor for ATP based on analyte-induced dissociation of ferrocene-aptamer conjugates from manganese dioxide nanosheets on a screen-printed carbon electrode

    International Nuclear Information System (INIS)

    Tang, Dianping; Hou, Li

    2016-01-01

    The authors report on a new electrochemical aptasensing strategy for the determination of adenosine - 5’-triphosphate (ATP) at picomolar levels. First, manganese dioxide (MnO 2 ) nanosheets with an average size of ∼70 nm were synthesized via a hot-injection method on the basis of reaction between potassium permanganate and the cationic detergent cetyltrimethylammonium bromide. The resulting MnO 2 nanosheets were then immobilized onto a pretreated screen-printed carbon electrode which readily binds the ferrocene-labeled ATP aptamer through the van der Waals force between the nucleobases and the basal plane of the nanoflakes. The immobilized ferrocene-aptamer conjugates activates the electrical contact with the electrode and produces a strong signal in the potentials scanned (0.0 to 1.0 V vs. Ag/AgCl). Upon addition of ATP, it will react with the aptamer and cause the dissociation of the ferrocene-aptamer from the nanosheets, this resulting in a decrease in the electrical signal. Under optimal conditions, this platform exhibits a detection limit as low as 0.32 nM of ATP. The repeatability and intermediate precision is below 10.7 % at a 10 nM concentration level. The method was applied to analyze blank fetal calf serum spiked with ATP, and the recoveries (at 3 concentration levels) ranged between 91.3 and 118 %. This detection scheme is rapid, simple, cost-effective, and does not require extensive sample preparation or multiple washing steps. (author)

  13. A label-free multi-functionalized electrochemical aptasensor based on a Fe_3O_4@3D-rGO@plasma-polymerized (4-vinyl pyridine) nanocomposite for the sensitive detection of proteins in whole blood

    International Nuclear Information System (INIS)

    Fang, Shaoming; Dong, Xiaodong; Liu, Shunli; Penng, Donglai; He, Linghao; Wang, Minghua; Fu, Guodong; Feng, Xiaozhong; Zhang, Zhihong

    2016-01-01

    In this paper, we report a novel label-free electrochemical aptasensor for detecting proteins in whole blood based on a three-component nanocomposite, in which ferriferrous oxide and three-dimensional graphene nanocomposite were modified with the plasma-polymerized 4-vinyl pyridine (Fe_3O_4@3D-rGO@PP4VP). In this novel sensing strategy, large amounts of amino groups in PP4VP facilitated the immobilization of aptamer strands via the strong electrostatic interaction between positively charged ammonium groups of the nanocomposites and negatively charged phosphate groups of aptamers. In the presence of thrombin, LYS (LYS), and platelet-derived growth factor-BB (PDGF-BB), the adsorbed aptamer strands on the developed nanocomposite surface caught the targeted proteins at the electrode interface. The aptamer preferred to be a barrier for electrons and inhibited electron transfer, leading to the decreased peak current of cyclic voltammetry measurements and the increased electron transfer resistance of electrochemical impedance spectroscopy. The determination of the thrombin, PDGF-BB, and LYS concentrations with this novel strategy showed low detection limits of 4.5, 29.4, and 14 pg·mL"−"1, and the analytical ranges extend from 0.01 to 50, 0.1 to 100, and 0.1 to 200 ng·mL"−"1, respectively. The resultant aptasensor exhibited high selectivity, acceptable reproducibility, and stability toward thrombin. The aptasensor could be used to detect thrombin in whole blood samples, thereby suggesting its possible application in clinical settings.

  14. An ultrasensitive electrochemical sensor for simultaneous determination of xanthine, hypoxanthine and uric acid based on Co doped CeO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Lavanya, N. [Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi 630003, Tamilnadu (India); Sekar, C., E-mail: Sekar2025@gmail.com [Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi 630003, Tamilnadu (India); Murugan, R.; Ravi, G. [Department of Physics, Alagappa University, Karaikudi 630003, Tamilnadu (India)

    2016-08-01

    A novel electrochemical sensor has been fabricated using Co doped CeO{sub 2} nanoparticles for selective and simultaneous determination of xanthine (XA), hypoxanthine (HXA) and uric acid (UA) in a phosphate buffer solution (PBS, pH 5.0) for the first time. The Co-CeO{sub 2} NPs have been prepared by microwave irradiation method and characterized by Powder XRD, Raman spectroscopy, HRTEM and VSM measurements. The electrochemical behaviours of XA, HXA and UA at the Co-CeO{sub 2} NPs modified glassy carbon electrode (GCE) were studied by cyclic voltammetry and square wave voltammetry methods. The modified electrode exhibited remarkably well-separated anodic peaks corresponding to the oxidation of XA, HXA and UA over the concentration range of 0.1–1000, 1–600 and 1–2200 μM with detection limits of 0.096, 0.36, and 0.12 μM (S/N = 3), respectively. For simultaneous detection by synchronous change of the concentrations of XA, HXA and UA, the linear responses were in the range of 1–400 μM each with the detection limits of 0.47, 0.26, and 0.43 μM (S/N = 3), respectively. The fabricated sensor was further applied to the detection of XA, HXA and UA in human urine samples with good selectivity and high reproducibility. - Highlights: • A novel electrochemical sensor has been fabricated for simultaneous determination of purine metabolites xanthine, hypoxanthine, and uric acid based on Co doped CeO{sub 2} nanoparticles. • The Co-CeO{sub 2} modified glassy carbon electrode exhibited wide linear range towards the detection of XA, HXA and UA than ever reported in the literature. • The fabricated sensor was successfully applied for the analysis of human urine samples with satisfactory results.

  15. Applications of Ionic Liquids in Electrochemical Sensors and Biosensors

    Directory of Open Access Journals (Sweden)

    Virendra V. Singh

    2012-01-01

    Full Text Available Ionic liquids (ILs are salt that exist in the liquid phase at and around 298 K and are comprised of a bulky, asymmetric organic cation and the anion usually inorganic ion but some ILs also with organic anion. ILs have attracted much attention as a replacement for traditional organic solvents as they possess many attractive properties. Among these properties, intrinsic ion conductivity, low volatility, high chemical and thermal stability, low combustibility, and wide electrochemical windows are few. Due to negligible or nonzero volatility of these solvents, they are considered “greener” for the environment as they do not evaporate like volatile organic compounds (VOCs. ILs have been widely used in electrodeposition, electrosynthesis, electrocatalysis, electrochemical capacitor, lubricants, plasticizers, solvent, lithium batteries, solvents to manufacture nanomaterials, extraction, gas absorption agents, and so forth. Besides a brief discussion of the introduction, history, and properties of ILs the major purpose of this review paper is to provide an overview on the advantages of ILs for the synthesis of conducting polymer and nanoparticle when compared to conventional media and also to focus on the electrochemical sensors and biosensors based on IL/composite modified macrodisk electrodes. Subsequently, recent developments and major strategies for enhancing sensing performance are discussed.

  16. Cyclic voltammetry, square wave voltammetry, electrochemical impedance spectroscopy and colorimetric method for hydrogen peroxide detection based on chitosan/silver nanocomposite

    Directory of Open Access Journals (Sweden)

    Hoang V. Tran

    2018-05-01

    Full Text Available In this paper, we demonstrate a promising method to fabricate a non-enzymatic stable, highly sensitive and selective hydrogen peroxide sensor based on a chitosan/silver nanoparticles (CS/AgNPs hybrid. Using this composite, we elaborated both electrochemical and colorimetric sensors for hydrogen peroxide detection. The colorimetric sensor is based on a homogenous reaction which fades the color of CS/AgNPs solutions from red-orange to colorless depending on hydrogen peroxide concentration. For the electrochemical sensor, CS/AgNPs were immobilized on glassy carbon electrodes and hydrogen peroxide was measured using cyclic voltammetry, square wave voltammetry and electrochemical impedance spectroscopy. The response time is less than 10 s and the detection limit is 5 μM. Keywords: Spectrophotometric detection, Electrochemical impedance spectroscopy, Square wave voltammetry, Cyclic voltammetry, Chitosan/silver nanoparticles (CS/AgNPs hybrid, Hydrogen peroxide

  17. Fabrication of a Microneedle/CNT Hierarchical Micro/Nano Surface Electrochemical Sensor and Its In-Vitro Glucose Sensing Characterization

    Directory of Open Access Journals (Sweden)

    Youngsam Yoon

    2013-12-01

    Full Text Available We report fabrication of a microneedle-based three-electrode integrated electrochemical sensor and in-vitro characterization of this sensor for glucose sensing applications. A piece of silicon was sequentially dry and wet etched to form a 15 × 15 array of tall (approximately 380 µm sharp silicon microneedles. Iron catalyst was deposited through a SU-8 shadow mask to form the working electrode and counter electrode. A multi-walled carbon nanotube forest was grown directly on the silicon microneedle array and platinum nano-particles were electrodeposited. Silver was deposited on the Si microneedle array through another shadow mask and chlorinated to form a Ag/AgCl reference electrode. The 3-electrode electrochemical sensor was tested for various glucose concentrations in the range of 3~20 mM in 0.01 M phosphate buffered saline (PBS solution. The sensor’s amperometric response to the glucose concentration is linear and its sensitivity was found to be 17.73 ± 3 μA/mM-cm2. This microneedle-based sensor has a potential to be used for painless diabetes testing applications.

  18. An electrochemical sensor for gallic acid based on Fe{sub 2}O{sub 3}/electro-reduced graphene oxide composite: Estimation for the antioxidant capacity index of wines

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Feng, E-mail: fgao1981@126.com [College of Chemistry and Environment, Fujian Province Key Laboratory of Morden Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000 (China); Department of Chemistry, Graduate School of Science and Engineering, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504 (Japan); Zheng, Delun [College of Chemistry and Environment, Fujian Province Key Laboratory of Morden Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000 (China); Tanaka, Hidekazu [Department of Chemistry, Graduate School of Science and Engineering, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504 (Japan); Zhan, Fengping; Yuan, Xiaoning; Gao, Fei [College of Chemistry and Environment, Fujian Province Key Laboratory of Morden Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000 (China); Wang, Qingxiang, E-mail: axiang236@126.com [College of Chemistry and Environment, Fujian Province Key Laboratory of Morden Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000 (China)

    2015-12-01

    A highly sensitive electrochemical sensor for gallic acid (GA), an important polyphenolic compound, was fabricated using the hybrid material of chitosan (CS), fishbone-shaped Fe{sub 2}O{sub 3} (fFe{sub 2}O{sub 3}), and electrochemically reduced graphene oxide (ERGO) as the sensing matrix. The electrochemical characterization experiments showed that the CS–fFe{sub 2}O{sub 3}–ERGO modified glassy carbon electrode (CS–fFe{sub 2}O{sub 3}–ERGO/GCE) had large surface area, excellent electronic conductivity and high stability. The GA presented a superior electrochemical response on CS–fFe{sub 2}O{sub 3}–ERGO/GCE in comparison with the single-component modified electrode. The electrochemical mechanism and optimal test conditions of GA on the electrode surface were carefully investigated. Under the optimal conditions, the oxidation peak currents in differential pulse voltammetry (DPV) experiments exhibited a good linear relationship with the logarithmic values of GA concentration over the range from 1.0 × 10{sup −6} M to 1.0 × 10{sup −4} M. Based on signal-to-noise (S/N) characteristic of 3, the detection limit was estimated to be 1.5 × 10{sup −7} M. The proposed sensor has also been applied for estimating the antioxidant capacity index of real samples of red and white wines. - Highlights: • Fishbone-shaped Fe{sub 2}O{sub 3} (fFe{sub 2}O{sub 3}) nanoparticles were synthesized by a simple template-free solvothermal method. • The nanocomposite of fFe{sub 2}O{sub 3}, graphene and chitosan was used as the sensing platform for gallic acid. • The sensor shows a wide linear range and low detection limit for gallic acid. • The antioxidant capacity index of wines was successfully evaluated by the sensor.

  19. A SERS-active sensor based on heterogeneous gold nanostar core-silver nanoparticle satellite assemblies for ultrasensitive detection of aflatoxinB1.

    Science.gov (United States)

    Li, Aike; Tang, Lijuan; Song, Dan; Song, Shanshan; Ma, Wei; Xu, Liguang; Kuang, Hua; Wu, Xiaoling; Liu, Liqiang; Chen, Xin; Xu, Chuanlai

    2016-01-28

    A surface-enhanced Raman scattering (SERS) sensor based on gold nanostar (Au NS) core-silver nanoparticle (Ag NP) satellites was fabricated for the first time to detect aflatoxinB1 (AFB1). We constructed the SERS sensor using AFB1 aptamer (DNA1)-modified Ag satellites and a complementary sequence (DNA2)-modified Au NS core. The Raman label (ATP) was modified on the surface of Ag satellites. The SERS signal was enhanced when the satellite NP was attached to the Au core NS. The AFB1 aptamer on the surface of Ag satellites would bind to the targets when AFB1 was present in the system, Ag satellites were then removed and the SERS signal decreased. This SERS sensor showed superior specificity for AFB1 and the linear detection range was from 1 to 1000 pg mL(-1) with the limit of detection (LOD) of 0.48 pg mL(-1). The excellent recovery experiment using peanut milk demonstrated that the sensor could be applied in food and environmental detection.

  20. Progress and Challenges in Developing Aptamer-Functionalized Targeted Drug Delivery Systems

    Directory of Open Access Journals (Sweden)

    Feng Jiang

    2015-10-01

    Full Text Available Aptamers, which can be screened via systematic evolution of ligands by exponential enrichment (SELEX, are superior ligands for molecular recognition due to their high selectivity and affinity. The interest in the use of aptamers as ligands for targeted drug delivery has been increasing due to their unique advantages. Based on their different compositions and preparation methods, aptamer-functionalized targeted drug delivery systems can be divided into two main categories: aptamer-small molecule conjugated systems and aptamer-nanomaterial conjugated systems. In this review, we not only summarize recent progress in aptamer selection and the application of aptamers in these targeted drug delivery systems but also discuss the advantages, challenges and new perspectives associated with these delivery systems.

  1. "DNA Origami Traffic Lights" with a Split Aptamer Sensor for a Bicolor Fluorescence Readout.

    Science.gov (United States)

    Walter, Heidi-Kristin; Bauer, Jens; Steinmeyer, Jeannine; Kuzuya, Akinori; Niemeyer, Christof M; Wagenknecht, Hans-Achim

    2017-04-12

    A split aptamer for adenosine triphosphate (ATP) was embedded as a recognition unit into two levers of a nanomechanical DNA origami construct by extension and modification of selected staple strands. An additional optical module in the stem of the split aptamer comprised two different cyanine-styryl dyes that underwent an energy transfer from green (donor) to red (acceptor) emission if two ATP molecules were bound as target molecule to the recognition module and thereby brought the dyes in close proximity. As a result, the ATP as a target triggered the DNA origami shape transition and yielded a fluorescence color change from green to red as readout. Conventional atomic force microscopy (AFM) images confirmed the topology change from the open form of the DNA origami in the absence of ATP into the closed form in the presence of the target molecule. The obtained closed/open ratios in the absence and presence of target molecules tracked well with the fluorescence color ratios and thereby validated the bicolor fluorescence readout. The correct positioning of the split aptamer as the functional unit farthest away from the fulcrum of the DNA origami was crucial for the aptasensing by fluorescence readout. The fluorescence color change allowed additionally to follow the topology change of the DNA origami aptasensor in real time in solution. The concepts of fluorescence energy transfer for bicolor readout in a split aptamer in solution, and AFM on surfaces, were successfully combined in a single DNA origami construct to obtain a bimodal readout. These results are important for future custom DNA devices for chemical-biological and bioanalytical purposes because they are not only working as simple aptamers but are also visible by AFM on the single-molecule level.

  2. Magnetic microparticle-based SELEX process for the identification of highly specific aptamers of heart marker--brain natriuretic peptide

    International Nuclear Information System (INIS)

    Wang, Ying; Cao, Jinxuan; Wu, Jingjing; Xue, Feng; Teng, Jun; Chen, Wei; Chen, Yinji; Lu, Chunxia

    2015-01-01

    The brain natriuretic peptide (BNP) is known to be an effective indicator of heart failure. It has been widely adopted as a parameter for the evaluation of heart function of cardiovascular and cerebrovascular diseases (CVDs). Current immune-recognition based methods for the detection of BNP are limited, to a certain extent, by the poor stability of the antibody and by high costs. The availability of an aptamer specific for BNP would greatly assist in the rapid and early diagnosis of CVDs. In order to screen for such an aptamer by the SELEX method, we have used magnetic microparticles (m-MPs) as the separation substrate for immobilization of target BNP. The use of m-MPs for rapid separation of combined aptamers enables bound oligonucleotides to be separated directly, quickly, and with high efficiency. After 14 rounds of selection, a panel of six aptamers against BNP was identified. Their dissociation constants range from 12.5 to 139 nM. The classical technique for conjugation of a target to m-MPs is known to be applicable to various fields, and we conclude that this m-MP-based SELEX process provides a general strategy for screening of specific aptamers against various analytes. (author)

  3. Unique, Voltammetric Electrochemical Sensors for Organic Contaminants, with Excellent Discrimination, Based on Conducting Polymer-, Aptamer- and Other-Functionalized Sensing Electrodes, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In ongoing and recent prior work for the Army, this firm has developed a unique, patented technology for voltammetric electrochemical detection of toxic gases,...

  4. Electrochemical sensors and devices for heavy metals assay in water: the French groups' contribution

    Directory of Open Access Journals (Sweden)

    Luca ePUJOL

    2014-04-01

    Full Text Available A great challenge in the area of heavy metal trace detection is the development of electrochemical techniques and devices which are user-friendly, robust, selective, with low detection limits and allowing fast analyses. This review presents the major contribution of the French scientific academic community in the field of electrochemical sensors and electroanalytical methods within the last 20 years. From the well-known polarography to the up-to-date generation of functionalized interfaces, the different strategies dedicated to analytical performances improvement are exposed: stripping voltammetry, solid mercury-free electrode, ion selective sensor, carbon based materials, chemically modified electrodes, nano-structured surfaces. The paper particularly emphasizes their advantages and limits face to the last Water Frame Directive devoted to the Environmental Quality Standards for heavy metals. Recent trends on trace metal speciation as well as on automatic on line monitoring devices are also evoked.

  5. Aptamer-based electrochemical assay of 17β-estradiol using a glassy carbon electrode modified with copper sulfide nanosheets and gold nanoparticles, and applying enzyme-based signal amplification

    International Nuclear Information System (INIS)

    Huang, Ke-Jing; Liu, Yu-Jie; Zhang, Ji-Zong

    2015-01-01

    We have developed an electrochemical method for the determination of 17β-estradiol. A glassy carbon electrode was modified with a composite made from copper sulfide nanosheets, gold nanoparticles, and glucose oxidase. The copper sulfide nanosheet was prepared by a single-step hydrothermal process, and its properties were characterized by X-ray powder diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy and transmission electron microscopy. Finally, an estradiol-specific aptamer was assembled on the electrode. The copper sulfide nanosheet on the electrode surface acts as a relatively good electrical conductor. Glucose oxidase acts as an indicator, and the dual modification of glucose oxidase and gold nanoparticles for signal amplification. The determination of 17β-estradiol was performed by differential pulse voltammetry of glucose oxidase because the signal measured at typically −0.43 V depends on the concentration of 17β-estradiol because addition of 17β-estradiol at electrode hinders electron transfer. A linear relationship exists between the peak current and the logarithm of concentration of 17β-estradiol in the 0.5 pM to 5 nM range, with a 60 f. detection limit (at 3σ/S). The method displays good selectivity over bisphenol A, 1-aminoanthraquinone and naphthalene even if present in 100-fold concentrations. (author)

  6. Isolation of a new ssDNA aptamer against staphylococcal enterotoxin B based on CNBr-activated sepharose-4B affinity chromatography.

    Science.gov (United States)

    Hedayati Ch, Mojtaba; Amani, Jafar; Sedighian, Hamid; Amin, Mohsen; Salimian, Jafar; Halabian, Raheleh; Imani Fooladi, Abbas Ali

    2016-09-01

    Staphylococcus aureus are potent human pathogens possessing arsenal of virulence factors. Staphylococcal food poisoning (SFP) and respiratory infections mediated by staphylococcal enterotoxin B (SEB) are common clinical manifestations. Many diagnostic techniques are based on serological detection and quantification of SEB in different food and clinical samples. Aptamers are known as new therapeutic and detection tools which are available in different ssDNA, dsDNA and protein structures. In this study, we used a new set of ssDNA aptamers against SEB. The methods used included preparation of a dsDNA library using standard SEB protein as the target analyte, affinity chromatography matrix in microfuge tubes, SELEX procedures to isolate specific ssDNA-aptamer as an affinity ligand, aptamer purification using ethanol precipitation method, affinity binding assay using ELISA, aptamer cloning and specificity test. Among 12 readable sequences, three of them were selected as the most appropriate aptamer because of their affinity and specificity to SEB. This study presents a new set of ssDNA aptamer with favorable selectivity to SEB through 12 rounds of SELEX. Selected aptamers were used to detect SEB in infected serum samples. Results showed that SEB c1 aptamer (2 µg SEB/100 nM aptamer) had favorable specificity to SEB (kd  = 2.3 × 10(-11) ). In conclusion, aptamers can be considered as useful tools for detecting and evaluating SEB. The results showed that affinity chromatography was an affordable assay with acceptable accuracy to isolate sensitive and selective novel aptamers. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Laser-based gas sensors keep moisture out of pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2006-07-15

    Natural gas often contains contaminants that cause corrosion, and long-term deterioration, and must be cleaned and brought to pipeline standards before it can be delivered to high-pressure, long-distance pipelines. Many older sensors produce false data that can result in contaminated gas getting through. This article presented details of the SpectraSensor, a new laser-based sensor technology used by the El Paso Natural Gas Company (EPNG). The SpectraSensor is comprised of a tunable diode laser (TDL) based technology developed by the National American Space Agency (NASA). The gas analyzer provides non-contact measurement of moisture, carbon dioxide, and other corrosives in natural gas pipelines, and the tunable laser-based gas sensors are fast, accurate, and flexible. Producers can monitor El Paso's gas analyzer readings by capturing the electronic signal from El Paso's unit via a SCADA system and view the readings from control rooms. While initial purchase price is higher than more problematic surface-based gas sensors, an evaluation of the technology has indicated that maintenance savings alone may provide an almost immediate return on investments. Unlike electrochemical and crystal gas sensors, laser-based gas analyzers do not come into direct contact with any substances, a fact which practically eliminates maintenance and operational costs. Studies have shown that the cost of operating conventional electrochemical sensors can result in a cumulative annual expense exceeding $50,000 per unit including labour; recalibration and rebuilding; back-up sensor heads; and gas dehydration and tariffs. 1 fig.

  8. Novel Spectroscopic and Electrochemical Sensors and Nanoprobes for the Characterization of Food and Biological Antioxidants.

    Science.gov (United States)

    Apak, Reşat; Demirci Çekiç, Sema; Üzer, Ayşem; Çelik, Saliha Esin; Bener, Mustafa; Bekdeşer, Burcu; Can, Ziya; Sağlam, Şener; Önem, Ayşe Nur; Erçağ, Erol

    2018-01-11

    Since an unbalanced excess of reactive oxygen/nitrogen species (ROS/RNS) causes various diseases, determination of antioxidants that can counter oxidative stress is important in food and biological analyses. Optical/electrochemical nanosensors have attracted attention in antioxidant activity (AOA) assessment because of their increased sensitivity and selectivity. Optical sensors offer advantages such as low cost, flexibility, remote control, speed, miniaturization and on-site/in situ analysis. Electrochemical sensors using noble metal nanoparticles on modified electrodes better catalyze bioelectrochemical reactions. We summarize the design principles of colorimetric sensors and nanoprobes for food antioxidants (including electron-transfer based and ROS/RNS scavenging assays) and important milestones contributed by our laboratory. We present novel sensors and nanoprobes together with their mechanisms and analytical performances. Our colorimetric sensors for AOA measurement made use of cupric-neocuproine and ferric-phenanthroline complexes immobilized on a Nafion membrane. We recently designed an optical oxidant/antioxidant sensor using N , N -dimethyl- p -phenylene diamine (DMPD) as probe, from which ROS produced colored DMPD-quinone cationic radicals electrostatically retained on a Nafion membrane. The attenuation of initial color by antioxidants enabled indirect AOA estimation. The surface plasmon resonance absorption of silver nanoparticles as a result of enlargement of citrate-reduced seed particles by antioxidant addition enabled a linear response of AOA. We determined biothiols with Ellman reagent-derivatized gold nanoparticles.

  9. Hybrid electronic tongue based on optical and electrochemical microsensors for quality control of wine.

    Science.gov (United States)

    Gutiérrez, Manuel; Llobera, Andreu; Vila-Planas, Jordi; Capdevila, Fina; Demming, Stefanie; Büttgenbach, Stephanus; Mínguez, Santiago; Jiménez-Jorquera, Cecilia

    2010-07-01

    A multiparametric system able to classify red and white wines according to the grape varieties and for analysing some specific parameters is presented. The system, known as hybrid electronic tongue, consists of an array of electrochemical microsensors and a colorimetric optofluidic system. The array of electrochemical sensors is composed of six ISFETs based sensors, a conductivity sensor, a redox potential sensor and two amperometric electrodes, an Au microelectrode and a microelectrode for sensing electrochemical oxygen demand. The optofluidic system is entirely fabricated in polymer technology and comprises a hollow structure, air mirrors, microlenses and self-alignment structures. The data obtained from these sensors has been treated with multivariate advanced tools; Principal Component Analysis (PCA), for the patterning recognition and classification of wine samples, and Partial-Least Squares (PLS) regression, for quantification of several chemical and optical parameters of interest in wine quality. The results have demonstrated the utility of this system for distinguishing the samples according to the grape variety and year vintage and for quantifying several sample parameters of interest in wine quality control.

  10. Development of an aptamer-based concentration method for the detection of Trypanosoma cruzi in blood.

    Directory of Open Access Journals (Sweden)

    Rana Nagarkatti

    Full Text Available Trypanosoma cruzi, a blood-borne parasite, is the etiological agent of Chagas disease. T. cruzi trypomastigotes, the infectious life cycle stage, can be detected in blood of infected individuals using PCR-based methods. However, soon after a natural infection, or during the chronic phase of Chagas disease, the number of parasites in blood may be very low and thus difficult to detect by PCR. To facilitate PCR-based detection methods, a parasite concentration approach was explored. A whole cell SELEX strategy was utilized to develop serum stable RNA aptamers that bind to live T. cruzi trypomastigotes. These aptamers bound to the parasite with high affinities (8-25 nM range. The highest affinity aptamer, Apt68, also demonstrated high specificity as it did not interact with the insect stage epimastigotes of T. cruzi nor with other related trypanosomatid parasites, L. donovani and T. brucei, suggesting that the target of Apt68 was expressed only on T. cruzi trypomastigotes. Biotinylated Apt68, immobilized on a solid phase, was able to capture live parasites. These captured parasites were visible microscopically, as large motile aggregates, formed when the aptamer coated paramagnetic beads bound to the surface of the trypomastigotes. Additionally, Apt68 was also able to capture and aggregate trypomastigotes from several isolates of the two major genotypes of the parasite. Using a magnet, these parasite-bead aggregates could be purified from parasite-spiked whole blood samples, even at concentrations as low as 5 parasites in 15 ml of whole blood, as detected by a real-time PCR assay. Our results show that aptamers can be used as pathogen specific ligands to capture and facilitate PCR-based detection of T. cruzi in blood.

  11. Nucleic Acid Aptamers Against Proteases

    DEFF Research Database (Denmark)

    Dupont, D M; Andersen, L M; Bøtkjær, Kenneth Alrø

    2011-01-01

    , directed against blood coagulation factors, are in clinical trials as anticoagulant drugs. Several of the studies on protease-binding aptamers have been pioneering and trend-setting in the field. The work with protease-binding aptamers also demonstrates many interesting examples of non-standard selection......Proteases are potential or realized therapeutic targets in a wide variety of pathological conditions. Moreover, proteases are classical subjects for studies of enzymatic and regulatory mechanisms. We here review the literature on nucleic acid aptamers selected with proteases as targets. Designing...... small molecule protease inhibitors of sufficient specificity has proved a daunting task. Aptamers seem to represent a promising alternative. In our review, we concentrate on biochemical mechanisms of aptamer selection, proteinaptamer recognition, protease inhibition, and advantages of aptamers...

  12. Advances in electrospun carbon fiber-based electrochemical sensing platforms for bioanalytical applications.

    Science.gov (United States)

    Mao, Xianwen; Tian, Wenda; Hatton, T Alan; Rutledge, Gregory C

    2016-02-01

    Electrochemical sensing is an efficient and inexpensive method for detection of a range of chemicals of biological, clinical, and environmental interest. Carbon materials-based electrodes are commonly employed for the development of electrochemical sensors because of their low cost, biocompatibility, and facile electron transfer kinetics. Electrospun carbon fibers (ECFs), prepared by electrospinning of a polymeric precursor and subsequent thermal treatment, have emerged as promising carbon systems for biosensing applications since the electrochemical properties of these carbon fibers can be easily modified by processing conditions and post-treatment. This review addresses recent progress in the use of ECFs for sensor fabrication and analyte detection. We focus on the modification strategies of ECFs and identification of the key components that impart the bioelectroanalytical activities, and point out the future challenges that must be addressed in order to advance the fundamental understanding of the ECF electrochemistry and to realize the practical applications of ECF-based sensing devices.

  13. Gas Sensors Based on Electrodeposited Polymers

    Directory of Open Access Journals (Sweden)

    Boris Lakard

    2015-07-01

    Full Text Available Electrochemically deposited polymers, also called “synthetic metals”, have emerged as potential candidates for chemical sensing due to their interesting and tunable chemical, electrical, and structural properties. In particular, most of these polymers (including polypyrrole, polyaniline, polythiophene and their derivatives can be used as the sensitive layer of conductimetric gas sensors because of their conducting properties. An important advantage of polymer-based gas sensors is their efficiency at room temperature. This characteristic is interesting since most of the commercially-available sensors, usually based on metal oxides, work at high temperatures (300–400 °C. Consequently, polymer-based gas sensors are playing a growing role in the improvement of public health and environment control because they can lead to gas sensors operating with rapid detection, high sensitivity, small size, and specificity in atmospheric conditions. In this review, the recent advances in electrodeposited polymer-based gas sensors are summarized and discussed. It is shown that the sensing characteristics of electrodeposited polymers can be improved by chemical functionalization, nanostructuration, or mixing with other functional materials to form composites or hybrid materials.

  14. Aptamer-modified nanoparticles and their use in cancer diagnostics and treatment.

    Science.gov (United States)

    Reinemann, Christine; Strehlitz, Beate

    2014-01-06

    Aptamers are single-stranded deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) oligonucleotides, which are able to bind their target with high selectivity and affinity. Owing to their multiple talents, aptamers combined with nanoparticles are nanosystems well qualified for the development of new biomedical devices for analytical, imaging, drug delivery and many other medical applications. Because of their target affinity, aptamers can direct the transport of aptamer-nanoparticle conjugates. The binding of the aptamers to the target "anchors" the nanoparticle-aptamer conjugates at their site of action. In this way, nanoparticle-based bioimaging and smart drug delivery are enabled, especially by use of systematically developed aptamers for cancer-associated biomarkers. This review article gives a brief overview of recent relevant research into aptamers and trends in their use in cancer diagnostics and therapy. A concise description of aptamers, their development and functionalities relating to nanoparticle modification is given. The main part of the article is dedicated to current developments of aptamer-modified nanoparticles and their use in cancer diagnostics and treatment.

  15. Novel Ag@TiO2 nanocomposite synthesized by electrochemically active biofilm for nonenzymatic hydrogen peroxide sensor

    International Nuclear Information System (INIS)

    Khan, Mohammad Mansoob; Ansari, Sajid Ali; Lee, Jintae; Cho, Moo Hwan

    2013-01-01

    A novel nonenzymatic sensor for H 2 O 2 was developed based on an Ag@TiO 2 nanocomposite synthesized using a simple and cost effective approach with an electrochemically active biofilm. The optical, structural, morphological and electrochemical properties of the as-prepared Ag@TiO 2 nanocomposite were examined by UV–vis spectroscopy, X-ray diffraction, transmission electron microscopy and cyclic voltammetry (CV). The Ag@TiO 2 nanocomposite was fabricated on a glassy carbon electrode (GCE) and their electrochemical performance was analyzed by CV, differential pulse voltammetry and electrochemical impedance spectroscopy. The Ag@TiO 2 nanocomposite modified GCE (Ag@TiO 2 /GCE) displayed excellent performance towards H 2 O 2 sensing at − 0.73 V in the linear response range from 0.83 μM to 43.3 μM, within a detection limit and sensitivity of 0.83 μM and ∼ 65.2328 ± 0.01 μAμM −1 cm −2 , respectively. In addition, Ag@TiO 2 /GCE exhibited good operational reproducibility and long term stability. - Graphical abstract: Synthesis of Ag@TiO 2 nanocomposite by electrochemically active biofilm for H 2 O 2 sensing. - Highlights: • Electrochemically active biofilm (EAB) • EAB mediated synthesis of Ag@TiO 2 nanocomposite • Ag@TiO 2 nanocomposite modified glassy carbon electrode • Ag@TiO 2 /GCE for H 2 O 2 sensing • Nonenzymatic sensor for H 2 O 2

  16. Online Monitoring of Electrochemical Degradation of Paracetamol through a Biomimetic Sensor

    Directory of Open Access Journals (Sweden)

    Mariana Calora Quintino de Oliveira

    2011-01-01

    Full Text Available This paper reports, for the first time, the online monitoring to the electrochemical degradation of the paracetamol using a biomimetic sensor coupled to a Flow Injection Analysis (FIA system. The electrochemical degradation of the drug was carried out in aqueous medium using a flow-by reactor with a DSA anode. The process efficiency was monitored at real time by the biomimetic sensor constructed by modifying a glassy carbon electrode with a Nafion membrane doped with iron tetrapyridinoporphyrazine (FeTPyPz. Simultaneously, we carried out off-line analysis by liquid chromatography (HPLC during the experiments in order to validate the proposed system. In addition, to investigate the degradation products of the paracetamol electrolysis, we used the techniques of UPLC/MS and GC/MS.

  17. Aptamer nanomedicine for cancer therapeutics: barriers and potential for translation.

    Science.gov (United States)

    Lao, Yeh-Hsing; Phua, Kyle K L; Leong, Kam W

    2015-03-24

    Aptamer nanomedicine, including therapeutic aptamers and aptamer nanocomplexes, is beginning to fulfill its potential in both clinical trials and preclinical studies. Especially in oncology, aptamer nanomedicine may perform better than conventional or antibody-based chemotherapeutics due to specificity compared to the former and stability compared to the latter. Many proof-of-concept studies on applying aptamers to drug delivery, gene therapy, and cancer imaging have shown promising efficacy and impressive safety in vivo toward translation. Yet, there remains ample room for improvement and critical barriers to be addressed. In this review, we will first introduce the recent progress in clinical trials of aptamer nanomedicine, followed by a discussion of the barriers at the design and in vivo application stages. We will then highlight recent advances and engineering strategies proposed to tackle these barriers. Aptamer cancer nanomedicine has the potential to address one of the most important healthcare issues of the society.

  18. Selection of specific aptamer against enrofloxacin and fabrication of graphene oxide based label-free fluorescent assay.

    Science.gov (United States)

    Dolati, Somayeh; Ramezani, Mohammad; Nabavinia, Maryam Sadat; Soheili, Vahid; Abnous, Khalil; Taghdisi, Seyed Mohammad

    2018-05-15

    Specific ssDNA aptamers for the antibiotic enrofloxacin (ENR) were isolated from an enriched nucleotide library by SELEX (Systematic Evolution of Ligands by EXponential enrichment) method with high binding affinity. After seven rounds, five aptamers were selected and identified. Apt58 with highest affinity and sensitivity (K d  = 14.19 nM) was employed to develop a label-free fluorescent biosensing approach based on aptamer, graphene oxide (GO) and native fluorescence of ENR for determination of ENR residue in raw milk samples. Under optimized experimental conditions, the linear range was from 5 nM to 250 nM and LOD was calculated to be 3.7 nM, and the recovery rate was between 94.1% and 108.5%. The integration of aptamer and GO in this bioassay provides a promising way for rapid, sensitive and cost-effective detection of ENR in real samples like raw milk. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Design and Electrochemical Study of Platinum-Based Nanomaterials for Sensitive Detection of Nitric Oxide in Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Maduraiveeran Govindhan

    2016-11-01

    Full Text Available The extensive physiological and regulatory roles of nitric oxide (NO have spurred the development of NO sensors, which are of critical importance in neuroscience and various medical applications. The development of electrochemical NO sensors is of significant importance, and has garnered a tremendous amount of attention due to their high sensitivity and selectivity, rapid response, low cost, miniaturization, and the possibility of real-time monitoring. Nanostructured platinum (Pt-based materials have attracted considerable interest regarding their use in the design of electrochemical sensors for the detection of NO, due to their unique properties and the potential for new and innovative applications. This review focuses primarily on advances and insights into the utilization of nanostructured Pt-based electrode materials, such as nanoporous Pt, Pt and PtAu nanoparticles, PtAu nanoparticle/reduced graphene oxide (rGO, and PtW nanoparticle/rGO-ionic liquid (IL nanocomposites, for the detection of NO. The design, fabrication, characterization, and integration of electrochemical NO sensing performance, selectivity, and durability are addressed. The attractive electrochemical properties of Pt-based nanomaterials have great potential for increasing the competitiveness of these new sensors and open up new opportunities in the creation of novel NO-sensing technologies for biological and medical applications.

  20. Affinity-Mediated Homogeneous Electrochemical Aptasensor on a Graphene Platform for Ultrasensitive Biomolecule Detection via Exonuclease-Assisted Target-Analog Recycling Amplification.

    Science.gov (United States)

    Ge, Lei; Wang, Wenxiao; Sun, Ximei; Hou, Ting; Li, Feng

    2016-02-16

    As is well-known, graphene shows a remarkable difference in affinity toward nonstructured single-stranded (ss) DNA and double-stranded (ds) DNA. This property makes it popular to prepare DNA-based optical sensors. In this work, taking this unique property of graphene in combination with the sensitive electrochemical transducer, we report a novel affinity-mediated homogeneous electrochemical aptasensor using graphene modified glassy carbon electrode (GCE) as the sensing platform. In this approach, the specific aptamer-target recognition is converted into an ultrasensitive electrochemical signal output with the aid of a novel T7 exonuclease (T7Exo)-assisted target-analog recycling amplification strategy, in which the ingeniously designed methylene blue (MB)-labeled hairpin DNA reporters are digested in the presence of target and, then, converted to numerous MB-labeled long ssDNAs. The distinct difference in differential pulse voltammetry response between the designed hairpin reporters and the generated long ssDNAs on the graphene/GCE allows ultrasensitive detection of target biomolecules. Herein, the design and working principle of this homogeneous electrochemical aptasensor were elucidated, and the working conditions were optimized. The gel electrophoresis results further demonstrate that the designed T7Exo-assisted target-analog recycling amplification strategy can work well. This electrochemical aptasensor realizes the detection of biomolecule in a homogeneous solution without immobilization of any bioprobe on electrode surface. Moreover, this versatile homogeneous electrochemical sensing system was used for the determination of biomolecules in real serum samples with satisfying results.

  1. Aptamer-Targeted Plasmonic Photothermal Therapy of Cancer

    Directory of Open Access Journals (Sweden)

    Olga S. Kolovskaya

    2017-12-01

    Full Text Available Novel nanoscale bioconjugates combining unique plasmonic photothermal properties of gold nanoparticles (AuNPs with targeted delivery using cell-specific DNA aptamers have a tremendous potential for medical diagnostics and therapy of many cell-based diseases. In this study, we demonstrate the high anti-cancer activity of aptamer-conjugated, 37-nm spherical gold nanoparticles toward Ehrlich carcinoma in tumor-bearing mice after photothermal treatment. The synthetic anti-tumor aptamers bring the nanoparticles precisely to the desired cells and selectively eliminate cancer cells after the subsequent laser treatment. To prove tumor eradication, we used positron emission tomography (PET utilizing radioactive glucose and computer tomography, followed by histological analysis of cancer tissue. Three injections of aptamer-conjugated AuNPs and 5 min of laser irradiations are enough to make the tumor undetectable by PET. Histological analysis proves PET results and shows lower damage of healthy tissue in addition to a higher treatment efficiency and selectivity of the gold nanoparticles functionalized with aptamers in comparison to control experiments using free unconjugated nanoparticles.

  2. Inkjet printing of nanoporous gold electrode arrays on cellulose membranes for high-sensitive paper-like electrochemical oxygen sensors using ionic liquid electrolytes.

    Science.gov (United States)

    Hu, Chengguo; Bai, Xiaoyun; Wang, Yingkai; Jin, Wei; Zhang, Xuan; Hu, Shengshui

    2012-04-17

    A simple approach to the mass production of nanoporous gold electrode arrays on cellulose membranes for electrochemical sensing of oxygen using ionic liquid (IL) electrolytes was established. The approach, combining the inkjet printing of gold nanoparticle (GNP) patterns with the self-catalytic growth of these patterns into conducting layers, can fabricate hundreds of self-designed gold arrays on cellulose membranes within several hours using an inexpensive inkjet printer. The resulting paper-based gold electrode arrays (PGEAs) had several unique properties as thin-film sensor platforms, including good conductivity, excellent flexibility, high integration, and low cost. The porous nature of PGEAs also allowed the addition of electrolytes from the back cellulose membrane side and controllably produced large three-phase electrolyte/electrode/gas interfaces at the front electrode side. A novel paper-based solid-state electrochemical oxygen (O(2)) sensor was therefore developed using an IL electrolyte, 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF(6)). The sensor looked like a piece of paper but possessed high sensitivity for O(2) in a linear range from 0.054 to 0.177 v/v %, along with a low detection limit of 0.0075% and a short response time of less than 10 s, foreseeing its promising applications in developing cost-effective and environment-friendly paper-based electrochemical gas sensors.

  3. DNA-Aptamers Binding Aminoglycoside Antibiotics

    Directory of Open Access Journals (Sweden)

    Nadia Nikolaus

    2014-02-01

    Full Text Available Aptamers are short, single stranded DNA or RNA oligonucleotides that are able to bind specifically and with high affinity to their non-nucleic acid target molecules. This binding reaction enables their application as biorecognition elements in biosensors and assays. As antibiotic residues pose a problem contributing to the emergence of antibiotic-resistant pathogens and thereby reducing the effectiveness of the drug to fight human infections, we selected aptamers targeted against the aminoglycoside antibiotic kanamycin A with the aim of constructing a robust and functional assay that can be used for water analysis. With this work we show that aptamers that were derived from a Capture-SELEX procedure targeting against kanamycin A also display binding to related aminoglycoside antibiotics. The binding patterns differ among all tested aptamers so that there are highly substance specific aptamers and more group specific aptamers binding to a different variety of aminoglycoside antibiotics. Also the region of the aminoglycoside antibiotics responsible for aptamer binding can be estimated. Affinities of the different aptamers for their target substance, kanamycin A, are measured with different approaches and are in the micromolar range. Finally, the proof of principle of an assay for detection of kanamycin A in a real water sample is given.

  4. A Highly Sensitive Electrochemical Glucose Sensor By Nickel-Epoxy Electrode With Non-Enzymatic Sensor

    Directory of Open Access Journals (Sweden)

    Riyanto Riyanto

    2016-03-01

    Full Text Available The preparation of new sensor for glucose was based on the fact that glucose can be determined by non-enzymatic glucose oxidase. The Ni metals (99.98% purity, 0.5 mm thick, Aldrich Chemical Company was used to prepare Ni-Epoxy electrode. The Ni-epoxy electrodes were prepared in square cut of 1 cm and 1 mm by length and wide respectively. The Ni metal electrodes were connected to silver wire with silver conducting paint prior covered with epoxy gum. The prepared of nickel-epoxy modified electrode showed outstanding electro catalytic activity toward the oxidation of glucose in alkaline solution. The result from this research are correlation of determination using Nickel-Epoxyelectrode for electroanalysis of glucose in NaOH was R2 = 0.9984. LOQ, LOD and recovery of the Nickel-Epoxy electrode towards glucose were found to be 4.4 μM, 1.48 μM and 98.19%, respectively. The Nickel-Epoxy wire based electrochemical glucose sensor demonstrates good sensitivity, wide linear range, outstanding detection limit, attractive selectivity, good reproducibility, high stability as well as prominent feasibility use of non-enzymatic sensor for monitoring glucose in human urine owing to its advantages of low cost, simple preparation and excellent properties for glucose detection.

  5. An Easily Fabricated Electrochemical Sensor Based on a Graphene-Modified Glassy Carbon Electrode for Determination of Octopamine and Tyramine

    Science.gov (United States)

    Zhang, Yang; Zhang, Meiqin; Wei, Qianhui; Gao, Yongjie; Guo, Lijuan; Al-Ghanim, Khalid A.; Mahboob, Shahid; Zhang, Xueji

    2016-01-01

    A simple electrochemical sensor has been developed for highly sensitive detection of octopamine and tyramine by electrodepositing reduced graphene oxide (ERGO) nanosheets onto the surface of a glassy carbon electrode (GCE). The electrocatalytic oxidation of octopamine and tyramine is individually investigated at the surface of the ERGO modified glassy carbon electrode (ERGO/GCE) by using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Several essential factors including the deposition cycle of reduced graphene oxide nanosheets and the pH of the running buffer were investigated in order to determine the optimum conditions. Furthermore, the sensor was applied to the quantification of octopamine and tyramine by DPV in the concentration ranges from 0.5 to 40 μM and 0.1 to 25 μM, respectively. In addition, the limits of detection of octopamine and tyramine were calculated to be 0.1 μM and 0.03 μM (S/N = 3), respectively. The sensor showed good reproducibility, selectivity and stability. Finally, the sensor successfully detected octopamine and tyramine in commercially available beer with satisfactory recovery ranges which were 98.5%–104.7% and 102.2%–103.1%, respectively. These results indicate the ERGO/GCE based sensor is suitable for the detection of octopamine and tyramine. PMID:27089341

  6. Small-Molecule Binding Aptamers: Selection Strategies, Characterization, and Applications

    Directory of Open Access Journals (Sweden)

    Annamaria eRuscito

    2016-05-01

    Full Text Available Aptamers are single-stranded, synthetic oligonucleotides that fold into 3-dimensional shapes capable of binding non-covalently with high affinity and specificity to a target molecule. They are generated via an in vitro process known as the Systematic Evolution of Ligands by EXponential enrichment, from which candidates are screened and characterized, and then applied in aptamer-based biosensors for target detection. Aptamers for small molecule targets such as toxins, antibiotics, molecular markers, drugs, and heavy metals will be the focus of this review. Their accurate detection is ultimately needed for the protection and wellbeing of humans and animals. However, issues such as the drastic difference in size of the aptamer and small molecule make it challenging to select, characterize, and apply aptamers for the detection of small molecules. Thus, recent (since 2012 notable advances in small molecule aptamers, which have overcome some of these challenges, are presented here, while defining challenges that still exist are discussed

  7. Aptamer selection and applications for breast cancer diagnostics and therapy

    Directory of Open Access Journals (Sweden)

    Mei Liu

    2017-11-01

    Full Text Available Abstract Aptamers are short non-coding, single-stranded oligonucleotides (RNA or DNA developed through Systematic Evolution of Ligands by Exponential enrichment (SELEX in vitro. Similar to antibodies, aptamers can bind to specific targets with high affinity, and are considered promising therapeutic agents as they have several advantages over antibodies, including high specificity, stability, and non-immunogenicity. Furthermore, aptamers can be produced at a low cost and easily modified, and are, therefore, called “chemical antibodies”. In the past years, a variety of aptamers specifically bound to both breast cancer biomarkers and cells had been selected. Besides, taking advantage of nanomaterials, there were a number of aptamer-nanomaterial conjugates been developed and widely investigated for diagnostics and targeted therapy of breast cancer. In this short review, we first present a systematical review of various aptamer selection methods. Then, various aptamer-based diagnostic and therapeutic strategies of breast cancer were provided. Finally, the current problems, challenges, and future perspectives in the field were thoroughly discussed.

  8. Biological and chemical sensors based on graphene materials.

    Science.gov (United States)

    Liu, Yuxin; Dong, Xiaochen; Chen, Peng

    2012-03-21

    Owing to their extraordinary electrical, chemical, optical, mechanical and structural properties, graphene and its derivatives have stimulated exploding interests in their sensor applications ever since the first isolation of free-standing graphene sheets in year 2004. This article critically and comprehensively reviews the emerging graphene-based electrochemical sensors, electronic sensors, optical sensors, and nanopore sensors for biological or chemical detection. We emphasize on the underlying detection (or signal transduction) mechanisms, the unique roles and advantages of the used graphene materials. Properties and preparations of different graphene materials, their functionalizations are also comparatively discussed in view of sensor development. Finally, the perspective and current challenges of graphene sensors are outlined (312 references).

  9. Electrochemical Impedance Sensors for Monitoring Trace Amounts of NO3 in Selected Growing Media.

    Science.gov (United States)

    Ghaffari, Seyed Alireza; Caron, William-O; Loubier, Mathilde; Normandeau, Charles-O; Viens, Jeff; Lamhamedi, Mohammed S; Gosselin, Benoit; Messaddeq, Younes

    2015-07-21

    With the advent of smart cities and big data, precision agriculture allows the feeding of sensor data into online databases for continuous crop monitoring, production optimization, and data storage. This paper describes a low-cost, compact, and scalable nitrate sensor based on electrochemical impedance spectroscopy for monitoring trace amounts of NO3- in selected growing media. The nitrate sensor can be integrated to conventional microelectronics to perform online nitrate sensing continuously over a wide concentration range from 0.1 ppm to 100 ppm, with a response time of about 1 min, and feed data into a database for storage and analysis. The paper describes the structural design, the Nyquist impedance response, the measurement sensitivity and accuracy, and the field testing of the nitrate sensor performed within tree nursery settings under ISO/IEC 17025 certifications.

  10. Preparation and characterization of AuNPs/CNTs-ErGO electrochemical sensors for highly sensitive detection of hydrazine.

    Science.gov (United States)

    Zhao, Zhenting; Sun, Yongjiao; Li, Pengwei; Zhang, Wendong; Lian, Kun; Hu, Jie; Chen, Yong

    2016-09-01

    A highly sensitive electrochemical sensor of hydrazine has been fabricated by Au nanoparticles (AuNPs) coating of carbon nanotubes-electrochemical reduced graphene oxide composite film (CNTs-ErGO) on glassy carbon electrode (GCE). Cyclic voltammetry and potential amperometry have been used to investigate the electrochemical properties of the fabricated sensors for hydrazine detection. The performances of the sensors were optimized by varying the CNTs to ErGO ratio and the quantity of Au nanoparticles. The results show that under optimal conditions, a sensitivity of 9.73μAμM(-1)cm(-2), a short response time of 3s, and a low detection limit of 0.065μM could be achieved with a linear concentration response range from 0.3μM to 319μM. The enhanced electrochemical performances could be attributed to the synergistic effect between AuNPs and CNTs-ErGO film and the outstanding catalytic effect of the Au nanoparticles. Finally, the sensor was successfully used to analyse the tap water, showing high potential for practical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Methods To Identify Aptamers against Cell Surface Biomarkers

    Directory of Open Access Journals (Sweden)

    Frédéric Ducongé

    2011-09-01

    Full Text Available Aptamers are nucleic acid-based ligands identified through a process of molecular evolution named SELEX (Systematic Evolution of Ligands by Exponential enrichment. During the last 10-15 years, numerous aptamers have been developed specifically against targets present on or associated with the surface of human cells or infectious pathogens such as viruses, bacteria, fungi or parasites. Several of the aptamers have been described as potent probes, rivalling antibodies, for use in flow cytometry or microscopy. Some have also been used as drugs by inhibiting or activating functions of their targets in a manner similar to neutralizing or agonistic antibodies. Additionally, it is straightforward to conjugate aptamers to other agents without losing their affinity and they have successfully been used in vitro and in vivo to deliver drugs, siRNA, nanoparticles or contrast agents to target cells. Hence, aptamers identified against cell surface biomarkers represent a promising class of ligands. This review presents the different strategies of SELEX that have been developed to identify aptamers for cell surface-associated proteins as well as some of the methods that are used to study their binding on living cells.

  12. Molecularly Imprinted Polypyrrole Based Impedimentric Sensor for Theophylline Determination

    International Nuclear Information System (INIS)

    Ratautaite, Vilma; Janssens, Stoffel D.; Haenen, Ken; Nesládek, Milos; Ramanaviciene, Almira; Baleviciute, Ieva; Ramanavicius, Arunas

    2014-01-01

    Highlights: • Sensor based on polypyrrole imprinted by theophylline (MIP) deposited on oxygen terminated boron-doped nanocrystalline diamond was developed. • This structure was applied as impedimetric sensor sensitive for theophylline. • Optimal polymer formation conditions suitable for MIP formation were elaborated. • Some analytical parameters were determined and evaluated. - Abstract: In this study development of impedimetric sensor based on oxygen terminated boron-doped nanocrystalline diamond (B:NCD:O) modified with theophylline imprinted polypyrrole is described. Hydrogen peroxide induced chemical formation of polypyrrole molecularly imprinted by theophylline was applied for the modification of conducting silicon substrate covered by B:NCD:O film. Non-imprinted polypyrrole layer was formed on similar substrate in order to prove efficiency of imprinted polypyrrole. Electrochemical impedance spectroscopy was applied for the evaluation of analyte-induced changes in electrochemical capacitance/resistance. The impact of polymerization duration on the capacitance of impedimetric sensor was estimated. A different impedance behavior was observed at different ratio of polymerized monomer and template molecule in the polymerization media. The influence of ethanol as additive to polymerization media on registered changes in capacitance/resistance was evaluated. Degradation of sensor stored in buffer solution was evaluated

  13. Nanotechnology: A Tool for Improved Performance on Electrochemical Screen-Printed (BioSensors

    Directory of Open Access Journals (Sweden)

    Elena Jubete

    2009-01-01

    Full Text Available Screen-printing technology is a low-cost process, widely used in electronics production, especially in the fabrication of disposable electrodes for (biosensor applications. The pastes used for deposition of the successive layers are based on a polymeric binder with metallic dispersions or graphite, and can also contain functional materials such as cofactors, stabilizers and mediators. More recently metal nanoparticles, nanowires and carbon nanotubes have also been included either in these pastes or as a later stage on the working electrode. This review will summarize the use of nanomaterials to improve the electrochemical sensing capability of screen-printed sensors. It will cover mainly disposable sensors and biosensors for biomedical interest and toxicity monitoring, compiling recent examples where several types of metallic and carbon-based nanostructures are responsible for enhancing the performance of these devices.

  14. Ultrafast Capillary Electrophoresis Isolation of DNA Aptamer for the PCR Amplification-Based Small Analyte Sensing

    Directory of Open Access Journals (Sweden)

    Emmanuelle eFiore

    2015-08-01

    Full Text Available Here, we report a new homogeneous DNA amplification-based aptamer assay for small analyte sensing. The aptamer of adenosine chosen as the model analyte was split into two fragments able to assemble in the presence of target. Primers were introduced at extremities of one fragment in order to generate the amplifiable DNA component. The amount of amplifiable fragment was quantifiable by Real-Time Polymerase Chain Reaction (RT-PCR amplification and directly reliable on adenosine concentration. This approach combines the very high separation efficiency and the homogeneous format (without immobilization of capillary electrophoresis and the sensitivity of real time PCR amplification. An ultrafast isolation of target-bound split aptamer (60 s was developed by designing a capillary electrophoresis input/ouput scheme. Such method was successfully applied to the determination of adenosine with a LOD of 1 µM.

  15. The detection of platelet derived growth factor using decoupling of quencher-oligonucleotide from aptamer/quantum dot bioconjugates

    International Nuclear Information System (INIS)

    Kim, Gang-Il; Sung, Yun-Mo; Kim, Kyung-Woo; Oh, Min-Kyu

    2009-01-01

    High-sensitivity, high-specificity detection of platelet derived growth factor (PDGF)-BB was realized using the change in fluorescence resonance energy transfer (FRET) occurring between quantum dot (QD) donors and black hole quencher (BHQ) acceptors. CdSe/ZnS QD/mercaptoacetic acid (MAA)/PDGF aptamer bioconjugates were successfully synthesized using ligand exchange. Black hole quencher (BHQ)-bearing oligonucleotide molecules showing partial sequence matching to PDGF aptamer were attached to PDGF aptamers and photoluminescence (PL) quenching was obtained through FRET. By adding target PDGF-BB to the bioconjugates containing BHQs, PL recovery was detected due to detachment of BHQ-bearing oligonucleotide from the PDGF aptamer as a result of the difference in affinity to the PDGF aptamer. The detection limit of the sensor was ∼0.4 nM and the linearity was maintained up to 1.6 nM in the PL intensity versus concentration curve. Measurement of PL recovery was suggested as a strong tool for high-sensitivity detection of PDGF-BB. Epidermal growth factor (EGF), the negative control molecule, did not contribute to PL recovery due to lack of binding affinity to the PDGF aptamers, which demonstrates the selectivity of the biosensor.

  16. Layer-by-Layer films based on biopolymers extracted from red seaweeds and polyaniline for applications in electrochemical sensors of chromium VI

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira Farias, Emanuel Airton de; Corrêa dos Santos, Marianne; Araujo Dionísio, Natália de; Quelemes, Patrick V.; Souza Almeida Leite, José Roberto de [Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, CMRV, UFPI, Parnaíba, PI 64202-020 (Brazil); Eaton, Peter [UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto (Portugal); Alves da Silva, Durcilene [Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, CMRV, UFPI, Parnaíba, PI 64202-020 (Brazil); Eiras, Carla, E-mail: eiras@cnpq.br [Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, CMRV, UFPI, Parnaíba, PI 64202-020 (Brazil); Laboratório Interdisciplinar de Materiais Avançados, LIMAV, CCN, UFPI, Teresina, PI 64049-550 (Brazil)

    2015-10-15

    Graphical abstract: - Highlights: • LbL films based on PANI and polysaccharides of seaweeds were produced and applied sensors of Cr (VI). - Abstract: This paper proposes a new application for natural polysaccharides (agar and carrageenan), both extracted from the cell wall of red seaweeds. Thin films were prepared by the Layer-by-Layer (LbL) self-assembly technique onto ITO (tin-doped indium oxide), where the polysaccharides of interest were deposited in layers alternating with polyaniline (PANI). The films developed were characterized by cyclic voltammetry (CV), ultraviolet–visible spectroscopy (UV–vis) and atomic force microscopy (AFM). Results showed the presence of agar as well as carrageenan, which improves the electrochemical stability of the conducting polymer in an acid medium. The interactions at the molecular level between PANI and the biopolymers affected the most appropriate sequence of deposition as employed in the process of material immobilization and also influenced the resulting morphology. Among the films studied, the most promising system as regards electrochemical measurements was the ITO/agar/PANI system, which was subsequently employed in the electrochemical detection of chromium (VI)

  17. Layer-by-Layer films based on biopolymers extracted from red seaweeds and polyaniline for applications in electrochemical sensors of chromium VI

    International Nuclear Information System (INIS)

    Oliveira Farias, Emanuel Airton de; Corrêa dos Santos, Marianne; Araujo Dionísio, Natália de; Quelemes, Patrick V.; Souza Almeida Leite, José Roberto de; Eaton, Peter; Alves da Silva, Durcilene; Eiras, Carla

    2015-01-01

    Graphical abstract: - Highlights: • LbL films based on PANI and polysaccharides of seaweeds were produced and applied sensors of Cr (VI). - Abstract: This paper proposes a new application for natural polysaccharides (agar and carrageenan), both extracted from the cell wall of red seaweeds. Thin films were prepared by the Layer-by-Layer (LbL) self-assembly technique onto ITO (tin-doped indium oxide), where the polysaccharides of interest were deposited in layers alternating with polyaniline (PANI). The films developed were characterized by cyclic voltammetry (CV), ultraviolet–visible spectroscopy (UV–vis) and atomic force microscopy (AFM). Results showed the presence of agar as well as carrageenan, which improves the electrochemical stability of the conducting polymer in an acid medium. The interactions at the molecular level between PANI and the biopolymers affected the most appropriate sequence of deposition as employed in the process of material immobilization and also influenced the resulting morphology. Among the films studied, the most promising system as regards electrochemical measurements was the ITO/agar/PANI system, which was subsequently employed in the electrochemical detection of chromium (VI)

  18. Comparative study on aptamers as recognition elements for antibiotics in a label-free all-polymer biosensor

    DEFF Research Database (Denmark)

    Dapra, Johannes; Lauridsen, Lasse Holm; Nielsen, Alex Toftgaard

    2013-01-01

    was covalently functionalized with two aptamer probes with affinity to ampicillin or kanamycin A, respectively. Using electrochemical impedance spectroscopy (EIS) we were able to detect ampicillin in a concentration range from 100pM to 1 μM and kanamycin A from 10nM to 1mM. The obtained EIS spectra were fitted...

  19. An electronic channel switching-based aptasensor for ultrasensitive protein detection

    Energy Technology Data Exchange (ETDEWEB)

    Li Hongbo; Wang Cui [State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Wu Zaisheng, E-mail: wuzaisheng@163.com [State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Lu Limin; Qiu Liping; Zhou Hui; Shen Guoli [State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Yu Ruqin, E-mail: rqyu@hnu.edu.cn [State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China)

    2013-01-03

    Highlights: Black-Right-Pointing-Pointer Target IgE is successfully designed to serve as a barrier to separate enzyme from its substrate. Black-Right-Pointing-Pointer This sensing platform of electronic channel switching-based aptasensor can be simply manipulated. Black-Right-Pointing-Pointer The stable hairpin structure of anti-IgE aptamer is utilized to detect target IgE. Black-Right-Pointing-Pointer The sensor is ultrasensitive sensitivity, excellent selectivity and small volume of sample. Black-Right-Pointing-Pointer It is a powerful platform to be further expanded to detect more kinds of proteins and even cells. - Abstract: Due to the ubiquity and essential of the proteins in all living organisms, the identification and quantification of disease-specific proteins are particularly important. Because the conformational change of aptamer upon its target or probe/target/probe sandwich often is the primary prerequisite for the design of an electrochemical aptameric assay system, it is extremely difficult to construct the electrochemical aptasensor for protein assay because the corresponding aptamers cannot often meet the requirement. To circumvent the obstacles mentioned, an electronic channel switching-based (ECS) aptasensor for ultrasensitive protein detection is developed. The essential achievement made is that an innovative sensing concept is proposed: the hairpin structure of aptamer is designed to pull electroactive species toward electrode surface and makes the surface-immobilized IgE serve as a barrier that separates enzyme from its substrate. It seemingly ensures that the ECS aptasensor exhibits most excellent assay features, such as, a detection limit of 4.44 Multiplication-Sign 10{sup -6} {mu}g mL{sup -1} (22.7 fM, 220 zmol in 10-{mu}L sample) (demonstrating a 5 orders of magnitude improvement in detection sensitivity compared with classical electronic aptasensors) and dynamic response range from 4.44 Multiplication-Sign 10{sup -6} to 4.44 Multiplication

  20. Aptamer-based isolation and subsequent imaging of mesenchymal stem cells in ischemic myocard by magnetic resonance imaging.

    Science.gov (United States)

    Schäfer, R; Wiskirchen, J; Guo, K; Neumann, B; Kehlbach, R; Pintaske, J; Voth, V; Walker, T; Scheule, A M; Greiner, T O; Hermanutz-Klein, U; Claussen, C D; Northoff, H; Ziemer, G; Wendel, H P

    2007-10-01

    Mesenchymal stem cells (MSC) seem to be a promising cell source for cellular cardiomyoplasty. We recently developed a new aptamer-based specific selection of MSC to provide "ready to transplant" cells directly after isolation. We evaluated MRI tracking of newly isolated and freshly transplanted MSC in the heart using one short ex vivo selection step combining specific aptamer-based isolation and labeling of the cells. Bone marrow (BM) was collected from healthy pigs. The animals were euthanized and the heart was placed in a perfusion model. During cold ischemia, immunomagnetic isolation of MSC from the BM by MSC-specific aptamers labeled with Dynabeads was performed within 2 h. For histological identification the cells were additionally stained with PKH26. Approx. 3 x 10(6) of the freshly aptamer-isolated cells were injected into the ramus interventricularis anterior (RIVA) and 5 x 10(5) cells were injected directly into myocardial tissue after damaging the respective area by freezing (cryo-scar). 3 x 10(6) of the aptamer-isolated cells were kept for further characterization (FACS and differentiation assays). 20 h after cell transplantation, MRI of the heart using a clinical 3.0 Tesla whole body scanner (Magnetom Trio, Siemens, Germany) was performed followed by histological examinations. The average yield of sorted cells from 120 ml BM was 7 x 10(6) cells. The cells were cultured and showed MSC-like properties. MRI showed reproducible artifacts within the RIVA-perfusion area and the cryo-scar with surprisingly excellent quality. The histological examination of the biopsies showed PKH26-positive cells within the areas which were positive in the MRI in contrast to the control biopsies. Immunomagnetic separation of MSC by specific aptamers linked to magnetic particles is feasible, effective and combines a specific separation and labeling technique to a "one stop shop" strategy.

  1. Disposable electrochemical sensor to evaluate the phytoremediation of the aquatic plant Lemna minor L. toward Pb(2+) and/or Cd(2+).

    Science.gov (United States)

    Neagu, Daniela; Arduini, Fabiana; Quintana, Josefina Calvo; Di Cori, Patrizia; Forni, Cinzia; Moscone, Danila

    2014-07-01

    In this work a miniaturized and disposable electrochemical sensor was developed to evaluate the cadmium and lead ion phytoremediation potential by the floating aquatic macrophyte Lemna minor L. The sensor is based on a screen-printed electrode modified "in-situ" with bismuth film, which is more environmentally friendly than the mercury-based sensor usually adopted for lead and cadmium ion detection. The sensor was coupled with a portable potentiostat for the simultaneous measurement of cadmium and lead ions by stripping analysis. The optimized analytical system allows the simultaneous detection of both heavy metals at the ppb level (LOD equal to 0.3 and 2 ppb for lead and cadmium ions, respectively) with the advantage of using a miniaturized and cost-effective system. The sensor was then applied for the evaluation of Pb(2+) or/and Cd(2+) uptake by measuring the amount of the heavy metals both in growth medium and in plant tissues during 1 week experiments. In this way, the use of Lemna minor coupled with a portable electrochemical sensor allows the set up of a model system able both to remove the heavy metals and to measure "in-situ" the magnitude of heavy metal removal.

  2. Electrochemical sensor for dopamine based on a novel graphene-molecular imprinted polymers composite recognition element

    DEFF Research Database (Denmark)

    Mao, Yan; Bao, Yu; Gan, Shiyu

    2011-01-01

    A novel composite of graphene sheets/Congo red-molecular imprinted polymers (GSCR-MIPs) was synthesized through free radical polymerization (FRP) and applied as a molecular recognition element to construct dopamine (DA) electrochemical sensor. The template molecules (DA) were firstly absorbed...... at the GSCR surface due to their excellent affinity, and subsequently, selective copolymerization of methacrylic acid (MAA) and ethylene glycol dimethacrylate (EGDMA) was further achieved at the GSCR surface. Potential scanning was presented to extract DA molecules from the imprinted polymers film...

  3. Ion sensors based on novel fiber organic electrochemical transistors for lead ion detection.

    Science.gov (United States)

    Wang, Yuedan; Zhou, Zhou; Qing, Xing; Zhong, Weibing; Liu, Qiongzhen; Wang, Wenwen; Li, Mufang; Liu, Ke; Wang, Dong

    2016-08-01

    Fiber organic electrochemical transistors (FECTs) based on polypyrrole and nanofibers have been prepared for the first time. FECTs exhibited excellent electrical performances, on/off ratios up to 10(4) and low applied voltages below 2 V. The ion sensitivity behavior of the fiber organic electrochemical transistors was investigated. It exhibited that the transfer curve of FECTs shifted to lower gate voltage with increasing cations concentration, the sensitivity reached to 446 μA/dec in the 10(-5)-10(-2) M Pb(2+) concentration range. The ion selective properties of the FECTs have also been systematically studied for the detection of potassium, calcium, aluminum, and lead ions. The devices with different cations showed great difference in response curves. It was suitable for selectively monitoring Pb(2+) with respect to other cations. The results indicated FECTs were very effective for electrochemical sensing of lead ion, which opened a promising perspective for wearable electronics in healthcare and biological application. Graphical Abstract The schematic diagram of fiber organic electrochemical transistors based on polypyrrole and nanofibers for ion sensing.

  4. Integration of reconfigurable potentiometric electrochemical sensors into a digital microfluidic platform.

    Science.gov (United States)

    Farzbod, Ali; Moon, Hyejin

    2018-05-30

    This paper presents the demonstration of on-chip fabrication of a potassium-selective sensor array enabled by electrowetting on dielectric digital microfluidics for the first time. This demonstration proves the concept that electrochemical sensors can be seamlessly integrated with sample preparation units in a digital microfluidic platform. More significantly, the successful on-chip fabrication of a sensor array indicates that sensors become reconfigurable and have longer lifetime in a digital microfluidic platform. The on-chip fabrication of ion-selective electrodes includes electroplating Ag followed by forming AgCl layer by chemical oxidation and depositing a thin layer of desired polymer-based ion selective membrane on one of the sensor electrodes. In this study, potassium ionophores work as potassium ion channels and make the membrane selective to potassium ions. This selectiveness results in the voltage difference across the membrane layer, which is correlated with potassium ion concentration. The calibration curve of the fabricated potassium-selective electrode demonstrates the slope of 58 mV/dec for potassium concentration in KCl sample solutions and shows good agreement with the ideal Nernstian response. The proposed sensor platform is an outstanding candidate for a portable home-use for continuous monitoring of ions thanks to its advantages such as easy automation of sample preparation and detection processes, elongated sensor lifetime, minimal membrane and sample consumption, and user-definable/reconfigurable sensor array. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Electrochemical Impedance Sensors for Monitoring Trace Amounts of NO3 in Selected Growing Media

    Directory of Open Access Journals (Sweden)

    Seyed Alireza Ghaffari

    2015-07-01

    Full Text Available With the advent of smart cities and big data, precision agriculture allows the feeding of sensor data into online databases for continuous crop monitoring, production optimization, and data storage. This paper describes a low-cost, compact, and scalable nitrate sensor based on electrochemical impedance spectroscopy for monitoring trace amounts of NO3− in selected growing media. The nitrate sensor can be integrated to conventional microelectronics to perform online nitrate sensing continuously over a wide concentration range from 0.1 ppm to 100 ppm, with a response time of about 1 min, and feed data into a database for storage and analysis. The paper describes the structural design, the Nyquist impedance response, the measurement sensitivity and accuracy, and the field testing of the nitrate sensor performed within tree nursery settings under ISO/IEC 17025 certifications.

  6. A Graphene-Based Electrochemical Sensor for Rapid Determination of Phenols in Water

    OpenAIRE

    Chen, Kun; Zhang, Zai-Li; Liang, Yong-Mei; Liu, Wei

    2013-01-01

    A glassy carbon electrode (GCE) coated with a graphene/polymer film was fabricated for rapid determination of phenols in aqueous solutions. The electrochemical behavior of different phenols at the graphene/polymer-coated GCE was also investigated. In PBS buffer solution with a pH of 6.5, hydroquinone exhibits a well-defined reduction peak at the modified GCE. Based on this, an electrochemical method for the direct determination of phenols is proposed. Investigating different parameters reveal...

  7. Paper-based sensors for rapid detection of virulence factor produced by Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Alatraktchi, Fatima AlZahra'a; Noori, Jafar Safaa; Tanev, Georgi Plamenov

    2018-01-01

    method to quantify pyocyanin in bacterial cultures without the conventional time consuming pretreatment of the samples. The electrochemical properties of the paper-based sensors were evaluated by ferri/ferrocyanide as a redox mediator, and showed reliable sensing performance. The paper-based sensors...

  8. Miniaturized Planar Room Temperature Ionic Liquid Electrochemical Gas Sensor for Rapid Multiple Gas Pollutants Monitoring.

    Science.gov (United States)

    Wan, Hao; Yin, Heyu; Lin, Lu; Zeng, Xiangqun; Mason, Andrew J

    2018-02-01

    The growing impact of airborne pollutants and explosive gases on human health and occupational safety has escalated the demand of sensors to monitor hazardous gases. This paper presents a new miniaturized planar electrochemical gas sensor for rapid measurement of multiple gaseous hazards. The gas sensor features a porous polytetrafluoroethylene substrate that enables fast gas diffusion and room temperature ionic liquid as the electrolyte. Metal sputtering was utilized for platinum electrodes fabrication to enhance adhesion between the electrodes and the substrate. Together with carefully selected electrochemical methods, the miniaturized gas sensor is capable of measuring multiple gases including oxygen, methane, ozone and sulfur dioxide that are important to human health and safety. Compared to its manually-assembled Clark-cell predecessor, this sensor provides better sensitivity, linearity and repeatability, as validated for oxygen monitoring. With solid performance, fast response and miniaturized size, this sensor is promising for deployment in wearable devices for real-time point-of-exposure gas pollutant monitoring.

  9. A Molecularly Imprinted Electrochemical Gas Sensor to Sense Butylated Hydroxytoluene in Air

    Directory of Open Access Journals (Sweden)

    Shadi Emam

    2018-01-01

    Full Text Available Alzheimer’s disease (AD is a neurodegenerative disease, which affects millions of people worldwide. Curing this disease has not gained much success so far. Exhaled breath gas analysis offers an inexpensive, noninvasive, and immediate method for detecting a large number of diseases, including AD. In this paper, a new method is proposed to detect butylated hydroxytoluene (BHT in the air, which is one of the chemicals found in the breath print of AD patients. A three-layer sensor was formed through deposition of a thin layer of graphene onto a glassy carbon substrate. Selective binding of the analyte was facilitated by electrochemically initiated polymerization of a solution containing the desired target molecule. Subsequent polymerization and removal of the analyte yielded a layer of polypyrrole, a conductive polymer, on top of the sensor containing molecularly imprinted cavities selective for the target molecule. Two sets of sensors have been developed. First, the graphene sensor has been fabricated with a layer of reduced graphene oxide (RGO and tested over 5–100 part per million (ppm. For the second batch, Prussian blue was added to graphene before polymerization, mainly for enhancing the electrochemical properties. The sensor was tested over 0.02-1 parts per billion (ppb level of concentration while the sensor resistance has been monitored.

  10. Construction of a Bivalent Thrombin Binding Aptamer and Its Antidote with Improved Properties

    Directory of Open Access Journals (Sweden)

    Quintin W. Hughes

    2017-10-01

    Full Text Available Aptamers are short synthetic DNA or RNA oligonucleotides that adopt secondary and tertiary conformations based on Watson–Crick base-pairing interactions and can be used to target a range of different molecules. Two aptamers, HD1 and HD22, that bind to exosites I and II of the human thrombin molecule, respectively, have been extensively studied due to their anticoagulant potentials. However, a fundamental issue preventing the clinical translation of many aptamers is degradation by nucleases and reduced pharmacokinetic properties requiring higher dosing regimens more often. In this study, we have chemically modified the design of previously described thrombin binding aptamers targeting exosites I, HD1, and exosite II, HD22. The individual aptamers were first modified with an inverted deoxythymidine nucleotide, and then constructed bivalent aptamers by connecting the HD1 and HD22 aptamers either through a triethylene glycol (TEG linkage or four consecutive deoxythymidines together with an inverted deoxythymidine nucleotide at the 3′-end. The anticoagulation potential, the reversal of coagulation with different antidote sequences, and the nuclease stability of the aptamers were then investigated. The results showed that a bivalent aptamer RNV220 containing an inverted deoxythymidine and a TEG linkage chemistry significantly enhanced the anticoagulation properties in blood plasma and nuclease stability compared to the existing aptamer designs. Furthermore, a bivalent antidote sequence RNV220AD efficiently reversed the anticoagulation effect of RNV220 in blood plasma. Based on our results, we believe that RNV220 could be developed as a potential anticoagulant therapeutic molecule.

  11. Integrated electrochemical sensor array for on-line monitoring of yeast fermentations

    NARCIS (Netherlands)

    Krommenhoek, E.E.; Gardeniers, Johannes G.E.; Bomer, Johan G.; Li, X.; Ottens, M.; van Dedem, G.W.K.; van Leeuwen, M.; van Gulik, W.M.; van der Wielen, L.A.M.; Heijnen, J.J.; van den Berg, Albert

    2007-01-01

    This paper describes the design, modeling, and experimental characterization of an electrochemical sensor array for on-line monitoring of fermentor conditions in both miniaturized cell assays and in industrial scale fertnentations. The viable biomass concentration is determined from impedance

  12. Selection and characterization of DNA aptamers against Staphylococcus aureus enterotoxin C1.

    Science.gov (United States)

    Huang, Yukun; Chen, Xiujuan; Duan, Nuo; Wu, Shijia; Wang, Zhouping; Wei, Xinlin; Wang, Yuanfeng

    2015-01-01

    Enterotoxins from pathogenic bacteria are known as the main reason that can cause the bacterial foodborne diseases. In this study, aptamers that bound to Staphylococcus aureus enterotoxin C1 (SEC1) with high affinity and selectivity were generated in vitro by twelve rounds of selection based on magnetic separation technology, with a low-level dissociation constant (Kd) value of 65.14 ± 11.64 nmol/L of aptamer C10. Aptamer-based quantification of SEC1 in the food sample by a graphene oxide (GO)-based method was implemented to investigate the potential of the aptamer against SEC1 with a limit of detection of 6 ng/mL. On the basis of this work, biosensors using the selected SEC1 aptamers as new molecular recognition elements could be applied for innovative determinations of SEC1. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Chemical sensors based on molecularly modified metallic nanoparticles

    International Nuclear Information System (INIS)

    Haick, Hossam

    2007-01-01

    This paper presents a concise, although admittedly non-exhaustive, didactic review of some of the main concepts and approaches related to the use of molecularly modified metal nanoparticles in or as chemical sensors. This paper attempts to pull together different views and terminologies used in sensors based on molecularly modified metal nanoparticles, including those established upon electrochemical, optical, surface Plasmon resonance, piezoelectric and electrical transduction approaches. Finally, this paper discusses briefly the main advantages and disadvantages of each of the presented class of sensors. (review article)

  14. In vitro selection of RNA aptamer specific to Salmonella typhimurium.

    Science.gov (United States)

    Han, Seung Ryul; Lee, Seong-Wook

    2013-06-28

    Salmonella is a major foodborne pathogen that causes a variety of human diseases. Development of ligands directly and specifically binding to the Salmonella will be crucial for the rapid detection of, and thus for efficient protection from, the virulent bacteria. In this study, we identified a RNA aptamer-based ligand that can specifically recognize Salmonella Typhimurium through SELEX technology. To this end, we isolated and characterized an RNase-resistant RNA aptamer that bound to the OmpC protein of Salmonella Typhimurium with high specificity and affinity (Kd ~ 20 nM). Of note, the selected aptamer was found to specifically bind to Salmonella Typhimurium, but neither to Gram-positive bacteria (Staphylococcus aureus) nor to other Gram-negative bacteria (Escherichia coli O157:H7). This was evinced by aptamer-immobilized ELISA and aptamer-linked precipitation experiments. This Salmonella species-specific aptamer could be useful as a diagnostic ligand against pathogen-caused foodborne sickness.

  15. Highly-sensitive and rapid detection of ponceau 4R and tartrazine in drinks using alumina microfibers-based electrochemical sensor.

    Science.gov (United States)

    Zhang, Yuanyuan; Hu, Lintong; Liu, Xin; Liu, Bifeng; Wu, Kangbing

    2015-01-01

    Alumina microfibers were prepared and used to construct an electrochemical sensor for simultaneous detection of ponceau 4R and tartrazine. In pH 3.6 acetate buffer, two oxidation waves at 0.67 and 1.01 V were observed. Due to porous structures and large surface area, alumina microfibers exhibited high accumulation efficiency to ponceau 4R and tartrazine, and increased their oxidation signals remarkably. The oxidation mechanisms were studied, and their oxidation reaction involved one electron and one proton. The influences of pH value, amount of alumina microfibers and accumulation time were examined. As a result, a highly-sensitive, rapid and simple electrochemical method was newly developed for simultaneous detection of ponceau 4R and tartrazine. The detection limits were 0.8 and 2.0 nM for ponceau 4R and tartrazine. This new sensor was used in different drink samples, and the results consisted with the values that obtained by high-performance liquid chromatography. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Evaluation of Staphylococcus aureus DNA aptamer by enzyme-linked aptamer assay and isothermal titration calorimetry.

    Science.gov (United States)

    Bayraç, Ceren; Öktem, Hüseyin Avni

    2017-02-01

    To monitor the specificity of Staphylococcus aureus aptamer (SA-31) against its target cell, we used enzyme-linked aptamer assay. In the presence of target cell, horseradish peroxidase-conjugated streptavidin bound to biotin-labeled SA-31 showed specific binding to S  aureus among 3 different bacteria with limit of detection of 10 3 colony-forming unit per milliliter. The apparent K a was 1.39 μM -1  ± 0.3 μM -1 . The binding of SA-31 to membrane proteins extracted from cell surface was characterized using isothermal titration calorimetry, and the effect of changes in binding temperature and salt concentrations of binding buffer was evaluated based on thermodynamic parameters (K a , ΔH, and ΔG). Since binding of aptamer to its targets solely depends on its 3-dimensional structure under experimental conditions used in selection process, the change in temperature and ion concentration changed the affinity of SA-31 to its target on surface of bacteria. At 4°C, SA-31 did not show an affinity to its target with poor heat change upon injection of membrane fraction to aptamer solution. However, the apparent association constants of SA-31 slightly varied from K a  = 1.56 μM -1  ± 0.69 μM -1 at 25°C to K a  = 1.03 μM -1  ± 0.9 μM -1 at 37°C. At spontaneously occurring exothermic binding reactions, affinities of S aureus aptamer to its target were also 9.44 μM -1  ± 0.38 μM -1 at 50mM, 1.60 μM -1  ± 0.11 μM -1 at 137mM, and 3.28 μM -1  ± 0.46 μM -1 at 200 mM of salt concentration. In this study, it was demonstrated that enzyme-linked aptamer assay and isothermal titration calorimetry were useful tools for studying the fundamental binding mechanism between a DNA aptamer and its target on the outer surface of S aureus. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Diazonium-based impedimetric aptasensor for the rapid label-free detection of Salmonella typhimurium in food sample.

    Science.gov (United States)

    Bagheryan, Zahra; Raoof, Jahan-Bakhsh; Golabi, Mohsen; Turner, Anthony P F; Beni, Valerio

    2016-06-15

    Fast and accurate detection of microorganisms is of key importance in clinical analysis and in food and water quality monitoring. Salmonella typhimurium is responsible for about a third of all cases of foodborne diseases and consequently, its fast detection is of great importance for ensuring the safety of foodstuffs. We report the development of a label-free impedimetric aptamer-based biosensor for S. typhimurium detection. The aptamer biosensor was fabricated by grafting a diazonium-supporting layer onto screen-printed carbon electrodes (SPEs), via electrochemical or chemical approaches, followed by chemical immobilisation of aminated-aptamer. FTIR-ATR, contact angle and electrochemical measurements were used to monitor the fabrication process. Results showed that electrochemical immobilisation of the diazonium-grafting layer allowed the formation of a denser aptamer layer, which resulted in higher sensitivity. The developed aptamer-biosensor responded linearly, on a logarithm scale, over the concentration range 1 × 10(1) to 1 × 10(8)CFU mL(-1), with a limit of quantification (LOQ) of 1 × 10(1) CFU mL(-1) and a limit of detection (LOD) of 6 CFU mL(-1). Selectivity studies showed that the aptamer biosensor could discriminate S. typhimurium from 6 other model bacteria strains. Finally, recovery studies demonstrated its suitability for the detection of S. typhimurium in spiked (1 × 10(2), 1 × 10(4) and 1 × 10(6) CFU mL(-1)) apple juice samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. In vivo SELEX for Identification of Brain-penetrating Aptamers

    Directory of Open Access Journals (Sweden)

    Congsheng Cheng

    2013-01-01

    Full Text Available The physiological barriers of the brain impair drug delivery for treatment of many neurological disorders. One delivery approach that has not been investigated for their ability to penetrate the brain is RNA-based aptamers. These molecules can impart delivery to peripheral tissues and circulating immune cells, where they act as ligand mimics or can be modified to carry payloads. We developed a library of aptamers and an in vivo evolution protocol to determine whether specific aptamers could be identified that would home to the brain after injection into the peripheral vasculature. Unlike biopanning with recombinant bacteriophage libraries, we found that the aptamer library employed here required more than 15 rounds of in vivo selection for convergence to specific sequences. The aptamer species identified through this approach bound to brain capillary endothelia and penetrated into the parenchyma. The methods described may find general utility for targeting various payloads to the brain.

  19. Development of a Sphingosylphosphorylcholine Detection System Using RNA Aptamers

    Directory of Open Access Journals (Sweden)

    Iwao Waga

    2010-08-01

    Full Text Available Sphingosylphosphorylcholine (SPC is a lysosphingolipid that exerts multiple functions, including acting as a spasmogen, as a mitogenic factor for various types of cells, and sometimes as an inflammatory mediator. Currently, liquid chromatography/tandem mass spectrometry (LC/MS/MS is used for the quantitation of SPC. However, because of the complicated procedures required it may not be cost effective, hampering its regular usage in a routine practical SPC monitoring. In this report, we have generated RNA aptamers that bind to SPC with high affinity using an in vitro selection procedure and developed an enzyme-linked aptamer assay system using the minimized SPC aptamer that can successfully distinguish SPC from the structurally related sphingosine 1-phosphate (S1P. This is the first case of the Systematic Evolution of Ligands by EXponential enrichment (SELEX process being performed with a lysosphingolipid. The SPC aptamers would be valuable tools for the development of aptamer-based medical diagnosis and for elucidating the biological role of SPC.

  20. Sensing molecular properties by ATR-SPP Raman spectroscopy on electrochemically structured sensor chips

    International Nuclear Information System (INIS)

    Zerulla, D.; Isfort, G.; Koelbach, M.; Otto, A.; Schierbaum, K.

    2003-01-01

    The use of electrochemically structured Al surfaces as sensor arrays for combinatorial chemistry and its detection via microscopic laser techniques from very small volumes has been explored. The methodology is based on three different techniques which will be discussed separately: firstly, attenuated total reflection (ATR) is used in connection with surface-plasmon-polariton (SPP) excitation. A thin Al layer, evaporated on sapphire or quartz and covered with a naturally grown oxide layer, provides an optimum enhancement and confinement of the electrical field close to the surface. This is revealed by calculations and experimental data. Secondly, a Raman microscope is applied, enabling chemical spot analysis in the visible and UV range with a lateral resolution close to the diffraction limit. Finally, its application to investigate electrochemically structured Al films is discussed

  1. Label free luminescence strategy for sensitive detection of ATP using aptamer-Ru(II) complexes

    Energy Technology Data Exchange (ETDEWEB)

    Babu, Eththilu [Department of Physical Che mistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, Tamil Nadu (India); Muthu Mareeswaran, Paulpandian [Department of Physical Che mistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, Tamil Nadu (India); Department of Industrial Chemistry, Alagappa Univesity, Karaikudi 630003, Tamil Nadu (India); Ramdass, Arumugam [Department of Physical Che mistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, Tamil Nadu (India); Research Department of Chemistry, Aditanar College of Arts and Science, Tiruchendur 628216, Tamil Nadu (India); Ramesh, Pandian [UCIBIO-REQUIMTE, Departmento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica (Portugal); Rajagopal, Seenivasan, E-mail: rajagopalseenivasan@yahoo.com [Department of Physical Che mistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, Tamil Nadu (India)

    2016-07-15

    A simple and sensitive aptamer-based luminescence strategy for ATP detection is developed using Ru(II) complexes as probe molecule. It is based on the fact that Ru(II)-dppz complexes show the light switching behavior with DNA aptamers and found to show significant luminescence spectral change on the addition of ATP molecules. The binding efficiencies of aptamer with ATP, ADP and AMP are calculated and compared. The structural change of aptamer is also studied using circular dichroism (CD) spectral techniques. Moreover, the binding nature of aptamer with ATP, ADP and AMP is demonstrated by computational techniques. The proposed strategy was successfully applied to the detection of ATP.

  2. Label free luminescence strategy for sensitive detection of ATP using aptamer-Ru(II) complexes

    International Nuclear Information System (INIS)

    Babu, Eththilu; Muthu Mareeswaran, Paulpandian; Ramdass, Arumugam; Ramesh, Pandian; Rajagopal, Seenivasan

    2016-01-01

    A simple and sensitive aptamer-based luminescence strategy for ATP detection is developed using Ru(II) complexes as probe molecule. It is based on the fact that Ru(II)-dppz complexes show the light switching behavior with DNA aptamers and found to show significant luminescence spectral change on the addition of ATP molecules. The binding efficiencies of aptamer with ATP, ADP and AMP are calculated and compared. The structural change of aptamer is also studied using circular dichroism (CD) spectral techniques. Moreover, the binding nature of aptamer with ATP, ADP and AMP is demonstrated by computational techniques. The proposed strategy was successfully applied to the detection of ATP.

  3. Aptamer-functionalized nano-biosensors.

    Science.gov (United States)

    Chiu, Tai-Chia; Huang, Chih-Ching

    2009-01-01

    Nanomaterials have become one of the most interesting sensing materials because of their unique size- and shape-dependent optical properties, high surface energy and surface-to-volume ratio, and tunable surface properties. Aptamers are oligonucleotides that can bind their target ligands with high affinity. The use of nanomaterials that are bioconjugated with aptamers for selective and sensitive detection of analytes such as small molecules, metal ions, proteins, and cells has been demonstrated. This review focuses on recent progress in the development of biosensors by integrating functional aptamers with different types of nanomaterials, including quantum dots, magnetic nanoparticles (NPs), metallic NPs, and carbon nanotubes. Colorimetry, fluorescence, electrochemistry, surface plasmon resonance, surface-enhanced Raman scattering, and magnetic resonance imaging are common detection modes for a broad range of analytes with high sensitivity and selectivity when using aptamer bioconjugated nanomaterials (Apt-NMs). We highlight the important roles that the size and concentration of nanomaterials, the secondary structure and density of aptamers, and the multivalent interactions play in determining the specificity and sensitivity of the nanosensors towards analytes. Advantages and disadvantages of the Apt-NMs for bioapplications are focused.

  4. Aptamer-Functionalized Nano-Biosensors

    Directory of Open Access Journals (Sweden)

    Tai-Chia Chiu

    2009-12-01

    Full Text Available Nanomaterials have become one of the most interesting sensing materials because of their unique size- and shape-dependent optical properties, high surface energy and surface-to-volume ratio, and tunable surface properties. Aptamers are oligonucleotides that can bind their target ligands with high affinity. The use of nanomaterials that are bioconjugated with aptamers for selective and sensitive detection of analytes such as small molecules, metal ions, proteins, and cells has been demonstrated. This review focuses on recent progress in the development of biosensors by integrating functional aptamers with different types of nanomaterials, including quantum dots, magnetic nanoparticles (NPs, metallic NPs, and carbon nanotubes. Colorimetry, fluorescence, electrochemistry, surface plasmon resonance, surface-enhanced Raman scattering, and magnetic resonance imaging are common detection modes for a broad range of analytes with high sensitivity and selectivity when using aptamer bioconjugated nanomaterials (Apt-NMs. We highlight the important roles that the size and concentration of nanomaterials, the secondary structure and density of aptamers, and the multivalent interactions play in determining the specificity and sensitivity of the nanosensors towards analytes. Advantages and disadvantages of the Apt-NMs for bioapplications are focused.

  5. Tunable Signal-Off and Signal-On Electrochemical Cisplatin Sensor.

    Science.gov (United States)

    Wu, Yao; Lai, Rebecca Y

    2017-09-19

    We report the first electrochemical cisplatin sensor fabricated with a thiolated and methylene blue (MB)-modified oligo-adenine (A)-guanine (G) DNA probe. Depending on the probe coverage, the sensor can behave as a signal-off or signal-on sensor. For the high-coverage sensor, formation of intrastrand Pt(II)-AG adducts rigidifies the oligo-AG probe, resulting in a concentration-dependent decrease in the MB signal. For the low-coverage sensor, the increase in probe-to-probe spacing enables binding of cisplatin via the intrastrand GNG motif (N = A), generating a bend in the probe which results in an increase in the MB current. Although both high-coverage signal-off and low-coverage signal-on sensors are capable of detecting cisplatin, the signal-on sensing mechanism is better suited for real time analysis of cisplatin. The low-coverage sensor has a lower limit of detection, wider optimal AC frequency range, and faster response time. It has high specificity for cisplatin and potentially other Pt(II) drugs and does not cross-react with satraplatin, a Pt(IV) prodrug. It is also selective enough to be employed directly in 50% saliva and 50% urine. This detection strategy may offer a new approach for sensitive and real time analysis of cisplatin in clinical samples.

  6. Graphene Ink Film Based Electrochemical Detector for Paracetamol Analysis

    Directory of Open Access Journals (Sweden)

    Li Fu

    2018-01-01

    Full Text Available Graphene ink is a commercialized product in the graphene industry with promising potential application in electronic device design. However, the limitation of the graphene ink is its low electronic performance due to the ink preparation protocol. In this work, we proposed a simple post-treatment of graphene ink coating via electrochemical oxidation. The electronic conductivity of the graphene ink coating was enhanced as expected after the treatment. The proposed electrochemical oxidation treatment also exposes the defects of graphene and triggered an electrocatalytic reaction during the sensing of paracetamol (PA. The overpotential of redox is much lower than conventional PA redox potential, which is favorable for avoiding the interference species. Under optimum conditions, the graphene ink-based electrochemical sensor could linearly detect PA from 10 to 500 micro molar (μM, with a limit of detection of 2.7 μM.

  7. Electrochemical formation of InP porous nanostructures and its application to amperometric chemical sensors

    International Nuclear Information System (INIS)

    Sato, Taketomo; Mizohata, Akinori; Fujino, Toshiyuki; Hashizume, Tamotsu

    2008-01-01

    In this paper, we report the electrochemical formation of the InP porous nanostructures and their feasibility for the application to the amperometric chemical sensors. Our two step electrochemical process consists of the pore formation on a (001) n-type InP substrate and the subsequent etching of pore walls caused by changing the polarity of the InP electrode in a HCl-based electrolyte. By applying the anodic bias to the InP electrode, the high-density array of uniform nanopores was formed on the surface. Next, the cathodic bias was applied to the porous sample to reduce the wall thickness by cathodic decomposition of InP, where the thickness of InP nanowall decreased uniformly along the entire depth of the porous layer. From the amperometric measurements of the porous electrode, it was found that the electrocatalytic activity was much higher than that of the planar electrode. Furthermore, the current sensitivity for the H 2 O 2 detection was much enhanced after the cathodic decomposition process. The InP porous nanostructure formed by the present process is one of the promising structures for the application to the semiconductor-based bio/chemical sensors. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Selection and identification of a DNA aptamer targeted to Vibrio parahemolyticus.

    Science.gov (United States)

    Duan, Nuo; Wu, Shijia; Chen, Xiujuan; Huang, Yukun; Wang, Zhouping

    2012-04-25

    A whole-bacterium systemic evolution of ligands by exponential enrichment (SELEX) method was applied to a combinatorial library of FAM-labeled single-stranded DNA molecules to identify DNA aptamers demonstrating specific binding to Vibrio parahemolyticus . FAM-labeled aptamer sequences with high binding affinity to V. parahemolyticus were identified by flow cytometric analysis. Aptamer A3P, which showed a particularly high binding affinity in preliminary studies, was chosen for further characterization. This aptamer displayed a dissociation constant (K(d)) of 16.88 ± 1.92 nM. Binding assays to assess the specificity of aptamer A3P showed a high binding affinity (76%) for V. parahemolyticus and a low apparent binding affinity (4%) for other bacteria. Whole-bacterium SELEX is a promising technique for the design of aptamer-based molecular probes for microbial pathogens that does not require the labor-intensive steps of isolating and purifying complex markers or targets.

  9. Electrochemical dopamine sensor based on P-doped graphene: Highly active metal-free catalyst and metal catalyst support.

    Science.gov (United States)

    Chu, Ke; Wang, Fan; Zhao, Xiao-Lin; Wang, Xin-Wei; Tian, Ye

    2017-12-01

    Heteroatom doping is an effective strategy to enhance the catalytic activity of graphene and its hybrid materials. Despite a growing interest of P-doped graphene (P-G) in energy storage/generation applications, P-G has rarely been investigated for electrochemical sensing. Herein, we reported the employment of P-G as both metal-free catalyst and metal catalyst support for electrochemical detection of dopamine (DA). As a metal-free catalyst, P-G exhibited prominent DA sensing performances due to the important role of P doping in improving the electrocatalytic activity of graphene toward DA oxidation. Furthermore, P-G could be an efficient supporting material for loading Au nanoparticles, and resulting Au/P-G hybrid showed a dramatically enhanced electrocatalytic activity and extraordinary sensing performances with a wide linear range of 0.1-180μM and a low detection limit of 0.002μM. All these results demonstrated that P-G might be a very promising electrode material for electrochemical sensor applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Studies on the Electrochemical Behavior of Thiazolidine and Its Applications Using a Flow–Through Chronoamperometric Sensor Based on a Gold Electrode

    Directory of Open Access Journals (Sweden)

    Lai-Hao Wang

    2011-09-01

    Full Text Available The electrochemical behaviors of thiazolidine (tetrahydrothiazole on gold and platinum electrodes were investigated in a Britton-Robinson buffer (pH 2.77–11.61, acetate buffer (pH 4.31, phosphate buffer solutions (pH 2.11 and 6.38 and methanol or acetonitrile containing various supporting electrolytes. Detection was based on a gold wire electrochemical signal obtained with a supporting electrolyte containing 20% methanol-1.0 mM of phosphate buffer (pH 6.87, potassium dihydrogen phosphate and dipotassium hydrogen phosphate as the mobile phase. Comparison with results obtained with a commercial amperometric detector shows good agreement. Using the chronoamperometric sensor with the current at a constant potential, and measurements with suitable experimental parameters, a linear concentration from 0.05 to 16 mg L−1 was found. The limit of quantification (LOQ of the method for thiazolidine was found to be 1 ng.

  11. Antibiotic loaded nanocapsules functionalized with aptamer gates for targeted destruction of pathogens.

    Science.gov (United States)

    Kavruk, M; Celikbicak, O; Ozalp, V C; Borsa, B A; Hernandez, F J; Bayramoglu, G; Salih, B; Arica, M Y

    2015-05-18

    In this study, we designed aptamer-gated nanocapsules for the specific targeting of cargo to bacteria with controlled release of antibiotics based on aptamer-receptor interactions. Aptamer-gates caused a specific decrease in minimum inhibitory concentration (MIC) values of vancomycin for Staphylococcus aureus when mesoporous silica nanoparticles (MSNs) were used for bacteria-targeted delivery.

  12. Structure and Sequence Search on Aptamer-Protein Docking

    Science.gov (United States)

    Xiao, Jiajie; Bonin, Keith; Guthold, Martin; Salsbury, Freddie

    2015-03-01

    Interactions between proteins and deoxyribonucleic acid (DNA) play a significant role in the living systems, especially through gene regulation. However, short nucleic acids sequences (aptamers) with specific binding affinity to specific proteins exhibit clinical potential as therapeutics. Our capillary and gel electrophoresis selection experiments show that specific sequences of aptamers can be selected that bind specific proteins. Computationally, given the experimentally-determined structure and sequence of a thrombin-binding aptamer, we can successfully dock the aptamer onto thrombin in agreement with experimental structures of the complex. In order to further study the conformational flexibility of this thrombin-binding aptamer and to potentially develop a predictive computational model of aptamer-binding, we use GPU-enabled molecular dynamics simulations to both examine the conformational flexibility of the aptamer in the absence of binding to thrombin, and to determine our ability to fold an aptamer. This study should help further de-novo predictions of aptamer sequences by enabling the study of structural and sequence-dependent effects on aptamer-protein docking specificity.

  13. Redox cycling-based amplifying electrochemical sensor for in situ clozapine antipsychotic treatment monitoring

    International Nuclear Information System (INIS)

    Ben-Yoav, Hadar; Winkler, Thomas E.; Kim, Eunkyoung; Chocron, Sheryl E.; Kelly, Deanna L.; Payne, Gregory F.; Ghodssi, Reza

    2014-01-01

    Highlights: • A new concept for clozapine in situ sensing with minimal pre-treatment procedures. • A catechol-chitosan redox cycling system amplifies clozapine oxidation current. • The modified amplifier signal is 3 times greater than the unmodified system. • Differentiation between clozapine and its metabolite norclozapine has been shown. • The sensor has the capability to detect clozapine in human serum. - Abstract: Schizophrenia is a lifelong mental disorder with few recent advances in treatment. Clozapine is the most effective antipsychotic for schizophrenia treatment. However, it remains underutilized since frequent blood draws are required to monitor adverse side effects, and maintain clozapine concentrations in a therapeutic range. Micro-system technology utilized towards real-time monitoring of efficacy and safety will enable personalized medicine and better use of this medication. Although work has been reported on clozapine detection using its electrochemical oxidation, no in situ monitoring of clozapine has been described. In this work, we present a new concept for clozapine in situ sensing based on amplifying its oxidation current. Specifically, we use a biofabricated catechol-modified chitosan redox cycling system to provide a significant amplification of the generated oxidizing current of clozapine through a continuous cycle of clozapine reduction followed by re-oxidation. The amplified signal has improved the signal-to-noise ratio and provided the required limit-of-detection and dynamic range for clinical applications with minimal pre-treatment procedures. The sensor reports on the functionality and sensitivity of clozapine detection between 0.1 and 10 μg/mL. The signal generated by clozapine using the catechol-modified chitosan amplifier has shown to be 3 times greater than the unmodified system. The sensor has the ability to differentiate between clozapine and its metabolite norclozapine, as well as the feasibility to detect clozapine in

  14. Aptamer-based isolation and subsequent imaging of mesenchymal stem cells in ischemic myocard by magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, R.; Hermanutz-Klein, U.; Northoff, H. [Universitaetsklinikum Tuebingen (Germany). Inst. fuer Klinische und Experimentelle Transfusionsmedizin; Wiskirchen, J.; Kehlbach, R.; Pintaske, J. [Universitaetsklinikum Tuebingen (Germany). Abt. fuer Radiologische Diagnostik; Guo, K.; Neumann, B.; Voth, V.; Walker, T.; Scheule, A.M.; Greiner, T.O.; Ziemer, G.; Wendel, H.P. [Universitaetsklinikum Tuebingen (Germany). Abt. fuer Thorax-, Herz- und Gefaesschirurgie; Claussen, C.D. [Universitaetsklinikum Tuebingen (Germany). Radiologische Universitaetsklinik

    2007-10-15

    Purpose: Mesenchymal stem cells (MSC) seem to be a promising cell source for cellular cardiomyoplasty. We recently developed a new aptamer-based specific selection of MSC to provide ''ready to transplant'' cells directly after isolation. We evaluated MRI tracking of newly isolated and freshly transplanted MSC in the heart using one short ex vivo selection step combining specific aptamer-based isolation and labeling of the cells. Materials and Methods: Bone marrow (BM) was collected from healthy pigs. The animals were euthanized and the heart was placed in a perfusion model. During cold ischemia, immunomagnetic isolation of MSC from the BM by MSC-specific aptamers labeled with Dynabeads {sup registered} was performed within 2 h. For histological identification the cells were additionally stained with PKH26. Approx. 3 x 10{sup 6} of the freshly aptamer-isolated cells were injected into the ramus interventricularis anterior (RIVA) and 5 x 10{sup 5} cells were injected directly into myocardial tissue after damaging the respective area by freezing (cryo-scar). 3 x 10{sup 6} of the aptamer-isolated cells were kept for further characterization (FACS and differentiation assays). 20 h after cell transplantation, MRI of the heart using a clinical 3.0 Tesla whole body scanner (Magnetom Trio, Siemens, Germany) was performed followed by histological examinations. Results: The average yield of sorted cells from 120 ml BM was 7 x 10{sup 6} cells. The cells were cultured and showed MSC-like properties. MRI showed reproducible artifacts within the RIVA-perfusion area and the cryo-scar with surprisingly excellent quality. The histological examination of the biopsies showed PKH26-positive cells within the areas which were positive in the MRI in contrast to the control biopsies. Conclusion: Immunomagnetic separation of MSC by specific aptamers linked to magnetic particles is feasible, effective and combines a specific separation and labeling technique to a &apos

  15. A Highly-Sensitive Picric Acid Chemical Sensor Based on ZnO Nanopeanuts

    Directory of Open Access Journals (Sweden)

    Ahmed A. Ibrahim

    2017-07-01

    Full Text Available Herein, we report a facile synthesis, characterization, and electrochemical sensing application of ZnO nanopeanuts synthesized by a simple aqueous solution process and characterized by various techniques in order to confirm the compositional, morphological, structural, crystalline phase, and optical properties of the synthesized material. The detailed characterizations revealed that the synthesized material possesses a peanut-shaped morphology, dense growth, and a wurtzite hexagonal phase along with good crystal and optical properties. Further, to ascertain the useful properties of the synthesized ZnO nanopeanut as an excellent electron mediator, electrochemical sensors were fabricated based on the form of a screen printed electrode (SPE. Electrochemical and current-voltage characteristics were studied for the determination of picric acid sensing characteristics. The electrochemical sensor fabricated based on the SPE technique exhibited a reproducible and reliable sensitivity of ~1.2 μA/mM (9.23 μA·mM−1·cm−2, a lower limit of detection at 7.8 µM, a regression coefficient (R2 of 0.94, and good linearity over the 0.0078 mM to 10.0 mM concentration range. In addition, the sensor response was also tested using simple I-V techniques, wherein a sensitivity of 493.64 μA·mM−1·cm−2, an experimental Limit of detection (LOD of 0.125 mM, and a linear dynamic range (LDR of 1.0 mM–5.0 mM were observed for the fabricated picric acid sensor.

  16. Real-Time Telemetry System for Amperometric and Potentiometric Electrochemical Sensors

    Directory of Open Access Journals (Sweden)

    Ching-Hsing Luo

    2011-09-01

    Full Text Available A real-time telemetry system, which consists of readout circuits, an analog-to-digital converter (ADC, a microcontroller unit (MCU, a graphical user interface (GUI, and a radio frequency (RF transceiver, is proposed for amperometric and potentiometric electrochemical sensors. By integrating the proposed system with the electrochemical sensors, analyte detection can be conveniently performed. The data is displayed in real-time on a GUI and optionally uploaded to a database via the Internet, allowing it to be accessed remotely. An MCU was implemented using a field programmable gate array (FPGA to filter noise, transmit data, and provide control over peripheral devices to reduce power consumption, which in sleep mode is 70 mW lower than in operating mode. The readout circuits, which were implemented in the TSMC 0.18-μm CMOS process, include a potentiostat and an instrumentation amplifier (IA. The measurement results show that the proposed potentiostat has a detectable current range of 1 nA to 100 μA, and linearity with an R2 value of 0.99998 in each measured current range. The proposed IA has a common-mode rejection ratio (CMRR greater than 90 dB. The proposed system was integrated with a potentiometric pH sensor and an amperometric nitrite sensor for in vitro experiments. The proposed system has high linearity (an R2 value greater than 0.99 was obtained in each experiment, a small size of 5.6 cm × 8.7 cm, high portability, and high integration.

  17. Development of an electrochemical ascorbic acid sensor based on the incorporation of a ferricyanide mediator with a polyelectrolyte-calcium carbonate microsphere

    International Nuclear Information System (INIS)

    Li Feng; Tang Chenfei; Liu Shufeng; Ma Guangran

    2010-01-01

    A novel electro-active material was successfully prepared with Fe(CN) 6 3- ions loaded by electrostatic interaction onto the layer of poly(allylamine) hydrochloride (PAH), which was first assembled on prepared poly(sodium 4-styrenesulfonate) (PSS)-doped porous calcium carbonate (CaCO 3 ) microspheres. Further, an electrochemical sensor for use in ascorbic acid (AA) detection was constructed with the use of the above electro-active materials embedded into a chitosan (CS) sol-gel matrix as an electron mediator. The electrocatalytic oxidation of AA by ferricyanide was observed at the potential of 0.27 V, which was negative-shifted compared with that by direct electrochemical oxidation of AA on a glassy carbon electrode. The experimental parameters, including the pH value of testing solution and the applied potential for detection of AA, were optimized. The current electrochemical sensor not only exhibited a good reproducibility and storage stability, but also showed a fast amperometric response to AA in a linear range (1.0 x 10 -6 to 2.143 x 10 -3 M), a low detection limit (7.0 x 10 -7 M), a fast response time ( -1 ).

  18. An Apta-Biosensor for Colon Cancer Diagnostics

    Directory of Open Access Journals (Sweden)

    Mojgan Ahmadzadeh Raji

    2015-09-01

    Full Text Available This paper reports the design and implementation of an aptasensor using a modified KCHA10a aptamer. This aptasensor consists of a functionalized electrodes using various materials including 11-mercaptoandecanoic acid (11-MUA and modified KCHA10a aptamer. The HCT 116, HT 29 and HEp-2 cell lines are used in this study to demonstrate the functionality of aptasensor for colon cancer detection purposes. Flow cytometry, fluorescence microscopy and electrochemical cyclic voltammetry are used to verify the binding between the target cells and aptamer. The limit of detection (LOD of this aptasensor is equal to seven cancer cells. Based on the experimental results, the proposed sensor can be employed for point-of-care cancer disease diagnostics.

  19. Aptamer-conjugated dendrimer-modified quantum dots for glioblastoma cells imaging

    International Nuclear Information System (INIS)

    Li Zhiming; Huang Peng; He Rong; Bao Chenchen; Cui Daxiang; Zhang Xiaomin; Ren Qiushi

    2009-01-01

    Targeted quantum dots have shown potential as a platform for development of cancer imaging. Aptamers have recently been demonstrated as ideal candidates for molecular targeting applications. In present work, polyamidoamine dendrimers were used to modify surface of quantum dots and improve their solubility in water solution. Then, dendrimer-modified quantum dots were conjugated with DNA aptamer, GBI-10, can recognize the extracellular matrix protein tenascin-C on the surface of human glioblastoma cells. The dendrimer-modified quantum dots exhibit water-soluble, high quantum yield, and good biocompatibility. Aptamer-conjugated quantum dots can specifically target U251 human glioblastoma cells. High-performance aptamer-conjugated dendrimers modified quantum dot-based nanoprobes have great potential in application such as cancer imaging.

  20. An electrochemical dopamine sensor based on the ZnO/CuO nanohybrid structures.

    Science.gov (United States)

    Khun, K; Ibupoto, Z H; Liu, X; Mansor, N A; Turner, A P F; Beni, V; Willander, M

    2014-09-01

    The selective detection of dopamine (DA) is of great importance in the modern medicine because dopamine is one of the main regulators in human behaviour. In this study, ZnO/CuO nanohybrid structures, grown on the gold coated glass substrate, have been investigated as a novel electrode material for the electrochemical detection of dopamine. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) techniques were used for the material characterization and the obtained results are in good agreement. The selective determination of dopamine was demonstrated by cyclic voltammetry (CV) and amperometric experiments. The amperometric response was linear for dopamine concentrations between 1.0 x 10(-3) and 8.0 mM with a sensitivity of 90.9 μA mM(-1) cm(-2). The proposed dopamine biosensor is very stable, selective over common interferents as glucose, uric acid and ascorbic acid, and also good reproducibility was observed for seven electrodes. Moreover, the dopamine sensor exhibited a fast response time of less than 10 s. The wide range and acceptable sensitivity of the presented dopamine sensor provide the possible application in analysing the dopamine from the real samples.

  1. 4-1BB Aptamer-Based Immunomodulation Enhances the Therapeutic Index of Radiation Therapy in Murine Tumor Models

    Energy Technology Data Exchange (ETDEWEB)

    Benaduce, Ana Paula; Brenneman, Randall; Schrand, Brett; Pollack, Alan; Gilboa, Eli; Ishkanian, Adrian, E-mail: aishkanian@med.miami.edu

    2016-10-01

    Purpose: To report a novel strategy using oligonucleotide aptamers to 4-1BB as an alternate method for costimulation, and show that combinatorial therapy with radiation improves the therapeutic ratio over equivalent monoclonal antibodies. Methods and Materials: Subcutaneous 4T1 (mouse mammary carcinoma) tumors were established (approximately 100 mm{sup 3}), and a radiation therapy (RT) dose/fractionation schedule that optimally synergizes with 4-1BB monoclonal antibody (mAb) was identified. Comparable tumor control and animal survival was observed when either 4-1BB antibody or aptamer were combined with RT using models of breast cancer and melanoma (4T1 and B16-F10). Off-target CD8{sup +} T-cell toxicity was evaluated by quantification of CD8{sup +} T cells in livers and spleens of treated animals. Results: When combined with 4-1BB mAb, significant differences in tumor control were observed by varying RT dose and fractionation schedules. Optimal synergy between RT and 4-1BB mAb was observed at 5 Gy × 6. Testing 4-1BB mAb and aptamer independently using the optimal RT (5 Gy × 6 for 4T1/Balb/c and 12 Gy × 1 for B16/C57BL6J mouse models) revealed equivalent tumor control using 4-1BB aptamer and 4-1BB mAb. 4-1BB mAb, but not 4-1BB aptamer-treated animals, exhibited increased lymphocytic liver infiltrates and increased splenic and liver CD8{sup +} T cells. Conclusions: Radiation therapy synergizes with 4-1BB mAb, and this effect is dependent on RT dose and fractionation. Tumor control by 4-1BB aptamer is equivalent to 4-1BB mAb when combined with optimal RT dose, without eliciting off-target liver and spleen CD8{sup +} expansion. 4-1BB aptamer-based costimulation affords a comparable and less toxic strategy to augment RT-mediated tumor control.

  2. An integrated electrochemical device based on immunochromatographic test strip and enzyme labels for sensitive detection of disease-related biomarkers

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Zhexiang; Wang, Jun; Wang, Hua; Li, Yao Q.; Lin, Yuehe

    2012-05-30

    A novel electrochemical biosensing device that integrates an immunochromatographic test strip and a screen-printed electrode (SPE) connected to a portable electrochemical analyzer was presented for rapid, sensitive, and quantitative detection of disease-related biomarker in human blood samples. The principle of the sensor is based on sandwich immunoreactions between a biomarker and a pair of its antibodies on the test strip, followed by highly sensitive square-wave voltammetry (SWV) detection. Horseradish peroxidase (HRP) was used as a signal reporter for electrochemical readout. Hepatitis B surface antigen (HBsAg) was employed as a model protein biomarker to demonstrate the analytical performance of the sensor in this study. Some critical parameters governing the performance of the sensor were investigated in detail. The sensor was further utilized to detect HBsAg in human plasma with an average recovery of 91.3%. In comparison, a colorimetric immunochromatographic test strip assay (ITSA) was also conducted. The result shows that the SWV detection in the electrochemical sensor is much more sensitive for the quantitative determination of HBsAg than the colorimetric detection, indicating that such a sensor is a promising platform for rapid and sensitive point-of-care testing/screening of disease-related biomarkers in a large population

  3. High Sensitivity Electrochemical Cholesterol Sensor Utilizing a Vertically Aligned Carbon Nanotube Electrode with Electropolymerized Enzyme Immobilization

    Directory of Open Access Journals (Sweden)

    Ditsayut Phokharatkul

    2009-10-01

    Full Text Available In this report, a new cholesterol sensor is developed based on a vertically aligned CNT electrode with two-step electrochemical polymerized enzyme immobilization. Vertically aligned CNTs are selectively grown on a 1 mm2 window of gold coated SiO2/Si substrate by thermal chemical vapor deposition (CVD with gravity effect and water-assisted etching. CNTs are then simultaneously functionalized and enzyme immobilized by electrochemical polymerization of polyaniline and cholesterol enzymes. Subsequently, ineffective enzymes are removed and new enzymes are electrochemically recharged. Scanning electron microscopic characterization indicates polymer-enzyme nanoparticle coating on CNT surface. Cyclic voltammogram (CV measurements in cholesterol solution show the oxidation and reduction peaks centered around 450 and −220 mV, respectively. An approximately linear relationship between the cholesterol concentration and the response current could be observed in the concentration range of 50–300 mg/dl with a sensitivity of approximately 0.22 μA/mg·dl−1, which is considerably higher compared to previously reported CNT bioprobe. In addition, good specificity toward glucose, uric acid acetaminophen and ascorbic acid have been obtained. Moreover, sensors have satisfactory stability, repeatability and life time. Therefore, the electropolymerized CNT bioprobe is promising for cholesterol detection in normal cholesterol concentration in human blood.

  4. Array based Discovery of Aptamer Pairs (Open Access Publisher’s Version)

    Science.gov (United States)

    2014-12-11

    Array-based Discovery of Aptamer Pairs Minseon Cho,†,‡ Seung Soo Oh,‡ Jeff Nie,§ Ron Stewart,§ Monte J. Radeke,⊥ Michael Eisenstein ,†,‡ Peter J...ac504076k | Anal. Chem. 2015, 87, 821−828827 (24) Cho, M.; Oh, S. S.; Nie, J.; Stewart, R.; Eisenstein , M.; Chambers, J.; Marth, J. D.; Walker, F

  5. Studying small molecule-aptamer interactions using MicroScale Thermophoresis (MST).

    Science.gov (United States)

    Entzian, Clemens; Schubert, Thomas

    2016-03-15

    Aptamers are potent and versatile binding molecules recognizing various classes of target molecules. Even challenging targets such as small molecules can be identified and bound by aptamers. Studying the interaction between aptamers and drugs, antibiotics or metabolites in detail is however difficult due to the lack of sophisticated analysis methods. Basic binding parameters of these small molecule-aptamer interactions such as binding affinity, stoichiometry and thermodynamics are elaborately to access using the state of the art technologies. The innovative MicroScale Thermophoresis (MST) is a novel, rapid and precise method to characterize these small molecule-aptamer interactions in solution at microliter scale. The technology is based on the movement of molecules through temperature gradients, a physical effect referred to as thermophoresis. The thermophoretic movement of a molecule depends - besides on its size - on charge and hydration shell. Upon the interaction of a small molecule and an aptamer, at least one of these parameters is altered, leading to a change in the movement behavior, which can be used to quantify molecular interactions independent of the size of the target molecule. The MST offers free choice of buffers, even measurements in complex bioliquids are possible. The dynamic affinity range covers the pM to mM range and is therefore perfectly suited to analyze small molecule-aptamer interactions. This section describes a protocol how quantitative binding parameters for aptamer-small molecule interactions can be obtained by MST. This is demonstrated by mapping down the binding site of the well-known ATP aptamer DH25.42 to a specific region at the adenine of the ATP molecule. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. An Electrochemical Sensor Based on Novel Ion Imprinted Polymeric Nanoparticles for Selective Detection of Lead Ions

    Directory of Open Access Journals (Sweden)

    Masoud Ghanei-Motlagh

    1999-11-01

    Full Text Available In this study, the novel surface ion-imprinted polymer (IIP particles were prepared and applied as a electrode modifier in stripping voltammetric detection of lead(II ion. A carbon paste electrode (CPE modified with IIP nanoparticles and multi-walled carbon nanotubes (MWCNTs was used for accumulation of toxic lead ions. Various factors that govern on electrochemical signals including carbon paste composition, pH of the preconcentration solution, supporting electrolyte, stirring time, reduction potential and time were studied in detail. The best electrochemical response for Pb(II ions was obtained with a paste composition of 7% (w/w of lead IIP, 10% MWCNTs, 53% (w/w of graphite powder and 30% (w/w of paraffin oil using a solution of 0.1 mol L-1 acetat buffer solution (pH=4.5 with a extraction time of 15 min. A sensitive response for Pb(II ions in the concentration range of 3 to 55 µg L-1 was achived. The proposed electrochemical sensor showed low detection limit (0.5 µg L-1, remarkable selectivity and good reproducibility (RSD = 3.1%. Determination of lead(II content in different environmental water samples was also realized adopting graphite furnace atomic absorptions spectrometry (GF-AAS and the obtained results were satisfactory.

  7. Nucleic acid aptamer-guided cancer therapeutics and diagnostics: the next generation of cancer medicine.

    Science.gov (United States)

    Xiang, Dongxi; Shigdar, Sarah; Qiao, Greg; Wang, Tao; Kouzani, Abbas Z; Zhou, Shu-Feng; Kong, Lingxue; Li, Yong; Pu, Chunwen; Duan, Wei

    2015-01-01

    Conventional anticancer therapies, such as chemo- and/or radio-therapy are often unable to completely eradicate cancers due to abnormal tumor microenvironment, as well as increased drug/radiation resistance. More effective therapeutic strategies for overcoming these obstacles are urgently in demand. Aptamers, as chemical antibodies that bind to targets with high affinity and specificity, are a promising new and novel agent for both cancer diagnostic and therapeutic applications. Aptamer-based cancer cell targeting facilitates the development of active targeting in which aptamer-mediated drug delivery could provide promising anticancer outcomes. This review is to update the current progress of aptamer-based cancer diagnosis and aptamer-mediated active targeting for cancer therapy in vivo, exploring the potential of this novel form of targeted cancer therapy.

  8. Microfabricated electrochemical sensor for the detection of radiation-induced DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.; Rivas, G.; Ozsoz, M.; Grant, D.H.; Cai, X.; Parrado, C. [New Mexico State Univ., Las Cruces, NM (United States)

    1997-04-01

    An electrochemical biosensor protocol for the detection of radiation-induced DNA damage is described. The procedure employs a dsDNA-coated screen-printed electrode and relies on changes in the guanine-DNA oxidation signal upon exposure to ultraviolet radiation. The decreased signal is ascribed primarily to conformational changes in the DNA and to the photoconversion of the guanine-DNA moiety to a nonelectroactive monomeric base product. Factors influencing the response of these microfabricated DNA sensors, such as irradiation time, wavelength, and distance, are explored, and future prospects are discussed. Similar results are given for the use of bare strip electrodes in connection with irradiated DNA solutions. 8 refs., 4 figs.

  9. Colorimetric method for determination of bisphenol A based on aptamer-mediated aggregation of positively charged gold nanoparticles

    International Nuclear Information System (INIS)

    Xu, Jingyue; Li, Ying; Bie, Jiaxin; Guo, Jiajia; Luo, Yeli; Shen, Fei; Sun, Chunyan; Jiang, Wei

    2015-01-01

    A sensitive, specific and rapid colorimetric aptasensor for the determination of the plasticizer bisphenol A (BPA) was developed. It is based on the use of gold nanoparticles (AuNPs) that are positively charged due to the modification with cysteamine which is cationic at near-neutral pH values. If aptamers are added to such AuNPs, aggregation occurs due to electrostatic interactions between the negatively-charged aptamers and the positively-charged AuNPs. This results in a color change of the AuNPs from red to blue. If a sample containing BPA is added to the anti-BPA aptamers, the anti-BPA aptamers undergo folding via an induced-fit binding mechanism. This is accompanied by a conformational change, which prevents the aptamer-induced aggregation and color change of AuNPs. The effect was exploited to design a colorimetric assay for BPA. Under optimum conditions, the absorbance ratio of A 527 /A 680 is linearly proportional to the BPA concentration in the range from 35 to 140 ng∙mL −1 , with a detection limit of 0.11 ng∙mL −1 . The method has been successfully applied to the determination of BPA in spiked tap water and gave recoveries between 91 and 106 %. Data were in full accordance with results obtained from HPLC. This assay is selective, easily performed, and in our perception represents a promising alternative to existing methods for rapid quantification of BPA. (author)

  10. Generating Aptamers by Cell-SELEX for Applications in Molecular Medicine

    Directory of Open Access Journals (Sweden)

    Huixia Liu

    2012-03-01

    Full Text Available Aptamers are single-stranded oligonucleotides of DNA or RNA that bind to target molecules with high affinity and specificity. Typically, aptamers are generated by an iterative selection process, called systematic evolution of ligands by exponential enrichment (SELEX. Recent advancements in SELEX technology have extended aptamer selection from comparatively simple mixtures of purified proteins to whole living cells, and now cell-based SELEX (or cell-SELEX can isolate aptamers that bind to specific target cells. Combined with nanotechnology, microchips, microfluidic devices, RNAi and other advanced technologies, cell-SELEX represents an integrated platform providing ultrasensitive and highly specific tools for clinical medicine. In this review, we describe the recent progress made in the application of cell-SELEX for diagnosis, therapy and biomarker discovery.

  11. Method of detecting defects in ion exchange membranes of electrochemical cells by chemochromic sensors

    Science.gov (United States)

    Brooker, Robert Paul; Mohajeri, Nahid

    2016-01-05

    A method of detecting defects in membranes such as ion exchange membranes of electrochemical cells. The electrochemical cell includes an assembly having an anode side and a cathode side with the ion exchange membrane in between. In a configuration step a chemochromic sensor is placed above the cathode and flow isolation hardware lateral to the ion exchange membrane which prevents a flow of hydrogen (H.sub.2) between the cathode and anode side. The anode side is exposed to a first reactant fluid including hydrogen. The chemochromic sensor is examined after the exposing for a color change. A color change evidences the ion exchange membrane has at least one defect that permits H.sub.2 transmission therethrough.

  12. Solid electrolyte gas sensors based on cyclic voltammetry with one active electrode

    Energy Technology Data Exchange (ETDEWEB)

    Jasinski, G; Jasinski, P, E-mail: gregor@biomed.eti.pg.gda.pl [Gdansk University of Technology, Faculty of Electronics, Telecommunication and Informatics, Narutowicza 11/12, 80-233 Gdansk (Poland)

    2011-10-29

    Solid state gas sensors are cost effective, small, rugged and reliable. Typically electrochemical solid state sensors operate in either potentiometric or amperometric mode. However, a lack of selectivity is sometimes a shortcoming of such sensors. It seems that improvements of selectivity can be obtained in case of the electrocatalytic sensors, which operate in cyclic voltammetry mode. Their working principle is based on acquisition of an electric current, while voltage ramp is applied to the sensor. The current-voltage response depends in a unique way on the type and concentration of ambient gas. Most electrocatalytic sensors have symmetrical structure. They are in a form of pellets with two electrodes placed on their opposite sides. Electrochemical reactions occur simultaneously on both electrodes. In this paper results for sensors with only one active electrode exposed to ambient gas are presented. The other electrode was isolated from ambient gas with dielectric sealing. This sensor construction allows application of advanced measuring procedures, which permit sensor regeneration acceleration. Experiments were conducted on Nasicon sensors. Properties of two sensors, one with one active electrode and second with symmetrical structure, used for the detection of mixtures of NO{sub 2} and synthetic air are compared.

  13. Self-assembled monolayer based electrochemical nucleic acid sensor for Vibrio cholerae detection

    International Nuclear Information System (INIS)

    Patel, Manoj K; Solanki, Pratima R; Agrawal, Ved V; Khandelwal, Sachin; Ansari, S G; Malhotra, B D

    2012-01-01

    Nucleic acid sensor has been fabricated by immobilization of thiolated (5' end) single stranded deoxyribonucleic acid probe (ssDNA-SH) onto gold (Au) coated glass electrode for Vibriocholerae detection. This ssDNA-SH/Au bioelectrode characterized using atomic force microscopy (AFM),Fourier transforms infrared spectroscopy (FT-IR) and electrochemical technique, has been used for hybridization detection of genomic DNA (dsDNA/Au). This ssDNA-SH/Au bioelectrode can specifically detect up to 100- 500 ng/μL genomic DNA of Vibriocholeare within 60 s of hybridization time at 25°C by cyclic voltammetry (CV) using methylene blue (MB) as electro-active DNA hybridization indicator. The value of sensitivity of the dsDNA/Au electrode has been determined as 0.027μA/ng cm −2 with regression coefficient as 0.978. This DNA bioelectrode is stable for about 4 months when stored at 4°C.

  14. A homogeneous and “off–on” fluorescence aptamer-based assay for chloramphenicol using vesicle quantum dot-gold colloid composite probes

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Yang-Bao [State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211 (China); Ren, Hong-Xia [Key Laboratory of Asymmetric Synthesis and Chirotechnology of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041 (China); University of Chinese Academy of Sciences, Beijing 10049 (China); Gan, Ning, E-mail: ganning@nbu.edu.cn [State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211 (China); Zhou, You [State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211 (China); Cao, Yuting, E-mail: caoyuting@nbu.edu.cn [State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211 (China); Li, Tianhua [State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211 (China); Chen, Yinji [Faculty of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210000 (China)

    2016-07-27

    In this work, a novel homogeneous and signal “off–on” aptamer based fluorescence assay was successfully developed to detect chloramphenicol (CAP) residues in food based on the fluorescence resonance energy transfer (FRET). The vesicle nanotracer was prepared through labeling single stranded DNA binding protein (SSB) on limposome-CdSe/ZnS quantum dot (SSB/L-QD) complexes. It was worth mentioning that the signal tracer (SSB/L-QD) with vesicle shape, which was fabricated being encapsulated with a number of quantum dots and SSB. The nanotracer has excellent signal amplification effects. The vesicle composite probe was formed by combining aptamer labeled nano-gold (Au-Apt) and SSB/L-QD. Which based on SSB's specific affinity towards aptamer. This probe can't emit fluoresce which is in “off” state because the signal from SSB/L-QD as donor can be quenched by the Au-aptas acceptor. When CAP was added in the composite probe solution, the aptamer on the Au-Apt can be preferentially bounded with CAP then release from the composite probe, which can turn the “off” signal of SSB/L-QD tracer into “on” state. The assay indicates excellent linear response to CAP from 0.001 nM to 10 nM and detection limit down to 0.3 pM. The vesicle probes with size of 88 nm have strong signal amplification. Because a larger number of QDs can be labeled inside the double phosphorus lipid membrane. Besides, it was employed to detect CAP residues in the milk samples with results being agreed well with those from ELISA, verifying its accuracy and reliability. - Highlights: • Homogeneous and “off–on” fluorescence aptamer-based assay was developed to detect chloramphenicol (CAP) residues in food. • This probe was fabricated based on a vesicle QDs signal tracer (SSB/L-QD) combining with Au-Aptamer. • The detection mechanism was based on FRET with high specificity. • The results for CAP detection in the milk samples agreed well with those from ELISA, while

  15. Development and characterization of electrochemical cantilever sensor for bio/chemical sensing applications

    DEFF Research Database (Denmark)

    Quan, Xueling; Fischer, Lee MacKenzie; Boisen, Anja

    2011-01-01

    We report the improvements made to our previously developed electrochemical cantilever (EC) sensor, where nanoporous gold material is employed as working electrodes in microcantilever arrays, while combined counter-reference electrodes are integrated on the chip. For a surface stress change of 1m...

  16. Electrochemical study of oxidation process of promethazine using sensor based on carbon nanotubes paste containing immobilized DNA on inorganic matrix

    Directory of Open Access Journals (Sweden)

    João Paulo Marco

    2014-10-01

    Full Text Available In the present work the voltammetric behavior and the oxidation process of promethazine (PHZ in electrochemical sensor based on carbon nanotubes paste containing DNA immobilized on the inorganic matrix prepared by sol-gel process (SiO2/Al2O3/Nb2O5. The method of Laviron verified that the system is irreversible and high speed of electron transfer between the electrode and DNA. The study of the oxidation of PHZ and influence of pH showed slope of 0.054 V / pH (near the nernstian system: 0.0592 V / pH suggesting that it involves the transfer of two protons and two electrons.

  17. Microfabricated Electrochemical Cell-Based Biosensors for Analysis of Living Cells In Vitro

    Directory of Open Access Journals (Sweden)

    Jun Wang

    2012-04-01

    Full Text Available Cellular biochemical parameters can be used to reveal the physiological and functional information of various cells. Due to demonstrated high accuracy and non-invasiveness, electrochemical detection methods have been used for cell-based investigation. When combined with improved biosensor design and advanced measurement systems, the on-line biochemical analysis of living cells in vitro has been applied for biological mechanism study, drug screening and even environmental monitoring. In recent decades, new types of miniaturized electrochemical biosensor are emerging with the development of microfabrication technology. This review aims to give an overview of the microfabricated electrochemical cell-based biosensors, such as microelectrode arrays (MEA, the electric cell-substrate impedance sensing (ECIS technique, and the light addressable potentiometric sensor (LAPS. The details in their working principles, measurement systems, and applications in cell monitoring are covered. Driven by the need for high throughput and multi-parameter detection proposed by biomedicine, the development trends of electrochemical cell-based biosensors are also introduced, including newly developed integrated biosensors, and the application of nanotechnology and microfluidic technology.

  18. High-affinity RNA aptamers to C-reactive protein (CRP): newly developed pre-elution methods for aptamer selection

    International Nuclear Information System (INIS)

    Orito, N; Umekage, S; Sakai, E; Tanaka, T; Kikuchi, Y; Sato, K; Kawauchi, S; Tanaka, H

    2012-01-01

    We have developed a modified SELEX (systematic evolution of ligands by exponential enrichment) method to obtain RNA aptamers with high affinity to C-reactive protein (CRP). CRP is a clinical biomarker present in plasma, the level of which increases in response to infections and noninfectious inflammation. The CRP level is also an important prognostic indicator in patients with several syndromes. At present, CRP content in blood is measured immunochemically using antibodies. To develop a more sensitive method using RNA aptamers, we have attempted to obtain high-affinity RNA aptamers to CRP. We succeeded in obtaining an RNA aptamer with high affinity to CRP using a CRP-immobilized Sepharose column and pre-elution procedure. Pre-elution is a method that removes the weak binding portion from a selected RNA population by washing for a short time with buffer containing CRP. By surface plasmon-resonance (SPR) analysis, the affinity constant of this aptamer for CRP was calculated to be K D = 2.25x10 -9 (M). The secondary structure, contact sites with CRP protein, and application of this aptamer will be described.

  19. A sensitive lateral flow biosensor for Escherichia coli O157:H7 detection based on aptamer mediated strand displacement amplification

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wei [College of Food Science and Engineering, Ocean University of China, Qingdao 266003 (China); Zhao, Shiming [Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530 (China); Mao, Yiping [Yueyang Institute for Food and Drug Control, Yueyang 430198 (China); Fang, Zhiyuan [Affiliated Tumor Hospital of Guangzhou Medical University, Guangzhou 510095 (China); Lu, Xuewen [Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530 (China); Zeng, Lingwen, E-mail: zeng6@yahoo.com [Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530 (China)

    2015-02-25

    Highlights: • Limit of detection as low as 10 CFU mL{sup −1}Escherichia coli O157:H7. • No need of antibodies and substituted with aptamers. • Isothermal strand displacement amplification for signal amplification. • Results observed by the naked eye. • Great potential application in the area of food control. - Abstract: Foodborne diseases caused by pathogens are one of the major problems in food safety. Convenient and sensitive point-of-care rapid diagnostic tests for food-borne pathogens have been a long-felt need of clinicians. Commonly used methods for pathogen detection rely on conventional culture-based tests, antibody-based assays and polymerase chain reaction (PCR)-based techniques. These methods are costly, laborious and time-consuming. Herein, we present a simple and sensitive aptamer based biosensor for rapid detection of Escherichia coli O157:H7 (E. coli O157:H7). In this assay, two different aptamers specific for the outmembrane of E. coli O157:H7 were used. One of the aptamers was used for magnetic bead enrichment, and the other was used as a signal reporter for this pathogen, which was amplified by isothermal strand displacement amplification (SDA) and further detected by a lateral flow biosensor. Only the captured aptamers on cell membrane were amplified, limitations of conventional DNA amplification based method such as false-positive can be largely reduced. The generated signals (red bands on the test zone of a lateral flow strip) can be unambiguously read out by the naked eye. As low as 10 colony forming units (CFU) of E. coli O157:H7 were detected in this study. Without DNA extraction, the reduced handling and simpler equipment requirement render this assay a simple and rapid alternative to conventional methods.

  20. A sensitive lateral flow biosensor for Escherichia coli O157:H7 detection based on aptamer mediated strand displacement amplification

    International Nuclear Information System (INIS)

    Wu, Wei; Zhao, Shiming; Mao, Yiping; Fang, Zhiyuan; Lu, Xuewen; Zeng, Lingwen

    2015-01-01

    Highlights: • Limit of detection as low as 10 CFU mL −1 Escherichia coli O157:H7. • No need of antibodies and substituted with aptamers. • Isothermal strand displacement amplification for signal amplification. • Results observed by the naked eye. • Great potential application in the area of food control. - Abstract: Foodborne diseases caused by pathogens are one of the major problems in food safety. Convenient and sensitive point-of-care rapid diagnostic tests for food-borne pathogens have been a long-felt need of clinicians. Commonly used methods for pathogen detection rely on conventional culture-based tests, antibody-based assays and polymerase chain reaction (PCR)-based techniques. These methods are costly, laborious and time-consuming. Herein, we present a simple and sensitive aptamer based biosensor for rapid detection of Escherichia coli O157:H7 (E. coli O157:H7). In this assay, two different aptamers specific for the outmembrane of E. coli O157:H7 were used. One of the aptamers was used for magnetic bead enrichment, and the other was used as a signal reporter for this pathogen, which was amplified by isothermal strand displacement amplification (SDA) and further detected by a lateral flow biosensor. Only the captured aptamers on cell membrane were amplified, limitations of conventional DNA amplification based method such as false-positive can be largely reduced. The generated signals (red bands on the test zone of a lateral flow strip) can be unambiguously read out by the naked eye. As low as 10 colony forming units (CFU) of E. coli O157:H7 were detected in this study. Without DNA extraction, the reduced handling and simpler equipment requirement render this assay a simple and rapid alternative to conventional methods

  1. A smart magnetic resonance imaging contrast agent responsive to adenosine based on a DNA aptamer-conjugated gadolinium complex.

    Science.gov (United States)

    Xu, Weichen; Lu, Yi

    2011-05-07

    We report a general strategy for developing a smart MRI contrast agent for the sensing of small molecules such as adenosine based on a DNA aptamer that is conjugated to a Gd compound and a protein streptavidin. The binding of adenosine to its aptamer results in the dissociation of the Gd compound from the large protein, leading to decreases in the rotational correlation time and thus change of MRI contrast. © The Royal Society of Chemistry 2011

  2. An electrochemical sensor device for measuring blood ammonia at the point of care.

    Science.gov (United States)

    Brannelly, N T; Killard, A J

    2017-05-15

    The level of ammonia in blood is relevant in a number of medical conditions. While ammonia is a marker of dysfunction, elevated ammonia is itself a serious medical emergency and can lead to significant and permanent neurological impairment if not addressed quickly. Blood ammonia testing is typically performed in the central laboratory. While a number of point of care devices have been developed, these are based on classical enzymatic or colorimetric principles and have not been widely adopted. In this work, an electrochemical sensor device was developed for measuring blood ammonia. The device was based on the deposition of polyaniline nanoparticle films onto screen printed interdigitated electrodes using inkjet printing and their integration into a polymer microfabricated device with a polytetrafluoroethylene membrane. The device required a 52µL serum sample and measured the change in impedance of the sensor with respect to air at 1kHz, 5mV rms. The device was capable of the measurement of ammonia in serum across the physiologically relevant range of 25-200µM (r 2 =0.9984) and had a limit of detection of 12µM (n =3). The device showed no significant issues with common electrochemical interferences in blood. The device was also validated against a commercial spectrophotometric assay which resulted in excellent correlation (r =0.9699, pair (n =12) and could be stored in desiccant for at least five months. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. A highly selective electrochemical sensor based on molecularly imprinted polypyrrole-modified gold electrode for the determination of glyphosate in cucumber and tap water.

    Science.gov (United States)

    Zhang, Chao; She, Yongxin; Li, Tengfei; Zhao, Fengnian; Jin, Maojun; Guo, Yirong; Zheng, Lufei; Wang, Shanshan; Jin, Fen; Shao, Hua; Liu, Haijin; Wang, Jing

    2017-12-01

    An electrochemical sensor based on molecularly imprinted polypyrrole (MIPPy) was developed for selective and sensitive detection of the herbicide glyphosate (Gly) in cucumber and tap water samples. The sensor was prepared via synthesis of molecularly imprinted polymers on a gold electrode in the presence of Gly as the template molecule and pyrrole as the functional monomer by cyclic voltammetry (CV). The sensor preparation conditions including the ratio of template to functional monomers, number of CV cycles in the electropolymerization process, the method of template removal, incubation time, and pH were optimized. Under the optimal experimental conditions, the DPV peak currents of hexacyanoferrate/hexacyanoferrite changed linearly with Gly concentration in the range from 5 to 800 ng mL -1 , with a detection limit of 0.27 ng mL -1 (S/N = 3). The sensor was used to detect the concentration of Gly in cucumber and tap water samples, with recoveries ranging from 72.70 to 98.96%. The proposed sensor showed excellent selectivity, good stability and reversibility, and could detect the Gly in real samples rapidly and sensitively. Graphical abstract Schematic illustration of the experimental procedure to detect Gly using the MIPPy electrode.

  4. Validation method for determination of cholesterol in human urine with electrochemical sensors using gold electrodes

    Science.gov (United States)

    Riyanto, Laksono, Tomy Agung

    2017-12-01

    Electrochemical sensors for the determination of cholesterol with Au as a working electrode (Au) and its application to the analysis of urine have been done. The gold electrode was prepared using gold pure (99.99%), with size 1.0 mm by length and wide respectively, connected with silver wire using silver conductive paint. Validation methods have been investigated in the analysis of cholesterol in human urine using electrochemical sensors or cyclic voltammetry (CV) method. The effect of electrolyte and uric acid concentration has been determined to produce the optimum method. Validation method parameters for cholesterol analysis in human urine using CV are precision, recovery, linearity, limit of detection (LOD) and limit of quantification (LOQ). The result showed the correlation of concentration of cholesterol to anodic peak current is the coefficient determination of R2 = 0.916. The results of the validation method showed the precision, recovery, linearity, LOD, and LOQ are 1.2539%, 144.33%, 0.916, 1.49 × 10-1 mM and 4.96 × 10-1 mM, respectively. As a conclusion is Au electrode is a good electrode for electrochemical sensors to determination of cholesterol in human urine.

  5. Aptamer-Based Molecular Recognition of Lysergamine, Metergoline and Small Ergot Alkaloids

    Directory of Open Access Journals (Sweden)

    Johan Robbens

    2012-12-01

    Full Text Available Ergot alkaloids are mycotoxins produced by fungi of the genus Claviceps, which infect cereal crops and grasses. The uptake of ergot alkaloid contaminated cereal products can be lethal to humans and animals. For food safety assessment, analytical techniques are currently used to determine the presence of ergot alkaloids in food and feed samples. However, the number of samples which can be analyzed is limited, due to the cost of the equipment and the need for skilled personnel. In order to compensate for the lack of rapid tests for the detection of ergot alkaloids, the aim of this study was to develop a specific recognition element for ergot alkaloids, which could be further applied to produce a colorimetric reaction in the presence of these toxins. As recognition elements, single-stranded DNA ligands were selected by using an iterative selection procedure named SELEX, i.e., Systematic Evolution of Ligands by EXponential enrichment. After several selection cycles, the resulting aptamers were cloned and sequenced. A surface plasmon resonance analysis enabled determination of the dissociation constants of the complexes of aptamers and lysergamine. Dissociation constants in the nanomolar range were obtained with three selected aptamers. One of the selected aptamers, having a dissociation constant of 44 nM, was linked to gold nanoparticles and it was possible to produce a colorimetric reaction in the presence of lysergamine. This system could also be applied to small ergot alkaloids in an ergot contaminated flour sample.

  6. One-step electrodeposition of Au-Pt bimetallic nanoparticles on MoS2 nanoflowers for hydrogen peroxide enzyme-free electrochemical sensor

    International Nuclear Information System (INIS)

    Zhou, Juan; Zhao, Yanan; Bao, Jing; Huo, Danqun; Fa, Huanbao; Shen, Xin; Hou, Changjun

    2017-01-01

    The rationally designed sensor architecture is very important to improve the sensitivity and selectivity for H 2 O 2 enzyme-free electrochemical sensor. In this work, a sensitive H 2 O 2 biosensor was fabricated by electrochemical deposition of Au-Pt bimetallic nanoparticles (NPs) on molybdenum disulfide nanoflowers (MoS 2 NFs). Au-Pt NPs was dispersed or stabilized by the effective support matrix of MoS 2 nanosheets, which was effectively enhance the conductivity, catalytic performance and long-term stability. The experimental results show that MoS 2 -Au/Pt nanocomposites exhibit excellent catalytic activity for specific detection of H 2 O 2, and electrochemical measurement results show that the enzyme-free electrochemical sensor has large linear range of 10 μM to 19.07 mM with high sensitivity of 142.68 μA mM −1 cm −2 . This novel sensor produced satisfactory reproducibility and stability, and exhibited superior potential for the practical quantitative analysis of H 2 O 2 in serum samples.

  7. An H₂S Sensor Based on Electrochemistry for Chicken Coops.

    Science.gov (United States)

    Zeng, Lihua; He, Mei; Yu, Huihui; Li, Daoliang

    2016-08-31

    The recent modernization of the livestock industry lags behind the scale of the livestock industry, particularly in indoor environmental monitoring. In particular, the H₂S gas concentration in chicken coops affects the growth and reproductive capacity of the chickens and threatens their health. Therefore, the research and development of a low-cost, environmentally friendly sensor that can achieve on-line monitoring of H₂S gas has a notably important practical significance. This paper reports the design of an H₂S gas sensor, with selection of an electrochemical probe with high accuracy and wide measurement range using the relatively mature technology of electrochemical sensors. Although the probe of the sensor is the main factor that affects the sensor accuracy, the probe must be combined with a specifically designed signal condition circuit that can overcome the lack of an electrode to satisfy the requirements for the interconnection and matching between the output signal and the test instrument. Because the output current of the electrochemical electrode is small and likely to be disturbed by noise, we designed signal-conditioning modules. Through the signal-conditioning circuit, the output signal of the current electrode can be converted into a voltage and amplified. In addition, we designed a power control module because a bias voltage is necessary for the electrode. Finally, after the calibration experiment, the accurate concentration of H₂S gas can be measured. Based on the experimental analysis, the sensor shows good linearity and selectivity, comparatively high sensitivity, perfect stability and an extremely long operating life of up to two years.

  8. Trends in the Design and Development of Specific Aptamers Against Peptides and Proteins.

    Science.gov (United States)

    Tabarzad, Maryam; Jafari, Marzieh

    2016-04-01

    Aptamers are single stranded oligonucleotides, comparable to monoclonal antibodies (mAbs) in selectivity and affinity and have significant strategic properties in design, development and applications more than mAbs. Ease of design and development, simple chemical modification and the attachment of functional groups, easily handling and more adaptability with analytical methods, small size and adaptation with nanostructures are the valuable characteristics of aptamers in comparison to large protein based ligands. Among a broad range of targets that their specific aptamers developed, proteins and peptides have significant position according to the number of related studies performed so far. Since proteins control many of important physiological and pathological incidents in the living organisms, particularly human beings and because of the benefits of aptamers in clinical and analytical applications, aptamer related technologies in the field of proteins and peptides are under progress, exclusively. Currently, there is only one FDA approved therapeutic aptamer in the pharmaceutical market, which is specific to vascular endothelial growth factor and is prescribed for age related macular degenerative disease. Additionally, there are several aptamers in the different phases of clinical trials. Almost all of these aptamers are specific to clinically important peptide or protein targets. In addition, the application of protein specific aptamers in the design and development of targeted drug delivery systems and diagnostic biosensors is another interesting field of aptamer technology. In this review, significant efforts related to development and applications of aptamer technologies in proteins and peptides sciences were considered to emphasis on the importance of aptamers in medicinal and clinical applications.

  9. An amplified graphene oxide-based fluorescence aptasensor based on target-triggered aptamer hairpin switch and strand-displacement polymerization recycling for bioassays.

    Science.gov (United States)

    Hu, Kun; Liu, Jinwen; Chen, Jia; Huang, Yong; Zhao, Shulin; Tian, Jianniao; Zhang, Guohai

    2013-04-15

    An amplified graphene oxide (GO) based fluorescence aptasensor based on target-triggered aptamer hairpin switch and strand-displacement polymerization recycling is developed for bioassays. The dye-labeled single-strand DNA (aptamer hairpin) was adsorbed on the surface of GO, which result in the fluorescence quenching of dye, and exhibiting minimal background fluorescence. Upon the target, primer and polymerase, the stem of the aptamer hairpin was opened, and binds with the primer to triggers the circular target strand-displacement polymerization reaction, which produces huge amounts of duplex helixes DNA and lead to strong fluorescence emission due to shielding of nucelobases within its double-helix structure. During the polymerization reaction, the primer was extended, and target was displaced. And the displaced target recognizes and hybridizes with another hairpin probe, triggering the next round of polymerization reaction, and the circle process induces fluorescence signal amplification for the detection of analyte. To test the feasibility of the aptasensor systems, interferon-gamma (IFN-γ) was employed as a model analyte. A detection limit as low as 1.5 fM is obtained based on the GO aptasensor with a linear range of three orders of magnitude. The present method was successfully applied for the detection of IFN-γ in human plasma. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Electrochemical Characterization of O2 Plasma Functionalized Multi-Walled Carbon Nanotube Electrode for Legionella pneumophila DNA Sensor

    Science.gov (United States)

    Park, Eun Jin; Lee, Jun-Yong; Hyup Kim, Jun; Kug Kim, Sun; Lee, Cheol Jin; Min, Nam Ki

    2010-08-01

    An electrochemical DNA sensor for Legionella pneumophila detection was constructed using O2 plasma functionalized multi-walled carbon nanotube (MWCNT) film as a working electrode (WE). The cyclic voltammetry (CV) results revealed that the electrocatalytic activity of plasma functionalized MWCNT (pf-MWCNT) significantly changed depending on O2 plasma treatment time due to some oxygen containing functional groups on the pf-MWCNT surface. Scanning electron microscope (SEM) images and X-ray photoelectron spectroscopy (XPS) spectra were also presented the changes of their surface morphologies and oxygen composition before and after plasma treatment. From a comparison study, it was found that the pf-MWCNT WEs had higher electrocatalytic activity and more capability of probe DNA immobilization: therefore, electrochemical signal changes by probe DNA immobilization and hybridization on pf-MWCNT WEs were larger than on Au WEs. The pf-MWCNT based DNA sensor was able to detect a concentration range of 10 pM-100 nM of target DNA to detect L. pneumophila.

  11. Engineering the bioelectrochemical interface using functional nanomaterials and microchip technique toward sensitive and portable electrochemical biosensors.

    Science.gov (United States)

    Jia, Xiaofang; Dong, Shaojun; Wang, Erkang

    2016-02-15

    Electrochemical biosensors have played active roles at the forefront of bioanalysis because they have the potential to achieve sensitive, specific and low-cost detection of biomolecules and many others. Engineering the electrochemical sensing interface with functional nanomaterials leads to novel electrochemical biosensors with improved performances in terms of sensitivity, selectivity, stability and simplicity. Functional nanomaterials possess good conductivity, catalytic activity, biocompatibility and high surface area. Coupled with bio-recognition elements, these features can amplify signal transduction and biorecognition events, resulting in highly sensitive biosensing. Additionally, microfluidic electrochemical biosensors have attracted considerable attention on account of their miniature, portable and low-cost systems as well as high fabrication throughput and ease of scaleup. For example, electrochemical enzymetic biosensors and aptamer biosensors (aptasensors) based on the integrated microchip can be used for portable point-of-care diagnostics and environmental monitoring. This review is a summary of our recent progress in the field of electrochemical biosensors, including aptasensors, cytosensors, enzymatic biosensors and self-powered biosensors based on biofuel cells. We presented the advantages that functional nanomaterials and microfluidic chip technology bring to the electrochemical biosensors, together with future prospects and possible challenges. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Recent Progress in Electrochemical Biosensors for Glycoproteins

    Directory of Open Access Journals (Sweden)

    Uichi Akiba

    2016-12-01

    Full Text Available This review provides an overview of recent progress in the development of electrochemical biosensors for glycoproteins. Electrochemical glycoprotein sensors are constructed by combining metal and carbon electrodes with glycoprotein-selective binding elements including antibodies, lectin, phenylboronic acid and molecularly imprinted polymers. A recent trend in the preparation of glycoprotein sensors is the successful use of nanomaterials such as graphene, carbon nanotube, and metal nanoparticles. These nanomaterials are extremely useful for improving the sensitivity of glycoprotein sensors. This review focuses mainly on the protocols for the preparation of glycoprotein sensors and the materials used. Recent improvements in glycoprotein sensors are discussed by grouping the sensors into several categories based on the materials used as recognition elements.

  13. Visual detection and microplate assay for Staphylococcus aureus based on aptamer recognition coupled to tyramine signal amplification

    International Nuclear Information System (INIS)

    Yuan, Jinglei; Li, Can; Ma, Xiaoyuan; Xia, Yu; Chen, Jie; Wang, Zhouping; Yu, Ye

    2014-01-01

    We have developed a specific method for the visual detection of Staphylococcus aureus based on aptamer recognition coupled to tyramine signal amplification technology. A biotinylated aptamer specific for S. aureus was immobilized on the surface of the wells of a microplate via biotin-avidin binding. Then, the target bacteria (S. aureus), the biotinylated-aptamer-streptavidin-HRP conjugates, biotinylated tyramine, hydrogen peroxide and streptavidin-HRP were successively placed in the wells of the microplate. After adding TMB reagent and stop solution, the intensity of the yellow reaction product can be visually inspected or measured with a plate reader. Under optimized conditions, there is a linear relationship between absorbance at 450 nm and the concentration of S. aureus in the 10 to 107 cfu mL −1 concentration range (with an R 2 of 0.9976). The limit of detection is 8 cfu mL −1 . (author)

  14. Fabrication of flexible and disposable carbon paste-based electrodes and their electrochemical sensing

    Science.gov (United States)

    Aryasomayajula, Lavanya; Varadan, Vijay K.

    2008-03-01

    The paper describes a disposable electrochemical biosensor for glucose monitoring. The sensor is based on carbon paste immobilized with glucose oxidase and upon screen printed electrodes. The sensor has been tested effectively for the blood glucose levels corresponding to normal (70 to 99 mg/dL or 3.9 to5.5 mmol/L), pre-diabetic (100 to 125 mg/dL or 5.6 to 6.9 mmol/L) and diabetic (>126 mg/dL or 7.0 mmol/L). The calibration curve and the sensitivity of the sensor were measured.

  15. A Review of Therapeutic Aptamer Conjugates with Emphasis on New Approaches

    Directory of Open Access Journals (Sweden)

    John G. Bruno

    2013-03-01

    Full Text Available The potential to emulate or enhance antibodies with nucleic acid aptamers while lowering costs has prompted development of new aptamer-protein, siRNA, drug, and nanoparticle conjugates. Specific focal points of this review discuss DNA aptamers covalently bound at their 3' ends to various proteins for enhanced stability and greater pharmacokinetic lifetimes in vivo. The proteins can include Fc tails of IgG for opsonization, and the first component of complement (C1q to trigger complement-mediated lysis of antibiotic-resistant Gram negative bacteria, cancer cells and possibly some parasites during vulnerable stages. In addition, the 3' protein adduct may be a biotoxin, enzyme, or may simply be human serum albumin (HSA or a drug known to bind HSA, thereby retarding kidney and other organ clearance and inhibiting serum exonucleases. In this review, the author summarizes existing therapeutic aptamer conjugate categories and describes his patented concept for PCR-based amplification of double-stranded aptamers followed by covalent attachment of proteins or other agents to the chemically vulnerable overhanging 3' adenine added by Taq polymerase. PCR amplification of aptamers could dramatically lower the current $2,000/gram cost of parallel chemical oligonucleotide synthesis, thereby enabling mass production of aptamer-3'-protein or drug conjugates to better compete against expensive humanized monoclonal antibodies.

  16. Graphene nanoflakes on transparent glass electrode sensor for electrochemical sensing of anti-diabetic drug.

    Science.gov (United States)

    Narang, Jagriti; Malhotra, Nitesh; Singhal, Chaitali; Bhatia, Rishabh; Kathuria, Vikas; Jain, Manan

    2017-04-01

    Metformin (Mf) plays a major role in controlling insulin level of individuals at risk of developing diabetes mellitus. Overdose of Mf can cause lactic acidosis, diarrhoea, cough, or hoarseness, etc. These particulars point out the identification for selective and sensitive methods of Mf determination. In the present work, graphene nanoflakes-polymethylene blue (GNF-PMB) nano-composites were developed onto fluorine-doped tin oxide (SnO 2 /F) coated glass substrates for electrochemical sensing of Mf using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The developed sensor shows quick response time (10 s), linearity as 10-10 3  µM, LOD (0.1 nM), and good shelf life (10 weeks). Attempts have been made to utilize this electrode for estimation of Mf in urine samples. Configured as a highly responsive, reproducible Mf sensor, it combines the electrical properties of GNF and stable electron transfer of PMB. The newly developed Mf sensor presents a promising candidate in point-of-care diagnosis.

  17. Novel Ag@TiO2 nanocomposite synthesized by electrochemically active biofilm for nonenzymatic hydrogen peroxide sensor.

    Science.gov (United States)

    Khan, Mohammad Mansoob; Ansari, Sajid Ali; Lee, Jintae; Cho, Moo Hwan

    2013-12-01

    A novel nonenzymatic sensor for H2O2 was developed based on an Ag@TiO2 nanocomposite synthesized using a simple and cost effective approach with an electrochemically active biofilm. The optical, structural, morphological and electrochemical properties of the as-prepared Ag@TiO2 nanocomposite were examined by UV-vis spectroscopy, X-ray diffraction, transmission electron microscopy and cyclic voltammetry (CV). The Ag@TiO2 nanocomposite was fabricated on a glassy carbon electrode (GCE) and their electrochemical performance was analyzed by CV, differential pulse voltammetry and electrochemical impedance spectroscopy. The Ag@TiO2 nanocomposite modified GCE (Ag@TiO2/GCE) displayed excellent performance towards H2O2 sensing at -0.73 V in the linear response range from 0.83 μM to 43.3 μM, within a detection limit and sensitivity of 0.83 μM and ~65.2328±0.01 μA μM(-1) cm(-2), respectively. In addition, Ag@TiO2/GCE exhibited good operational reproducibility and long term stability. © 2013.

  18. Development of a sensitive electrochemical DNA sensor by 4-aminothiophenol self-assembled on electrodeposited nanogold electrode coupled with Au nanoparticles labeled reporter ssDNA

    International Nuclear Information System (INIS)

    Li Guangjiu; Liu Lihua; Qi Xiaowei; Guo Yaqing; Sun Wei; Li Xiaolin

    2012-01-01

    Graphical abstract: - Abstract: A novel and sensitive electrochemical DNA biosensor was fabricated by using the 4-aminothiophenol (4-ATP) self-assembled on electrodeposited gold nanoparticles (NG) modified electrode to anchor capture ssDNA sequences and Au nanoparticles (AuNPs) labeled with reporter ssDNA sequences, which were further coupled with electroactive indicator of hexaammineruthenium (III) ([Ru(NH 3 ) 6 ] 3+ ) to amplify the electrochemical signal of hybridization reaction. Different modified electrodes were prepared and characterized by cyclic voltammetry, scanning electron microscope and electrochemical impedance spectroscopy. By using a sandwich model for the capture of target ssDNA sequences, which was based on the shorter probe ssDNA and AuNPs label reporter ssDNA hybridized with longer target ssDNA, the electrochemical behavior of [Ru(NH 3 ) 6 ] 3+ was monitored by differential pulse voltammetry (DPV). The fabricated electrochemical DNA sensor exhibited good distinguish capacity for the complementary ssDNA sequence and two bases mismatched ssDNA. The dynamic detection range of the target ssDNA sequences was from 1.4 × 10 −11 to 2.0 × 10 −9 mol/L with the detection limit as 9.5 × 10 −12 mol/L (3σ). So in this paper a new electrochemical DNA sensor was designed with gold nanoparticles as the immobilization platform and the signal amplifier simultaneously.

  19. A novel detection of radon based on its decay product inducing conformational changes of an aptamer probe

    International Nuclear Information System (INIS)

    Long, Minzhi; Deng, Han; Tian, Gang; Song, Chunli; Liu, Hongwen; Shen, Yi; Lv, Changyin

    2016-01-01

    This study proposes a novel method for the detection of inert gas radon using a label-free, specific, fluorescence-sensing aptamer in the context of PW17-OG system. This method utilizes the cyanine dye OliGreen (OG) as a signal reactor and the aptamer PW17 as a fluorescent identification probe. When OG integrates into the free curling PW17, a strong fluorescence signal is generated. After radon decays, the long lived naturally occurring radon progeny Pb being disposed and introduced to the system. Lead ions induce PW17 to form a stable G-quadruplex, thereby inhibiting the interaction between OG and PW17 and resulting in a reduction of the fluorescence intensity. The fluorescence intensity show a good linear relationship with lead ion and the radon concentration (D), thereinto, We fitted linear regression of radon concentration in the range of 0.92–4.22 (×10"4 Bqhm"−"3) to receive a good relationship between ΔF and the concentration of radon with the detection limit of 1963 Bqhm"−"3. This method has been successfully applied for detecting standard cumulative concentration of radon and the detection limit reached the national standard of China. This sensitive method can exclude radiation damage in field testing, furthermore, it explores a new field in biological analysis using an aptamer to detected inorganic, gaseous, and radioactive materials. - Highlights: • The label-free fluorescence sensor for detection of radon. • This microscale experiment without radiation damage to experimenters and with less harm to environment. • It provides a sensitive, low cost and simple strategy for radon accumulated concentration and lead ion detection.

  20. A novel detection of radon based on its decay product inducing conformational changes of an aptamer probe

    Energy Technology Data Exchange (ETDEWEB)

    Long, Minzhi; Deng, Han; Tian, Gang; Song, Chunli; Liu, Hongwen; Shen, Yi; Lv, Changyin, E-mail: Lchy1955@163.com

    2016-09-14

    This study proposes a novel method for the detection of inert gas radon using a label-free, specific, fluorescence-sensing aptamer in the context of PW17-OG system. This method utilizes the cyanine dye OliGreen (OG) as a signal reactor and the aptamer PW17 as a fluorescent identification probe. When OG integrates into the free curling PW17, a strong fluorescence signal is generated. After radon decays, the long lived naturally occurring radon progeny Pb being disposed and introduced to the system. Lead ions induce PW17 to form a stable G-quadruplex, thereby inhibiting the interaction between OG and PW17 and resulting in a reduction of the fluorescence intensity. The fluorescence intensity show a good linear relationship with lead ion and the radon concentration (D), thereinto, We fitted linear regression of radon concentration in the range of 0.92–4.22 (×10{sup 4} Bqhm{sup −3}) to receive a good relationship between ΔF and the concentration of radon with the detection limit of 1963 Bqhm{sup −3}. This method has been successfully applied for detecting standard cumulative concentration of radon and the detection limit reached the national standard of China. This sensitive method can exclude radiation damage in field testing, furthermore, it explores a new field in biological analysis using an aptamer to detected inorganic, gaseous, and radioactive materials. - Highlights: • The label-free fluorescence sensor for detection of radon. • This microscale experiment without radiation damage to experimenters and with less harm to environment. • It provides a sensitive, low cost and simple strategy for radon accumulated concentration and lead ion detection.

  1. Detection of methyl salicylate using bi-enzyme electrochemical sensor consisting salicylate hydroxylase and tyrosinase.

    Science.gov (United States)

    Fang, Yi; Bullock, Hannah; Lee, Sarah A; Sekar, Narendran; Eiteman, Mark A; Whitman, William B; Ramasamy, Ramaraja P

    2016-11-15

    Volatile organic compounds have been recognized as important marker chemicals to detect plant diseases caused by pathogens. Methyl salicylate has been identified as one of the most important volatile organic compounds released by plants during a biotic stress event such as fungal pathogen infection. Advanced detection of these marker chemicals could help in early identification of plant diseases and has huge significance for agricultural industry. This work describes the development of a novel bi-enzyme based electrochemical biosensor consisting of salicylate hydroxylase and tyrosinase enzymes immobilized on carbon nanotube modified electrodes. The amperometric detection using the bi-enzyme platform was realized through a series of cascade reactions that terminate in an electrochemical reduction reaction. Electrochemical measurements revealed that the sensitivity of the bi-enzyme sensor was 30.6±2.7µAcm(-2)µM(-1) and the limit of detection and limit of quantification were 13nM (1.80ppb) and 39nM (5.39ppb) respectively. Interference studies showed no significant interference from the other common plant volatile compounds. Synthetic analyte studies revealed that the bi-enzyme based biosensor can be used to reliably detect methyl salicylate released by unhealthy plants. Copyright © 2016. Published by Elsevier B.V.

  2. Construction of an Electrochemical Sensor Based on Carbon Nanotubes/Gold Nanoparticles for Trace Determination of Amoxicillin in Bovine Milk

    Directory of Open Access Journals (Sweden)

    Aliyu Muhammad

    2016-01-01

    Full Text Available In this work, a novel electrochemical sensor was fabricated for determination of amoxicillin in bovine milk samples by decoration of carboxylated multi-walled carbon nanotubes (MWCNTs with gold nanoparticles (AuNPs using ethylenediamine (en as a cross linker (AuNPs/en-MWCNTs. The constructed nanocomposite was homogenized in dimethylformamide and drop casted on screen printed electrode. Field emission scanning electron microscopy (FESEM, energy dispersive X-Ray (EDX, X-Ray diffraction (XRD and cyclic voltammetry were used to characterize the synthesized nanocomposites. The results show that the synthesized nanocomposites induced a remarkable synergetic effect for the oxidation of amoxicillin. Effect of some parameters, including pH, buffer, scan rate, accumulation potential, accumulation time and amount of casted nanocomposites, on the sensitivity of fabricated sensor were optimized. Under the optimum conditions, there was two linear calibration ranges from 0.2–10 µM and 10–30 µM with equations of Ipa (µA = 2.88C (µM + 1.2017; r = 0.9939 and Ipa (µA = 0.88C (µM + 22.97; r = 0.9973, respectively. The limit of detection (LOD and limit of quantitation (LOQ were calculated as 0.015 µM and 0.149 µM, respectively. The fabricated electrochemical sensor was successfully applied for determination of Amoxicillin in bovine milk samples and all results compared with high performance liquid chromatography (HPLC standard method.

  3. Impedimetric PSA aptasensor based on the use of a glassy carbon electrode modified with titanium oxide nanoparticles and silk fibroin nanofibers.

    Science.gov (United States)

    Benvidi, Ali; Banaei, Maryam; Tezerjani, Marzieh Dehghan; Molahosseini, Hosein; Jahanbani, Shahriar

    2017-12-14

    This article describes an impedimetric aptasensor for the prostate specific antigen (PSA), a widely accepted prostate cancer biomarker. A glassy carbon electrode (GCE) was modified with titanium oxide nanoparticles (TiO 2 ) and silk fibroin nanofiber (SF) composite. The aptasensor was obtained by immobilizing a PSA-binding aptamer on the AuNP-modified with 6-mercapto-1-hexanol. The single fabrication steps were characterized by cyclic voltammetry and electrochemical impedance spectroscopy. The assay has two linear response ranges (from 2.5 fg.mL -1 to 25 pg.mL -1 , and from 25 pg.mL -1 to 25 ng.mL -1 ) and a 0.8 fg.mL -1 detection limit. After optimization of experimental conditions, the sensor is highly selective for PSA over bovine serum albumin and lysozyme. It was successfully applied to the detection of PSA in spiked serum samples. Graphical abstract Schematic of the fabrication of an aptasensor for the prostate specific antigen (PSA). It is based on the use of a glassy carbon electrode modified with gold nanoparticles and titanium oxide-silk fibroin. The immobilization process of aptamer and interaction with PSA were followed by electrochemical impedance spectroscopy technique.

  4. Solid State Electrochemical Sensors for Nitrogen Oxide (NOx) Detection in Lean Exhaust Gases

    OpenAIRE

    Rheaume, Jonathan Michael

    2010-01-01

    Solid state electrochemical sensors that measure nitrogen oxides (NOx) in lean exhaust have been investigated in order to help meet future on-board diagnostic (OBD) regulations for diesel vehicles. This impedancemetric detection technology consists of a planar, single cell sensor design with various sensing electrode materials and yttria-stabilized zirconia (YSZ) as the electrolyte. No reference to ambient air is required. An impedance analysis method yields a signal that is proportional to t...

  5. A novel reduced graphene oxide/molybdenum disulfide/polyaniline nanocomposite-based electrochemical aptasensor for detection of aflatoxin B1.

    Science.gov (United States)

    Geleta, Girma Selale; Zhao, Zhen; Wang, Zhenxin

    2018-03-26

    In this study, we developed a novel reduced graphene oxide/molybdenum disulfide/polyaniline@gold nanoparticles-based electrochemical aptasensor (termed as RGO/MoS2/PANI@AuNPs/Apt) for detection of aflatoxin B1 (AFB1). The RGO/MoS2/PANI nanocomposites were synthesized and characterized by multiple techniques, including scanning electron microscopy (SEM), transmission electron microscopy (TEM), infrared spectroscopy (FTIR), UV-visible spectroscopy, and X-ray photoelectron spectroscopy (XPS). A glassy carbon electrode (GCE) was then modified by the RGO/MoS2/PANI nanocomposites, coated with a chitosan (Cs) film, and followed by AuNPs attachment for immobilizing the AFB1 aptamers. In the presence of AFB1, the AFB1 binding-induced conformation change of the immobilized aptamer on the electrode surface results in the reduction of the electron transfer from a [Fe(CN)6]3-/4- redox couple in the solution to the GCE surface. Therefore, the aptamer-AFB1 binding event can be easily monitored by the peak current change of the RGO/MoS2/PANI@AuNPs/Apt through differential pulse voltammetry (DPV) measurement. Under the optimized conditions, the as-developed RGO/MoS2/PANI@AuNPs/Apt exhibits a wide linear range from 0.01 fg mL-1 to 1.0 fg mL-1 and a remarkably low detection limit (3σ) of 0.002 fg mL-1. The aptasensor also has good reproducibility as well as shows high selectivity against other fungal toxins, such as OTA and FB1. Moreover, the practicability of the RGO/MoS2/PANI@AuNPs/Apt was demonstrated by the analysis of AFB1 in the spiked wine samples.

  6. Sensitivity and Selectivity on Aptamer-Based Assay: The Determination of Tetracycline Residue in Bovine Milk

    Directory of Open Access Journals (Sweden)

    Sohee Jeong

    2012-01-01

    Full Text Available A competitive enzyme-linked aptamer assay (ELAA to detect tetracycline in milk was performed by using two different aptamers individually; one is 76 mer-DNA aptamer and the other is 57 mer-RNA aptamer. The best optimum condition was obtained without monovalent ion, Na+ and also by adding no Mg2+ ion in the assay buffer, along with RT incubation. The optimized ELAA showed a good sensitivity (LOD of 2.10 × 10−8 M with a wide dynamic range (3.16 × 10−8 M ~ 3.16 × 10−4 M. In addition, the average R.S.D. across all data points of the curve was less than 2.5% with good recoveries (~101.8% from the milk media. Thus, this method provides a good tool to monitor tetracycline in milk from MRLs’ point of view. However, this ELAA method was not superior to the ELISA method in terms of specificity. This paper describes that it does not always give better sensitivity and specificity in assays even though aptamers have several advantages over antibodies and have been known to be good binders for binding assays.

  7. Development of a fraction collection approach in capillary electrophoresis SELEX for aptamer selection.

    Science.gov (United States)

    Luo, Zhaofeng; Zhou, Hongmin; Jiang, Hao; Ou, Huichao; Li, Xin; Zhang, Liyun

    2015-04-21

    Aptamers have attracted much attention due to their ability to bind to target molecules with high affinity and specificity. The development of an approach capable of efficiently generating aptamers through systematic evolution of ligands by exponential enrichment (SELEX) is particularly challenging. Herein, a fraction collection approach in capillary electrophoresis SELEX (FCE-SELEX) for the partition of a bound DNA-target complex is developed. By integrating fraction collection with a facile oil seal method for avoiding contamination while amplifying the bound DNA-target complex, in a single round of selection, a streptavidin-binding aptamer (SBA) has been generated. The affinity of aptamer SBA-36 for streptavidin (SA) is determined as 30.8 nM by surface plasmon resonance (SPR). Selectivity and biotin competition experiments demonstrate that the SBA-36 aptamer selected by FCE-SELEX is as efficient as those from other methods. Based on the ability of fraction collection in partition and collection of the aptamer-target complex from the original DNA library, FCE-SELEX can be a universal tool for the development of aptamers.

  8. Fluorescent assay for oxytetracycline based on a long-chain aptamer assembled onto reduced graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Huimin; Gao, Sheng; Liu, Meng; Chang, Yangyang; Fan, Xinfei; Quan, Xie [Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024 (China)

    2013-07-15

    We report on a fluorescent assay for oxytetracycline (OTC) using a fluorescein-labeled long-chain aptamer assembled onto reduced graphene oxide (rGO). The π-π stacking interaction between aptamer and rGO causes the fluorescence of the label to be almost completely quenched via energy transfer so that the system has very low background fluorescence. The addition of OTC leads to the formation of G-quadruplex OTC complexes and prevents the adsorption of labeled aptamer on the surface of rGO. As a result, fluorescence is restored, and this effect allows for a quantitative assay of OTC over the 0.1–2 μM concentration range and with a detection limit of 10 nM. This method is simple, rapid, selective and sensitive. It may be applied to other small molecule analytes by applying appropriate aptamers. (author)

  9. Fluorescent assay for oxytetracycline based on a long-chain aptamer assembled onto reduced graphene oxide

    International Nuclear Information System (INIS)

    Zhao, Huimin; Gao, Sheng; Liu, Meng; Chang, Yangyang; Fan, Xinfei; Quan, Xie

    2013-01-01

    We report on a fluorescent assay for oxytetracycline (OTC) using a fluorescein-labeled long-chain aptamer assembled onto reduced graphene oxide (rGO). The π-π stacking interaction between aptamer and rGO causes the fluorescence of the label to be almost completely quenched via energy transfer so that the system has very low background fluorescence. The addition of OTC leads to the formation of G-quadruplex OTC complexes and prevents the adsorption of labeled aptamer on the surface of rGO. As a result, fluorescence is restored, and this effect allows for a quantitative assay of OTC over the 0.1–2 μM concentration range and with a detection limit of 10 nM. This method is simple, rapid, selective and sensitive. It may be applied to other small molecule analytes by applying appropriate aptamers. (author)

  10. Polyaniline nanowires-gold nanoparticles hybrid network based chemiresistive hydrogen sulfide sensor

    Science.gov (United States)

    Shirsat, Mahendra D.; Bangar, Mangesh A.; Deshusses, Marc A.; Myung, Nosang V.; Mulchandani, Ashok

    2009-02-01

    We report a sensitive, selective, and fast responding room temperature chemiresistive sensor for hydrogen sulfide detection and quantification using polyaniline nanowires-gold nanoparticles hybrid network. The sensor was fabricated by facile electrochemical technique. Initially, polyaniline nanowires with a diameter of 250-320 nm bridging the gap between a pair of microfabricated gold electrodes were synthesized using templateless electrochemical polymerization using a two step galvanostatic technique. Polyaniline nanowires were then electrochemically functionalized with gold nanoparticles using cyclic voltammetry technique. These chemiresistive sensors show an excellent limit of detection (0.1 ppb), wide dynamic range (0.1-100 ppb), and very good selectivity and reproducibility.

  11. Electrochemical paper-based peptide nucleic acid biosensor for detecting human papillomavirus

    Energy Technology Data Exchange (ETDEWEB)

    Teengam, Prinjaporn [Program in Petrochemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330 (Thailand); Siangproh, Weena [Department of Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok, 10110 (Thailand); Tuantranont, Adisorn [Nanoelectronics and MEMS Laboratory, National Electronics and Computer Technology Center, Pathumthani, 12120 (Thailand); Henry, Charles S. [Department of Chemistry, Colorado State University, Fort Collins, CO, 80523 (United States); Vilaivan, Tirayut [Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330 (Thailand); Chailapakul, Orawon, E-mail: corawon@chula.ac.th [Electrochemistry and Optical Spectroscopy Research Unit, Department of Chemistry, Chulalongkorn University, Pathumwan, Bangkok, 10330 (Thailand); Nanotec-CU Center of Excellence on Food and Agriculture, Bangkok, 10330 (Thailand)

    2017-02-01

    A novel paper-based electrochemical biosensor was developed using an anthraquinone-labeled pyrrolidinyl peptide nucleic acid (acpcPNA) probe (AQ-PNA) and graphene-polyaniline (G-PANI) modified electrode to detect human papillomavirus (HPV). An inkjet printing technique was employed to prepare the paper-based G-PANI-modified working electrode. The AQ-PNA probe baring a negatively charged amino acid at the N-terminus was immobilized onto the electrode surface through electrostatic attraction. Electrochemical impedance spectroscopy (EIS) was used to verify the AQ-PNA immobilization. The paper-based electrochemical DNA biosensor was used to detect a synthetic 14-base oligonucleotide target with a sequence corresponding to human papillomavirus (HPV) type 16 DNA by measuring the electrochemical signal response of the AQ label using square-wave voltammetry before and after hybridization. It was determined that the current signal significantly decreased after the addition of target DNA. This phenomenon is explained by the rigidity of PNA-DNA duplexes, which obstructs the accessibility of electron transfer from the AQ label to the electrode surface. Under optimal conditions, the detection limit of HPV type 16 DNA was found to be 2.3 nM with a linear range of 10–200 nM. The performance of this biosensor on real DNA samples was tested with the detection of PCR-amplified DNA samples from the SiHa cell line. The new method employs an inexpensive and disposable device, which easily incinerated after use and is promising for the screening and monitoring of the amount of HPV-DNA type 16 to identify the primary stages of cervical cancer. - Highlights: • A paper-based DNA biosensor using AQ-PNA probe and G-PANI modified electrode was first developed. • This developed DNA biosensor was highly specific over the non-complementary DNA. • This sensor was successfully applied to detect the HPV-DNA type 16 obtained from cancer cell lines. • This sensor is inexpensive and

  12. Molecular recognition of live methicillin-resistant staphylococcus aureus cells using DNA aptamers.

    Science.gov (United States)

    Turek, Diane; Van Simaeys, Dimitri; Johnson, Judith; Ocsoy, Ismail; Tan, Weihong

    2013-01-01

    To generate DNA-aptamers binding to Methicillin-resistant Staphylococcus aureus (MRSA) . The Cell-Systematic Evolution of Ligands by Exponential Enrichment (SELEX) technology was used to run the selection against MRSA bacteria and develop target-specific aptamers. MRSA bacteria were targeted while Enterococcus faecalis bacteria were used for counter selection during that process. Binding assays to determine the right aptamer candidates as well as binding assays on clinical samples were performed through flow cytometry and analyzed using the FlowJo software. The characterization of the aptamers was done by determination of their K d values and determined by analysis of flow data at different aptamer concentration using SigmaPlot. Finally, the recognition of the complex Gold-nanoparticle-aptamer to the bacteria cells was observed using transmission electron microscopy (TEM). During the cell-SELEX selection process, 17 rounds were necessary to generate enrichment of the pool. While the selection was run using fixed cells, it was shown that the binding of the pools with live cells was giving similar results. After sequencing and analysis of the two last pools, four sequences were identified to be aptamer candidates. The characterization of those aptamers showed that based on their K d values, DTMRSA4 presented the best binding with a K d value of 94.61 ± 18.82 nmol/L. A total of ten clinical samples of MRSA , S. aureus and Enterococcus faecalis were obtained to test those aptamers and determine their binding on a panel of samples. DTMRSA1 and DTMRSA3 showed the best results regarding their specificity to MRSA , DTMRSA1 being the most specific of all. Finally, those aptamers were coupled with gold-nanoparticle and their binding to MRSA cells was visualized through TEM showing that adduction of nanoparticles on the aptamers did not change their binding property. A total of four aptamers that bind to MRSA were obtained with K d values ranking from 94 to 200 nmol/L.

  13. CMOS Electrochemical Instrumentation for Biosensor Microsystems: A Review

    Directory of Open Access Journals (Sweden)

    Haitao Li

    2016-12-01

    Full Text Available Modern biosensors play a critical role in healthcare and have a quickly growing commercial market. Compared to traditional optical-based sensing, electrochemical biosensors are attractive due to superior performance in response time, cost, complexity and potential for miniaturization. To address the shortcomings of traditional benchtop electrochemical instruments, in recent years, many complementary metal oxide semiconductor (CMOS instrumentation circuits have been reported for electrochemical biosensors. This paper provides a review and analysis of CMOS electrochemical instrumentation circuits. First, important concepts in electrochemical sensing are presented from an instrumentation point of view. Then, electrochemical instrumentation circuits are organized into functional classes, and reported CMOS circuits are reviewed and analyzed to illuminate design options and performance tradeoffs. Finally, recent trends and challenges toward on-CMOS sensor integration that could enable highly miniaturized electrochemical biosensor microsystems are discussed. The information in the paper can guide next generation electrochemical sensor design.

  14. Development of self-powered wireless high temperature electrochemical sensor for in situ corrosion monitoring of coal-fired power plant.

    Science.gov (United States)

    Aung, Naing Naing; Crowe, Edward; Liu, Xingbo

    2015-03-01

    Reliable wireless high temperature electrochemical sensor technology is needed to provide in situ corrosion information for optimal predictive maintenance to ensure a high level of operational effectiveness under the harsh conditions present in coal-fired power generation systems. This research highlights the effectiveness of our novel high temperature electrochemical sensor for in situ coal ash hot corrosion monitoring in combination with the application of wireless communication and an energy harvesting thermoelectric generator (TEG). This self-powered sensor demonstrates the successful wireless transmission of both corrosion potential and corrosion current signals to a simulated control room environment. Copyright © 2014 ISA. All rights reserved.

  15. In vitro Selection and Interaction Studies of a DNA Aptamer Targeting Protein A.

    Directory of Open Access Journals (Sweden)

    Regina Stoltenburg

    Full Text Available A new DNA aptamer targeting Protein A is presented. The aptamer was selected by use of the FluMag-SELEX procedure. The SELEX technology (Systematic Evolution of Ligands by EXponential enrichment is widely applied as an in vitro selection and amplification method to generate target-specific aptamers and exists in various modified variants. FluMag-SELEX is one of them and is characterized by the use of magnetic beads for target immobilization and fluorescently labeled oligonucleotides for monitoring the aptamer selection progress. Structural investigations and sequence truncation experiments of the selected aptamer for Protein A led to the conclusion, that a stem-loop structure at its 5'-end including the 5'-primer binding site is essential for aptamer-target binding. Extensive interaction analyses between aptamer and Protein A were performed by methods like surface plasmon resonance, MicroScale Thermophoresis and bead-based binding assays using fluorescence measurements. The binding of the aptamer to its target was thus investigated in assays with immobilization of one of the binding partners each, and with both binding partners in solution. Affinity constants were determined in the low micromolar to submicromolar range, increasing to the nanomolar range under the assumption of avidity. Protein A provides more than one binding site for the aptamer, which may overlap with the known binding sites for immunoglobulins. The aptamer binds specifically to both native and recombinant Protein A, but not to other immunoglobulin-binding proteins like Protein G and L. Cross specificity to other proteins was not found. The application of the aptamer is directed to Protein A detection or affinity purification. Moreover, whole cells of Staphylococcus aureus, presenting Protein A on the cell surface, could also be bound by the aptamer.

  16. In vitro Selection and Interaction Studies of a DNA Aptamer Targeting Protein A.

    Science.gov (United States)

    Stoltenburg, Regina; Schubert, Thomas; Strehlitz, Beate

    2015-01-01

    A new DNA aptamer targeting Protein A is presented. The aptamer was selected by use of the FluMag-SELEX procedure. The SELEX technology (Systematic Evolution of Ligands by EXponential enrichment) is widely applied as an in vitro selection and amplification method to generate target-specific aptamers and exists in various modified variants. FluMag-SELEX is one of them and is characterized by the use of magnetic beads for target immobilization and fluorescently labeled oligonucleotides for monitoring the aptamer selection progress. Structural investigations and sequence truncation experiments of the selected aptamer for Protein A led to the conclusion, that a stem-loop structure at its 5'-end including the 5'-primer binding site is essential for aptamer-target binding. Extensive interaction analyses between aptamer and Protein A were performed by methods like surface plasmon resonance, MicroScale Thermophoresis and bead-based binding assays using fluorescence measurements. The binding of the aptamer to its target was thus investigated in assays with immobilization of one of the binding partners each, and with both binding partners in solution. Affinity constants were determined in the low micromolar to submicromolar range, increasing to the nanomolar range under the assumption of avidity. Protein A provides more than one binding site for the aptamer, which may overlap with the known binding sites for immunoglobulins. The aptamer binds specifically to both native and recombinant Protein A, but not to other immunoglobulin-binding proteins like Protein G and L. Cross specificity to other proteins was not found. The application of the aptamer is directed to Protein A detection or affinity purification. Moreover, whole cells of Staphylococcus aureus, presenting Protein A on the cell surface, could also be bound by the aptamer.

  17. Micro-Drilling of Polymer Tubular Ultramicroelectrode Arrays for Electrochemical Sensors

    Directory of Open Access Journals (Sweden)

    Niels B. Larsen

    2013-05-01

    Full Text Available We present a reproducible fast prototyping procedure based on micro-drilling to produce homogeneous tubular ultramicroelectrode arrays made from poly(3,4-ethylenedioxythiophene (PEDOT, a conductive polymer. Arrays of Ø 100 µm tubular electrodes each having a height of 0.37 ± 0.06 µm were reproducibly fabricated. The electrode dimensions were analyzed by SEM after deposition of silver dendrites to visualize the electroactive electrode area. The electrochemical applicability of the electrodes was demonstrated by voltammetric and amperometric detection of ferri-/ferrocyanide. Recorded signals were in agreement with results from finite element modelling of the system. The tubular PEDOT ultramicroelectrode arrays were modified by prussian blue to enable the detection of hydrogen peroxide. A linear sensor response was demonstrated for hydrogen peroxide concentrations from 0.1 mM to 1 mM.

  18. Protein-binding RNA aptamers affect molecular interactions distantly from their binding sites.

    Directory of Open Access Journals (Sweden)

    Daniel M Dupont

    Full Text Available Nucleic acid aptamer selection is a powerful strategy for the development of regulatory agents for molecular intervention. Accordingly, aptamers have proven their diligence in the intervention with serine protease activities, which play important roles in physiology and pathophysiology. Nonetheless, there are only a few studies on the molecular basis underlying aptamer-protease interactions and the associated mechanisms of inhibition. In the present study, we use site-directed mutagenesis to delineate the binding sites of two 2´-fluoropyrimidine RNA aptamers (upanap-12 and upanap-126 with therapeutic potential, both binding to the serine protease urokinase-type plasminogen activator (uPA. We determine the subsequent impact of aptamer binding on the well-established molecular interactions (plasmin, PAI-1, uPAR, and LRP-1A controlling uPA activities. One of the aptamers (upanap-126 binds to the area around the C-terminal α-helix in pro-uPA, while the other aptamer (upanap-12 binds to both the β-hairpin of the growth factor domain and the kringle domain of uPA. Based on the mapping studies, combined with data from small-angle X-ray scattering analysis, we construct a model for the upanap-12:pro-uPA complex. The results suggest and highlight that the size and shape of an aptamer as well as the domain organization of a multi-domain protein such as uPA, may provide the basis for extensive sterical interference with protein ligand interactions considered distant from the aptamer binding site.

  19. Molecule-binding dependent assembly of split aptamer and γ-cyclodextrin: A sensitive excimer signaling approach for aptamer biosensors

    International Nuclear Information System (INIS)

    Jin, Fen; Lian, Yan; Li, Jishan; Zheng, Jing; Hu, Yaping; Liu, Jinhua; Huang, Jin; Yang, Ronghua

    2013-01-01

    Graphical abstract: Adenosine-binding aptamer was splitted into two fragments P2 and P3 which labeled pyrene molecules, mainly produce monomer signal. γ-CD cavity brings P2 and P3 in close proximity, allowing for weak excimer emission. In the presence of target, P2 and P3 are expected to bind ATP and form an aptamer/target complex, leads to large increase of the pyrene excimer fluorescence. -- Highlights: •We assembled split aptamer and γ-cyclodextrin fluorescence biosensors for ATP detection. •The biosensor increased quantum yield and emission lifetime of the excimer. •Time-resolved fluorescence is effective for ATP assay in complicated environment. -- Abstract: A highly sensitive and selective fluorescence aptamer biosensors for the determination of adenosine triphosphate (ATP) was developed. Binding of a target with splitting aptamers labeled with pyrene molecules form stable pyrene dimer in the γ-cyclodextrin (γ-CD) cavity, yielding a strong excimer emission. We have found that inclusion of pyrene dimer in γ-cyclodextrin cavity not only exhibits additive increases in quantum yield and emission lifetime of the excimer, but also facilitates target-induced fusion of the splitting aptamers to form the aptamer/target complex. As proof-of-principle, the approach was applied to fluorescence detection of adenosine triphosphate. With an anti-ATP aptamer, the approach exhibits excimer fluorescence response toward ATP with a maximum signal-to-background ratio of 32.1 and remarkably low detection limit of 80 nM ATP in buffer solution. Moreover, due to the additive fluorescence lifetime of excimer induced by γ-cyclodextrin, time-resolved measurements could be conveniently used to detect as low as 0.5 μM ATP in blood serum quantitatively

  20. Cell-Specific Aptamers as Emerging Therapeutics

    Directory of Open Access Journals (Sweden)

    Cindy Meyer

    2011-01-01

    Full Text Available Aptamers are short nucleic acids that bind to defined targets with high affinity and specificity. The first aptamers have been selected about two decades ago by an in vitro process named SELEX (systematic evolution of ligands by exponential enrichment. Since then, numerous aptamers with specificities for a variety of targets from small molecules to proteins or even whole cells have been selected. Their applications range from biosensing and diagnostics to therapy and target-oriented drug delivery. More recently, selections using complex targets such as live cells have become feasible. This paper summarizes progress in cell-SELEX techniques and highlights recent developments, particularly in the field of medically relevant aptamers with a focus on therapeutic and drug-delivery applications.

  1. An H2S Sensor Based on Electrochemistry for Chicken Coops

    Science.gov (United States)

    Zeng, Lihua; He, Mei; Yu, Huihui; Li, Daoliang

    2016-01-01

    The recent modernization of the livestock industry lags behind the scale of the livestock industry, particularly in indoor environmental monitoring. In particular, the H2S gas concentration in chicken coops affects the growth and reproductive capacity of the chickens and threatens their health. Therefore, the research and development of a low-cost, environmentally friendly sensor that can achieve on-line monitoring of H2S gas has a notably important practical significance. This paper reports the design of an H2S gas sensor, with selection of an electrochemical probe with high accuracy and wide measurement range using the relatively mature technology of electrochemical sensors. Although the probe of the sensor is the main factor that affects the sensor accuracy, the probe must be combined with a specifically designed signal condition circuit that can overcome the lack of an electrode to satisfy the requirements for the interconnection and matching between the output signal and the test instrument. Because the output current of the electrochemical electrode is small and likely to be disturbed by noise, we designed signal-conditioning modules. Through the signal-conditioning circuit, the output signal of the current electrode can be converted into a voltage and amplified. In addition, we designed a power control module because a bias voltage is necessary for the electrode. Finally, after the calibration experiment, the accurate concentration of H2S gas can be measured. Based on the experimental analysis, the sensor shows good linearity and selectivity, comparatively high sensitivity, perfect stability and an extremely long operating life of up to two years. PMID:27589757

  2. DNA aptamers against the Lup an 1 food allergen.

    Directory of Open Access Journals (Sweden)

    Pedro Nadal

    Full Text Available Using in vitro selection, high affinity DNA aptamers to the food allergen Lup an 1, ß-conglutin, were selected from a pool of DNA, 93 bases in length, containing a randomised sequence of 49 bases. ß-conglutin was purified from lupin flour and chemically crosslinked to carboxylated magnetic beads. Peptide mass fingerprinting was used to confirm the presence of the ß-conglutin. Single stranded DNA was generated from the randomised pool using T7 Gene 6 Exonuclease and was subsequently incubated with the magnetic beads and the captured DNA was released and amplified prior to a further round of Systematic Evolution of Ligands by Exponential Enrichment (SELEX. Evolution was monitored using enzyme linked oligonucleotide assay and surface plasmon resonance. Once a plateau in evolution was reached, the isolated DNA sequences were cloned and sequenced. The consensus motif was identified via alignment of the sequences and the affinities of these sequences for immobilised ß-conglutin were determined using surface plasmon resonance. The selected aptamer was demonstrated to be highly specific, showing no cross-reactivity with other flour ingredients or with other conglutin fractions of lupin. The secondary structures of the selected aptamers were predicted using m-fold. Finally, the functionality of the selected aptamers was demonstrated using a competitive assay for the quantitative detection of ß-conglutin. . Future work will focus on structure elucidation and truncation of the selected sequences to generate a smaller aptamer for application to the analysis of the Lup an 1 allergen in foodstuffs.

  3. Selection and characterization of single stranded DNA aptamers recognizing fumonisin B1

    International Nuclear Information System (INIS)

    Chen, Xiujuan; Huang, Yukun; Duan, Nuo; Wu, Shijia; Xia, Yu; Ma, Xiaoyuan; Ding, Zhansheng; Wang, Zhouping; Zhu, Changqing; Jiang, Yuan

    2014-01-01

    We present an improved method for the selection of single-stranded DNA aptamers that can recognize fumonisin B 1 (FB 1 ). FB 1 is a carcinogenic mycotoxin mainly found in corn and corn-based food products worldwide, posing a global threat to feed and food safety. Selection was based on the mag-SELEX (magnetic bead systematic evolution of ligands by exponential enrichment) technology modified by adopting free analogs of targets rather than immobilized targets for counter selections. Firstly, aptamer candidates for FB 1 were selected from an 80 nt random DNA library after 13 rounds of selection. Next, binding assays were performed for affinity evaluation, and circular dichroism spectroscopy was used to investigate their conformation. A high-affinity aptamer designated as F10 (with a dissociation constant of 62 ± 5 nM) was identified and tested for its specificity by competitive binding assays. The results demonstrate that this improved mag-SELEX technology facilitates aptamer screening because it avoids the tedious immobilization of counter-selection molecules on magnetic beads. The aptamers obtained by this technique open new possibilities for the detection of FB 1 via aptasensors. (author)

  4. Nanomaterials for electrochemical sensing and biosensing

    CERN Document Server

    Pumera, Martin

    2014-01-01

    Part 1: Nanomaterial-Based ElectrodesCarbon Nanotube-Based Electrochemical Sensors and Biosensors, Martin Pumera, National Institute for Materials Science, JapanElectrochemistry on Single Carbon Nanotube, Pat Collier, Caltech, USATheory of Voltammetry at Nanoparticle-Modified Electrodes, Richard G. Compton, Oxford University, UKMetal Oxide Nanoparticle-Modified Electrodes, Frank Marken, University of Bath, UKSemiconductor Quantum Dots for Electrochemical Bioanalysis, Eugenii Katz, Clarkson University, USAN

  5. A RNA-DNA Hybrid Aptamer for Nanoparticle-Based Prostate Tumor Targeted Drug Delivery

    Directory of Open Access Journals (Sweden)

    John C. Leach

    2016-03-01

    Full Text Available The side effects of radio- and chemo-therapy pose long-term challenges on a cancer patient’s health. It is, therefore, highly desirable to develop more effective therapies that can specifically target carcinoma cells without damaging normal and healthy cells. Tremendous efforts have been made in the past to develop targeted drug delivery systems for solid cancer treatment. In this study, a new aptamer, A10-3-J1, which recognizes the extracellular domain of the prostate specific membrane antigen (PSMA, was designed. A super paramagnetic iron oxide nanoparticle-aptamer-doxorubicin (SPIO-Apt-Dox was fabricated and employed as a targeted drug delivery platform for cancer therapy. This DNA RNA hybridized aptamer antitumor agent was able to enhance the cytotoxicity of targeted cells while minimizing collateral damage to non-targeted cells. This SPIO-Apt-Dox nanoparticle has specificity to PSMA+ prostate cancer cells. Aptamer inhibited nonspecific uptake of membrane-permeable doxorubic to the non-target cells, leading to reduced untargeted cytotoxicity and endocytic uptake while enhancing targeted cytotoxicity and endocytic uptake. The experimental results indicate that the drug delivery platform can yield statistically significant effectiveness being more cytotoxic to the targeted cells as opposed to the non-targeted cells.

  6. Label-Free Aptasensor for Lysozyme Detection Using Electrochemical Impedance Spectroscopy

    Directory of Open Access Journals (Sweden)

    Dionisia Ortiz-Aguayo

    2018-01-01

    Full Text Available This research develops a label-free aptamer biosensor (aptasensor based on graphite-epoxy composite electrodes (GECs for the detection of lysozyme protein using Electrochemical Impedance Spectroscopy (EIS technique. The chosen immobilization technique was based on covalent bonding using carbodiimide chemistry; for this purpose, carboxylic moieties were first generated on the graphite by electrochemical grafting. The detection was performed using [Fe(CN6]3−/[Fe(CN6]4− as redox probe. After recording the frequency response, values were fitted to its electric model using the principle of equivalent circuits. The aptasensor showed a linear response up to 5 µM for lysozyme and a limit of detection of 1.67 µM. The sensitivity of the established method was 0.090 µM−1 in relative charge transfer resistance values. The interference response by main proteins, such as bovine serum albumin and cytochrome c, has been also characterized. To finally verify the performance of the developed aptasensor, it was applied to wine analysis.

  7. Label-Free Aptasensor for Lysozyme Detection Using Electrochemical Impedance Spectroscopy.

    Science.gov (United States)

    Ortiz-Aguayo, Dionisia; Del Valle, Manel

    2018-01-26

    This research develops a label-free aptamer biosensor (aptasensor) based on graphite-epoxy composite electrodes (GECs) for the detection of lysozyme protein using Electrochemical Impedance Spectroscopy (EIS) technique. The chosen immobilization technique was based on covalent bonding using carbodiimide chemistry; for this purpose, carboxylic moieties were first generated on the graphite by electrochemical grafting. The detection was performed using [Fe(CN)₆] 3- /[Fe(CN)₆] 4- as redox probe. After recording the frequency response, values were fitted to its electric model using the principle of equivalent circuits. The aptasensor showed a linear response up to 5 µM for lysozyme and a limit of detection of 1.67 µM. The sensitivity of the established method was 0.090 µM -1 in relative charge transfer resistance values. The interference response by main proteins, such as bovine serum albumin and cytochrome c, has been also characterized. To finally verify the performance of the developed aptasensor, it was applied to wine analysis.

  8. A new electrochemical sensor for highly sensitive and selective detection of nitrite in food samples based on sonochemical synthesized Calcium Ferrite (CaFe2O4) clusters modified screen printed carbon electrode.

    Science.gov (United States)

    Balasubramanian, Paramasivam; Settu, Ramki; Chen, Shen-Ming; Chen, Tse-Wei; Sharmila, Ganapathi

    2018-08-15

    Herein, we report a novel, disposable electrochemical sensor for the detection of nitrite ions in food samples based on the sonochemical synthesized orthorhombic CaFe 2 O 4 (CFO) clusters modified screen printed electrode. As synthesized CFO clusters were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transformer infrared spectroscopy (FT-IR), Thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and amperometry (i-t). Under optimal condition, the CFO modified electrode displayed a rapid current response to nitrite, a linear response range from 0.016 to 1921 µM associated with a low detection limit 6.6 nM. The suggested sensor also showed the excellent sensitivity of 3.712 μA μM -1  cm -2 . Furthermore, a good reproducibility, long-term stability and excellent selectivity were also attained on the proposed sensor. In addition, the practical applicability of the sensor was investigated via meat samples, tap water and drinking water, and showed desirable recovery rate, representing its possibilities for practical application. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. A novel electrochemical sensor based on magneto Au nanoparticles/carbon paste electrode for voltammetric determination of acetaminophen in real samples

    Energy Technology Data Exchange (ETDEWEB)

    Haghshenas, Esmaeel; Madrakian, Tayyebeh, E-mail: madrakian@basu.ac.ir; Afkhami, Abbas

    2015-12-01

    An electrochemical magneto Au nanoparticles/carbon paste electrodes (MAuNP/CPE) which is used for the determination of acetaminophen (AC) in real samples was developed. Initially, Au nanoparticles were immobilized at the surface of Fe{sub 3}O{sub 4} (AuNPs@Fe{sub 3}O{sub 4}), which was used as a sorbent for capturing AC molecules. After adding AuNPs@Fe{sub 3}O{sub 4} to the AC solution and stirring for 20 min, the AuNPs@Fe{sub 3}O{sub 4} was gathered on the magneto electrode based on its magnetic field. The AC molecules which became adsorbed at AuNPs@Fe{sub 3}O{sub 4} were analyzed by differential pulse voltammetry (DPV). For characterization and investigation of the performance of AuNPs@Fe{sub 3}O{sub 4} and MAuNPs/CPE, various methods, including scanning electron microscopy, X-ray diffraction, UV–Vis spectroscopy, electrochemical impedance spectroscopy, cyclic voltammetry and DPV were used. Under the optimized conditions, the anodic peak current was linear to the concentration of AC in the range of 0.1 to 70.0 μmol L{sup −1} with the detection limit of 4.5 × 10{sup −2} μmol L{sup −1}. This method was also successfully used to detect the concentration of AC in pharmaceutical formulations and human serum samples. In addition, the proposed magneto sensor exhibited good reproducibility, long-term stability and fast current response. - Highlights: • Magneto Au nanoparticle/carbon paste electrode was fabricated. • Au nanoparticles were immobilized at the surface of Fe{sub 3}O{sub 4} (AuNPs@Fe{sub 3}O{sub 4}). • It is the first time AuNPs@Fe{sub 3}O{sub 4} and magneto electrode are used for the determination of AC. • The proposed sensor showed a wide linear range, low detection limit, and high sensitivity. • This sensor is also used for the determination of AC in real samples.

  10. Synthesis of new copper nanoparticle-decorated anchored type ligands: Applications as non-enzymatic electrochemical sensors for hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Ensafi, Ali A., E-mail: Ensafi@cc.iut.ac.ir; Zandi-Atashbar, N.; Ghiaci, M.; Taghizadeh, M.; Rezaei, B.

    2015-02-01

    In this work, copper nanoparticles (CuNPs) decorated on two new anchored type ligands were utilized to prepare two electrochemical sensors. These ligands are made from bonding amine chains to silica support including SiO{sub 2}–pro–NH{sub 2} (compound I) and SiO{sub 2}–pro–NH–cyanuric–NH{sub 2} (compound II). The morphology of synthesized CuNPs was characterized by transmission electron microscopy (TEM). The nano-particles were in the range of 13–37 nm with the average size of 23 nm. These materials were used to modify carbon paste electrode. Different electrochemical techniques, including cyclic voltammetry, electrochemical impedance spectroscopy and hydrodynamic chronoamperometry, were used to study the sensor behavior. These electrochemical sensors were used as a model for non-enzymatic detection of hydrogen peroxide (H{sub 2}O{sub 2}). To evaluate the abilities of the modified electrodes for H{sub 2}O{sub 2} detection, the electrochemical signals were compared in the absence and presence of H{sub 2}O{sub 2}. From them, two modified electrodes showed significant responses vs. H{sub 2}O{sub 2} addition. The amperograms illustrated that the sensors were selective for H{sub 2}O{sub 2} sensing with linear ranges of 5.14–1250 μmol L{sup −1} and 1.14–1120 μmol L{sup −1} with detection limits of 0.85 and 0.27 μmol L{sup −1} H{sub 2}O{sub 2}, sensitivities of 3545 and 11,293 μA mmol{sup −1} L and with response times less than 5 s for I/CPE and II/CPE, respectively. As further verification of the selected sensor, H{sub 2}O{sub 2} contained in milk sample was analyzed and the obtained results were comparable with the ones from classical control titration method. - Highlights: • Copper nanoparticles decorating on two new anchored type ligands were prepared. • Ligands are bonding to silica support as SiO{sub 2}–pro–NH{sub 2} and SiO{sub 2}–pro–NH–cyanuric–NH{sub 2}. • These materials were used as electrochemical sensors for H

  11. Sensitive electrochemical sensors for simultaneous determination of ascorbic acid, dopamine, and uric acid based on Au@Pd-reduced graphene oxide nanocomposites

    Science.gov (United States)

    Jiang, Jingjing; Du, Xuezhong

    2014-09-01

    Sensitive electrochemical sensors were fabricated with reduced graphene oxide-supported Au@Pd (Au@Pd-RGO) nanocomposites by one-step synthesis for individual and simultaneous determination of ascorbic acid (AA), dopamine (DA), and uric acid (UA) with low detection limits and wide concentration ranges. From the Au@Pd-RGO-modified electrodes, well-separated oxidation peaks and enhanced peak currents of AA, DA, and UA were observed owing to the superior conductivity of RGO and the excellent catalytic activity of Au@Pd nanoparticles. For individual detection, the linear responses of AA, DA, and UA were in the concentration ranges of 0.1-1000, 0.01-100, and 0.02-500 μM with detection limits of 0.02, 0.002, and 0.005 μM (S/N = 3), respectively. For simultaneous detection by synchronous change of the concentrations of AA, DA, and UA, the linear response ranges were 1-800, 0.1-100, and 0.1-350 μM with detection limits of 0.28, 0.024, and 0.02 μM (S/N = 3), respectively. The fabricated sensors were further applied to the detection of AA, DA, and UA in urine samples. The Au@Pd-RGO nanocomposites have promising applications in highly sensitive and selective electrochemical sensing.Sensitive electrochemical sensors were fabricated with reduced graphene oxide-supported Au@Pd (Au@Pd-RGO) nanocomposites by one-step synthesis for individual and simultaneous determination of ascorbic acid (AA), dopamine (DA), and uric acid (UA) with low detection limits and wide concentration ranges. From the Au@Pd-RGO-modified electrodes, well-separated oxidation peaks and enhanced peak currents of AA, DA, and UA were observed owing to the superior conductivity of RGO and the excellent catalytic activity of Au@Pd nanoparticles. For individual detection, the linear responses of AA, DA, and UA were in the concentration ranges of 0.1-1000, 0.01-100, and 0.02-500 μM with detection limits of 0.02, 0.002, and 0.005 μM (S/N = 3), respectively. For simultaneous detection by synchronous change of the

  12. Duplex Identification of Staphylococcus aureus by Aptamer and Gold Nanoparticles.

    Science.gov (United States)

    Chang, Tianjun; Wang, Libo; Zhao, Kexu; Ge, Yu; He, Meng; Li, Gang

    2016-06-01

    Staphylococcus aureus is the top common pathogen causing infections and food poisoning. Identification of S. aureus is crucial for the disease diagnosis and regulation of food hygiene. Herein, we report an aptamer-AuNPs based method for duplex identification of S. aureus. Using AuNPs as an indicator, SA23, an aptamer against S. aureus, can well identify its target from Escherichia coli, Listeria monocytogenes and Pseudomonas aeruginosa. Furthermore, we find citrate-coated AuNPs can strongly bind to S. aureus, but not bind to Salmonella enterica and Proteus mirabilis, which leads to different color changes in salt solution. This colorimetric response is capable of distinguishing S. aureus from S. enteritidis and P. mirabilis. Thus, using the aptasensor and AuNPs together, S. aureus can be accurately identified from the common pathogens. This duplex identification system is a promising platform for simple visual identification of S. aureus. Additionally, in the aptasensing process, bacteria are incubated with aptamers and then be removed before the aptamers adding to AuNPs, which may avoid the interactions between bacteria and AuNPs. This strategy can be potentially applied in principle to detect other cells by AuNPs-based aptasensors.

  13. Combining use of a panel of ssDNA aptamers in the detection of Staphylococcus aureus.

    Science.gov (United States)

    Cao, Xiaoxiao; Li, Shaohua; Chen, Liucun; Ding, Hongmei; Xu, Hua; Huang, Yanping; Li, Jie; Liu, Nongle; Cao, Weihong; Zhu, Yanjun; Shen, Beifen; Shao, Ningsheng

    2009-08-01

    In this article, a panel of ssDNA aptamers specific to Staphylococcus aureus was obtained by a whole bacterium-based SELEX procedure and applied to probing S. aureus. After several rounds of selection with S. aureus as the target and Streptococcus and S. epidermidis as counter targets, the highly enriched oligonucleic acid pool was sequenced and then grouped under different families on the basis of the homology of the primary sequence and the similarity of the secondary structure. Eleven sequences from different families were selected for further characterization by confocal imaging and flow cytometry analysis. Results showed that five aptamers demonstrated high specificity and affinity to S. aureus individually. The five aptamers recognize different molecular targets by competitive experiment. Combining these five aptamers had a much better effect than the individual aptamer in the recognition of different S. aureus strains. In addition, the combined aptamers can probe single S. aureus in pyogenic fluids. Our work demonstrates that a set of aptamers specific to one bacterium can be used in combination for the identification of the bacterium instead of a single aptamer.

  14. Evaluation of different strategies for magnetic particle functionalization with DNA aptamers.

    Science.gov (United States)

    Pérez-Ruiz, Elena; Lammertyn, Jeroen; Spasic, Dragana

    2016-12-25

    The optimal bio-functionalization of magnetic particles is essential for developing magnetic particle-based bioassays. Whereas functionalization with antibodies is generally well established, immobilization of DNA probes, such as aptamers, is not yet fully explored. In this work, four different types of commercially available magnetic particles, coated with streptavidin, maleimide or carboxyl groups, were evaluated for their surface coverage with aptamer bioreceptors, efficiency in capturing target protein and non-specific protein adsorption on their surface. A recently developed aptamer against the peanut allergen, Ara h 1 protein, was used as a model system. Conjugation of biotinylated Ara h 1 aptamer to the streptavidin particles led to the highest surface coverage, whereas the coverage of maleimide particles was 25% lower. Carboxylated particles appeared to be inadequate for DNA functionalization. Streptavidin particles also showed the greatest target capturing efficiency, comparable to the one of particles functionalized with anti-Ara h 1 antibody. The performance of streptavidin particles was additionally tested in a sandwich assay with the aptamer as a capture receptor on the particle surface. While the limit of detection obtained was comparable to the same assay system with antibody as capture receptor, it was superior to previously reported values using the same aptamer in similar assay schemes with different detection platforms. These results point to the promising application of the Ara h 1 aptamer-functionalized particles in bioassay development. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Aflatoxin B1 Detection Using a Highly-Sensitive Molecularly-Imprinted Electrochemical Sensor Based on an Electropolymerized Metal Organic Framework

    Directory of Open Access Journals (Sweden)

    Mengjuan Jiang

    2015-09-01

    Full Text Available A sensitive electrochemical molecularly-imprinted sensor was developed for the detection of aflatoxin B1 (AFB1, by electropolymerization of p-aminothiophenol-functionalized gold nanoparticles in the presence of AFB1 as a template molecule. The extraction of the template leads to the formation of cavities that are able to specifically recognize and bind AFB1 through π-π interactions between AFB1 molecules and aniline moities. The performance of the developed sensor for the detection of AFB1 was investigated by linear sweep voltammetry using a hexacyanoferrate/hexacyanoferrite solution as a redox probe, the electron transfer rate increasing when the concentration of AFB1 increases, due to a p-doping effect. The molecularly-imprinted sensor exhibits a broad linear range, between 3.2 fM and 3.2 µM, and a quantification limit of 3 fM. Compared to the non-imprinted sensor, the imprinting factor was found to be 10. Selectivity studies were also performed towards the binding of other aflatoxins and ochratoxin A, proving good selectivity.

  16. Aptamer-assembled nanomaterials for fluorescent sensing and imaging

    Science.gov (United States)

    Lu, Danqing; He, Lei; Zhang, Ge; Lv, Aiping; Wang, Ruowen; Zhang, Xiaobing; Tan, Weihong

    2017-01-01

    Aptamers, which are selected in vitro by a technology known as the systematic evolution of ligands by exponential enrichment (SELEX), represent a crucial recognition element in molecular sensing. With advantages such as good biocompatibility, facile functionalization, and special optical and physical properties, various nanomaterials can protect aptamers from enzymatic degradation and nonspecific binding in living systems and thus provide a preeminent platform for biochemical applications. Coupling aptamers with various nanomaterials offers many opportunities for developing highly sensitive and selective sensing systems. Here, we focus on the recent applications of aptamer-assembled nanomaterials in fluorescent sensing and imaging. Different types of nanomaterials are examined along with their advantages and disadvantages. Finally, we look toward the future of aptamer-assembled nanomaterials.

  17. Development and application of 3-chloro-1,2-propandiol electrochemical sensor based on a polyaminothiophenol modified molecularly imprinted film.

    Science.gov (United States)

    Sun, Xiulan; Zhang, Lijuan; Zhang, Hongxia; Qian, He; Zhang, Yinzhi; Tang, Lili; Li, Zaijun

    2014-05-21

    In this work, a novel electrochemical sensor for 3-chloro-1,2-propandiol (3-MCPD) detection based on a gold nanoparticle-modified glassy carbon electrode (AuNP/GCE) coated with a molecular imprinted polymer (MIP) film was constructed. p-Aminothiophenol (p-ATP) and 3-MCPD were self-assembled on a AuNP/GCE surface, and then a MIP film was formed by electropolymerization. The 3-MCPD template combined with p-ATP during self-assembly and electropolymerization, and the cavities matching 3-MCPD remained after the removal of the template. The MIP sensor was characterized by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and scanning electron microscopy (SEM). Many factors that affected the performance of the MIP membrane were discussed and optimized. Under optimal conditions, the DPV current was linear with the log of the 3-MCPD concentration in the range from 1.0 × 10(-17) to 1.0 × 10(-13) mol L(-1) (R(2) = 0.9939), and the detection limit was 3.8 × 10(-18) mol L(-1) (S/N = 3). The average recovery rate of 3-MCPD from spiked soy sauce samples ranged from 95.0% to 106.4% (RSD 3-MCPD.

  18. Electrochemical sensor based on a carbon nanotube-modified imprinted sol–gel for selective and sensitive determination of β2-agonists

    International Nuclear Information System (INIS)

    Xu, Wei; Liu, Ping; Guo, Chunhui; Dong, Chao; Zhang, Xiuhua; Wang, Shengfu

    2013-01-01

    We describe a molecularly imprinted electrochemical sensor for selective and sensitive determination of β2-agonists. It is making use of a combination of single-wall carbon nanotubes (SWNTs) with a molecularly imprinted sol–gel. The SWNTs were introduced in order to enhance electron transport and sensitivity. The imprinted sol–gel film with its specific binding sites acts as a selective recognition element and as a preconcentrator for β 2 -agonists. The morphology of the imprinted film was characterized by scanning electron microscopy. The optimized sensor displays high sensitivity and excellent selectivity for the β 2 -agonists as shown for their determination in human serum samples. (author)

  19. Evaluation of low-cost electro-chemical sensors for environmental monitoring of ozone, nitrogen dioxide, and carbon monoxide.

    Science.gov (United States)

    Afshar-Mohajer, Nima; Zuidema, Christopher; Sousan, Sinan; Hallett, Laura; Tatum, Marcus; Rule, Ana M; Thomas, Geb; Peters, Thomas M; Koehler, Kirsten

    2018-02-01

    Development of an air quality monitoring network with high spatio-temporal resolution requires installation of a large number of air pollutant monitors. However, state-of-the-art monitors are costly and may not be compatible with wireless data logging systems. In this study, low-cost electro-chemical sensors manufactured by Alphasense Ltd. for detection of CO and oxidative gases (predominantly O 3 and NO 2 ) were evaluated. The voltages from three oxidative gas sensors and three CO sensors were recorded every 2.5 sec when exposed to controlled gas concentrations in a 0.125-m 3 acrylic glass chamber. Electro-chemical sensors for detection of oxidative gases demonstrated sensitivity to both NO 2 and O 3 with similar voltages recorded when exposed to equivalent environmental concentrations of NO 2 or O 3 gases, when evaluated separately. There was a strong linear relationship between the recorded voltages and target concentrations of oxidative gases (R 2 > 0.98) over a wide range of concentrations. Although a strong linear relationship was also observed for CO concentrations below 12 ppm, a saturation effect was observed wherein the voltage only changes minimally for higher CO concentrations (12-50 ppm). The nonlinear behavior of the CO sensors implied their unsuitability for environments where high CO concentrations are expected. Using a manufacturer-supplied shroud, sensors were tested at 2 different flow rates (0.25 and 0.5 Lpm) to mimic field calibration of the sensors with zero air and a span gas concentration (2 ppm NO2 or 15 ppm CO). As with all electrochemical sensors, the tested devices were subject to drift with a bias up to 20% after 9 months of continuous operation. Alphasense CO sensors were found to be a proper choice for occupational and environmental CO monitoring with maximum concentration of 12 ppm, especially due to the field-ready calibration capability. Alphasense oxidative gas sensors are usable only if it is valuable to know the sum of

  20. LDHs as electrode materials for electrochemical detection and energy storage: supercapacitor, battery and (bio)-sensor.

    Science.gov (United States)

    Mousty, Christine; Leroux, Fabrice

    2012-11-01

    From an exhaustive overview based on applicative academic literature and patent domain, the relevance of Layered Double Hydroxide (LDHs) as electrode materials for electrochemical detection of organic molecules having environmental or health impact and energy storage is evaluated. Specifically the focus is driven on their application as supercapacitor, alkaline or lithium battery and (bio)-sensor. Inherent to the high versatility of their chemical composition, charge density, anion exchange capability, LDH-based materials are extensively studied and their performances for such applications are reported. Indeed the analytical characteristics (sensitivity and detection limit) of LDH-based electrodes are scrutinized, and their specific capacity or capacitance as electrode battery or supercapacitor materials, are detailed.

  1. A paper-based nanomodified electrochemical biosensor for ethanol detection in beers

    International Nuclear Information System (INIS)

    Cinti, Stefano; Basso, Mattia; Moscone, Danila; Arduini, Fabiana

    2017-01-01

    Herein, we report the first example of a paper-based screen-printed biosensor for the detection of ethanol in beer samples. Common office paper was adopted to fabricate the analytical device. The properties of this paper-based screen-printed electrode (SPE) were investigated by cyclic voltammetry, electrochemical impedance spectroscopy, and scanning electron microscopy, and they were compared with the well-established polyester-based SPEs as well. Paper demonstrated similar properties when compared with polyester, highlighting suitability towards its utilization in sensor development, with the advantages of low cost and simple disposal by incineration. A nanocomposite formed by Carbon Black (CB) and Prussian Blue nanoparticles (PBNPs), namely CB/PBNPs, was utilized as an electrocatalyst to detect the hydrogen peroxide generated by the enzymatic reaction between alcohol oxidase (AOx) and ethanol. After optimizing the analytical parameters, such as pH, enzyme, concentration, and working potential, the developed biosensor allowed a facile quantification of ethanol up to 10 mM (0.058 %_v_o_l), with a sensitivity of 9.13 μA/mM cm"2 (1574 μA/%_v_o_l cm"2) and a detection limit equal to 0.52 mM (0.003%_v_o_l). These satisfactory performances rendered the realized paper-based biosensor reliable over the analysis of ethanol contained in four different types of beers, including Pilsner, Weiss, Lager, and alcohol-free. The proposed manufacturing approach offers an affordable and sustainable tool for food quality control and for the realization of different electrochemical sensors and biosensors as well. - Highlights: • Novel ethanol biosensor fabricated onto office paper. • Enhanced hydrogen peroxide detection using Carbon black/Prussian blue nanoparticles. • Only 100 μL required to perform measurements. • Paper-based electrochemical device coupled with a portable potentiostat. • Rapid quantification of ethanol in beer samples.

  2. A paper-based nanomodified electrochemical biosensor for ethanol detection in beers

    Energy Technology Data Exchange (ETDEWEB)

    Cinti, Stefano, E-mail: stefano.cinti@uniroma2.it; Basso, Mattia; Moscone, Danila; Arduini, Fabiana, E-mail: fabiana.arduini@uniroma2.it

    2017-04-01

    Herein, we report the first example of a paper-based screen-printed biosensor for the detection of ethanol in beer samples. Common office paper was adopted to fabricate the analytical device. The properties of this paper-based screen-printed electrode (SPE) were investigated by cyclic voltammetry, electrochemical impedance spectroscopy, and scanning electron microscopy, and they were compared with the well-established polyester-based SPEs as well. Paper demonstrated similar properties when compared with polyester, highlighting suitability towards its utilization in sensor development, with the advantages of low cost and simple disposal by incineration. A nanocomposite formed by Carbon Black (CB) and Prussian Blue nanoparticles (PBNPs), namely CB/PBNPs, was utilized as an electrocatalyst to detect the hydrogen peroxide generated by the enzymatic reaction between alcohol oxidase (AOx) and ethanol. After optimizing the analytical parameters, such as pH, enzyme, concentration, and working potential, the developed biosensor allowed a facile quantification of ethanol up to 10 mM (0.058 %{sub vol}), with a sensitivity of 9.13 μA/mM cm{sup 2} (1574 μA/%{sub vol} cm{sup 2}) and a detection limit equal to 0.52 mM (0.003%{sub vol}). These satisfactory performances rendered the realized paper-based biosensor reliable over the analysis of ethanol contained in four different types of beers, including Pilsner, Weiss, Lager, and alcohol-free. The proposed manufacturing approach offers an affordable and sustainable tool for food quality control and for the realization of different electrochemical sensors and biosensors as well. - Highlights: • Novel ethanol biosensor fabricated onto office paper. • Enhanced hydrogen peroxide detection using Carbon black/Prussian blue nanoparticles. • Only 100 μL required to perform measurements. • Paper-based electrochemical device coupled with a portable potentiostat. • Rapid quantification of ethanol in beer samples.

  3. Detection of aflatoxin B1 in food samples based on target-responsive aptamer-cross-linked hydrogel using a handheld pH meter as readout.

    Science.gov (United States)

    Zhao, Mengmeng; Wang, Peilong; Guo, Yajuan; Wang, Lixu; Luo, Fang; Qiu, Bin; Guo, Longhua; Su, Xiaoou; Lin, Zhenyu; Chen, Guonan

    2018-01-01

    Aflatoxin B 1 (AFB 1 ) can cause great threat to human health, so the development of convenient and portable device for sensitive detection of AFB 1 is highly desired. The portable pH meter has the characters of facile operation, low cost, and easy availability. Therefore, in this study, we investigate the applicability of utilizing a pH meter as the readout to develop a portable sensor for AFB 1 . The specific detection of AFB 1 is realized via the combination of AFB 1 -responsive aptamer-cross-linked hydrogel. Upon the addition of AFB 1 , AFB 1 binds to its aptamer with high affinity in lieu of aptamer/DNA complex, causing the collapse of hydrogel network and results in the releasing of urease into the solution. The released urease can catalyse the hydrolysis of urea and result in the rise of pH value. The change of pH value has a direct relationship to the concentration of AFB 1 in the range of 0.2-20µM with a detection limit of 0.1µM (S/N = 3). The proposed portable device is successfully applied to assay AFB 1 in the food samples with satisfied results. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Colorimetric and bare eye determination of urinary methylamphetamine based on the use of aptamers and the salt-induced aggregation of unmodified gold nanoparticles

    International Nuclear Information System (INIS)

    Shi, Qiunan; Shi, Yupeng; Pan, Yi; Yi, Changqing; Yue, Zhenfeng; Zhang, Heng

    2015-01-01

    Methamphetamine (METH) is second only to marijuana as a widely used illicit drug. We are presenting a simple colorimetric assay for sensitive and visual detection of METH in human urine using a METH-specific aptamer as the recognition element and unmodified gold nanoparticles as indicators. The method is based on the finding that the presence of METH results in AuNPs solution’s color change from red to blue. Normally, aptamers attach to the surface of AuNPs and thereby increasing their resistance to NaCl-induced aggregation. If, however, the aptamer bind to METH via G-quartets, rapid salt induced aggregation occurs associated with the formation of a blue colored solution. Urinary METH can be quantified via this effect either visually or by measurement of the absorbance ratios at 660 and 525 nm, respectively. It works in the 2 μM to 10 μM concentration range with a detection limit at 0.82 μM. The method is fast and also works well in human urine. It is believed to represent a widely applicable aptamer-based detection scheme. (author)

  5. Aptamer Recognition Induced Target-Bridged Strategy for Proteins Detection Based on Magnetic Chitosan and Silver/Chitosan Nanoparticles Using Surface-Enhanced Raman Spectroscopy.

    Science.gov (United States)

    He, Jincan; Li, Gongke; Hu, Yuling

    2015-11-03

    Poor selectivity and biocompability remain problems in applying surface-enhanced Raman spectroscopy (SERS) for direct detection of proteins due to similar spectra of most proteins and overlapping Raman bands in complex mixtures. To solve these problems, an aptamer recognition induced target-bridged strategy based on magnetic chitosan (MCS) and silver/chitosan nanoparticles (Ag@CS NPs) using SERS was developed for detection of protein benefiting from specific affinity of aptamers and biocompatibility of chitosan (CS). In this process, one aptamer (or antibody) modified MCS worked as capture probes through the affinity binding site of protein. The other aptamer modified Raman report molecules encapsulated Ag@CS NPs were used as SERS sensing probes based on the other binding site of protein. The sandwich complexes of aptamer (antibody)/protein/aptamer were separated easily with a magnet from biological samples, and the concentration of protein was indirectly reflected by the intensity variation of SERS signal of Raman report molecules. To explore the universality of the strategy, three different kinds of proteins including thrombin, platelet derived growth factor BB (PDGF BB) and immunoglobulin E (lgE) were investigated. The major advantages of this aptamer recognition induced target-bridged strategy are convenient operation with a magnet, stable signal expressing resulting from preventing loss of report molecules with the help of CS shell, and the avoidance of slow diffusion-limited kinetics problems occurring on a solid substrate. To demonstrate the feasibility of the proposed strategy, the method was applied to detection of PDGF BB in clinical samples. The limit of detection (LOD) of PDGF BB was estimated to be 3.2 pg/mL. The results obtained from human serum of healthy persons and cancer patients using the proposed strategy showed good agreement with that of the ELISA method but with wider linear range, more convenient operation, and lower cost. The proposed

  6. Electrochemically decorated ZnTe nanodots on single-walled carbon nanotubes for room-temperature NO2 sensor application.

    Science.gov (United States)

    Kim, Donguk; Park, Ki-Moon; Shanmugam, Rajakumar; Yoo, Bongyoung

    2014-11-01

    A gas sensor with ZnTe nanodot-modified single-walled carbon nanotubes (SWCNTs) is demonstrated for NO2 detection at room temperature. ZnTe nanodots are electrochemically deposited in an aqueous solution containing ZnSO4, TeO2 and citrate. A deposition potential range of ZnTe formation of -0.65 to -0.9 V is determined by cyclic voltammetry, and an intermetallic ZnTe compound is formed at above 50 degrees C bath. SWCNT-based sensors show the highly sensitive response down to 1 ppm NO2 gas at room temperature. In particular, the sensitivity of ZnTe nanodot-modified SWCNTs is increased by 6 times as compared to that of pristine SWCNT sensors. A selectivity test of SWCNT-ZnTe nanodots sensors is carried out with ammonia gas (NH3) and methanol vapor (MeOH), and the result confirms an excellent selectivity to NO2 gas.

  7. Sensors Based on Bio and Biomimetic Receptors in Medical Diagnostic, Environment, and Food Analysis.

    Science.gov (United States)

    Kozitsina, Alisa N; Svalova, Tatiana S; Malysheva, Natalia N; Okhokhonin, Andrei V; Vidrevich, Marina B; Brainina, Khiena Z

    2018-04-01

    Analytical chemistry is now developing mainly in two areas: automation and the creation of complexes that allow, on the one hand, for simultaneously analyzing a large number of samples without the participation of an operator, and on the other, the development of portable miniature devices for personalized medicine and the monitoring of a human habitat. The sensor devices, the great majority of which are biosensors and chemical sensors, perform the role of the latter. That last line is considered in the proposed review. Attention is paid to transducers, receptors, techniques of immobilization of the receptor layer on the transducer surface, processes of signal generation and detection, and methods for increasing sensitivity and accuracy. The features of sensors based on synthetic receptors and additional components (aptamers, molecular imprinted polymers, biomimetics) are discussed. Examples of bio- and chemical sensors' application are given. Miniaturization paths, new power supply means, and wearable and printed sensors are described. Progress in this area opens a revolutionary era in the development of methods of on-site and in-situ monitoring, that is, paving the way from the "test-tube to the smartphone".

  8. A Differential Electrochemical Readout ASIC With Heterogeneous Integration of Bio-Nano Sensors for Amperometric Sensing.

    Science.gov (United States)

    Ghoreishizadeh, Sara S; Taurino, Irene; De Micheli, Giovanni; Carrara, Sandro; Georgiou, Pantelis

    2017-10-01

    A monolithic biosensing platform is presented for miniaturized amperometric electrochemical sensing in CMOS. The system consists of a fully integrated current readout circuit for differential current measurement as well as on-die sensors developed by growing platinum nanostructures (Pt-nanoS) on top of electrodes implemented with the top metal layer. The circuit is based on the switch-capacitor technique and includes pseudodifferential integrators for concurrent sampling of the differential sensor currents. The circuit further includes a differential to single converter and a programmable gain amplifier prior to an ADC. The system is fabricated in [Formula: see text] technology and measures current within [Formula: see text] with minimum input-referred noise of [Formula: see text] and consumes [Formula: see text] from a [Formula: see text] supply. Differential sensing for nanostructured sensors is proposed to build highly sensitive and offset-free sensors for metabolite detection. This is successfully tested for bio-nano-sensors for the measurement of glucose in submilli molar concentrations with the proposed readout IC. The on-die electrodes are nanostructured and cyclic voltammetry run successfully through the readout IC to demonstrate detection of [Formula: see text].

  9. A sensitive electrochemical sensor for paracetamole based on a glassy carbon electrode modified with multiwalled carbon nanotubes and dopamine nanospheres functionalized with gold nanoparticles

    International Nuclear Information System (INIS)

    Liu, Xue; Wang, Ling-Ling; Wang, Ya-Ya; Zhang, Xiao-Yan

    2014-01-01

    We describe an electrochemical sensor for paracetamole that is based on a glassy carbon electrode modified with multiwalled carbon nanotubes and dopamine nanospheres functionalized with gold nanoparticles. The functionalized nanospheres were prepared by a chemical route and characterized by scanning electron microscopy. The well-dispersed gold nanoparticles were anchored on the dopamine nanosphere via a chemical reduction of the gold precursor. The stepwise fabrication of the modified electrode and its electrochemical response to paracetamole were evaluated using electrochemical impedance spectroscopy and cyclic voltammetry. The modified electrode displayed improved electrocatalytic activity towards paracetamole, a lower oxidation potential (371 mV), and a larger peak current when compared to a bare electrode or other modified electrodes. The kinetic parameters governing the electro-oxidation of paracetamole were studied, and the analytical conditions were optimized. The peak current was linearly related to the concentration of paracetamole in 0.8–400 μM range, and the detection limit was 50 nM (at an SNR of 3). The method was successfully applied to the determination of paracetamole in spiked human urine samples and gave recoveries between 95.3 and 105.2 %. (author)

  10. Electrochemical affinity biosensors for detection of mycotoxins: A review.

    Science.gov (United States)

    Vidal, Juan C; Bonel, Laura; Ezquerra, Alba; Hernández, Susana; Bertolín, Juan R; Cubel, Carlota; Castillo, Juan R

    2013-11-15

    This review discusses the current state of electrochemical biosensors in the determination of mycotoxins in foods. Mycotoxins are highly toxic secondary metabolites produced by molds. The acute toxicity of these results in serious human and animal health problems, although it has been only since early 1960s when the first studied aflatoxins were found to be carcinogenic. Mycotoxins affect a broad range of agricultural products, most important cereals and cereal-based foods. A majority of countries, mentioning especially the European Union, have established preventive programs to control contamination and strict laws of the permitted levels in foods. Official methods of analysis of mycotoxins normally requires sophisticated instrumentation, e.g. liquid chromatography with fluorescence or mass detectors, combined with extraction procedures for sample preparation. For about sixteen years, the use of simpler and faster analytical procedures based on affinity biosensors has emerged in scientific literature as a very promising alternative, particularly electrochemical (i.e., amperometric, impedance, potentiometric or conductimetric) affinity biosensors due to their simplicity and sensitivity. Typically, electrochemical biosensors for mycotoxins use specific antibodies or aptamers as affinity ligands, although recombinant antibodies, artificial receptors and molecular imprinted polymers show potential utility. This article deals with recent advances in electrochemical affinity biosensors for mycotoxins and covers complete literature from the first reports about sixteen years ago. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Sensitive determination of citrinin based on molecular imprinted electrochemical sensor

    Science.gov (United States)

    Atar, Necip; Yola, Mehmet Lütfi; Eren, Tanju

    2016-01-01

    In this report, a novel molecular imprinted voltammetric sensor based on glassy carbon electrode (GCE) modified with platinum nanoparticles (PtNPs) involved in a polyoxometalate (H3PW12O40, POM) functionalized reduced graphene oxide (rGO) was prepared for the determination of citrinin (CIT). The developed surfaces were characterized by using scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) method. CIT imprinted GCE was prepared via electropolymerization process of 80.0 mM pyrrole as monomer in the presence of phosphate buffer solution (pH 6.0) containing 20.0 mM CIT. The linearity range and the detection limit of the developed method were calculated as 1.0 × 10-12-1.0 × 10-10 M and 2.0 × 10-13 M, respectively. In addition, the voltammetric sensor was applied to rye samples. The stability and selectivity of the voltammetric sensor were also reported.

  12. Operating modes of electrochemical H-concentration probes for tritium sensors

    International Nuclear Information System (INIS)

    Juhera, E.; Colominas, S.; Abellà, J.

    2015-01-01

    Highlights: • Synthesis and chemical characterization of Sr(Ce_0_._9–Zr_0_._1)_0_._9_5Yb_0_._0_5O_3_−_α proton conductor ceramic. • Evaluation of the sensor performance at different hydrogen concentrations. • Two different operating modes of the sensors: amperometric and potentiometric. • In amperometric mode sensor sensitivity can be tuned by changing the applied voltage. - Abstract: Potentiometric hydrogen sensors using different solid-state electrolytes have been designed and tested at the Electrochemical Methods Lab at Institut Quimic de Sarria (IQS). The most promising element (Sr(Ce_0_._9–Zr_0_._1)_0_._9_5Yb_0_._0_5O_3_−_α) has been selected for this work in order to evaluate the sensor performance at different hydrogen concentrations in two different operating modes: amperometric and potentiometric. In addition, the sensor response has been evaluated at different working temperatures (500, 575 and 650 °C). The experiments performed proved that when the sensor was used in a potentiometric mode, there is a threshold hydrogen concentration that the sensor can detect depending on the working conditions; 15 mbar at 575 °C and 10 mbar 650 °C. At 500 °C the minimum working temperature of this ceramic has not been achieved, so large deviations between experimental data and theoretical calculations has been obtained. When the sensor was used in an amperometric mode the obtained currents increased as a function of the applied voltage. At a fixed potential, the higher the temperature the higher the current was. So the sensor sensitivity can be tuned by changing the applied voltage at a fixed temperature and hydrogen concentration.

  13. Functionalized Multiwalled Carbon Nanotube Electrochemical Sensor for Determination of Anticancer Drug Flutamide

    Science.gov (United States)

    Farias, Julianna Santos; Zanin, Hudson; Caldas, Adriana Silva; dos Santos, Clenilton Costa; Damos, Flavio Santos; de Cássia Silva Luz, Rita

    2017-10-01

    An electrochemical sensor based on functionalized multiwalled carbon nanotubes (MWCNTf) has been developed and applied for determination of anticancer drug flutamide in pharmaceutical and artificial urine samples. The electrode was prepared by modifying a glassy carbon electrode with MWCNTf, denoted herein as MWCNTf/GCE. The MWCNTf/GCE electrode exhibited high catalytic activity, high sensitivity, and high stability and was applicable over a wide concentration range for flutamide. The effects of the scan rate, pH, and nature of the electrolyte on the electrochemical behavior of flutamide on the MWCNTf/GCE were investigated. The results showed that this electrode presented the best square-wave voltammetric response to flutamide in Britton-Robinson buffer solution at pH 5.0 at frequency of 50 Hz and amplitude of 0.06 V. The proposed sensor presents a wide linear response range from concentration of 0.1 μmol L-1 up to 1000 μmol L-1 (or 27.6 μg L-1 up to 0.27 g L-1), with limit of detection, limit of quantification, and sensitivity of 0.03 μmol L-1, 0.1 μmol L-1, and 0.30 μA μmol-1 L, respectively. The MWCNTf/GCE electrode was successfully applied for determination of flutamide in pharmaceutical formulations and artificial urine samples, giving results in agreement with those obtained by a comparative method described in literature. A paired Student's t-test revealed no statistical difference between the reference and proposed method at 95% confidence level. The average recovery for fortified samples was 101 ± 1%.

  14. Recent progresses in biomedical applications of aptamer-functionalized systems.

    Science.gov (United States)

    Ding, Fei; Gao, Yangguang; He, Xianran

    2017-09-15

    Aptamers, known as "chemical antibodies" are screened via a combinational technology of systematic evolution of ligands by exponential enrichment (SELEX). Due to their specific targeting ability, high binding affinity, low immunogenicity and easy modification, aptamer-functionalized systems have been extensively applied in various fields and exhibit favorable results. However, there is still a long way for them to be commercialized, and few aptamer-functionalized systems have yet successfully entered clinical and industrial use. Thus, it is necessary to overview the recent research progresses of aptamer-functionalized systems for the researchers to improve or design novel and better aptamer-functionalized systems. In this review, we first introduce the recent progresses of aptamer-functionalized systems' applications in biosensing, targeted drug delivery, gene therapy and cancer cell imaging, followed by a discussion of the challenges faced with extensive applications of aptamer-functionalized systems and speculation of the future prospects of them. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Protein Detection with Aptamer Biosensors

    Directory of Open Access Journals (Sweden)

    Regina Stoltenburg

    2008-07-01

    Full Text Available Aptamers have been developed for different applications. Their use as new biological recognition elements in biosensors promises progress for fast and easy detection of proteins. This new generation of biosensor (aptasensors will be more stable and well adapted to the conditions of real samples because of the specific properties of aptamers.

  16. Synthesis and electrochemical study of Pt-based nanoporous materials

    International Nuclear Information System (INIS)

    Wang Jingpeng; Holt-Hindle, Peter; MacDonald, Duncan; Thomas, Dan F.; Chen Aicheng

    2008-01-01

    In the present work, a variety of Pt-based bimetallic nanostructured materials including nanoporous Pt, Pt-Ru, Pt-Ir, Pt-Pd and Pt-Pb networks have been directly grown on titanium substrates via a facile hydrothermal method. The as-fabricated electrodes were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction and electrochemical methods. The active surface areas of these nanoporous Pt-based alloy catalysts are increased by over 68 (Pt-Pd), 69 (Pt-Ru) and 113 (Pt-Ir) fold compared to a polycrystalline Pt electrode. All these synthesized nanoporous electrodes exhibit superb electrocatalytic performance towards electrochemical oxidation of methanol and formic acid. Among the five nanoporous Pt-based electrodes, the Pt-Ir shows the highest peak current density at +0.50 V, with 68 times of enhancement compared to the polycrystalline Pt for methanol oxidation, and with 86 times of enhancement in formic acid oxidation; whereas the catalytic activity of the nanoporous Pt-Pb electrode outperforms the other materials in formic acid oxidation at the low potential regions, delivering an enhanced current density by 280-fold compared to the polycrystalline Pt at +0.15 V. The new approach described in this study is suitable for synthesizing a wide range of bi-metallic and tri-metallic nanoporous materials, desirable for electrochemical sensor design and potential application in fuel cells

  17. Synthesis and electrochemical study of Pt-based nanoporous materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jingpeng [Department of Chemistry, Lakehead University, Thunder Bay, Ontario P7B 5E1 (Canada); Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1 (Canada); Holt-Hindle, Peter; MacDonald, Duncan [Department of Chemistry, Lakehead University, Thunder Bay, Ontario P7B 5E1 (Canada); Thomas, Dan F. [Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1 (Canada); Chen Aicheng [Department of Chemistry, Lakehead University, Thunder Bay, Ontario P7B 5E1 (Canada)], E-mail: aicheng.chen@lakeheadu.ca

    2008-10-01

    In the present work, a variety of Pt-based bimetallic nanostructured materials including nanoporous Pt, Pt-Ru, Pt-Ir, Pt-Pd and Pt-Pb networks have been directly grown on titanium substrates via a facile hydrothermal method. The as-fabricated electrodes were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction and electrochemical methods. The active surface areas of these nanoporous Pt-based alloy catalysts are increased by over 68 (Pt-Pd), 69 (Pt-Ru) and 113 (Pt-Ir) fold compared to a polycrystalline Pt electrode. All these synthesized nanoporous electrodes exhibit superb electrocatalytic performance towards electrochemical oxidation of methanol and formic acid. Among the five nanoporous Pt-based electrodes, the Pt-Ir shows the highest peak current density at +0.50 V, with 68 times of enhancement compared to the polycrystalline Pt for methanol oxidation, and with 86 times of enhancement in formic acid oxidation; whereas the catalytic activity of the nanoporous Pt-Pb electrode outperforms the other materials in formic acid oxidation at the low potential regions, delivering an enhanced current density by 280-fold compared to the polycrystalline Pt at +0.15 V. The new approach described in this study is suitable for synthesizing a wide range of bi-metallic and tri-metallic nanoporous materials, desirable for electrochemical sensor design and potential application in fuel cells.0.

  18. Synthesis and electrochemical study of Pt-based nanoporous materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jingpeng [Department of Chemistry, Lakehead University, Thunder Bay, Ontario P7B 5E1 (Canada); Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1 (Canada); Holt-Hindle, Peter; MacDonald, Duncan; Chen, Aicheng [Department of Chemistry, Lakehead University, Thunder Bay, Ontario P7B 5E1 (Canada); Thomas, Dan F. [Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1 (Canada)

    2008-10-01

    In the present work, a variety of Pt-based bimetallic nanostructured materials including nanoporous Pt, Pt-Ru, Pt-Ir, Pt-Pd and Pt-Pb networks have been directly grown on titanium substrates via a facile hydrothermal method. The as-fabricated electrodes were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction and electrochemical methods. The active surface areas of these nanoporous Pt-based alloy catalysts are increased by over 68 (Pt-Pd), 69 (Pt-Ru) and 113 (Pt-Ir) fold compared to a polycrystalline Pt electrode. All these synthesized nanoporous electrodes exhibit superb electrocatalytic performance towards electrochemical oxidation of methanol and formic acid. Among the five nanoporous Pt-based electrodes, the Pt-Ir shows the highest peak current density at +0.50 V, with 68 times of enhancement compared to the polycrystalline Pt for methanol oxidation, and with 86 times of enhancement in formic acid oxidation; whereas the catalytic activity of the nanoporous Pt-Pb electrode outperforms the other materials in formic acid oxidation at the low potential regions, delivering an enhanced current density by 280-fold compared to the polycrystalline Pt at +0.15 V. The new approach described in this study is suitable for synthesizing a wide range of bi-metallic and tri-metallic nanoporous materials, desirable for electrochemical sensor design and potential application in fuel cells. (author)

  19. Aptamer based fluorescent cocaine assay based on the use of graphene oxide and exonuclease III-assisted signal amplification

    International Nuclear Information System (INIS)

    Zhang, Yulin; Zhang, Guo-Jun; Sun, Zhongyue; Tang, Lina; Zhang, Hong

    2016-01-01

    The article reports an aptamer based assay for cocaine by employing graphene oxide and exonuclease III-assisted signal amplification. It is based on the following scheme and experimental steps: (1) Exo III can digest dsDNA with blunt or recessed 3-terminus, but it has limited activity to ssDNA or dsDNA with protruding 3-terminus; (2) GO can absorb the FAM-labeled ssDNA probe and quench the fluorescence of probe, while the affinity between FAM-labeled mononucleotide and GO is negligible; (3) Cocaine aptamer can be split into two flexible ssDNA pieces (Probe 1 and Probe 2) without significant perturbation of cocaine-binding abilities; (4) The triple complex consisting of Probe 1, Probe 2 and cocaine can be digested by Exo III with the similar efficiency as normal dsDNA. Cocaine aptamer is split into two flexible ssDNA pieces (Probe 2 and 3′-FAM-labeled Probe 1). Cocaine can mediate the cocaine aptamer fragments forming a triplex. The triple complex has unique characteristic with 3′-FAM-labeled blunt end at the Probe 1 and 3′-overhang end at Probe 2. If exonuclease III is added, it will catalyze the stepwise removal of fluorescein (FAM) labeled mononucleotides from the 3-hydroxy termini of the special triplex complex, resulting in liberation of cocaine. The cocaine released in this step can produce a new cleavage cycle, thereby leading to target recycling. Through such a cyclic bound-hydrolysis process, small amounts of cocaine can induce the cleavage of a large number of FAM-labeled probe 1. The cleaved FAM-labeled mononucleotides are not adsorbed on the surface of graphene oxide (GO), so a strong fluorescence signal enhancement is observed as the cocaine triggers enzymatic digestion. Under optimized conditions, the assay allows cocaine to be detected in the 1 to 500 nM concentration range with a detection limit of 0.1 nM. The method was applied to the determination of cocaine in spiked human plasma, with recoveries ranging from 92.0 to 111.8 % and RSD of <12

  20. Calibration and assessment of electrochemical air quality sensors by co-location with regulatory-grade instruments

    Science.gov (United States)

    Hagan, David H.; Isaacman-VanWertz, Gabriel; Franklin, Jonathan P.; Wallace, Lisa M. M.; Kocar, Benjamin D.; Heald, Colette L.; Kroll, Jesse H.

    2018-01-01

    The use of low-cost air quality sensors for air pollution research has outpaced our understanding of their capabilities and limitations under real-world conditions, and there is thus a critical need for understanding and optimizing the performance of such sensors in the field. Here we describe the deployment, calibration, and evaluation of electrochemical sensors on the island of Hawai`i, which is an ideal test bed for characterizing such sensors due to its large and variable sulfur dioxide (SO2) levels and lack of other co-pollutants. Nine custom-built SO2 sensors were co-located with two Hawaii Department of Health Air Quality stations over the course of 5 months, enabling comparison of sensor output with regulatory-grade instruments under a range of realistic environmental conditions. Calibration using a nonparametric algorithm (k nearest neighbors) was found to have excellent performance (RMSE 0.997) across a wide dynamic range in SO2 ( 2 ppm). However, since nonparametric algorithms generally cannot extrapolate to conditions beyond those outside the training set, we introduce a new hybrid linear-nonparametric algorithm, enabling accurate measurements even when pollutant levels are higher than encountered during calibration. We find no significant change in instrument sensitivity toward SO2 after 18 weeks and demonstrate that calibration accuracy remains high when a sensor is calibrated at one location and then moved to another. The performance of electrochemical SO2 sensors is also strong at lower SO2 mixing ratios (pollutant species in other areas (e.g., polluted urban regions), the calibration and validation approaches described here should be widely applicable to a range of pollutants, sensors, and environments.